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ABSTRACT 

Luke Justin McKay: Microbial Ecology of a Manmade Oil Spill in the Gulf of Mexico and a 

Natural, Hydrothermal Oil Seep in the Gulf of California                                                      

(Under the direction of Andreas P. Teske) 

 

 Members of the Marinobacter genus play an important role in hydrocarbon degradation 

in the ocean – a topic of special significance in light of the recent Deepwater Horizon oil spill of 

2010. The Marinobacter group has thus far lacked a genus level phylogenetic probe that would 

allow in situ identification of representative members. Here, two new 16S rRNA-targeted 

oligonucleotide probes (Mrb-0625-a and Mrb-0625-b) were developed to enumerate 

Marinobacter species by fluorescence in situ hybridization (FISH). In silico analysis of this 

probe set demonstrated 80% coverage of the Marinobacter genus. A competitor probe was 

developed to block hybridization by Mrb-0625-a to six Halomonas species with which it shared 

a one base pair mismatch.  The probe set was optimized using pure cultures, and then used in an 

enrichment experiment with a deep sea oil plume water sample collected from the Deepwater 

Horizon oil spill. Marinobacter cells rapidly increased as a significant fraction of total microbial 

abundance in all incubations of original contaminated seawater as well as those amended with n-

hexadecane, suggesting this group may be among the first microbial responders to oil pollution 

in the marine environment. The new probe set will provide a reliable tool for quantifying 

Marinobacter in the marine environment, particularly at contaminated sites where these 

organisms can play an important role in the biodegradation of oil pollutants. 
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 The next sections of this dissertation focus on the hydrothermally active sediments at 

Guaymas Basin, which show a wide range of shallow subsurface temperatures: from 3°C to 

200°C in the first 45 cm depth. A combination of extreme thermal gradients and compressed 

geochemical and metabolic zones limits the depth range of microbial colonization in Guaymas 

sediments.  Using stable carbon isotopic values for methane and dissolved inorganic carbon 

compared to associated temperatures the upper thermal limits for the anaerobic oxidation of 

methane and organic carbon remineralization in Guaymas sediments are suggested to be 80
o
C 

and 100
o
C, respectively.  At higher temperatures the isotopic imprints of these microbially 

mediated processes cannot be detected.  Additionally, 16S rRNA gene clone libraries 

demonstrate differential biogeographical zonation patterns for archaea versus bacteria, with 

archaeal community structure being more heavily influenced by hydrothermal regimes.  

Chloroflexi and Deltaproteobacteria dominated the bacterial clone libraries, and anaerobic 

methane-oxidizing (ANME) archaea represented nearly half of the total archaeal clone library.  

Thermal zonation of ANME archaeal subgroups is strong: ANME-2c is restricted to low 

temperature sediments (<25
o
C), ANME-1 is dominant at warmer temperatures, and the ANME-1 

Guaymas archaea appear to have access to the deepest and hottest sediment horizons up to 

approximately 80
o
C. 

 In the last chapter of this dissertation, microbial life at extreme temperatures was 

investigated further by RNA-based methodologies.  Using push core samples collected by the 

Alvin submarine at four high temperature sites with 40-cmsbf thermal maxima ranging from 

100°C to 185°C, the composition of the active microbial community and its possible influence 

on carbon and sulfur cycling was investigated.  Here, evidence is presented indicating that 

hydrothermal fluctuations are frequent enough to restrict hyperthermophilic life to sediments 
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with average in situ temperatures between 70°C and 95°C, where temperatures may vary by 

25°C in as little as a day.  Strong microbially mediated sulfate reduction is implicated by sharp 

decreases in porewater sulfate within the upper 15 cm of all four high temperature cores, while 

stable isotopic evidence of methane oxidation is only expressed in a single core.  Archaeal 

sequence recovery was greater than bacterial sequence recovery in six out of eight samples from 

the four cores, but bacterial sequence recovery was particularly strong for a single core, yielding 

35% of the total archaeal and bacterial recovery from all samples.  Although putative anaerobic 

methane oxidizing (ANME) archaea were very common, distinct cores hosted diverse and 

distinct sequence assemblages, including ANME-1 Guaymas, ANME-2c, and ANME-2d/GoM 

Arc-1/Methanoperedenaceae.  Dominant bacterial groups fell within the 

Thermodesulfobacteriaceae family in the Thermodesulfobacteria phylum, the 

Helicobacteriaceae family in the subphylum Epsilonproteobacteria, or were close relatives of 

Desulfocapsa exigens in the subphylum Deltaproteobacteria. The most probable thermo- or 

hyperthermophilic groups were investigated by co-occurrence of OTUs across the four hottest 

samples within the sediment cores and appear to be ANME-1 Guaymas and an uncultured 

representative of the Miscellaneous Crenarchaeotal Group (MCG)-15 for archaea, and members 

of the Thermodesulfobacteriaceae family for bacteria. 

  



vi 

 

 

 

This dissertation is dedicated to my three older brothers, Josh, Howard, and Adam.



vii 

 

 

 

 

 

ACKNOWLEDGEMENTS 

 

 

 I would like to express the utmost gratitude for guidance and support provided by my 

advisor, Andreas Teske.  This work would not have been possible without technical 

contributions by Vincent Klokman, Tony Gutierrez, Howard Mendlovitz, Barbara MacGregor, 

Daniel Albert, Daniel Hoer, Andrea Hale, Douglas LaRowe, and Dirk de Beer.  Howard 

Mendlovitz conceptualized and constructed the temperature logging probes, which added a major 

discussion point to chapter 3.  I would also like to thank my advisory committee, Carol Arnosti, 

Alex Loy, Marc Alperin, and Barbara MacGregor, for advice in the development of experiments 

and subsequent analyses, and I thank Tingting Yang, Kai Ziervogel, and Samantha Joye for 

sampling assistance.  Funding support for this work comes in part from a graduate fellowship 

from the Center for Dark Energy Biosphere Investigations, the North Carolina Space Grant, the 

Gulf of Mexico Research Initiative consortium research support entitled "Ecosystem Impacts of 

Oil and Gas Inputs to the Gulf (ECOGIG)" administered by the University of Mississippi, an 

NSF RAPID Response grant (NSF-OCE 1045115) (for chapter 1), and by NSF-OCE 0647633 

(for chapters 2 and 3).  Lastly, I thank the members and former members of the Teske Lab, 

Tingting Yang, Zena Cardman, Lisa Nigro, JP Balmonte, Lindsay D’Ambrosio, Frederick 

Dowell, Sarah Underwood, Vincent Klokman, Charlie Martin, Andrew Hyde, Kelly Speare, 

Srishti Dasarathy, Karen Lloyd, Mark Lever, Alan Durbin, Jen Biddle, Cassandre Lazar, and 

Verena Salman for providing an atmosphere of general awesomeness in which to work. 

 

  



viii 

 

 

 

 

 

TABLE OF CONTENTS 

 

 

 

 

LIST OF TABLES.......................................................................................................................... xi 

LIST OF FIGURES....................................................................................................................... xii 

CHAPTER 

I. DEVELOPMENT OF A GROUP-SPECIFIC 16S rRNA-TARGETED  

PROBE SET FOR THE IDENTIFICATION OF MARINOBACTER BY 

FLUORESCENCE IN SITU HYBRIDIZATION................................................... 1 

 

Introduction.................................................................................................. 1 

Sampling Procedure and Methodology........................................................ 3 

 Oligonucleotide probe design.......................................................... 3 

 
Oligonucleotide probe optimization.................................................4 

 
Sample collection............................................................................. 5 

 
Marinobacter enrichment setup........................................................5 

 
FISH analysis of Marinobacter enrichment..................................... 6 

 

Results and Discussion.................................................................................7 

 Marinobacter phylogeny and probe coverage.................................. 7 

 
Probe optimization and formamide series........................................9 

 
Marinobacter spp. response to oil-contaminated seawater.............14 

 
Trophic cascading by marine hydrocarbon degraders....................19 

 

Conclusion..................................................................................................20 



ix 

II. THERMAL AND GEOCHEMICAL ZONATION OF MICROBIAL 

BIOGEOGRAPHY IN GUAYMAS BASIN HYDROTHERMAL  

SEDIMENTS......................................................................................................... 22 

 

Introduction................................................................................................ 22 

 

Methods......................................................................................................23 

 Temperature measurements........................................................... 23 

 
Sediment sampling and site locations............................................ 23 

 
Porewater geochemistry................................................................. 24 

 
16S rRNA gene sequencing and analysis...................................... 24 

 
Calculations of thermodynamic potential of the  

anaerobic oxidation of methane..................................................... 25 

 

Results........................................................................................................ 26 

 Bulk comparisons of temperature and porewater  

 carbonchemistry............................................................................. 26 

 

 Physicochemical descriptions of individual cores......................... 30 

 
Sediment core 4569-9.................................................................... 31 

 
Sediment core 4569-2.................................................................... 31 

 
Sediment core 4569-4.................................................................... 32 

 
Sediment core 4571-4.................................................................... 32 

 
Sediment core 4567-28.................................................................. 33 

 
 16S rRNA gene clone library data................................................. 33 

Discussion.................................................................................................. 39 

 

Synthesis and Conclusions......................................................................... 55 

 

III. ACTIVE MICROBIAL LIFE IN HIGH TEMPERATURE  

GUAYMAS BASIN SEDIMENTS....................................................................... 57 

 

Introduction................................................................................................ 57 



x 

 

Materials and Methods............................................................................... 59 

 Core and temperature sampling......................................................59 

Sample preparation and measurement of carbon  

and sulfur geochemistry................................................................. 60 

 
RNA extraction, processing, and reverse transcription  

PCR (rtPCR)...................................................................................60 

 
454-pyrosequencing and analysis...................................................61 

 
Results and Discussion...............................................................................62 

 Thermal and geochemical structure of sediment cores.................. 62 

Examination of alpha and beta diversity........................................ 66 

 
Archaeal and bacterial richness versus temperature  

and electron acceptor availability...................................................70 

 
Temperature ranges and thermal fluctuations................................ 71 

 
16S rRNA sequence recovery and taxonomic  

classifications................................................................................. 75 

 
 RNA recovery at increasing temperatures and  

 identification of probable thermophiles......................................... 86 

 

Conclusion................................................................................................. 89 

APPENDIX.................................................................................................................................... 90 

REFERENCES............................................................................................................................ 111 



xi 

LIST OF TABLES 

 

 

Table  

1. List of designed oligonucleotide probes...........................................................14 

2. Cell abundance data during the Marinobacter enrichment.............................. 16 

3. Pyrosequencing recovery of archaeal and bacterial sequences........................ 68 

 

 

 



xii 

LIST OF FIGURES 

 

 

Figure 1 – Small subunit 16S rRNA phylogeny of Marinobacter species...................................... 9 

 

Figure 2 – Dissociation profiles of oligonucleotide probes........................................................... 11 

 

Figure 3 – Epifluorescence micrographs of probe-conferred fluorescence  

during the optimization of the Marinobacter probes......................................................... 13 

 

Figure 4 – Epifluorescence micrographs of probe-conferred fluorescence  

during a Marinobacter enrichment experiment................................................................. 15 

 

Figure 5 – Cell abundances of Marinobacter species and the overall microbial  

community during the enrichment experiment.................................................................. 19 

 

Figure 6 – Shallow subsurface sediment temperature profiles from 113 sites in  

Guaymas Basin.................................................................................................................. 27 

 

Figure 7 – Concentrations and stable isotopic values of methane and DIC  

compared to in situ temperatures of Guaymas Basin sediments........................................29 

 

Figure 8 – Shallow subsurface thermal and geochemical profiles from five  

distinct sites in Guaymas Basin..........................................................................................31 

 

Figure 9 – Archaeal and bacterial clone library distributions from five distinct  

sites in Guaymas Basin...................................................................................................... 36 

 

Figure 10 – Small subunit 16S rRNA phylogeny of ANME-related archaea  

and putative sulfur cycling bacteria................................................................................... 39 

 

Figure 11 – Thermodynamic potentials for the process of sulfate dependent  

AOM in shallow Guaymas sediments................................................................................46 

 

Figure 12 – Principle components analyses of archaeal and  

bacterial beta diversity....................................................................................................... 55 

 

Figure 13 – Shallow subsurface thermal and geochemical profiles  

from four distinct high temperature sites in Guaymas Basin............................................. 63 

 

Figure 14 – Rarefaction and principle components analyses of  

454-pyrosequencing data....................................................................................................67 

 

Figure 15 – Comparisons of thermal and geochemical controls on  

archaeal and bacterial OTU richness..................................................................................71 

 



xiii 

Figure 16 – Thermal structure of shallow Guaymas Basin sediments  

over eight days and minimum, maximum, and mean temperatures  

experienced by the sediment layer corresponding to sample P3........................................73 

 

Figure 17 – Pyrosequencing recovery distribution of archaeal and bacterial  

species................................................................................................................................ 77 

 

Figure 18 – Small subunit 16S rRNA phylogeny of ANME-related archaea,  

Deltaproteobacteria, and Epsilonproteobacteria.............................................................. 82 

 

Figure 19 – OTU network of high temperature samples and 16S phylogeny  

of most probable thermophiles...........................................................................................89 



xiv 

LIST OF ABBREVIATIONS 
 

 

FISH – fluorescence in situ hybridization 

sp. – species (singular) 

spp. – species (plural) 

PBS – phosphate buffered saline 

PFA – paraformaldehyde 

FITC – fluorescein isothiocyanate 

TRITC – rhodamine isothiocyanate 

CY3 – cyanine 3 dye 

6FAM – 6-Carboxyfluorescein  

DAPI – 4',6-diamidino-2-phenylindole  

cmbsf – centimeters below seafloor 

PCR – polymerase chain reaction 

RT – reverse transcription  

ANME – anaerobic methanotroph 

AOM – anaerobic oxidation of methane 

OMR – organic matter remineralization 

DIC – dissolved inorganic carbon 

MCG – miscellaneous Crenarchaeotal group 

MBGB – Marine Benthic Group B 

MBGD – Marine Benthic Group D 

MBGE – Marine Benthic Group E 

MG-1 – Marine Group 1 



xv 

DHVE-6 – Deep Hydrothermal Vent Euryarchaeota Group 6 

DSEG – Deep Sea Euryarchaeotal Group 

SAGMEG – South African Gold Mine Euryarchaeotal Group 

JS1 – Japan Seep 1 

WS3 – Wurtsmith Group 3 

OP1 – Obsidian Pool Group 1 

OTU – operational taxonomic unit 

PCA – principle components analysis



1 

 

 

 

CHAPTER 1:  DEVELOPMENT OF A GROUP-SPECIFIC 16S rRNA-TARGETED 

PROBE SET FOR THE IDENTIFICATION OF MARINOBACTER BY 

FLUORESCENCE IN SITU HYBRIDIZATION
1
 

 

Introduction 

 The ability of marine ecosystems to recuperate from oil pollution is largely dependent on 

the activities of indigenous communities of hydrocarbon-degrading bacteria, which often varies 

depending on the ecosystem in question. For example, contaminants from the Deepwater 

Horizon oil spill have affected several marine ecosystems, including the deep water column 

(Diercks et al., 2010), coastal waters and beaches (Graham et al., 2010; Hayworth et al., 2011), 

salt marshes (Silliman et al., 2012), and deep sea sediments (Liu et al., 2012). Initial microbial 

analyses following the Macondo wellhead blowout have shown diverse microbial phylotypes 

associated with distinct sites of oil contamination. Members of the Oceanospirillales and the 

genus Halomonas were dominant in the deep sea hydrocarbon plume (Hazen et al., 2011), 

Firmicutes and Alphaproteobacteria in open ocean surface slicks (Redmond et al., 2011), and 

Alcanivorax, Marinobacter, and Rhodobacteracaeae spp. were dominant in coastal beaches 

(Kostka et al., 2011).  Detecting and identifying microbial communities across different habitats 

is integral to the assessment of the microbial degradation of oil contaminants in the marine 

environment. 

                                                        
1 This chapter was previously published as an article in Deep Sea Research Part II: Topical Studies in 
Oceanography.  The original citation is as follows: McKay L, Gutierrez T, Teske A. “Development of a Group-
Specific 16S rRNA-Targeted Probe Set for the Identification of Marinobacter by Fluorescence In Situ 
Hybridization,” Deep Sea Research Part II: Topical Studies in Oceanography (available online November 2013) 
DOI: 10.1016/j.dsr2.2013.10.009 
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 Methods to identify and monitor the abundance of hydrocarbon-degrading 

microorganisms in environmental samples enhance understanding of their natural ecology, their 

response to oil spills, and their role in degrading the oil (Head et al. 2006). Fluorescence in situ 

hybridization (FISH) is an effective technique allowing phylogenetic identification, enumeration, 

and direct spatial visualization of microorganisms in their natural environment. It utilizes 16S 

rRNA-targeted oligonucleotide probes labeled with, for example, a fluorophore, that bind to the 

complementary site on the 16S rRNA gene of a target microorganism(s) (Amann et al., 1995). 

Genus-level oligonucleotide probes were previously developed for Alcanivorax (Syutsubo et al., 

2001) and Cycloclasticus (Maruyama et al., 2003) – organisms which, respectively, have been 

shown to play an important role in the degradation of aliphatic and aromatic hydrocarbons in oil-

polluted seawater (Head et al., 2006). Another important group of oil-degrading bacteria in the 

ocean is Marinobacter, members of which have also been shown to become heavily enriched 

during oil spills (summarized by Duran, 2010). In addition to hydrocarbon association, several 

clades of this genus were ubiquitously found in mutual association with dinoflagellates and 

coccolithophores originating from seas and oceans all over the world (Amin et al. 2009). Despite 

their ubiquity in marine environments and the important role that these organisms contribute to 

the degradation of hydrocarbons and other processes, molecular tools to quantify them have had 

limited coverage. Previously, FISH probes or primer sets were developed targeting 29% (Xiao et 

al., 2010), 4.2% (Brinkmeyer et al., 2003), and 9.2% (Gray et al., 2011) of the Marinobacter 

genus for specific applications. So far, however, no FISH probe set exists that provides a high 

level of coverage for this monophyletic group. Here, two probes for FISH were developed and 

optimized that together could be used to detect up to 80% of the currently established genus, or 

used in concert with previously published probes to examine environmental compositions and 
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influences of distinct Marinobacter subgroups. These probes were then used to assess the 

abundance of Marinobacter within the overall microbial community over time following an 

input of hydrocarbon similar to contamination that occurred during the Deepwater Horizon oil 

spill. 

Sampling Procedures and Methodology 

Oligonucleotide probe design 

 Group-specific oligonucleotide probes for Marinobacter were designed against current 

16S rRNA gene sequence databases. Using the Probe Design tool of Arb v104 (Pruesse et al., 

2007), probe candidates were selected in August 2011 based on their provision of the greatest 

possible coverage of 659 sequences representing the genus Marinobacter. Probe candidates were 

analyzed using the probeCheck server (Loy et al., 2008) and the Ribosomal Database Project’s 

Probe Match tool (Cole et al., 2008) to evaluate their in silico specificity and coverage. From 

this, two probe sequences, Mrb-0625-a (5’-CAG TTC GAA ATG CCG TTC CCA-3’; 21-mer) 

and Mrb-0625-b (5’-CAG TTC GGA ATG CCG TTC CCA-3’; 21-mer), were selected. Both 

probes converged over the same position (0625 – 0645) based on the 16S rRNA E. coli gene 

(Lane, 1991) with one base pair mismatch between them. Probe coverage for Mrb-0625-a was 

75% of all sequences comprising the Marinobacter genus, whereas that for Mrb-0625-b was 5% 

of the remaining 25% of sequences not covered by Mrb-0625-a. Together, both probes covered 

80% of the Marinobacter group. Six Halomonas clone sequences sharing one basepair mismatch 

to probe Mrb-0625-a were also identified. A competitor probe, Hal-0625-a (5’-CAG TTC CAA 

ATG CCG TTC CCA-3’; 21-mer), was designed to reduce hybridization of Mrb-0625-a to these 

non-target halomonads. Table 1 summarizes the probes that were developed in this study.   

 

http://www.microbial-ecology.net/probecheck/
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Oligonucleotide probe optimization 

 Pure cultures of Marinobacter algicola (DSM 16394), Marinobacter flavimarus (DSM 

16070) and Marinobacter zhanjiangensis (KCTC 22280) were used in a preliminary test of the 

FISH probes at 0% and 10% formamide concentrations, and then M. algicola and M. 

zhanjiangensis were used in the optimization of formamide stringency. The strains were grown 

without hydrocarbons on a marine broth (ZM/10) composed of ¾-strength naturally aged 

seawater, peptone (0.05%), yeast extract (0.01%), and supplemented after steam-sterilization 

with filter-sterile (0.2 µm) trace elements and vitamins to final concentrations as previously 

described (Blackburn et al., 1989). For fixation three volumes of 4% (v/v) paraformaldehyde 

solution in 1x phosphate buffer saline (PBS; 130 mM NaCl, 2 mM NaH2PO4, 8 mM Na2HPO4, 

pH 7.4) were mixed with one volume of exponentially-grown cells and incubated for 3 h at 4°C. 

After three washings with 1x PBS, the samples were stored in a 1:1 (v/v) solution of 1x PBS and 

ethanol at -20°C. 

 Initial hybridizations with pure bacterial cultures and the newly-designed probes were 

performed using formamide (FA) concentrations of 0% and 10% in order to confirm 

permeability of the cells to the probes and adequate signal intensity. Optimal conditions for 

hybridization with these probes were determined by multiple hybridizations using increasing FA 

concentrations from 0% to 70%. Because the two probe sequences differ by only one nucleotide 

and target the same binding site, they were used simultaneously in competitive hybridization 

experiments. M. algicola was used as the reference strain for Mrb-0625-a and as the single 

mismatch non-target strain for Mrb-0625-b, whereas M. zhanjiangensis was used as the reference 

strain for Mrb-0625-b and as the single mismatch non-target strain for Mrb-0625-a.  

Hybridization assays were performed using standard methods (Daims et al., 2005). Samples 

hybridized with fluorescently-labeled probes were visualized using an Olympus BX51 



5 

epifluorescence microscope (Tokyo, Japan) equipped with a Hamamatsu C8484 digital camera 

(Hamamatsu City, Japan). Probe-conferred signal intensities were quantified with MetaMorph 

image analysis software version 7.6.0.0 (Sunnyvale, CA, USA). 

Sample collection 

 During a research cruise on the R/V Walton Smith (May 26 to June 8, 2010), seawater 

samples from 1000-1250 m depth were collected by CTD rosette sampler within 1-7 miles from 

the Macondo wellhead in the Gulf of Mexico. Some of these CTD deployments recovered 

samples from a deepwater hydrocarbon plume that had formed early during the spill and was 

marked by localized oxygen depletion and an increase in colored dissolved organic matter which 

was indicative of the presence of petrochemical hydrocarbons and elevated microbial activities 

from hydrocarbon oxidation (Diercks et al., 2010; Joye et al., 2011; Yang et al., 2012—ASLO 

talk).  Upon collection, live plume samples were stored at 4°C for 15 months until they were 

used as the inoculum for enrichment experiments with and without n-hexadecane to evaluate the 

FISH protocol described below. 

Marinobacter enrichment setup 

 Enrichment cultures were prepared using steam-sterilized screw-capped 100 ml glass 

vials. Two vials were prepared containing 6 ml of filter-sterilized (0.2 µm) ONR7a marine 

medium (Dyksterhouse et al., 1995) supplemented with n-hexadecane (4% v/v). Two additional 

vials were prepared in the same way but without n-hexadecane. The initial concentration of 

hydrocarbons in the inoculum prior to addition of n-hexadecane was unknown.  All four vials 

were inoculated with 1.2 ml of the plume water sample. An additional vial containing 6 ml of 

sterile ONR7a and n-hexadecane was inoculated with pre-filtered (0.2 µm) and autoclaved plume 

water to act as the killed control. All vials were incubated in the dark with gentle shaking (60 
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rpm) at 27°C, which falls within the optimum growth temperature range (25 – 30°C) for most 

Marinobacter (Duran, 2010). Fixation of subsamples (100 µl) was performed by mixing with 

300 µl of 4% (v/v) paraformaldehyde and incubating at 4°C for 3 hrs. Cells were collected by 

centrifugation (15,000 x g; 5 min), mixed with ice-cold 1X PBS and ethanol (1:1), and then 

stored at -20°C.  

FISH analysis of Marinobacter enrichment 

 Subsamples from the time-series incubation were diluted (500- to 1000-fold) in 1X PBS 

and then filtered onto 0.22 µm polycarbonate filters (25 mm, Millipore GTTP). FISH was 

performed directly on filter sections according to previous protocols (Glöckner et al., 1996; Loy 

et al., 2005; Pernthaler et al., 2001). Probe GAM42a was included in some hybridizations to 

quantify the abundance of Marinobacter against all Gammaproteobacteria. Since hybridization 

with GAM42a employs more stringent conditions (i.e. a higher FA concentration) (Manz et al., 

1992) than that with Mrb-0625-a, a double hybridization assay was performed with GAM42a 

first. All hybridizations were counterstained with 4’,6-diamidino-2-phenylindole (DAPI) 

following standard methods (Porter and Feig, 1980) prior to visualization under the 

epifluorescence microscope. Eight to twelve random fields of view were counted for all time 

points except time point 1, for which 5 fields of view were counted. 

 Fluorescently-labeled probes (Mrb-0625-a, Mrb-0625-b, GAM42a), labeled at the 5’-end 

with 6-carboxyfluorescein (6-FAM) or with the sulfoindocyanine dye CY3, and unlabeled probes 

Hal-0625-a and BET42a, were obtained from EurofinsMWG Operon (Huntsville, AL, USA). n-

Hexadecane was obtained from Acros Organics (New Jersey, USA). To distinguish Mrb-0625-a 

fluorescence from Mrb-0625-b fluorescence, the probes were labeled with 6FAM and CY3, 

respectively. All other chemicals were of molecular biology or HPLC grade. 
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Results and Discussion 

Marinobacter phylogeny and probe coverage 

 A phylogenetic tree was constructed that included all currently published type strains of 

Marinobacter and other related organisms to illustrate coverage of the newly-developed probes 

(Mrb-0625-a and Mrb-0625-b) (Figure 1).  The total of Marinobacter sequences in the Silva 104 

reference database at the time these probes were designed (August 2011) was 659, of which 63% 

are cultured isolates and the remaining 37% are uncultivated clone sequences.  An additional 

13% of the Marinobacter genus—represented in the tree by M. maritimus and M. psychrophilus 

(Figure 1) —is targeted by a complementary, but not yet empirically tested, probe designated 

Mrb-0625-c (Table 1).  The remaining 7% of the genus does not branch together and could not 

be comprehensively targeted by a single probe.   
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Figure 1. Small subunit ribosomal RNA (16S rRNA) phylogeny of members of the 

gammaproteobacterial marine hydrocarbon-degrading genus Marinobacter and six other 

hydrocarbon-degrading Gammaproteobacteria. Of the 659 Marinobacter species in the 

current 16S Silva database, 27 cultured representatives were chosen to demonstrate the 

overall diversity of the genus as well as approximate percent coverage by the oligonucleotide 

probes. Type strains are indicated by 
T
.  Strains with known hydrocarbon-degrading 

capabilities are shown in bold (summarized by Duran, 2010) while species marked with 
Σ
 

were not able to growth on n-tetradecane or crude oil (Guo et al., 2007).  Roseobacter 

litoralis (X78312) was used as the outgroup.  The species used to test and optimize the 

probes, Marinobacter algicola and Marinobacter zhanjiangensis, are indicated by asterisks. 

Mrb-0625-c is a suggested third probe that targets an additional 13% of the Marinobacter 

group not covered by Mrb-0625-a and Mrb-0625-b, but was not empirically evaluated in this 

study. 

 

Probe optimization and formamide series 

The melting curves for probes Mrb-0625-a and Mrb-0625-b when used in hybridizations 

with target and non-target reference strains and in the absence and presence of each other are 

shown in figure 2. In all experiments fluorescence intensity was greater for target strains 

compared to non-target strains (with a 1-bp mismatch), demonstrating strong probe specificity. 

Empirically optimized FA concentrations ensured specificity during hybridization with these 

probes (Table 1). In the case of probe Mrb-0625-a, fluorescence signal intensities decreased 

significantly at FA concentrations above 20%, indicating that this concentration would be 

suitable for hybridizations with this probe to specifically detect up to 75% of members that 

comprise the Marinobacter group. With Mrb-0625-b, fluorescence signal intensities did not 

decrease as sharply at FA concentrations above 20%, though were highest at 20-25% FA 

concentration and remained distinguishable from non-target signals up to 40% FA concentration. 

Therefore, when using the probes individually 20-25% FA is the ideal stringency for Mrb-0625-a 

and 35-40% FA for Mrb-0625-b.       
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Figure 2.  Dissociation profiles of 16S rRNA-targeted FISH probes Mrb-0625-a and Mrb-

0625-b evaluated against a perfectly-matching (target) and one basepair-mismatching (non-

target) strain. Black diamonds represent hybridization intensities for M. algicola; white 

squares correspond to hybridization intensities for M. zhangjiangensis. In two separate 

experiments Mrb-0625-a was hybridized with its target strain, M. algicola, and with its single 

base pair mismatch strain, M. zhanjiangensis (A).  In two separate experiments Mrb-0625-b 

was hybridized with its target strain, M. zhanjiangensis, and with its single base pair 

mismatch strain, M. algicola (B).  In additional experiments both probes were used together 

as competitors for the same 16S rRNA motif on both target strains. Dissociation curves are 

shown for Mrb-0625-a hybridized to its target and non-target strain in the presence of Mrb-

0625-b (C), and for Mrb-0625-b hybridized to its target and non-target strain in the presence 

of Mrb-0625-a (D).  Each data point represents the average fluorescence intensity value ± 

standard deviation from ten randomly-selected fields of view.  Mrb-0625-a is labeled with 

6FAM, and Mrb-0625-b is labeled with CY3 in all experiments. Linear interpolation was 

excluded for M. zhanjiangensis in C and M. algicola in D to denote lower resolution in 

formamide concentration changes. 

 

Two additional FA series experiments were conducted to optimize using both probes 

together in the same hybridization. In one of these experiments, 6FAM-labeled Mrb-0625-a and 

CY3-labeled Mrb-0625-b were applied together with M. algicola, while in the other experiment 

both probes were applied together with M. zhanjiangensis. The melting curves for 6FAM-labeled 

Mrb-0625-a hybridized with target strain M. algicola and with non-target strain M. 

zhanjiangensis show that the signal intensity of the M. algicola cells at 25% FA concentration is 

clearly distinguishable from the non-target fluorescence of M. zhanjiangensis (Fig. 2C). 

Conversely, fluorescence during hybridization of  CY3-labeled probe Mrb-0625-b to target strain 

M. zhanjiangensis and non-target strain M. algicola  resulted in distinguishable signals between 

target and non-target fluorescence within a range from 15% to at least 40% FA, while non-target 

fluorescence was greatly reduced in the competitive hybridization (Figure 2D). Competitive 

interference by Mrb-0625-a is not likely beyond 35% FA, since Mrb-0625-a targeted 

fluorescence is greatly diminished at greater FA concentrations (Figure 2A, C). As a result, Mrb-

0625-b shows a gradual decay of fluorescence signal (Figure 2D) not unlike the previous 

experiment without use of competitive Mrb-0625-a (Figure 2B).  When using the two probes 
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together in the same hybridization reaction, a common stringency of 25% FA is recommended 

for the simultaneous detection of their target Marinobacter species.   

The competitive use of alternately labeled Mrb-0625-a and Mrb-0625-b at their 

empirically-determined optimal FA concentration of 25% was then tested with a mixed 

population of M. algicola and M. zhanjiangensis (Figure 3).  Consistent with the FA series 

results from Figure 2, the two Marinobacter reference strains could be clearly distinguished from 

one another. Since an overlay of figures 3A (showing Mrb-0625-a targeted signals) and 3B 

(showing Mrb-0625-b targeted signals) did not yield any double-labeled cells that were orange or 

yellow, but rather that were either distinctly green or distinctly red (Figure 3C), non-target 

binding is interpreted as negligible and the probes appear to be highly specific for their 

respective target organisms.  Further confirmation comes from morphological observations: from 

previous pure (non-mixed) culture experiments, M. zhanjiangensis cells were larger than M. 

algicola cells, and this can be observed in the difference between red and green cell size in 

Figure 3. 
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Figure 3. Competitive hybridization experiment showing Mrb-0625-a and Mrb-0625-b 

fluorescence in a mixed culture of their respective target strains, M. algicola and M. 

zhanjiangensis. (A) FITC filtered image of Mrb-0625-a (labeled with 6FAM) targeting M. 

algicola. (B) TRITC filtered image of Mrb-0625-b probe (labeled with CY3) targeting M. 

zhanjiangensis. (C) Overlay of images from A and B, representing the same field of view. 
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Table 1.  According to the standard nomenclature for the naming of new probes (Alm et al., 

1996), official names of probes Mrb-0625-a, Mrb-0625-b, Mrb-0625-c and Hal-0625-a are S-

G-Mrb_0625-a-A-21, S-G-Mrb_0625-b-A-21, S-G-Mrb_0625-c-A-21, and S-G-Hal_0625-a-

A-21, respectively.  Also indicated are percent genus coverage, representative strains and 

accession numbers, 5’-3’ sequences for each probe, and optimal FA concentrations for 

hybridization. Sequence mismatches between probes are indicated in white lettering.  Mrb-

0625-c is a suggested third probe that targets an additional 13% of the Marinobacter group 

not covered by Mrb-0625-a and Mrb-0625-b is also included in this table, but was not 

empirically evaluated in this study. 
 

Marinobacter spp. response to oil-contaminated seawater 

 A microbial enrichment with plume water samples obtained from 1000-1250 m depth in 

the Gulf of Mexico during the Deepwater Horizon oil spill was characterized with the 

Marinobacter probe set.  Since previous work with the plume water samples from the Gulf of 

Mexico showed that it contained Marinobacter species, as revealed in 16S rRNA clone libraries 

and isolation experiments (Yang et al., in review), it was considered a suitable field sample for 

application of the Marinobacter FISH protocol employing these new probes.  n-Hexadecane has 

been used in several studies to enrich for and isolate Marinobacter species (Gauthier et al., 1992; 

Nguyen et al., 1999; Green et al., 2006; McGowan et al., 2004; Abed et al., 2007), and was 

therefore selected as a model hydrocarbon to enrich for these organisms.  At 27°C, the 

incubation temperature was set within the optimum range for growth of most Marinobacter 
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cultures (25 – 30°C, Duran, 2010).  After enrichment with n-hexadecane, subsamples taken 

during this experiment were analyzed using probes Mrb-0625-a and Mrb-0625-b to provide 

information on the detection and abundance of Marinobacter. Hybridizations with 6FAM-

labeled Mrb-0625-a revealed that a substantial fraction (e.g., ca. 30% in vial 1, day 3) of the 

entire DAPI-stained microbial population in the plume water inoculum was composed of 

Marinobacter species (Figure 4A; Table 2).  Samples taken from these experiments and 

hybridized with the Mrb-0625-b probe did not yield any signals (results not shown). Therefore, 

the Marinobacter population in this enrichment was quantified using only the Mrb-0625-a probe 

(discussed below). Hazen and colleagues (2010) showed that Halomonas spp. were significantly 

enriched in plume waters  during the Deepwater Horizon oil spill – by as much as 140% 

compared to their abundance in non-plume water samples.  In order to block false positive Mrb-

0625-a hybridization to halomonads, FISH experiments with this probe included the unlabeled 

Hal-0625-a competitor probe (Table 1) which shares 100% sequence homology to halomonads 

with a 1 base pair mismatch at the 16S rRNA region targeted by Mrb-0625-a.  

 

Figure 4.  Hybridization of samples from the n-hexadecane enrichment experiment with (A) 

Mrb-0625-a (green) amongst the entire DAPI-stained microbial population (blue) in a sample 

taken from vial 1 after 3 days, and (B) Mrb-0625-a (yellow-green) amongst the entire 

GAM42a-targeted gammaproteobacterial population (red) in a sample taken from vial 2 after 

4 days incubation.  
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Table 2.  Microbial cell counts show changes in total microbial abundance and the 

corresponding fraction of Marinobacter spp. abundance in each vial over the 21 day time 

course.  Values are in 10
6
 cells ml

-1
.  The first row indicates the day of incubation and the 

first column indicates the vial # and either DAPI, for total microbial community, or 6FAM, 

for Mrb-0625-a conferred fluorescence.  Asterisks demarcate spikes in microbial abundance 

in vials 1 and 2 between days 2 and 3, concomitant with noticeable changes in turbidity 

(Supplementary Figure S1).  Cell counts from time zero are identical for all vials because 

they were performed only once on the original inoculum prior to incubation.  Vials 1 and 2 

were amended with 4% n-hexadecane; vials 3 and 4 were not. 

 

It should be noted that the identification of organisms using FISH that employs a probe(s) 

targeting only a single binding site is not always sufficiently robust.  Since no other realistic 

combination of comprehensive genus-level Marinobacter probes could be developed, a double 

hybridization with the class-level, cy3-labeled GAM42a probe and unlabeled BET42a as 

competitor (Manz et al., 1992) was performed on selected samples from the plume water 

enrichment experiment.  FISH analysis of a sample taken from vial 2 at day 4 hybridized with 

6FAM-labeled Mrb-0625-a and CY3-labeled GAM42a showed that Marinobacter cells targeted 

by Mrb-0625-a represented 30% of the gammaproteobacterial population (Figure 4B).  

Superimposition of duplicate fields of view under red and green light filters demonstrated 
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Marinobacter cells in yellow due to Mrb-0265-a fluorescence in green and GAM42a 

fluorescence in red.   

 The abundance of Marinobacter cells quantified with probe Mrb-0625-a had markedly 

increased as a result of enrichment with n-hexadecane (Figure 5A) compared to the untreated 

(i.e. no added n-hexadecane) controls (Figure 5B). The most dramatic increase (ca. 1 order of 

magnitude) in abundance occurred between days 2 and 3 and coincided with a significant 

increase (ca. 1.5 order of magnitude) in the total bacterial population detected by DAPI counts. 

This was consistent with the observation of an increase in the turbidity of the culture liquid of 

vials 1 and 2 (amended with n-hexadecane) occurring during this time (Supplementary Figure 

S1).  Bacterial abundance remained elevated in the n-hexadecane-amended incubations, reaching 

approximately 3.0 x 10
9
 cells ml

-1
 by the termination of these experiments at day 21.  From day 3 

to day 21 the Marinobacter fraction of the total microbial population had steadily decreased from 

30%±5% to 2.7%±0.8% in vial 1, and from 29%±6% to 20%±5% in vial 2.  Given the relatively 

rapid growth of the total microbial community (increase in cell count by a factor of 15) 

compared to Marinobacter spp. (increase by a factor of 8-10) in both hexadecane-amended vials, 

it appears that Marinobacter in the enrichments responds more slowly to a sudden input of 

hexadecane than the overall microbial population. 
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Figure 5. Absolute DAPI-stained (white and grey) and Mrb-0625-a-targeted (grey only) cell 

numbers throughout the time course of the enrichment experiment. All experiments were 

performed in parallel in two sets of duplicate vials (Vials 1 and 2; Vials 3 and 4); DAPI and 

FISH counts for these duplicated assays are plotted separately in two neighboring columns 

for all time points to show the variability of the microbial growth and enrichment patterns 

among replicate vials. (A) Average cell numbers for hexadecane-amended vial 1 (lefthand 

column) and vial 2 (right-hand column) from days 0, 1, 2, 3, 4, 5, 10, and 21 of the 

enrichment. (B) Average cell numbers for non-hexadecane-amended vial 3 (left-hand 

column) and vial 4 (right-hand column) from days 0, 1, 2, 3, 4, 5, 10, and 21 of the 

enrichment. Error bars represent standard deviation from mean cell counts.  The x-axis is 

abbreviated between days 5 and 10 and between days 10 and 21. 

 

Trophic cascading by marine hydrocarbon degraders 

 Although the enrichment experiment had the primary objective of testing the newly 

designed Marinobacter probe set, the data offers some insight into the dynamics of marine 

hydrocarbon degradation.  The overall increase in the bacterial population and relative decrease 

in Marinobacter after the observable microbial response to n-hexadecane on day three (Fig. 5A) 

suggests a trophic cascade of distinct microorganisms that participated in the degradation of the 

n-hexadecane, and possibly also of other hydrocarbons that were inherently present in the plume 

water inoculum. A community-level collaboration and succession of different microbial groups 

is not atypical following an oil spill in marine waters (Head et al., 2006; Yakimov et al. 2007).  

Initial degradation of the n-hexadecane by Marinobacter and other unknown bacteria in these 

enrichments may have yielded intermediates that fueled the growth of secondary degraders. Such 

a trophic cascade may in part explain the changes in the microbial community composition of the 

deep oil plume from the Deepwater Horizon spill which have been observed by different 

researchers (Redmond and Valentine 2012; Kessler et al. 2011; Yang et al., in review). 

 Vials 3 and 4 (not amended with n-hexadecane) also exhibit overall increases in DAPI-

stained microbial cell counts up until day 10 for vial 3 and day 5 for vial 4, but these numbers are 

approximately 2 orders of magnitude lower compared to those from the n-hexadecane-amended 
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vials (Table 2; Supplementary Figure S2).  Interestingly, Marinobacter appeared to represent the 

dominant fraction of the lower-density total microbial community in non-amended incubations –  

ca. 40% by day 1, then peaking at 83%±9% in vial 3 and 94%±6% in vial 4 by days 2 and 4 

before dropping back down to ca. 40-50% by day 21.  This is not implausible when considering 

that C16 hydrocarbons (like hexadecane) were found to constitute a significant fraction (2
nd

 and 

4
th

 highest) of the total C10 to C35 presence in two deep sea plume water samples (Wade et al., 

2011). Hence, low-density pre-enrichment of Marinobacter in the deep water plume inoculum 

was likely attributed to the endogenous presence of these types of hydrocarbons and to 

Marinobacter seed populations that responded well to sample containment.  Prolonged bottle 

storage for 15 months might also have had an effect; bottle incubation of marine water samples 

resulted in elevated transcription within the Alteromonadales order, which includes the 

Marinobacter genus (Stewart et al., 2012). 

Conclusion 

16S rRNA oligonucleotide probes targeting an important group of hydrocarbon-

degrading and micro-algal associated bacteria, the Marinobacter, provide a useful tool with 

which to study the occurrence and ecological response of these organisms during major 

perturbations in the marine environment.  The newly developed FISH probe set (Mrb-0625-a + 

Mrb-0625-b + competitor Hal-0625-a) was developed to target up to 80% of species comprising 

the Marinobacter genus, and tested empirically for hybridization stringency.  The observations 

of the Marinobacter and total microbial community response to oil contamination indicate that 

Marinobacter spp. may be among the first responders to the presence of hydrocarbons in marine 

systems. Combining the newly developed probe set with previously published Marinobacter 

probes MB-IC022 (Brinkmeyer et al., 2003) and MB115 (Xiao et al., 2010) could provide more 
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detailed analysis on the dynamics of Marinobacter subgroups in the environment. Furthermore, 

the new probe set provides a useful expansion to the current collection of oligonucleotide probes 

by allowing in situ identification of microbial groups contributing to important metabolic 

processes, such as the breakdown of hydrocarbons.   
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CHAPTER 2:  THERMAL AND GEOCHEMICAL ZONATION OF MICROBIAL 

BIOGEOGRAPHY IN GUAYMAS BASIN HYDROTHERMAL SEDIMENTS 

 

Introduction 

 The Gulf of California is a young, expanding ocean as the North American and Pacific 

plates diverge via a system of narrow spreading zones interspersed by extended transform faults 

(Lizarralde et al., 2007).  At a depth of 2000 m in the center of this Gulf lies Guaymas Basin, 

where a hydrothermal spreading center is buried by up to 400 meters of organic-rich sediments.  

Fresh magmatic sills intrude into the thick sediment layer squeezing hot, chemically altered 

fluids through fissures upwards toward the seafloor (Einsele et al., 1980).  Thermocatalytic 

transformation of freshly deposited organic matter results in a hydrocarbon-rich sedimentary 

environment.  From above, the cold, oxygenated bottom water mixes and circulates with arriving 

hydrothermal fluids, creating steep physicochemical gradients in the surficial sediments 

(Gundersen et al. 1992).  The shallow subsurface microbial community at Guaymas Basin takes 

advantage of this wide thermal and substrate diversity, and similarly diverse microbial processes 

characterize the upper sediments, including microbial methanogenesis, anaerobic methane 

oxidation, sulfate reduction and sulfide oxidation (Teske et al., 2003).   

 The anaerobic oxidation of methane (AOM) was first implicated in Guaymas Basin by 

the presence of 16S rRNA genes and 
13

C-depleted archaeal lipids of anaerobic methane-

oxidizing (ANME) archaea (Teske et al. 2002, Schouten et al. 2003), and has since become 

recognized as a dominant microbial process in these sediments.  Ex situ AOM rates were 

determined in high temperature and high pressure laboratory incubations (Kallmeyer and 

Boetius, 2004).  More recently evidence has been provided for specialized thermophilic or at 



23 

least thermotolerant ANME archaea at Guaymas Basin (Holler et al., 2011; Biddle et al., 2012).  

In the absence of a pure culture of ANME archaea, the possibility of in situ thermal structuring 

of ANME subgroups was explored.  Particular focus was given to the influence of temperature 

and chemistry on local microbial biogeography, with an emphasis on microorganisms involved 

in sulfate reduction and AOM.     

Methods 

Temperature measurements 

 Shallow subsurface temperature profiles were acquired from the upper 40 to 50 cm of 

sediment at 113 distinct sites by high temperature and heat flow probes operated by HOV Alvin 

as described previously (McKay et al., 2012). 

Sediment sampling and site locations 

 Guaymas Basin sediment was retrieved in 30 to 45 cm push cores by the Alvin 

submersible on RV Atlantis cruises AT15-40 and AT15-56 in November and December of 2008 

and 2009, respectively.  Upon arrival to the ship push core sediment was sectioned in 3-cm 

intervals and aliquots from each layer were reserved for downstream geochemical and molecular 

biological analyses.  Three cores were taken in transect across a Beggiatoa mat (27°00.9087N, 

111° 22.7932W), from the center where orange Beggiatoa spp. cover sediments that harbor the 

steepest thermal gradient (core 4569-9), to the periphery where white Beggiatoa spp. grow over 

less hot sediments (core 4569-2), to cooler, bare sediments adjacent to the mat (4569-4).  Like 

4569-2, core 4571-4 was also retrieved from the white section of a Beggiatoa mat, but at a 

different site 664 m away (27° 01.1032N, 111° 22.8128W).  Because of the similarities in 

temperature structure and differences in porewater geochemistry, 4569-2 and 4571-4 were 

chosen as thermal replicates and geochemical variants.   As a background core, 4567-28 was 
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retrieved from a site with no visible hydrothermal activity located at 27° 00.542063N, 111° 

24.488767W. 

Porewater geochemistry 

 Sediment samples were taken for methane measurements by adding 5.0 ml of sediment 

from each depth horizon into a 30 ml serum vial, adding 2.0 ml of NaOH, mixing well, and 

storing upside down at -20°C until laboratory analysis at the University of North Carolina at 

Chapel Hill.  For DIC, sulfate, and sulfide analysis, porewater was extracted from the remaining 

sediment by centrifugation in 50 ml conical tubes and subsequent filtration through 0.45 µm 

nylon syringe tip filters.  DIC samples were taken as 2.0-3.0 ml aliquots in 30 ml serum vials and 

stored upside down at -20°C until analysis at UNC.  Concentration and stable isotopic values of 

DIC and methane were measured at UNC by a Hewlett Packard 5890 Gas Chromatograph 

coupled to a Finnigan Mat 252 Isotope Ratio Mass Spectrometer.  Sulfate measurements were 

performed shipboard by acidifying 1.0 ml porewater samples with 50% HCl, bubbling with 

nitrogen for four minutes, and running the samples through a 2010i Dionex ion chromatograph 

(Sunnyvale, CA), as described previously (Martens et al., 1999).  Spectrophotometric analysis of 

porewater for sulfide concentrations was performed shipboard (Cline, 1969).  It should be noted 

that sediment samples were not retrieved in pressurized vessels, and outgassing of CH4, DIC, and 

ΣH2S was possible.  

16S rRNA gene sequencing and analysis 

 Total DNA was extracted from two to three selected depth intervals for five cores using 

the MoBio Powersoil DNA extraction kit (Carlsbad, CA).  Using the Takara Speed Star HS 

DNA polymerase kit (Mountain View, CA), PCR amplification of the full length 16S rRNA gene 

was performed separately for Archaea with primers ARC8F-ARC1492R (Teske et al., 2002) and 
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for Bacteria with primers BAC8F-BAC1492R (Teske et al., 2002).  The PCR amplification was 

checked by gel electrophoresis on 1.5% agarose gel, and bands of amplified DNA were extracted 

from the gel using the Wizard SV Gel and PCR Cleanup System (Madison, WI).  Following gel 

cleanup, amplified DNA was transformed into vectors and cloned in E. coli cells using the 

TOPO TA cloning kit from Invitrogen (Carlsbad, CA).  Successful colonies were picked and sent 

to GeneWiz (South Plainfield, New Jersey) for Sanger sequencing.  Sequences were cleaned up 

and assembled using Sequencher software by Gene Codes Corporation (Ann Arbor, MI) and 

preliminary alignments were made using the Online Aligner with the Silva v105 database 

(Pruesse et al., 2007).  The ARB software package (Ludwig et al., 2004) was used for further, 

manual sequence aligning and phylogenetic tree building and trees were converted to figures 

using Adobe Illustrator (Mountain View, CA).  Additionally, web-based UniFrac software 

(Lozupone and Knight, 2005; Lozupone et al., 2006) was implemented to create principle 

components analysis (PCA) plots comparing the ARB generated phylogeny for archaea and 

bacteria to environmental sample information.  Duplicate clone sequences were assigned using 

the de novo OTU picking function (≥ 97% similarity) built in to Qiime software (Caporaso et al., 

2010).  Qiime software was also used for rarefaction analysis of observed OTUs for each sample 

(Supplementary Figure S6) 

Calculations of thermodynamic potential of the anaerobic oxidation of methane 

 Gibbs energies, ΔGr, for the anaerobic oxidation of methane with sulfate to CO2 

  CH4(aq) + SO4
2-

 + 2H
+
  CO2(aq) + H2S(aq) +2H2O 

were calculated for five separate cores using the equations, software and thermodynamic data 

summarized in work by LaRowe and colleagues (2008).  Calculations were carried out using 

measured values of CH4, SO4
=
, DIC, ΣH2S, and temperature under two different pH scenarios.  
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First, values of ΔGr were calculated at low pH values extrapolated from temperature correlations 

of pH measurements from other sites in Guaymas Basin (measured by Dirk De Beer).  Secondly, 

calculations were made using a constant pH value of 5.9 taken from previous measurements of 

Guaymas Basin vent fluids (Von Damm et al., 1985).  The speciation of DIC and H2S as a 

function of pH was taken into account. 

Results 

Bulk comparisons of temperature and porewater carbon chemistry 

 Guaymas Basin sediments with no hydrothermal activity retain bottom water 

temperatures of 3°C downcore, while active hydrothermal seepage causes sedimentary 

temperatures to increase from 3°C to as much as 200°C by 40cm depth (Figure 6).   
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Figure 6. Shallow subsurface temperature profiles from 113 sites at Guaymas Basin indicate the 

thermal range of different microenvironments within the upper 45 cm of sediment.  This figure 

was modified from McKay et al., 2012. 

 

Temperature profiles from 113 probe measurements spanned the range between these two 

extremes and typically exhibited an increase in temperature with depth.  To investigate a possible 

correlation between hydrothermal activity and substrate availability comparisons were made for 

ex situ porewater methane and DIC concentrations and stable isotope profiles with corresponding 

temperatures from 38 sediment cores sampled in 2008 and 2009 (Figure 7A,B).   
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Figure 7.  Concentration and stable isotope measurements for methane (A) and DIC (B) with 

corresponding temperature data.  Measurements come from discrete depths of 39 sediment cores.  

A) White circles indicate methane concentration-isotope measurements where in situ 

temperatures were less than 25°C while colored circles correspond to in situ temperatures 

indicated by the color bar legend with all temperatures above 80°C in red.  Methane 

concentrations may be under- or over-estimated due to methane bubble formation and/or gas loss 

during core recovery and sample processing. The x axis was shortened between 15 and 30 mM to 

include a single data point of 28.3 mM.  Dashed lines define the range of thermocatalytically 

derived methane according to measurements made at presumably unlivable in situ temperatures 

above 150°C, which is supported by literature values of hydrothermally derived methane at 

temperatures above 300°C (Welhan and Lupton, 1987; Pearson et al., 2005).  2B) DIC 

concentration and stable isotope data corresponding to in situ temperatures above 100°C are 

indicated by red circles while all other temperatures are represented by the color range indicated 

by the legend.  Dashed lines define the range of high temperature DIC values according to 

measurements made above 150°C, which is similar to literature values of DIC from 

hydrothermal fluids with temperatures above 300°C (Seewald et al., 1998; Pearson et al., 2005). 

 

Methane concentrations range between 0 mM and 28.3 mM with an average concentration of 

2.56 mM.  A methane concentration greater than 1.5 mM represents a methane partial pressure of 

> 1 atm at the surface temperature. As sediment cores were not pressurized, the degree to which 

measured methane concentrations reflect in situ values is not known.  Stable carbon isotope 

values from bulk methane data range between δ
13

C values from -74.24 ‰ to -6.35 ‰ with an 

average value of -37.92 ‰, while the range of  δ
13

C values collected from sediments where 

temperatures are >25°C, is -43.73 ‰ to -8.82 ‰.  More than half of all stable isotopic values for 

methane (n=191/373) cluster within the range of -43 ‰ to -39 ‰.  About 87% of 
13

C-methane 

values from sediments warmer than 80°C fall within this range (Figure 7A).  Porewater DIC 

concentrations range from 1.58 mM to 68.4 mM with an average of 16.03 mM, and δ
13

C-DIC 

values range from -25.08 ‰ to -0.58 ‰.  With one exception, all δ
13

C-DIC values associated 

with temperatures greater than 100°C fall within the relatively 
13

C-enriched range of δ
13

C-DIC 

values within the abiotic range, which was defined by the range of isotopic values from high 

temperatures sediments above 150°C (Figure 7B).  By contrast, lighter δ
13

C-DIC values outside 

this range are associated with temperatures below 100°C.  While some low temperature δ
13

C-
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DIC values also fall within the abiotic range, only one high temperature δ
13

C-DIC value is more 

13
C-depleted than the abiotic range. 

Physicochemical descriptions of individual cores  

 Porewater geochemical profiles, including methane concentrations and stable carbon 

isotope values, DIC concentrations and stable carbon isotope values, and sulfate and sulfide 

concentrations are compared to temperature profiles for five individual cores (Figure 8).  The 

data for cores 4569-9, 4569-2, and 4569-4 were previously published (McKay et al., 2012) and 

are plotted again here for comparison with two additional cores. 
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Figure 8. Temperature and geochemical profiles for five individual cores.  Shallow 40-cm 

subsurface profiles for temperature, cell concentration, methane concentrations and isotopes, 

DIC concentrations and isotopes, and sulfate and sulfide concentrations are given for three cores 

in transect across a Beggiatoa mat (4569-9, 4569-2, and 4569-4), another core from a different 

Beggiatoa mat (4571-4), and a background core with no hydrothermal activity (4567-28).  Filled 

in shapes correspond to the top axes and open shapes correspond to the bottom axes.  Grey bands 

indicate sample depths for archaeal and bacterial clone libraries.  

 

Sediment core 4569-9 

 4569-9 is the first core in a 3-core transect across a Beggiatoa mat, and centrally located 

over the hydrothermal maximum as indicated by the steepest subsurface temperature gradient 

measured in the mat.  Temperatures increase from 13°C at the surface of the mat to 94°C at 40 

cmbsf.  Methane concentrations are lowest at the surface (0.95 mM) and remain between 1.5 mM 

and 2.3 mM throughout the rest of the core.  Methane is 
13

C-enriched at the surface (-27.41 ‰) 

and becomes lighter downcore, reaching -37.69 ‰ at the last depth sampled where the 

interpolated temperature from in situ measurements was 83.6°C.  DIC concentrations fluctuate 

considerably between 5 mM and 25 mM while δ
13

C-DIC values are fluctuating between -12 ‰ 

and -18 ‰ but remain lighter than the δ
13

C-DIC values reported previously from Guaymas Basin 

hydrothermal fluids (-9.4‰) and bottom water (-0.6‰) (Pearson et al. 2005).  Sulfide 

concentrations at the top and bottom of the core are approximately 0.9 mM, with a peak 

concentration of 1.9 mM at 9-12 cmbsf.  No significant sulfate depletion is observed and sulfate 

concentrations vacillate across a range of 1.4 mM throughout the core. 

Sediment core 4569-2 

 4569-2 is the second core in the 3-core transect and was retrieved from sediment covered 

by white Beggiatoa living around the outside of the central orange region.  The temperature 

profile for this core demonstrates a weaker gradient than that of core 4569-9, increasing from 

3°C at the surface to 63.2°C at 40 cmbsf.  Methane concentrations range from 2.1 mM to 2.9 
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mM throughout the core and methane becomes most 
13

C-enriched (-25.52 ‰) midcore at a depth 

of 21-24 cmbsf and temperature of ca. 41.5°C.  DIC concentrations increase with depth to 10 

cmbsf, after which the concentrations show strong oscillations over a range of 5 mM. δ
13

C-DIC 

becomes more negative with depth to about 20 cm, and then reverses slope to become more 

positive with depth.  The sulfate concentration profile is highly variable (with a single outlier of 

4.8 mM) but with similar concentrations in the surface and deepest sample. In contrast, sulfide 

accumulation downcore is relatively smooth to a depth of 21 – 24 cmbsf and temperature of 

41.5°C, after which sulfide begins to decrease with depth. 

Sediment core 4569-4 

 Core 4569-4 is the third core in the 3-core transect and was retrieved from the bare 

sediments beyond the edge of the orange and white Beggiatoa mat.  The corresponding 

temperature profile for this core increases from 3.3°C at the sediment-water interface to 23.1°C 

at a depth of 40 cmbsf.  Methane accumulation occurs with depth but remains less than 1 mM, 

while methane steadily becomes more 
13

C-enriched from -47.58 ‰ at the surface to ca. -28 ‰ at 

a depth of 21 – 24 cmbsf with a corresponding temperature of 14.4°C.  The DIC concentration 

oscillates but the general trend is an increase from 4.1 mM at the surface to a maximum of 9.3 

mM at a depth of 24 – 33 cmbsf where temperatures range between 15°C and 19°C. DIC is 
13

C-

enriched between the surface and 9 cm, and then 13C-depleted down to -12.13 ‰ at 30 cm. Like 

methane, sulfide accumulates to 1 mM, while the sulfate profile oscillates and increases from 

23.7 mM at the surface to 26.1 mM at depth. 

Sediment core 4571-4 

 Core 4571-4 was taken in a different white Beggiatoa mat 664 m away from the transect 

mat.  The temperature profile taken next to core 4571-4 closely mimics that of the other core 
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from the white section of a Beggiatoa mat, 4569-2, and increases from 6.9°C at the surface to 

63.2°C at 40 cmbsf.  Methane concentration and stable isotope profiles from core 4571-4 mirror 

each other: concentrations decrease from ca. 3 mM at the surface to ca. 1.5 mM at depth, and 

13
C-enrichment of methane increases from -35 ‰ at the surface to -16 ‰ at 24 – 27 cmbsf (T = 

50.6°C).  Porewater DIC concentrations increase from 4.6 mM near the surface to 22.4 mM at 24 

– 27 cmbsf, while δ
13

C-DIC decreases from -19.2 ‰ at the surface to -24.97 ‰ at 24 – 27 cmbsf.  

Finally, sulfide peaks at 4 mM and sulfate is depleted to 4.5 mM near the bottom of the core 

where temperatures are greater than 50°C. 

Sediment core 4567-28 

 Core 4567-28 was selected as a background core and retrieved from a site with no 

observable signs of hydrothermal activity.  Temperatures associated with these sediments 

increase very slightly from 3.1°C at the surface to 4.1°C at 40 cmbsf.  Methane concentrations 

here are the lowest compared to all cores measured (≤0.01 mM throughout) and stable isotopic 

values for methane are extremely 
13

C-depleted, ranging between -67 ‰ and -75 ‰.  DIC 

concentrations fluctuate between 3 mM and 7 mM and are highest at the deepest depth sampled, 

21 – 24 cmbsf, while δ
13

C-DIC becomes moderately 
13

C-depleted downcore, reaching -10.25 ‰ 

at the same depth.  Sulfide concentrations remain very low (≤0.1 mM) and sulfate concentrations 

fluctuate between 23 mM and 26 mM.   

16S rRNA gene clone library data 

 For analysis of 16S rRNA gene based community structure the tops and bottoms of each 

of the five cores were sampled, as well as an additional mid-section sample for the hottest core, 

4569-9.  Phylogenetic relationships of total 16S rRNA gene clones recovered from these core 

sections are reported in neighbor-joining trees separately for archaea and bacteria (Figure S3A, 
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B).  The Guaymas clones were assigned to monophyletic groups—21 within the Archaea and 20 

within the Bacteria—according to relatedness to previously recovered OTUs and cultured 

isolates. The composition of the archaeal bacterial clone libraries distribution is plotted for each 

location and depth layer in bar diagrams (Figure 9A, B).  
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Figure 9.  Clone distribution bar graphs for 16S rRNA gene libraries.  Relative distributions 

of clone recovery are presented at the phylum-to-class level for the five cores studied for archaea 

(A) and bacteria (B).  Each bar represents a sampled section of one of the five cores which are 

indicated further by the grey shaded areas in Figure 8.  Three sections were sampled for the 

hottest core in the microbial mat transect (4569-9) while only two sections, the top and the 

bottom, were sampled from the other cores.  In situ temperatures for each section are listed on 

the far left.  Sequence recovery for each sample is here reported first for archaea and then for 

bacteria:  4569-9 T (48, 49), 4569-9 M (30, 36), 4569-9 B (30, 0), 4569-2 T (30, 31), 4569-2 B 

(30, 25), 4569-4 T (28, 43), 4569-4 B (33, 56), 4571-4 T (34, 33), 4571-4 B (46, 0), 4567-28 T 

(40, 30), and 4567-28 B (48, 30). 

 

 The ten groups with the highest number of representatives from the archaeal clone 

library, in order from highest to lowest, are ANME-1, Marine Benthic Group D (MBG-D, 

Vetriani et al., 1999), ANME-1 Guaymas (Biddle et al., 2012), ANME-2c (Orphan et al. 2001), 

Marine Benthic Group B (MBG-B, Vetriani et al., 1999), Deep-sea Hydrothermal Vent 

Euryarchaeota Group 6 (DHVE-6, Takai and Horikoshi, 1999), Marine Group 1 (MG-1, DeLong 

1992), Miscellaneous Crenarchaeotal Group (MCG, Inagaki et al., 2003), Archaeoglobales, and 

Mystery Euryarchaeotal Group (this study).  For Bacteria the ten most abundant groups are 

Chloroflexi, Deltaproteobacteria, Hot Seep 1 group (Holler et al., 2011), Bacteriodetes, 

Gammaproteobacteria, Epsilonproteobacteria, Planktomycetales, WS3 (Dojka et al., 1998), 

Japan Sea Group 1 (JS1, Webster et al., 2004), and Unknown Group I (this study), which is 

related to the Planktomycetales-Verrucomicrobia-Chlamydiae super phylum (Fuerst and 

Sagulenko, 2011).  Phylogenetic relationships within the ANME-related archaea (ANME-1, 

ANME-1 Guaymas, ANME- 2c, Methanoperedenaceae), which make up 48% of total Archaeal 

16S rRNA gene recovery (186 of 387 clones), are examined at higher resolution in an 

ANME-specific phylogenetic tree (Figure 10a).  Due to the physiological association between 

the processes of anaerobic methane oxidation and sulfate reduction, a phylogenetic tree that 

includes the Deltaproteobacteria and the Hot Seep 1 group is also examined at higher resolution 

(Figure 10b).  Together the Deltaproteobacteria and the Hot Seep 1 group account for 24% of 
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the total 16S rRNA gene recovery within the bacterial clone library.  Potential paraphyly 

between the Deltaproteobacteria and the Hot Seep 1 group was examined by additional 

phylogenetic analyses (Supplementary Figure S5). 
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Figure 10.  16S rRNA gene phylogeny for ANME Archaea (A) and Deltaproteobacteria/Hot 

Seep Group (B).  Phylogenetic trees are based on gene sequences for the 16S small ribosomal 

RNA subunit from environmental clones from Guaymas Basin sediments.  Neighbor joining 

trees were constructed in ARB with a Jukes-Cantor correction and bootstrap values are based off 

of 500 iterations of each tree. 

 

Discussion 

 Thermal variability is extreme in the shallow subsurface sediments of Guaymas Basin.  

Most surface layer sediments (0-3 cmbsf) retain bottom water temperatures of approximately 

3°C, while at a depth of just 40 cmbsf temperatures range from 3°C in hydrothermal inactive 

sediments to 200°C in sediments with extreme hydrothermal activity (n=113; Figure 6).  

Sedimentation from high primary production in the water column increases organic matter load 

in near-shore seafloor environments (Premuzic et al., 1982); however, variation in hydrothermal 
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activity translates to varied levels of pyrolized and hydrothermally altered organic material, and 

variable delivery of hydrothermally derived electron donors.  Indeed, DIC and methane 

porewater concentrations (compared to temperature profiles) show high variability, with 

concentrations ranging from zero to almost 30 mM methane and from zero to 70 mM DIC 

(Figure 7A, B).  It should be noted that the methane concentrations were measured ex-situ and 

are probably underestimates (or in some cases overestimates) due to outgassing during retrieval 

(or collection of methane in gas pockets).  The variability in methane and DIC concentrations 

does not correlate well with thermal conditions; increasing methane concentration and increasing 

temperature, and decreasing DIC concentration and increasing temperature show no significant 

correlation (r
2
 = 0.06 and r

2
 = 0.02, respectively). Multiple factors may control the isotopic 

composition of a chemical species at a certain depth, including molecular diffusion, transport 

processes, differential fractionation by microorganisms, and local activity of microorganisms.  

To investigate the latter of these factors within the framework of a hydrothermal regime, stable 

isotopic values for methane and DIC were compared with their corresponding temperatures 

(Supplementary Figure S4).  It should be noted, though, that the extent to which other factors 

influences isotopic composition was not investigated but could play a significant role.  If the 

highly conservative assumption that microorganisms are not viable and show no activity at 

temperatures above 150°C is made (the actual microbial survival limit may be near 122°C; Takai 

et al., 2008), then the range of δ
13

C-CH4 values that correspond to temperatures above 150°C— 

in this dataset, -39.09 ‰ to -43.18 ‰—would represent the range of thermocatalytically-derived 

methane that is not biologically altered.  Oxidation of methane by microorganisms would cause 

the remaining methane pool to become 
13

C-enriched as compared to this thermocatalytic range, 

i.e., resulting in values > -39.09 ‰, which only occurs below a temperature threshold of 
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approximately 80°C (Supp. Fig. S4C).  While the stable carbon isotopic values of methane at 

other hydrothermal sites are heavier—e.g., -15 ‰ at 21°N on the East Pacific Rise (Welhan, 

1988), between -14 ‰ and -7 ‰ at the Lost City serpentinite hydrothermal system (Kelley et al., 

2005), between -20 ‰ and -30 ‰ in Yellowstone hot springs (Welhan, 1988)—hydrothermal 

methane at Guaymas Basin is relatively light, ranging between -43 ‰ and -51 ‰ (Welhan, 

1988).  The thermocatalytic range of δ
13

C-CH4 from the highest temperature sediments in this 

study (dashed lines, Figure 7a) is consistent with previous measurements of the isotopic 

signature of methane from Guaymas Basin hydrothermal fluids above 300°C, for which 3 out of 

4 measurements were approximately -43 ‰ (Welhan and Lupton, 1987; Pearson et al., 2005).  

With the exception of a single sediment core, all cores sampled in 2008 and 2009 indicate that 

13
C-enriched methane (δ

13
C-CH4 > -39.09 ‰,) is not detected above 80°C; this temperature is 

therefore a strong candidate for the upper thermal limit of microbial AOM in Guaymas 

sediments, as far as this process can be isotopically traced.   

 It should be noted that stable carbon isotope values for methane may be under the dual 

influence of biological methanogenesis, which results in depleted δ
13

C-CH4 values, and 

biological methane oxidation, which leads to enriched δ
13

C-CH4 values.  Methane concentrations 

may be low because an active microbial population is efficiently consuming methane or because 

there is no methane accumulation in that particular zone.  Conversely, high methane 

concentrations could indicate a newly developed hydrothermal source of hydrocarbons to which 

the methane oxidizing community has not fully responded or cannot keep up with, or large-scale 

biogenic methane production.  Methane concentrations were plotted against corresponding 

methane isotopic values to elucidate zones of microbial methane production versus consumption 

(Figure 7A).  Data points with corresponding temperatures greater than 25°C (n=216) never 
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become more 
13

C-depleted than -43 ‰; stronger 
13

C-CH4 depletion indicative of biogenic 

methane formation is found only at temperatures below 25°C.  This is interpreted to indicate that 

~ 25°C represents a threshold temperature: at lower temperatures, the contribution of isotopically 

light biogenic methane can be detected since the hydrothermal methane component is 

sufficiently attenuated; above 25°C, hydrothermal methane (
13

C-CH4 near -43 ‰) and its 

microbial oxidation – reflected in heavier 
13

C-CH4 values within the 25°C to 60°C thermal range 

– predominates, and may drown out the signal of high-temperature biogenic methanogenesis by 

hyperthermophilic methanogens isolated from Guaymas Basin (Jones et al., 1983; Kurr et al., 

1991).   

 Similarly, δ
13

C-DIC values can demonstrate thermal constraints on the microbial process 

of organic matter remineralization (OMR).  In Guaymas Basin, the δ
13

C-DIC values prior to 

sedimentary microbial processing range from -0.6 ‰ in bottom water (Pearson et al., 2005) to -

9.4 ‰ in hydrothermal fluids (Seewald et al., 1998) (dashed lines, Figure 7B).  From this study, 

δ
13

C-DIC porewater measurements from high temperature sediments in abiotic temperature 

regimes above 150°C fall within this range, between -4.87‰ and -8.75‰ (Supplementary Figure 

S4D).  More strongly 
13

C-depleted values, below -9.4 ‰, likely indicate microbially mediated 

OMR, and are found only up to approximately 100°C.  The resulting 80°C and 100°C estimates 

for the upper thermal limits of microbial AOM and OMR, have to be qualified twofold.  First, 

abundant hydrothermal methane or non-biogenic DIC could buffer and attenuate the isotopic 

signatures of microbial AOM and OMR at high temperatures; second, biotic isotopic 

fractionation could collapse at extremely high temperatures and in situ pressure as has been 

shown previously for a hyperthermophilic methanogen (Takai et al., 2008).  Localized deviations 

in porewater geochemical profiles must be examined from an individual core perspective to 
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confirm observations from bulk stable carbon isotope data.  Lastly, the lack of heavy methane 

above 80°C and light DIC above 100°C are observations that cannot themselves be used to 

conclude the thermal limits AOM and OMR, but rather suggest a starting point for further 

investigation. 

 All individual cores examined except the background core (4567-28) and the surface 

layer of the bare sediment core (4569-4) have δ
13

C-CH4 values more enriched than -39‰, 

suggesting the prevalence of microbially mediated AOM in hydrothermally active sediments.  

The in situ temperature range of these sediment cores (up to 83.6°C) is consistent with the 

previously suggested upper thermal limit for AOM.  The δ
13

C-CH4 signal is decreasing 

downcore, towards -39‰ at the bottom of the high temperature core (4569-9).  A notable 

difference between the two thermally similar cores, 4569-2 and 4571-4 is apparent in the δ
13

C-

CH4 profiles.  In core 4569-2 the strongest 
13

C-enrichment of methane (indicative of methane 

oxidation) appears midcore, near 21 cmbsf and a temperature of ca. 40°C, while in core 4571-4 

methane becomes increasingly 
13

C-enriched all the way downcore towards a temperature of  ca. 

60°C.  This difference suggests that additional factors, for example lateral advection and 

inmixing of different porewater and methane pools in the hydrothermally flushed Guaymas 

sediments, may disconnect locally observed isotopic signatures from microbial processes at the 

same site.  The cold background core presents δ
13

C-CH4 values indicative of biological 

methanogenesis producing methane (at low concentrations) with extremely 
13

C-depleted values 

around -70‰.   

 Calculations of the Gibbs energy of the suggested reaction for sulfate dependent AOM 

had previously shown that this process remains feasible at increasing temperatures (LaRowe et 

al., 2008). The Gibbs energy of this reaction is strongly dependent on the in situ methane 
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concentrations and temperature, but also on pH, which was not measured in situ. Two scenarios 

were therefore considered—very low-pH conditions extrapolated from temperature-correlated 

pH gradients from another Guaymas Basin dataset (personal communication with Dirk de Beer) 

(Figure 11A), and a pH of 5.9, previously published for Guaymas Basin hydrothermal fluids 

(Von Damm et al., 1985). Compared to the low-pH regime, the moderate pH conditions reduce 

the Gibbs energy of sulfate dependent AOM, but higher temperatures increase ΔGr in both cases 

(Figure 11B).  Regardless of which pH model is used in the calculations, it is apparent that 

sulfate dependent AOM is favorable, and more so with increasing temperature and depth.  It 

should be mentioned that the recently elucidated reaction mechanism for AOM coupled to sulfur 

disproportionation, with a combined steady state ΔG of -39.2 kJ mol-1 CH4 for the two half 

reactions (Milucka et al., 2012), would alter the profiles in Figure 11, which represent AOM 

coupled to sulfate reduction (steady state ΔG = -34 kJ mol-1 CH4).  However, both processes are 

stoichiometrically equivalent and would therefore retain the same general trend of increasing 

favorability with depth and temperature.  Favorability, though, must be considered in light of 

maintenance energy.  The benefit of increased thermodynamic potential for sulfate dependent 

AOM in deeper, hotter, and more acidic sediments is likely overshadowed by the increase in 

maintenance energy requirements under harsher conditions.  While an increase in temperature by 

20°C increases the Gibbs energy yield by approximately 10 kJ/mol CH4 (Figure 11A; 8 e
-
 

transferred per mole CH4 oxidized), this same change in temperature increases the power 

requirement of maintenance energy by an order of magnitude (Tijhuis et al., 1993).  The shifting 

balance between AOM energy yield and maintenance energy of thermally stressed cells is likely 

to limit the temperature range of AOM. 
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Figure 11. Gibbs energy, ΔGr, of AOM with sulfate in five individual cores. A) Calculations 

are based on dynamic pH values extrapolated from measured temperature-pH curves at distinct 

Guaymas sites to the samples from this study.  At higher temperatures pH becomes very low (ca. 

2) thereby increasing the favorability of the reaction.  B) Calculations are based on a fixed pH 

value of 5.9 taken from the literature (Von Damm et al., 1985).  More detailed information can 

be found in the supplementary text. 

 

 In the following section, I will use clone distributions from different depths of the five 

examined cores to assess the biogeography of microbes in Guaymas Basin hydrothermal 

sediments. I will discuss microbial distributions in terms of temperature regime, however, 

geochemical conditions (e.g., electron donors, electron acceptors, and pH) vary along with 

temperature.  Therefore, a group of organisms that appears to favor a given temperature regime, 

may in fact be constrained by some environmental variable other than temperature.  

 Clone recovery of 16S rRNA genes shows downcore zonation patterns of archaeal and 

bacterial communities towards increasing temperatures in the shallow subsurface sediments 

(Figure 9).  Members of the MG-1 archaea are only detected in surficial sediments of the 

background core.  These potentially oxygenated, non-hydrothermal sediments match the habitat 

requirements of MG-1 phylotypes that predominate in cold, oxic marine surface sediments 

(Durbin and Teske, 2010).  Similarly, MBGD and MBGB archaea also occur in colder 

sediments, primarily in the background and non-mat cores.  Unlike the MG-1 archaea, MBGB 

and MBGD inhabit deeper, anoxic sediments as well as the upper oxygenated layers.  The 

MBGD archaea increase in clone library representation with depth in the coldest core, consistent 

with their role in the degradation of detrital proteins in cold, anoxic sediments (Lloyd et al., 

2013).  Conversely, MBGB archaea make up approximately 20% of the recovered clones in the 

surficial and deep layers of the background core, which fits well with their wide-ranging habitat 

preferences including surficial and anoxic sediments (Teske and Sørensen, 2008).  16S rRNA 
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gene recovery was high for members of the MCG in the deepest depth interval of cores 4569-2 

and 4571-4, with in situ temperatures of approximately 46°C and 61°C, respectively.  Based on 

single cell genomic analysis (Lloyd et al., 2013), gene expression analyses (Meng et al. 2014), 

and stable isotope probing (Seyler et al., 2014), the MCG archaea are generally regarded to be 

anaerobic heterotrophs, which is consistent with their prominence in the deeper layers of these 

cores.  MCG clones recovered from this study belong to subgroups MCG-7, -13, -3, -8, -15, and 

-16 of this phylum, as defined previously (Kubo et al., 2012).  Representatives of the DHVE-6 

group were most prominent in the surface layer of 4569-2 at a temperature of 6.1°C and at depth 

in core 4571-4 where the temperature is 61°C.  These two sediment layers are very distinct from 

one another both thermally and geochemically, possibly indicating the versatility of DHVE-6 

archaea or the accumulation of relict DHVE-6 DNA in deeper layers of core 4571-4.  Of the five 

cores examined, these two have the highest total sulfide content, which is consistent with the 

occurrence of DHVE-6 OTUs in hydrothermal sediments in Iheya Basin characterized by 

disseminated sulfides (Takai and Horikoshi, 1999).  Members related to the genus 

Archaeoglobus are present in all three of the Beggiatoa mat transect cores and appear to be 

somewhat enriched in deeper, hotter sediment layers (Supplementary Figure S3B).  Most of the 

clones are related to three species of hyperthermophilic sulfate or sulfite reducers (A. profundus, 

Burggraf et al., 1990; A. veneficus, Huber et al., 1997; A. fulgidus, Beeder et al., 1994), 

consistent with their sulfidic sediment habitat (Figure 8).  Some Archaeoglobales clones are 

related to Ferroglobus placidus, a nitrate-reducing iron oxidizer (Hafenbradl et al., 1996) 

indicating that the role of Guaymas Archaeoglobales may not be restricted to sulfur cycling.   

 Making up 48% of the total archaeal 16S gene recovery, the ANME archaea represent the 

largest fraction of the total archaeal clone library.  All ANME OTUs were related to the ANME-
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1 and ANME-2c archaea; they were exclusively recovered from sites associated with 

hydrothermal activity (Figure 11a).  The background core, with negligible methane 

concentrations (≤0.01mM), did not yield any ANME phylotypes.  ANME-2c archaea are 

prevalent in Guaymas sediments but also appear to be thermally/geochemically restricted; 16S 

rRNA gene recovery demonstrates ANME-2c presence only in the cool core (4569-4) and the 

cool surface layers of the two warm cores (4569-2, 4571-4).  ANME-1 archaeal phylotypes were 

present in the cool, warm, and hot cores in both the surface and deep sediment layers.  

Investigation of the ANME-1 group at higher resolution permits parsing out thermally structured 

subgroups.  The ANME-1 Guaymas group, a separate ANME-1 lineage that is distinct from the 

widely distributed ANME-1a Guaymas and ANME-1b groups (Biddle et al., 2012; Merkel et al., 

2013), appears to be enriched in clone libraries as temperatures increase in the hottest core 

(4569-9), dominating clone library recovery in the deepest layer at 84°C.  ANME-1 Guaymas 

archaea are a group of putatively thermophilic anaerobic methane oxidizers that are consistently 

recovered from hot Guaymas sediments (Teske et al., 2002; Biddle et al., 2012; Merkel et al., 

2013).  In consideration of the previous conclusion that 80°C represents an approximate upper 

thermal limit for the process of AOM, these occurrence patterns suggest that the ANME-1 

Guaymas archaea are the anaerobic methane oxidizers that persist at geochemical conditions near 

the upper temperature limit of this process, either as a result of high temperature specialization, 

or due to a wide temperature range combined with high temperature tolerance of ANME-1 

Guaymas archaea or some other controlling variable such as pH.  All other ANME-1 Archaea 

demonstrate the opposite trend with increasing temperatures, becoming less dominant as a 

fraction of the Archaeal clone library.  Small-scale phylogenetic clusters within ANME-1 

account for previously named Guaymas groups (ANME-1a Guaymas I and II, Biddle et al. 2012) 
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as well as the here proposed ANME-1a Guaymas III, which is represented by seven clones from 

high temperature sediments (Figure 10).  From the clone library sequences it appears that 

ANME-2c Archaea are associated with cooler sediments (<20°C), most ANME-1 Archaea 

tolerate warmer sediments, and the ANME-1 Guaymas group may be specialized thermophiles 

that can access the methane pool residing at higher temperatures.   

 Bacterial 16S rRNA gene clones were recovered from all samples except the two hottest 

depths (4569-9B and 4571-4B).  Members of the phylum Chloroflexi were the most abundant 

bacterial clones and were found in nearly every sample.  However, while most Chloroflexi do not 

show a specific habitat preference among the Guaymas sediment cores, a specific Chloroflexi 

cluster occurred primarily in the deepest, presumably anoxic sediments of the two coldest 

cores—4567-28 and 4569-4 (n=39 out of 41 clones; Supplementary Figure S3B).  The latter 

includes Dehalococcoides ethenogenes (AF004928) and its close relative Dehalogenimonas 

lykanthroporepellens, anaerobic bacteria most notably capable of reductive dehalogenation of 

groundwater pollutants (Moe et al., 2009).  Gammaproteobacteria were a dominant group in 

surface sediments that are influenced by oxygenated, cool bottom water.  Although three of the 

five cores were retrieved from active Beggiatoa mats, only one gammaproteobacterial clone was 

a member of the candidate group Maribeggiatoa, consistent with the requirement to remove 

bacterial epibionts and contaminants before PCR amplification of these large bacterial filaments 

(Teske et al., 1999; McKay et al., 2012).  Similar to the Gammaproteobacteria, members of the 

phylum Bacteriodetes were also dominant in surface sediment samples and only a single clone 

was recovered from a deeper layer.  Although these heterotrophic bacteria occupy very diverse 

marine sedimentary habitats worldwide (Kirchman, 2002), they are limited to the cool surficial 

layer of Guaymas hydrothermal sediments.  Clone recovery for Epsilonproteobacteria was 
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strong for the surface sediments of three hottest cores, all of which were characterized by 

Beggiatoa mat cover, while no clones were recovered from the background sediment and from 

cool cores without microbial mat cover.  Epsilonproteobacteria dominate many microbial mats 

and/or sulfur oxidizing communities (Engel et al., 2003; Moussard et al., 2006; Sievert et al., 

2008) due to their physiological capacity to use multiple electron acceptors including oxygen, 

nitrate, sulfite, and elemental sulfur (Campbell et al., 2006).  This suggests that Guaymas 

Epsilonproteobacteria may require direct or indirect hydrothermal energy sources but are 

thermally/geochemically restricted to the cool surface layers of active hydrothermal sediments.  

The next most abundant group falls within the WS3 cluster for which 12 clones were recovered, 

thus expanding the previously sparse sequence database for WS3 bacteria (Dojka et al., 1998).  

The WS3 bacteria occur in different sediment samples and may have broad habitat compatibility; 

however, the WS3 bacteria that exclusively colonize surficial sediments differ phylogenetically 

from those that are less discriminate (Supplementary Figure S3b).  The detection of WS3 clones 

in surficial sediments does not establish aerobic metabolism—a 0-3cm section of mud from a 

Guaymas Basin microbial mat likely crosses the anoxic boundary (see Gunderson et al., 1992)—

and there is no demonstrated preference for hydrothermally affected versus inactive sediments.  

Thus, the WS3 cluster that associates with surficial sediments may be controlled by electron 

acceptor availability, but the preferred electron acceptor remains unclear.  Other notable bacterial 

groups represented in the clone library were Planktomycetales, the JS1 group, and an unknown 

monophyletic group, accounting for 13, 11 and 9 of 310 clones, respectively.  Clones from 

Planktomycetales were most common in surficial layers in hydrothermally active as well as 

inactive sediments, JS1 clones were mostly associated with the deepest layer of the inactive 

background core, and Spirochaetes were present in nearly every sample type.  The remaining 
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clones belonged to the following groups: OP1 (7/310), Thermotoga (6/310), 

Thermodesulfobacteria (3/310), Caldiserica (4/310), Firmicutes (5/310), Chlorobi (3/310), and 

Alphaproteobacteria (3/310), while 21 of 333 clones were not identifiable. 

 The second and third most abundant bacterial groups were the Deltaproteobacteria and 

the Hot Seep 1 group (Figure 10B), respectively, both of which are often associated with sulfate 

reduction (Muyzer and Stams, 2008; Holler et al., 2011).  The prevalence of sulfate reduction as 

a key physiology in Guaymas sediments is supported by several lines of evidence:  the common 

recovery of Deltaproteobacteria and Hot Seep 1 16S rRNA or dissimilatory sulfite reduction 

gene clones from Guaymas sediments (Holler et al., 2011; Biddle et al., 2012), sulfate reduction 

rate measurements (Meyer et al., 2013; Weber and Jørgensen, 2002), and the strong sulfide 

accumulation observed in all hydrothermally affected cores.  An investigation of bacterial 

phylum-level phylogeny shows that, contrary to previous assumptions, the Hot Seep 1 group and 

the Hippea-Desulfurella cluster are deeply-branching lineages that cannot be included in the 

Deltaproteobacteria (Supplementary Figure S5).  Closer examination of Deltaproteobacteria 

and Hot Seep 1 clones at the family to genus level reveals that the aptly named Hot Seep 1 

bacteria (Holler et al., 2011) were recovered exclusively from the three hottest cores (Figure 

10B).  Sulfate is plentiful and there is evidence of sulfide accumulation at these depth horizons, 

supporting the putative association of the Hot Seep 1 group with the process of sulfate reduction 

in hydrothermal sediments.  Desulfosarcina-related clones were recovered from a wide range of 

habitat types including the middle depth of the hottest core (4569-9 M), the top layer of the cool 

core adjacent to the mat (4569-4 T), and the deepest layer of the non-hydrothermal background 

core (4567-28 B) (Figure 11B).  The genus Desulfosarcina is a frequently detected marine 

sulfate reducer (Ravenschlag et al., 2000; Mußmann et al., 2005; Muyzer and Stams, 2008), and 
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the detection of Desulfosarcina-related phylotypes supports the assertion that sulfate reduction is 

a pervasive process throughout the physicochemically variegated microenvironments of 

Guaymas Basin.  Recovery of 16S rRNA gene clones related to Deep Seep 1 Deltaproteobacteria 

was greatest in the deepest section of the cool core with no microbial mat cover.  Previously 

Deep Seep 1 clones have been recovered from gas/oil seep and hydrate sediments in the Gulf of 

Mexico (AY211659, Mills et al., 2005; AM746084, FN421248, Orcutt et al., 2010), which is 

consistent with their presence in 4569-4 B that has methane concentrations in the mM range.  

Sulfide and DIC accumulation at this sediment layer indicates the possibility that Deep Seep 1 

bacteria here might be participating in sulfate reduction similar to other deltaproteobacterial 

genera.  Another notable deltaproteobacterial group implicated by clone recovery in Guaymas 

sediments is Eel-2 (Orphan et al., 2001).  Presence of this group is strongest in the middle 

sediment layer of the hottest core (4569-9 M) where a peak in sulfide accumulation coincides 

with isotopically light DIC and isotopically heavy methane.  Consistent with this occurrence, 

Eel-2 was previously discovered to be the dominant bacterial group in the surface and shallow 

subsurface of a microbial mat covered hydrothermal seep in the Gulf of Mexico (Lloyd et al., 

2010).  The presence of Eel-2 bacteria in these warm, sulfide-rich sediments fits nicely with the 

recent description of Dissulfuribacter thermophilus, an elemental sulfur-reducing and 

thermophilic member of the Eel-2 cluster (Slobodkin et al., 2013). 

 To assess which factors impart the strongest influence on biogeographical zonation of 

microbial groups, PCA was performed on the sequence data categorized by environmental 

sample (Figure 12).  For archaea, and not bacteria, environmental samples cluster in accordance 

with variability in hydrothermal activity.  In other words, the most hydrothermally influenced 

five samples (dashed circle) are characterized by similar archaeal diversity, while the less 



53 

hydrothermally influenced samples (dotted circle) group within the lower left quadrant, and the 

two non-hydrothermal samples fall within the upper left quadrant.  Interestingly, bacterial clones 

present no such hydrothermal-affiliated diversity.  Previous analyses also indicated that bacterial 

diversity was similar regardless of influences by Guaymas sediment temperatures (Meyer et al., 

2013).  It should be noted, however, that since no bacterial clones were recovered from the two 

hottest samples, environmental sample clustering is restricted to a lower temperature range for 

bacteria than for archaea and it is possible that hydrothermal influences cannot be as clearly 

elucidated.  Even the non-hydrothermally active samples, though, are not distinguishable from 

hydrothermal seep samples according to bacterial diversity, as they are for archaeal diversity.   
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Figure 12.  Principal components analyses of the microbial diversity according to 

environmental sample.  16S rRNA gene derived phylogeny, based on a 3% OTU designation, 

and corresponding sampling locations demonstrate differential clustering patterns for microbial 

diversity.  A) Clustering of similar environmental samples is maintained by the first two 

principle components, representing 24.30% and 13.34% of the total variance in archaeal 

diversity.  Samples cluster into three main groups including high hydrothermal activity (dashed 

circle), low-to-medium hydrothermal activity (dotted circle), and no hydrothermal activity (upper 

left quadrant).  B) Bacterial diversity imparts no clustering pattern on environmental samples.  

When plotted against the first two principle components representing 17.91% and 15.33% of the 

total variance in bacterial diversity, samples appear randomly distributed. 

 

Synthesis and Conclusions 

Shallow subsurface temperatures can reach extreme levels in just 40 cm depth in Guaymas Basin 

sediments, limiting microbial colonization to thermally tolerable surface sediments.  Although 

the thermodynamic potential for AOM increases with increasing depth and temperature, at 

temperatures beyond approximately 80°C and 100°C, the 
13

C-isotopic signatures of microbial 

anaerobic oxidation of methane and organic matter remineralization appear to be thermally 

restricted towards the values previously reported for methane and DIC in hydrothermal 

endmember fluids.  Candidates for biogenic signatures of anaerobic oxidation of methane and 

organic matter remineralization to DIC appear below these temperature limits.  This observation 

should not be interpreted as a definitive conclusion of the thermal constraints on AOM and 

OMR, but rather the statement of an observed correlation that needs further investigation. 

Putative methane consuming archaea dominate the archaeal clone library and sulfur cycling 

bacteria dominate the bacterial clone library, consistent with the porewater geochemical evidence 

of these physiological modes and their previously suggested association across multiple habitat 

types (Boetius et al., 2001; Knittel and Boetius, 2009).  Archaeal clone library data suggest that 

the ANME-1 Guaymas archaea tolerate high in situ temperatures up to approximately 80°C, 

thereby gaining an advantage in access to the geothermal methane pool in hot Guaymas Basin 
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sediments.  Lastly, the results indicate that in situ thermal and/or geochemical gradients structure 

archaeal community composition and biogeography more than bacterial biogeography. 
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CHAPTER 3:  ACTIVE MICROBIAL LIFE IN HIGH TEMPERATURE GUAYMAS 

BASIN SEDIMENTS 

 

Introduction 

At 2000 m water depth in the Sea of Cortez, Guaymas Basin is a 3.5Mya hydrothermally 

active spreading center characterized by abundant sources of carbon and energy.  A mixture of 

productive surface waters and terrestrial runoff coats the basalt crust of Guaymas Basin with a 

300-400m thick layer of organic rich sediments, which are heated directly or indirectly by 

magmatic intrusions embedded within the sediment layers (Einsele et al., 1980).  Hydrothermally 

active sites of varying intensities are distributed along the spreading center (Lonsdale and 

Becker, 1985); in many areas the seafloor sediments appear no different from cold open ocean 

regions while in others thick and colorful Beggiatoa mats indicate hydrothermal seepage and 

circulation through the sediment-water interface (Jannasch et al., 1989; Gunderson et al., 1992).  

Active seeps are rich in carbon and energy sources and fuel a diverse subsurface microbial 

community primarily made up of methanotrophic, methanogenic, and sulfate reducing archaea 

and bacteria (Teske et al., 2003).  Bottom water at Guaymas Basin has a temperature of 

approximately 3°C, and, in especially active sediments, temperatures can increase up to 200°C in 

the first 40 cm (McKay et al., 2012).  Thus, the abundant carbon and energy sources at Guaymas 

Basin come with the microbial cost of tolerating high and/or fluctuating temperatures.  Here, the 

activity of microbial communities in four very hot subsurface environments is investigated by 

pyrosequencing of reverse-transcribed RNA from archaea and bacteria. 

 This study focuses on sequencing 16S ribosomal RNA (rRNA) instead of rDNA (16S 

rRNA genes) under the assumption that RNA is less stable extracellularly than DNA and is thus 
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more representative of the living microbial community.  RNA also reflects gene expression and 

thus microbial activity more directly than DNA, which may indicate the presence of cells or 

cellular genomes. It has been reported that extracellular DNA may account for up to 90% of total 

DNA in the upper 10 cm of oceanic sediments (Dell’Anno and Danovaro, 2005), and DNA-

based studies of community composition may thus yield misleading results.  However, although 

RNA degrades relatively rapidly and is a better indicator of both life and activity than DNA, 

microorganisms have multiple intracellular copies of rRNA which are not always uniformly 

expressed across diverse species.  For instance, expression of rRNA may change according to 

cell mass (Gausing, 1977) due to differential regulatory mechanisms inherent to diverse 

microorganisms (Wagner, 1994).  To this end, abundant sequence recovery from an rRNA 

starting point may indicate an especially active microbial group, or a group that requires a 

relatively large pool of rRNA for cellular maintenance.  Regardless, analyzing rRNA instead of 

rRNA genes provides an additional safeguard to avoid false positive sequence-based detection of 

microbial life, which is especially important in this investigation of the high temperature fringe 

of viability. 

 Remarkably, very few studies have investigated high temperature life in the natural 

environment via RNA-based techniques, and virtually none have examined detailed phylogeny 

from RNA sequence recovery.  To my knowledge, the highest temperature at which RNA has 

been successfully extracted from a natural sample is 82°C; the RNA extract was used to quantify 

relative abundance of archaea and bacteria by rRNA slot blotting in a shallow-water 

hydrothermal seep in the Mediterranean Sea (Sievert et al., 2000).  Although the currently 

established high temperature limit for laboratory-grown life is 122°C (Takai et al., 2008), this 

temperature extreme may be unsustainable in the environment, where energy and substrate 
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limitations may translate into more moderate thermal limits of life for microorganisms in situ.  

The following investigation examines the thermal and geochemical conditions of high 

temperature microbial life in the hydrothermal sediments of Guaymas Basin and provides a 

detailed examination of phylogenetic diversity based on reverse-transcribed rRNA. 

Materials and Methods 

Core and temperature sampling 

Using the Alvin submarine’s heat flow temperature probe 40 cm temperature profiles 

were measured at sites of hydrothermal activity, as indicated by the presence of microbial mats.  

During dives 4562, 4565, 4572, and 4573, 3-inch diameter push cores containing around 35-40 

cm of sediment were taken adjacent to temperature probe measurements at four very hot sites 

with subsurface temperatures at 30 to 40 cm depth up to ca. 175°C.  Following retrieval from 

Guaymas sediments the cores were exposed to ex situ low temperatures during the 2-hr ascent 

and prior to sectioning for a maximum of 8 hours.  Aboard the RV Atlantis the cores were 

sectioned in 3-cm intervals and each layer was split into two subsamples for geochemical and 

molecular biological analyses.  Subsamples for molecular biological analyses were frozen 

immediately after sectioning in liquid nitrogen and stored at -80°C until processing in Chapel 

Hill.  Cores 4573-16 and 4572-18 retrieved sediments adjacent to temperature logging probes 

that recorded in situ temperatures every five minutes for eight days prior to coring.  It is 

important to note, however, pushcores were taken by the Alvin submersible as close as possible 

to the temperature logging probes but may have been 10cm away, and considerable changes in 

the temperature regime may occur within this lateral shift. 
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Sample preparation and measurement of carbon and sulfur geochemistry 

For methane, 5.0 ml of sediment from each section was mixed with 2.0 ml 1M NaOH in a 

30 ml serum vial, sealed, mixed well, and stored at -20°C until laboratory analysis in Chapel 

Hill.  All remaining geochemical measurements were measured from porewater, which was 

obtained by centrifugation of sediments in 50-ml Falcon tubes at 3000 rpm for 15 min.  The 

supernatant from each sediment horizon was subsequently filtered through 0.22 µm 

polycarbonate filters and divided into aliquots for DIC, sulfate, and sulfide measurements.  For 

DIC, 2.0 ml of porewater was injected into evacuated 30-ml serum vials and stored upside down 

at -20°C until laboratory analysis.  Stable isotopic values and concentrations of methane 

(measured directly from whole sediment samples) and DIC (from porewater) were measured 

with a Hewlett Packard 5890 Gas Chromatograph coupled with a Finnegan Mat 252 Isotope 

Ratio Mass Spectrometer at the University of North Carolina at Chapel Hill.  For sulfide 

quantification, 1.0 ml of porewater was mixed with 0.1M zinc acetate in a 2-ml microcentrifuge 

tube and stored at 4°C until shipboard spectrophotometric analysis as previously described 

(Cline 1969).  For sulfate 1.0 ml of porewater was mixed with 50 µl of 50% HCl in a 2-ml 

microcentrifuge tube, bubbled with nitrogen gas for four minutes and stored at 4°C until 

shipboard analysis.  Sulfate concentrations were analyzed shipboard by a 2010i Dionex ion 

chromatograph (Sunnyvale, CA) as previously described (Martens et al., 1999). 

RNA extraction, processing, and reverse transcription PCR (rtPCR) 

Selected sediment layers were thawed in trichloroacetic acid (TCA) lysis buffer, bead 

beaten, and then nucleic acids were precipitated by the addition of 0.6 volume isopropanol 

overnight at -20°C (McIlroy et al., 2008).  Precipitated nucleic acids were resuspended in water 

and extracted via a sequence of multiple separations with low-pH (5.1) phenol, phenol-
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chloroform, and chloroform, and subsequently precipitated overnight at –20°C in 0.7 by volume 

isopropanol and 0.5 by volume ammonium acetate (Lin et al., 1995; MacGregor et al., 1997).  

Nucleic acid pellets were resuspended in nuclease free water, purified using the RNeasy RNA 

cleanup kit (Qiagen, Germantown, MD) and one or more DNase treatments, using Turbo DNase 

I (Thermo Fisher Scientific, Waltham, MA)  either on the column during RNeasy cleanup or in 

solution or both, were necessary to eliminate PCR-detectable DNA.  Because post-extraction 

RNA concentrations in most samples were extremely low (< 1 ng µl
-1

), PCR amplification of 

reverse-transcribed extracted RNA was necessary to achieve adequate concentrations for 

downstream 454 pyrosequencing.  Resuspended rRNA was reverse transcribed to cDNA and 

amplified at the 787 – 1391 nucleotide position (corresponding to the 16S rRNA gene from E. 

coli) with the SuperScript® III One-Step RT-PCR system with Platinum® Taq DNA Polymerase 

(Thermo Fisher Scientific, Waltham, MA) according to the recommended reaction conditions.  

For targeted amplification of the V5 – V8 region of 16S rRNA for archaea and bacteria, 

universal forward primer 787 (5′-ATTAGATACCCNGGTAG-3′) (Roesch et al., 2007) and 

universal reverse primer 1391 (5′-ACGGGCGGTGWGTRC-3′) (Lane et al., 1985; Jorgensen et 

al., 2012) were used in the reaction.  To confirm the absence of DNA in RNA samples, 

duplicated PCR reactions were performed on all samples without the addition of the reverse 

transcriptase enzyme.  Successful RT-PCR amplifications were analyzed for product length by 

gel electrophoresis and subsequently extracted from the gel using the Wizard SV Gel Cleanup kit 

from Promega (Madison, WI).   

454-pyrosequencing and analysis 

Reverse-transcribed and PCR-amplified V5-V8 fragments of 16S rRNA, now in the form 

of DNA, were submitted to the Microbiome Core Facility at UNC-Chapel Hill for barcoding and 
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454 pyrosequencing (Roche, Branford, CT).  Sequences were filtered for quality with the split 

libraries and de novo operational taxonomic unit (OTU) picking commands in Qiime, which 

requires a built-in PyNAST generated alignment (Caporaso et al., 2010).  OTU limits were 

designated at 97% sequence similarity, and the resulting OTUs were used for initial assessments 

of alpha diversity from rarefaction analysis and principle component analysis-based beta 

diversity across samples.  OTU networks were created with Qiime and analyzed with Cytoscape 

v2.8.0 software (Cline et al., 2007), which was also used to make OTU network figures.  ARB 

software was used to generate neighbor-joining 16S rRNA phylogenetic trees using the Jukes-

Cantor correction, bootstrapped at 500 iterations.  Trees were based on modified Silva 

alignments of Qiime-picked OTUs and were built for total archaea, total bacteria, methane 

processing archaea, Deltaproteobacteria, and Epsilonproteobacteria.  An additional tree was 

generated from co-occurring OTUs across the four hottest samples as indicated by the OTU 

network.   

Results and Discussion 

Thermal and geochemical structure of sediment cores 

Profiles of temperature, methane and DIC concentrations, stable isotopic values of 

methane and DIC, and sulfate and sulfide porewater concentrations describe, in part, the 

physicochemical environments of each of the four high temperature sedimentary environments 

sampled by Alvin push coring (Figure 13).  All sample sites have temperatures that reach above 

100°C at depth, with a maximum subsurface temperature of 185°C in core 4573-16 at 40 cmbsf.  

While these four sites reach the highest sediment temperatures measured in shallow Guaymas 

sediments (McKay et al., 2012) and are presumably highly influenced by the hydrothermal 

system, the porewater concentrations and isotopic signatures of carbon and sulfur species are 
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quite distinct across these cores.

 

Figure 13. Shallow sediment profiles of temperature, methane concentrations and isotopes, DIC 

concentrations and isotopes, and sulfate and sulfide concentrations from four high temperature 

push cores sampled in Guaymas Basin. 

 

Methane concentrations are supersaturated and generally range from around 2 mM to 6 

mM with sharp peaks up to ca. 10 mM and 15 mM in cores 4573-16 and 4572-18, respectively.   

Although methane is abundant, microbial processing by anaerobic oxidation of methane 

(AOM)—as indicated by a deviation in stable isotopic values of methane towards more 
13

C-

enriched values—is only evident near the surface of core 4572-18.  This probable occurrence of 

AOM coincides with a sharp decrease in methane concentrations towards the sediment surface.  

Measured ex situ high methane concentrations above 1 to 1.5 mM should be interpreted 

cautiously due to probable outgassing during core retrieval, and most likely underestimate the in 
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situ methane concentration.  Apart from the δ
13

C-methane deviation in 4572-18, values in all 

cores are consistent with the signature of thermocatalytically altered methane at Guaymas Basin 

at -43‰ (Pearson et al., 2005; Welhan and Lupton, 1987; chapter two of this dissertation).  And, 

while the subsurface temperature maximum reaches 100°C in core 4572-18, the near-surface 

layer in this core suggestive of AOM has an in situ temperature of approximately 60-70°C and 

does not exceed the predicted upper thermal limit of AOM at 80°C (chapter two of this 

dissertation). 

DIC concentration profiles are rather distinct across the four coring sites, ranging 

between 5 mM and 50 mM with notable peaks near the surface of core 4572-18 and at depth in 

core 4573-16.  Stable isotopic values of DIC range between -22 ‰ and 0 ‰.  Like δ
13

C-methane 

values, microbial processing is implicated at the same shallow layer in core 4572-1. Here, a local 

minimum in δ
13

C-DIC values indicates microbial remineralization of organic matter or a 

methane-derived contribution to the DIC pool, and co-occurs with a peak in DIC concentrations 

that reaches approximately 25 mM.  By contrast, the conspicuous peak in DIC concentrations up 

to 50 mM between 30 and 33 cmbsf in 4573-16 coincides with a slight 
13

C-enrichment of DIC 

towards -5 ‰, suggesting that this source of DIC may be abiogenic.  Consistently among all four 

cores, δ
13

C-DIC tends to become more 
13

C-enriched towards values > -5 ‰ downcore, a source 

signature of most likely abiogenic δ
13

C-DIC as downcore temperatures become incompatible 

with life.  This abiogenic DIC source falls within the range of previous δ
13

C-DIC measurements 

of Guaymas Basin bottom water at -0.6 ‰ (Pearson et al., 2005) and Guaymas hydrothermal 

venting fluids at -9.4 ‰ (Seewald et al., 1998).  It should also be noted that in some cases 

downcore DIC accumulation is insufficient to account for the amount of sulfate reduction 

implicated by the decreasing sulfate profiles.  Under acidic sedimentary conditions, which may 
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be likely (see discussion of Figure 11 in Chapter 2 of this dissertation), most DIC would be in the 

form of CO2 and thus ebullition from the sediments during retrieval provides a possible 

explanation for missing downcore DIC.  These data show that the Guaymas sediments are a 

highly dynamic, DIC and methane-rich sedimentary habitat where numerous physical and 

chemical processes that cannot be systematically disentangled impact DIC and methane 

gradients at any given sampling site. 

Sharply decreasing sulfate concentration profiles characterize the surface layers of all 

four cores, suggesting that sulfate reduction may be a dominant microbial process in very hot 

sediments.  Three out of four cores present sulfate concentration profiles that decrease from a 

bottom water concentration of presumably 27-28 mM to nearly 0 mM while core 4572-18 is 

again the outlier, decreasing to a local minimum of 8 mM around 10 cm depth.  Interestingly, at 

depths below the troughs of sulfate depletion in every core sulfate concentrations increase either 

slightly (cores 4562-3 and 4573-16) or considerably (cores 4572-18 and 4565-3) with increasing 

depth.  This observation is consistent with previous studies of sulfur cycling in Guaymas Basin, 

where sulfate concentration profiles appear to be impacted by subsurface hydrothermal 

circulation and mixing and are not controlled by diffusion (Weber and Jorgensen, 2002; Elsgaard 

et al., 1994).  Due to the prevalence of downcore increases in sulfate concentrations—which, 

including this study, have been observed in at least nine cores at Guaymas Basin (Biddle et al., 

2012; McKay et al., 2012)—we hypothesize that dynamic circulation processes in shallow 

Guaymas sediments may replenish deeper sediments with seawater sulfate, and overprint 

microbial sulfate consumption.  Microbially generated sulfate depletion re-emerges in cooler 

sediments with attenuated hydrothermal circulation and mixing. Support for this hypothesis is 

evident when core 4572-18 is considered together with two other cores making a three-core 
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transect across a Beggiatoa mat; as sediments become cooler away from the center of the mat, 

sulfate concentration minima move deeper (McKay et al., 2012).  Slight increases in sulfate 

concentrations towards the bottom layers of cores 4562-3 and 4573-16 may result from seawater 

intrusion during the sampling process. 

Sulfide concentrations are less than 4 mM in all cores, with a maximum concentration 

3.3 mM in core 4572-18 at 7.5 cmbsf.  In all cores except 4565-3 sulfide increases from low 

concentrations at the sediment-water interface to higher concentrations as sulfate concentrations 

decrease.  In core 4565-3, which has the most immediate depletion of sulfate at the surface, 

sulfide concentrations are highest at the surface and decrease steadily downcore.  This suggests 

an extremely active sulfate reducing community in the first few cm of sediment of all cores, but 

especially in 4565-3.  None of the cores exhibit sulfate and sulfide concentration profiles in 

stoichiometric agreement with one another, which may indicate the presence of elemental or 

intermediate, partially oxidized sulfur species.  The absence of a sulfate-sulfide balance may also 

result from sequestration of reduced sulfur species by iron, which effectively removes them from 

the pool of microbially processed sulfur.  Lastly, the possibility of hydrothermal sulfide sources 

means that a stoichiometric balance of sulfate and hydrogen sulfide in the surface sediments is 

not always a reasonable expectation.  

Examination of alpha and beta diversity 

RNA extractions, conversions of the V5-V8 region of 16S rRNA to cDNA (crDNA), and 

subsequent amplifications were attempted at 12 depth horizons of the four cores presented in 

Figure 13.  For every depth where RNA extraction, conversion to cDNA, amplification, and 

sequencing was successful (grey bars, Figure 13), the directly adjacent deeper layer in each core 

failed after multiple attempts at a step in the full protocol, or was contaminated with DNA.  For 
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three samples, P1, P7, and P8, RT-PCR product replicates were sequenced to assess uncertainty 

in coverage of microbial diversity by the chosen extraction, amplification, and sequencing 

methods.  Because universal primers that target both archaea and bacteria were utilized, 

rarefaction alpha diversity (observed OTU method) analysis and PCA beta diversity analysis 

were performed together on bacteria and archaea for all samples including replicates according 

to observed OTUs (3% threshold) (Figure 14).     

Figure 14. Observed OTU rarefaction (A) and PCA of beta diversity (B) for all samples 

including replicates. 

 

Rarefaction curves do not reach saturation for any samples indicating that total diversity 

was not fully sampled.  Chao1 estimates of species richness for each sample are listed separately 

for archaea and bacteria (Table 3).  According to the Chao1 estimates of species richness 

archaeal diversity increases in the following sample order, starting with the least diverse sample 

and ending with the most diverse:  P3, P8, P32, P2, P4, P7, P1, P28.  Bacterial diversity increases 

in the following order: P28, P32, P2, P3, P8, P7, P1, P4.  The percentage of OTU richness 

sequenced was estimated by dividing the observed OTUs by the Chao1-predicted OTU number 

in each sample, and demonstrates that archaeal diversity was relatively well-sequenced in each 

sample (>50%) while samples P2 and P3 were poorly sequenced in terms of bacterial diversity 
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(<50%) (Table 3).  Coverage of bacterial diversity was particularly poor in sample P2 (27%) as 

only 13 sequences were recovered.  This sample was dominated by archaeal sequences which 

covered 58% of estimated archaeal diversity.  

  

Table 3. Recovery of total, archaeal, and bacterial sequences, Chao1 OTU richness estimates, 

and coverage of diversity for all samples.  To achieve the highest possible sequence numbers, 

replicate samples were combined following initial analyses of alpha and beta diversity (Figure 

14).  Separated archaeal and bacterial Chao1 and diversity coverage are therefore presented for 

samples after replicates were combined and not presented separately for replicate samples.   

 

A PCA plot of beta diversity between all samples including replicates demonstrates the 

likeness of samples according to initial taxonomic assignments of OTUs by UCLUST (Edgar, 

2010) within each sample (Figure 14B).  Even though sample P1 has the greatest estimated 

species richness, replicate samples P1A, P1B, and P1C still cluster more closely with each other 
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than with any other sample.  Replicate samples from P7 and P8 all cluster tightly together except 

for P7B, which only had a total sequence recovery of 54.  Elevated beta diversity between 

replicates of sample P7 is probably an artifact of relatively low sequence numbers in a highly 

diverse sediment horizon.  The tight clustering of P7A,C and P8A,B replicate samples is not 

surprising given that these come from two adjacent sediment layers.  Interestingly, this is not 

always the case; sample P3 and replicates of sample P1 are more similar in diversity to each 

other than to sample P2, located in the intervening sediment layer with distinct carbon and sulfur 

chemistry (Figure 13).  The beta diversity of replicate and non-replicate samples expressed by 

PCA in Figure 14 thus confirms the suitability of the full protocol—from extraction to 

sequencing—to draw conclusions from sampled diversity.  As a caveat, though, the extreme 

dissimilarity between sample P2 and adjacent sample P3 indicates that in some cases three-cm 

sediment intervals may be too coarsely resolved to identify small-scale changes in diversity.  

Additionally, attempts to assess methodological effects on beta diversity were unsuccessful due 

to low nucleic acid concentrations and failed sequencing efforts. Future work is needed to 

evaluate to the extent to which the observed variability reflects a biological response to small-

scale variations in the geochemical or thermal environment or is related to methodological 

variability.  Following this initial assessment of alpha and beta diversity, replicate samples were 

combined to yield the highest possible sequence number for each sediment layer.  In other 

words, samples P1A, B, and C are now referred to as sample P1, samples P7A, B, and C are now 

P7, and samples P8A and B are now P8.  With replicate samples collapsed, jackknifed beta 

diversity of weighted, normalized sequence information is presented for all samples 

(Supplementary Figure S8), and indicates variance in diversity between samples with confidence 

clouds.  
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Archaeal and bacterial richness versus temperature and electron acceptor availability 

Chao1 estimates of sample richness reveal relationships between decreasing predicted 

OTU numbers, temperature, and porewater sulfate concentration (Figure 15).  There is a notable 

similarity between Chao1 richness of archaea across samples and the corresponding in situ 

temperatures: as temperatures increase archaeal richness decreases.  This suggests the 

specialization of archaea into relatively few high temperature-associated groups.  As hot samples 

tend to also be deeper samples, it is possible that electron acceptor availability also acts as a 

control on microbial richness.  For archaea, the very high OTU richness estimate of the sample 

P28, at 9-12 cmbsf where porewater sulfate concentrations are extremely low, indicates that 

concentration of oxidant has less influence on archaeal species richness than temperature.  By 

contrast, bacterial richness appears to have a stronger relationship with sulfate concentration than 

in situ temperature.  As a caveat, if samples with low bacterial sequence recovery (P2 and P28, 

indicated by asterisks) are removed from this analysis, it becomes difficult to distinguish whether 

in situ temperature or porewater sulfate concentration is the more influential factor controlling 

bacterial richness.  Because of the limited number of samples in this study it is also possible that 

sample P28 is an uncommon outlier in terms of species richness; if so, it remains apparent that 

sulfate availability and temperature, whether working together or independently from one 

another, are important controls on microbial richness. 
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Figure 15.  Normalized archaeal and bacterial diversity, temperature, and porewater sulfate 

concentrations for each sample.  Chao1 estimates from table 3 were used for archaeal and 

bacterial diversity.  Two samples with low bacterial sequence numbers (< 100), P28 and P3, are 

indicated by asterisks.  Values were normalized by the highest value within each category, which 

is represented by the closest sample to the + side of the spectrum while the lowest value is 

represented by the closest sample to the – end of the spectrum.    

 

Temperature ranges and thermal fluctuations 

Because sediment cores were extracted in three-cm intervals, it is more accurate to 

consider in situ temperatures as a range between the upper and lower depths of a given sediment 

section.  Further, because these are high temperature cores that increase rapidly from ca. 3°C of 

bottom water to greater than 100°C, the temperature profiles are represented by very steep 

gradients.  Any slight error in assigning depths either to a temperature profile or a corresponding 

core section may have major consequences in associating a sample with its correct in situ 

temperature.  Further, the temperature profiles presented in Figure 13 must be interpreted as one-

time snapshots of a dynamic hydrothermal regime.  To explore fluctuations of in situ thermal 

ranges, 36-cm probes that measured temperatures every five minutes across five depths were 



72 

deposited in sediments at sampling sites where cores 4572-18 and 4573-16 would be taken eight 

days later.  Logged temperature data indicate extensive fluctuations in temperatures near the 

sediment surface of both sampling sites (Figure 16A, B) and relatively stable temperatures in 

deeper sediments below approximately 15 cm in sediments sampled by core 4572-18 (Figure 

16A).  Temperatures in the 4-cm surface layer of sediments associated with core 4572-18 

fluctuate between 20°C and 40°C, while the temperature logger associated with the hottest core, 

4573-16, reached temperatures above the maximum detection limit for all depths beyond the 4-

cm surface layer; here, in situ temperatures fluctuated between 40°C and 60°C over eight days 

(Figure 16B).   
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Figure 16A, B. Time-series temperatures profiles that recorded temperatures every five minutes 

over the course of 8 days. Temperature logging probes were deployed at sites corresponding to 

two of the four cores sampled: 4572-18 and 4573-16.  For the latter, only the upper most 

thermistor was able to record because all deeper thermistors were associated with in situ 

temperatures beyond the upper detection limit at 125°C.  Although the 8-12cm-depth thermistor 
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from the 4573-16 logger reads a temperature of approximately 90°C, this should not be assumed 

as the in situ temperature but rather the last recorded temperature before the thermistor failed.  

Examination of the one-time temperature profile for 4573-16 in Figure 13 demonstrates that the 

temperature at a depth of 8-12cm is well above 125°C. After eight days of temperature logging, 

sediment cores were retrieved from sites directly adjacent to the probes, which caused the 

temperature disturbances seen at the end of the time-series in both probes.  

 

 Sample P3, from a depth of 9-12 cmbsf in core 4572-18, represents the highest 

temperature sample with successful RNA recovery for which a thermal range can be relatively 

well-identified.  Temperatures recorded by thermistors at 0-4 cm,  8-12 cm, 16-20cm depth 

within the temperature logging probe were assumed to represent the midpoint depth of each 

range (i.e., 2cm, 10cm, 18cm), as the interior thermistor most likely recorded the average 

temperature between the top and bottom of the metal thermistor housing.   
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Figure 16C.  Minimum in situ temperatures (filled diamonds), mean in situ temperatures (filled 

squares), and maximum in situ temperatures (filled triangles) are shown for the midpoint 

depths—2, 10 and 18 cm—of the upper three temperature sensors, over the 8-day temperature 

logging period.  Interpolated minimum (open diamonds), mean (open squares), and maximum 

(open triangles) temperatures for sediments associated with the 9-12 cm section of core 4572-18 

(at 9cm, 10.5cm, and 12cm) indicate a wide range of in situ temperatures.   

 

Minimum, maximum, and mean temperatures over the eight-day logging period are plotted for 

2cm, 10cm, and 18cm sediment depth (Figure 16C).  Conservatively assuming that all RNA 

recovered from the 9 to 12-cm sediment section of 4572-18 was from the shallowest (and 

coolest) end of that range (i.e., 9cmbsf), interpolated temperatures indicate a minimum 

temperature of 68.1°C, a mean temperature of 86.6°C, and a maximum temperature of 92.9°C 

would have been experienced by the RNA-implicated microorganisms at this depth over the 

eight day logging period.  However, if recovered RNA is assumed to have been from the 10.5-

cmbsf midpoint of sample P3, minimum, mean, and maximum temperatures would be 76.8°C, 

95.8°C, and 99.7°C, respectively.  And, if the deepest extent of sample P3 (12cmbsf) yielded any 

RNA after the extraction, the eight-day temperature minimum, mean, and maximum experienced 

by microorganisms at that depth would be 83.0°C, 98.4°C, and 101.7°C, respectively, although 

this is unlikely since no RNA was recovered from the next deepest sediment section (12-

15cmbsf).  All three in situ temperature ranges for sample P3 from 9-12cmbsf in core 4572-18, 

from which rRNA was successfully reverse-transcribed and sequenced, increase the upper 

thermal extent of RNA based detection of life at high temperatures. 

16S rRNA sequence recovery and taxonomic classifications 

After extensive filtering of the sequence dataset 454-pyrosequencing of 16S rcDNA 

yielded 20,394 total sequences with assignable taxonomies within either the archaeal (9,619 

sequences) or bacterial (10,775 sequences) domains.  For six out of the eight samples the 
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majority of recovered sequences were archaeal with a bacterial majority only in samples P1 and 

P3 (Figure 17).  Total (archaeal + bacterial) sequence numbers were greatest for samples P1 

(8594), P3 (1446), P4 (3437), P28 (2095), and P32 (3319) and relatively low for samples P2 

(277), P7 (598), and P8 (628) (Table 3).  With 1464 archaeal sequences and 7130 bacterial 

sequences sample P1 yielded the highest sequence numbers accounting for 42% of total 

sequence recovery.  With the lowest sequence recovery, sample P2 yielded 264 archaeal 

sequences and only 13 bacterial sequences, indicated by its estimated poor coverage of bacterial 

diversity at 27%.
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Figure 17. Relative distribution of OTU assignment according to sequence number for archaea 

and bacteria (A), just archaea (B), and just bacteria (C).  In the interest of space, legends of 

taxonomic groups and associated colors only indicate dominant or significantly occurring (> 5% 

relative distribution) archaeal and bacterial groups.  Full legends can be found as supplementary 

figures.   

Archaeal diversity was dominated by members of the phylum Euryarchaeota, and 

particularly by anaerobic methane processing microorganisms such as ANME-1 Guaymas 

(Biddle et al., 2012; chapter two of this dissertation), ANME-2c (Orphan et al., 2001), 

Methanomicrobiaceae (Whitman et al., 2006), and Methanoperedenaceae (Haroon et al., 2013), 
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which is closely related to ANME-2d (Mills et al., 2004) and GoM Arc-1 archaea (Lloyd et al., 

2010) (Supplementary Figure S7A).  Closer examination of methane processing archaea shows 

that ANME-1 Guaymas archaea dominate sample P2 (Figure 18A), which corresponds to 

geochemical evidence for anaerobic methane oxidation (decreasing methane concentration and 

increasing δ
13

C-methane values towards the sediment surface), organic matter remineralization 

(local DIC maximum and δ
13

C-DIC minimum at 10 cm depth), and sulfate reduction (local 

sulfate minimum and sulfide maximum at 10 cm depth).  The ANME-1 Guaymas archaea 

represent a separate phylogenetic lineage distinct from the widely distributed ANME-1a and -b 

Guaymas groups (Biddle et al., 2012; Merkel et al., 2013); consistent with their occurrence here, 

previous ANME-1 Guaymas recovery has been associated with high temperatures (Biddle et al., 

2012; chapter two of this dissertation) and low sulfate concentrations (Yanagawa et al., 2014).  

On either side of this sediment layer, in samples P1 and P3, the archaeal community is 

dominated by the ANME-2D/GoM Arc-1/Methanoperedenaceae group.  Family-level 

Candidatus Methanoperedenaceae contains a recently enriched ANME-2D lineage capable of 

anaerobic methane oxidation coupled to denitrification by a syntrophic partnership (Haroon et 

al., 2014) as well as other nitrate reducing methane oxidizers (Raghoebarsing et al., 2006; Hu et 

al., 2009).  The archaeal shift from ANME-1 Guaymas in sample P2 to Methanoperedenaceae in 

samples P1 and P3 is striking.  This differentiation of methane-processing archaea into closely-

spaced but distinct niches with different populations could be driven by electron acceptor 

availability.  Using sulfate as a proxy for total electron acceptor availability it is apparent that 

sediments corresponding to sample P2 are relatively depleted in oxidant.  The 

Methanoperedenaceae-related archaea may be restricted to sediments with sufficient electron 

acceptor availability, above and below the localized sulfate minimum.  
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Figure 18. 16S rRNA neighboring-joining phylogeny for ANME-related archaea (A), 

deltaproteobacteria (B), and epsilonproteobacteria (C) based on partial sequences between 

nucleotide positions 787 and 1391.  Trees were constructed with Arb software using a Jukes-

Cantor correction.  Bootstrap values represent the confidence in branch placement based on 500 

iterations of each tree. 

 

Another group of putative anaerobic methanotrophs, the ANME-2c archaea, was 

observed as the dominant group in samples P7 and P8 at the surface of the hottest core, 4573-16.  

In the past ANME-2c archaeal sequences have often been associated with cold sediments replete 

in electron acceptor (Knittel et al., 2005; Lloyd et al., 2011; Rossel et al., 2011; Yanagawa et al., 

2014; chapter two of this dissertation), which in part explains the occurrence of this group in 

surficial sediments where sulfate concentrations are still high.  On the other hand their 

prevalence at a high in situ thermal range suggests they may be able to survive heat exposure as 

long as it remains temporary and temperatures fluctuate to cooler values. Interestingly, while 

methane concentrations decrease at the surface of this core, there is no corresponding shift 

towards heavier δ
13

C-methane values that would indicate microbial methane oxidation.  Since 

ANME-2c archaea are typically associated with cooler temperatures, recovery of ANME-2c 

rRNA in this case may signify a group of non-thermophiles that is dealing with the unfortunate 

situation of maintaining themselves in sediments that are increasing in temperature over time.  

Given the logged temperatures for eight days prior to sediment sampling it is apparent that the 

thermal conditions associated with 4573-16 are intensifying (Figure 16A).  ANME-2c archaea at 

this layer may be in survival mode to cope with less favorable conditions, which might explain 

recovery of their rRNA from these samples.  It could also be that, unlike the surface layer of core 

4572-18 where isotopic evidence of AOM is strong, there is not enough methane being oxidized 

in core 4573-16 to noticeably fractionate and result in a deviation in the δ
13

C-methane profile.  It 

takes a 13 mM decrease in methane in 4572-18 to result in a 5-6 ‰ shift in δ
13

C-methane while 
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there is only a 4-5 mM decrease in methane in 4573-16.  Other possibilities are that elevated 

hydrothermal flux in these high temperature sediments might flush out available methane prior to 

microbial utilization, or isotopic fractionation of methane during oxidation by ANME-2c archaea 

could be smaller than expected.  This has been shown to occur in hyperthermophilic 

methanogens grown at high pressure (Takai et al., 2008).  Lastly, it could be that recovery of 

rcDNA sequences is in this case not representative of relative activity of microbial groups.   

Members of class Thermoplasmata dominate two separate samples, P4 and P28, and are 

related to Deep-Sea Hydrothermal Vent Euryarchaeotal Group 1 (DHVE-1).  Consistent with 

their occurrence in sulfidic Guaymas sediments, DHVE-1 archaea have been recovered in the 

past from hydrothermal sediments characterized by disseminated sulfides in Iheya Basin (Takai 

and Horikoshi, 1999).  Since sample P4 is at the surface layer with abundant sulfate and P28 is a 

subsurface sample completed depleted of sulfate, DHVE archaea do not seem to be controlled by 

electron acceptor availability.   

Sample P32 is an anomaly among the archaea, almost entirely made up of members of 

the family Archaeoglobaceae and Miscellaneous Crenarchaeota Group (MCG) archaea.  

Unfortunately, the recovered sequence information for the Archaeoglobaceae OTU is 

insufficient to distinguish it between Archaeoglobus and Ferroglobus archaea.  While both are 

hyperthermophiles and closely related in the 16S rRNA gene, these two archaea are 

physiologically distinct.  Ferroglobus placidus can oxidize iron, H2, or sulfide in the presence of 

nitrate or thiosulfate as potential electron acceptors (Hafenbradl et al., 1996).  Archaeoglobus 

spp., by contrast, are strict sulfate reducing hyperthermophiles which can utilize an array of 

organic compounds (Stetter, 1988; Huber et al., 1997).  In this case, over half of archaeal 

sequences recovered from sample P32 (1129/2075) belonged to the family Archaeoglobaceae 
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which suggests a relatively high activity level for this group.  Although low in concentration, 

porewater sulfate decreases to near zero at this sample depth, which may result from 

Archaeoglobus spp., or sulfate may be too low for growth of sulfate reducers in which case 

Ferroglobus spp. may account for the recovered Archaeoglobaceae sequences.  MCG archaeal 

sequences found in sample P32 shared close identity with a 16S rRNA gene clone from the Bor 

Khlueng hot spring in Thailand (acc: AY555817, Kanokratana et al., 2004), which is a deeply 

branching member of the previously identified MCG-15 cluster (Kubo et al., 2012). 

For bacteria, four of eight samples P2, P4, P7, and P8, present a highly specific 

epsilonproteobacterial-dominated community consisting of members of Helicobacteraceae 

family (Figure 18C).  It should be noted, though, that sample P2 had a very low bacterial 

sequence number of 13 and low estimated coverage of diversity at 27%.  Epsilonproteobacteria 

are often prevalent in sulfidic microbial mat habitats and, as a class, have the ability to utilize 

diverse electron acceptors including nitrate, sulfite, oxygen, and elemental sulfur (Campbell et 

al., 2006).  Here they appear at least in part restricted to sediments nearer to the sediment 

surface, which may be regulated by thermal limitations, electron acceptor availability, or both.   

Accounting for 1117 out of 1227 bacterial sequences in sample P3 was an OTU 

representative of family Thermodesulfobacteriaceae within the phylum Thermodesulfobacteria, 

which represents thermophilic sulfate reducing bacteria.  This OTU was closely related to a 16S 

rRNA gene clone from a hot spring microbial mat system in Tibet (Lau et al., 2009) and here the 

recovery of Thermodesulfobacteriaceae sequences is consistent with decreasing sulfate and 

increasing sulfide concentrations at high temperatures.  During the eight-day temperature logging 

interval, this sediment horizon reached average temperatures between 70°C and 95°C and 

experienced 25-30°C temperature variations in as little as one day (Figure 16).  Given the good 
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sequence recovery at this depth, members of the Thermodesulfobacteriaceae thrive as 

specialized hyperthermophiles that withstand high temperatures when sulfate is not limiting. 

  Covering 1015 out of 1244 bacterial sequences, sample P32 was dominated by bacteria 

within the HotSeep-1 cluster (Holler et al., 2011).  HotSeep-1 bacteria have been shown in 

laboratory incubations to be involved in putative sulfate reducing/methane oxidizing 

assemblages as partners with ANME-1 archaea at optimum temperatures between 45°C and 

60°C (Holler et al., 2011).  The association between HotSeep-1 bacteria and elevated 

temperatures is consistent with their occurrence in sample P32 which had an estimated in situ 

temperature of 68°C.  Interestingly, though, archaeal sequence recovery from this depth did not 

yield any ANME archaea, but rather MCG and Archaeoglobales.  This suggests that HotSeep-1 

bacteria are not obligated to form partnerships with ANME archaea and may perform sulfate 

reduction independent from methane oxidation.  Together with sulfate-reducing 

Archaeoglobales, the Hot Seep bacteria could draw down sulfate to the low concentrations 

observed for approximately 12 cm above and below this sediment horizon. Alternatively, 

HotSeep-1 bacteria may not be obligate sulfate reducers but rather have facultative capacity for 

other physiologies, such as the ability to utilize more reduced sulfur compounds.  

Accounting for 19% (1348/7130) of the relatively large bacterial sequence recovery in 

sample P1 was an OTU within the family Desulfobulbaceae.  Closer examination reveals this 

OTU is closely related to type sp. Desulfocapsa sulfexigens, a deltaproteobacterium that cannot 

grow by sulfate reduction but has the ability to disproportionate elemental sulfur (Finster et al., 

2013). This is consistent with RNA sequence recovery of D. sulfexigens in sample P1, in the 

surficial sediments of core 4572-18 where microbial sulfur cycling is evident.  Inmixing of 

seawater oxygen into surficial sediments could result in the oxidation of sulfide to elemental 
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sulfur, the electron donor for Desulfocapsa.  Approximately a quarter of bacterial sequences in 

the surface of same core, sample P1, consisted of Firmicutes closely related to the thermophilic 

and anaerobic chemo-organotroph Caloranaerobacter azorensis isolated from a Mid-Atlantic 

Ridge hydrothermal vent (Wery et al., 2001).  The immediate decrease in sulfate in the surface 

layer indicates a rapid transition to anoxic conditions within the 0-3cm sediment section, suitable 

for anaerobic microorganisms. 

Although sample P28, at 9-12 cm depth in core 4565-3, had poor total bacterial sequence 

recovery, most sequences from this sample branch within the bacterial phylum Caldiserica, 

previously known as candidate division OP5 (Hugenholtz et al., 1998).  Type species 

Caldisericum exile is a thermophilic, filamentous chemoheterotroph that oxidizes organic 

substrates using sulfur and sulfite as electron acceptors (Mori et al. 2009), and resourceful usage 

of electron acceptors may sustain Caldiserica in sample P28 where sulfate concentrations are 

near zero.   

RNA recovery at increasing temperatures and identification of probable thermophiles 

While thermal structure is certainly not the only factor controlling microbial diversity 

across samples, it represents an important metric for the understanding of the limits of life in 

extreme environments.  In consideration of the uncertainty of giving thermal assignments to 

sampled sediment layers in this study, a cautious approach was taken to assess high temperature-

associated archaea and bacteria.  Rather than assuming thermophily for single occurrences of 

OTUs at high temperatures, an OTU network was created to identify shared OTUs among two or 

more of the four highest temperature samples, P2, P3, P8, and P32 (Figure 19A).  This is based 

on the assumption that co-occurrence of OTUs among multiple hot samples is a more probable 

indication of preferred thermophily or strong thermotolerance.  16S rRNA phylogeny for shared 
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OTUs among the hottest four samples revealed ANME-1, ANME-1 Guaymas, ANME-2c, 

DHVE, and some MCG archaea as commonly associated with high temperatures, and members 

of the Thermodesulfobacteriaceae as well as Epsilonproteobacteria within the 

Helicobacteriaceae as the most probable thermo- or hyperthermophiles for bacteria (Figure 

19B).  Since ANME-2c archaea are typically associated with cold sediments this analysis may be 

too inclusive to identify microorganisms that prefer higher temperatures.  To make a more 

conservative prediction of which of these microorganisms prefer higher temperatures, all OTUs 

shared among hot samples exclusively, with no co-occurrence in cooler samples, revealed that a 

certain ANME-1 Guaymas OTU and an uncultured relative of the MCG-15 archaea are the most 

probable thermophilic archaea, and bacterial OTUs related to the Thermodesulfobacteriaceae 

represent the most likely thermophilic bacteria.   
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Figure 19. (A) Qiime-generated OTU network visualized with Cytoscape software indicates 

connectivity between samples (large colored circles) and OTUs (small white circles).  Co-

occurring OTUs among hot samples are connected to each sample by the color associated with 

that sample node. (B) Small subunit 16S rRNA phylogeny of most probable thermophiles as 

indicated by 19A. 

 

Conclusion 

While the average upper thermal temperature for microbial life in Guaymas Basin 

sediments appears to be around 80°C, extensive temperature fluctuations of up to 25°C in as 

little as a day make it difficult to infer optimal temperature conditions for microorganisms.  

Temperature and/or electron acceptor availability appear to impart strong controls on microbial 

richness, with archaeal and bacterial OTU numbers decreasing with increasing temperature and 

decreasing sulfate.  Sulfate reduction appears to be a key microbial process occurring in hot 

sediments, as indicated by sharp decreases in porewater sulfate concentrations.  Isotopic 

evidence for microbially mediated methane oxidation is only slight, yet putative methanotrophic 

archaea are commonly recovered in nearly all samples suggesting they may perform other 

physiological modes. Alternatively, high flux of thermogenic methane with isotopic signatures 

near Guaymas background (ca. – 43 ‰) might drown out the isotopic imprint of methane 

oxidation or methanogenesis.  High temperature associated archaea appear to be OTUs related to 

uncultured MCG and ANME-1 Guaymas groups.  For bacteria the dominant high temperature 

associated OTU was phylogenetically associated with the Thermodesulfobacteriaceae. 
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APPENDIX: SUPPLEMENTARY FIGURES AND TEXT 

Figure S1 

 

Supplementary Figure S1.  Photographs of each vial at each timepoint demonstrate the 

sharp change in sample water turbidity between timepoints (days) 2 and 3 for 

hexadecane-amended vials 1 and 2 (indicated by blue arrow).  Vials 3 and 4, which were 

not amended with hexadecane, do not become turbid throughout the 21 day incubation. 
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Figure S2 

 

Supplementary Figure S2.  Average cell numbers of DAPI-stained (white and grey) and 

Mrb-0625-a-targeted (grey only) cells for non-hexadecane-amended vial 3 (left-hand 

column) and vial 4 (right-hand column) from days 0, 1, 2, 3, 4, 5, 10, and 21 of the 

enrichment.  This is the same data showed in Figure 5B but the y-axis maximum has been 

decreased from 4.0E9 to 2.75E8.  DAPI and FISH counts for these duplicated assays are 

plotted separately in two neighboring columns for all time points, to show the consistency 

of the microbial growth and enrichment response. Error bars represent standard deviation 

from mean cell counts.  The x-axis is abbreviated between days 5 and 10 and between 

days 10 and 21. 

 

Supplementary Text. 

As can be seen from Figure 7A, microbial methanogenesis may also be happening but isotopic 

evidence of this process is only observed at temperatures below 25°C.  Above 25°C, if 

methanogenesis is happening, the isotopic signature for it is not observable because the influence 

of AOM on δ
13

C-CH4 is too strong.  This is not to say that methanogenesis takes over at 

temperatures lower than 25°C—in many cases AOM is evidenced at low temperatures by 
13

C-
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enriched methane—but rather that biological methanogenesis is only isotopically detectable at 

low temperatures.  High temperature microbial mediated methanogenesis thus appears to be less 

significant than AOM in terms of bulk methane processing by microorganisms.  

Using in situ profiler measurements made by Dirk deBeer, a strong correlation between 

decreasing pH and increasing temperature was noted.  Using this relationship pH estimates were 

made for the five cores according to their temperature profiles and these estimates were used in 

calculations of Gibb’s free energy of the reaction.  However, previously measured pH values 

from hot, hydrothermal fluids were consistently 5.9 across 8 distinct sites in Guaymas Basin 

(Von Damm et al., 1985).  Therefore a separate set of Gibb’s free energy calculations was made 

for the reaction using a pH of 5.9, and although the thermodynamic potentials reduced in all 

cores, the relationship between higher potential and higher temperature persists.  It should be 

noted that the pH measurements by Von Damm et al. were performed shipboard after samples 

had been somewhat compromised during ROV ascension. 
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Supplementary Figure S3A, B. Complete Archaeal (A) and Bacterial (B) neighbor-joining 16S 

phylogeny for chapter 2.  Trees were generated using Arb software and the neighbor-joining 

method with a Jukes-Cantor correction.  Bootstrap values indicate the confidence in branch 

placement after 500 iterations of the tree.  Representative sequences from this study are 

presented in bold and the number of replicate clones can be seen in parentheses after the 

sequence name. Branch designations without indicated bootstrap values have 100% bootstrap 

support. 

 

Supplementary Figure S4. Carbon geochemical data versus in situ temperature for methane 

(A), DIC (B), δ
13

C-methane (C), and δ
13

C-DIC (D).  For methane and DIC average 

concentrations are repesented by black lines.  For methane concentrations a dotted line indicates 

the minimum concentration value which increases with increasing temperature.  Once the 

methanotrophic microorganisms are thermally limited, they are no longer present to keep 

methane concentrations near zero.  For stable isotope plots of methane (C) and DIC (D), black 

lines indicate the maximum and minimum isotopic values at temperatures above 150°C. 
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Supplementary Figure S5.  16S small rRNA subunit gene sequence phylogeny detailing 

paraphyly of Deltaproteobacteria, Hot Seep 1 group, and the Hippea cluster.   
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Supplementary Figure S6. Rarefaction analysis of observed species for each sample is plotted 

separately for archaea and bacteria. 
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Supplementary Figure S7A, B. Total 16S rRNA phylogeny for Archaea (A) and Bacteria (B) 

for chapter 3.  Trees were generated by the Arb neighbor-joining method with a Jukes-Cantor 

correction.  Bootstrap values indicate the confidence in branch placement after 500 iterations of 

the tree.  OTU from this study are shown in bold and following each OTU name is the associated 

sample name and number of sequences in that sample separated by an underscore. 
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Supplementary Figure S8. Jackknifed beta diversity for weighted, normalized sequence 

information from collapsed samples.  Data is plotted three dimensionally on component axes 

representing 48%, 23%, and 18% of the total variation in diversity. 
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