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ABSTRACT 

David Marshall: Dynamics and mixing in a microtidal, wind-driven estuary 

(Under the direction of Johanna Rosman) 

 

In estuaries, tides are considered to be the dominant mechanism driving the mixing of 

freshwater from rivers with the saline waters from the adjoining ocean, hence determining the 

along-estuary salinity gradient and strength of estuarine circulation. However, there are a number 

of microtidal estuaries, driven primarily by the wind and not tides. These estuaries are prone to 

human-induced water quality problems, as the episodic nature of wind leads to less vertical 

mixing and strong stratification, which when combined with eutrophication results in bottom-

water hypoxia. This dissertation research aims to further our understanding of the dynamics and 

mixing in these wind-driven estuaries. Through field measurements collected in the Neuse River 

Estuary in 2013 and 2016, we first investigate the along-channel momentum and salt budgets to 

determine the primary balances in a wind driven estuary. Then we define a new set of mixing 

parameters to compare it to classical tidal estuaries. Finally, we characterize the nature and 

efficiency of turbulent mixing produced in the Neuse. 
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SUMMARY 

Most previous work on the physical processes in estuaries has focused on tides as the 

primary mixing mechanism. However, there is a family of microtidal estuaries, driven primarily 

by the wind, which are not as well understood. Due to the episodic nature of the wind, vertical 

mixing is often weak, resulting in strong salinity stratification. In this dissertation, field studies 

were conducted to investigate the effects of time-varying, unsteady winds on circulation, salt 

transport and turbulent mixing in the Neuse River Estuary, one of these microtidal, wind-driven 

estuaries in eastern North Carolina. 

The focus of the first field study was to investigate the circulation and salt transport in the 

Neuse. An analysis of the depth-averaged momentum equation demonstrated that the primary 

balance was between the wind stress and barotropic pressure gradient, indicating the presence of 

a wind-generated barotropic seiche. During periods of strong stratification, there was a two-layer 

circulation pattern, in which the wind stress was balanced by a combination of the interfacial 

stress, bottom stresses, and interfacial tilt. Up-estuary winds reduced the stratification and 

reduced or reversed the exchange flow, briefly causing a net transport of salt into the estuary 

until the water column became vertically mixed. Down-estuary winds enhanced the exchange 

flow and increased stratification, except when the wind stress was strong enough to overcome 

stratification and directly mix the water column. This asymmetric response to the predominantly 

down-estuary winds enhanced exchange flow, which when combined with a decrease in 

freshwater discharge, resulted in an observed net salt influx. 
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A new set of parameters were defined in order to compare the physics of a wind-driven estuary 

to classical tidal estuaries. Due to a wide range of wind speeds and durations, the Neuse 

experiences varying amounts of mixing, and thus can be classified differently, depending on the 

wind conditions. Strong winds resulted in well-mixed conditions, while weak winds generally 

resulted in strongly stratified conditions. Straining by moderate down-estuary winds caused the 

Neuse to behave like a wind-induced SIPS estuary. 

 In a second field study in the Neuse, we observed some of the strongest stratifications 

reported in estuaries, yet high turbulent dissipation rates. However, the observed turbulence was 

scarce and estimates of turbulent length scales indicated that the overturns were often so small 

that it was difficult to quantify the effects buoyancy and shear on turbulence properties. 

Application of a recently proposed framework suggested that some of the observed turbulence 

fell into an inertia-dominated regime, in which the turbulence was decaying, and eddies were no 

longer large enough to be affected by buoyancy or shear. Dissipation was generally larger than 

production and the mixing efficiencies associated with this turbulence were generally quite 

small. Turbulent mixing was more efficient in the shear and buoyancy-dominated regimes.  

The observed turbulence in this study was generated by two distinct mechanisms: shear 

generation, associated with advection of a salt wedge, and wind mixing. The turbulence 

associated with the salt wedge appeared to be generated prior to being advected past the sensors. 

Most this turbulence appeared to have been decaying at the observed locations, and fell into an 

inertia-dominated regime with inefficient mixing. The turbulence generated by wind-shear in the 

upper part of the water, on the other hand, was generally anisotropic, occurring in the shear and 

buoyancy-dominated regimes. During periods of strong stratification this wind-generated 

turbulence produced efficient mixing.  
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CHAPTER 1: MOMENTUM AND SALT BUDGETS IN A WIND-DRIVEN, 

MICROTIDAL ESTUARY 

Introduction 

Estuaries are complex systems, driven by a variety of mechanisms, including freshwater 

flow, tides, and wind, which can produce energetic turbulence and strong density gradients. 

Averaging over short term variations in velocity, such as those produced by tides, reveals that 

estuaries are characterized by an exchange flow, in which there is a persistent outflow (seaward) 

at the surface and a persistent inflow (landward) near the bottom. This exchange flow transports 

salt to the coastal ocean at the surface, while importing salt near the bottom. Vertical mixing is 

important in maintaining the estuarine circulation and salt flux, as mixing affects the strength of 

the exchange flow. 

Most previous work on estuarine circulation has focused on tides as the primary mixing 

mechanism (reviewed by MacCready and Geyer 2010, Geyer and MacCready 2014). Budgets of 

momentum and salt in these tidal systems have been studied extensively, dating back to Hansen 

and Rattray (1965). Despite the complexities of estuarine circulation, which include nonlinear 

coupling of velocity and density structures, classical analyses often simplify momentum and salt 

budgets to a single cross-section. In doing so, it is assumed that the along-channel variation in 

bathymetry is negligible, and the along-channel salinity gradient is constant over the cross-

section. 

The classical along-channel momentum budget (Hansen and Rattray, 1965) assumes a 

balance between the pressure gradient and the turbulent shear stress. The pressure gradient is 

composed of a barotropic and a baroclinic term, while the stress is expressed in terms of an eddy 
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viscosity and vertical shear. This along-channel momentum budget can be further simplified to a 

one-layer model, by integrating the momentum equation over the water depth. The only stress 

terms that remain are the bottom stress and surface wind stress. In fact, wind is traditionally 

ignored, so the only the bottom stress retained in a one-layer model. Although a one-layer model 

is often appropriate for well-mixed and some partially mixed estuaries (e.g., Chatwin, 1976), 

where the along-channel salinity gradient drives the exchange flow, in strongly stratified and salt 

wedge estuaries, the stress between the surface outflow and bottom inflow can have a large effect 

on the dynamics. To resolve the exchange flow, a two-layer model can be constructed by 

dividing the water column into two layers and then computing momentum balances for each 

layer (Geyer, 2000; Geyer and Ralston, 2011). An equation describing the dynamics of the 

exchange flow is obtained from the difference between the top and bottom layer momentum 

budgets. The differential flow between the top and bottom layers is driven entirely by the 

baroclinic pressure gradient, since the barotropic pressure gradient affects both layers equally 

and is eliminated by subtraction. 

Because of the dynamical importance of the baroclinic pressure gradient term, the 

estuarine momentum budget is strongly coupled with the salt budget. As cast in Lerczak (2006), 

the salt budget consists of three terms: the salt loss due to river flow, the salt flux due to 

exchange flow, and tidal salt flux which has the form of a dispersion term. Increasing river flow 

pushes the salt intrusion seaward and increases the horizontal salinity gradient. The magnitude of 

this increase in along-estuary salinity gradient depends on the responses of the exchange flow 

and tidal salt fluxes to the increase in horizontal salinity gradient. 

The coupled momentum and salt budgets reveal that the vertical shear is important to the 

creation and destruction of stratification. This mechanism, sometimes referred to as strain-
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induced periodically stratification (SIPS), occurs when tidal variations in vertical shear drive 

tidal variations in stratification (tidal straining).  Hence, tidal variations in vertical mixing have 

an important effect on the exchange flow (Simpson, 1990). The ratio of potential energy 

generation due to straining of the density field by velocity shear in the bottom boundary layer 

during ebb tide to production of turbulent kinetic energy by mixing in the bottom boundary layer 

is traditionally quantified by the horizontal Richardson number (Simpson, 1990) 

𝑅𝑖𝑥 =
𝐻2𝑁𝑥

2

𝑢∗𝑏
2

(1.1) 

where H is the water depth, u*b is the bottom friction velocity, 𝑁𝑥
2 =

𝑔

𝜌0

𝜕〈𝜌̅〉

𝜕𝑥
, g is the gravitational 

acceleration, 0 is a constant reference density, and 〈𝜌̅〉 is the cross-sectionally averaged density. 

When Rix is small, mixing in the boundary layer destroys stratification, leading to a well-mixed 

water column. High values of Rix lead to runaway stratification, as straining generates 

stratification that cannot be mixed by bottom boundary layer turbulence. In SIPS estuaries, Rix 

takes intermediate values, as the water column becomes stratified during ebb tides and well 

mixed during flood tides (Geyer and MacCready, 2014).   

In order to quantify the effectiveness of mixing at the bottom boundary, it is necessary to 

compute both the strength of the turbulent mixing and the time period over which that mixing 

occurs, because the bottom boundary layer grows in height over a tidal cycle. Despite its merits, 

Rix accounts for the strength, but not the time scale of mixing, and therefore is not suitable for 

explaining how much of the water column becomes mixed. Geyer and MacCready (2014) 

parameterized the growth of the bottom boundary layer analogously to the growth of a wind-

mixed layer: 

𝑑ℎ𝐵𝐿

𝑑𝑡
= 𝐶

𝑢∗𝑏
2

𝑁∞ℎ𝐵𝐿
 (1.2) 
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where hBL is the height of the bottom boundary layer, N is the stratification above the bottom 

boundary, and C  0.6 is a constant related to the mixing efficiency (Kato and Phillips, 1969; 

Trowbridge, 1992). They define a mixing number, M to determine the conditions in which the 

bottom boundary layer will extend into the entire water column within a half tidal cycle. 

𝑀2 =
𝑢∗𝑏

2

𝜔𝑁0𝐻2
(1.3) 

where  𝑁0 = √βg𝑠𝑜𝑐𝑒𝑎𝑛/𝐻 is the buoyancy frequency for maximum top-to-bottom salinity 

variation in an estuary,  is the coefficient of saline contraction, socean is the salinity of ocean 

water, and  is the tidal frequency. A mixing number 𝑀 ≥ 1 corresponds to bottom boundary 

layer growth to entire water column in a half tidal cycle. Geyer and MacCready (2014) proposed 

an estuarine classification scheme based on tidal mixing (M), and the freshwater inflow (Frf). 

Here 𝐹𝑟𝑓 = 𝑢𝑅/√βg𝑠𝑜𝑐𝑒𝑎𝑛𝐻, is the freshwater Froude number which represents the ratio of river 

inflow to strength of the gravitational circulation and 𝑢𝑅 is the velocity due to freshwater flow. 

By placing estuaries in Frf –M parameter space (Fig. 1.16), they can be classified as salt wedge 

(e.g., Mississippi, Ebro), time dependent-salt wedge (e.g., Frasier, Merrimack), strongly stratified 

(e.g., Chesapeake, Hudson), partially stratified (e.g., James, San Francisco Bay), SIPS (e.g., 

Conwy, Willapa Bay), fjord (e.g., Puget Sound, Long Island Sound), or bay (e.g., Narragansett 

Bay). Several estuaries (e.g., Hudson, Chesapeake, San Francisco Bay) span partially mixed and 

strongly stratified, salt wedge, or SIPS during the spring-neap cycle. 

In the above estuarine budgets, parameterizations, and classifications, wind has been 

neglected. However, there is increasing recognition that wind can also have important effects on 

mixing and circulation in estuarine systems. In fact, there is an entire family of microtidal 

estuaries in which tides are not the dominant mixing mechanism and it is the wind that drives 
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mixing and circulation patterns (e.g., Luettich et al., 2002). Unlike tides, the wind is inherently 

irregular and episodic, making it much more difficult to express the estuarine dynamics with 

simple models. 

Much of what is known about the dynamics of shallow wind-driven systems originates 

from the study of stratified lakes (e.g., Spigel and Imberger, 1980; Bouffard et al., 2012). 

Unsteady winds can initiate barotropic and baroclinic motions by changes in wind forcing, which 

can continue to contribute to advection and modify stratification after a wind event. Wind 

blowing over the surface of a lake both generates a turbulent, wind-mixed layer and induces a 

vertically sheared circulation pattern that results in tilts of both the water surface and isopycnals. 

The relative strengths of the maximum baroclinic pressure gradient force associated with a fully 

titled pycnocline and the force due to the surface wind stress can be quantified by the 

Wedderburn number (Thompson and Imberger, 1980; Monismith, 1985) 

𝑊 =
𝑔′ℎ1

𝑢∗𝑤
2𝐿

(1.4) 

where g’ is the reduced gravity, h1 is the height of the surface wind-mixed layer, u*w is the wind-

generated surface friction velocity, and L is the length of the water body. The Wedderburn 

number is a measure of whether complete upwelling will occur. When W > 1, mixed layer 

deepening does not affect the baroclinic seiche motions (Spigel and Imberger, 1980). When W < 

1, unsteady interfacial shear stress contributes to mixing. If the winds become strong enough (W 

<< 1), the mixed layer deepens from the surface to the bottom and the lake is no longer stratified.  

More recently, studies have considered wind effects in tidally dominated estuaries by 

focusing on steady wind forcing and mixing by turbulence generated by wind stress (Scully et 

al., 2005; Chen and Sanford 2009). These studies showed that wind-driven advection has 

significant effects on density stratification and the strength of the exchange flow. Wind stress 
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drives vertically sheared flow with the strongest speeds typically near the surface, enhancing 

stratification for down-estuary winds and reducing stratification for up-estuary winds (Geyer, 

1997; Scully et al. 2005). These effects on stratification feed back to the mixing (Chen and 

Sanford 2009). Stronger stratification during down-estuary winds limits mixing and supports 

larger vertical shear than when winds are directed up-estuary. Chen and Sanford (2009) defined a 

modified version of the horizontal Richardson number to characterize the relative importance of 

straining and mixing, due to the combined effects of tides and wind. They found that this 

parameter was able to capture how the stratification increased and then decreased with increasing 

down-estuary winds. From observations in Chesapeake Bay, Xie and Li (2018) found an 

asymmetric stratification response, in which stratification decreased linearly with W for up-

estuary winds, but stratification was a parabolic function of W for down-estuary winds, 

increasing at moderate wind speeds and decreasing at high wind speeds. Changes in wind speed 

or direction have also been found to result in large transient salt fluxes (Chen and Sanford, 

2009). 

A recent study of a lagoonal estuary using a 3-D hydrodynamic model has given some 

insights into the circulation dynamics of estuaries that are not just modulated, but driven by the 

wind (Jia and Li, 2012). They found that the circulation was primarily driven by a balance 

between the total pressure (barotropic plus baroclinic) gradient and stress divergence (wind stress 

minus bottom stress). They also found that the baroclinic forcing was highly asymmetric 

between up-estuary and down-estuary winds, which supports the findings of other studies that 

the wind can strain the density field. 

Despite these advances in our understanding of how wind modulates turbulent mixing, 

estuarine circulation, and salt transport in estuaries, there is a clear need to determine the extent 
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to which these findings can be applied to real strongly stratified, wind-driven estuaries. This 

study used field measurements to investigate the effects of time-varying, unsteady winds on 

circulation and salt transport in a wind-driven estuary. We investigate whether the findings of the 

modeling studies (Chen and Sanford, 2009; Jia and Li, 2012) that wind can both strain and mix 

the water column are important in a real estuary. Secondly, we investigate whether the 

frameworks (one and two-layer momentum budgets, salt budgets, and the Frf –M parameter 

space) that have been used to understand and classify tidally mixed estuaries can also be used to 

understand a system where wind is the primary agent driving mixing and short time-scale 

advection. 

Methods 

Field Site 

The Neuse River Estuary (NRE), in eastern North Carolina, is a shallow, microtidal 

estuary, driven largely by wind and freshwater discharge. The estuary is approximately 70 km 

long, with a mean width of about 6.5 km, a mean depth of about 3.5 m, and a prominent bend 

approximately mid-estuary (Fig. 1.1). The NRE connects to Pamlico Sound, a large, lagoonal 

estuary, which is isolated from the Atlantic Ocean by the Outer Banks barrier islands, except for 

limited tidal exchange through three small inlets. While the NRE has weak tidal influence and 

low freshwater discharge, its large fetch allows wind to be the main driver of flow patterns and 

turbulent mixing. The prevailing wind direction is northeast – southwest, aligned with main axis 

of the lower Neuse. During the summer, the NRE becomes episodically strongly salinity 

stratified, with salinity differences of as much as 15 PSU between the top and bottom, and 

experiences bottom water hypoxia due to eutrophication and lack of mixing (Paerl et al., 1998). 

Despite this lack of tides, the NRE-Pamlico Sound system has episodic oscillatory flow arising 
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from wind-driven barotropic seiches with a period of about 13 hours (Luettich et al., 2002). 

Typical depth-averaged oscillatory velocities are about 10 cm/s.  

Field Measurements 

The study was conducted over a one-month period from June 9 to July 4, 2016 in the 

lower part of the NRE. We deployed an array of sensors at three sites along the main channel 

from the bend in the estuary to the mouth of Pamlico Sound (Fig. 1.1). The instruments at the 

bend and central sites were deployed in the deepest part of the channel, while those at the mouth 

were deployed on a shoal for logistical reasons.  

At each of those sites, we made continuous measurements of currents and salinity with a 

bottom-mounted ADCP (Teledyne-RD Instruments 1.2-MHz Workhorse Monitor) and a vertical 

mooring of three CTDs (SeaBird SBE-37SMP). The ADCPs sampled every 1 second, and were 

deployed in fast-pinging rate mode, with 6 subpings per profile (mode 12; Nidzieko et al., 2006). 

Velocities were recorded in beam coordinates for the entire water column (6-7 m) in 25-cm 

vertical bins, the first of which was centered 1.5 m above bottom. At each mooring the lower 

CTD was located at 1 m above bottom, the middle CTD at half of the water depth, and the top 

CTD at 1.5 to 2-m below the water surface. The CTDs sampled at 5-minute intervals. 

Additionally, at the central site, we deployed an Autonomous Vertical Profiler (AVP). 

The AVP is a floating platform that lowers a CTD (EXO2 Sonde, YSI) at a constant rate of 0.01 

m/s from the surface to the bottom to measure vertical profiles of water quality data at high 

temporal resolution for extended periods (Reynolds-Fleming et al, 2002, Whipple et al. 2006). 

AVP profiles of temperature and salinity were measured at 30-min intervals and binned at 10-cm 

resolution. The AVP was also equipped with an anemometer 5 m above the water surface that 
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recorded wind speed and direction at 30-minute intervals. Additionally, hourly atmospheric 

pressure data were obtained from the Marine Corps Air Station at Cherry Point. 

To quantify the cross-sectional spatial structure of salinity and currents, we made 

measurements along transects at 10-12 equally-spaced stations (0.5 km apart) across the estuary 

at each of the three main sites in the Lower Neuse (Fig. 1.1). These shipboard measurements 

were collected on 5 days (6/20, 7/5, 7/18, 8/16, and 9/19), many of which extended beyond the 

main study period.  Velocity profiles were measured with a boom-mounted (Hench et al., 2000) 

shipboard ADCP (1.2 MHz Workhorse, RD Instruments), and CTD profiles were made at the 

same stations (SBE19plus V2, Seabird Electronics). At each station ADCP data were collected 

for six minutes in mode 1, with 0.25 m bins and a ping rate of 1Hz, yielding an uncertainty of 

0.0072 m/s. Although the vessel was nominally stopped at each station, the remaining vessel 

motion was removed using ADCP bottom tracking. At the same time, a single CTD cast was 

conducted with a sampling rate of 4 Hz. 

Data Processing 

 The ADCP and CTD data were 30-minute ensemble averaged such that the middle of 

each interval coincided with the AVP profiles. Wind speeds at the AVP site collected at 5 m 

above the surface were transformed to 10-m wind speeds (for wind stress calculations) assuming 

an atmospheric log profile (Blanton et al, 1989). Both the ADCP velocity data and the wind 

velocity data were rotated into along- and across-channel directions, determined from the 

principal components of the depth-averaged ADCP velocities. To compute velocities averaged 

over the entire water column, velocities were extrapolated to the surface (0.5 m) assuming zero 

velocity gradient at the surface and a log-layer at the bottom of the water column. The 

assumption of a zero velocity gradient is only valid when there is no surface wind stress. 
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 Depth-averaged values of salinity, temperature, and density were computed from the 

AVP profiles at the central site and from the CTD moorings at the bend and mouth sites. All 

three CTDs at the mouth site were in the top layer during periods of stratification, so values were 

extrapolated to the bottom of the channel by assuming that along-estuary gradients were constant 

throughout the entire water column. Thus, the magnitude of the vertical density gradient at the 

mouth was equal to the vertical density gradient at the central site. 

Shipboard CTD measurements were averaged in 0.1 m bins, resulting in profiles with the 

same resolution as those collected by the AVP. These shipboard measurements were then used to 

estimate cross-sectionally averaged values of depth, velocity, salinity, and density based on the 

continuous measurements from the moored ADCP and AVP. First, depth-averaged values were 

computed for each station (both channel and non-channel stations in Fig. 1.2). An offset was 

assigned to each station by computing the difference between the value at that station and the 

value at the station closest to the moored instruments. For depth-averaged velocity, that is 𝑢̅𝑆𝑖 =

𝑢̅𝐶𝐿 + 𝜎𝑢𝑖, where 𝑢̅𝑆𝑖 is the depth averaged velocity at station i (i=1:10 for the bend and central 

transects and i=1:12 for the mouth transect), 𝑢̅𝐶𝐿 is the depth-averaged velocity at the station 

closest to the moored centerline instruments, and 𝜎𝑢𝑖 the velocity offset for station i. Likewise, 

an offset for the depth at each station was computed from the difference between the station 

depth and the depth of the station closest to the moored instruments. This process of calculating 

offsets was repeated for each of the five days on which shipboard measurements were collected 

to get an average offset for all parameters at every station. These offsets were then added to the 

measurements from the moored instruments to get estimated values at each station. Isopycnals 

and isohalines were assumed to be level across the cross section and thus determined by the AVP 
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profiles. Finally, cross-sectional averages of velocity, salinity, and density were computed from 

the station-estimated values. For the cross-sectionally averaged velocity, 〈𝑢̅〉 

〈𝑢̅〉 =
∑ 𝑢̅𝑆𝑖𝐻𝑖𝑑𝑖

𝑁
𝑖=1

𝐴
 (1.5) 

where N is the number of stations, 𝐻𝑖 is the estimated depth at each station, computed by 

applying an offset to the depth at the location of the moored instruments, 𝑑𝑖 is the distance 

between stations, and A is the cross-sectional area. Cross-sectionally averaged values of salinity 

and density were computed from equations of the same form as equation 1.5. Using centerline 

values and assuming horizontal isotachs resulted in estimates of cross-sectionally averaged 

velocities that were an average of about 1 cm/s (20 %) slower than those computed using offsets 

derived from the shipboard measurements, in which the isotachs were not horizontal. 

 Uncertainties were estimated for velocity, density, wind speed, and water depth 

measurements for each 30-minute interval. These uncertainties were used to calculate the 

uncertainties in the terms of the momentum budgets via a propagation of uncertainty formula 

(Taylor, 1996). The standard deviation the mode-12 ADCP velocities was 1.44 cm/s (Teledyne 

RD Instruments, 2006). Ensemble averaging over 30-minute intervals resulted in a standard error 

of 8 x 10-4 m/s. The instrument error in a salinity measurement was 1% (YSI Incorporated, 

2017), which corresponded to a density error of 0.2 kg/m3. Assuming an average of 10 salinity 

measurements per 10-cm bin, the density error for each bin was 0.06 kg/m3. The uncertainties in 

the water depth were computed as the standard deviation of the water depth over the 30-minute 

interval, resulting in an uncertainty of 7 mm. The uncertainty in wind speed was computed 

assuming an instrument error of 2 % for the wind velocity measurements. These computed 

instrument errors serve as a lower bound for the uncertainty, as there was additional uncertainty 

associated with computing cross-channel averages from point measurements. 
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Results 

Experimental conditions 

During the study period, winds were typically oriented along the axis of the estuary (NE-

SW direction) (Fig. 1.3a). The lower Neuse was strongly stratified by salinity for the majority of 

the field experiment (Fig. 1.3b), except during periods of strong winds. During periods when the 

water column was stratified, profiles of along-channel velocity were strongly vertically sheared. 

The current at the surface was generally aligned with the wind direction (Fig. 1.3c).  

The average shipboard measurements for the central site are shown in Fig. 1.4. The 

channel was typically strongly stratified by salinity (Fig. 1.4c), although stations on the shoals 

were often so shallow that they only contained the top layer. As a result only the six stations in 

the middle of the channel were used when computing the two-layer model (Fig. 1.2). The largest 

vertical shears in the along-channel (Fig. 4 a) and cross-channel (Fig. 1.4b) directions were 

typically co-located with the pycnocline. 

During periods of strong stratification, the gradient Richardson numbers which were 

typically greater than 0.25 near the pycnocline (Fig. 1.3d), indicating that the flow was stable. 

However, near the surface and bottom, Rig < 0.25. Periods of weak stratification, which were 

associated with strong winds, resulted in more uniform velocity profiles, and Rig <0.25 

throughout the water column. On semidiurnal time scales, a wind-driven barotropic seiche drove 

flow reversals in the along-channel direction. Freshwater discharge, as measured at a USGS 

station (Fort Barnwell) approximately 110 km upstream of the mouth, was low throughout the 

field experiment. Freshwater flow rates ranged from 20 to 150 m3/s, which corresponds to 

velocities of 0.1 to 0.7 cm/s at the central site, after correcting for the assumption that 69 % of 

the freshwater discharge was gaged (Peierls et al., 2012). 
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 Time series of the Wedderburn number (Fig. 1.3e) show that the wind stress was large 

relative to the maximum achievable baroclinic pressure gradient force (W<<1), indicating that 

wind stress was an important forcing mechanism. Weak down-estuary winds enhanced the 

stability by straining the water column and increasing exchange flow (Fig. 1.3 a-c). However, 

when the down-estuary wind was sufficiently strong (June 21-23), Richardson numbers were less 

than 1/4 throughout the water column indicating that shear was sufficient to overcome the 

stratification and mix the water column. Up-estuary wind events acted against the estuarine 

exchange flow, causing the exchange flow to reverse, before disappearing altogether as the water 

column mixed and the velocity uniform throughout the water column (June 17-20, 26-28). 

Cross-Sectionally Averaged Momentum Budget 

To understand the underlying mechanisms driving the kinematical characteristics of an estuary, 

the dynamics were explored through the analysis of the momentum budget in the along-channel 

direction, which is given by: 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
− 𝑓𝑣 +

1

𝜌0

𝜕𝑝

𝜕𝑥
−

1

𝜌0
(
𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑥𝑦

𝜕𝑦
+

𝜏𝑥𝑧

𝜕𝑧
) = 0 (1.6) 

where x is the along-channel direction with positive values in the upstream direction, u is the 

along-channel velocity, v is the cross-channel velocity, f = 8.34 x 10-5 s-1 is the local Coriolis 

parameter, and xx, xy, and xz are the Reynolds stresses, 𝜌(𝑢′𝑢′̅̅ ̅̅ ̅̅ ), 𝜌(𝑢′𝑣′̅̅ ̅̅ ̅̅ ), 𝜌(𝑢′𝑤′̅̅ ̅̅ ̅̅ ). The 

pressure gradient, p/x can be decomposed to express the influence of the surface slope and the 

horizontal density gradient: 

1

𝜌0

𝜕𝑝

𝜕𝑥
= 𝑔

𝜕𝜂

𝜕𝑥
+

𝑔

𝜌0
∫

𝜕𝜌

𝜕𝑥
𝑑𝑧 (1.7) 

where  is the free surface displacement, and  is the density. The cross-sectionally averaged 

momentum equation is derived by combining equations 1.6 and 1.7, integrating over the cross-
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section, and dividing by the cross-sectional area. Following Speer (1985), the cross-sectionally 

averaged momentum equation is: 

𝜕〈𝑢̅〉

𝜕𝑡
+ 〈𝑢̅〉

𝜕〈𝑢̅〉

𝜕𝑥
+ 𝑔

𝜕𝜂

𝜕𝑥
+

𝑔

𝐴𝜌0
∫ ∫

𝜕𝜌

𝜕𝑥
𝑧𝑑𝑧

𝜂

−ℎ

𝑑𝑦
𝑏2

−𝑏1

− 𝑓〈𝑣̅〉 +
𝜏𝑏𝑥𝑃

〈𝜌̅〉𝐴
−

𝜏𝑤𝑥

〈𝜌̅〉𝐻
= 0 (1.8) 

where the overbar and brackets represents a cross-sectional average, h is the local water depth, 

and H is the cross-sectionally averaged water depth, A is the cross-sectional area, P is the wetted 

perimeter, bx is the along-channel bottom stress, and wx is the along-channel surface wind 

stress. The limits of integration, b1 and b2, are the y-coordinates at the two shores, such that the 

width of the estuary, B = b1 + b2.  

In deriving the terms in equation 1.8, Speer (1985) assumed that the horizontal density 

gradient was negligible and thus ignored the fourth term in the equation. However, this term may 

be important in the present study site., Here we derive the full cross-sectionally averaged 

baroclinic pressure gradient term. Applying Leibniz’s rule, 

𝑔

𝐴𝜌0
∫ ∫

𝜕𝜌

𝜕𝑥
𝑧𝑑𝑧

𝜂

−ℎ

𝑑𝑦 = 
𝑏2

−𝑏1

𝑔

𝐴𝜌0

[
 
 
 
 
 
 
 
 
 

𝑑

𝑑𝑥
∫ ∫ 𝜌𝑧𝑑𝑧

𝜂

−ℎ

𝑑𝑦
𝑏2

−𝑏1

−
𝜕𝑏2

𝜕𝑥
∫ 𝜌𝑏2

𝑧𝑏2
𝑑𝑧

𝜂

−ℎ

+
𝜕(−𝑏1)

𝜕𝑥
∫ 𝜌𝑏1

𝑧𝑏1
𝑑𝑧

𝜂

−ℎ

+∫ 𝜌(𝜂)𝜂
𝜕𝜂

𝜕𝑥
𝑑𝑦

𝑏2

−𝑏1

+
𝑑

𝑑𝑥
∫ 𝜌(−ℎ)ℎ2𝑑𝑦

𝑏2

−𝑏1

+
𝜕𝑏2

𝜕𝑥
𝜌(−ℎ𝑏2

)ℎ𝑏2

2 −
𝜕𝑏1

𝜕𝑥
𝜌(−ℎ𝑏1

)ℎ𝑏1

2

]
 
 
 
 
 
 
 
 
 

 (1.9) 

Here, b1 and b2 appear as subscripts to indicate quantities at y = b1 or y=b2. The fourth term is 

approximately zero, assuming 𝜂 ≪ ℎ. If there is a gradual slope in the cross-channel direction, 

the depth at the boundaries is approximately zero, so terms 2, 3, 6, and 7 are zero. The baroclinic 

pressure gradient term reduces to: 

𝑔

𝐴𝜌0
∫ ∫

𝜕𝜌

𝜕𝑥
𝑧𝑑𝑧

𝜂

−ℎ

𝑑𝑦 =
𝑔

𝐴𝜌0
[
𝑑

𝑑𝑥
∫ ∫ 𝜌𝑧𝑑𝑧

𝜂

−ℎ

𝑑𝑦 +
𝑑

𝑑𝑥
∫ 𝜌(−ℎ)ℎ2𝑑𝑦

𝑏2

−𝑏1

𝑏2

−𝑏1

]
𝑏2

−𝑏1

 (1.10) 
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Both terms on the RHS were estimated using the shipboard measurements from 5 transects (June 

to September, 2016), The last term was 2 orders of magnitude smaller than the first, so the 

baroclinic term can be reduced to: 

𝑔

𝐴𝜌0
∫ ∫

𝜕𝜌

𝜕𝑥
𝑧𝑑𝑧

𝜂

−ℎ

𝑑𝑦 =
𝑔

𝐴𝜌0

𝑑

𝑑𝑥
∫ ∫ 𝜌𝑧𝑑𝑧

𝜂

−ℎ

𝑑𝑦
𝑏2

−𝑏1

𝑏2

−𝑏1

  (1.11) 

Next, let 𝜌 = 〈𝜌̅〉 + 𝜌̅ + 𝜌̇, where 〈𝜌̅〉 is the cross-channel averaged density, 𝜌̅ is the depth 

averaged and width varying density, and 𝜌̇ is the depth and width varying density: 

𝑔𝑑

𝐴𝜌0𝑑𝑥
∫ ∫ 𝜌𝑧𝑑𝑧

𝜂

−ℎ

𝑑𝑦
𝑏2

−𝑏1

=
𝑔

𝐴𝜌0
[
𝑑

𝑑𝑥
∫ ∫ 〈𝜌̅〉𝑧𝑑𝑧

𝜂

−ℎ

𝑑𝑦
𝑏2

−𝑏1

+
𝑑

𝑑𝑥
∫ ∫ 𝜌̅𝑧𝑑𝑧

𝜂

−ℎ

𝑑𝑦
𝑏2

−𝑏1

+
𝑑

𝑑𝑥
∫ ∫ 𝜌̇𝑧𝑑𝑧

𝜂

−ℎ

𝑑𝑦
𝑏2

−𝑏1

] 

=
𝑔

2𝐴𝜌0
[𝐵𝐻2

𝑑〈𝜌̅〉

𝑑𝑥
+

𝑑

𝑑𝑥
∫ 𝜌̅ℎ2𝑑𝑦

𝑏2

−𝑏1

+ 2
𝑑

𝑑𝑥
∫ ∫ 𝜌̇𝑧𝑑𝑧

𝜂

−ℎ

𝑑𝑦
𝑏2

−𝑏1

] (1.12) 

Estimating the cross-sectionally averaged term (first term on the RHS of equation 1.12) and the 

full depth integrated term (LHS of equation 1.12) from the shipboard data indicated that the 

cross-sectionally averaged term accounted for approximately 1/3 of the baroclinic pressure 

gradient. This difference in baroclinic pressure gradient estimates may be due to large 

uncertainty introduced by averaging values measured two-weeks apart, as well as estimating the 

cross-channel gradients from stations that were 0.5 km apart. To account for the difference, a 

Boussinesq coefficient, β = 3, was applied to the cross-sectionally averaged baroclinic pressure 

gradient term to get a better estimate of the total contribution of the baroclinic pressure gradient. 

That is: 

𝑔

𝐴𝜌0

𝑑

𝑑𝑥
∫ ∫ 𝜌𝑧𝑑𝑧

𝜂

−ℎ

𝑑𝑦
𝑏2

−𝑏1

≈
𝛽𝑔

2𝐴𝜌0
𝐵𝐻2

𝑑〈𝜌̅〉

𝑑𝑥
 (1.13) 
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A similar empirical coefficient could be applied to each of the terms in equation 1.8, however, 

the shipboard measurements indicated that the differences between the terms computed using 

measurements at the centerline, multiplied by the cross-sectional area, and the true cross-

sectionally averaged terms were negligible.  

Assuming that A  BH, the cross-sectionally averaged momentum equation becomes: 

𝜕〈𝑢̅〉

𝜕𝑡
+ 〈𝑢̅〉

𝜕〈𝑢̅〉

𝜕𝑥
+ 𝑔

𝜕𝜂

𝜕𝑥
+

𝛽𝑔

2𝜌0

𝜕〈𝜌̅〉

𝜕𝑥
𝐻 − 𝑓〈𝑣̅〉 +

𝜏𝑏𝑥𝑃

〈𝜌̅〉𝐴
−

𝜏𝑤𝑥

〈𝜌̅〉𝐻
= 0  (1.14) 

The terms on the left-hand side are the local acceleration, the nonlinear advective acceleration, 

the barotropic pressure gradient force, the baroclinic pressure gradient force, the Coriolis 

acceleration, the bottom stress, and the wind stress. 

 To compute the barotropic pressure gradient term, the baroclinic contribution to the 

pressure measurements recorded by the ADCPs was first removed using a method similar to 

Geyer et al. (2000). First, the depth-integrated density, derived from AVP profiles, was used to 

compute the total pressure, and subsequently the height of the water column.  was computed at 

each site by subtracting off the time-averaged water column height (averaged over the course of 

the entire field study).  Finally, the free surface gradient was computed at the central site from 

the pressure measurement recorded by all three ADCPs, using second-order central differencing 

𝑑𝜂

𝑑𝑥
=

((𝑥𝑐𝑒𝑛𝑡 − 𝑥𝑏𝑒𝑛𝑑)
𝜂𝑚𝑜𝑢𝑡ℎ − 𝜂𝑐𝑒𝑛𝑡

𝑥𝑚𝑜𝑢𝑡ℎ − 𝑥𝑐𝑒𝑛𝑡
+ (𝑥𝑚𝑜𝑢𝑡ℎ − 𝑥𝑐𝑒𝑛𝑡)

𝜂𝑐𝑒𝑛𝑡 − 𝜂𝑏𝑒𝑛𝑑

𝑥𝑐𝑒𝑛𝑡 − 𝑥𝑏𝑒𝑛𝑑
)

(𝑥𝑚𝑜𝑢𝑡ℎ − 𝑥𝑏𝑒𝑛𝑑)
 (1.15)

 

Likewise, this differencing method was used to calculate the depth-averaged velocity gradient 

from the ADCP data and the depth-averaged horizontal density gradient from the CTD arrays at 

the bend and mouth sites and the YSI profiles at the central site. 
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 The surface wind stress in the along-estuary direction was estimated using wind data 

from the AVP’s anemometer and assuming a parabolic model of the drag coefficient of the form 

𝐶𝐷𝑤 = −𝐴(𝑈10 − 33)2 − 𝑐 (Peng and Li, 2015). Here, CDw is the drag coefficient associated 

with the surface wind stress, U10, is the wind speed 10 m above the surface, and A = 7 x 10-7 and 

c = 2.34 x 10-3 are empirical coefficients. Over the course of the study CDw ranged from 1.6 x 10-

3 to 2.1 x 10-3. The bottom stress in the along-channel direction was estimated using a quadratic 

drag law: 𝜏𝑏𝑥 = 𝜌𝐶𝐷|𝑢𝑏𝑥|𝑢𝑏𝑥, where 𝐶𝐷 is the bottom drag coefficient and 𝑢𝑏𝑥 is the near 

bottom along-channel velocity. Here, 𝐶𝐷 is assumed to be 2.5 x 10-3, which is typical of sand-

bottomed estuaries, (Proudman, 1953; Prandle, 2003) and 𝑢𝑏𝑥 is the along-channel velocity in 

the first bin recorded by the ADCP (about 1.5 m above bottom). 

Time series of each term in the cross sectionally-averaged momentum budget are shown 

in Fig. 1.5a. At low frequencies (periods > 30 hours), the primary balance is between the surface 

wind stress and barotropic pressure gradient (Fig. 1.5b,d). Although the residual term is also 

quite large throughout the time series, its large uncertainties indicate that it rarely differs 

significantly from zero. As the wind blows steadily over the surface of the estuary, the water 

moves in the direction of the wind until the slope of the water surface balances the wind stress. 

The adjustment time needed for the water surface to come into balance with the wind stress, Ts, 

can be estimated as Ts = 1/2L(gH)-1/2, where L is the length of the estuary (Spigel and Imberger, 

1980). Both the length of the lower Neuse and the length of Pamlico Sound are included in the 

estuarine length (L  140 km), resulting in an adjustment time of approximately 2.5 hours. A 

cross-correlation analysis of the time series of the wind stress and barotropic pressure gradient 

terms did indeed show this 2.5 hour lag. At intermediate frequencies (6-18 hours), a barotropic 
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seiche signal dominates the momentum budget, and appears as a balance between the local 

acceleration term and the barotropic pressure gradient term (Fig. 1.5 c,e).  

Multi-taper spectra of each term were computed to further understand these balances 

(Fig. 1.6). Low frequencies are dominated by the barotropic pressure gradient (green) and wind 

stress (pink) terms.  At intermediate frequencies there is a balance between the barotropic 

pressure gradient and local acceleration. The highest frequencies (periods < 6 hours) are 

dominated by the wind stress, barotropic pressure gradient, local acceleration, and residual terms 

terms (Fig. 1.6), as unsteady winds accelerate the water for brief periods of time and generate 

transient gradients in the water surface. 

Two-layer momentum budget 

Throughout most of the measurement period, the water column consisted of two layers 

with distinctly different salinities, separated by an interface of varying thickness. We therefore 

decided to apply a two-layer model to better understand the dynamics. A two-layer model is 

most appropriate if the widths of both layers are approximately equal. Due to the shape of the 

central cross-section, the two-layer model was therefore only applied to the channel, which was 

defined as the area between the middle six shipboard stations (Fig. 1.2).  

To further determine the validity of a two-layer model, it is important to consider the 

hydraulics of the system. The hydraulics of the two-layer system are described by the composite 

Froude number: 

𝐺2 = 𝐹1
2 + 𝐹2

2 =
𝑢1

2

𝑔′ℎ1
+

𝑢2
2

𝑔′ℎ2

(1.16) 

where 𝐹1 and 𝐹2 are the layer Froude numbers (Armi and Farmer, 1986). When G2 < 1, the flow 

is subcritical and therefore a two-layer model is appropriate. If G2 > 1, the flow is supercritical 
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and the two-layer model is not appropriate. Together, G2 and g’ were used to determine when the 

two-layer model was applicable. Time series of the Froude numbers (Fig. 1.8a) and g’ (Fig. 

1.14c) indicated that a two-layer model was not appropriate for a 5-day period between 6/18 and 

6/23, where the flow was either supercritical or the water column was well-mixed. The two-layer 

momentum budget was therefore not applied during this period (Fig. 1.8 b-c). 

The water column was divided into two layers by defining the interface as the height 

above bottom at which the maximum vertical salinity gradient was observed. (Fig. 1.7a). 

Velocities and densities were then averaged over each layer. Surface and bottom layer velocities 

often exhibited typical estuarine circulation, although during periods of strong winds, both layers 

had the same velocity (Fig. 1.7b). Layer-averaged densities indicate that stratification was strong 

for much of the field study, except for a 5-day period from 6/18 to 6/23 when strong winds 

mixed the water column (Fig. 1.7c). 

Following Geyer and Ralston (2011), the along-channel momentum budget for each layer 

can be written as: 

𝜕𝑢1

𝜕𝑡
 + 𝑢1

𝜕𝑢1

𝜕𝑥
+ 𝑔

𝜕𝜂

𝜕𝑥
+

𝐶𝑖|𝑢1 − 𝑢2|(𝑢1 − 𝑢2)

ℎ1
= 0 (1.17) 

𝜕𝑢2

𝜕𝑡
 + 𝑢2

𝜕𝑢2

𝜕𝑥
+ 𝑔

𝜕𝜂

𝜕𝑥
+ 𝑔′

𝜕ℎ𝑖

𝜕𝑥
+

𝐶𝑖|𝑢1 − 𝑢2|(𝑢1 − 𝑢2)

ℎ2
+

𝐶𝐷|𝑢2|𝑢2

ℎ2
= 0 (1.18) 

where ℎ1 and ℎ2 are the heights of the upper and lower layers, 𝑢1 and 𝑢2 are the upper and lower 

layer velocities, 𝜌1 and 𝜌2 are the upper and lower layer densities, 𝑔′ =
𝑔(𝜌2−𝜌1)

𝜌0
 is the reduced 

gravity, 
𝜕ℎ𝑖

𝜕𝑥
 is the slope of the interface between the two layers, and 𝐶𝑖 is an interfacial drag 

coefficient. However, these layer equations are incomplete when applied to a wind-driven 

estuary with a strong horizontal density gradient. In order to account for the wind, a wind stress 
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term, 
𝑢∗𝑤

2

ℎ1
 was added to the layer 1 equation. By restricting the two-layer model to stations in 

which there were always two layers, the wind stress should not directly affect layer 2, nor should 

the bottom stress directly affect layer 1. Shipboard measurements indicated that the horizontal 

density gradient was approximately equal for both layers, so a baroclinic pressure gradient term, 

∫
𝜕𝜌

𝜕𝑥
𝑧𝑑𝑧, was included in each layer. The baroclinic pressure gradient in the top layer was 

integrated from the surface to h1 and in the bottom layer from h1 to H. Finally, a momentum sink 

term was added to each layer to account for any momentum lost due to lateral exchange between 

the channel and the shoals. This momentum sink term is the Reynolds stress at the edge of the 

channel (y = B) and can be parameterized using an eddy viscosity, 𝐴𝐻: 

𝑢′𝑣′̅̅ ̅̅ ̅̅ = 𝐴𝐻

𝜕𝑢𝑖

𝜕𝑦
≈ 𝐴𝐻

Δ𝑢𝑖

Δ𝑦
 (1.19) 

where Δ𝑢𝑖 is the difference in layer velocities between the channel and the shoal for each of the 

two layers (i=1,2). Alternatively, the Reynolds stress can be parameterized with a drag 

coefficient, 𝐶𝑆1, such that 𝑢′𝑣′̅̅ ̅̅ ̅̅ = 𝐶𝑆1Δ𝑢1
2
. By equating the two parameterizations of the 

Reynolds stress, we get: 

𝐶𝑆1 =
𝐴𝐻

Δ𝑢1Δ𝑦
 (1.20) 

A mixing length model can be used as a scaling estimate for the horizontal eddy viscosity (Pope, 

2000): 

𝐴𝐻 = 𝑙𝑚
2

Δ𝑢1

Δ𝑦
 (1.21) 

where 𝑙𝑚 is the mixing length. Replacing 𝐴𝐻 with the mixing length model,  

𝐶𝑆1 =
𝑙𝑚
2

Δ𝑦2
 (1.22) 
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Both 𝑙𝑚 and Δ𝑦 scale as the width of the shear layer between the channel and the shoal, so 𝐶𝑆1 ≈

1. Replacing 𝜕𝑦 with B in the top layer momentum equation, and using the drag coefficient 

parameterization, we have get the following layer-averaged equations: 

𝜕𝑢1

𝜕𝑡
 +  𝑢1

𝜕𝑢1

𝜕𝑥
+ 𝑔

𝜕𝜂

𝜕𝑥
+

𝐶𝑖|𝑢1 − 𝑢2|(𝑢1 − 𝑢2)

ℎ1
−

𝑢∗𝑤
2

ℎ1
+

𝑔ℎ1

2𝜌0

𝜕𝜌

𝜕𝑥
+

2𝐶𝑠1|∆𝑢1|∆𝑢1

𝐵
= 0 (1.23) 

𝜕𝑢2

𝜕𝑡
 +  𝑢2

𝜕𝑢2

𝜕𝑥
+ 𝑔

𝜕𝜂

𝜕𝑥
+ 𝑔′

𝜕ℎ𝑖

𝜕𝑥
−

𝐶𝑖|𝑢1 − 𝑢2|(𝑢1 − 𝑢2)

ℎ2
+

𝐶𝐷|𝑢2|𝑢2

ℎ2
+

𝑔(𝐻 + ℎ1)

2𝜌0

𝜕𝜌

𝜕𝑥

+
2𝐶𝑠2|∆𝑢2|∆𝑢2

𝐵
= 0 (1.24)

 

Δ𝑢𝑖 was estimated from the shipboard measurements by computing the difference between the 

last station in the channel and the first station outside of the channel at each end of the estuary 

(stations 2-3 and 8-9). The average values of |Δ𝑢1| and |Δ𝑢2| were 0.02 and 0.09 m/s 

respectively, which are comparable to the magnitudes of the other velocities in the equation. 

Since 
𝐶𝑆1

𝐶𝐷
~

𝐵

𝐻
, the momentum sink term should be about the same order of magnitude as the other 

terms in the equation. 

Taking the difference between the two layer-averaged equations eliminates the barotropic 

pressure gradient term, resulting in the final two-layer expression of the baroclinic dynamics: 

𝜕

𝜕𝑡
(𝑢2 − 𝑢1) +  𝑢2

𝜕𝑢2

𝜕𝑥
− 𝑢1

𝜕𝑢1

𝜕𝑥
+ 𝑔′

𝜕ℎ𝑖

𝜕𝑥
– 𝐶𝑖|𝑢1 − 𝑢2|(𝑢1 − 𝑢2) (

1

ℎ1
+

1

ℎ2
) +  

𝐶𝐷|𝑢2|𝑢2

ℎ2

                               +
|𝑢∗w|𝑢∗w

ℎ1
+

𝑔𝐻

2𝜌0

𝜕𝜌̅

𝜕𝑥
−

2𝐶𝑠1|∆𝑢1|∆𝑢1

𝐵
+

2𝐶𝑠2|∆𝑢2|∆𝑢2

𝐵
= 0                      (1.25)

 

The terms on the left-hand side are the local differential acceleration between layers, the 

nonlinear advection of the bottom layer, the nonlinear advection of the top layer, the pressure 

gradient caused by the tilting interface, the interfacial stress, the bottom stress, the surface wind 

stress, the baroclinic pressure gradient associated with the along-channel density gradient, and 

the lateral momentum sinks in the upper and lower layers.  
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To compute each of these terms, velocities and densities were estimated at each of the 

shipboard stations using the same offset method explained previously. However, instead of 

computing offsets for depth-averaged values, offsets were calculated for layer-averaged values. 

Density measurements from the AVP were used to divide the water column in two, at the depth 

of the maximum vertical salinity gradient, and it was assumed that the isopycnals were 

horizontal across the channel. At the central site, this resulted in 20 different regions (2 for each 

of the 10 stations) over which velocities and densities could be estimated. However, the two-

layer model requires that the widths of both layers be the same, so only the 6 stations in the 

channel (Fig. 1.2) were used to compute the layer-averaged velocities and densities. By 

restricting estimates of layer-averaged velocities to the channel, cross-sectional averaged 

estimates only differed from the centerline velocity estimates by 0.003 m/s (4 %). 

The shear stress between two layers is defined as: 

𝜕

𝜕𝑧
𝑢′𝑤 ̅̅ ̅̅ ̅̅  (1.26) 

Assuming that the momentum flux is determined by the velocity gradient between the top and 

bottom layers, the Reynolds stress can be parameterized with a vertical eddy viscosity: 

𝑢′𝑤′̅̅ ̅̅ ̅̅ = 𝐴𝑍

𝜕𝑢

𝜕𝑧
≈ 𝐴𝑧

𝑢1 − 𝑢2

Δ𝑧
 (1.27) 

The Reynolds stress can also be considered in the context of friction between the two layers and 

therefore parameterized with an interfacial drag coefficient, 𝐶𝑖 : 𝑢′𝑤′̅̅ ̅̅ ̅̅ = 𝐶𝑖|𝑢1 − 𝑢2|(𝑢1 − 𝑢2) 

With both parameterizations of the Reynolds stress, we find that  

𝐶𝑖 =
𝐴𝑧

(𝑢1 − 𝑢2)Δ𝑧
 (1.28) 

The vertical eddy viscosity can be modeled with a mixing length (Pope, 2000), such that  
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𝐴𝑧 = 𝑙𝑚
2

(𝑢1 − 𝑢2)

Δ𝑧
 (1.29) 

Therefore,  

𝐶𝑖 =
𝑙𝑚
2

Δ𝑧2
 (1.30) 

Here Δ𝑧 corresponds to the interface thickness. The mixing length is unknown, but in a stratified 

fluid, it can be much smaller than the interface thickness. Without good turbulence 

measurements, it is difficult to accurately measure the value of Ci. Krvavica et al. (2016) were 

able to estimate Ci empirically from bulk Reynolds and Richardson numbers in the Rječina River 

estuary, but noted that their parameterizations were not applicable to other estuaries. Without an 

accurate parameterization of the interfacial drag coefficient, a constant value of Ci = 5.0 x 10-4 

was chosen, which is in line with values reported in estuaries and river plumes (Geyer et. al, 

2017; Krvavica et al., 2016; MacDonald and Geyer, 2004). However, this value should increase 

as mixing between the two layers increases the interface thickness. The lateral momentum sink 

terms, likewise cannot be estimated from the data, and may be important considering that scaling 

estimates put these terms on the same order of magnitude as the others. 

The tilt in the interface is typically computed as the residual of all of the other terms. 

However, due to the large uncertainties involved, the residual is not a reliable estimate of the 

interface tilt term. Each of the terms in the two-layer model were estimated as described above, 

while the interface tilt, lateral friction, and uncertainty were included in the residual term.  

At low frequencies (periods > 30 hours), the primary balance is between the surface wind 

stress and the combined interfacial stress, bottom stress, and residual (Fig. 1.8c). Over the course 

of a given down-estuary wind event, the wind stress seems to balance the other three terms in a 

sequential pattern from the top of the water column to the bottom. First, the wind stress is 
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balanced by the interfacial stress, then the bottom stress, and finally the residual. This 

progression indicates that at first only the top layer is accelerated by the wind, which strains the 

density field and enhances exchange flow. At this point the increased flow at the bottom is 

counteracted by friction. On the other hand, during the only moderate up-estuary wind event, the 

wind stress is balanced first by the bottom stress and then by the residual, but not by the 

interfacial stress. In this case, the bottom stress reduces the exchange flow immediately. This 

suggests enhancement of the exchange flow during down estuary winds, but not during up-

estuary winds is important in generating interfacial stress. During weak to moderate winds, 

scaling arguments indicate that h𝑖/x ≈  𝐻/(𝑥𝑚𝑜𝑢𝑡ℎ − 𝑥𝑏𝑒𝑛𝑑) or hi/x ~10-4 and the interface 

tilt could account for most of the residual. During strong wind events, the residual term was an 

order of magnitude greater than the interfacial tilt term, indicating large error in the estimates of 

one or more terms. Spectra of the terms in the two-layer model further show a balance between 

the wind stress and the combined effect of the interfacial stress, bottom stress, and residual (Fig. 

1.9). At higher frequencies, the acceleration between layers comes into balance with the residual 

term. Assuming that a large part of the residual could be explained by interface tilt, it is possible 

that the acceleration of the exchange flow is balanced by the interfacial tilt. Overall, this suggests 

that the baroclinic term associated with the along-channel density gradient is not significant in 

driving the exchange flow, at any of these time-scales. Instead, it appears that the exchange flow 

was driven primarily by the asymmetric response to the along-estuary wind. 

 It should be noted that there is a fair amount of uncertainty associated with the 

computation of the terms of in the momentum budgets from field measurements (Fig. 1.5, 1.8). 

Long distances between the three sites (bend, central, mouth) and complex bathymetry 

complicate estimates of along-channel gradients in velocities and densities. Additionally, a lack 



27 

 

of continuous measurements across the channel introduces uncertainty to any cross-sectional 

estimates. Computations of wind stresses, requires the selection of a surface drag coefficient 

from one of dozens of parameterizations available in the literature. Finally, two-layer models 

require the reduction of a continuously stratified salinity field, which is continuously modified by 

mixing and entrainment, to two homogeneous layers. Thus, the difference between the real 

system and the modeled system contributes to the uncertainty of the estimates. 

Salt Flux 

In a wind-driven estuary, the magnitude and direction of the wind are important drivers 

for the transport of salt, and therefore likely have important effects on the salinity distribution in 

the estuary. The total salt flux is typically averaged over a 30-hr period to remove the short term 

fluctuations associated with tides. This 30-hr averaging period was also appropriate for the NRE, 

despite the lack of tides, because it averages over the oscillations due to barotropic seiches, while 

still resolving most of the wind events. The total time-averaged salt flux is given by 𝐹𝑆 =

〈∫∫ 𝑢𝑆𝑑𝐴〉, where the angle brackets represent a low-pass filter, S is the salinity and A is the 

cross-sectional area. Following Lerzcak (2006), the total salt flux can be decomposed into three 

components: salt flux associated with 1) the low-pass filtered and cross-sectionally averaged 

velocity and salinity, 2) the low-pass filtered and cross-sectionally varying velocity and salinity, 

and 3) the time-varying (high-frequency) and cross-sectionally varying velocity and salinity 

(Lerczak, 2006; Devkota and Fang, 2015). 

The low-pass filtered and cross-sectionally averaged velocity (u0) and salinity (S0) are 

defined as: 

𝑢0 =
〈∫𝑢𝑑𝐴〉

𝐴0
=

−𝑄𝑓

𝐴0
,       𝑆0 =

〈∫𝑆𝑑𝐴〉

𝐴0
 (1.31) 



28 

 

where 𝐴0 = 〈∫𝑑𝐴〉 is the low-pass filtered cross-sectional area, and −𝑄𝑓 = 〈∫𝑢𝑑𝐴〉 is the low-

frequency volumetric flow rate through the cross-sectional area. The low-pass filtered and cross-

sectionally varying velocity (uE) and salinity (SE) are defined as: 

𝑢𝐸 =
〈𝑢𝑑𝐴〉

〈𝑑𝐴〉
− 𝑢0,       𝑆𝐸 =

〈𝑆𝑑𝐴〉

〈𝑑𝐴〉
− 𝑆0 (1.32) 

Finally, the time-varying and cross-sectionally varying velocity (uT) and salinity (ST) are: 

𝑢𝑇 = 𝑢 − 𝑢0 − 𝑢𝐸 ,       𝑆𝑇 = 𝑆 − 𝑆0 − 𝑆𝐸 (1.33) 

The total low-frequency salt flux can be expressed using these three components:   

𝐹𝑆 = 〈∫∫(𝑢0 + 𝑢𝐸 + 𝑢𝑇)(𝑆0 + 𝑆𝐸 + 𝑆𝑇)𝑑𝐴〉 (1.34) 

By definition, ∫𝑢𝐸〈𝑑𝐴〉 = 0, ∫𝑆𝐸〈𝑑𝐴〉 = 0, 〈𝑢𝑇𝑑𝐴〉 = 0, and 〈𝑆𝑇𝑑𝐴〉 = 0, this simplifies to: 

𝐹𝑆 = 〈∫∫(𝑢0𝑆0 + 𝑢𝐸𝑆𝐸 + 𝑢𝑇𝑆𝑇)𝑑𝐴〉 (1.35) 

𝐹𝑆 = 𝐹0 + 𝐹𝐸 + 𝐹𝑇 (1.36) 

where 𝐹0 = −𝑄𝑓𝑆0 is the salt flux associated with the low frequency, cross-sectionally averaged 

velocity, which includes salt lost to river transport. The salt flux due to estuarine circulation is 

represented by FE. The final term is the salt flux due to correlations between high frequency 

velocity and salinity variations (𝐹𝑇). 

Terms were computed using the shipboard measurements for the central transect and 

dividing each of the 6 channel stations (Fig. 1.2) into two layers, which allowed for the 

computation of FE and its components at the surface and bottom. Thus, 𝑢𝐸1 and 𝑆𝐸1 and the 

exchange velocities and salinities in the top layer integrated over all 6 stations. Similarly, 𝑢𝐸2 

and 𝑆𝐸2 correspond to the values in the bottom layer integrated across the channel. 

In the NRE, the wind stress (Fig. 1.10a) appears to be the primary driver of the components of 

the cross-sectionally averaged salt flux, F0, as it was strongly correlated with the volumetric flow 
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rate, Qf (Fig. 1.10c). However, there was a 4.5 hour lag in the correlation, which can be 

interpreted as the time need for the wind stress to accelerate the entire water column. Initially, 

only the top layer is accelerated by the wind, but over time this strains the salinity field and 

modifies the exchange flow. The lag between the wind stress and the volumetric flow rate 

reflects the time for this process to occur. 

The freshwater discharge, QR (Fig. 1.10b), was also important, as higher freshwater flow 

rates at the beginning of the field experiment increased the strength of Qf. On the other hand, 

freshwater flow appears to have been of primary importance to the cross-sectionally averaged 

salinity, S0, as a decrease in QR coincided with an increase in S0. The wind stress also appears to 

affect S0 over short periods of time. Importantly, unlike most estuaries (e.g., Lerczak, 2006), the 

freshwater flow rate was not the dominant driver of F0 during this particular time period. 

The components of the salt flux due to exchange flow are shown in Fig. 1.11. The effects 

of wind direction on exchange flow are evident in the time series of uE (Fig. 1.11a). Down-

estuary winds sharply increased the difference between uE at the surface and bottom, while up-

estuary winds caused uE1 and uE2 to converge to zero. The strongest up-estuary wind reversed the 

exchange flow (6/18 – 6/20). The values of SE were less sensitive to changes in wind direction, 

as stratification persisted, except when the wind was strong enough to completely mix the water 

column. 

 Time series of the terms in the salt flux equation show that the total salt flux was 

dominated by F0 (Fig. 1.12a). As was the case with uE, peaks in FE largely occurred during 

down-estuary wind events, which are known to enhance estuarine circulation (Fig. 1.12b). The 

salt flux due to correlations between high frequency variations in u and S, which are mainly 

associated with the seiche, remained near zero throughout the field experiment.  
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The effects of wind speed and direction along the axis of the estuary can be further 

understood by examining the evolution of the stratification and velocity during strong up-estuary 

and down-estuary wind events (Fig. 1.13). As the wind ramped up in the up-estuary direction 

(Fig. 1.13a), the surface set up (Fig. 1.13g). The exchange flow became increasingly negative 

(Fig. 1.13c), with the top layer moving upstream relative to the bottom layer, resulting in a 

depth-averaged up-estuary flow.  This pushed more salt upstream in the top layer (Fig. 1.13e), 

which decreased the density difference between layers until they became well mixed on June 18 

(Fig. 1.13b). As the wind began to die down, the barotropic pressure gradient drove a down-

stream depth-averaged current, and the baroclinic pressure gradient returned the exchange flow 

to a normal, positive direction. Subsequently, fresher water was transported downstream and 

saltier water was transported upstream, increasing stratification and advecting salt back 

downstream (Fig. 1.13i). 

 At the onset of a down-estuary wind event (Fig. 1.13b), the water surface set down (Fig. 

1.13h) and positive exchange flow was enhanced (Fig. 1.13f), increasing stratification (Fig. 

1.13d), and resulting in an down-estuary depth-averaged current. As the down-estuary wind 

reaches peak wind stress (6/22), it becomes strong enough to directly mix the water column, 

decreasing stratification and exchange flow. Eventually the wind speed decreases to the point 

that it again enhances the stratification, resulting in a positive exchange flow, pushing salt into 

the estuary (Fig. 1.13j). These results are consistent with the modeling and mechanisms 

identified by Chen and Sanford (2009) and Xie and Li (2018). 

 Over the entire measurement period, there was a net influx of salt (Fig. 1.12b), which was 

driven partially by F0 due to net upstream flow and partially by FE, representing the estuarine 

exchange flow. It is likely that this net inflow was the result of the particular conditions observed 
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during this time period. In the long term, there should be zero net influx of salt to maintain a 

steady state. FE resulted in a consistent net up-estuary salt flux, driven by down estuary winds, 

which generally enhance exchange flow, while any reverse exchange driven by up-estuary winds 

get shut down quickly. FT was approximately zero over the course of the experiment. 

Discussion 

In the Results section, we demonstrated that the wind is the dominant forcing in the lower 

NRE, especially at low frequencies (periods > 30 hours). Importantly, during large wind events, 

the baroclinic term was negligible in the two-layer momentum budget, which suggests that it is 

not significant in driving the exchange flow. Instead, the exchange flow appeared to be driven 

primarily by the asymmetric response to the along estuary wind. We found that wind stress 

enhanced the exchange flow and increased stratification during down-estuary winds, but reduced 

or even reversed exchange flow with up-estuary winds, thus decreasing stratification. The wind, 

in effect, strained or mixed the water column, much like tides do in SIPS estuaries. The standard 

Rix, quantifies tidal straining, and therefore cannot be applied directly to wind straining in the 

NRE. We instead define a new wind horizontal Richardson number by replacing the bottom 

stress with the wind stress: 

𝑅𝑖𝑥𝑤 =
𝐻2𝑁𝑥

2

𝑢∗𝑤
2

(1.37) 

This new ratio represents the competition between wind straining of the horizontal density 

gradient and wind mixing, where small values of 𝑅𝑖𝑥𝑤 indicate that wind mixing is larger than 

wind straining for down estuary winds. The time series of 𝑅𝑖𝑥𝑤 (Fig. 1.14a) shows that 

destruction of stratification by mixing exceeded stratification generation by straining during the 

down estuary wind events with the strongest wind stresses (low 𝑅𝑖𝑥𝑤). Weak down-estuary 
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events resulted in 𝑅𝑖𝑥𝑤 > 1, indicating that stratification generation by wind straining exceeded 

stratification destruction by wind mixing. 

 Like its tidal counterpart, Rixw does not provide information about the effectiveness of 

mixing, as it does not take into account the time over which mixing occurs and hence the growth 

of the wind-mixed layer. The mixing number M was defined by Geyer and MacCready (2014) to 

quantify the degree of mixing generated in the bottom boundary layer in tidal estuaries. 

However, it does not account for the wind and interfacial mixing that our two-layer model 

indicated are important in the NRE. To account for these mechanisms, we define two new 

mixing numbers:  

𝑀𝑤
2 =

𝑢∗𝑤
2

𝜔𝑤𝑁0𝐻2
(1.38) 

𝑀𝑖
2 =

𝐶𝑖(𝑢2 − 𝑢1)
2

𝜔𝑖𝑁0𝐻2
(1.39) 

where 𝑀𝑤 and 𝑀𝑖 are the wind and interfacial mixing numbers. The definition of M can also be 

modified such that 𝜔 doesn’t correspond to the tidal frequency, but simply to the period of time 

since the bottom friction velocity changed direction. Likewise, 𝜔𝑤 and 𝜔𝑖 each correspond to the 

period of time since the surface friction velocity and exchange flow changed directions. Time 

series of the three mixing numbers, M, Mw, and Mi indicate that mixing was generated mostly by 

wind (Fig. 1.14d), though significant mixing was also produced in the bottom boundary and 

interfacial layers. 

 A fourth mixing number, 𝑀𝑡𝑜𝑡, can be defined as the maximum of the wind, bottom, and 

interfacial mixing numbers. This total mixing number can be interpreted as the ratio of the 

timescale of the dominant mixing mechanism (wind stress, bottom stress, or interfacial stress) to 

the time scale for vertical mixing to occur over the entire water column height. In other words, it 
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quantifies the effect of the dominant mixing mechanism on a stratified estuary. However, Mtot is 

not perfectly analogous to M, as defined by Geyer and MacCready (2014), due to the fact that  

does not represent the frequency of an oscillatory velocity. Instead, oscillations are defined by 

changes in the direction of the velocities. In a wind-driven system, like the NRE, this means that 

Mtot resets to zero every time the wind changes direction. Since the wind is irregular and 

episodic, there were inevitably times in which the estuary was well-mixed, despite low values of 

Mtot, because the estuary had not yet restratified after the previous wind mixing event. While this 

memory effect is unavoidable, its effects can be reduced by computing the average stratification 

over an entire mixing event, rather than using every observation. 

 Neither M nor Rixw alone provide complete information about mixing, because M does 

not capture whether straining or mixing is the dominant mechanism, and Rixw does not consider 

the time over which mixing occurs. Thus, both parameters are necessary to provide a complete 

picture of mixing. To explore how stratification varies with Rixw and M, we plotted g’ (Fig. 

1.15a,b) and the change in g’ since the beginning of the wind event, g’,(Fig. 1.15c,d) for up-

estuary and down-estuary wind events. Here, a wind event starts each time the along-channel 

wind stress reverses direction. The parameter space can be divided into four quadrants. In 

Quadrant I, straining dominates, but occurs over a short period of time. In Quadrant II, straining 

dominates, and occurs over a long period of time. In Quadrant III, mixing dominates and 

penetrates the entire water column, while in Quadrant IV mixing dominates, but only penetrates 

part of the water column. For up estuary winds, straining reduces stratification, while for down-

estuary winds, straining strengthens stratification. Up-estuary winds resulted in less stratification 

(Fig. 1.15a,b) and a greater decrease in stratification (Fig. 1.15c,d) than down-estuary winds. For 

down-estuary winds, low mixing numbers generally resulted in increases in stratification in both 
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quadrants I and IV (Fig. 1.15b,d), regardless of whether mixing or straining dominated in the 

surface boundary layer (Rix). For events in quadrant III, corresponding to boundary layer growth 

over the whole water depth and mixing dominating over straining, stratification generally 

decreased. The most interesting observations fall into quadrant II in (Fig. 1.15b,d), where 

although mixing numbers are high, wind straining dominates over mixing, increasing the 

stratification. 

 A computation of the average value of 𝑀𝑡𝑜𝑡 over the course of a single wind event also 

allows a wind-driven estuary, such as the Neuse, to be placed in the 𝐹𝑟𝑓 − 𝑀 parameter space 

first proposed by Geyer and MacCready (2014). While Mtot is not a perfect analogue to M, as 

discussed above, the NRE still fits reasonably well into the parameter space. Unlike tidally 

driven estuaries, which fit in a small area of the parameter space, the Neuse varies from strongly 

stratified to well mixed, depending on the strength and direction of the wind during a particular 

wind event (Fig. 1.16a). Consistent with the findings from the momentum budget, down estuary 

wind events tended to increase stratification, even for high values of Mtot (Fig. 1.16b). On the 

other hand, up-estuary winds decreased the stratification. With low freshwater discharge rates, 

the classification scheme suggests that the Neuse should behave like a strongly stratified estuary 

during weak winds. Given that some straining occurs at high mixing numbers, it is also likely 

that the observations during strong wind events that occur in the well-mixed region, would more 

appropriately fall into the SIPS regime. This would indicate that Mtot tends to overestimate M 

during strong wind events. 

 Given the results of the momentum and salt flux budgets, it is encouraging to find that 

this estuarine classification scheme predicts that the NRE will behave like a number of different 

classes of estuaries, depending on the strength and duration of a wind event. The one-layer 
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model was effective at examining the barotropic dynamics over the course of the entire 

experiment. During strong wind events, the wind stress was balanced by the barotropic pressure 

gradient. This aligns with the classical balance in tidal estuaries between the barotropic pressure 

gradient and the bottom stress in well-mixed and partially mixed estuaries. When the wind died 

down, the one-layer balance was predominantly between the barotropic pressure gradient and the 

acceleration, mirroring the conditions in a stratified lake. The two-layer model was useful for 

understanding the dynamics of the exchange flow, when there were two distinct layers. The 

along-channel salinity gradient was not significant in driving the exchange flow during moderate 

and large wind events. Instead, it seems to be driven by a wind-induced SIPS mechanism. 

Conclusions 

 A field experiment was conducted to investigate the processes driving circulation and salt 

transport in a wind-driven estuary. Analysis of the depth-averaged momentum equation showed 

that the primary balance was between the wind stress and barotropic pressure gradient. Applying 

a band-pass filter to this equation confirmed the presence of a barotropic seiche with a period of 

about 13 hours, where the barotropic pressure gradient balanced the local acceleration. During 

periods of strong stratification, there was a two-layer circulation pattern, in which the wind stress 

was balanced by a combination of the interfacial stress, bottom stresses, and interfacial tilt. 

Interestingly, the baroclinic pressure gradient term was often insignificant compared with the 

wind in driving the exchange flow. Up-estuary winds reduced the stratification and reduced or 

reversed the exchange flow, briefly causing a net transport of salt into the estuary until the water 

column became vertically mixed. Down-estuary winds enhanced the exchange flow and 

increased stratification, except when the wind stress was strong enough to overcome 

stratification and directly mix the water column. Over the course of the entire field experiment, 
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the asymmetric response to the predominantly down-estuary winds enhanced exchange flow, 

which when combined with a decrease in freshwater discharge, resulted in a net salt influx. 

 A new set of parameters were defined in order to compare the physics of a wind driven 

estuary to classical tidal estuaries. Both Rixw and M were important in determining the response 

of the stratification to down-estuary winds, as Rixw quantified the relative strength of straining 

and mixing while M quantified the degree to which boundary layer mixing penetrated the water 

column during a wind event.  For up-estuary wind events, straining always enhances mixing, and 

decreases stratification. Due to a wide range of wind speeds and durations, a wind-driven estuary 

such as the Neuse experiences varying amounts of mixing, which makes it difficult place in an 

estuarine classification scheme. Instead, it can fall in a number of different regions of the 

estuarine parameter space, suggesting that it behaves like a number of different types of 

estuaries, depending on the wind conditions. Strong winds resulted in well-mixed conditions, 

while weak winds generally resulted in strongly stratified conditions. Straining by moderate 

down-estuary winds caused the NRE to behave like a wind-induced SIPS estuary on occasion. 
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CHAPTER 1 FIGURES 

 

 

 

Figure 1.1: Bathymetric map of the Neuse River Estuary with color contours of depth 

in meters. The two black squares (near bend, mouth of estuary) mark sites with a 

bottom-mounted ADCP and a mooring of 3 CTDs. At the central site (black triangle), 

there was also an AVP. Pink lines represent the tracks of biweekly shipboard 

measurements. 
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Figure 1.2. Cross- section of the Neuse River Estuary at the location of the central study site. The 

location of the moored ADCP and AVP are marked in red. Vertical black and gray lines mark the 

sites of the shipboard ADCP/CTD stations, where biweekly measurements were made from June 

to September, 2016. The average height of the pycnocline is shown in blue. Shipboard stations 

marked with black lines are “channel” stations, which always had two layers when the water 

column was stratified. Gray lines mark “non-channel” stations, where only the top layer was 

frequently observed during periods of stratification. The shaded red and blue regions represent 

the two layers used in the two-layer model. The one-layer model includes the red, blue and green 

regions. 
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Figure 1.3: Conditions during the 1‐month deployment period in June and July 2016. Panels are 

time series of a) wind speed and direction (sticks indicate direction the wind is blowing toward), 

b) salinity profiles measured with the AVP, c) along‐estuary currents (positive is up‐estuary), 

and d) gradient Richardson numbers normalized by ¼. Rig>¼ (warm colors) indicate that 

stratification is too strong for mixing to occur, and Rig<¼ (cool colors) indicate that there is 

sufficient velocity shear to overcome the stratification and mixing to be possible. Wedderburn 

numbers are shown in panel e). Values below the gray dashed line are considered strong winds 

(Chen and Sanford, 2009).  
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Figure 1.4. Average shipboard ADCP/CTD profiles of (a) along-channel velocity, (b) across-

channel velocity, and (c) salinity, collected on the central across the lower Neuse River estuary. 
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Figure 1.5. Terms of the cross‐sectionally averaged momentum budget, computed from the field 

measurements. Lines represent local acceleration (blue), barotropic pressure gradient force 

(green), baroclinic pressure gradient force (cyan), wind stress (pink), bottom stress (black), 

Coriolis (yellow), and residual (orange) terms. Positive force terms correspond to forces directed 

down‐estuary; positive acceleration corresponds to up‐estuary acceleration. Time series are a) 

unfiltered, b) 30 hr low‐pass filtered, and c) 6 - 18 hr band‐pass filtered momentum budget 

terms. Scatter plots are d) barotropic pressure gradient term against wind stress and e) band‐pass 

filtered barotropic pressure gradient against acceleration. 
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Figure 1.6: Multi-taper spectra of the terms in the cross‐sectionally averaged momentum budget. 

Error bars represent 95% confidence intervals for the spectra. 
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Figure 1.7: a) The water column was divided into two layers using the AVP salinity profiles, 

with the pink line representing the division between layers. The bottom two panels show layer 

averaged velocities (b) and densities (c), where the top layer (layer 1) is shown in blue and the 

bottom layer (layer 2) is shown in red. 
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Figure 1.8: a) Time series of internal and layer Froude numbers, where values below the 

horizontal black line indicate that a two-layer model is applicable. Time series of b) unfiltered, 

and c) 30 hr low‐pass filtered momentum budget terms.  Terms of the two-layer momentum 

balance, computed from the field measurements. Lines represent differential acceleration 

between two layers (blue), bottom stress (black), wind stress (pink), interfacial stress (green), 

baroclinic pressure gradient (cyan), advection (red), and residual (orange) terms. The gaps in the 

time series in b and c were times in which the water column was not strongly stratified by 

density (see Fig. 1.7c), and therefore the two-layer model is not appropriate. 
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Figure 1.9: Multi-taper spectra of the terms in the two-layer momentum budget. At low 

frequencies (< 0.013 Hz), the momentum budget is dominated by wind stress (pink), bottom 

stress (black) and interfacial stress (green) terms. At higher frequencies (10-1.4 -10-0.9 Hz), the 

dominant terms are the bottom stress (black) and acceleration in exchange flow (blue). 
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Figure 1.10: Times series of 30-hr filtered wind stress, b) freshwater flow rate, QR, c) volumetric 

flow rate, Qf, and d) S0. 
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Figure 1.11: Times series of cross-sectional estimates of a) uE and b) SE in the top 

(blue) and bottom (red) layers. 
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Figure 1.12: Time series of a) salt flux terms and b) total salt content. 
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Figure 1.13: Response of the estuary to a typical up‐estuary (left) and down‐estuary (right) wind 

event. Rows are: a,b) wind stress (positive upstream), c,d) density difference between upper and 

lower layers, plotted as g’, e,f) difference between the velocities in the upper and lower layers 

plotted as u=ulower‐uupper (positive upper layer moving downstream with respect to lower layer) 

and depth-averaged current (positive upstream), g,h) surface elevation at the central site, and i,j) 

total salt transport (positive upstream). 
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Figure 1.14: Times series of a) horizontal Richardson number, b) g’, and c) mixing number.  
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Figure 1.15: Variation of g’ and g’ in Rixw-Mtot parameter space for (a,c) upstream and (b,d) 

downstream wind events.  In Quadrant I, straining dominates, but occurs over a short period of 

time. In Quadrant II, straining dominates, and occurs over a long period of time. In Quadrant III, 

mixing dominates and penetrates the entire water column, while in Quadrant IV mixing 

dominates, but only penetrates part of the water column. 
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Figure 1.16: Estuarine parameter space based on the freshwater Froude and total mixing number. 

Black lines divide the parameter space from classification scheme of Geyer and MacCready 

(2014). Points represent the a) average stratification during each mixing event and b) the change 

in stratification over the course of the wind event.  
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CHAPTER 2: TURBULENT MIXING IN A STRATIFIED, MICROTIDAL, WIND-

DRIVEN ESTUARY 

Introduction 

Stably stratified shear flows occur in a variety of natural environments, including oceans, 

lakes, estuaries, and the atmosphere. Turbulent mixing in these environments is crucial to the 

overall circulation and dynamics of the system. Mixing in the upper ocean affects the 

stratification, horizontal circulation, overturning, and heat transport toward the poles (Gregg et 

al., 2018). In estuaries, mixing determines the strength of the exchange flow and stratification, as 

well as residence times and dispersion of particulate matter (Geyer, 2008). In the atmosphere, 

mixing is important in determining the distributions of atmospheric chemicals, which has major 

effects on air quality, absorption of ultraviolet radiation, and climate (Akimoto, 2003). 

Stratified turbulence occurs as a result of the competition between background vertical 

shear, which produces turbulence, and stratification, which suppresses it. This competition is 

quantified by the gradient Richardson number, 𝑅𝑖𝑔 = 𝑁2/𝑆2 in which 𝑆2 = (𝜕𝑈1/𝜕𝑧)
2 +

(𝜕𝑈2/𝜕𝑧)
2 is the local shear squared and 𝑁2 = −(𝑔/𝜌0)(𝜕𝜌/𝜕𝑧) is the squared buoyancy 

frequency. Here, 𝑈1 and 𝑈2 are orthogonal horizontal velocity components, g is gravitational 

acceleration, and 𝜌0 is the average density. Above a critical value of Rig crit = 1/4, linear stability 

theory predicts that the flow is stable against growth of small amplitude fluctuations (Miles, 

1961) and turbulent mixing is restricted (Rohr et al., 1988). Below Rig crit a variety of turbulent 

instabilities can occur (e.g., Drazin and Reid, 1981), including Kelvin-Helmholtz and Holmboe 

instabilities. Kelvin-Helmholtz stabilities are considered to be the most common in stratified  



57 

 

environments, and thus have been the focus numerous direct numerical simulations (e.g., Smith 

and Moum, 2000; Scotti, 2015; Mashayek, et al., 2017). 

Due to the relative ease of measuring shear and stratification in the field, it is common to 

use 𝑅𝑖𝑔 as a proxy for identifying the potential for turbulent mixing in stratified shear flows. In 

recent studies, the strength of turbulence and turbulent mixing has been estimated more directly 

with microstructure measurements. In estuarine environments, researchers have made direct 

measurements of turbulent momentum fluxes (Stacey et al., 1999), dissipation of turbulent 

kinetic energy (Peters and Bokhorst, 2000), and buoyancy fluxes (Gargett, 1994). Estimates of 

dissipation turbulent momentum fluxes rely on several important assumptions: the turbulence is 

1) fully developed, 2) stationary, and 3) isotropic. However, at high 𝑅𝑖𝑔 direct numerical 

simulation (DNS) studies have found that all three of these assumptions can break down 

(Mashayek et al., 2017). The first assumption is typically satisfied by only considering 

turbulence with sufficiently large Reynolds numbers. The second can be determined with a 

nonparametric test (Bendat and Piersol, 2000). The third is more problematic, because turbulence 

is inherently anisotropic at the largest scales due to the influence of background shear and 

stratification (Mater and Venayagamoorthy, 2014). As such, field studies in estuaries often focus 

on quantifying isotropic turbulence and are typically limited to energetic environments (e.g., 

MacDonald and Geyer, 2004; Holleman et al., 2016; Geyer et al., 2017), where there is a large 

separation between large anisotropic scales and small dissipative scales, and hence a substantial 

range of scales over which the turbulence is isotropic. In less energetic systems, Bluteau et al. 

(2011) found that dissipation estimates computed via the standard spectral fitting method can be 

unreliable for anisotropic turbulence. 
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It is also difficult to get a complete characterization of turbulence in stratified shear flows 

using dimensionless parameters, as laboratory experiments have attempted to either parameterize 

stratified turbulence without shear (e.g., Ivey and Imberger, 1991; Brethouwer et al., 2007) or 

without stratification (Saddoughi and Veeravalli, 1994). These parameterizations are also 

dependent on length scales associated with isotropic turbulence, neglecting the larger anisotropic 

turbulent eddies. More recently, Mater and Venayagamoorthy (2014) proposed a new framework 

for parameterizing both isotropic and anisotropic turbulence in stably stratified shear flows from 

dimensional analysis and theoretical considerations. Although they validated it with DNS and 

laboratory flume data, it has not yet been applied to field measurements.  

This study addressed how to directly measure and parameterize stably stratified shear 

flow turbulence from field measurements collected in a micro-tidal wind-driven estuary. While 

these estuaries are rarely studied, inconsistent, episodic wind mixing leads to strong 

stratification, making them ideal environments to study stably stratified shear flows. Thus this 

study provides an important contribution to understanding mixing processes in these systems and 

how they compare to tidally dominated estuaries. Methodologically, it increases our 

understanding of uncertainty in field observations of stratified turbulence and how they translate 

to interpretation of turbulence quantities. Finally, by applying a recently proposed scaling (Mater 

and Venayagamoorthy, 2014) our work provides a valuable field application of these 

dimensionless numbers.  

Theoretical Framework 

Turbulent Kinetic Energy Equation 

The turbulent kinetic energy is defined as 
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(𝑘 =
1

2
(𝑢1

′2̅̅ ̅̅ ̅ + 𝑢2
′2̅̅ ̅̅ ̅ + 𝑢3

′2̅̅ ̅̅ ̅)) (2.1) 

and evolves in time according to the following equation 

𝐷

𝐷𝑡
(𝑘) = 𝑇 + 𝑃 − 𝐵 − 𝜀 

𝑇 = −
𝜕

𝜕𝑥𝑗
(

1

𝜌0
𝑝′𝑢𝑗′̅̅ ̅̅ ̅̅ +

1

2
𝑢𝑖′𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 2𝜈𝑢𝑖′𝑒𝑖𝑗′̅̅ ̅̅ ̅̅ ̅̅ ) (2.2) 

𝑃 = −𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ̅ 𝜕𝑈𝑖

𝜕𝑥𝑗
 

𝐵 =
𝑔

𝜌
𝜌𝑢3′̅̅ ̅̅ ̅̅  

𝜀 = 2𝜈𝑒𝑖𝑗′𝑒𝑖𝑗′̅̅ ̅̅ ̅̅ ̅̅  

where t is time, 𝑥𝑗   are the three-dimensional spatial coordinates, with 𝑥3 positive upward; 𝑢𝑗  is 

the velocity vector; p is pressure, is kinematic viscosity; and 𝑒𝑖𝑗 = 1/2[𝜕𝑢𝑖/𝜕𝑥𝑗 + 𝜕𝑢𝑗/𝜕𝑥𝑖]. 

The velocity, density, and pressure fields have been decomposed into a time-averaged value, a 

periodic component, and a turbulent component. That is, 𝑢𝑖 = 𝑈𝑖 + 𝑢̃𝑖 + 𝑢𝑖′ , 𝜌 = 𝜌0 + 𝜌̃ + 𝜌′,  

𝑃 = 𝑃0 + 𝑃̃ + 𝑃′. Overbars represent Reynolds averaging. T is the transport of k due to pressure 

fluctuations, turbulent advection, and diffusion by viscosity. This term is often very small, but 

may be important when breaking surface waves transfer k downward in the water column (Craig 

and Banner, 1994). P is the production of turbulence, as k is transferred from the mean flow via 

the interaction between mean shear and Reynolds stresses. This term is typically positive, as 

turbulence is “produced” when turbulent eddies are strained by the mean shear. B is the 

buoyancy flux, which represents the conversion between turbulent kinetic energy and potential 

energy. When the fluid is stably stratified, B will be positive, as turbulent kinetic energy is 

expended when denser fluid elements are moved upward in the water column and less dense 
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fluid elements move downward. Finally, 𝜀 is the dissipation of turbulent kinetic energy, or the 

irreversible loss of k to heat due to viscosity. 

In stably stratified estuarine flows, it is often assumed that turbulence is steady and 

homogeneous, so the turbulent kinetic energy equation would reduce to 𝑃 ≈ 𝐵 + 𝜀. However, 

these assumptions of homogeneity and stationarity are often violated in stratified shear flow 

environments. Stable stratification can cause turbulence to collapse into layered regions, thus 

violating the assumption of homogeneity (Thorpe, 2016). Turbulence has been shown to be non-

stationary for much of the lifecycle of a shear instability, only becoming stationary when it has 

developed a sufficient range of turbulent length scales (Mashayek et al., 2017). 

Turbulent Length Scales 

In stably stratified shear flows, turbulence length scales can be derived from fundamental 

properties of the flow, including N, S, turbulent kinetic energy (k), dissipation (𝜀), and kinematic 

viscosity (𝜈). Dimensional analysis with the parameters N, S, k, 𝜀, and 𝜈 yields several 

commonly used length scales. Length scales characterizing isotropic turbulent eddies are always 

a function of dissipation, because in the inertial subrange, turbulent kinetic energy cascades from 

large eddies to small eddies at a rate equal to 𝜀. When the flow is unaffected by either shear or 

buoyancy, and is hence entirely isotropic, the largest eddies are assumed to have a velocity 

scale 𝑘1/2, and are represented by the inertial turbulent length scale, 𝐿𝑘𝜀 = 𝑘3/2/𝜀 (Pope, 2000). 

When shear and stratification affect the flow, the actual turbulent eddies never reach this size. 

Instead, when the growth of eddies is limited by buoyancy, the largest isotropic eddies that can 

occur are the size of the Ozmidov length scale, 𝐿𝑂 = (𝜀/𝑁3)1/2 (Dougherty 1961; Ozmidov 

1965). When shear dominates the largest eddy size, the size of the largest isotropic eddies scales 

with the Corrsin length scale, 𝐿𝐶 = (𝜀/𝑆3)1/2 (Corrsin, 1958). These length scales represent the 
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largest isotropic turbulent eddies, before they are affected by buoyancy or shear. At the high 

wavenumber end of the inertial subrange are the smallest eddies where turbulent kinetic energy 

is dissipated into heat and characterized by the Kolmogorov length scale (𝐿𝐾 = (𝜈3/𝜀)1/4). 

Under the influence of stratification or shear, there is a class of anisotropic eddies that are 

larger than the biggest isotropic eddies (𝐿𝑂 or 𝐿𝐶).  This anisotropic turbulence transfers energy 

down-scale at a rate different than 𝜀, as k can be added via shear or lost via buoyancy fluxes 

(Mater and Venayagamoorthy, 2014). In these cases, the size of the largest anisotropic eddies is 

characterized by either 𝐿𝑘𝑁  ≡  (𝑘/𝑁2)1/2 or 𝐿𝑘𝑆  ≡  (𝑘/𝑆2)1/2 (Mater and Venayagamoorthy, 

2014), depending on whether the flow is dominated by stratification or shear. The gradient 

Richardson number, 𝑅𝑖𝑔, gives an indication of whether stratification or shear has the dominant 

effect on the size of the largest anisotropic turbulent eddies. If Rig>1/4 (buoyancy dominated), 

the largest anisotropic eddies scale with LkN, while if Rig<1/4 (shear dominated), the largest 

anisotropic eddies scale with LkS. Since 𝐿𝑘𝑁 and 𝐿𝑘𝑆 do not require an assumption about the 

transfer rate of turbulent kinetic energy to smaller scales, they more generally describe the large-

scale motions than do 𝐿𝑂 and 𝐿𝐶. 

The most objective measure of the size of the largest overturns is the Thorpe scale, 𝐿𝑇 =

〈𝛿𝑇
2〉1/2 (Thorpe, 1977), where, 𝛿𝑇 is the vertical distance a sample must be moved adiabatically 

for the profile to become stable. The angle brackets represent vertical ensemble averaging. 

Calculation of 𝐿𝑇, requires measurement of instantaneous, high resolution, vertical density 

profiles, which are then sorted to give a vertically stable profile. Without density measurements 

from a microstructure profiler, the turbulent overturns cannot be resolved to compute 𝐿𝑇. As an 

alternative, the overturning length scale can be estimated with the Ellison scale, 𝐿𝐸 =
⟨𝜌′2⟩

1/2

𝜕𝜌/𝜕𝑧
, 

which is a statistical measure of the vertical displacement of a fluid parcel, before returning to an 



62 

 

equilibrium position or being irreversibly mixed with the surrounding fluid (Ellison, 1957). It has 

been shown that 𝐿𝐸 and 𝐿𝑇 agree well with each other, except under strongly stratified 

conditions, in which Rig > 1 (Itsweire et al., 1993). When the flow is strongly stratified, internal 

gravity waves cause LE to be larger than LT, as a result of the averaging schemes used in their 

calculations. Specifically, computation of 𝜌′2 requires not only vertical averaging, but also time 

averaging, which translates to lateral ensemble averaging via the frozen turbulence hypothesis. In 

the presence of internal waves, lateral ensemble averaging increases the value of 𝜌′2, and thus 

LE. On the other hand, LT is only vertically ensemble averaged, rendering it immune to this issue 

(Mater et al., 2013). As a result, when stratification is strong, 𝐿𝐸 has a tendency to overestimate 

the size of the turbulent overturns. 

Dimensionless numbers 

To better understand the nature of the observed turbulence, several dimensionless 

parameters can be calculated from ratios of various turbulent length scales. Traditionally, 

stratified turbulence is characterized in a Ret–Frt parameter space (e.g., Ivey and Imberger, 

1991). Here, 𝑅𝑒𝑡 = (𝐿𝐸/𝐿𝐾)4/3 is the turbulent Reynolds number and represents the range of 

energy containing scales. 𝐹𝑟𝑡 = (𝐿𝑂/𝐿𝐸)2/3 is the turbulent Froude number and relates how big 

the isotropic turbulent eddies are to how big they could be. Alternatively, Frt is the ratio of 

inertial to buoyancy forcing among the energy-bearing turbulent eddies. This framework, 

however, has a couple of drawbacks. First, it only accounts for the effects of buoyancy, and not 

shear. Second, it relies on the Ozmidov length scale, which assumes the turbulence is isotropic 

and ignores largest anisotropic eddies inherent in stably stratified shear flows. 

A more appropriate framework when both shear and stratification are significant is the 

𝑁𝑇𝐿 − 𝑆𝑇𝐿 framework developed by Mater and Venayagamoorthy (2014).  Here, 𝑁𝑇𝐿 and 𝑆𝑇𝐿 



63 

 

are the buoyancy and shear parameters respectively, where 𝑇𝐿  ≡  𝑘/𝜀 is the inertial time scale of 

the turbulence and 𝑁−1 and 𝑆−1 are the time scales associated with buoyancy and shear. Thus, 

𝑁𝑇𝐿 and 𝑆𝑇𝐿 are the ratios of the inertial time scale to the buoyancy and shear time scales. A 

large value of NTL (or STL) indicates that the timescale for turnover of the largest eddies is long 

compared with the time-scale for buoyancy (or shear) to affect eddies. Therefore, the turbulence 

is affected by buoyancy (or shear). Conversely, a small value of NTL (STL) indicates that time-

scales of eddies are sufficiently short that they are not affected by buoyancy (shear). This 

framework is superior to the Ret–Frt parameter space for stratified shear flows, because it 

accounts for both stratification and shear, and relies on length scales that are generalized to 

include both isotropic and anisotropic turbulence. 

Another commonly used dimensionless parameter is the activity number or Gibson 

number: 𝑅𝑒𝑏 = (𝐿𝑂/𝐿𝐾)4/3, which represents the range of length scales in the inertial subrange 

in buoyancy-controlled, stratified flows (Gibson, 1986; Ivey and Imberger, 1991; Stacey et al., 

1999). Equivalently, Reb is a measurement of the relative magnitude of dissipation to the 

combined damping effects of viscosity and buoyancy: 𝑅𝑒𝑏 = 𝜀/(𝜈𝑁2). It is often referred to as a 

buoyancy Reynolds number, because it is a ratio of inertial to viscous effects (Smyth and Moum, 

2000). It has also been considered to be a small-scale Froude number, because it compares an 

inertial scale to a buoyancy scale (Luketina and Imberger, 1989; Ivey and Imberger, 1991). Reb is 

typically used to quantify the intensity of turbulence is stratified systems. Turbulence has been 

found to be affected by buoyancy and viscosity for 𝑅𝑒𝑏 < 100, and greatly suppressed when 

𝑅𝑒𝑏 < 15 (Ivey and Imberger, 1991; Saggio and Imberger, 2001). 

While widely used, Reb makes it difficult to distinguish whether the stabilizing effects are 

due to viscosity or buoyancy. Large values of Reb can occur as a result of strong turbulence or 
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weak stratification. Furthermore, it only represents the full range of turbulent motion when the 

flow is fully isotropic (Mater et al., 2013). Dissipation rates have also been found to strongly 

vary with time during a single mixing event, making it difficult to associate a certain value of 

𝑅𝑒𝑏 with a particular mixing event (Mashayek et al., 2017). 

Mixing efficiency 

The efficiency of vertical mixing can be quantified by the flux Richardson number, 𝑅𝑖𝑓 =

𝐵

𝑃
. However, this definition only applies to homogenous and stationary turbulence. Traditionally, 

it is assumed that 𝑅𝑖𝑓 = 0.17, which is the value proposed by Osborn (1980) based on theoretical 

predictions of Ellison (1957). However, numerous lab experiments (e.g; Strang and Fernando, 

2001; Rehmann and Koseff, 2004), direct numerical simulations (e.g., Smyth et al., 2001; Shih et 

al., 2005; Mashayek et al., 2017), and field studies (e.g., Davis and Monismith, 2011; Dunckley 

et al., 2012; Walter et al., 2014; Holleman et al., 2016) have shown that 𝑅𝑖𝑓 can vary, depending 

on external conditions.  

In stably stratified shear flows, a more appropriate definition, which does not require the 

turbulence to be stationary or homogeneous is: 

𝑅𝑓 =
𝐵

𝑚
=

1

1 + (
𝜀
𝐵)

(2.3) 

where m is the net mechanical energy available to sustain turbulent motion and includes not only 

P, but also T (Ivey and Imberger, 1991). In stationary, homogeneous shear flows Rif = Rf. While 

removing the requirement that the turbulence be homogeneous and stationary, this definition 

includes reversible fluxes, such as those generated by internal waves, and are common in 

strongly stratified environments. A more rigorous version of the flux Richardson number, which 

only accounts for the irreversible conversions of energy locally, is defined as: 
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𝑅𝑓
∗ =

𝜀𝑃𝐸

𝜀 + 𝜀𝑃𝐸

(2.4) 

where 𝜀𝑃𝐸 = 𝑁2𝜀𝜌(𝑑𝜌/𝑑𝑧)−2, in which 𝜀𝜌 = 𝜅(∇𝜌′)2̅̅ ̅̅ ̅̅ ̅̅  is the dissipation rate of density variance 

and 𝜅 is the molecular diffusivity of density (Peltier and Caufield, 2003; Venayagamoorthy and 

Stretch, 2010). Without the benefit of DNS, this study relies on the Ivey and Imberger (1991) 

definition of 𝑅𝑓 (Eq. 2.3). When turbulence is intense, all three definitions are roughly the same, 

but as  𝑅𝑖𝑔 increases past the critical value, the first two definitions tend to diverge from 𝑅𝑓
∗. 

Specifically, 𝑅𝑓 typically underestimates the true value of the flux Richardson number due to the 

prevalence of reversible fluxes in strongly stratified flows (Venayagamoorthy and Koseff, 2016). 

Methods 

Field Measurements 

Field measurements were conducted in the Neuse River Estuary (NRE), a microtidal, 

wind-driven estuary in eastern North Carolina. Connecting to Pamlico Sound, the NRE is nearly 

isolated from the Atlantic Ocean by the Outer Banks barrier islands, which allow for limited tidal 

exchange through three small inlets. As such, NRE astronomical tides are negligible, accounting 

for approximately 1% of the variation in water level and velocity (Luettich et al., 2002). The 

NRE is shallow (mean depth of ~3.5 m) and narrow (mean width of 6.5 km) with a large fetch 

(length of ~70 km), which allows for the wind to be the main driver of flow patterns and 

turbulent mixing throughout the water column. During the summer, the wind direction is 

typically NE-SW, which is along-channel in the lower Neuse, but across-channel in the upper 

Neuse. As a result, the NRE experiences episodic periods of strong salinity stratification, leading 

to bottom water hypoxia due to eutrophication and lack of mixing (Paerl et al, 1998). 
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The upper Neuse (Fig. 2.1) was chosen as the study site due to the prevalence of strong 

stratification, making it an ideal location to examine stably stratified shear flows. Measurements 

of turbulent fluctuations were made during a 10-day period in August 2013 using an array of 

three 6-MHz acoustic Doppler velocimeters (ADVs; Nortek AS Vector) with synchronized, co-

located fast conductivity and temperature (CT) sensors (PME, Inc.) mounted on a sawhorse 

frame (Fig. 2.2). Each ADV/CT pair synchronously sampled at 16 Hz. Each ADV sample 

volume was 0.013 m, and the CT sensor sample volume is 3-5 cm. The three ADVs were located 

at 1.3, 1.9, and 2.5 m above bottom, in 4 m of water, in order to observe mixing across the 

pycnocline. A pair of high-resolution pulse-coherent current profilers (Nortek Aquadopp HR) 

mounted upward and downward-looking on the sawhorse frame provided measurements of 

velocity in 3-cm bins, while sampling at 1 Hz and recording an average of pings every 5 seconds. 

A bottom-mounted ADCP (TRDI 1.2 MHz Workhorse) sampled every 1 second in mode 12 with 

4 subpings per profile. Velocities were recorded in beam coordinates for the entire water column 

(4 m) in 0.25 m vertical bins, the first of which was centered 0.87 m above bottom. 

An Autonomous Vertical Profiler (AVP) measured profiles of temperature and salinity, at 

30-min intervals. These data were binned at 10-cm resolution. The AVP is a floating platform 

that lowers a CTD (YSI EXO Sonde) at a constant rate from the surface to the bottom 

(Reynolds-Fleming et al., 2002, Whipple et al. 2006). The temperature and salinity 

measurements were verified by a vertical array of 4 CTDs (SeaBird SBE-37SMP-ODO 

MicroCATs at 0.5, 1.0, 1.6, and 2.2 mab), 4 thermistors (SBE 56 at 0.5, 1.25, 2.0, and 2.8 mab), 

and 2 pressure sensors (RBR-DR1050 at 0.5 and 2.8 mab). Together with the velocity 

measurements from the ADCP, densities computed from the AVP salinity and temperature 

profiles were used to compute gradient Richardson numbers. Wind measurements were collected 
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during each vertical profile using the AVP’s anemometer, located at a height of 5 m and sampled 

every 30 minutes. 

Due to mechanical issues, the AVP did not collect data for a two-day period from 8/13 to 

8/15. During this time, measurements from the CTD array were used in place of measurements 

from AVP CTD, and wind measurements were obtained from the Marine Corps Air Station at 

Cherry Point (Fig. 2.1). 

 Data Processing 

Stratification and turbulence parameters were calculated using the following methods. 

The gradient Richardson numbers were calculated from velocity profiles collected by the ADCP 

and density profiles obtained from the YSI Sonde on the AVP. During the period when the AVP 

was not functioning, density profiles were instead calculated from the vertical CTD arrays. The 

ADCP data was averaged over 30 minutes to align with the density data, which was collected 

every 30 minutes by the Sonde on the AVP. Although the AVP density profiles have a resolution 

of 10 cm, the ADCP measurements were made with 0.25-m bins.  However, the true resolution 

of these ADCP measurements is slightly coarser than 0.25-m, since the ADCP averages 

velocities over 3 adjacent bins using a Barlett filter during internal processing (MacKinnon and 

Gregg, 2005). Density data were therefore interpolated to align with the ADCP data. When the 

only density data available was from the CTD array, the ADCP data were spatially averaged and 

interpolated to align with the CTD measurements, which were 50-60 cm apart. Higher resolution 

gradient Richardson numbers were also computed using velocity data from the HR-ADPs instead 

of the ADCP. The HR-ADP velocity data only covered the middle of the water column and the 

resulting values of Rig differed from those calculated from the lower resolution ADCP 

measurements by an average of 20%. However, the values of  Rig were often very large, so this 
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difference did not affect the conclusions about the stability of the flow. As a result, the Rig values 

presented in this study are those computed from the ADCP velocity data. 

 Velocity data from the ADVs were despiked using a kernel density-based algorithm 

(Islam and Zhu, 2013). Turbulence statistics were computed from 10-min segments of the 

ADV/CTs records. The presence of internal waves can result in the sensors sampling areas from 

parts of the water column with very different properties; for example, both above and below the 

pycnocline, during the same 10-min period. Therefore, the only times considered in the ADV/CT 

records were those in which the sensors remained in the same water mass throughout the 10-min 

period. To identify periods when the region of the water column sampled by the ADV was 

sufficiently stationary over a 10-min interval, we defined a nondimensional number, 𝐽 =
𝐻

𝑑𝑠̅

𝑑𝑧

𝜎𝑠
, 

where H is the water depth, 𝜎𝑠 is the standard deviation of salinity measured by the CT sensor 

over the 10-min interval, and 𝑑𝑠̅/𝑑𝑧 is the background vertical salinity gradient measured by the 

CTD on the AVP. J can be thought of as the ratio of the salinity difference between the top and 

bottom of the water column to the small-scale fluctuations in salinity at the CT sensor location 

due to a combination of internal waves and turbulence. Only 10-min intervals with J > 100, 

corresponding to salinity fluctuations less than 1% of the salinity difference between the top and 

bottom of the water column, were considered in the calculation of turbulence statistics. Removal 

of time intervals affected by internal waves also helps ensure that 𝐿𝐸 is a reasonable estimate of 

the overturning scale. 

The velocities for each 10-min ADV record were divided into segments of 1024 points, 

with 50% overlap. A Hann window was applied to each segment, and the power spectrum was 

calculated. Averaging over all of the segments resulted in a spectral estimate for each 10-min 

record with 95 degrees of freedom (Emery and Thomson, 2001). 
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Calculation of turbulence statistics 

The turbulent dissipation rate was calculated for each 10-min interval by fitting a model 

for the inertial subrange of turbulence to the observed vertical velocity spectra. The model 

assumes that the inertial subrange of the observed turbulence follows a Kolmogorov -5/3 law 

(Pope, 2000). The model relies on Taylor’s frozen turbulence approximation, which assumes 

turbulent eddies do not change significantly during the time taken to advect past the sensor. The 

model allows for the frozen inertial sub-range turbulence to be advected past the sensor by a 

steady horizontal current and random waves (Lumley and Terray, 1983; Rosman and Gerbi, 

2017).  The equation for the inertial sub-range portion of the power spectrum, in frequency 

space, is (Trowbridge and Elgar 2001): 

𝑃𝑤𝑤(𝜔) =  
24

55
𝛼𝜀2/3𝑉2/3𝜔−5/3𝐼 (

𝜎

𝑉
, 𝜃) (2.5) 

where 𝑃𝑤𝑤 is the vertical velocity spectrum,  is the radian frequency,  is the empirical 

Kolmogorov constant, approximately equal to 1.5 (reviewed by Sreenivasan, 1995), V is the 

magnitude of the current, 𝜎2 is the variance of the wave-induced horizontal velocity;  is the 

angle between the waves and current; and 𝐼(𝜎/𝑉, 𝜃) is a wave adjustment factor (Trowbridge 

and Elgar, 2001). 

In applying the above model, a line with a -5/3 slope was fit to the inertial subrange of 

spectra on log-log axes for frequencies greater than that of the wave peak (Fig. 2.3). The 

frequencies of the inertial subrange were determined by first fitting a line of -5/3 to a range of 

frequencies always within the inertial subrange (1.5 - 3.75 Hz). Any spectra in which the -5/3 fit 

had an R2 of less than 0.7 was rejected, as turbulence estimates could not be estimated. For those 

spectra that were not rejected, the frequency range was then iteratively toward the wave peak 

(lower frequencies) and toward the noise floor (higher frequencies) and the -5/3 line was fit to 
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the new frequency range. Analysis of the vertical velocity spectra indicated that when the fit 

reached the wave peak, the R2 value of the -5/3 decreased by more than 0.001. Therefore, the 

frequency range was only extended iteratively until the R2 value decreased by more than 0.001. 

Spectral estimates followed a chi-squared distribution, which for a Hann window have 

(8/3)(N/M) = 95 degrees of freedom, where N is the number of data points and M is the half-

width length (Emery and Thomson, 2001). Confidence intervals for the spectra were calculated 

and a -5/3 fit was applied to the upper and lower bounds to get a 95% confidence interval on the 

dissipation. However, Bluteau et al. (2011) found that dissipation estimates are less reliable when 

the turbulence becomes anisotropic, so the uncertainty is likely higher than computed 

statistically. For Reb < 500, they observed that  could differ from the true value by two-orders of 

magnitude. As a result, estimates of Reb are presented in all turbulence classification schemes. 

Computation of Reynolds stresses also required a wave-turbulence decomposition 

method, as small errors in ADV orientation result in correlations between orthogonal wave 

orbital velocity components that bias Reynolds stress estimates. A pressure correlation method 

was used for wave-turbulence decomposition, in which it was assumed that motions correlated 

with the displacement of the free surface were waves and did not correlate with turbulence. The 

turbulence cospectrum, Pu1’u3’, was computed by subtracting the cospectrum of wave orbital 

velocities from the cospectrum of raw velocities (Benilov and Filyushkin, 1970). Reynolds 

stresses were then calculated by integrating over Pu1’u3’ (Bendat and Piersol, 2000). A typical 

turbulence cospectrum is shown in Fig. 2.4a. The pressure correlation method successfully 

removes the wave bias, leaving no significant remaining peak in the turbulence cospectrum (Fig. 

2.4a) and variance-preserving cospectrum (Fig. 2.4b). Calculations of shear production used 10-

min averages of horizontal velocity from the Aquadopp HRs (3-cm resolution), which provided 
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measurements within 1 cm of the height of the ADVs. Likewise, the buoyancy fluxes were 

calculated from the cospectra, P’u3’, using the pressure correlation wave bias decomposition 

method described above. 

To compute 95% confidence intervals for Reynolds stresses, confidence intervals were 

first computed for each cospectrum, Pu1’u3’, after applying the pressure correlation method by 

assuming it followed a chi-squared distribution with 90 degrees of freedom (Emery and 

Thompson, 2001). Reynolds stresses were then computed from the upper and lower bounds of 

Pu1’u3’, to get 95% confidence intervals on the estimated Reynolds stresses. The same procedure 

was applied to each P’u3’ to get confidence intervals for the buoyancy fluxes. 

Ideally, k would be computed from the 𝑢𝑖
′ according to equation 2.1. However, processes 

other than turbulence and surface waves cause fluctuations in horizontal velocities and thus 

accurate estimates of 𝑢1
′2̅̅ ̅̅  and 𝑢2

′2̅̅ ̅̅ , could not be obtained from ADV data. Instead, k was 

computed using a method adapted from Mater and Venayagamoorthy (2014), using the NTL-STL 

parameter space (see Discussion). First the turbulence was classified as being shear-dominated 

(𝑅𝑖𝑔 < 0.25) or buoyancy-dominated (𝑅𝑖𝑔 > 0.25). Next for shear-dominated turbulence, it was 

assumed that the largest overturns (𝐿𝐸) scaled with 𝐿𝑘𝑆, and thus 𝑘 = (𝑆𝐿𝐸)2. Likewise, for 

buoyancy-dominated turbulence, 𝐿𝐸 scaled with 𝐿𝑘𝑁, so 𝑘 = (𝑁𝐿𝐸)2. Using the computed values 

of dissipation, NTL and STL were calculated. Finally, for points falling into an inertia-dominated 

regime, defined as NTL < 1 and STL < 3.3, the turbulent kinetic energy was recalculated as 𝑘 =

(𝜀𝐿𝐸)2/3, by assuming that 𝐿𝐸 scaled with 𝐿𝑘𝜀. This critical shear parameter (STL ~ 3.3) was 

chosen, because it reflects the flor conditions in which production and dissipation are in 

approximate balance in the log layer of unstratified channel flow (Mater and Venayagamoorthy, 

2014; Pope, 2000). 
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Results and Discussion 

Experimental Conditions 

Wind speeds during the measurement period were typically around 5 m/s (Fig. 2.5a) and were 

predominantly directed perpendicular to the axis of the upper estuary (NE-SW). The estuary was 

stratified for the entire study period with a median maximum N2 of 0.14 s-2. That indicates that 

the NRE was about as strongly stratified as most salt wedge estuaries, which typically have a 

maximum 𝑁2 of around 0.1 s-2 (Peters, 1997; Kay and Jay, 2003; Wang et al., 2011). At the 

times and heights at which turbulence was observed, N2 ranged from 10-5 to 10-1 s-2, with a mean 

value of 10-2.6 s-2 (Fig. 2.7a). The average shear when turbulence was observed was 0.13 s-2 (Fig. 

2.7b). 

There were three distinct wind events (towards N, NE, and SW) and four salinity 

stratification events: 1) initially stratified, 2) weakly stratified, 3) entrance of a salt wedge, 4) 

strongly stratified (Fig. 2.5b). The estuary was initially strongly stratified with surface-to-bottom 

salinity differences of 15 PSU, but this stratification weakened for several days during the 

northward wind. As the wind shifted to northeastward, which is down-estuary in the lower part 

of the NRE, the salt wedge was advected up-estuary, past the sensors. The study site remained 

strongly stratified for the rest of the experiment. Profiles of the along and across-channel currents 

(Fig. 2.5c-d) reveal a two-layer flow pattern throughout the deployment. Additionally, 

semidiurnal flow reversals indicate a wind-driven barotropic seiche (Luettich et al., 2002). A 

wave peak for waves of 1-3 second periods were present in most vertical velocity spectra, 

however, wave orbital motion only significantly affected the -5/3 region of the frequency 

spectrum in 10% of the 10-min intervals. 
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The water column was very stable and turbulence was scarce (Fig. 2.5b) for much of the 

deployment. However, persistent along-channel salinity gradients in both the upper and lower 

water column in the upper Neuse (Robbins and Bales, 1995) indicate that vertical mixing must 

occur. There was a wide-range of 𝑅𝑖𝑔 during the measurement period (Fig. 2.6a), but 𝑅𝑖𝑔 < 0.25 

(cool colors) rarely occurred below the surface mixed layer. While there were periods in which 

Rig < 0.25 near the bottom boundary, the middle of the water column, where the ADV/CTs were 

placed, it was typically observed that 𝑅𝑖𝑔 ≫ 0.25. Time series of 𝑅𝑖𝑔 at the height of each 

ADV/CT are shown in Fig. 2.6b-d. At 1.3 m and 1.9 m above bottom, 𝑅𝑖𝑔 < 0.25 for only 15% 

of the 10-minute intervals. At 2.5 m above bottom, the flow was more unstable, with 𝑅𝑖𝑔 < 0.25 

for 57% of the 10-minute intervals. Here, the flow was considered turbulent when the vertical 

velocity spectrum had an inertial subrange with a slope of -5/3 at frequencies between 1.5 and 

3.75 Hz. Turbulence was indeed scarce, with turbulence occurring only during 18%, 12%, and 

13% of the 10-minute intervals for the ADV/CTs at 1.3, 1.9, and 2.5 m above bottom, 

respectively. The majority of the turbulence that was observed appeared to occur when 𝑅𝑖𝑔 ≫

0.25. The reasons for this surprising observation will be discussed in the following sections. 

Even given the fact that stratified estuaries typically have large values of Rig, the values observed 

in NRE were on average far greater than those of previous studies in strongly stratified estuaries 

(e.g., Holleman et al., 2016; Krvavica, 2016). 

Turbulent Kinetic Energy Budget 

 All of the terms of the turbulent kinetic energy budget were approximately normally 

distributed on a log scale (Fig. 2.8). For 10-minute intervals in which the velocity spectra passed 

the -5/3 fit test, dissipation (Fig. 2.8a) had an average value of 2.5 x 10-6 m2s-3, which was half an 

order of magnitude greater than production estimates (Fig. 2.8b) and two orders of magnitude 
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greater than the buoyancy flux estimates (Fig. 2.8c). The mean dissipation was larger than values 

typically observed in the open ocean (~ 10-9 m2s-3; Gregg et al., 1993) but less than observed in 

previous studies of salt wedge estuaries, where 𝜀 > 10−4 m2s-3 (Geyer et al., 2008; Holleman et 

al., 2016).  

 To verify that the dissipation was in fact larger than the production, the dissipation 

estimates were recomputed using a higher noise floor (3.5 Hz instead of 3.75 Hz) to check that 

they were not being overestimated. These estimates did indicate that the noise floor had some 

effect on the dissipation values at 1.3 m above bottom, but not enough explain why dissipation 

was greater than production. The other possibility is that the production was underestimated. 

There were times in which the Aquadopp had lower estimates of the shear than the ADCP, 

especially at 1.3 m above bottom. However, even if the higher ADCP values were used, 

dissipation was still higher than production during these time periods. 

Times series of the terms in the turbulent kinetic energy budget are shown in Fig. 2.9. 

Although turbulence was quite strong, 10-minute intervals in which our methods could observe it 

were scarce. The strongest and most frequent turbulence observed was at the lowest ADV (1.3 

mab) and corresponded to when the salt wedge advected past the sensors on Aug. 10. During this 

time, the sensor was in the bottom boundary layer and experienced strong currents. Three 

relatively strong turbulent events were observed at the location of the top ADV (2.5 mab) during 

strong northward wind events on Aug. 6, 7, and 8. During these periods, the nearly up-estuary 

wind stress opposed normal estuarine circulation and reduced stratification in the upper part of 

the water column, making it more susceptible to vertical mixing. 

 Comparing the magnitudes of turbulent kinetic budget terms is difficult because 

uncertainties in the estimates are large. Estimates of dissipation rates of isotropic turbulence have 
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the smallest uncertainties, while estimates of production and buoyancy flux often have 

uncertainties so large that the confidence intervals include zero (Figs. 2.9, 2.10). The dissipation 

and production values were mostly the same order of magnitude within the uncertainty of the 

estimates. However, the turbulence associated with the advection of the salt wedge (Fig. 2.10) 

had higher dissipation rates than production at the height of the bottom sensor (Fig. 2.10a). 

Strong bottom shear during this event suggests that this was likely bottom boundary layer 

turbulence. The salt wedge event also appeared to produce some interfacial turbulence, as the 

best balance between production and dissipation occurred at the height of the middle sensor (Fig. 

2.10b), which was closest to the height of the pycnocline at the onset of the salt wedge event. 

During the first wind event on Aug. 6, which coincided with the initial stratified salinity event, 

dissipation and production estimated from the topmost sensor were approximately equal. The 

two wind events on Aug. 7 and 8, aligned with the weakly stratified period, where dissipation 

rates estimated from the top sensor were mostly larger than production (Fig. 2.10c). Low values 

of Rig near the surface during these time periods (Fig. 2.6a) suggest that this turbulence could 

have been produced in the surface wind-mixed layer and transported downward past the sensor.  

Turbulence Length Scales 

 The size of the turbulent overturns was estimated with 𝐿𝐸. All characteristic turbulent 

length scales were approximately log-normally distributed (Fig. 2.11). The length scales that 

characterize the largest turbulent eddies (all except LK) have mean values around 0.1 m, with 

maximum values of 2-3 meters, or half the water column height. 𝐿𝑘𝑁 and 𝐿𝑘𝑆 are both slightly 

larger than their counterparts, 𝐿𝑂 and 𝐿𝐶, suggesting anisotropic eddies were probably present. 

Additionally, it was observed that 𝐿𝐶 was typically less than 𝐿𝑂 and 𝐿𝑘𝑆 was less than 𝐿𝑘𝑁. The 

gradient Richardson number can be expressed as 𝑅𝑖𝑔 = (𝐿𝐶/𝐿𝑂)4/3, so for 𝑅𝑖𝑔 < 0.25, 𝐿𝐶 < 𝐿𝑂, 
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and similarly 𝐿𝑘𝑆 < 𝐿𝑘𝑁. However, 𝐿𝐶 < 𝐿𝑂 does not require that 𝑅𝑖𝑔 < 0.25, only that 𝑅𝑖𝑔 < 1. 

Given the mean values of LC and LO, it was typical that 0.25 < 𝑅𝑖𝑔 < 1, which is consistent with 

values of 𝑅𝑖𝑔 displayed in Fig 2.6. The values of LK were several orders of magnitude smaller 

than the other turbulent length scales, which should be sufficient scale separation for an inertial 

turbulent cascade. 

Time series of the turbulent length scales are shown in Figs. 2.12 and 2.13. During 

periods of strong turbulence, the largest overturns (𝐿𝐸) reached 2-3 m. Throughout the 

experiment 𝐿𝑂, 𝐿𝐶, 𝐿𝑘𝑁, and 𝐿𝑘𝑆 were all quite close to 𝐿𝐸, though LO and LkN were typically 

better at correlated with LE than LC and LkS during periods of strong stratification. During the first 

two strong wind events (Aug. 6 and 7) and the salt wedge event (Aug. 9 and 11), LC and LkS were 

better estimates of LE, suggesting that shear was more important than stratification in 

determining the size of the eddies. Since 𝐿𝑘𝜀 represents the largest eddies present when the 

effects of shear and buoyancy are negligible, it is not surprising that it typically overestimated 

the size of the overturns in this strongly stratified estuary. 

There is also an inverse relationship between the largest scales and the smallest scale, LK. 

The largest scales grow as turbulent intensity increases, reaching their peak values during the 

most energetic turbulence, before decaying as turbulence decays. LK, on the other hand reaches a 

minimum during the most energetic turbulence. 

Importantly, all of the turbulent length scales were smaller than the resolution of 𝑅𝑖𝑔 

(dashed line in Fig. 2.12-2.13) for much of the deployment, suggesting that the resolution of 

velocity and density measurements may not have been sufficient to resolve the shear and 

stratification at scales that affect turbulence. Therefore, although it appears that turbulence was 

observed at 𝑅𝑖𝑔 ≫ 0.25 (Fig. 2.6), this may be an artifact of the resolution of the velocity and 



77 

 

density profile measurements. If 𝑅𝑖𝑔 could be resolved at the characteristic length scales 

observed, it is possible that 𝑅𝑖𝑔 < 0.25. If Rig was in fact overestimated, then the ratio of the 

shear length scales (LC and LkS to the buoyancy length scales (LO and LkN) would also decrease. 

Under such strongly stratified conditions, the turbulent length scales are often less than 1 cm, 

making it unrealistic to get 𝑅𝑖𝑔 at a high enough resolution to accurately determine the stability 

of water column when the turbulence is generated, even with the high resolution Aquadopp 

measurements. Additionally, many of the length scale estimates rely estimates of either N or S. 

Since these terms appear in the denominator of the length scale estimates, underestimation of 

those terms as a result of low-resolution measurements would result in overestimates of the 

length scales. 

Mixing Efficiency 

Under the strongly stratified conditions found in the NRE, the efficiency of mixing 

observed was typically much less than the value, Rf = 0.17, proposed by Osborn (1980). Values 

of 𝑅𝑓 and 𝑅𝑒𝑏=/N2 were divided by stratification event (Fig. 2.14a) and along-channel current 

velocity (Fig. 2.14b), sorted according to 𝑅𝑒𝑏, and bin averaged into groups of 30 points. Bin 

averages in the energetic (isotropic) regime (𝑅𝑒𝑏 >100) suggest that Rf varies with 𝑅𝑒𝑏, with the 

least efficient mixing occurring during periods of weak stratification (high Reb, Fig. 2.14a) and 

strong along-channel currents (Fig. 2.14b). These results are in good agreement with the direct 

numerical simulations of Shih et al. (2005) and field observations of (Monismith et al., 

unpublished manuscript) who proposed a relationship of the form 𝑅𝑓 = 𝐶 (𝜀/𝜈𝑁2)−1/2, where C 

is a constant equal to 1.5 (Shih et al, 2005) or 2.7 (Monismith et al., unpublished manuscript). 

For values of 𝑅𝑒𝑏 <100, 𝑅𝑓 appears to decrease, which may be a result of reversible fluxes. This 
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result is consistent with the DNS studies of Venayagamoorthy and Koseff (2016), which found 

that Rf underestimates the flux Richardson number for low Reb. 

To understand how buoyancy affects turbulence, the data can be plotted in Ret-Frt 

parameter space (Fig. 2.15). Following Ivey and Imberger (1991), the diagram is divided into 3 

regions: 1) buoyancy-affected regime, but turbulence may be isotropic at the smallest scales, 2) 

buoyancy-controlled regime, 3) turbulence is suppressed by a combination of buoyancy and 

viscosity, leaving only internal wave motions. In theory, all of the turbulence should be found in 

Regions 1 and 2. However, the data indicate that some of the turbulence occurred in Region 3, 

where it should have been dampened by buoyancy and friction. This may be due to the 

anisotropy of the turbulence affecting the accuracy of the dissipation calculations. Under-

resolution of N can also have affected where points fell in the parameter space. In a study 

charactering the effectiveness of using a fit to the inertial subrange to estimate dissipation, 

Bluteau et al (2011), suggest excluding all data with Reb < 100, which affects all of the points in 

Region 3. 

The Ret-Frt diagram can also provide insight into how buoyancy affects the efficiency of 

vertical mixing, as 𝑅𝑓 varies not only with 𝑅𝑒𝑏, but also with Frt. The maximum value of flux 

Richardson number we observed was 𝑅𝑓~0.3, which is in line with previous studies (Smyth et 

al., 2001; Mashayek and Peltier, 2013). The most efficient mixing was observed in buoyancy-

controlled Region 2 (Fig. 2.15a), where values of Ret become large enough to allow for efficient 

mixing of strongly stratified flow. These results differ from those of lab experiments (Ivey and 

Imberger, 1991), which found that the most efficient mixing occurred at the transition between 

regions 1 and 2 (𝐹𝑟𝑡 = 1). When 𝐿𝑂~𝐿𝑇 (𝐹𝑟𝑡 = 1), the available potential energy stored in the 

largest overturn provides energy very efficiently to the inertial subrange, resulting in efficient 
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mixing. When the largest eddies are suppressed by buoyancy forces, the mixing is less efficient. 

However, the findings from controlled lab experiments (Ivey and Imberger, 1991) may not 

accurately reflect the characteristics of turbulence in the field. The findings in this study, that 

most efficient mixing was observed for Frt in the range 0.2-1 (Region 2) are consistent with 

other field studies (Davis and Monismith, 2011; Dunckley et al., 2012; Walter et al., 2014). 

Davis and Monismith (2011) suggested that this could be caused by internal wave forcing and 

nonlocal advection of TKE. Considering that 𝐿𝐸 can overestimate the size of the overturns in 

strongly stratified environments, it is possible that 𝐹𝑟𝑡 was underestimated, and the most efficient 

mixing did indeed occur for Frt close to unity. 

A recent study (Mashayek et al., 2017) provides more insight into the utility of the Ret-

Frt  parameter space. They determined that the key constituents of efficient mixing are that 𝐿𝐸 ≥

𝐿𝑂 (𝐹𝑟𝑡 = (𝐿𝑂/𝐿𝐸)2/3 ≤ 1) and that there is a sufficient separation between the largest and 

smallest turbulent scales in the inertial subrange (sufficiently large Reb), both of which are 

consistent with our findings. They suggest that in typical stably stratified shear flows, large 

initial overturns, which scale with LE provide a large pool of potential energy for scales smaller 

than LO, leading to a very efficient turbulence cascade when LE > LO. When these large overturns 

are present, the ratio of 𝐿𝑂/𝐿𝐸 is often used as a proxy for the age of decaying turbulence. It has 

been found that this ratio increases with the time from which turbulence is generated (Wijesekera 

and Dillon, 1997), so decaying turbulence in the buoyancy-affected Region 1 is older than 

turbulence in the buoyancy-dominated Region 2. Additionally, when 𝐿𝑂/𝐿𝐸 < 1 (Region 2), 

turbulence is anisotropic and affected by buoyancy (Mater and Venayagamoorthy, 2014). 

Therefore, our data suggest that anisotropic turbulence produced the most efficient mixing. 
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Interestingly, the part of the parameter space where the highest Rf occurred coincided 

with initially stratified and strongly stratified events (Fig. 2.15b). The first wind event (Aug. 6), 

associated with the initial period of stratification, appeared to have anisotropic turbulence, which 

resulted in efficient mixing. The final two wind events (Aug. 7 and 8) and the salt wedge event 

produced the strongest turbulence; the associated turbulent mixing was the least efficient. 

However, from their locations on the Ret-Frt  parameter space, there is no discernible difference 

between the turbulence likely generated at the surface during the last two wind events, and the 

bottom boundary turbulence produced during the advection of the salt wedge. 

Given that some of the observed turbulence is likely anisotropic, and it could be affected 

by both shear and stratification, the NTL-STL parameter space (Mater and Venayagamoorthy, 

2014) is a better framework for understanding the state of the turbulence in our dataset. This 

framework classifies stratified shear flow into one of three regimes: inertia-dominated, shear-

dominated, or buoyancy-dominated (Fig. 2.16). The highest Rf values occurred when the 

turbulence was anisotropic and fell in the buoyancy and shear-dominated regimes (Fig. 2.16a). 

However, some of the observed turbulence, including much of that associated with the advection 

of the salt wedge, appeared to fall into the inertia-dominated regime (Fig. 2.16f). In this regime, 

turbulence is expected to be isotropic and decaying, with 𝑃 < 𝜀. This was true of most of our 

observations that fell in inertia-dominated part of the parameter space (Fig. 2.16b). Some of this 

inertia-dominated turbulence had decayed to the point that at the time of observation, neither 

shear nor stratification still affected it, even though it was likely initially produced by shear, and 

previously affected by the background stratification. Thus, this turbulence behaves like 

unstratified turbulence, which is not well described by Rig. However, the decay time scale, TL, 

for this turbulence was typically about 3-5 minutes, suggesting that not all of the turbulence was 
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decaying during the course of the 10-min interval. The length scales associated with this inertia-

dominated turbulence were typically much smaller than the resolution of not only the density and 

shear measurements, but also the velocity measurements used to compute the dissipation. 

Therefore, it is difficult to accurately place these data points in the NTL-STL parameter space. 

Additionally, there may be some variability in the critical shear and buoyancy parameters 

used to determine the location of the inertia-dominated regime. The shear parameter was selected 

by Mater and Venayagamoorthy (2014) as the location where production and dissipation are in 

balance in a boundary layer. However, it appears that production was in balance with dissipation 

for some of the turbulence observed for 2 < STL < 3.3 as well as for 0.7 < NTL < 1 (Fig 2.16b). 

Thus, it is possible that the inertia-dominated regime should occupy a smaller area of the 

parameter space. Finally, there is a lot of uncertainty in where the observations fall in the 

parameter space, so it is possible that some of the inertia-dominated turbulence could be 

classified as buoyancy or shear dominated. 

In the buoyancy-dominated regime, 𝐿𝑂/𝐿𝐸 < 1 (Fig. 2.16c), indicating that the 

turbulence was anisotropic, which is consistent with the findings from the Ret-Frt diagram. One 

advantage of the NTL-STL parameter space is that it takes into account the effects of shear. As a 

result, an analogous ratio, 𝐿𝐶/𝐿𝐸, was computed for turbulence affected by shear, which 

indicated that in the shear-dominated regime, 𝐿𝐶/𝐿𝐸 < 1, and thus the turbulence was 

anisotropic (Fig. 2.16d). Analysis of Reb (Fig. 2.16e) indicates that the most energetic turbulence 

occurs in the inertia and shear-dominated regimes, while the least energetic turbulence is 

generally restricted to the buoyancy-dominated regime.  

Overall, the NTL-STL framework provided a more complete understanding of the 

characteristics of turbulence the stably stratified shear flows we observed. It also clarifies the 
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distinction between turbulence generated near the surface during wind events, and turbulence 

generated in the bottom boundary during the salt wedge event. Turbulence observed during the 

advection of the salt wedge, was generally classified as inertia-dominated turbulence, which was 

energetic, but not very efficient at mixing (Fig. 2.16f). However, some anisotropic turbulence 

was produced during the advection of the salt wedge. Shear-dominated and buoyancy-dominated 

turbulence typically occurred during periods of strong stratification. During the first wind event 

(Aug. 6), corresponding to the initial period of stratification, the turbulence was anisotropic and  

energetic, and it produced efficient mixing.  In the NTL-STL framework it now becomes apparent 

that the other two wind events (Aug. 7 and 8), were also energetic and anisotropic, but produced 

less efficient mixing. This lack of efficient mixing was likely due to the fact that the water 

column was more weakly stratified during the last two wind events than the first. This 

anisotropy, associated with shear, was not evident in the Ret-Frt framework. The turbulence 

generated during the strongly stratified period (after Aug. 11) mostly fell into the buoyancy-

dominated regime, which was the least energetic but had high mixing efficiencies.  

Conclusions 

Turbulence in strongly stratified estuaries, such as the NRE, is challenging to study, due to its 

scarcity, short time scales, and small length scales. In this study, we used some of the most 

accurate and high-resolution sensors available to attempt to characterize turbulence in the NRE, 

and the shear and density stratification that affect it. Our measurements include some of the 

strongest observed stratifications (𝑁2 = 0.14 𝑠−2), yet high turbulent dissipation rates (mean  = 

2.4 x 10-6m2/s3). Turbulent length scales estimated from our measurements suggest that the 

overturns were often small (1-10 cm), smaller than the spatial resolution of velocity and density 

profile measurements (25 cm), making it difficult to quantify the effects buoyancy and shear on 
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turbulence properties. Application of a framework recently proposed by Mater and 

Venayagamoorthy (2014), suggested that some of the observed turbulence fell into an inertia-

dominated regime, in which the turbulence was decaying, and eddies were no longer large 

enough to be affected by buoyancy or shear. While it is possible that points fell in this region due 

to measurement limitations, turbulence properties calculated from our measurements are 

consistent with it being decaying turbulence. Dissipation was generally larger than production 

and the Ellison length-scale was smaller than the Ozmidov scale and the Corrsin scale. Mixing 

efficiencies associated with this turbulence were generally quite low (Rf < 0.15). In the shear and 

buoyancy-dominated regimes, mixing tended to be more efficient, with peak values of 𝑅𝑓~0.3. 

We identified that turbulence in our measurements was generated by two distinct 

mechanisms: shear generation, associated with advection of a salt wedge, and wind mixing. The 

turbulence associated with the salt wedge appeared to be generated somewhere other than the 

discrete points where our turbulence sensors were located. Most of the turbulence we observed 

associated with this event appeared to have been decaying at the observed locations, and fell into 

an inertia-dominated regime, where mixing was inefficient. The turbulence generated by wind-

shear in the upper part of the water column had length scales ~ 1 m, large enough that our 

measurements resolved shear and stratification at the relevant scales. This turbulence was 

generally anisotropic, occurring in the shear and buoyancy-dominated regimes. When the water 

column was strongly stratified, this wind-generated mixing produced efficient mixing.   
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CHAPTER 2 FIGURES 

 

 

Figure 2.1: Map of the Neuse River Estuary showing the location of the study site  
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Figure 2.2: Schematic diagram of instrument layout for the deployment. The CTD string was 

located 20 m north or the AVP (not shown). 
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Figure 2.3: Example power spectrum of vertical velocity (blue) from ADV, located 2.5 m above 

bottom, with -5/3 fit (red) used to compute the dissipation. Dashed lines represent 95% 

confidence intervals on the spectrum (blue) and on the line of best fit (red). 
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Figure 2.4: a) Cospectrum and b) variance preserving cospectrum of along-channel and vertical 

velocity components. Panel a shows the original co-spectrum (blue) and the co-spectrum after 

the wave component has been removed using the pressure-correlation method (red). Panel b 

shows the variance preserving co-spectrum after the wave component has been removed. 
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Figure 2.5: a) Wind direction, b) salinity profile, c) along-channel current profile, and d) across-

channel current profile during August, 2013. Positive velocities correspond to down-estuary 

(along-channel) and towards the north shore (across-channel). During the experiment, there were 

three distinct wind events (towards N, NE, and SW) and four distinct salinity stratification 

events: 1) initially stratified, 2) weakly stratified, 3) entrance of salt wedge, 4) strongly stratified. 

Black x’s respresent observations of turbulence at the heights of the ADVs (b-d). 
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Figure 2.6: a) Profile of logarithm of normalized gradient Richardson numbers. Cool colors 

indicate sufficient shear to generate turbulence (Rig < 0.25). Horizontal black lines indicate 

heights of ADVs. Time series of gradient Richardson numbers at the heights of ADVs at b) 1.3 

m, c) 1.9 m, and d) 2.5 m above bottom. A red x indicates a time when the vertical velocity 

spectrum had an inertial subrange with a slope of -5/3. 
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Figure 2.7: Histograms of a) N2 and b) S2 at the height of all 3 ADVs. Both are approximately 

normally distributed on a log scale. Mean values are indicated in red. 
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Figure 2.8: Histograms of a) dissipation, b) production, c) buoyancy flux, and d) turbulent kinetic 

energy from all 3 ADVs. All four terms are approximately normally distributed on a log scale. 

Mean values are indicated in red. 

  



92 

 

 

 

Figure 2.9: Time series of dissipation, production, and buoyancy flux at a) 2.5 m, b) 1.9 m, and 

c) 1.3 m above bottom. Error bars are 95% confidence intervals, but triangular points have larger 

uncertainties than the observed values. 
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Figure 2.10: Production versus dissipation at a) 1.3 m, b) 1.9 m, and c) 2.5 m above bottom. 

Buoyancy flux versus dissipation at d) 1.3 m, e) 1.9 m, and f) 2.5 m above bottom. Points are 

colored by salinity stratification event (Fig. 5b). Error bars are 95% confidence intervals, but 

triangular points have larger uncertainties than the observed values. 
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Figure 2.11: Histograms of important length scales: a) LK, b) LE, c) LO, d) LkN, e) LC, and f) LKS. 

All length scales are approximately normally distributed on a log scale. Mean values are 

indicated in red. 
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Figure 2.12: a) Kolmogorov, b) Ozmidov, c) Corrsin, and d) Ellison length scales with 95% 

confidence intervals estimated from measurement from the three ADVs. The horizontal dashed 

lines indicate the resolution of the stratification and shear measurements (0.25 m). 
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Figure 2.13: a) Turbulent kinetic energy, b) 𝐿𝑘𝜀, c) 𝐿𝑘𝑁, and d) 𝐿𝑘𝑆 estimated from 

measurements from the three ADVs. Error bars are 95% confidence intervals, but triangular 

points have larger uncertainties than the observed values. The horizontal dashed lines indicate 

the resolution of the stratification and shear measurements (0.25 m). 
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Figure 2.14: Flux Richardson number versus buoyancy Reynolds number with 95% confidence 

intervals, bin averaged by a) stratification event and b) S2. The dashed line is the curve 𝑅𝑓 =

1.5 (𝜀/𝜈𝑁2)−1/2 proposed by Shih et al. (2005).  
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Figure 2.15: Turbulence measurements from all three ADVs plotted in the turbulent Froude 

number - Turbulent Reynolds number framework. Points are colored by a) Flux Richardson 

number and b) stratification event. Error bars are 95% confidence intervals, but triangular points 

have larger uncertainties than the observed values. 
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Figure 2.16: STL vs. NTL colored by a) Rf, b) 𝜀/𝑃, c) 𝐿𝑂/𝐿𝐸, d) 𝐿𝐶/𝐿𝐸, e) log10 𝑅𝑒𝑏, and f) 

stratification event. Error bars are 95% confidence intervals. Points with very large uncertainties 

are not shown. 
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