
1. Introduction
Arctic deltaic floodplains consist of complex river and lake systems that transport and store both inorganic and 
organic materials. The connectivity of Arctic floodplain lakes to nearby channels determines how much river 
water these lakes receive each year (Lesack & Marsh, 2010; Lesack et al., 1998; Marsh & Hey, 1989; Piliouras 
& Rowland, 2020). This interaction, in turn, influences carbon storage and ecological productivity and diversity 
(Lesack & Marsh, 2010; Wiklund et al., 2012). As the Arctic hydrological cycle intensifies due to climate change 
(Bring et al., 2017; Dai et al., 2009), it is important to quantify the impact of changes in connectivity so that we 
can better understand patterns of carbon transport, carbon emission, and biological diversity in these deltaic eco-
systems. These relationships are particularly vital because deltas are the interface between changing river systems 
and changing oceans, mediating the amount of terrestrial sediment and carbon exported into the coastal ocean 
(Emmerton et al., 2008; Piliouras & Rowland, 2020).

Abstract Within Arctic deltas, surficial hydrologic connectivity of lakes to nearby river channels 
influences physical processes like sediment transport and ice phenology as well as biogeochemical processes 
such as photochemistry. As the Arctic hydrologic cycle is impacted by climate change, it is important to 
quantify temporal variability in connectivity. However, current connectivity detection methods are either 
spatially limited due to data availability constraints or have been applied at only a single time. Additionally, 
the relationship between connectivity and lake ice is still poorly quantified. In this study, we present a 
multitemporal classification of functional lake connectivity in the Colville River Delta, Alaska. We introduce 
a connectivity detection algorithm based on remote sensing of high sediment river water recharge that is 
expandable to other high sediment Arctic deltas. We compare results to three existing data sets, producing 
64.4%, 75.8%, and 85.2% lake classification accuracy. Mismatches between the data sets are often due to 
inconsistencies in methodology or definition of connectivity. Connectivity varies temporally in about 10% of 
studied lakes and correlates strongly with discharge and lake elevation, supporting the idea that future changes 
in discharge will be a driver of changes in connectivity. Highly connected lakes start and end ice break up an 
average of 26 and 17 days earlier, respectively, compared to lakes that are poorly connected. Because spring 
and summer ice conditions drive Arctic lake photochemistry processes, our research suggests that surface 
connectivity is an important parameter to consider when studying biogeochemistry of Arctic delta lakes.

Plain Language Summary Arctic deltas contain a complex tapestry of channels and lakes. Lakes 
can be isolated from channels or connected to channels—either by feeder channels, other lakes, or by water 
movement over land during flooding. This connectivity is important because it impacts the movement of 
sediment, light penetration through water, and when lake ice forms and disappears. While we anticipate future 
changes in connectivity due to climate change, our ability to monitor connectivity is limited to individual 
deltas or single instances in time. Additionally, the relationship between lake ice and connectivity is poorly 
understood. In this study, we used a method based on satellite observations of sediment in water to examine 
lake connectivity variations within the Colville River Delta, Alaska. We found that most lakes stay connected 
or disconnected, but that about 10% of lakes have variable connectivity. These lakes are more likely to be 
connected when river discharge is high. Additionally, lake ice tends to break up earlier and last for a shorter 
period of time in connected lakes. Because lake ice conditions drive chemical interaction between sunlight and 
organic compounds in the water, connectivity is important to consider when studying the biology and chemistry 
of Arctic delta lakes.
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While there are many types of hydrologic connectivity (e.g., Covino, 2017; Passalacqua, 2017), delta lakes are 
functionally connected to river channels when they are recharged with river water, which changes their physical, 
ecological, and biogeochemical properties. There are other types of deltaic connectivity that have been studied 
in temperate deltas, such as channel-island connectivity (Chavarrías et  al.,  2018; Hiatt et  al.,  2018; Hiatt & 
Passalacqua, 2015). However, in this paper we focus specifically on the surficial connectivity between channels 
and lakes, which is a particularly important process in Arctic deltas. Within deltas, variations in functional lake 
connectivity lead to noticeable changes in lake biogeochemistry. High connectivity lakes, by definition, receive 
more river water each year, leading to shorter water residence times (Coops et al., 1999, 2008) and increased 
suspended sediment concentrations (SSC, Lesack & Marsh, 2010; Long & Pavelsky, 2013). Higher turbidity 
leads to decreased light penetration, predominantly inorganic lake sediments, and low macrophyte productivity 
(Lesack & Marsh, 2010; Lesack et al., 1998). Arctic lakes are a significant contributor of greenhouse gases to the 
atmosphere (e.g., Boereboom et al., 2012; Karlsson et al., 2013; Phelps et al., 1998; Walter Anthony et al., 2010), 
so these connectivity-driven differences are also important from a carbon and methane cycle perspective. Poorly 
or sporadically connected lakes have higher organic material and macrophyte productivity, resulting in increased 
dissolved organic carbon (DOC) compared to their high functional connectivity counterparts (Amoros & Bor-
nette, 2002; Lesack & Marsh, 2010; Tank et al., 2009). However, this same macrophyte productivity can reduce 
CO2 emission to the atmosphere due to increased photosynthesis (Tank et al., 2009).

Functional connectivity also impacts lake ice. While research on the relationship between lake ice and connec-
tivity is in its early stages, several observations suggest that connectivity may be a driving factor in intraregional 
lake ice timing variability. For example, as observed in Canada's Mackenzie River Delta during the fall freeze-up 
period, lakes with channel connections are more likely to be impacted by water movement from lakes to channels. 
This water movement results in lower water levels, increased likelihood of bottom-fast ice, and decreased lake 
bottom temperatures during the winter (Ensom et al., 2012). In a study of Alaskan lakes, Arp et al. (2013) found 
that while air temperature and lake area explained 80% of the variance in ice-out timing, they hypothesize that 
connectivity may be a driving force behind additional variability in ice-out timing within regions but emphasize 
the need for further studies focusing directly on investigating the topic.

Lake ice is particularly important from a biogeochemical standpoint because it is an effective blocker of light 
(Vione & Scozzaro, 2019). Earlier ice-out timing is very effective at increasing light availability to the lacus-
trine water column because it usually occurs during the late spring/early summer maximum in solar radiation 
(Vione & Scozzaro, 2019). A relationship between ice timing and connectivity would thus drive differences in 
aquatic photochemistry based on lake connectivity. The relationship between connectivity and lake ice is also 
potentially important from the perspective of methane production in lake sediments. Within ice-covered lakes, 
greenhouse gasses, particularly methane, accumulate under and within ice and are released to the atmosphere as 
a large pulse during breakup (Denfeld et al., 2018; Karlsson et al., 2013; Phelps et al., 1998; Vachon et al., 2017). 
Connectivity-impacted changes in ice timing could influence the timing of this pulse. Analysis of four lakes in 
Sweden (Boereboom et al., 2012) found that a lake connected via channel to the river network had almost no 
methane bubbles trapped in the ice. This contrasted with the other three lakes that were rich in methane bubbles 
and that were either completely isolated or only connected via channel to another lake. Thus, understanding a 
delta lake's functional connectivity is essential to understanding its physical characteristics, and, by extension, 
its biogeochemistry.

Despite the importance of connectivity in deltaic ecosystems, previous studies have focused largely on either 
relatively small scales, a single instance in time, or both. Prior research has used in situ data (e.g., Remmer 
et al., 2020), remote sensing (e.g., Piliouras & Rowland, 2020), or a combination of the two (e.g., Lesack & 
Marsh, 2010; Long & Pavelsky, 2013; Marsh & Hey, 1989) to identify lake connectivity. One common method 
of connectivity identification involves pairing discharge records with lake sill elevations calculated via aerial 
imagery (e.g., Lesack & Marsh, 2010; Marsh & Hey, 1989). While this method effectively combines current lake 
sill elevations and historical discharge records to study past connectivity, it assumes that sill elevations are stable 
over time, which may not hold true given increased erosion, deposition, and subsidence due to permafrost loss 
(e.g., Lauzon et al., 2019; Nitzbon et al., 2019). Additionally, because historically this method has required high 
resolution aerial surveys or fieldwork to determine lake sill elevations, it has been challenging to apply on large 
scales across multiple deltas. However, in the future, ArcticDEM (Porter et al., 2018) may be used to spatially 
expand the viability of this method. In contrast, Piliouras and Rowland (2020) used Landsat (30 m resolution) 
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imagery to detect the presence of channel connections between lakes and the main channel network. While this 
works well for lakes connected via large channels and is scalable across deltas and time periods, it is unable to 
detect connectivity driven by channels narrower than 30 m without future incorporation of higher resolution 
imagery such as Sentinel-2 or Planet.

In this paper, we seek to understand the variability of lake-to-channel connectivity over decadal scales, including 
lakes with sub-Landsat-pixel channels, and analyze the relationship of that connectivity to lake ice breakup and 
freeze-up phenology. We develop and test our algorithm within the Colville Delta, Alaska because there is ample 
comparison data available there.

2. Study Area
We acknowledge that, first and foremost, the Colville River Delta is home to the village of Nuiqsut, an Iñupiat, or, 
more specifically, a Kuukpikmiut (people of the Colville River) community (population 492 as of 2020; Depart-
ment of Commerce, Community, and Economic Development, 2021), which was founded in 1974 when 27 Utqui-
avik families moved to the area (http://www.north-slope.org/our-communities/nuiqsut). Subsistence activities are 
one of the primary industries of the village, including fishing, hunting, and whaling (Brubaker et al., 2014). Both 
community knowledge and quantitative climate data paint a picture of a changing delta, with temperatures rapidly 
increasing (Applied Climate Information System, 2021; Brubaker et al., 2014). During the study period for this 
analysis (2000–2019), mean annual air temperature in Nuiqsut increased by an average 0.15°C per year (same 
results using both a linear model and Sen's slope, p < 0.05 for both), with larger temperature changes in the late 
winter months such as February (Linear Slope: 0.37°C/yr, Sen's Slope: 0.42°C/yr) (Applied Climate Information 
System, 2021). Residents share that thaw of permafrost below lakes has led to lake draining and drying (Brubak-
er et al., 2014). This change in permafrost, in combination with later ice freeze-up and earlier ice breakup have 
reportedly led to dangerous travel conditions both on land and over ice roads (Brubaker et al., 2014). Residents 
also express concern with loss of habitat due to lake draining as well as loss of accessibility to certain fishing 
locations due to channels drying up and reducing connectivity (Brubaker et al., 2014). However, more frequent 
extreme events, such as elevated flood water levels (Brubaker et al., 2014), could potentially result in increased 
short-duration connectivity.

The Colville River originates in the Brooks Range, flows west to east across the North Slope, and then about 
20 km downstream of Umiat, Alaska, takes a northward turn and proceeds ∼140 km to drain into the Beaufort 
Sea (Figure 1). The entire Colville River Basin is underlain by continuous permafrost (Mikhailova, 2009; Walk-
er, 1998), except for a few taliks under deep lakes and deeper parts of distributary channels within the delta 
(Walker et al., 1987). The delta itself is lake-rich, and estimates of the delta's size range from 550 to 665 km2 
(Mikhailova, 2009). While recent estimates of sediment concentration are limited, Walker (1998) indicates that 
the Colville River Delta has one of the highest suspended sediment concentrations compared to other large Arctic 
rivers, with a 1998 estimate of 362 g m−3, compared, for example, to the Yukon (882 g m−3) and the Mackenzie 
(149 g m−3) river deltas. Estimates of suspended load grain size range from 3.1 to 12.1 μm, with a median size of 
7.6 μm (Arnborg et al., 1967), or very fine silt to fine silt according to the Wentworth Grain Size Classification 
(Wentworth, 1922). The delta channels remain frozen from approximately late September/early October to late 
May/mid-June, when the spring discharge maximum drives river ice breakup (Mikhailova, 2009). While the delta 
itself only receives 300–400 mm of precipitation each year (Mikhailova, 2009), historical records show that river 
water level can increase by 3–5 m during breakup, inundating at least 65% of the delta's total area (Walker, 1975).

3. Methods
3.1. Data Sets and Preprocessing

3.1.1. Development of Landsat Water Masks

To create water masks based on Landsat imagery, we use summertime (June to September) 30 m Landsat 5/7/8 
Tier 1 Surface Reflectance imagery from 2000 to 2019. To reduce noise from clouds and snow/ice, we use 
only those Landsat scenes that are less than 75% cloudy overall. We further remove pixel-level cloud and cloud 
shadow influence using bits 3 (cloud shadow) and 5 (cloud) of the quality band (“pixel_qa”), and we use bit 4 to 
remove snow/ice. Additionally, we use the Dynamic Surface Water Extent (DSWE) algorithm to select only high 

http://www.north-slope.org/our-communities/nuiqsut
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confidence water pixels in each image (Jones, 2019) and to remove pixels with unreasonable reflectance values 
(>10,000 or <0). Lastly, because the delta is sometimes observed by multiple Landsat tiles per day, we create a 
daily mean composite image. We refer to images that have gone through this process as “filtered Landsat images.”

Additionally, to create a water mask that only contains channel pixels, we begin with the JRC Global Surface 
Water Mapping Layers (v1.3, Pekel et al., 2016), 30 m resolution, to select pixels that have a water occurrence 
value of 60% or greater over the Landsat record. We select this relatively low initial threshold to keep channel 
connectivity intact through the following steps. Next, to remove lakes from the mask, we buffer lake polygons 
(Alaskan Lake Database, J. Wang et al., 2011) by 60 m (two Landsat pixels) and remove these regions from the 
channel mask. However, this leaves behind waterbodies too small to be included in the Alaskan Lake Database. 
To remove these lakes, we perform a connected components analysis to remove any disconnected features of the 
mask (e.g., lakes) that are smaller than 300 pixels. Lastly, we apply an 80% water occurrence threshold mask to 
keep only those pixels that are frequently classified as water over the Landsat record. However, certain lakes are 
still included in this mask due to their small size and proximity to the channel network, so we manually remove 
these lakes from the final channel mask.

3.1.2. Lake Boundaries

To identify lakes for connectivity analysis, we select lakes from the Alaskan Lakes Database (J. Wang et al., 2011) 
that contain at least 100 pixels classified as water 90% of the time and are within the bounds of the Colville Delta 
(v1.3, Pekel et al., 2016, n = 120 lakes). Note that we have split up several large lake complexes that were origi-
nally grouped into one polygon into single lake polygons.

3.1.3. Comparison Data Sets

We compare lake connectivity classification results against three different data sets to assess the strengths and 
weaknesses of our algorithm.

First, we use the high resolution (<10 m) Google Earth Composite Image (GECI) (a composite of 2013–2016 im-
agery) to manually identify those lakes that have a visible channel connection. Lakes whose channel connection 
is unclear (e.g., lakes that look like they have a dry channel that perhaps could fill up during floods) are marked 
as “uncertain channel connection.” This data set is used for both algorithm training and testing.

Figure 1. (a) Location of the Colville River Delta on the North Slope of Alaska. Blue lines are river reaches wider than 150 m contained in the Global River Widths 
from Landsat (GRWL) summary database (Allen & Pavelsky, 2018). (b) Colville River Delta, highlighting the village of Nuiqsut, Alaska. Composite image from 
Google Earth.
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The other two data sets define connectivity slightly differently, hence we use the terminology of comparison, 
rather than validation.

We compare connectivity classifications to a data set from Piliouras and Rowland (2020) that is based on summer 
Landsat images from 2014 that defines connectivity based on Landsat-visible channel presence. This data set is 
originally stored in an image in which waterbodies connected to the channel network have values of 1 and water-
bodies that are not connected are masked. To convert this image to a connectivity classification for each lake, we 
erode the study lake polygons by one Landsat pixel (30 m), and then count connected water body pixels inside 
each polygon. Polygons with 10 or more connected pixels are considered connected in the comparison data set. If 
there are fewer than 10 connected pixels, the lake is not considered to be connected. A threshold of 10 is used to 
further account for any differences in lake shorelines between our study lake polygons and the comparison data 
set. However, there are no differences in the number of lakes classified as connected using thresholds ranging 
from zero to 18 pixels.

Lastly, to compare our results to a ground-based data set, we use connectivity classifications from a 1992 survey 
of the Colville Delta (Jorgenson et al., 1997). Using the print map contained in the manuscript, we manually 
match connectivity classifications to our study lakes. Lakes in this data set that correspond with our study lakes 
are classified into the following categories (full descriptions can be found in Table 4 of Jorgenson et al., 1997):

Medium-high connectivity

1.  Deep connected lake: Lakes ≥1.5 m in depth with long, narrow, and persistent connections to the delta chan-
nel network.

2.  Deep tapped lake with low-water connection: Same as prior, but connection channels are filled with water, 
even at low discharge.

3.  Deep tapped lake with high-water connection: Lakes ≥1.5 m in depth that have been “tapped” by erosion of 
adjacent river banks. Connecting channels are dry unless discharge is high.

4.  Shallow tapped lake with low-water connection: Same as prior, but connection channels are filled with water 
even at low discharge.

5.  Shallow tapped lake with high-water connection: Lakes <1.5 m in depth that have been “tapped” by erosion 
of adjacent river banks. Connecting channels are dry unless discharge is high.

No connectivity

1.  Deep isolated lake: Lakes ≥1.5 m in depth that have no distinct outlets and are not connected to the channel 
network.

2.  Shallow isolated pond: Lakes <1.5 m in depth with no distinct outlets or channel connections.
3.  Shallow isolated pond, riverine: Lakes <1.5 m in depth with no distinct outlets or channel connections that 

are associated with old river channels.

No connectivity data available

1.  Brackish ponds: Shallow ponds near the shoreline that may be impacted by very high tides or storm surges. 
May or may not have connections to the channel network.

3.1.4. ArcticDEM

We investigate patterns between connectivity and lake surface elevation using 2 m-resolution ArcticDEM strip 
data (Porter et al., 2018) in 2015 and 2017. ArcticDEM data is only available when there is sunlight. Additionally, 
availability of data in the summer months is limited because the processing method is not effective over open 
water. As a result, there is a small window of time each year in which lake elevation data from ArcticDEM is 
available in this region—the month of April. Therefore, the lake surface elevation in this study represents the 
elevation of the top of the snow/ice on the lake as opposed to the water surface. For each observed year, we create 
an April mosaic of the strip data. Next, to remove noise from non-water lake edge pixels, we erode each lake 
polygon by two Landsat pixels (60 m). This removes six lakes from analysis that are less than two Landsat pixels 
wide (remaining lakes used for elevation analysis, n = 114). Lastly, for each lake, we calculate the mean 2015 and 
2017 elevation within each eroded lake polygon. The vertical reference for the elevation data is the height above 
the WGS84 ellipsoid.
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3.1.5. River Discharge Data

To analyze the impact of discharge on connectivity, we use daily discharge 
data from the USGS Gage No. 15875000 at Umiat, Alaska between 2003, 
when the station began collecting data, and summer 2019. We order the years 
based on maximum summer discharge, defined as the highest daily summer 
(1 June to 30 September) discharge, and then group years by discharge (Ta-
ble 1). While Umiat is ∼125 km upstream from the delta, the Colville River 
has already drained approximately 67% of its catchment area (U.S. Geolog-
ical Survey, 2021; Walker & Hadden, 1998). We assume that extreme dis-
charge years at Umiat, Alaska coincide with high discharge years within the 
Colville Delta.

3.2. Detection of Connectivity

In this study, we differentiate functionally connected and functionally discon-
nected lakes based on the relationship between their optical properties and 
the optical properties of nearby channels in the delta. We extract Landsat re-
flectance measurements for lakes and river channels, calculate lake to chan-
nel optical ratios for each observation, and then use the median and standard 
deviation of the ratio between lake and channel color/band combinations 
within four-to-five-year periods (Section 3.2.1.). These ratio values are then 
used to classify lakes as connected or disconnected within each time period 
(Section 3.2.2.). We then compare the method to three data sets (Section 3.3) 
and investigate the relationship between connectivity, discharge, lake surface 
elevation, and lake ice phenology (Sections 3.4 and 3.5).

3.2.1. Extraction of Paired Lake and Channel Water Color 
Observations

For each Landsat observation of a lake on a given day, we calculate mean 
optical property values within the lake polygon and filter out those days when 
there are fewer than 100 cloud-free pixels observing the lake (see Table 2 for 

optical values calculated). Next, we search for same-day channel pixels within a one-kilometer buffer of the lake 
using the channel water mask. If at least 200 pixels are not present, we look within a 2-km buffer, then 5 km, then 
10 km, until the 200-pixel requirement is satisfied. Once the requirement is satisfied, we calculate the mean opti-
cal property values for those channel pixels within the buffer. While there is some spatial reflectance variability 
within the delta, the sensitivity of the classification to that variation is small. For each optical property, we then 
take the ratio between the same-day lake observation and the corresponding channel observation, here on referred 
to as lake-to-channel ratios.

In Figures 2a and 2b, which cover the same geographic extent on two different days, we show examples of two 
lakes, one with an obvious channel connecting the lake and the river (A) and one with no connective channel 
(B). The lake with obvious channel presence routinely has daily Green/Blue ratios and NSMI ratios of close to 

Year Maximum summer discharge (cms)

Group 1

2017 2,223

2019 2,271

2008 2,393

2015 2,435

Group 2

2006 2,452

2016 2,764

2004 2,806

2018 3,058

Group 3

2011 3,794

2009 3,823

2005 4,332

2012 4,644

Group 4

2007 5,097

2010 5,267

2014 5,267

2003 5,777

2013 6,768

Note. Discharge from USGS Gage No. 15875000 at Umiat, Alaska.

Table 1 
Maximum Summer River Discharge Groups

Parameters Calculation, if applicable
Source, if 
applicable

R, G, B bands N/A N/A

Green/Blue Ratio 𝐴𝐴 𝐴𝐴∕𝐵𝐵 Montalvo (2010)

NDSSI: Normalized Difference Suspended Sediment Index 𝐴𝐴 𝐴𝐴 − NIR∕𝐴𝐴 + NIR Montalvo (2010)

NSMI: Normalized Suspended Material Index 𝐴𝐴 𝐴𝐴 + 𝐺𝐺 − 𝐵𝐵∕𝐴𝐴 + 𝐺𝐺 + 𝐵𝐵 Montalvo (2010)

Dominant wavelength: The wavelength that best represents human 
perception of color

See citation for methods converting RGB to dominant  
wavelength

Wang et al. (2015)

Table 2 
Optical and Color Parameters Calculated Using Landsat 5/7/8 Imagery for all Lake and Channel Observations
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one during the period between 2000 and 2004, indicating the similarity of lake-to-channel ratios through time 
(Figure 2c). The lake with no visible channel presence has a much wider distribution of NSMI ratios and a slightly 
wider distribution of Green/Blue ratios (Figure 2d). When the river is transporting little sediment, the low con-
nectivity lake and the channel look quite similar (Figure 2a), but when the river water is high in sediment, the low 
sediment lake looks very different from the nearby channel (Figure 2b). As a result, we find that it is more effec-
tive to use lake-to-channel ratios to classify functional connectivity within a time period as opposed to at a single 
instance in time. Therefore, within a given time period, we calculate the median, standard deviation, and kurtosis 
of single-day lake-to-channel ratios within that period and use those values for classification. The different time 
periods used in this study are described in Sections 3.3. and 3.4.

3.2.2. Variable Selection and Decision Tree-Based Classification

We use a supervised classification method in conjunction with the GECI validation data set, excluding lakes that 
have uncertain channel connectivity. For each lake, we calculate the median, standard deviation, and kurtosis of 
each type of lake-to-channel ratio during the period corresponding to the GECI data set (2013–2016).

Next, we use the Boruta method in R (Kursa & Rudnicki, 2010) to select the lake-to-channel ratio variables with 
the highest ability to differentiate between the high connectivity and low connectivity lakes. Those properties are: 
NSMI ratio (median/standard deviation), Green/Blue ratio (median/standard deviation), dominant wavelength ra-
tio (median/standard deviation/kurtosis), Red band ratio (median/standard deviation), Green band ratio (median/
standard deviation), and Blue band ratio (median/standard deviation).

Next, we develop a decision tree model using the tidymodels package in R (Kuhn & Wickham, 2020) using the 
variables selected in the Boruta process. The lakes are split into 25% (testing, n = 27) and 75% (training, n = 77) 
groups, and the training data are further split into five groups for five-fold cross validation. Using five-fold cross 
validation, we tune the hyperparameters of the model and select hyperparameters from the model producing the 
highest overall accuracy, with the following results: cost complexity (0.1), the maximum depth the tree can reach 
before it is forced to stop growing (8), and the number of data points in a node that are required for the node to 
split further (2). Using these hyperparameters, we fit the decision tree to the training data set, resulting in the 
decision tree shown in Figure 3.

Figure 2. Landsat-7 images from (a) 17 July 2002 (low sediment day) and (b) 14 July 2001 (high sediment day) showing 
lake color variability at different discharge levels. Example Green/Blue ratio and NSMI ratio density plots using data 
from 2000–2004 for (c) Lake A: connected by a visible channel (n = 33 observations) and (d) Lake B: no visible channel 
connection (n = 32 observations).
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3.3. Comparison to Existing Connectivity Data Sets

To evaluate the accuracy of our classification algorithm, we apply decision 
tree to the testing portion of the GECI validation data set and compare the 
classification from time periods temporally closest to the collection of the 
Jorgenson et al. (1997) data set and the Piliouras and Rowland (2020) data 
set (Table  3). We then calculate the agreement of each classification and 
use visual inspection of GECI and Landsat 5/7/8 imagery to investigate 
disagreements.

3.4. Examination of Temporal, Discharge, and Elevation-Related 
Patterns in Connectivity

To better understand the variability of functional lake connectivity in the 
Colville River Delta, we group single day lake-to-channel ratios for each lake 
into four time periods: 2000–2004, 2005–2009, 2010–2014, and 2015–2019. 

We also group single day ratios for each lake into four different groups corresponding to increasing levels of 
maximum summer discharge (Table 1). For each of these periods, we calculate median, standard deviation, and 
kurtosis values for each of the ratios and classify the connectivity of each lake using the decision tree (Figure 3). 
We only analyze lakes with at least ten single-day observations within each of the periods (n = 120 lakes). We 
also investigate patterns between connectivity and lake surface elevation by using a Mann-Whitney U-test to 
compare lake surface elevations from 2015 and 2017 (Section 3.1.4) to classified connectivity in the 2015–2019 
time period.

3.5. Relationship Between Connectivity and Lake Ice

To better understand the influence of connectivity on the deltaic environment, we compare functional connectiv-
ity to Landsat-derived lake ice climatology. The lake ice data set was developed using a logistic regression based 
on a series of 2000–2019 Landsat 5/7/8 lake ice fraction observations via the Yang et al. (2021) lake ice detection 
algorithm. For each lake, the method pools together all single-day ice fraction data between 2000–2019 and 
divides the data into two subsets—one for freeze-up period (day of the year 230–365 and 1–58 of the following 
year) and one for the breakup period (day of the year 59–229). Then two separate logistic regressions were fitted 
to the two subsets of data to model freeze-up and breakup ice fraction dynamics. These models together classify 
each day of the calendar year (DOY) as likely ice covered (typical ice fraction >80%), transitional (typical ice 
fraction 20%–80%), or likely ice free (typical ice fraction <20%). We compare our functional connectivity results 
to ice phenology events including DOY of breakup start, DOY of breakup end, breakup transition duration (num-
ber of days in the spring between 80% ice cover and 20% ice cover), DOY of freeze-up start, DOY of freeze-up 
end, freeze-up transition duration (number of days in the fall between 20% ice cover and 80% ice cover), ice cover 
duration (number of days classified as likely ice covered), and ice free duration (number of days classified as 
likely ice free). Based on the temporal lake connectivity classifications, lakes are divided into three connectivity 
groups for analysis: those that are always classified as high functional connectivity, those that are always classi-
fied as low functional connectivity, and those that have variable functional connectivity through time. We use a 
Mann-Whitney U-test to compare ice climatology between high and low connectivity groups.

3.6. Sources of Methodological Uncertainty

3.6.1. Connectivity Classification

Functional connectivity detection via optical properties of water has cer-
tain limitations and potential sources of error. First, this method exclusively 
works when there is a visible difference in color between river water and lake 
water during at least some portion of the open water period. While this is true 
in the Colville Delta, deltas that export higher sediment overall, but have low-
er sediment concentrations, are difficult to analyze using this method because 
of indistinct optical differences between river water and lake water.

Figure 3. The trained decision tree. The numbers shown in each node 
represent the number of lakes correctly classified within the node (left) and the 
total number of training lakes included in the node (right).

Data set

Data 
observation 

year

Functional 
connectivity 
time period

Number 
of lakes 
analyzed

Jorgenson et al. (1997) 1992 2000–2004 104

Piliouras and Rowland (2020) 2014 2013–2016 120

GECI, testing 2013–2016 2013–2016 27

Table 3 
Description of Comparison Data Sets, Corresponding Periods of Functional 
Connectivity Analysis, and Number of Lakes Compared
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Lakes may also experience non-SSC-driven changes in color, for example, 
via high chlorophyll concentrations (Bukata et al., 1983; Jerome et al., 1994). 
While the DSWE algorithm used in this analysis to identify water pixels also 
filters out vegetated land pixels as well as submerged vegetation, it may not 
filter out other high chlorophyll water pixels. However, based on visible in-
spection of imagery, this seems to be a limited issue in the Colville Delta, 
with only 2–3 lakes potentially impacted. Lakes near the delta shoreline pres-
ent challenges in validation because they are likely both low-elevation and 
brackish, which may impact water color. These lakes commonly do not have 
clearly visible channels, so are not classified as connected in the GECI vali-
dation, and are simply labeled as ‘brackish’, with no additional connectivity 
information, in the land survey validation data set (Jorgenson et al., 1997). 
They are also close enough to the shoreline that backwater may impact the 
color of these lakes.

3.6.2. Lake Ice Climatology

While individual Landsat-derived ice fraction observations that go into creat-
ing the ice climatology model are dense during the breakup period, they are 
less frequent during the freeze-up period due to low light and cloud condi-
tions (Figure 4). Therefore, there is higher uncertainty/inaccuracy in climato-
logical freeze-up dates compared to breakup dates. More specifically, for one 
week prior to the breakup start date through one week after the breakup end 
date, there are an average of 23 ice fraction observations used in the model, 
compared to an average of eight for the freeze-up encompassing period. Also, 
because we are using a climatological timeseries based on 20 years of data, 
distinguishing between a longer freeze-up/breakup period and a more varia-
ble freeze-up/breakup period is challenging.

4. Results
4.1. Comparison to Existing Data Sets

Compared against channel absence/presence classifications from the testing portion of the GECI data set, func-
tional connectivity classification matches with the channel presence classification in 85.2% of lakes (n = 23/27 
lakes). Of the incorrect classifications, only one lake classified in GECI as connected is classified as low func-
tional connectivity in our analysis, whereas three lakes without channels are classified as high functional con-
nectivity (Figure 5a). However, in the case of the lake that we classify as low functional connectivity, the GECI 
validation data set was actually in error, and the lake did not have a visible channel. In the case of the three lakes 
that we classified as connected that do not have a GECI visible channel, two may have dry channel beds upon 
closer inspection, and one is at low elevation near the delta shoreline.

Next, we compared our 2013–2016 connectivity results to the 2014 classification of the Colville River Delta by 
Piliouras and Rowland (2020) (Figure 5b). This comparison data set is similar to the GECI-derived validation 
data set because it defines connectivity via channel presence, in this case determined using coarser resolution 
30 m Landsat imagery. Our classification agrees with this data set for 75.8% of lakes (n = 29/120). Of the mis-
matched lakes that we label low functional connectivity but are connected in the Piliouras and Rowland (2020) 
data set (n = 12 lakes), seven are near the delta shoreline, which is mostly classified as water by Piliouras and 
Rowland. Upon visual inspection, one of the five remaining lakes appears to be connected via a channel inundated 
only at high water, a second is the third lake in a series of lakes leading off of the channel so it is hydrologically 
connected but does not regularly receive high sediment water, and the final three lakes fall within one to two 
Landsat pixels of larger, connected lakes but do not have their own channels. Of the lakes that our algorithm clas-
sifies as high functional connectivity but are not connected in the comparison data set (n = 17 lakes), the majority 
(n = 15 lakes) have channel connections narrower than one Landsat pixel in GECI imagery.

Comparison of the 2000–2004 connectivity classification to the 1992 Colville Delta survey (Jorgenson et al., 1997, 
Figure 5c), yields an overall agreement of 64.4%, in which the classifications of 67 out of 104 lakes agree. Of 

Figure 4. Number of Landsat ice observations used in the ice climatology 
model from one week prior to ice breakup/freeze-up start day of year to one 
week after breakup/freeze-up end day of year.
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the lakes with mismatching classifications, 35 are predicted to be low functional connectivity, but are of a high 
connectedness class in the comparison data, whereas two are differently classified in the opposite direction. How-
ever, 23 of these differently classified lakes are deep tapped lakes with high water connections, which accounts 
for all but one of the lakes in this class in this validation data set. Similarly, nine of the 35 differently classified 
lakes are deep connected lakes or deep tapped lakes with a low-water connection that either have very long and 
narrow connections or are several lakes deep within a lake complex, so it takes higher energy to move high sed-
iment water from the channel into these lakes. While we lack discharge records prior to 2003, it is possible that 
these lakes were rarely connected during our period of analysis. Alternatively, these results may indicate that our 
algorithm is most suited for detecting connectivity in those lakes that are connected to the channel network even 
at low water periods. Additionally, the 1992 survey was eight years prior to our first observation, and both lake 
tapping and lake or channel infilling are possible within this period.

4.2. Functional Connectivity Variation With Time, Discharge, and Elevation

Within the Colville Delta, functional connectivity remains consistent in the majority of lakes throughout the four 
temporal periods between 2000 and 2019 (Figure 6). Of the observable lakes in the delta that had stable connec-
tivity through time, more lakes were classified as always low functional connectivity (n = 79) than always high 
connectivity (n = 28). Of those that change connectivity through time (n = 13), three transition from high to low 
connectivity over time, one moves from low to high connectivity over time, and nine lakes transition between 
states multiple times. Nanuk Lake, highlighted in Figure 6, switches from high connectivity in the first three peri-
ods to low connectivity in the last period. This pattern may be related to the lake's complex infilling processes in 

Figure 5. The x-axis represents the predicted class and the colors represent each comparison data set's class. Shades of blue represent connectedness and shades of 
green represent lack of connectedness. (a) Comparison between the GECI testing data set and functional connectivity from the 2013–2016 period. (b) Comparison 
between the 2014 (Piliouras & Rowland, 2020) Landsat-based classification and functional connectivity from the 2013–2016 period. (c) Comparison between 1992 
classification by Jorgenson et al. (1997) and functional connectivity from the 2000–2004 period.
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conjunction with the timing of Landsat observations during the latter period. An image of period-by-period lake 
classifications can be found in Figure S1.

Overall, 14 lakes vary their functional connectivity within different discharge periods (Figure 7). We identify 
eight lakes that always shift from low functional connectivity to high functional connectivity as discharge in-
creases. Of these, seven have narrow channels, visible channels that appear dry in the GECI data set, or connect 
to the channel networks via a series of lakes, hindering the routine movement of high sediment river water. The 
remaining lake was tapped during the study period. Additionally, there are five lakes that experienced multiple 
shifts in connectivity amongst the discharge periods as well as one lake that experienced decreasing connectivity 
with discharge. This likely indicates the importance of non-discharge related drivers of functional connectivity, 
such as wind, infilling, and backwater (e.g., Geleynse et al., 2015). Of these lakes that experienced any change in 
connectivity with discharge, 11 overlap with those lakes that change connectivity over time, six of which show 
increasing connectivity with increasing discharge.

As expected, high functional connectivity is also associated with significantly (p < 0.01) lower wintertime lake 
surface elevation in both 2015 and 2017, compared to low functional connectivity lakes (Figure 8, 2.2 m lower 
and 1.7 m lower, on average, in 2015 and 2017, respectively). This makes sense from a definitional standpoint, 
as low-elevation lakes are more likely to be flooded during periods of elevated river water level. Additionally, 
because the measured lake surface elevation reflects wintertime snow or ice cover elevation, the lower elevations 
of connected lakes may also reflect riverine drawdown of water from during the fall freeze-up process.

Figure 6. Landsat-derived connectivity classification of lakes within the four temporal periods.
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4.3. The Relationship Between Connectivity and Lake Ice

Within the Colville Delta, functional connectivity strongly correlates to lake ice climatology (Figure 9). While 
there are statistically significant differences (p < 0.01) between many of the studied ice parameters, the largest 
differences are found in ice breakup start date and ice breakup end date. Ice breakup in connected lakes begins a 
mean of 25.7 days earlier and ends 17.3 days earlier than their disconnected counterparts, leading to a difference 
in total ice duration of 22.0 days, typically during the months of May and June. Connected lakes often start freez-

ing up in mid-to-late September compared to late September to early October 
for low functional connectivity lakes, though the mean difference in freeze-
up start and end times are only 8.4 and 3.6 days, respectively.

5. Discussion
The primary takeaways of this paper are threefold. First, we have demon-
strated the efficacy of a widely applicable algorithm for detecting temporal 
variations in functional connectivity in a high sediment Arctic delta. Second, 
we find that over a 20-year period, connectivity in the Colville is variable 
through time in 10% of the studied lakes and is related to discharge as well as 
lake elevation. Third, we find that functional connectivity may control lake 
ice timing, especially ice breakup, which has implications for photochemistry 
and methane production.

5.1. Efficacy of the Functional Connectivity Algorithm and 
Comparison to Existing Data Sets

This functional connectivity algorithm provides a new alternative to other 
published deltaic lake-to-channel detection methods. Each method is useful 
in specific situations and has unique pros and cons. First, the “Sill Elevation 
Method” used by Marsh and Hey (1989) and Lesack and Marsh (2010) uses 
lake sill elevations in combination with historical discharge observations to 
assess functional connectivity (by channel or overland flow) duration through 
time. This method is excellent in situations in which lake sill elevation data, 
collected via aerial or field survey, is available, and in situations when lake 
sill elevations are not assumed to change over the study period. While the 

Figure 7. Lake connectivity classification with increasing discharge. X-axis numbers correspond to discharge groups in 
Table 1.

Figure 8. Lake surface elevation in the month of April from ArcticDEM.  
* indicates significant difference at p < 0.01 between high and low functional 
connectivity lakes, as classified during the 2015–2019 period. Elevation 
references height above the WGS84 ellipsoid. Dots represent outliers.
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reliance on aerial imagery or field data currently limits the wider spatial and temporal applicability, this method 
allows for the most temporally fine-grained analysis of functional connectivity duration and allows calculation of 
connectivity prior to Landsat observations, if discharge data is available. Second, Piliouras and Rowland (2020) 
developed a method that uses Landsat imagery to detect direct connections between lakes and channels. The 
challenge with this method is that it only detects connectivity via channels that are visible within Landsat image-
ry, which excludes lakes connected by sub-pixel channels or by overland flow. The lake-to-channel ratio method 
described in our analysis builds on work by Long and Pavelsky (2013) that suggested the usefulness of suspended 
sediment as a tracer for river water recharge within six floodplain lakes in the Peace-Athabasca Delta. In our lake-
to-channel ratio method, similar to the Sill Elevation Method, we are able to detect functional connectivity via 
channels that are sub-Landsat pixel in width, but we are less likely to capture short-duration connectivity due to 
overland flow, particularly due to the training data set that was used. Our method does not require aerial or field 
surveys to define sill elevation, and therefore is easier to expand to multiple deltas. Additionally, our method does 
not make assumptions about the consistency of sill elevations through time. However, unlike the Sill Elevation 
Method, the lake-to-channel ratio method does not allow calculation of yearly connectivity durations. Compared 
to the Piliouras and Rowland (2020) method, our method allows for sub-pixel channel connectivity; however, the 
method relies on river water with high sediment concentrations, limiting application to high sediment deltas. Our 
method currently produces connectivity classifications within coarser five-year periods. However, going forward, 
high temporal and spatial resolution optical satellites such as Sentinel-2 and Planet may be used to increase the 
temporal resolution of these connectivity classifications.

5.2. Discharge and Connectivity

Discharge is a major control on changes in functional connectivity, with high discharge corresponding to in-
creased functional connectivity, and low discharge corresponding to reduced connectivity. These discharge-relat-
ed shifts in connectivity are concentrated within lakes that are connected to the main channel network indirectly 

Figure 9. (a) Lake ice breakup start and breakup end day of year. (b) Lake ice freeze-up start and end day of year. (c) 
Duration (days) of ice transition periods. (d) Total ice duration (days with >80% ice cover) and total ice-free duration (days 
with <20% ice fraction). *significant difference at p < 0.01 between always high functional connectivity lakes and always 
low functional connectivity lakes. Dots represent outliers.
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via large lake complexes, long and narrow channels, or occasionally channels that are only water-filled at high 
discharge. While the North Slope region overall has not experienced a statistically significant trend in discharge 
over the past 41 years (1975–2015) (Durocher et al., 2019), future changes in precipitation type, timing, and 
amount, along with warmer air temperatures, are predicted to increase discharge on the North Slope over the 
next hundred years (Bring et al., 2017). Based on the pattern we have observed, projected increases in discharge 
could result in increased functional connectivity either via increased overland flow, higher sediment river water 
being transported further into lake complexes via channels, or lake tapping (Walker & McGraw, 2015). This 
increase in connectivity, particularly near the shoreline, will take place in conjunction with sea level rise, which 
will likely increase intrusion of saltwater into low-elevation lakes, impacting the ecology and optical properties 
of those systems (Jorgenson et al., 1997). Alternatively, increased SSC associated with elevated discharge will 
also result in faster infilling of highly connected lakes (Walker & McGraw, 2015), leading to decreased con-
nectivity. Any future changes in discharge will also be concurrent with degradation of permafrost (Hinzman 
et  al.,  2005). Permafrost degradation impacts Arctic lakes in several ways, including increased erosion rates 
(Piliouras et al., 2021), increased subsurface connectivity due to active layer thickening (Connon et al., 2014; 
Walvoord & Kurylyk, 2016), and resulting lake area loss and drainage (Brubaker et al., 2014; Marsh et al., 2009; 
Nitze et al., 2017; Smith et al., 2005) or expansion (Nitze et al., 2017; Smith et al., 2005). Residents of Nuiqsut 
are already reporting drying tributaries and loss of connectivity due to increased infilling and drainage as well as 
resulting concerns about fish migration and travel hazards (Brubaker et al., 2014).

5.3. Connectivity and Lake Ice

Air temperature is one of the dominant controls of lake ice phenology in conjunction with, to a lesser extent, 
lake morphometry, latitude, and elevation (Arp et al., 2013; Sharma et al., 2019; Warne et al., 2020; Williams 
et al., 2004; Šmejkalová et al., 2016). However, this work demonstrates the importance of functional connectivity 
as a driving factor of lake ice timing. Additionally, our results fit well with initial findings by Arp et al. (2013) that 
suggests hydrologic connectivity may be responsible for intraregional lake ice variability in Alaska not explained 
by temperature or morphometric controls. As lake ice continues to be modeled and interpreted both as a proxy for 
historical climate change (Assel & Robertson, 1995; Magnuson et al., 2000; Prowse, Alfredsen, Beltaos, Bonsal, 
Duguay, et al., 2011; Robertson et al., 1992; Šmejkalová et al., 2016; Warne et al., 2020) and as a signal of and 
response to current and future climate change (Arp et al., 2018; Prowse, Alfredsen, Beltaos, Bonsal, Duguay, 
et al., 2011; Sharma et al., 2019), and as we seek to quantify the impact of climate change on Arctic transpor-
tation (Prowse et al., 2009, Prowse, Alfredsen, Beltaos, Bonsal, Bowden, et al., 2011; Stephenson et al., 2011), 
it is important to consider functional connectivity as an input to lake ice models. Additionally, because ice is 
an effective blocker of light (Vione & Scozzaro, 2019), connectivity-driven differences in ice timing during the 
breakup period, which experiences very high solar radiation (Figure 10), may also be an important control on 
photochemistry in these systems.

Figure 10. Ice fractions for all lakes are compared against the day length at Nuiqsut, Alaska in the Colville River Delta. 
Mean daily ice fractions for each type of lake are bolded.
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6. Conclusions and Future Work
This research demonstrates the efficacy of using remotely sensed water color to detect spatial and temporal 
variations in functional lake connectivity in the Colville River Delta, Alaska. Results suggest that connectivity 
is variable in about 10% of delta lakes. Discharge is an important control of connectivity, particularly within 
those lakes that have indirect channel connections. Additionally, our results suggest a strong relationship between 
functional connectivity and lake ice phenology, especially observed earlier breakup timing in connected lakes. 
More fieldwork is needed to quantify the impact of this relationship on photochemistry and carbon processing 
in these lakes. In the future, we can use methods described in this paper to track connectivity in the Colville and 
other Arctic deltas and to understand how patterns of connectivity interact with the changing physical and bioge-
ochemical environment of the Arctic.

Data Availability Statement
R and Google Earth Engine scripts and input/output file descriptions can be publicly obtained on GitHub (https://
github.com/whyana/colvilleConnectivity). All data used to run analyses are publically available on Zenodo 
(https://doi.org/10.5281/zenodo.5703146).
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