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ABSTRACT 
Alexander James Riemen: Augmentation of Structural Stability in Model Peptide Systems 

Through Redesign and Post-Translational Modifications.   
(Under the direction of Marcey L. Waters) 

 
Investigation of the driving forces that dictate protein folding, molecular recognition and 

biomolecular interactions is paramount for our understanding of complex biological 

processes. Post-translational modifications of proteins are a key component of cell signaling. 

Such modifications on the N-terminal tails of histone proteins are known to regulate gene 

transcription in eukaryotic organisms. Two modifications of particular interest to histone 

proteins are methylation of lysine and phosphorylation of serine, both which are known to 

modulate gene transcription. To determine how these modifications affect β-sheet structure, 

they were investigated in model β-hairpin systems. Small β-hairpin systems allows for the 

description and quantification of specific interactions which leads to a deeper understanding 

of the driving forces involved in complex biological processes.   

Phosphorylated amino acids were incorporated into a designed β-hairpin peptide to study 

the effect on β-hairpin structure when the phosphate group is positioned to interact with a 

tryptophan residue on a neighboring strand. It is shown that phosporylation destabilizes the 

hairpin structure. The incorporation of two tryptophan residues to form an aromatic pocket 

that interacts with a lysine or N-methylated lysine was investigated in a β-hairpin peptide 

system.  This tryptophan pocket results in an enhancement in the stability of the β-hairpin.    

Using a combination of phosphorylation and methylation, we were able to design a β-hairpin 

peptide in which the stability can be controlled through incorporation of the different 
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posttranslational modifications. Incorporation of dimethylated lysine results in an increase in 

hairpin stability, while phosphorylation of serine completely unfolds the hairpin.  

A naturally occurring β-hairpin in Ubiquitin was also redesigned to investigate how 

alternative interactions affect the fold of a natural system.  These studies indicate that 

deletion of Met1 and Val17 from results in a destabilization in hairpin structure by 0.7 

kcal/mol. 

Initial studies were conducted to determine the necessary requirements to promote 

favorable tertiary contacts between a β-hairpin α-helix and an for future designed systems.  

Peptides based on fragments of the GB1 protein that form an α-helix and a β-hairpin in the 

native protein were modified to promote their prospective secondary structure and were 

subsequently investigated. However, the experiments conducted yielded ambiguous results. 
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CHAPTER I 
 

INTRODUCTION 
 

A. Background and Significance. 

Since the famous Anfinsen experiment that demonstrated that the amino acid sequence of 

a protein can dictate its 3-dimensional structure1, extensive research has been conducted to 

understand the driving forces of protein folding and our ability to predict structure and 

function based on amino acid sequence. The ability to custom tailor proteins for a specific 

function has utility in a variety of areas including medicine and industry, making protein 

design an important field of research.  Protein design also offers the ultimate test of our 

understanding of fundamental forces that dictate the structure and function of proteins.  Many 

approaches are being utilized to tackle this complex problem. Examples include 

computational based approaches, rational design methodologies and iterative library 

generation also referred to as directed evolution.2 Many design studies have been performed 

on smaller peptide systems that folded into a variety of secondary and tertiary structures to 

determine the importance of local interactions in specific structure formation.3

                                                           
1 Sela, M.; Anfinsen, C. B.; Harrington, W. F. Biochim Biophys Acta 1957, 26, 502-512. 

 These model 

2 Jackel, C.; Kast, P.; Hilvert, D. Annual Review of Biophysics 2008, 37, 153-173. 

3 (a) Hill, R. B.; Raleigh, D. P.; Lombardi, A.; Degrado, W. F. Acc Chem Res 2000, 33, 745-
754. (b) Ali, M. H.; Taylor, C. M.; Grigoryan, G.; Allen, K. N.; Imperiali, B.; Keating, A. E. 
Structure 2005, 13, 225-234. (c) Dahiyat, B. I.; Mayo, S. L. Science 1997, 278, 82-87. (d) 
Dai, Q. H.; Tommos, C.; Fuentes, E. J.; Blomberg, M. R. A.; Dutton, P. L.; Wand, A. J. J Am 
Chem Soc 2002, 124, 10952-10953. (e) DeGrado, W. F. Science 1997, 278, 80-81. (f) 
Imperiali, B.; Ottesen, J. J. J Pept Res 1999, 54, 177-184. (g) Kraemer-Pecore, C. M.; 
Lecomte, J. T. J.; Desjarlais, J. R. Protein Sci 2003, 12, 2194-2205. (h) Lim, A.; Saderholm, 
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system studies have lead to general rules for de novo design of peptides that fold into desired 

secondary structure such as α-helices and β-sheets. In fact some of these systems can even be 

designed to interconvert between different structures depending specific conditions, i.e. pH 

or temperature.4

B. β-Hairpins as model systems and their design principles. 

 Despite the many advancements in de novo protein design, there is still 

much work to be done before rational protein design becomes a mundane task. The goal of 

work in this thesis is to study the non-covalent interactions that contribute to structure 

stability in model peptide systems through rational iterative design. We have focused on 

further elucidating the factors that contribute to β-hairpin formation in short peptide 

sequences.  

General design principles are known in great detail for α-helical structure.3a,3e,5 

Understanding of factors that contribute to β-sheet formation in aqueous solution lag behind 

that of the α-helix. This is due to the fact that many sequences based on short segments of 

naturally occurring β-sheets tend to aggregate or are poorly folded in aqueous solution. 

However, in the early 1990’s short peptides (< 20 residues) that fold autonomously into 

monomeric, antiparallel β-sheet structures in aqueous solution were discovered leading to an 

explosion of research on this secondary structure.6

                                                                                                                                                                                    
M. J.; Makhov, A. M.; Kroll, M.; Yan, Y. B.; Perera, L.; Griffith, J. D.; Erickson, B. W. 
Protein Sci 1998, 7, 1545-1554. 

 Investigation on peptides that form β-

hairpins (where the β-hairpin is considered the smallest isolable unit of a β-sheet) has made 

considerable progress in defining the factors that contribute to the formation of stable β-sheet 

 
4 Reviewed in Ambroggio, X. I.; Kuhlman, B. Curr Opin Struct Biol 2006, 16, 525-30. 

5 Reviewed in Micklatcher, C.; Chmielewski, J. Curr Opin Chem Biol 1999, 3, 724-729. 

6 Reviewed in Gellman, S. H. Curr Opin Chem Biol 1998, 2, 717-725. 
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secondary.6,7 A β-hairpin structure consists of 2 antiparallel β-sheet strands connected though 

a turn sequence (Figure 1.1). 

 

Figure 1.1 Schematic representation of a 12 residue β-hairpin peptide. Hydrogen bonding 
between strands is shown in red. Key NHB residues are indicated as i, i-2, j and j+2. The 
Asn-Gly type I’ turn sequence is highlighted in green. 
 

Studies on β-hairpin peptides have revealed factors necessary for the formation of a 

stable hairpin fold which include the turn sequence, side chain-side chain interactions, and 

individual amino acid β-sheet propensities.6,8,9

                                                           
7 (a) Searle, M. S. Biopolymers 2004, 76, 185-195. (b) Smith, C. K.; Regan, L. Acc Chem Res 
1997, 30, 153-161. (c) Searle, M. S. J Chem Soc Perkin Trans 2 2001, 1011-1020. (d) 
Waters, M. L. Biopolymers 2004, 76, 435-445. 

  In particular, the proper turn sequence is very 

important for proper strand alignment and stability, where sequences that forms a Type I’ or 

Type II’ are very strong promoters of β-hairpin formation.  The Type I’ and Type II’ 

conformation is ideal for imbuing a right-handed twist which occurs in the strands 

composing an antiparrallel β-sheet.6  Hence, turn sequences that are known to adopt Type I’ 

8 Stotz, C. E.; Borchardt, R. T.; Middaugh, C. R.; Siahaan, T. J.; Vander Velde, D.; Topp, E. 
M. J Pept Res 2004, 63, 371-382. 

9 Ramirez-Alvarado, M.; Kortemme, T.; Blanco, F. J.; Serrano, L. Bioorg Med Chem 1999, 
7, 93-103. 
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or II’ conformations were used in the designed β-hairpin systems presented throughout this 

thesis.  

Another major contributing factor to hairpin stability is the interaction between side 

chains on the opposite strands of the β-sheet particular those located in non-hydrogen 

bonding (NHB) positions (Figure 1.1). These residues tend to have the greatest interaction 

with each other due to their orientation at these positions, where the side chains are pointed at 

the opposite cross strand in the antiparallel β-sheet configuration.10 β-Hairpin studies on 

these residues have been used to measure interaction energies between side chains with 

varied non-covalent interactions such as hydrogen bonding11, salt bridge formation12,13, π-

π12,14, and cation-π interactions15,16

β-Hairpin peptides are excellent model systems for studying non-covalent interactions 

that guide protein folding, molecular recognition and biomolecular interactions for multiple 

. For the aforementioned reasons, we choose these 

residues to conduct extensive studies on biologically relevant interactions and elucidate 

additional design principles for β-sheet. It is worth noting that a majority of the hairpin 

peptides in this thesis are named by the residues in the NHB sites i-2, i, j and j+2 since these 

are the only residues that vary between systems, with exception to those in chapters 5 and 6.  

                                                           
10 Syud, F. A.; Stanger, H. E.; Gellman, S. H. J Am Chem Soc 2001, 123, 8667-8677. 

11 Sharman, G. J.; Searle, M. S. J Am Chem Soc 1998, 120, 5291-5300. 

12 Kiehna, S. E.; Waters, M. L. Protein Sci 2003, 12, 2657-2667. 

13 Searle, M. S.; Griffiths-Jones, S. R.; Skinner-Smith, H. J Am Chem Soc 1999, 121, 11615-
11620. 

14 Tatko, C. D.; Waters, M. L. Org Lett 2004, 6, 3969-3972. 

15 Tatko, C. D.; Waters, M. L. Protein Sci 2003, 12, 2443-2452. 

16 Hughes, R. M.; Waters, M. L. J Am Chem Soc 2005, 127, 6518-9. 
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reasons. Their proton NMR spectra are well dispersed making analysis by conventional 1D 

and 2D NMR techniques possible. Folding of β-hairpin peptides has been shown to be two-

state17

C. NMR structural characterization of β-Hairpins peptides. 

, which allows for quantification of free energies, and direct study of individual side 

chain-side chain interactions.    

Since NMR β-hairpin characterization is used extensively throughout this thesis, a 

succinct explanation of the methods used to analyze these structures is warranted (additional 

details are provided in the experimental section of each chapter). A number of methods are 

used to both confirm β-haripin structure and quantify β-hairpin stability. Measuring the 

chemical shift of the Hα residues and comparing them to random coil controls (Figure 1.2a) 

is commonly used to confirm structure. Relative downfield chemical shifts greater than 0.1 

ppm are indicative of β-sheet formation (Figure 1.3a).18 Another indicator of β-hairpin 

formation, albeit less frequently used in this thesis, is the chemical shift of the backbone 

amide protons relative to random coil chemical shift (Figure 1.3b). Extensive downfield 

shifting is expected at residues participating in hydrogen bonding with cross strand residues 

when forming an anti parallel β-sheet, i.e. residues in HB positions. Additionally, the 

splitting pattern of Gly in the Asn-Gly turn sequence is also a good indicator of β-hairpin 

formation.19

                                                           
17 Streicher, W. W.; Makhatadze, G. I. J Am Chem Soc 2006, 128, 30-31. 

 The Hαs in this Gly residue are diasterotopic and their chemical shifts differ 

18 Sharman, G. J.; Griffiths-Jones, S. R.; Jourdan, M.; Searle, M. S. J Am Chem Soc 2001, 
123, 12318-12324. 

19 Griffiths-Jones, S. R.; Maynard, A. J.; Sharman, G. J.; Searle, M. S. Chem Commun 1998, 
789-790. 
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significantly in the β-hairpin conformation. The more well folded the peptide is the greater 

the splitting, between the two protons (Figure 1.3c). 

       

(a) (b)   

Figure 1.2 Schematic representations of NMR control peptides. (a) Example of unstructured 
peptides used to obtain random coil chemical shifts. (b) Example of cyclized fully folded 
control β-hairpin linked through disulfide bond at the termini.  
 

Through the use of a fully folded control peptide (Figure 1.2a) the extent of β-sheet 

formation can be determined in the terms of fraction folded. Fraction folded represents the 

relative populations of peptides in β-hairpin conformation verses peptides in an unfolded 

state. Since interconversion between a folded state and an unfolded state is fast on the NMR 

time scale, the Hα chemical shifts of represent the average of the distribution between the 

two populations, therefore allowing for quantification of the fraction folded. The fraction 

folded can be determined on a per residue basis by comparing the Hα chemical shift to the 

fully fold chemical shift relative to random coil chemical shift. Overall hairpin stability can 

then be assessed through averaging of the Hα at the HB positions. The HB sites have been 

shown to be the most accurate representation of the fraction folded due to minimal 

interaction with cross strand residues that can influence chemical shifts.20

                                                           
20 Syud, F. A.; Espinosa, J. F.; Gellman, S. H. J Am Chem Soc 1999, 121, 11577-11578. 

 Additionally, 
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comparing the diastereotopic Hα Gly splitting to the fully folded control Gly splitting also 

allows for an accurate determination of overall fraction folded.13    

(a) (b)  

(c)   

Figure 1.3 (a) Example Hα shifts for a 12 residue β-hairpin peptide (hydrogen bonded 
residues in red squares). (b) Example backbone amide shifts from a β-hairpin peptide 
(hydrogen bond residues in red squares). (c) Example Gly splitting from a Type I’ Asn-Gly 
turn in a β-hairpin. 
 

NOEs are another common indicator of β-hairpin structure. They can indicate proximity 

between residues on opposite strands, confirming the presence of a folded state and also 

verify correct strand register. However, careful consideration must be taken when 

interrupting NOE data, because of lack of an NOE can be due to a folded, yet highly dynamic 

β-hairpin structure.  Consequently even well-folded β-hairpins typically display critical 

NOEs and ROEs but not an overabundance of them in aqueous solution. 

 

PPM 4.00 3.96 3.92 3.88 3.84 3.80 3.76 3.72 3.68 3.64 3.60 3.56 3.52 3.48 3.44 3.40 3.36 3.32 3.28 



8 
 

D. Post-translational modifications and their importance in chromatin structure.  

A majority of the systems discussed throughout this thesis involve the study of the 

interactions of post-translational modifications (PTMs) in the context of a β-hairpin peptide, 

thus a brief introduction is warranted. PTMs are defined as any modification that occurs to a 

peptide or protein after it has been translated by the ribosome. Large numbers of PTMs are 

known including phosphorylation, methylation, acylation, ubiquitination, and glycoslyation, 

to name a few. These PTMs are involved in a variety of processes ranging form signaling 

(acylation and phosphorylation) to targeting (glycosylation) to tagging proteins for 

degradation (ubiquitination).21

In eukaryotic organisms, DNA is compacted into chromatin, which consists of DNA 

wrapping around an octotmer of histone proteins (H3, H4, H2A, H2B) forming nucleosomes 

(Figure 1.4). The nucleosome is the fundamental unit of chromatin structure which can be 

organized into different high order chromatin structures. The unstructured N-terminal peptide 

tails of histone proteins extend out into solution where they can be covalently modified by a 

variety of enzymatic processes. The PTMs that occur on these histone tails are involved in 

the structuring of chromatin in either a heterochromatin structure in which gene transcription 

is inactivated or a euchromatin structure where genes are actively transcribed.

 Of the PTMs studied in this thesis we focused on two 

important modifications involved in the regulation of chromatin dynamics and gene 

regulation; phosphorylation and methylation.  

22

                                                           
21 Zhang, Y.; Reinberg, D. Genes & Development 2001, 2343-2360. 

 In essence 

these modifications act as a switching mechanism between and “on” or “off” state of gene 

transcription. A variety of PTMs are known to occur on these histone tails including 

22 Strahl, B. D.; Allis, C. D. Nature 2000, 403, 41-45. 
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phosphorylation, acelylation, methylation and ubiquination. These modifications do not 

appear in isolation of each other, and are thought to work in concert through a complex 

signaling pathway often referred to as the “histone code”.22   Discussed in more detail in 

Chapter 4, lysine methylation and serine phosphorylation adjacent to each other on H3 N-

terminal histone tail act as a switching mechanism for recruitment of proteins to the 

chromatin complex that alters it structure.23

 

 Hence, cross talk between these two 

modifications control gene transcription through the promotion (lysine methylation) or the 

disruption (serine phosphorylation) of a protein-protein interaction.      

(a) (b)  

Figure 1.4 (a) Packing of DNA within the nucleus. (b) Crystal structure of a histone DNA 
complex (pdb code: 1EQZ). 
 
E. Conclusion. 

The aim of the studies presented throughout this text is two fold: (1) to increase our 

understanding of the driving forces responsible for β-sheet stabilization and (2) to gain 

insights into the interactions of biologically significant PTMs in model β-hairpin systems.  

                                                           
23 Fischle, W.; Tseng, B. S.; Dormann, H. L.; Ueberheide, B. M.; Garcia, B. A.; 
Shabanowitz, J.; Hunt, D. F.; Funabiki, H.; Allis, C. D. Nature 2005, 438, 1116-22. 
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Although there has been substantial amount information gained in regards to formation of 

stable β-hairpins in aqueous solution, our understanding of design principles for β-sheets still 

lags behind that of the α-helix. Thus, further studies on β-hairpin formation are still relevant. 

As mentioned earlier, the β-hairpin model system also allows for the isolation and study of 

specific interactions. This is ideal for quantify a specific interaction utilized by a complex 

biological system such as the “histone code”.  The work presented in this thesis will improve 

our understanding of protein folding and lead to future novel designed systems, as well as 

provide insights to fundamental forces responsible for effects observed by post translational 

modification.    

 

  

 



  

 

 
  CHAPTER II 

DESTABLIZATION OF β-HAIRPIN STRUCTURE THROUGH UNFAVORBALE 

PHOSPHATE INTERACTIONS 

(Reproduced, in part with permission from Riemen, A.J.; Waters M.L., JACS. 2009, 131, 

14081-14087.) 

 
A. Introduction.  

Phosphorylation of proteins is ubiquitious in cellular processes as a regulatory control. It 

is estimated that about one third of all human proteins are phosphylated.1 Phosphorylation is 

a part of intracellular signal transduction pathways that modulate cellular proliferation, 

macromolecule production, and gene expression.1 Abnormal phosphorylation can be the 

cause or the result of many diseases.1 Currently the most effective method for studying how 

phosphorylation influences protein structure and function is by comparison of crystal 

structures of phosphorylated and unphosphorylated proteins.2

                                                           
1 Cohen, P. Euro J Biochem 2001, 268, 5001-5010. 

 However, not all proteins 

crystallize easily, such as membrane proteins, thus giving an incomplete picture of how 

phosphorylation affects the structure and function of proteins. The study of phosphorylated 

residues on structure in smaller model systems is warranted to obtain a clearer understanding 

of how this post-translational modification can affect structure. 

2 Johnson, L. N.; Lewis, R. J. Chem Rev 2001, 101, 2209-2242. 
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Recently, a body of information on how phosphorylation influences α-helical structure 

has emerged from studies in de novo designed α-helical peptides.3,4,5 Doig and co-workers 

have shown that phosphoserine strongly stabilizes α-helical peptides when positioned near 

the N-terminus, or when positioned to make a favorable salt bridge within the helix.4,5 In a 

native protein, it has also been shown that phosphorylation of serine and threonine can have a 

destabilizing effect within α-helix system, particularly with phosphothreonine.6

Numerous studies on peptides that fold into a β-hairpin conformation have led to a 

thorough understanding of the design elements necessary for β-hairpin formation. However 

the influence of phosphorylation within model β-sheet systems has not yet been extensively 

explored. To this end, we designed a series of β-hairpin peptides to gain insights into the 

effects that phosphorylation can have on a model β-sheet system. 

 In addition, 

the DeGrado laboratory has used phosphorylation as a molecular switch to promote the self 

assembly of de novo designed helical bundles.3  

B. β-hairpin  destabilization through various phosphorylated amino acids. 
 
i. Significance. 
 
Stabilization or destabilizaion via charge-charge interactions with a phosphorylated 

residue are to be expected. However, to our knowledge, no one has investigated whether 

phosphorylation can result in a repulsive interaction with a hydrophobic or aromatic group 

that could affect peptide structure.  Thus, we investigated the destabilizing effect of 

                                                           
3 Signarvic, R. S.; DeGrado, W. F. J Mol Biol 2003, 334, 1-12. 
4 Andrew, C. D.; Warwicker, J.; Jones, G. R.; Doig, A. J. Biochemistry 2002, 41, 1897-1905. 
5 Errington, N.; Doig, A. J. Biochemistry 2005, 44, 7553-8. 
6 Szilak, L.; Moitra, J.; Krylov, D.; Vinson, C. Nat Struct Biol 1997, 4, 112-4. 
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phosphorylated amino acids with tryptophan within a designed β-hairpin peptide.  The goal 

of these studies is to help further delineate the range of structural changes that may occur due 

to phosphorylation particularly in a β-sheet.   

 

ii. Results. 

(a) System Design.  A set of 12-residue peptides designed to autonomously fold into β-

hairpins in aqueous solution was used to investigate the effect of phosphorylation on a side 

chain-side chain interaction with a cross-strand Trp residue on structure. Features that 

influence folding include the turn sequence, the β -sheet propensity of the strand residues, 

and the side chain-side chain interactions.7 All of the β-hairpins peptides contain the 

sequence VNGK to promote favorable type I’ turn. This turn type has been shown to promote 

a β-hairpin structure.8 The SW-1 peptide system was designed to study the effect of 

phosphorylation on a modestly folded β-hairpin sequence containing a serine residue in 

position 2 that is directly cross strand from a tryptophan in position 11 on the non-hydrogen 

bonded (NHB) face of the hairpin (Figure 2.1a). The NHB face is defined as the face of the 

peptide displaying side chains from the non-hydrogen bonded residues in a two stranded β-

sheet.9

                                                           
7 Reviewed in Searle, M. S. J Chem Soc Perkin Trans 2 2001, 1011-1020. 

 On the NHB face the side chains of residues are oriented closer to cross strand residue 

side chains thus giving a larger contribution to hairpin stability through side chain-side chain 

8 (a) Hughes, R. M.; Waters, M. L. J Am Chem Soc 2005, 127, 6518-9. (b) Blanco, F. J.; 
Jimenez, M. A.; Herranz, J.; Rico, M.; Santoro, J.; Nieto, J. L. J Am Chem Soc 1993, 115, 
5887-5888. (c) RamirezAlvarado, M.; Blanco, F. J.; Serrano, L. Nat Struct Biol 1996, 3, 604-
612. (d) Sharman, G. J.; Searle, M. S. Chem Commun 1997, 1955-1956. 
 
9 Syud, F. A.; Stanger, H. E.; Gellman, S. H. J Am Chem Soc 2001, 123, 8667-8677. 
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interactions than those residues on the hydrogen bonded (HB) face as discussed in chapter 1.9  

Subsequently, serine was replaced with threonine and tyrosine at position 2 and their 

phosphorylated analogs to determine the significance of the phosphorylated residue (Figure 

2.1b). Unfolded control peptides 1-9 were synthesized in which each peptide consisted of 

either residues 1-7 composing of the N-terminal arm and turn of the β-hairpin or residues 6-

12 consisting of the C-terminal arm and turn (Figure 2.1c). Cyclic peptides 10-14 were 

synthesized as fully folded controls for each of the β-hairpins. Cyclization was achieved by a 

disulfide bond between cysteine residues at the N and C-termini of the peptides (Figure 

2.1d).  
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Ac-RXVTVNG-NH2

1: X = Ser
2: X = pSer
3: X = Thr
4: X = pThr

5: X = Tyr
6: X = pTyr
7: X = Gln
8: X = Glu

9: Ac-NGKTIWQ

(d) Ac-CRXVTVNGKTIWQC
10: X = Ser
11: X = Thr
12: X = Tyr

13: X = Gln
14: X = Glu

(c)

 
Figure 2.1 (a) Schematic diagram of the designed β-hairpin peptides. Interstrand hydrogen 
bonding and relative orientation of the side chains are indicated. (b) Structure of the 
phosphorylated amino acids. (c) Sequences of unstructured control peptides. (d) Sequences 
of the cyclic control peptides for the fully folded state.  The underline residues form a 
disulfide bond. 
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(b) SW-1 Peptide Structural Studies.  NMR spectroscopy was used to determine to 

what extent the SW-1 peptide and the phosphoserine containing peptide pSW-1 fold into β-

hairpin structures.  Downfield shifting of ≥ 0.1 ppm of the α-protons (Hα) along the peptide 

backbone relative to unfolded values indicates β-hairpin structure as previously discussed in 

chapter 1.10

The pSW-1 peptide was synthesized with a phosphoserine replacing the serine in SW-1 

and characterized by NMR spectroscopy to study the effect of phosphoserine on the β-hairpin 

structure. The Hα shifts of pSW-1 are not as downfield shifted as SW-1 peptide, many of 

which are < 0.1 ppm, indicating that incorporation of a phosphoserine causes a 

destabilization of the β-hairpin structure in this sequence (Figure 2.2a). A decrease in amide 

backbone shifts is also seen at the hydrogen-bonded positions when compared to SW-1 

(Figure 2.2b). NOESY data of pSW-1 show no long distance NOEs, indicating little to no β-

hairpin structure. The lack of long distance NOE’s is indicative of a highly dynamic peptide 

 SW-1 was found to have a majority of Hα shifts above 0.1 ppm compared to the 

unstructured controls, except for the two terminal residues which are typically frayed in β-

hairpins and Asn 6 which is located within the turn of the hairpin (Figure 2.2a). This Asn is 

typically upfield shifted from the unstructured control value due to its conformation in the 

turn. Downfield shifting of backbone amide hydrogens in HB positions relative to random 

coil values also indicates β-sheet structure, which is seen for valine 3, valine 5, and 

isoleucine 10 (Figure 2.2b). NHB residues threonine 4, threonine 9 and tryptophan 11 are 

also significantly downfield shifted.  NOESY data further confirmed that this peptide forms 

the predicted β-hairpin structure (see Experimental Section). 

                                                           
10 Espinosa, J. F.; Munoz, V.; Gellman, S. H. J Mol Biol 2001, 306, 397-402. 
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which may still sample a β-hairpin conformation but spends most of its time in an 

unstructured state. 

Circular Dichroism (CD) experiments were also performed to confirm that there is a loss 

of structure with incorporation of phosphoserine (Figure 2.2c). Since the SW-1 peptide is 

only modestly folded, there is a large negative signal at 197 nm typical of random coil but 

there is also shoulder at 215 nm that indicates β-sheet structure. This shoulder at 215 nm for 

pSW-1 is not observed and a larger random coil signal at 197 nm is present which is 

consistent with the NMR data, reinforcing that pSW-1 has little defined structure. 

  

(a)  (b)  

(c)  

Figure 2.2 (a) Hα chemical shift differences: SW-1 (blue bars, X = serine) and pSW-1 (red 
bars, X = phosphoserine) from random coil peptides in pD 7.0 buffer. The Gly bars reflect 
the Hα separation in the hairpin. (b) Backbone amide chemical shifts of SW-1 and pSW-1. 
(c) Circular dichroism spectra comparison of  SW-1 (blue) and pSW-1 (red) at 25°C in 10 
mM sodium phosphate pH 7.0 buffer. 
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The extent of folding to a β-hairpin by SW-1 and pSW-1 peptides was quantified using 

two methods. The first method utilizes the extent of Hα downfield shifting relative to random 

coil controls and fully folded control as previously described (see Experimental Section). The 

second method utilizes the extent of the diastereotopic glycine Hα splitting located in the turn 

of the hairpin relative to glycine Hα splitting observed in the fully folded control (see 

Experimental Section). SW-1 was found to be 40% folded and pSW-1 only 10% folded 

using both methods (Table 2.1). The extent of destabilization due to phosphoserine was 

calculated to be approximately 1.3 kcal/mol. The destabilization that occurs when the 

phosphoserine is incorporated in this hairpin is believed to result from an unfavorable 

interaction between the phosphate group and the tryptophan indole ring directly across from 

it. This destabilization may be caused by repulsion of the negatively charged phosphate and 

the electron rich indole ring of cross-strand tryptophan, or through steric clash between the 

large phosphate group and the tryptophan, or a combination of both. 

Table 2.1 Fraction folded and ΔG of folding for β-hairpin peptides. Values calculated from 
data obtained at 25 °C, 50 mM potassium phosphate-d2, pD 7.0 (uncorrected), referenced to 
DSS. 

Peptide Fraction Folded  
(Gly  Splitting)

Fraction Folded 
a (Hα)

ΔG Folding  
b (kcal/mol) 

ΔΔG  
(pXW-1 – XW-1) 

SW-1 0.41 (±0.01) 0.40 (±0.04) 0.23 (±0.05)  
pSW-1 0.10 (±0.01) 0.07 (±0.02) 1.53 (±0.05) 1.3 
QW-1 0.49 (±0.01) 0.50 (±0.1) -0.03 (±0.09)  
EW-1 0.39 (±0.01) 0.3 (±0.2) 0.28(±0.09) 0.31 
TW-1 0.43 (±0.01) 0.40 (±0.06) 0.2 (±0.1)  

pTW-1 0.21 (±0.01) 0.12 (±0.06) 1.1 (±0.2) 0.9 
YW-1 0.88 (±0.02) 0.82 (±0.07) -0.90(±0.04)  

pYW-1 0.62 (±0.02) 0.5 (±0.3) 0.1 (±0.2) 1.0 
(a) Error determined by chemical shift accuracy on NMR spectrometer.  (b) Average of the Hα values from Val 
3, Val 5, Orn 8, and Ile 10. The standard deviation is in parentheses. 
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(c) pH Studies.  To determine whether the destabilization was caused by electrostatic 

repulsion of the phosphate group with the electron rich indole ring of tryptophan or a steric 

clash of the phosphate group with the tryptophan a pH study was performed on SW-1 and 

pSW-1. By varying the pH and thus the charge on the phosphate group, a change in fraction 

folded will indicate whether there is an electronic component to the destabilization. A 

comparison of the fraction folded verses pH for both SW-1 and pSW-1 is given in Figure 2.3 

It was observed that as the pH increases, the SW-1 fraction folded is constant, while the 

pSW-1 fraction folded decreases. Interestingly, the fraction folded at pH 2.5 and 4.7 is 

unchanged for pSW-1, which correlates to a -1 charge on phosphate, while at pH 7.4 the 

fraction folded is lower and the phosphate group now has a -2 charge, and a higher fraction 

folded is observed at pH 1.2 where the phosphate group is uncharged. It appears that as the 

charge state of the phosphoserine increases, the degree of folding decreases, indicating that 

the charge of the phosphate is a predominant contributor to the destabilization of the β-

hairpin. However, sterics appears to play some role in the destabilization as pSW-1 is less 

folded than SW-1 even in a neutral charge state of the phosphoserine.  

 

Figure 2.3 pH study of fraction folded of SW-1 (blue) and pSW-1 (red). Fraction folded was 
determined by NMR glycine splitting in buffers with the pD indicated at 20 °C. 
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(d) Double Mutant Studies.  To determine whether the phosphoserine-tryptophan 

interaction is the major destabilizing interaction, a double-mutant cycle was performed 

(Figure 2.4).10 In the double-mutant cycle, both of the interacting residues are mutated 

individually and together. The single mutants, B and C, disrupt the side-chain-side-chain 

interaction in A, but may result in other changes that affect the stability of the β-hairpin, such 

as the β-sheet propensity. The double mutant, D, corrects for all unintended changes that 

affect the β-hairpin stability. Thus, the sum of the stabilities of peptides A and D minus those 

of the single mutants, B and C, provides the side-chain-side-chain interaction of 

phosphoserine and tryptophan. The peptides SW-1 and pSV-1 were used as individual 

mutants and SV-1 was synthesized as the double mutant. pSV-1 contains a phosphoserine at 

position 2 and a valine at position 11 to replace the tryptophan and SV-1 contains a serine at 

position 2 and a valine at position 11. The fraction folded and ΔG of folding for all the 

peptides in the double-mutant cycle are given in Table 2.2 These studies were preformed in a 

pD 4 buffer solution due to low solubility of SV-1 and pSV-1 at pD 7. The interaction of the 

phosphoserine-tryptophan was calculated to be a destabilization of 0.5 kcal/mol, which is the 

same as the overall destabilization between SW-1 and pSW-1 at pH 4, therefore indicating 

that this interaction is the direct cause of the destabilization of β-hairpin.  Indeed, it is 

interesting to note that phosphorylation has no impact whatsoever on folding of the SV-

1/pSV-1 peptides, which provides further support that the nature of the destabilization is 

electronic rather than steric. 
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ΔGA - ΔGB - ΔGC + ΔGD = ΔΔG(pX-W) 

Figure 2.4 Double-mutant cycle diagram for interaction between cross-strand phosphoserine 
and tryptophan. The cross-strand interaction between phosphoserine and tryptophan is 
determined by subtracting the stability of B and C from A and D. 
 
Table 2.2 Double Mutant Cycle Data for pSW-1 and mutants at pH 4.a

 

  

Peptide Fraction Folded ΔGb f
(kcal/mol) 

  ΔΔG(pXW)
(kcal/mol) 

  

A pSW-1 0.23 (±0.01) 0.74 (±0.05)  

B SW-1 0.41 (±0.01) 0.21 (±0.05)  

C pSV-1 0.22 (±0.02) 0.75 (±0.05)  

D SV-1 0.22 (±0.02) 0.75 (±0.05)  
    0.53 

(a) Conditions: 20 °C, 50 mM sodium acetate-4, pD 4.0. (b) ΔG of folding was calculated from the fraction 
folded using equation 3.  Error determined by chemical shift accuracy on NMR spectrometer. 

 

(e) EW-1 and QW-1 Peptide Studies.  To further investigate the electrostatic 

destabilization of hairpin, the peptide EW-1 was study with a glutamic acid at position 2 

replacing the phosphoserine. The peptide QW-1 was used as a neutral analog for direct 

comparison to EW-1. NMR characterization showed that QW-1 is in fact more stable than 

EW-1 at pH 7: EW-1 is 24% folded while QW-1 is 50% folded (Figure 2.5a, Table 2.1).  

Comparison of the CD spectra of EW-1 and QW-1 in pH 7 phosphate buffer also indicates 

that QW-1 is more folded than EW-1 (Figure 2.5b). This again shows that placing a 

negatively charged species cross strand from tryptophan in this hairpin system is 

destabilizing. A pH study demonstrates that EW-1 exhibits pH dependence similar to pSW-1 
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(Figure 2.6). At lower pH, EW-1 becomes more folded, just as with pSW-1. In contrast, 

QW-1 is independent of pH. Interestingly, when protonated, glutamic acid is more 

stabilizing than glutamine.  The same was not true for pSW-1 and SW-1, which may suggest 

a greater role for steric repulsion in the case of pSW-1 than EW-1. 

(a) (b)  
Figure 2.5 (a) Hα chemical shift differences: QW-1 (blue bars) and EW-1 (red bars) from 
random coil peptides. Values calculated from data obtained at 25 °C, 50 mM potassium 
phosphate-d2, pD 7.0 The Gly bars reflect the Hα separation in the hairpin. (b) Circular 
dichroism spectra comparison of  SW-1 (blue) and pSW-1 (Red) at 25°C in 10 mM sodium 
phosphate pH 7.0 buffer.  
 
 

 
Figure 2.6 pH study of fraction folded of QW-1 (blue) and EW-1 (red). Fraction folded was 
determined by NMR glycine splitting in buffers with the pH indicated at 20 C. 

 

(f) TW-1 Peptide Studies.  To determine if phosphothreonine, another commonly 

phosphorylated amino acid, has the same effect as phosphoserine, the TW-1 peptide system 

was designed with the same β-hairpin scaffold as SW-1, but with threonine positioned 
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directly cross strand from tryptophan as in the SW-1 peptide (Figure 2.1). NMR analysis of 

the Hα chemical shifts of TW-1 and pTW-1 indicate that destabilization occurs when Thr is 

phosphorylated (Figure 2.7a) to a similar extent as was observed for SW-1 and pSW-1. TW-

1 is about 40% folded while pTW-1 is only 12% folded, giving a destabilization of 

approximately 0.9 kcal/mol (Table 2.1). The CD spectra of TW-1 and pTW-1 corroborate 

the NMR data, indicating that pTW-1 is less stable than TW-1, with TW-1 having a more 

pronounced shoulder at 215 than pTW-1 and pTW-1 having a larger minima at 197 nm 

(Figure 2.7b).  

(a) (b)  

 Figure 2.7 (a) Hα chemical shift differences: TW-1 (blue bars) and pTW-1 (red bars) from 
random coil peptides. Residue X is either threonine (TW-1) or phosphothreonine (pTW-1). 
Values calculated from data obtained at 25 °C, 50 mM potassium phosphate-d2, pD 7.0 The 
Gly bars reflect the Hα separation in the hairpin. (b) Circular dichroism spectra comparison 
of  TW-1 (blue) and pTW-1 (red) at 25 °C in 10mM sodium phosphate pH 7.0 buffer. 

 

(g) YW-1 Peptide Studies.  The effect of tyrosine phosphorylation within the β-hairpin 

model system was also explored. NMR analysis of YW-1 indicates that incorporation of the 

tyrosine cross-strand from the tryptophan stabilizes the hairpin (Figure 2.8a), which is about 

82% folded. The incorporation of phosphotyrosine results in a destabilization of 1.0 kcal/mol 

of the hairpin, which is about 60% folded (Table 2.1). CD spectra confirmed the change in 

stability between YW-1 and pYW-1 showing a strong β-sheet minimum at 215 nm and no 
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random coil minima at 197 nm for YW-1 while pYW-1 has a smaller minimum at 215 nm 

than YW-1 and a minimum at 197 nm (Figure 2.8b).  

 (a) (b)  
Figure 2.8 (a) Hα chemical shift differences: YW-1 (blue bars) and pYW-1-1 (red bars) 
from random coil peptides. Residue X is either tyrosine (YW-1) or phosphotyrosine (pYW-
1). Values calculated from data obtained at 25 °C, 50 mM potassium phosphate-d2, pD 7.0 
The Gly bars reflect the Hα separation in the hairpin. (b) Circular dichroism spectra of YW-1 
(blue) and pYW-1 (red) at 25°C in 10mM sodium phosphate pH 7.0 buffer. 

 

The larger degree of folding of YW-1 and pYW-1 relative to their SW-1 and TW-1 

analogs is due to a favorable interaction between tyrosine and the tryptophan. It has been 

previously shown that aromatic groups cross-stand in NHB positions of β-hairpins have a 

stabilizing effect via edge-face aromatic interactions.11

                                                           
11 (a)Tatko, C. D.; Waters, M. L. Protein Sci 2003, 12, 2443-2452. (b) Cochran, A. G.; 
Skelton, N. J.; Starovasnik, M. A. Proc Nat Acad Sci U.S.A. 2001, 98, 5578-5583. (c) 
Scrutton, N. S.; Raine, A. R. C. Biochem. J. 1996, 319, 1-8. 

 NMR characterization of the aromatic 

region of YW-1 suggests that Tyr2 interacts with Trp11 in an edge-face interaction as well, 

with the ortho-proton of Tyr2 directed towards the face of Trp11. The ortho and meta 

hydrogens on the tyrosine are not equivalent, with one ortho proton significantly upfield 

shifted (Figure 2.9). The observation of two sets of ortho and meta protons indicates 

restricted rotation of the aromatic ring of Tyr.  In the less folded pYW-1, the ortho-proton on 
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Tyr is shifted about half as much as in YW-1. The lesser extent of aromatic proton shifting is 

consistent with these residues interacting less in the destabilized hairpin.  

 
Figure 2.9  Upfield shifting of Tyr protons in YW-1 and pYW-1 relative to random coil 
values determined from control peptides 5 and 6. 

 

Since the YW-1 hairpin has a very high stability due to the favorable contacts of the 

tyrosine, the overall hairpin stability may not be directly destabilized by the interaction of the 

phosphotyrosine with tryptophan. To address this issue, a double mutant cycle was 

performed as described in subsection ii(d), where valine replaces tryptophan in the 

appropriate mutant peptides. As mentioned previously, the double mutant cycle was 

performed at pH 4 due to solubility limitations of the valine-containing peptides at pH 7.  

The double mutant study found that the destabilization due to the interaction between 

phosphotyrosine and tryptophan is approximately 0.4 kcal/mol at pH 4 (Table 2.3). This 

destabilization is close to the total energy lost upon phosphorylation of Tyr at pH 4 (ie pYW-

1 relative to YW-1), which is 0.6 kcal/mol.  
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Table 2.3 Double mutant Cycle data for pYW-1 and mutants at pH 4.a

 

  

Peptide Fraction 
Foldedb 

ΔGf  
(kcal mol-1) 

ΔΔG(pXW) 
(kcal mol-1) 

A pYW-1 0.72 (±0.01) -0.56 (±0.05)  
B YW-1 0.88 (±0.01) -1.16 (±0.05)  
C PTyrV-1 0.33 (±0.01) 0.42 (±0.05)  
D TyrV-1 0.40  (±0.01) 0.24 (±0.05)  
    0.42 

(a) Conditions: 20 °C, 50 mM sodium acetate-4, pD 4.0 (uncorrected). (b) ΔG of folding was calculated from 
the fraction folded using equation 3. Error determined by chemical shift accuracy on NMR spectrometer.  

 

iii. Discussion. 

The studies described in this section demonstrate a destabilization of β-hairpin structure 

upon phosphorylation of a residue (Ser, Thr, Tyr) when it is cross-strand from Trp.  A pH 

dependence was demonstrated, in which protonation of the acidic residue increases the 

stability of the hairpin, consistent with a repulsive electrostatic interaction.  A similar pH 

dependent destabilization of the folded state was found for Glu across from Trp.  In the case 

of Ser, the same effect is not observed in a control peptide in which Trp is replaced by Val, 

indicating that the aromatic nature of the cross-strand residue plays a role in the decreased 

stability of phosporylated peptides.  These results are all consistent with a repulsive anion-π 

interaction as the driving force of for destabilization of the folded state.   

Substituting different phosphorylated residues (serine, threonine, tyrosine) in the β-

hairpin peptide sequence presented here has a similar destabilizing effect of 0.9 – 1.3 

kcal/mol on the β-hairpin structure at pH 7, in which the phosphate is a dianion. This is 

interesting because tyrosine analog YW-1 is considerably more stable than TW-1 and SW-1, 

yet the amount of destabilization caused by incorporation of phosphorylated residue is 

roughly the same. In contrast, the magnitude of the repulsive Glu-Trp interaction is 0.3 
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kcal/mol, which is similar to the magnitude of the phosphoSer-Trp interaction at pH 4, in 

which the phosphate is a mono-anion.  It seems that in this hairpin system the phosphate-

aromatic interaction is not significantly dependent of the residue that the phosphate group is 

attached; the charge state has a larger influence on the magnitude of destabilization.  

Lawrence and coworkers have designed fluorescent reporter peptides for protein tyrosine 

kinases that produce a fluorescent signal upon phosphorylation of tyrosine. These tyrosine 

kinase substrates contain a tyrosine that quenches the fluorophore pyrene in close proximity 

through an aromatic interaction.  Upon phosphorylation of the tyrosine a fluorescent signal is 

generated due to the disruption of the aromatic interaction, allowing these peptides to act as a 

fluorescence reporter of tyrosine kinases. It was hypothesized that the charged and bulky 

phosphate in combination with a less electron rich π system of phosphotyrosine was 

responsible for the disruption of the tyrosine-pyrene interaction.12

iv. Conclusion. 

  These fluorescence 

reporter peptides appear to undergo a similar interaction as is observed in YW-1 and pYW-1, 

in which the π-π interaction is disrupted by phosphorylation. Indeed it maybe possible to 

design alternative reporter systems using β-hairpin peptides. 

We have shown that incorporation of phosphorylated residues cross strand from 

tryptophan in a β-hairpin results in the destabilization of the hairpin structure. The nature of 

this interaction is primarily a charge-charge repulsion of the negatively charged phosphate 

group and the electron rich indole ring of tryptophan: a repulsive anion-π interaction. The 

magnitude of the destabilization is dependent on pH and ranges from 0.4 kcal/mol to 

approximately 1 kcal/mol.  These findings demonstrate a novel mechanism by which 

                                                           
12 Lawrence, D. S.; Wang, Q. ChemBioChem 2007, 8, 373-378. 
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phosphorylation may influence protein structure and function. This interaction may also be 

designed into peptide systems as a means of structure control.  

C. Experimental. 

i. Synthesis and Purification of Peptides.  

Peptides were synthesized by automated solid phase peptide synthesis on an Applied 

Biosystems Pioneer Peptide Synthesizer using N-9-Fluorenylmethyloxycarbonyl (Fmoc) 

protected amino acids on a Polyethylene glycolaylated phenylalanine ammonia lysase poly 

styrene (PEG-PAL-PS) resin. Fmoc-[N]-protected and Benzl-[O]-protected phosphoserine, 

phosphothreoine, and phosphotyropsin were purchased from AnaSpec. Activation of amino 

acids was performed with 2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethyluronium 

hexafluorophosphate (HBTU), N-hydroxy benzotriazole H2O (HOBT) in the presence of 

diisopropylethyl amine (DIPEA) in dimethylformamide (DMF). Peptide deprotection was 

carried out in 2% 1,8 diazabicyclo[5.4.0]undec-7-ene (DBU), 2% piperidine in DMF for 

approximately 10 minutes.  Extended cycles (75 min) were used for each amino acid 

coupling step.  All control peptides where acetylated at the N-terminus with 5% acetic 

anhydride, 6% lutidine in DMF for 30 min. Cleavage of the peptide from the resin was 

performed in 95:2.5:2.5 Trifluoroacetic acid (TFA): Ethanedithiol or Triisopropylsilane 

(TIPS): water for 3 h.  Ethanedithiol was used as a scavenger in for sulfur containing 

peptides. TFA was evaporated and cleavage products were precipitated with cold ether. The 

peptide was extracted into water and lyophilized. It was then purified by reverse phase 

HPLC, using a Vydac C-18 semipreparative column and a gradient of 0 to 100% B over 40 

min, where solvent A was 95:5 water:acetonitrile, 0.1% TFA and solvent B was 95:5 



28 
 

actonitrile:water, 0.1% TFA. After purification the peptide was lyophilized to powder and 

identified with ESI-TOF mass spectroscopy.  

ii. Cyclization of peptides.  

Cyclic control peptides were cyclized by oxidizing the cysteine residues at the ends of the 

peptide via stirring in a 10 mM phosphate buffer (pH 7.5) in 1% Dimethyl sulfoxide (DMSO) 

solution for 9 to 12 hours. The solution was lyophilized to a powder and purified with HPLC 

using the method described above.  

iii. CD Spectroscopy.  

CD spectroscopy was performed on an Aviv 62DS Circular Dichroism 

Spectrophotometer. Spectra were collected from 260 nm to 185 nm at 25°C, 1 sec scanning.   

iv. NMR Spectroscopy.  

NMR samples were made to a concentration of 1 mM in dideuterium monoxide (D2O) 

buffered to pD 4.0 (uncorrected) with 50 mM deuterated sodium acetate (NaOAc-d3), 24 

mM deuterated acetic acid (AcOH-d4), 0.5 mM 3-(Trimethylsilyl)-1-propanesulfonic acid 

sodium salt (DSS), or pD 7.0 (uncorrected) with 50 mM deuterated potassium phosphate 

(KPOD4), 0.5 mM DSS. Samples were analyzed on a Varian Inova 600-MHz instrument.  

One dimensional spectra were collected by using 32-K data points and between 8 to 128 

scans using 1.5 sec presaturation. Two dimensional total correlation spectroscopy (TOCSY) 

and nuclear Overhauser spectroscopy (NOESY) experiments were carried out using the pulse 

sequences from the chempack software. Scans in the TOCSY experiments were taken 16 to 

32 in the first dimension and 64 to 128 in the second dimension. Scans in the NOESY 

experiments were taken 32 to 64 in the first dimension and 128 to 512 in the second 

dimension with mixing times of 200 to 500 msec. All spectra were analyzed using standard 
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window functions (sinbell and gaussian with shifting). Presaturation was used to suppress the 

water resonance.  Assignments were made by using standard methods as described by 

Wüthrich.13

v. Determination of Fraction Folded.  

  All experiments were run at 298 K (Hα shift) or 293.15K (double mutant and 

pH studies). 

To determine the unfolded chemical shifts, 7-mers were synthesized as unstructured 

controls and cyclic peptides were synthesized for fully folded. The chemical shifts for 

residues in the strand and one turn residue were obtained from each 7-mer peptide. The 

chemical shifts of the fully folded state were taken from the cyclic peptides.  The fraction 

folded on a per residue bases was determined from Equation 1. 

Fraction Folded = [δobs – δ0]/[ δ100 – δ0],        [1] 

where δobs is the observed Hα chemical shift, δ100 is the Hα chemical shift of the cyclic 

peptides, and δ0 is the Hα chemical shift of the unfolded 7-mers. The overall fraction folded 

for the entire peptide was obtained by averaging the fraction folded of resides Val 3, Lys 8, 

and Ile 10. These residues are in hydrogen bonded positions have been shown to be the most 

reliable in determining fraction folded.14

Fraction Folded = [ΔδGly Obs]/[ ΔδGly 100], [2] 

  The overall fraction fold was also determined using 

the extent of Hα glycine splitting observed in the turn residue Gly10 given in Equation 2. 

where ΔδGly Obs is the difference in the glycine Hα chemical shifts of the observed, and ΔδGly 

100 is the difference in the glycine Hα chemical shifts of the cyclic peptides. The ΔG of 

                                                           
13 Wüthrich, K. NMR of Proteins and Nucleic Acids; Wiley: New York, 1986. 
14 Syud, F. A.; Espinosa, J. F.; Gellman, S. H. J Am Chem Soc 1999, 121, 11577-11578. 
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folding at 298 K for the peptides was calculated using Equation 3 where f is the fraction 

folded. 

ΔG = -RT ln (f/(1-f)), [3] 
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Figure 2.10 1HNMR of Peptide SW-1: Ac-Arg-Ser-Val-Thr-Val-Asn-Gly-Lys-Thr-Ile-Trp-
Gln-NH2 

Table 2.4 Proton Chemical Shift Assignments for Peptide SW-1 at pH 7. 

Residue α β γ δ ε Amide 
R 4.34 1.8 1.6 3.14  8.12 
S 4.64 3.65    8.37 
V 4.16 2 0.87   8.4 
T 4.67 4.02 1.09   8.37 
V 4.32 2.01 0.86   8.56 
N 4.58 2.93 2.66   9.02 
G 4.02,3.78     8.48 
K 4.52 1.8 1.72 1.69 2.95 8.06 
T 4.47 4 0.97   8.48 
I 4.27 1.79 N/A 0.81  8.56 

W 4.73 3.2,3.24 H5 7.12, H2/6 7.21, H7 7.47,H4 7.59 8.4  
Q 4.25 1.8 2.14   8.27 

 

PPM 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 -0.4 
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Figure 2.11 1HNMR of Peptide pSW-1: Ac-Arg-Ser(PO3)-Val-Thr-Val-Asn-Gly-Lys-Thr-
Ile-Trp-Gln-NH2 

Table 2.5 Proton Chemical Shift Assignments for Peptide pSW-1 at pH 7. 

Residue α β γ δ ε Amide 
R 4.32 1.8 1.66 3.19  8.22 

S-PO3 4.52 4.02    8.6 
V 4.23 2.1 0.93   8.22 
T 4.42 4.1 1.15   8.3 
V 4.13 2.05 0.92   8.39 
N 4.66 2.89,2.78    8.73 
G 3.95,3.89     8.39 
K 4.42 1.79 1.42 1.72 2.97 8.02 
T 4.32 4.06 1.07   8.29 
I 4.17 1.8 N/A 0.8  8.31 

W 4.68 3.25 H6 7.14,H5 7.24,H2 7.28,H4 7.48,H7  7.63 8.24 
Q 4.21 1.81 2.13   8.09 

 

 

PPM 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 -0.4 
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Figure 2.12 1HNMR of Peptide SV-1: Ac-Arg-Ser-Val-Thr-Val-Asn-Gly-Lys-Thr-Ile-Val-
Gln-NH2 

Table 2.6 Proton Chemical Shift Assignments for Peptide SV-1. 

Residue α β γ δ ε 
R 4.35 1.77 1.68 3.2   
S 4.63 3.82 

  
  

V 4.32 2.01 0.91 
 

  
T 4.45 4.1 1.17 

 
  

V 4.15 2.04 0.91 
 

  
N 4.63 2.81/2.78 

  
  

G 3.99/3.86 
   

  
K 4.49 1.78 1.43 1.75 3 
T 4.58 4.07 1.12 

 
  

I 4.25 1.85 1.46 1.19/0.86   
V 4.14 2.04 0.093 

 
  

Q 4.34 2.01 2.36     
 

PPM 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 
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Figure 2.13 1HNMR of Peptide pSV-1: Ac-Arg-Ser(PO3)-Val-Thr-Val-Asn-Gly-Lys-Thr-
Ile-Val-Gln-NH2 

Table 2.7 Proton Chemical Shift Assignments for Peptide pSV-1. 

Residue α β γ δ ε 
R 4.34 1.79 1.72 3.22   

S-PO3 4.63 4.13 
  

  
V 4.25 2.1 0.99 

 
  

T 4.48 4.13 1.16 
 

  
V 4.15 2.06 0.93 

 
  

N 4.67 2.84, 2.80 
  

  
G 3.99, 3.86 

   
  

K 4.45 1.81 1.43 1.75 3 
T 4.38 4.13 1.18 

 
  

I 4.23 1.86 1.47 0.88   
V 4.25 2.1 0.99 

 
  

Q 4.32 1.99 2.37     
 

 
 

PPM 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 -0.4 
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Figure 2.14 1HNMR of Peptide TW-1: Ac-Arg-Thr-Val-Thr-Val-Asn-Gly-Lys-Thr-Ile-Trp-
Gln-NH2 

Table 2.8 Proton Chemical Shift Assignments for Peptide TW-1. 

Residue α β γ δ ε 
R 4.35 1.77 1.6 3.17 

 T 4.58 4.07 1.08 
  V 4.33 2.03 0.89 
  T 4.67 4.03 1.1 
  V 4.16 2.01 0.92 
  N 4.58 2.96,2.78 

   G 4.03,3.78 
    K 4.53 1.81 1.42 1.76 2.99 

T 4.48 4.03 1.04 
  I 4.29 1.84 1.1 0.84 

 W 4.72 3.25 H5 7.11, H6,2 7.20, H7 7.46, H4 7.60 
Q 4.23 1.8 2.18 

    

 

PPM 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 -0.4 
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Figure 2.15 1HNMR of Peptide pTW-1: Ac-Arg-Thr(PO3)-Val-Thr-Val-Asn-Gly-Lys-Thr-
Ile-Trp-Gln-NH2 

Table 2.9 Proton Chemical Shift Assignments for Peptide pTW-1 at pH 7. 

Residue α β γ δ ε 
R 4.32 1.76 1.64 3.18 

 T-PO3 4.33 4.29 1.23 
  V 4.23 2.09 0.9 
  T 4.46 4.07 1.13 
  V 4.14 2.03 0.9 
  N 4.64 2.90,2.78 

   G 3.96,3.84 
    K 4.43 1.76 1.41 1.67 2.97 

T 4.33 4.04 1.04 
  I 4.18 1.81 1.1 0.8 

 W 4.69 3.25 H6 7.14,H5 7.21,H2 7.28, H7 7.47,H47.64 
Q 4.18 1.81 2.16,1.98 

   

PPM 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 -0.4 
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Figure 2.16 1HNMR of Peptide YW: Ac-Arg-Tyr-Val-Thr-Val-Asn-Gly-Lys-Thr-Ile-Trp-
Gln-NH2 

Table 2.10 Proton Chemical Shift Assignments for Peptide YW. 

Tyr-1 α β γ δ ε 
R 4.1 1.6 1.37 3.02 

 Y 4.57 3.08,2.99 [H2,6] 6.73, 7.30,  [H3,5] 6.25, 6.94 
V 4.46 2 0.81 

  T 5.03 3.92 1.04 
  V 4.21 1.94 0.89 
  N 4.44 3.05,2.76 

   G 4.10,3.59 
    K 4.67 1.83 1.43 1.75 3.02 

T 4.84 3.92 1.05 
  I 4.65 1.89 1.16 0.9 

 W 5.09 2.75 H5,6 6.91, H2 6.96, H4 7.13, H7 7.24 
Q 4.28 1.9 2.1 

  

PPM 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 
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Figure 2.17 1HNMR of Peptide pYW-1: Ac-Arg-Tyr(PO3)-Val-Thr-Val-Asn-Gly-Lys-Thr-
Ile-Trp-Gln-NH2 

Table 2.11 Proton Chemical Shift Assignments for Peptide pYW-1 at pH 7. 

pYW α β γ δ ε 
R 4.13 1.59 1.35 3.06 

 Y-PO3 4.63 3.1 [H2,6] 6.83, 7.06 [H3,5] 6.89,7.33 
V 4.37 2.02 0.85 

  T 4.89 3.99 1.09 
  V 4.2 1.96 0.91 
  N 4.51 3.00,2.78 

   G 4.07,3.67 
    K 4.63 1.81 1.43 1.76 3.04 

T 4.63 3.93 0.95 
  I 4.49 1.87 n/a 0.88 

 W 4.98 2.74 H5 7.01, H6,2 7.16,H7 7.48,H4 7.65 
Q 4.25 1.96,1.75 2.14 

  

PPM 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 -0.4 
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Figure 2.18 1HNMR of Peptide YV-1: Ac-Arg-Tyr-Val-Thr-Val-Asn-Gly-Lys-Thr-Ile-Val-
Gln-NH2 

Table 2.12 Proton Chemical Shift Assignments for Peptide YV-1. 

Residue α β γ δ ε 
R 4.24 1.64 1.47 3.12 

 Y 4.86 2.86 [H2,6] 7.05  [H3,5] 6.83 
 V 4.17 2.02 0.92 

  T 4.67 4.07 1.14 
  V 4.13 1.99 0.89 
  N 4.59 2.95,2.77 

   G 3.78, 4.01 
    K 4.52 1.81 1.43 1.74 3 

T 4.52 4.05 1.14 
  I 4.33 1.87 1.18 0.88 

 V 4.23 1.89 0.87 
  Q 4.3 1.94 2.02,2.33 
    

PPM 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 -0.4 
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Figure 2.19 1HNMR of Peptide pYV-1: Ac-Arg-Tyr(PO3)-Val-Thr-Val-Asn-Gly-Lys-Thr-
Ile-Val-Gln-NH2 

Table 2.13 Proton Chemical Shift Assignments for Peptide pYV-1. 

Residue α β γ δ ε 
R 4.18 1.62 1.42 3.12   

Y-PO3 4.8 3.12,2.91 7.16,7.11 
 

  
V 4.16 2.03 0.93 

 
  

T 4.63 4.1 1.15 
 

  
V 4.11 2.03 0.93 

 
  

N 4.63 2.93,2.78 
  

  
G 3.81, 4.00 

   
  

K 4.5 1.79 1.41 1.75 2.98 
T 4.48 4.08 1.15 

 
  

I 4.3 1.87 1.18 0.88   
V 4.21 

 
0.91 

 
  

Q 4.3 1.96 2.35     
 

PPM 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 -0.4 
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Figure 2.20 1HNMR of Peptide QW-1: Ac-Arg-Gln-Val-Thr-Val-Asn-Gly-Lys-Thr-Ile-Trp-
Gln-NH2 

Table 2.14 Proton Chemical Shift Assignments for Peptide QW-1. 

Residue α β γ δ ε 
R 4.29 1.74 1.59 3.16   
Q 4.5 1.85 2.06 

 
  

V 4.28 2.01 0.85 
 

  
T 4.72 4.02 1.09 

 
  

V 4.17 1.99 0.91 
 

  
N 4.58 2.96, 2.78 

  
  

G 4.05, 3.76 
   

  
K 4.58 1.82 1.42 1.77 2.98 
T 4.51 3.99 0.99 

 
  

I 4.33 1.86 1.07 0.85   
W 4.78 3.21 H5 7.09, H2,6 7.21, H7 7.46, H4 7.56  
Q 4.29 1.82 2.2     

 

 

PPM 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 -0.4 
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Table 2.15 Proton Chemical Shift Assignments for Peptide EW-1. 

Residue α β γ δ ε 
R 4.25 1.72 1.57 3.14  
E 4.4 1.89 2.14   
V 4.26 2.03 0.86   
T 4.65 4.08 1.14   
V 4.15 2.01 0.88   
N 4.53 2.66,2.82    
G 4.01,3.79     
K 4.49 1.82 1.42 1.77 2.94 
T 4.47 4.03 1.05   
I 4.16 1.79 N/A 0.87  

W 4.72 3.23 H4 7.59,H7 7.58,H5 7.15,H2 7.30,H6 7.22 
Q 4.29 1.79 2.18   

 

Table 2.16  Proton Chemical Shift Assignments for Peptide cyclic SW. 

Residue α β γ δ ε 
C 4.93 3.35,3.16    
R 4.59 1.85,1.61 1.5 3.16  
S 4.73 2.96    
V 4.21 1.91 0.89   
T 5.09 3.86 0.99   
V 4.44 1.97 0.83   
N 4.38 3.09,2.77    
G 4.12,3.54     
K 4.68 1.84 1.44 1.73 3.01 
T 4.75 3.88 0.89   
I 4.49 1.88 1.38,1.16,0.8

 
0.88  

W 5.02 3.13 H5 7.19, H7 7.44,H2 7.39,H5 7.03,H6 7.17 
Q 4.61 2.10,1.87 2.23   
C 4.93 3.35,3.16    
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Table 2.17  Proton Chemical Shift Assignments for Peptide cyclic TW. 

Residue α β γ δ ε 
C 4.95 3.05, 2.90       
R 4.63 1.61 1.43 3.13   
T 4.95 3.8 0.7    
V 4.47 1.96 0.8    
T 5.12 3.86 0.99    
V 4.21 1.89 0.88    
N 4.38 2.75, 3.08     
G 3.54, 4.11      
K 4.7 1.83 1.43 1.78 3.02 
T 4.8 3.91 0.96    
I 4.57 1.89 1.11 0.86   

W 5.01 3.14, 3.10 H5 7.00, H6 7.14, H2 7.17, H7 7.40,H4 7.44 
  Q 4.63 1.84 2.19    

C 5.12 2.94, 2.15       
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Figure 2.21 1HNMR of Peptide cyclic YW: Ac-Cys-Arg-Tyr-Val-Thr-Val-Asn-Gly-Lys-
Thr-Ile-Trp-Gln-Tyr-NH2 

Table 2.18 Proton Chemical Shift Assignments for Peptide cyclic YW. 

Residue α β γ δ ε 
C 4.76 2.89,2.75       
R 4.17 1.76 1.41 3.02   
Y 4.67 3.18,2.85 [H3,5] 

 
[2,6] 6.61,7.25   

V 4.5 2.09 0.81 
 

  
T 4.98 3.87 1.04 

 
  

V 4.22 1.91 0.89 
 

  
N 4.36 2.74,3.07 

  
  

G 4.10,3.52 
   

  
K 4.76 1.83 1.43 1.76 3.02 
T 5.13 3.87 0.98 

 
  

I 4.76 1.9 
 

0.93   
W 5.33 2.76 

  
  

Q 4.52 1.73,1.97 2.12 
 

  
C 4.93 2.64,1.46       

 

PPM 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 
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Table 2.19  Proton Chemical Shift Assignments for Peptide Ac-RSVTVNG-NH2. 

Residue α β γ δ Amide 
R 4.32 1.82,1.77 1.66 3.21 8.32 
S 4.5 3.85   8.47 
V 4.13 2.08 0.94  8.28 
T 4.37 4.16 1.18  8.3 
V 4.23 2.12 0.93  8.28 
N 4.69 2.85,277   8.68 
G 3.9       8.57 

 
Table 2.20  Proton Chemical Shift Assignments for Peptide Ac-RS(PO3)VTVNG-NH2. 

Residue α β γ δ Amide 
R 4.32 1.83 1.69 3.21 8.36 

S-PO3 4.59 4.15   8.69 
V 4.14 2.09 0.93  8.14 
T 4.36 4.16 1.2  8.29 
V 4.22 2.11 0.93  8.31 
N 4.44 4.68 2.79  8.69 
G 3.82 3.91,3.89   8.45 

 
Table 2.21  Proton Chemical Shift Assignments for Peptide Ac-RTVTVNG-NH2. 

Residue α β γ δ ε 
R 4.37 1.78 1.66 3.21  
T 4.38 4.15 1.19   
V 4.21 2.08 0.93   
T 4.38 4.15 1.19   
V 4.13 2.07 0.92   
N 4.68 2.78    
G 3.9     
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Table 2.22 Proton Chemical Shift Assignments for Ac-RT(PO3)VTVNG-NH2. 

Residue α β γ δ ε 
R 4.34 1.79 1.68 3.2  

T-PO3 4.51 4.42 1.3   
V 4.2 2.08 0.93   
T 4.35 4.14 1.17   
V 4.12 2.05 0.93   
N 4.68 2.8    
G 3.89     

 
Table 2.23 Proton Chemical Shift Assignments for Ac-RYVTVNG-NH2. 

Resiude α β γ δ ε 
R 4.17 1.62 1.45 3.11   
Y 4.66 3.07,2.87 [H2,6] 7.11  [H3,5] 6.80   
V 4.12 2.06 0.93    
T 4.34 4.15 1.19    
V 4.15 2.01 0.9    
N 4.69 2.85,2.76     
G 3.85         

 
Table 2.24 Proton Chemical Shift Assignments for Ac-RY(PO3)VTVNG-NH2. 

Residue α β γ δ ε 
R 4.16 1.59 1.44 3.14   

Y-PO3 4.73 3.20,2.96 [H2,6] 7.22  [H3,5] 7.14   
V 4.17 2.04 0.93    
T 4.39 4.19 1.23    
V 4.16 2.04 0.95    
N 4.72 2.96,2.79     
G 3.91         

 
Table 2.25 Proton Chemical Shift Assignments for Ac-RQVTVNG-NH2. 

Residue α β γ δ ε 
R 4.27 1.76 1.63 3.2   
Q 4.38 2.05 2.35    
V 4.19 2.05 0.94    
T 4.38 4.14 1.19    
V 4.14 2.08 0.94    
N 4.69 2.76     
G 3.9         
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Table 2.26 Proton Chemical Shift Assignments for Ac-REVTVNG-NH2. 

Residue α β γ δ ε 
R 4.25 1.74 1.63 3.19   
E 4.38 2.02 2.39    
V 4.15 2.06 0.93    
T 4.38 4.14 1.17    
V 4.13 2.06 0.92    
N 4.67 2.77     
G 3.89         

 
Table 2.27 Proton Chemical Shift Assignments for Ac-NGKTIWQ-NH2. 

Residue α β γ δ ε Amide 
N 4.68 2.81     8.46 
G 3.94      8.57 
K 4.4 1.84,1.78 1.4 1.67 2.97 8.15 
T 4.31 4.09 1.1    8.25 
I 4.15 1.79 1.32,1.10 0.81   8.22 

W 4.67 3.26 H6/H2 7.24, H47.65,H7 7.49, H5 7.16 8.25 
Q 4.17 2.01,1.81 2.17     8.06 
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(a) (b)  
 

(c)  
Figure 2.28 Observed NOEs for (a) SW, (b) TW, (c) YW and pYW where the red hydroxyl 
group is phosphorylated in pYW. 
 
Table 2.22 NOEs observed in Peptides SW, TW, YW, and pYW at 298 K. 

SW 
    

TW 
   Residue Proton Residue  Proton   

 
Residue Proton Residue  Proton   

Thr 4 α Thr 9 α 
 

Thr 2 γ Trp 11 Ar 4 

     
Thr 2 γ Trp 11 Ar 7 

     
Thr 4 α Thr 9 α 

YW and pYW  
        Residue Proton Residue  Proton   

     Tyr 2 α Trp 11 α 
     Tyr 2 β Trp 11 Ar 2 
     Thr 9 γ Trp 11 Ar 4 
     Thr 9 γ Trp 11 Ar 5 
      



 

 

 

CHAPTER III 

STABILIZATION OF β-HAIRPIN STRUCTURE THROUGH A TRYPTOPHAN POCKET 

(Reproduced, in part with permission from Riemen, A.J.; Waters M.L., Biochemistry. 2009,  

48, 1525-1531.) 
 

A. Trytophan pocket interaction with Lysine and Methylated Lysine 

i.  Background and Significance 

Methylation of lysine residues in histone proteins is a posttranslational modification that 

is involved in the regulation of chromatin condensation and gene expression.1 The modified 

methylated lysine residues at specific locations of the histone tails results in recruitment of 

various chromatin remodeling proteins.1,2,3 Recent crystallographic data has shown that 

proteins involved in chromatin remodeling, including chromodomains, PHD domains, and 

Tudor domains, recognize and bind trimethylated lysine of histone tails with an aromatic 

cage made up of three or four aromatic rings.2,3 The stabilizing forces between the 

methylated lysine and its aromatic binding pocket are driven by cation-π and van der waals 

interactions (Figure 3.1).2,3,4

                                                 
1 Martin, C.; Zhang, Y. Nat Rev Mol Cell Biol 2005, 6, 838-849. 

 In each case, at least two of the aromatic residues reside within a 

 
2 Jacobs, S. A.; Khorasanizadeh, S. Science 2002, 295, 2080-2083. 
 
3 Li, H. T.; Ilin, S.; Wang, W. K.; Duncan, E. M.; Wysocka, J.; Allis, C. D.; Patel, D. J. 
Nature 2006, 442, 91-95. 
 
4 Hughes, R. M.; Wiggins, K. R.; Khorasanizadeh, S.; Waters, M. L. Proc Nat Acad  Sci 
U.S.A. 2007, 104, 11184-11188. 
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β-sheet, forming a cleft. This interesting structural feature may be amenable to designed 

peptide systems that form a β-hairpin containing an aromatic cleft for intramolecular binding 

of lysine or methylated lysine, thus mimicking the aromatic pocket of the chromodomain and 

PHD domains. 

Previous work in model β-hairpin systems has shown that lysine and N-methylated lysine 

packs against a tryptophan positioned diagonally cross strand in a cation-π interaction (Figure 

3.1c), simulating the interaction between trimethylated lysine (KMe3) and one of the 

aromatic residues in the β-sheet of the HP1 chromodomain or the BPTF PHD domain.5,6,7 

Methylation of lysine in this hairpin greatly increases the hairpin stability due to an enhanced 

interaction with Trp.6,8

 

 Moreover, comparison of KMe3 to its neutral analog in which 

nitrogen is replaced by carbon results in loss of the interaction with Trp in the peptide model 

system as well as loss of the binding to the aromatic pocket in the HP1 chromodomain.4  The 

goal of this project was to further investigate the interaction between methylated lysine and 

aromatic binding pockets. We designed a β-hairpin that contains an aromatic pocket similar 

to one observed in chromatin remodeling proteins (Figure 3.1a and b) that results in a highly 

stable β-hairpin containing a lysine positioned to interact with an aromatic pocket. 

 

                                                 
5 Tatko, C. D.; Waters, M. L. J Am Chem Soc 2004, 126, 2028-2034. 
 
6 Hughes, R. M.; Waters, M. L. J Am Chem Soc 2005, 127, 6518-9. 
 
7 Hughes, R. M.; Benshoff, M. L.; Waters, M. L. Chem Eur J 2007, 13, 5753-5764. 
 
8 Hughes, R. M.; Kiehna, S. E.; Waters, M. L. Biopolymers 2005, 80, 497-497. 
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Figure 3.1. (a) Structure of the aromatic binding pocket of the HP1 chromodomain  bound to 
a histone peptide containing trimethyllysine (green); β-sheet structure is shown in blue (pdb: 
1KNE). (b) Structure of the aromatic binding pocket of the   domain  bound to a histone 
peptide containing trimethyllysine (green); β-sheet structure is shown in blue  (pdb: 3GL6). 
(c) NMR structure of the β-hairpin peptide WKMe3 indicating the cation-pi interaction 
between Trp and trimethyllysine (green); β-sheet structure is shown in blue.7 

ii. Results and Discussion. 

a.) Peptide Design.  The Trp pocket series of peptides were synthesized to investigate the 

effects of placing lysine and its varying methylation states cross-strand from a ditryptophan 

cleft on a β-hairpin. The sequence Ac-RWVWVNGOKMenILQ-NH2, where n = 0 - 3, was 

used to create an aromatic pocket on the non-hydrogen bonded (NHB) face of the peptide 

with which KMen can interact. This sequence was adapted from previously designed β-

hairpins used to study cation-π interactions between lysine and tryptophan.5,6  This design 

assumes an interdigitated arrangement of side chains 2, 4, 9, and 11 resulting from the twist 

in the β-sheet as has been shown in related peptide sequences.7,9 Thus residue 9 is oriented to 

pack between the two tryptophan side chains at positions 2 and 4, whereas residue 11 packs 

against the outer face of Trp2. Residues Asn6 and Gly7 were included to facilitate a type I’ 

turn which have been shown to be favorable in β-hairpin formation.10

                                                 
9 Cochran, A. G.; Skelton, N. J.; Starovasnik, M. A. Proc Nat Acad Sci U.S.A. 2001, 98, 
5578-5583. 

  Cyclic peptides were 

 
10 (a) RamirezAlvarado, M.; Blanco, F. J.; Serrano, L. Nat Struct Biol 1996, 3, 604-612. (b) 
Blanco, F. J.; Jimenez, M. A.; Herranz, J.; Rico, M.; Santoro, J.; Nieto, J. L. J Am Chem Soc 
1993, 115, 5887-5888. (c) Sharman, G. J.; Searle, M. S. Chem Commun 1997, 1955-1956. 



52 
 

synthesized as fully folded controls for each of the Trp Pocket series β-hairpins. Cyclization 

was achieved by a disulfide bond between cysteine residues at the N and C-termini of the 

peptides. Unfolded control peptides consisting of either the N-terminal arm or the C-terminal 

arm were used to obtain random coil chemical shifts.  

 
Figure 3.2. Trp pocket series of peptides containing Trp at positions 2 and 4 and Lys 
(WWKL), mono- (WWKmeL), di- (WWKme2L), or trimethyl (WWKme3L) Lys at 
position 9 (R = H or Me, accordingly).   

 

b.) Structure determination and characterization. NMR and CD were used to probe 

the interaction between the ditryptophan pocket and lysine in its various methylated forms. 

As discussed in chapter 1, downfield shifting of ≥ 0.1 ppm of the Hα protons along the 

peptide backbone relative to unfolded values indicates a β-sheet conformation.11

                                                 
11 Sharman, G. J.; Griffiths-Jones, S. R.; Jourdan, M.; Searle, M. S. J Am Chem Soc 2001, 
123, 12318-12324. 

  All of the 

Trp Pocket series exhibited highly folded β-hairpin structure (Figure 3.3a). Residues KMen 9 

and Leu 11 exhibit upfield shifting of Hα from the unfolded control due to the electron 

shielding caused by their proximity to the aromatic indole rings of the tryptophans directly 

cross strand from these residues. The Asn 6 Hα is shifted upfield because this residue adopts 

a turn conformation in the β-hairpin. Minimal shifting of Gln12 Hα is due to fraying of the 

terminus.  Analysis of backbone amide chemical shift from random coil in the hydrogen 
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bonded positions (Arg 1, Val 3, Val 5, Ile 10, Qln 12) also confirmed β-hairpin formation 

with large downfield chemical shift for these residues (Figure 3.3b). A typical large 

downfield shift was also observed of Asn 6 which confirms the formation of the turn 

structure.  CD spectra for all Trp pocket peptides further confirm the formation of β-sheet 

structure with a characteristic minimum at 215 nm (Figure 3.3c). 

 

(a) (b)  

(c)  

Figure 3.3. (a) Trp pocket peptides Hα chemical shift differences from random coil controls. 
The Gly bars reflect the Hα separation in the hairpin. (b.)  Trp pocket peptides backbone 
amide chemical shift differences from random coil control. Conditions: 293 K, 50 mM 
sodium acetate-d4, pH 4.0 (uncorrected), referenced to DSS.  (c) Far-UV CD spectra of Trp 
pocket peptides. Conditions:  10 mM sodium phosphate buffer pH 7.0 at 298 K.   

The extent of folding to a β-hairpin by the Trp pocket series of peptides was quantified 

using two methods described in Chapter 1 and the experimental section. Both Hα shifting 

method and glycine splitting method showed that all of the peptides in the Trp Pocket series 
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are ≥ 90% folded.  However due to error associated with a small change in chemical shift at 

this range in folding, it is difficult to determine which of the series is the most well folded 

(Table 3.1). 

Table 3.1. Fraction folded for Trp pocket series peptides. Conditions: 293 K, 50 mM sodium 
acetate-d4, pH 4.0 (uncorrected), referenced to DSS. 

Peptides Fraction Folded (Gly)a Fraction Folded (Hα) b 

WWKL ≥ 0.99 (±0.02) 0.96 (±0.09) 

WWKmeL ≥ 0.99 (±0.02) 0.9 (±0.1) 

WWKme2L 0.97 (±0.02) 0.98 (±0.01) 

WWKme3L ≥ 0.99 (±0.02) 0.94 (±0.03) 

(a) Error determined by chemical shift accuracy on NMR spectrometer.  (b) Average of the Hα values from 
Val3, Val5, Orn8, and Ile10. The standard deviation is in parentheses. 

 

Direct interaction between the lysine side chain and tryptophan pocket was also 

determined by NMR. The chemical shift of the side chain protons are affected by the 

surrounding environment, in particular the ring current effects arising from nearby aromatic 

rings, the degree of upfield shifting of the lysine side chain protons in this peptide series 

relative to the unfolded control is indicative of interaction of the lysine with the tryptophan 

pocket (Figure 3.3). All of the hairpins show extensive upfield shifting indicating that the 

lysine residues are in close proximity to the face of the indole rings. The γ, δ and ε methylene 

groups of the lysine are shifted the greatest extent. An increase in upfield shifting upon 

methylation of the lysine is observed, indicating that the methyl groups are helping the lysine 

pack into the tryptophan pocket. This has been observed in other reported β-hairpins.6,7 

However in the Trp Pocket peptides the upfield shifting is more dramatic with the additional 

tryptophan side chain.  
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(a)  (b)   

Figure 3.4. (a)Side-chain chemical shifts of lysine and methylated states of the Trp pocket 
series relative to random coil values. Conditions: 293 K, 50 mM sodium acetate-d4, pH 4.0 
(uncorrected), referenced to DSS. (b) Lysine side chain protons (R = H or Me, accordingly).     

 

NOEs were obtained for the Trp Pocket series to confirm that these β-hairpins are 

forming in the correct register and to investigate how the lysine and its methylated analogs 

interact with the two tryptophans on the opposite strand. NOEs were observed between the 

Hα of Trp2 and Leu11, and between the Hα of Trp4 and Lys9 for all of the peptides in the 

Trp Pocket series indicating that a β-hairpin is forming in the correct register. The number of 

NOEs between the NHB residues increases as the number of methyl groups on the lysine 

increases indicating that as methylation of the lysine is increased a more rigid β-hairpin is 

formed (Figure 3.4). Interestingly, two unique methyl groups are observed for dimethyllysine 

in WWKme2L. NOEs indicate that they are oriented towards specific tryptophan indole 

rings suggesting that KMe2 has a rigid orientation within the tryptophan pocket (Figure 

3.4c). 



56 
 

(a)  (b)  

(c) (d)  

(e)  

Figure 3.5. NOEs of side-chain side-chain interactions between cross strand residues on the 
NHB face in (a) WWKL, (b) WWKmeL, (c) WWKme2L, and (d) WWKme3L. (e) NOEs 
observed for all Trp Pocket peptides where X = H for lysine, X=CH3, H,H for 
monomethylated lysine, X=CH3, CH3, H for dimethylated lysine, and X = CH3 for 
trimethylated lysine.   
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c.) Thermal Denaturation Studies.  To determine the thermodynamic parameters for 

folding of the Trp pocket series of peptides, thermal denaturations were performed by 

following the change in Gly splitting with temperature. A plot of the fraction folded versus 

temperature is given in Figure 3.6. Surprisingly, all of the hairpins are well folded even at 

350 K showing that these peptides are very thermally stable. Nonetheless, folding is still fast 

on the NMR timescale. WWKMe3L is the most thermally stable of all the variants and is 

still ~94% folded at 350 K. This hairpin also experiences some slight cold denaturation 

which is indicative of some contribution of a hydrophobic driving force.12  WWKMe2L is 

the next most thermally stable hairpin and also exhibits slight cold denaturation. Cold 

denaturation is not observed for WWKMeL or WWKL. 

 

Figure 3.6. Thermal Denaturation of Trp pocket Series. Fraction folded was calculated from 
extent of Gly splitting. Conditions: 50 mM sodium acetate-d4, pH 4.0 (uncorrected), 
referenced to DSS.  
 

Thermodynamic parameters for folding were obtained for WWKMeL and WWKL 

by nonlinear fitting of the data using equation 3 (see Experimental Section) and are given in 

Table 3.2. Since WWKme2L and WWKme3L are well folded even at high temperatures we 

were unable to fit the thermal denaturation data.  WWKL has a highly favorable enthalpic 

component for folding but also has a fairly high entropic penalty for folding as compared to 

                                                 
12 Hughes, R. M.; Waters, M. L. J Am Chem Soc 2006, 128, 12735-12742. 
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the previously reported WK peptide, which has only a single Trp-Lys interaction.5 

WWKMeL has a weaker enthalpic driving force for folding than WWKL but also has 

smaller entropic penalty. The same trend was observed in the WKMen series of peptides 

reported previously.6,7 The reduced enthalpic driving force upon methylation has been 

explained by the distribution of positive charge on the methylated lysine over a larger surface 

area, whereas the decreased entropic penalty resulting from Lys methylation has been 

attributed to the increased hydrophobicity of the methylated Lys, which results in an 

decreased entropic penalty when it is removed from aqueous solution upon folding.  

Table 3.2. Thermodynamic Parameters for Folding at 298 K for WWKL and WWKMeL 
peptides. Error in parentheses determined from fit of plot. Conditions: 50 mM sodium 
acetate-d4, pH 4.0 (uncorrected), referenced to DSS. 

 

Peptide ΔH° 
kcal/mol 

ΔS° 
cal/mol K 

ΔCp° 
cal/mol K 

WWKL -10.9 (±0.8) -28 (±3) -100 (±21) 

WWKMeL -2.8 (±0.2) -1.6 (±0.7) -311 (±8) 

 

d.) Chemical Denaturation of WWKme3L. Since WWKme3L peptide is so thermally 

stable, chemical denaturation experiments were also performed on this peptide. Initially 

tryptophan fluorescence was monitored at varying concentrations of GdnHCl, however no 

appreciable change was observed in this system. Far-UV CD analysis revealed that little 

change was occurring in the global structure of the peptide even in 6 M GdnHCl (see 

Experimental Section). The structure of WWKme3L appears to be resistant to chemical 

denaturation at high concentrations of GdnHCl, so we performed a thermal denaturation 

monitored by CD in the presence of a chemical denaturant (Figure 3.7a).  Due to error 
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generated by increasing absorbance in the β-sheet region of the CD spectra (210-215 nm) as 

the concentration of GdnHCl is increased, we switched to using urea as a denaturant.  The 

co-chemical thermal denaturation experiment revealed a loss of β-sheet structure as the 

temperature was increased (Figure 3.7).  This experiment further demonstrates how 

structurally stable WWKme3L peptide truly is, requiring both a chemical denaturant and 

high temperatures to observe unfolding. 

(a)  (b)    

Figure 3.7.  (a) Far-UV CD spectra of WWKme3L in pH 7.0 buffer with varying 
concentrations of GdnHCl at 25°C. (b)Thermal Melt of WWKme3L monitored at 215 nm 
by CD. Error bars obtained through treatment of the raw data though a smoothing function 
provided in the Pistar software. Conditions: 10 mM sodium phosphate buffer pH 7.0 in the 
presence of 4M Urea (red) or with no denaturant (blue).  The characteristic minimum for β-
sheet CD spectra was observed at 215 nm wavelength for the WWKme3L peptide. 
 

e.)  Contributions of Trp2 and Trp4. Because tryptophan has the most favorable β-

sheet propensity of any of the twenty natural amino acids13

                                                 
13 Cochran, A. G.; Tong, R. T.; Starovasnik, M. A.; Park, E. J.; McDowell, R. S.; Theaker, J. 
E.; Skelton, N. J. J Am Chem Soc 2001, 123, 625-632. 

, the enhanced stability of the 

tryptophan pocket hairpins relative to those with a single tryptophan cannot solely be 

attributed to increased favorable side chain-side chain interactions. To assess whether the 

interaction of lysine 9 with tryptophans at both position 2 and 4 was significantly 

contributing to the high stability of the Trp Pocket peptides, individual double mutant cycles 
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were performed.14,15 Double mutant cycles isolate the interaction energy of two residues by 

mutating each individual residue, but also accounting for unintended changes to stability by 

comparison to the double mutant, yielding the ΔG for the interaction of interest. For the 

interaction between lateral cross strand residues, tryptotphan 4 was replaced with alanine and 

lysine 9 was replaced with serine.16

Table 3.3. Fraction folded and ∆G values of single and double mutants.  Conditions 293 K, 
50 mM sodium acetate-d4, pH 4.0 (uncorrected), referenced to DSS. 

  The cross-stand Trp4-Lys9 interaction was calculated to 

be -1.1 kcal/mol. For the diagonal lysine-tryptophan interaction, tryptophan 2 was replaced 

with alanine and lysine 9 with serine. The diagonal interaction was also determined to be -1.0 

kcal/mol. Because WWKL is so stable, there is an inherently large error in calculating its free 

energy of folding (ie, 99% folded results in a stability of -2.67 kcal/mol, whereas 96% folded 

gives -1.85 kcal/mol).  Thus, the absolute values from the double mutant cycles are not 

meaningful.  Nonetheless, because the error in the energetic stability of WWKL is common 

to both double mutant cycles, the relative energies of the lateral and diagonal Trp-Lys 

interactions are meaningful.  These results indicate that the interaction energy is equivalent 

despite differences in geometry.  

Peptide Fraction Folded 
(Gly) 

∆G (kcal/mol) ∆∆G (kcal/mol) 

WWKL 0.96a ± 0.09 -1.85  
AWKL 0.54 ± 0.01 -0.09  
WWSL 0.74 ± 0.01 -0.61  
AWSL 0.64± 0.01 0.07 -1.1 ± 0.8 (W2-K9) 
WAKL 0.37± 0.01 0.31  
WASL 0.27± 0.02 0.58 -1.0 ± 0.8 (W4-K9) 
(a) The fraction folded for this peptide was determined from the Hα chemical shifts.  

 
 

                                                 
14 Tatko, C. D.; Waters, M. L. Protein Sci 2003, 12, 2443-2452. 
 
15 Tatko, C. D.; Waters, M. L. Org Lett 2004, 6, 3969-3972. 
 
16 Espinosa, J. F.; Munoz, V.; Gellman, S. H. J Mol Biol 2001, 306, 397-402. 
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iii. Conclusion 

We have utilized a binding motif found in a native protein-protein interaction to design 

an extremely well folded β-hairpin.  This system exploits the high β-sheet propensity of Trp 

in conjunction with favorable and selective cation-π interactions between Trp and Lys or 

methylated Lys to give the most thermally stable designed hairpin peptides currently 

reported. The interaction between the lysine and the tryptophan pocket is comparable to 

previously reported tryptophan-lysine and N-methylated lysine interactions in β-hairpins and 

a similar trend is observed with an increased stability as N-methylation is increased.6,7 The 

high stability of the WWKL β-hairpin peptides may be amenable to other applications such 

as peptide antibiotics where highly structured β-hairpin peptides are required that are usually 

cyclized to stabilize hairpin formation.17

B. Tryptophan pocket variant with alanine and glycine 

  

i.  Introduction 

As discussed in section A we have shown that introduction of tryptophan cleft motif 

greatly increases β-hairpin stability structure through enhanced interaction with cross-strand 

lysine and methylated lysine. Since the tryptophan cleft motif design was based on proteins 

that bind to methylated lysine residues in histone proteins, we sought to investigate the 

potential of tryptophan pocket peptides to bind methyl ammonium species intermolecularly. 

Not only will receptors for methylated lysine further our understanding of this important 

intermolecular interaction, but will provide invaluable tools for further study of the complex 

“histone code”.  Antibodies currently exist for the detection of site specific lysine 

                                                 
17 Lai, J. R.; Huck, B. R.; Weisblum, B.; Gellman, S. H. Biochemistry 2002, 41, 12835-
12842. 



62 
 

methylation, but are influenced by neighboring posttranslational modifications.18

To allow for interaction of non-covalently linked quaternary amines the Trp pocket 

sequence was redesigned with either alanine or glycine at position 9 (Figure 3.8a). By 

replacing the lysine residue that interacts with the cross strand tryptophan cleft with residue 

that is too short to fill the aromatic cleft we hope to create a suitable binding pocket similar to 

what is observed in methyl-lysine binding proteins. It is expected that incorporation of 

alanine and glycine at position 9 will result in a less stable hairpin structure due to low β-

sheet propensity of these residues as well as loss of favorable side chain-side chain and may 

even unfold the hairpin completely. It is also possible that the hairpin structure will 

reconstitute when bound to a quaternary amines. Therefore, the structures of redesigned trp 

pocket peptides, WWAL and WWGL, were investigated with or without the presence of 

methyl ammonium species. 

  Other draw 

backs to the use of antibodies are they are only useful for in vitro detection, they are sensitive 

to freeze-thaw cycles, and they take a significant amount of time to generate.  A peptide 

receptor system is an attractive strategy for methylated lysine recognition because peptides 

are easily synthesized. They also have a wide variety of functionality that can exceed 

canonical amino acids and the design elements for structured systems are becoming more 

accessible.  

                                                 
18 Kouzarides, T. Cell 2007, 128, 693-705. 
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(a)  (b)  

Figure 3.8. (a)  Variant tryptophan pocket peptides WWAL and WWGL (R = Me or H, 
accordingly). Tetramethyl ammonium is shown in blue predicted to bind between the two 
tryptophans.  (b) Aceylated trimethyl lysine. 

 

ii. Results and Discussion. 

      a.) Binding studies with Tetramethyl ammonium and Trimethylated Lysine. To 

assess if WWAL or WWGL could bind quaternary amines, NMR binding experiments were 

attempted. NMR spectra of 1mM WWAL in the presence of 1 mM or 10 mM tetramethyl 

ammionium iodide (CH3)4NI were compared to control spectra of either 1mM WWAL or 

1mM (CH3)4NI. If the WWAL peptide is binding to (CH3)4NI through a tryptophan cleft, 

upfield chemical shifting of methyl groups of (CH3)4NI are expected. It is also possible that 

binding could cause conformational changes in the peptide structure resulting in perturbation 

of chemical shifts in the peptide. However no discernable alterations in the chemical shifts 

were observed in WWAL or (CH3)4NI when mixed in a 1:1 or 1:10 ratio indicating that no 

binding was occurring. A similar NMR binding experiment with WWGL was conducted 

with (CH3)4NI but yielded the same results.  

 We next tested Ac-Kme3 (Figure 3.8b) as a potential ligand for the tryptophan cleft in 

the WWAL peptide. Ac-Kme3 acts as a better model ligand for a modified histone tail and 

the additional alkyl chain may provide more favorable contacts to induce a binding event 
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with the peptide. NMR binding experiment with 1mM WWAL and 1mM Ac-Kme3 yielded 

no detectable change in the chemical shifts of either compounds, again indicating no binding 

was occurring. It became evident that binding using this design was not feasible, possibly due 

to the formation of peptide structures with non-optimal geometry of the tryptophan residues 

for external interactions. Further NMR characterization of these peptides was warranted to 

investigate what, if any, structures they are forming.  

b.) NMR structure characterization of WWAL and WWGL.  Analysis of the Hα 

shifts from random coil indicated that WWAL was forming a β-hairpin structure with 

significant downfield shifting for residues composing β-sheet segments, with the exception 

Alanine 9 and Leu 11 (Figure 3.9a). Upfield shifting of these residues is expected due to 

electronic shielding from the cross strand tryptophans as was seen in the Trp pocket peptides 

in section A. Amide backbone chemical shifts of WWAL further confirmed hairpin 

formation with significant downfield shifting of the hydrogen bonded residues (Arg 1, Val 3, 

Val 5, Ile 10, Gln 12) and a large downfield shift of Asn 6 indicating type I’ turn formation 

(Figure 3.9b).  

Analysis of Hα chemical shifts for WWGL revealed a pattern that did fit with the 

predicted β-sheet structure (Figure 3.9a). Most of the residues had minimal Hα downfield 

shifting with the exception of Trp 2, Trp 4, and Asn 6. Downfield shifting of the Hα of Asn 6 

is a good indication that a type I’ turn is not forming because this hydrogen is typically 

upfield shifted in the turn and is seen in all the previously examined trp pocket peptides. 

However a large glycine splitting is observed in Gly 7 which indicates that some structure is 

forming. We speculate that some alternative loop structure is forming in WWGL that is not 

β-hairpin like.  
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(a) (b)  

Figure 3.9 (a) Hα chemical shift differences from random coil controls for WWAL (Light 
Gray) where residue X = Ala, and WWGL (Dark Gray) where residue X = Gly. The Gly bars 
reflect the Hα separation of the two diastereotopic  Hα of Gly in the hairpin. (b) Backbone 
amide shift differences from random coil control for WWAL.  Conditions 293 K, 50 mM 
sodium acetate-d4, pH 4.0 (uncorrected), referenced to DSS. 
 
 Quantification of fraction folded for WWAL using the methods described in the 

experimental showed that WWAL was approximately 85% folded with good agreement 

between glycine splitting and Hα shifts (Table 3.4). We also attempted to fit Hα shift data to 

determine fraction folded for WWGL (Table 3.4) which indicated low hairpin formation as 

predicted form general downfield shift of the Hαs. Since this sequence does not appear to 

form a β-hairpin structure as indicated by Hα shifts and did not bind to external quaternary 

amines, no further analysis of this structure was conducted. 

Table 3.4 Fraction folded for WWAL and WWGL. Conditions: 293 K, 50 mM sodium 
acetate-d4, pH 4.0 (uncorrected), referenced to DSS. 

 
Peptides Fraction Folded (Gly)a Fraction Folded (Hα) b 

WWAL 0.89 (±0.02) 0.85 (±0.03) 

WWGL N/A 0.12 (±0.08)c 

(a) Error determined by chemical shift accuracy on NMR spectrometer.  (b) Average of the Hα values from 
Val3, Val5, Orn8, and Ile10. The standard deviation is in parentheses. (c) Determined using cyclic WWAL as 
fully folded control. 
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 NOEs were obtained for WWAL to garner information about its β-hairpin structure 

(Figure 3.10). Back bone-back bone and side chain-back bone NOEs (Figure 3.10b) are very 

similar to what was observed in the trp pocket peptides of section A indicating that the same 

general β-hairpin conformation was forming. Side chain-side chain NOEs between the 

methyl side chain of Ala 9 and the indole ring of Trp 4 and Trp 2 were observed (Figure 

3.10a).  These NOE’s along with a significant upfield shift of the methyl hydrogens of Ala 9 

from random coil (Δ -0.83 ppm) suggest that this methyl group is packing against the cross 

strand tryptophans. 

  

 (a) (b)  

Figure 3.10 (a) NOEs of cross strand side chain-side chain interaction for WWAL. (b) 
NOEs cross strand Backbone-backbone and sidechain-backbone interactions of WWAL.  
 

c.) Thermal denaturation study. To determine the thermodynamic parameters for 

folding of the WWAL peptide, thermal denaturations were performed by following the 

change in Gly splitting with temperature. A plot of the fraction folded versus temperature is 

given in Figure 3.11. As expected from initial fraction folded data the WWAL peptide is less 

thermally stable than the previous Trp pocket peptides.  Alanine has a low β-sheet propensity 

so it is expected that it will destabilize the hairpin fold relative to amino acid with higher 

sheet propensity.  Ala 9 is also much shorter than lysine and as seen with the NOE data, 
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makes a few number of favorable contacts with the cross strand tryptophan thus making the 

hairpin less thermally stable as well.   

 

 

 

Figure 3.11. Thermal Denaturation of WWAL. Fraction folded was calculated from extent 
of Gly splitting. Conditions: 50 mM sodium acetate-d4, pH 4.0 (uncorrected), referenced to 
DSS.  
 
 Thermodynamic parameters for folding were obtained for WWAL by nonlinear 

fitting of the data using equation 3 (see Experimental Section) and are compared to WWKL 

in Table 3.5. The Ala substitution results in shift in driving forces for hairpin formation when 

compared with WWKL. The WWAL hairpin has more favorable entropic component and a 

more negative ΔCp° than WWKL consistent with an increase in hydrophobic clustering 

during folding. There is also a significant lose in an enthalpic driving force which can be 

contributed to the loss of a favorable cation-π interaction. In all the thermal dynamic 

parameters indicate that there is a significantly weaker driving force for folding. 
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Table 3.5. Comparison of Thermodynamic Parameters for Folding at 298 K for WWKL and 
WWAL peptides. Error in parentheses determined from fit of plot. Conditions: 50 mM 
sodium acetate-d4, pH 4.0 (uncorrected), referenced to DSS. 
 

Peptide ΔH° 
kcal/mol 

ΔS° 
cal/mol K 

ΔCp° 
cal/mol K 

WWKL -10.9 (±0.8) -28 (±3) -100 (±21) 

WWAL -2.78 (±0.03) -5.6 (±0.1) -146 (±2) 

 

 

iii. Conclusion 

Although the redesigned WWAL and WWGL peptides did not show any interaction 

with quaternary ammoniums, some interesting β-hairpin design features of the Trp pocket 

sequence were elucidated.  A stark contrast between the structures formed with a singular 

substitution at position 9 is observed.  The WWAL hairpin is well folded in solution but with 

a different geometry of tryptophan packing to accommodate Ala 9 when compared to 

WWKL. However by removing a single methyl unit at this position there is a complete loss 

of β-hairpin formation as was seen with WWGL. It seems that placing a flexible Gly residue 

at position 9 disrupts the nucleation of the hairpin fold, potentially by making alternative 

structures more accessible, such as larger loop like configuration or a turn type that doesn’t 

promote β-sheet. The information obtained from this study is significant in furthering our 

understanding secondary structure design and will undoubtedly be useful with future β-

hairpin design. 
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C. Alternative tryptophan pocket peptides. 

i.   Introduction. 

Since the WWKL peptide was highly stabilized and WWAL peptide was well folded in 

solution we wanted to further explore the robustness of this peptide sequence.  Thus a variety 

of alternative sequences where investigated keeping with the design model of aromatic cleft 

motif with interaction to a cationic species.  

(a) Arginine interaction with the Tryptophan pocket. Arginine is another cationic 

residue that is often observed in protein structures and protein-protein interactions, packing 

favorably with aromatic residues.19

(b) Alternative residues at position 11. The leucine at position 11 in the Trp pocket 

peptides packs against tryptophan at position 2 through favorable van der Waals and 

hydrophobic interactions. We sought to vary the residue at position 11 to probe the effect on 

hairpin formation with residues that have alternative cross strand interactions with Trp 2. The 

 Previous studies have shown that a favorable cation-pi 

interaction is observed between a cross strand diagonal cross strand tryptophan-arginine pair 

in a β-hairpin peptide.12,14 This hairpin was more stable than its tryptophan-lysine counter 

part. Thus it is likely that replacing the lysine residue in the WWKL peptide with an arginine 

will result in a more stabilized β-hairpin structure through enhanced interaction between the 

guanidinium group and the aromatic tryptophan cleft. To study this interaction the sequence 

Ac-RWVWVNGKRILQ-NH2 was designed with Arg at position 9 which is oriented to 

interact with cross strand tryptophan cleft (Figure 3.12a). 

                                                 
19 (a) Burley, S. K.; Petsko, G. A. Febs Lett 1986, 203, 139-143. (b) Flocco, M. M.; 
Mowbray, S. L. J Mol Biol 1994, 235, 709-717. (c) Mitchell, J. B. O.; Nandi, C. L.; 
Mcdonald, I. K.; Thornton, J. M.; Price, S. L. J Mol Biol 1994, 239, 315-331. (d) Gallivan, J. 
P.; Dougherty, D. A. Proc Nat Acad Sci U.S.A. 1999, 96, 9459-9464. (e) Devos, A. M.; 
Ultsch, M.; Kossiakoff, A. A. Science 1992, 255, 306-312. 
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peptide WWKK was designed with the sequence Ac-RWVWVNGOKIKQ-NH2 with a 

lysine at position 11 to investigate the effect of the addition of another potential cation-π 

interaction with Trp 2 (Figure 3.12b). The peptide WWKW was designed with the sequence 

Ac-RWVWVNGKKIWQ-NH2 to introduce a π-π interaction between the side chains of 

residues 2 and 11 (Figure 3.12c). 

(c) Design of Tryptophan-Phenylalanine pocket hairpin. Of the known aromatic cage 

regions that bind methylated lysine only one or two tryptophan residues form these binding 

pockets, with the rest of sides consisting of phenylalanine or tyrosine.20

(d) Design of Alternative Tryptophan cleft. In the Trp pocket design, the two Trp 

residues are on the N-terminal strand of the β-hairpin, being one residue apart in sequence to 

orient the side chains on the NHB face. This creates an aromatic cleft in which a lysine or 

methylated lysine sits, and is similar to what is seen in methyl lysine binding proteins of 

histone tails. However, in these methyl lysine recognition domains, the residues that compose 

the aromatic cage are typically further apart in sequence space usually occurring on an 

adjacent β-strand (Figure 3.1b). To investigate the interaction of lysine and trimethylated 

lysine in a hairpin peptide that more closely emulates this binding cleft we designed the 

 Tryptophan residues 

are also rare compared to other aromatic amino acids found in proteins. Thus we wanted to 

explore the effect of replacing one of the Trp residues with Phe on the stability of the β-

hairpin as well as the interaction with Lys 9 with the new Trp-Phe aromatic cleft. The peptide 

WFKL was designed with the sequence Ac-RWVFVNGOKILQ-NH2 for this purpose with 

Phe at position 4 (Figure 3.12d). 

                                                 
20 Adams-Cioaba, M. A.; Min, J. R. Biochem Cell Biol 2009, 87, 93-105. 
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GWKxW peptide with the sequence : Ac-RGVWVNGKKxIWQ-NH2 where x = me0 or me3 

(Figure 3.12e). 

(a) (b)  

(c) (d)  

(e)  

Figure 3.12. (a) WWRL hairpin containing arginine at position 9. (b) WWKK hairpin 
containing a lysine at position 11. (c) WWKW hairpin containing a tryptophan at position 
11. (d) WFKL  hairpin containing a phenylalanine at position 4. (e) GWKG series of 
peptides containing glycine at position 2, tryptophans at positions 4 and 11, and lysine or 
trimethylysine at position 9 (R = H or Me, accordingly). 
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ii. Results and Discussion. 

(a) Studies on WWRL hairpin. The WWRL peptide was synthesized and characterized 

by NMR to study the effect of an alternative cationic residue in the Trp pocket sequence. 

Analysis of downfield chemical shifting of the Hα revealed a very similar shifting pattern as 

WWKL (Figure 3.13a). A large downfield chemical shift is observed for all residues in the 

β-strands except for Arg 9 and Leu 11. These residues are upfield shifted due to electronic 

shielding from the cross strand tryptophans.  Comparison of amide backbone chemical shifts 

between WWRL and WWKL also shows a similar hydrogen bonding pattern, with large 

downfield shifts at residues Arg 1, Val 3, Val 5, Ile 10, and Gln 12 (Figure 3.13b). A large 

downfield shift is also observed for Asn 6, which is expected for this residue in a type I’ turn 

conformation. Taken together, the NMR chemical shift data of back bone protons for 

WWRL is consistent with the same degree of β-hairpin formation in the same register as 

WWKL. Hairpin formation is further confirmed by non sequential NOEs observed between 

side chain-back bone, side chain-side chain and back bone-back bone in WWRL (Figure 

3.13c, d). 
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(a)  b)  

(c) (d)  

Figure 3.13. (a) WWRL (purple) and WWKL (blue) peptide Hα chemical shift differences 
from random coil controls. The Gly bars reflect the Hα separation in the hairpin.  (b) WWRL 
(purple) and WWKL (blue) peptides backbone amide chemical shift differences from 
random coil control.  (c) NOEs of cross strand side chain-side chain interaction for WWRL. 
(d) NOEs cross strand Backbone-backbone and sidechain-backbone interactions of WWRL. 
Conditions: 293 K, 50 mM sodium acetate-d4, pH 4.0 (uncorrected), referenced to DSS. 

  

Quantification of fraction folded for WWRL using the methods described in the 

Experimental section show that WWRL is approximately 94% folded with good agreement 

between glycine splitting and Hα shifts (Table 3.6) which is comparable to what is seen with 

WWKL (96% folded). 
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Table 3.6. Fraction folded for Alternative Trp Pocket peptides. Conditions: 293 K, 50 mM 
sodium acetate-d4, pH 4.0 (uncorrected), referenced to DSS. 

Peptides Fraction Folded (Gly)a Fraction Folded (Hα) b 

WWKL ≥  0.99 (±0.02) 0.96 (±0.09) 

WWRL 0.97 (±0.02) 0.94 (±0.03) 

WWKK 0.93 (±0.02) 0.89 (±0.03) 

WWKW ≥  0.99 (±0.02) ≥  0.99 (±0.06) 

WFKL 0.91 (±0.02) 0.85 (±0.09) 

GWKW 0.54 (±0.02) 0.50 (±0.10) 

GWKme3W 0.60 (±0.02) 0.54 (±0.10) 

(a) Error determined by chemical shift accuracy on NMR spectrometer.  (b) Average of the Hα values from 
Val3, Val5, Orn8, and Ile10. The standard deviation is in parentheses. 
 

Interaction between the Arg 9 and the tryptophan cleft was also observed via the degree 

of upfield shifting of the Arg side chain from random coil (Figure 3.14).  When compared to 

Lys 9 of WWKL there is a distinction between the extent of upfield shifting between side 

chain residues. This is an indication of different packing geometries between the Arg and the 

tryptophan cleft as compared to Lys. NOE data shows a distinct cross peaks between the β 

and δ methlenes of Arg 9 and the indole ring Trp 2, but no side chains cross peaks are 

observed with Trp 4 (Figure 3.13c).  In a similar hairpin system where a Glu was at position 

4, Arg 9 was shown to be packing in parallel stacking conformation with the indole ring of 

Trp 2 commonly seen in protein crystal structures.14 It is possible that Arg 9 in WWRL is 

primarily stacking in a similar conformation with Trp 2, and any interaction with Trp 4 is 

more dynamic.  
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(a)  (b)  

Figure 3.14. (a) Comparison of residue 9 side-chain chemical shifts for WWRL (purple) and 
WWKL (blue) relative to random coil values. Conditions: 293 K, 50 mM sodium acetate-d4, 
pH 4.0 (uncorrected), referenced to DSS. (b) Lysine and Arginine side chain protons.  
 

To gain thermodynamic information about the folding of WWRL, thermal denturations 

were preformed by following the change in Gly splitting with temperature (see Figure 3.46 in 

the Experimental Seciton). Slight cold denaturation is observed in WWRL similar to what 

was seen in the methylated Trp pocket peptides discussed in section A. Cold denaturation is 

an indication of some degree of hydrophobic driving force in structure folding.12 Non-linear 

fitting of fraction folded verses temperature data of WWRL using equation 3 (see 

Experimental Section) yield thermal dynamic parameters for ΔH°, ΔS°, and ΔCp° for folding 

(Table 3.7). The incorporation of Arg at position 9 has significantly decreased enthalpic 

component to folding when compared to lysine. This is consistent with less favorable contact 

observed with Arginine and the Trp pocket.  However the entropic penalty for WWRL 

folding is practically zero whereas in WWKL it is substantial (-28 cal/mol K). This increase 

in favorable entropy may be explained by arginines ability to interact a variety of 

conformations within the tryptophan pocket whereas lysine can only fit distinctly in a few 

well defined conformations. Since the guanidinium group of arginine has a lower penalty for 

desolvation in water than the amine of lysine, it is conceivable that the guanidinium group of 

arginine will fit in larger number of conformations within the hydrophobic tryptophan pocket 
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whereas the amine will remain solvated and must orient lysine amine outside the pocket. 

Also arginine’s interactions with aromatic groups can make van-der waals contacts through 

the delocalized-π system of the guanidium, and more electrostatic cation-π contacts, 

increasing potential interactions between two aromatic groups. Indeed, it seems that the 

folding of WWRL is due to more of a hydrophobic collapse with a more negative ΔCp° than 

WWKL. It appears as though arginine is making more non-specific interaction in the 

tryptophan cleft making the folding of WWRL more hydrophobic in nature, as opposed to 

WWKL. However, this loss in cation-π specificity slightly decreases the overall stability of 

the hairpin fold when compared to WWKL.  

Table 3.7. Comparison of Thermodynamic Parameters for Folding at 298 K for Alternative 
Trp Pocket peptides.  Error in parentheses determined from fit of plot. Conditions: 50 mM 
sodium acetate-d4, pH 4.0 (uncorrected), referenced to DSS. 

 

Peptide ΔH° 
kcal/mol 

ΔS° 
cal/mol K 

ΔCp° 
cal/mol K 

WWKL -10.9 (±0.8) -28 (±3) -100 (±21) 

WWRL -2.3 (±0.2) -0.7 (±0.7) -330 (±11) 

WWKK -6.6 (±0.2) -17.4 (±0.4) -111 (±4) 

WFKL -4.21 (±0.06) -9.9 (±0.2) -141 (±3) 

 
(b) Studies on WWKK and WWKW. The peptides WWKK and WWKW were 

synthesized and characterized by NMR to study the effects on the Trp pocket hairpin 

formation with alternative residues at position 11. This position can influence the orientation 

of Trp 2 and may have an impact on the aromatic pocket. Analysis of the change Hα shifting 

from random coil values shows well folded hairpins for both WWKK and WWKW (Table 
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3.6). Large downfield shifting is seen in all the expected residues composing the β-strands in 

both peptides (Figure 3.15a). Analysis of the amide backbone chemical shift difference from 

random coil also indicates well folded β-hairpin formation in the proper register (Figure 

3.15). When compared with backbone chemical shifts of WWKL both WWKK and 

WWKW show the same shifting pattern with the exception of residues Arg 1 and Qln 12 in 

the WWKW peptide. There is a decreased chemical shift in Arg 1 and an increase for Qln 12 

suggesting the termini residues in WWKW are now in an alternate conformation. The 

upfield chemical shifting in Arg 1 is likely due to electronic shield from the cross strand 

indole ring of Trp 11 but may also be due to a non-β sheet orientation.   

(a) (b)   
 Figure 3.15. (a) WWKW (light blue) and WWKK (dark blue) peptides Hα chemical shift 
differences from random coil controls. The Gly bars reflect the Hα separation in the hairpin. 
(b)  WWKW and WWKK peptides backbone amide chemical shift differences from random 
coil control. Conditions: 293 K, 50 mM sodium acetate-d4, pH 4.0 (uncorrected), referenced 
to DSS.   

 

Observed cross strand NOEs for WWKK and WWKW confirmed proper β-hairpin 

formation (Figure 3.16). Interestingly NOEs between the β-methylene of Arg 1 and the 

indole ring of Trp 11 are observed, giving more support for twisted Arg 1 backbone 

conformation. The backbone chemical shift data also suggests different degrees of β-hairpin 

formation between the peptides where WWKW is the most well folded, WWKL is the next 

most folded, and WWKK being the least well folded of the peptides.   Quantification of 
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fraction folded using the methods described in the experimental agrees with this observation 

where WWKW is  at least 99% folded, WWKL is 96% folded, and WWKK is 90% folded 

with good agreement between glycine splitting and Hα shifts (Table 3.6). This trend is 

consistent with the relative β-sheet propensities of Trp, Leu and Lys. 

(a)  (b)  

(c)  (d)   

Figure 3.16. (a) NOEs cross strand Backbone-backbone and sidechain-backbone interactions 
of WWKK. (b) NOEs of cross strand side chain-side chain interaction for WWKK. (c) 
NOEs cross strand Backbone-backbone and sidechain-backbone interactions of WWKW. (b) 
NOEs of cross strand side chain-side chain interaction for WWKW.   
 

Interaction between the Lys 9 in WWKK and WWKW and the tryptophan cleft was also 

observed via the degree of upfield shifting of the Lys side chain from random coil (Figure 

3.17).  When comparing the Lys 9 upfield shifting between WWKK, WWKW, and 

WWKL, the largest degree of upfield shifting is observed for WWKK, followed by 

WWKW, and least of all WWKL. A similar upfield shifting pattern is seen between 
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WWKW and WWKL with the γ, δ, and ε methylenes being the most upfield shifted with 

relatively little difference between the methylenes. This suggests that the tryptophan cleft on 

the N-terminal strand is relatively similar between the peptides. However in WWKW, the 

upfield shifting of these methylenes is slightly larger than WWKL. This result is consistent 

with the observation that WWKW is more folded; therefore the lysine-tryptophan cleft 

interaction is increased.  Both Lys 9 and Lys 11 in WWKK interact with cross strand 

tryptophans and undergo a large upfield chemical. Lys 9 experiences the largest amount of 

upfield shifting, resulting from interaction with both Trp 2 and Trp 4. Interestingly the δ 

methylene of Lys 9 in WWKK is the most upfield shifted when compared to all of 

methylenes for Lys 9 in WWKW and WWKL. This upfield shifting pattern for Lys 9 in 

WWKK suggests a change in the tryptophan cleft lysine interaction.  Upfield shifting of 

residue Lys 11 in WWKK is most pronounced in the γ and δ methylene group which is 

likely due to the respective orientations of Trp 2 and Lys 11 where the ε-methylene is not 

oriented into the π-cloud of Trp 2. It is evident that altering the residue at position 11 is 

effecting the interaction between the tryptophan cleft and lysine.      

  

Figure 3.17  Comparison of lysine side-chain chemical shifts for WWKK , WWKW and 
WWKL (true blue) relative to random coil values. Conditions: 293 K, 50 mM sodium 
acetate-d4, pH 4.0 (uncorrected), referenced to DSS. 
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To gain thermodynamic information about the folding of WWKK and WWKW, thermal 

denturations were preformed by following the change in Gly splitting with temperature 

(Table 3.7).  Comparison of thermal denaturation plots of WWKK and WWKW indicate not 

only a difference in stability but also a difference in driving forces for folding (see Figure 

3.46 in Experimental Section). Similarly to what is observed in previously discussed 

WWKme2L, WWKme3L, and WWRL peptides, WWKW experiences cold denaturation, 

which is evidence for a major hydrophobic component in folding. The degree of hairpin 

stability is also comparable to well folded WWKme2L, and WWKme3L where WWKW is 

still approximately 90% folded even at 80°C.  Not surprisingly, the WWKK is less stable 

than WWKL and WWKW and exhibits the greatest extent of denaturation. Thermodynamic 

parameters for folding were obtained for WWKK by nonlinear fitting of the data using 

equation 3(see Experimental Section) and are given in Table 3.7. We were unable to obtain a 

fit for WWKW due to its high stability. Comparing the energetics of folding between 

WWKL and WWKK reveal little difference in the driving forces between these two systems 

where the ratio between ΔH° and ΔS° is relatively the same albeit the ΔG of folding for 

WWKK is less.  This result suggests that the lysine at position 11 is only stabilizing the 

hairpin through non-specific hydrophobic packing against tryptophan 2 like leucine, which 

corroborates with upfield shifting data of the lysine side chain. If an additional specific 

cation-π interaction were occurring, the enthalpy of the system would be more favorable.   

Increased stability of the WWKW hairpin over WWKL is due to a combination of 

factors. Tryptophan has a higher beta sheet propensity than leucine. Tryptophan also has a 

larger hydrophobic surface area than leucine so there is a strong drive for hydrophobic 

clustering and likely explains the observed cold denaturation. Tryptophan can also undergo 
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π-π interactions with the cross-strand tryptophan. The aromatic protons are significantly 

upfield shifted of Trp 11, indicating a favorable edge-face π-π interaction. This is reminiscent 

of the tryptophan packing observed in the highly stable Trpzip β-hairpin peptide design by 

Cochran and co-workers where the NHB face contained tryptophans at positions 2, 4, 9 and 

11.9  It is likely that Trp 2 and Trp 11 of WWKW are oriented in the same manner as Trpzip 

for these positions. Indeed, it may be possible to create an even more stable trp pocket than 

WWKme3L by replacing leucine 11 with tryptophan.  

(c) NMR characterization of WFKL. The WFKL peptide was synthesized and 

characterized by NMR to study the implications of incorporating an alternative aromatic 

residue into the trp pocket sequence. Analysis of downfield chemical shifting of the Hα 

revealed a very similar shifting pattern as WWKL (Figure 3.18a). A notable difference 

between the Hα shifting of the two peptides is observed at Lys 9 wherein this residue is 

upfield shifted in WWKL and only slightly downfield shifted in WFKL. This is an 

indication that Phe 4 is not packing against this Hα of lysine 9 as well as Trp 4. Analysis of 

the backbone amide shifting from random coil indicates a β-hairpin formation with correct 

hydrogen bonding pattern indicated by large downfield shifting of residues Val 3, Val 5, Asn 

6, Ile 10, Gln 12 (Figure 3.18b). Comparison of amide shifting to WFKL and WWKL 

suggests some alteration in backbone formation between the two hairpins.  
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(a) (b)  

(c)  

Figure 3.18. (a) WFKL peptide Hα chemical shift differences from random coil controls. 
The Gly bars reflect the Hα separation in the hairpin. (b)  WFKL peptides backbone amide 
chemical shift differences from random coil control. (c) NOEs cross strand interactions of 
WFKL. Conditions: 293 K, 50 mM sodium acetate-d4, pH 4.0 (uncorrected), referenced to 
DSS. 
   
 Hairpin formation was further confirmed by non sequential NOEs observed between 

side chain-back bone, side chain-side chain and back bone-back bone in WFKL (Figure 

3.18c). Few NOEs were identified between cross-strand residues particularly between Phe 4 

and the cross strand Lys 9, Orn 8, and Gly 7 typically seen for the Trp pocket peptides. This 

possibly indicates a more dynamic hairpin specifically at residue 4. Quantification of fraction 

folded for WFKL using the methods described in the experimental showed that WFKL was 

approximately 91% folded  by glycine splitting and 85% by Hα shifts (Table 3.6) indicating 

that WFKL is not as well folded as WWKL (96% folded). 
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 Interaction between Lys 9 and the aromatic cleft was observed via upfield shifting 

from random coil of the lysine side chain. Comparison of Lys 9 upfield shifting data between 

WWKL and WFKL shows a significant difference in interaction between the two peptides 

(Figure 3.19). It appears that Lys 9 is primarily packing against Trp 2 and has little or no 

interaction with Phe 4 indicated by the sequential increase in upfield shifting along the side 

chain towards the terminal amine. This pattern is observed in previously reported peptides 

designed to study the cation-π between Trp 2 and Lys 9 7,14.   

 

Figure 3.19.  Comparison of lysine side-chain chemical shifts for WFKL (orange) and 
WWKL (blue) relative to random coil values. Conditions: 293 K, 50 mM sodium acetate-d4, 
pH 4.0 (uncorrected), referenced to DSS. 
  

To gain thermodynamic information about the folding of WFKL, a thermal 

denturation was preformed by following the change in Gly splitting with temperature (Figure 

3.46). WFKL is less thermal dynamically stable WWKL and exhibits a higher degree of 

unfolding at higher temperatures. Non-linear fitting of the fraction folded verses temperature 

using equation 3 (see Experimental Section) revealed favorable enthalphic component and a 

unfavorable entropic component for folding similar to what is seen with WWKL albeit with 

a less favorable ΔG° for folding (Table 3.7).   
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It is apparent that replacing Trp 4 with Phe results in a less stable hairpin system. This is 

possiblely due to a poorer cation-π interaction between Phe and Lys which, has been 

observed in other hairpin systems.14 It is also likely at position 4 phenylalanine cannot adopt 

an orientation that packs favorably with Lys 9, resulting in a less stable hairpin.  Another 

factor is the lower β-sheet propensity phenylalanine compared to tryptophan. Nonetheless 

this phenylalanine substitution still results in highly stable β-hairpin compared to other non-

trp pocket hairpin designs.     

(d) NMR Characterization of GWKW series. The peptides GWKW and GWKme3W 

were synthesized and characterized to investigate alternative orientations of favorable 

tryptophan clefts in a β-hairpin sequence. In these peptides, the two Trp residues are in 

different strands in the i and j+2 positions, with Lys at position j. Analysis of downfield 

chemical shifting of the Hα protons indicate β-haripin formation with residues in the β-strand 

region exhibiting downfield shifting ≥ 0.1 ppm from random coil for both GWKW and 

GWKme3W (Figure 3.20a) albeit not to the extent of the previously discussed Trp pocket 

peptides. Calculation of fraction folded using the methods described in the experimental 

section revealed that GWKW is approximately 50% folded in solution while GWKme3W is 

closer to 60% folded (Table 3.6). This is consistent with an increase in hairpin stability seen 

peptides containing trimethylated lysine-tryptophan interactions as discussed in section A.  
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(a) (b)  

Figure 3.20. (a) GWKW (light green) and GWKme3W (dark green) peptides Hα chemical 
shift differences from random coil controls. The Gly bars reflect the Hα separation in the 
hairpin. (b) Comparison of lysine chemical shifts GWKW, WWKL(blue), GWKme3W, 
and WWKme3 (yellow)  relative to random coil values. Conditions: 293 K, 50 mM sodium 
acetate-d4, pH 4.0 (uncorrected), referenced to DSS.   

 

Analysis of Lys 9 interaction with the new tryptophan cleft through upfield shifting of the 

lysine side chain protons showed a more favorable interaction was occurring when Lys 9 is 

trimethylated (Figure 3.20). However, the upfield shifting observed by Lys 9 and 

trimethylated Lys 9 is substantial less than what is observed for WWKL and WWKme3L 

with the exception of δ methylene where GWKW’s lys is greater than WWKL’s lys. It is 

apparent that the GWKW design produces a less stable β-hairpin with a less favorable 

interaction between lys and the two tryptophans. Since trimethylation of Lys 9 only slightly 

increased its stability, no further characterization was performed on this design.  

iii. Conclusion. 

The survey conducted on the malleability of the Trp pocket sequence in β-hairpin 

formation has given us valuable insights into highly stabilized β-hairpin design. Changing the 

cationic residue at position 9 still results in a highly stabilized hairpin, but alters the nature of 

the interaction between residue 9 and the tryptophan cleft as was seen in WWRL. Changing 

the residue at position 11 also affect the degree of stability in the Trp pocket sequence by 
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varying the interaction between Trp 2 and residue 11 as is seen with the peptides WWKW 

and WWKK. Replacement of Leu 11 with Trp increases hairpin stability substantially and is 

the most stable unmodified natural sequence (i.e. no methylated lysine). Incorporating Lys at 

position 11 decreases overall hairpin stability and the data gathered does not support a 

substantial cation-π interaction between Lys 11 and Trp 2 as was initially intended.  

Replacement of Trp 4 with Phe decreases the hairpin stability as demonstrated in WFKL 

indicates that tryptophan is the most optimized residue for creating a stable hairpin system 

with an aromatic pocket that interacts with a cross strand lysine residue. The most stabilizing 

lysine or methylated lysine – tryptophan cleft interaction is achieved when the tryptophans 

are located at position 2 and 4 as was seen from the analysis of the GWKW series. Although 

not a complete survey of all potential variations in aromatic pocket design, the studies 

presented here are a good start for future de novo designed systems that are highly stabilized 

in water.  

D. Experimental. 
 

i. Synthesis and Purification of peptides.  

Peptides were synthesized by automated solid phase peptide synthesis on an Applied 

Biosystems Pioneer Peptide Synthesizer using Fmoc protected amino acids on a PEG-PAL-

PS resin. Mono and dimethylated Fmoc-protected lysine were purchased from AnaSpec. 

Activation of amino acids was performed with HBTU, HOBT in the presence of DIPEA in 

DMF. Deprotections were carried out in 2% DBU , 2% piperdine in DMF for approximately 

10 min.  Extended cycles (75 min) were used for each amino acid coupling step.  All peptides 

where acetylated at the N-terminus with 5% acetic anhydride, 6% lutidine in DMF for 30 

min. Cleavage of the peptide from the resin was performed in 95:2.5:2.5 TFA: Ethanedithiol 
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or Triisopropylsilane (TIPS): water for 3 h.  Ethanedithiol was used as a scavenger for sulfur 

containing peptides. TFA was evaporated and cleavage products were precipitated with cold 

ether. The peptide was extracted into water and lyophilized. It was then purified by reverse 

phase HPLC, using a Vydac C-18 semipreparative column and a gradient of 0 to 100% B 

over 40 min, where solvent A was 95:5 water:acetonitrile, 0.1% TFA and solvent B was 95:5 

actonitrile:water, 0.1% TFA. After purification the peptide was lyophilized to powder and 

identified with ESI-TOF mass spectroscopy.  

ii. Cyclization of cyclic peptides.  

Cyclic control peptides were cyclized by oxidizing the cysteine residues at the ends of the 

peptide by stirring in a 10 mM phosphate buffer (pH 7.5) in 1% DMSO solution for 9 to 12 

hours. The solution was lyophilized to a powder and purified with HPLC using previously 

described method.  

iii. Methylation of dimethyl lysine.  

Peptides containing dimethyl lysine were methylated to trimethyl lysine on resin by 

reacting with 8 μl 1,3,4,6,7,8-Hexahydro-1-methyl-2H-pyrimide [1,2-9-] pyrimidine and 62 

μl brought up to 5 ml in DMF. Reaction mixture was agitated by nitrogen bubbling under a 

vented septum for 5 h. Resin was washed with DMF 3x and then washed with 3x 

dichloromethane. 

iv. NMR Spectroscopy.  

NMR samples were made to a concentration of 1 mM in D2O buffered to pD 4.0 

(uncorrected)  with 50 mM NaOAc-d3, 24 mM AcOH-d4, 0.5 mM DSS. Samples were 

analyzed on a Varian Inova 600-MHz instrument.  One dimensional spectra were collected 

by using 32-K data points and between 8 to 128 scans using 1.5 sec presaturation. Two 
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dimensional total correlation spectroscopy (TOCSY) and nuclear overhauser spectroscopy 

(NOESY) experiments were carried out using the pulse sequences from the chempack 

software. Scans in the TOCSY experiments were taken 16 to 32 in the first dimension and 64 

to 128 in the second dimension. Scans in the NOESY experiments were taken 32 to 64 in the 

first dimension and 128 to 512 in the second dimension with mixing times of 200 to 500 

msec. All spectra were analyzed using standard window functions (sinbell and Gaussian with 

shifting). Presaturation was used to suppress the water resonance.  Assignments were made 

by using standard methods as described by Wüthrich.21

 

  All experiments were run at 298.15 

K. 

 

 

 

 

 

 

 

 

 

                                                 
21 Wüthrich, K. NMR of Proteins and Nucleic Acids; Wiley: New York, 1986. 
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Figure 3.21 1HNMR of Peptide WWKL: Ac-Arg-Trp-Val-Trp-Val-Asn-Gly-Orn-Lys-Ile-
Leu-Gln-NH2 
 
Table 3.8 Proton Chemical Shift Assignments for Peptide WWKL. 
 

Residue α β γ δ ε Amide 
R 4.4 1.53 1.66 3.16   8.06 
W 5.12 2.76 7.13,7.08,6.84,7.21,7.43 8.29 
V 4.29 1.94 0.92    9.22 
W 5.16 3.11 7.16,7.21,7.00,7.39 

  
8.68 

V 4.6 2.1 0.9    9.23 
N 4.45 2.77/3.13     9.62 
G 3.75,4.22      8.8 
O 4.72 1.81 1.77 3.06   7.89 
K 4.14 1.07 0.49 0.9/0.26 2.05 8.26 
I 4.59 1.85 1.15/1.34 0.84   9.25 
L 4 1.29 0.58 0.39/0.099   8.26 
Q 4.32 2.02 2.24     8.73 

  

PPM 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 
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Figure 3.22 1HNMR of Peptide WWKmeL: Ac-Arg-Trp-Val-Trp-Val-Asn-Gly-Orn-
Lys(Me)-Ile-Leu-Gln-NH2 
 
Table 3.9 Proton Chemical Shift Assignments for Peptide WWKmeL. 

Residue α β γ δ ε Amide 
R 4.35 1.56 1.65 3.11   8.09 
W 5.12 2.95/2.82 7.16,7.09,6.84,7.20,7.41   
V 4.25 1.9 0.9    9.22 
W 5.15 3.05 7.19,7.14,6.99,7.20,7.35  
V 4.57 2.05 0.83    9.25 
N 4.41 2.74/3.08     9.67 
G 4.23,3.75      8.83 
O 4.69 1.79 1.73 3.01   8.01 

Kme 4.04 1 0.15 0.43 

1.83  
CH3 = 
1.98 8.37 

I 4.54 1.81 1.12 0.79   9.28 
L 4 1.28 0.64 0.35/0.038   8.42 
Q 4.27 1.97 2.23     8.73 

  
 

PPM 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 -0.4 
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Figure 3.23 1HNMR of Peptide WWKme2L: Ac-Arg-Trp-Val-Trp-Val-Asn-Gly-Orn-
Lys(Me2)-Ile-Leu-Gln-NH2 
 
Table 3.10 Proton Chemical Shift Assignments for Peptide WWKme2L. 

Residue α β γ δ ε Amide 
R 4.39 1.52 1.66 3.15  7.97 
W 5.16 2.97,2.71 7.10,7.06,6.80,7.40 8.17 
V 4.3 1.98 0.92   9.18 
W 5.22 3.07 7.17,7.13,6.97,7.33 8.67 
V 4.61 2.09 0.87   9.2 
N 4.45 2.78, 3.13    9.63 
G 3.75,4.23     8.8 
O 4.72 1.82 1.79 3.03  7.84 

Kme2 4.07 0.98 0.11 0.36 

1.78 
(CH3)2= 

2.18, 2.05 8.22 
I 4.59 1.84 1.15 0.82  9.23 
L 4.07 1.34 0.95/0.74 0.37/0.062  8.3 
Q 4.31 1.82,1.99 2.22   8.67 

  
 

PPM 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 
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Figure 3.24 1HNMR of Peptide WWKme3L: Ac-Arg-Trp-Val-Trp-Val-Asn-Gly-Orn-
Lys(Me3)-Ile-Leu-Gln-NH2 
 
Table 3.11 Proton Chemical Shift Assignments for Peptide WWKme3L. 

  
 

Residue α β γ δ ε Amide 
R 4.37 1.53 1.63 3.14  8.02 
W 5.17 2.95/2.66 7.16,7.08,6.83,7.45  8.28 
V 4.6 2.08 0.86    9.23 
W 5.14 3.21 7.13,7.02,7.38  8.73 
V 4.29 1.8 0.92    9.25 
N 4.43 3.76,3.21     9.71 
G 4.22,3.75      8.88 
O 4.72 1.8 1.76 3.03  7.92 

Kme3 4.07 0.92 0.13 0.45,0.32 
2.02 , 

(CH3)3 = 2.38 8.32 
I 4.58 1.83 NA 0.82  9.31 
L 4.07 1.31 0.48 0.024,0.033  8.38 
Q 4.28 1.96 2.21    8.73 

PPM 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 -0.4 



93 
 

 
Figure 3.25 1HNMR of Peptide cyclic WWKL: Ac-Cys-Arg-Trp-Val-Trp-Val-Asn-Gly-
Orn-Lys-Ile-Leu-Gln-Cys-NH2 
 
Table 3.12 Proton Chemical Shift Assignments for Peptide cyclic WWKL. 

Residue α β γ δ ε 
C 5.11 3.05,2.68     
R 4.59 1.79 1.5 3.18   
W 5.04 2.91  7.16,7.03,6.88,7.24,7.43 
V 4.27 1.91 0.92    
W 5.14 3.08 7.15,7.20,7.00,7.20 
V 4.64 2.08 0.83    
N 4.42 2.76/3.14     
G 4.23,3.76      
O 4.72 1.82     
K 4.22 0.98 0.63 0.25 2.06 
I 4.67 1.82 1.1 0.83   
L 3.91 1.29 0.76/0.35 0.12,-0.40   
Q 4.55 1.81 2.07    
C 5.22  2.39,2.97       
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 Figure 3.26 1HNMR of Peptide cyclic WWKmeL: Ac-Cys-Arg-Trp-Val-Trp-Val-Asn-Gly-
Orn-Lys(Me)-Ile-Leu-Qln-Cys-NH2 
 
Table 3.13 Proton Chemical Shift Assignments for Peptide cyclic WWKmeL. 

Residue α β γ δ ε 
C 5.11 3.00,2.62       
R 4.54 1.46 1.78 3.14   
W 5.01 2.9 7.13,7.03,6.8

 
  

V 4.27 1.9 0.88    
W 5.13 3.02 7.20,7.15,6.9

 
  

V 4.64 2.06 0.82    
N 4.41 2.74/3.10     
G 4.20,3.72      
O 4.68 1.78 1.78 3   

Kme 4.11 1.02 0.54 0.32/0.16 
1.8, CH3 = 

1.94 
I 4.6 1.78 1.08 0.82   
L 3.93 1.32 0.74 0.26,-0.44   
Q 4.53 1.77 2.06    
C 5.19  2.92,2.34       

 

PPM 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 
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Figure 3.27 1HNMR of Peptide cyclic WWKme2L: Ac-Cys-Arg-Trp-Val-Trp-Val-Asn-
Gly-Orn-Lys(Me2)-Ile-Leu-Gln-Cys-NH2 
 
Table 3.14 Proton Chemical Shift Assignments for Peptide cyclic WWKme2L.  

Residue α β γ δ ε 
C 5.14 3.04,2.64     
R 4.59 1.48 1.78 3.15   
W 5.03 2.91 6.87,7.06,7.14,7.42,7.25 
V 4.3 1.94 0.92    
W 5.14 3.06 7.00,7.17,7.35,7.22 
V 4.62 2.07 0.83    
N 4.42 2.77, 3.11     
G 3.74,4.23      
O 4.73 1.78 NA 3.04   

Kme2 4.11 0.98 0.56 0.15 
1.82, (CH3)2 
= 2.04, 2.16 

I 4.62 1.8 1.1 0.83   
L 3.98 1.33 0.76 0.35,-0.44   
Q 4.56 1.81 2.04    
C 5.19  3.00,2.36       

 

PPM 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 
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Figure 3.28 1HNMR of Peptide cyclic WWKme3L: Ac-Cys-Arg-Trp-Val-Trp-Val-Asn-
Gly-Orn-Lys(Me3)-Ile-Leu-Qln-Cys-NH2 
 
Table 3.15 Proton Chemical Shift Assignments for Peptide cyclic WWKme3L. 

Residue α β γ δ ε 
C 5.15 2.63,3.06     
R 4.57 1.8 1.67 3.17   
W 5.03 2.91 7.18,7.06,6.89,7.25,7.45  
V 4.31 1.94 0.92    
W 5.21 3.01 7.21,7.25,7.17,7.37 
V 4.64 2.07 0.87    
N 4.43 3.14/2.77     
G 4.24,3.76      
O 4.73 1.84 1.73 3.04   

Kme3 4.13 1.95 1.00,0.62 0.31,0.17 
2.1, (CH3)3= 

2.36 
I 4.62 1.81 1.12 0.84   
L 3.99 1.37 0.77 0.34,-0.45   
Q 4.56 1.80/2.13 2.23    
C  5.21 3.01,2.36       

 

PPM 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 
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Figure 3.29 1HNMR of Peptide AWSL: Ac-Arg-Ala-Val-Trp-Val-Asn-Gly-Orn-Ser-Ile-
Leu-Gln-NH2 
 
Table 3.16 Proton Chemical Shift Assignments for Peptide AWSL. 

Residue α β γ δ ε 
R 4.24 1.73 1.63 3.14   
A 4.39 1.25    
V 4.16 2.01 0.84    
W 4.83 3.12    
V 4.07 1.9 0.84    
N 4.43 2.92,2.69    
G 3.98, 3.76      
O 4.43 1.82 1.68 2.97   
S 4.32 3.41     
I 4.21 1.83 1.17 0.84   
L 4.37 1.55  0.84   
Q 4.26 1.94 2.31     

 

 

PPM 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 -0.4 
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Figure 3.30 1HNMR of Peptide WAKL: Ac-Arg-Trp-Val-Ala-Val-Asn-Gly-Orn-Lys-Ile-
Leu-Gln-NH2 
 
Table 3.17 Proton Chemical Shift Assignments for Peptide WAKL. 

Residue α β γ δ ε 
R 4.27 1.63 1.45 3.08   
W 4.9 3.16 7.13,7.27,7.46,7.49 
V 4.16 1.94 0.84    
A 4.56 1.31     
V 4.1 2 0.91    
N 4.64 2.94,2.76     
G 4.01,3.81      
O 4.49 1.83 1.72 3.02   
K 4.52 1.69 1.31 1.46 2.76 
I 4.33 N/A N/A 0.87   
L 4.18 1.42 1.16 0.64   
Q 4.29 1.92 2.3     

 

 

PPM 7.6 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 -0.4 
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Figure 3.31 1HNMR of Peptide WASL: Ac-Arg-Trp-Val-Trp-Val-Asn-Gly-Orn-Lys-Ile-
Leu-Gln-NH2 
 
Table 3.18 Proton Chemical Shift Assignments for Peptide WASL. 

Residue α β γ δ ε 
R 4.24 1.57 1.46 3.08   
W 4.76 3.16 7.12,7.22,7.48,7.52 
V 4.09 1.99 0.89    
A 4.4 1.32     
V 4.09 1.99 0.89    
N 4.62 2.8     
G 3.99,3.92      
O 4.48      
S 4.62 3.82     
I 4.31 1.9 0.89    
L 4.21 1.43 1.34 0.74   
Q 4.29 1.94 2.36     

 

PPM 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 -0.4 
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Figure 3.32 1HNMR of Peptide WWSL: Ac-Arg-Trp-Val-Trp-Val-Asn-Gly-Orn-Ser-Ile-
Leu-Gln-NH2 
 
Table 3.19 Proton Chemical Shift Assignments for Peptide WWSL. 

Residue α β γ δ ε 
R 4.38 1.68 1.56 3.13   
W 4.92 2.96 6.96,7.18,7.22,7.43 
V 4.46 2.01 0.85    
W 5 3.1 7.05,7.22,7.36 
V 4.17 1.89 0.87    
N 4.38 2.68,2.96     
G 4.08,3.67      
O 4.52 1.71 1.68 3   
S 4.59 3.21,3.13     
I 4.52 1.84 1.09 0.82   
L 3.85 1.24 0.42 0.15   
Q 4.28 1.86 2.26     

  
 

PPM 8.4 8.0 7.6 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 -0.4 
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Figure 3.33 1HNMR of Peptide cyclic WWSL: Ac-Cys-Arg-Trp-Val-Trp-Val-Asn-Gly-Orn-
Ser-Ile-Leu-Gln-Cys-NH2 
 
Table 3.20 Proton Chemical Shift Assignments for Peptide cyclic WWSL. 

Residue α β γ δ ε 
C 5.2 2.98,2.40     
R 4.61 1.78 1.51 3.18   
W 5.15 3.09 6.93,7.20,7.43,7.49 
V 4.61 2.06 0.88    
W 5.04 2.91 7.02,7.14,7.39,7.39 
V 4.25 1.89 0.91    
N 4.36 3.08,2.70     
G 4.13,3.62      
O 4.56 1.77 1.67 3.02   
S 4.77 3.03,3.18     
I 4.61 1.79  0.82   
L 3.75 1.23 0.38 -0.094,-0.37   
Q 4.54 1.79 2.20,207    
C 4.98 2.95       

 

PPM 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 
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Figure 3.34 1HNMR of Peptide cyclic WASL: Ac-Cys-Arg-Trp-Val-Ala-Val-Asn-Gly-Orn-
Ser-Ile-Leu-Gln-Cys-NH2 
 
Table 3.21 Proton Chemical Shift Assignments for Peptide cyclic WASL. 

Residue α β γ δ ε 
C 5.03 2.98    
R 4.6 1.8 1.49 3.15  
W 5.03 2.98 6.97,7.21,7.23,7.43,7.87 
V 4.47 1.99 0.88   
A 5.03 1.26    
V 4.19 1.93 0.89   
N 4.38 2.75,3.10    
G 4.21,3.88     
O 4.69 1.83 1.7 3.04  
S 5.13 3.80,3.68    
I 4.66 1.87  0.89  
L 3.79 1.25 0.38 -0.058,-0.30  
Q 4.54 1.83 2.23,2.06   
C 5.02 2,98,2.40    

 

PPM 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 
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Figure 3.35 1HNMR of Peptide WWAL: Ac-Arg-Trp-Val-Trp-Val-Asn-Gly-Orn-Ala-Ile-
Leu-Gln-NH2 
 
Table 3.22 Proton Chemical Shift Assignments for Peptide WWAL. 

Residue α β γ δ ε Amine 
R 4.4 1.63 1.52 3.11  8.01 
W 4.93 2.95/2.76 

  
 8.34 

V 4.51 2.02 0.86 
 

 9.02 
W 5.01 3.06 

  
 8.67 

V 4.22 1.92 0.89 
 

 8.97 
N 4.4 2.73,3.08 

  
 9.49 

G 4.16,3.74 
   

 8.56 
O 4.53 1.77 1.69 3  7.71 
A 4.18 0.52 

  
 8.15 

I 4.42 1.77 1.15 0.79  9.13 
L 3.84 1.23 0.84 0.39,0.051  8.2 
Q 4.27 1.98,1.84 2.21    8.67 

 

 

PPM 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 
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Figure 3.36 1HNMR of Peptide WWGL: Ac-Arg-Trp-Val-Trp-Val-Asn-Gly-Orn-Gly-Ile-
Leu-Gln-NH2 
 
Table 3.23 Proton Chemical Shift Assignments for Peptide WWGL. 

Residue α β γ δ ε 
R 4.22 1.62 1.42 3.08   
W 4.82 3.08 

  
  

V 4.05 1.96 0.83 
 

  
W 4.82 3.08 

  
  

V 4.05 1.96 0.83 
 

  
N 4.67 2.82 

  
  

G 3.93,3.53 
   

  
O 4.35 1.74 1.67 2.98   
G 3.71,3.76 

   
  

I 4.18 1.81 1.17 0.86   
L 4.26 1.51 

 
0.77   

Q 4.28 1.94,2.11 2.31     

PPM 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 -0.4 
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Figure 3.37 1HNMR of Peptide cyclic WWAL: Ac-Cys-Arg-Trp-Val-Trp-Val-Asn-Gly-
Orn-Ala-Ile-Leu-Gln-Cys-NH2 
 
Table 3.24 Proton Chemical Shift Assignments for Peptide cyclic WWAL. 

Residue α β γ δ ε 
C 4.95 2.99,2.79 

  
  

R 4.6 1.81 1.66 3.15   
W 5.05 2.91 

  
  

V 4.57 2.06 0.88 
 

  
W 5.09 3.08 

  
  

V 4.27 1.93 0.92 
 

  
N 4.43 3.12,2.76 

  
  

G 4.18,3.76 
   

  
O 4.57 1.77 1.7 3.02   
A 4.27 0.57 

  
  

I 4.47 1.77 1.13 0.81   
L 3.78 1.24 0.35 -0.37 -0.073 
Q 4.53 1.83,2.13 2.22 

 
  

C 5.22 2.97,2.41       
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Figure 3.38 1HNMR of Peptide WWRL: Ac-Arg-Trp-Val-Trp-Val-Asn-Gly-Lys-Arg-Ile-
Leu-Gln-NH2 
 
Table 3.25 Proton Chemical Shift Assignments for Peptide WWRL. 

Residue α β γ δ ε Amine 
R 4.42 1.71 1.59 3.12   7.87 
W 5.09 2.95,2.81 

 
8.32 

V 4.61 2.08 0.85 
 

  9.26 
W 5.17 3.07 

 
8.56 

V 4.29 2.01 0.92 
 

  9.26 
N 4.42 3.13,2.77 

  
  9.64 

G 4.22,3.75 
   

  8.79 
K 4.68 1.75 1.42 1.75 3.03 8.01 
R 4.21 1.13,0.77 0.41,0.26 2.33   8.32 
I 4.62 1.82 1.09 0.83   9.26 
L 3.92 1.21 0.79 0.39,0.0037   8.2 
Q 4.31 1.83 2.2     8.74 
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Figure 3.39 1HNMR of Peptide cyclic WWRL: Ac-Cys-Arg-Trp-Val-Trp-Val-Asn-Gly-
Orn-Lys-Ile-Arg-Gln-Cys-NH2 
 
Table 3.26 Proton Chemical Shift Assignments for Peptide cyclic WWRL. 

Residue α β γ δ ε 
C 5.02 2.93 

  
  

R 4.58 1.78 1.5 3.16   
W 5.07 2.99,2.70 

  
  

V 4.65 2.1 0.86 
 

  
W 5.17 3.08 

  
  

V 4.3 1.95 0.93 
 

  
N 4.41 2.76, 3.13 

  
  

G 4.23,3.75 
   

  
K 4.69 1.78 1.43 1.78 3.03 
R 4.23 1.15, 0.86 0.19,0.39 2.4   
I 4.68 1.81 

 
0.83   

L 3.88 1.26 0.73,0.33 0.028,-0.42   
Q 4.55 1.8 2.06,2.15 

 
  

C 5.21 2.96,2.36       

PPM 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 
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Figure 3.40 1HNMR of Peptide WWKK: Ac-Arg-Trp-Val-Trp-Val-Asn-Gly-Orn-Lys-Ile-
Lys-Gln-NH2 
 
Table 3.27 Proton Chemical Shift Assignments for Peptide WWKK. 

Residue α β γ δ ε Amide 
R 4.37 1.54 1.67 3.15   7.91 
W 5.09 2.95,2.76 6.89, 7.15,7.18,7.43 8.36 
V 4.56 2.07 0.85 

 
  9.09 

W 5.13 3.06 7.02, 7.18, 7.20, 7.40 
8.55 

 
V 4.26 1.94 0.92 

 
  9.17 

N 4.44 2.76/3.08 
  

  9.57 
G 3.75/4.19 

   
  8.66 

O 4.69 1.8 1.77 3.03   7.69 
K 4.11 1.07 0.49 0.29 2.03 8.31 
I 4.57 1.84 1.11 0.84   9.17 
K 4.03 1.36 0.57 0.84 2.57 8.39 
Q 4.32 2.02 2.24     8.47 

  
 

PPM 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 -0.4 
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Figure 3.41 1HNMR of Peptide cyclic WWKK: Ac-Cys-Arg-Trp-Val-Trp-Val-Asn-Gly-
Orn-Lys-Ile-Lys-Qln-Cys-NH2 
 
Table 3.28 Proton Chemical Shift Assignments for Peptide cyclic WWKK. 

Residue α β γ δ ε 
C 5.03 2.95 

  
  

R 4.61 1.8 1.77 3.16   
W 5.21 2.98,2.66 

  
  

V 4.63 2.06 0.81 
 

  
W 5.12 3.05 

  
  

V 4.28 2.07 0.9 
 

  
N 4.43 3.12,2.75 

  
  

G 3.75,4.22 
   

  
O 4.74 1.75 1.75 3.03   
K 4.13 1 0.59 0.23 2.07 
I 4.6 1.78 1.22 0.85   
K 3.98 1.23 0.67 0.46,0.19 2.48 
Q 4.56 1.76,1.97 2.14 

 
  

C 5.16 2.91,2.30       
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Table 3.29 Proton Chemical Shift Assignments for Peptide WWKW. 

Residue α β γ δ ε Amide 
R 4 1.58, 1.36 1.18 3.04   6.96 
W 5.15 3.06, 2.71 7.03, H2 7.22, 7.39 H4 7.48  8.17 
V 4.58 2.03 0.81 

 
  9.43 

W 5.21 3.06 7.09, 7.27, 7.36 8.69 
V 4.3 1.97 0.94 

 
  9.3 

N 4.44 3.13, 2.78 
  

  9.64 
G 4.25, 3.76 

   
  8.78 

K 4.68 1.79 1.43 3.05   7.89 
K 4.11 1.07 0.37 0.58,0.20 1.92, 6.99 8.17 
I 4.78 1.88 

 
0.9   9.39 

W 4.35 2.82, 2.16 H 7.16,H6 6.84, H5 6.23, H4 5.14 8.78 
Q 4.28 1.60,1.83 2.07     8.33 
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Figure 3.43 1HNMR of Peptide cyclic WWKW: Ac-Cys-Arg-Trp-Val-Trp-Val-Asn-Gly-
Orn-Lys-Ile-Trp-Gln-Cys-NH2 
 
Table 3.30 Proton Chemical Shift Assignments for Peptide cyclic WWKW. 

Residue α β γ δ ε 
C nd nd 

  
  

R 4.1 1.77 nd 3.03   
W nd nd nd 

 
  

V 4.57 2.01 0.86 
 

  
W nd nd 

  
  

V 4.29 1.96 0.93 
 

  
N 4.34 3.14,2.78 

  
  

G 4.24, 3.75 
   

  
K 4.69 1.79 1.44 3.05   
K 4.15 1.04 0.63 0.36,0.19 1.88 
I 4.76 1.87 

 
0.88   

W nd nd nd 
 

  
Q 4.48 1.68,1.96 2.09 

 
  

C  nd nd        
 

 

PPM 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 
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Table 3.31 Proton Chemical Shift Assignments for Peptide WFKL. 

Residue α β γ δ ε Amide 
R 4.38 1.66 1.53 3.14   8.05 
W 5.12 3.01 

  
  8.32 

V 4.53 2.08 0.85 
 

  9.08 
F 5.2 2.94 

  
  8.69 

V 4.23 1.91 0.93 
 

  8.91 
N 4.42 2.76,3.06 

  
  9.57 

G 4.17,3.66 
   

  8.57 
O 4.66 1.83 1.78 3.04   7.81 
K 4.4 1.56 0.92 1.15 2.22, 7.13 8.57 
I 4.59 1.86 1.16 0.86   9.23 
L 4.06 1.35 0.7 0.46,0.20   8.35 
Q 4.32 1.85 2.14,2.02     8.69 

 

Table 3.32 Proton Chemical Shift Assignments for Peptide cyclic WFKL. 

Residue α β γ δ ε 
C 5.05 2.91 

  
  

R 4.59 1.79 1.49 3.16   
W 5.13 2.78,3.04 

  
  

V 4.62 2.11 0.86 
 

  
F 5.28 2.88 

  
  

V 4.24 1.9 0.91 
 

  
N 4.4 2.76,3.11 

  
  

G 4.19, 3.63 
   

  
O 4.7 1.84 1.75 3.03   
K 4.5 1.59 1.36,1.21 1.04,0.88 2.19 
I 4.76 1.84 1.34,1.19 0.85   
L 3.92 1.33 0.78,0.38 0.13,-0.40   
Q 4.57 1.79 2.09 

 
  

C 5.21 2.97,2.38       
 

 

 



113 
 

 
Figure 3.43 1HNMR of Peptide GWKW: Ac-Arg-Gly-Val-Trp-Val-Asn-Gly-Orn-Lys-Ile-
Trp-Gln-NH2 
 
Table 3.33 Proton Chemical Shift Assignments for Peptide GWKW. 

Residue α β γ δ ε 
R 4.27 1.77 1.61 3.11   
G 3.92,3.70 

   
  

V 4.2 1.91 0.81 
 

  
W 4.84 3.07 

  
  

V 4.11 1.9 0.86 
 

  
N 4.45 2.96,2.72 

  
  

G 4.06,3.78 
   

  
K 4.49 1.73 1.37 1.69 2.96 
K 3.92 1.33 0.71 0.78 2.59 
I 4.21 1.8 

 
0.81   

W 4.68 3.18 
  

  
Q 4.19 1.79 2.13     

 

 

PPM 8.0 7.6 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 
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Figure 3.44 1HNMR of Peptide GWKme3W: Ac-Arg-Gly-Val-Trp-Val-Asn-Gly-Lys-
Lys(Me3)-Ile-Trp-Gln-NH2 
 
Table 3.34 Proton Chemical Shift Assignments for Peptide GWKme3W. 

Residue α β γ δ ε 
R 4.29 1.76 1.63 3.14   
G 3.97,3.70 

   
  

V 4.23 2 0.87 
 

  
W 4.89 3.08 

  
  

V 4.13 1.93 0.87 
 

  
N 4.46 2.98,2.73 

  
  

G 4.07,3.76 
   

  
K 4.52 1.71 1.39 1.71 2.98 

Kme3 3.97 1.41,1.23 0.54 0.77,0.99 2.66 
I 4.23 1.82 1.35,1.17 0.83   

W 4.69 3.2 
  

  
Q 4.22 1.81 2.15     

 

 

 

PPM 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 -0.4 
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Figure 3.45 1HNMR of Peptide cyclic GWKW: Ac-Cys-Arg-Gly-Val-Trp-Val-Asn-Gly-
Lys-Lys-Ile-Trp-Gln-Cys-NH2 
 
Table 3.35 Proton Chemical Shift Assignments for Peptide cyclic GWKW. 

Residue α β γ δ ε 
C           
R 4.51 1.8 1.58 3.17   
G 4.21,3.88 

   
  

V 4.36 nd 0.81 
 

  
W 4.99 3 

  
  

V 4.25 1.92 0.9 
 

  
N 4.42 3.11,2.75 

  
  

G 4.21,3.70 
   

  
K 4.64 1.76 1.4 1.71 3.01 
K 3.85 1.1 0.35 0.034 2.26 
I 4.36 1.88 

 
0.81   

W 4.92 3 
  

  
Q 4.63 1.91 2.22 

 
  

C           
 

 

PPM 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 
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Table 3.36 Proton Chemical Shift Assignments for Peptide Ac-RWVWVNG-NH2. 

Residue α β γ δ ε Amine 
R 4.09 1.58 1.35 3.03   6.94 
W 4.51 3.04 7.25,7.39,7.22,7.02,7.61  8.29 
V 4 1.85 0.8    8.39 
W 4.57 3.15 7.25,7.39,7.22,7.02,7.61  8.29 
V 4 1.85 0.8    8.39 
N 4.46 2.73/2.64     8.45 
G 3.94         8.27 

 
Table 3.37 Proton Chemical Shift Assignments for Peptide Ac-RAVWVNG-NH2. 

Residue α β γ δ ε 
R 4.22 1.73 1.67 3.15   
A 4.26 1.27  
V 3.99 1.94 0.84    
W 4.68 3.24 7.15,7.21,7.48,7.63 
V 4.04 2.01 0.9    
N 4.49 2.80,2.68     
G 3.86         

 
Table 3.38 Proton Chemical Shift Assignments for Peptide Ac-RWVAVNG-NH2. 

Residue α β γ δ ε 
R 4.16 1.59 1.41 3.07   
W 4.69 3.24 7.14,7.22,7.48,7.59 
V 3.94 1.9 0.83    
A 4.16 1.33  
V 4.03 2.06 0.92    
N 4.67 2.76     
G 3.87         

 
Table 3.39 Proton Chemical Shift Assignments for Peptide Ac-NGOSILQ-NH2. 

Residue α β γ δ ε 
N 4.7 2.81     
G 3.96   
O 4.43 1.86 1.72 3.02   
S 4.5 3.86  
I 4.19 1.9 1.45,1.20 0.9   
L 4.36 1.64  0.9   
Q 4.29 1.99 2.37     
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Table 3.40 Proton Chemical Shift Assignments for Peptide Ac-RWVFVNG-NH2. 

Residue α β γ δ ε Amine 
R 4.1 1.58 1.36 3.04   8.04 
W 4.52 3.15  8.23 
V 4.01 1.89 0.86    8.09 
F 4.65 3.1  8.23 
V 4.01 1.89 0.86    8.09 
N 4.44 2.75,2.62     8.5 
G 3.94         8.36 

 

Table 3.41 Proton Chemical Shift Assignments for Peptide Ac-NGORILQ-NH2. 

Residue α β γ δ ε Amine 
N 4.68 2.81    8.5 
G 3.93     8.6 
O 4.33 1.84 1.43 1.7 2.99 8.12 
R 4.36 1.78 1.63 3.21  8.37 
I 4.15 1.87 1.48,1.20 0.9  8.3 
L 4.39 1.62 0.92   8.41 
Q 4.32 1.99 2.38   8.37 

 

Table 3.42 Proton Chemical Shift Assignments for Peptide Ac-NGOKIKQ-NH2. 

Residue α β γ δ ε Amine 
N 4.69 2.81    8.47 
G 3.95     8.59 
O 4.37 1.87 1.76 3.02  8.18 
K 4.3 1.76 1.45  1.76 8.36 
I 4.16 1.86 1.21,1.46 0.91  8.22 
K 4.3 1.76 1.45 1.76 2.99 8.47 
Q 4.3 2.01 2.39   8.47 
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Table 3.43 Proton Chemical Shift Assignments for Peptide Ac-NGOKIWQ-NH2. 

Residue α β γ δ ε Amine 
N 4.66 2.81    8.46 
G 3.91     8.56 
O 4.26 1.61 1.31  2.86 8.36 
K 4.28 1.72 1.39 1.64 2.96 8.06 
I 4.13 1.8 1.39 1.16 0.85 8.19 

W 4.65 3.27    8.26 
Q 4.15     8.06 

 

Table 3.44 Proton Chemical Shift Assignments for Peptide Ac-RGVWVNG-NH2. 

Residue α β γ δ ε 
R 4.29 1.85 1.64 3.18  
G 3.87   
V 4.06 1.99 0.83   
W 4.72 3.24  
V 4.01 1.94 0.83   
N 4.52 2.81,2.66    
G 3.87     

 

Table 3.45 Proton Chemical Shift Assignments for Peptide Ac-NGKKIWQ-NH2. 

Residue α β γ δ ε 
N 4.67 2.8     
G 3.93   
K 4.26 1.61 1.32 1.61 2.88 
K 4.28 1.74 1.38 1.71 2.96 
I 4.13 1.81 Nd 0.86   

W 4.66 3.27     
Q 4.17 1.79 2.15     
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Table 3.46 NOEs observed in Peptides WWKL, and WWKmeL at 298K. 
WWKL 

   
WWKmeL 

   Residue Proton Residue  Proton   Residue Proton Residue  Proton   
Trp 2 Ar 4 Lys 9 β Trp 2 α Leu 11 α 
Trp 2 Ar 4 Lys 9 γ Trp 2 Ar 4 Lys 9 β 
Trp 2 Ar 4 Lys 9 δ Trp 2 Ar 4 Lys 9 γ 
Trp 2 α Leu 11 α Trp 2 Ar 4 Lys 9 δ 
Trp 2 Ar 5 Leu 11 γ Trp 2 Ar 5 Leu 11 γ 
Trp 2 Ar 7 Lys 9 γ Trp 2 Ar 7 Leu 11 δ 
Trp 2 Ar 7 Leu 11 δ Trp 2 Ar 2 Lys 9 ε 
Trp 2 Ar NH Leu 11 δ Trp 4 Ar 4 Lys 9 ε 
Trp 4 Ar 4 Lys 9 γ Trp 4 Ar 7 Lys 9 δ 
Trp 4 α Lys 9 α Trp 4 Ar 4 Lys 9 γ 
Trp 4 Ar 4 Leu 11 α Trp 4 α Leu 11 α 
Trp 4 Ar 5 Ile 10 α Trp 4 Ar 4 Leu 11 α 
Trp 4 Ar 2 Leu 11 α Trp 4 Ar 5 Ile 10 α 
Trp 4 Ar 4 Gly 7 α Trp 4 Ar 2 Leu 11 α 
Trp 4 Ar 5 Orn 8 α Trp 4 Ar 4 Gly 7 α 
Trp 4 Ar NH Lys 9 δ Trp 4 Ar 5 Orn 8 α 
Asn 6 NH Gly 7 NH 
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Table 3.47 NOEs observed in Peptides WWKme2L, and WWKme3L at 298K. 
 

WWKme2L 
NOE 

   

WWKme3L 
NOE 

   Residue Proton Residue  Proton   Residue Proton Residue  Proton   
Trp 2 α Leu 11 α Trp 2 α Leu 11 α 
Trp 2 Ar 4 Leu 11 γ Trp 2 Ar 4 Lys 9 β 
Trp 2 Ar 5 Leu 11 γ Trp 2 Ar 4 Lys 9 δ 
Trp 2 Ar 6 Leu 11 δ Trp 2 Ar 5 Leu 11 γ 
Trp 2 Ar 6 Lys 9 γ Trp 2 Ar 6 Lys 9 γ 
Trp 2 Ar 7 Leu 11 δ Trp 2 Ar 6 Leu 11 γ 
Trp 2 Ar 2 Lys 9 β Trp 2 Ar 7 Leu 11 δ 
Trp 2 Ar 2 Lys 9 γ Trp 2 Ar 2 Lys 9 CH3 
Trp 2 Ar 2 Lys 9 ε Trp 2 Ar 4 Lys 9 β 
Trp 2 Ar 2 Lys 9 CH3 1 Trp 2 Ar 4 Lys 9 γ 
Trp 2 α Leu 11 α Trp 2  Ar 4 Lys 9 δ 
Trp 4 Ar 4 Lys 9 γ Trp 4 Ar 4 Lys 9 γ 
Trp 4 Ar 7 Lys 9 ε Trp 4 Ar 7 Lys 9 CH3 
Trp 4 Ar 7 Lys 9 CH3 2 Trp 2 Ar 4 Leu 11 α 
Trp 4 Ar 7 Lys 9 CH3 1 Trp 2 Ar 5 Ile 10 α 
Trp 4 Ar 4 Leu 11 α Trp 2 Ar 2 Leu 11 α 
Trp 4 Ar 5 Ile 10 α Trp 4 Ar 4 Gly 7 α 
Trp 4 Ar 2 Leu 11 α Trp 4 Ar 5 Orn 8 α 
Trp 4 Ar 4 Gly 7 α 

    Trp 4 Ar 5 Orn 8 α 
     

Table 3.48 NOEs observed in Peptides WWAL and WWRL at 298K. 
WWAL 

   
WWRL 

   Residue Proton Residue  Proton   Residue Proton Residue  Proton   
Trp 2 α Leu 11 α Trp 2 α Leu 11 α 
Trp 2 Ar 5 Ala 9 β Trp 2 Ar 2 Arg 1  α 
Trp 2 Ar 5 Ile 10 α Trp 2 Ar 4 Arg 9 β 
Trp 2 Ar 2 Ala 9 β Trp 2 Ar 4 Ile 10 α 
Trp 2 Ar 4 Leu 11 δ Trp 2 Ar 4 Leu 11 α 
Trp 2 Ar 7 Leu 11 γ Trp 2 Ar 5 Ile 10 α 
Trp 4 α Ala 9 α Trp 2 Ar 6 Leu 11 δ 
Trp 4 Ar 5 Orn 8 α Trp 2 Ar 7 Leu 11 δ 
Trp 4 Ar 5 Ala 9 β Trp 2 Ar 7 Arg 9 δ 
Trp 4 Ar 6 Gly 7 α Trp 4 α Arg 9 α 
Trp 4 Ar 6 Ala 9 β Trp 4 Ar 4 Arg 9 α 

    
Trp 4 Ar 4 Gly 7 α 

    
Trp 4 Ar 5 Orn 8 α 
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Table 3.49 NOEs observed in Peptides WFKL, and WWKK at 298K. 
WFKL 

   
WWKK 

 Residue Proton Residue  Proton   Residue Proton Residue  Proton   
Trp 2 α Leu 11 α Trp 2 α Leu 11 α 
Trp 2 Ar 4 Leu 11 δ Trp 2 Ar 5 Lys 9 α 
Trp 2 Ar 2 Leu 11 δ Trp 2 Ar 5 Lys 11 δ 
Trp 2 Ar 5 Ile 10 α Trp 2 Ar 5 Lys 9 γ 
Trp 2 Ar 4 Lys 9 β Trp 2 Ar 4 Lys 9 γ 
Trp 4 α Lys 9 α Trp 2 Ar 4 Lys 9 β 

    
Trp 2 Ar 7 Lys 11 ε 

    
Trp 4 α Lys 9 α 

    
Trp 4 Ar 5 Orn 8 α 

    
Trp 4 Ar 5 Lys 9 γ 

    
Trp 4 Ar 5 Lys 9 δ 

    
Trp 4 Ar 6 Gly 7 α 

    
Trp 4 Ar 7 Lys 9 ε 

    
Trp 4 Ar 7 Lys 9 γ 

    
Trp 4 Ar 7 Lys 9 δ 

 

Table 3.50 NOEs observed in Peptides WWKW at 298K. 

Residue Proton Residue  Proton   
Trp 2 α Trp 11 α 
Trp 2 Ar 4 Arg 1 α 
Trp 2 Ar 4 Lys 9 γ 
Trp 2 Ar 4 Lys 9 β 
Trp 2 Ar 4 Trp 11 Ar 5 
Trp 2 Ar 6 Trp 11 α 
Trp 2 Ar 6 Trp 11 β 
Trp 4 α Lys 9 α 
Trp 4 Ar 4 Gly 8 α 
Trp 4 Ar 4 Lys 9 α 
Trp 4 Ar 4 Lys 9 β 
Trp 4 Ar 7 Lys 9 δ 

Trp 11 Ar 6 Arg 1 β 
Trp 11 Ar 7 Arg 1 β 
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v. Determination of fraction folded.  

To determine the unfolded chemical shifts, 7-mers were synthesized as unstructured 

controls and cyclic peptides were synthesized for fully folded. The chemical shifts for 

residues in the strand and one turn residue were obtained from each 7-mer peptide. The 

chemical shifts of the fully folded state were taken from the cyclic peptides.  The fraction 

folded on a per residue bases was determined from equation 1. 

Fraction Folded = [δobs – δ0]/[ δ100 – δ0],        [1] 

where δobs is the observed Hα chemical shift, δ100 is the Hα chemical shift of the cyclic 

peptides, and δ0 is the Hα chemical shift of the unfolded 7-mers. The overall fraction folded 

for the entire peptide was obtained by averaging the fraction folded of resides Val3, Val5, 

Orn8, and Ile10. These residues are in hydrogen bonded positions have been shown to be the 

most reliable in determining fraction folded.  The overall fraction fold was also determined 

using the extent of Hα glycine splitting observed in the turn residue Gly10 given in equation 

2. 

Fraction Folded = [ΔδGly Obs]/[ ΔδGly 100], [2] 

where ΔδGly Obs is the difference in the glycine Hα chemical shifts of the observed, and ΔδGly 

100 is the difference in the glycine Hα chemical shifts of the cyclic peptides. 

vi. Determination of thermodynamic parameters.  

Variable temperature NMR was used in order to determine the thermodynamic 

parameters of the peptide folding. A temperature range of 275 to 351 K was explored in five-

degree increments using a Varian Inova 600-MHz spectrometer. Temperature calibration was 

performed with ethylene glycol and methanol standards by using standard macros in Varian 

software. The change in glycine chemical shift difference was followed with temperature. 
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The fraction folded of the peptide was plotted against temperature, and the curve was fitted 

by using the following Equation 322

Fraction folded = (exp[x / RT])/ (1 + exp[x / RT]) [3] 

: 

Where 

x = (T[ΔS298° + ΔCp° ln{T / 298}] – [ΔH298°  +  ΔCp°{T-298}]) 

 

 

Figure 3.46. Thermal Denaturation of Alternative Trp Pocket peptides. Fraction folded was 
calculated from extent of Gly splitting. Conditions: 50 mM sodium acetate-d4, pH 4.0 
(uncorrected), referenced to DSS.  
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
22 Maynard, A. J.; Sharman, G. J.; Searle, M. S. J Am Chem Soc 1998, 120, 1996-2007 
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Table 3.52 Temperature Dependence of the Fraction Folded from Glycine Chemical Shift 
Data for the Trp pocket series. 

WWKL:  WWKmeL: 
 

WWKme2L: 
 

WWKme3L: 
 

Temp (K) 
Fraction 
folded Temp (K) 

Fraction 
folded Temp (K) 

Fraction 
folded Temp (K) 

Fraction 
folded 

273.91 0.996 272.97 0.980 274.18 0.966 273.8 0.985 
278.71 0.996 277.75 0.980 278.75 0.967 278.5 0.985 
283.51 0.995 282.53 0.982 283.37 0.969 283.2 0.989 
288.31 0.993 287.31 0.981 288.24 0.969 288.0 0.990 
293.12 0.990 292.09 0.981 293.03 0.971 292.7 0.992 
297.92 0.988 296.87 0.981 297.72 0.971 297.4 0.994 
302.72 0.984 301.65 0.981 302.32 0.971 302.1 0.996 
307.52 0.977 306.43 0.979 307.21 0.973 306.8 0.998 
312.32 0.969 311.21 0.977 311.8 0.973 311.6 1.000 
317.12 0.960 315.99 0.972 316.7 0.971 316.3 1.000 
321.92 0.942 320.77 0.964 321.53 0.968 321.0 0.999 
326.72 0.920 325.55 0.952 326.19 0.964 325.7 0.997 
331.52 0.894 330.33 0.939 331.2 0.956 330.5 0.993 
336.32 0.863 335.12 0.915 335.68 0.946 335.2 0.989 
341.12 0.827 339.90 0.891 340.29 0.931 339.9 0.978 
345.92 0.779 344.68 0.851 345.16 0.910 344.6 0.963 
350.72 0.706 349.46 0.803 

  
349.3 0.935 

 
Table 3.53 Temperature Dependence of the Fraction Folded from Glycine Chemical Shift 
Data for the Trp pocket Variants. 

WWAL:  WWRL: 
 

WWKK: 
 

WWKW: 
 

Temp (K) 
Fraction 
folded Temp (K) 

Fraction 
folded Temp (K) 

Fraction 
folded Temp (K) 

Fraction 
folded 

274.43 0.878 275.44 0.968 271.40 0.960 271.82 0.982 
278.85 0.880 279.80 0.970 276.30 0.956 276.68 0.984 
283.28 0.880 284.16 0.971 281.19 0.951 281.55 0.987 
287.70 0.877 288.52 0.973 286.08 0.945 286.42 0.991 
292.12 0.872 292.88 0.974 290.98 0.937 291.28 0.996 
296.55 0.864 297.24 0.975 295.87 0.928 296.15 0.998 
300.97 0.854 301.60 0.974 300.77 0.914 301.02 1.003 
305.39 0.843 305.96 0.971 305.66 0.897 305.89 1.005 
309.82 0.831 310.32 0.968 310.55 0.877 310.75 1.008 
314.24 0.816 314.68 0.962 315.45 0.850 315.62 1.009 
318.66 0.798 319.03 0.953 320.34 0.816 320.49 1.008 
323.09 0.776 323.39 0.941 325.24 0.780 325.35 1.004 
327.51 0.751 327.75 0.923 330.13 0.741 330.22 0.996 
331.93 0.717 332.11 0.901 335.02 0.693 335.09 0.984 
336.36 0.687 336.47 0.873 339.92 0.644 339.95 0.966 
340.78 0.648 340.83 0.841 344.81 0.588 344.82 0.941 
345.20 0.605 345.19 0.797 349.71 0.525 349.69 0.907 
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WFKL:  

Temp (K) 
Fraction 
folded 

274.42 0.923 
278.85 0.920 
283.28 0.915 
287.70 0.909 
292.13 0.903 
296.55 0.895 
300.98 0.885 
305.40 0.871 
309.83 0.856 
314.25 0.838 
318.68 0.816 
323.11 0.794 
327.53 0.760 
331.96 0.723 
336.38 0.690 
340.81 0.648 
345.23 0.598 

 

vii. CD Spectroscopy.  

CD spectroscopy was performed on an Applied photophysics Pistar-180 Circular 

Dichroism spectrophotometer. Spectra were collected at 215nm from 20°C to 90°C with 1 

sec scanning.  A CD comparison of WWKme3L in 10mM sodium phosphate buffer pH 7.0 

and in the presence of 4M urea was made to insure that WWKme3L was still well folded 

before a co-chemical thermal melt was preformed as discussed in section A.ii.d (Figure 

3.37).  
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Figure 3.47 Comparison of CD spectra of WWKme3L in 10mM sodium phosphate buffer 
pH 7.0 and in 4 M Urea at 25°C. 

 
 



 

 

 

CHAPTER IV 
 

 DESIGN OF SWITCH β-HAIRPIN PEPTIDES CONTROLLED BY POST-

TRANSLATIONAL MODIFICATIONS 

(Reproduced in part with permission from Journal of the American Chemical Society, 

submitted for publication. Unpublished work copyright 2010 American Chemical Society.) 

A. Background and Significance. 

In biology, many cellular processes are regulated using chemical modification to proteins 

resulting in activation or deactivation of a specific function. Gene regulation can be 

controlled by modification to the histone proteins that package DNA. Currently there is 

extensive work on understanding how and what modifications to histone proteins affect gene 

transcription often referred to as the “Histone Code”.1 Not only do these modifications effect 

cell differentiation, it is becoming prevalent that altered histone modifications profiles are 

present in diseases.2 In fact, misregulation of histone modifications is involved in malaria3, 

mental disorders4

                                                 
1 Strahl, B. D.; Allis, C. D. Nature 2000, 403, 41-45. 

, and is being extensively studied in cancers2. Increased understanding of 

the histone code will not only further our understanding of fundamental biological processes 

but also lead to cures for a variety of diseases. 

2 Lennartsson, A.; Ekwall, K. Biochim Biophys Acta, Gen Subj 2009, 1790, 863-868. 
3 Ralph, S. A.; Scherf, A. Curr Opin Microbiol 2005, 8, 434-440. 
4 (a) Waggoner, D. Semin Pediatr Neurol 2007, 14, 7-14. (b) Peedicayil, J. Indian J Med Res 
2007, 126, 105-11. 
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Two prevalent modifications to the N-terminal tail of the H3 histone protein known to 

effect gene transcription are phosphorylation of serine 10 and methylation of lysine 9.5 

Methylation of lysine 9 of the H3 histone is known to induce binding to heterochromatin 

protein 1 (HP 1) which results in a restructuring of the chromatin structure that inhibits gene 

transcription.6 The methylated lysine binds to an aromatic cage in HP 1 which only binds to 

di and trimethylated lysine.7 This binding is largely driven by cation-π interactions between 

methylated lysine and the aromatic cage.8 Work from the Allis laboratory has shown that HP 

1 chromodomain is expelled from the from the histone complex when serine 10 of histone 3 

is phosphorylated thus allowing for transcription to resume.5 The phosphorylation of serine 

10 on histone 3 disrupts a favorable hydrogen bond with a glutamic acid residue in the bind 

groove of HP 1 and results in a charge-charge repulsion.5 More recently, characterization of 

Chp1 Chromodomain, another  methylated lysine 9 recognition domain that utilizes an 

aromatic binding pocket, has shown that phosphorylation of serine 10 strongly reduces Chp1 

binding affinity to the histone 3 tail.9

                                                 
5 Fischle, W.; Tseng, B. S.; Dormann, H. L.; Ueberheide, B. M.; Garcia, B. A.; Shabanowitz, 
J.; Hunt, D. F.; Funabiki, H.; Allis, C. D. Nature 2005, 438, 1116-22. 

 A non-histone protein, Dam1 kinetochore protein also 

utilizes a similar cross-talk strategy using methylation of lysine and phosphorylation serine 

6 (a) Lachner, M.; O'Carroll, N.; Rea, S.; Mechtler, K.; Jenuwein, T. Nature 2001, 410, 116-
120. (b) Nakayam, J.; Rice, J. C.; Strahl, B. D.; Allis, C. D.; Grewal, S. I. S. Science 2001, 
292, 110-113. (c) Bannister, A. J.; Zegerman, P.; Partridge, J. F.; Miska, E. A.; Thomas, J. 
O.; Allshire, R. C.; Kouzarides, T. Nature 2001, 410, 120-124. (d) Nielsen, S. J.; Schneider, 
R.; Bauer, U. M.; Bannister, A. J.; Morrison, A.; O'Carroll, D.; Firestein, R.; Cleary, M.; 
Jenuwein, T.; Herrera, R. E.; Kouzarides, T. Nature 2001, 412, 561-565. 
 
7 Jacobs, S. A.; Khorasanizadeh, S. Science 2002, 295, 2080-2083. 
8 Hughes, R. M.; Wiggins, K. R.; Khorasanizadeh, S.; Waters, M. L. Proc Nat Acad  Sci 
U.S.A. 2007, 104, 11184-11188. 
9 Schalch, T.; Job, G.; Noffsinger, V. J.; Shanker, S.; Kuscu, C.; Joshua-Tor, L.; Partridge, J. 
F. Molecular Cell 2009, 34, 36-46. 
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where methylation of Lys233 inhibits phosphorylation of nearby residues.10

Many conformational switches peptides have been designed for a plethora of reasons. 

These peptides can be used as models for extremely complex structural transitions found in 

nature. Peptides that change conformational states have been designed to study protein 

misfolding diseases such as Alzheimer’s and Parkinson’s disease.

 Phosphorylation 

of Dam1 is an important modification during chromosome segregation, thus methylation is 

acting as a switch to inhibit chromosome segregation. Using phosphorylation and methylation 

we sought to design a molecular switch peptide to investigate the effect of these 

modifications in a model system. 

11,12,13 Other switch 

peptides have been designed as sensors in which a conformational change due to a stimulus 

results in a fluorescence signal.12,14

                                                 
10 Zhang, K.; Lin, W. C.; Latham, J. A.; Riefler, G. M.; Schumacher, J. M.; Chan, C.; 
Tatchell, K.; Hawke, D. H.; Kobayashi, R.; Dent, S. Y. R. Cell 2005, 122, 723-734. 

 Still others have been developed as novel self-assembling 

11 Skwarczynski, M.; Kiso, Y. Curr. Med. Chem. 2007, 14, 2813-2823. 
12 Pagel, K.; Koksch, B. Curr Opin Chem Biol 2008, 12, 730-9. 
13 (a) Mutter, M.; Chandravarkar, A.; Boyat, C.; Lopez, J.; Dos Santos, S.; Mandal, B.; 
Mimna, R.; Murat, K.; Patiny, L.; Saucede, L.; Tuchscherer, G. Angewandte Chemie-
International Edition 2004, 43, 4172-4178. (b) Taniguchi, A.; Skwarczynski, M.; Sohma, Y.; 
Okada, T.; Ikeda, K.; Prakash, H.; Mukai, H.; Hayashi, Y.; Kimura, T.; Hirota, S.; Matsuzaki, 
K.; Kiso, Y. ChemBioChem 2008, 9, 3055-3065. (c) Camus, M. S.; Dos Santos, S.; 
Chandravarkar, A.; Mandal, B.; Schmid, A. W.; Tuchscherer, G.; Mutter, M.; Lashuel, H. A. 
ChemBioChem 2008, 9, 2104-2112. (d) Mimna, R.; Camus, M. S.; Schmid, A.; Tuchscherer, 
G.; Lashuel, H. A.; Mutter, M. Angew Chem Int Ed Engl 2007, 46, 2681-4. 
14 (a) Balakrishnan, S.; Zondlo, N. J. J Am Chem Soc 2006, 128, 5590-5591. (b) Wang, Q.; 
Cahill, S. M.; Blumenstein, M.; Lawrence, D. S. J Am Chem Soc 2006, 128, 1808-1809. (c) 
Torrado, A.; Imperiali, B. J. Org. Chem. 1996, 61, 8940-8948. (d) Shults, M. D.; Pearce, D. 
A.; Imperiali, B. J Am Chem Soc 2003, 125, 10591-10597. (e) Walkup, G. K.; Imperiali, B. J  
Am Chem Soc 1997, 119, 3443-3450. 
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materials.12,15,16

B. Design towards ideal switch system. 

 A variety of methods have been employed to induce a structural transition in 

switch peptides such as pH, temperature, metal binding, and chemical modification.12 To this 

end, we sought to develop a hairpin switch system utilizing post-translational modifications 

(PTMs) to control the extent of β-hairpin formation through design elements elucidated in 

studies discussed in Chapters 2 and 3. Ideally this system would be moderately folded in an 

unmodified state, become well folded when a key lysine residue is methylated, and poorly 

folded when a key serine residue is phosphorylated. 

i. WQKS Hairpin System.  

The initial hairpin designed used in the development of a peptide in which PTMs 

modulate folding was based on previous report systems used to study the interaction cation-π 

interactions.17 Thus, the peptide WQKS was used with key design features that we believed 

would alter the hairpin stability when specific PTMs are incorporated (Figure 4.1). The 

sequence orients a tryptophan in position 2 to interact with lysine at position 9 which as 

previously discussed results in a favorable cation-π interaction that helps to stabilize the 

hairpin fold. More importantly, when the side chain amine of lysine at position 9 is 

methylated, a more stable hairpin is produced through increased favorable interactions 

between the lysine side chain and indole ring of tryptophan.18,19

                                                 
15 Kuhnle, H.; Borner, H. G. Angew Chem Int Ed Engl 2009, 48, 6431-4. 

 We wanted to utilize this 

16 Pochan, D. J.; Schneider, J. P.; Kretsinger, J.; Ozbas, B.; Rajagopal, K.; Haines, L. J Am 
Chem Soc 2003, 125, 11802-11803. 
17 Tatko, C. D.; Waters, M. L. Protein Sci 2003, 12, 2443-2452. 
18 Hughes, R. M.; Waters, M. L. J Am Chem Soc 2005, 127, 6518-9. 
19 Hughes, R. M.; Benshoff, M. L.; Waters, M. L. Chem Eur J 2007, 13, 5753-5764. 



131 
 

favorable interaction to increase the stability of our system when this key lysine is 

methylated. Serine 11 is also positioned directly cross strand from Trp 2 which, when 

phosphorylated, should decrease the overall hairpin stability due to an unfavorable interaction 

between the phosphate group and the indole ring of the tryptophan as was previously 

discussed in Chapter 2.20   

 

Figure 4.1 Schematic representation of WQKS series of peptides. The ammonium group of 
Lysine at position 2 in blue is dimethylated in WQK(Me2)S and WQK(Me2)S(PO3) 
peptides. The hydroxyl group of serine at position 4 in red is phosphorylated in WQKS(PO3)  
and WQK(Me2)S(PO3) peptides. 

A series of five peptides where synthesized to investigate the effect of incorporating 

phosphoserine and dimethyl lysine on hairpin stability using the WQKS system. One 

dimensional NMR spectra where taken to assess β-hairpin formation of these peptides. The 

unmodified WQKS contains no residues with PTM’s, WQKS(PO3) contains phosphoserine 

at position 11, WQK(Me2)S contains dimethyl lysine at position 9, and WQK(Me2)S(PO3) 

contains both PTMs. A cyclic control peptide (cyclic WQKS) was also synthesized as a 

                                                 
20 Riemen, A. J.; Waters, M. L. J Am Chem Soc 2009, 131, 14081-14087. 
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100% folded control with the sequence Ac-CRWVQVNGOKISQC-NH2, in which the two 

terminal cystiene residues are linked via a disulfide bond. 

Using the difference of proton splitting of Gly 7 for each of WQKS peptides, a fraction 

fold of hairpin formation was determined (Table 4.1). This method for the fraction folded 

calculation is described in the experimental section. Analysis of the fraction folded data 

revealed that the unmodified WQKS was rather poorly folded around 20%. The 

phosphorylated analog WQKS(PO3) as predicted was less stable than WQKS, being roughly 

16% folded. This is calculated as a destabilization of 0.15 Kcal/mol by the difference in ΔG 

of folding for WQKS and WQKS(PO3). The methylated analog WQK(Me2)S was 

substantially more stable than its unmodified counter part, being approximately 40% folded. 

This is calculated as a 0.55 Kcal/mol increase in stability upon dimethylation of lysine 9. The 

double modified WQK(Me2)S(PO3) is 34% which is a 0.40 kcal/mol increase in stability 

over the unmodified WQKS.  Interestingly, it appears that the effects of PTMs are additive in 

relationship to hairpin formation in this system, where methylation of lysine 9 added stability 

of -0.55 kcal/mol is diminished by phosphorylation of serine 11 by 0.15 kcal/mol to give a 

stablization of -0.40 kcal/mol in the double modified peptide (Table 4.1).    

Table 4.1 NMR characteratization for WQKS β-hairpin peptides. Values calculated from 
data obtained at 20 °C, 50 mM potassium phosphate-d2, pD 4.0 (uncorrected), referenced to 
DSS.     

Peptide Observed  Gly 
Splitting of 
Hα (ppm)

Fraction 
Folded (Gly  
Splitting)a 

ΔG Folding 
(kcal/mol) 

a 

ΔΔG  
(WQKS(x)- 

WQKS) 
WQKS 0.10 (±0.01)  0.20 (±0.01) 0.80 (±0.03)  

WQKS(PO3 0.08 (±0.01) ) 0.16 (±0.01) 0.96 (±0.03) 0.15 (±0.04) 
WQK(Me2 0.20 (±0.01) )S 0.40 (±0.01) 0.24 (±0.03) -0.55 (±0.04) 

WQK(Me2)S(PO3 0.17 (±0.01) ) 0.34 (±0.01) 0.39 (±0.03) -0.40 (±0.04) 
cyclic WQKS 0.50 (±0.01) 1.00 (±0.01) - - 

   (a) Error determined by chemical shift accuracy on NMR spectrometer. 
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 Although the results of WQKS series are intriguing, the initial stability of the 

unmodified WQKS is far too low for any practical application, and the uncertainty in hairpin 

population in this region is high. Thus no further characterization of this system was 

preformed. Nonetheless the information gained from this design was promising, in that 

manipulation of hairpin formation using methylation of lysine and phosphorylation of serine 

is feasible.   

ii. KSWQ Hairpin System. 

The next β-hairpin design to investigate the effects of incorporating multiple PTMs on 

hairpin stability was the KSWQ system (Figure 4.2.). We sought to improve initial hairpin 

stability by positioning the key Trp residue on the non-hydrogen bonding (NHB) face closer 

to the turn region of the hairpin. Stabilizing residues closer to the turn sequence have been 

shown to increase overall stability by further enforcing β-sheet formation at the nucleating 

turn sequence.21

                                                 
21 (a) Searle, M. S. J Chem Soc, Perkin Trans 2 2001, 1011-1020. (b) Espinosa, J. F.; Munoz, 
V.; Gellman, S. H. J Mol Biol 2001, 306, 397-402. (c) Kiehna, S. E.; Waters, M. L. Protein 
Sci 2003, 12, 2657-2667. 

 To keep the favorable lysine-tryptophan interaction intact through position 2 

– position 9 diagonal, lysine was positioned at residue 2 and tryptophan at position 9. Thus 

Trp 9 is close to the VNGO turn sequence while positioned to interact with lysine and 

dimethyl lysine at position 2. Serine was positioned at residue 4 so it is still oriented directly 

cross strand from tryptophan. An added feature of this design is the potential to use Protein 

Kinase A (PKA) to enzymatically phosphorylated the sequence, since PKA recognizes the 

sequence RKXS for phosphorylation at Ser 4. 
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Figure 4.2 Schematic representation of KSWQ series of peptides. The ammonium group of 
Lysine at position 2 in blue is dimethylated in K(Me2)SWQ and K(Me2)S(PO3)WQ 
peptides. The hydroxyl group of serine at position 4 in red is phosphorylated in KS(PO3)WQ  
and K(Me2)S(PO3)WQ peptides. 

The KSWQ series of peptides was synthesized and characterized by NMR. A cyclic 

KSWQ peptide was synthesized as fully folded controls for the KSWQ series β-hairpins. 

Cyclization was achieved by a disulfide bond between cysteine residues at the N and C-

termini of the peptides. Unfolded control peptides consisting of either the N-terminal arm or 

the C-terminal arm were used to obtain random coil chemical shifts. β-sheet formation was 

first examined for each of KSWQ variants by the extent of Hα shifting from random coil 

(Figure 4.3).  As discussed in Chapter 1, downfield shifting of ≥ 0.1 ppm of the Hα protons 

along the peptide backbone relative to unfolded values indicates a β-sheet conformation.22

                                                 
22 Sharman, G. J.; Griffiths-Jones, S. R.; Jourdan, M.; Searle, M. S. J Am Chem Soc 2001, 
123, 12318-12324. 

 

Downfield shifting of the Hα protons showed that the peptides KSWQ, and K(Me2)SWQ 

form β-hairpins with a majority of the backbone protons above 0.1 ppm. A larger extent of 

downfield shifting is observed for K(Me2)SWQ, indicating a high degree of β-hairpin 
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formation for the methylated lysine modification. The peptide KS(PO3)WQ yielded no 

downfield shifting greater than 0.1 ppm with the exception of Trp 9. Incorporation of 

phosphoserine in this sequence results in a relatively unfolded peptide with little evidence for 

β-hairpin structure formation. The peptide K(Me2)S(PO3)WQ displays some downfield 

shifting above 0.1 ppm indicating that when both modifications are present there is still some 

hairpin formation albeit to a lesser extent than the unmodified KSWQ.  Upfield shifting at 

Val 5 is observed for all peptides in the KSWQ series. This is likely due to electronic 

shielding of the indole ring of the cross strand Trp 9. The indole ring of Trp 9 may also be 

electronically shielding Ser 4, resulting in low downfield shifting in KSWQ, K(Me2)SWQ, 

and K(Me2)S(PO3)WQ.   

 

 

Figure 4.3 Hα chemical shift differences from random coil controls. The Gly bars reflect the 
Hα separation in the hairpin.  Conditions: 293 K, 50 mM potassium phosphate in pD 4.0 
buffer (uncorrected), referenced to DSS. 

Quantification of the fraction folded was determined using both methods described in the 

experimental section for the KSWQ peptides (Table 4.2). The unmodified KSWQ peptide 

was estimated to be approximately 34% folded, with good agreement between Hα and Gly 
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splitting method of fraction folded determination.  The phosphorylated KS(PO3)WQ peptide 

is unfolded according to Gly splitting and approximately 10% folded by Hα. Discrepancy 

between fraction folded for this peptide is likely due to the close proximity of the phosphate 

group to the Gly in the turn, altering the Gly splitting. Using the estimated fraction folded 

from the Hα calculation, it seems that phosphorylation is causing 0.5 kcal/mol destabilization 

in hairpin structure for KSWQ sequence. The methylated K(Me2)SWQ peptide is 

approximately 50% folded with good agreement between both α shifting and Gly splitting. 

This is a 0.4 kcal/mol stablization in hairpin structure when lysine is dimethylated at position 

2. The double modified K(Me2)S(PO3)WQ peptide is 13% folded by glycine and 26% folded 

by Hα shifting. Again the discrepancy between fraction folded values for this peptide is likely 

due to the effect of the phosphoserine in close proximity to Gly 7 as previously discussed. 

Using estimated fraction folded from the Hα calculation this hairpin is destabilized by 0.2 

Kcal/mol with both modifications present. It is important to note that all of the energies of 

stablization or destabilization for the KSWQ peptide system were calculated using the Hα 

calculation of fraction folded because this uses several residues to determine the extent of 

folding rather than just one. However in this peptide system there is a relatively large 

discrepancy in fraction folded on a per residue basis resulting in a high degree of error in ΔG 

of folding values. Assuming that the values are accurate this peptide is more destabilized by 

phosphorylation than previously discussed WQKS system. It seems that dimethylated lysine 

in KSWQ has a lesser effect on the overall stability as when compared to the WQKS as well. 
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Table 4.2 Fraction folded and ΔG of folding for β-hairpin peptides. Values calculated from 
data obtained at 20 °C, 50 mM potassium phosphate-d2, pD 4.0 (uncorrected), referenced to 
DSS.     

Peptide Fraction Folded  
(Gly  Splitting)

Fraction 
Folded a 
(Hα)

ΔG Folding  

b 
(kcal/mol) 

ΔΔG  
(KSWQ(x)- 

KSWQ) 
KSWQ 0.33 (±0.01) 0.34 (±0.07)  0.4 (±0.2)  

KS(PO3 0.00 (±0.01) )WQ 0.10 (±0.07)  0.9 (±0.2)  0.5(±0.2) 
K(Me2 0.49 (±0.01) )SWQ 0.50 (±0.07)  0.0 (±0.2) - 0.4 (±0.2) 

K(Me2)S(PO3 0.13 (±0.01) )WQ 0.26 (±0.08)  0.6 (±0.2) 0.2 (±0.2) 
(a) Error determined by chemical shift accuracy on NMR spectrometer.  (b) Average of the Hα values from 

Val3, Val5, Orn8, and Ile10. The standard deviation is in parentheses. 

To assess if KSWQ peptide could be enzymatically phosphorylated by a kinase, the 

unmodified KSWQ was incubated with catalytic subunit of Protein Kinase A (PKA) from 

bovine heart. After 24 hours all of KSWQ peptide was completely converted to 

KS(PO3)WQ and confirmed by mass spectrometry. 

The KSWQ design yielded a more stable β-hairpin in the unmodified state than WQKS 

but it was still relatively low and large discrepancies in the determination of fraction folded 

were observed for all hairpin peptides in this series. For these reasons, no further studies were 

conducted on this system. Yet this design gave some evidence that phosphorylation towards 

the turn results in a larger destabilization of hairpin formation. It was also shown that this 

peptide sequence can be enzymatically phosphorylated by PKA which was encouraging for 

future designs that could potentially be used as sensors.    

iii. WWKS System. 

The next design sequence studied for a potential tunable peptide that relies on 

phosphorylation of serine for destabilization of structure and methylation of lysine for 

stabilization was the WWKS system (Figure 4.4). This sequence is based on the Trppocket 
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sequence discussed in Chapter 323 where the leucine residue at position 11 is replaced with 

serine or phosphoserine. From previous studies on the Trppocket hairpin system it is 

expected that the WWKS system will be well folded with a highly favorable interaction 

between Lys 9 and the cross strand tryptophan cleft at positions 2 and 4. Also a methylated 

lysine at position 9 should be more stable than an unmethylated counterpart.  However, we 

did not know if phosphorylation at Ser 11 would be sufficient enough to cause a desired 

global destabilization of hairpin formation.  The phosphoserine is positioned towards the 

termini of the hairpin, as well as being oriented on the outside of the stabilizing side chain-

side chain cluster which may only result in a local of alteration at positions 11 and 12. 

 

Figure 4.4 Schematic representation of WWKS series of peptides. The ammonium group of 
Lysine at position 2 in blue is dimethylated in WWK(Me2)S and WWK(Me2)S(PO3) 
peptides. The hydroxyl group of serine at position 4 in red is phosphorylated in 
WWKS(PO3)  and WWK(Me2)S(PO3) peptides.     

Since there was a potential that phosphorylated WWKS hairpin would not be 

destabilized, only the unmodified WWKS, WWKS(PO3) and cyclic WWKS were 

                                                 
23 Riemen, A. J.; Waters, M. L. Biochemistry 2009, 48, 1525-1531. 



139 
 

synthesized and characterized by NMR.  Analysis of Hα chemical shifts compared to random 

coil controls indicated that the unmodified WWKS peptide forms a well folded β-hairpin 

peptide (Figure 4.5). A large degree of downfield shifting from random coil was observed for 

the residues composing of the β-sheet was observed with exception of residues 9 and 11 

which were upfield shifted, as is seen in the Trppocket peptide and is caused by electronic 

shielding of the cross-strand tryptophans. Analysis of Hα chemical shifts for the 

phosphorylated WWKS(PO3) also revealed a well folded hairpin. The Hα shifting observed 

was very similar to the Hα shifting in the unmodified WWKS peptide with exception of 

residue 11 which was downfield shifted.    

 

Figure 4.5 Hα chemical shift differences from random coil controls. The Gly bars reflect the 
Hα separation in the hairpin.  Conditions: 293 K, 50 mM potassium phosphate in pD 4.0 
buffer (uncorrected), referenced to DSS. 

Quantification of the fraction folded for both WWKS and WWKS(PO3) was calculated 

using the methods discussed in the experimental (Table 4.3). This confirmed that a 

moderately high degree of folding was occurring in both peptides and that there was little 

global alteration in hairpin structure with incorporation of phosphoserine at position 11. Both 

peptides are within error of each other in the 70% folded regime. There was no alteration in 
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the degree of glycine splitting indicating that the turn region was not affected by 

phosphorylation towards the terminus in this hairpin design.   

Table 4.3 Fraction folded and ΔG of folding for β-hairpin peptides. Values calculated from 
data obtained at 20 °C, 50 mM potassium phosphate-d2, pD 4.0 (uncorrected), referenced to 
DSS.     

Peptide Fraction Folded  
(Gly  Splitting)

Fraction 
Folded a 
(Hα)

WWKS 

b 
0.72 (±0.01) 0.77 (±0.08) 

WWKS(PO3  0.72 (±0.01) )   0.71 (±0.08) 
 

Indeed it was apparent that phosphoserine did little to alter the structure of this well 

folded system. Thus, no further studies were conducted using this sequence because the 

criteria for unfolding by phosphorylation were not met. Even through this sequence did not 

meet the desired goals, important design elements where elucidated. In particular, the 

incorporation of a tryptophan cleft on the NHB face of the hairpin was highly stabilizing 

which resulted in a moderately well folded unmodified sequence.  

C. Trpswitch (KSWW) Studies. 

i. Design.  

The Trpswitch β-hairpin peptide was based on previously discussed β-hairpin systems.23 

A schematic representation is given in Figure 4.6. The lysine at position 2 is located on the 

NHB face of the β-hairpin cross strand from a tryptophan pocket motif found to be highly 

stabilizing in previously discussed trppocket peptide23, however now the tryptophan pocket is 

oriented on the C-terminal chain of the β-hairpin as opposed to the N-terminal chain. Di-

methylated lysine is known to have a more favorable interaction with the tryptophan cleft in 

the Trp Pocket peptides23 so it is expected that the incorporation of dimethyl lysine at 

position 2 will increase overall folding. The serine at position 4 on the NHB face, is located 
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cross-strand from tryptophan 9 is not expected to have any unfavorable interactions until it is 

phosphorylated causing a disruption in the β-hairpin structure as seen in previously discussed 

β-hairpin systems.20 This interaction should be highly destabilizing because it occurs close to 

the nucleating turn sequence. Essentially we have combined the favorable design elements 

from the KSWQ with WWKS to create the desired switch system. Extensive 

characterization was performed on the Trpswitch series because it met the desired criteria we 

sought. 

 

Figure 4.6 Schematic representation of Trpswitch series of peptides. The ammonium group 
of Lysine at position 2 in blue is dimethylated in Trpswitch(Me2) and Trpswitch(Me2PO3) 
peptides. The hydroxyl group of serine at position 4 in red is phosphorylated in 
Trpswitch(PO3)  and Trpswitch(Me2PO3)  peptides.    

ii. Trpswitch Peptide structure studies.  

Structural studies were preformed on Trpswitch peptide and its modified variants using 

NMR spectroscopy and circular dichroism (CD). As previously discussed, downfield 

chemical shifts of the Hα from random coil values in the peptide backbone are indicative of 

β-hairpin structure and can be used to determine the extent of folding. 22,24,25,26

                                                 
24 Syud, F. A.; Stanger, H. E.; Gellman, S. H. J Am Chem Soc 2001, 123, 8667-8677. 

 A downfield 
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shift of ≥ 0.1 of at least 3 consecutive residues from random coil value indicate β-sheet 

structure (Figure 4.7a).22 The peptides Trpswitch, Trpswitch(Me2) and 

Trpswitch(Me2PO3) all exhibit downfield shifting of at least 0.1 ppm for residues designed 

to form β-sheet with exception to serine 4 and valine 5 which are upfield shifted due to 

electronic shielding from cross strand indole rings of the tryptophan at position 9. This is 

similar to what was seen in the KSWQ system. The peptide Trpswitch(PO3) appears to be 

unstructured with little difference from random coil values. The extent of these peptides 

folding into a β-hairpin structure was quantified using two methods describe in the 

experimental section involving the splitting difference observed from the diastereotopic 

glycine Hα in the turn and the extent of Hα shifting per residue compared to 100% folded 

cyclic control . Trpswitch is calculated to be approximately 65% folded in aqueous solution 

(Table 4.4). Trpswitch(PO3) folding is negligible and is considered unstructured. 

Incorporation of the phosphoserine resulted in a net destabilization of at least 2.0 kcal/mol of 

the ΔG of folding from the unmodified Trpswitch.  Trpswitch(Me2) is calculated to be 

approximately 86% folded which is a 0.7 kcal/mol increase of stabilization (Table 4.4). The 

doubly modified peptide Trpswitch(Me2PO3

 

) is calculated to be roughly 30% folded and is 

approximately a 0.9 kcal/mol decrease in stability when compared to the unmodified 

Trpswitch (Table 4.4). 

 

 

                                                                                                                                                       
25 Griffiths-Jones, S. R.; Maynard, A. J.; Searle, M. S. J Mol Biol 1999, 292, 1051-69. 
26 Syud, F. A.; Espinosa, J. F.; Gellman, S. H. J Am Chem Soc 1999, 121, 11577-11578. 
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Table 4.4 Fraction folded and ΔG of folding for β-hairpin peptides. Values calculated from 
data obtained at 20 °C, 50 mM potassium phosphate-d2, pD 7.0 (uncorrected), referenced to 
DSS. 

Peptide Fraction 
Folded  
(Gly  

Splitting)

Fraction 
Folded 

a 
(Hα)

ΔG Folding  

b 
(kcal/mol) 

ΔΔG  
(Trpswitch(x)- 

Trpswitch) 

Trpswitch 0.68 (±0.01) 0.65 (±0.02) -0.37 (±0.02)  
Trpswitch(PO3 0 (±0.01) ) 0.05 (±0.07) 1.7 (±1.0) 2.07 (±1.0) 
Trpswitch(Me2 0.89 (±0.01) ) 0.86 (±0.08) -1.11 (±0.08) -0.73 (±0.08) 

Trpswitch(Me2PO3 0.43 (±0.01) ) 0.30 (±0.08) 0.5 (±0.2) 0.87 (±0.2) 
(a) Error determined by chemical shift accuracy on NMR spectrometer.  (b) Average of the Hα values from 

Val3, Val5, Orn8, and Ile10. The standard deviation is in parentheses. 

The use of CD was also employed to confirm β-sheet structure of these peptides (Figure 

4.7b). β-sheet structure is characterized by a minima between 210-215 nm while random coil 

structure is characterized by a minima around 198 nm. The spectra of Trpswitch and 

Trpswitch(Me2) have large minima at 215 nm with Trpswitch(Me2)  having the larger of 

the two, which correlates well with the NMR data, confirming that theses are well folded β-

hairpins. Trpswitch(PO3)  has a large minima at 198 nm which is expected since this peptide 

appears to be unfolded by NMR. The CD spectrum of Trpswitch(Me2PO3) appears as a 

mixture between unfolded and β-sheet structure with a minima around 198 nm and a shoulder 

at 215 nm which is consistent with the NMR data estimating that this peptide is only 30% 

folded. 
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(a)  (b)  

Figure 4.7 (a) Hα chemical shift differences from random coil controls. The Gly bars reflect 
the Hα separation in the hairpin.  Conditions: 293 K, 50 mM potassium phosphate in pD 7.0 
buffer (uncorrected), referenced to DSS. (b) Circular dichroism spectra comparison of 
Trpswitch peptides at 298 K in 10 mM sodium phosphate pH 7.0 buffer. 

iii. Methylation of Lysine results in increased β-hairpin stability.  

The unmodified Trpswitch  peptide is moderately folded allowing for its stability to be 

increased or decreased upon modification.  Incorporation of dimethylated lysine results in a 

more stable β-hairpin as was seen in the similar Trp pocket peptide.23 In nature, an aromatic 

cage motif is observed in the crystal structures of methylated lysine recognition domains and 

many of these domains have been shown to be specific for di, or trimethylated lysine while 

having negligible binding affinity to unmodified lysine.27

                                                 
27 (a) Adams-Cioaba, M. A.; Min, J. R. Biochem Cell Biol 2009, 87, 93-105. (b) Taverna, S. 
D.; Li, H.; Ruthenburg, A. J.; Allis, C. D.; Patel, D. J. Nat Struct  Mol Biol 2007, 14, 1025-
1040. 

 Increase in β-hairpin stability in the 

Trpswitch(Me2) peptide is due to more favorable interaction of the dimethyl ammonium 

group with the two cross strand tryptophan indole rings. This is observed in NMR by the 

upfield shifting of the dimethyl lysine side chain from random coil values (Figure 4.8). 

Upfield shifting of the lysine side chain is the result of these hydrogens being electronically 

shielded by π-clouds of indole rings in the cross strand tryptophans. Thus, the more upfield 

shifting observed indicates increased interaction of the lysine side chain with the tryptophan 
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pocket. Comparison of the extent of side chain residue upfield shifting between Trpswitch 

and Trpswitch(Me2) of lysine 2 also shows an interesting trend where in Trpswitch the delta 

and the epsilon methylene hydrogens experience approximately the same amount of upfield 

shifting and the gamma methylene experiences little upfield shifting whereas 

Trpswitch(Me2) shows a progressive increase in upfield shifting of the methylene hydrogens 

from the gamma to epsilon position. This difference in upfield shifting along the lysine side 

chain suggests that lysine and dimethylated lysine are interacting differently with the cross-

strand tryptophans.  Trpswitch(Me2PO3) also exhibits some upfield shifting of dimethylated 

lysine but to a much lesser extent compared to Trpswitch and Trpswitch(Me2) which 

suggests that this lysine is interacting to some extent with the tryptophans retaining some β-

hairpin-like structure, correlating with Hα shift and CD data. The lysine in Trpswitch(PO3) 

has some slight upfield shifting of its side chain protons which suggests that the peptide may 

rarely sample a conformation where lysine can interact with the tryptophans even though the 

extent of β-hairpin formation is estimated to be zero.   

 

Figure 4.8 Lysine 2 side chain chemical shift from random coil values. Conditions:  20 °C, 
50 mM potassium phosphate-d2, pD 7.0 (uncorrected), referenced to DSS. 

NOESY NMR experiments were also preformed on the more stable Trpswitch and 

Trpswitch(Me2) peptides to further confirm β-hairpin formation and specific side chain 
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interactions (Figure 4.9).  Trpswitch has cross strand NOEs between tryptophan at position 9 

and lysine 2 as well as serine 4. It appears that tryptophan 11 has little contact with lysine 2 

or the nature of this interaction is highly dynamic thus resulting in no observed long range 

NOEs. Trpswitch(Me2) has more cross strand interactions between the lysine side chain and 

the two tryptophans suggesting a more rigid and stable structure β-hairpin than the 

unmethylated Trpswitch.  Some of the cross strand NOEs observed for tryptophan 9 and 

lysine 2 are different between Trpswitch and Trpswitch(Me2) which suggests that the 

tryptophans are adopting different conformations in the two peptides which is supported by 

lysine upfield shifting data.      

(a)  (b)  
Figure 4.9 NOEs of cross strand residues on the NHB face in (a) Trpswitch, (b) 
Trpswitch(Me2). 

Thermal denaturations were performed on the well folded peptides Trpswitch and 

Trpswitch(Me2) to obtain thermodynamic parameters for folding to gain insight to the 

driving forces involved in β-hairpin stabilization. Peptide unfolding was monitored by NMR 

(Figure 4.10) using the extent of glycine splitting to determine fraction folded as described in 

the experimental section. The data was fit to extract the ΔH°, ΔS°, and ΔCp° of folding using 

the method reported by Searle (eq 4 experimental) (Table 4.5).28

                                                 
28 Maynard, A. J.; Sharman, G. J.; Searle, M. S. J Am Chem Soc 1998, 120, 1996-2007. 

 Trpswitch(Me2) has a 
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larger enthalpic component than the unmodified Trpswitch and a relatively similar entropic 

penalty for folding. The increased enthalpy of folding for Trpswitch(Me2) can be explained 

by a stronger cation-π interaction between the tryptophan cleft and the dimethyl lysine as 

opposed to unmethylated lysine. A Cation-π interaction of the positively charged lysine and 

methylated lysine packing against the π-clouds of tryptophans has been shown to be a major 

stabilizing force in many β-hairpins.17,18,19,29

                                                 
29 Hughes, R. M.; Kiehna, S. E.; Waters, M. L. Biopolymers 2005, 80, 497-497. 

  In these previously reported systems 

methylation of lysine results in the change of driving force for folding from more enthalpic to 

more entropic due to more favorable hydrophobic packing of the methyl groups with the 

tryptophan along with distributing the cationic charge on the methyl groups allowing for 

increased number favorable conformations. However this is not what is observed in 

Trpswitch system. The cation-pi interaction is stronger with dimethyl lysine in 

Trpswitch(Me2) which is indicated by the more favorable ΔH° of folding and extent of  

upfield shifting of the dimethylated lysine side chains. This discrepancy may be due to the 

positioning of the tryptophan cleft and the lysine, where in the trppocket system23 the 

tryptophan cleft is located on the N-terminal strand of the hairpin and the lysine is close to 

the more ordered turn region. The lysine and the tryptophans may not adopt an optimal 

cation-pi interaction in Trpswitch until it is methylated thus promoting a more stable β-

hairpin conformation.  This hypothesis is supported by the NOE data for Trpswitch where 

the lysine has very few contacts with tryptophan 9 that suggest lysine is highly dynamic and 

thus a large entropic penalty is observed in the more stable Trpswitch(Me2) which is 

ordering this side chain. A negative heat capacity,  ΔCp°, of folding is an indication that 
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hydrophobic clustering is occurring in the folded β-hairpin30

Table 4.5 Thermodynamic Parameters for Folding at 298 K for Trpswitch and 
Trpswitch(Me2)  peptides.  Conditions: 50 mM sodium acetate-d4, pH 4.0 (uncorrected), 
referenced to DSS. Error obtained through thermal data fitting of equation 4 (experimental). 

 which is observed for both 

Trpswitch and Trpswitch(Me2).  

Peptide ΔH° 
kcal/mol 

ΔS° 
cal/mol K 

ΔCp° 
cal/mol K 

Trpswitch -6.88 (±0.8) -22 (±0.2)  -55 (±9) 

Trpswitch(Me2) -8.1 (±0.1) -23.9 (±0.4) -60 (±11) 

 

 

Figure 4.10 Thermal Denaturation of Trpswitch[green] and Trpswitch(Me2)[blue]. Values 
calculated from data obtained in 50 mM sodium acetate-d4, pH 4.0 (uncorrected), referenced 
to DSS. Fraction folded was calculated from extent of Gly splitting. 

iv. Destablization of Trpswitch by Phosphoserine.  

There have been reported peptide systems that observe a loss in secondary structure or 

local conformation due to phosphorylation of key residues. 20,31,32,33,34

                                                 
30 Prabhu, N. V.; Sharp, K. A. Annu Rev Phys Chem 2005, 56, 521-48. 

  Disruption of α-

31 Szilak, L.; Moitra, J.; Krylov, D.; Vinson, C. Nat Struct Biol 1997, 4, 112-4. 
32 Garcia-Alai, M. M.; Gallo, M.; Salame, M.; Wetzler, D. E.; McBride, A. A.; Paci, M.; 
Cicero, D. O.; de Prat-Gay, G. Structure 2006, 14, 309-319. 
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helical peptides has been observed when residues on the interior of the helix are 

phosphorylated.31,33,34 Peptide studies on the PEST sequence in the E2 protein from the 

papillomavirus have shown that serine phosphorylation of this region destabilize intrinsic α-

helical and poly-proline II structure.32 The destabilization that occurs when serine 4 is 

phosphorylated in Trpswitch(PO3) and Trpswitch(Me2PO3) is primarily the result of 

unfavorable cross-strand anion-pi interaction as was reported in similar β-hairpin systems.20 

The negatively charged phosphate is repulsed by the electron rich indole ring of the cross 

strand tryptophan that results in the disruption of the β-hairpin formation. As was observed in 

previously discussed phosphorylated hairpins in Chapter 220 the β-hairpin structure is retained 

by Trpswitch(PO3) and Trpswitch(Me2PO3) in lower pH where the phosphate group is 

protonated thus reducing its electronegativity (Figure 4.11 and Table 4.). Since the extent of 

folding is not completely regained at pH 1.2 where the phosphate group is neutrally charged, 

phosphoserine could also be prohibiting more stable hairpin structure through steric clash of 

the sidechains or poorer β-sheet propensity. 

  

                                                                                                                                                       
33 Tokmakov, A. A.; Sato, K. I.; Fukami, Y. Biochem Biophys Res Commun 1997, 236, 243-
7. 
34 Andrew, C. D.; Warwicker, J.; Jones, G. R.; Doig, A. J. Biochemistry 2002, 41, 1897-
1905. 
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(a) (b)  

Figure 4.11 Hα chemical shift differences from random coil controls in varying pD for (a) 
Trpswitch(PO3) and (b) Trpswitch(Me2PO3).The Gly bars reflect the Hα separation in the 
hairpin.  At pD 7.0 the phosphate group has a 2- charge, while at pD 4.0 it has 1- charge and 
a neutral charge at pD 1.2. All NMR data obtained at 20°C. 

Table 4.6  Fraction folded of phosphorylated Trpswitch analogs. Fraction folded determined 
from Val 3, Gly 7, Orn 8, and Ile 10 Hα chemical shift data as described in experimental. 
Error calculated from standard deviation of average residue fraction folded calculations. 

 Fraction Folded 
Peptide pH 1.2 pH 4.0 pH 7.0 

Trpswitch(PO3) 0.51 (±0.07) 0.44 (±0.10) 0.05 (±0.07) 

Trpswitch(Me2PO3) 0.60 (±0.12) 0.60 (±0.13) 0.30 (±0.08) 

 

v. Enzymatic phosphorylation of Trpswitch. 

To assess if the Trpswitch peptide could be enzymatically phosphorylated by a kinase, 

Trpswitch and Trpswitch(Me2) were incubated with catalytic subunit of Protein Kinase A 

(PKA) from bovine heart. After 24 hours all of Trpswitch peptide was completely converted 

to Trpswitch(PO3) confirmed by mass spectrometry. Trpswitch(Me2) was also 

phosphorylated to Trpswitch(Me2PO3) but still contained some unphosphorylated peptide 

after 24 hours. The slower phosphorylation of Trpswitch(Me2) is speculated to be due to 

either the incorporation of the dimethyl lysine or the increased β-hairpin stability or a 
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combination of both. The dimethyllysine may not be the optimal residue for substrate 

recognition of PKA thus causing a decrease in the rate of phosphorylation. The β-hairpin 

conformation may also prevent proper binding to PKA and the Trpswitch must therefore 

unfold to be phosphorylated which happens less frequently in the more stable 

Trpswitch(Me2). A crystal structure of PKA bound to a peptide substrate that cannot be 

phosphorylated due a mutation of serine to an alanine shows an extend structure in the active 

site of the enzyme (Figure 4.12), providing evidence that unfolding of the β-hairpin is 

required for phosphorylation.35 Thus, not only does methylation stabilize the folded state, it 

also acts as an inhibitor to phosphorylation, thereby maintaining the folded or “on” state. The 

ability for Trpswitch to be enzymatically phosphorylated is promising for future de novo 

designed β-hairpin peptides, where their structure can be controlled in vivo.  

 

Figure 4.12 Peptide substrate bound to porcine PKA active site (pdb: 2GFC). Peptide substrate 
contains recognition sequence RRNA in green and PKA enzyme is represented in blue.   

 

                                                 
35 Bossemeyer, D.; Engh, R. A.; Kinzel, V.; Ponstingl, H.; Huber, R. EMBO J 1993, 12, 849-
859. 
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D. Conclusion. 

Using an iterative design processes we have designed a moderately folded β-hairpin 

peptide, that’s stability can be tuned based on the type of post-translational modification 

present.  As is seen in HP1-histone 3 interaction, methylation of a key lysine residue results 

in a favorable cation-pi interaction that promotes a more stable structure in Trpswitch. The 

hairpin structure can be destabilized upon the incorporation phosphoserine which is similar to 

lose of binding of HP 1 to Histone 3 when a specific serine residue is phosphorylated. By 

using post-translational modification, it is feasible to design sensor systems to study 

biological systems that use these modifications. Through proper design, small structured 

peptide systems can also be used to explore the effects of post-translational modification in 

more complex naturally occurring systems. The Trpswitch peptide lends itself as a starting 

point to design more complicated peptide systems that rely on post-translation modification 

to tune structure resulting in a lose or gain of function.  

E. Experimental. 

i. Synthesis and Purification of peptides.  

Peptides were synthesized by automated solid phase peptide synthesis on an Applied 

Biosystems Pioneer Peptide Synthesizer using Fmoc protected amino acids on a PEG-PAL-

PS resin. Fmoc-[N]-protected and Benzl-[O]-protected phosphoserine, and dimethylated 

Fmoc-protected lysine were purchased from AnaSpec. Activation of amino acids was 

performed with HBTU, HOBT in the presence of DIPEA in DMF. Peptide deprotection was 

carried out in 2% DBU, 2% piperidine in DMF for approximately 10 min.  Extended cycles 

(75 min) were used for each amino acid coupling step.  All control peptides where acetylated 

at the N-terminus with 5% acetic anhydride, 6% lutidine in DMF for 30 min. Cleavage of the 

peptide from the resin was performed in 95:2.5:2.5 Trifluoroacetic acid (TFA): Ethanedithiol 
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or Triisopropylsilane (TIPS): water for 3 h.  Ethanedithiol was used as a scavenger in for 

sulfur containing peptides. TFA was evaporated and cleavage products were precipitated with 

cold ether. The peptide was extracted into water and lyophilized. It was then purified by 

reverse phase HPLC, using a Vydac C-18 semipreparative column and a gradient of 0 to 

100% B over 40 minutes, where solvent A was 95:5 water:acetonitrile, 0.1% TFA and 

solvent B was 95:5 actonitrile:water, 0.1% TFA. After purification the peptide was 

lyophilized to powder and identified with ESI-TOF mass spectroscopy.  

ii. Cyclization of peptides.  

Cyclic control peptides were cyclized by oxidizing the cysteine residues at the ends of the 

peptide via stirring in a 10 mM phosphate buffer (pH 7.5) in 1% DMSO solution for 9 to 12 

hours. The solution was lyophilized to a powder and purified with HPLC using the method 

described above.  

iii. CD Spectroscopy.  

CD spectroscopy was performed on an Aviv 62DS Circular Dichroism 

Spectrophotometer. Spectra were collected from 260 nm to 185 nm at 25°C, 1 sec scanning.   

iv. NMR Spectroscopy.  

NMR samples were made to a concentration of 1 mM in D2O buffered to pD 4.0 

(uncorrected) with 50 mM NaOAc-d3, 24 mM AcOH-d4, 0.5 mM DSS, or pD 7.0 

(uncorrected) with 50 mM KPOD4, 0.5 mM DSS. Samples were analyzed on a Varian Inova 

600-MHz instrument.  One dimensional spectra were collected by using 32-K data points and 

between 8 to 128 scans using 1.5 sec presaturation. Two dimensional total correlation 

spectroscopy (TOCSY), nuclear Overhauser spectroscopy (NOESY) experiments were 
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carried out using the pulse sequences from the chempack software. Scans in the TOCSY 

experiments were taken 16 to 32 in the first dimension and 64 to 128 in the second 

dimension. Scans in the NOESY experiments were taken 32 to 64 in the first dimension and 

128 to 512 in the second dimension with mixing times of 200 to 500 msec. All spectra were 

analyzed using standard window functions (sinbell and Gaussian with shifting). Presaturation 

was used to suppress the water resonance.  Assignments were made by using standard 

methods as described by Wüthrich.36

Table 4.7 NOEs observed in Peptides Trpswitch , and Trpswitch(Me2) at 298K. 

  All experiments were run at 293 K except for thermal 

melt experiments. 

Trpswitch 
    

Trpswitch(Me2) 
   

Residue Proton 
Residu

e  Proton   
 

Residue Proton 
Residu

e  Proton   
Lys 2 γ Trp 9 Ar 2 

 
Arg 1 α Trp 11 Ar 5 

Lys 2 δ Trp 9 Ar 2 
 

Lys 2 α Trp 11 α 
Lys 2 γ Trp 9 Ar 4 

 
Lys 2 β Trp 11 α 

Ser 4 α Trp 9 α 
 

Lys 2 γ Trp 9 Ar 4 
Ser 4 α Trp 9 Ar 4 

 
Lys 2 δ Trp 9 Ar 4 

Ser 4 α Trp 9 Ar 5 
 

Lys 2 δ Trp 9  Ar 5 

     
Lys 2 CH3 Trp 9 Ar 2 

     
Lys 2 CH3 Trp 11 Ar 4 

     
Ser 4 α Trp 9  α 

     
Ser 4 β Trp 9  Ar 5 

     
Ser 4 β Trp 9  Ar 6 

     
Trp 9 Ar 4 Asn 6 α 

 

v. Determination of fraction folded.  

To determine the unfolded chemical shifts, 7-mers were synthesized as unstructured 

controls and cyclic peptides were synthesized for fully folded. The chemical shifts for 

residues in the strand and one turn residue were obtained from each 7-mer peptide. The 

                                                 
36 Wüthrich, K. NMR of Proteins and Nucleic Acids; Wiley: New York, 1986. 
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chemical shifts of the fully folded state were taken from the cyclic peptides.  The fraction 

folded on a per residue bases was determined from Equation 1. 

Fraction Folded = [δobs – δ0]/[ δ100 – δ0],        [1] 

where δobs is the observed Hα chemical shift, δ100 is the Hα chemical shift of the cyclic 

peptides, and δ0 is the Hα chemical shift of the unfolded 7-mers. The overall fraction folded 

for the entire peptide was obtained by averaging the fraction folded of resides Val 3, Lys 8, 

and Ile 10. These residues are in hydrogen bonded positions have been shown to be the most 

reliable in determining fraction folded.26  The overall fraction fold was also determined using 

the extent of Hα glycine splitting observed in the turn residue Gly 7 given in Equation 2. 

Fraction Folded = [ΔδGly Obs]/[ ΔδGly 100], [2] 

where ΔδGly Obs is the difference in the glycine Hα chemical shifts of the observed, and ΔδGly 

100 is the difference in the glycine Hα chemical shifts of the cyclic peptides. 

The ΔG of folding at 298 K for the Trpswitch peptides was calculated using Equation 3 

where f is the fraction folded. 

ΔG = -RT ln (f/(1-f)), [3] 

 

vi. Determination of thermodynamic parameters.   

Variable temperature NMR was used in order to determine the thermodynamic 

parameters of the peptide folding. A temperature range of 275 to 351 K was explored in five-

degree increments using a Varian Inova 600-MHz spectrometer. Temperature calibration was 

performed with ethylene glycol and methanol standards by using standard macros in Varian 
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software. The change in glycine chemical shift difference was followed with temperature. 

The fraction folded of the peptide was plotted against temperature, and the curve was fitted 

by using the following Equation 428: 

Fraction folded = (exp[x / RT])/ (1 + exp[x / RT]) [4] 

Where 

x = (T[ΔS298° + ΔCp° ln{T / 298}] – [ΔH298°  +  ΔCp°{T-298}]) 

Table 4.8 Temperature Dependence of the Fraction Folded from Glycine Chemical Shift 
Data for the Trpswitch and Trpswitch(Me2). 

Trpswitch:  Trpswitch(Me2): 

 
Temp (K) 

Fraction 
folded Temp (K) 

Fraction 
folded 

275.25 0.802 275.25 0.942 

279.64 0.774 279.64 0.933 

284.04 0.737 284.04 0.912 

288.43 0.698 288.43 0.901 

292.83 0.661 292.83 0.879 

297.22 0.627 297.22 0.856 

301.62 0.590 301.62 0.831 

306.01 0.551 306.01 0.801 

310.41 0.508 310.41 0.766 

314.80 0.464 314.80 0.717 

319.20 0.418 319.20 0.685 

323.59 0.373 323.59 0.638 

327.99 0.330 327.99 0.588 
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vii. Enzymatic Phosphorylation of Trpswitch. 

The peptides Trpswitch and Trpswitch(Me2) were enzymatically phosphorylated 

with Protein Kinase A Catalytic Subunit from bovine heart purchased from Sigma Aldrich. 

Lyophilized Protein Kinase A was reconstituted in PKA buffer (10 mM magnesium chloride, 

6 mg/ml dithiothreitol, 50 mM potassium phosphate buffer at pH 6.9) and allowed to sit for 

10 mins before adding substrate. Peptide substrate (100 μM) was reacted with 1mM 

adenosine triphosphate and 100 units PKA in PKA buffer at 30°C for 24 h in a total volume 

of 1 ml . 1 unit is defined as the transfer of 1.0 pmol of phosphate from γ-[32P]-ATP to 

partially dephosphorylated casein per min at pH 6.5 at 30°C according to Sigma Aldrich. 

Extent of phosphorylation of peptides was determined by LC-MS. 

 

Figure 4.13 1HNMR of Peptide WQKS: Ac-Cys-Arg-Trp-Val-Gln-Val-Asn-Gly-Arg-Lys-
Ile-Ser-Gln-Cys-NH2 

PPM 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 -0.4 
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Figure 4.14 1HNMR of Peptide WQKS(PO3): Ac-Arg-Trp-Val-Gln-Val-Asn-Gly-Arg-Lys-
Ile-Ser(PO3)-Gln-NH2 

PPM 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 -0.4 
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Figure 4.15 1HNMR of Peptide WQK(Me2)S: Ac-Arg-Trp-Val-Gln-Val-Asn-Gly-Arg-Lys-
Ile-Ser-Gln-NH2 
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Figure 4.16 1HNMR of Peptide WQK(Me2)S(PO3): Ac-Arg-Trp-Val-Gln-Val-Asn-Gly-
Arg-Lys-Ile-Ser-Gln-NH2 

 

PPM 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 -0.4 
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Figure 4.17 1HNMR of Peptide cyclic WQKL: Ac-Cys-Arg-Trp-Val-Gln-Val-Asn-Gly-Arg-
Lys-Ile-Ser-Gln-Cys-NH2 
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Figure 4.18 1HNMR of Peptide KSWQ: Ac-Arg-Lys-Val-Ser-Val-Asn-Gly-Lys-Trp-Ile-Gln-
Gln-NH2 

Table 4.9 Proton Chemical Shift Assignments for Peptide KSWQ. 

Residue α β γ δ ε 
R 4.3 1.7 1.68 3.15   
K 4.6 1.7 1.4 1.77 2.84 
V 4.31 2.01 0.88 

 
  

S 4.51 3.34/3.57 
  

  
V 4.13 2.03 0.91 

 
  

N 4.58 2.74 
  

  
G 3.91/3.69 

   
  

K 4.36 1.66 1.3 1.66 2.93 
W 4.8 3.17 

  
  

I 4.21 1.79 1.12 0.85   
Q 4.31 1.99 2.32 

 
  

Q 4.31 1.99 2.32     

PPM 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 -0.4 
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Figure 4.19 1HNMR of Peptide KS(PO3)WQ: Ac-Arg-Lys-Val-Ser(PO3)-Val-Asn-Gly-Lys-
Trp-Ile-Gln-Gln-NH2 

Table 4.10 Proton Chemical Shift Assignments for Peptide KS(PO3)WQ. 

Residue α β γ δ ε 
R 4.26 1.73 1.6 3.13   
K 4.44 1.69 1.39 

 
2.9 

V 4.24 1.94 0.89 
 

  
S-PO3 4.63 3.96 

  
  

V 4.1 2.04 0.89 
 

  
N 4.66 2.8 

  
  

G 3.85 
   

  
K 4.32 1.67 1.31 

 
2.91 

W 4.77 3.2 
  

  
I 4.13 1.75 1.34 0.84   
Q 4.28 1.98 2.33 

 
  

Q 4.24 1.98 2.3     

PPM 7.6 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 -0.4 
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Figure 4.20 1HNMR of Peptide K(Me2)SWQ: Ac-Arg-Lys(Me2)-Val-Ser-Val-Asn-Gly-Lys-
Trp-Ile-Gln-Gln-NH2 

Table 4.11 Proton Chemical Shift Assignments for Peptide K(Me2)SWQ. 

Residue α β γ δ ε 
R 4.32 1.76 1.62 3.17   

K(Me2) 4.67 1.7 1.36 1.52 2.77 
V 4.39 2.01 0.9 

 
  

S 4.56 3.50/3.14 
  

  
V 4.16 2 0.9 

 
  

N 4.53 2.93/2.75 
  

  
G 3.94/3.62 

   
  

K 4.4 1.72 1.33 1.65 2.96 
W 4.9 3.17 

  
  

I 4.3 1.84 1.39/1.15 0.87   
Q 4.39 1.99 2.32 

 
  

Q 4.34 1.97 2.35     
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Figure 4.21 1HNMR of Peptide K(Me2)S(PO3)WQ: Ac-Arg-Lys(Me2)-Val-Ser(PO3)-Val-
Asn-Gly-Lys-Trp-Ile-Gln-Gln-NH2 

Table 4.12 Proton Chemical Shift Assignments for Peptide K(Me2)S(PO3)WQ. 

Residue α β γ δ ε 
R 4.29 1.74 1.62 3.14   

Kme2 4.34 1.71 1.31 1.63 2.92 
V 4.29 2.04 0.91 

 
  

SOPO3 4.69 3.86 
  

  
V 4.11 2.04 0.92 

 
  

N 4.63 2.84,2.78 
  

  
G 3.89,3.83 

   
  

K 4.52 1.73 1.35 1.69 2.92 

W 4.84 3.18 
H2 7.21, H4 7.53, H5 7.10, H6 7.24, H7 

7.49  
I 4.18 1.79 

 
0.85   

Q 4.29 1.98 2.33 
 

  
Q 4.29 1.98 2.33     

 

PPM 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 -0.4 
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Figure 4.22 1HNMR of Peptide cyclic KSWQ: Ac-Cys-Arg-Lys-Val-Ser-Val-Asn-Gly-Lys-
Trp-Ile-Gln-Gln-Cys-NH2 

Table 4.13 Proton Chemical Shift Assignments for Peptide cyclic KSWQ. 

Residue α β γ δ ε 
C 

     R 4.6 1.84 1.6 3.2 
 K 5.11 1.7 1.32 1.4 2.56 

V 4.61 1.97 0.85 
  S 5.05 3.10/2.95 

   V 4.13 1.85 0.84 
  N 4.32 3.04/2.70 

   G 3.99/3.34 
    K 4.52 1.7 1.38 

 
3 

W 5.04 3.03 
   I 4.64 1.92 1.36 1.18 0.92 

Q 4.64 2.1 2.25 
  Q 4.86 1.97 2.25 
  C 
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Figure 4.23 1HNMR of Peptide WWKS: Ac-Arg-Trp-Val-Trp-Val-Asn-Gly-Lys-Orn-Ile-
Ser-Gln-NH2 

Table 4.14 Proton Chemical Shift Assignments for Peptide WWKS. 

Residue α β γ δ ε 
R 4.24 1.59 1.45 3.09   
W 5.11 2.91 

  
  

V 4.45 2.05 0.85 
 

  
W 5.12 3.1 

  
  

V 4.24 1.92 0.91 
 

  
N 4.45 2.74,3.06 

  
  

G 4.15,3.75 
   

  
O 4.65 1.8 1.76 3.01   
K 3.99 1.08 0.67 0.37 1.98 
I 4.48 1.9 N/A 0.87   
S 4.38 3.57,3.50 

  
  

Q 4.31 1.8 2.02,2.22     
  

PPM 8.8 8.4 8.0 7.6 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 -0.4 
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Figure 4.24 1HNMR of Peptide WWKS(PO3): Ac-Arg-Trp-Val-Trp-Val-Asn-Gly-Lys-Orn-
Ile-Ser(PO3)-Gln-NH2 

Table 4.15 Proton Chemical Shift Assignments for Peptide WWKS(PO3). 

Residue α β γ δ ε 
R 4.15 1.51 1.27 3   
W 5.11 3.08 

  
  

V 4.42 2.04 0.84 
 

  
W 5.11 2.9 

  
  

V 4.23 1.94 0.9 
 

  
N 4.45 2.74,3.07 

  
  

G 4.15,3.75 
   

  
O 4.62 1.81 1.7 3   
K 3.92 1.1 0.84 0.69, 0.39   
I 4.45 1.92 1.2 0.89   

S-PO3 4.62 3.95 
  

  
Q 4.3 1.85 2.06,2.25     

 

 

 

PPM 8.4 8.0 7.6 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 -0.4 
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Table 4.16 Proton Chemical Shift Assignments for Peptide cyclic WWKS.  

Residue α β γ δ ε 
C 4.98 2.49,2.83 

  
  

R 4.51 1.78 1.64,1.51 3.15   
W 5.16 3.07 

  
  

V 4.63 2.07 0.83 
 

  
W 4.92 2.91,3.07 

  
  

V 4.29 1.91 0.92 
 

  
N 4.39 2.75,3.08 

  
  

G 4.25,3.70 
   

  
O 4.7 1.8 1.77 3.03   
K 4.06 1.05 0.88,0.50 0.34,0.19 1.96 
I 4.6 

   
  

S 4.29 2.85,3.18 
  

  
Q 4.54 1.79 2.01,2.19 

 
  

C 5.24 2.99,2.69       
 

Table 4.17 Proton Chemical Shift Assignments for Peptide Trpswitch. 

Residue α β γ δ ε 
R 4.35 1.7 1.54 3.13   
K 4.63 1.57 1.43 1.29,1.08 2.45 
V 4.44 1.97 0.84    
S 4.34 3.12     
V 4.13 1.94 0.88    
N 4.44 2.98 2.73    
G 3.94,3.50      
O 4.46 1.8 1.66 2.99   
W 4.94 3.05 H2 H4 7.15, H5 7.04, H6 7.22, H7 7.40  
I 4.5 1.87  0.88   

W 4.8 3.18 H2 H4 7.28,H5 7.01, H6 7.22 H7 7.48   
Q 4.33 2.02 2.19     

 
 

 

 

 

 

 



170 
 

 

Table 4.18 Proton Chemical Shift Assignments for Peptide Trpswitch(PO3) at pH 7. 

Residue α β γ δ ε 
R 4.28 1.71 1.58 3.1   
K 4.38 1.69 1.28 1.61 2.8 
V 4.22 2.11 0.89    
S 4.6 3.93     
V 4.09 2.05 0.91    
N 4.66 2.83     
G 3.82      
O 4.28 1.71 1.58 2.93   
W 4.79 3.06 H2 7.22, H4 7.53, H5 7.13, H6 7.17, H7 7.48  
I 4.15 1.7 1.26,1.01 4.15   

W 4.6 3.17 H2 7.22, H4 7.53, H5 7.13, H6 7.17, H7 7.48  
Q 4.16 1.78 2.1     

 
Table 4.19 Proton Chemical Shift Assignments for Peptide Trpswitch(PO3) at pH 4. 

Residue α β γ δ ε 
R 4.33 1.73 1.55 3.1   
K 4.53 1.57 1.52 1.17 2.62 
V 4.37 1.97 0.86    

SPO3 4.61 3.77,3.59     
V 4.09 2 0.9    
N 4.57 2.92,2.78     
G 3.94, 3.74      
O 4.41 1.72 1.68 2.97   
W 4.89 3.05 H2 7.23, H4 7.64, H5 7.10, H6 7.16, 7.55 
I 4.33 1.8  0.84   

W 4.75 3.19 H2 7.23, H4 7.49,H5 7.05,H6 7.23, H7 7.41 
Q 4.28 1.82 2.18     
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Table 4.20 Proton Chemical Shift Assignments for Peptide Trpswitch(PO3) at pH 1.2. 

Residue α β γ δ ε 
R 4.33 1.67 1.51 3.09   
K 4.56 1.58 1.45 1.33, 1.09 2.56 
V 4.39 1.94 0.82    

SPO3 4.56 3.66, 3.29     
V 4.07 1.93 0.86    
N 4.48 2.92, 2.72     
G 3.92, 

 
     

O 4.43 1.71 1.64 2.96   
W 4.94 3.02, 2.96 H2 7.22 H4 7.48 H5 7.06, H6 7.16 H7 7.40  
I 4.39 1.72  0.88   

W 4.73 3.16 H2 7.22, H4 7.46, H5 6.99, H6 7.22, H7 7.31  
Q 4.26 1.8 1.98, 
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Figure 4.25 1HNMR of Peptide Trpswitch(Me2): Ac-Arg-Lys(Me2)-Val-Ser-Val-Asn-Gly-
Trp-Ile-Trp-Gln-NH2 

Table 4.21 Proton Chemical Shift Assignments for Peptide Trpswitch(Me2). 

Residue α β γ δ ε 
R 4.4 1.73 1.57 3.16   

Kme2 4.74 1.37 1.21,1.03 0.86 2.03, Kme2 = 2.27, 2.04 
V 4.56 1.95 0.84    
S 4.47 3.23,2.42     
V 4.14 1.87 0.86    
N 4.36 2.70,3.02     
G 3.97,3.39      
O 4.53 1.77 1.69    
W 5.01 3.08,2.77  H2 7.27, H4 7.21, H5 6.91, H6  7.17, H7 7.50 
I 4.56 1.94 1.17 0.9   

W 4.97 3.18 H2 7.13, H4 7.39, H5 7.04, H6 7.13, H7 7.51 
Q 4.43 1.87 2.26,2.07     

 

PPM 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 -0.4 
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Figure 4.26 1HNMR of Peptide Trpswitch(Me2PO3): Ac-Arg-Lys(Me2)-Val-Ser(PO3)-Val-
Asn-Gly-Trp-Ile-Trp-Gln-NH2 

Table 4.22 Proton Chemical Shift Assignments for Peptide Trpswitch(Me2PO3) at pH 7. 

Residue α β γ δ ε 
R 4.37 1.72 1.56 3.13   

Kme2 4.62 1.48 1.36 0.95 2.28, Kme2 = 2.77, 2.85 
V 4.47 1.99 0.87    

SOPO3 4.64 3.31,3.64     
V 4.1 1.95 0.89    
N 4.47 2.98,2.73     
G 3.95,3.67      
O 4.47 1.74 1.66 3.01   
W 5.03 2.85,3.03  ND 
I 4.46 1.87 1.31,1.11 0.83   

W 4.86 3.18  ND 
Q 4.36 1.84 2.02,2.22     

  
 

 

PPM 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 -0.4 
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Table 4.23 Proton Chemical Shift Assignments for Peptide Trpswitch(Me2PO3) at pH 4. 

Residue α β γ δ ε 
R 4.37 1.72 1.56 3.13   

Kme2 4.62 1.48 1.36 1.19 2.28 
V 4.47 1.99 0.87    

SOPO3 4.64 3.31,3.64     
V 4.1 1.95 0.89    
N 4.47 2.73,2.98     
G 3.95,3.67      
O 4.47 1.74 1.66 3.01   
W 5.03 3.03,2.85 ND 
I 4.46 1.87 1.11, 1.31 0.83   

W 4.86 3.18 ND 
Q 4.36 1.84 2.02,2.22     

 
Table 4.24 Proton Chemical Shift Assignments for Peptide Trpswitch(Me2PO3) at pH 1.2. 

Residue α β γ δ ε 
R 4.4 1.77 1.55 3.17   

Kme2 4.65 1.45 1.3 1.13, 0.92 2.2 
V 4.49 1.99 0.85    

SOPO3 4.65 3.03, 3.55     
V 4.1 1.89 0.85    
N 4.4 2.70,2.99     
G 3.97, 3.62      
O 4.41 1.68 1.34 2.99   
W 5.04 3.03 H2 7.23 H4 7.41 H5 7.04 H6 7.14 H7 7.51 
I 4.47 1.87  0.86   

W 4.97 3.15 H2 7.23 H4 7.47 H5 6.92, H6 7.20 H7 7.47 
Q 4.37 1.86 2.05, 2.23     

 
Table 4.25 Proton Chemical Shift Assignments for Peptide Ac-RKVSVNG. 

Residue α β γ δ ε 
R 4.26 1.76 1.66 3.2   
K 4.38 1.77 1.46 1.66 3 
V 4.17 2.09 0.94    
S 4.51 3.85     
V 4.17 2.09 0.94    
N 4.72 2.84/2.78     
G 3.91         
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Table 4.26 Proton Chemical Shift Assignments for Peptide Ac-RKVS(PO3)VNG. 

Residue α β γ δ ε 
R 4.28 1.77 1.67 3.2   
K 4.38 1.8 1.45 1.71 3 
V 4.16 2.1 0.95    

SOPO3 4.64 4.12     
V 4.16 2.1 0.95    
N 4.75 2.86/2.82     
G 3.91         

 
Table 4.27 Proton Chemical Shift Assignments for Peptide Ac-NGOWIWQ. 

Residue α β γ δ ε 
N 4.66 2.66,2.77     
G 3.79      
O 4.25 1.69 1.56 2.91   
W 4.78 3.08  H2 7.24, H4 7.61, H5 7.06, H6 7.24, H7 7.37 
I 4.16 1.71 1.29,1.03 0.78   

W 4.48 3.05,3.15  H2 7.24, H4 7.61, H5 7.17, H6 7.24, H7 7.45 
Q 4.15 1.75 2.10,2.06     
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Figure 4.27 1HNMR of Peptide cyclic Trpswitch: Ac-Arg-Lys(Me2)-Val-Ser(PO3)-Val-Asn-
Gly-Trp-Ile-Trp-Gln-NH2 

Table 4.28 Proton Chemical Shift Assignments for Peptide cyclic Trpswitch. 

Residue α β γ δ ε 
C 5.04 2.73,3.04 

  
  

R 4.73 1.84 1.59 3.21   
K 4.69 1.29 0.94 0.65 2.07 
V 4.58 1.84 0.85 

 
  

S 4.33 2.05 
  

  
V 4.13 1.83 0.83 

 
  

N 4.31 3.07,2.69 
  

  
G 3.99,3.34 

   
  

O 4.57 1.82 1.68 3.02   
W 5.12 3.05 H2 7.24 , H4 7.15 , H5 6.92, H6 7.24, H7 7.39 
I 4.69 1.99 1.37,1.14 0.9   

W 5.1 3.11 H2 7.24, H4 7.15, H5 6.83, H6 7.02, H7 7.45 
Q 4.73 1.94 2.24 

 
  

C 5.27 2.54,3.07       
 

PPM 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 



 

 

 

CHAPTER V 

INVESTIGATION OF THE N-TERMINAL UBIQUITIN β-HAIRPIN 

(Reproduced, in part with permission from Riemen, A.J.; Waters M.L., Biopolymers. 2008, 

90, 394-398.) 

 
A. Stabilization by terminal hydrophobic cluster 

i. Background and significance 

 As discussed in chapter 1, understanding the factors necessary to form minimal structural 

elements in proteins and peptides is essential for de novo protein design and development of 

peptide model systems to measure particular interactions. Over the past decade there has 

been extensive research on determining what factors stabilize the formation of β-hairpins in 

aqueous solution. It has been shown that the turn sequence can strongly promote β-hairpins 

formation with a specific strand register.1  Cross strand interactions have been shown to be a 

significant contributor to hairpin stability along with β-sheet propensity of the residues 

incorporated.1  Hydrophobic clusters of side chains have been used as a major stabilizing 

interaction for designed β-hairpins.2 It has been shown that these hydrophobic clusters are 

more stabilizing when positioned closer to the turn, however there is evidence that terminal 

residues that appear frayed by NMR can also contribute to overall stability of the hairpin.2,3,4

                                                 
1 Searle, M. S. J Chem Soc, Perkin Trans 2 2001, 1011-1020. 

 

 
2 Espinosa, J. F.; Munoz, V.; Gellman, S. H. J Mol Biol 2001, 306, 397-402. 
 
3 Kiehna, S. E.; Waters, M. L. Protein Sci 2003, 12, 2657-2667. 
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In this section, we discuss the first significantly stabilizing non-aromatic hydrophobic cluster 

located at the termini of the naturally occurring excised N-terminal β-hairpin of ubiquitin.5  

The excised native N-terminal β-hairpin of ubiquitin modestly folds6 in aqueous solution and 

has been implicated as a nucleation site for folding of ubiquitin.7 Thus, this hairpin sequence 

has been used as model system to better understand the factors that contribute to β-hairpin 

stability and the effects on ubiquitin folding by modifying this nucleation site.8

 

 However 

only residues in the turn segment and neighboring regions have been modified and studied, 

leaving the terminal residues’ significance unexplored.   

 
 
 
 

 
 
 
 
 
 
 

 

                                                                                                                                                       
4 Espinosa, J. F.; Gellman, S. H. Angew Chem Int Ed 2000, 39, 2330-2333. 
 
5 Riemen, A. J.; Waters, M. L. Biopolymers 2008, 90, 394-398. 
 
6 Maynard, A. J.; Sharman, G. J.; Searle, M. S. J Am Chem Soc 1998, 120, 1996-2007. 
 
7 (a) Zerella, R.; Evans, P. A.; Ionides, J. M. C.; Packman, L. C.; Trotter, B. W.; Mackay, J. 
P.; Williams, D. H. Protein Sci 1999, 8, 1320-1331. (b) Harding, M. M.; Williams, D. H.; 
Woolfson, D. N. Biochemistry 1991, 30, 3120-3128. (c) Jourdan, M.; Searle, M. S. 
Biochemistry 2000, 39, 12355-12364. 
 
8 (a) Jourdan, M.; Searle, M. S. Biochemistry 2001, 40, 10317-10325. (b) Platt, G. W.; 
Simpson, S. A.; Layfield, R.; Searle, M. S. Biochemistry 2003, 42, 13762-13771. (c) Searle, 
M. S.; Platt, G. W.; Bofill, R.; Simpson, S. A.; Ciani, B. Angew Chem Int Ed 2004, 43, 1991-
1994. (d) Bofill, R.; Simpson, E. R.; Platt, G. W.; Crespo, M. D.; Searle, M. S. J Mol Biol 
2005, 349, 205-221. (e) Simpson, E. R.; Meldrum, J. K.; Searle, M. S. Biochemistry 2006, 
45, 4220-4230. 
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(a)  

(b)  
(c) Ub(1-10): Ac-Met-Gln-Ile-Phe-Val-Lys-Thr-Leu-Thr-Gly-NH2 
     Ub(8-17): Ac-Leu-Thr-Gly-Lys-Thr-Ile-Thr-Leu-Glu-Val-NH2 

Figure 5.1 Schematic diagrams of the β-hairpin peptides derived from the N-terminal hairpin 
of ubiquitin.  (A) the native 17mer of ubiquitin, UbN, and (B) the 15-residue peptide UbD in 
which residues 1 and 17 have been deleted.  Interstrand hydrogen bonding and relative 
orientation of the side chains are indicated through dashed lines.  (C) Sequences for the 
control peptides Ub(1-10) and Ub(8-17) used to determine the random coil chemical shifts. 
 

ii. Results. 

To investigate the importance on β-hairpin stability of the terminal residues of the native 

17 residue N-terminal hairpin of ubiquitin (UbN), (Figure 5.1A) a terminal deletion mutant 

(UbD) was synthesized and studied by NMR (Figure 5.1B). Random coil chemical shifts 
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were determined from peptides Ub(1-10) and Ub(8-17) consisting of only residues 1 through 

10 and residues 8 to 17 of the native ubiquitin β-hairpin, respectively. As discussed in 

previous chapters, downfield chemical shifting of backbone hydrogens in peptides relative to 

random coil values is indicative of β-hairpin structure.9 A comparison of the downfield 

shifting of the carbon α-hydrogens (Hα) of UbD and UbN relative to random coil shifts is 

given in Figure 5.2. A downfield chemical shift of ≥  0.1 is accepted as showing β-sheet 

structure and most of the Hα of the native ubiquitin’s residues exhibit this extent of 

shifting.10 The UbD peptide however shows very few residues with downfield shifting ≥  0.1 

ppm, except for isoleucine 13 which is 0.2 ppm downfield shifted. The terminal residues 

glutamine and glutamic acid are upfield shift from random coil in the UbD peptide which is 

an indication of fraying at the ends of the hairpin. Fraying of terminal residues is commonly 

observed in other β-hairpin peptides.2,3,11

 

 The decrease in the extent of downfield shifting of 

Hα along the entire peptide is evidence that the hairpin stability decreases upon removal of 

the N-terminal methionine and C-terminal valine.  

 

                                                 
9 Sharman, G. J.; Griffiths-Jones, S. R.; Jourdan, M.; Searle, M. S. J Am Chem Soc 2001, 
123, 12318-12324. 
 
10 Wishart, D. S.; Sykes, B. D.; Richards, F. M. J Mol Biol 1991, 222, 311-333. 
 
11 (a) Blanco, F. J.; Rivas, G.; Serrano, L. Nat Struct Biol 1994, 1, 584-590. (b) Cochran, A. 
G.; Skelton, N. J.; Starovasnik, M. A. Proc Nat Acad Sci U.S.A. 2001, 98, 5578-5583. (c) 
Tatko, C. D.; Waters, M. L. Protein Sci 2003, 12, 2443-2452. (d) Tatko, C. D.; Waters, M. L. 
J Am Chem Soc 2004, 126, 2028-2034. (e) Hughes, R. M.; Waters, M. L. J Am Chem Soc 
2005, 127, 6518-9. (f) Hughes, R. M.; Waters, M. L. J Am Chem Soc 2006, 128, 12735-
12742. 
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Figure 5.2 Hα chemical shift differences: UbN (black bars) and UbD (blue bars) from 
random coil peptides Ub(1-10) and Ub(8-17). The Gly bars reflect the Hα separation in the 
hairpin. Conditions: 298 K, 50 mM sodium acetate-d4, pH 4.0 (uncorrected), referenced to 
DSS.   
 

The chemical shift of the backbone amide hydrogens from random coil control values 

were also compared between the two peptides (Figure 5.3).  Greater downfield shifting is 

typically seen for the hydrogen bonded amide protons in the peptide backbone of the sheet 

portion of β-hairpins while non-hydrogen sites show a lesser change. Turn regions of β-

hairpins generally exhibit upfield shifting of the back bone amide protons. The backbone 

amides of both UbN and UbD exhibit downfield shifting in the appropriate hydrogen 

bonding pattern is seen in the native peptide (positions I3, V5, T7, I13, L15, and V17) but to 

a lesser extent in UbD, indicating that UbD is folding in the proper register but is forming a 

less stable hairpin than UbN. 
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Figure 5.3 Backbone amide chemical shift differences of UbN (black bars) and UbD (blue 
bars) relative to random coil peptides Ub(1-10) and Ub(8-17). Conditions: 298 K, 50 mM 
sodium acetate-d4, pH 4.0 (uncorrected), referenced to DSS.   

 

NOESY experiments were preformed on the UbD peptide to give further evidence that 

the peptide was forming a β-hairpin hairpin similar to the native hairpin. A weak NOE was 

observed between the γ-methyl group of Thr 14 and hydrogens 3 and 5 of phenyl ring of Phe 

4. The NOE interactions observed between these residues indicates β-hairpin formation with 

the same register as seen in the native β-hairpin previously reported by Zerella.7a However, 

no other non-ambiguous NOEs were observed between cross strand residues. This is due to 

peak overlap of side chain residues, low stability of the hairpin, and more dynamic nature of 

the UbD peptide. 

The extent of folding to a β-hairpin by UbD peptide was quantified using two methods 

and compared to the native β-hairpin. The first method utilizes the extent of Hα downfield 

shifting relative to random coil and the fully folded state (Experimental Section). The second 

method utilizes the extent of the distereotopic glycine Hα splitting located in the turn of the 

hairpin relative to glycine Hα splitting observed in a fully folded control (Experimental 
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Section). The NMR chemical shifts of residues 1-17 from the full ubiquitin protein was used 

as the fully folded state and peptides Ub(1-10) and UB(8-17) were used as random coil 

controls for appropriate hairpin segments.12

Since these peptides have low β-hairpin stability in aqueous solution, co-solvent 

experiments were performed with aqueous methanol to characterize the extent of 

destabilization upon deletion of the terminal residues. Addition of methanol has been shown 

to increase the folding population of the native β-hairpin.7a  CD methanol titrations of UbN 

and UbD were preformed to determine the optimal methanol concentration for maximum β-

hairpin formation of these peptides (Figure 5.4).  At 30% methanol, UbN has reached the 

maximum β-hairpin formation induced by methanol, while at 40% methanol UbD still 

appears to be mostly random coil. Although addition of methanol has little effect on the CD 

spectrum of UbD, increased β-hairpin population was observed by downfield shifting of CαH 

in both UbN and UbD upon the addition of methanol (Figure 5.4). CD spectra interperations 

of β-hairpins have been shown to be ambiguous, and may not accurately reflect β-hairpin 

folding populations and in some cases appear as random coil.

 Both methods give an overall folding for the 

native β-hairpin of about 20%, which is in agreement with the value reported by Zerella.7a  

Overall folding of UbD peptide was an estimated 10% by both methods showing a 

destablization in folding by approximately 0.7 kcal/mol relative to the native β-hairpin.  

13

                                                 
12 Weber, P. L.; Brown, S. C.; Mueller, L. Biochemistry 1987, 26, 7282-7290. 

 Strong NOE’s were observed 

for UbD between Hα of Phe4 and Thr14 confirming that hairpin was forming in same strand 

register as the native hairpin. Based on the Hα downfield shifting and Gly splitting, the 

overall fraction folded of UbD in 40% methanol is estimated to be 50% while UbN is 

 
13 Lacroix, E.; Kortemme, T.; de la Paz, M. L.; Serrano, L. Curr Opin Struct Biol 1999, 9, 
487-493.  
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approximately 80% folded at 30% methanol. Deletion of the terminal residues destabilizes 

the hairpin approximately 0.7 kcal/mol in the presence of co-solvent, which agrees with the 

extent of destabilization observed in aqueous solution.    

(a) (b)  

Figure 5.4 CD spectra of (a) UbN and (b) UbD in 0, 10, 20, 30, and 40% methanol. 
Conditions:  10mM sodium phosphate buffer pH 7.0 at 298 K with varying amounts of 
methanol cosolvant.   

 
Figure 5.5 Hα chemical shift differences increase upon addition of methanol: UbN in pH 4 
buffer (black bars), UbD in pH 4 buffer (blue bars), UbN in 30% methanol (green bars), 
UbD in 40% methanol (yellow bars). The Gly bars reflect the Hα separation in the hairpin. 
 

iii. Discussion 

The terminal residues Met 1 and Val 17 of the N-terminal ubiquitin hairpin surprisingly 

add a significant amount of structural stability. Residues Met 1, Val 17, and Ile 3 make a 
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hydrophobic cluster in the crystal structure of ubiquitin (Figure 5.6).14

In the context of the protein, Bamezai and coworkers have shown that Met1 contributes 

at least 3.4 kcal/mol to the stability of native conformation of ubiquitin, as compared to a loss 

of 0.7 kcal/mol upon deletion of Met1 and Val17 in the isolated hairpin.

 We postulate that 

enhanced stability from these residues is the result of the formation of a hydrophobic cap at 

the end of the hairpin that helps to prevent the terminal residues from fraying. Indeed, NMR 

data demonstrates that the deletion of Met1 and Val17 results in an upfield shift of Gln2 and 

Glu16, indicating that these residues are considerably more frayed in the absence of the 

hydrophobic cluster.  

15

There is evidence that hydrophobic residues at the termini of de novo designed β-hairpins 

can provide some stability. Espinosa and coworkers saw that as they moved a hydrophobic 

cluster found in GB1 C-terminal β-hairpin away from the nucleating turn sequence that the 

hairpin structure propagated further, however the overall stability of the hairpin was 

decreased compared to shorter hairpins.4 Kiehna also saw incorporation of phenylalanine 

cross strand pair at the termini of a de novo design β-hairpin added stability over Lysine-

Glutamic acid cross strand pair or no cross strand pair.3 The aromatic cross strand pair of 

phenylalanines was reported to add about -0.3 kcal/mol to the stability of that particular β-

 Thus, Met1 

appears to be an important residue both in terms of stabilizing the N-terminal hairpin of 

ubiquitin and the overall protein stability of ubiquitin, suggesting that it may play a key role 

in the nucleation of folding. 

                                                 
14 Vijaykumar, S.; Bugg, C. E.; Cook, W. J. J Mol Biol 1987, 194, 531-544. 
 
15 Bamezai, S.; Banez, M. A. T.; Breslow, E. Biochemistry 1990, 29, 5389-5396.  
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hairpin system.3  It appears that nature has used a similar hydrophobic capping strategy in the 

N-terminal β-hairpin of ubiquitin to help increase the stability of a fairly long hairpin.          

 

 
Figure 5.6 Terminal residues of N-terminal hairpin of ubiquitin (pdb code: 1ubq). The 
hydrophobic cluster between Met1, Ile13 and Val17 is shown in green. These residues are 
packed into the core of the protein.14 

iv. Conclusion. 
These studies provide evidence that the terminal hydrophobic cluster in a naturally 

occurring β-hairpin from ubiquitin significantly enhances the stability of the hairpin in 

aqueous solution.  As this hairpin has been proposed to nucleate folding of the protein and 

since these residues make tertiary contacts within the native protein, this hydrophobic cluster 

may play a key role in the nucleation of protein folding.  Moreover, these results suggest a 

general strategy for increasing the stability of designed β-hairpin systems by creating a cap 

for the hairpin, similar to capping strategies used in α-helices. 

B. Incorporation of Cation-π interactions. 

i.  Introduction. 

As mentioned in the previous section, extensive research has been conducted on the N-

Terminal β-hairpin of ubiquitin. These studies have elucidated the importance of the turn 

sequence in enforcement of proper strand register in β-hairpin formation16

                                                 
16 Searle, M. S.; Williams, D. H.; Packman, L. C. Nat Struct Biol 1995, 2, 999-1006. 

 and the 

implications of a stabilizing this hairpin on the ubiquitin folding pathway 8b,d. However 

aforementioned studies dealt with stabilizing the N-terminal ubiquitin hairpin through turn 

optimization. Thus no extensive studies utilizing stabilizing side chain-side chain cross strand 
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interactions have been conducted on this hairpin. We sought to investigate the effects of 

incorporation of a stabilizing cation-π interaction on the N-terminal ubiquitin hairpin and to 

determine the implications on the overall ubiquitin folding pathway through incorporation of 

a redesigned hairpin.  Not only will these studies further our understanding of β-hairpin 

design, but also help in delineating the complex concert of interactions responsible for 

protein folding. 

ii. System Design. 

To investigate the effects of incorporation of a cation-π interaction in the N-terminal 

hairpin of ubiquitin (residues 1-17) and its effect on overall Ubiquitin folding we redesigned 

the non hydrogen bonded residues (NHB) residues of this hairpin (Figure 5.7). The NHB 

residues were altered from the native sequence because geometries for side chain-side chain 

cross-strand interactions at these positions are more favorable and well studied.11b-c,17 Also, 

the NHB residues side chains are located on the solvent exposed exterior of native ubiquitin 

protein, thus it is believed that mutating these residues will not disrupt the contacts to the 

interior of the full protein for future folding studies. The cross strand pair, residues 2 and 16, 

was mutated from Gln and Glu to Arg and Gln respectively to increase the net positive 

charge on the peptide to 2+ to help increase solubility and reduce aggregation.  Residues 4 

and 12 were mutated to Trp and Lys or trimethylated Lys for a favorable cross strand cation-

π interaction similar to other β-hairpins previously discussed (Chapter 3, Chapter 4).11c,e,18  

Additionally residues 6 and 14 were mutated to Gln and Leu respectively to help induce a 

more stable β-hairpin as was previously used in hairpin designs (Chapter 4).18

                                                 
17 Syud, F. A.; Stanger, H. E.; Gellman, S. H. J Am Chem Soc 2001, 123, 8667-77. 

  The Leu at 

 
18 Hughes, R. M.; Benshoff, M. L.; Waters, M. L. Chem Eur J 2007, 13, 5753-5764. 
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position 14 should have favorable hydrophobic contacts with the cross strand Trp. These 

mutations should induce a more stable hairpin than the modestly folded native sequence 

(20%) in aqueous solution.    

(a)  
(b) ubWQKL(1-10): Ac-Met-Arg-Ile-Trp-Val-Gln-Thr-Leu-Thr-Gly-NH2 
     ubWQKL(8-17): Ac-Leu-Thr-Gly-Lys-Lys-Ile-Leu-Leu-Gln-Val-NH2 

 
Figure 5.7  Schematic diagrams of the proposed β-hairpin structure formed by ubWQKL 
(R=H) and ubWQKme3L (R=Me). Sequences for the control peptides ubWQKL(1-10) and 
ubWQKL(8-17) used to determine the random coil chemical shifts. 
 
      iii. Results and Discussion. 

The peptide ubWQKL was synthesized with some difficultly by solid phase peptide 

synthesis.  It became apparent that this particular sequence required multiple coupling cycles 

towards the end of the synthesis, particular during the last three residues (Ile 3, Arg 2 and 

Met 1). Even with multiple coupling cycles there were still many impurities observed during 

purification.  This peptide was characterized by NMR, however the leucine residues could 

not be assigned unambiguously. Nonetheless, we were still able to measure the chemical shift 

difference of the Hα from random coil control peptides with the exception of residues 8, 14, 

and 15 (Figure 5.8). Downfield shifting of ≥ 0.1 ppm was observed for a majority of the 
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residues indicating some β-sheet formation, albeit not to a much larger extent than what was 

observed for the native sequence discussed in section A and in some cases less than what was 

observed in the native sequence (positions 5, 6, 11, 12, 13, 15).   

 

Figure 5.8 Hα chemical shift difference of ubWQKL and UbN from random coil peptides. 
The Gly bars reflect the Hα separation in the hairpin. Conditions: 298 K, 50 mM sodium 
acetate-d4, pH 4.0 (uncorrected), referenced to DSS.   
 

The peptide ubWQKme3L was synthesized with a trimethylated lysine at position 12 to 

see if this peptide had an increased favorable interaction with the diagonally cross-strand 

tryptophan similar to what was previously reported in de novo designed β-hairpins.11e,18  This 

peptide was also difficult to synthesize compounded by the extra synthetic step of 

methylating Lys 12. Several rounds of HPLC purification were required to obtain pure 

product. NMR characterization was also difficult for this peptide system with many residues 

whose chemical shifts could not be unambiguously assigned; hence no Hα chemical shift 

from random coil control analysis was performed. 

The fraction folded for ubWQKL and ubWQKme3L was estimated using the extent of 

glycine splitting observed in residue 10 as described in the experimental section (Table 5.1). 
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Due to the difficulty of synthesis and potential unintended oxidation of Met1 no fully folded 

cyclic control using disulfide link terminal cysteine residues were successfully synthesized.  

Thus, the glycine splitting observed in the native protein12 was used as a fully folded control 

in estimating the fraction folded for these peptides.  Analysis of the fraction folded 

calculation for ubWQKL revealed that this peptide was around 44% folded which is 

approximately a 20% fold increase over the native sequence.  The ubWQKme3L was 

estimated to be 58% folded based on Gly splitting which is an increase over both the native 

and ubWQKL peptides.  Calculation of fraction folded could not be determined by the Hα 

shift method due to the lack of applicable fully folded control. In this regard, the fraction 

folded calculated from gly splitting of these peptides gives qualitative information at best 

about the ubWQKL system.  

Table 5.1 Fraction folded calculation for ubWQKL and ubWQKme3L peptides using Gly 
10 splitting. 

Peptide 
Glycine 
splitting 

ΔGlycine 
splitting 

Fraction 
Foldeda 

WQKL 3.81, 4.13 0.32 0.44 
WQKme3L 3.77, 4.19 0.42 0.58 

(a) Fraction folded was calculated using the Gly splitting observed in the ubiquitin protein as a fully folded 
control.12 

 
Redesign of the side chain-side chain interactions for the N-terminal β-hairpin of 

ubiquitin proved to be more challenging than originally anticipated. Nonetheless, the 

mutations introduced into this system appeared to have some of the desired effects on hairpin 

stability. The ubWQKL peptide was estimated to be more folded than the native sequence 

which was predicted based on design principles from previously described systems with a 

similar NHB site sequence (Chapter 4).18  Methylation of Lys 12 in the ubWQKme3L 

peptide also appears to follow the observed increase in stability for previously described 

systems (Chapter 4).11e,18 However, there is not enough data to conclusively determine if this 
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increase in stability is due to an increased interaction with the cross strand tryptophan in the 

ubWQKme3L peptide.  Regardless of the synthetic hurdles in the ubiquitin sequence, it is 

still important to understand the consequences of redesigning a naturally occurring system. 

The studies on the ubWQKL system provide some promising results for future redesign of 

this system that can be incorporated into the native protein to gain further insights into 

protein folding.  

C. Experimental Section 

i. Synthesis and purification of peptides.  

Peptides were synthesized by automated solid phase peptide synthesis on an Applied 

Biosystmes Pioneer Peptide Synthesizer using Fmoc protected amino acids on a PEG-PAL-

PS resin. Activation of amino acids was performed with HBTU, HOBT in the presence of 

DIPEA in DMF. Deprotections were carried out in 2% DBU, 2% piperdine in DMF for 

approximately 10 minutes.  Extended cycles (75 min) were used for each amino acid 

coupling step.  All control peptides were acetylated at the N-terminus with 5% acetic 

anhydride, 6% lutidine in DMF for 30 min. Cleavage of the peptide from the resin was 

performed in 95:2.5:2.5 Trifluoracetic acid (TFA): Ethanedithiol or Triisopropylsilane 

(TIPS): water for 3 h.  Ethanedithiol was used as a scavenger in for sulfur containing 

peptides. TFA was evaporated and cleavage products were precipitated with cold ether. The 

peptide was extracted into water and lyophilized. It was then purified by reverse phase 

HPLC, using a Vydac C-18 semipreparative column and a gradient of 0 to 100% B over 40 

minutes, where solvent A was 95:5 water:acetonitrile, 0.1% TFA and solvent B was 95:5 

actonitrile:water, 0.1% TFA. After purification the peptide was lyophilized to powder and 

identified with ESI-TOF mass spectroscopy.  
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ii. Methylation of dimethyl lysine.  

The ubWQKme3L peptide was synthesized with a dimethyl lysine at position 12 and 

then methylated to trimethyl lysine on resin by reacting with 8 μl 1,3,4,6,7,8-Hexahydro-1-

methyl-2H-pyrimide [1,2-9-] pyrimidine and 62 μl brought up to 5 ml in DMF. Reaction 

mixture was agitated by nitrogen bubbling under a vented septum for 5 h. Resin was washed 

with DMF 3x and then washed with 3x dichloromethane. 

iii. NMR Spectroscopy.  

NMR samples were made to a concentration of 1 mM in D2O buffered to pD 4.0 

(uncorrected)  with 50 mM NaOAc-d3, 24 mM AcOH-d4, 0.5 mM DSS. Samples were 

analyzed on a Varian Inova 600-MHz instrument.  One dimensional spectra were collected 

by using 32-K data points and between 8 to 128 scans using 1.5 second presaturation. Two 

dimensional total correlation spectroscopy (TOCSY) and nuclear overhauser spectroscopy 

(NOESY) experiments were carried out using the pulse sequences from the chempack 

software. Scans in the TOCSY experiments were taken 16 to 32 in the first dimension and 64 

to 128 in the second dimension. Scans in the NOESY experiments were taken 32 to 64 in the 

first dimension and 128 to 512 in the second dimension with mixing times of 200 to 500 

msec. All spectra were analyzed using standard window functions (sinbell and Gaussian with 

shifting). Presaturation was used to suppress the water resonance.  Assignments were made 

by using standard methods as described by Wüthrich.19

iv. Determination of fraction folded.  

  All experiments were run at 298 K. 

                                                 
19 Wüthrich, K. NMR of Proteins and Nucleic Acids; Wiley: New York, 1986. 
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To determine the unfolded chemical shifts, 10-mers were synthesized. The chemical 

shifts for residues in the strand and one turn residue were obtained from each 10-mer peptide. 

The chemical shifts of the fully folded state were taken from the previously published NMR 

characterization of ubiquitin protein.12 The fraction folded on a per residue bases was 

determined from equation 1. 

Fraction Folded = [δobs – δ0]/[ δ100 – δ0],        [1] 

where δobs is the observed Hα chemical shift, δ100 is the Hα chemical shift of the native 

ubiquitin protein, and δ0 is the Hα chemical shift of the unfolded 10-mers. The overall 

fraction folded for the entire peptide was obtained by averaging the fraction folded for all of 

the residues except for the terminal residues, Ile 3, and the turn residues Leu 8, Thr 9, Gly 10, 

and Lys 11. The terminal residues were omitted due to fraying and Ile3 gave anomalous 

folding which was also observed by Zerella.7a The overall fraction fold was also determined 

using the extent of Hα glycine splitting observed in the turn residue Gly 10 given in equation 

2. 

Fraction Folded = [ΔδGly Obs]/[ ΔδGly 100], [2] 

where ΔδGly Obs is the difference in the glycine Hα chemical shifts of the observed, and ΔδGly 

100 is the difference in the glycine Hα chemical shifts of the native ubiquitin protein. 

v. CD Spectroscopy.  

CD spectroscopy was performed on an Applied photophysics Pistar -180 Circular 

Dichroism spectrophotometer at 298 K. Peptides were dissolved in phosphate buffer of pH 

7.5 and the appropriate amount of methanol was titrated in for each concentration.  Spectra 

were collected from 260 nm to 185nm with 1 s scanning every 0.2 nm.   
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Figure 5.9 1HNMR of Peptide UbN: NH2-Met-Gln-Ile-Phe-Val-Lys-Thr-Leu-Thr-Gly-Lys-
Thr-Ile-Thr-Leu-Glu-Val-NH2 
 
Table 5.2 Proton Chemical Shift Assignments for Peptide UbN. 

Residue α β γ δ ε Amide 
 M 4.13 2.13 2.53    

Q 4.53 1.85 2.14   8.72 
I 4.18 1.96 0.85   8.6 
F 4.9 2.91 H2,6 7.22 H3,5 7.25 H4 7.31 8.44 
V 4.13 2.01,1.76 0.9   8.44 
K 4.58 1.71 1.43 1.71 2.97 8.44 
T 4.41 4.15 1.19   8.37 
L 4.36 nd nd 0.86  8.56 
T 4.34 4.16 1.19   7.96 
G 4.07, 3.84     8.25 
K 4.4 nd nd nd 2.95 7.93 
T 4.56 4.06 1.15   8.37 
I 4.19 1.75 1.34 0.85  8.39 
T 4.52 4.04 1.08   8.27 
L 4.42 nd nd 0.85  8.49 
E 4.49 1.95 2.34   8.31 
V 4.09 2.01 0.91   8.25 

 

PPM 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 -0.4 
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Figure 5.10 1HNMR of Peptide UbD: NH-Gln-Ile-Phe-Val-Lys-Thr-Leu-Thr-Gly-Lys-Thr-
Ile-Thr-Leu-Glu-NH2 
 
Table 5.3 Proton Chemical Shift Assignments for Peptide UbD. 

Residue α β γ δ ε Amide 
Q 4.01 1.98 2.13       
I 4.19 1.75 nd 0.86   8.55 
F 4.73 2.93 H2,6 7.24 H3,5 7.26 H4 7.32 8.55 
V 4.13 1.95 0.86    8.25 
K 4.39 1.77 1.41 1.66 2.96 8.39 
T 4.36 4.23 1.18    8.25 
L 4.37 1.62 nd 0.86   8.34 
T 4.32 4.22 1.18    8.02 
G 3.99, 3.91      8.34 
K 4.39 1.77 1.41 1.66 2.96 8.08 
T 4.37 4.1 1.14    8.3 
I 4.29 1.84 1.43 0.86   8.41 
T 4.37 4.1 1.14    8.3 
L 4.42 1.65 nd 0.9   8.48 
E 4.29 1.94 2.39     8.34 
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Table 5.4 Proton Chemical Shift Assignments for Peptide Ub(1-10). 

Residue α β γ δ ε Amide 
M 4.13 2.14 2.54       
Q 4.35 1.9 2.17 

 
  8.74 

I 4.12 1.74 1.12 0.8   8.27 
F 4.68 2.96 H2,6 7.24 H3,5 7.27 H4 7.31 8.44 
V 4.03 1.95 0.88 

 
  8.09 

K 4.3 1.78 1.42 1.73 2.98 8.37 
T 4.33 4.22 1.19 

 
  8.11 

L 4.44 1.63 nd 0.88   8.42 
T 4.31 4.2 1.19 

 
  8.16 

G 3.94, 3.87         8.37 
 
Table 5.5 Proton Chemical Shift Assignments for Peptide Ub(8-17). 

Residue α β γ δ ε Amide 
L 4.23 1.86 0.87 

   T 4.31 4.12 1.15 
  

8.52 
G 3.97, 3.95 

    
8.52 

K 4.38 1.72 1.42 1.72 2.96 8.25 
T 4.38 4.15 1.15 

  
8.64 

I 4.1 1.72 nd 0.85 
 

8.3 
T 4.31 4.12 1.15 

  
8.25 

L 4.32 1.59 nd 0.89 
 

8.3 
E 4.38 1.99 2.38 

  
8.37 

V 4.08 2.04 0.92 
  

8.15 
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Figure 5.11 1HNMR of Peptide ubWQKL: NH-Met-Arg-Ile-Trp-Val-Gln-Thr-Leu-Thr-
Gly-Lys-Lys-Ile-Leu-Leu-Gln-Val-NH2. 
 
Table 5.6 Proton Chemical Shift Assignments for Peptide ubWQKL. 

Residue α β γ δ ε 
M 4.13 2.16 2.55 

  R 4.55 1.62 1.54 3.03 
 I 4.27 2.06 1.72,1.38 0.86 
 W 4.96 3.1 

   V 4.1 2.04 0.93 
  Q 4.38 1.96 2.31 
  T 4.34 4.23 1.2 
  L nd nd nd 
  T 4.56 nd 1.23 
  G 4.13, 3.81 

    K 4.29 nd nd nd 2.96 
K 4.38 nd nd nd 2.95 
L nd nd nd 

  L nd nd nd 
  I 4.12 1.82 nd 0.88 

 Q 4.46 2.03 2.27 
  V 4.12 2.07 

    

PPM 7.6 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 -0.4 
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Table 5.7 Proton Chemical Shift Assignments for Peptide ubWQKL(1-10). 

Residue α β γ δ ε 
M 4.14 2.16 2.56 

  R 4.35 1.64 1.47 3.04 
 I 4.18 1.94 0.85 

  W 4.69 3.2 
   V 4.01 1.88 0.84 

  Q 4.19 1.97 2.29 
  T 4.36 4.24 1.19 
  L 4.44 1.64 nd 0.89 

 T 4.36 4.19 1.17 
  G 3.91 

     
Table 5.8 Proton Chemical Shift Assignments for Peptide ubWQKL(8-17). 

Residue α β γ δ ε 
L 4.38 1.59 0.88     
T 4.34 4.28 1.19 

 
  

G 3.96 
   

  
K 4.3 1.7 1.39 nd 2.96 
K 4.3 1.7 1.39 nd 2.96 
I 4.1 1.82 1.45 0.86   
L 4.34 1.59 nd 0.87   
L 4.34 1.59 nd 0.87   
Q 4.37 1.97 2.33 

 
  

V 4.09 2.06 0.93     
 



 

 

 

 CHAPTER VI  

DESIGN AND STUDY OF TERTIARY INTERACTIONS BETWEEN β-HAIRPIN 

AND α-HELIX 

 
A.  Introduction. 

As discussed in Chapter 1, advancement in protein design allows for a better 

understanding of structure function relationships in proteins and the development of useful 

novel proteins. Over the past few years many mini-proteins have been developed that fold 

into a variety of tertiary structures.1  Since helical systems have been studied for over 30 

years and are well understood, design rules are available to create tertiary interactions that 

will form α-helical coiled coil dimers, trimers, and tetramers.2,3 The study of β-sheet 

interactions has increased over the past decade and has led to the design of β-sandwich 

proteins.4

                                                 
1 Imperiali, B.; Ottesen, J. J. J Pept Res 1999, 54, 177-184. 

 However design of peptides that have hairpin-helix interactions is not as well 

understood as helix-helix and hairpin-hairpin interactions. The structural motif of α helicies 

packing against β-sheets is very common in proteins (Figure 6.1). Additionally, this same 

 
2 Micklatcher, C.; Chmielewski, J. Curr Opin Chem Biol 1999, 3, 724-729. 
 
3 Hill, R. B.; Raleigh, D. P.; Lombardi, A.; Degrado, W. F. Acc Chem Res 2000, 33, 745-754. 
 
4 (a)Quinn, T. P.; Tweedy, N. B.; Williams, R. W.; Richardson, J. S.; Richardson, D. C. Proc 
Nat Acad Sci U. S.A. 1994, 91, 8747-8751.(b) Lim, A.; Saderholm, M. J.; Makhov, A. M.; 
Kroll, M.; Yan, Y. B.; Perera, L.; Griffith, J. D.; Erickson, B. W. Protein Sci 1998, 7, 1545-
1554. (c) Kraemer-Pecore, C. M.; Lecomte, J. T. J.; Desjarlais, J. R. Protein Sci 2003, 12, 
2194-2205. (d) Ilyina, E.; Roongta, V.; Mayo, K. H. Biochemistry 1997, 36, 5245-5250. 
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configuration is seen in protein-protein recognition events where an α-helix in one protein 

domain will bind to a β-sheet surface in another. One important example of this is the 

binding of p53 with MDM2 (Figure 6.1d).5  Currently there are a few de novo designed mini 

protein  with involving α-helix packing against a β-sheet such as the ββα design based on the 

zinc finger domain.6 Another de novo mini-protein was developed using computational 

simulations that contains a β-hairpin interacting with an α-helix.7

 

  However, there is not a set 

of well defined, general, design principles that exist for hairpin-helix tertiary interaction as 

there are for α-helical coiled coil systems. 

 

 

 

 

 

 

 

                                                 
5 Yin, H.; Lee, G. I.; Park, H. S.; Payne, G. A.; Rodriguez, J. M.; Sebti, S. M.; Hamilton, A. 
D. Angew Chem Int Ed 2005, 44, 2704-2707. 
 
6 Struthers, M. D.; Cheng, R. P.; Imperiali, B. J Am Chem Soc 1996, 118, 3073-3081. 
 
7 Dahiyat, B. I.; Mayo, S. L. Science 1997, 278, 82-87.  
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(a) (b)  

(c) (d)  

Figure 6.1 Examples of α-helix-β-sheet motif in proteins (a) B1 domain of streptococcal 
protein G (pdb code: 3GB1), (b) Ubiquitin (pdb code: 1UBQ), and (c) B1 domain of protein 
L (pdb code: 2ptl). (d) Helical peptide from the tumor suppressor protein p53 (blue) bound to 
its inhibitor(green) where the interacting β-sheet portion is in red.  
 

The goal of this project is to determine the key factors that dictate tertiary interactions 

between α-helices and β-hairpins. To this end the hairpin-helix interactions of protein GB1 

will initially be used as a template to study the requirements necessary for tertiary contacts. 

Streptococcal protein GB1 is a small 56 residue protein that consists of a β-hairpin α-helix β-

hairpin motif in which the two hairpins pack against the α-helix (Figure 6.1a). This system 

has been thoroughly studied making it ideal for investigating hairpin-helix interactions. The 

C-terminal β-hairpin (Hairpin 1) is known to fold autonomously in water8

                                                 
8 Blanco, F. J.; Rivas, G.; Serrano, L. Nat Struct Biol 1994, 1, 584-590. 

  with a fraction 
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folded of 40% and is indicated as the nucleation site for GB1 folding 9 making this β-hairpin 

a logical candidate for manipulation of hairpin-helix interactions.   

 
Figure 6.2 GB1 domain [pdb code: 3GB1] showing side chain interactions between the α-
helix (blue) and the C-terimnal β-hairpin 2(purple). 
 

 

B. Helix 2 – Hairpin 2 Studies. 

i. Design.  

To determine if it is feasible to observe a binding event between the α-helix and the C-

terminal β-hairpin of GB1 intermolecularly, two peptides were designed after their respective 

domain fragments. Since it is unlikely that the native sequence fragments will bind 

effectively in the absence of the full protein sequence we sought to preorder the secondary 

structures of these peptides while keeping observed side chain-side chain contacts intact. 

Figure 6.2 highlights the side chains that are observed in the tertiary interaction between the 

helix and C-terminal hairpin as seen in the crystal structure of GB1.  

                                                 
9 Kobayashi, N.; Honda, S.; Yoshii, H.; Uedaira, H.; Munekata, E. FEBS Lett 1995, 370, 282-
282.  



203 
 

The native C-terminal hairpin fragment was redesigned by replacing the native DDATKT 

loop with the hairpin stabilizing VpGK(p = d-proline) turn10 and referred to as Hairpin 2 

(Table 6.1). The VpGK turn sequence is know to adopt a favorable type II’ which is highly 

stabilizing in β-hairpins11

Using the AGIDIR program developed by Serrano and coworkers that estimates the α-

helicity of a given peptide sequence under specific conditions

 which should produce a more stable hairpin over the native 

peptide. 

12

                                                 
10 Stanger, H. E.; Gellman, S. H. J Am Chem Soc 1998, 120, 4236-4237. 

, we determined that the 

excised α-helix sequence of the native GB1 referred to as Helix 1 was likely to have no 

helical structure in aqueous solution (Table 6.1). Thus, the sequence was redesigned to have 

a higher percentage of helix formation in aqueous solution to give the Helix 2 peptide (Table 

6.2). All the residues that are implicated in tertiary interactions with the C-terminal hairpin in 

GB1 were maintained in the Helix 2 peptide while all other residues with low α-helix 

propensity were mutated to alanine which has highest α-helix propensity of all natural amino 

acids.  Additional alanine repeats were added to the C-terminus of the peptide to help induce 

helix formation, while lysine residues were incorporated to maintain water solubility of the 

peptide. A helix cap sequence of acelyated Asp was incorporated to the N-terminus to help 

induce helix formation as well.2 Tyr with a Gly spacer was incorporated at the C-terminus as 

a spectroscopic tag to allow for UV determination of concentration of the peptide in solution.  

The AGIDIR program predicts that the Helix 2 sequence will be 32% folded under the 

conditions used for CD (10 mM sodium phosphate, pH 7.5, 298 K). 

 
11 Haque, T. S.; Gellman, S. H. J Am Chem Soc 1997, 119, 2303-2304. 
 
12 Munoz, V.; Serrano, L. Biopolymers 1997, 41, 495-509. 
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Table 6.1 Synthesized peptides based on GB1 Protein. Colored residues are found in native 
GB1 where blue residues are residues that make interactions between the α helix and β 
hairpin in C-terminal portion GB1 as seen in the NMR structure11 and red residues are 
favorable for α-helix formation. The percent helicity is indicated in parenthesis next to the 
helix sequences and was calculated using AGIDIR12.  
 

Peptide Sequence 
Helix 1 Ac-AATAEKVFKQYAND-NH2 (2%) 
Helix 2 Ac-DAAAAEKAFKAAAKAAAAKAAAAGY-NH2 (32%) 
Helix 3 Ac-YGDAAAAKKAAAAAAAEKAFKAAAAGGGC-NH2 (47%) 

Helix 4 Native Ac-YGDAAAAKKAAAAATAEKVFKQYANC-NH2 (17%) 
Helix 4 Ac-YGDAAAAKKAAAAAAAEKAFKAAAAC-NH2 (53%) 

Hairpin 1 Ac-GEWTYDDATKTFTVTE-COOH 
  Hairpin 2 Ac-GEWTYVpGKFTVTE-NH2 

Hairpin 3 Ac-CGEWTYVpGKFTVTE-NH2 
Hairpin 4 Ac-CGRWTYVpGKFTKTQ-NH2 
Hairpin 5 Ac-CGVDGEWTYVpGKFTVTE-NH2 

 
ii. Results and Discussion. 

 
(a) Analysis of Helix peptides. To confirm that the native α-helix sequence was indeed 

poorly folded, Helix 1 was synthesized and analyzed by CD at 298 K using 100 μM Helix 1. 

The spectrum indicated that the peptide was unstructured with a minimum at 198 nm (Figure 

6.3). Previous work done by Blanco and Serrano13

                                                 
13 Blanco, F. J.; Serrano, L. Eur J Biochem 1995, 230, 634-649. 

 shows that a peptide consisting of residues 

21-40 of GB1 is unstructured by CD, which is consistent with the predicted AGADIR12 value 

of 2% helicity and the observation that Helix 1 is unstructured. 
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Figure 6.3 CD spectrum of Helix 1 (blue) and Helix 2 (red) peptide, Conditions: 10mM 
phosphate buffer, pH 7.5, 298 K. 

 
The designed Helix 2 was synthesized and characterized by CD to identify secondary 

structure formation. The CD spectrum of 39.4 μM Helix 2 revealed minima at 205 nm and 

222 nm indicating α helix structure (Figure 6.3).  The percent helicity was calculated for this 

peptide to be 33% using the method described in the experimental section which correlates 

well with the 32% helicity predicted by AGADIR.  Thus, the design methodology for Helix 2 

resulted in a more structured α-helix than the native GB1 α-helix fragment Helix 1.  

(b) Analysis of Hairpin 2. The C-terminal β-hairpin with the modified VpGK turn, 

Hairpin 2, was synthesized and characterized by NMR and CD. For complete NMR 

characterization a cyclic fully folded control cyclic Hairpin 2 was synthesized with the 

sequence Ac-CEWTYVpGKFTVTC-NH2. Cyclization was achieved by a disulfide bond 

between cysteine residues at the N and C-termini of the peptide. Unfolded control peptides 

consisting of either the N-terminal arm (Hairpin 2 control 1) or residues 7-14 or the C-

terminal arm (Hairpin 2 control 2) were used to obtain random coil chemical shifts. As 

discussed in Chapter 1, downfield shifting of ≥  0.1 ppm of the Hα protons along the peptide 

Figure 2.1 CD of helix1 peptide. 
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backbone relative to unfolded values indicates a β-sheet conformation.14  Analysis of the Hα 

shifting indicated β-sheet formation with downfield shifting ≥  0.1 ppm for most residues 

(Figure 6.4). The residues Val 10 and Phe 12 are upfield shifted due to electronic shielding 

effects of the cross strand aromatic residues, while d-Pro 7 is upfield shifted due to its 

presence in the turn. Upfield shifting observed at Glu-14 is indicative of typical fraying 

observed in β-hairpin peptides.    

 

Figure 6.4 Hα chemical shift difference of Hairpin 2 from random coil peptides. The Gly 
bars reflect the Hα separation in the hairpin. Conditions: 298 K, 50 mM sodium acetate-d4, 
pH 4.0 (uncorrected), referenced to DSS.   
 

CD analysis also confirmed β-sheet formation where 42.0 μM of Hairpin 2 appears to 

have some unstructured character with a minimum at 198 nm but also has some β sheet 

character with a minimum at 210 nm (Figure 6.5). 

The extent of folding to a β-hairpin by Hairpin 2 was quantified from the NMR data 

using two methods described in Chapter 1 and the Experimental Section. Both Hα shifting 

method and glycine splitting method showed that Hairpin 2 was approximately 60% folded. 
                                                 
14 Sharman, G. J.; Griffiths-Jones, S. R.; Jourdan, M.; Searle, M. S. J Am Chem Soc 2001, 
123, 12318-12324. 
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This is a 20% increase in stability over the natural Hairpin 1 (40% folded) peptide described 

by Blanco et. al.8 Thus, incorporation of the Type II’ VpGK turn resulted in a more stable β-

hairpin sequence as predicted. 

(c) Evidence of intramolecular interaction between Helix 2 and Hairpin 2. To 

ascertain if preordered Helix 2 and Hairpin 2 peptides interact with each other, a CD 

spectrum of a solution containing 39.4 μM Helix 2 and 42.0 μM Hairpin 2 was obtained. 

Since CD signals are additive, any difference in the spectra of the mixed hairpin-helix 

solution relative to the additive signal of the two peptides will indicate intermolecular 

interactions. Comparison of the spectrum of the mixture of the two peptides to the spectrum 

calculated from the addition of individual signals of the separate 39.4 μM Helix 2 and 42.0 

μM Hairpin 2 solutions (Figure 6.5) shows an increased helical signal for the mixture of 

Helix 2 and Hairpin 2 relative to the sum of the individual peptides. 

  

.  

Figure 6.5 CD comparison of Helix 2 (Blue) and Hairpin 2(green), mixture of helix2 and 
hairpin2 (purple) to Additive signals of Helix 2 and Hairpin 2 (red). Conditions: 10mM 
phosphate, pH 7.5, 298K. 
 



208 
 

The CD spectral data suggests that Hairpin 2 is binding to Helix 2 and is inducing 

further α helical folding within Helix 2. Kobayashi et al.9 have shown that the C-terminal β-

hairpin fragment will induce GB1 structure to a fragment peptide containing the rest of the 

protein, but they also have shown that no structure was induced when the C-terminal β-

hairpin fragment was mixed with the α-helical fragment of GB1.  Hence, increasing the 

stability of both secondary structures appears to produce a more favorable tertiary 

interaction.  

We attempted to determine a binding constant between these two peptides through 

monitoring change in helicity of the peptide mixture by CD. A fixed concentration of Helix 2 

(50 μM) was mixed with increasing concentrations of Hairpin 2 (0-170 μM). However, no 

appreciable change beyond error was observed with increasing concentrations of Hairpin 2, 

therefore we sought other methodologies to study redesigned helix-hairpin interactions.  

 

C.  Disulfide Exchange Studies with Helix – Hairpin peptides. 

Since intermolecular binding events between our previously discussed Helix-Hairpin 

system are likely very weak, an alternative approach was adopted to determine if our 

designed systems where interacting favorably. A covalently linked disulfide exchange 

strategy was utilized which takes advantage of oxidative disulfide linkage between two 

cysteine residues on separate peptides. This strategy has been used to determine favorable 

tertiary interaction in coiled-coil α-helical peptides.15

                                                 
15 Oakley, M. G.; Kim, P. S. Biochemistry 1998, 37, 12603-12610. 

 Allowing the reaction of equal 

concentrations of helix peptide and hairpin peptide to reach equilibrium should result in the 

formation of three distinct species (Figure 6.6); heterodimer of helix linked to hairpin, 
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homodimer of helix linked to helix, and a homodimer hairpin linked to hairpin. If the 

peptides do not have any favorable interactions between each other or themselves the 

reaction should yield a product ratio of 1:2:1 for hairpin homo dimer, helix-hairpin hetero 

dimer, and helix homo dimer, respectively. However a deviation from the random product 

ratio would indicate some favorable interaction between species is occurring. Therefore a 

statically significant increase in heterodimer formation over homodimeric species would 

suggest that there is a favorable interaction between hairpin and the helix, warranting further 

investigation. The disulfide exchange methodology is amenable for library screens making it 

an attractive method for determining favorable tertiary interactions between a helix-hairpin 

interface.       

 
  

Figure 6.6 Schematic representation of disulfide exchange reaction between Helix and 
Hairpin. 
 

i. Helix3-Hairpin3 Studies. 

Peptides Helix 3 and Hairpin 3 (Table 6.1) were designed with cysteines on the end of 

each sequence to allow for covalent linkage under oxidative conditions between the C-

terminal β-hairpin and the α-helix similar to the native GB1 protein. The Helix 3 peptide was 

redesigned from Helix 2 to allow for covalent linkage that was a closer mimic of the natural 

GB1 sequence. Thus, the linking cysteine residue was positioned at the C-terminus of the 

peptide with a three Gly spacer representing the same number of residues consisting of the 

loop sequence that connects the helix to the C-terminal hairpin in GB1. The helix stabilizing 
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alanine lysine repeats were also positioned near the N-terminus along with the spectroscopic 

tyrosine tag to maintain helix formation.   

A disulfide exchange reaction was carried out to determine if the designed Helix 3 and 

Hairpin 3 had favorable interactions to form a non-statistical ratio of heterodimers over 

homodimers at equilibrium. Three solutions were prepared, one consisting of 25 μM Helix3, 

another of 25 μM Hairpin 3, and one containing both 25 μM Helix3 and 25 μM Haipin3. 

All solutions were prepared in 10mM sodium phosphate buffer at pH 8 and open to air to 

allow for air oxidation. The disulfide exchanged was followed by analytical HPLC for all 

three solutions. After 7 days all the solutions had reached equilibrium. (Figure 6.7) Peak area 

integration at 280 nm and 214 nm was used to determine the concentration of each species at 

equilibrium and a ratio of 1:2:1 was found for homodimer of Helix 3, heterodimer Helix 3-

Hairpin 3, and homodimer Hairpin 3 respectivily. 
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 Figure 6.7 Analytical HPLC traces for disulfide exchange reaction for Helix 3-Hairpin 3 at 
280 nm. Trace A is disulfide exchange between Helix 3 and Hairpin 3 at equilibrium. Peak 1 
is the homodimer of Helix 3, peak 2 is the heterodimer of Helix 3-Hairpin 3, and peak 3 is 
the homodimer of Hairpin 3. Trace B is the disulfide exchange for Helix 3 control solution 
at equilibrium. Peak 1’ is the monomer of Helix 3 and peak 1 is the homodimer of Helix 3. 
Trace C is the disulfide exchange for Hairpin 3 control solution at equilibrium. Peak 3 is the 
homodimer of Hairpin 3. Note: the extinction coefficient at 280 nm for the Hairpin 3 
homodimer is 1.7 times greater than heterodimer.   

  

ii. Helix3-Hairpin4 Studies. 

 Since the ratio found for heterodimer formation suggested no interaction between helix 

and hairpin between competing species and alternative hairpin design was used to disfavor 

homodimer formation of the hairpin species. Hairpin 4 contains mutations of Glu to Arg at 

position 3 and Val to Lys at position 13 to create net positive charges on each face of the 

hairpin to disfavor aggregation and homodimer formation (Table 6.1). Although we changed 

Val residue at the interface between the helix and the hairpin in GB1 we reasoned that this 

Val was primarily interacting with cross strand tryptophan within the hairpin and would have 

minimal effects on tertiary interaction. A disulfide exchange reaction was performed using 

100 μM Helix3 and 100 μM Hairpin4 and monitored using analytical HPLC.  However after 

7 days no visible peaks were seen indicating precipitation of the peptides in solution. Thus 

we sought to increase the rate of equilibration before precipitation could occur. 
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 To increase the rate of dimer formation in the disulfide exchange reaction the 

concentration of peptide species was increased to 250 μM. The disulfide exchanged was 

conducted at the higher concentration and after 4 days all the solutions had reached 

equilibrium (Figure 6.8). Peak area integration at 280 nm and 214 nm revealed a ratio of 

1:2:1 for homodimer of Helix 3, heterodimer Helix 3-Hairpin 4, and homodimer Hairpin 4 

respectively. 

 

Figure 6.8 Analytical HPLC traces for disulfide exchange reaction for Helix 3-Hairpin 4 at 
280 nm. Trace A is disulfide exchange between Helix 3 and Hairpin 4 at equilibrium. Peak 1 
is the homodimer of Hairpin 4, peak 2 is the homodimer of Helix 3 and peak 3 is the 
heterodimer of Helix 3-Hairpin 4. Trace B is the disulfide exchange for Hairpin 4 control 
solution at equilibrium.  Trace C is the disulfide exchange for Helix 3 control solution at 
equilibrium.  
 

iii. Helix4 and Helix4 native - Hairpin 5 Studies. 

Since the ratio found for heterodimer formation showed no evidence for favorable helix-

hairpin interactions for the previously discussed systems, we hypothesized that the turn 

sequence residues that connect the helix and the hairpin in the native protein may be 

important for proper positioning of the secondary structures to interact with each other. The 
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native turn sequence residues were reintroduced on Hairpin 5 and the GGGC residues were 

removed on the helix to give Helix 4 and Helix 4 native (Table 6.1). Helix 4 native was 

designed as a control to see if in fact all of helix residues in GB1 are necessary for tertiary 

interaction with C-terminal hairpin. Disulfide exchange reactions were performed using 200 

μM Helix 4 mixed with 200 μM Hairpin 5, and 200 μM Helix 4 native mixed with 200 μM 

Hairpin 5 which were again monitored using analytical HPLC.  However, noisy analytical 

traces were obtained for both experiments with multiple peaks observed, many of which were 

overlapping and broadened, making peak identification and quantification impossible. We 

reasoned that this was likely due to peptide insolubility at pH 8 so the disulfide reaction was 

redesigned to use 5% DMSO as an oxidizing agent and lower the pH of the solution to 7.5. 

The DMSO method was expected to be quicker than air induced oxidation method with less 

likelihood of peptide precipitation.   

 

Figure 6.9 Analytical HPLC traces for disulfide exchange reaction using 5% DMSO for 
Helix 4 native-Hairpin 5 at 280 nm. Trace A is disulfide exchange between Helix 4 native 
and Hairpin 5 at equilibrium. Trace B is the disulfide exchange for Helix 4 native control 
solution at equilibrium.  Trace C is the disulfide exchange for Hairpin 5 control solution at 
equilibrium. 
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Disulfide exchange reaction using DMSO was preformed for 100 μM Helix 4 mixed with 

100 μM Hairpin 5 and for 100 μM Helix 4 native mixed with 100 μM Hairpin 5. After 5 

days the reactions had reached equilibrium but again the HPLC traces still showed some peak 

broadening and overlap and the presence of impurities that add to difficulty of obtaining 

accurate quantification of the species present. (Figure 6.9 and 6.10) Better separation 

methods and alternative oxidation conditions will be required to obtain clean HPLC traces so 

that the product formation ratio can be accurately determined. 

  

 

Figure 6.10 Analytical HPLC traces for disulfide exchange reaction using 5% DMSO for 
Helix 4-Hairpin 5 at 280 nm. Trace A is disulfide exchange between Helix 4 and Hairpin 5 
at equilibrium.Trace B is the disulfide exchange for Helix 4 control solution at equilibrium. 
Trace C is the disulfide exchange for Hairpin 5 control solution at equilibrium.  
 

D. Future Work 

Although the studies discussed in the previous section did not yield any definitive results 

regarding tertiary interactions between an α-helix and a β-sheet, the disulfide exchange 

method seems to be the most promising route for initial screening. Adjustment of 

experimental conditions and redesign of helix and hairpin monomers will be required in 
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future experiments, but the wealth of information obtained will be worth the effort. The 

design principles elucidated from these kinds of experiments will open up new strategies for 

disruption of protein-protein interactions. This could potentially lead to novel drugs, as well 

as allow scientists to study complex biological pathways mediated through protein-protein 

binding events.  

E. Experimental.  

i. Synthesis and purification of peptides.  

Peptides were synthesized by automated solid phase peptide synthesis on an Applied 

Biosystems Pioneer Peptide Synthesizer using Fmoc protected amino acids on a PEG-PAL-

PS resin. Activation of amino acids was performed with HBTU, HOBT in the presence of 

DIPEA in DMF. Deprotections were carried out in 2% DBU, 2% piperdine in DMF for 

approximately 10 minutes.  Extended cycles (75 min) were used for each amino acid 

coupling step.  All peptides where acetylated at the N-terminus with 5% acetic anhydride, 6% 

lutidine in DMF for 30 min. Cleavage of the peptide from the resin was performed in 

95:2.5:2.5 Trifluoracetic acid (TFA): Ethanedithiol or Triisopropylsilane (TIPS): water for 3 

hours.  Ethanedithiol was used as a scavenger for sulfur containing peptides. TFA was 

evaporated and cleavage products were precipitated with cold ether. The peptide was 

extracted into water and lyophilized. It was then purified by reverse phase HPLC, using a 

Vydac C-18 semipreparative column and a gradient of 0 to 100% B over 40 minutes, where 

solvent A was 95:5 water:acetonitrile, 0.1% TFA and solvent B was 95:5 actonitrile:water, 

0.1% TFA. After purification the peptide was lyophilized to powder and identified with ESI-

TOF mass spectroscopy.  
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ii. Cyclization of Cyclic peptides. Cyclic control peptides were cyclized by oxidizing the 

cysteine residues at the ends of the peptide by stirring in a 10 mM phosphate buffer (pH 7.5) 

in 1% DMSO solution for 9 to 12 hours. The solution was lyophilized to a powder and 

purified with HPLC using previously described method.  

iii. CD Spectroscopy.  

CD spectroscopy was performed on an Applied photophysics Pistar-180 Circular 

Dichroism spectrophotometer at 298.15 K. Spectra were collected from 260nm to185nm with 

every 0.2 nm per 1 s scanning.  The molar ellipticity [θ] is given in units of degrees 

centimeter2 decimole-1. Peptide solutions were dissolved in 10mM phosphate buffer of pH 

7.5. 

iv. Calculation of percentage helicity for Helix 1 and Helix 2 using CD. 

 The percentage helicity was calculated for Helix 1 and Helix 2 using the following 

equation: 

Equation 1. Fraction helix = ([θ]222,obs - ([θ]222,0)/ ([θ]222,100 - ([θ]222,0 ) 
  
where [θ]222,obs is the observed mean residue ellipticity at 222 nm. Values used for 0% and 

100% helicity,[θ]222,0 and [θ]222,100, were +640 deg cm2 and –40000(1-2.5/n), respectively, 

where n is the number of residue units.16

v. Disulfide Exchange Reactions. 

  

Disulfide exchange reactions where prepared in 10mM sodium phosphate buffer at pH 8 

phosphate buffer at either pH 8.0 or pH 7.5 with 5% DMSO depending on the experiment. 

Concentrations of peptide were calculated by measuring the UV absorption at 280 nm in the 

presences of 5 M GdnHCl where the extinction coefficients of Helix 3 and Helix 4 peptides 

                                                 
16 Butterfield, S. M.; Patel, P. R.; Waters, M. L. J Am Chem Soc 2002, 124, 9751-9755. 



217 
 

are 1400 M-1cm-1; helix 4 native is 2680 M-1cm-1, and the hairpin peptides are 7090 M-1cm-1.  

The reactions were monitored by reverse phase analytical HPLC, using a Atlantis dC-18 

analytical column and a gradient of 0 to 50% B over 40 minutes, where solvent A was 95:5 

water:acetonitrile, 0.1% TFA and solvent B was 95:5 actonitrile:water, 0.1% TFA. 

 

vi. NMR Spectroscopy.  

NMR samples were made to a concentration of 1 mM in D2O buffered to pD 4.0 

(uncorrected)  with 50 mM NaOAc-d3, 24 mM AcOH-d4, 0.5 mM DSS. Samples were 

analyzed on a Varian Inova 600-MHz instrument.  One dimensional spectra were collected 

by using 32-K data points and between 8 to 128 scans using 1.5 second presaturation. Two 

dimensional total correlation spectroscopy (TOCSY) and nuclear overhauser spectroscopy 

(NOESY) experiments were carried out using the pulse sequences from the chempack 

software. Scans in the TOCSY experiments were taken 16 to 32 in the first dimension and 64 

to 128 in the second dimension. Scans in the NOESY experiments were taken 32 to 64 in the 

first dimension and 128 to 512 in the second dimension with mixing times of 200 to 500 

msec. All spectra were analyzed using standard window functions (sinbell and Gaussian with 

shifting). Presaturation was used to suppress the water resonance.  Assignments were made 

by using standard methods as described by Wüthrich.17

vii. Determination of fraction folded.  

  All experiments were run at 298.15 

K. 

To determine the unfolded chemical shifts, Hairpin 2 control 1 and control 2 were 

synthesized as unstructured controls and the cyclic peptide cyclic Hairpin 2 was synthesized 

                                                 
17 Wüthrich, K. NMR of Proteins and Nucleic Acids; Wiley: New York, 1986. 
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for fully folded. The chemical shifts for residues in the strand and one turn residue were 

obtained from each Hairpin 2 controls. The chemical shifts of the fully folded state were 

taken from the cyclic Hairpin 2 peptide.  The fraction folded on a per residue bases was 

determined from Equation 2. 

Fraction Folded = [δobs – δ0]/[ δ100 – δ0],        [2] 

where δobs is the observed Hα chemical shift, δ100 is the Hα chemical shift of the cyclic 

peptides, and δ0 is the Hα chemical shift of the unfolded Control peptides. The overall 

fraction folded for the entire peptide was obtained by averaging the fraction folded of 

residues Glu2, Thr 4, Val 6, Lys 9, Thr 11, and Thr 13. These residues are in hydrogen 

bonded positions have been shown to be the most reliable in determining fraction folded.18

Fraction Folded = [ΔδGly Obs]/[ ΔδGly 100], [3] 

  

The overall fraction fold was also determined using the extent of Hα glycine splitting 

observed in the turn residue Gly 7 given in Equation 3. 

where ΔδGly Obs is the difference in the glycine Hα chemical shifts of the observed, and ΔδGly 

100 is the difference in the glycine Hα chemical shifts of the cyclic peptides. 

                                                 
18 Syud, F. A.; Espinosa, J. F.; Gellman, S. H. J Am Chem Soc  1999, 121, 11577-11578. 
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Figure 6.11 1HNMR of Peptide Hairpin 2: Ac-Gly-Glu-Trp-Thr-Tyr-Val-dPro-Gly-Lys-
Phe-Thr-Val-Thr-Glu-NH2 
 
Table 6.2 Proton Chemical Shift Assignments for Peptide Hairpin 2. 

Residue α β γ δ ε 
G 3.77         
E 4.37 1.82 2.13     
W 4.88 2.81,2.96 nd nd nd 
T 4.31 4.14 1.13     
Y 4.68 2.87 nd nd nd 
V 4.48 2.01 0.91     

d-P 4.36 2.32 2.01 3.77   
G 3.98, 3.77         
K 4.53 1.72 1.33 1.72 2.96 
V 4.12 1.62 0.68     
T 4.44 4.03 1.03     
F 4.68 2.87 nd nd nd 
T 4.44 3.95 1.08     
E 4.24 1.94 2.23     

 

PPM 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 
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Figure 6.12 1HNMR of Peptide cyclic Hairpin 2: Ac-Cys-Glu-Trp-Thr-Tyr-Val-dPro-Gly-
Lys-Phe-Thr-Val-Thr-Cys-NH2 
 
Table 6.3 Proton Chemical Shift Assignments for Peptide cyclic Hairpin 2. 

Residue α β γ δ ε 
C 4.82 3.05 

   E 4.54 1.94 2.28 
  W 5.03 2.79 nd nd nd 

T 4.4 4.15 1.15 
  Y 4.63 2.99 

   V 4.44 1.94 0.89 
  d-P 4.33 2.3 2 3.76, 3.77 

 G 4.01, 3.70 
    K 4.67 1.81 1.36 1.74 2.97 

V 4.43 1.16 0.13,0.49 
  T 4.65 4.05 1.07 
  F 4.67 2.95 nd nd nd 

T 4.54 3.91 1.02 
  C 4.52 3.02 

    
 
 
 

PPM 8.0 7.6 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 -0.4 
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Table 6.4 Proton Chemical Shift Assignments for Peptide Hairpin 2 control 1. 
Residue α β γ δ ε 

G 3.77 
    E 4.17 1.8 2.17 

  W 4.71 3.2 
   T 4.16 3.98 0.96 

  Y 4.57 2.79 H2,6 7.04 H3,5 6.85 
 V 4.33 2.02 0.91 

  d-P 4.39 2.23 1.96 3.64, 3.70 
 G 3.85 

     
Table 6.5 Proton Chemical Shift Assignments for Peptide Hairpin 2 control 2. 

Residue α β γ δ ε 
d-P 4.37 2.26 1.99 3.65 

 G 3.87 
    K 4.24 1.64 1.27 1.63 2.91 

V 4.16 2.08 0.95 
  T 4.33 4.15 1.19 
  F 4.73 3.04 H2,6 7.24 H3,5 7.34 H4 7.30 

T 4.31 4.09 1.14 
  E 4.33 1.96 2.4 
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