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Abstract

ALEX F. MILLS: Patient Prioritization and Resource Allocation
in Mass Casualty Incidents.

(Under the direction of Nilay Tanık Argon and Serhan Ziya.)

Mass-casualty incidents, such as multi-car traffic accidents, plane crashes, and terrorist

bombings, create a sudden spike in demand for emergency resources in an area. Providers

of emergency medical services must act quickly to make decisions that will affect the lives

of injured patients. Particularly important is triage, the process of classifying patients and

prioritizing them for transportation from the scene of the incident. The most widely used

standard for mass-casualty triage, START, prescribes a fixed priority ordering among the

different classes of patients, without explicitly accounting for resource limitations. We de-

velop policies to improve the resource allocation phase of START by explicitly incorporating

resource limitations. Next, we develop policies for assigning resources when two or more

incidents occur at the same time and demand the same set of resources. Current standards,

such as START, do not prescribe how to handle such situations—these decisions are most

often made in an ad hoc manner. Finally, we examine the problem of efficiently routing a

large number of patients affected by a major disaster, such as a biological, chemical, or nu-

clear incident, to facilities where they can be treated. We provide insight on how resources

can be used effectively to treat patients as quickly as possible. Throughout this work, we

focus on policies that are analytically justified, intuitive, broadly applicable, and easy to

implement. Using numerical results and simulation, we demonstrate that implementing

policies based on quantitative analysis can make a meaningful impact by increasing the

expected number of survivors in a mass-casualty incident.
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Chapter 1

Introduction

In a mass-casualty incident (MCI), the number of patients is large enough to overwhelm

the emergency response resources in an area, so even critically injured patients may have to

wait to be transported to a hospital. Managing the emergency response in an MCI requires

making many decisions. Depending on the scale of the incident and the severity of the

patients’ injuries, these decisions may include how many resources are needed to respond

to the incident or incidents, how to classify patients, which patients should get priority for

transportation to a hospital, and to which facility each patient should be sent. Because of

the time-sensitive nature of emergency medicine and the chaotic environment present at the

scene of an MCI, these decisions must be made quickly, and often with limited information.

This dissertation analyzes some of the important prioritization and resource allocation deci-

sions that must be made when responding to an MCI. We examine several of these decisions

with the goals of developing policies that are practical and effective, and providing insights

that can guide decision makers in an emergency. We consider improvements to patient pri-

oritization that can be made within the framework of existing triage standards, we examine

how to allocate resources in scenarios not considered by current protocols, and we attempt

to quantify some of the observations that have been made by experts in the medical field.

One of the most important concepts involved in the response to a mass-casualty incident

is triage. Triage is the process of classifying patients according to their medical conditions

and injury characteristics and then determining the order in which they will be treated.

According to the current practice, priority assignments in an MCI are made in a very



simple way. The triage class of a patient automatically determines the patient’s priority. For

example, START, which stands for Simple Triage and Rapid Transport, is the most widely

adopted mass-casualty triage protocol in the U.S. (Lerner 2008). As a triage tool, START

is primarily geared toward the quick assessment and classification of patients. According to

START, patients are classified into five different classes. Minor patients are those who are

capable of walking away from the scene; delayed patients are those for whom treatment may

be delayed by some time without risking their lives; immediate patients are those whose

conditions will deteriorate most rapidly without care; expectant patients are those who are

expected to die no matter what care is given; and finally dead patients. Expectant and

dead are often considered to be the same class; we treat them as such in this work. Once

the patients are classified, priorities are determined as follows: resources are allocated first

to patients in the immediate class, then to those in the delayed class. Once the system

is cleared of patients in these time-critical classes, resources may be used for those in the

minor class. Beyond the simple static priority policy, START does not address any other

aspects of the emergency response effort.

There is a clear benefit from adopting a static, predetermined prioritization policy that

depends solely on patients’ triage classes: it is simple and thus easy to implement. However,

there are also drawbacks to this type of simple policy. A number of recent articles in the

emergency response literature have questioned whether START is in fact too simple, mainly

because it completely ignores resource limitations (Garner et al. 2001, Sacco et al. 2005,

Frykberg 2005, Jenkins et al. 2008). The main argument is that patient priorities should

depend on the extent of resource limitation relative to demand. It might not always be

sensible to give priority to patients in the immediate class over those in the delayed class.

For example, there may be so many immediate patients that there is not enough time to

serve the delayed patients within a time frame that will give them a good chance of survival.

In Chapter 3, we study the problem of prioritizing patients during the response to an MCI,

and we propose a policy, ReSTART, that builds on the START classification system by

prioritizing patients based on the level of resource availability.

Policies such as START, which were developed primarily to classify patients, are also

insufficient to deal with many of the other decisions that must be made when responding
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to an MCI. One of these relevant issues is how to dispatch resources, such as ambulances,

to care for patients during an emergency involving more than one mass-casualty incident.

Multiple location mass-casualty incidents are frequently associated with terrorist attacks

(e.g., the London subway bombings of 2005 (Lockey et al. 2005), where casualties were

spread among four subway stations). In addition, catastrophic weather events and other

natural disasters (such as tornadoes or earthquakes) can also strain emergency medical ser-

vices (EMS) systems, causing mass-casualty incidents in more than one location, each of

which contributes demand for the same limited emergency resources. While EMS systems

are able to plan ahead in allocating resources during daily operations, resource allocation

decisions in an MCI are often made in an ad hoc manner by emergency response coordina-

tors. Some states maintain “strike forces” of ambulances in case additional resources are

requested by a locality due to a major disaster or MCI (State of California EMS Authority

2003), but to our knowledge, analytical results do not exist to assist responders in deciding

when and where to dispatch these resources. Moreover, the decision on where to allocate

resources will be affected by the method used for patient prioritization. In Chapter 4, we

analyze how resources should be allocated to two or more MCIs in conjunction with the

prioritization of patients.

Policies such as START also do not provide guidance on how to coordinate a prolonged

response effort involving primarily patients who do not have life-threatening injuries. Large

scale natural or man-made disasters often result in a very large number of casualties who

do not have life-threatening conditions but nonetheless need to be evacuated and receive

some kind of care. Even though these patients do not need advanced care, they may crowd

and overwhelm emergency rooms and other treatment facilities. For example, casualties in

a biological, chemical, or nuclear disaster must be transported out of the affected area and

then undergo decontamination; casualties from an earthquake, flood, or hurricane must be

moved to a safe place to undergo triage or to receive treatment for injuries. Confusion and

fear may add to the difficulty in performing an efficient evacuation. Emergency responders

may also encounter limited resources and unexpected events, such as infrastructure damage

on the evacuation routes or overcrowding at some of the facilities that are set up to receive

casualties. Nonetheless, the main goal of a large scale casualty evacuation is to ensure the
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safe and timely treatment of as many casualties as possible. It is therefore important for

emergency responders to be able to make decisions dynamically throughout a prolonged

evacuation to make it as efficient as possible.

In Chapter 5, we study how to make routing decisions dynamically so that the evacua-

tion can be adjusted to allow for the largest possible throughput of patients. While different

types of disasters have different requirements in terms of resources needed or treatment pro-

vided, a common theme is that the dynamic management of the evacuation can improve

outcomes and lessen confusion. In a study of thousands of patients evacuated from an earth-

quake, Tanaka et al. (1998) suggested that to improve evacuation, “disaster officials must

know the capabilities and capacity of each area hospital at all times to select appropriate

triage and mode of transport for each victim”. Hick et al. (2011) suggest that during a

nuclear incident, emergency managers should bypass hospitals that are “completely over-

whelmed”. These studies give qualitative observations about evacuation of casualties in a

disaster; they suggest that dynamic management of casualty evacuation could be helpful,

by incorporating information about the level of congestion at each casualty collection point.

We attempt to provide quantitative insights to this problem in order to assist decision mak-

ers. Specifically, we consider the problem of transporting casualties without life-threatening

injuries from areas affected by a disaster to a set of casualty collection points, where they

receive treatment. This problem is particularly relevant in a biological, chemical, or nuclear

disaster. In these types of disasters, casualties are evacuated from a “hot zone”, where there

is risk of exposure to the agent, to a “warm zone”, where they wait to undergo decontam-

ination, and finally to a “cold zone”, where they are safe to leave the area or proceed to

additional treatment for injuries or illnesses (Boardman et al. 2008).

Throughout this dissertation, we maintain a common theme: development of analytical,

numerical, and simulation results that lead to fundamental insights about the problem and

toward policies that are both effective and practical. In Chapter 2, we review relevant

literature from both the medical community and the operations community. In Chapters

3, 4, and 5, we provide the main results on patient prioritization, resource allocation, and

routing, respectively. Finally, in Chapter 6, we summarize our work and suggest areas for

further research. Proofs of analytical results are provided in the Appendix.
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Chapter 2

Literature Review

The literature review is divided into two parts. In Section 2.1, we review articles by

physicians and emergency medical personnel that examine decision making in mass-casualty

incidents and suggest modifications or improvements. This review covers the work of Sacco

et al. (2005), which proposes a completely new system of triage based on linear program-

ming, and includes a discussion as to why this proposal has been received mostly with

skepticism within the medical community. In Section 2.2, we review recent contributions

within the Operations Research community to problems of patient prioritization, resource

allocation, and routing/evacuation.

2.1 Emergency Medicine Literature

In the emergency medicine literature, there are numerous articles on patient triage and

prioritization in the context of mass-casualty incidents. Some of these articles report de-

tails on emergency response efforts and outcomes in past mass-casualty incidents and daily

emergencies, some provide general discussion on patient triage practices, discuss their short-

comings and point to future research directions, and some propose new triage methods or

modifications to the existing ones (Frykberg 2005, Garner et al. 2001, Bostick et al. 2008,

Jenkins et al. 2008, Hick et al. 2008, Lerner 2008, Kahn et al. 2009, Lerner et al. 2010).

To a large extent, this literature does not utilize mathematical modeling and analysis. The

notable exceptions to this are the articles by Sacco and his co-authors (Sacco et al. 2005 and

2007, Navin et al. 2009) in which the authors describe the Sacco Triage Method (STM) and

test its performance by numerical experiments.



A review of the principles of triage by Frykberg (2005) outlines some of the many issues

involved in making decisions about patient care in a mass-casualty incident. Of greatest

relevance to our problem, Frykberg argues that the “main factor” that distinguishes a

mass-casualty incident from daily emergency response is that the supply of resources is

overwhelmed by the demand. He notes that unlike in routine trauma care, the limitation of

available resources in a mass-casualty incident necessitates that some of the most severely

injured patients will be abandoned so that resources may be diverted to those who have a

good chance of survival. Frykberg emphasizes that while this principle may be difficult for

medical providers to accept, it is necessary because the goal of triage in a mass-casualty

incident should be to do the “greatest good for the greatest number.” Furthermore, he notes

that the most difficult decision may be to determine which patients should be denied care,

because this decision depends on many factors, such as the number of patients, severity of

their injuries, and specific resources that are available. Garner et al. (2001) also emphasize

the importance of considering the scale of the incident and the availability of resources in

a mass-casualty incident, noting that current guidelines may sometimes prioritize patients

whose injuries are severe enough that they should instead be considered unsalvageable

based on the scale of the mass-casualty incident: “the decision not to treat certain patients

is dependent on many factors other than just physiologic or anatomic signs of severe injury.”

The authors add that such decisions can only be made with “knowledge of the available

resources.”

As mentioned in the introduction, the de facto triage standard in the United States of

America is Simple Triage and Rapid Treatment (START). It is important to realize that

START actually consists of two phases: classification of the patients into triage classes and

allocation of the available resources in a fixed-priority manner. Although some modifications

to START have been proposed in the emergency response literature, they have generally

been concerned with the classification phase (Jenkins et al. 2008, Lerner 2008). That is,

modifications to START have mostly focused on developing new or revised criteria for

placing patients in the different triage classes, in hopes of reducing classification errors.

Discrepancies in classification are generally referred to as overtriage, if a patient is given an

inappropriately severe classification, or undertriage, if a patient is given an inappropriately

6



mild classification. The notable exception to this generalization is again the work by Sacco

et al., which aims to redefine both phases of triage.

Limited work on statistical analysis of triage protocols has generally focused on de-

termining how well emergency responders are able to accurately classify patients (Garner

et al. 2001) and on how well the triage classifications correspond to the actual severity of

the injury, as determined by emergency physicians (Kahn et al. 2009). One reason for the

scarcity of this type of analysis is that the chaotic environment of an MCI often leads to

poor or insufficient documentation. For example, a retrospective analysis of the Oklahoma

City Bombing determined that “documentation of the process behind the triage decisions

made in Oklahoma City was practically nonexistent” (Hogan et al. 1999). Studies such as

Kahn et al. (2009) used a standardized form to collect detailed triage-related information

about patients in daily emergencies and determine START classification a posteriori, but

it is not clear that such a form would be useful for tracking triage decisions in an MCI,

especially because it is impossible to predict the location and timing of an MCI, and hence

the forms would not necessarily be available.

The articles cited in this section highlight the general lack of medical research on pri-

oritization and resource allocation in an MCI. Nonetheless, despite the lack of research in

this area, the need to study resource allocation in mass-casualty triage is clearly expressed

by Frykberg (2005) and other authors, and we pursue this direction in this dissertation.

At the intuitive level, it may not be difficult to see that taking resource limitations into

account could improve patient outcomes. To the best of our knowledge, the only proposed

resource-based method in the emergency response literature is the Sacco Triage Method

(STM) developed by W.J. Sacco and his co-authors (Sacco et al. 2005 and 2007, Navin

et al. 2009). Sacco et al. propose a method that challenges the existing standards in both

phases of triage: classification and resource allocation. Sacco Triage Method, or STM, in-

volves solving a linear program to allocate resources to patients in thirteen different triage

classes (Sacco et al. 2005 and 2007, Navin et al. 2009). The authors suggest that the patient

data could be collected quickly and transmitted by the responders in the field to an emer-

gency response center, where the LP would be solved. They further suggest that solving

the LP with hypothetical scenarios could be useful for emergency planning and training.

7



While the latter seems like an obvious use for STM, critics have argued that it would be

impractical to implement the volume of data collection and transmission that STM would

require in order for it to be useful in the immediate aftermath of a real emergency. In a

response to Sacco et al. (2005), Cone and MacMillan (2005) praised STM for its ability to

incorporate information about the number of patients and resources, noting that no other

existing triage system has been developed and evaluated from a mathematical perspective;

however, the authors devoted much of their response to critiquing operational issues that

could result if STM were implemented in an actual emergency situation. Anecdotal evidence

suggests that the assertions of Cone and MacMillan (2005) may be correct: for example,

in a retrospective analysis of the response to a bridge collapse, Hick et al. (2008) note that

STM “would not have been helpful in this setting because no data on the casualties would

have been entered by the time of transport.”

Part of the resistance to STM could also be due to the fact that it uses a different

scheme for classifying patients from the current practice of START. According to STM,

each patient is assigned an RPM (Respiration, Pulse, and Motor response) score, which is

an integer from 0 to 12, with lower scores being associated with more critical conditions.

Patients are then given priority according to their RPM score as determined by the solution

to the linear program. Thus, implementation of STM requires the emergency responders

to drop a patient classification scheme with which they are already familiar and which has

already received wide acceptance, and switch to another scheme that is largely unknown by

the emergency response community. Furthermore, with this switch, they will need to use

prioritization policies for which they will not have an intuitive feel, because priorities are

determined by the solution to the linear program, which is like a black box for the emergency

response personnel. The thirteen possible RPM scores means that there are potentially

thirteen different priority classes to deal with, and the examples provided in Sacco et al.

(2005) show that the priority policy suggested by STM can be quite complex and difficult

to interpret. For example, in a particular setting in which only six of the thirteen RPM

scores were present, the authors reported that the optimal priority ordering for the RPM

scores was 6, 8, 7, 4, 3, 4, 2, 3 (note that some scores are repeated, because they can obtain

the highest priority repeatedly at different times).

8



The work of Hick et al. (2008) highlights another potential problem of STM: the training

and comfort level of emergency responders. Although the responders to the bridge collapse

did not use triage tags to identify the patients, paramedics “believed uniformly that they

were rapidly able to sort red [Immediate], yellow [Delayed], and green [Minor] casualties

without use of a triage tool” (Hick et al. 2008). In other words, paramedics relied on their

training and experience in the classification phase of triage. Although there is no uni-

form national standard for mass-casualty triage, START is widely accepted (Lerner 2008).

For example, Mistovich and Karren (2007), a widely used training manual for emergency

medical technicians (EMTs), provides training in START. Introducing a radically different

classification would require significant re-training and pose communication problems across

jurisdictions if not uniformly implemented. Hence, there are good reasons to believe that

for an improved triage system to have a chance of acceptance and implementation, it must

be compatible with or similar to the widely adopted START classification.

Finally, the perceived proprietary nature of STM has hindered its ability to be accepted.

Kahn et al. (2010) notes that “every published article on the Sacco Triage Method has been

funded and written by the principals of ThinkSharp, Inc., the company that sells the Sacco

Triage Method.” We further note that the numerical studies showing the benefit of using

STM were constructed by the authors of the method, and to our knowledge, no systematic

numerical studies or simulations have been used to test the performance of STM.

Notwithstanding the objections noted above, we believe that the promising numerical

results of Sacco et al. (2005 and 2007) support our assertion that more information about

patients and resources may improve the outcome of triage. However, the criticism of STM

highlights the fact that the current research must focus on identifying policies that are

much simpler and easier to implement than STM. In this respect, we diverge from STM.

Rather than attempting to develop a decision support tool that claims to solve the triage

and prioritization problem in real time, we provide general characterizations of the optimal

policy, and we develop simple, practical policies based on those characterizations.

One aspect of the STM formulation that distinguishes it from the models used in papers

from the operations literature is the manner in which criticality is modeled. In STM,

patients do not die; rather, their condition deteriorates over time. In other words, delaying

9



service of a patient means that the system will simply receive a smaller reward from his or

her eventual service. On the other hand, in the papers from the operations literature that

we will review in Section 2.2, the concept of a deadline (for a job) or lifetime (for a patient)

is used. In general, such deadlines or lifetimes may be deterministic or random, and if they

are random, they may be known or unknown to the decision maker at the time when he or

she must make the decision. In such a model, rather than having deterioration continuously

or at several points in time, the amount of reward earned depends only on whether the job

receives service before or after its deadline. The deterioration model simplifies the analysis

somewhat because it does not need to deal with patients leaving the system through means

other than service (i.e., abandonments).

2.2 Operations Research Literature

In the operations literature, interest in patient triage and prioritization in mass-casualty

incidents has been relatively recent. Most of the classical scheduling literature is not directly

applicable to the patient triage problem because it deals with problems over a longer time

scale or with arrivals. Among the few articles in the literature that do apply to the patient

triage problem, the two that are most relevant are Argon et al. (2008) and Jacobson et al.

(2012) because they also deal with identifying effective patient prioritization policies in

the aftermath of mass-casualty incidents. Argon et al. (2008) and Jacobson et al. (2012)

consider models in which there are a finite number of patients at different casualty levels

who are in need of a service that is in limited supply. The objective is to determine the

order in which these patients will be served to maximize the system’s reward. In its simplest

form, the reward is the expected number of survivors. In these two articles, each patient

has a random lifetime whose probability distribution depends on the class of the patient,

with more critical patients having shorter lifetimes in some stochastic sense. If a patient

is not served before his or her lifetime, he or she dies and a reward is not earned. An

alternative way of viewing this class of model is that when the patient dies, the system

incurs the “cost” of delaying response to the patient. If a patient is served before his or her

lifetime, the patient either definitely survives (in Argon et al. 2008) or survives with some
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probability that depends on the class of the patient (in Jacobson et al. 2012). Even though

this type of formulation captures the delay cost in a very direct and realistic way, one implicit

assumption in these models is that the survival probability of a patient does not change

with time. Even with this simplifying assumption, the resulting models turn out to be quite

difficult to analyze. Allowing survival probabilities to be time-dependent would add another

level of complexity to these models and render them analytically intractable. Despite the

difficulty of the analysis, both Argon et al. (2008) and Jacobson et al. (2012) showed that

it is possible to find simple but effective heuristic policies for patient prioritization. In

particular, a threshold policy, where priority depended on the total number of patients,

performed extremely well (Jacobson et al. 2012).

In addition to Argon et al. (2008) and Jacobson et al. (2012), there are three other

articles that consider models in which patients may die, but their survival probabilities are

not time-dependent. The work of Glazebrook et al. (2004), which predates both Argon

et al. (2008) and Jacobson et al. (2012), is not specifically interested in patient triage

and prioritization, but provides one result within a generic job scheduling framework that

is also partially relevant in patient triage context. Specifically, the authors establish the

near-optimality of a state-independent fixed priority ordering policy when lifetimes are

long, which generally is not the case for seriously injured patients. Using a model that is

very similar to that considered in Argon et al. (2008), Li and Glazebrook (2010) develop

a heuristic method by applying a single-step of the policy-improvement algorithm on the

state-independent policy proposed by Glazebrook et al. (2004). Childers and Taaffe (2010)

report the results of a numerical study of a model that is again similar to that of Argon

et al. (2008).

In our work on patient prioritization, we diverge from the recent work in the operations

literature by allowing survival probabilities to be time-dependent, but without explicit life-

times. In other words, we capture the “cost” of delaying service through a reward function

that depends on time.

In contrast to the relative sparsity of research in triage, techniques from operations

research have been applied more extensively in the area of evacuation planning in many

different contexts (Regnier 2011); however, these efforts are not necessarily relevant to MCIs.

11



For example, many such articles have dealt with evacuation in advance of a disaster, which is

not relevant to the aftermath of an MCI, and these generally fall into one of two categories:

articles dealing with evacuation of a facility, and articles dealing with vehicle allocation

and/or routing. The latter type is more closely related to our research on routing patients

in the aftermath of an MCI. For example, Tayfur and Taaffe (2009) and Childers and Taaffe

(2010) use optimization to identify staffing and transportation schedules to minimize the

cost of evacuating a hospital within a certain period of time. Bish et al. (2011) consider

the similar problem of evacuating patients from a hospital to a set of receiving hospitals

while minimizing risk.Facility evacuations (and specifically hospital evacuations) can benefit

greatly from advance planning because they are more controlled than the scene of a mass-

casualty event, and are amenable to solution by optimization methods because most of the

parameters are known.

Another area related to our research is vehicle routing, which is a well-studied problem in

the field of operations research (Laporte 2007). Two articles that address vehicle routing and

allocation in a mass-casualty incident are Gong and Batta (2007) and Jotshi et al. (2009).

Gong and Batta (2007) study the problem of determining an initial allocation of ambulances

to groups of casualties in a disaster, using a deterministic model to minimize the makespan,

which in this context is the total amount of time needed to evacuate all the casualties. This

model is most relevant to natural disasters, where the clusters of casualties may be far apart

and hence it is desirable to allocate the resources to the clusters in a predetermined way

or only at certain points in time, rather than dynamically. Jotshi et al. (2009) consider

both dispatching and routing emergency vehicles in a disaster. The model of Jotshi et al.

(2009) is designed to use large amounts of data about medical facilities, casualties, vehicle

locations, and roadways in order to suggest a solution to the vehicle routing problem. While

there are advantages to models that incorporate large amounts of data, the drawback of this

type of model is that the large amount of data that must be collected and entered to solve

the problem in real time, which may hinder its adoption as a practical tool. Nevertheless,

these articles provide a context for our research on casualty routing. Both of these articles

use optimization models, such as network flows and mathematical programming, to find an

initial solution to the evacuation problem or to re-solve the problem at different points in
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time.

In our study of casualty routing, we consider a different component of the evacuation

problem; namely, we assume that the ambulance allocation decision has been made and

we study the queueing of casualties at the collection points and its effect on dynamic rout-

ing decisions. This queueing is especially relevant in situations where a large number of

casualties all need similar service (such as decontamination) and where the service can be

provided at one of several locations.

Both the medical literature and the operations literature highlight the need for research

to support decision making in mass-casualty incidents. The results demonstrated in the

remainder of this dissertation can begin to fill in some of the gaps we have identified herein.
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Chapter 3

Patient Prioritization with

Resource-Based START (ReSTART)

The weak reception of Sacco Triage Method by the medical community, which was

discussed in detail in Section 2.1, suggests that for a resource-based prioritization method

to have some use in practice, it has to be relatively simple and somewhat intuitive, and its

adoption should not necessitate a complete overhaul of the current classification scheme.

These objectives provide the main motivation behind this chapter. Our goal is not to

propose a real-time solution method but rather to carry out mathematical and numerical

analysis to generate insights that would be useful in the design of effective yet simple

prioritization policies. Specifically, we aim to provide answers to some of the questions that

the emergency response community may face in the process of developing resource-based

prioritization policies. For example, is it possible to develop policies that are simple enough

to be implemented in practice yet have substantial benefits over standard policies that do

not consider resource limitations? If so, what are the main characteristics of these policies,

and in what kind of mass-casualty incidents are they likely to be most beneficial?

To answer these questions, we develop a fluid model in which patients do not die and

leave the system. However, their survival probability (more generally, their reward) de-

clines with time and possibly hits zero at some point. This means that according to our

formulation, all patients, even those with zero survival probability, must be transported to

the hospital. Although this may sound unrealistic at first, it does not have any practical

drawback as long as the objective function is chosen reasonably. Since our objective is to



maximize the expected number of survivors (more generally, the total expected reward),

the optimal policy would be always such that patients with zero survival probability (dead

patients) are the last patients to receive service. In other words, the optimal solution will ig-

nore those dead patients as long as there are patients with a positive probability of survival.

Thus, our formulation achieves some mathematical simplicity without sacrificing realism in

any crucial way. The details of our model are provided in Section 3.1.

Before we proceed, it is important to note that the objective that we consider in this

chapter, i.e., the maximization of the expected number of survivors, is consistent with the

widely accepted and practiced emergency response principle of doing the greatest good for

the greatest number (Kennedy et al. 1996, Frykberg 2005). However, triage has always been

a somewhat contentious practice, because it essentially entails favoring certain individuals

over others. There is a long line of discussion and research on the ethical dimensions of

triage. For more on this issue, which is beyond the scope of this dissertation, we refer the

reader to Winslow (1982), Baker and Strosberg (1992), and references therein.

3.1 Model Formulation

We consider a scenario where there are many injured patients who need to be transported

to a hospital. In particular, we consider the case where ambulances or other transportation

resources are limited in supply so that at least some of the patients will have to wait for

some time before being transported. We assume that at time zero the patients have already

been separated into N classes based on their injury characteristics and medical conditions,

and moved to a single area of the site where they are given basic treatment and prepared for

loading onto the ambulances. According to our formulation, there will be no new patient

arrivals after time zero. Thus, our model is a better fit for incidents where a significant

percentage of the patients are quickly accounted for and thus the response effort does not

necessitate a time-consuming search and rescue activity. Nevertheless, in Section 3.6.2, we

use a simulation study to consider cases where some of the patients arrive with some delay.

We denote the set of classes by I = {0, 1, . . . , N − 1} and the number of patients in class

i by ni, where ni > 0. We also assume that all patients need to be transported to the

same hospital via the same transportation mode (e.g., via ground transportation) so that
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the transportation time of a patient does not depend on the patient’s class. For simplicity,

we will frequently use the word “service” to refer to the process of transporting a patient

to the hospital.

We approach this problem from the perspective of the emergency response coordinator,

who decides the order in which patients should be transported, with the objective of maxi-

mizing the overall expected reward or gain from the system. To this end, we assume that

each class i has an associated non-negative reward function fi(t), which is the expected

reward earned by the system if a class i patient is served at time t. To capture the fact

that no patient would benefit from a delay in service, we assume that fi(t) is monotone

non-increasing in t for each i ∈ I. For mathematical tractability, we further assume that

the first-order derivative of fi(t) with respect to t exists for each i ∈ I, and is denoted

by f ′i(t). The function fi(t) can be interpreted as the probability that a patient of class i

ultimately survives if taken into service at time t. With this interpretation, maximizing the

total expected reward is then equivalent to maximizing the expected number of survivors.

Our goal is to develop a model that captures the essential features of the patient pri-

oritization problem but is simple enough to allow mathematical analysis and development

of easy-to-implement policies that are expected to perform well in practice. Towards that

end, we propose a fluid formulation where different classes of patients in the system corre-

spond to different classes of fluid and service of those patients corresponds to a flow of the

respective fluid out of the system. Without loss of generality, we assume that the service

rate is one patient per unit time; therefore, when patients of only class i are flowing out of

the system at time t, reward is earned at a rate of fi(t).

Define a set of decision functions r(t) ≡ {ri(t) : [0,∞) → [0, 1], i ∈ I}, where ri(t) is the

rate at which we choose to serve class i patients or the fraction of the total service capacity

allocated to class i patients at time t ≥ 0. We restrict ourselves to decision functions

that have finitely many discontinuities, which is needed to obtain solutions that switch

priorities only finitely many times and hence are applicable in practice. We now state our
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optimization problem as follows:

max
r(t),t∈[0,∞)

N−1
∑

i=0

∫ ∞

0
ri(s)fi(s) ds (3.1)

subject to

N−1
∑

i=0

ri(t) ≤ 1, ∀t ∈ [0,∞)

∫ ∞

0
ri(t)dt = ni, i ∈ I.

We first note that, as one would expect, it is suboptimal to leave any of the available

capacity unused as long as there is fluid in the system. (The proof is omitted as it imme-

diately follows from the assumptions that the reward functions fi(t) are non-increasing in t

and there are no further arrivals.) The practical implication of this result is that in the rest

of this chapter we do not need to consider solutions that involve idling. Since the service

rate is one patient per unit time, under non-idling policies the fluid will be cleared from the

system, i.e., transportation of the patients will be complete, at time T =
∑

i∈I ni. Thus,

we can restrict ourselves to the time interval [0, T ].

Our fluid formulation allows the total service capacity to be allocated to more than

one patient class at any particular point in time. The practical interpretation of such

an allocation can be problematic because transportation vehicles cannot be allocated in

a continuous manner. This would especially be difficult to deal with when there are few

vehicles to allocate. However, the following proposition resolves this concern. (Proofs of

Proposition 3.1 and all other propositions and theorems are provided in the Appendix.)

Proposition 3.1. There exists an optimal solution to (3.1) where only one class of patient

is served at any given time.

Proposition 3.1 implies that we can restrict the set of policies we consider to those which

serve only one patient class at any point in time. For practice, this result suggests that at

any point in time, there is only one highest-priority class and all transportation resources

available should be allocated to that class unless the number of such patients is less than

the number of resources.

Proposition 3.1 is also useful technically as it allows us to consider a formulation that
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is equivalent to but easier to analyze than (3.1). Define the set-valued decision variable

W = {W (i) : i ∈ I}, where W (i) is the set of time points during which class i is served.

Then, we can rewrite our optimization problem in the following way:

max
W

N−1
∑

i=0

∫

W (i)

fi(t) dt (3.2)

subject to µ (W (i)) = ni, i ∈ I,
N−1
⋃

i=0

W (i) = [0, T ],

W (i) ∩W (j) = ∅, ∀i 6= j,

where µ(W (i)) is the total amount of time spent serving class i patients. In the rest of our

analytical work, we will focus on this formulation. For both practical and technical reasons,

we restrict ourselves to solutions W such that for each i ∈ I, W (i) consists of finitely many

intervals, each of which is closed on the left and open on the right.

3.2 A Simple Condition for Fixed-Priority Ordering

Many triage methods that are used in practice, such as START, assign a fixed priority to

each class of patients. To be more precise, in a fixed-priority method, the triage class of each

patient determines his or her priority level, which does not change with time throughout

the response effort. Although several examples show that in general, the optimal policy to

(3.2) is not a fixed-priority policy (i.e., the optimal policy is such that the priority ordering

of the patient classes changes with time), due to the simplicity of fixed-priority policies, it

is still important to investigate conditions under which the optimality of a such a policy is

guaranteed.

It turns out that one condition that ensures an optimal fixed-priority relationship be-

tween two classes of patients is an ordering between the derivatives of their respective reward

functions.

Proposition 3.2. Suppose that there exist two classes, i and j, which have the property
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that

f ′j(t) ≤ f ′i(t) ∀t ∈ [0, T ]. (3.3)

Given a feasible solution to (3.2), where some class i patients are served before some class

j patients, there exists another solution where

(i) no class i patients are served before class j patients, and

(ii) the expected total reward obtained under the new solution is at least as large as the

expected total reward obtained under the existing solution.

Proposition 3.2 implies that if class j patients deteriorate at least as fast as class i

patients over [0, T ], then there exists an optimal solution where class j has priority over

class i at all times. In order to intuitively understand Proposition 3.2, it helps to think

about the “opportunity cost” of delaying service to each class for a period of time. If the

expected reward function of class j always decreases faster than that of class i, we will

forego more expected reward by delaying the service of class j than we would by delaying

the service of class i, for any arbitrary amount of time. The optimal policy is to delay the

service of the class for which there is less to lose with time.

There are a few important points worth emphasizing regarding Proposition 3.2. First,

the proposition does not assume an ordering between fi(·) and fj(·). This means that the

deterioration rates, not the nominal values of the expected rewards (e.g., survival probabil-

ities), determine dominance. For example, it is possible for class i patients to have lower

survival probabilities than class j patients at all times and yet be assigned a lower priority

than class j patients if their health conditions do not deteriorate as fast. Second, it is

crucial to ensure that the ordering in (3.3) holds for all t ∈ [0, T ]. One might expect that

if f ′j(t) ≤ f ′i(t)∀t ∈ [0, t0] for some t0 < T , then we could at least apply the result of the

proposition for the time period [0, t0]. Nonetheless, we can easily construct examples where

this intuition does not hold. And third, it might seem at first that Condition (3.3) does not

depend on the scale of the mass-casualty incident, i.e., the number of patients of various

classes, transportation capacity, etc. However, recall that T is the time the response effort

is over, hence T increases with the number of patients and the response time per patient.
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This means that as the scale of the incident gets larger, T becomes larger and as a result it

becomes increasingly less likely for (3.3) to hold.

Proposition 3.2 directly leads to the complete characterization of an optimal policy when

all classes can be ordered according to Condition (3.3):

Corollary 3.1. Suppose that

f ′N−1(t) ≤ f ′N−2(t) ≤ · · · ≤ f ′0(t) ∀t ∈ [0, T ]. (3.4)

Then there exists an optimal policy under which there is a fixed-priority ordering (N −

1, N − 2, . . . , 0) among the patients so that for any i ∈ {N − 2, N − 3, . . . , 0}, class i + 1

patients have priority over class i patients.

The policy prescribed by Corollary 3.1 is very simple and practical. Since the priority

ordering is fixed, there is less room for mistakes during implementation. However, the

optimality of the policy is only guaranteed under a relatively strong condition. Therefore,

it is important to investigate what the optimal policy would be like when Condition (3.4)

does not hold.

We pursue this question in the following section where we focus on the case with only

two patient classes. There are two main reasons why we consider this particular scenario.

First, characterization of the optimal policy—except under Condition (3.4)—appears to be

very difficult when there are more than two patient classes. However, more importantly,

the two-class case fits perfectly well with the widely adopted triage classification used in

START. As we described in Section 1, even though START puts patients into four classes,

patients who are in the expectant class have almost no chance to survive and those with

minor injuries do not carry a risk of dying from their injuries. Therefore, the success of

the response effort depends almost entirely on how priority decisions for patients in the

immediate and delayed classes are handled. Hence, our analysis of the two-class case in

the next section will help us explore how START can be expanded to include resource

limitations using our formulation.
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3.3 Priority Decisions for Two Classes of Patients

Suppose that there are only two patient classes, which we name class I (immediate) and

class D (delayed). By letting g(t) ≡ fD(t)− fI(t), we can rewrite the optimization problem

(3.2) as

max
W (D)

∫

W (D)

g(t) dt + C (3.5)

subject to µ(W (D)) = nD

W (D) ⊆ [0, T ],

where C ≡
∫ T
0 fI(t)dt is a constant.

From Proposition 3.2, we know that if patients of class I consistently deteriorate faster

than patients of class D over [0, T ], then class I should have priority over class D at all

times. Although this is a possibility in practice, a more likely scenario is one where patients

with very critical conditions, who would be classified as immediate according to START,

have rapidly diminishing survival probabilities, which approach zero fairly quickly, while the

survival probability function for delayed patients would be relatively flat initially and then

start to decline rapidly after some point. We formally state this scenario in Assumption 3.1

and present an example pair of reward functions, fI(t) and fD(t) satisfying Assumption 3.1

in Figure 3.1.

Assumption 3.1. There exists tm ∈ [0, T ] such that f ′I(t) < f ′D(t) < 0 for all t < tm,

f ′I(tm) = f ′D(tm), and f ′D(t) < f ′I(t) < 0 for all t > tm. Equivalently, the reward gap

function g(t) has a unique maximum at tm ∈ [0, T ], is increasing for t < tm, and decreasing

for t > tm.

We delay a more detailed discussion on the justification of Assumption 3.1 until Section

3.5.1, where we demonstrate that estimates for survival probability functions for immediate

and delayed classes, which are based on data from Sacco et al. (2005), satisfy Assumption

3.1. The remainder of this section is devoted to characterizing the solution to (3.5) under

Assumption 3.1 and providing insights into the patient prioritization problem based on our

21



0 30 60 90 120 150 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time (min)

P
ro

ba
bi

lit
y 

of
 S

ur
vi

va
l

fD(t)

fI(t)

tm

g(t)

Figure 3.1: Example of reward functions satisfying Assumption 3.1.

analytical results.

3.3.1 Characterization of the Optimal Policy

In this section, we establish a useful structural result for the optimization problem (3.5).

Proposition 3.3. There exists an optimal policy in which W (D) is a single interval.

Proposition 3.3 implies that there is an optimal policy where once the service of delayed

patients starts, it is never interrupted by the service of immediate patients. Hence, the

question of finding the optimal set of time points where delayed patients should be served

is reduced to the question of finding the time at which we should begin serving delayed

patients. In other words, under Assumption 3.1, we can describe the optimal policy by a

single time point, or threshold, and hence the optimization problem (3.5) reduces to

max
t∈[0,nI ]

v(t), (3.6)

where v(t) ≡
∫ t+nD

t g(x) dx. Let t∗ denote a solution to problem (3.6). Then, given t∗, an

optimal policy can be described as follows: serve immediate patients over [0, t∗), switch to

delayed patients at t∗ and serve all of them over the time interval [t∗, t∗ + nD), and finally

switch back to serving immediate patients and serve all the remaining immediate patients

over the interval [t∗ + nD, T ). This general description encompasses the special case where

the policy is a fixed-priority ordering policy like START. More specifically, if t∗ = nI , then
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all immediate patients are served before all delayed patients. On the other hand, if t∗ = 0,

then all delayed patients are served before all immediate patients. Threshold t∗ can be

interpreted as the time at which the “cost” of delaying service to delayed patients starts

outweighing the “benefit” of providing service to immediate patients.

3.3.2 Determining the Optimal Threshold

We now investigate how one can obtain a solution to problem (3.6). We first show that the

solution t∗ is unique and it can be determined more easily by first solving a relaxation of

(3.6).

Proposition 3.4. (i) There is a unique optimal solution, t̃, to the optimization problem

max
t∈[0,∞)

v(t), and t̃ ∈ [max{0, tm − nD}, tm].

(ii) t∗ = min{t̃, nI}.

(iii) tm ∈ [t∗, t∗ + nD].

Part (i) of Proposition 3.4 partially characterizes t̃. Note that the difference between

t∗ and t̃ is that while t∗ is restricted to be no greater than nI , t̃ has no such restriction.

Practically, t̃ is the time at which the service of delayed patients should start even if there

are still immediate patients in need of service, which is very likely to be the case when

there are many immediate patients initially. On the other hand, if all immediate patients

are served before t̃, i.e., nI < t̃, then service of delayed patients should start at nI , because

idling is suboptimal. Therefore, t∗ is the minimum of t̃ and the time it would take to

serve all immediate patients if they were given priority at all times. This is reflected in the

relationship described in part (ii) of Proposition 3.4. Part (iii) of Proposition 3.4 states

that the optimal service time interval for delayed patients must contain tm. Thus, service of

delayed patients should start late enough for the service interval to contain the time point

at which deterioration of delayed patients becomes faster.

The following theorem provides a complete characterization of t̃, and thus a complete

characterization of t∗, which subsequently leads to an algorithm for finding t∗.

Theorem 3.1. Exactly one of the following three statements is true:
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(i) g(0) > g(nD), in which case t∗ = t̃ = 0.

(ii) g(t̃) = g(t̃+ nD) and g(nI) ≤ g(T ), in which case t∗ = nI ≤ t̃.

(iii) g(t̃) = g(t̃+ nD) and g(nI) > g(T ), in which case t∗ = t̃ < nI .

Using Theorem 3.1, it is straightforward to show that the following algorithm determines

the optimal threshold t∗:

1. If g(0) > g(nD), return t
∗ = 0.

2. Else, if g(nI) ≤ g(T ), return t∗ = nI .

3. Else, return the solution of g(t) = g(t+ nD).

Note that t∗ is readily available if one of the two conditions in the first two steps holds. If

neither holds, then one needs to determine the unique solution to g(t) = g(t+ nD).

The first step in the algorithm checks whether g(0) > g(nD). This condition may hold

when delayed patients deteriorate faster than immediate patients starting at either time

zero or soon after, i.e., when tm is close to or equal to zero. In this case, Theorem 3.1

indicates that t∗ = 0, and hence, delayed patients have priority at all times. This policy,

which we call Inverted START (InvSTART), is the complete opposite of START because

delayed patients have priority over immediate patients at all times. The same condition

may also hold when nD is very large, suggesting that InvSTART is optimal when there are

sufficiently many delayed patients. If the condition in the first step of the algorithm is not

satisfied, i.e., g(0) ≤ g(nD), then Theorem 3.1 states that g(t̃) = g(t̃ + nD). In this case,

t∗ is equal to t̃ or nI , depending on whether the inequality g(nI) > g(T ) holds or not. If

the algorithm stops in the second step, i.e., t∗ = nI , then the optimal policy is START

since immediate patients are given priority over all delayed patients at all times. This case,

where g(nI) ≤ g(T ), may occur when either tm is sufficiently large or the total number of

patients is sufficiently small. Finally, if the algorithm stops in the third step, i.e., t∗ < nI ,

then the optimal policy is either InvSTART (when t∗ = 0) or time-dependent (i.e., priority

will change at time 0 < t∗ < nI). Under a time-dependent policy, the service of immediate

patients is interrupted by the service of delayed patients during [t∗, t∗ + nD).
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3.3.3 Sensitivity of the Optimal Policy to the Number of Patients

From Theorem 3.1, it is clear that the optimal prioritization policy depends on the number

of patients in each class, since t∗ is a function of both nI and nD. In order to better

understand the relationship between the optimal policy and patient counts, we investigate

how t∗ changes with nI and nD.

By definition, t̃ does not depend on nI . Hence, by part (ii) of Proposition 3.4, t∗

increases with nI for nI < t̃ but does not change for nI ≥ t̃. This suggests that if there are

few immediate patients and START is optimal (i.e., t∗ = nI), then increasing the number

of immediate patients will not change the policy at first (except for the time when the

service of delayed patients should start), but will eventually change the policy from START

to a time-dependent one. However, when there are enough immediate patients for a time-

dependent policy or InvSTART to be optimal, then having more immediate patients does

not change the optimal policy.

We next present a proposition that describes how t∗ depends on nD.

Proposition 3.5. Everything else remaining the same, t∗ either decreases or stays the same

as nD increases, i.e., having more delayed patients can only decrease the time the service of

delayed patients starts under the optimal policy.

Proposition 3.5 and the discussion above yield the following conclusions:

(i) If the optimal policy is START, having more patients, regardless of their class, may

make the optimal policy time-dependent.

(ii) If the optimal policy is time-dependent, having more immediate patients will not

change the policy, whereas having more delayed patients will push the optimal policy

toward InvSTART.

(iii) If the optimal policy is InvSTART, having more patients will not change the optimal

policy.
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3.4 A New Policy for Patient Triage: ReSTART

In this section, building on our analytical results from previous sections, we demonstrate

how one could construct a new patient prioritization policy that takes into account resource

limitations, yet is simple enough for practical implementation. More specifically, we carry

the simple solution from Section 3.3 to practical settings where the fluid assumptions are

obviously violated. We call the new policy Resource-based START (ReSTART) to indicate

the fact that it builds on START, which is the most widely adopted triage method in U.S.

It is important to emphasize that ReSTART does not propose any new medical criteria

to classify patients. ReSTART uses the START classes, but unlike START, it does not

necessarily give priority to immediate patients at all times. Under ReSTART, delayed

patients can get priority over immediate patients depending on the relative availability of

the transportation vehicles with respect to the number of patients.

Now, let θ denote the expected transportation time for each patient, and K denote the

number of available transportation vehicles. Recall that in Section 3.3, we normalized the

service rate to one, which is the same as assuming that K/θ = 1. Incorporating generality

in service rates, i.e., allowing a general number of vehicles and general transportation times,

simply requires scaling the number of patients by θ/K. The description below is based on

the algorithm given in Section 3.3.2.

Resource-based START (ReSTART):

1. Classify patients according to the START classes.

2. Determine the number of patients classified as immediate (nI) and the number of

patients classified as delayed (nD). Determine θ, the expected round-trip travel time

for each transportation vehicle, and K, the number of vehicles that can be used for

transporting patients to the hospital.

3. Determine priorities among the immediate and delayed patients as follows:

(i) If g(0) > g(nDθ/K), transport all delayed patients first, followed by all immedi-

ate patients.
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(ii) If g(nIθ/K) ≤ g((nI +nD)θ/K), transport all immediate patients first, followed

by all delayed patients.

(iii) Otherwise, determine t∗ such that g(t∗) = g(t∗ +nDθ/K). Transport immediate

patients until time t∗ or until there are no more remaining immediate patients.

Then, start transporting delayed patients and continue until there are none re-

maining. Finally, continue with the transportation of any remaining immediate

patients.

Given the reward functions fI(·) and fD(·), implementation of ReSTART is mostly

straightforward. While in steps 3(i) and 3(ii), one only needs to check whether the given

inequalities hold, in step 3(iii) a solution to g(t∗) = g(t∗+nDθ/K) must be found. Because

the right-hand side of the equation depends on nD, θ, and K, t∗ can be computed only

after the incident occurs; in other words, it cannot be computed “off-line.” The computa-

tion of t∗ can be done very quickly using a line-search algorithm, since g(·) is a unimodal

function. Nevertheless, this cannot necessarily be done by hand, which might be a cause

for resistance to any potential implementation of ReSTART. Therefore, we simplify the

policy further by proposing an approximation for t∗ based on our analytical results. In

order to distinguish this approximate version of ReSTART from the exact version described

above, we call it Quick-ReSTART (Q-ReSTART). In particular, we propose two different

versions of Quick-ReSTART, which we call QuickDynamic-ReSTART (QD-ReSTART) and

QuickStatic-ReSTART (QS-ReSTART). In the following, we describe these two policies.

3.4.1 QuickDynamic-ReSTART (QD-ReSTART)

QD-ReSTART is essentially the same as ReSTART except that it does not use the exact

value of t∗, but rather an approximation for t∗. From Proposition 3.4, with the proper

scaling for the expected travel time and the number of ambulances, we know that t̃ ∈

[tm − nDθ/K, tm]. Therefore, even if we cannot locate t̃ exactly, it would be reasonable to

expect that approximating t̃ with a choice from this interval could lead to a policy that

performs well. Now, we know that there exists φ̃ ∈ [0, 1] such that t̃ = tm − φ̃nDθ/K.

Instead of determining φ̃ exactly, we approximate it by some φ ∈ [0, 1]. Then, we use
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τ = tm − φnDθ/K instead of t̃ and set t∗ = min{nI , τ} by part (ii) of Proposition 3.4.

We call the policy that uses this approximation “QD-ReSTART(φ).” Thus, QD-ReSTART

is in fact a family of policies, with each policy being uniquely described by a value of the

parameter φ ∈ [0, 1]. Below is a formal description of QD-ReSTART.

QD-ReSTART(φ):

1. Same as ReSTART.

2. Same as ReSTART.

3. Compute τ = tm − φnDθ/K and prioritize the immediate and delayed patients as

follows:

(i) If τ ≤ 0, transport all delayed patients first, followed by all immediate patients.

(ii) If τ ≥ nIθ/K, transport all immediate patients first, followed by all delayed

patients.

(iii) If 0 < τ < nIθ/K, transport immediate patients until time τ or until there are no

more remaining immediate patients. Then, start transporting delayed patients

(if there are any) and continue until there are no remaining delayed patients.

Finally, continue with the transportation of any remaining immediate patients.

As a result of using τ in place of t̃, the inequalities in steps 3(i) and 3(ii) of ReSTART

simplify to conditions that are easier to check. As an added benefit, these conditions also

have insightful interpretations. Here, τ can be interpreted as a measure of the availability

of resources relative to the size of the event. It is larger when there are fewer delayed

patients, when transportation times are shorter, and/or when more vehicles are available

for transportation. Thus, lower values of τ indicate more serious resource limitations.

Although ReSTART is the optimal policy for our fluid model under Assumption 3.1 and

is likely to perform better than QD-ReSTART even under realistic conditions where the

fluid assumption is relaxed, QD-ReSTART is simpler and more practical. Like ReSTART,

it requires estimates for the expected travel time, number of ambulances, and number of

immediate and delayed patients, which should not be difficult to determine and which are
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likely to be the minimal set of requirements for any policy that takes resource limitations into

account. However, unlike ReSTART, QD-ReSTART requires only an arithmetic calculation

at the time of implementation. It simply uses tm and φ, which can be obtained off-line before

the incident based on estimates for the reward functions. Furthermore, τ depends on the

function g(·) only through its maximizer tm, meaning that the only estimation required is for

the time at which deterioration rate of the delayed patients exceeds that of the immediate

patients.

To understand how QD-ReSTART works, it is useful to examine the leftmost plot in

Figure 3.2, which depicts the structure of QD-ReSTART(0.5). In this plot, the horizontal

axis is for nDθ/K, which is the expected time it would take to transport all delayed patients,

while the vertical axis is for nIθ/K, which is the expected time it would take to transport all

immediate patients using the full transportation capacity. It is immediate from the figure

that for given values of expected transportation time and number of available vehicles, the

priority ordering according to QD-ReSTART depends on the initial number of immediate

and delayed patients. When there are few patients of both classes (in the triangular region

at the bottom left), QD-ReSTART reduces to START, giving priority to immediate patients

until they are all transported. When there are sufficiently many delayed patients (far right

in the figure), regardless of the number of immediate patients, the priority is reversed:

QD-ReSTART reduces to InvSTART and transportation of immediate patients starts after

all delayed patients are transported. On the other hand, when there are sufficiently many

patients but the number of delayed patients is below a certain level, priority ordering changes

with time; immediate patients have priority initially, but at some specified time, priority

moves to delayed patients even if there are still immediate patients waiting. Those remaining

immediate patients wait until all the delayed patients are transported. Note that this

structure for QD-ReSTART is consistent with the behavior of the optimal solution to the

fluid model (see Section 3.3.3).

One remaining question is how to set the value for φ. More empirical work is needed

to make a more confident decision about this, but we demonstrate in Section 3.5 that for

the survival probability data that we use in our simulation experiments, setting φ = 0.5

provides a good performance for the QD-ReSTART policy. For more on the justification of
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Figure 3.2: Visualizations of QD-ReSTART(0.5) and QS-ReSTART(0.5).

the use of φ = 0.5, see Section 3.5.1.

3.4.2 QuickStatic-ReSTART (QS-ReSTART)

QD-ReSTART is a dynamic policy in the sense that the class that has the higher priority

can change as time passes during the response effort. Although this priority switch can

only happen once, one might still want to use even a simpler policy that fixes the priority

levels at the beginning and does not change them later on. More precisely, one can choose

either START or InvSTART given the conditions at time zero and use it until all patients

are transported. We propose such a policy, which we call QS-ReSTART(φ), based on our

analytical characterization of ReSTART, more specifically QD-ReSTART(φ).

We can observe from Figure 3.2 that QD-ReSTART is a time-dependent policy in only

one of the three regions. To develop QS-ReSTART(φ), we simply divide this region into two

with a line that passes through the points (tm/φ, 0) and (0, tm/φ), merge the left part with

the already existing “START” region, and merge the right part with the already existing

“InvSTART” region, thereby eliminating the time-dependent policy region completely (see

the rightmost plot in Figure 3.2, where φ = 0.5). The policy can then be described simply

as follows: use START if nI + nD ≤ Ktm/(φθ) and use InvSTART otherwise. Note that

one nice feature of this policy is that whether START or InvSTART is chosen depends on

the total number of patients nI +nD, not on nI and nD individually. This means that once

the total number of patients is determined, the policy can be determined even before triage

is over. Furthermore, the policy is robust to classification errors between immediate and
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delayed classes since such errors would not change the total number of critical patients.

3.5 Simulation Study

In this section, we carry out a simulation study to investigate how QD-ReSTART and QS-

ReSTART perform in comparison with START and InvSTART under conditions that are

more realistic than those of the fluid model. Specifically, we study a simulation model where

patients are discrete entities, ambulances are discrete resources, and transportation times

are stochastic. In Section 3.5.1, we provide details on our experimental setup. Our results

on the comparison of QD-ReSTART and QS-ReSTART with START and InvSTART are

provided in Section 3.5.2. In Section 3.5.3, we present a sensitivity analysis with respect to

the reward functions that are used in our simulation study.

3.5.1 Experimental Setup

We consider a mass-casualty incident that takes place at a single location and results in a

number of patients who need to be transported to a hospital. We assume that the patients

have already been classified and they are ready to be transported. The initial arrival of

the ambulances to the site follows a Poisson process. For each ambulance, we assume that

the round-trip travel time between the incident location and the hospital has lognormal

distribution with a mean of 30 minutes and a standard deviation of 12 minutes. This choice

is based on an empirical study by Ingolfsson et al. (2008), which reports that a lognormal

distribution with standard deviation that is equal to 40% of the mean is a good fit for

ambulance travel times.

We use the critical mortality rate, i.e., the percent of critical patients who die, as the

performance measure of interest. Frykberg (2005) states that critical mortality is the best

measure of performance for mass-casualty triage because it takes into account only those

patients whose conditions are serious enough to require timely treatment and who also

have a non-negligible chance of survival. Note that these are the only patients for whom a

priority policy can make a difference.

In our numerical experiments, we assume that patients are categorized according to
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START guidelines, since START is the most widely accepted classification method in the

U.S. Recall that there are four classes of patients according to START: expectant (E),

immediate (I), delayed (D), and minor (M). Patients who fall into the immediate and

delayed classes are considered critical patients. In order to use critical mortality rate as

our performance measure, we need estimates for the survival probabilities of these critical

patients as functions of time. To the best of our knowledge, the only work that attempted

to estimate survival probability functions is due to Sacco and his co-authors in Sacco et al.

(2005 and 2007), where the estimates are for a given initial RPM (Respiration, Pulse, and

Motor response) score of a patient.

In order to obtain estimates of survival probability functions for the critical START

classes (i.e., immediate and delayed classes), we utilized the RPM score-based estimates

by Sacco et al. (2007). Our analysis revealed that the following three-parameter function is

a good model for the reward functions fI(t) and fD(t):

fi(t) =
β0,i

(

t
β1,i

)β2,i

+ 1

, for i ∈ {I,D}, (3.7)

where βj,i > 0 for j = 0, 1, 2 and i ∈ {I,D}. Note that this function is a scaled version of

the log-logistic distribution, which is commonly used in survival analysis (Cox and Oakes

1984). Furthermore, as we discuss next, this function provided a good fit to the empirical

data that originated from Sacco et al. (2007).

We estimated the survival probability function for a given class i ∈ {I,D} by

fi(t) =

12
∑

j=0

πi(j)sj(t) for i ∈ {I,D}, (3.8)

where sj(t) is the probability that a patient with RPM value j ∈ {0, 1, . . . , 12} ultimately

survives if he or she is transported at time t and πi(j), for i ∈ {I,D} and j ∈ {0, 1, . . . , 12},

is the probability that a randomly selected patient who is in START class i would have an

RPM score of j. (RPM can take any integer value between 0 and 12, with lower values

indicating more critical conditions.)

The survival probability functions sj(·), for j ∈ {0, 1, . . . , 12}, were estimated in Sacco
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et al. (2005 and 2007) for three different types of injuries, and in this work, we use the

estimates for penetrating injuries provided in Sacco et al. (2007). To obtain estimates for

πi(j), for j ∈ {0, 1, . . . , 12}, we consulted Professor James E. Winslow (Winslow 2010), who

informed us that his estimates for the distribution of the START class of a patient given

his/her RPM score would be more reliable than those for the RPM score distribution given

a patient’s START class (i.e., πi(j), for j ∈ {0, 1, . . . , 12}). Hence, we expressed πi(j), using

Bayes’ Law, as follows:

πi(j) =
qjpj(i)

∑12
k=0 qkpk(i)

, for i ∈ {I,D} and j ∈ {0, 1, . . . , 12}, (3.9)

where qj is the probability that a randomly chosen patient has an RPM score of j ∈

{0, 1, . . . , 12} and pj(i) is the probability that a patient with an RPM score of j ∈ {0, 1, . . . , 12}

belongs to START-class of i ∈ {E, I,D,M}. The probabilities pj(i) were estimated by

Prof. Winslow. The only remaining estimate we need is for qj , for j ∈ {0, 1, . . . , 12}. It is

likely that this distribution varies depending on the type of injuries and event. Therefore, in

our simulation study, we systematically considered different probability distributions for the

initial RPM score of a patient (qj). For each distribution, we determined the corresponding

survival probability functions for both immediate and delayed patients using (3.8).

More specifically, we assumed that the initial RPM scores of the patients came from

a discretized and rescaled version of the Beta distribution, which is typically used in the

absence of data (Law 2007, Chapter 6). We considered five scenarios using five different

Beta distributions with the two parameters (α1, α2) given by (1.5,5), (1.5,3), (1,1), (3,1.5),

and (5,1.5). As we go from the first scenario to the last, the distribution changes from

being right-skewed to left-skewed. Scenario 3, where α1 = α2 = 1, is the case where RPM

scores are uniformly distributed. The corresponding empirical survival probability functions

for immediate and delayed patients as well as the probability distributions for the START

classes are provided in Figure 3.3.

For each of the five scenarios we constructed above, we fit the immediate and delayed

reward functions (fI(t) and fD(t), respectively) to the three-parameter function given by

(3.7) using Matlab’s nlinfit function. The fitted parameters for each scenario are given
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in Table 3.1. As shown in Figure 3.3, (3.7) was a very good fit for the empirical data.

Table 3.1: Fitted parameters for the five survival scenarios.

Immediate Delayed

Scenario β0,I β1,I β2,I β0,D β1,D β2,D

1 0.09 17 1.01 0.57 61 2.03

2 0.15 28 1.38 0.65 86 2.11

3 0.24 47 1.30 0.76 138 2.17

4 0.40 59 1.47 0.77 140 2.29

5 0.56 91 1.58 0.81 160 2.41

The parameters β0, β1, and β2 have interpretations in the context of patient survival

probabilities. Because fi(0) = β0, β0 is the probability that the patient will survive if

transported at time zero. By varying β1, the time scale of the patients’ deterioration

changes, i.e., increasing (decreasing) β1 is equivalent to slowing down (speeding up) time.

Finally, by varying β2, the shape of the curve changes. A larger value of β2 results in a

“sharper” decline in survival probability around the inflection point of the curve.

A natural question is whether functions in the form of (3.7) satisfy Assumption 1. Note

that fi(t) has an inflection point at t̄i = β1,i[(β2,i − 1)/(β2,i + 1)]1/β2,i such that fi(t) is

concave for t > t̄i and convex for t < t̄i, where i ∈ {I,D}. Hence, g(t) = fD(t) − fI(t) is

concave on the interval [t̄I , t̄D]. This property is sufficient to ensure that if t̄I < t̄D, then

there exists an interval [t̄I , t̄D] over which the behavior of the functions fI(·) and fD(·)

is consistent with Assumption 1. Furthermore, as we discuss in the following paragraph,

Assumption 1 holds for fi(t) functions that we fitted to the data used in our experiments.

In our numerical study, we consider five possible scenarios, which mainly differ according

to how “pessimistic” they are regarding the size of the mass-casualty incident and the

urgency of patients. More specifically, in Scenario 1, the survival probabilities are low

and most of the patients are in immediate or expectant categories; in Scenario 5, survival

probabilities are much larger and there are not many immediate or expectant patients; and

Scenarios 2, 3, and 4 are in the middle in terms of the severity of the event. Figure 3.3

explicitly shows the differences among these five scenarios. In the first column, we provide

the empirical data on the survival probabilities, the fitted functions given by (3.7), and also
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Figure 3.3: Survival probability (reward) functions, g(t), and START class distributions for
the five scenarios.
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tm values. We observe that as we move from Scenario 1 to Scenario 5, survival probabilities

at any given time and tm increase. In the second column, we plot the difference between the

two fitted survival probability functions, i.e., g(t), which shows that Assumption 1 holds over

the time interval of interest. Finally, the third column shows the probability distributions

for the START classes. We observe that while immediate patients constitute the highest
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percentage in most of the scenarios, their frequency decreases as we move from Scenario 1

to Scenario 5, indicating a decreasing level of criticality in the patient population.

For each scenario, we generated 500 instances of 50 patients each, where each patient’s

START class was randomly determined using the START class probability distribution as-

sociated with that scenario. We used three different values for K, the number of ambulances

available for transportation: 5, 10, and 15. The rate of initial arrival for ambulances to

the event location was chosen as 10, 20, and 30 per hour when there are 5, 10, and 15

ambulances available for transportation, respectively. By keeping the number of patients

and expected travel times constant but varying the number of resources, we were able to

examine scenarios that ranged from resource-scarce to resource-abundant.

Within each scenario and resource level, we determined the performances of four policies,

namely, START, InvSTART, QD-ReSTART(0.5), and QS-ReSTART(0.5) for each of the 500

randomly generated instances, using 200 replications for each instance. (To perform these

simulation runs, we used code written in Matlab.) Under the START policy, immediate

patients have priority over delayed patients at all times, while under the InvSTART policy,

delayed patients have priority over immediate patients at all times. We are not aware of

any implementation of InvSTART in practice, but we believe that it is useful as a point

of comparison. Under QD-ReSTART, the higher-priority class possibly changes with time,

although in some instances, QD-ReSTART is equivalent to START or InvSTART as can

be seen in Figure 3.2. Finally, under QS-ReSTART, we have a fixed-priority policy, which

is either START or InvSTART depending on the initial conditions in each scenario. In

order to implement QD-ReSTART and QS-ReSTART, we needed to set an appropriate

value for φ. From Figure 3.3, we observed that g(t) is almost symmetric around tm over

[0, 2tm], which means that setting φ to 0.5 will yield τ ≈ t̃, i.e., QD-ReSTART(φ) will be

approximately identical to ReSTART. We also calculated the value of φ̃ that would make

τ = t̃ for each instance generated where t∗ is non-zero. We then constructed 95% confidence

intervals on the mean values of such φ̃’s for all five scenarios and three levels of resource

availability, which are shown in Table 3.2. The means of these fifteen confidence intervals

ranged between 0.42 and 0.51, and the half-lengths of these intervals were all less than 0.01.

Based on these observations, we set φ to 0.5 in all our simulation experiments that involve
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Table 3.2: Mean values of φ over 500 instances for the five survival scenarios, excluding
instances for which t∗ = 0. All 95% half-widths are less than 0.01.

No. Ambulances 5 10 15

Scenario 1 0.43 0.43 0.42

Scenario 2 0.48 0.47 0.46

Scenario 3 0.48 0.50 0.51

Scenario 4 0.46 0.48 0.48

Scenario 5 0.46 0.47 0.48

QD-ReSTART and QS-ReSTART.

3.5.2 Comparison of QD-ReSTART and QS-ReSTART with START and

InvSTART

We first compare QD-ReSTART with START and InvSTART in terms of the critical mor-

tality rate in Tables 3.3 and 3.4, respectively. In both tables, the very last column reports

the number of instances (out of 500) in which the mean performance difference is statis-

tically significant at the 0.05 level. The numbers in the large middle column of Table 3.3

[Table 3.4] provide a statistical summary of the distribution of the mean reduction in critical

mortality obtained by using QD-ReSTART as opposed to using START [InvSTART] based

on 500 simulated instances: the minimum improvement (min), the first quartile (Q1), the

median (med), the third quartile (Q3), and the maximum improvement (max). The sixth

and seventh numbers in each row are the mean and 95% half-width for the mean (HW).

From Table 3.3, we observe that QD-ReSTART performs at least as well as START in

all instances while performing better in many. The magnitude of the improvement depends

on the scenario considered. We cannot claim any one scenario as being more realistic than

the others; however, we can still make a few insightful observations. From Table 3.3, we

can observe that going from Scenario 1 to Scenario 5, by which the survival probability

estimates become more “optimistic,” performance improvement with QD-ReSTART first

increases and then decreases. The most significant improvement is in Scenarios 2, 3, and

4. In Scenario 5 with a large number of ambulances, which is the most optimistic case

considered in this study, the performance improvement is the smallest. This is because
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Table 3.3: Mean reduction in the critical mortality rate obtained using QD-ReSTART
instead of START.

# Significant

K Min Q1 Med Q3 Max Mean HW Instances

5 0.0% 0.0% 0.0% 1.2% 5.8% 0.7% 0.1% 223

Scenario 1 10 0.0% 0.0% 0.0% 1.0% 4.8% 0.5% 0.1% 223

15 0.0% 0.0% 0.0% 0.7% 3.5% 0.4% 0.0% 223

5 0.0% 1.2% 2.3% 4.2% 8.8% 2.8% 0.2% 465

Scenario 2 10 0.0% 0.8% 1.6% 3.1% 6.5% 2.0% 0.1% 465

15 0.0% 0.5% 1.0% 1.8% 4.1% 1.2% 0.1% 465

5 0.0% 5.1% 6.1% 7.8% 11.4% 6.2% 0.2% 499

Scenario 3 10 0.0% 1.5% 2.0% 2.6% 4.5% 2.1% 0.1% 499

15 0.0% 0.4% 0.5% 0.7% 1.5% 0.6% 0.0% 486

5 2.3% 5.9% 6.8% 7.8% 10.3% 6.8% 0.1% 500

Scenario 4 10 0.1% 0.8% 1.1% 1.5% 3.1% 1.1% 0.0% 484

15 0.0% 0.0% 0.0% 0.1% 0.5% 0.1% 0.0% 15

5 0.0% 1.5% 2.2% 2.9% 5.7% 2.2% 0.1% 478

Scenario 5 10 0.0% 0.0% 0.0% 0.0% 0.3% 0.0% 0.0% 0

15 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0

under Scenario 5, delaying transportation of the delayed patients affects them the least, so

one can “afford” to use START by transporting all immediate patients first before moving

on to the delayed patients. In Scenario 1, on the other hand, survival probabilities for both

types of patients are so low that there is not much room for reduction in critical mortality.

As a result, the difference between the performances of any two priority policies cannot

be large. Nevertheless, even under such a pessimistic scenario, the mean improvement by

QD-START is statistically significant regardless of the number of ambulances.

The number of available ambulances also has a clear effect on the performance improve-

ment achieved by QD-ReSTART. Under all scenarios, the improvement with QD-ReSTART

is larger when there are fewer ambulances. When there are many ambulances available, even

when all immediate patients have priority over all delayed patients, the transportation of

delayed patients will not be delayed very long. However, when resources are scarce, by

switching the priority to delayed patients after a certain period of time, QD-ReSTART
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saves more of these delayed patients who would otherwise have a lower chance of survival

when they are transported.

Table 3.4: Mean reduction in the critical mortality rate obtained using QD-ReSTART
instead of InvSTART.

# Significant

K Min Q1 Med Q3 Max Mean HW Instances

5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0

Scenario 1 10 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0

15 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0

5 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0

Scenario 2 10 0.0% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0% 254

15 0.0% 0.1% 0.1% 0.2% 0.2% 0.1% 0.0% 333

5 0.0% 0.2% 0.2% 0.3% 0.4% 0.2% 0.0% 392

Scenario 3 10 0.0% 0.5% 0.6% 0.6% 0.8% 0.6% 0.0% 499

15 0.0% 0.6% 0.7% 0.8% 1.1% 0.7% 0.0% 498

5 0.0% 0.4% 0.6% 0.8% 1.3% 0.6% 0.0% 422

Scenario 4 10 1.1% 1.7% 1.8% 1.9% 2.6% 1.8% 0.0% 500

15 1.2% 2.2% 2.4% 2.6% 2.9% 2.3% 0.0% 500

5 0.0% 1.2% 1.6% 1.9% 3.2% 1.5% 0.0% 494

Scenario 5 10 0.9% 3.2% 3.4% 3.5% 3.7% 3.3% 0.0% 500

15 0.8% 2.6% 2.9% 3.1% 3.6% 2.8% 0.0% 500

From Table 3.4, we observe that the performance of QD-ReSTART is also at least

as good as that of InvSTART in all instances considered. Perhaps not surprisingly, in

contrast with START, InvSTART does better in pessimistic scenarios, with a performance

matching that of QD-ReSTART. In the more optimistic scenarios, InvSTART performs

poorly, especially when there are many ambulances. This is because InvSTART transports

delayed patients first at the expense of delaying immediate patients, even though delayed

patients can actually “afford” to wait longer.

Finally, we compare QS-ReSTART with START, InvSTART, and QD-ReSTART in

terms of the critical mortality rate in Table 3.5. We can observe that the mean im-

provements over START and InvSTART using QS-ReSTART are smaller than those us-

ing QD-ReSTART, but not drastically. This same observation is reflected in the negative
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values in the direct comparison with QD-ReSTART: QS-ReSTART performs worse than

QD-ReSTART but only by a relatively small amount. This suggests that QS-ReSTART

would be a reasonable alternative to QD-ReSTART if time-dependent priority levels turn

out to be difficult to implement in practice. Note that under each scenario, for any given

number of ambulances at least one of START or InvSTART performs very similarly to

QS-ReSTART. This is expected since QS-ReSTART essentially chooses one of the two.

3.5.3 Sensitivity Analysis on the Reward Functions

To evaluate whether similar performance improvement could be achieved even without

precise knowledge of the reward functions, we conducted a sensitivity analysis for the β

parameters in the fitted reward functions given by (3.7). We repeated the simulations on

the same instances used in the study presented in Section 3.5.2. However, this time, for

each instance, we randomly perturbed the time-zero probability β0, the scale parameter

β1, and the shape parameter β2, for both reward functions that are used as inputs to

the simulation runs, but we did not perturb the reward functions while determining the

operating parameters of the QD-ReSTART(0.5) and QS-ReSTART(0.5) policies (i.e., tm).

This way, we were able to test the performance of QD-ReSTART and QS-ReSTART policies

when the estimates for reward functions were not accurate.

We considered two experimental settings for the perturbations. In Setting 1, each β

parameter was equally likely to decrease 10%, decrease 5%, stay the same, increase 5%, or

increase 10%, whereas in Setting 2, each β parameter was equally likely to decrease 20%,

decrease 10%, stay the same, increase 10%, or increase 20%. In the interest of space, we here

provide results only on Setting 1 and note that the main conclusions under Setting 2 are

similar but the differences between the perturbed and original results are more pronounced.

We also do not report our sensitivity results on the comparison of ReSTART policies with

InvSTART here because the insights gained are very similar for those obtained on the

comparison with START.

The results of the sensitivity analysis of comparison of ReSTART policies with START

under Setting 1 are summarized in Table 3.6. This table follows the same format as Table

3.5, except that we now separate the number of instances where ReSTART policies are
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Table 3.5: Mean reduction in the critical mortality rate obtained using QS-ReSTART as opposed to START, InvSTART, or QD-ReSTART
(negative numbers indicate an increase in critical mortality).

vs. START vs. InvSTART vs. QD-ReSTART

# Sig. # Sig. # Sig.

K Mean HW Instances Mean HW Instances Mean HW Instances

5 0.6% 0.1% 223 0.0% 0.0% 0 0.0% 0.0% 0

Scenario 1 10 0.5% 0.1% 223 0.0% 0.0% 0 0.0% 0.0% 0

15 0.4% 0.0% 223 0.0% 0.0% 0 0.0% 0.0% 0

5 2.8% 0.2% 465 0.0% 0.0% 0 0.0% 0.0% 0

Scenario 2 10 1.9% 0.1% 465 0.0% 0.0% 0 -0.1% 0.0% 254

15 1.1% 0.1% 465 0.0% 0.0% 0 -0.1% 0.0% 333

5 6.0% 0.2% 499 0.0% 0.0% 0 -0.2% 0.0% 392

Scenario 3 10 1.5% 0.1% 498 0.0% 0.0% 0 -0.6% 0.0% 499

15 0.0% 0.0% 55 0.2% 0.0% 230 -0.5% 0.0% 485

5 6.2% 0.1% 500 0.0% 0.0% 0 -0.6% 0.0% 422

Scenario 4 10 0.0% 0.0% 32 0.7% 0.1% 339 -1.1% 0.0% 484

15 0.0% 0.0% 0 2.3% 0.0% 500 -0.1% 0.0% 15

5 0.9% 0.1% 283 0.2% 0.1% 89 -1.3% 0.0% 473

Scenario 5 10 0.0% 0.0% 0 3.3% 0.0% 500 0.0% 0.0% 0

15 0.0% 0.0% 0 2.8% 0.0% 500 0.0% 0.0% 0
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Table 3.6: Mean reduction in the critical mortality rate obtained using QD-ReSTART(0.5)
and QS-ReSTART(0.5) instead of START on instances with perturbed reward function
parameters.

QD-ReSTART vs. START QS-ReSTART vs. START

# Better # Worse # Better # Worse

K Mean HW Instances Instances Mean HW Instances Instances

5 0.6% 0.1% 223 0 0.6% 0.1% 223 0

Scenario 1 10 0.5% 0.1% 223 0 0.5% 0.1% 223 0

15 0.4% 0.0% 223 0 0.4% 0.0% 223 0

5 2.8% 0.2% 465 0 2.8% 0.2% 465 0

Scenario 2 10 2.0% 0.1% 465 0 1.9% 0.1% 465 0

15 1.2% 0.1% 465 0 1.1% 0.1% 465 0

5 6.2% 0.2% 499 0 6.0% 0.2% 499 0

Scenario 3 10 2.1% 0.1% 499 0 1.6% 0.1% 486 3

15 0.6% 0.0% 461 0 0.0% 0.0% 87 48

5 6.8% 0.2% 500 0 6.2% 0.2% 500 0

Scenario 4 10 1.2% 0.1% 455 0 0.1% 0.1% 67 58

15 0.1% 0.0% 36 0 0.0% 0.0% 0 0

5 2.2% 0.1% 441 2 0.9% 0.2% 251 94

Scenario 5 10 0.0% 0.0% 4 0 0.0% 0.0% 0 0

15 0.0% 0.0% 0 0 0.0% 0.0% 0 0

statistically better from those in which they are statistically worse, both at a significance

level of 0.05.

From this sensitivity analysis, we observed that while a few of the perturbed instances

resulted in an increase in critical mortality, the vast majority of instances still saw im-

provement using QD-ReSTART. Even the first quartile had non-negative improvement over

both START and InvSTART in every scenario, and QD-ReSTART performed worse than

START only in 2 [82] instances (out of the 7500 simulated) at the 0.05 significance level

under Setting 1 [2]. QS-ReSTART has similar trends in average performance, but START

performed better than QS-ReSTART in a larger number of instances (203 [281] of the 7500

simulated under Setting 1 [2]) at the 0.05 significance level. Hence, QS-ReSTART appears

to be less robust to perturbations or changes in the reward functions than QD-ReSTART.

This difference can be attributed to the fact that under QD-ReSTART, a small change in
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the value of tm due to imperfect information about reward functions will only lead to a

correspondingly small change in t∗, which will not affect the policy significantly. On the

other hand, under QS-ReSTART, a change in the value of tm could lead to a complete

reversal of the policy (from START to InvSTART or vice versa).

3.6 Adapting ReSTART to Changing Conditions on the Field

This section relaxes some of the fundamental assumptions that we made when building our

mathematical and simulation models in the earlier sections. In particular, we make three

structural changes to our original setup. First, since this chapter focuses on incidents where

no extensive search-and-rescue effort is needed, we originally assumed that all patients are

accounted for immediately. However, even when no significant time is needed to locate and

prepare patients for transportation, there could be still some delays in having some of the

patients ready for transport. Hence, in this section, we will consider the possibility that

not all patients are available at time zero and thus there is a delay not only in having these

patients available but also in knowing the total number of patients.

Second, we originally assumed that all patients are classified into the delayed and im-

mediate categories correctly. In reality, triage is prone to errors. More specifically, there

are two types of triage errors: undertriage, when a patient who should have been classified

as immediate is classified as delayed, and overtriage, when a patient who should have been

classified as delayed is classified as immediate. Taking these misclassification errors into

the decision making process is actually a subtle issue because it is tightly related to the

estimation of the survival probabilities. Because classification errors are common in triage,

survival probability functions can (and should) be estimated by taking this fact into ac-

count explicitly. Nevertheless, in practice, classification errors can be even more significant

than the normally anticipated levels and thus it is of interest to investigate their effect on

the performance of prioritization policies. Thus, in this section, we will also consider the

possibility that patients are misclassified as a result of triage.

Third, in connection with the second issue, our original model assumed that patients are

not triaged again after time zero, which may be the case in practice due to lack of resources
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or poor organization. However, because many from the emergency response community

emphasize the importance of retriage and because our new set of relaxed conditions that

allow misclassification make retriage a meaningful action, we now assume that patients will

go through retriage some time after the start of the response effort.

The main difficulty that arises as a result of the explicit consideration of these new

features is that there is a delay of information not only on the actual number of patients

from each class but also on the total number of patients who will need to be transported.

As one can observe from Figure 3.2, an incorrect estimate of the number of patients can

change the specific prescription by ReSTART policies, which would possibly degrade their

performance. In the remainder of this section, we discuss how one can use ReSTART

policies in an adaptive way and test by means of a simulation study how their performance

is affected by misclassification errors, delayed availability of patients, and retriage.

3.6.1 Adaptive QD-ReSTART and QS-ReSTART

Adaptive QD-ReSTART is essentially QD-ReSTART with policy parameters updated reg-

ularly or every time an event provides new information on the number of patients. This

event could be the arrival of a new patient (which could change nI , nD, and nI + nD)

or retriage (which could change nI and nD but not nI + nD). More specifically, adaptive

QD-ReSTART uses the most up-to-date information on the number of patients in each class

and determines which class should get a priority by following the QD-ReSTART description

provided in Section 3.4 and using the τ value updated with respect to the current time t,

which we call τ(t). In particular, we let τ(t) = tm − t − nD(t)θφ/K, where ni(t) is the

number of patients categorized as class i ∈ {I,D} at time t. (Note that τ(0) corresponds

to τ in the description of QD-ReSTART provided in Section 3.4.) Thus, τ(t) changes with

the number of delayed patients but not with the number of immediate patients. Similarly,

one could obtain an adaptive version of QS-ReSTART as follows: at time t, use START if

nI(t) + nD(t) ≤ K(tm − t)/(φθ) and use InvSTART otherwise.
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3.6.2 Performance of Adaptive ReSTART policies

In this section, we report the results of a numerical study on the performance of the adaptive

QD-ReSTART and QS-ReSTART policies. In this study, we used the same experimental

setup as in Section 3.5.2 for the total number of patients, the number of ambulances, and the

survival probability functions, which gave us the same 7500 problem instances. However,

this time, we also considered the possibility that there is some delay in having some of

the patients ready for transportation and that the triage classification is imperfect. To

understand the effects of reevaluation, we also assumed that patients would go through

triage once again at some point during the response effort.

We conducted two separate simulation studies. In Study 1, we assumed that all patients

are available for transportation at time zero; however, each patient can be misclassified.

Retrospective studies of mass-casualty incidents found that while the overtriage rate is

typically high, the undertriage rate is usually very low. For example, Frykberg (2005)

reports a range of 20–80% for overtriage, while undertriage is almost non-existent. To

account for the relatively wide range of possible overtriage rates, we simulated each instance

twice, once with a moderate overtriage probability for each delayed patient of 0.4, and

another time with a high overtriage probability of 0.6. (We let pO denote the overtriage

probability.) We set the undertriage probability for each immediate patient to 0.05. For

both cases, we assumed that patients who are still waiting for transportation 40 minutes

after the incident go through retriage, which then reveals patients’ true classifications.

The choice of 40 minutes as the retriage time is largely arbitrary. In practice, emergency

responders are urged to conduct retriage to identify cases of overtriage and undertriage

(Mistovich and Karren 2007), but START and similar policies lack a standard dictating

when retriage should occur (Lerner 2008).

We considered four different policies, namely the adaptive versions of START, InvS-

TART, QD-ReSTART(0.5), and QS-ReSTART(0.5). Note that here START and InvS-

TART are also adaptive in the sense that they use the updated classifications as a result of

retriage. This is somewhat different from the notion of being adaptive for QD-ReSTART

and QS-ReSTART, under which not only the classification of patients but also the structure
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of the policy may change due to retriage. Our results on the comparison of QD-ReSTART

with START are summarized in Table 3.7 under the column labeled Study 1. Numbers

given are the mean percentage improvement in the critical mortality rate when using the

adaptive version of QD-ReSTART as opposed to START. Comparison with Table 3.3 re-

veals that with misclassification and retriage, the improvements by adaptive QD-ReSTART

over START are slightly lower but they are still significant. In the interest of space, we do

not present here our results on the comparison of QD-ReSTART with InvSTART, which

provided similar conclusions. We also omit our results on the performance of QS-ReSTART

under Study 1 because the performance does not change much compared to the case with-

out misclassification and retriage, which is reported in Table 3.5. This is an expected result

because QS-ReSTART depends only on the total number of patients, and hence, the policy

structure does not change with misclassification errors.

In Study 2, we considered two cases where not all patients are available at time zero.

There are many reasons why some patients might be unavailable for transportation—for

example, if they are trapped and specialized equipment is needed to rescue them. In par-

ticular, under the moderate-unavailability case, each patient has a probability 0.6 of being

available at time zero, a probability 0.2 of being available at t = 20 minutes, and a proba-

bility 0.2 of being available at t = 40 minutes. For the high-unavailability case, each patient

has a probability 0.2 of being available at time zero, has a probability 0.4 of being available

at t = 30 minutes, and a probability 0.4 of being available at t = 60 minutes. Initial triage

is assumed to have been done immediately after each arrival and a retriage is carried out

once all patients are available. We also assume a moderate overtriage probability of 0.4 and

a low undertriage probability of 0.05. The decision maker does not have advance knowledge

of how many patients there are in total and the times at which new patients are going to

become available. Therefore, idling to wait for a higher priority patient is not considered

as long as there are patients in need of transport.

Results on the comparison of QD-ReSTART and QS-ReSTART with START under

Study 2 are provided in Table 3.7. These results show that while the performance improve-

ment with adaptive ReSTART policies is smaller than in the case where all patients are

available at time zero, it is still significant, especially in Scenarios 2, 3, and 4 with a low level
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of resources. As expected, the performance improvement decreases when more patients are

unavailable at time zero and they are unavailable for a longer period of time.

3.7 Discussion

In this chapter, we have demonstrated that it is possible to design a prioritization policy

that takes into account the three main components of the mass-casualty triage problem

(i.e., the size of the event, availability of resources, and dependence of survival probabili-

ties on time) in a very simple way, and performs better—substantially at times—than the

common practice (START) that largely ignores these components. In particular, using a

fluid formulation, we identified characteristics of “good” resource-based prioritization poli-

cies, which led to a simple policy that we call ReSTART and its variations. Using realistic

simulations with data from emergency medicine literature, we observed that these policies

have the potential to improve the critical mortality rate over START.

Qualitatively, we have observed that it is best to follow START (i.e., to give priority to

immediate patients at all times) when there are few patients compared with the number of

available resources and best to follow InvSTART (i.e., to give priority to delayed patients

at all times) when there are many delayed patients. Otherwise, it is best to use a policy

that prioritizes immediate patients initially but switches to delayed patients at some point

in time. ReSTART gives a precise description of this structure by quantifying what few

patients, many delayed patients, and some point in time really mean. Even if practitioners do

not follow this description exactly, they can still build another policy having a structure that

is similar to that of ReSTART, perhaps by coming up with new definitions for what it means

to have few patients or many delayed patients. In short, our analytical characterization can

provide a broad outline for the type of policy that is expected to work well in practice.
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Table 3.7: Mean and 95% half-width for reduction in the critical mortality rate obtained using adaptive ReSTART policies instead of
START for different simulated scenarios.

QD-ReSTART (Study 1) QD-ReSTART (Study 2) QS-ReSTART (Study 2)

pO = 0.4 pO = 0.6 Moderate Unavail. High Unavail. Moderate Unavail. High Unavail.

K Mean HW Mean HW Mean HW Mean HW Mean HW Mean HW

5 0.5% 0.1% 0.5% 0.1% 0.5% 0.1% 0.3% 0.0% 0.5% 0.1% 0.3% 0.0%

Scenario 1 10 0.4% 0.0% 0.3% 0.0% 0.4% 0.0% 0.2% 0.0% 0.4% 0.0% 0.2% 0.0%

15 0.3% 0.0% 0.2% 0.0% 0.3% 0.0% 0.1% 0.0% 0.3% 0.0% 0.1% 0.0%

5 2.5% 0.1% 2.3% 0.1% 2.4% 0.1% 1.9% 0.1% 2.4% 0.1% 1.9% 0.1%

Scenario 2 10 1.6% 0.1% 1.4% 0.1% 1.6% 0.1% 1.1% 0.1% 1.6% 0.1% 1.1% 0.1%

15 0.9% 0.1% 0.8% 0.0% 0.9% 0.0% 0.6% 0.0% 0.8% 0.0% 0.4% 0.0%

5 5.6% 0.2% 5.3% 0.2% 5.6% 0.2% 4.9% 0.1% 5.5% 0.2% 4.8% 0.1%

Scenario 3 10 1.7% 0.1% 1.6% 0.1% 1.7% 0.1% 1.6% 0.0% 0.7% 0.1% 0.2% 0.0%

15 0.5% 0.0% 0.4% 0.0% 0.4% 0.0% 0.6% 0.0% 0.0% 0.0% 0.0% 0.0%

5 6.3% 0.1% 6.0% 0.1% 6.2% 0.1% 5.7% 0.1% 6.1% 0.1% 5.2% 0.1%

Scenario 4 10 1.1% 0.0% 1.1% 0.0% 1.1% 0.0% 1.4% 0.0% 0.0% 0.0% 0.0% 0.0%

15 0.1% 0.0% 0.1% 0.0% 0.1% 0.0% 0.5% 0.0% 0.0% 0.0% 0.0% 0.0%

5 2.4% 0.1% 2.4% 0.1% 2.4% 0.1% 2.5% 0.1% 0.7% 0.1% 0.2% 0.1%

Scenario 5 10 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0%

15 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
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Chapter 4

Resource Allocation in a Multiple

Location Mass-Casualty Incident

In the case of multiple-location MCIs, resource dispatching decisions must be made

within the context of triage. Specifically, the number of resources dispatched to each lo-

cation, and the time at which they are dispatched, may depend on the distribution of

casualties at each location and on the prioritization policy. In this chapter, we adapt the

most important concept from Chapter 3.1, namely that criticality of a patient is captured

via a survival probability function that depends on the patient’s triage class and the time at

which the patient is transported, to the multiple location case, and we use this model to an-

alyze resource allocation decisions in that case. Because resource dispatching decisions are

made within the context of triage, a complete solution to the problem must tell the emer-

gency responders where to send the resources and which triage class should have priority.

When these decisions are made together, we call the resulting policy centralized, because

one decision maker makes both decisions. When the decisions are made sequentially (i.e.,

resources are first allocated and then patients are prioritized), we call the resulting policy

decentralized, because prioritization of triage classes may be decided on the scene of each

incident, after resources have been assigned.

We assume that the main difference between the locations is the efficiency with which

they can use the resources. That is, the same resource, if allocated to one location, will

serve patients at a faster rate than if it is allocated to another location. This difference in

service rate may be due to a number of factors, such as the physical characteristics of the



locations (terrain, etc.) and the relative distance of the location to its assigned hospital.

For example, the same number of ambulances can serve patients at a much faster rate from

a location one mile from the hospital than from a location twenty miles away because they

can make more frequent trips. As in Chapter 3, we consider only transportation resources,

such as ambulances and Emergency Medical Technicians, as the limiting factor, and hence

we do not model the treatment of the patients at the hospital.

4.1 Model Description

In this chapter, we assume that there are two time-critical patient classes at each location;

namely, the immediate and delayed classes, which we denote by I and D, respectively.

Although the results do not directly depend on the use of START classes, we interpret

them in this manner to provide a more intuitive understanding of the problem.

We assume that the patients are located at one of several locations and denote the set

of locations by J . We assume that at each location j ∈ J , all patients have identically

distributed travel times. This does not mean that patients from all the locations must be

transported to the same hospital, but it does mean that all patients at a given location

must be transported to the same hospital. Because we are interested in assigning resources

to the different locations, of key interest is the efficiency with which those resources may

be used. Each location j ∈ J has a resource speedup factor of sj, which is the relative rate

at which a resource can transport patients from location j. By “relative rate,” we mean a

given resource can transport sj/sk times as many patients per unit time if that resource is

assigned to location j than if it is assigned to location k. Intuitively, we may think of the

mean travel time from location j to its assigned hospital as being 1/sj .

Letting nij be the number of class-i patients at incident j for all i ∈ {I,D}, j ∈ J , the
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fluid relaxation that we are trying to solve is the following:

max
r(t),t∈[0,∞)

∑

i∈{I,D}

∑

j∈J

∫ ∞

0
rij(x)sjfi(x) dx (4.1)

subject to
∑

i∈{I,D}

∑

j∈J

rij(t) ≤ 1, ∀t ∈ [0,∞)

∫ ∞

0
sjrij(x)dx = nij, ∀i ∈ {I,D}, j ∈ J .

In the above problem, the decision is rij(t), the fraction of the available resources devoted

to class-i patients at location j at time t. Without loss of generality, we have normalized the

problem so that one unit of resources can transport patients at location j at rate sj, i.e., the

mean travel time from location j is 1/sj . It turns out that we can treat each class–incident

pair as if it were a separate patient class, which has an important implication as to the

structure of the optimal solution.

Proposition 4.1. The general formulation (4.1) is equivalent to the formulation (3.1) with

one incident and 2|J | patient classes.

Corollary 4.1. There is an optimal solution to (4.1) where at every time t, rij(t) = 0 or

rij(t) = 1 for every i ∈ {I,D}, j ∈ J .

If we limit ourselves only to solutions having the structure proved in Corollary 4.1, then

we can re-write the problem formulation as follows. Let W (i, j) be the set of time points

in [0, T ] where class-i patients at location j are served, where T is the time horizon needed

to serve all patients (i.e., T =
∑

i∈{I,D}

∑

j∈J nij). Let W = {W (i, j), i ∈ {I,D}, j ∈ J }.

max
W

∑

i∈{I,D}

∑

j∈J

∫

W (i,j)

sjfi(x) dx (4.2)

subject to
⋃

i∈{I,D}

⋃

j∈J

W (i, j) = [0, T ],

W (i, j)
⋂

W (k, l) = ∅ ∀(k, l) 6= (i, j)
∫

W (i,j)

sjdx = nij, ∀i ∈ {I,D}, j ∈ J .
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Corollary 4.1 demonstrates that an optimal solution to (4.2) will also be an optimal solution

to (4.1). In the remainder of the analytical results, we seek an optimal solution to (4.2),

and moreover we only admit solutions that have the following structure: the set of time

points where a given class of patients is transported is the union of finitely many intervals,

each of which is closed on the left and open on the right. This limitation is useful both for

technical reasons (so that the set of time points where we transport a given class does not

include a collection of zero-measure points that are not adjacent to intervals in which we

transport patients) and for practical reasons (because it would be impossible to implement

a policy that changed resource allocation infinitely many times). In other words, the policy

we seek maps time intervals to patient classes. The choice of closed on the left and open

on the right does not affect the nature of the solution, but it provides consistency within

proofs.

The type of solution that allocates all resources to a single location at any given time

may not be desirable or may be deemed to be unfair because one of the locations may

be “starved.” However, note that while only one location is served at any given time,

this solution structure does not necessarily imply a fixed ordering between the locations.

That is, in the optimal solution, it is possible that the resources are moved back and forth

between the locations. On the other hand, among patients in the same class, there is a

distinct relationship between the different locations, which we now establish formally.

Proposition 4.2. For a given class of patients, it is always advantageous to prioritize

patients in that class at a location with a larger speedup factor over patients in that class at

a location with a lower speedup factor. That is, in an optimal solution, class i patients at

incident j will all be transported before any class i patients at incident l if sj > sl.

Proposition 4.2 confirms the intuition that if patients are identical, it is advantageous

to assign resources to the location that can use them more efficiently. Proposition 4.2 also

proves that the optimal policy has a relatively simple structure, because at any given point

in time, many of the patient classes will be dominated by patients of the same class at a

location with a faster speedup factor.
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4.2 Analysis of Two-Incident Problem

The simplest case of simultaneous MCIs is when there are two incidents. The two-incident

case also has the advantage of being easier to analyze than the general case, and it can

provide us with some insight into the types of policies that are likely to work well with

more than two incidents.

Let I and D denote the immediate and delayed classes at the incident with the smaller

speedup factor. Let I and D denote the immediate and delayed classes at the incident

with the larger speedup factor. For ease of notation we assume that the parameters of the

problem are scaled so that the speedup factor at the first location is 1 and the speedup

factor at the second location is s > 1.

We assume that the following structure is present in the reward functions: immediate

patients deteriorate faster at the beginning of the response effort, and delayed patients

deteriorate faster later on, after some point in time. Formally, the reward functions of

classes I and D satisfy the following:

Assumption 4.1. There exist times tm, tm, and tm such that 0 ≤ tm ≤ tm ≤ tm, and

• f ′I(t) < f ′D(t) < 0 for all t < tm, and f
′
D(t) < f ′I(t) < 0 for all t > tm.

• sf ′I(t) < f ′D(t) < 0 for all t < tm, and f
′
D(t) < sf ′I(t) < 0 for all t > tm.

• f ′I(t) < sf ′D(t) < 0 for all t < tm, and sf
′
D(t) < f ′I(t) < 0 for all t > tm.

Assumption 4.1 states that initially, the reward from transporting immediate patients

decreases faster than the reward from transporting delayed patients, but after a certain

amount of time, the reverse is true. One sufficient (but not necessary) condition for As-

sumption 4.1 would be for fD(t) to be concave decreasing and fI(t) to be convex decreasing

over the time horizon. In other words, as time goes by, the rate at which delayed patients

deteriorate increases, while the rate at which immediate patients deteriorate decreases. This

makes intuitive sense because the delayed patients are initially stable and begin to worsen

more rapidly later in the response effort, while immediate patients lose much of their ability

to survive early on in the response effort.
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Recall that as a result of Proposition 4.2, we know that we should give class I priority

over class I and class D priority over class D at all times. The next proposition further

characterizes the structure of the optimal policy that we seek:

Proposition 4.3. There is an optimal solution where once the transportation of class D

or D patients begins, it does not end until all of those patients have been transported.

In other words, once class D or D becomes the highest priority among the remaining

classes, it remains the highest priority. Therefore, we are interested in characterizing the

time t∗, the time when we would begin transporting patients from class D, and time t∗∗, the

time when we would begin transporting patients from class D. In the rest of this chapter,

we limit our search for optimal solutions of the type described in Proposition 4.3.

The next two sections show how to calculate an interval in which t∗ must lie. First, we

prove the following lemma that will be useful in this analysis.

Lemma 4.1. Let g(t) : R+ → R be a function that satisfies the following: there exists

tm > 0 such that g′(t) > 0∀t < tm and g′(t) < 0∀t > tm. Let c1 and c2 be constants such

that 0 < c2 ≤ c1. For any t1, t2 ≥ 0, which satisfy

g(t1) ≤ g(t1 + c1) (4.3)

and

g(t2) ≥ g(t2 + c2), (4.4)

it must be the case that t1 ≤ t2.

4.2.1 Upper and lower bounds for t
∗

In our patient prioritization problem, both classes of delayed patients (D and D) will

compete for resources with the immediate patients. That is, when determining the time at

which to switch priority to delayed patients, we must consider two different classes of delayed

patients. On the other hand, if we consider our patient prioritization problem without the

delayed patients at the incident with the smaller speedup factor; i.e., with nD = 0, then

only the delayed patients at the incident with the larger speedup factor (i.e., those in class
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D) will compete for resources with the immediate patients. This means that the delayed

patients may be able to afford to wait a bit longer before receiving priority compared to

the case where nD > 0. This is the intuition behind the upper bound problem, which we

now define formally.

Define the “upper bound problem” to be the following one-location instance of (4.2):

max
W

∑

i∈{1,2}

∫

W (i)

fi(x) dx (4.5)

subject to
⋃

i∈{1,2}

W (i) = [0, T ],

W (i)
⋂

W (j) = ∅ ∀j 6= i
∫

W (i)

dx = ni, ∀i ∈ {1, 2},

where f1(t) = sfI(t), f2(t) = sfD(t), n1 = nI/s + nI , and n2 = nD/s. Note that in the

above formulation, we name the two patient classes 1 and 2 to make it clear that they do

not refer to the classes in the original problem, and W (i) is the set of time points where we

transport class i patients, i ∈ {1, 2}.

We can prove that in the optimal solution to the upper bound problem, the time at

which we begin transporting class 2 patients is an upper bound to t∗, which leads to the

following result.

Proposition 4.4. Let W ∗ be any optimal solution to (4.2), and let t∗ = inf{W ∗(D)}. Then

t∗ ≤ min{nI/s + nI , tm}. That is, we should begin transporting class D patients no later

than time tm or when all immediate patients have been transported.

The argument used in the proof of Proposition 4.4 can also be used under a certain

condition to give another upper bound for t∗:

Corollary 4.2. If tm ≤ nI/s, then t
∗ ≤ nI/s.

Because tm ≤ tm, in the case when tm ≤ nI/s ≤ tm, Corollary 4.2 will give a tighter

upper bound than Proposition 4.4. As a side note, Corollary 4.2 also demonstrates that

tm ≤ nI/s is a sufficient (but not necessary) condition for class D to dominate class I.
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Now, to determine a lower bound for t∗, consider what happens if we group the patients

from our problem at one location as follows: assume that all patients from class D and

D have reward sfD(t), and all the patients from class I and I have reward fI(t). This

grouping means that delayed patients are even more attractive in terms of reward than in

the two-incident problem, because they are all able to take advantage of the larger reward,

while all the immediate patients take the small reward. Therefore, intuitively it would be

advantageous to switch to delayed patients even earlier than we would in the two-incident

problem.

It turns out that this intuition is true. Define the “lower bound problem” to be (4.5)

with f1(t) = fI(t), f2(t) = sfD(t), n1 = nI/s + nI , and n2 = nD/s + nD. Analyzing the

lower bound problem yields the following lower bound for t∗.

Proposition 4.5. We have t∗ ≥ min{nI/s+nI , tm−
(

nD/s+ nD
)

}. That is, we should begin

transporting class D patients no earlier than time tm −
(

nD/s+ nD
)

, unless all immediate

patients have been transported.

Taken together, Propositions 4.4 and 4.5 and Corollary 4.2 suggest that the time to begin

transportation of class D patients lies in the interval [tm−
(

nD/s + nD
)

, tm], or in the case

where tm ≤ nI/s, the time lies in the interval [tm−
(

nD/s + nD
)

,min{tm, nI/s}]. In either

case, if all immediate patients have been transported, then we should begin transporting

class D patients regardless of whether we have reached this interval.

4.2.2 Upper and lower bounds for t
∗∗

In the previous section, we identified an interval in which t∗, the time at which we should

begin transporting class D patients, must lie. We now approach the related question of

determining an interval in which t∗∗, the time at which we should begin transporting class

D patients, must lie. We will take a similar approach of solving a single-incident version

of the prioritization problem. We will develop these results under the assumption that t∗

is known; conveniently, it turns out that the upper and lower bounds for t∗∗ depend on

t∗ only through the priority relationship between class D and class D, which we already

established in Proposition 4.2. In other words, even though we assume that we have t∗ in
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obtaining our analytical results for t∗∗, one does not need to know t∗ to determine upper

and lower bounds to t∗∗ as long as one understands that class D patients will always have

priority over class D patients.

In the fluid model, we finish transporting class D patients at time t∗ + nD/s. There

will be nI − min{nI , st∗} class I patients remaining at that time, because prior to t∗, we

will serve class I patients (at rate s per unit time) as long as any are present. Moreover,

there will be nI−max{0, t∗−nI/s} class I patients remaining, because we will serve class I

patients only after all class I patients have been served, which takes nI/s time units. Note

that if the number of class I patients remaining is zero, then t∗∗ = t∗ + nD/s. In other

words, the only remaining patients are in class D and thus they should be transported at

that time.

Define the upper bound problem for t∗∗ to be the following:

max
W

∑

i∈{1,2}

∫

W (i)

fi(x) dx (4.6)

subject to W (1) ∪W (2) = [t∗ + nD/s, T ],

W (1)
⋂

W (2) = ∅
∫

W (i)

dx = ni, ∀i ∈ {1, 2},

where f1(t) = sfI(t), f2(t) = fD(t), n1 = nI + nI/s − t∗, and n2 = nD.

Proposition 4.6. We have t∗∗ ≤ max{tm, t∗+nD/s}. That is, we should begin transporting

class D patients no later than time tm, unless class D patients still remain to be transported

at that time.

Define the lower bound problem for t∗∗ to be (4.6) with f1(t) = fI(t), f2(t) = fD(t),

n1 = nI + nI/s − t∗, and n2 = nD.

Proposition 4.7. We have t∗∗ ≥ min{nD/s + nI/s + nI , tm − nD}. That is, we should

not begin transporting class D patients until at least time tm−nD, unless no other patients

remain in the system.
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Propositions 4.6 and 4.7 imply that the optimal time to begin transporting class D

patients lies in the interval [tm − nD, tm], with the two exceptions that class D patients

should never be transported before class D patients (the max in Proposition 4.6) and

we should never wait to transport class D patients if it would cause idling (the min in

Proposition 4.7).

4.2.3 Application of Lower and Upper Bounds

In this section, we discuss the implications of the results in Sections 4.2.1 and 4.2.2 to

the two-incident mass-casualty triage problem. It is important to recognize that the most

important result in these sections is structural. The optimal policy for the model begins by

prioritizing immediate patients. Within the immediate class, those patients at the location

with the larger speedup factor should be prioritized. After a certain amount of time (namely,

at t∗), priority should switch to delayed patients at the location with the larger speedup

factor. Following transportation of those patients, we should switch back to immediates

until time t∗∗, when we should prioritize the delayed patients at the location with the

smaller speedup factor.

Recall that earlier we scaled the prioritization problem by the inverse of the transporta-

tion rate (which is the number of transportation resources divided by the mean transporta-

tion time) so that it was equal to one per unit time. If we allow for general scaling, the

analytical results state that

t∗ ∈ [tm − θ/K
(

nD/s+ nD
)

, tm], (4.7)

t∗ ∈ [tm −
(

nD/s + nD
)

,min{tm, nIθ/(Ks)}], if tm ≤ nIθ/(Ks), (4.8)

and

t∗∗ ∈ [tm − nDθ/K, tm], (4.9)

where θ is the mean travel time andK is the number of resources. Because calculating t∗ and

t∗∗ exactly requires solving a nonlinear optimization problem, it is unlikely that such exact

calculations would be practical in an actual mass-casualty incident. However, calculating
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(4.7), (4.8), and (4.9) is fairly simple, as it does not require any computation. Thus, the

intervals can be used as guidelines for the emergency planner or incident commander. In

Section 4.4 we discuss how this can be done effectively.

4.2.4 Decentralized Resource Allocation

The analysis we have conducted for the two-incident problem so far has relied on the fact

that the resources can be reassigned from one incident to the other without delay. Although

the structure of the optimal solution may involve switching the resources between the two

locations at most twice, if the incidents are far apart or in the case of infrastructure damage,

switching the resources may be costly and time consuming. Thus, it is desirable to have

policies for decentralized resource allocation. We use the term decentralized to mean that

prioritization decisions are not made by a central authority in concert with the resource

allocation decisions. In a decentralized policy, resources are first allocated to the two inci-

dents by the central authority, and they remain tied to their assignment regardless of the

numbers or types of patients remaining at each incident over time. A manager at each

incident then prioritizes patients independently of the other.

Decentralized prioritization policies might be attractive in the case of a mass-casualty

incident if there are high overheads involved with using a centralized policy; for example,

when there is a shortage of dispatchers or coordinators, or when it is time-consuming to

move resources back and forth between the two locations. Another motivation for using a

decentralized policy (specifically, one that divides the resources between the two locations)

is that emergency planners may believe that it is unfair or unethical to devote all avail-

able resources to a single location at any given time, or they may believe that doing so

would expose them to legal liabilities. As we mentioned in the introduction to Chapter 3,

determining the ethicality of a given triage policy is beyond the scope of this dissertation.

Our main goal is to show that there are decentralized policies that would be practical to

implement, and in many cases can be expected to perform nearly as well as the centralized

policy that is optimal for the fluid model. It remains up to the decision makers to determine

whether the additional benefits of implementing a centralized policy (such as the optimal

policy for our model) outweigh the costs of doing so.
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The first type of decentralized policy we consider is sequential resource allocation, or in

other words, fixed priority per location. From Proposition 4.2, we already know that within

a given class of patients, it is desirable to prioritize the locations in order of decreasing

speedup factor. A natural heuristic extension is to prioritize locations in order of decreasing

speedup factor, without respect to the number and types of patients at each location. In

other words, the location with the largest speedup factor would be assigned exclusive use of

the resources until all of its critical patients have been transported; then, the location with

the next-largest speedup factor would receive use of the resources, and so on. While a given

location has use of all of the resources, patients could be prioritized using any appropriate

means, such as START, ReSTART, QD-ReSTART, or QS-ReSTART.

The second type of decentralized policy is simultaneous resource allocation. In this case,

the centralized emergency planner makes a single decision of how to divide the resources

between the incidents at the beginning of the response. The resources then remain tied

to their assigned incident for the entirety of the response effort. Again, with the resources

that are provided to each location, patients could be prioritized using any appropriate

means, such as START, ReSTART, QD-ReSTART, or QS-ReSTART. We can examine the

simultaneous resource allocation policy using the fluid formulation for the two-incident case

considered in Section 4.1. Suppose that we allocate fraction α ∈ (0, 1) of the resources to

the incident with the smaller speedup factor, and fraction 1− α to the other incident, and

that each location independently uses START or QD-ReSTART(0.5). For simplicity, we

will assume that this resource allocation must be fixed in advance and cannot be changed

during the response effort, even when one of the locations no longer has critical patients

to serve. This is a reasonable assumption when the resources are assigned to locations; for

example, they would begin serving patients classified as minor at their assigned location,

even if critical patients remain at the other location. Then, the total reward earned by the
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system under the fluid model is given by

S(α) = α

∫

nI

α

0
fI(t)dt+ α

∫

nI+nD

α

nI

α

fD(t)dt

+ s(1− α)

∫

nI
s(1−α)

0
fI(t)dt+ s(1− α)

∫

nI+nD
s(1−α)

nI
s(1−α)

fD(t)dt, (4.10)

in the case where START is used.

It is very difficult analytically to find the value of α maximizing S(α) because of the way

it depends on the reward functions fI(t) and fD(t). In our simulations, we will calculate

the optimal value of α numerically for the sake of comparison; however, we also need an

easier way to determine α that has a reasonable expectation of working well. Therefore, we

propose the Equal Critical Service Time (ECST) heuristic, which is to set α to

α0 =
s(nI + nD)

s(nI + nD) + nI + nD
, (4.11)

which results in

nI + nD
α0

=
nI + nD
s(1− α0)

.

In other words, the resources are assigned so that both incidents require the same amount

of time to transport all their critical patients (i.e., excluding minor and expectant patients),

which implies that the average waiting time for a randomly selected critical patient does

not depend on his or her location.

4.3 Analysis for More than Two Incidents

Although the analysis becomes somewhat more complicated when there are more than two

incidents because there are more decisions, we can extend some of the results of Section

4.2 to the same problem with more than two incidents. Suppose that there are k incidents,

{1, 2, . . . , k}, and that for all i ∈ {1, . . . , k}, location i has nDi delayed patients with instan-

taneous reward function fD(t), nIi immediate patients with instantaneous reward function

fI(t), and resource speedup factor si such that 1 = s1 < s2 < · · · < sk. Note that as in
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the two location problem, different locations do not necessarily send patients to the same

hospital. The speedup factor si indicates the efficiency with which location i can use its

resources to send patients to its assigned hospital.

Remark 4.1. By extending Proposition 4.2, it is the case that for all i ∈ {2, . . . , k}, im-

mediate (delayed) patients at location i dominate immediate (delayed) patients at location

i− 1. Hence, at any point in time, there are only two classes of patients, immediate and

delayed, each at the location with the largest possible subscript (but not necessarily the

same location), that could be eligible for service.

In a manner similar to Section 4.2, we can give upper and lower bounds for t(j), the

time at which we should begin serving the delayed patients at location j, by solving an

upper bound problem. For the upper bound, we must solve (4.5) with f1(t) = fI(t),

f2(t) = fD(t), n1 =
j
∑

i=1
nIi/si, and n2 = nDj/sj ; for the lower bound, we must solve (4.5)

with f1(t) = fI(t), f2(t) = sjfD(t), n1 =
j
∑

i=1
nIi/si, and n2 =

j
∑

i=1
nDi/si.

Similarly to Proposition 4.2, if we define t(j,1) = argmaxt (sjfD(t)− fI(t)), then if

t(j,1) ≤ nIj/sj , we have t(j) ≤ nIj/sj. We omit the proofs of these bounds, as they follow

the same reasoning as the proofs of Propositions 4.4 and 4.5, and of Corollary 4.2.

Once patients remain at only k − 1 locations, the multi-location problem may be re-

solved with one fewer location. Clearly, while this method provides a centralized policy, it

will become less useful as k increases.

We can also extend the ECST heuristic introduced in Section 4.2.4 to the case where

there are more than two locations. In this case, we would choose to allocate fraction αj of

the resources to each location j such that

nI1 + nD1

α1
=
nI2 + nD2

s2α2
= · · · = nIk + nDk

skαk

and
∑

i αi = 1. Each location can then use its own resources independently, and the average

amount of time that a critical patient waits is the same at each location.
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4.4 Heuristic Policies and Simulation Study

In Section 4.2, we noted that while it is not necessarily possible to quickly determine the

two thresholds needed to completely determine the optimal policy to the two-location fluid

model, we are able to give upper and lower bounds on these thresholds, which can be used

to implement a centralized priority policy. In Section 4.2.3, we proved that t∗ and t∗∗ must

lie in certain intervals. Could using these intervals really provide a good approximation to

the optimal policy? To explore this question, we conducted a numerical study on the two-

incident problem. We generated 1,000 instances, each with the number of patients uniformly

drawn from [20, 150], using the reward function and patient class distribution given by

Scenario 3 in Figure 3.3. For each instance, we calculated t∗ and t∗∗ using the Matlab

optimization toolbox. We then computed the intervals bounding these values according to

Section 4.2. Using these data points, we calculated ψ∗, which we define as the location of

t∗ within the interval given in (4.7) or (4.8) as appropriate. Specifically, if we let l∗ denote

the lower bound for t∗ and u∗ denote the upper bound for t∗, then ψ∗ is the unique solution

in [0, 1] to the equation t∗ = l∗ + ψ∗(u∗ − l∗). Similarly, we calculated ψ∗∗, the location

of t∗∗ within the interval (4.9). Distributions of ψ∗ and ψ∗∗ for this numerical study are

shown in Figure 4.1. For the wide range of instances generated in the numerical study,

t∗ most frequently lies near the middle of its interval and t∗∗ generally lies near its lower

bound. While these observations will be dependent on the survival probability functions, it

should be noted that in many cases the intervals themselves are not extremely large, and so

any choice from within the interval may be reasonable. Moreover, emergency coordinators

can “tune” their selection based on how aggressively they wish to treat delayed versus

immediate patients. In our simulations, we simply use the endpoints or midpoints of the

intervals, which can be determined by a hand calculation, and as we will demonstrate in

section 4.4.3, this heuristic performs surprisingly well.

As we noted previously, using a centralized policy may not be desirable in all situations.

Therefore, using insights from the results of Sections 4.2, we also develop two decentralized

policies that may be expected to perform well (similarly to a centralized policy), especially

when s is large or close to 1. We compare all the heuristic policies to a decentralized version
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Figure 4.1: Histograms for ψ∗ (left) and ψ∗∗ (right) from the numerical experiment.

of the commonly used START protocol.

4.4.1 Policy Descriptions

We determined in Section 4.2 that a centralized policy (that is, a policy in which resources

are directed to serve the locations and patient classes by a centralized decision maker) will

be optimal under the fluid model. In particular, using the relationship from Proposition 4.2

and the threshold times given in Section 4.2, each point in time during the MCI response

effort maps directly to a location-class pair. Hence, we expect a centralized policy to perform

very well in practice, even though patients and resources are actually discrete. However,

estimating the two thresholds is a non-trivial sub-problem that must be solved in order

to implement such a policy. We will test two different heuristics: one where t∗ and t∗∗

are calculated exactly (called Centralized-Exact), and one where they are estimated by a

point within the intervals given in Section 4.2 (called Centralized-Est). The Centralized-Est

heuristic is parameterized by ψ, the quantile of the interval that is used for the estimate.

We will use ψ ∈ {0.0, 0.5, 1.0}, which corresponds to lower bounds, midpoints, and upper

bounds.

On the other hand, a centralized policy may not be desirable in practice. We also

test decentralized policies to see which ones would be expected to work well. As we dis-

cussed before, two types of decentralized policies should be reasonable. One heuristic serves

the locations sequentially, in order of decreasing speedup factor (called Decentralized-Seq).

In Decentralized-Seq, we use QD-ReSTART(0.5) to prioritize patients at each location.

The other possibility is to serve the locations simultaneously. In this case, the resources

must be allocated in some manner between the locations. We test the heuristic that ap-

plies QD-ReSTART(0.5) with resources allocated according to the ECST heuristic (called
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Decentralized-Simul-R) and the heuristic that applies START with the fluid optimal alloca-

tion (called Decentralized-Simul-S). The exact details of all the heuristic policies are given

in Table 4.1.

Based on the fact that QD-ReSTART is designed to be an improvement on START,

we expect Decentralized-Simul-S may perform worse than Decentralized-Simul-R; note that

Decentralized-Simul-S is included for purposes of comparison because it is the type of policy

that is likely to be implemented currently, since many EMS agencies use START. However,

note that even Decentralized-Simul-S has an advantage over what could be used in practice

because we are numerically calculating the fluid optimal allocation, which is unlikely to be

possible in the aftermath of an MCI. On the other hand, based on the results of Section 4.2,

we expect the Centralized-Exact policy to perform very well, because it is the optimal policy

for the fluid model. Although we cannot guarantee that Centralized-Exact is the optimal

policy for the simulation model, it is unlikely that any policy that is easy to implement would

perform significantly better. Hence, we will also compare the other policies to Centralized-

Exact, because a policy that can do as well, or nearly as well, as the Centralized-Exact

policy would be an excellent candidate for implementation.

4.4.2 Simulation Method

To test the heuristic policies, we conducted a series of simulations using code written in

Matlab. We used the same five survival probability scenarios given in Figure 3.3, which

include survival probability functions for immediate and delayed classes, as well as distri-

bution of the patient classes. For each scenario, we generated 200 instances, each with 100

total patients. For each instance, we generated the number of patients at the location with

the larger speedup factor uniformly over {1,2,. . . ,99} (ensuring there would always be at

least one patient at each location); the remainder of the patients were assigned to the other

location. Each patient was randomly assigned one of the four START classes according to

the patient class distribution. Finally, the number of ambulances was randomly selected

from {5,6,. . . ,15}. We chose not to separate the results by number of ambulances because

preliminary runs showed no appreciable effect of the number of ambulances on which policy

performed the best. Nevertheless, random selection of the number of ambulances ensured
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Table 4.1: Summary of heuristic policies for two-location and multi-location MCI response.

Policy Type Heuristic Description (Two-Location) Description (Multi-Location)

Centralized Exact Follow the optimal policy for
the fluid model, computing
thresholds t∗ and t∗∗ exactly
via nonlinear optimization or
line search.

Follow the optimal policy for
the fluid model, computing
thresholds exactly via non-
linear optimization or line
search.

Centralized Est(ψ) Follow the optimal policy for
the fluid model, but estimate
t∗ and t∗∗ by l∗ + ψ(u∗ − l∗).

Follow the optimal policy for
the fluid model, but estimate
all thresholds using the point
ψ−quantile of the interval es-
timate.

Decentralized Seq Serve the location with the
larger speedup factor first,
using QD-ReSTART at each
location.

Serve the locations in order
of decreasing speedup factor,
using QD-ReSTART at each
location.

Decentralized Simul-R Use the ECST heuristic, i.e.,
allocate fraction α0 of the re-
sources to the slower location
and (1− α0) to the faster lo-
cation, rounding in favor of
the faster location when re-
sources are discrete. At each
location, independently ap-
ply QD-ReSTART.

Use the ECST heuristic, i.e.,
allocate fraction αi of the re-
sources to location Li, for all
i ∈ {1, 2, . . . , k}, with any
remainder (due to discrete-
ness) going to location k. At
each location, independently
apply QD-ReSTART.

Decentralized Simul-S Use the allocation α∗ of the
resources to the slower loca-
tion and (1−α∗) to the faster
location, where α∗ is the
maximizer of S(α), rounding
in favor of the faster loca-
tion when resources are dis-
crete. At each location, inde-
pendently apply START.

Use the ECST heuristic, i.e.,
allocate fraction αi of the re-
sources to location Li, for all
i ∈ {1, 2, . . . , k}, with any
remainder (due to discrete-
ness) going to location k. At
each location, independently
apply START.
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scenarios with a variety of levels of resource availability.

4.4.3 Simulation Results

The simulation results for the heuristics defined in Table 4.1 are presented in Table 4.2. The

table presents the mean decrease in critical mortality compared to Decentralized-Simul-S.

Half-widths for each of these differences were 0.1% or smaller. When interpreting the

table, note that our baseline policy, Decentralized-Simul-S, has the advantage that we

numerically calculated the optimal resource allocation in the fluid model before running

the simulation. The other simultaneous policy, Decentralized-Simul-R, does not have this

advantage—rather, we use the ECST heuristic, which is more practical. In reality, it is

unlikely that emergency responders would be computing the optimal resource allocation

when using START; therefore, the performance of START may actually be worse in prac-

tice, which would increase the relative performance of the other policies. It is also impor-

tant to note that we do not claim that Centralized–Exact is the optimal policy. However,

Centralized–Exact is a useful point of comparison for two reasons: first, it is the optimal

solution to the fluid model, and second, it would be the most complicated of the heuristics

to implement.

Four main observations appear from the simulation results. The first observation is that

using START independently at each location, even with the optimal resource allocation,

performs poorly on average compared to the centralized policies for all values of s, indicating

that there is potentially large room for improvement over current EMS practices.

The second observation is that with a decentralized policy, it is still possible to achieve

a reasonably good improvement, either by using Decentralized-Simul-R (which appears to

work better in the case of lower values of s, i.e., when the resources can be used with

similar efficiency at both locations) or by using the Decentralized-Seq (which works very

well, especially in the case of higher values of s).

The third observation is that in scenarios where tm is close to zero, namely scenar-

ios 1 and 2, which are the most pessimistic scenarios in terms of survival probability,

Decentralized-Seq performs very similarly to the centralized policies. In these scenarios,

the centralized policies end up prescribing the sequential policy in many instances.
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Table 4.2: Mean decrease in critical mortality over 200 instances compared to Decentralized-
Simul-S with fluid optimal resource allocation.

Centralized Decentralized

Scenario s Exact Est(0.0) Est(1.0) Est(0.5) Seq Simul-R

1.2 0.9% 0.9% 0.9% 0.9% 0.7% 0.7%

1.5 1.1% 1.1% 1.1% 1.1% 1.0% 0.7%

1 2.0 1.3% 1.3% 1.3% 1.3% 1.3% 0.7%

3.0 1.8% 1.8% 1.8% 1.8% 1.8% 0.6%

5.0 2.3% 2.3% 2.3% 2.3% 2.3% 0.4%

1.2 3.1% 3.1% 3.1% 3.1% 2.6% 2.7%

1.5 3.7% 3.6% 3.6% 3.7% 3.3% 2.8%

2 2.0 4.2% 4.0% 4.1% 4.1% 3.9% 2.6%

3.0 5.1% 4.9% 5.0% 5.1% 5.0% 2.4%

5.0 6.4% 6.2% 6.2% 6.4% 6.4% 2.2%

1.2 6.6% 6.3% 6.3% 6.6% 6.1% 5.7%

1.5 7.5% 7.2% 7.3% 7.5% 7.2% 5.7%

3 2.0 8.5% 8.0% 8.2% 8.4% 8.4% 5.3%

3.0 10.2% 9.5% 9.7% 10.1% 10.2% 4.9%

5.0 12.5% 11.6% 11.3% 12.1% 12.4% 4.9%

1.2 7.7% 6.9% 6.8% 7.6% 7.2% 5.9%

1.5 10.1% 8.9% 9.3% 9.9% 9.7% 6.3%

4 2.0 11.8% 10.1% 10.7% 11.5% 11.7% 5.6%

3.0 14.4% 12.5% 12.7% 13.9% 14.4% 4.8%

5.0 18.0% 16.1% 15.9% 16.7% 17.9% 4.2%

1.2 5.1% 3.8% 4.2% 5.0% 4.9% 2.6%

1.5 7.0% 5.2% 6.1% 6.8% 6.9% 2.2%

5 2.0 9.3% 7.5% 8.4% 9.0% 9.2% 1.5%

3.0 12.9% 11.3% 12.0% 12.4% 13.0% 1.1%

5.0 16.0% 14.8% 14.9% 15.5% 15.9% 0.1%
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The final observation is that all the centralized policies perform very similarly; in par-

ticular, Centralized-Est(0.5) results in almost the same improvement as Centralized-Exact.

We conclude that if it is possible to use a centralized policy, the lower and upper bounds pre-

sented in Section 4.2 are very useful, because they can be used to quickly approximate the

thresholds without sacrificing much performance compared to finding the exact thresholds.

4.5 Discussion

In this chapter, we demonstrated that current triage protocols (such as START) may not

be sufficient to deal with the problem of resource allocation in a two-location mass-casualty

incident. However, the type of formulation used in Chapter 3 to develop the ReSTART

policy also leads to insights that will be useful in making resource allocations in a multiple-

location mass-casualty incident. Specifically, under the fluid formulation, the optimal policy

devotes all available resources to one class-location pair at any time, switching between them

according to two thresholds. Within each patient class, patients at the location with the

larger speedup factor should be prioritized. While calculating the exact threshold times

for beginning the transportation of the delayed patients is computationally more difficult

than calculating the single threshold for ReSTART, quick approximations of these thresholds

nevertheless perform very well in simulations. Moreover, if a policy with centrally dispatched

resources is not feasible or not desirable, we have developed decentralized heuristics that

can potentially still result in significant decreases in critical mortality compared to using

START, even if START could be used with the fluid optimal resource allocation, which is

unlikely to be the case.

Finally, the results in this chapter demonstrate that the idea of resource-based patient

prioritization (namely, taking into account resource limitations and survival probability

functions to attempt to maximize the expected number of survivors) is promising not only

in a simple situation, but also in more complicated scenarios such as the multiple-location

mass-casualty incident, and these results can be used when developing plans or policies to

respond to such an incident.
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Chapter 5

Dynamic Routing of Casualties in a

Mass-Casualty Incident

In this chapter, we study the problem of dynamic decision making in a large scale

casualty evacuation following an MCI. Large scale natural or man-made disasters often

result in a large number of casualties who need to be evacuated in order to receive some

kind of care. For example, casualties in a biological, chemical, or nuclear disaster must

be transported out of the affected area and then undergo decontamination; casualties from

an earthquake, flood, or hurricane must be moved to a safe place to undergo triage or

to receive treatment for injuries. The main goal of the response to such an incident is

to ensure the safe and timely treatment of as many casualties as possible. Emergency

responders may encounter limited resources and unexpected events, such as infrastructure

damage on the evacuation routes or overcrowding at some of the facilities that are set up

to receive casualties. Because conditions change during the response effort, it is therefore

important for emergency responders to be able to make decisions dynamically throughout

the evacuation to make the evacuation as efficient as possible.

We specifically consider the problem of transporting casualties from areas affected by the

disaster to a set of casualty collection points, where they receive treatment. This problem is

particularly relevant in a mass-casualty event involving the release of hazardous substances

(HAZMAT). Hazardous substances include biological, chemical, or nuclear agents, and they

may be released deliberately (as in a terrorist attack) or accidentally (as in a meltdown

at a nuclear power plant). HAZMAT events pose a particular challenge because both



casualties and responders are at risk from exposure, and the U.S. government plans and

prepares for such scenarios (U.S. Department of Homeland Security 2005). In such an

event, casualties must first be evacuated away from a site where they could be affected

by the substance and then undergo decontamination. These two steps must be completed

before the casualties can receive additional care for injuries or illnesses (Hrdina et al. 2009).

To avoid cross-contamination, it would be ideal to establish decontamination as close to the

scene of the incident as possible, but in a mass-casualty event, it usually is not be possible

to establish scene decontamination if there is a risk of continued exposure (Robenshtok

et al. 2003). Moreover, health care facilities often do not rely on public safety agencies

to provide decontamination services, but instead elect to provide those services prior to

admission of patients, both for self-referred and ambulance arrivals (Hick et al. 2003). For

some types of incidents, such as detonation of an improvised nuclear device or radiological

dispersal device, it is desirable to establish radiation triage/treatment/transport sites at

intermediate locations so that patients can be evaluated and decontaminated before being

transferred to medical care facilities (Hrdina et al. 2009).

Three distinct zones are established during the evacuation of casualties in an event

involving hazardous substances (Boardman et al. 2008). “Hot zones” are areas where there

is ongoing risk of exposure to the hazardous substance. Hot zones usually include the

site(s) of the incident, but may also include areas downwind of the incident. Because both

casualties and rescuers have a risk of exposure, the type of treatment carried out in a

hot zone is very limited. The primary goal of rescuers is to evacuate the casualties away

from the hot zone. “Warm zones” are areas outside the hot zones where contaminated

casualties are present. The risk of exposure in a warm zone is only due to the presence of

contaminated casualties (i.e., through cross-contamination), as there is no direct exposure

to the substance. Warm zones include the casualty collection points where the casualties are

gathered as they wait to be decontaminated. Warm zones may be established in the field and

at medical facilities that are equipped to receive contaminated casualties. Finally, the “cold

zone” includes all areas not in a warm or hot zone. In order to pass from the warm zone to

the cold zone, casualties must undergo thorough decontamination that may include removal

of clothing, showering or flushing with water, and scrubbing with soap. In order to meet
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medical and regulatory requirements, the personnel performing the decontamination must

be specially trained and equipped (U.S. Occupational Safety and Health Administration

2005, Hick et al. 2003). Therefore, it is not usually practical to establish a large number

of parallel servers for decontamination. Figure 5.1 presents an schematic diagram showing

the movement of casualties between the zones.

In this chapter, we study how to route casualties to the collection points dynamically,

so that the evacuation can be adjusted to account for congestion and avoid overwhelming

or under-utilizing any of the collection points. While different types of events have different

requirements in terms of the exact resources needed or treatment provided, a common

theme that emerges in the literature is that the dynamic management of the evacuation

can improve outcomes and lessen confusion. In a study of thousands of patients evacuated

from an earthquake, Tanaka et al. (1998) suggested that to improve evacuation, “disaster

officials must know the capabilities and capacity of each area hospital at all times to select

appropriate triage and mode of transport for each victim”. Robenshtok et al. (2003) state

that in a chemical event, “specific hospitals should be designated to receive only chemical

agent casualties.” Hick et al. (2011) suggest that during a nuclear incident, emergency

managers should bypass hospitals that are “completely overwhelmed”. Hrdina et al. (2009)

note that a mass-casualty event involving radiation “will require a wider distribution of

patients” than a typical mass-casualty event and thus “a networked system” for assigning

patients to medical facilities is an essential part of any model for responding to such an

incident. These studies give qualitative observations about management of casualties in a

disaster; they suggest that dynamic management of casualty evacuation could be helpful,

for example, by incorporating information about the capabilities and the level of congestion

at each casualty collection point.

While a number of articles in the literature consider evacuation and casualty manage-

ment problems, existing approaches generally use optimization models, such as network

flows and mathematical programming, which are more suited for planning purposes or for

determining an efficient travel path for emergency vehicles. In this chapter, we consider a

different aspect of the evacuation problem that to our knowledge has not received atten-

tion; namely, the queueing of casualties at the collection points and its effect on dynamic

72



HOT ZONE 

incident sites: casualties are 

contaminated 

WARM ZONE 

collection points: casualties wait  

for decontamination 

DECON 

DECON 

COLD ZONE 

casualties are free of 

contamination 

Figure 5.1: Evacuation and decontamination of casualties in the aftermath of a mass-
casualty event involving the release of a hazardous substance: casualties are removed from
the hot zone to the warm zone, where they wait to receive decontamination service before
being released to the cold zone.

routing decisions. This queueing is especially relevant in situations such as those depicted

in Figure 5.1, namely, those situations where a large number of casualties all need similar

service (such as decontamination) and where the service can be provided at one of several

locations.

5.1 Dynamic programming formulation

In this section, we define the main problem and the Markov decision process (MDP) for-

mulation we will use throughout the rest of the chapter. We then briefly discuss similar

models in the literature and our analytical approach.

Consider a disaster with multiple casualty clusters. Each casualty cluster is considered

a hot zone, where casualties are exposed to danger. We assume that each cluster has an

ample supply of casualties. Each cluster has a transportation resource or set of resources

that can be used to transport the casualties to one of several casualty collection points

(that we also refer to as “stations”), which may be hospitals, shelters, field triage areas, or

ad hoc decontamination facilities. The rate at which casualties can be transported from
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a given cluster to a given station is inversely proportional to the travel time between the

cluster and the station. Once a casualty reaches the collection area, he or she waits to

receive service from a single server. For medical reasons, it is always advantageous for the

casualties to be located at the collection point as opposed to the scene of the incident (i.e.,

it is better to be in the warm zone than the hot zone), so we do not charge holding costs

for casualties who are waiting at the collection points. Once completing service, the patient

enters the cold zone and the system earns a reward. The reward can depend on the station

where the casualty receives service, and thus the reward can be used to represent different

capabilities at the different stations. In the absence of information about the capabilities of

the different stations, it may be convenient to think of all rewards as being one, in which case

the reward will correspond to the number of patients who have completed service (and thus

the expected total discounted reward is simply the discounted throughput of the system).

We seek to find the routing policy that maximizes the expected total discounted reward

earned by the system.

We let R denote the set of all transportation resources. Each resource corresponds

to a specific cluster, although there may be more than one resource per cluster. For the

remainder of this chapter, we assume a one-to-one correspondence (i.e., one resource per

cluster) without loss of generality. Since clusters have an ample supply of casualties, having

more than one resource at a cluster is the same as having more than one cluster. We also

let S denote the set of stations, each of which has a single server with a dedicated queue.

A resource i ∈ R can transport casualties to station j ∈ S with a travel time that is

exponentially distributed with rate τij > 0. This travel is preemptive, i.e., the resources

can be re-routed while en route. Travel back to the cluster is instantaneous. The server at

station j works according to an exponential distribution with rate µj > 0. When a casualty

finishes service at station j, the system receives a reward rj > 0.

In order to formulate the problem as a MDP, and therefore obtain policies based on

analytical results, we make several assumptions. Before we provide our MDP formulation,

we discuss some of these assumptions in more detail. First, we assume that each casualty

cluster has an ample supply of patients. This is clearly an approximation, even though

the number of casualties in a mass-casualty event is generally large. Later, we relax this
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assumption in our simulation study. Second, we assume that each collection point operates

as a single server queue. Adding additional servers may be desirable; however, adding

additional servers in a decontamination setting is not simple: for reasons such as available

space, equipment, protective gear, and utility hookups, adding an additional server in the

decontamination setting cannot be done quickly if at all (U.S. Occupational Safety and

Health Administration 2005). Decontamination capacity may be further limited by the

number of trained personnel available: at smaller facilities, they may number as few as

one 2-person team (Hick et al. 2003). At larger facilities, it is “reasonable to expect”

that ambulatory (walking) and non-ambulatory patients may be decontaminated in parallel

(Hick et al. 2003); in this case, we do not model the ambulatory patients because they

self-transport to the facility. Finally, we assume that vehicles have Markovian travel times

and become instantaneously available after dropping off a casualty. Again, we relax these

assumptions in the simulation study.

We denote the state of the system by X(t) = (X1(t), . . . ,X|S|(t)), i.e., the number of

casualties at each of the stations, at time t, where |S| is the cardinality of S. The state

space, which we denote by Q, is {(x1, x2, . . . , x|S|) : xi ≥ 0 for i = 1, 2, . . . , |S|}. Then the

expected total discounted reward with discount rate α > 0 is

E

[∫ ∞

0
e−αtr(X(t))dt

]

,

where r(x) =
∑

j∈S rjµjIj(x), x ∈ Q, and Ij(x) is the indicator function that takes value 1

if xj > 0 and 0 if xj = 0.

We next formulate this optimization problem as a Markov Decision Process. Throughout

this chapter, we use uniformization, and we define the finite uniformization constant β ≡
∑

j∈S µj + τ , where τ =
∑

i∈R τi and τi = maxj∈S τij. In other words, by observing the

system only at transitions, which occur according to a Poisson process with rate β, we

study the discrete time MDP that is embedded in the continuous process. Without loss of

generality, we let β = 1. A decision epoch occurs any time service is completed at one of

the stations and any time a resource finishes transporting a patient and becomes available.

If the event occurring at a decision epoch is a service completion, the state decreases by
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one at the station completing the service. If the event occurring at a decision epoch is a

transportation completion, the state increases by one at the station receiving the patient.

At each decision epoch, the action taken is to assign a station to each resource. We only

admit stationary policies; that is, under an admissible policy, each state corresponds to

a single station for each resource, independent of time. We denote the set of admissible

policies by P.

Let V (x) denote the maximum expected total discounted reward that can be obtained

by an admissible policy when the system starts in state x ∈ Q. We are interested in finding

a policy in P that yields V (x). That is, we want to solve

max
π∈P

E

[
∫ ∞

0
e−αtr(Xπ(t))dt

∣

∣

∣

∣

Xπ(0) = x

]

,

where Xπ(t) is the system state at time t under policy π and x ∈ Q. V (x) must satisfy the

optimality equation, which is

V (x) =
1

1 + α



r(x) +
∑

j∈S

µjV (x− Ij(x)ej) + τV (x) +
∑

i∈R

max
j∈S

{τijMj(x)}



 , (5.1)

where ej is the vector having the jth component equal to one and all others equal to zero,

and Mj(x) = V (x + ej) − V (x) is the marginal value of having an additional casualty at

station j. Our objective is to find a policy that satisfies (5.1).

The queueing system considered in this chapter is closely related to a make-to-stock in-

ventory problem—see, e.g., Veatch and Wein (1996). Namely, if we consider the transporta-

tion time to be production time and consider the service completions at different servers

to be demand realizations for different products, then maximizing the discounted reward

in the evacuation problem is equivalent to minimizing the discounted cost of lost sales in

the make-to-stock inventory problem, provided there are multiple production resources and

multiple products.

Veatch and Wein (1996) studied the make-to-stock inventory problem with a single pro-

duction resource and multiple products. In that article, two different inventory regimes (lost

sales and backordering) and two different cost methods (discounted and long-run average)
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were considered. However, the index policies developed in the article were derived from

results concerning the version of the problem with backordering and long-run average costs,

and the authors note that the backordering case is somewhat easier to analyze than the lost

sales case. Moreover, multiple production resources were not considered in Veatch and Wein

(1996). Subsequent articles concerning make-to-stock inventory, such as Ha (1997), consider

only the backordering case. Because backordering does not map to any notion in our model,

it is difficult to apply any of the results from work on make-to-stock inventory systems to

the casualty evacuation problem. However, the difficulty in determining the optimal poli-

cies in these articles suggests that it is not likely that we can fully characterize the optimal

policy in any simple form. Nevertheless, we can provide some partial characterizations of

the optimal solution, which we present in the next section.

5.2 Analytical Results

In this section, we establish several analytical results that provide some insight into the

structure of the optimal routing policy, i.e., the solution to the dynamic programming

problem given in (5.1).

The first proposition establishes a monotonicity relationship among any set of two re-

sources for any two given stations. Proofs of the following proposition and all other propo-

sitions appear in Appendix . To aid in exposition of the analytical results, we need the

following definition.

Definition 5.1. For a resource k ∈ R, stations j, l ∈ S, and state x ∈ Q, we say that j is

(x, k)-preferable to l if and only if τkjMj(x) ≥ τklMl(x).

When station j is (x, k)-preferable to station l, this means that when the system is in

state x, sending resource k to station j will yield an expected total discounted reward at

least as large as sending resource k to station l, if the optimal policy is used for all other

decisions. Thus, we can safely eliminate the possibility of routing resource k to station l in

state x.

Proposition 5.1. Consider any pair of resources i, k ∈ R and any pair of stations j, l ∈ S,
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Figure 5.2: Example problem instance with R = {1, 2} and S = {A,B}; numbers on arcs
indicate mean travel times 1/τij for i ∈ R, j ∈ S.

and without loss of generality label them such that
τij
τil

≥ τkj
τkl

. For any state x ∈ Q, if j is

(x, k)-preferable to l, then j is (x, i)-preferable to l.

Corollary 5.1. If
τij
τil

≥ τkj
τkl

, it is suboptimal in any state to route resource k to station j

while routing resource i to station l.

An example where the above proposition applies is presented in Figure 5.2. In the

figure, casualties from cluster 1 can be transported to station A twice as fast as to station

B. Casualties from cluster 2 can be transported to station A only one-and-a-half times as

fast as to station B. At a given state of the system, if it is optimal for a casualty from cluster

2 to go to station A, then it is also optimal for a casualty from cluster 1 to go to station

A. This conclusion is intuitive from examining the picture. Responders at cluster 1 would

prefer to go to station A versus station B more strongly than those at cluster 2: at cluster

2, the difference in travel times between the two stations is not as large. Another way to

state this result, using Corollary 5.1 is to say that one of the four possible actions, namely

the action that simultaneously sends a casualty from cluster 1 to station B and sends a

casualty from cluster 2 to station A, will be suboptimal regardless of the system state.

For the remainder of this section, we will make use of a finite-horizon version of the

problem. Specifically, we will examine V n(x), the maximum expected reward earned when

the system will run for n additional epochs (each epoch occurring according to a Poisson
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process with rate β). We have

V n+1(x)

=
1

1 + α



r(x) +
∑

j∈S

µjV
n(x− Ij(x)ej) + τV n(x) +

∑

i∈R

max
j∈S

{τij(V n(x+ ej)− V n(x))}



 ,

(5.2)

and we assume V 0(x) = 0. If a result concerning V n(·) holds for all values of n, then the

same result will hold for V (·), because V n(·) converges to V (·) uniformly as n approaches

infinity as long as V 0(x), which we assumed to be zero for all x, is bounded (Ross 1983,

Chapter 2.3, Proposition 3.1).

The next proposition demonstrates two additional types of monotonicity present in this

model. Specifically, it is always preferable to have more casualties in the warm zone (since

they would otherwise be in the hot zone), and it is always preferable to have more casualties

in the cold zone (having completed service) than in the warm zone.

Proposition 5.2. The following inequalities hold for all values of n ≥ 0, x ∈ Q:

V n(x+ ej) ≥ V n(x), ∀j ∈ S. (5.3)

V n(x) + rj ≥ V n(x+ ej), ∀j ∈ S. (5.4)

Next, we show an analytical result that can be proved in the case where τkj = τk for

all k ∈ R, j ∈ S; that is, mean travel times depend only on the resource used and/or the

location, but not on the destination station. This case approximates the scenario where the

medical facilities are close to one another and/or the primary difference in transportation

rates is due to a feature of the incidents, rather than the facilities (e.g., one of the incidents

is in an area that is difficult to access). Specifically, the following result shows that if the

the fastest station has the largest reward, then it is the optimal destination for all casualties

whenever it has the shortest queue.

Proposition 5.3. Suppose that τkj = τk for all k ∈ R, j ∈ S, and that r1 ≥ rj and µ1 ≥ µj
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for all j ∈ S. If x1 ≤ xj for all j ∈ S, then

V n(x+ e1) ≥ V n(x+ ej), (5.5)

V n(Tjx) ≥ V n(x), (5.6)

for all n ≥ 0 and for all j ∈ S, where Tj is the transformation that swaps the 1st element

of x with the jth element of x.

Note that (5.5) implies that the optimal routing is to station 1, because it implies that

τk1V
n(x + e1) ≥ τkjV

n(x + ej) for all j 6= 1, which in turn implies that τk1(V
n(x + e1) −

V n(x)) = maxj∈S{τij(V n(x + e1) − V n(x))}. Equation (5.6) does not have a practical

interpretation—it is used in the proof of (5.5).

The above proposition gives an “agreeability” condition for optimality. Specifically, if

a station has the largest reward, the fastest service, and the shortest queue, it should be

chosen. Numerically, it appears that the result holds even if mean travel times for each

resource are not the same, as long as the fastest station also has the shortest travel time

(i.e., if τk1 ≥ τkj for all j 6= 1). However, our proof of Proposition 5.3 does not work in this

more general case.

Finally, we extend the results of Propositions 5.2 and 5.3 to the infinite horizon case,

by making use of the fact that V n(·) converges to V (·).

Corollary 5.2. The following inequalities hold for all values of x.

V (x+ ej) ≥ V (x), ∀j ∈ S. (5.7)

V (x) + rj ≥ V (x+ ej), ∀j ∈ S. (5.8)

Corollary 5.3. Suppose that τkj = τk for all k ∈ R, j ∈ S, and that r1 ≥ rj and µ1 ≥ µj

for all j ∈ S. If x1 ≤ xj for all j ∈ S, then

V (x+ e1) ≥ V (x+ ej). (5.9)

Therefore, it is optimal to send casualties to the fastest station if it also has the largest
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reward and the shortest queue.

Although the analytical results in this section do not give a complete characterization

of the optimal policy, they do confirm that the optimal policy behaves in certain ways that

are somewhat intuitive. Moreover, as we develop heuristic policies in the next section, we

will be able to check their consistency with the results of this section.

5.3 Heuristic Policies

In this section, we develop heuristics that can approximate the optimal policy. We use

two methods: marginal value function approximation and the one-step policy improvement

heuristic. Marginal value function approximation involves finding an approximate value for

Mj(x), and then using that approximation in (5.1). Note that the function Mj(x) used in

the approximation may not correspond to any admissible policy. On the other hand, the

one-step policy improvement requires first setting a static policy and then applying a single

step of the policy improvement algorithm.

5.3.1 Marginal value approximation

Recall from (5.1) that if the marginal value function Mj(x) can be calculated, then the

optimal policy is for each resource i to route the next casualty to the station with the

largest index τijMj(x). A marginal value function approximation simply finds a way to

approximate Mj(x).

We choose to approximate Mj(x) under the assumptions that station j is excluded

as a possible decision, and that the policy does not depend on xj . In other words, we

calculate the value functions assuming that casualties already in queue for station j are

processed, and that the rest of the system operates as if station j does not exist. In this

case, Mj(x) = V (x+ej)−V (x) is simply the expected reward earned by the (xj +1)st item

at station j, which is rj, discounted from the time of the (xj +1)st service completion. The

service completion time of the (xj +1)st customer is an Erlang(xj +1, µj) random variable.

Hence, the expected reward is rj

(

µj

µj+α

)xj+1
.
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Therefore the marginal value approximation (MVA) heuristic is for each resource i ∈ R

to route casualties to the station with the largest index τijrj

(

µj

µj+α

)xj+1
. The MVA index

has the advantage of being simple, and it satisfies the “agreeability” condition that the

optimal policy possesses (see Proposition 5.3 and the discussion following it), namely that

if a given station has the shortest travel time, the fastest server, the largest reward, and the

shortest queue, then it would be chosen by the MVA index.

5.3.2 Policy improvement heuristics

In this section, we develop heuristics based on applying a single step of the policy improve-

ment algorithm, starting from a static policy. In other work on queueing systems, this

method has been shown to provide good heuristics (see, e.g., Argon et al. (2009) and Liu

et al. (2010)). A static policy means that routing decisions are state-independent. There-

fore, it is usually much easier to find the optimal static policy (or at least a static policy

that performs well) than to find the optimal dynamic policy, and the dynamic policy that

results from applying the single step of the policy improvement algorithm is guaranteed to

perform better than the static policy. In this section, we use a randomized static policy

where casualties from cluster i are routed to a station j randomly with probability ρij at

each decision epoch, where
∑

j∈S ρij = 1. In this way, casualties from cluster i arrive to

station j at rate ρijτij (i.e., each arrival that would have occurred at rate τij only occurs

with probability ρij). Let λj =
∑

i∈R ρijτij and ρj = λj/µj Then ρj is the traffic intensity

into station j; each station is M/M/1 with arrival rate λj and service rate µj.

Since any static policy Γ is completely determined by {ρij , i ∈ R, j ∈ S}, in order

to apply one step of the policy improvement algorithm, we need to determine the value

function (and thus the marginal value function) associated with a generic static policy.

Proposition 5.4. Let Γ be a static policy having probabilities {ρij , i ∈ R, j ∈ S}. The

value function V Γ(x) associated with Γ is

∑

j∈S

[

µjrj
α

− 2µjrj
λj + α− µj + ηj

(

λj + µj + α− ηj
2λj

)xj
]

, (5.10)

where ηj =
√

(µj + λj + α)2 − 4λjµj .
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Note that the value function in (5.10) is separable by station (because each station is

a separate M/M/1 queue). By using (5.10), we can compute the marginal value function

MΓ
j (x) associated with static policy Γ, which is

µjrj
λj

(

µj − λj + α− ηj
µj − λj − α− ηj

)(

µj + λj + α− ηj
2λj

)xj

. (5.11)

MΓ
j (x) is the static policy marginal expected total discounted reward from having one

additional customer at station j when the system state is x ∈ Q under static policy Γ.

Applying one step of the policy improvement method means that we should use MΓ
j (x) in

(5.1). Namely, the one-step policy improvement heuristic (PIH) is to send customers to the

station with the largest index τijM
Γ
j (x).

In the remainder of this section, we focus on three different ways to choose static policy

Γ for use in the policy improvement heuristic.

Optimal static policy. The one-step policy improvement heuristic should work best if

we start with the optimal randomized static policy, i.e., the policy that yields the largest

expected total discounted reward from among all randomized static policies. The total

expected reward starting with the empty system (i.e., xj = 0 for all j ∈ S) can be written

in closed form as

∑

j∈S

µjrj
α

−
∑

j∈S

2µjrj
∑

i∈R ρijτij + α− µj +
√

(
∑

i∈R ρijτij + µj + α)2 − 4µj
∑

i∈R ρijτij
(5.12)

by evaluating (5.10) with xj = 0 for all j ∈ S. Finding the optimal static policy requires

maximizing the above expression subject to
∑

j∈S ρij = 1,∀i ∈ R. Unfortunately, the

objective function is nonlinear in ρij and so the problem is difficult to solve except for

cases with a very small number of clusters and stations, where it can be solved numerically.

Where practical in our numerical experiments, we report the value of the policy improvement

heuristic with optimal static policy (PIH-O) for comparison.

Fluid approximation. Next, we consider optimization of the fluid approximation of the

randomized static policy. A fluid system is one in which the discrete entities are treated
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as continuous; transportation of casualties to the stations and subsequent service thereof

is equivalent to the flow of a fluid. Recall that we interpret the inverse of τij to be the

travel time to station j using resource i. Therefore, the fluid flowing from resource i to

station j first arrives at time 1/τij , flows at rate ρijτij units of fluid per time unit, and

continuously earns a reward of rj per unit of fluid. This reward is discounted to time zero

at discount factor α. Thus, the total reward earned by fluid flowing from resource i to

station j is
∫∞
1/τij

ρijτijrje
−αtdt =

ρijτijrj
α e

− α
τij . In order to linearize the objective function

without adding additional variables, we assume that fluid does not arrive to station j at a

total rate faster than µj . Such a solution would actually be feasible, but it could not increase

the expected total discounted reward because the fluid can never flow out of station j (and

thus earn a reward) at a rate faster than µj .

The fluid approximation is thus the following linear program:

max
∑

i∈R

∑

j∈S

τijrje
− α

τij ρij

s.t.
∑

i∈R

ρijτij ≤ µj, ∀j ∈ S (5.13)

∑

j∈S

ρij = 1, ∀i ∈ R (5.14)

ρij ≥ 0, ∀i ∈ R, j ∈ S. (5.15)

The above linear program is an example of a fractional multiple-knapsack problem. If the

problem is relaxed by removing constraints (5.13) (which would be a good approximation

when stations are fast compared to transportation resources), then it can be solved optimally

via greedy choice, by choosing for each i ∈ R, ρij′ = 1 for j′ = argmaxj∈S τijrje
− α

τij and

0 for all others. In our numerical experiments, we will report the results of the policy

improvement heuristic using both the probability assignment from the fluid LP (PIH-F)

and from greedy choice (PIH-G).
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Table 5.1: Heuristic results as a percentage of optimal value. Minimum, quartiles, maxi-
mum, and mean are calculated across 10,000 randomly generated instances.

α Heuristic Min Q1 Q2 Q3 Max Mean

0.1 Greedy 62% 95% 97% 99% 100% 96%

Fluid 92% 96% 97% 99% 100% 97%

Static-Opt 93% 97% 98% 99% 100% 98%

MVA 45% 91% 97% 99% 100% 93%

PIH-G 96% 99% 100% 100% 100% 99%

PIH-F 96% 99% 100% 100% 100% 99%

PIH-O 99% 100% 100% 100% 100% 100%

0.7 Greedy 61% 92% 95% 97% 100% 94%

Fluid 82% 94% 95% 97% 100% 96%

Static-Opt 88% 95% 97% 98% 100% 97%

MVA 89% 96% 99% 100% 100% 98%

PIH-G 93% 99% 100% 100% 100% 99%

PIH-F 93% 99% 100% 100% 100% 99%

PIH-O 97% 99% 100% 100% 100% 100%

2.0 Greedy 61% 91% 94% 96% 100% 93%

Fluid 76% 92% 94% 96% 100% 94%

Static-Opt 86% 94% 95% 97% 100% 95%

MVA 93% 98% 99% 100% 100% 99%

PIH-G 93% 99% 100% 100% 100% 99%

PIH-F 93% 99% 100% 100% 100% 99%

PIH-O 96% 99% 100% 100% 100% 100%
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5.4 Numerical Results

In order to test the performance of the heuristics we developed in Section 5.3, we conducted

numerical experiments with randomly generated instances. We generated 10,000 instances,

each with two clusters and two locations. By using a small number of clusters and loca-

tions, we were able to calculate the value of V (·) numerically. Each instance had service

rates and transportation rates chosen uniformly in [1, 10]. We rejected instances where

∑

i∈R maxj∈S τij >
∑

j∈S µj, a condition that indicates that the system is unstable under

a static policy.

For each instance, the optimal policy was calculated using the value iteration algorithm

under a truncated state space with 125 states. The expected total discounted reward of

each heuristic was then calculated, assuming that the systems starts empty. The expected

total discounted reward of each heuristic is expressed in Table 5.1 as a percentage of the

reward under the optimal policy. For comparison, the performance of the static policies

alone (prior to applying one step of the policy improvement algorithm) is also shown.

All heuristics perform quite well on at least a majority of instances, but there is a

clear tradeoff between simplicity and performance. Marginal value approximation has the

simplest index to calculate, but performs poorly in a small number of instances. Nonetheless,

MVA still achieves an average of 98% of the value of the optimal policy. On the other

hand, policy improvement performs quite well, even when the initial static policy is not the

optimal one. On this set of instances, a single step of the policy improvement algorithm

applied to the optimal static policy is essentially indistinguishable from the optimal dynamic

policy. However, the optimal static policy itself must be calculated numerically, and this can

only be accomplished for problems with a relatively small number of clusters and stations.

Fortunately, most of the benefit of the policy improvement heuristic seems to come from

using the heuristic rather than from the static policy itself. This can be seen in Table 5.1.

The results are also somewhat sensitive to the discount factor α. If α is very small,

then the problem approaches a problem of maximizing the long-run average reward. As

we would expect, for small α, static policies tend to do very well (and consequently, policy

improvement does well). On the other hand, MVA begins to perform poorly, because the
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estimate of the marginal value in future steps becomes relatively more important. The

opposite effect is observed when α is very large. In that case, the estimate of the future

marginal value is less important and MVA performs very well. However, there is a marked

decrease in performance of the static policies. Notably, the performance of the policy

improvement heuristic is extremely good and does not seem to depend on α. MVA is

the simplest of all the policies, yet it performs best when time criticality (as measured by

discounting) is greatest.

While we have shown that our heuristics produce numerical results that are very close

to the optimal policy, it is obvious that numerical experiments alone are not sufficient

to draw conclusions about their applicability. In particular, it is important to consider

scenarios with more than two casualty clusters and two collection points, and where the

distributional assumptions are violated. Adding more clusters and collection points quickly

makes the MDP intractable due to the curse of dimensionality. Indeed, even the optimal

randomized static policy, which must be calculated numerically, is very time consuming

to obtain when there are more than two clusters and two collection points. Therefore,

simulation is the tool of choice for examining the performance of these policies in a more

realistic environment.

5.5 Simulation Study

In this section, we conduct a simulation study to test the performance of our policies in

the case where the assumptions made in the formulation of the MDP are not accurate. In

particular, as we discussed in Section 5.1, ambulance travel times are not exponentially

distributed, the return time for ambulances is non-negligible, and the number of casualties

will necessarily be finite.

In addition to having more realistic distributions, we also construct the simulation study

to be geographically realistic. We suppose that a biological, chemical, or nuclear terrorist

attack has taken place in an urban area that is 100 square miles (ten miles by ten miles).

There are n incidents, randomly located within the urban area with p patients each. There

arem facilities, m−1 of which are randomly located within the urban area and one of which
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is located between 15 and 30 miles outside the area. Each incident has two transportation

resources, which can travel to the medical facilities at an average speed of 40 mph. Distance

between points is Euclidean, and the travel time has a Lognormal distribution. This selec-

tion is based on the empirical observation that the Lognormal distribution best represented

travel times of ambulances (Ingolfsson et al. 2008). A single server decontaminates pa-

tients at each facility before they enter the facility for treatment, and the decontamination

requires Triangular(1,5,2) minutes. This selection is based on a literature review that sug-

gests that various agencies maintain decontamination standards ranging from one minute

to five minutes, although “actual showering time will be an incident-specific decision” (U.S.

Occupational Safety and Health Administration 2005). Therefore, we will simulate an inci-

dent in which incident commanders have prescribed a decontamination time of two minutes,

but where the actual time may be as little as one or as much as five minutes, depending on

the individual.

We simulate the scenario under four different policies:

• All patients routed to the nearest facility.

• All patients routed to the facility with the shortest queue.

• Patients routed according to MVA policy.

• Patients routed according to PIH-G policy.

MVA and PIH-G were chosen as candidate policies because they strike a balance between

simplicity and complexity, and thus of the policies we have developed, have the maximum

potential for usability. These factors have been identified as among the most important in

constructing models for medical decision making (Brandeau et al. 2009). “Nearest facility”

is a policy that is used in practice in daily emergencies as well as in major disasters; for

example, when sarin gas was released in 15 Tokyo subway stations, providers were unable to

get information about hospital availability due to poor communication, and many patients

were taken to the nearest hospital (Okumura et al. 1998). While it is not clear whether

the “shortest queue” policy has been used in practice, intuitively it is a reasonable myopic
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alternative for cases where providers are concerned about bypassing nearby hospitals due

to congestion; see, e.g., observations in Hick et al. (2011).

The results shown in Table 5.2 show the change in several performance metrics for

m = 3, n = {3, 4, 5}, p = 50. Results are given as 95% confidence intervals. Note that

flow time and make span are non-discounted performance measures for which a decrease

is desirable. On the other hand, an increase is desirable for the average number of busy

servers. For these metrics, the discount factor was used only to determine the policy.

Finally, discounted throughput is presented because it is the metric our policies intend to

maximize; thus, an increase is desirable.
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Table 5.2: Simulation results for m = 3, n = {3, 4, 5}, p = 50. (*) indicates significance at
the 0.05 level.
Change in performance metric versus choosing the nearest hospital, 95% confidence interval

n Policy Disc. Flowtime (hours) Makespan (hours) Avg. busy servers Disc. Tpt.

3 MVA 0.1 [-12.4, -3.1] * [-0.1, 0.0] [-0.0, 0.0] [0.2, 0.9] *

3 MVA 0.7 [-28.4, -12.7] * [-0.1, 0.0] [-0.0, 0.0] [1.2, 2.6] *

3 PIH-G 0.1 [-40.0, -17.6] * [-0.2, 0.0] [0.0, 0.1] * [1.3, 2.9] *

3 PIH-G 0.7 [-43.4, -19.7] * [-0.2, 0.1] [0.0, 0.1] * [2.3, 4.4] *

4 MVA 0.1 [-16.9, -3.7] * [-0.1, 0.0] [-0.0, 0.0] [0.2, 1.1] *

4 MVA 0.7 [-71.6, -42.3] * [-0.3, -0.1] * [0.0, 0.1] * [2.5, 4.1] *

4 PIH-G 0.1 [-82.5, -48.3] * [-0.5, -0.2] * [0.0, 0.1] * [3.2, 5.3] *

4 PIH-G 0.7 [-95.6, -56.9] * [-0.3, 0.0] [0.0, 0.1] * [4.1, 6.3] *

5 MVA 0.1 [-38.5, -9.2] * [-0.2, -0.0] * [0.0, 0.0] * [0.5, 2.1] *

5 MVA 0.7 [-165.3, -101.1] * [-0.7, -0.3] * [0.1, 0.1] * [3.6, 6.0] *

5 PIH-G 0.1 [-198.2, -126.1] * [-0.9, -0.5] * [0.1, 0.2] * [7.5, 11.6] *

5 PIH-G 0.7 [-210.6, -133.0] * [-0.7, -0.2] * [0.0, 0.1] * [6.3, 9.4] *

Change in performance metric versus choosing the hospital with the shortest queue, 95% C.I.

n Policy Disc. Flowtime (hours) Makespan (hours) Avg. busy servers Disc. Tpt.

3 MVA 0.1 [-1417.1, -1210.4] * [-20.5, -17.6] * [0.7, 0.8] * [50.5, 56.7] *

3 MVA 0.7 [-1430.1, -1223.0] * [-20.5, -17.6] * [0.7, 0.8] * [28.3, 31.7] *

3 PIH-G 0.1 [-1438.9, -1230.7] * [-20.6, -17.7] * [0.7, 0.8] * [52.0, 58.3] *

3 PIH-G 0.7 [-1442.1, -1233.0] * [-20.5, -17.6] * [0.7, 0.8] * [29.6, 33.3] *

4 MVA 0.1 [-1711.0, -1453.5] * [-19.2, -16.5] * [0.8, 0.9] * [61.1, 69.2] *

4 MVA 0.7 [-1757.4, -1500.4] * [-19.4, -16.7] * [0.8, 0.9] * [34.8, 38.6] *

4 PIH-G 0.1 [-1764.5, -1510.1] * [-19.5, -16.8] * [0.8, 0.9] * [64.9, 72.6] *

4 PIH-G 0.7 [-1775.3, -1521.1] * [-19.4, -16.7] * [0.8, 0.9] * [37.0, 40.3] *

5 MVA 0.1 [-1836.2, -1524.6] * [-17.5, -14.9] * [0.8, 0.9] * [63.1, 73.6] *

5 MVA 0.7 [-1942.0, -1637.5] * [-17.9, -15.4] * [0.8, 1.0] * [35.3, 39.2] *

5 PIH-G 0.1 [-1967.3, -1670.1] * [-18.0, -15.6] * [0.9, 1.0] * [72.0, 81.3] *

5 PIH-G 0.7 [-1976.4, -1680.3] * [-17.8, -15.3] * [0.8, 0.9] * [38.7, 41.9] *
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Chapter 6

Conclusions

Emergency responders to mass-casualty incidents must make many decisions in a short

amount of time and in a chaotic environment in an attempt to save as many patients as

possible. Because these decisions must be made quickly, and often with limited information,

it is important to have quantitative results to inform these decisions by suggesting the types

of policies that would likely save the most lives. Some of the most important decisions that

must be made in the aftermath of a mass-casualty incident involve patient prioritization

and resource allocation. The questions of how to allocate the resources that respond to

an incident and how to prioritize patients for access to those resources are closely related.

Moreover, while current triage standards prescribe a policy for prioritizing patients (based

on fixed priorities for the classes defined in Simple Triage and Rapid Treatment, or START),

such standards generally do not deal with resource allocation during multiple incidents or

with routing of casualties to multiple collection points or treatment facilities. Having estab-

lished the need for quantitative analysis of decision making in mass-casualty incidents, we

studied problems involving prioritization, transportation, and routing decisions for patients

in a mass-casualty incident.

In Chapter 3, we studied the problem of prioritizing patients at a single-location mass-

casualty incident. One of the most important contributions of Chapter 3 is the way in which

patient criticality was modeled. While prior work modeled criticality with lifetimes, we used

decreasing survival probability functions, which are more general and can more closely rep-

resent the reality, where the survival probability of a patient with critical injuries decreases



over time. We established that a simple fixed-priority policy is unlikely to maximize the

expected number of survivors. Instead, we proposed a policy called Resource-based START

(ReSTART), which is based on the analytical characterization of the optimal policy for a

simple model. In developing this model, our objective was not to come up with the most

realistic representation of the actual system but rather to obtain a formulation that cap-

tured the “right” trade-offs and was simple enough to allow analytical characterization of

the optimal policy. Using a simulation study that provided a more realistic representation

of the reality, we showed that this approach works quite well, since the results demonstrate

the consistently good performance of ReSTART across many scenarios. In particular, we

found that ReSTART results in significantly lower critical mortality on sets of randomly

generated problem instances than the standard practice of static prioritization according to

START classes.

In Chapter 4, we expanded the problem under consideration to include simultaneous

multi-location mass-casualty incidents. Such incidents are commonly linked to extreme

weather events or terrorist attacks. The START protocol does not prescribe how to allo-

cate resources in these types of events. We found that to maximize the expected number of

survivors, the decisions about patient prioritization and resource allocation must be made

together (i.e., they depend on one another). An optimal solution to our simple model re-

quired changing the resources from one location to the other at most twice. Nonetheless,

computing exactly when to switch priorities was more difficult than in the single location

case. To overcome this obstacle, we provided upper and lower bounds for the threshold times

and demonstrated in a simulation study that these estimates performed nearly as well as

calculating the threshold times exactly. One important contribution of Chapter 4 is that

we established decentralized heuristics that also worked well. Decentralized prioritization

policies are those where the patient prioritization decision is made after the resource allo-

cation decision. Even the heuristic that performed the worst, which used ReSTART after

pre-allocating resources according to a simple (and clearly suboptimal) plan, significantly

outperformed START. This result shows that even incremental changes in prioritization

policies (such as replacing START with ReSTART) will still lead to a decrease in mortality

among critical patients.
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In Chapter 5, we studied the related problem of routing patients to one of several

collection points or treatment facilities. This problem arises most commonly in larger mass-

casualty events where patients are spread across a wide geographic area. In modeling the

routing of patients, we took a somewhat different approach, using a Markov decision process

to model the effects of queueing at the casualty collection points in order to maximize the

expected total discounted number of patients treated. As in the previous chapters, we

attempted not to model the problem very realistically, but rather to capture the general

tradeoffs inherent in the problem. While it turned out to be very difficult to solve the

MDP in general, we were able to use the model to prove several analytical results regarding

the structure of the solution. Most importantly, our numerical study clearly showed the

advantage of using a dynamic control policy (that is, a policy that bases the routing on the

number of patients waiting in line at each facility). Even very good static policies performed

quite poorly in some instances. Moreover, obtaining a reasonable dynamic policy turns out

to be easy: calculating the policy prescribed by the Policy Improvement Heuristic is possible

for problems with even a large number of casualty collection points, where the MDP itself

is intractable. An even more practical heuristic, Marginal Value Approximation, yields an

simple index, and it performs well under heavy discounting, i.e., when time criticality is

high. These heuristics suggest that dynamic routing of patients may be both beneficial and

practical in the aftermath of a mass-casualty incident.

Throughout this dissertation, we used formulations that led to insights about the solu-

tion structures that are simple yet effective. Using these insights, we suggested policies that

could be implemented without necessitating large amounts of data or computing power.

This aspect of the work is important because requiring providers to solve an optimization

problem in real-time may be an obstacle to implementing a practical policy.

There are areas of future work that would be valuable both for better understanding

of prioritization and resource allocation decisions in mass-casualty incidents and for devel-

oping policies to support these decisions. The first area of future work is the estimation

problem related to the reward functions (survival probability functions). In Section 3.5.1,

we demonstrated one way of coming up with estimates for our simulation study. Although

that was the best we could do with what is available in the literature, we refrain from mak-
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ing any strong claims regarding how realistic the resulting estimated survival probability

functions are. In the simplest case, a study where experts are surveyed can be carried out to

estimate survival probability functions corresponding to each START class, which can then

be updated as new data become available with time. Once these estimates are obtained,

the policy parameters of ReSTART can be more easily determined and be ready to be used

in case of a mass-casualty incident. The second area of future research is to expand the

analysis of Chapter 5 and integrate it with the results of Chapters 3 and 4. While each

chapter suggests insights that can be useful in responding to mass-casualty incidents, they

focus on different performance measures: in Chapters 3 and 4, we focused on minimizing

critical mortality (i.e., maximizing the expected number of survivors from among the critical

patients); in Chapter 5, we focused on maximizing the expected total discounted number

of patients who complete treatment, with the aim of maximizing throughput. The second

objective is more relevant to the patients who do not have critical injuries, as within this

group it is less likely that different patients will have widely differing chances of survival.

In reality, emergency planners must consider both objectives: maximizing the expected

number of survivors from among the critical patients, and then distributing the non-critical

patients in an efficient manner so they can be treated quickly. This effort is complicated

by the fact that non-critical patients may self-transport to a treatment facility, reducing

the amount of control that can be exercised by the decision maker. Such self-triage and

transportation (i.e., exogenous arrivals to treatment facilities) is one important subject that

we did not consider in this dissertation, and it should be included in future work.

It would be näıve to claim that any of the policies proposed in this dissertation are

readily available for implementation in the way we described them. Any policy that would

change the adopted practice needs to be scrutinized carefully by the medical community

before being formally proposed as an alternative, and such scrutiny may necessitate some

adjustments. Nevertheless, we believe that the structural properties of the models in this

dissertation provide insights that can be useful in efforts to develop decision support tools

that can be used in practice, and ultimately can lead to more lives being saved in the

aftermath of a mass-casualty incident.
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Appendix

Proofs of Analytical Results

Proof of Proposition 3.1. It is sufficient to show that there exists an optimal solution where

only one class is served at a time almost everywhere. That is, the set of points over which

more than one point is served simultaneously will have measure zero. Because changing the

solution over a set of points with measure zero does not change the value of the objective

function in (3.1), we can change the solution at these points so that only one class is served.

Denote the total expected reward associated with any solution S of (3.1) by z(S).

Consider any solution S such that there exist two classes of patients (without loss of gen-

erality, classes 0 and 1) served simultaneously over some set of positive measure. Denote

by Y ⊆ [0, T ] the set of all points where classes 0 and 1 are served simultaneously under S.

We will construct a solution S̄ such that z(S̄) ≥ z(S) but in which the set of points where

classes 0 and 1 are served simultaneously has measure zero.

Y can be partitioned into Y0 ∪ Y1 ∪ · · · , where Y0 is a set of points of measure zero, and

∀j ∈ {1, 2, . . .}, Yj is an open interval such that where either f ′1(t) ≤ f ′0(t) or f
′
1(t) ≥ f ′0(t)

for all t ∈ Yj, and ri(t) is continuous over t ∈ Yj for i = 0, 1. Now, take any of the open

intervals, Yj = (a, b), where 0 ≤ a < b ≤ T and f ′1(t) ≥ f ′0(t) for t ∈ (a, b). That is, the

reward gap function g1,0(t) = f1(t)− f0(t) is non-decreasing for t ∈ (a, b). (The case where

f ′1(t) ≤ f ′0(t) is symmetric, and hence its proof is omitted.)

Because r0(t) and r1(t) are continuous over (a, b), there must exist c ∈ (a, b) such that

∫ c

a
r1(t)dt =

∫ b

c
r0(t)dt. (A.1)

In particular, such c must exist because limc→a

∫ c
a r1(t)dt = 0, limc→b

∫ b
c r0(t)dt = 0, the

left-hand side of (A.1) is non-decreasing in c (because r1(t) ≥ 0), and the right-hand side

of (A.1) is non-increasing in c (because r0(t) ≥ 0).
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To construct S̄, change the service during (a, b) as follows: during (a, c) serve class 0 at

rate r0(t) + r1(t), and during (c, b) serve class 1 at rate r0(t) + r1(t). Note that the total

amount of service to each class within (a, b) is unchanged, hence the constraints in (3.1) are

satisfied for S̄. Now, we have

z(S̄) = z(S) +

∫ c

a
r1(t)f0(t)dt+

∫ b

c
r0(t)f1(t)dt−

∫ c

a
r1(t)f1(t)dt−

∫ b

c
r0(t)f0(t)dt

= z(S) +

∫ b

c
r0(t)g1,0(t)dt−

∫ c

a
r1(t)g1,0(t)dt

≥ z(S) + g1,0(c)

(
∫ b

c
r0(t)dt−

∫ c

a
r1(t)dt

)

= z(S).

Here the inequality follows because ri(t) ≥ 0 for t ∈ (a, b) and i = 0, 1, and g1,0(t) is non-

decreasing, which implies that g1,0(c) ≥ g1,0(t) for all t ∈ [c, b] and g1,0(c) ≤ g1,0(t) for all

t ∈ [a, c]. Finally, the last equation follows by (A.1). We can then repeat this construction

for the remaining intervals over which more than one class is served under S. We conclude

that for any solution that serves more than one class at any given time, there is another

solution that performs at least as well by serving only one class at any point in time. The

result immediately follows.

Proof of Proposition 3.2. Consider a solution W, where class i is served at least partially

before class j. Let Y ⊆ W (i) be the set of all points such that ∀s ∈ Y,∃t ∈ W (j) where

s < t. That is, Y is the set of points where i is served before j. Similarly, let Z ⊆W (j) be

the set of points such that ∀s ∈ Z,∃t ∈W (i) where s > t. That is, Z is the set of all points

where j is served after i.

Partition Y = Y0 ∪ Y1 ∪ · · · ∪ Ymi
, where 1 ≤ mi < ∞, such that Y0 is a set of points

having measure zero; Yk, k = 1, 2, . . . ,mi, are open intervals; and p > q =⇒ ∀s ∈ Yp, t ∈

Yq : s > t. Similarly, partition Z = Z0 ∪ Z1 ∪ · · · ∪ Zmj
, where 1 ≤ mj < ∞, such that

Z0 is a set of points having measure zero; Zk, k = 1, 2, . . . ,mj , are open intervals; and

p > q =⇒ ∀s ∈ Zp, t ∈ Zq : s > t. The fact that mi and mj are finite follows from our

assumption that W (i) contains only finitely many intervals.

Let Y1 ≡ (ai, bi) and Zmj
≡ (aj , bj), where 0 ≤ ai < bi ≤ aj < bj ≤ T . Let ǫ =
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min{bi − ai, bj − aj}. We will define a new solution W̄ that performs at least as well as W:

W̄ (i) = (W (i)\(ai, ai + ǫ)) ∪ (bj − ǫ, bj)

W̄ (j) = (W (j)\(bj − ǫ, bj)) ∪ (ai, ai + ǫ)

W̄ (k) =W (k), ∀k ∈ I\{i, j}.

Since the constraint set of (3.2) is satisfied for W, and the construction of W̄ does not

change the measure of any of the solution sets, except by adding and subtracting sets of

the same measure (ǫ), then the constraints of (3.2) are satisfied for W̄.

Now, let g(t) = fj(t)−fi(t), for all t ∈ [0, T ], and let z(W) be the total expected reward

obtained from using solution W. Then,

z(W̄)

= z(W) −
∫ ai+ǫ

ai

fi(t) dt +

∫ bj

bj−ǫ
fi(t) dt−

∫ bj

bj−ǫ
fj(t) dt+

∫ ai+ǫ

ai

fj(t) dt

= z(W) +

∫ ai+ǫ

ai

(fj(t)− fi(t)) dt −
∫ bj

bj−ǫ
(fj(t)− fi(t)) dt ≥ z(W) + ǫg(ai + ǫ)− ǫg(bj − ǫ)

≥ z(W),

where the first inequality holds because f ′j(t) ≤ f ′i(t), and hence g′(t) ≤ 0 for all t ∈ [0, T ],

and the second inequality holds because ai + ǫ ≤ bi ≤ aj ≤ bj − ǫ and g′(t) ≤ 0 for all

t ∈ [0, T ].

Note that for W̄ we guarantee that either Y or Z will have at least one fewer open

interval than W. Hence, we will be able to repeat this procedure at most mi +mj times

until Y and Z are of measure zero. At that point we can set the service of points in Y and

Z arbitrarily, because sets of points of measure zero do not affect the expected total reward.

Then, the resulting solution will have a reward at least as large as z(W) but without any

service of class i before class j.

Proof of Proposition 3.3. To prove the result, we show that in any optimal solution to (3.5),
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W (D) is a single interval, plus possibly a set of zero-measure points. Now, suppose this is

not true, that is, in the optimal solution there are at least two intervals contained in W (D)

with non-zero measure, such that the points between these two intervals are not in W (D).

In other words, there exist 0 ≤ a1 < b1 < a2 < b2 ≤ T such that (a1, b1)∪ (a2, b2) ⊆W (D),

but (b1, a2) 6⊆W (D). We will show that such a solution cannot be optimal. We must have

one of the following three cases:

Case 1 (tm ≤ b1): Let W̄ (D) ≡ (W (D)\(a2, b2)) ∪ (b1, b1 + b2 − a2). Then, if we let

z(W) be the reward obtained by using solution W, we have

z(W̄)

= z(W) +

∫ b1+b2−a2

b1

g(t) dt −
∫ b2

a2

g(t) dt = z(W) +

∫ b1+b2−a2

b1

(g(t) − g(t+ a2 − b1)) dt

> z(W),

implying that W is not optimal. Here, the inequality follows from the facts that g(t) is

decreasing in t for all t > tm, tm ≤ b1, and b1 < a2 < b2.

Case 2 (b1 < tm ≤ a2): Let W̄ (D) ≡ (W (D)\(a1, a1 + tm − b1)) ∪ (b1, tm). Then, we

have

z(W̄)

= z(W) +

∫ tm

b1

g(t) dt −
∫ a1+tm−b1

a1

g(t) dt = z(W) +

∫ a1+tm−b1

a1

(−g(t) + g(t+ b1 − a1)) dt

> z(W),

implying that W is not optimal. Here, the inequality follows from the facts that g(t) is

increasing in t for all t < tm and a1 < b1 < tm.
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Case 3 (a2 < tm): Let W̄ (D) ≡ (W (D)\(a1, b1)) ∪ (a1 + a2 − b1, a2). Then, we have

z(W̄)

= z(W) +

∫ a2

a1+a2−b1

g(t) dt −
∫ b1

a1

g(t) dt = z(W) +

∫ b1

a1

(−g(t) + g(t+ a2 − b1)) dt

> z(W),

implying that W is not optimal. Here, the inequality follows from the facts that g(t) is

increasing in t for all t < tm, a2 < tm, and a1 < b1 < a2.

Proof of Proposition 3.4. (i) By the Fundamental Theorem of Calculus and the fact that

g(t) is continuous,

v′(t) = g(t+ nD)− g(t), and (A.2)

v′′(t) = g′(t+ nD)− g′(t), for t ≥ 0, (A.3)

where v′′(·) is the second derivative of v(t). Now, by Assumption 3.1, we have v′(t) <

0 for t ≥ tm, and if tm ≥ nD, then v
′(t) > 0 for t ≤ tm − nD. Hence, any global maximizer

of v(t) over [0,∞) must be in [max{0, tm − nD}, tm].

We next show that t̃ is unique. Note that for all t ∈ (max{0, tm−nD}, tm), g′(t) > 0 and

g′(t+nD) < 0. Then from Equation (A.3), we have v′′(t) < 0 for t ∈ (max{0, tm−nD}, tm).

Hence, if tm > 0, then there is a unique maximizer of v(t) in (max{0, tm − nD}, tm).

Otherwise, tm = 0 is the unique maximizer of v(t). In summary, there is a unique maximizer

t̃ = arg max
t∈[0,∞)

v(t), and we have v′(t) > 0 for t < t̃ and v′(t) < 0 for t > t̃.

(ii) If t̃ ≤ nI , then t̃ is also the global maximizer of v(t) for the domain [0, nI ], i.e.,

t∗ = t̃. Otherwise, because v′(t) > 0 for t < t̃, we have v(nI) > v(t) for all t < nI . Hence,

nI is the global maximizer of v(t) for the domain [0, nI ], i.e., t
∗ = nI .

(iii) Because t∗ ≤ t̃ by part (ii) and t̃ ≤ tm by part (i), we have t∗ ≤ tm. Moreover,

Assumption 3.1 states that tm ≤ nI + nD. Using this assumption and the fact that tm ≤

t̃+nD by part (i), we conclude that tm ≤ min{nI+nD, t̃+nD} = nD+min{nI , t̃} = nD+t∗,

where the last equation is due to part (ii).

Proof of Theorem 3.1. From Proposition 3.4, we know that t̃ exists, is unique, and is in the
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interval [max{0, tm − nD}, tm]. Because t̃ is a maximizer of v(t) over [0,∞), and v′(t) =

g(t + nD)− g(t) is defined for all t ≥ 0, then either t̃ is a stationary point (i.e., it satisfies

v′(t̃) = 0), or v′(0) < 0 and hence t̃ = 0. The latter corresponds to case (i), where t∗ = 0

by part (ii) of Proposition 3.4.

We now show that when t̃ is a stationary point of v(t), then exactly one of statements

(ii) or (iii) must hold. Because t̃ is a stationary point, by definition v′(t̃) = 0, or in other

words, g(t̃) = g(t̃ + nD). Furthermore, from the proof of part (i) of Proposition 3.4, we

know that g(T ) − g(nI) = v′(nI) ≥ 0 if and only if t̃ ≥ nI . Part (ii) of Proposition 3.4

completes the proof.

Proof of Proposition 3.5. Let t∗(nD) and t̃(nD) denote the values of t∗ and t̃, respectively,

when the number of class 1 patients is nD. We first show that t̃(nD) either stays at zero

(case 1) or decreases with nD (case 2).

Case 1 (t̃(nD) = 0): We will show that for any n̄D > nD, t̃(n̄D) = 0. From Theorem

3.1, we know that g(0) ≥ g(nD), and hence by Assumption 3.1 and the assumption that

nD > 0, we have tm < nD, which implies that g(nD) > g(n̄D). Hence, g(0) > g(n̄D), which

by Theorem 3.1 yields that t̃(n̄D) = 0.

Case 2 (t̃(nD) > 0): We will show that for any n̄D > nD, t̃(n̄D) < t̃(nD). From

Proposition 3.4, we know that t̃(n̄D) ≤ tm. Therefore, it is sufficient to show that t̃(n̄D)

cannot be in the interval [t̃(nD), tm]. To do this, take any t ∈ [t̃(nD), tm]. We will show

that t cannot be the maximizer of v(t) when there are n̄D class 1 patients. We have

g(t) ≥ g(t̃(nD)) ≥ g(t̃(nD) + nD) > g(t̃(nD) + n̄D) ≥ g(t + n̄D), where the first inequality

follows from the facts that g′(s) > 0 for s < tm and t ≤ tm; the second inequality follows

from Theorem 3.1; the third inequality follows from the facts that g′(s) < 0 for s > tm,

t̃(nD)+nD ≥ tm by Proposition 3.4, and n̄D > nD; and the final inequality follows from the

facts that g′(s) < 0 for s > tm and t ≥ t̃(nD). Hence, we conclude that g(t) > g(t+ n̄D) for

any t ∈ [t̃(nD), tm]. However, Theorem 3.1 implies that the unique maximizer of v(s) over

s ∈ [0,∞) is either equal to zero or is a stationary point, which satisfies g(s) = g(s + n̄D)

when there are n̄D class 1 patients. Since in this case, neither one of these holds for any

t ∈ [t̃(nD), tm], we conclude that t ∈ [t̃(nD), tm] cannot be the maximizer of v(s) over
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s ∈ [0,∞) when there are n̄D class 1 patients.

We showed that t̃(nD) either stays at zero or decreases with nD. Thus, t∗(nD) either

decreases or stays the same (at nI or zero) as nD increases since t∗(nD) = min{t̃(nD), nI}

by part (ii) of Proposition 3.4.

Proof of Proposition 4.1. Let K = {I,D}×J be a set of classes, and for each (i, j) ∈ K, let

the number of class-k patients be nij/sj, and let the instantaneous reward earned by trans-

porting class-k patients at time t is sjfi(t). Then the resulting optimization formulation

would be

max
r(t),t∈[0,∞)

∑

(i,j)∈K

∫ ∞

0
rij(x)sjfi(x) dx (A.4)

subject to
∑

(i,j)∈K

rij(t) ≤ 1, ∀t ∈ [0,∞)

∫ ∞

0
rij(x)dx = nij/sj, ∀(i, j) ∈ K.

By multiplying both sides by sj in the last constraint of (A.4), we observe that (A.4) is

equivalent to (4.1).

Proof of Corollary 4.1. Proposition 4.1 demonstrates that we can treat each class–incident

pair as a class. Proposition 3.1 demonstrated that in such a problem, there exists an optimal

solution where only one class of patients is served at any time, which is sufficient to show

in this problem that only one class–incident pair is served at any time.

Proof of Proposition 4.3. Recall that we assume that the set of time points during which a

given class of patients is transported is the union of finitely many intervals, each of which

is closed on the left and open on the right. We will show that any solution in which W (D)

contains two or more disjoint intervals cannot be an optimal solution.

Take any solution where W (D) contains two or more disjoint intervals. Then there

exist a, b, c, d, such that a < b < c < d, [a, b) ∈ W (D), and [c, d) ∈ W (D) but no interval

contained in [b, c) is inW (D). If any interval contained in [b, c) is inW (D), then Proposition

4.2 immediately applies and W is not optimal. Otherwise, there must be [u, v) ⊆ [b, c),
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such that v − u ≤ b− a, v − u ≤ d− c, and [u, v) is in either W (I) or W (I). We complete

the proof for the case where [u, v) ∈ W (I). The proof in the other case proceeds by an

identical argument.

If tm < u, let W̃ (D) = (W (D) ∪ [u, v))\[d − (v − u), d) and W̃ (I) = (W (I) ∪ [d − (v −

u), d))\[u, v). Let W̃ (D) =W (D) and W̃ (I) =W (I) Then,

v(W̃) = v(W) +

∫ v

u
g(t)dt −

∫ d

d−(v−u)
g(t)dt

= v(W) +

∫ v

u
(g(t) − g(t+ d− v))dt > v(W),

so W cannot be an optimal solution. Above, the inequality follows from the fact that

tm < u < v < d.

If tm ≥ v, let W̃ (D) = (W (D) ∪ [u, v))\[a, a + (v − u)) and W̃ (I) = (W (I) ∪ [a, a +

(v − u))\[u, v). If tm ∈ [u, v), let W̃ (D) = (W (D) ∪ [tm, v))\[a, a + (v − tm)) and W̃ (I) =

(W (I) ∪ [a, a+ (v − tm))\[tm, v). In either case, computations analogous to the above will

produce the same conclusion, that W cannot be an optimal solution. We conclude that if

W (D) contains two or more disjoint intervals, W cannot be an optimal solution. Finally,

we note that an analogous argument can be completed for W (D).

Proof of Lemma 4.1. Suppose not. Then t2 < t1, and hence t2+c2 < t1+d1 because c2 ≤ c1.

To satisfy (4.3), we must have tm > t1, and to satisfy (4.4), we must have tm < t2 + c2.

Hence, tm, the maximizer of g, must be in the interval (t1, t2 + c2). But then, by the

assumption of the lemma, we must have g(t2) < g(t1) and g(t2 + c2) > g(t1 + c1). Together

with (4.3) and (4.4), this implies that

g(t1 + c1) > g(t2) ≥ g(t2 + c2) > gij(t1 + c1) ≥ g(t1),

which is a contradiction.

Proof of Proposition 4.4. First, assume that t∗ > 0. Otherwise, the result is immediate.

Recall our assumption that the set of time points in which a given class of patients is

transported is a union of intervals, each of which is closed on the left and open on the right.
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Therefore, for sufficiently small ǫ > 0, the interval [t∗ − ǫ, t∗) is in either W (I) or W (I),

depending on which class of immediate patients is transported just prior to t∗.

Consider the first case, where [t∗ − ǫ, t∗) ∈ W (I). Let W be the optimal solution to

(4.2), and let W̄ be an solution constructed by shifting the transportation of the class D

patients slightly earlier by an amount of time ǫ ≥ 0, while the class I patients who would

have been transported in [t∗ − ǫ, t∗) are delayed until after the transportation of class D

patients. Then, letting g(t) = fD(t)− fI(t),

v(W̄) = v(W) +

∫ t∗

t∗−ǫ
sg(t)dt−

∫ t∗+nD/s

t∗+nD/s−ǫ
sg(t)dt

≤ v(W),

where the inequality follows from the optimality of W. This implies that

∫ t∗

t∗−ǫ
sg(t)dt−

∫ t∗+nD/s

t∗+nD/s−ǫ
sg(t)dt ≤ 0.

Denote the left-hand side of the above inequality, which is change in total reward by per-

forming the shift of size ǫ, by H(ǫ), and denote the right-derivative of H(ǫ) with respect to

ǫ by H+(ǫ). Note that H+(ǫ) = sg(t∗− ǫ)−sg(t∗+nD/s− ǫ). Now H(0) = 0, and H(ǫ) ≤ 0

for all ǫ ≥ 0 (because W is optimal), so it must be the case that H+(0) ≤ 0, or in other

words,

sg(t∗) ≤ sg(t∗ + nD/s). (A.5)

By repeating the argument for the second case, where [t∗ − ǫ, t∗) ∈ W (I) and denoting

ḡ(t) = sfD(t)− fI(t), we obtain

ḡ(t∗) ≤ ḡ(t∗ + nD/s). (A.6)

Hence, we conclude that t∗ must satisfy either (A.5) or (A.6) depending on the interval in

which [t∗ − ǫ, t∗) lies.

Now we turn to the upper bound problem. Denote by tu the time at which, in the

optimal solution to the upper bound problem, we would transport the class 2 patients even
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if class 1 patients remain. For now, assume that 0 < tu < nI + nI/s. If tu = nI + nI/s

then the result is trivial. In the special case where tu = 0, then Theorem 3.1 states that

sg(tu) ≥ sg(tu + nD/s). Otherwise, By Theorem 3.1, sg(tu) = sg(tu + nD/s). Either way,

sg(tu) ≥ sg(tu + nD/s). (A.7)

Furthermore, it is easy to check that (A.7) implies

ḡ(tu) ≥ ḡ(tu + nD/s). (A.8)

We conclude by applying Lemma 4.1, since both g(·) and ḡ(·) satisfy the assumptions of

the lemma: in the case where [t∗−ǫ, t∗) ∈W (I), (A.5) holds. In that case, letting c1 = c2 =

nD/s, Lemma 4.1 states that (A.7) implies t∗ ≤ tu. In the case where [t∗ − ǫ, t∗) ∈ W (I),

(A.6) holds. By the same argument, (A.8) implies t∗ ≤ tu.

We have now established that tu is an upper bound to t∗. Now, by Proposition 3.4,

we have that for some φ ∈ [0, 1], tu = min{nI/s + nI , tm − φnD/s}, and hence tu ≤

min{nI/s + nI , tm}, because zero is the most conservative value for φ.

Proof of Corollary 4.2. Suppose not. Then in an optimal solution, transportation of class D

patients does not begin until after nI/s. Hence, for sufficiently small ǫ > 0 [t∗−ǫ, t∗) ∈W (I)

and from the proof of Proposition 4.4, t∗ must satisfy (A.6). However, (A.6) cannot hold

because ḡ′(t) < 0 for all t > tm, and tm ≤ nI/s ≤ t∗.

Proof of Proposition 4.5. If t∗ = nI/s + nI , then the solution to the lower bound problem

is immediately a lower bound on t∗: transportation of delayed patients must begin no later

than time nI + nI/s, or else there would be idling in the optimal policy, which is ruled out

by the fact that reward functions are non-increasing. For the same reason, transportation

of class 2 patients in the lower bound problem must begin by this time, so the value tu,

which is the time at which transportation of class 2 patients begins, will be no larger than

nI + nI/s.

We now consider the case where t∗ < nI/s + nI . Recall our assumption that the set of

time points in which a given class of patients is transported is a union of intervals, each of
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which is closed on the left and open on the right. Therefore, for sufficiently small ǫ > 0, the

interval [t∗ +nD/s, t
∗ +nD/s+ ǫ) is in exactly one of W (I), W (I), or W (D), depending on

which class of patients is transported just prior after class D.

Take the first case, where [t∗ + nD/s, t
∗ + nD/s + ǫ) ∈ W (I). Let W be the optimal

solution to the problem, and let W̄ be the solution constructed by shifting the transportation

of the class D patients slightly later by an amount ǫ, while in exchange the class I patients

who would have been transported during [t∗ +nD/s, t
∗ +nD/s+ ǫ) are instead transported

just before the class D patients. Then

v(W̄) = v(W) −
∫ t∗+ǫ

t∗
sg(t)dt+

∫ t∗+nD/s+ǫ

t∗+nD/s
sg(t)dt

≤ v(W),

where the inequality follows by the optimality of W. This implies that

−
∫ t∗+ǫ

t∗
sg(t)dt+

∫ t∗+nD/s+ǫ

t∗+nD/s
sg(t)dt ≤ 0

Denote the left-hand side of the above inequality, which is change in total reward by per-

forming the shift of size ǫ, by H(ǫ), and denote the right-derivative of H(ǫ) with respect to

ǫ by H+(ǫ). Note that H+(ǫ) = −sg(t∗ + ǫ) + sg(t∗ + nD/s + ǫ). Because H(0) = 0 and

H(ǫ) ≤ 0 for all ǫ ≥ 0, it must be the case that H+(0) ≤ 0, or in other words,

sg(t∗) ≥ sg(t∗ + nD/s). (A.9)

By repeating the argument for the case where [t∗+nD/s, t
∗+nD/s+ ǫ) ∈W (I), we obtain

ḡ(t∗) ≥ ḡ(t∗ + nD/s). (A.10)

Now we examine the case where [t∗ + nD/s, t
∗ + nD/s + ǫ) ∈ W (D). We break this

case into two subcases. For sufficiently small δ > 0, [t∗ + nD/s + nD, t
∗ + nD/s + nD + δ)

is contained in either W (I) or W (I); i.e., either class I or class I is transported after

completing the transportation of class D patients.
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In the first subcase, let W̄ be the solution constructed by shifting the transportation of

the class D and class D patients slightly later by an amount δ ≥ 0, while in exchange some

of the class I patients are transported just before the class D patients. Then, denoting

g(t) = fD(t)− sfI(t),

v(W̄) = v(W) −
∫ t∗+δ

t∗
sg(t)dt+

∫ t∗+nD/s+δ

t∗+nD/s
(sg(t)− g(t))dt +

∫ t∗+nD+nD/s+δ

t∗+nD+nD/s
g(t)dt

≤ v(W),

where the inequality follows by the optimality of W. This implies that

−
∫ t∗+δ

t∗
sg(t)dt+

∫ t∗+nD/s+δ

t∗+nD/s
(sg(t) − g(t))dt +

∫ t∗+nD+nD/s+δ

t∗+nD+nD/s
g(t)dt ≤ 0

Denote the left hand side of the above inequality as G(δ), and denote its right-derivative

with respect to δ as G+(δ). G+(δ) = −sg(t∗ + δ) + sg(t∗ + nD/s+ δ)− g(t∗ + nD/s+ δ) +

g(t∗ + nD + nD/s+ δ). Again, it must be the case that G+(0) ≤ 0, or in other words,

sg(t∗) + g(t∗ + nD/s) ≥ sg(t∗ + nD/s) + g(t∗ + nD + nD/s).

Using the definitions of g(·) and g(·) and rearranging some terms, we can re-write the above

inequality as

sfD(t
∗)−sfD(t∗+nD)+fD(t∗+nD/s)−fD(t∗+nD/s+nD) ≥ sfI(t

∗)−sfI(t∗+nD/s+nD).

The expression fD(t
∗ + nD/s) − fD(t

∗ + nD/s + nD) is non-negative because the reward

function fD(·) is nonincreasing, so we can multiply it by s, which is greater than one,

without invalidating the inequality. Therefore,

sfD(t
∗)−sfD(t∗+nD/s)+sfD(t∗+nD/s)−sfD(t∗+nD/s+nD) ≥ sfI(t

∗)−sfI(t∗+nD/s+nD),
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or in other words,

sfD(t
∗)− sfD(t

∗ + nD/s+ nD) ≥ sfI(t
∗)− sfI(t

∗ + nD/s+ nD).

By applying the definition of g(·), we re-write the above inequality as g(t∗) ≥ g(t∗ + nD +

nD/s), or equivalently

g(t∗) ≥ g(t∗ + nD + nD/s). (A.11)

By repeating the argument for the second subcase, where [t∗ + nD/s+ nD, t
∗ + nD/s+

nD + δ) ∈W (I), we obtain

ḡ(t∗) ≥ ḡ(t∗ + nD/s+ nD). (A.12)

Hence, we conclude that t∗ must satisfy exactly one of (A.9), (A.10), (A.11), or (A.12).

At this point, we turn to analyzing the lower bound problem. By definition, tl, the time

at which we begin transporting class 2 patients in the lower bound problem, must be in

[0, nI/s+ nI ]. If t
l = 0, then the result is immediate. Otherwise, Theorem 3.1 states that

ḡ(tl) ≤ ḡ(tl + nD/s+ nD), (A.13)

Furthermore, it is easy to check that (A.13) also implies

g(tl) ≤ g(tl + nD/s+ nD). (A.14)

We conclude by applying Lemma 4.1: if (A.9) holds, then letting c2 = nD/s and c1 =

nD +nD/s, Lemma 4.1 states that (A.14) implies tl ≤ t∗; if (A.10) holds, then by the same

argument, (A.13) implies tl ≤ t∗; if (A.12) holds, then letting c1 = c2 = nD+nD/s, Lemma

4.1 states that (A.14) implies tl ≤ t∗; finally, if (A.12) holds, then by the same argument,

(A.13) implies tl ≤ t∗.

We have now established that tl is a lower bound to t∗. Now, by Proposition 3.4,

we have that for some φ ∈ [0, 1], tl = min{nI/s + nI , tm − φ(nD/s + nD)}, and hence

tl ≥ min{nI/s + nI , tm − (nD/s + nD)}, because in this case, one is the most conservative

value for φ.
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Proof of Proposition 4.6. First, assume that t∗∗ > t∗+nD/s. Otherwise, the solution to the

upper bound problem for t∗∗ immediately is an upper bound on t∗∗. Now, for sufficiently

small ǫ > 0, the interval [t∗∗ − ǫ, t∗∗) is in either W (I) or W (I), because we know that

supW (D) = t∗ + nD/s. Consider the case where [t∗∗ − ǫ, t∗∗) ∈W (I).

Let W be the optimal solution to (4.2), and let W̄ be the solution constructed by

shifting the service of the class D patients slightly earlier by an amount ǫ ≥ 0, while the

class I patients who would otherwise have been transported during [t∗∗− ǫ, t∗∗) are delayed

until after the transportation of class D patients. Then

v(W̄) = v(W) +

∫ t∗∗

t∗∗−ǫ
g(t)dt−

∫ t∗∗+nD

t∗∗+nD−ǫ
g(t)dt

≤ v(W),

where the inequality follows by the optimality of W. This implies that

∫ t∗∗

t∗∗−ǫ
g(t)dt−

∫ t∗∗+nD

t∗∗+nD−ǫ
g(t)dt ≤ 0.

Denote the left hand side of the above equation by H(ǫ), and denote its right-derivative

with respect to ǫ by H+(ǫ). Then H+(ǫ) = g(t∗∗ − ǫ)− g(t∗∗ +nD − ǫ). Now H(0) = 0, and

H(ǫ) ≤ 0 for all ǫ ≥ 0, so it must be the case that H+(0) ≤ 0, or in other words,

g(t∗∗) ≤ g(t∗∗ + nD). (A.15)

By repeating the argument for the other case (where [t∗∗ − ǫ, t∗∗) ∈W (I)), we obtain

g(t∗∗) ≤ g(t∗∗ + nD). (A.16)

Hence, we conclude that t∗∗ must satisfy either (A.15) or (A.16).

Now, consider the upper bound problem for t∗∗. Denote the time at which we begin

transporting class 2 patients in the upper bound problem by tu. Assume that tu < nI +
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nI/s + nD/s; otherwise t
u is a trivial upper bound to t∗∗. Theorem 3.1 states that

g(tu) ≥ g(tu + nD), (A.17)

which also implies

g(tu) ≥ g(tu + nD). (A.18)

We conclude by applying Lemma 4.1: if (A.15) holds, then letting c1 = c2 = nD, Lemma

4.1 states that (A.17) implies t∗∗ ≤ tu; on the other hand, if (A.16) holds, then by the same

argument, (A.18) implies t∗∗ ≤ tu.

We have now established that tu is an upper bound to t∗∗. Now, by Proposition 3.4, we

have that for some φ ∈ [0, 1], tu = tm − φnD, and hence tu ≤ tm, because zero is the most

conservative value for φ.

Proof of Proposition 4.7. First, assume that t∗∗ < nI+nI/s+nD/s. Otherwise, the solution

to the lower bound problem is immediately a lower bound to t∗∗. Now, for sufficiently small

ǫ > 0, the interval [t∗∗ + nD, t
∗∗ + nD + ǫ) is in either W (I) or W (I). Consider the case

where [t∗∗ + nD, t
∗∗ + nD + ǫ) ∈W (I).

Let W be the optimal solution to (4.2), and let W̄ be the solution constructed by

shifting the service of the class D patients later by an amount ǫ ≥ 0, while the class I

patients who would have been transported in [t∗∗+nD, t
∗∗+nD+ǫ) are instead transported

before the class D patients. Then

v(W̄) = v(W)−
∫ t∗∗+ǫ

t∗∗
g(t)dt+

∫ t∗∗+nD+ǫ

t∗∗+nD

g(t)dt

≤ v(W),

where the inequality follows by the optimality of W. This implies that where

−
∫ t∗∗+ǫ

t∗∗
g(t)dt+

∫ t∗∗+nD+ǫ

t∗∗+nD

g(t)dt ≤ 0
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Denote the left hand side of the above inequality by H(ǫ), and denote its right-derivative

with respect to ǫ by H+(ǫ), which is equal to −g(t∗∗ + ǫ) + g(t∗∗ + nD + ǫ). Now H(0) = 0,

and H(ǫ) ≤ 0 for all ǫ ≥ 0, so it must be the case that H+(0) ≤ 0, or in other words,

g(t∗∗) ≥ g(t∗∗ + nD). (A.19)

By repeating the argument for the other case (where [t∗∗ + nD, t
∗∗ + nD + ǫ) ∈ W (I)), we

obtain

g(t∗∗) ≥ g(t∗∗ + nD). (A.20)

Hence, we conclude that t∗∗ must satisfy either (A.19) or (A.20).

Now we consider the lower bound problem. Let tl be the time at which we begin

transporting class 2 patients in the lower bound problem. We will show that tl is a lower

bound to t∗∗. If tl = t∗ + nD/s then the result is trivial. Otherwise, Theorem 3.1 states

that

g(tl) ≤ g(tl + nD). (A.21)

Furthermore, it is easy to check that (A.21) implies

g(tl) ≤ g(tl + nD). (A.22)

We conclude by applying Lemma 4.1: if (A.19) holds, then letting c1 = c2 = nD, Lemma

4.1 states that (A.21) implies t∗∗ ≥ tl; on the other hand, if (A.20) holds, then by the same

argument, (A.22) implies t∗∗ ≥ tl.

We have now established that tl is an upper bound to t∗∗. Now, by Proposition 3.4, we

have that for some φ ∈ [0, 1], tl = tm − φnD, and hence tl ≥ tm − nD, because one is the

most conservative value for φ.

Proof of Proposition 5.1. For x ∈ Q, if station j is (x, k)-preferable to station i, then

τkjMj(x) ≥ τklMl(x). (A.23)
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By the condition that

τij
τil

≥ τkj
τkl

,

or equivalently,

τkl ≥
τkjτil
τij

,

we have

τklMl(x) ≥
τkjτil
τij

Ml(x), (A.24)

because Ml(x) is non-negative (a fact whose proof we postpone until Proposition 5.2). By

combining (A.23) and (A.24), we conclude that

τijMj(x) ≥ τilMl(x),

which implies that in station i is (x, l)-preferable to station j.

Proof of Proposition 5.2. We first prove (5.3) by induction. The base case is that V 0(x +

ej) ≥ V 0(x) for all x ∈ Q, which is trivial because V 0(x) = 0 for all x ∈ Q. We now show

that if V n(x + ej) ≥ V n(x) for all j ∈ S and for all x then the same will hold for n + 1.

From (5.2), we have

(1 + α)V n+1(x+ ej) = r(x+ ej) +
∑

k∈S

µkV
n(x+ ej − Ik(x+ ej)ek)

+
∑

l∈R

max
k∈S

{τlkV n(x+ ej + ek) + (τl − τlk)V
n(x+ ej)}

≥ r(x) +
∑

k∈S

µkV
n(x− Ik(x)ek)

+
∑

l∈R

max
k∈S

{τlkV n(x+ ek) + (τl − τlk)V
n(x)}

= (1 + α)V n(x),

where the inequality follows from the fact that r(x + ej) ≥ r(x) for all j ∈ S and for all

x ∈ Q, the fact that τl ≥ τlk for all l ∈ R and k ∈ S, and the inductive hypothesis. Note

that in the above inequality, we apply the inductive hypothesis to the terms in the first
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summation—namely, V n(x + ej − Ik(x+ ej)ek)—for every case where j 6= k or j = k and

xj > 0. In the case where j = k and xj = 0, V n(x + ej − Ik(x + ej)ek) is equivalent to

V n(x + ej − ej), which is V n(x); moreover, V n(x − Ik(x)ek) is also equivalent to V n(x).

Hence, applying the inductive hypothesis to this term is not necessary.

We now prove (5.4) by induction. The base case states that V 0(x) + rj ≥ V 0(x + ej)

for all j ∈ S and for all x, which is trivial because V 0(x) = 0 for all x and rj > 0. We now

show that if V n(x) + rj ≥ V n(x+ ej) for all j ∈ S and for all x then the same will hold for

n+ 1.

(1 + α)(V n+1(x) + rj) = r(x) +
∑

k∈S\{j}

µkV
n(x− Ik(x)ek) + µjV

n(x− Ij(x)ej) + τV n(x)

+
∑

l∈R

max
k∈S

{τlk(V n(x+ ek)− V n(x))} + (1 + α)rj

≥ r(x) +
∑

k∈S\{j}

µkV
n(x− Ik(x)ek) + µjV

n(x− Ij(x)ej)

+
∑

l∈R

max
k∈S

{τlkV n(x+ ek) + (τl − τlk)V
n(x)}+ rj ,

since α > 0. Using the fact that β =
∑

j µj + τ = 1, we distribute rj to each term and

obtain

(1 + α)(V n+1(x) + rj) ≥ r(x) +
∑

k∈S\{j}

µk(V
n(x− Ik(x)ek) + rj) + µj(V

n(x− Ij(x)ej) + rj)

+
∑

l∈R

max
k∈S

{τlk(V n(x+ ek) + rj) + (τl − τlk)(V
n(x) + rj)}.

We now apply the inductive hypothesis to every term except one, as well as the fact that
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Ik(x+ ej) = Ik(x) for all k 6= j, to obtain

(1 + α)(V n+1(x) + rj) ≥ r(x) +
∑

k∈S\{j}

µk(V
n(x+ej−Ik(x+ ej)ek)) + µj(V

n(x−Ij(x)ej)+rj)

+
∑

l∈R

max
k∈S

{τlk(V n(x+ ej + ek)) + (τl − τlk)(V
n(x+ ej))}.

(A.25)

Now, for the third term on the right-hand side of (A.25), we apply the inductive hypothesis

only in the case where xj > 0, in which case Ij(x+ ej) = Ij(x), and we obtain

(1 + α)(V n+1(x) + rj) ≥ r(x) +
∑

k∈S\{j}

µk(V
n(x+ ej − Ik(x+ ej)ek))

+ µj(V
n(x+ ej − Ij(x+ ej)ej) + rj(Ij(x+ ej)− Ij(x)))

+
∑

l∈R

max
k∈S

{τlk(V n(x+ ej + ek)) + (τl − τlk)(V
n(x+ ej))}.

(A.26)

Note that in the case where xj = 0, (A.26) is simply a re-writing of (A.25), since in that

case, V n(x+ ej − Ij(x+ ej)ej) = V n(x− Ij(x)ej) and Ij(x+ ej)− Ij(x) = 1.

Finally, applying the fact that that r(x+ ej) = r(x) + µjrj(Ij(x+ ej)− Ij(x)), we end

up with

(1 + α)(V n+1(x) + rj) ≥ r(x+ ej) +
∑

k∈S

µkV
n(x+ ej − ek)

+
∑

l∈R

max
k∈S

{τlkV n(x+ ej + ek) + (τl − τlk)V
n(x+ ej)}

= (1 + α)V n+1(x+ ej).

Proof of Proposition 5.3. We prove the proposition by induction. The base case requires

that the inequalities hold for V 0(·), which is trivial because V 0(·) is always zero. Suppose

that (5.5) and (5.6) hold for all j ∈ S for some arbitrary n ≥ 0. We will proceed by showing
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that when x1 ≤ xj∀j ∈ S, the same inequalities hold for V n+1(·) for all j ∈ S.

Inductive step for (5.5). Case 1: 0 < x1 < xj.

(1 + α)V n+1(x+ ej) = r(x+ ej) +
∑

k∈S

µkV
n(x+ ej − Ik(x+ ej)ek) + τV n(x+ ej)

+
∑

l∈R

τl1(V
n(x+ ej + e1)− V n(x+ ej)),

because according to the inductive hypothesis at epoch n and τl1 ≥ τlj for all j ∈ S, station

1 is optimal for all resources. Rearranging terms, we obtain

(1 + α)V n+1(x+ ej) = r(x+ ej) +
∑

k∈S

µkV
n(x+ ej − Ik(x+ ej)ek)

+

(

τ −
∑

l∈R

τl1

)

V n(x+ ej) +
∑

l∈R

τl1V
n(x+ ej + e1). (A.27)

We use the fact that r(x+e1) = r(x+ej) (because x1 > 0 and xj > 0) and then apply (5.5)

to the second, third, and fourth terms on the right-hand side of (A.27) (note that for the

jth summand within the second term, we are using the fact that x1 < xj to apply (5.5) for

the state x − ej). For the second term, we also use the fact that 0 < x1 < xj to conclude

that Ik(x+ e1) = Ik(x+ ej) for all k ∈ S. For the fourth term, we use the fact that x1 < xj

to apply the inductive hypothesis to state x+ e1. We conclude that

(1 + α)V n+1(x+ ej) ≤ r(x+ e1) +
∑

k∈S

µkV
n(x+ e1 − Ik(x+ e1)ek)

+

(

τ −
∑

l∈R

τl1

)

V n(x+ e1) +
∑

l∈R

τl1V
n(x+ 2e1).

Finally, re-arranging the terms on the right hand side of the above inequality and applying

(5.3) results in

(1 + α)V n+1(x+ ej) ≤ r(x+ e1) +
∑

k∈S

µkV
n(x+ e1 − Ik(x+ e1)ek) + τV n(x+ e1)

+
∑

l∈R

τl1(V
n(x+ 2e1)− V n(x+ e1)).
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The right-hand side of the above inequality is less than (1 + α)V n+1(x + e1), because the

latter has a maximum inside the last summation.

Case 2: 0 = x1 < xj . This case is similar to the previous one, except that we must treat

the µ1 term separately.

(1 + α)V n+1(x+ ej) = r(x+ ej) + µ1V
n(x+ ej) +

∑

k∈S\{1}

µkV
n(x+ ej − Ik(x+ ej)ek)

+ τV n(x+ ej) +
∑

l∈R

τl1(V
n(x+ ej + e1)− V n(x+ ej)),

because according to the inductive hypothesis at epoch n and the assumption that τl1 ≥ τlj,

station 1 is optimal for all resources. Because rj ≤ r1,

(1 + α)V n+1(x+ ej) ≤ r(x+ ej) + µ1r1 + µ1(V
n(x+ ej)− rj)

+
∑

k∈S\{1}

µkV
n(x+ ej − Ik(x+ ej)ek)

+ τV n(x+ ej) +
∑

l∈R

τl1(V
n(x+ ej + e1)− V n(x+ ej)),

and by applying (5.4), the above inequality implies that

(1 + α)V n+1(x+ ej) ≤ r(x+ ej) + µ1r1 + µ1V
n(x) +

∑

k∈S\{1}

µkV
n(x+ e1 − Ik(x+ e1)ek)

+

(

τ −
∑

l∈R

τl1

)

V n(x+ ej) +
∑

l∈R

τl1V
n(x+ ej + e1).

Now, by noting that r(x + e1) = µ1r1 + r(x + ej) (since x1 = 0 and xj > 0) and then

applying (5.5),

(1 + α)V n+1(x+ ej) ≤ r(x+ e1) +
∑

k∈S

µkV
n(x+ e1 − Ik(x+ e1)ek)

+

(

τ −
∑

l∈R

τlj

)

V n(x+ e1) +
∑

l∈R

τljV
n(x+ 2e1),
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which can be rearranged to give

(1 + α)V n+1(x+ ej) ≤ r(x+ e1) +
∑

k∈S

µkV
n(x+ e1 − Ik(x+ e1)ek) + τV n(x+ e1)

+
∑

l∈R

τlj(V
n(x+ ej + e1)− V n(x+ e1)),

since (5.3) holds. The right hand side of the above inequality is less than (1+α)V n+1(x+e1),

because the latter has a maximum inside the last summation.

Case 3: x1 = xj . In this case, (5.6) implies (5.5).

Inductive step for (5.6). Case 1: xj > x1 > 0.

(1 + α)V n+1(Tjx) ≥ r(Tjx) +
∑

k∈S

µkV
n(Tjx− Ik(Tjx)ek)

+ τV n(Tjx) +
∑

l∈R

τlj(V
n(Tjx+ ej)− V n(Tjx)), (A.28)

by observing that the maximum in V n+1 is greater than any particular value. Noting that

x1 > 0 and xj > 0, we rearrange terms to obtain

(1 + α)V n+1(Tjx) ≥ r(Tjx) +
∑

k∈S\{1,j}

µkV
n(Tjx− Ik(Tjx)ek) + µ1V

n(Tjx− e1)

+ µjV
n(Tjx− ej) +

(

τ −
∑

l∈R

τlj

)

V n(Tjx) +
∑

l∈R

τljV
n(Tjx+ ej).
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Now, apply the inductive hypothesis on (5.6) for n. Because xi < xj and using the fact

that r(Tjx) = r(x) because both xi and xj are positive,

(1 + α)V n+1(Tjx) ≥ r(x) +
∑

k∈S\{1,j}

µkV
n(x− Ik(x)ek) + µ1V

n(x− ej)

+ µjV
n(x− e1) +

(

τ −
∑

l∈R

τlj

)

V n(x) +
∑

l∈R

τljV
n(x+ e1)

= r(x) +
∑

k∈S\{1,j}

µkV
n(x− Ik(x)ek) + µjV

n(x− ej) + µjV
n(x− e1)

+ (µ1 − µj)V
n(x− ej) + τV n(x) +

∑

l∈R

τlj(V
n(x+ e1)− V n(x)).

Next, applying the inductive hypothesis (that (5.5) holds for n for the state x − ej − e1)

and the condition that µ1 ≥ µj, we obtain

(1 + α)V n+1(Tjx) ≥ r(x) +
∑

k∈S\{1,j}

µkV
n(x− Ik(x)ek) + µjV

n(x− ej) + µjV
n(x− e1)

+ (µ1 − µj)V
n(x− e1) + τV n(x) +

∑

l∈R

τlj(V
n(x+ e1)− V n(x)).

Finally, because we have assumed that τlj = τl1 and because the inductive hypothesis

implies that τl1(V
n(x+ e1)− V n(x)) = maxk∈S τlk(V

n(x+ ek)− V n(x)), we conclude that

(1 + α)V n+1(Tjx) ≥ r(x) +
∑

k∈S

µkV
n(x− Ik(x)ek) + τV n(x)

+
∑

l∈R

max
k∈S

τlk(V
n(x+ ek)− V n(x))

= (1 + α)V n(x).

Case 2: xj > x1 = 0. Re-arranging terms in (A.28) and noting that x1 = 0 and xj > 0
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yields

(1 + α)V n+1(Tjx) ≥ r(Tjx) +
∑

k∈S\{1,j}

µkV
n(Tjx− Ik(Tjx)ek) + µ1V

n(Tjx− e1) + µjV
n(Tjx)

+

(

τ −
∑

l∈R

τlj

)

V n(Tjx) +
∑

l∈R

τljV
n(Tjx+ ej).

Now, applying the inductive hypothesis on (5.6) for n and using the fact that r(Tjx) =

r(x) + r1µ1 − rjµj since xj > x1 = 0,

(1 + α)V n+1(Tjx) ≥ r(x) + r1µ1 − rjµj +
∑

k∈S\{1,j}

µkV
n(x− Ik(x)ek) + µ1V

n(x− ej)

+ µjV
n(x) +

(

τ −
∑

l∈R

τlj

)

V n(x) +
∑

l∈R

τljV
n(x+ e1)

= r(x)+r1µ1−rjµj +
∑

k∈S\{1,j}

µkV
n(x−Ik(x)ek)+µjV n(x−ej)+µjV n(x)

+ (µ1 − µj)V
n(x− ej) + τV n(x) +

∑

l∈R

τlj(V
n(x+ e1)− V n(x)).

Since (5.4) holds and µ1 ≥ µj, we have

(1 + α)V n+1(Tjx) ≥ r(x) + r1µ1 − rjµj +
∑

k∈S\{1,j}

µkV
n(x− Ik(x)ek) + µjV

n(x− ej)

+ µjV
n(x)+(µ1−µj)(V n(x)−rj)+τV n(x)+

∑

l∈R

τlj(V
n(x+e1)−V n(x)),

and because r1 ≥ rj,

(1 + α)V n+1(Tjx) ≥ r(x) +
∑

k∈S\{1,j}

µkV
n(x− Ik(x)ek) + µjV

n(x− ej) + µ1V
n(x)

+ τV n(x) +
∑

l∈R

τlj(V
n(x+ e1)− V n(x))

Finally, because we have assumed that τlj = τl1 and because the inductive hypothesis
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implies that τl1(V
n(x+ e1)− V n(x)) = maxk∈S τlk(V

n(x+ ek)− V n(x)), we conclude that

(1 + α)V n+1(Tjx) ≥ r(x) +
∑

k∈S

µkV
n(x− Ik(x)ek) + τV n(x)

+
∑

l∈R

max
k∈S

τlk(V
n(x+ ek)− V n(x))

= (1 + α)V n+1(x).

Case 3: x1 = xj. In this case, (5.6) holds with equality because swapping the 1st and

jth elements of x results in no change to the state.

Proof of Proposition 5.4. Since the decisions in the static policy are random, the expected

total discounted reward is separable by station. That is, we can write V Γ(x) =
∑

j∈SW
Γ
j (xj).

We computeWΓ
j (xj), the expected total discounted reward for a specific station j ∈ S. with

arrivals at rate λj and departures at rate µj, when there are xj customers waiting. For ease

of exposition, we suppress the subscript j (corresponding to the station) and the superscript

Γ (corresponding to the static policy) everywhere they appear in this proof. By uniformizing

the process corresponding to the station with uniformization constant λ+ µ, we can study

the embedded discrete-time Markov chain by observing the queue at the station only at

transitions, i.e., arrivals and service completions. Arrivals occur with probability λ/(λ+µ)

and service completions occur with probability µ/(λ + µ). By incorporating the discount

factor α, we can define W (x) according to the following recursion:

W (x) =
λ+ µ

λ+ µ+ α

(

λ

λ+ µ
W (x+ 1) +

µ

λ+ µ
(r +W (x− 1))

)

,

or in other words,

λW (x)− (λ+ µ+ α)W (x− 1) + µW (x− 2) = µr, (A.29)

for x ≥ 2. The boundary condition is

λW (1)− (λ+ α)W (0) = 0, (A.30)

119



because there are no service completions when there are zero casualties at the station.

Because α > 0, W (x) converges as x→ ∞. We find the value to which W (x) converges,

which we denote by W (∞), by solving

λW (∞)− (λ+ µ+ α)W (∞) + µW (∞) = −µr,

which yields W (∞) = µr
α . We can then solve the recurrence relation (A.29) by guessing

W (x)−W (∞) = bx and writing the characteristic equation

λbx − (λ+ µ+ α)bx−1 + µbx−2 = 0 (A.31)

for x ≥ 2. Because b 6= 0, this equation is equivalent to

λb2 − (λ+ µ+ α)b+ µ = 0,

which can be solved using the quadratic formula to obtain

b =
λ+ µ+ α±

√

(λ+ µ+ α)2 − 4λµ

2λ
.

Because there are two roots to the characteristic equation, we conclude that

W (x)−W (∞) = c1b
x
1 + c2b

x
2 , (A.32)

where b1 =
λ+µ+α+

√
(λ+µ+α)2−4λµ

2λ and b2 =
λ+µ+α−

√
(λ+µ+α)2−4λµ

2λ . Observe that if λ ≤ µ,

b1 > 1, while 0 < b2 < 1, so it must be true that c1 = 0; otherwiseW (x) would not converge

to W (∞) as x→ ∞. Finally, we determine the coefficient c2 using the boundary condition:

(A.30) implies that

λ
(

c2b2 +
µr

α

)

− (λ+ α)
(

c2 +
µ

α

)

= 0. (A.33)

Solving the above equation yields c2 = − µr
λ+α−λb2

, and therefore we conclude that

W (x) =
µr

α
− µr

λ+ α− λb2
bx2 , (A.34)
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or by plugging in b2 and simplifying,

W (x) =
µr

α
− 2µr

λ+ α− µ+
√

(λ+ µ+ α)2 − 4λµ

(

λ+ µ+ α−
√

(λ+ µ+ α)2 − 4λµ

2λ

)x

.

(A.35)

By summing the above expression over all stations, we obtain (5.10). Note that we showed

that (A.29), (A.30), and λ ≤ µ together imply that W (x) must be the expression given in

(A.35). Moreover, using algebraic manipulation it is straightforward to show that if W (x)

is given by the expression in (A.35), then it satisfies (A.29) and (A.30), without needing

λ ≤ µ.
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