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ABSTRACT 

JINGYUAN SUN: Historical Atmospheric Lead And Other Trace Elements 

Deposition Records In An Ombrotrophic Peat Pocosin: A New Record From North 

Carolina 

(Under the direction of Larry Benninger) 

 

  Human activities introduce pollutant elements into the atmosphere, from which 

they enter sedimentary environments via precipitation and dry deposition. In this study, 

pocosin peat in eastern North Carolina was used to track the sources of atmospherically 

deposited trace elements. Peat chronology was based on 
210

Pb and fallout 
137

Cs. 

Concentrations, accumulation rates and enrichment factors for twenty-five elements, 

along with Sr and Pb isotopic compositions, were obtained. The results show that  local 

leaded gasoline usage dominated the lead source. However, other anthropogenic sources 

such as coal combustion, mining, and agricultural development may have also introduced 

Pb and other trace elements through windblown dust. Sr isotopes require sources more 

radiogenic than seawater Sr; twentieth century Pb isotopes are consistent with 

predominant input from gasoline lead and coal combustion. The pocosin record of lead is 

similar to published records from the eastern United States and Western Europe, but 

contrasts with those from Asia.  
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Introduction 

In the last several centuries, increasing industrial activity has introduced pollutant 

trace elements into the atmosphere on a global scale. These trace elements enter 

sedimentary environments via precipitation and dry deposition. The record of trace 

element deposition from the atmosphere can be tracked from ice cores (Candelone et al., 

1994; Barbante et al., 2004), peat deposits (Shotyk, 1995; Coggins et al., 2006; Cloy et al., 

2008) and lake sediments (Koinig et al., 2003). Due to the isolation of the peat deposition 

from nearby groundwater and surface water in most ombrotrophic bogs (Damman, 1986, 

1987), the only water input to ombrotrophic peat bogs is precipitation; therefore the 

inorganic component of ombrotrophic peats is introduced from the atmosphere (Shotyk, 

1995). 

Peats are formed when decomposition rates are lower than rates of dead vegetation 

accumulation, and are commonly found in such places as swamps and marshes. A swamp 

is a wooded area where the soil is usually saturated or covered by surface water for a few 

months of the growing season; peaty swamps include bays, bogs and pocosins (Penfound, 

1952). The word “pocosin” refers to freshwater, ever-green shrub bogs, and comes from 

an Algonquin Indian word which means “swamp-on-a-hill” (Tooker, 1899; Richardson, 

1983). Because the elevation of pocosins is higher than that of the surrounding lakes and 

no divided drainage and streams are in the area, water from precipitation is expected to 

flow radially away from the pocosin (Phillips, 1997; Richardson, 2003).   
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In the last 20 years, long and short-term trace element records in European peatland 

studies suggest that estimated trace element concentrations, flux and accumulation rates 

not only relate to the historical anthropogenic major events in different times such as the 

Industrial Revolution, but also act as indicators of local industrial activities on shorter 

time scales. Such activities involve, for example, leaded gasoline usage and industrial 

mining activities (Shotyk et al., 1998; Vleeschouwer et al., 2007; Cloy et al., 2008). 

Therefore, similar peatland records from other areas such as North America and Asia 

may show quite different trace elements deposition profiles compared with the European 

studies within the same time periods (Kamenov et al., 2009; Bao et al., 2010).  

In North Carolina, the regional anthropogenic activities related to trace elements 

emissions include leaded gasoline usage, mining, oil/gas exploration, coal combustion, 

forest fires, and agriculture over the last 100 years. Leaded gasoline was introduced in 

1923 in the United States (Kamenov et al., 2009), while its phasing out began in 1973 

(US EPA). As for the other activities, North Carolina has its own characteristics due to 

local geologic resources, regional population change and industrial development. The 

coastal plain of North Carolina (the focus of this study) is dominated by non-metal 

mineral mines which have extracted peat (for soil/fertilizer), sand and gravel, phosphate 

and crushed stone (limestone, granite, etc.) (Stuckey, 1965). However, coal mining (for 

1918-1930, the greatest production was in the Cumnock and Carolina mines), heavy 

metal mining and gas and oil exploration (for 1925-1963, a total of 43 boreholes were 

drilled in the outer coastal plain) appeared for a short period but have never been 

important in the area (Stuckey, 1965; USGS). Furthermore, natural and anthropogenic 
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forest fires have been significant around the coastal forest for more than a century 

(Fowler and Konopik, 2007).  

Major events in North Carolina are summarized in Table 1. Sand and gravel, crushed 

stone, and phosphate, as well as widespread agriculture, have all occurred along the east 

coast of North Carolina. Their byproducts are the major potential sources of mineral dust 

deposition in coastal pocosins. The North Carolina Geological Survey (NCGS) reports 

that the primary source of crushed stone in the coastal plain is limestone. In the same area, 

phosphate mines have been developed for about 60 years (USGS) (Figure 1). The 

historical populations and growth rates for the five major relevant counties are also 

shown in Figure 2 and 3. 

Trace elements have been used as markers for different anthropogenic activities 

(Huang et al., 1994). Many studies have utilized lead (Pb) concentration profiles and 

accumulation rates to track historical local industrial activities such as leaded gasoline 

usage (Shotyk at el., 1998; Dunlap et al., 1999; Vleeschouwer et al., 2007). The spatial 

variability of these data imply regional lead pollution conditions (Rothwell et al., 2007; 

Novak et al., 2008). Also, lead isotope composition (
206

Pb/
207

Pb) has been compared 

among several areas as a signal to track other local industrial histories such as the sources 

of ore at different times (Shotyk at el., 1998; Bollhӧfer and Rosman, 2001; Cloy et al., 

2008; Kamenov et al., 2009).  

Besides Pb, other trace elements (Cu, Zn, Cd, Sn, Sb, Bi, V, Ni) are also discussed in 

this study to develop a better understanding of the local history of anthropogenic 

activities. Numerous studies from the other regions have used trace elements as an 
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indicator of atmospheric pollutant deposition in peatlands (Cochran et al., 1998; Mighall 

et al., 2009;Kamenov et al., 2009; Olid et al., 2010). Major elements such as Al, Fe, Mg, 

Mn, and Ti and minor trace elements of low geochemical mobility (REE, Th) were also 

analyzed. These elements can trace inputs of dust from silicate and oxide sources, while 

the elements of low solubility in normal conditions are concentrated in the ash fraction of 

the peat (Weiss et al., 2009; Shotyk et al., 2002; Kamenov et al., 2009). Therefore, ash 

content is an important factor  in interpreting the concentrations of some elements in peat. 

“Ash” refers to the inorganic materials of peat, and is made up of minerals and ionically 

bound inorganics (Andrejko et al., 1983). Elements deposit in peat in the form of ash via 

precipitation and dry depostion. Typical ash content for ombrotrophic peat is below 5%, 

whereas minerotrophic (river-fed) peat usually has ash contents well above 5% (Weiss et 

al., 1999). 

To study the last 100-200 years of peat deposition, 
210

Pb is commonly used to 

establish peat chronology (Appleby et al.,1997; Farmer et al., 2006; Novak et al., 2008; 

Cloy et al., 2008; Bao et al., 2010). Nuclear fallout 
137

Cs has also been used with 
210

Pb to 

help establish a more secure chronology (Oldfield et al., 1979; Oldfield et al., 1995; 

Appleby et al., 1997). 
210

Pb and 
137

Cs inventories in these studies reflect the regional 

210
Pb and 

137
Cs deposition (Oldfield et al., 1979). 

This study adds a new record to North America peat studies with cores obtained from 

a pocosin in the Croatan National Forest (CNF), located in the coastal plain of North 

Carolina. Using peat chronology, an historical record of the deposition of major and trace 

elements is produced. Isotopic compositions of Pb and Sr are used to investigate aerosol 

sources to the pocosin. Comparison with previous studies suggests that during the 20
th
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century, the atmospheric source of Pb was likely dominated by aerosols produced from 

leaded gasoline. One goal of the study is to test whether North Carolina pocosin peats are 

well-suited for distinguishing the atmospheric sources of trace elements. The other goal is 

to test whether deposition in North Carolina during this time period is broadly similar to 

that observed in elsewhere in North America and in Western Europe. Different histories 

of usage of leaded fuels apply in Asia, and consequently different historical patterns in 

lead deposition may be expected. Differences in Pb deposition among North American 

and Western European sites should reflect differences in local and regional industrial 

activities. 

  



 

 

Site description 

On 12 March 2011, two peat cores were taken from an ombrotrophic pocosin in 

Croatan National Forest (CNF) (34°53’14”N, 077°06’30”W) (Figure 4). Near this study 

site, minor gravel roads and ditches have been built during the development of the forest 

area. The surface elevation of the peat horizon ranges from 9 to 12 meters above mean 

sea level, and the peat thickness ranges from 0 to 2.5 meters (Ingram, 1987). The pocosin 

is generally dominated by shrubs and some pine trees, and most common species of 

shrubs in CNF are Arundinarea gigantea, Persea borbonia, Cyrilla racemiflora, and Ilex 

coriacea (Richardson, 2003). The average annual precipitation at the closest town, 

Maysville (about 15 km west), is 142 cm. The annual average temperature ranges from -

0.5 to 31°C (SERCC). Part of the CNF area is cut by ditches along Forest Service roads 

(Figure 4).   

  



 

 

Methods 

Field sampling 

A 1.5 m long soil probe was used to test the thickness of the peat deposit in the study 

area. The sampling site was chosen when the testing probe easily reached deeper than one 

meter. Two peat cores were collected using stainless steel core tubes with inner diameters 

of 9.5 and 9.8 cm and a length of 50 cm. The two cores were located about 1.5 meters 

apart at the field site; Core 2 was at higher elevation by about 10-15 cm. Both cores were 

sealed immediately with rubber stoppers at both top and bottom. They were returned to 

Chapel Hill within six hours of collection and stored in a walk-in refrigerator (4°C) until 

subsampling.   

Sample preparation 

The loose leaves on the top of the cores were removed and bagged before sub-

sampling the peat. The surface of Core 1 showed appreciable relief (about 3.5 cm). To 

create a flat surface the first subsample was therefore taken to level the core surface and 

assigned an average thickness of 1.75 cm. The second and third subsamples of Core 1 

were about 1.4 cm thick. Core 1 was then sampled in 1-cm increments. The surface of 

Core 2 was relatively flat; subsamples 1 ‒ 4 were 1.25 cm thick, and the remainder of the 

core was sampled in 1-cm increments. To avoid effects of mixing along the inner surface 

of core tube, the outer edges of each sample were trimmed off beginning at 18 cm depth 
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in Core 1 and 3.75cm depth in Core 2 (the beginning of trimming depth was based on the 

dryness and shape of the edge of each section). Leaves and roots were commonly found 

in the layers closest to the surface, and thicker roots were found at intervals through the 

entire cores. Peat depths containing roots were noted during sampling, and the larger 

roots were discarded. All samples were placed in pre-weighed polypropylene jars which 

were weighed and stored in a laboratory freezer (-12°C) after sampling in preparation for 

freeze drying. All the peat samples were freeze-dried at -40˚C or below for 72 hours.  

The water content of the peat was determined by re-weighing samples after freeze-

drying. Bulk density (g cm
-3

) was calculated from total dry mass of each sample divided 

by each increment volume. Increment volume was calculated from increment thickness 

and radius, after correcting the radius for any trimming (in Core 1, 1 mm for depth 18-22 

cm, and 2 mm for depth > 22 cm). Ash content was determined by roasting dry peat 

samples in air. The furnace temperature was increased incrementally from 200 C to 500 

C, and held over night at 500˚C. Ash weights were recorded and calculated as loss on 

ignition, which is interpreted as organic matter content.  

137
Cs and 

210
Pb dating 

137
Cs and 

210
Pb activities were determined following the procedures described in 

Benninger and Wells (1993). All the dried samples were ground in a porcelain mortar and 

packed into polypropylene jars for gamma counting. Most samples (70 of 77) were 

counted in 1-oz polypropylene jars, while the rest were counted in 0.5-oz jars. The sealed 

samples were stored for more than two weeks before gamma counting on one of two 

intrinsic Ge detectors in the Department of Marine Sciences at UNC-CH. Detector 
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efficiencies were calibrated with standards prepared from by mixing certified reference 

materials (uraninite from EPA, monazite from New Brunswick Lab, 
137

Cs from 

Amersham International, now GE Healthcare) into purified cellulose fibers. The peaks in 

gamma spectra were manually integrated above baselines and corrected for backgrounds 

averaged at bi-weekly intervals. 
226

Ra was determined by its daughters 
214

Pb at 295.1 keV 

and 352 keV and 
214

Bi at 609.3 keV and 
226

Ra presents in situ supported 
210

Pb activity; 

228
Ra was determined by its daughters 

228
Ac at 338.4 keV and 911.2 keV; 

228
Th was 

determined by 
212

Pb at 238.6 keV and 
208

Tl at 583 keV. 
137

Cs was measured by its 

emission at 661.7 keV. Excess 
210

Pb and 
137

Cs were decay-corrected to the date of 

collection using half-lives of 22.3 years and 30.1 years, respectively. The 

excess/unsupported 
210

Pb is obtained from total 
210

Pb (
210

Po activity) minus supported 

210
Pb (

226
Ra activity). 

Total 
210

Pb activity was determined via its granddaughter
  210

Po on alpha 

spectrometers in the Department of Geological Sciences. The methods of laboratory 

preparation and digestion were similar to the work of Benninger and Wells (1993). Five 

to 10 gr samples of dry peat were spiked with 
209

Po, and went through complete acid 

digestion in 10 mL concentrated HNO3, 2 mL HF, and 4 mL 1:1 sulfuric acid/water acid 

on a hotplate for 4 days on average. An additional 5 mL concentrated HNO3 and 20 drops 

of 30% H2O2 were added 1-3 times during digestion to promote complete dissolution. 

The solution was evaporated to dryness and dissolved by heating into  50 mL 0.2N HNO3. 

Any residual particulate matter was removed by filtering through Whatman 44 paper. 

Iron carrier was added to the filtrate and polonium isotopes were scavenged by 
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precipitation of hydroxides at pH 7-8. After dissolution of the precipitate into dilute HCl, 

Po was deposited onto silver disks for alpha spectrometry.  

 The CRS model for 
210

Pb dating was applied in this study and 
137

Cs was used as a 

single chronology marker within the core (Appleby and Oldfield, 1978; Oldfield et al., 

1979; Robbins and Herche, 1993; Cochran et al., 1998). The constant rate supply of 
210

Pb 

(CRS) model is most suitable to produce this chronology; the underlying assumptions are 

that unsupported 
210

Pb flux is constant and that no obvious migration of 
210

Pb is observed 

in the sediment (Appleby and Oldfield, 1978; Robbins, 1978). Using CRS (Robbins and 

Herche, 1993), the age t (y) is obtained by: 

                                    t = − (1/λ) ln [1− Σ 
210

Pb (z)/Σ
210

Pb(∞)]                                         (1) 

where Σ
210

Pb(∞) is the total excess 
210

Pb inventory (Bq m
-2

), Σ 
210

Pb (z) is the 

accumulative excess 
210

Pb activity (Bq m
-2

) at the depth z (cm). λ is decay constant of 

210
Pb (λ = ln(2)/22.3 yr = 0.03108 y

-1
) and t is age (y). 

210
Pb flux is obtained by: 

                                                                   210
Pb flux = Σ

210
Pb(∞) × λ                                                     (2) 

Major and trace element concentrations 

  For ICP-MS (inductively coupled plasma mass spectrometry) measurement of 

elemental concentrations, 0.25 g ash samples were digested in trace metal grade acids to 

extract trace metals. The HNO3-HF digestion method was applied after modification from 

Yafa and Farmer, (2006). Nine mL concentrated HNO3 and 2mL diluted (HF:H2O = 1:1) 

HF were added to ash samples in covered PFA beakers. One hundred μg Tl was also 

added into the solutions before digestion as an internal standard for measuring the loss of 
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elements during the whole operation. The samples were heated at least overnight at 

150˚C. After the solids were completely dissolved, the samples were evaporated down to 

1 mL or less. The residue was dissolved into 20 mL 2% HNO3 by heating. All the 

solutions were filtered (Whatman 542) and diluted into 50 mL polypropylene flasks. 

Solutions were filtered (0.2 μm polypropylene) and further diluted, as necessary, before 

concentrations were determined by ICP-MS (Varian 820-MS, Department of Chemistry). 

Indium was used as the instrumental internal standard. A total of 25 elements were 

assessed including five major elements (Al, Ti, Mn, Fe, Mg) and 20 trace elements (Cu, 

Zn, Sr , Cd, As, Sn, Sb, V, Pb, Bi, Ni, Zr, Rb, La, Ce, Pr, Nd, Sm, Th and U). Due to 

potential spectral overlap from 
40

Ar
35

Cl
+
, the As measurements may not be accurate 

(Olesik, 2000). The major and trace element test results were corrected by internal 

standard Tl and background samples, and calculated as both total peat and ash 

concentrations. All the elements concentrations in total peat were used to examine the 

correlations among the elements and between the elements with ash content in the 

pocosin by using SAS 9.3 program.  

Pb and Sr isotopes 

The isotopic composition of Sr (
87

Sr, 
86

Sr) and Pb (
204

Pb, 
206

Pb, 
207

Pb and 
208

Pb) were 

determined by thermal ionization mass spectrometry (TIMS) in the Department of 

Geological Sciences. Peat ash (20-50 mg) was digested in 1 mL concentrated HF and 1 

mL 8M HCI on a hotplate at 150 ˚C for two hours, then evaporated to dryness. The 

residue was dissolved in 3mL 8.8M HNO3 and 3 mL 8M HCI  on a hotplate overnight in 

15 mL PFA bottles. The samples were evaporated again to dryness, and the residue was 
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dissolved in 2 mL 0.5M HCI. Solutions were separated into two parts for Sr and Pb 

isotopes.  

For Sr chemistry, the separated solution was dried and dissolved in 1 mL 3.5N HNO3, 

then centrifuged. Eichrom SR-B100-S Sr Resin (about 200 µL) was used to collect Sr 

from the supernate. Before loading the sample, the resin was washed fully two times with 

MQ water (water that is purified through ion exchange) and 3.5N HNO3. After loading 

the samples, they were rinsed multiple times with 3.5N HNO3 with a total volume of 1.84 

mL. Each rinse was started by adding three 30 uL drops, followed by performing five 

consecutive additions of one 350 µL aliquot each. The Sr was collected in beakers by 

rinsing two times with 500 µL MQ water.  

The separated HCl solutions for Pb isotopes were dried and re-dissolved in 525 µl 

1.1N HBr. Pb isotopes were collected in about 200 µL Eichrom anion resin AG1×8. 

Before loading the samples, the resin columns were rinsed two times with 500 µl 6N 

HCL, 500 µl MQ water and equilibrated by 250 µl HBr. The sample were rinsed by 

single drop 1.1N HBr (five times), 500 µl HBr and 250 µl 2N HCl (one time bulk rinse), 

and Pb was eluted with 500 µl 6N HCl. The process was repeated for collecting 

maximum Pb in samples. One drop of H3PO4 was added to both the final Sr and Pb 

solutions, which were then dried completely. The residue of Sr was re-dissolved in 2 µl 

2M HCl and 2 µl dilute solution of TaCl, and the residue of Pb was re-dissolved in 3 µl 

silica gel for loading on filaments for mass spectrometry.   

  



 

 

Results  

Bulk properties 

 Bulk density increases rapidly with depth within the top 3 cm of the peat and stays 

around an average of 292 kg m
-3

 below 3 cm (Figure 5). Bulk density below the depth 17 

cm is higher and more consistent compared to the values at shallower depths. The ash 

content of Core 1 is plotted as Loss on Ignition (Figure 5), and shows that within 10-30 

cm depth, ash content is 5% on average. However, below 30 cm, ash material of Core 1 

significantly increases and exceeds 20% of the total peat. The average water content is 

70.7% throughout the whole core, which is lower than the observation in Ingram’s (1987) 

study with an 80% average in the top 1.2 m.  

Radiochemistry and peat chronology 

The average supported 
210

Pb concentration is 9.8 ± 1.2 Bq kg
-1

, and the total excess 

210
Pb inventory is 2828 ± 51 Bq m

-2
 in the CNF pocosin. In the unsupported 

210
Pb profile, 

the trend decreases from the surface to the depth of 12 cm in Core 1 (Figure 6). Two 

major peaks are shown in the main profile: one has the maximum activity (303 ± 9 Bq kg
-

1
) at 2.25 cm depth, and the other one is 76.5 ± 4.6 Bq kg

-1
 at 8 cm. Unsupported 

210
Pb is 

taken as finite when its activity exceeds zero by two standard deviations. Below the main 

profile, finite excess 
210

Pb are observed at the depth of 20 cm and 30 cm. The 
137

Cs 

activity profile also displays two peaks at the same two depths as the 
210

Pb maxima 
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(Figure 6). Finite 
137

Cs exists through the whole core (i.e., 
137

Cs exceeds zero by two 

standard deviations in all samples). The maximum value of 
137

Cs activity is near the top 

of the core (2.25 cm depth) with 63.7 ± 1.5 Bq kg
-1

 and the other peak of 16.7 ± 0.8 Bq 

kg
-1

 is at 9 cm in Core 1. Complete radiochemistry results for cores 1 and 2 are presented 

in tabular form in the Appendices. 

Based on the CRS model calculation, Core 1 provided about 120 years of peat 

depositional records between the surface and the depth of 20 cm (Figure 7). The peak of 

137
Cs activities at depth interval 8 – 9 cm corresponds with the year interval 1959 – 1969 

(Figure 6, 7). Peat Accumulation Rate (PAR) varies from 0.01 – 0.09 g cm
-2

y
-1

. The 

atmospheric 
210

Pb flux in CNF pocosin was 88 Bq m
-2

y
-1

 (Table 2). Samples from two 

salt marshes near the study site on the coastal plain, yielded inventories of excess 
210

Pb of 

4220 Bq m
-2

 (flux 131 Bq m
-2

y
-1

) and 4560 Bq m
-2

 (142 Bq m
-2

y
-1

) (Benninger and Wells, 

1993). From Graustein and Turekian (1986), inventories of excess 
210

Pb in undisturbed 

soil profiles were 4483 Bq m
-2

 (flux 139 Bq m
-2

y
-1

) in Raleigh, North Carolina and 3200-

6333 Bq m
-2

 (flux 99-197 Bq m
-2

y
-1

) in the Eastern U.S. Similar atmospheric deposition 

data from the peat bogs in the Western Europe are also shown in Table 2. The peat 

accumulation rate in this study is similar to the others in Table 2, but the 
210

Pb inventory 

and therefore 
210

Pb flux are lower than elsewhere in the Eastern U.S., except for some of  

the Florida marsh cores in Brenner et al. (2001). Both 
210

Pb flux and inventory for these 

sites are lower than all the other records from North Carolina, and most of the other sites 

in Table 2. Meanwhile, the 
137

Cs inventory of this study (865 Bq m
-2

) is much lower than 

the average 
137

Cs inventory (1947 Bq m
-2 

after decay correction to March 12
th

, 2011) in 

the Eastern and Mid-western U.S. (Graustein and Turkian, 1986).
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Major elements abundance 

Among the major elements (Al, Ti, Fe, Mg), Al and Ti have higher concentrations in 

peat above 10 cm and below 30 cm depth, which match the higher ash content deposition 

within the same depths through the core (Figure 8). The correlation table also shows 

strong correlations between Al, Ti and ash content (Table 3). Fe concentrations above 10 

cm depth also increase with higher ash content but show no significant increasing trend 

below the depth of 30 cm. Mg concentration does not correlate with ash content (Table 3), 

and slowly increases from the bottom to the top of the core (Figure 8). The profiles of the 

major element Al, Ti and Fe accumulation rates have similar trends in the top 20 cm of 

the peat core (Figure 9), and it shows that between 1930 – 1984, Al, Ti, Fe accumulation 

rates slowly increased.  

Trace elements abundance  

The trace element concentrations in both peat and ash were obtained (Table 4 and 5). 

All trace elements except Zn and Sr have significant peaks in ash concentrations at the 

depth interval 12-13 cm (time interval 1930 – 1938). Excess 
210

Pb is finite at 29-30 cm 

depth, and the concentrations of many of the trace elements in ash have local maxima 

near this depth. 

All the elements can be separated into two groups: the elements Al, Ti, Mn, V, Cu, Zr, 

Cd, Sn, La, Ce, Pr, Nd, Sm, Th and U that correlate strongly (correlation coefficient is 

greater than 0.6) with ash content, and the elements Mg, Fe, Ni, Zn, Rb, As, Sb, Sr, Pb 

and Bi that are not strongly correlated with ash content (Table 3). Although the As 

measurement on ICP-MS could be inaccurate, As concentrations correlate strongly with 
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concentrations of other trace elements (Ni, Sb, Pb and Bi). In general, all the trace 

element concentrations in total peat increase when the ash content is high (Table 4). 

Several trace elements such as Pb, Sb, Bi and Ni have the maximum concentrations at 

depths of 8-9 cm (Figure 10), where the ash content is only moderately high. These 

elements are also highly correlated with each other and quite highly correlated with Fe 

(Table 3).  

The trace elements Zr, La, Ce, Pr, Nd, Sm and Th have very low geochemical 

mobility and relatively low anthropogenic use compared with other elements such as Al, 

Fe, Cu, Zn, Pb, etc. Those elements all have high correlation with ash content as well as 

some major elements (Al, Ti, Mn) (Table 3). At the bottom of the core, REE 

concentrations are much higher than the average values.  

Accumulation rate and enrichment factor of trace elements 

The accumulation rates of all the trace elements were computed by applying the CRS 

210
Pb dating model for the secure chronology in the last 100 years. The enrichment factor 

(E.F.) of all the trace elements was also produced and calculated by Ti and its crustal 

background (Shotyk et al., 2002): 

 E.F.= (Conc.X/Conc.Ti)sample/(Conc. X/Conc. Ti)UCC background  

where X is a trace element; Conc. is mass-based concentration; and UCC is upper 

continental crust. UCC concentrations for selected trace elements X and Ti are the 

recommended values from Rudnick and Gao (2004). Results of this calculation show that 

most of the elements E.F. values are lower than 1.0; exceptions are Mg, Pb, Cd and Bi 

(Table 6). All the elements except Mn display trends with significant increases in E.F. 
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towards the core top, and they show three obvious peaks in their E.F. profiles at the depth 

intervals 12-13 cm, 28-29 cm and 38-39 cm, although three elements are significantly 

enriched in the samples Pb×4, Cd×20 and Bi×50 at their maximum values. 

Pb and Sr isotopes 

Pb and Sr isotopic compositions are shown in Table 7. The ratios of 
206

Pb/
207

Pb, 

206
Pb/

204
Pb, 

207
Pb/

204
Pb and 

208
Pb/

204
Pb display relatively constant values above the depth 

of 30 cm, and all the ratios increase dramatically below 30 cm of the core (Figure 11). 

Previous studies from other locations in the southeastern United States show similar 

206
Pb/

207
Pb ratios (about 1.20) from 1970 to present and lower 

206
Pb/

207
Pb ratios (about 

1.19) between 1900 and 1970 (Jackson et al., 2004; Kamenov et al., 2009). Bollhӧfer and 

Rosman (2001) summarized the range of 
206

Pb/
207

Pb isotope ratios from 75 studies in the 

Northern Hemisphere (United States, 1.159 – 1.231; Western Europe, 1.097 – 1.165; Asia, 

1.091 – 1.177).   

The 
86

Sr/
87

Sr profile is shown in Figure 12 with Sr concentration in ash and Sr E.F.. 

The 
86

Sr/
87

Sr ratio has the highest value at the bottom of the core and decreases when the 

peat becomes shallower. When the depth reaches 12 cm, the 
86

Sr/
87

Sr ratio is the lowest. 

Then it starts to increase again towards the surface of the core.  

  



 

 

Discussion 

Pocosin ombrotrophic and minerotrophic characteristics 

At the bottom of the core (below 30 cm), the significantly higher ash content may 

reflect the transitional character from a mineralogical fen to an ombrotrophic bog. The 

high organic content shows the ombrotrophic character of the pocosin between depths of 

10-30 cm. Above 10 cm, high ash content (greater than 10%) (Figure 5) implies that the 

peat in the study site has accepted significant soil-dust deposition. The high ash content 

in this top layer which represents the past 50 years may relate to the frequent forest fires 

in the CNF pocosin. Below 30 cm of the core, the extensive ash content with higher Al, 

Ti, Zr and REE concentrations reveals that the materials are most likely derived from the 

underlying regolith, implying a minerotrophic character. Additionally, from the contour 

map of peat thickness reported in Ingram (1999), the range of peat thickness around the 

study site is about 0-1 m deep. It suggests that the source of the bottom material of the 

core is possibly from underlying soil or bedrock.  

Sediment chronology  

Previous studies rely on chronology obtained by using both 
210

Pb and 
137

Cs. Studies 

have shown that the immobility of 
210

Pb makes the chronology results agree with the 
14

C 

dating results (Shotyk et al., 1998), and that 
137

Cs is often used as the sole marker of 

chronology (Oldfield et al., 1979; MacKenzie et al., 1997). However, Urban et al. (1990) 



 

19 

 

 

proposed that 
 210

Pb was mobile under the water table. In that case, the part of peat 

preserved under the water table would contain less 
210

Pb deposition, jeopardizing the 

chronology. Thus, the problem is more significant where the water table is shallow 

(beneath hollows) than where it is deeper (beneath hummocks). In consequence, lower 

210
Pb inventory and younger age from 

210
Pb dating were often observed in the cores that 

were collected from hollows in peat bogs. Although we did not measure the water table 

of the study site, due to the facts that the water table was shallow during the field 

sampling and the nearby ditch was also shallow, the water table in the CNF pocosin 

should be shallow. However, at the study site, no obvious surface elevation changes were 

observed. Therefore, whether 
210

Pb activities near the top of the core could be affected by 

the water table in this study needs more evidence to further advance this discussion.  

There are two unexpected small peaks at approximately 20 cm and 30 cm in the 
210

Pb 

and 
137

Cs activities profiles. They indicate vertical transportations that took more recent 

210
Pb and 

137
Cs deposition into the deeper peat during the last century. Since there were 

no visible live animals or burrows throughout the whole core, bioturbation is not a likely 

explanation.  

From the chronology obtained by 
210

Pb dating, the peak of 
137

Cs activity at the depth 

of 9 cm correlates with the peak deposition of nuclear weapons fallout in 1963. The 

maximum 
137

Cs activity near the surface of the core may be caused by the absorption 

from the upper plants on the peat (Oldfield et al.,1979). Different location trends of 
137

Cs 

profiles in Oldfield et al., (1979) were also explained as the effect of predominance of 

different plant species. The dominant flora of the North Carolina pocosin in this study are 

mostly a mix of scrub-shrub and pond-pine (Richardson, 2003), which differ from the 
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vegetation (Eriophorum vaginatum with rich roots) in Oldfield et al., (1979). The 

abundant leaves and a few thin roots near the top core samples suggest the possibility of 

the upper plants effects on 
137

Cs in this study. 

Similar 
137

Cs trends were also found in other studies. Olid et al., (2010) discussed 

profiles of 
137

Cs and 
241

Am in peat from the NW Iberian Peninsula, in which both 
137

Cs 

and 
241

Am have peak activities around 1963 at three out of the four study sites, and the 

maximum activities of 
137

Cs also appear to be near the surface at those study sites. 

However, studies from the west of Ireland (Coggins et al., 2006) and the Great Hinggan 

Mountains in NE China (Bao et al., 2009) only observed one peak from the 
137

Cs 

concentration profiles corresponding to 1963, from the fallout deposition of atmospheric 

testing of nuclear weapons.  

Major elements, Zr and REE 

Al, Mg, Ti, Mn, Zr and REE were tested to track the characteristics of the original 

soil/dust source or mineral mines inputs that influenced the pocosin (Weiss et al., 1999; 

Shotyk et al., 2002b). In CNF pocosin, Al, Ti, Mn, Zr and REE concentrations in peat 

strongly correlate with ash content through the whole core (Table 3), which reveals that 

their concentrations increase with enhanced mineral deposition. However, Fe 

concentrations do not correlate with Al and Ti, but highly correlate with Pb in the core 

(Table 3). The reason for the high correlation between Pb and Fe remains unclear.   

The lithogenic elements such Ti and Zr show conservative behavior during 

weathering process of rocks, meaning that they were enriched in soil/mineral dust 

(Shotyk et al., 2001; 2002). The very strong correlation between Ti and Zr (r = 0.992) in 
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Table 3 suggests that either of them can be used as an index to present the original 

mineral dust input in the peat, as well as a factor in the background of enrichment factor 

calculation.  

Mineral sources that are high in silica can result in increasing Al and Fe levels in peat. 

They can be from the mining of non-metal minerals, such as crushed stone and 

construction sand and gravel, which are widely distributed in the coastal plain of North 

Carolina. Raven and Loeppert (1997) found abundant Fe, Mn and Ti in rock phosphate 

samples. Therefore, the mining process of phosphate in Beaufort County (about 80 km 

north of CNF, Figure 1) could have introduced Fe, Mn and Ti to the study site over the 

last 60 years (Stuckey, 1965). Additionally, more activities such as the deforestation and 

agriculture expansion that introduce enhance dust deposition could also have increased 

these elements concentrations.  

The nature of the mixed-vegetation (pine tree and shrub) in the Croatan National 

Forest (CNF) makes it difficult to approach the study site. Therefore, the study site was 

chosen close to secondary gravel roads and small ditches (Figure 4). This location raises 

the issue that the process of building roads could have introduced dust to the site. The 

material of the road is mostly limestone, and it may contain silicate sand. Thus, crushed 

stone mines, construction sand and gravel, phosphate mines, local farming and road 

construction could have been the primary external sources of dust to the CNF pocosin. 

Trace element deposition in CNF pocosin 

Among all the trace elements that are tested in this study, the group 1 (V, Cu, Zr, Cd, 

Sn, La, Ce, Pr, Nd, Sm, Th and U) elements that have higher correlation with ash content 
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were probably mainly introduced from mineral dust, whereas the group 2 (Ni, Zn, Rb, As, 

Sb, Sr, Pb and Bi) ones that have relatively weak correlation with ash content may have 

also been introduced by other anthropogenic sources (Table 3). In the last century, most 

trace elements concentrations in ash start to increase from the depth 17 cm to 13 cm, 

corresponding with the year from 1905 to 1930. This may represent the period of the 

beginning of North Carolina industrialization. At these same depths, however, their 

concentrations in the total peat do not have a peak, which is due to the low ash content 

(less than 5%).  

The enrichment factor (E.F.) of trace elements is used to distinguish the earth material 

background from anthropogenic input (Shotyk, 2002a). The higher E.F. of certain 

element(s) can be caused by extensive anthropogenic input. From the results of the E.F. 

calculation in this study, a number of trace elements have E.F. values lower than 1.0 

(Table 6), while and their profiles still display obvious variations. Most the trace 

elements E.F. above 16 cm (after the year of 1893) are higher than those values at the 

bottom core. This suggests the significant anthropogenic source input in the last 120 or so 

years. Enrichment factors show that the soil material in the CNF demonstrates a localized 

and thin upper continental crust layer, instead of the average upper continental crust in 

North America (Rudnick and Gao, 2004).  

Trace elements group one  

Group 1 elements (V, Cu, Zr, Cd, Sn, La, Ce, Pr, Nd, Sm, Th and U) were probably 

introduced from sources that released significant mineral dust into the atmosphere such as 

crush stone mines, construction sand and gravel, phosphate mines and agricultural soil in 
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the coastal plain of North Carolina. The strong correlation between these elements and 

major elements Ti and Al in peat indicate that these trace elements were deposited in 

proportion to the input of weathered minerals. Pocosin forest fires can also significantly 

affect trace elements concentrations in peat. When they occurred, parts of vegetation and 

peat were turned into ash, resulting in a thinner layer of peat with higher ash content. 

Cu is one of the most commonly reported trace elements (Pb, Cu, Zn) in studies of 

atmospheric deposition. In southeastern Florida, the Cu trace element concentrations are 

close to the levels shown in this study (Kamenov et al., 2009). The comparisons in Figure 

13  reveal Cu concentrations trends are different between the two studies, showing no 

increasing trend near the surface of Core 1 from CNF pocosin. The comparison may 

imply the difference in Cu usage in the recent years between Florida and North Carolina. 

In New York City, Cochran et al., (1998) observed that the two salt marshes have high 

Cu concentrations in ash, which are about six times higher than the records in CNF 

pocosin (Figure 14), suggesting greater Cu pollution in NYC.  

The Cd maximum concentration in the CNF pocosin is 1.18 ppm at depths of 34-35 

cm (Table 5, Figure 13) which is much higher than the maximum Cd concentration in the 

Florida peat sediment (0.072 ppm) (Kamenov et al., 2009). Cd concentration (ash) in 

North Carolina is also higher than the ones in New York City (Figure 14). The possible 

sources of Cd in North Carolina are the nearby phosphate mines, and coal-fired power 

plants fly ash (Querol et al, 1999). 

Raven and Loeppert, (1997) summarized that phosphate rocks and phosphate 

fertilizer can introduce a number of trace elements to the environment. The comparison 
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between the trace elements in North Carolina phosphate rock (Raven and Loeppert, 1997) 

and that in CNF pocosin, it is possible that Cu, Zn, Rb, Sr, Zr, Cd and U elements are 

introduced from dust suspended during phosphate mining.  

Trace elements group two 

The other group elements (Ni, Zn, Rb, As, Sb, Sr, Pb and Bi) have weak correlations 

with ash content that may be influenced by other different anthropogenic sources such as 

leaded gasoline usage and coal combustion during the last century. These records can 

also be affected by the local population growth rate and the distances from the coal-fired 

power plants to the study site.  

Different Pb records in the CNF (Figure 15) indicate that the industrialization and the 

introduction of leaded gasoline could have dominated the Pb sources during the period 

between 1908 and 1933. After 1933, Pb accumulation rate rapidly increased until the year 

1970, which coincides with a period of growing usage of leaded gasoline in North 

Carolina. Therefore, leaded gasoline usage may be one of the dominating Pb sources in 

the area during this period. Moreover, Pb emissions are also affected by the growth rate 

of populations in the surrounding counties, which correlate with the number of leaded 

gasoline-using vehicles on roads. Within the five adjacent counties, the highest 

population growth rates were found in the 1950s and 1960s, which match the rapid Pb 

accumulation rate during the same period (Figure 15). Between 1970 and 1983, the Pb 

concentrations were lower than the previous period in both peat and ash, and Pb 

accumulation rate did not accelerate as fast as before. This period matches the beginning 

of leaded gasoline phasing-out at 1973. The remaining high level of Pb concentrations 



 

25 

 

 

may be related to other Pb sources such as the coal combustion in the area, phosphate 

mines in Beaufort county and dust from phosphate fertilizer (Raven and Loeppert, 1997). 

The comparisons of Pb between different regions in the United States are shown in 

Figure 13 and 14. Both Florida (Kamenov et al. 2009) and CNF peat contain Pb maxima 

at depths corresponding to 1970. It suggests the similarity in leaded gasoline usage period 

between Florida and North Carolina. Cochran et al., (1998) observed that the two salt 

marshes in New York City have high fluxes of Pb in ash. Comparison shows their 

concentrations in ash are several times higher (Pb×9) than the records in the CNF pocosin 

(Figure 14), which implies greater trace metal pollution in cities such as New York City. 

The same comparisons for Zn also indicated the similar Zn maxima nearer the core tops 

in Florida, while a higher concentration was observed in NYC (Zn×5) relative to that in 

North Carolina. This supports the notion that extra Pb can be from the emissions from 

motor vehicles (Huang et al, 1994), and that more Pb and Zn can be released to the 

atmosphere near a denser populations and heavier-traffic areas.  

To compare Pb concentrations in the U.S. with those in Europe, numerous studies 

have shown that the highest Pb concentration in peat is at the depth associated with years 

around 1970 (Shotyk et al., 1995, 1998; Weiss et al., 1999; Cloy et al., 2008; Novak et al., 

2008). However, from the studies in Northeast China, the highest Pb concentration was 

found around 2000, when leaded gasoline began to be phased out (Bao et al., 2010). 

Therefore, the concentrations within peat of trace elements such as Pb can show both 

similarities and differences in local industrial development at regions within the U.S., as 

well as among countries. 
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The very strong correlation (r is great than 0.8, Table 3) between Pb concentration 

and some other elements (Ni, As, Sb, Bi) concentrations suggest they were probably 

introduced from similar anthropogenic sources. Sb, Bi and Ni all have their highest 

concentrations (in peat) at depths of 8–9 cm (time interval 1959 – 1969) (Table 4, Figure 

10). The excess Sb and Bi are most likely from anthropogenic input since their 

concentrations are very low in fresh water and they are relatively volatile (Kamenov et al., 

2009). The high Sb, Bi and Ni concentrations between 1960 and 1975 in CNF pocosin 

may be from motor vehicle emissions (Huang et al., 1994). Previous studies have shown 

that fossil fuel combustion, coal mining and fly ash from coal-fired power plants often 

carry extra Sb, Bi and Ni into the atmosphere (Kaakinen et al., 1975; Querol et al, 1999; 

Kamenov et al., 2009). Coal burning has constituted a large fraction of the energy 

generation of North Carolina, although coal mining has not been significant. Therefore, 

coal combustion could be one of the Sb, Bi and Ni sources in CNF pocosin. 

In general, the elements (V, Cu, Zr, Cd, Sn, La, Ce, Pr, Nd, Sm, Th and U) that 

strongly correlate with ash content were possibly introduced by the dust from phosphate 

mines, agricultural soil, crushed stone mines and fly ash from coal combustion. The other 

group of elements (Ni, Zn, Rb, As, Sb, Sr, Pb and Bi) that do not show strong correlation 

with ash content may have been mainly emitted by motor vehicles, particularly cars that 

used leaded gasoline, and also by coal combustion. 

Sources to the CNF pocosin based on Sr and Pb isotopes 

Based on Faure’s (1986) model, the 
87

Sr/
86

Sr in oceans is defined as a combination of 

different strontium sources including weathering young volcanic rocks (0.704 ± 0.002), 
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old sialic rock (0.720 ± 0.005) and marine carbonate rocks (0.708 ± 0.001). The 
87

Sr/
86

Sr 

ratio in the modern seawater is 0.70918 (Frank, 2002), whereas the average 
87

Sr/
86

Sr ratio 

in CNF pocosin is 0.71361 ± 0.00047. The high 
87

Sr/
86

Sr ratio (above 0.71196) 

throughout the whole core implies that the radiogenic Sr sources dominate the deposition 

in the CNF. The bedrock of CNF pocosin is fossiliferous clay and sand, shelly sand, 

sandy marl and limestone that formed in the Tertiary. The high 
87

Sr/
86

Sr ratio in the 

bottom core (below 30 cm) also implies that the underlying rock may contain more sialic 

rocks which usually have a higher 
87

Sr/
86

Sr ratio. The less radiogenic Sr sources at depth 

of 12 cm suggest that the additional materials such as marine aerosols with low 
87

Sr/
86

Sr 

ratio character were deposited in the CNF pocosin around 1940’s. Tobiassen (1982) 

measured the 
87

Sr/
86

Sr ratio (0.70790-0.70935) in phosphate grains from the Miocene 

Pungo River formation in North Carolina. Therefore a marine isotopic signature can be 

introduced from anthropogenic activities such as phosphate mining and crushed stone 

(shell limestone) mining in coastal plain during the last 100 years.  

The Pb isotope ratios (
206

Pb/
204

Pb,
 206

Pb/
207

Pb, 
207

Pb/
204

Pb, 
208

Pb/
204

Pb) do not have 

any significant variations in the top 30 cm of Pb deposition (Table 8, Figure 16). This 

suggests no obvious changes in the sources of Pb to the CNF pocosin during the last 

century. The anthropogenic Pb sources can be from leaded gasoline usage in North 

Carolina. The 
206

Pb/
207

Pb ratio (1.1992 – 1.2366) is close to the values in other areas in 

U.S. such as Tampa (1.214 ± 0.001, 1.208-1.231), Argonne, France (1.211 ± 0.001), and 

New York (1.197-1.223) (Bollhӧfer and Rosman, 2001). Kamenov et al., (2009) claimed 

that Florida has been using different source ore for Pb and higher 
206

Pb/
207

Pb ratio (above 

1.200), representing more radiogenic Mississippi Valley Type (MVT) ore in the last 40 
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years. Similarly high 
206

Pb/
207

Pb ratios were found in Georgia (Jackson et al., 2004) for 

the last 50 years and in the Chesapeake Bay area (Marcantonio et al., 2002) for the last 35 

years.  

Coal combustion has also been claimed to be an important source of Pb in North 

America, Western Europe and East Asia (Bollhӧfer and Rosman, 2001; Diaz-Somoano et 

al., 2009). Diaz-Somoano et al., (2009) observed that the 
206

Pb/
207

Pb in coal from the U.S. 

ranges from 1.1907 – 1.2314 and that 
208

Pb/
206

Pb ranges from 2.0201 – 2.0829. These Pb 

isotopic records in coal are comparable with those in CNF pocosin (
206

Pb/
207

Pb: 1.1992 – 

1.2366; 
208

Pb/
206

Pb: 2.0479 – 2.0851). Therefore, coal combustion could also be one of 

the major Pb sources in North Carolina during the last 100 years. 

Figure 17 shows the comparison of Pb isotopic compositions (
207

Pb/
206

Pb and 

208
Pb/

204
Pb) between CNF pocosin in North Carolina and other study sites in the eastern 

United States. The data that lay in the overlapping area in the plot are the samples from 

CNF pocosin Pb deposition in the last 100 years, Florida swamp in the last 40 years and 

the northeastern U.S. Lake Andrus in the last 40 years (Graney et al., 1995). This 

demonstrates that in over the last 40 years, the North Carolina coastal plain was 

characterized by Pb sources similar to those of other places in the eastern U.S. 

  



 

 

Conclusion  

The Croatan National Forest pocosin, even though it has both ombrotrophic and 

minerotrophic characteristics, can be used as an archive of the atmospheric deposition of 

trace elements such as lead. The distribution of pocosin peat in North Carolina offers 

many opportunities to expand this study to different locations in the coastal plain and to 

conduct more detailed analysis with longer sample cores, which will provide more 

information about the local history.   

By using both 
210

Pb and fallout radionuclides, along with trace elements 

concentrations and Pb isotopes, a robust chronology was constructed. Mobility of 
210

Pb, 

Pb and other trace elements concentration is possible due to the water table influence on 

the peat; however, further work is would be needed to better evaluate that possibility. 

Additionally, the 
137

Cs was moving chemically in the peat, independent of the effects of 

plants. Therefore, additional analysis testing immobile radionuclides such as 
242

Pu or 

241
Am could help to better define the peat chronology. 

The recent lead input reflects the local/regional lead emissions from industrial 

activities in the coastal plain of North Carolina. From the late 1800’s to the early 1900’s, 

local industrialization, along with development related to World War II, expanded local 

farming, mines and roads. Half a century later, when leaded gasoline was phased out in 

1973, the trace elements levels in the atmosphere started to drop. Moreover, the record of 

other trace elements as well as some major elements represents more local history such as 
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phosphate mines, crushed stone mines, forest fires, road construction and coal 

combustion. Historical (100 years) Pb deposition in North Carolina was similar to that 

observed in Europe, where industrial development has been similar, but different from 

the patterns observed in China.  



 

 

 

Table 1 North Carolina local anthropogenic history. 

Time Period Historical Events 

1500s to 1700s  Early European Settlers, fire for agriculture purpose in Southern U.S.
1
 

1800 to mid-1800’s Gold mines started and the most significant production period in North Carolina.
 2
  

1890s to1920s  Industrialization; initiation of a variety of mines (i.e. gold mines); the rapid growth in the timber industry and 

associated logging led to increasingly numerous, intense and widespread fires. Many Coastal Plain forests were 

slashed-and-burned, or often accidentally ignited, causing more severe fires, especially for 12 NC counties in 

1894.
 1,2

 

1905 The first production of sand and gravel, crushed stone in the coastal Plain of North Carolina.
 2,3

 

1920s  to 1940s In the southern U.S., fire suppression (not allowing fires) was sponsored in this period, which allowed 

Appalachian hardwood forests with other species, replacing many areas of oak/pine fire-tolerant species.
1
  

1923 Introduction of leaded gasoline in U.S.
4
 

1950s The highest population change/growth rate (53.1%) in the adjacent counties (Figure 2, 3). 

1951-1958 The first phosphate mines in Beaufort county.
2
 

1960s The second highest population change/growth rate (43.2%) in the adjacent counties (Figure 2, 3); 

Renewed phosphate mines in Beaufort county.
2
 

1973 Leaded gasoline phaseout began
4
 

1990s Regular wildland fire by forest fire management in the coastal plain.
1
 

1
Fowler and Konopik, 2007; 

2
 Stuckey, 1965; 

3
 NCGS: http://www.geology.enr.state.nc.us/Mineral; 

4
 US EPA.
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Table 2 Peat accumulation rate, 
210

Pb inventory and atmospheric 
210

Pb flux comparisons from different atmospheric deposition sites. 

a 
Calculated value using 22.3 yr as the half-life of Pb.

Country Region/Site Peat accumulation 

rate 

(g
 
cm

-2
yr

-1
) 

210
Pb inventory 

(Bq
 
m

-2
) 

Atmospheric 

210
Pb flux 

(Bq
 
m

-2
yr

-1
) 

References 

Switzerland 

UK 

NW Iberian  

Tramelan, bogs 

Glasgow, peat bog 

Galicia, mires 

0.02-0.04 

0.027-0.040 

- 

4690 

3380-3500 

4994-10135 

146 

106-109
 a
 

155-315
 a
 

Appleby et al., (1997) 

Mackenzie et al., (1998) 

Olid et al.,(2010) 

United States North Carolina, pocosin 

North Carolina, salt marshes 

Florida, marshes 

Florida, marshes 

New York, bog 

New York, salt marsh 

East U.S., undisturbed soil 

Raleigh, NC 

Bluff Mountain, NC 

0.01-0.09 

- 

0.0035 (ash) 

 

- 

0.02
 a
, 0.0017(ash)

a
 

- 

2829 

4220, 4560 

3980-7585 

1916-3966 

2667-9000
 

3404 

3200-6333
 

4483 

5567 

88 

131, 142 

124-236
 a
 

60-123
a
 

83-279
 a
 

106 

99-197
 a
 

139
 a
 

173
 a
 

This study 

Benninger and Wells, (1993) 

Kamenov et al., (1997) 

Brenner et al., (2001) 

Cochran et al., (1997) 

Urban et al., (1990) 

Graustein and Turkian, (1986) 

3
2
 



 

 

 

Table 3 Elements concentrations correlation relationship table. Dark grey represents very strongly correlated elements (Correlation Coefficient > 

0.8); Light grey represents strong correlated elements relationship (Correlation Coefficient is from 0.8-0.6). r is considered statistically significant 

when p < 0.05. 

Mg -0.39 1 

0.078 

Al 0.803 -0.14 1 

<.0001 0.556 

Ti 0.905 -0.62 0.767 1 

<.0001 0.003 <.0001 

Fe 0.053 0.577 0.428 -0.15 1 

0.819 0.006 0.053 0.523 

Mn 0.947 -0.34 0.881 0.864 0.208 1 

<.0001 0.127 <.0001 <.0001 0.365 

V 0.939 -0.51 0.871 0.973 0.052 0.93 1 

<.0001 0.019 <.0001 <.0001 0.823 <.0001 

Ni 0.326 0.46 0.538 0.093 0.826 0.382 0.283 1 

0.149 0.036 0.012 0.687 <.0001 0.087 0.213 

Cu 0.853 -0.38 0.776 0.815 0.108 0.856 0.869 0.481 1 

<.0001 0.093 <.0001 <.0001 0.641 <.0001 <.0001 0.028 

Zn 0.533 0.075 0.675 0.308 0.631 0.691 0.472 0.615 0.493 1 

0.013 0.747 8E-04 0.175 0.002 5E-04 0.031 0.003 0.023 

Rb 0.534 -0.11 0.805 0.512 0.401 0.739 0.609 0.283 0.51 0.763 1 

0.013 0.632 <.0001 0.018 0.071 1E-04 0.003 0.215 0.018 <.0001 

Sr 0.44 0.089 0.694 0.299 0.53 0.653 0.432 0.432 0.454 0.891 0.923 1 

0.046 0.701 5E-04 0.188 0.013 0.001 0.051 0.05 0.039 <.0001 <.0001 

Zr 0.933 -0.6 0.758 0.992 -0.16 0.882 0.971 0.12 0.852 0.327 0.503 0.313 1 

<.0001 0.004 <.0001 <.0001 0.499 <.0001 <.0001 0.606 <.0001 0.148 0.02 0.167 

Cd 0.954 -0.52 0.807 0.979 -0.05 0.922 0.979 0.217 0.879 0.405 0.559 0.386 0.992 1 

<.0001 0.015 <.0001 <.0001 0.843 <.0001 <.0001 0.345 <.0001 0.068 0.008 0.084 <.0001 

As 0.536 0.295 0.744 0.367 0.793 0.597 0.531 0.927 0.603 0.657 0.47 0.519 0.378 0.474 1 

0.012 0.195 1E-04 0.102 <.0001 0.004 0.013 <.0001 0.004 0.001 0.032 0.016 0.091 0.03 

Sn 0.839 -0.29 0.913 0.867 0.314 0.885 0.933 0.426 0.778 0.503 0.665 0.473 0.851 0.891 0.691 1 

<.0001 0.195 <.0001 <.0001 0.166 <.0001 <.0001 0.054 <.0001 0.02 0.001 0.03 <.0001 <.0001 5E-04 

Sb 0.54 0.176 0.781 0.429 0.765 0.688 0.58 0.731 0.581 0.669 0.68 0.651 0.431 0.534 0.884 0.789 1 

0.012 0.446 <.0001 0.052 <.0001 6E-04 0.006 2E-04 0.006 9E-04 7E-04 0.001 0.051 0.013 <.0001 <.0001 

La 0.792 -0.02 0.871 0.685 0.362 0.814 0.769 0.444 0.687 0.566 0.741 0.641 0.712 0.773 0.67 0.818 0.75 1 

<.0001 0.917 <.0001 6E-04 0.107 <.0001 <.0001 0.044 6E-04 0.008 1E-04 0.002 3E-04 <.0001 9E-04 <.0001 <.0001 

Ce 0.874 -0.14 0.883 0.786 0.257 0.87 0.851 0.399 0.756 0.544 0.707 0.593 0.812 0.86 0.638 0.855 0.7 0.984 1 

<.0001 0.544 <.0001 <.0001 0.261 <.0001 <.0001 0.073 <.0001 0.011 3E-04 0.005 <.0001 <.0001 0.002 <.0001 4E-04 <.0001 

Pr 0.828 -0.12 0.889 0.762 0.288 0.846 0.829 0.388 0.721 0.534 0.745 0.614 0.782 0.833 0.638 0.861 0.727 0.991 0.994 1 

<.0001 0.608 <.0001 <.0001 0.206 <.0001 <.0001 0.082 2E-04 0.013 1E-04 0.003 <.0001 <.0001 0.002 <.0001 2E-04 <.0001 <.0001 

Nd 0.836 -0.14 0.897 0.775 0.286 0.856 0.842 0.388 0.731 0.537 0.748 0.613 0.794 0.843 0.64 0.872 0.731 0.988 0.994 1 1 

<.0001 0.555 <.0001 <.0001 0.21 <.0001 <.0001 0.082 2E-04 0.012 <.0001 0.003 <.0001 <.0001 0.002 <.0001 2E-04 <.0001 <.0001 <.0001 

Sm 0.84 -0.15 0.908 0.786 0.299 0.866 0.855 0.395 0.737 0.542 0.755 0.614 0.801 0.851 0.65 0.891 0.748 0.983 0.991 0.997 0.999 1 

<.0001 0.529 <.0001 <.0001 0.188 <.0001 <.0001 0.077 1E-04 0.011 <.0001 0.003 <.0001 <.0001 0.001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

Pb 0.232 0.468 0.543 0.052 0.947 0.372 0.241 0.828 0.285 0.591 0.439 0.501 0.05 0.163 0.859 0.514 0.897 0.511 0.42 0.449 0.45 0.467 1 

0.311 0.033 0.011 0.822 <.0001 0.097 0.293 <.0001 0.211 0.005 0.046 0.021 0.829 0.479 <.0001 0.017 <.0001 0.018 0.058 0.041 0.041 0.033 

Bi 0.599 0.153 0.797 0.485 0.737 0.695 0.633 0.766 0.613 0.621 0.575 0.532 0.483 0.578 0.92 0.832 0.971 0.737 0.705 0.72 0.725 0.744 0.883 1 

0.004 0.507 <.0001 0.026 1E-04 5E-04 0.002 <.0001 0.003 0.003 0.006 0.013 0.027 0.006 <.0001 <.0001 <.0001 1E-04 4E-04 2E-04 2E-04 1E-04 <.0001 

Th 0.925 -0.42 0.855 0.943 -0.02 0.88 0.955 0.207 0.812 0.365 0.586 0.394 0.95 0.955 0.461 0.882 0.516 0.841 0.912 0.894 0.901 0.906 0.18 0.562 1 

<.0001 0.055 <.0001 <.0001 0.946 <.0001 <.0001 0.368 <.0001 0.104 0.005 0.077 <.0001 <.0001 0.035 <.0001 0.017 <.0001 <.0001 <.0001 <.0001 <.0001 0.434 0.008 

U 0.912 -0.47 0.843 0.962 0.013 0.868 0.982 0.271 0.838 0.361 0.511 0.309 0.956 0.957 0.507 0.919 0.525 0.743 0.827 0.805 0.817 0.829 0.214 0.605 0.959 

<.0001 0.031 <.0001 <.0001 0.955 <.0001 <.0001 0.235 <.0001 0.108 0.018 0.173 <.0001 <.0001 0.019 <.0001 0.015 1E-04 <.0001 <.0001 <.0001 <.0001 0.352 0.004 <.0001 

 

Ash Mg Al Ti Fe Mn V Ni Cu Zn Rb Sr Zr Cd As Sn Sb La Ce Pr Nd Sm Pb Bi Th 
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Table 4 Trace elements concentration in peat (uncertainties estimated at ≤ 10%) from Croatan National Forest pocosin, NC, U.S. 

Depth 

cm 

V 

ppm 

Ni 

ppm 

Cu 

ppm 

Zn 

ppm 

Rb 

ppm 

Sr 

ppm 

Zr 

ppm 

Cd 

ppm 

As 

ppm 

Sn 

ppm 

Sb 

ppm 

La 

ppm 

Ce 

ppm 

Pr 

ppm 

Nd 

ppm 

Sm 

ppm 

Pb 

ppm 

Bi 

ppm 

Th 

ppm 

U  

ppm 

LOI 

% 

0.5-

2.25 
9.46 2.79 5.95 11.6 5.41 33.8 12.5 0.425 0.914 0.480 0.287 4.83 7.99 1.10 3.93 0.689 9.09 0.908 1.24 0.457 85.9 

4-5 15.0 4.86 5.10 15.3 3.91 27.7 16.2 0.526 1.88 0.814 0.340 5.94 10.9 1.38 4.95 0.867 15.2 1.61 1.69 0.793 74.5 

6-7 7.17 3.57 3.70 5.22 2.07 11.0 8.27 0.348 1.30 0.597 0.293 4.27 6.78 0.943 3.33 0.580 13.1 1.34 1.05 0.514 89.2 

8-9 13.3 5.21 6.06 6.87 1.80 13.3 13.7 0.513 2.02 1.12 0.544 6.05 10.1 1.36 4.93 0.903 25.3 2.53 1.63 0.853 81 

10-11 3.94 2.70 2.05 2.42 1.11 8.66 4.71 0.207 1.01 0.349 0.202 2.94 4.98 0.713 2.51 0.441 7.34 0.870 0.677 0.343 94.8 

12-13 1.94 1.88 1.70 1.52 0.396 5.84 2.40 0.099 0.625 0.168 0.083 1.43 2.49 0.355 1.23 0.212 2.94 0.367 0.389 0.217 98.2 

14-15 3.05 2.77 2.59 1.51 0.677 6.78 4.46 0.154 0.933 0.265 0.094 2.38 4.09 0.574 1.98 0.334 4.27 0.457 0.809 0.404 96.1 

16-17 4.31 2.45 2.67 0.872 0.493 6.08 5.83 0.183 0.772 0.217 0.074 3.15 4.75 0.627 2.13 0.357 4.15 0.438 0.962 0.423 91 

18-19 6.00 2.57 3.03 3.43 0.203 6.45 8.40 0.252 0.800 0.266 0.074 2.37 4.48 0.509 1.76 0.310 4.85 0.527 0.966 0.572 87.9 

20-21 5.84 2.39 2.79 4.06 0.300 5.93 8.59 0.253 0.705 0.285 0.077 2.55 4.63 0.533 1.84 0.319 4.50 0.498 1.03 0.514 87.9 

22-23 5.56 2.21 2.68 3.52 0.075 4.53 7.72 0.218 0.634 0.233 0.062 1.13 2.28 0.268 0.959 0.175 3.68 0.380 0.703 0.451 90.8 

24-25 6.29 2.73 3.64 3.17 0.043 4.50 7.59 0.212 0.768 0.226 0.071 0.771 1.62 0.194 0.711 0.133 4.36 0.401 0.612 0.464 91.4 

26-27 5.49 2.87 3.96 1.30 0.124 5.43 6.99 0.197 0.860 0.225 0.079 1.90 3.62 0.455 1.63 0.289 4.54 0.521 1.33 0.493 90.9 

28-29 7.29 3.60 5.63 2.73 0.074 5.18 10.5 0.307 1.08 0.296 0.120 1.11 2.22 0.258 0.934 0.172 5.24 0.482 0.818 0.571 92.4 

30-31 9.45 3.57 6.29 3.36 0.104 5.50 14.2 0.404 1.19 0.455 0.145 0.824 1.71 0.207 0.759 0.139 5.10 0.942 0.704 0.625 91 

32-33 5.94 1.56 3.32 1.33 0.145 3.63 11.7 0.311 0.585 0.308 0.085 0.941 2.07 0.256 0.949 0.176 2.22 0.434 0.679 0.406 91.9 

34-35 23.0 4.01 10.0 8.84 1.70 14.5 42.3 1.20 1.52 0.973 0.283 7.53 15.5 1.82 6.53 1.11 7.34 1.46 3.10 1.25 50.4 

36-37 20.3 2.64 6.96 3.77 2.02 12.1 37.4 1.02 1.17 0.908 0.237 5.85 12.4 1.52 5.48 0.975 5.10 1.06 2.76 1.11 67.2 

38-39 15.3 1.84 5.02 2.27 2.30 9.46 27.4 0.727 0.886 0.783 0.181 5.95 10.6 1.46 5.23 0.893 4.08 0.837 2.30 0.937 80.5 

40-41 27.4 2.98 8.39 5.27 3.96 15.4 43.2 1.15 1.27 1.38 0.288 7.76 15.8 2.06 7.49 1.33 7.08 1.46 3.69 1.59 64.6 

42-43 20.1 2.13 5.22 6.00 2.41 10.3 31.7 0.844 0.924 1.03 0.216 2.36 5.51 0.711 2.69 0.520 5.45 1.13 2.17 1.13 71.5 
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Table 5 Trace elements concentrations in ash (uncertainties estimated at ≤ 10%) from Croatan National Forest pocosin, NC, U.S. 

 

Depth 

interval 

cm 

V 

ppm 

Ni 

ppm 

Cu 

ppm 

Zn 

ppm 

Rb 

ppm 

Sr 

ppm 

Zr 

ppm 

Cd 

ppm 

As 

ppm 

Sn 

ppm 

Sb 

ppm 

La 

ppm 

Ce 

ppm 

Pr 

ppm 

Nd 

ppm 

Sm 

ppm 

Pb 

ppm 

Bi 

ppm 

Th 

ppm 

U 

ppm 

0.5-

2.25 67.1 19.8 42.3 82.3 38.4 240 88.5 3.02 6.49 3.41 2.04 34.3 56.8 7.81 27.9 4.90 64.5 6.45 8.80 3.24 

4-5 58.7 19.0 20.0 59.8 15.3 109 63.6 2.06 7.36 3.19 1.33 23.3 42.6 5.39 19.4 3.40 59.5 6.33 6.62 3.11 

6-7 66.7 33.2 34.4 48.5 19.2 102 76.9 3.23 12.1 5.55 2.72 39.7 63.1 8.77 30.9 5.39 122 12.4 9.73 4.78 

8-9 69.6 27.4 31.8 36.1 9.47 69.8 71.7 2.70 10.6 5.86 2.86 31.8 53.3 7.16 25.9 4.74 133 13.3 8.55 4.48 

10-11 76.1 52.2 39.6 46.7 21.4 167 91.1 4.01 19.5 6.74 3.90 56.7 96.3 13.8 48.5 8.53 142 16.8 13.1 6.62 

12-13 105 102 92.4 82.4 21.5 317 130 5.37 33.9 9.15 4.53 77.9 135 19.3 67.0 11.5 160 19.9 21.1 11.8 

14-15 78.2 70.9 66.4 38.7 17.4 174 114 3.94 23.9 6.79 2.40 61.0 105 14.7 50.8 8.58 110 11.7 20.8 10.4 

16-17 47.7 27.1 29.6 9.66 5.46 67.3 64.6 2.02 8.55 2.40 0.814 34.9 52.6 6.95 23.6 3.96 45.9 4.86 10.7 4.69 

18-19 49.6 21.2 25.1 28.4 1.68 53.3 69.5 2.08 6.62 2.20 0.609 19.6 37.0 4.21 14.6 2.56 40.2 4.36 7.99 4.73 

20-21 48.2 19.7 23.0 33.5 2.47 48.9 70.9 2.08 5.82 2.35 0.635 21.0 38.2 4.40 15.2 2.63 37.1 4.11 8.53 4.24 

22-23 60.2 23.9 29.0 38.1 0.811 49.1 83.7 2.36 6.87 2.52 0.671 12.2 24.7 2.91 10.4 1.89 39.9 4.12 7.61 4.89 

24-25 72.9 31.6 42.1 36.7 0.500 52.2 87.9 2.46 8.90 2.62 0.825 8.94 18.7 2.24 8.24 1.54 50.5 4.65 7.09 5.37 

26-27 60.6 31.7 43.7 14.4 1.37 59.8 77.1 2.18 9.48 2.48 0.876 21.0 39.9 5.02 18.0 3.19 50.0 5.74 14.6 5.44 

28-29 95.5 47.2 73.8 35.8 0.969 67.9 138 4.02 14.1 3.88 1.58 14.6 29.1 3.38 12.2 2.25 68.7 6.32 10.7 7.48 

30-31 105 39.6 69.7 37.3 1.16 61.0 158 4.48 13.1 5.05 1.61 9.14 18.9 2.30 8.43 1.55 56.5 10.5 7.81 6.93 

32-33 73.7 19.3 41.1 16.5 1.79 45.0 145 3.86 7.26 3.82 1.06 11.7 25.7 3.17 11.8 2.18 27.5 5.38 8.41 5.03 

34-35 46.3 8.08 20.2 17.8 3.44 29.3 85.3 2.42 3.07 1.96 0.572 15.2 31.3 3.67 13.2 2.25 14.8 2.94 6.25 2.52 

36-37 61.9 8.06 21.2 11.5 6.16 37.0 114 3.10 3.58 2.77 0.722 17.9 37.7 4.63 16.7 2.98 15.5 3.23 8.44 3.38 

38-39 78.5 9.43 25.7 11.6 11.8 48.4 140 3.72 4.54 4.01 0.929 30.4 54.1 7.48 26.8 4.57 20.9 4.28 11.8 4.79 

40-41 77.4 8.42 23.7 14.9 11.2 43.4 122 3.24 3.59 3.89 0.813 21.9 44.5 5.81 21.2 3.75 20.0 4.12 10.4 4.48 

42-43 70.6 7.45 18.3 21.0 8.43 36.1 111 2.96 3.24 3.62 0.76 8.25 19.3 2.49 9.44 1.82 19.1 3.94 7.61 3.97 
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Table 6 Enrichment factor (E.F.) of trace element in CNF pocosin, U.S. 

Depth 

(cm) 
Al Mn Fe Mg V Ni Cu Zn Rb Sr Zr Cd 

0-2.25 0.64 0.08 0.17 2.8 0.35 0.21 0.76 0.62 0.10 0.38 0.54 17 

4-5 0.69 0.05 0.32 4.6 0.35 0.23 0.41 0.51 0.05 0.19 0.44 13 

6-7 0.58 0.05 0.30 3.7 0.36 0.37 0.65 0.38 0.05 0.17 0.49 19 

8-9 0.85 0.05 0.31 10 0.38 0.31 0.60 0.29 0.03 0.12 0.46 16 

10-11 0.98 0.04 0.27 13 0.37 0.53 0.67 0.33 0.05 0.25 0.53 21 

1213 0.73 0.05 0.17 7.5 0.39 0.78 1.2 0.44 0.04 0.36 0.57 21 

14-15 0.49 0.04 0.14 4.9 0.31 0.58 0.91 0.22 0.03 0.21 0.54 17 

16-17 0.45 0.03 0.11 4.1 0.31 0.36 0.67 0.09 0.02 0.13 0.50 14 

18-19 0.34 0.03 0.13 3.0 0.31 0.26 0.54 0.25 0.01 0.10 0.49 14 

20-21 0.74 0.03 0.16 4.9 0.30 0.25 0.50 0.30 0.01 0.09 0.52 14 

22-23 0.42 0.02 0.12 2.7 0.33 0.27 0.55 0.30 0.00 0.08 0.55 14 

24-25 0.31 0.01 0.07 1.7 0.34 0.31 0.69 0.25 0.00 0.07 0.49 12 

26-27 0.22 0.01 0.04 0.95 0.33 0.36 0.83 0.11 0.00 0.10 0.50 13 

28-29 0.21 0.04 0.02 0.65 0.30 0.31 0.81 0.16 0.00 0.07 0.52 14 

30-31 0.18 0.02 0.02 0.38 0.26 0.20 0.59 0.13 0.00 0.05 0.46 12 

32-33 0.23 0.02 0.02 0.35 0.20 0.11 0.40 0.07 0.00 0.04 0.48 12 

34-35 0.24 0.02 0.02 0.31 0.24 0.09 0.37 0.14 0.01 0.05 0.53 14 

36-37 0.21 0.02 0.02 0.25 0.21 0.06 0.24 0.06 0.01 0.04 0.45 11 

38-39 0.23 0.10 0.02 0.35 0.22 0.05 0.25 0.05 0.02 0.04 0.46 11 

40-41 0.24 0.07 0.02 0.31 0.24 0.05 0.26 0.07 0.02 0.04 0.45 11 

42-43 0.21 0.10 0.02 0.25 0.22 0.05 0.20 0.10 0.01 0.03 0.42 10 

             Depth 

(cm) 
As Sn Sb La Ce Pr Nd Sm Pb Bi Th U 

0-2.25 0.68 0.82 2.6 0.56 0.45 0.55 0.52 0.53 1.9 20 0.42 0.61 

4-5 0.88 0.87 1.9 0.40 0.36 0.40 0.38 0.38 2.0 23 0.36 0.66 

6-7 1.3 1.4 3.6 0.68 0.53 0.66 0.61 0.61 3.8 41 0.49 0.93 

8-9 1.2 1.5 3.8 0.49 0.40 0.48 0.46 0.48 4.2 44 0.43 0.88 

10-11 1.9 1.5 4.6 0.70 0.59 0.75 0.69 0.70 4.0 50 0.59 1.2 

1213 2.5 1.6 4.1 1.6 1.4 1.7 1.6 1.5 3.4 45 0.72 1.6 

14-15 1.9 1.2 2.3 1.1 0.96 1.2 1.1 1.1 2.5 28 0.76 1.5 

16-17 1.1 0.72 1.3 0.68 0.50 0.59 0.53 0.51 1.7 19 0.64 1.1 

18-19 0.79 0.63 0.91 0.34 0.31 0.32 0.29 0.29 1.4 16 0.44 1.0 

20-21 0.73 0.67 0.96 0.36 0.32 0.33 0.30 0.30 1.3 15 0.49 0.95 

22-23 0.76 0.64 0.90 0.12 0.12 0.13 0.12 0.12 1.3 14 0.39 0.97 

24-25 0.85 0.57 0.94 0.07 0.07 0.07 0.07 0.08 1.4 13 0.31 0.91 

26-27 1.1 0.63 1.2 0.18 0.17 0.19 0.18 0.18 1.6 19 0.74 1.1 

28-29 0.91 0.57 1.2 0.24 0.24 0.24 0.23 0.25 1.2 12 0.31 0.85 

30-31 0.65 0.57 0.95 0.09 0.10 0.10 0.10 0.11 0.79 15 0.18 0.61 

32-33 0.41 0.49 0.71 0.10 0.11 0.12 0.12 0.12 0.44 9.1 0.22 0.50 

34-35 0.33 0.48 0.73 0.15 0.15 0.16 0.15 0.14 0.45 9.4 0.31 0.48 

36-37 0.24 0.42 0.58 0.18 0.18 0.20 0.19 0.20 0.29 6.5 0.26 0.40 

38-39 0.25 0.51 0.62 1.3 1.2 1.4 1.4 1.3 0.33 7.2 0.30 0.48 

40-41 0.23 0.56 0.62 0.61 0.60 0.70 0.67 0.68 0.36 7.8 0.30 0.50 

42-43 0.21 0.53 0.58 0.29 0.33 0.38 0.38 0.42 0.35 7.6 0.22 0.45 



 

 

 

Table 7 Accumulation rates of 25 elements in CNF pocosin (µg cm
-2

y
-1

). 

Depth 

(cm) 
Al Ti Mn Fe Mg V Ni Cu Zn Rb Sr Zr Cd 

0.5-2.25 181 27 0.42 46 30 0.23 0.069 0.14 0.28 0.13 0.82 0.31 0.010 

4-5 591 100 1.0 213 88 0.84 0.28 0.29 0.86 0.23 1.6 0.95 0.029 

6-7 324 44 0.41 143 78 0.38 0.20 0.20 0.28 0.12 0.58 0.46 0.018 

8-9 171 28 0.42 83 40 0.38 0.10 0.17 0.20 0.036 0.38 0.27 0.015 

10-11 130 14 0.13 45 57 0.14 0.093 0.074 0.087 0.038 0.31 0.16 0.007 

12-13 70 6.3 0.035 29 45 0.065 0.060 0.057 0.051 0.013 0.20 0.077 0.003 

14-15 125 12 0.060 34 62 0.099 0.085 0.084 0.049 0.021 0.22 0.14 0.005 

16-17 332 43 0.32 73 126 0.36 0.19 0.22 0.072 0.039 0.50 0.46 0.015 

              
Depth 

(m) 
As Sn Sb La Ce Nd Sm Pr Pb Bi Th U 

 

0.5-

2.25 2.3 0.023 0.012 0.007 0.12 0.19 0.027 0.095 0.017 0.22 0.022 0.031  

4-5 5.0 0.11 0.046 0.019 0.33 0.61 0.077 0.28 0.049 0.85 0.090 0.099 
 

6-7 7.0 0.073 0.032 0.016 0.23 0.36 0.050 0.18 0.031 0.70 0.071 0.059 
 

8-9 9.0 0.041 0.032 0.015 0.17 0.29 0.039 0.14 0.026 0.72 0.072 0.033 
 

10-11 11 0.035 0.013 0.007 0.11 0.18 0.026 0.090 0.016 0.26 0.031 0.023 
 

12-13 13 0.020 0.006 0.003 0.048 0.084 0.012 0.041 0.007 0.099 0.012 0.012 
 

14-15 15 0.029 0.009 0.003 0.077 0.13 0.019 0.064 0.011 0.14 0.015 0.025 
 

16-17 17 0.060 0.018 0.006 0.26 0.39 0.052 0.18 0.030 0.34 0.036 0.075 
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Table 8 Pb and Sr isotopic compositions in CNF pocosin, NC. (S.D. Standard deviation) 

Depth 

midpoint 

(cm) 

206Pb/204Pb 206Pb/204Pb 206Pb/207Pb 206Pb/207Pb 207Pb/204Pb 207Pb/204Pb 208Pb/204Pb 208Pb/204Pb 86Sr/87Sr 86Sr/87Sr Time 

interval S.D. S.D. S.D. S.D. S.D. 

1.75 18.7961 0.0225 1.2021 0.00072 15.6446 0.0281 38.6272 0.0923 0.713475 0.000005 2001-2010 

6.5 18.7423 0.0224 1.1990 0.00072 15.6324 0.0280 38.4741 0.0919 0.713168 0.000005 1976-1981 

10.5 18.7606 0.0225 1.1981 0.00072 15.6584 0.0281 38.6013 0.0922 0.712338 0.000005 1942-1950 

11.5 18.7606 0.0225 1.1983 0.00072 15.6565 0.0281 38.6363 0.0923 0.711959 0.000005 1938-1942 

12.5 18.7366 0.0224 1.1987 0.00072 15.6302 0.0280 38.5642 0.0921 0.712036 0.000005 1930-1938 

13.5 18.7627 0.0225 1.1979 0.00072 15.6624 0.0281 38.7128 0.0925 0.712100 0.000005 1922-1930 

14.5 18.7347 0.0224 1.1983 0.00072 15.6346 0.0280 38.6252 0.0923 0.712270 0.000004 1915-1922 

15.5 18.7521 0.0224 1.1977 0.00072 15.6564 0.0281 38.7368 0.0925 0.712461 0.000005 1908-1915 

18.5 18.7619 0.0225 1.1983 0.00072 15.6575 0.0281 38.7922 0.0927 0.713078 0.000004 1883-1892 

24.5 18.7369 0.0224 1.1997 0.00072 15.6180 0.0280 38.6523 0.0923 0.714035 0.000005  

28.5 18.7838 0.0225 1.1981 0.00072 15.6775 0.0281 38.8320 0.0928 0.714547 0.000006  

30.5 18.8233 0.0225 1.2020 0.00072 15.6605 0.0281 38.8153 0.0927 0.714663 0.000004  

34.5 18.9577 0.0227 1.2301 0.00074 15.6394 0.0280 39.6224 0.0946 0.716174 0.000005  

40.5 19.3915 0.0232 1.2351 0.00074 15.7007 0.0282 42.0645 0.1005 0.718209 0.000005  
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Figure 1 The mineral sources distribution of North Carolina Coastal Plain (Modification from USGS, 2012). 
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Figure 2 The total population growth in the adjacent counties around the the study site 

[Croatan National Forest (CNF)]: Carteret, Craven, Jones, Onslow, Pamilco. 

 

 

Figure 3 The total population change/growth rate in the adjacent counties around CNF: 

Carteret, Craven, Jones, Onslow, Pamilco. 
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Figure 4 The study site in the pocosins of Croatan National Forest (CNF), North 

Carolina, USA. 
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Figure 5 Bulk density, water content and Loss on Ignition (LOI) profiles of CNF pocosin.  

  

Figure 6 Excess 
210

Pb and 
137

Cs activities in Core 1, CNF pocosin, NC.   
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Figure 7 The chronology from CRS 
210

Pb dating model.  

 

 

Figure 8 Major elements concentrations in peat, CNF pocosin, NC. 
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Figure 9 Major elements accumulation rates in CNF pocosin, NC. A.R. = accumulation rate 

 

Figure 10 Selected trace elements concentrations in peat that show a significant peak at 8-9 cm, CNF pocosin, NC. 
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Figure 11 Pb isotopic compositions graph versus depth and age index. 

 
Figure 12 Sr concentration in ash, Sr enrichment factor and 

87
Sr/

86
Sr isotopic ratio profiles, CNF pocosin, NC.  

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

0 100 200 

D
ep

th
 (

cm
) 

Pb (ash) ppm 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

18.50 19.00 19.50 
206Pb/204Pb 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

1.18 1.20 1.22 1.24 
206Pb/207Pb 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

35 40 45 
208Pb/204Pb 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

0 200 400 
Sr in ash µg g-1 

D
ep

th
 (

cm
) 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

0 0.2 0.4 

Sr E.F. 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

0.71 0.715 0.72 

87Sr/86Sr 

1915 

1984 

2011 

1984 

1950 

1915 

4
5
 



 

 

 

    

    

Figure 13 Pb, Cu, Zn and Cd concentrations in peat from the CNF, NC (right) graph in comparison with data from Florida (left) 

(Kamenov et al., 2009).
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Figure 14 Zn, Pb, Cu and Cd concentrations in ash from the CNF, NC (left) graph in 

comparison with data from New York City (Alley Pond, Goose Creek) (Cochran et al., 

1998).
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Figure 15 Pb concentration in peat, in ash, Pb E.F. (Enrichment Factor) and Pb accumulation rate in CNF pocosin, NC. 

 
Figure 16 The 

206
Pb/

207
Pb comparisons profile between CNF NC pocosin, Georgia swamp (Jackson et al.,2004) and Chesapeake Bay 

sediment (Marcantonio et al., 2002). 
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Figure 17 Pb isotopic composition 
208

Pb/
204

Pb vs. 
207

Pb/
206

Pb comparison between North Carolina and other locations in the U.S. 
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Appendix A 

137
Cs activities in Core 1 and Core 2 from CNF pocosin, NC. 
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Appendix B 

Table and profiles of 
226

Ra, 
228

Ra and 
228

Th activities in Core 1, CNF pocosin, NC. (S.D. Standard Deviation) 

Depth*   
cm 

210
Pb 

Bq kg
-1 

210
Pb 

S.D.
 

137
Cs 

Bq kg
-1 

137
Cs 

S.D. 

226
Ra 

Bq kg
-1 

226
Ra 

S.D. 

228
Ra 

Bq kg
-1 

228
Ra 

S.D. 

228
Th 

Bq kg
-1 

228
Th 

S.D. 

0.875 194 8.91 52.8 3.16 1.59 4.20 7.88 10.2 3.25 3.91 

1.75 303 8.58 63.7 1.47 7.85 1.90 7.16 3.18 5.97 1.22 

3.125 154 7.45 25.2 0.796 8.68 1.23 4.59 2.02 6.05 0.756 

4.5 76.4 4.42 17.8 0.640 7.47 1.05 2.38 1.79 5.28 0.660 

5.5 42.0 2.92 15.4 0.706 2.34 1.34 2.90 2.37 4.42 0.851 

6.5 60.5 3.87 16.2 0.845 4.07 0.864 3.86 2.18 2.71 0.815 

7.5 76.5 4.57 16.7 0.898 5.17 0.961 4.88 2.44 4.28 0.891 

8.5 72.9 5.53 17.3 0.816 6.04 0.845 7.63 2.24 5.37 0.856 

9.5 48.5 3.74 12.9 0.630 8.12 0.909 4.17 2.27 3.39 0.830 

10.5 32.2 3.18 10.8 0.702 6.22 0.918 5.58 2.44 2.92 0.940 

11.5 16.0 2.62 7.73 0.714 4.88 1.00 7.57 2.78 1.89 0.984 

12.5 23.8 2.92 7.40 0.849 3.17 1.05 5.65 2.80 1.55 1.05 

13.5 19.6 2.79 6.15 0.766 5.40 1.07 5.78 2.87 3.05 1.11 

14.5 15.4 2.66 5.93 0.637 3.34 1.08 8.35 3.06 0.993 1.54 

15.5 9.77 2.45 5.38 0.687 4.97 1.11 7.35 3.07 2.30 1.56 

16.5 4.12 2.24 4.40 0.648 7.79 0.883 5.35 2.33 4.07 1.24 

17.5 10.1 2.51 4.58 0.622 9.38 0.700 8.07 1.85 4.35 0.992 

18.5 4.88 2.54 3.26 0.527 8.48 1.05 7.15 2.72 4.68 1.48 

19.5 10.5 2.57 5.38 0.630 9.48 1.01 7.22 2.61 4.39 1.37 

20.5 5.26 2.43 2.13 0.469 11.1 0.962 8.20 2.52 4.77 1.31 

21.5   3.30 0.528 11.7 0.993 6.98 2.50 5.71 1.37 

22.5   2.86 0.545 13.0 0.982 7.20 2.57 5.75 1.40 

5
2
 



 

 

 

23.5   2.84 0.523 15.7 1.05 9.24 2.66 6.15 1.42 

24.5   2.66 0.583 17.8 1.11 6.05 2.86 5.68 1.45 

25.5   2.90 0.528 17.8 1.12 6.05 2.82 5.68 1.50 

26.5   3.06 0.610 15.0 0.977 7.92 2.50 5.63 0.933 

27.5   2.23 0.636 19.7 1.09 6.14 2.59 4.16 0.933 

28.5   2.78 0.636 10.8 1.03 6.77 2.65 5.47 1.09 

29.5   3.57 0.865 7.73 0.813 4.09 1.94 3.22 0.865 

30.5   3.58 0.762 14.0 1.15 8.10 2.99 6.06 1.13 

31.5   1.61 0.661 8.22 2.12 6.24 3.71 5.96 1.37 

32.5   1.30 0.480 9.68 2.22 6.88 3.78 6.31 1.37 

33.5   2.83 0.606 10.1 1.43 6.88 3.98 6.92 1.55 

34.5   1.39 0.462 7.74 0.929 5.63 1.86 7.38 1.27 

35.5   2.06 0.508 9.87 1.36 7.30 2.91 9.74 1.30 

36.5   1.34 0.523 14.3 1.28 9.52 3.42 9.28 1.35 

37.5   2.40 0.562 15.1 1.25 13.2 3.42 10.8 1.39 

38.5   1.67 0.433 13.3 1.42 17.2 2.85 11.9 1.29 

39.5   2.06 0.480 14.1 1.33 11.6 2.69 14.3 1.29 

40.5   1.44 0.427 14.1 1.24 5.91 3.13 12.8 1.36 

41.5   1.69 0.442 13.9 1.28 10.5 3.54 14.0 1.46 

42.5   0.317 0.101 12.4 1.28 13.9 2.80 14.8 1.18 

         *Midpoint depth

5
3
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Appendix C 

Table and profiles of 
226

Ra, 
228

Ra and 
228

Th activities in Core 2, CNF pocosin, NC. (S.D. 

Standard Deviation) 

Depth* 

cm 

137
Cs 

Bq kg
-1

 

137
Cs 

S.D. 

226
Ra 

Bq kg
-1

 

226
Ra 

S.D. 

228
Ra 

Bq kg
-1

 

228
Ra 

S.D. 

228
Th 

Bq kg
-1

 

228
Th 

S.D. 

0.5 43.7 1.76 3.46 2.10 3.50 4.35 2.29 1.86 
2 43.4 2.81 2.43 3.72 8.86 8.22 4.33 3.18 
3 52.3 2.76 10.6 4.05 11.6 9.21 5.32 3.61 
4.25 51.5 1.99 13.1 2.41 9.81 5.24 4.16 2.09 
5.5 42.8 1.82 2.03 2.06 1.75 5.26 5.92 2.13 
6.5 23.6 1.08 8.13 1.38 0.168 3.76 3.95 1.70 
7.5 18.2 0.813 12.1 1.08 1.72 2.79 3.87 1.23 
8.5 11.6 0.742 6.11 0.890 -0.138 2.40 2.29 1.10 
9.5 12.5 0.706 7.30 1.08 0.713 2.67 2.16 1.17 
10.5 13.3 0.814 5.21 1.04 0.150 2.72 2.51 1.23 
11.5 9.58 0.693 5.38 1.15 -0.089 3.31 1.32 1.36 
12.5 8.44 0.732 7.61 1.07 2.79 2.98 2.65 1.23 
13.5 13.2 0.751 8.18 1.03 0.303 2.73 1.26 1.20 
14.5 17.0 0.932 8.17 1.14 1.62 3.13 2.60 1.36 
15.5 18.6 1.25 4.52 1.00 1.86 2.74 3.75 1.19 
16.5 14.7 0.658 4.18 0.986 5.65 2.71 1.04 1.23 
17.5 12.6 0.815 8.56 1.31 -0.367 2.70 1.49 1.08 
18.5 10.1 0.766 6.61 1.30 -1.293 2.92 3.02 1.16 
19.5 9.40 0.807 3.48 1.40 3.62 3.22 0.974 1.17 
20.5 10.0 0.687 10.9 1.37 1.02 2.85 1.90 1.12 
21.5 7.32 0.702 10.3 1.37 1.03 3.08 1.91 1.18 
22.5 8.21 0.705 4.23 1.06 0.647 2.92 1.32 1.17 
23.5 7.22 0.797 7.83 1.26 2.02 2.50 3.94 1.22 
24.5 4.62 0.602 9.65 1.25 7.05 2.44 4.58 1.10 
25.5 6.57 0.833 8.90 1.05 3.15 3.25 3.44 0.978 
26.5 4.38 0.631 9.33 1.50 5.49 2.55 4.69 1.44 
27.5 3.67 0.448 8.66 0.981 5.22 2.99 5.35 0.917 
28.5 4.48 0.591 11.6 1.09 4.90 2.82 5.23 0.989 
29.5 3.86 0.601 11.5 1.51 10.3 2.67 6.72 1.48 
30.5 3.86 0.698 11.2 1.63 10.7 2.89 6.64 1.59 
31.5 2.35 0.650 8.41 1.33 5.67 3.37 8.22 1.29 
32.5 2.36 0.711 9.35 2.01 4.38 3.65 7.25 2.05 
33.5 2.52 0.750 6.63 1.38 6.85 4.20 6.15 1.29 
34.5 3.89 0.847 8.24 1.61 11.3 4.69 7.12 1.44 
35.5 2.73 0.910 4.22 2.33 8.63 4.64 14.9 2.42 

*Midpoint depth 
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