HISTORICAL ATMOSPHERIC LEAD AND OTHER TRACE ELEMENTS DEPOSITION RECORDS IN AN OMBROTROPHIC PEAT POCOSIN: A NEW RECORD FROM NORTH CAROLINA A thesis submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Master's in the Department of Geological Sciences. Chapel Hill 2012 Approved by: Dr. Larry K. Benninger Dr. Donna M. Surge Dr. Drew S. Coleman Dr. Steve Whalen #### **ABSTRACT** JINGYUAN SUN: Historical Atmospheric Lead And Other Trace Elements Deposition Records In An Ombrotrophic Peat Pocosin: A New Record From North Carolina (Under the direction of Larry Benninger) Human activities introduce pollutant elements into the atmosphere, from which they enter sedimentary environments via precipitation and dry deposition. In this study, pocosin peat in eastern North Carolina was used to track the sources of atmospherically deposited trace elements. Peat chronology was based on ²¹⁰Pb and fallout ¹³⁷Cs. Concentrations, accumulation rates and enrichment factors for twenty-five elements, along with Sr and Pb isotopic compositions, were obtained. The results show that local leaded gasoline usage dominated the lead source. However, other anthropogenic sources such as coal combustion, mining, and agricultural development may have also introduced Pb and other trace elements through windblown dust. Sr isotopes require sources more radiogenic than seawater Sr; twentieth century Pb isotopes are consistent with predominant input from gasoline lead and coal combustion. The pocosin record of lead is similar to published records from the eastern United States and Western Europe, but contrasts with those from Asia. # TABLE OF CONTENTS | LIST OF | F TABLES | v | |---------|---|----| | LIST OF | FIGURES | vi | | Chapter | | | | I. | INTRODUCTION | 1 | | II. | SITE DESCRIPTION | 6 | | III. | METHODS | 7 | | | Field sampling. | 7 | | | Sample preparation | 7 | | | ¹³⁷ Cs and ²¹⁰ Pb dating | 8 | | | Major and trace element concentrations | 10 | | | Pb and Sr isotopes. | 11 | | IV. | RESULTS | 13 | | | Bulk properties | 13 | | | Radiochemistry and peat chronology | 13 | | | Major elements abundance | 15 | | | Trace elements abundance | 15 | | | Accumulation rate and enrichment factor of trace elements | 16 | | | Pb and Sr isotopes. | 17 | | V | DISCUSSION | 18 | | | Pocosin ombrotrophic and minerotrophic characters | 18 | |--------|---|----| | | Sediment chronology | 18 | | | Major elements, Zr and REE | 20 | | | Trace element deposition in CNF pocosin | 21 | | | Trace elements group one | 22 | | | Trace elements group two | 24 | | | Sources to the CNF pocosin based on Sr and Pb isotope | 26 | | VI. | CONCLUSION | 29 | | APPENI | DICES | 51 | | REFERE | ENCES | 57 | # LIST OF TABLES | 1. | North Carolina local anthropogenic history | 31 | |----|--|----| | 2. | Peat accumulation rate, ²¹⁰ Pb inventory and atmospheric ²¹⁰ Pb flux comparisons from different atmospheric deposition sites | 32 | | 3. | Elements concentrations correlation relationship table | 33 | | 4. | Trace elements concentrations in peat from Croatan National Forest pocosin, NC, U.S. | 34 | | 5. | Trace elements concentrations in ash from Croatan National Forest pocosin, NC, U.S. | 35 | | 6. | Enrichment factor of trace element in CNF pocosin, U.S | 36 | | 7. | Accumulation rates of 25 elements in CNF pocosin | 37 | | 8. | Pb and Sr isotopic compositions in CNF pocosin, NC | 38 | # LIST OF FIGURES | 1. | The mineral sources distribution of North Carolina Coastal Plain | 39 | |-----|--|----| | 2. | The total population growth in the adjacent counties around CNF: Carteret, Craven, Jones, Onslow, Pamilco | 40 | | 3. | The total population change/growth rate in the adjacent counties around CNF: Carteret, Craven, Jones, Onslow, Pamilco | 40 | | 4. | The study site in the pocosins of Croatan National Forest, North Carolina, U.S | 41 | | 5. | Bulk density, water content and Loss on Ignition profiles of CNF pocosin, NC | 42 | | 6. | Excess ²¹⁰ Pb and ¹³⁷ Cs activities in Core 1, CNF pocosin, NC | 42 | | 7. | The chronology from CRS ²¹⁰ Pb dating model | 43 | | 8. | Major elements concentrations in peat, CNF pocosin, NC | 43 | | 9. | Major elements accumulation rates in CNF pocosin, NC | 44 | | 10. | Selected trace elements concentrations in peat, CNF pocosin, NC | 44 | | 11. | Pb isotopic compositions graph versus depth and age index | 45 | | 12. | Sr concentration in ash, Sr enrichment factor and ⁸⁷ Sr/ ⁸⁶ Sr isotopic ratio profiles, CNF pocosin, NC. | 45 | | 13. | Pb, Cu, Zn and Cdconcentrations in peat from the CNF, NC graph in comparison with data from Florida. | 46 | | 14. | Zn, Pb, Cu and Cd concentrations in ash from the CNF, NC graph in comparison with data from New York City | 47 | | 15. | Pb concentration in peat, in ash, Pb E.F. and Pb accumulation rate in CNF pocosin, NC. | 49 | | 16. | The ²⁰⁶ Pb/ ²⁰⁷ Pb comparisons profile between CNF NC Pocosin, Georgia swamp and Chesapeake Bay sediment. | 49 | | 17. | Pb isotopic composition ²⁰⁸ Pb/ ²⁰⁴ Pb vs. ²⁰⁷ Pb/ ²⁰⁶ Pb comparison between North Carolina and other locations in the U.S | 50 | #### Introduction In the last several centuries, increasing industrial activity has introduced pollutant trace elements into the atmosphere on a global scale. These trace elements enter sedimentary environments via precipitation and dry deposition. The record of trace element deposition from the atmosphere can be tracked from ice cores (Candelone et al., 1994; Barbante et al., 2004), peat deposits (Shotyk, 1995; Coggins et al., 2006; Cloy et al., 2008) and lake sediments (Koinig et al., 2003). Due to the isolation of the peat deposition from nearby groundwater and surface water in most ombrotrophic bogs (Damman, 1986, 1987), the only water input to ombrotrophic peat bogs is precipitation; therefore the inorganic component of ombrotrophic peats is introduced from the atmosphere (Shotyk, 1995). Peats are formed when decomposition rates are lower than rates of dead vegetation accumulation, and are commonly found in such places as swamps and marshes. A swamp is a wooded area where the soil is usually saturated or covered by surface water for a few months of the growing season; peaty swamps include bays, bogs and pocosins (Penfound, 1952). The word "pocosin" refers to freshwater, ever-green shrub bogs, and comes from an Algonquin Indian word which means "swamp-on-a-hill" (Tooker, 1899; Richardson, 1983). Because the elevation of pocosins is higher than that of the surrounding lakes and no divided drainage and streams are in the area, water from precipitation is expected to flow radially away from the pocosin (Phillips, 1997; Richardson, 2003). In the last 20 years, long and short-term trace element records in European peatland studies suggest that estimated trace element concentrations, flux and accumulation rates not only relate to the historical anthropogenic major events in different times such as the Industrial Revolution, but also act as indicators of local industrial activities on shorter time scales. Such activities involve, for example, leaded gasoline usage and industrial mining activities (Shotyk et al., 1998; Vleeschouwer et al., 2007; Cloy et al., 2008). Therefore, similar peatland records from other areas such as North America and Asia may show quite different trace elements deposition profiles compared with the European studies within the same time periods (Kamenov et al., 2009; Bao et al., 2010). In North Carolina, the regional anthropogenic activities related to trace elements emissions include leaded gasoline usage, mining, oil/gas exploration, coal combustion, forest fires, and agriculture over the last 100 years. Leaded gasoline was introduced in 1923 in the United States (Kamenov et al., 2009), while its phasing out began in 1973 (US EPA). As for the other activities, North Carolina has its own characteristics due to local geologic resources, regional population change and industrial development. The coastal plain of North Carolina (the focus of this study) is dominated by non-metal mineral mines which have extracted peat (for soil/fertilizer), sand and gravel, phosphate and crushed stone (limestone, granite, etc.) (Stuckey, 1965). However, coal mining (for 1918-1930, the greatest production was in the Cumnock and Carolina mines), heavy metal mining and gas and oil exploration (for 1925-1963, a total of 43 boreholes were drilled in the outer coastal plain) appeared for a short period but have never been important in the area (Stuckey, 1965; USGS). Furthermore, natural and anthropogenic forest fires have been significant around the coastal forest for more than a century (Fowler and Konopik, 2007). Major events in North Carolina are summarized in Table 1. Sand and gravel, crushed stone, and phosphate, as well as widespread agriculture, have all occurred along the east coast of North Carolina. Their byproducts are the major potential sources of mineral dust deposition in coastal pocosins. The North Carolina Geological Survey (NCGS) reports that the primary source of crushed stone in the coastal plain is limestone. In the same area, phosphate mines have been developed for about 60 years (USGS) (Figure 1). The historical populations and growth rates for the five major relevant counties are also shown in Figure 2 and 3. Trace elements have been used as markers for different anthropogenic activities (Huang et al., 1994). Many studies have utilized lead (Pb) concentration profiles and accumulation rates to track historical local industrial
activities such as leaded gasoline usage (Shotyk at el., 1998; Dunlap et al., 1999; Vleeschouwer et al., 2007). The spatial variability of these data imply regional lead pollution conditions (Rothwell et al., 2007; Novak et al., 2008). Also, lead isotope composition (206 Pb/ 207 Pb) has been compared among several areas as a signal to track other local industrial histories such as the sources of ore at different times (Shotyk at el., 1998; Bollhöfer and Rosman, 2001; Cloy et al., 2008; Kamenov et al., 2009). Besides Pb, other trace elements (Cu, Zn, Cd, Sn, Sb, Bi, V, Ni) are also discussed in this study to develop a better understanding of the local history of anthropogenic activities. Numerous studies from the other regions have used trace elements as an indicator of atmospheric pollutant deposition in peatlands (Cochran et al., 1998; Mighall et al., 2009; Kamenov et al., 2009; Olid et al., 2010). Major elements such as Al, Fe, Mg, Mn, and Ti and minor trace elements of low geochemical mobility (REE, Th) were also analyzed. These elements can trace inputs of dust from silicate and oxide sources, while the elements of low solubility in normal conditions are concentrated in the ash fraction of the peat (Weiss et al., 2009; Shotyk et al., 2002; Kamenov et al., 2009). Therefore, ash content is an important factor in interpreting the concentrations of some elements in peat. "Ash" refers to the inorganic materials of peat, and is made up of minerals and ionically bound inorganics (Andrejko et al., 1983). Elements deposit in peat in the form of ash via precipitation and dry depostion. Typical ash content for ombrotrophic peat is below 5%, whereas minerotrophic (river-fed) peat usually has ash contents well above 5% (Weiss et al., 1999). To study the last 100-200 years of peat deposition, ²¹⁰Pb is commonly used to establish peat chronology (Appleby et al.,1997; Farmer et al., 2006; Novak et al., 2008; Cloy et al., 2008; Bao et al., 2010). Nuclear fallout ¹³⁷Cs has also been used with ²¹⁰Pb to help establish a more secure chronology (Oldfield et al., 1979; Oldfield et al., 1995; Appleby et al., 1997). ²¹⁰Pb and ¹³⁷Cs inventories in these studies reflect the regional ²¹⁰Pb and ¹³⁷Cs deposition (Oldfield et al., 1979). This study adds a new record to North America peat studies with cores obtained from a pocosin in the Croatan National Forest (CNF), located in the coastal plain of North Carolina. Using peat chronology, an historical record of the deposition of major and trace elements is produced. Isotopic compositions of Pb and Sr are used to investigate aerosol sources to the pocosin. Comparison with previous studies suggests that during the 20th century, the atmospheric source of Pb was likely dominated by aerosols produced from leaded gasoline. One goal of the study is to test whether North Carolina pocosin peats are well-suited for distinguishing the atmospheric sources of trace elements. The other goal is to test whether deposition in North Carolina during this time period is broadly similar to that observed in elsewhere in North America and in Western Europe. Different histories of usage of leaded fuels apply in Asia, and consequently different historical patterns in lead deposition may be expected. Differences in Pb deposition among North American and Western European sites should reflect differences in local and regional industrial activities. #### **Site description** On 12 March 2011, two peat cores were taken from an ombrotrophic pocosin in Croatan National Forest (CNF) (34°53′14″N, 077°06′30″W) (Figure 4). Near this study site, minor gravel roads and ditches have been built during the development of the forest area. The surface elevation of the peat horizon ranges from 9 to 12 meters above mean sea level, and the peat thickness ranges from 0 to 2.5 meters (Ingram, 1987). The pocosin is generally dominated by shrubs and some pine trees, and most common species of shrubs in CNF are *Arundinarea gigantea*, *Persea borbonia*, *Cyrilla racemiflora*, and *Ilex coriacea* (Richardson, 2003). The average annual precipitation at the closest town, Maysville (about 15 km west), is 142 cm. The annual average temperature ranges from - 0.5 to 31°C (SERCC). Part of the CNF area is cut by ditches along Forest Service roads (Figure 4). #### Methods ## Field sampling A 1.5 m long soil probe was used to test the thickness of the peat deposit in the study area. The sampling site was chosen when the testing probe easily reached deeper than one meter. Two peat cores were collected using stainless steel core tubes with inner diameters of 9.5 and 9.8 cm and a length of 50 cm. The two cores were located about 1.5 meters apart at the field site; Core 2 was at higher elevation by about 10-15 cm. Both cores were sealed immediately with rubber stoppers at both top and bottom. They were returned to Chapel Hill within six hours of collection and stored in a walk-in refrigerator (4°C) until subsampling. #### Sample preparation The loose leaves on the top of the cores were removed and bagged before subsampling the peat. The surface of Core 1 showed appreciable relief (about 3.5 cm). To create a flat surface the first subsample was therefore taken to level the core surface and assigned an average thickness of 1.75 cm. The second and third subsamples of Core 1 were about 1.4 cm thick. Core 1 was then sampled in 1-cm increments. The surface of Core 2 was relatively flat; subsamples 1 – 4 were 1.25 cm thick, and the remainder of the core was sampled in 1-cm increments. To avoid effects of mixing along the inner surface of core tube, the outer edges of each sample were trimmed off beginning at 18 cm depth in Core 1 and 3.75cm depth in Core 2 (the beginning of trimming depth was based on the dryness and shape of the edge of each section). Leaves and roots were commonly found in the layers closest to the surface, and thicker roots were found at intervals through the entire cores. Peat depths containing roots were noted during sampling, and the larger roots were discarded. All samples were placed in pre-weighed polypropylene jars which were weighed and stored in a laboratory freezer (-12°C) after sampling in preparation for freeze drying. All the peat samples were freeze-dried at -40°C or below for 72 hours. The water content of the peat was determined by re-weighing samples after freeze-drying. Bulk density (g cm⁻³) was calculated from total dry mass of each sample divided by each increment volume. Increment volume was calculated from increment thickness and radius, after correcting the radius for any trimming (in Core 1, 1 mm for depth 18-22 cm, and 2 mm for depth > 22 cm). Ash content was determined by roasting dry peat samples in air. The furnace temperature was increased incrementally from 200 °C to 500 °C, and held over night at 500°C. Ash weights were recorded and calculated as loss on ignition, which is interpreted as organic matter content. # ¹³⁷Cs and ²¹⁰Pb dating ¹³⁷Cs and ²¹⁰Pb activities were determined following the procedures described in Benninger and Wells (1993). All the dried samples were ground in a porcelain mortar and packed into polypropylene jars for gamma counting. Most samples (70 of 77) were counted in 1-oz polypropylene jars, while the rest were counted in 0.5-oz jars. The sealed samples were stored for more than two weeks before gamma counting on one of two intrinsic Ge detectors in the Department of Marine Sciences at UNC-CH. Detector efficiencies were calibrated with standards prepared from by mixing certified reference materials (uraninite from EPA, monazite from New Brunswick Lab, ¹³⁷Cs from Amersham International, now GE Healthcare) into purified cellulose fibers. The peaks in gamma spectra were manually integrated above baselines and corrected for backgrounds averaged at bi-weekly intervals. ²²⁶Ra was determined by its daughters ²¹⁴Pb at 295.1 keV and 352 keV and ²¹⁴Bi at 609.3 keV and ²²⁶Ra presents *in situ* supported ²¹⁰Pb activity; ²²⁸Ra was determined by its daughters ²²⁸Ac at 338.4 keV and 911.2 keV; ²²⁸Th was determined by ²¹²Pb at 238.6 keV and ²⁰⁸Tl at 583 keV. ¹³⁷Cs was measured by its emission at 661.7 keV. Excess ²¹⁰Pb and ¹³⁷Cs were decay-corrected to the date of collection using half-lives of 22.3 years and 30.1 years, respectively. The excess/unsupported ²¹⁰Pb is obtained from total ²¹⁰Pb (²¹⁰Po activity) minus supported ²¹⁰Pb (²²⁶Ra activity). Total ²¹⁰Pb activity was determined via its granddaughter ²¹⁰Po on alpha spectrometers in the Department of Geological Sciences. The methods of laboratory preparation and digestion were similar to the work of Benninger and Wells (1993). Five to 10 gr samples of dry peat were spiked with ²⁰⁹Po, and went through complete acid digestion in 10 mL concentrated HNO₃, 2 mL HF, and 4 mL 1:1 sulfuric acid/water acid on a hotplate for 4 days on average. An additional 5 mL concentrated HNO₃ and 20 drops of 30% H₂O₂ were added 1-3 times during digestion to promote complete dissolution. The solution was evaporated to dryness and dissolved by heating into 50 mL 0.2N HNO₃. Any residual particulate matter was removed by filtering through Whatman 44 paper. Iron carrier was added to the filtrate and polonium isotopes were scavenged by precipitation of hydroxides at pH 7-8. After dissolution of the precipitate into dilute HCl, Po was deposited onto silver disks for alpha spectrometry. The CRS model for ²¹⁰Pb dating was applied in this study and ¹³⁷Cs was used as a single chronology marker within the core (Appleby and Oldfield, 1978; Oldfield et al., 1979; Robbins and Herche, 1993; Cochran et al., 1998). The constant rate supply of ²¹⁰Pb (CRS) model is most suitable to produce this chronology; the underlying assumptions are that unsupported ²¹⁰Pb flux is constant and that no obvious migration of ²¹⁰Pb is observed in the sediment (Appleby and Oldfield, 1978; Robbins, 1978). Using CRS (Robbins and Herche, 1993), the age t (y) is obtained by: $$t = -(1/\lambda) \ln \left[1 -
\sum_{z=0}^{210} Pb(z) / \sum_{z=0}^{210} Pb(\infty)\right]$$ (1) where $\Sigma^{210} Pb(\infty)$ is the total excess $^{210} Pb$ inventory (Bq m⁻²), $\Sigma^{210} Pb$ (z) is the accumulative excess $^{210} Pb$ activity (Bq m⁻²) at the depth z (cm). λ is decay constant of $^{210} Pb$ ($\lambda = ln(2)/22.3$ yr = 0.03108 y⁻¹) and t is age (y). $^{210} Pb$ flux is obtained by: ²¹⁰Pb flux = $$\Sigma^{210}$$ Pb(∞) × λ (2) #### Major and trace element concentrations For ICP-MS (inductively coupled plasma mass spectrometry) measurement of elemental concentrations, 0.25 g ash samples were digested in trace metal grade acids to extract trace metals. The HNO₃-HF digestion method was applied after modification from Yafa and Farmer, (2006). Nine mL concentrated HNO₃ and 2mL diluted (HF:H₂O = 1:1) HF were added to ash samples in covered PFA beakers. One hundred μ g Tl was also added into the solutions before digestion as an internal standard for measuring the loss of elements during the whole operation. The samples were heated at least overnight at 150°C. After the solids were completely dissolved, the samples were evaporated down to 1 mL or less. The residue was dissolved into 20 mL 2% HNO₃ by heating. All the solutions were filtered (Whatman 542) and diluted into 50 mL polypropylene flasks. Solutions were filtered (0.2 µm polypropylene) and further diluted, as necessary, before concentrations were determined by ICP-MS (Varian 820-MS, Department of Chemistry). Indium was used as the instrumental internal standard. A total of 25 elements were assessed including five major elements (Al, Ti, Mn, Fe, Mg) and 20 trace elements (Cu, Zn, Sr, Cd, As, Sn, Sb, V, Pb, Bi, Ni, Zr, Rb, La, Ce, Pr, Nd, Sm, Th and U). Due to potential spectral overlap from ⁴⁰Ar³⁵Cl⁺, the As measurements may not be accurate (Olesik, 2000). The major and trace element test results were corrected by internal standard Tl and background samples, and calculated as both total peat and ash concentrations. All the elements concentrations in total peat were used to examine the correlations among the elements and between the elements with ash content in the pocosin by using SAS 9.3 program. ## Pb and Sr isotopes The isotopic composition of Sr (⁸⁷Sr, ⁸⁶Sr) and Pb (²⁰⁴Pb, ²⁰⁶Pb, ²⁰⁷Pb and ²⁰⁸Pb) were determined by thermal ionization mass spectrometry (TIMS) in the Department of Geological Sciences. Peat ash (20-50 mg) was digested in 1 mL concentrated HF and 1 mL 8M HCI on a hotplate at 150 °C for two hours, then evaporated to dryness. The residue was dissolved in 3mL 8.8M HNO₃ and 3 mL 8M HCI on a hotplate overnight in 15 mL PFA bottles. The samples were evaporated again to dryness, and the residue was dissolved in 2 mL 0.5M HCI. Solutions were separated into two parts for Sr and Pb isotopes. For Sr chemistry, the separated solution was dried and dissolved in 1 mL 3.5N HNO₃, then centrifuged. Eichrom SR-B100-S Sr Resin (about 200 μ L) was used to collect Sr from the supernate. Before loading the sample, the resin was washed fully two times with MQ water (water that is purified through ion exchange) and 3.5N HNO₃. After loading the samples, they were rinsed multiple times with 3.5N HNO₃ with a total volume of 1.84 mL. Each rinse was started by adding three 30 uL drops, followed by performing five consecutive additions of one 350 μ L aliquot each. The Sr was collected in beakers by rinsing two times with 500 μ L MQ water. The separated HCl solutions for Pb isotopes were dried and re-dissolved in 525 μl 1.1N HBr. Pb isotopes were collected in about 200 μL Eichrom anion resin AG1×8. Before loading the samples, the resin columns were rinsed two times with 500 μl 6N HCL, 500 μl MQ water and equilibrated by 250 μl HBr. The sample were rinsed by single drop 1.1N HBr (five times), 500 μl HBr and 250 μl 2N HCl (one time bulk rinse), and Pb was eluted with 500 μl 6N HCl. The process was repeated for collecting maximum Pb in samples. One drop of H₃PO₄ was added to both the final Sr and Pb solutions, which were then dried completely. The residue of Sr was re-dissolved in 2 μl 2M HCl and 2 μl dilute solution of TaCl, and the residue of Pb was re-dissolved in 3 μl silica gel for loading on filaments for mass spectrometry. #### **Results** ## **Bulk properties** Bulk density increases rapidly with depth within the top 3 cm of the peat and stays around an average of 292 kg m⁻³ below 3 cm (Figure 5). Bulk density below the depth 17 cm is higher and more consistent compared to the values at shallower depths. The ash content of Core 1 is plotted as Loss on Ignition (Figure 5), and shows that within 10-30 cm depth, ash content is 5% on average. However, below 30 cm, ash material of Core 1 significantly increases and exceeds 20% of the total peat. The average water content is 70.7% throughout the whole core, which is lower than the observation in Ingram's (1987) study with an 80% average in the top 1.2 m. #### Radiochemistry and peat chronology The average supported 210 Pb concentration is 9.8 ± 1.2 Bq kg⁻¹, and the total excess 210 Pb inventory is 2828 ± 51 Bq m⁻² in the CNF pocosin. In the unsupported 210 Pb profile, the trend decreases from the surface to the depth of 12 cm in Core 1 (Figure 6). Two major peaks are shown in the main profile: one has the maximum activity (303 ± 9 Bq kg⁻¹) at 2.25 cm depth, and the other one is 76.5 ± 4.6 Bq kg⁻¹ at 8 cm. Unsupported 210 Pb is taken as finite when its activity exceeds zero by two standard deviations. Below the main profile, finite excess 210 Pb are observed at the depth of 20 cm and 30 cm. The 137 Cs activity profile also displays two peaks at the same two depths as the 210 Pb maxima (Figure 6). Finite 137 Cs exists through the whole core (i.e., 137 Cs exceeds zero by two standard deviations in all samples). The maximum value of 137 Cs activity is near the top of the core (2.25 cm depth) with 63.7 ± 1.5 Bq kg⁻¹ and the other peak of 16.7 ± 0.8 Bq kg⁻¹ is at 9 cm in Core 1. Complete radiochemistry results for cores 1 and 2 are presented in tabular form in the Appendices. Based on the CRS model calculation, Core 1 provided about 120 years of peat depositional records between the surface and the depth of 20 cm (Figure 7). The peak of 137 Cs activities at depth interval 8-9 cm corresponds with the year interval 1959-1969(Figure 6, 7). Peat Accumulation Rate (PAR) varies from $0.01 - 0.09 \text{ g cm}^{-2}\text{y}^{-1}$. The atmospheric ²¹⁰Pb flux in CNF pocosin was 88 Bq m⁻²y⁻¹ (Table 2). Samples from two salt marshes near the study site on the coastal plain, yielded inventories of excess ²¹⁰Pb of 4220 Bg m⁻² (flux 131 Bg m⁻²v⁻¹) and 4560 Bg m⁻² (142 Bg m⁻²v⁻¹) (Benninger and Wells, 1993). From Graustein and Turekian (1986), inventories of excess ²¹⁰Pb in undisturbed soil profiles were 4483 Bq m⁻² (flux 139 Bq m⁻²y⁻¹) in Raleigh, North Carolina and 3200-6333 Bg m⁻² (flux 99-197 Bg m⁻²y⁻¹) in the Eastern U.S. Similar atmospheric deposition data from the peat bogs in the Western Europe are also shown in Table 2. The peat accumulation rate in this study is similar to the others in Table 2, but the ²¹⁰Pb inventory and therefore ²¹⁰Pb flux are lower than elsewhere in the Eastern U.S., except for some of the Florida marsh cores in Brenner et al. (2001). Both ²¹⁰Pb flux and inventory for these sites are lower than all the other records from North Carolina, and most of the other sites in Table 2. Meanwhile, the ¹³⁷Cs inventory of this study (865 Bq m⁻²) is much lower than the average ¹³⁷Cs inventory (1947 Bq m⁻² after decay correction to March 12th, 2011) in the Eastern and Mid-western U.S. (Graustein and Turkian, 1986). #### Major elements abundance Among the major elements (Al, Ti, Fe, Mg), Al and Ti have higher concentrations in peat above 10 cm and below 30 cm depth, which match the higher ash content deposition within the same depths through the core (Figure 8). The correlation table also shows strong correlations between Al, Ti and ash content (Table 3). Fe concentrations above 10 cm depth also increase with higher ash content but show no significant increasing trend below the depth of 30 cm. Mg concentration does not correlate with ash content (Table 3), and slowly increases from the bottom to the top of the core (Figure 8). The profiles of the major element Al, Ti and Fe accumulation rates have similar trends in the top 20 cm of the peat core (Figure 9), and it shows that between 1930 – 1984, Al, Ti, Fe accumulation rates slowly increased. #### Trace elements abundance The trace element concentrations in both peat and ash were obtained (Table 4 and 5). All trace elements except Zn and Sr have significant peaks in ash concentrations at the depth interval 12-13 cm (time interval 1930 – 1938). Excess ²¹⁰Pb is finite at 29-30 cm depth, and the concentrations of many of the trace elements in ash have local maxima near this depth. All the elements can be separated into two groups: the elements Al, Ti, Mn, V, Cu, Zr, Cd, Sn, La, Ce, Pr, Nd, Sm, Th and U that correlate strongly (correlation coefficient is greater than 0.6) with ash content, and the elements Mg, Fe, Ni, Zn, Rb, As, Sb, Sr, Pb and Bi that are not strongly correlated with ash content (Table 3). Although the As measurement on ICP-MS could be inaccurate, As concentrations correlate strongly with concentrations of other trace elements (Ni, Sb, Pb and Bi). In general, all the trace element concentrations in total peat increase when the ash content is high (Table 4). Several trace elements such as Pb, Sb, Bi and Ni have the maximum concentrations at depths of 8-9 cm (Figure 10), where the ash content is only moderately high. These elements are also highly correlated with each other and quite highly correlated with Fe (Table 3). The trace elements Zr, La, Ce, Pr, Nd, Sm and Th have very low geochemical mobility and relatively low anthropogenic use compared with other elements such as Al, Fe, Cu, Zn, Pb, etc. Those
elements all have high correlation with ash content as well as some major elements (Al, Ti, Mn) (Table 3). At the bottom of the core, REE concentrations are much higher than the average values. #### Accumulation rate and enrichment factor of trace elements The accumulation rates of all the trace elements were computed by applying the CRS ²¹⁰Pb dating model for the secure chronology in the last 100 years. The enrichment factor (E.F.) of all the trace elements was also produced and calculated by Ti and its crustal background (Shotyk et al., 2002): E.F.= (Conc.X/Conc.Ti)sample/(Conc. X/Conc. Ti)UCC background where X is a trace element; Conc. is mass-based concentration; and UCC is upper continental crust. UCC concentrations for selected trace elements X and Ti are the recommended values from Rudnick and Gao (2004). Results of this calculation show that most of the elements E.F. values are lower than 1.0; exceptions are Mg, Pb, Cd and Bi (Table 6). All the elements except Mn display trends with significant increases in E.F. towards the core top, and they show three obvious peaks in their E.F. profiles at the depth intervals 12-13 cm, 28-29 cm and 38-39 cm, although three elements are significantly enriched in the samples Pb×4, Cd×20 and Bi×50 at their maximum values. #### Pb and Sr isotopes Pb and Sr isotopic compositions are shown in Table 7. The ratios of ²⁰⁶Pb/²⁰⁷Pb, ²⁰⁶Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb and ²⁰⁸Pb/²⁰⁴Pb display relatively constant values above the depth of 30 cm, and all the ratios increase dramatically below 30 cm of the core (Figure 11). Previous studies from other locations in the southeastern United States show similar ²⁰⁶Pb/²⁰⁷Pb ratios (about 1.20) from 1970 to present and lower ²⁰⁶Pb/²⁰⁷Pb ratios (about 1.19) between 1900 and 1970 (Jackson et al., 2004; Kamenov et al., 2009). Bollhöfer and Rosman (2001) summarized the range of ²⁰⁶Pb/²⁰⁷Pb isotope ratios from 75 studies in the Northern Hemisphere (United States, 1.159 – 1.231; Western Europe, 1.097 – 1.165; Asia, 1.091 – 1.177). The ⁸⁶Sr/⁸⁷Sr profile is shown in Figure 12 with Sr concentration in ash and Sr E.F.. The ⁸⁶Sr/⁸⁷Sr ratio has the highest value at the bottom of the core and decreases when the peat becomes shallower. When the depth reaches 12 cm, the ⁸⁶Sr/⁸⁷Sr ratio is the lowest. Then it starts to increase again towards the surface of the core. #### **Discussion** ## Pocosin ombrotrophic and minerotrophic characteristics At the bottom of the core (below 30 cm), the significantly higher ash content may reflect the transitional character from a mineralogical fen to an ombrotrophic bog. The high organic content shows the ombrotrophic character of the pocosin between depths of 10-30 cm. Above 10 cm, high ash content (greater than 10%) (Figure 5) implies that the peat in the study site has accepted significant soil-dust deposition. The high ash content in this top layer which represents the past 50 years may relate to the frequent forest fires in the CNF pocosin. Below 30 cm of the core, the extensive ash content with higher Al, Ti, Zr and REE concentrations reveals that the materials are most likely derived from the underlying regolith, implying a minerotrophic character. Additionally, from the contour map of peat thickness reported in Ingram (1999), the range of peat thickness around the study site is about 0-1 m deep. It suggests that the source of the bottom material of the core is possibly from underlying soil or bedrock. #### **Sediment chronology** Previous studies rely on chronology obtained by using both ²¹⁰Pb and ¹³⁷Cs. Studies have shown that the immobility of ²¹⁰Pb makes the chronology results agree with the ¹⁴C dating results (Shotyk et al., 1998), and that ¹³⁷Cs is often used as the sole marker of chronology (Oldfield et al., 1979; MacKenzie et al., 1997). However, Urban et al. (1990) proposed that ²¹⁰Pb was mobile under the water table. In that case, the part of peat preserved under the water table would contain less ²¹⁰Pb deposition, jeopardizing the chronology. Thus, the problem is more significant where the water table is shallow (beneath hollows) than where it is deeper (beneath hummocks). In consequence, lower ²¹⁰Pb inventory and younger age from ²¹⁰Pb dating were often observed in the cores that were collected from hollows in peat bogs. Although we did not measure the water table of the study site, due to the facts that the water table was shallow during the field sampling and the nearby ditch was also shallow, the water table in the CNF pocosin should be shallow. However, at the study site, no obvious surface elevation changes were observed. Therefore, whether ²¹⁰Pb activities near the top of the core could be affected by the water table in this study needs more evidence to further advance this discussion. There are two unexpected small peaks at approximately 20 cm and 30 cm in the ²¹⁰Pb and ¹³⁷Cs activities profiles. They indicate vertical transportations that took more recent ²¹⁰Pb and ¹³⁷Cs deposition into the deeper peat during the last century. Since there were no visible live animals or burrows throughout the whole core, bioturbation is not a likely explanation. From the chronology obtained by ²¹⁰Pb dating, the peak of ¹³⁷Cs activity at the depth of 9 cm correlates with the peak deposition of nuclear weapons fallout in 1963. The maximum ¹³⁷Cs activity near the surface of the core may be caused by the absorption from the upper plants on the peat (Oldfield et al.,1979). Different location trends of ¹³⁷Cs profiles in Oldfield et al., (1979) were also explained as the effect of predominance of different plant species. The dominant flora of the North Carolina pocosin in this study are mostly a mix of scrub-shrub and pond-pine (Richardson, 2003), which differ from the vegetation (*Eriophorum vaginatum* with rich roots) in Oldfield et al., (1979). The abundant leaves and a few thin roots near the top core samples suggest the possibility of the upper plants effects on ¹³⁷Cs in this study. Similar ¹³⁷Cs trends were also found in other studies. Olid et al., (2010) discussed profiles of ¹³⁷Cs and ²⁴¹Am in peat from the NW Iberian Peninsula, in which both ¹³⁷Cs and ²⁴¹Am have peak activities around 1963 at three out of the four study sites, and the maximum activities of ¹³⁷Cs also appear to be near the surface at those study sites. However, studies from the west of Ireland (Coggins et al., 2006) and the Great Hinggan Mountains in NE China (Bao et al., 2009) only observed one peak from the ¹³⁷Cs concentration profiles corresponding to 1963, from the fallout deposition of atmospheric testing of nuclear weapons. ## Major elements, Zr and REE Al, Mg, Ti, Mn, Zr and REE were tested to track the characteristics of the original soil/dust source or mineral mines inputs that influenced the pocosin (Weiss et al., 1999; Shotyk et al., 2002b). In CNF pocosin, Al, Ti, Mn, Zr and REE concentrations in peat strongly correlate with ash content through the whole core (Table 3), which reveals that their concentrations increase with enhanced mineral deposition. However, Fe concentrations do not correlate with Al and Ti, but highly correlate with Pb in the core (Table 3). The reason for the high correlation between Pb and Fe remains unclear. The lithogenic elements such Ti and Zr show conservative behavior during weathering process of rocks, meaning that they were enriched in soil/mineral dust (Shotyk et al., 2001; 2002). The very strong correlation between Ti and Zr (r = 0.992) in Table 3 suggests that either of them can be used as an index to present the original mineral dust input in the peat, as well as a factor in the background of enrichment factor calculation. Mineral sources that are high in silica can result in increasing Al and Fe levels in peat. They can be from the mining of non-metal minerals, such as crushed stone and construction sand and gravel, which are widely distributed in the coastal plain of North Carolina. Raven and Loeppert (1997) found abundant Fe, Mn and Ti in rock phosphate samples. Therefore, the mining process of phosphate in Beaufort County (about 80 km north of CNF, Figure 1) could have introduced Fe, Mn and Ti to the study site over the last 60 years (Stuckey, 1965). Additionally, more activities such as the deforestation and agriculture expansion that introduce enhance dust deposition could also have increased these elements concentrations. The nature of the mixed-vegetation (pine tree and shrub) in the Croatan National Forest (CNF) makes it difficult to approach the study site. Therefore, the study site was chosen close to secondary gravel roads and small ditches (Figure 4). This location raises the issue that the process of building roads could have introduced dust to the site. The material of the road is mostly limestone, and it may contain silicate sand. Thus, crushed stone mines, construction sand and gravel, phosphate mines, local farming and road construction could have been the primary external sources of dust to the CNF pocosin. #### Trace element deposition in CNF pocosin Among all the trace elements that are tested in this study, the group 1 (V, Cu, Zr, Cd, Sn, La, Ce, Pr, Nd, Sm, Th and U) elements that have higher correlation with ash content were probably mainly introduced from mineral dust, whereas the group 2 (Ni, Zn, Rb, As, Sb, Sr, Pb and Bi) ones that have relatively weak correlation with ash content may have also been introduced by other anthropogenic sources (Table 3). In the last century, most trace elements concentrations in ash start to increase from the depth 17 cm to 13 cm, corresponding with the year from 1905 to 1930. This may represent the period of the beginning of North Carolina industrialization. At these same depths, however, their concentrations in the total peat do not have a peak, which is due to the low ash content (less than 5%). The enrichment factor (E.F.) of trace elements is used to distinguish the earth material background from anthropogenic input (Shotyk, 2002a). The
higher E.F. of certain element(s) can be caused by extensive anthropogenic input. From the results of the E.F. calculation in this study, a number of trace elements have E.F. values lower than 1.0 (Table 6), while and their profiles still display obvious variations. Most the trace elements E.F. above 16 cm (after the year of 1893) are higher than those values at the bottom core. This suggests the significant anthropogenic source input in the last 120 or so years. Enrichment factors show that the soil material in the CNF demonstrates a localized and thin upper continental crust layer, instead of the average upper continental crust in North America (Rudnick and Gao, 2004). #### Trace elements group one Group 1 elements (V, Cu, Zr, Cd, Sn, La, Ce, Pr, Nd, Sm, Th and U) were probably introduced from sources that released significant mineral dust into the atmosphere such as crush stone mines, construction sand and gravel, phosphate mines and agricultural soil in the coastal plain of North Carolina. The strong correlation between these elements and major elements Ti and Al in peat indicate that these trace elements were deposited in proportion to the input of weathered minerals. Pocosin forest fires can also significantly affect trace elements concentrations in peat. When they occurred, parts of vegetation and peat were turned into ash, resulting in a thinner layer of peat with higher ash content. Cu is one of the most commonly reported trace elements (Pb, Cu, Zn) in studies of atmospheric deposition. In southeastern Florida, the Cu trace element concentrations are close to the levels shown in this study (Kamenov et al., 2009). The comparisons in Figure 13 reveal Cu concentrations trends are different between the two studies, showing no increasing trend near the surface of Core 1 from CNF pocosin. The comparison may imply the difference in Cu usage in the recent years between Florida and North Carolina. In New York City, Cochran et al., (1998) observed that the two salt marshes have high Cu concentrations in ash, which are about six times higher than the records in CNF pocosin (Figure 14), suggesting greater Cu pollution in NYC. The Cd maximum concentration in the CNF pocosin is 1.18 ppm at depths of 34-35 cm (Table 5, Figure 13) which is much higher than the maximum Cd concentration in the Florida peat sediment (0.072 ppm) (Kamenov et al., 2009). Cd concentration (ash) in North Carolina is also higher than the ones in New York City (Figure 14). The possible sources of Cd in North Carolina are the nearby phosphate mines, and coal-fired power plants fly ash (Querol et al, 1999). Raven and Loeppert, (1997) summarized that phosphate rocks and phosphate fertilizer can introduce a number of trace elements to the environment. The comparison between the trace elements in North Carolina phosphate rock (Raven and Loeppert, 1997) and that in CNF pocosin, it is possible that Cu, Zn, Rb, Sr, Zr, Cd and U elements are introduced from dust suspended during phosphate mining. #### Trace elements group two The other group elements (Ni, Zn, Rb, As, Sb, Sr, Pb and Bi) have weak correlations with ash content that may be influenced by other different anthropogenic sources such as leaded gasoline usage and coal combustion during the last century. These records can also be affected by the local population growth rate and the distances from the coal-fired power plants to the study site. Different Pb records in the CNF (Figure 15) indicate that the industrialization and the introduction of leaded gasoline could have dominated the Pb sources during the period between 1908 and 1933. After 1933, Pb accumulation rate rapidly increased until the year 1970, which coincides with a period of growing usage of leaded gasoline in North Carolina. Therefore, leaded gasoline usage may be one of the dominating Pb sources in the area during this period. Moreover, Pb emissions are also affected by the growth rate of populations in the surrounding counties, which correlate with the number of leaded gasoline-using vehicles on roads. Within the five adjacent counties, the highest population growth rates were found in the 1950s and 1960s, which match the rapid Pb accumulation rate during the same period (Figure 15). Between 1970 and 1983, the Pb concentrations were lower than the previous period in both peat and ash, and Pb accumulation rate did not accelerate as fast as before. This period matches the beginning of leaded gasoline phasing-out at 1973. The remaining high level of Pb concentrations may be related to other Pb sources such as the coal combustion in the area, phosphate mines in Beaufort county and dust from phosphate fertilizer (Raven and Loeppert, 1997). The comparisons of Pb between different regions in the United States are shown in Figure 13 and 14. Both Florida (Kamenov et al. 2009) and CNF peat contain Pb maxima at depths corresponding to 1970. It suggests the similarity in leaded gasoline usage period between Florida and North Carolina. Cochran et al., (1998) observed that the two salt marshes in New York City have high fluxes of Pb in ash. Comparison shows their concentrations in ash are several times higher (Pb×9) than the records in the CNF pocosin (Figure 14), which implies greater trace metal pollution in cities such as New York City. The same comparisons for Zn also indicated the similar Zn maxima nearer the core tops in Florida, while a higher concentration was observed in NYC (Zn×5) relative to that in North Carolina. This supports the notion that extra Pb can be from the emissions from motor vehicles (Huang et al, 1994), and that more Pb and Zn can be released to the atmosphere near a denser populations and heavier-traffic areas. To compare Pb concentrations in the U.S. with those in Europe, numerous studies have shown that the highest Pb concentration in peat is at the depth associated with years around 1970 (Shotyk et al., 1995, 1998; Weiss et al., 1999; Cloy et al., 2008; Novak et al., 2008). However, from the studies in Northeast China, the highest Pb concentration was found around 2000, when leaded gasoline began to be phased out (Bao et al., 2010). Therefore, the concentrations within peat of trace elements such as Pb can show both similarities and differences in local industrial development at regions within the U.S., as well as among countries. The very strong correlation (r is great than 0.8, Table 3) between Pb concentration and some other elements (Ni, As, Sb, Bi) concentrations suggest they were probably introduced from similar anthropogenic sources. Sb, Bi and Ni all have their highest concentrations (in peat) at depths of 8–9 cm (time interval 1959 – 1969) (Table 4, Figure 10). The excess Sb and Bi are most likely from anthropogenic input since their concentrations are very low in fresh water and they are relatively volatile (Kamenov et al., 2009). The high Sb, Bi and Ni concentrations between 1960 and 1975 in CNF pocosin may be from motor vehicle emissions (Huang et al., 1994). Previous studies have shown that fossil fuel combustion, coal mining and fly ash from coal-fired power plants often carry extra Sb, Bi and Ni into the atmosphere (Kaakinen et al., 1975; Querol et al, 1999; Kamenov et al., 2009). Coal burning has constituted a large fraction of the energy generation of North Carolina, although coal mining has not been significant. Therefore, coal combustion could be one of the Sb, Bi and Ni sources in CNF pocosin. In general, the elements (V, Cu, Zr, Cd, Sn, La, Ce, Pr, Nd, Sm, Th and U) that strongly correlate with ash content were possibly introduced by the dust from phosphate mines, agricultural soil, crushed stone mines and fly ash from coal combustion. The other group of elements (Ni, Zn, Rb, As, Sb, Sr, Pb and Bi) that do not show strong correlation with ash content may have been mainly emitted by motor vehicles, particularly cars that used leaded gasoline, and also by coal combustion. #### Sources to the CNF pocosin based on Sr and Pb isotopes Based on Faure's (1986) model, the 87 Sr/ 86 Sr in oceans is defined as a combination of different strontium sources including weathering young volcanic rocks (0.704 \pm 0.002), old sialic rock (0.720 ± 0.005) and marine carbonate rocks (0.708 ± 0.001). The ⁸⁷Sr/⁸⁶Sr ratio in the modern seawater is 0.70918 (Frank, 2002), whereas the average ⁸⁷Sr/⁸⁶Sr ratio in CNF pocosin is 0.71361 ± 0.00047. The high ⁸⁷Sr/⁸⁶Sr ratio (above 0.71196) throughout the whole core implies that the radiogenic Sr sources dominate the deposition in the CNF. The bedrock of CNF pocosin is fossiliferous clay and sand, shelly sand, sandy marl and limestone that formed in the Tertiary. The high ⁸⁷Sr/⁸⁶Sr ratio in the bottom core (below 30 cm) also implies that the underlying rock may contain more sialic rocks which usually have a higher ⁸⁷Sr/⁸⁶Sr ratio. The less radiogenic Sr sources at depth of 12 cm suggest that the additional materials such as marine aerosols with low ⁸⁷Sr/⁸⁶Sr ratio character were deposited in the CNF pocosin around 1940's. Tobiassen (1982) measured the ⁸⁷Sr/⁸⁶Sr ratio (0.70790-0.70935) in phosphate grains from the Miocene Pungo River formation in North Carolina. Therefore a marine isotopic signature can be introduced from anthropogenic activities such as phosphate mining and crushed stone (shell limestone) mining in coastal plain during the last 100 years. The Pb isotope ratios (206 Pb/ 204 Pb, 206 Pb/ 207 Pb, 207 Pb/ 204 Pb, 208 Pb/ 204 Pb) do not have any significant variations in the top 30 cm of Pb deposition (Table 8, Figure 16). This suggests no obvious changes in the sources of Pb to the CNF pocosin during the last century. The anthropogenic Pb sources can be from leaded gasoline usage in North Carolina. The 206 Pb/ 207 Pb ratio (1.1992 – 1.2366) is close to the values in other areas in U.S. such as Tampa (1.214 \pm 0.001, 1.208-1.231), Argonne, France (1.211 \pm 0.001), and New York (1.197-1.223) (Bollhöfer and Rosman, 2001). Kamenov et al., (2009) claimed
that Florida has been using different source ore for Pb and higher 206 Pb/ 207 Pb ratio (above 1.200), representing more radiogenic Mississippi Valley Type (MVT) ore in the last 40 years. Similarly high ²⁰⁶Pb/²⁰⁷Pb ratios were found in Georgia (Jackson et al., 2004) for the last 50 years and in the Chesapeake Bay area (Marcantonio et al., 2002) for the last 35 years. Coal combustion has also been claimed to be an important source of Pb in North America, Western Europe and East Asia (Bollhöfer and Rosman, 2001; Diaz-Somoano et al., 2009). Diaz-Somoano et al., (2009) observed that the ²⁰⁶Pb/²⁰⁷Pb in coal from the U.S. ranges from 1.1907 – 1.2314 and that ²⁰⁸Pb/²⁰⁶Pb ranges from 2.0201 – 2.0829. These Pb isotopic records in coal are comparable with those in CNF pocosin (²⁰⁶Pb/²⁰⁷Pb: 1.1992 – 1.2366; ²⁰⁸Pb/²⁰⁶Pb: 2.0479 – 2.0851). Therefore, coal combustion could also be one of the major Pb sources in North Carolina during the last 100 years. Figure 17 shows the comparison of Pb isotopic compositions (207 Pb/ 206 Pb and 208 Pb/ 204 Pb) between CNF pocosin in North Carolina and other study sites in the eastern United States. The data that lay in the overlapping area in the plot are the samples from CNF pocosin Pb deposition in the last 100 years, Florida swamp in the last 40 years and the northeastern U.S. Lake Andrus in the last 40 years (Graney et al., 1995). This demonstrates that in over the last 40 years, the North Carolina coastal plain was characterized by Pb sources similar to those of other places in the eastern U.S. #### Conclusion The Croatan National Forest pocosin, even though it has both ombrotrophic and minerotrophic characteristics, can be used as an archive of the atmospheric deposition of trace elements such as lead. The distribution of pocosin peat in North Carolina offers many opportunities to expand this study to different locations in the coastal plain and to conduct more detailed analysis with longer sample cores, which will provide more information about the local history. By using both ²¹⁰Pb and fallout radionuclides, along with trace elements concentrations and Pb isotopes, a robust chronology was constructed. Mobility of ²¹⁰Pb, Pb and other trace elements concentration is possible due to the water table influence on the peat; however, further work is would be needed to better evaluate that possibility. Additionally, the ¹³⁷Cs was moving chemically in the peat, independent of the effects of plants. Therefore, additional analysis testing immobile radionuclides such as ²⁴²Pu or ²⁴¹Am could help to better define the peat chronology. The recent lead input reflects the local/regional lead emissions from industrial activities in the coastal plain of North Carolina. From the late 1800's to the early 1900's, local industrialization, along with development related to World War II, expanded local farming, mines and roads. Half a century later, when leaded gasoline was phased out in 1973, the trace elements levels in the atmosphere started to drop. Moreover, the record of other trace elements as well as some major elements represents more local history such as phosphate mines, crushed stone mines, forest fires, road construction and coal combustion. Historical (100 years) Pb deposition in North Carolina was similar to that observed in Europe, where industrial development has been similar, but different from the patterns observed in China. Table 1 North Carolina local anthropogenic history. | Time Period | Historical Events | |--------------------|---| | 1500s to 1700s | Early European Settlers, fire for agriculture purpose in Southern U.S. ¹ | | 1800 to mid-1800's | Gold mines started and the most significant production period in North Carolina. ² | | 1890s to1920s | Industrialization; initiation of a variety of mines (i.e. gold mines); the rapid growth in the timber industry and | | | associated logging led to increasingly numerous, intense and widespread fires. Many Coastal Plain forests were | | | slashed-and-burned, or often accidentally ignited, causing more severe fires, especially for 12 NC counties in | | | 1894. ^{1,2} | | 1905 | The first production of sand and gravel, crushed stone in the coastal Plain of North Carolina. ^{2,3} | | 1920s to 1940s | In the southern U.S., fire suppression (not allowing fires) was sponsored in this period, which allowed | | | Appalachian hardwood forests with other species, replacing many areas of oak/pine fire-tolerant species. ¹ | | 1923 | Introduction of leaded gasoline in U.S. ⁴ | | 1950s | The highest population change/growth rate (53.1%) in the adjacent counties (Figure 2, 3). | | 1951-1958 | The first phosphate mines in Beaufort county. ² | | 1960s | The second highest population change/growth rate (43.2%) in the adjacent counties (Figure 2, 3); | | | Renewed phosphate mines in Beaufort county. ² | | 1973 | Leaded gasoline phaseout began ⁴ | | 1990s | Regular wildland fire by forest fire management in the coastal plain. ¹ | ¹Fowler and Konopik, 2007; ² Stuckey, 1965; ³ NCGS: http://www.geology.enr.state.nc.us/Mineral; ⁴ US EPA. **Table 2** Peat accumulation rate, ²¹⁰Pb inventory and atmospheric ²¹⁰Pb flux comparisons from different atmospheric deposition sites. | Country | Region/Site | Peat accumulation rate | ²¹⁰ Pb inventory
(Bq m ⁻²) | Atmospheric ²¹⁰ Pb flux | References | |----------------------|------------------------------|------------------------|---|------------------------------------|-------------------------------| | | | $(g cm^{-2}yr^{-1})$ | (24m) | (Bq m-2yr-1) | | | Switzerland | Tramelan, bogs | 0.02-0.04 | 4690 | 146 | Appleby et al., (1997) | | UK | Glasgow, peat bog | 0.027-0.040 | 3380-3500 | 106-109 ^a | Mackenzie et al., (1998) | | NW Iberian | Galicia, mires | - | 4994-10135 | 155-315 ^a | Olid et al.,(2010) | | United States | North Carolina, pocosin | 0.01-0.09 | 2829 | 88 | This study | | | North Carolina, salt marshes | - | 4220, 4560 | 131, 142 | Benninger and Wells, (1993) | | | Florida, marshes | 0.0035 (ash) | 3980-7585 | 124-236 ^a | Kamenov et al., (1997) | | | Florida, marshes | | 1916-3966 | 60-123 ^a | Brenner et al., (2001) | | | New York, bog | - | 2667-9000 | 83-279 ^a | Cochran et al., (1997) | | | New York, salt marsh | 0.02 a, 0.0017(ash)a | 3404 | 106 | Urban et al., (1990) | | | East U.S., undisturbed soil | - | 3200-6333 | 99-197 ^a | Graustein and Turkian, (1986) | | | Raleigh, NC | | 4483 | 139 ^a | | | | Bluff Mountain, NC | | 5567 | 173 ^a | | ^a Calculated value using 22.3 yr as the half-life of Pb. **Table 3** Elements concentrations correlation relationship table. Dark grey represents very strongly correlated elements (Correlation Coefficient > 0.8); Light grey represents strong correlated elements relationship (Correlation Coefficient is from 0.8-0.6). r is considered statistically significant when p < 0.05. | Mg | -0.39 | 1 |--------------|-----------------|----------------|-----------------|----------------|-----------------|----------------|----------------|----------------|----------------|-----------------|----------------|----------------|-------------|----------------|-----------------|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|---------------|-------|--------| | -11-5 | 0.078 | Al | 0.803
<.0001 | -0.14
0.556 | 1 | Ti | 0.905 | -0.62 | 0.767 | 1 | - | <.0001 | 0.003 | <.0001 | 0.15 | 1 | i | Fe | 0.053
0.819 | 0.577
0.006 | 0.428 | -0.15
0.523 | 1 | Mn | 0.947 | -0.34 | 0.881 | 0.864 | 0.208 | 1 | T 7 | <.0001 | -0.51 | <.0001 | <.0001 | 0.365 | 0.93 | -1 | \mathbf{v} | <.0001 | 0.019 | <.0001 | <.0001 | 0.032 | <.0001 | 1 | Ni | 0.326 | 0.46 | 0.538 | 0.093 | 0.826 | 0.382 | 0.283 | 1 | | | | | | | | | | | | | | | | | | | 141 | 0.149 | 0.036 | 0.012 | 0.687 | <.0001 | 0.087 | 0.213 | Cu | 0.853 | -0.38 | 0.776 | 0.815 | 0.108 | 0.856 | 0.869 | 0.481 | 1 | | | | | | | | | | | | | | | | | | | <.0001 | 0.093 | <.0001 | <.0001 | 0.641 | <.0001 | <.0001 | 0.028 | | | | | | | | | | | | | | | | | | | Zn | 0.533 | 0.075 | 0.675 | 0.308 | 0.631 | 0.691 | 0.472 | 0.615 | 0.493 | 1 | | | | | | | | | | | | | | | | | | 0.013 | 0.747 | 8E-04 | 0.175 | 0.002 | 5E-04 | 0.031 | 0.003 | 0.023 | 0.5740 | | | | | | | | | | | | | | | | | Rb | 0.534
0.013 | -0.11
0.632 | 0.805
<.0001 | 0.512
0.018 | 0.401
0.071 | 0.739
1E-04 | 0.609
0.003 | 0.283
0.215 | 0.51
0.018 | 0.763
<.0001 | 1 | | | | | | | | | | | | | | | | Sr | 0.013 | 0.032 | 0.694 | 0.299 | 0.53 | 0.653 | 0.432 | 0.432 | 0.454 | 0.891 | 0.923 | 1 | | | | | | | | | | | | | | | Sr | 0.046 | 0.701 | 5E-04 | 0.188 | 0.013 | 0.001 | 0.051 | 0.05 | 0.039 | <.0001 | <.0001 | • | | | | | | | | | | | | | | | Zr | 0.933 | -0.6 | 0.758 | 0.992 | -0.16 | 0.882 | 0.971 | 0.12 | 0.852 | 0.327 | 0.503 | 0.313 | 1 | | | | | | | | | | | | | | | <.0001 | 0.004 | <.0001 | <.0001 | 0.499 | <.0001 | <.0001 | 0.606 | <.0001 | 0.148 | 0.02 | 0.167 | | | | | | | | | | | | | | | Cd | 0.954 | -0.52 | 0.807 | 0.979 | -0.05 | 0.922 | 0.979 | 0.217 | 0.879 | 0.405 | 0.559 | 0.386 | 0.992 | 1 | | | | | | | | | | | | | | <.0001 | 0.015 | <.0001 | <.0001 | 0.843 | <.0001 | <.0001 | 0.345 | <.0001 | 0.068 | 0.008 | 0.084 | <.0001 | | | ı | | | | | | | | | | | As | 0.536 | 0.295 | 0.744 | 0.367 | 0.793 | 0.597 | 0.531 | 0.927 | 0.603 | 0.657 |
0.47 | 0.519 | 0.378 | 0.474 | 1 | | | | | | | | | | | | Sn | 0.012 | 0.195
-0.29 | 1E-04
0.913 | 0.102 | <.0001 | 0.004 | 0.013 | <.0001 | 0.004 | 0.001 | 0.032 | 0.016 | 0.091 | 0.03 | 0.691 | 1 | 1 | | | | | | | | | | SII | <.0001 | 0.195 | <.0001 | <.0001 | 0.166 | | <.0001 | 0.054 | <.0001 | 0.02 | 0.001 | 0.03 | <.0001 | <.0001 | 5E-04 | | | | | | | | | | | | Sb | 0.54
0.012 | 0.176
0.446 | 0.781
<.0001 | 0.429
0.052 | 0.765
<.0001 | 0.688
6E-04 | 0.58
0.006 | 0.731
2E-04 | 0.581
0.006 | 0.669
9E-04 | 0.68
7E-04 | 0.651
0.001 | 0.431 0.051 | 0.534
0.013 | 0.884
<.0001 | 0.789
<.0001 | 1 | | | | | | | | | | La | 0.792 | -0.02 | 0.871 | 0.685 | 0.362 | 0.814 | 0.769 | 0.444 | 0.687 | 0.566 | 0.741 | 0.641 | 0.031 | | 0.67 | 0.818 | 0.75 | 1 | l | | | | | | | | La | <.0001 | 0.917 | <.0001 | 6E-04 | 0.107 | <.0001 | <.0001 | 0.044 | 6E-04 | 0.008 | 1E-04 | 0.002 | 3E-04 | <.0001 | 9E-04 | <.0001 | <.0001 | | | | | | | | | | Ce | 0.874 | -0.14 | 0.883 | 0.786 | 0.257 | 0.87 | 0.851 | 0.399 | 0.756 | 0.544 | 0.707 | 0.593 | 0.812 | 0.86 | 0.638 | 0.855 | 0.7 | 0.984 | 1 | | | | | | | | | <.0001 | 0.544 | <.0001 | <.0001 | 0.261 | <.0001 | <.0001 | 0.073 | <.0001 | 0.011 | 3E-04 | 0.005 | <.0001 | <.0001 | 0.002 | <.0001 | 4E-04 | <.0001 | | | | | | | | | Pr | 0.828 | -0.12 | 0.889 | 0.762 | 0.288 | 0.846 | 0.829 | 0.388 | 0.721 | 0.534 | 0.745 | 0.614 | 0.782 | 0.833 | 0.638 | 0.861 | 0.727 | 0.991 | 0.994 | 1 | | | | | | | B.T.1 | <.0001 | 0.608
-0.14 | <.0001 | <.0001 | 0.206 | | <.0001 | 0.082 | 2E-04
0.731 | 0.013
0.537 | 1E-04
0.748 | 0.003 | <.0001 | <.0001 | 0.002 | <.0001 | 2E-04
0.731 | <.0001 | <.0001 | 1 | 1 | I | | | | | Nd | <.0001 | 0.555 | <.0001 | <.0001 | 0.280 | <.0001 | <.0001 | 0.388 | 2E-04 | 0.012 | <.0001 | 0.013 | <.0001 | <.0001 | 0.002 | <.0001 | 2E-04 | <.0001 | <.0001 | <.0001 | 1 | | | | | | Sm | 0.84 | -0.15 | 0.908 | 0.786 | 0.299 | 0.866 | 0.855 | 0.395 | 0.737 | 0.542 | 0.755 | 0.614 | 0.801 | 0.851 | 0.65 | 0.891 | 0.748 | 0.983 | 0.991 | 0.997 | 0.999 | 1 | | | | | Sili | <.0001 | 0.529 | <.0001 | <.0001 | 0.188 | | <.0001 | 0.077 | 1E-04 | 0.011 | <.0001 | 0.003 | <.0001 | <.0001 | 0.001 | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 | | | | | | Pb | 0.232 | 0.468 | 0.543 | 0.052 | 0.947 | 0.372 | 0.241 | 0.828 | 0.285 | 0.591 | 0.439 | 0.501 | 0.05 | 0.163 | 0.859 | 0.514 | 0.897 | 0.511 | 0.42 | 0.449 | 0.45 | 0.467 | 1 | | | | | 0.311 | 0.033 | 0.011 | 0.822 | <.0001 | 0.097 | 0.293 | <.0001 | 0.211 | 0.005 | 0.046 | 0.021 | 0.829 | 0.479 | <.0001 | 0.017 | <.0001 | 0.018 | 0.058 | 0.041 | 0.041 | 0.033 | | | | | Bi | 0.599 | 0.153 | 0.797 | 0.485 | 0.737 | 0.695 | 0.633 | 0.766 | 0.613 | 0.621 | 0.575 | 0.532 | 0.483 | 0.578 | 0.92 | 0.832 | | 0.737 | 0.705 | 0.72 | 0.725 | 0.744 | 0.883 | 1 | | | TEN | 0.004 | 0.507
-0.42 | <.0001 | 0.026 | 1E-04
-0.02 | 5E-04
0.88 | 0.002 | <.0001 | 0.003 | 0.003 | 0.006 | 0.013 | 0.027 | 0.006 | <.0001 | <.0001 | <.0001 | 1E-04
0.841 | 4E-04
0.912 | 2E-04
0.894 | 2E-04
0.901 | 1E-04
0.906 | <.0001 | 0.562 | 1 | | Th | <.0001 | 0.055 | <.0001 | <.0001 | 0.946 | | <.0001 | 0.207 | <.0001 | 0.303 | 0.005 | 0.394 | <.0001 | <.0001 | 0.461 | <.0001 | 0.516 | <.0001 | <.0001 | <.0001 | <.0001 | <.0001 | 0.18
0.434 | 0.562 | 1 | | U | 0.912 | -0.47 | 0.843 | 0.962 | 0.013 | 0.868 | 0.982 | 0.271 | 0.838 | 0.164 | 0.511 | 0.309 | 0.956 | 0.957 | 0.507 | 0.919 | 0.525 | 0.743 | 0.827 | 0.805 | 0.817 | 0.829 | 0.434 | 0.605 | 0.959 | | 1 | <.0001 | 0.031 | <.0001 | <.0001 | 0.955 | <.0001 | <.0001 | 0.235 | <.0001 | 0.108 | 0.018 | 0.173 | <.0001 | <.0001 | 0.019 | <.0001 | 0.015 | 1E-04 | <.0001 | <.0001 | <.0001 | <.0001 | 0.352 | 0.004 | <.0001 | | | Ash | Mg | Al | Ti | Fe | Mn | V | Ni | Cu | Zn | Rb | Sr | Zr | Cd | As | Sn | Sb | La | Ce | Pr | Nd | Sm | Pb | Bi | Th | $\textbf{Table 4} \ \text{Trace elements concentration in peat (uncertainties estimated at $\leq 10\%$) from Croatan National Forest pocosin, NC, U.S. \\$ | Depth | V | Ni | Cu | Zn | Rb | Sr | Zr | Cd | As | Sn | Sb | La | Ce | Pr | Nd | Sm | Pb | Bi | Th | U | LOI | |--------------|------|------|------|-------|-------|------|------|-------|-------|-------|-------|-------|------|-------|-------|-------|------|-------|-------|-------|------| | cm | ppm % | | 0.5-
2.25 | 9.46 | 2.79 | 5.95 | 11.6 | 5.41 | 33.8 | 12.5 | 0.425 | 0.914 | 0.480 | 0.287 | 4.83 | 7.99 | 1.10 | 3.93 | 0.689 | 9.09 | 0.908 | 1.24 | 0.457 | 85.9 | | 4-5 | 15.0 | 4.86 | 5.10 | 15.3 | 3.91 | 27.7 | 16.2 | 0.526 | 1.88 | 0.814 | 0.340 | 5.94 | 10.9 | 1.38 | 4.95 | 0.867 | 15.2 | 1.61 | 1.69 | 0.793 | 74.5 | | 6-7 | 7.17 | 3.57 | 3.70 | 5.22 | 2.07 | 11.0 | 8.27 | 0.348 | 1.30 | 0.597 | 0.293 | 4.27 | 6.78 | 0.943 | 3.33 | 0.580 | 13.1 | 1.34 | 1.05 | 0.514 | 89.2 | | 8-9 | 13.3 | 5.21 | 6.06 | 6.87 | 1.80 | 13.3 | 13.7 | 0.513 | 2.02 | 1.12 | 0.544 | 6.05 | 10.1 | 1.36 | 4.93 | 0.903 | 25.3 | 2.53 | 1.63 | 0.853 | 81 | | 10-11 | 3.94 | 2.70 | 2.05 | 2.42 | 1.11 | 8.66 | 4.71 | 0.207 | 1.01 | 0.349 | 0.202 | 2.94 | 4.98 | 0.713 | 2.51 | 0.441 | 7.34 | 0.870 | 0.677 | 0.343 | 94.8 | | 12-13 | 1.94 | 1.88 | 1.70 | 1.52 | 0.396 | 5.84 | 2.40 | 0.099 | 0.625 | 0.168 | 0.083 | 1.43 | 2.49 | 0.355 | 1.23 | 0.212 | 2.94 | 0.367 | 0.389 | 0.217 | 98.2 | | 14-15 | 3.05 | 2.77 | 2.59 | 1.51 | 0.677 | 6.78 | 4.46 | 0.154 | 0.933 | 0.265 | 0.094 | 2.38 | 4.09 | 0.574 | 1.98 | 0.334 | 4.27 | 0.457 | 0.809 | 0.404 | 96.1 | | 16-17 | 4.31 | 2.45 | 2.67 | 0.872 | 0.493 | 6.08 | 5.83 | 0.183 | 0.772 | 0.217 | 0.074 | 3.15 | 4.75 | 0.627 | 2.13 | 0.357 | 4.15 | 0.438 | 0.962 | 0.423 | 91 | | 18-19 | 6.00 | 2.57 | 3.03 | 3.43 | 0.203 | 6.45 | 8.40 | 0.252 | 0.800 | 0.266 | 0.074 | 2.37 | 4.48 | 0.509 | 1.76 | 0.310 | 4.85 | 0.527 | 0.966 | 0.572 | 87.9 | | 20-21 | 5.84 | 2.39 | 2.79 | 4.06 | 0.300 | 5.93 | 8.59 | 0.253 | 0.705 | 0.285 | 0.077 | 2.55 | 4.63 | 0.533 | 1.84 | 0.319 | 4.50 | 0.498 | 1.03 | 0.514 | 87.9 | | 22-23 | 5.56 | 2.21 | 2.68 | 3.52 | 0.075 | 4.53 | 7.72 | 0.218 | 0.634 | 0.233 | 0.062 | 1.13 | 2.28 | 0.268 | 0.959 | 0.175 | 3.68 | 0.380 | 0.703 | 0.451 | 90.8 | | 24-25 | 6.29 | 2.73 | 3.64 | 3.17 | 0.043 | 4.50 | 7.59 | 0.212 | 0.768 | 0.226 | 0.071 | 0.771 | 1.62 | 0.194 | 0.711 | 0.133 | 4.36 | 0.401 | 0.612 | 0.464 | 91.4 | | 26-27 | 5.49 | 2.87 | 3.96 | 1.30 | 0.124 | 5.43 | 6.99 | 0.197 | 0.860 | 0.225 | 0.079 | 1.90 | 3.62 | 0.455 | 1.63 | 0.289 | 4.54 | 0.521 | 1.33 | 0.493 | 90.9 | | 28-29 | 7.29 | 3.60 | 5.63 | 2.73 | 0.074 | 5.18 | 10.5 | 0.307 | 1.08 | 0.296 | 0.120 | 1.11 | 2.22 | 0.258 | 0.934 | 0.172 | 5.24 | 0.482 | 0.818 | 0.571 | 92.4 | | 30-31 | 9.45 | 3.57 | 6.29 | 3.36 | 0.104 | 5.50 | 14.2 | 0.404 | 1.19 | 0.455 | 0.145 | 0.824 | 1.71 | 0.207 | 0.759 | 0.139 | 5.10 | 0.942 | 0.704 | 0.625 | 91 | | 32-33 | 5.94 | 1.56 | 3.32 | 1.33 | 0.145 | 3.63 | 11.7 | 0.311 | 0.585 | 0.308 | 0.085 | 0.941 | 2.07 | 0.256 | 0.949 | 0.176 | 2.22 | 0.434 | 0.679 | 0.406 | 91.9 | | 34-35 | 23.0 | 4.01 | 10.0 | 8.84 | 1.70 | 14.5 | 42.3 | 1.20 | 1.52 | 0.973 | 0.283 | 7.53 | 15.5 | 1.82 | 6.53 | 1.11 | 7.34 | 1.46 | 3.10 | 1.25 | 50.4 | | 36-37 | 20.3 | 2.64 | 6.96 | 3.77 | 2.02 | 12.1 | 37.4 | 1.02 | 1.17 | 0.908 | 0.237 | 5.85 | 12.4 | 1.52 | 5.48 | 0.975 | 5.10 | 1.06 | 2.76 | 1.11 | 67.2 | | 38-39 | 15.3 | 1.84 | 5.02 | 2.27 | 2.30 | 9.46 | 27.4 | 0.727 | 0.886 | 0.783 | 0.181 | 5.95 | 10.6 | 1.46 | 5.23 | 0.893 | 4.08 | 0.837 | 2.30 | 0.937 | 80.5 | | 40-41 | 27.4 | 2.98 | 8.39 | 5.27 | 3.96 | 15.4 | 43.2 | 1.15 | 1.27 | 1.38 | 0.288 | 7.76 | 15.8 | 2.06 | 7.49 | 1.33 | 7.08 | 1.46 | 3.69 | 1.59 | 64.6 | | 42-43 | 20.1 | 2.13 | 5.22 | 6.00 | 2.41 | 10.3 | 31.7 | 0.844 | 0.924 | 1.03 | 0.216 | 2.36 | 5.51 | 0.711 | 2.69 | 0.520 | 5.45 | 1.13 | 2.17 | 1.13 | 71.5 | Table 5 Trace elements concentrations in ash (uncertainties estimated at $\leq 10\%$) from Croatan National Forest pocosin, NC, U.S. | Depth
interval
cm | V
ppm | Ni
ppm | Cu
ppm | Zn
ppm | Rb
ppm | Sr
ppm | Zr
ppm | Cd
ppm | As
ppm | Sn
ppm | Sb
ppm | La
ppm | Ce
ppm | Pr
ppm | Nd
ppm | Sm
ppm | Pb
ppm | Bi
ppm | Th
ppm | U
ppm | |-------------------------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------| | 0.5- | 2.25 | 67.1 | 19.8 | 42.3 | 82.3 | 38.4 | 240 | 88.5 | 3.02 | 6.49 | 3.41 | 2.04 | 34.3 | 56.8 | 7.81 | 27.9 | 4.90 | 64.5 | 6.45 | 8.80 | 3.24 | | 4-5 | 58.7 | 19.0 | 20.0 | 59.8 | 15.3 | 109 | 63.6 | 2.06 | 7.36 | 3.19 | 1.33 | 23.3 | 42.6 | 5.39 | 19.4 | 3.40 | 59.5 | 6.33 | 6.62 | 3.11 | | 6-7 | 66.7 | 33.2 | 34.4 | 48.5 | 19.2 | 102 | 76.9 | 3.23 | 12.1 | 5.55 | 2.72 | 39.7 | 63.1 | 8.77 | 30.9 | 5.39 | 122 | 12.4 | 9.73 | 4.78 | | 8-9 | 69.6 | 27.4 | 31.8 | 36.1 | 9.47 | 69.8 | 71.7 | 2.70 | 10.6 | 5.86 | 2.86 | 31.8 | 53.3 | 7.16 | 25.9 | 4.74 | 133 | 13.3 | 8.55 | 4.48 | | 10-11 | 76.1 | 52.2 | 39.6 | 46.7 | 21.4 | 167 | 91.1 | 4.01 | 19.5 | 6.74 | 3.90 | 56.7 | 96.3 | 13.8 | 48.5 | 8.53 | 142 | 16.8 | 13.1 | 6.62 | | 12-13 | 105 | 102 | 92.4 | 82.4 | 21.5 | 317 | 130 | 5.37 | 33.9 | 9.15 | 4.53 | 77.9 | 135 | 19.3 | 67.0 | 11.5 | 160 | 19.9 | 21.1 | 11.8 | | 14-15 | 78.2 | 70.9 | 66.4 | 38.7 | 17.4 | 174 | 114 | 3.94 | 23.9 | 6.79 | 2.40 | 61.0 | 105 | 14.7 | 50.8 | 8.58 | 110 | 11.7 | 20.8 | 10.4 | | 16-17 | 47.7 | 27.1 | 29.6 | 9.66 | 5.46 | 67.3 | 64.6 | 2.02 | 8.55 | 2.40 | 0.814 | 34.9 | 52.6 | 6.95 | 23.6 | 3.96 | 45.9 | 4.86 | 10.7 | 4.69 | | 18-19 | 49.6 | 21.2 | 25.1 | 28.4 | 1.68 | 53.3 | 69.5 | 2.08 | 6.62 | 2.20 | 0.609 | 19.6 | 37.0 | 4.21 | 14.6 | 2.56 | 40.2 | 4.36 | 7.99 | 4.73 | | 20-21 | 48.2 | 19.7 | 23.0 | 33.5 | 2.47 | 48.9 | 70.9 | 2.08 | 5.82 | 2.35 | 0.635 | 21.0 | 38.2 | 4.40 | 15.2 | 2.63 | 37.1
| 4.11 | 8.53 | 4.24 | | 22-23 | 60.2 | 23.9 | 29.0 | 38.1 | 0.811 | 49.1 | 83.7 | 2.36 | 6.87 | 2.52 | 0.671 | 12.2 | 24.7 | 2.91 | 10.4 | 1.89 | 39.9 | 4.12 | 7.61 | 4.89 | | 24-25 | 72.9 | 31.6 | 42.1 | 36.7 | 0.500 | 52.2 | 87.9 | 2.46 | 8.90 | 2.62 | 0.825 | 8.94 | 18.7 | 2.24 | 8.24 | 1.54 | 50.5 | 4.65 | 7.09 | 5.37 | | 26-27 | 60.6 | 31.7 | 43.7 | 14.4 | 1.37 | 59.8 | 77.1 | 2.18 | 9.48 | 2.48 | 0.876 | 21.0 | 39.9 | 5.02 | 18.0 | 3.19 | 50.0 | 5.74 | 14.6 | 5.44 | | 28-29 | 95.5 | 47.2 | 73.8 | 35.8 | 0.969 | 67.9 | 138 | 4.02 | 14.1 | 3.88 | 1.58 | 14.6 | 29.1 | 3.38 | 12.2 | 2.25 | 68.7 | 6.32 | 10.7 | 7.48 | | 30-31 | 105 | 39.6 | 69.7 | 37.3 | 1.16 | 61.0 | 158 | 4.48 | 13.1 | 5.05 | 1.61 | 9.14 | 18.9 | 2.30 | 8.43 | 1.55 | 56.5 | 10.5 | 7.81 | 6.93 | | 32-33 | 73.7 | 19.3 | 41.1 | 16.5 | 1.79 | 45.0 | 145 | 3.86 | 7.26 | 3.82 | 1.06 | 11.7 | 25.7 | 3.17 | 11.8 | 2.18 | 27.5 | 5.38 | 8.41 | 5.03 | | 34-35 | 46.3 | 8.08 | 20.2 | 17.8 | 3.44 | 29.3 | 85.3 | 2.42 | 3.07 | 1.96 | 0.572 | 15.2 | 31.3 | 3.67 | 13.2 | 2.25 | 14.8 | 2.94 | 6.25 | 2.52 | | 36-37 | 61.9 | 8.06 | 21.2 | 11.5 | 6.16 | 37.0 | 114 | 3.10 | 3.58 | 2.77 | 0.722 | 17.9 | 37.7 | 4.63 | 16.7 | 2.98 | 15.5 | 3.23 | 8.44 | 3.38 | | 38-39 | 78.5 | 9.43 | 25.7 | 11.6 | 11.8 | 48.4 | 140 | 3.72 | 4.54 | 4.01 | 0.929 | 30.4 | 54.1 | 7.48 | 26.8 | 4.57 | 20.9 | 4.28 | 11.8 | 4.79 | | 40-41 | 77.4 | 8.42 | 23.7 | 14.9 | 11.2 | 43.4 | 122 | 3.24 | 3.59 | 3.89 | 0.813 | 21.9 | 44.5 | 5.81 | 21.2 | 3.75 | 20.0 | 4.12 | 10.4 | 4.48 | | 42-43 | 70.6 | 7.45 | 18.3 | 21.0 | 8.43 | 36.1 | 111 | 2.96 | 3.24 | 3.62 | 0.76 | 8.25 | 19.3 | 2.49 | 9.44 | 1.82 | 19.1 | 3.94 | 7.61 | 3.97 | Table 6 Enrichment factor (E.F.) of trace element in CNF pocosin, U.S. | Depth
(cm) | Al | Mn | Fe | Mg | v | Ni | Cu | Zn | Rb | Sr | Zr | Cd | |--|---|--|--|--|---|--|--|--|--|---|--|--| | 0-2.25 | 0.64 | 0.08 | 0.17 | 2.8 | 0.35 | 0.21 | 0.76 | 0.62 | 0.10 | 0.38 | 0.54 | 17 | | 4-5 | 0.69 | 0.05 | 0.32 | 4.6 | 0.35 | 0.23 | 0.41 | 0.51 | 0.05 | 0.19 | 0.44 | 13 | | 6-7 | 0.58 | 0.05 | 0.30 | 3.7 | 0.36 | 0.37 | 0.65 | 0.38 | 0.05 | 0.17 | 0.49 | 19 | | 8-9 | 0.85 | 0.05 | 0.31 | 10 | 0.38 | 0.31 | 0.60 | 0.29 | 0.03 | 0.12 | 0.46 | 16 | | 10-11 | 0.98 | 0.04 | 0.27 | 13 | 0.37 | 0.53 | 0.67 | 0.33 | 0.05 | 0.25 | 0.53 | 21 | | 1213 | 0.73 | 0.05 | 0.17 | 7.5 | 0.39 | 0.78 | 1.2 | 0.44 | 0.04 | 0.36 | 0.57 | 21 | | 14-15 | 0.49 | 0.04 | 0.14 | 4.9 | 0.31 | 0.58 | 0.91 | 0.22 | 0.03 | 0.21 | 0.54 | 17 | | 16-17 | 0.45 | 0.03 | 0.11 | 4.1 | 0.31 | 0.36 | 0.67 | 0.09 | 0.02 | 0.13 | 0.50 | 14 | | 18-19 | 0.34 | 0.03 | 0.13 | 3.0 | 0.31 | 0.26 | 0.54 | 0.25 | 0.01 | 0.10 | 0.49 | 14 | | 20-21 | 0.74 | 0.03 | 0.16 | 4.9 | 0.30 | 0.25 | 0.50 | 0.30 | 0.01 | 0.09 | 0.52 | 14 | | 22-23 | 0.42 | 0.02 | 0.12 | 2.7 | 0.33 | 0.27 | 0.55 | 0.30 | 0.00 | 0.08 | 0.55 | 14 | | 24-25 | 0.31 | 0.01 | 0.07 | 1.7 | 0.34 | 0.31 | 0.69 | 0.25 | 0.00 | 0.07 | 0.49 | 12 | | 26-27 | 0.22 | 0.01 | 0.04 | 0.95 | 0.33 | 0.36 | 0.83 | 0.11 | 0.00 | 0.10 | 0.50 | 13 | | 28-29 | 0.21 | 0.04 | 0.02 | 0.65 | 0.30 | 0.31 | 0.81 | 0.16 | 0.00 | 0.07 | 0.52 | 14 | | 30-31 | 0.18 | 0.02 | 0.02 | 0.38 | 0.26 | 0.20 | 0.59 | 0.13 | 0.00 | 0.05 | 0.46 | 12 | | 32-33 | 0.23 | 0.02 | 0.02 | 0.35 | 0.20 | 0.11 | 0.40 | 0.07 | 0.00 | 0.04 | 0.48 | 12 | | 34-35 | 0.24 | 0.02 | 0.02 | 0.31 | 0.24 | 0.09 | 0.37 | 0.14 | 0.01 | 0.05 | 0.53 | 14 | | 36-37 | 0.21 | 0.02 | 0.02 | 0.25 | 0.21 | 0.06 | 0.24 | 0.06 | 0.01 | 0.04 | 0.45 | 11 | | 38-39 | 0.23 | 0.10 | 0.02 | 0.35 | 0.22 | 0.05 | 0.25 | 0.05 | 0.02 | 0.04 | 0.46 | 11 | | 40-41 | 0.24 | 0.07 | 0.02 | 0.31 | 0.24 | 0.05 | 0.26 | 0.07 | 0.02 | 0.04 | 0.45 | 11 | | 42-43 | 0.21 | 0.10 | 0.02 | 0.25 | 0.22 | 0.05 | 0.20 | 0.10 | 0.01 | 0.03 | 0.42 | 10 | | Depth | | a | ~- | _ | | | | | | | | | | | As | Sn | Sb | La | Ce | Pr | Nd | Sm | Pb | Bi | Th | \mathbf{U} | | (cm) | As | Sn | Sb | La | Ce | Pr | Nd | Sm | Pb | Bi | Th | U | | 0-2.25 | 0.68 | 0.82 | 2.6 | 0.56 | 0.45 | 0.55 | 0.52 | 0.53 | 1.9 | 20 | 0.42 | 0.61 | | 0-2.25
4-5 | 0.68
0.88 | 0.82
0.87 | 2.6
1.9 | 0.56
0.40 | 0.45
0.36 | 0.55
0.40 | 0.52
0.38 | 0.53
0.38 | 1.9
2.0 | 20
23 | 0.42
0.36 | 0.61
0.66 | | 0-2.25
4-5
6-7 | 0.68
0.88
1.3 | 0.82
0.87
1.4 | 2.6
1.9
3.6 | 0.56
0.40
0.68 | 0.45
0.36
0.53 | 0.55
0.40
0.66 | 0.52
0.38
0.61 | 0.53
0.38
0.61 | 1.9
2.0
3.8 | 20
23
41 | 0.42
0.36
0.49 | 0.61
0.66
0.93 | | 0-2.25
4-5
6-7
8-9 | 0.68
0.88
1.3
1.2 | 0.82
0.87
1.4
1.5 | 2.6
1.9
3.6
3.8 | 0.56
0.40
0.68
0.49 | 0.45
0.36
0.53
0.40 | 0.55
0.40
0.66
0.48 | 0.52
0.38
0.61
0.46 | 0.53
0.38
0.61
0.48 | 1.9
2.0
3.8
4.2 | 20
23
41
44 | 0.42
0.36
0.49
0.43 | 0.61
0.66
0.93
0.88 | | 0-2.25
4-5
6-7
8-9
10-11 | 0.68
0.88
1.3
1.2
1.9 | 0.82
0.87
1.4
1.5
1.5 | 2.6
1.9
3.6
3.8
4.6 | 0.56
0.40
0.68
0.49
0.70 | 0.45
0.36
0.53
0.40
0.59 | 0.55
0.40
0.66
0.48
0.75 | 0.52
0.38
0.61
0.46
0.69 | 0.53
0.38
0.61
0.48
0.70 | 1.9
2.0
3.8
4.2
4.0 | 20
23
41
44
50 | 0.42
0.36
0.49
0.43
0.59 | 0.61
0.66
0.93
0.88
1.2 | | 0-2.25
4-5
6-7
8-9
10-11
1213 | 0.68
0.88
1.3
1.2
1.9
2.5 | 0.82
0.87
1.4
1.5
1.5 | 2.6
1.9
3.6
3.8
4.6
4.1 | 0.56
0.40
0.68
0.49
0.70
1.6 | 0.45
0.36
0.53
0.40
0.59
1.4 | 0.55
0.40
0.66
0.48
0.75
1.7 | 0.52
0.38
0.61
0.46
0.69
1.6 | 0.53
0.38
0.61
0.48
0.70
1.5 | 1.9
2.0
3.8
4.2
4.0
3.4 | 20
23
41
44
50
45 | 0.42
0.36
0.49
0.43
0.59
0.72 | 0.61
0.66
0.93
0.88
1.2
1.6 | | 0-2.25
4-5
6-7
8-9
10-11
1213
14-15 | 0.68
0.88
1.3
1.2
1.9
2.5
1.9 | 0.82
0.87
1.4
1.5
1.5
1.6
1.2 | 2.6
1.9
3.6
3.8
4.6
4.1
2.3 | 0.56
0.40
0.68
0.49
0.70
1.6
1.1 | 0.45
0.36
0.53
0.40
0.59
1.4
0.96 | 0.55
0.40
0.66
0.48
0.75
1.7 | 0.52
0.38
0.61
0.46
0.69
1.6
1.1 | 0.53
0.38
0.61
0.48
0.70
1.5 | 1.9
2.0
3.8
4.2
4.0
3.4
2.5 | 20
23
41
44
50
45
28 | 0.42
0.36
0.49
0.43
0.59
0.72
0.76 | 0.61
0.66
0.93
0.88
1.2
1.6
1.5 | | 0-2.25
4-5
6-7
8-9
10-11
1213
14-15
16-17 | 0.68
0.88
1.3
1.2
1.9
2.5
1.9 | 0.82
0.87
1.4
1.5
1.5
1.6
1.2 | 2.6
1.9
3.6
3.8
4.6
4.1
2.3
1.3 | 0.56
0.40
0.68
0.49
0.70
1.6
1.1 | 0.45
0.36
0.53
0.40
0.59
1.4
0.96
0.50 | 0.55
0.40
0.66
0.48
0.75
1.7
1.2
0.59 | 0.52
0.38
0.61
0.46
0.69
1.6
1.1 | 0.53
0.38
0.61
0.48
0.70
1.5
1.1 | 1.9
2.0
3.8
4.2
4.0
3.4
2.5
1.7 | 20
23
41
44
50
45
28
19 | 0.42
0.36
0.49
0.43
0.59
0.72
0.76
0.64 | 0.61
0.66
0.93
0.88
1.2
1.6
1.5 | | 0-2.25
4-5
6-7
8-9
10-11
1213
14-15
16-17
18-19 | 0.68
0.88
1.3
1.2
1.9
2.5
1.9
1.1
0.79 | 0.82
0.87
1.4
1.5
1.5
1.6
1.2
0.72 | 2.6
1.9
3.6
3.8
4.6
4.1
2.3
1.3
0.91 | 0.56
0.40
0.68
0.49
0.70
1.6
1.1
0.68
0.34 | 0.45
0.36
0.53
0.40
0.59
1.4
0.96
0.50
0.31 | 0.55
0.40
0.66
0.48
0.75
1.7
1.2
0.59
0.32 | 0.52
0.38
0.61
0.46
0.69
1.6
1.1
0.53
0.29 | 0.53
0.38
0.61
0.48
0.70
1.5
1.1
0.51
0.29 | 1.9
2.0
3.8
4.2
4.0
3.4
2.5
1.7 | 20
23
41
44
50
45
28
19 | 0.42
0.36
0.49
0.43
0.59
0.72
0.76
0.64
0.44 | 0.61
0.66
0.93
0.88
1.2
1.6
1.5
1.1 | | 0-2.25
4-5
6-7
8-9
10-11
1213
14-15
16-17
18-19
20-21 |
0.68
0.88
1.3
1.2
1.9
2.5
1.9
1.1
0.79
0.73 | 0.82
0.87
1.4
1.5
1.6
1.2
0.72
0.63
0.67 | 2.6
1.9
3.6
3.8
4.6
4.1
2.3
1.3
0.91
0.96 | 0.56
0.40
0.68
0.49
0.70
1.6
1.1
0.68
0.34
0.36 | 0.45
0.36
0.53
0.40
0.59
1.4
0.96
0.50
0.31
0.32 | 0.55
0.40
0.66
0.48
0.75
1.7
1.2
0.59
0.32
0.33 | 0.52
0.38
0.61
0.46
0.69
1.6
1.1
0.53
0.29
0.30 | 0.53
0.38
0.61
0.48
0.70
1.5
1.1
0.51
0.29
0.30 | 1.9
2.0
3.8
4.2
4.0
3.4
2.5
1.7
1.4 | 20
23
41
44
50
45
28
19
16 | 0.42
0.36
0.49
0.43
0.59
0.72
0.76
0.64
0.44 | 0.61
0.66
0.93
0.88
1.2
1.6
1.5
1.1 | | 0-2.25
4-5
6-7
8-9
10-11
1213
14-15
16-17
18-19
20-21
22-23 | 0.68
0.88
1.3
1.2
1.9
2.5
1.9
1.1
0.79
0.73
0.76 | 0.82
0.87
1.4
1.5
1.5
1.6
1.2
0.72
0.63
0.67
0.64 | 2.6
1.9
3.6
3.8
4.6
4.1
2.3
1.3
0.91
0.96
0.90 | 0.56
0.40
0.68
0.49
0.70
1.6
1.1
0.68
0.34
0.36
0.12 | 0.45
0.36
0.53
0.40
0.59
1.4
0.96
0.50
0.31
0.32
0.12 | 0.55
0.40
0.66
0.48
0.75
1.7
1.2
0.59
0.32
0.33
0.13 | 0.52
0.38
0.61
0.46
0.69
1.6
1.1
0.53
0.29
0.30
0.12 | 0.53
0.38
0.61
0.48
0.70
1.5
1.1
0.51
0.29
0.30
0.12 | 1.9
2.0
3.8
4.2
4.0
3.4
2.5
1.7
1.4
1.3 | 20
23
41
44
50
45
28
19
16
15 | 0.42
0.36
0.49
0.43
0.59
0.72
0.76
0.64
0.44
0.49 | 0.61
0.66
0.93
0.88
1.2
1.6
1.5
1.1
1.0
0.95 | | 0-2.25
4-5
6-7
8-9
10-11
1213
14-15
16-17
18-19
20-21
22-23
24-25 | 0.68
0.88
1.3
1.2
1.9
2.5
1.9
1.1
0.79
0.73
0.76
0.85 | 0.82
0.87
1.4
1.5
1.5
1.6
1.2
0.72
0.63
0.67
0.64
0.57 | 2.6
1.9
3.6
3.8
4.6
4.1
2.3
1.3
0.91
0.96
0.90
0.94 | 0.56
0.40
0.68
0.49
0.70
1.6
1.1
0.68
0.34
0.36
0.12
0.07 | 0.45
0.36
0.53
0.40
0.59
1.4
0.96
0.50
0.31
0.32
0.12 | 0.55
0.40
0.66
0.48
0.75
1.7
1.2
0.59
0.32
0.33
0.13 | 0.52
0.38
0.61
0.46
0.69
1.6
1.1
0.53
0.29
0.30
0.12
0.07 | 0.53
0.38
0.61
0.48
0.70
1.5
1.1
0.51
0.29
0.30
0.12
0.08 | 1.9
2.0
3.8
4.2
4.0
3.4
2.5
1.7
1.4
1.3
1.3 | 20
23
41
44
50
45
28
19
16
15
14 | 0.42
0.36
0.49
0.43
0.59
0.72
0.76
0.64
0.44
0.49
0.39 | 0.61
0.66
0.93
0.88
1.2
1.6
1.5
1.1
1.0
0.95
0.97
0.91 | | 0-2.25
4-5
6-7
8-9
10-11
1213
14-15
16-17
18-19
20-21
22-23
24-25
26-27 | 0.68
0.88
1.3
1.2
1.9
2.5
1.9
1.1
0.79
0.73
0.76
0.85
1.1 | 0.82
0.87
1.4
1.5
1.5
1.6
1.2
0.72
0.63
0.67
0.64
0.57
0.63 | 2.6
1.9
3.6
3.8
4.6
4.1
2.3
1.3
0.91
0.96
0.90
0.94
1.2 | 0.56
0.40
0.68
0.49
0.70
1.6
1.1
0.68
0.34
0.36
0.12
0.07
0.18 | 0.45
0.36
0.53
0.40
0.59
1.4
0.96
0.50
0.31
0.32
0.12
0.07
0.17 | 0.55
0.40
0.66
0.48
0.75
1.7
1.2
0.59
0.32
0.33
0.13
0.07
0.19 | 0.52
0.38
0.61
0.46
0.69
1.6
1.1
0.53
0.29
0.30
0.12
0.07
0.18 | 0.53
0.38
0.61
0.48
0.70
1.5
1.1
0.51
0.29
0.30
0.12
0.08
0.18 | 1.9
2.0
3.8
4.2
4.0
3.4
2.5
1.7
1.4
1.3
1.3
1.4 | 20
23
41
44
50
45
28
19
16
15
14
13 | 0.42
0.36
0.49
0.43
0.59
0.72
0.76
0.64
0.44
0.49
0.39
0.31
0.74 | 0.61
0.66
0.93
0.88
1.2
1.6
1.5
1.1
1.0
0.95
0.97
0.91
1.1 | | 0-2.25
4-5
6-7
8-9
10-11
1213
14-15
16-17
18-19
20-21
22-23
24-25
26-27
28-29 | 0.68
0.88
1.3
1.2
1.9
2.5
1.9
1.1
0.79
0.73
0.76
0.85
1.1
0.91 | 0.82
0.87
1.4
1.5
1.5
1.6
1.2
0.72
0.63
0.67
0.64
0.57 | 2.6
1.9
3.6
3.8
4.6
4.1
2.3
1.3
0.91
0.96
0.90
0.94
1.2 | 0.56
0.40
0.68
0.49
0.70
1.6
1.1
0.68
0.34
0.36
0.12
0.07
0.18 | 0.45
0.36
0.53
0.40
0.59
1.4
0.96
0.50
0.31
0.32
0.12
0.07
0.17 | 0.55
0.40
0.66
0.48
0.75
1.7
1.2
0.59
0.32
0.33
0.13
0.07
0.19
0.24 | 0.52
0.38
0.61
0.46
0.69
1.6
1.1
0.53
0.29
0.30
0.12
0.07
0.18
0.23 | 0.53
0.38
0.61
0.48
0.70
1.5
1.1
0.51
0.29
0.30
0.12
0.08
0.18
0.25 | 1.9
2.0
3.8
4.2
4.0
3.4
2.5
1.7
1.4
1.3
1.3
1.4
1.6 | 20
23
41
44
50
45
28
19
16
15
14
13 | 0.42
0.36
0.49
0.43
0.59
0.72
0.76
0.64
0.49
0.39
0.31
0.74 | 0.61
0.66
0.93
0.88
1.2
1.6
1.5
1.1
1.0
0.95
0.97
0.91
1.1
0.85 | | 0-2.25
4-5
6-7
8-9
10-11
1213
14-15
16-17
18-19
20-21
22-23
24-25
26-27
28-29
30-31 | 0.68
0.88
1.3
1.2
1.9
2.5
1.9
1.1
0.79
0.73
0.76
0.85
1.1
0.91
0.65 | 0.82
0.87
1.4
1.5
1.5
1.6
1.2
0.72
0.63
0.67
0.64
0.57
0.63
0.57 | 2.6
1.9
3.6
3.8
4.6
4.1
2.3
1.3
0.91
0.96
0.90
0.94
1.2
1.2
0.95 | 0.56
0.40
0.68
0.49
0.70
1.6
1.1
0.68
0.34
0.36
0.12
0.07
0.18
0.24
0.09 | 0.45
0.36
0.53
0.40
0.59
1.4
0.96
0.50
0.31
0.32
0.12
0.07
0.17
0.24
0.10 | 0.55
0.40
0.66
0.48
0.75
1.7
1.2
0.59
0.32
0.33
0.13
0.07
0.19
0.24
0.10 | 0.52
0.38
0.61
0.46
0.69
1.6
1.1
0.53
0.29
0.30
0.12
0.07
0.18
0.23
0.10 | 0.53
0.38
0.61
0.48
0.70
1.5
1.1
0.51
0.29
0.30
0.12
0.08
0.18
0.25
0.11 | 1.9
2.0
3.8
4.2
4.0
3.4
2.5
1.7
1.4
1.3
1.3
1.4
1.6
1.2
0.79 | 20
23
41
44
50
45
28
19
16
15
14
13
19
12 | 0.42
0.36
0.49
0.43
0.59
0.72
0.76
0.64
0.49
0.39
0.31
0.74
0.31 | 0.61
0.66
0.93
0.88
1.2
1.6
1.5
1.1
1.0
0.95
0.97
0.91
1.1
0.85
0.61 | | 0-2.25
4-5
6-7
8-9
10-11
1213
14-15
16-17
18-19
20-21
22-23
24-25
26-27
28-29
30-31
32-33 | 0.68
0.88
1.3
1.2
1.9
2.5
1.9
1.1
0.79
0.73
0.76
0.85
1.1
0.91
0.65
0.41 | 0.82
0.87
1.4
1.5
1.5
1.6
1.2
0.72
0.63
0.67
0.64
0.57
0.63
0.57
0.49 | 2.6
1.9
3.6
3.8
4.6
4.1
2.3
1.3
0.91
0.96
0.90
0.94
1.2
1.2
0.95
0.71 | 0.56
0.40
0.68
0.49
0.70
1.6
1.1
0.68
0.34
0.36
0.12
0.07
0.18
0.24
0.09
0.10 | 0.45
0.36
0.53
0.40
0.59
1.4
0.96
0.50
0.31
0.32
0.12
0.07
0.17
0.24
0.10
0.11 | 0.55
0.40
0.66
0.48
0.75
1.7
1.2
0.59
0.32
0.33
0.13
0.07
0.19
0.24
0.10
0.12 | 0.52
0.38
0.61
0.46
0.69
1.6
1.1
0.53
0.29
0.30
0.12
0.07
0.18
0.23
0.10
0.12 | 0.53
0.38
0.61
0.48
0.70
1.5
1.1
0.51
0.29
0.30
0.12
0.08
0.18
0.25
0.11
0.12 | 1.9
2.0
3.8
4.2
4.0
3.4
2.5
1.7
1.4
1.3
1.3
1.4
1.6
1.2
0.79
0.44 | 20
23
41
44
50
45
28
19
16
15
14
13
19
12
15
9.1 | 0.42
0.36
0.49
0.43
0.59
0.72
0.76
0.64
0.44
0.49
0.39
0.31
0.74
0.31
0.18
0.22 | 0.61
0.66
0.93
0.88
1.2
1.6
1.5
1.1
1.0
0.95
0.97
0.91
1.1
0.85
0.61
0.50 | | 0-2.25
4-5
6-7
8-9
10-11
1213
14-15
16-17
18-19
20-21
22-23
24-25
26-27
28-29
30-31
32-33
34-35 | 0.68
0.88
1.3
1.2
1.9
2.5
1.9
1.1
0.79
0.73
0.76
0.85
1.1
0.91
0.65
0.41
0.33 | 0.82
0.87
1.4
1.5
1.6
1.2
0.72
0.63
0.67
0.64
0.57
0.63
0.57
0.49
0.48 | 2.6
1.9
3.6
3.8
4.6
4.1
2.3
1.3
0.91
0.96
0.90
0.94
1.2
1.2
0.95
0.71
0.73 | 0.56
0.40
0.68
0.49
0.70
1.6
1.1
0.68
0.34
0.36
0.12
0.07
0.18
0.24
0.09
0.10
0.15 | 0.45
0.36
0.53
0.40
0.59
1.4
0.96
0.50
0.31
0.32
0.12
0.07
0.17
0.24
0.10
0.11
0.15 | 0.55
0.40
0.66
0.48
0.75
1.7
1.2
0.59
0.32
0.33
0.13
0.07
0.19
0.24
0.10
0.12
0.16 | 0.52
0.38
0.61
0.46
0.69
1.6
1.1
0.53
0.29
0.30
0.12
0.07
0.18
0.23
0.10
0.12
0.15 | 0.53
0.38
0.61
0.48
0.70
1.5
1.1
0.51
0.29
0.30
0.12
0.08
0.18
0.25
0.11
0.12
0.14 | 1.9
2.0
3.8
4.2
4.0
3.4
2.5
1.7
1.4
1.3
1.3
1.4
1.6
1.2
0.79
0.44
0.45 |
20
23
41
44
50
45
28
19
16
15
14
13
19
12
15
9.1
9.4 | 0.42
0.36
0.49
0.43
0.59
0.72
0.76
0.64
0.44
0.49
0.39
0.31
0.74
0.31
0.18
0.22
0.31 | 0.61
0.66
0.93
0.88
1.2
1.6
1.5
1.1
1.0
0.95
0.97
0.91
1.1
0.85
0.61
0.50
0.48 | | 0-2.25
4-5
6-7
8-9
10-11
1213
14-15
16-17
18-19
20-21
22-23
24-25
26-27
28-29
30-31
32-33
34-35
36-37 | 0.68
0.88
1.3
1.2
1.9
2.5
1.9
1.1
0.79
0.73
0.76
0.85
1.1
0.91
0.65
0.41
0.33
0.24 | 0.82
0.87
1.4
1.5
1.6
1.2
0.72
0.63
0.67
0.64
0.57
0.63
0.57
0.49
0.48
0.42 | 2.6
1.9
3.6
3.8
4.6
4.1
2.3
1.3
0.91
0.96
0.90
0.94
1.2
1.2
0.95
0.71
0.73
0.58 | 0.56
0.40
0.68
0.49
0.70
1.6
1.1
0.68
0.34
0.36
0.12
0.07
0.18
0.24
0.09
0.10
0.15
0.18 | 0.45
0.36
0.53
0.40
0.59
1.4
0.96
0.50
0.31
0.32
0.12
0.07
0.17
0.24
0.10
0.11
0.15
0.18 | 0.55
0.40
0.66
0.48
0.75
1.7
1.2
0.59
0.32
0.33
0.13
0.07
0.19
0.24
0.10
0.12
0.16
0.20 | 0.52
0.38
0.61
0.46
0.69
1.6
1.1
0.53
0.29
0.30
0.12
0.07
0.18
0.23
0.10
0.12
0.15
0.19 | 0.53
0.38
0.61
0.48
0.70
1.5
1.1
0.51
0.29
0.30
0.12
0.08
0.18
0.25
0.11
0.12
0.14
0.20 | 1.9
2.0
3.8
4.2
4.0
3.4
2.5
1.7
1.4
1.3
1.3
1.4
1.6
1.2
0.79
0.44
0.45
0.29 | 20
23
41
44
50
45
28
19
16
15
14
13
19
12
15
9.1
9.4
6.5 | 0.42
0.36
0.49
0.43
0.59
0.72
0.76
0.64
0.49
0.39
0.31
0.74
0.31
0.18
0.22
0.31
0.26 | 0.61
0.66
0.93
0.88
1.2
1.6
1.5
1.1
1.0
0.95
0.97
0.91
1.1
0.85
0.61
0.50
0.48
0.40 | | 0-2.25
4-5
6-7
8-9
10-11
1213
14-15
16-17
18-19
20-21
22-23
24-25
26-27
28-29
30-31
32-33
34-35 | 0.68
0.88
1.3
1.2
1.9
2.5
1.9
1.1
0.79
0.73
0.76
0.85
1.1
0.91
0.65
0.41
0.33 | 0.82
0.87
1.4
1.5
1.6
1.2
0.72
0.63
0.67
0.64
0.57
0.63
0.57
0.49
0.48 | 2.6
1.9
3.6
3.8
4.6
4.1
2.3
1.3
0.91
0.96
0.90
0.94
1.2
1.2
0.95
0.71
0.73 | 0.56
0.40
0.68
0.49
0.70
1.6
1.1
0.68
0.34
0.36
0.12
0.07
0.18
0.24
0.09
0.10
0.15 | 0.45
0.36
0.53
0.40
0.59
1.4
0.96
0.50
0.31
0.32
0.12
0.07
0.17
0.24
0.10
0.11
0.15 | 0.55
0.40
0.66
0.48
0.75
1.7
1.2
0.59
0.32
0.33
0.13
0.07
0.19
0.24
0.10
0.12
0.16 | 0.52
0.38
0.61
0.46
0.69
1.6
1.1
0.53
0.29
0.30
0.12
0.07
0.18
0.23
0.10
0.12
0.15 | 0.53
0.38
0.61
0.48
0.70
1.5
1.1
0.51
0.29
0.30
0.12
0.08
0.18
0.25
0.11
0.12
0.14 | 1.9
2.0
3.8
4.2
4.0
3.4
2.5
1.7
1.4
1.3
1.3
1.4
1.6
1.2
0.79
0.44
0.45 | 20
23
41
44
50
45
28
19
16
15
14
13
19
12
15
9.1
9.4 | 0.42
0.36
0.49
0.43
0.59
0.72
0.76
0.64
0.44
0.49
0.39
0.31
0.74
0.31
0.18
0.22
0.31 | 0.61
0.66
0.93
0.88
1.2
1.6
1.5
1.1
1.0
0.95
0.97
0.91
1.1
0.85
0.61
0.50
0.48 | **Table 7** Accumulation rates of 25 elements in CNF pocosin (μg cm⁻²y⁻¹). | Depth (cm) | Al | Ti | Mn | Fe | Mg | V | Ni | Cu | Zn | Rb | Sr | Zr | Cd | |------------|-----|-----|-------|-----|-----|-------|-------|-------|-------|-------|------|-------|-------| | 0.5-2.25 | 181 | 27 | 0.42 | 46 | 30 | 0.23 | 0.069 | 0.14 | 0.28 | 0.13 | 0.82 | 0.31 | 0.010 | | 4-5 | 591 | 100 | 1.0 | 213 | 88 | 0.84 | 0.28 | 0.29 | 0.86 | 0.23 | 1.6 | 0.95 | 0.029 | | 6-7 | 324 | 44 | 0.41 | 143 | 78 | 0.38 | 0.20 | 0.20 | 0.28 | 0.12 | 0.58 | 0.46 | 0.018 | | 8-9 | 171 | 28 | 0.42 | 83 | 40 | 0.38 | 0.10 | 0.17 | 0.20 | 0.036 | 0.38 | 0.27 | 0.015 | | 10-11 | 130 | 14 | 0.13 | 45 | 57 | 0.14 | 0.093 | 0.074 | 0.087 | 0.038 | 0.31 | 0.16 | 0.007 | | 12-13 | 70 | 6.3 | 0.035 | 29 | 45 | 0.065 | 0.060 | 0.057 | 0.051 | 0.013 | 0.20 | 0.077 | 0.003 | | 14-15 | 125 | 12 | 0.060 | 34 | 62 | 0.099 | 0.085 | 0.084 | 0.049 | 0.021 | 0.22 | 0.14 | 0.005 | | 16-17 | 332 | 43 | 0.32 | 73 | 126 | 0.36 | 0.19 | 0.22 | 0.072 | 0.039 | 0.50 | 0.46 | 0.015 | | Depth (m) | As | Sn | Sb | La | Ce | Nd | Sm | Pr | Pb | Bi | Th | U | |-----------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | 0.5- | | | | | | | | | | | | | | 2.25 | 2.3 | 0.023 | 0.012 | 0.007 | 0.12 | 0.19 | 0.027 | 0.095 | 0.017 | 0.22 | 0.022 | 0.031 | | 4-5 | 5.0 | 0.11 | 0.046 | 0.019 | 0.33 | 0.61 | 0.077 | 0.28 | 0.049 | 0.85 | 0.090 | 0.099 | | 6-7 | 7.0 | 0.073 | 0.032 | 0.016 | 0.23 | 0.36 | 0.050 | 0.18 | 0.031 | 0.70 | 0.071 | 0.059 | | 8-9 | 9.0 | 0.041 | 0.032 | 0.015 | 0.17 | 0.29 | 0.039 | 0.14 | 0.026 | 0.72 | 0.072 | 0.033 | | 10-11 | 11 | 0.035 | 0.013 | 0.007 | 0.11 | 0.18 | 0.026 | 0.090 | 0.016 | 0.26 | 0.031 | 0.023 | | 12-13 | 13 | 0.020 | 0.006 | 0.003 | 0.048 | 0.084 | 0.012 | 0.041 | 0.007 | 0.099 | 0.012 | 0.012 | | 14-15 | 15 | 0.029 | 0.009 | 0.003 | 0.077 | 0.13 | 0.019 | 0.064 | 0.011 | 0.14 | 0.015 | 0.025 | | 16-17 | 17 | 0.060 | 0.018 | 0.006 | 0.26 | 0.39 | 0.052 | 0.18 | 0.030 | 0.34 | 0.036 | 0.075 | Table 8 Pb and Sr isotopic compositions in CNF pocosin, NC. (S.D. Standard deviation) | Depth
midpoint
(cm) | ²⁰⁶ Pb/ ²⁰⁴ Pb | ²⁰⁶ Pb/ ²⁰⁴ Pb
S.D. | ²⁰⁶ Pb/ ²⁰⁷ Pb | ²⁰⁶ Pb/ ²⁰⁷ Pb
S.D. | ²⁰⁷ Pb/ ²⁰⁴ Pb | ²⁰⁷ Pb/ ²⁰⁴ Pb
S.D. | ²⁰⁸ Pb/ ²⁰⁴ Pb | ²⁰⁸ Pb/ ²⁰⁴ Pb
S.D. | ⁸⁶ Sr/ ⁸⁷ Sr | ⁸⁶ Sr/ ⁸⁷ Sr
S.D. | Time
interval | |---------------------------|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--|------------------------------------|--|------------------| | 1.75 | 18.7961 | 0.0225 | 1.2021 | 0.00072 | 15.6446 | 0.0281 | 38.6272 | 0.0923 | 0.713475 | 0.000005 | 2001-2010 | | 6.5 | 18.7423 | 0.0224 | 1.1990 | 0.00072 | 15.6324 | 0.0280 | 38.4741 | 0.0919 | 0.713168 | 0.000005 | 1976-1981 | | 10.5 | 18.7606 | 0.0225 | 1.1981 | 0.00072 | 15.6584 | 0.0281 | 38.6013 | 0.0922 | 0.712338 | 0.000005 | 1942-1950 | | 11.5 | 18.7606 | 0.0225 | 1.1983 | 0.00072 | 15.6565 | 0.0281 | 38.6363 | 0.0923 | 0.711959 | 0.000005 | 1938-1942 | | 12.5 | 18.7366 | 0.0224 | 1.1987 | 0.00072 | 15.6302 | 0.0280 | 38.5642 | 0.0921 | 0.712036 | 0.000005 | 1930-1938 | | 13.5 | 18.7627 | 0.0225 | 1.1979 | 0.00072 | 15.6624 | 0.0281 | 38.7128 | 0.0925 | 0.712100 | 0.000005 | 1922-1930 | | 14.5 | 18.7347 | 0.0224 | 1.1983 | 0.00072 | 15.6346 | 0.0280 | 38.6252 | 0.0923 | 0.712270 | 0.000004 | 1915-1922 | | 15.5 | 18.7521 | 0.0224 | 1.1977 | 0.00072 | 15.6564 | 0.0281 | 38.7368 | 0.0925 | 0.712461 | 0.000005 | 1908-1915 | | 18.5 | 18.7619 | 0.0225 | 1.1983 | 0.00072 | 15.6575 | 0.0281 | 38.7922 | 0.0927 | 0.713078 | 0.000004 | 1883-1892 | | 24.5 | 18.7369 | 0.0224 | 1.1997 | 0.00072 | 15.6180 | 0.0280 | 38.6523 | 0.0923 | 0.714035 | 0.000005 | | | 28.5 | 18.7838 | 0.0225 | 1.1981 | 0.00072 | 15.6775 | 0.0281 | 38.8320 | 0.0928 | 0.714547 | 0.000006 | | | 30.5 | 18.8233 | 0.0225 | 1.2020 | 0.00072 | 15.6605 | 0.0281 | 38.8153 | 0.0927 | 0.714663 | 0.000004 | | | 34.5 | 18.9577 | 0.0227 | 1.2301 | 0.00074 | 15.6394 | 0.0280 | 39.6224 | 0.0946 | 0.716174 | 0.000005 | | | 40.5 | 19.3915 | 0.0232 | 1.2351 | 0.00074 | 15.7007 | 0.0282 | 42.0645 | 0.1005 | 0.718209 | 0.000005 | | Figure 1 The mineral sources distribution of North Carolina Coastal Plain (Modification from USGS, 2012). ## Population growth in the adjacent counties **Figure 2** The total population growth in the adjacent counties around the study site [Croatan National Forest (CNF)]: Carteret, Craven, Jones, Onslow, Pamilco. ## Population growth rate in the adjacent counties **Figure 3** The total population change/growth rate in the adjacent counties around CNF: Carteret, Craven, Jones, Onslow, Pamilco. **Figure 4** The study site in the pocosins of Croatan National Forest (CNF), North Carolina, USA. Figure 5 Bulk density, water content and Loss on Ignition (LOI) profiles of CNF pocosin. **Figure 6** Excess ²¹⁰Pb and ¹³⁷Cs activities in Core 1, CNF pocosin, NC. **Figure 7** The chronology from CRS ²¹⁰Pb dating model. Figure 8 Major elements concentrations in peat, CNF pocosin, NC. Figure 9 Major elements accumulation rates in CNF pocosin, NC. A.R. = accumulation rate Figure 10 Selected trace elements concentrations in peat that show a significant peak at 8-9 cm, CNF pocosin, NC. Figure 11 Pb isotopic compositions graph versus depth and age index. Figure 12 Sr concentration in ash, Sr enrichment factor and ⁸⁷Sr/⁸⁶Sr isotopic ratio profiles, CNF pocosin, NC. **Figure 13** Pb, Cu, Zn and Cd concentrations in peat from the CNF, NC (right) graph in comparison with data from Florida (left) (Kamenov et al., 2009). **Figure 14** Zn, Pb, Cu and Cd concentrations in ash from the CNF, NC (left) graph in comparison with data from New York City (Alley Pond, Goose Creek) (Cochran et al., 1998). Figure 15 Pb concentration in peat, in ash, Pb E.F. (Enrichment Factor) and Pb accumulation rate in CNF pocosin,
NC. **Figure 16** The ²⁰⁶Pb/²⁰⁷Pb comparisons profile between CNF NC pocosin, Georgia swamp (Jackson et al.,2004) and Chesapeake Bay sediment (Marcantonio et al., 2002). **Figure 17** Pb isotopic composition ²⁰⁸Pb/²⁰⁴Pb vs. ²⁰⁷Pb/²⁰⁶Pb comparison between North Carolina and other locations in the U.S. ## Appendix A ¹³⁷Cs activities in Core 1 and Core 2 from CNF pocosin, NC. $\label{eq:Appendix B} \textbf{Appendix B}$ Table and profiles of \$^{226}\$Ra, \$^{228}\$Ra and \$^{228}\$Th activities in Core 1, CNF pocosin, NC. (S.D. Standard Deviation) | Depth* | ²¹⁰ Pb
Bq kg ⁻¹ | ²¹⁰ Pb
S.D. | 137Cs
Bq kg ⁻¹ | ¹³⁷ Cs
S.D. | ²²⁶ Ra
Bq kg ⁻¹ | ²²⁶ Ra
S.D. | ²²⁸ Ra
Bq kg ⁻¹ | ²²⁸ Ra
S.D. | ²²⁸ Th
Bq kg ⁻¹ | ²²⁸ Th S.D. | |--------|--|---------------------------|------------------------------|---------------------------|--|---------------------------|--|---------------------------|--|------------------------| | 0.875 | 194 | 8.91 | 52.8 | 3.16 | 1.59 | 4.20 | 7.88 | 10.2 | 3.25 | 3.91 | | 1.75 | 303 | 8.58 | 63.7 | 1.47 | 7.85 | 1.90 | 7.16 | 3.18 | 5.97 | 1.22 | | 3.125 | 154 | 7.45 | 25.2 | 0.796 | 8.68 | 1.23 | 4.59 | 2.02 | 6.05 | 0.756 | | 4.5 | 76.4 | 4.42 | 17.8 | 0.640 | 7.47 | 1.05 | 2.38 | 1.79 | 5.28 | 0.660 | | 5.5 | 42.0 | 2.92 | 15.4 | 0.706 | 2.34 | 1.34 | 2.90 | 2.37 | 4.42 | 0.851 | | 6.5 | 60.5 | 3.87 | 16.2 | 0.845 | 4.07 | 0.864 | 3.86 | 2.18 | 2.71 | 0.815 | | 7.5 | 76.5 | 4.57 | 16.7 | 0.898 | 5.17 | 0.961 | 4.88 | 2.44 | 4.28 | 0.891 | | 8.5 | 72.9 | 5.53 | 17.3 | 0.816 | 6.04 | 0.845 | 7.63 | 2.24 | 5.37 | 0.856 | | 9.5 | 48.5 | 3.74 | 12.9 | 0.630 | 8.12 | 0.909 | 4.17 | 2.27 | 3.39 | 0.830 | | 10.5 | 32.2 | 3.18 | 10.8 | 0.702 | 6.22 | 0.918 | 5.58 | 2.44 | 2.92 | 0.940 | | 11.5 | 16.0 | 2.62 | 7.73 | 0.714 | 4.88 | 1.00 | 7.57 | 2.78 | 1.89 | 0.984 | | 12.5 | 23.8 | 2.92 | 7.40 | 0.849 | 3.17 | 1.05 | 5.65 | 2.80 | 1.55 | 1.05 | | 13.5 | 19.6 | 2.79 | 6.15 | 0.766 | 5.40 | 1.07 | 5.78 | 2.87 | 3.05 | 1.11 | | 14.5 | 15.4 | 2.66 | 5.93 | 0.637 | 3.34 | 1.08 | 8.35 | 3.06 | 0.993 | 1.54 | | 15.5 | 9.77 | 2.45 | 5.38 | 0.687 | 4.97 | 1.11 | 7.35 | 3.07 | 2.30 | 1.56 | | 16.5 | 4.12 | 2.24 | 4.40 | 0.648 | 7.79 | 0.883 | 5.35 | 2.33 | 4.07 | 1.24 | | 17.5 | 10.1 | 2.51 | 4.58 | 0.622 | 9.38 | 0.700 | 8.07 | 1.85 | 4.35 | 0.992 | | 18.5 | 4.88 | 2.54 | 3.26 | 0.527 | 8.48 | 1.05 | 7.15 | 2.72 | 4.68 | 1.48 | | 19.5 | 10.5 | 2.57 | 5.38 | 0.630 | 9.48 | 1.01 | 7.22 | 2.61 | 4.39 | 1.37 | | 20.5 | 5.26 | 2.43 | 2.13 | 0.469 | 11.1 | 0.962 | 8.20 | 2.52 | 4.77 | 1.31 | | 21.5 | | | 3.30 | 0.528 | 11.7 | 0.993 | 6.98 | 2.50 | 5.71 | 1.37 | | 22.5 | | | 2.86 | 0.545 | 13.0 | 0.982 | 7.20 | 2.57 | 5.75 | 1.40 | | 23.5 | 2.84 | 0.523 | 15.7 | 1.05 | 9.24 | 2.66 | 6.15 | 1.42 | |------|-------|-------|------|-------|------|------|------|-------| | 24.5 | 2.66 | 0.583 | 17.8 | 1.11 | 6.05 | 2.86 | 5.68 | 1.45 | | 25.5 | 2.90 | 0.528 | 17.8 | 1.12 | 6.05 | 2.82 | 5.68 | 1.50 | | 26.5 | 3.06 | 0.610 | 15.0 | 0.977 | 7.92 | 2.50 | 5.63 | 0.933 | | 27.5 | 2.23 | 0.636 | 19.7 | 1.09 | 6.14 | 2.59 | 4.16 | 0.933 | | 28.5 | 2.78 | 0.636 | 10.8 | 1.03 | 6.77 | 2.65 | 5.47 | 1.09 | | 29.5 | 3.57 | 0.865 | 7.73 | 0.813 | 4.09 | 1.94 | 3.22 | 0.865 | | 30.5 | 3.58 | 0.762 | 14.0 | 1.15 | 8.10 | 2.99 | 6.06 | 1.13 | | 31.5 | 1.61 | 0.661 | 8.22 | 2.12 | 6.24 | 3.71 | 5.96 | 1.37 | | 32.5 | 1.30 | 0.480 | 9.68 | 2.22 | 6.88 | 3.78 | 6.31 | 1.37 | | 33.5 | 2.83 | 0.606 | 10.1 | 1.43 | 6.88 | 3.98 | 6.92 | 1.55 | | 34.5 | 1.39 | 0.462 | 7.74 | 0.929 | 5.63 | 1.86 | 7.38 | 1.27 | | 35.5 | 2.06 | 0.508 | 9.87 | 1.36 | 7.30 | 2.91 | 9.74 | 1.30 | | 36.5 | 1.34 | 0.523 | 14.3 | 1.28 | 9.52 | 3.42 | 9.28 | 1.35 | | 37.5 | 2.40 | 0.562 | 15.1 | 1.25 | 13.2 | 3.42 | 10.8 | 1.39 | | 38.5 | 1.67 | 0.433 | 13.3 | 1.42 | 17.2 | 2.85 | 11.9 | 1.29 | | 39.5 | 2.06 | 0.480 | 14.1 | 1.33 | 11.6 | 2.69 | 14.3 | 1.29 | | 40.5 | 1.44 | 0.427 | 14.1 | 1.24 | 5.91 | 3.13 | 12.8 | 1.36 | | 41.5 | 1.69 | 0.442 | 13.9 | 1.28 | 10.5 | 3.54 | 14.0 | 1.46 | | 42.5 | 0.317 | 0.101 | 12.4 | 1.28 | 13.9 | 2.80 | 14.8 | 1.18 | | | | | | | | | | | ^{*}Midpoint depth Table and profiles of ²²⁶Ra, ²²⁸Ra and ²²⁸Th activities in Core 2, CNF pocosin, NC. (S.D. Standard Deviation) Appendix C | Depth* | ¹³⁷ Cs | ¹³⁷ Cs | ²²⁶ Ra | ²²⁶ Ra | ²²⁸ Ra | ²²⁸ Ra | ²²⁸ Th | ²²⁸ Th | |--------|---------------------|-------------------|---------------------|-------------------|---------------------|-------------------|---------------------|-------------------| | cm | Bq kg ⁻¹ | S.D. | | 0.5 | 43.7 | 1.76 | 3.46 | 2.10 | 3.50 | 4.35 | 2.29 | 1.86 | | 2 | 43.4 | 2.81 | 2.43 | 3.72 | 8.86 | 8.22 | 4.33 | 3.18 | | 3 | 52.3 | 2.76 | 10.6 | 4.05 | 11.6 | 9.21 | 5.32 | 3.61 | | 4.25 | 51.5 | 1.99 | 13.1 | 2.41 | 9.81 | 5.24 | 4.16 | 2.09 | | 5.5 | 42.8 | 1.82 | 2.03 | 2.06 | 1.75 | 5.26 | 5.92 | 2.13 | | 6.5 | 23.6 | 1.08 | 8.13 | 1.38 | 0.168 | 3.76 | 3.95 | 1.70 | | 7.5 | 18.2 | 0.813 | 12.1 | 1.08 | 1.72 | 2.79 | 3.87 | 1.23 | | 8.5 | 11.6 | 0.742 | 6.11 | 0.890 | -0.138 | 2.40 | 2.29 | 1.10 | | 9.5 | 12.5 | 0.706 | 7.30 | 1.08 | 0.713 | 2.67 | 2.16 | 1.17 | | 10.5 | 13.3 | 0.814 | 5.21 | 1.04 | 0.150 | 2.72 | 2.51 | 1.23 | | 11.5 | 9.58 | 0.693 | 5.38 | 1.15 | -0.089 | 3.31 | 1.32 | 1.36 | | 12.5 | 8.44 | 0.732 | 7.61 | 1.07 | 2.79 | 2.98 | 2.65 | 1.23 | | 13.5 | 13.2 | 0.751 | 8.18 | 1.03 | 0.303 | 2.73 | 1.26 | 1.20 | | 14.5 | 17.0 | 0.932 | 8.17 | 1.14 | 1.62 | 3.13 | 2.60 | 1.36 | | 15.5 | 18.6 | 1.25 | 4.52 | 1.00 | 1.86 | 2.74 | 3.75 | 1.19 | | 16.5 | 14.7 | 0.658 | 4.18 | 0.986 | 5.65 | 2.71 | 1.04 | 1.23 | | 17.5 | 12.6 | 0.815 | 8.56 | 1.31 | -0.367 | 2.70 | 1.49 | 1.08 | | 18.5 | 10.1 | 0.766 | 6.61 | 1.30 | -1.293 | 2.92 | 3.02 | 1.16 | | 19.5 | 9.40 | 0.807 | 3.48 | 1.40 | 3.62 | 3.22 | 0.974 | 1.17 | | 20.5 | 10.0 | 0.687 | 10.9 | 1.37 | 1.02 | 2.85 | 1.90 | 1.12 | | 21.5 | 7.32 | 0.702 | 10.3 | 1.37 | 1.03 | 3.08 | 1.91 | 1.18 | | 22.5 | 8.21 | 0.705 | 4.23 | 1.06 | 0.647 | 2.92 | 1.32 | 1.17 | | 23.5 | 7.22 | 0.797 | 7.83 | 1.26 | 2.02 | 2.50 | 3.94 | 1.22 | | 24.5 | 4.62 | 0.602 | 9.65 | 1.25 | 7.05 | 2.44 | 4.58 | 1.10 | | 25.5 | 6.57 | 0.833 | 8.90 | 1.05 | 3.15 | 3.25 | 3.44 | 0.978 | | 26.5 | 4.38 | 0.631 | 9.33 | 1.50 | 5.49 | 2.55 | 4.69 | 1.44 | | 27.5 | 3.67 | 0.448 | 8.66 | 0.981 | 5.22 | 2.99 | 5.35 | 0.917 | | 28.5 | 4.48 | 0.591 | 11.6 | 1.09 | 4.90 | 2.82 | 5.23 | 0.989 | | 29.5 | 3.86 | 0.601 | 11.5 | 1.51 | 10.3 | 2.67 | 6.72 | 1.48 | | 30.5 | 3.86 | 0.698 | 11.2 | 1.63 | 10.7 | 2.89 | 6.64 | 1.59 | | 31.5 | 2.35 | 0.650 | 8.41 | 1.33 | 5.67 | 3.37 | 8.22 | 1.29 | | 32.5 | 2.36 | 0.711 | 9.35 | 2.01 | 4.38 | 3.65 | 7.25 | 2.05 | | 33.5 | 2.52 | 0.750 | 6.63 | 1.38 | 6.85 | 4.20 | 6.15 | 1.29 | | 34.5 | 3.89 | 0.847 | 8.24 | 1.61 | 11.3 | 4.69 | 7.12 | 1.44 | | 35.5 | 2.73 | 0.910 | 4.22 | 2.33 | 8.63 | 4.64 | 14.9 | 2.42 | ^{*}Midpoint depth ## References - Andrejko, M.J., F. Fiene, and A.D. Cohen (1983). Comparison of ashing techniques for determination of the inorganic content of peats. Testing of Peats and Organic Soils, ASTM STP 820. P.M. Jarrett. Ed., American Society for Testing and Materials, pp. 5-20. - Appleby, P.G. and Oldfield, F. (1978). The calculation of ²¹⁰Pb dates assuming a constant rate of supply of unsupported ²¹⁰Pb to the sediment. *Catena* 5, 1–8. - Appleby, P.G., W. Shotyk and A. Frankhauser (1997). Lead-210 age dating of three pear cores in the Jura mountains, Switzerland. Water, Airt and Soil Pollution, 100, 223-231. - Appleby, P.G. (2008). Three decades of dating recent sediments by fallout radionuclides: a review. The Holocene, 18, 83–93 - Bao,K., W.Xia, X.Lu and G. Wang (2010). Recent atmospheric lead deposition recorded in an ombrotrophic peat bog of Great Hinggan Mountains, Northeast China, from ²¹⁰Pb and ¹³⁷Cs dating. Journal of Environmental Radioactivity, 101, 773-779. - Barbante, C., M. Schwikowski, T. Döring, H. W. Gäggeler, U. Schotterer, L. Tobler, K. Van de Velde, C. Ferrari, G. Cozzi, A. Turetta, K. Rosman, M. Bolshov, G. Capodaglio, P. Cescon and C. Boutron (2004). Historical record of European emissions of heavy metals to the atmosphere since the 1650s from alpine snow/ice cores drilled near Monte Rosa. Environmental Science and Technology, 38, 4085-4090. - Benninger, L.K. and J.T. Wells (1993). Sources of sediment to the Neuse River estuary, North Carolina. Marine Chemistry, 43, 137-156. - Brenner M., Schelske C. L. and Keenan L. W. (2001) Historical rates of sediment and nutrient accumulation in marshes of the Upper St. Johns River basin, Florida, USA. J. Paleolimnol. 26, 241–257. - Bollhöfer, A and K. J. R. Rosman (2001). Isotopic source signatures for atmospheric lead: The Northern Hemisphere. Geochimica et Cosmochimica Acta, 65, 1727-1740. - Boutron C. F. and E. W. Wolff (1989). Heavy metal and sulphur emissions to the atmosphere from human activities in Antarctica. Atmospheric Environment, 23, 1669-1675. - Candelone, J.P., S. Hong and C. F. Boutron (1994). An improved method for decontaminating polar snow or ice cores for heavy metal analysis. Analytica Chimica Acta, 299, 9-16. - Cloy, J. M., J. G. Farmer, M. C. Graham, A. B. MacKenzie, and G. T. Cook (2008). Historical records of atmospheric Pb deposition in four Scottish ombrotrophic peat bogs: An isotopic comparison with other records from western Europe and Greenland. Global Biogeochem Cycles, 22, GB2016. - Cochran, J. K., D. J. Hirschberg, J. Wang and C. Dere (1998). Atmospheric Deposition of Metals to Coastal Waters (Long Island Sound, New York U.S.A.): Evidence from Saltmarsh Deposits. Estuarine, Coastal and Shelf Science. 46, 503–522 - Coggins, A. M., S. G. Jennings and R. Ebinghaus (2006). Accumulation rates of the heavymetal lead, mercury and cadmium in ombrotrophic peatlands in the west of Ireland. Atmospheric Environment, 40, 260-278. - Damman, A.W.H.
(1986). Hydrology, development and biogeochemistry of ombrogenous peat bogs with special reference to nutrient relocation in a western Newfoundland bog. Can. J. Bot, 64, 384. - Damman, A.W.H. (1987). Variation in ombrotrophy: Chemical differences among and within ombrotrophic bogs. In: C.D.A. Rubec and R.P. Overend (Editors). Proc. Symp. Wetlands and Peatlands, Int. Peat Soc., Edmonton, pp. 85-93. - Deacon, J. R. and N. E. Driver (1999). Distribution of trace elements in streambed sediment associated with mining activities in the Upper Colorado River Basin, Colorado, USA, 1995–96. Arch. Environ. Contam. Toxicol. 37, 7–18. - Dunlap, C. E., E. Steinnes and A.R. Flegal (1999). A synthesis of lead isotopes in two millennia of European air. Earth and Planetary Science Letters, 167, 81–88. - Farmer, J.G., M.C. Graham, C. Yafa, J.M. Cloy, A.J. Freeman and A.B. MacKenzie (2006). Use of ²⁰⁶Pb/²⁰⁷Pb ratios to investigate the surface integrity of peat cores used to study the recent depositional history and geochemical behaviour of inorganic elements in peat bogs. Global and Planetary Change, 53, 240–248. - Faure, G. (1986). Principles of isotope geology (2nd ed.) New York, NY: John Wiley & Sons, Inc. - Frank, M. 2002. Radiogenic isotopes: tracers of past ocean circulation and erosional input. Reviews of Geophysics, vol 40, 1001, doi:10.1029/2000RG000094. - Fowler, C. and Konopik E. (2007). The History of Fire in the Southern United States. Human Ecology Review, 14, 165-176. - Graney, J. R., A. N. Halliday, G. J. Keeler, J. O Nriacxj, J. A. Robbins and S. A. Norton (1995). Isotopic record of lead pollution in lake sediments from the northeastern United States. Gewhimica et Cosmochimica Acta, 59, 1715-1728. - Huang, X., I. Olmez, N. K Aras and G. E. Gordon (1994). Emissions of trace elements from motor vehicles: potential marker elements and source composition profile. Atmospheric Environment, 28, 1385-1391. - Ingram, R.L. (1987). Peat deposits of North Carolina. Department of natural resources and community development. Division of land resources. Geological survey section. Raleigh, pp.12. - Jackson, B. P., P. V. Winger, P. J. Lasier (2004). Atmospheric lead deposition to Okefenokee Swamp, Georgia, USA. Environmental Pollution. 130, 445-451. - Kaakinen, J. W., R. M. Jorden, M. H. Lawasani and R. E. West (1975). Trace element behavior in coal-fired power plant. Environmental Science & Technology, 9, 862-869. - Kamenov, G.D., M. Brenner and J. L Tucker (2009). Anthropogenic versus natural control on trace element and Sr–Nd–Pb isotope stratigraphy in peat sediments of southeast Florida (USA), 1500 AD to present. Geochimica et Cosmochimica Acta, 73, 3549–3567. - Koinig, K. A., W. Shotyk, A. F. Lotter, C. Ohlendorf and M. Sturm (2003). 9000 years of geochemical evolution of lithogenic major and trace elements in the sediment of an alpine lake the role of climate, vegetation, and land use history. Journal of Paleolimnology, 30: 307–320. - MacKenzie, A.B., J.G. Farmer, C.L. Sugden (1997). Isotopic evidence of the relative retention and mobility of lead and radiocaesium in Scottish ombrotrophic peats. The Science of the Total Environment, 203, 115-127. - Marcantonio, F., A. Zimmerman, Y. Xua and E. Canuel (2002). A Pb isotope record of mid-Atlantic US atmospheric Pb emissions in Chesapeake Bay sediments. Marine Chemistry, 77, 123–132. - Mighall, T.M., S. Timberlake, I. D. L. Foster, E. Krupp, S. Singh (2009). Ancient copper and lead pollution records from a raised bog complex in Central Wales, UK. Journal of Archaeological Science. 36, 1504–1515. - Nie, Y., I.B. Suayah, L.K. Benninger, and M.J. Alperin. (2001). Modeling detailed sedimentary ²¹⁰Pb and fallout ^{239,240}Pu profiles to allow episodic events: An application in Chesapeake Bay. Limnology and Oceanography, 46, 1425-1437. - Novak, M., Y. Erel, L. Zemanova, S. H. Bottrell and M. Adamova (2008). A comparison of lead pollution record in Sphagnum peat with known historical Pb emission rates in the British Isles and the Czech Republic. Atmospheric Environment, 42, 8997–9006. - Oldfield, F., P. G. Appleby, R. S. Cambray, J. D. Eakins, K. E. Barber, R. W.Battarbee, G. R. Pearson, J. M. Williams (1979). ²¹⁰Pb, ¹³⁷Cs and ²³⁹Pu Profiles in Ombrotrophic. Oikos, 33, 40-45. - Oldflied, F., N. Richardson and P.G. Appleby (1995). Radiometric dating (²¹⁰Pb, ¹³⁷Cs, ²⁴¹Am) of recent ombrotrophic peat accumulation and evidence for changes in mass balance The Holocene, 5, 141-148. - Olesik, J. W. (2000). Inductively coupled plasma mass spectrometry. In C. M. Barshick, D.C. Duckworth and D. H. Smith. (Ed.), Inorganic mass spectrometry (67-158). New York, NY: Marcel Dekker, Inc. - Olid, C., J. Garcia-Orellana, A. Martínez-Cortizas, P. Masqué, E. Peiteado-Varela, Joan-Albert and Sanchez-Cabeza (2010). Multiple site study of recent atmospheric metal (Pb, Zn and Cu) deposition in the NW Iberian Peninsula using peat cores. Science of the Total Environment, 408, 5540–5549. - Piatak, N. M., R. R. Seal, J. M. Hammarstrom (2004). Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and preciousmetal smelting at abandoned mine sites. Applied Geochemistry. 19, 1039-1064. - Penfound, W.T. (1952). Southern swamps and marshes. The Botanical Review, 18, 413-446. - Phillips, J.D. (1997). A short history of a flat place: Three centuries of geomorphic change in the Croatan National Forest. Annals of the Association of American Geolgraphers, 87(2), 197-216. - Querol, X., J. L. Fernhndez-Turiel and A. Lbpez-Soler (1995). Trace elements in coal and their behavior during combustion in a large power station. Fuel, 74, 331-343. - Raven, K.P. and R.H. Loeppert (1997). Heavy metals in the environment: Trace element composition of fertilizers and soil amendments. J. Environ. Qual. 26, 551-557. - Richardson, C. J., M. L. Matthews, and S. A. Anderson (1981). Pocosin wetlands. Hutchinson Ross Publishing Company, pp. 43-45. - Richardson, C. J. (1983). Pocosins: Vanishing wastelands or valuable wetlands? BioScience, 33, 626-633. - Richardson, C. J. (2003). Pocosins: Hydrologically isolated or integrated wetlands on The landscape? Wetlands, 23, 563–576. - Robbins, J.A. (1978). Geochemical and geophysical applications of radioactive lead. In Nriagu, J.O., editor, Biogeochemistry of lead in the environment. Elsevier Scientific, 285–393. - Robbins J.A. and L.R. Herche (1993). III. Raiochemical Limnology: Models and uncertainty in ²¹⁰Pb dating of sediments. Verein. Limnol, 25, 217-222. - Rothwell, J. J., M. G. Evans, J. B. Lindsay and T. E.H. Allott, (2007). Scale-dependent spatial variability in peatland lead pollution in the southern Pennines, UK. Environmental Pollution, 145, 111-120. - Rudnick, R.L. and S. Gao (2004). Composition of the continental crust. Treadise in Geochemistry. 3, 1-64. - Sholyk, W. (1995). Natural and anthropogenic enrichments of As, Cu, Pb, Sb, and Zn in ombrotrophic versus minerotrophic peat bog profiles, Jura Mountains, Switzerland. Water Air and Soil Pollution, 90, 375-405. - Shotyk, W., D. Weiss, P. G. Appleby, A. K. Cheburkin, R. Frei, M. Gloor, J. D. Kramers, S. Reese and W. O. Van Der Knaap (1998). History of atmospheric lead deposition since 12,370 ¹⁴C yr BP from a peat bog, Jura mountains, Switzerland. Science, 281, 1635-1640. - Shotyk, W., M. Krachler, A. Martinez-Cortizas, A. K. Cheburkin, H. Emons (2002a). A peat bog record of natural, pre-anthropogenic enrichments of trace elements in atmospheric aerosols since 12,370 ¹⁴C yr BP, and their variation with Holocene climate change. Earth and Planetary Science Letters. 199, 21-37. - Shotyk, W., D. Weiss, M. Heisterkamp, A. K. Cheburkin, P. G. Appleby, and F. C. Adams (2002b). New Peat Bog Record of Atmospheric Lead Pollution in Switzerland: Pb Concentrations, Enrichment Factors, Isotopic Composition, and Organolead Species. Environ. Sci. Technol. 36, 3893-3900. - Stuckey, J. L. (1965). North Carolina: Its geology and mineral resources. Raleigh, NC: Department of Conservation and Development. - The Southeast Regional Climate Center. Historical Climate for North Carolina. Retrieved from http://www.sercc.com/climateinfo/historical/historical_nc.html. - Toibassen, R.T. (1982). Selected trace element analyses of whole rock and separated phosphate grains from the Miocene Pungo River formation, North Carolina. (M.S. dissertation). University of North Carolina at Chapel Hill. Thesis Geol, 1982 T629. - Tooker, W. W. (1899). The adopted Algonquin term "Poquosin." Am. Anthropol. Jan.:162-170. - United Nations Scientific Committee on the Effect of Atomic Radiation (UNSCEAR), 2000. Sources and effects of ionizing radiation. UNSCEAR 2000 Report to General Assembly with Scientific Annexes, New York, United Nations. - USDA, United States Department of Agriculture Forest Service (2003), Croatan National Forest Land And Resource Management Plan. Management Bulletin Number R8-MB-108A. - US EPA, United States Environment Protection Appartment (1973). EPA Requires Phase-Out of Lead in All Grades of Gasoline. Retrieved from http://www.epa.gov/aboutepa/history/topics/lead/03.html - USGS, United States Geological Survey (2012). 2008 minerals yearbook: North Carolina. The mineral industry of North Carolina. - Vleeschouwer F. D., L. Gérard, C. Goormaghtigh, N. Mattielli, G. L. Roux and N. Fagel (2007). Atmospheric lead and heavy metal pollution records from a Belgian peat bog spanning the last two millenia: Human impact on a regional to global scale. Science of the Total Environment, 377, 282–295. - Yafa, C., J. G. Farmer (2006). A comparative study of acid-extractable and total digestion methods for the determination of inorganic elements in peat material by inductively coupled plasma-optical emission spectrometry. Analytica Chimica Acta, 557, 296–303. - Weiss D., Shotyk W., Appleby P. G., Kramers J. D. and Cheburkin A. K. (1999). Atmospheric Pb deposition since the Industrial Revolution recorded by five Swiss peat
profiles: enrichment factors, fluxes, isotopic composition, and sources. Environ. Sci. Technol. 33, 1340–1352.