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ABSTRACT

Caitlin Suzanne Hult: Modeling Nucleosomal DNA in Living Yeast
(Under the direction of M. Gregory Forest)

The genome in living yeast cells is a highly dynamic system where entropic interactions and

nuclear confinement drive the formation of domains of high chromosomal interaction, known as

topologically associating domains. We investigate dynamic organization and territory formation

of 16 chromosomes in living yeast cells during interphase, using coarse-grained, entropic polymer

chain models. We are interested in determining the mechanisms, such as packaging molecules that

create loops within chromatin fibers, that govern inter- and intra-chromatin fluctuations and induce

global features of the entire genome as well as more localized features of the nucleolus. The Bloom

Lab measures specific DNA sites in specific chromosomes using live cell fluorescence microscopy.

Our goal is to identify the sufficient biological and biophysical assumptions necessary to reproduce

the experimental data, from which we aim to shed insights into dynamics and structure that are

beyond current experimental resolution. In this dissertation, we show through a reductionist 3D

mathematical model that entropic interactions are the driving mechanisms of the formation of

domains of high chromosomal interaction and that enzymatic processes modulate the spatiotemporal

dynamics of these domains. We present novel modeling and visualization techniques for nucleolus

spatiotemporal dynamics. We explore the minimal physical requirements to segregate this region of

repeated DNA from the rest of the genome, with a particular emphasis on the role of transient loop

formation. Our findings support and significantly expand upon previous work.
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CHAPTER 1

Introduction

Although densely compacted, the yeast genome has a dynamic, non-random spatial organization.

Acquiring a better understanding of the spatiotemporal dynamics of DNA, particularly with regard to

how cells both effectively package and preserve the functionality of DNA, would lend valuable insight

to many areas of cell biology, including gene expression, transcription, and DNA repair [1]. Previous

work suggests that the genome “is far from being a static information warehouse" and is instead “a

mechanically active entity that is constantly altering its shape", causing “on average, any given gene

[to] be exposed within the population" [3]. Comparison of the organizational principles that emerge

from the statistics of population studies of fixed cells with those of an individual living cell reveals

the dynamic nature of DNA and further suggests that the forces on chromosomes are spatially and

temporally regulated throughout the cell [4]. That cells must balance both gene accessibility and

long polymer compaction raises many interesting biological questions: how do chromosomes explore

space within the nucleus? to what degree do they form territories, and do those territories persist

over time? do specific, predictable sections of the genome remain in close proximity to one another

over time? how do enzymatic processes such as binding proteins influence chromatin movement?

In this dissertation, we look to further our understanding of chromosome dynamics and spatial

organization in living yeast cells through a thorough, comparative analysis of simulated data produced

from mathematical models and experimental data gathered by the Bloom Lab. The primary interests

of the Bloom Lab lie in the study of the mechanisms of chromosome segregation, distribution, and

organization at varying stages of the yeast cell cycle, the construction of artificial chromosomes to

study functionality, and the development of microscopy techniques and simulator programs such

as ChromoShake [5]. Yeast are eukaryotic cells, and thus experience four primary stages during

replication, known as G1, S, G2, and Mitosis. The first three stages – G1, S, and G2 – compose

approximately 90% of the cell cycle and are known as interphase, which is broadly defined as the

period during which the cell grows and chromosomes are replicated in preparation for cell division.
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Although the Bloom Lab has also done very interesting work focusing on tension-sensing, microtubule

dynamics, and the spindle checkpoint in metaphase – and although some of my initial research

focused in this area–, we confine the studies presented in this dissertation to an investigation of

live yeast cells whose chromosomes are currently in the G1 stage. At this stage in the cell cycle,

the 16 chromosomes have not yet replicated and are tethered to the nuclear wall at their respective

centromeres and telomeres. In a study looking to track chromosome spatiotemporal dynamics, the

ability to keep cells alive and thereby observe actual chromosome movement when studying genome

organization is crucial. The work of Verdaasdonk et al. [1] and Vasquez and Bloom [4] stresses

the importance of working with live cells and interpreting chromosome territorial organization as a

reflection of spatiotemporal dynamic fluctuations of the chromatin polymer, and these studies couple

"in vivo chromatin motion analysis with mathematical modeling to elucidate the physical properties

that underlie the formation and fluctuations of territories" [1]. Furthermore, the importance of a

close collaboration between experimental biologists and mathematical modelers cannot be overstated.

From the math modeling perspective, experimental data informs and limits how we fine-tune the

mathematical model; namely, which physical parameters are accepted in the field, which parameters

we should consider to be variables, what timescales are realistic, etc. Comparison of simulated data

with experimental data also provides a method of assessing the accuracy of our model. From the

biologist perspective, our mathematical model enables biologists to ask questions that they cannot

resolve experimentally, and in the best case scenarios, the model can suggest experiments to confirm

unexpected model predictions.

A more specific motivation for the work presented here is the desire to better understand

the mechanisms governing the formation and dynamics of topologically associating domains, or

TADs. We define TADs as “fundamental structural and functional building blocks of...interphase

chromosomes" [6], or more generally, as regions of the genome that exhibit enhanced proximity

and self-association. Multiple studies have suggested that TADs play important functional roles

in the control of gene expression and development [6, 7, 8, 9, 2], and consequently their potential

biological relevance is extremely significant. A central hypothesis is that TADs act as a mechanism

for gene expression within a compact environment, allowing a cell to effectively tune which genes

it expresses by a non-random organizational “tuning" of the chromatin. Their importance and

existence have been recognized and studied by groups using a variety of techniques, perhaps most
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notably, the Hi-C method championed by the Dekker and Mirny labs [10]. Chromosome conformation

capture methods, such as Hi-C, rely on deep sequencing to detect and quantify pairwise chromatin

interactions, thereby providing not only information “about spatial contacts between pairs of genetic

loci, but also simultaneously their genetic coordinates along the chromatin fiber" [10]. Through

cross-linking with formaldehyde and DNA ligation, Hi-C experimentally measures spatial contacts in

3D, and remarkably, can do so across the entire genome, averaging chromosome conformations from

millions of nuclei simultaneously. Mirny et al. define TADs in the context of Hi-C — as “contiguous

regions of enriched contact frequency that appear as squares in a Hi-C map, which are relatively

insulated from neighboring regions...[many] TADs have homogeneous interiors, while others have

particularly enriched boundaries, or even more complex features" [6].

Although chromosome conformation capture methods are certainly valuable and powerful, they

also have significant limitations. Hi-C measures interaction frequencies over a population of cells, and

this raises an important question: are population-averaged patterns reflective of single cell dynamics?

In other words, there must be an inherent assumption when using chromosome conformation capture

methods that averaging of a population over space is the same as averaging of a single cell over time.

Hi-C only provides static spatial information, representative of the organization of a population of

dead cells at a specific point in time. Our work has shown that TADs in living cells may evolve

over time and depend on the timescale of observation. By studying live cells over time windows,

both experimentally and through modeling, we are able to learn about the dynamics of the living

genome. This approach is likely more valuable if the goal is to learn about cellular processes, which

by definition occur over time. Furthermore, as will be discussed in-depth later in this dissertation,

population averaging can result in “lost" information, whereas analyzing single cell dynamics over

time does not.

The primary focus of this dissertation is to explore the spatiotemporal dynamics and organization

of DNA in living yeast cells during interphase through the development of a 3D mathematical

model, large-scale model simulations, data analysis, and visualization. This work involved writing

codes in C++ and Matlab, numerical analysis of stochastic differential equations (SDEs), statistical

analysis of big data, extensive work in DataTank (an object-oriented programming environment

offering large set data support and visualization tools), and developing ways to effectively visualize

simulated and experimental chromosome dynamics. We use coarse-grained models to capture the
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dynamics of the chromatin fiber as an effective entropic bead-spring chain. The model we present

here is a reductionist, predictive model that is fully reflective of biological parameters and has

successfully recapitulated experimental results and at times served as a predictive tool for system

behavior. In this dissertation, we introduce the mathematical model representation of chromatin

force by force, beginning with the thermodynamic force created by Brownian motion, and adding in

spring forces, excluded volume, geometric confinement, tethering, and basic enzymatic processes.

We present a comprehensive tutorial detailing the use of coarse-grained bead-spring chain models

to describe chromatin fiber movement during interphase in yeast cells. We demonstrate ways to

not only quantify but to effectively visualize chromosome 3D dynamics and organization. We aim

to improve our understanding of the forces driving TADs formation. Much of my work focuses on

development of modeling approaches and visualization techniques for nucleolus dynamics, as well as

quantification of nucleolus shape and movement, especially with regard to its level of interaction

with other sections of the yeast genome. We present novel results from our published paper [2] and

submitted paper [11], as well as additional results and analysis not included in those works. Future

work is multifaceted and ongoing. From a general standpoint, we plan to continue adding complexity

to the 3D model, with a particular focus on how we simulate binding proteins, phase separations

pertaining to the nucleolus, hydrodynamic interactions, and other nuclear bodies. In addition to this

very interesting, more experimentally-guided and biological work, we are also investigating nucleolus

dynamics through the lens of networks, as well as through the lens of microrheology and the local

viscoelastic environment. Through this dissertation, we hope to improve our understanding of how

chromosomes explore space in the nucleus and to develop a concrete foundation and reference point

from which future, more complex models can expand.
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CHAPTER 2

The Rouse Bead-Spring Model of Chromatin

1

2.1 Modeling long-chain polymers

Due to the inherent complexity of biological systems, the main challenge of the applied mathe-

matician often lies in developing models that both effectively manage and simplify this complexity,

and yet remain realistic enough to allow one to deduce meaningful trends and patterns. Ideally, such

a model should distinguish among, quantify, and accurately reflect the differing contributions of

the many variables present in the system, as well as sources of variable uncertainty and potential

error. A mathematical model aims to emulate but will never entirely capture the full complexity and

parameter space of a DNA polymer, and thus great importance lies in how we choose to simplify the

polymer system to a computationally manageable state. Long-chain polymers such as DNA present

interesting modeling challenges, not only in the number of forces contributing to their movement

and in the way we define those forces, but in the “wide range of length and time scales involved

in their dynamics" [4]. In this thesis, we rely on past models to validate the starting point of

our polymer model. A recent example includes that described in Verdaasdonk et al. [1], in which

they “found that coarse graining of the dynamics of each chromosome arm into a double tethered

bead-spring chain, with the addition of excluded volume interactions and confinement by the cell wall,

accurately recapitulates the thermal, and random ATP-dependent motion of experimentally captured

chromosome spots," although similar bead-spring models have been used for many years. Further

discussion of and references supporting the use of polymer bead-spring chain models in describing

the dynamics of interphase chromosomes can be found in later chapters. In this dissertation, we

use an effective entropic bead-spring chain model to simulate the movement of 16 double-tethered

1Sections of this chapter were adapted from Caitlin Hult’s Master’s project from May 2015, entitled, “Modeling of
living yeast chromosomes".

5



chromosomes during interphase. Note that two chromosome arms compose each chromosome; thus,

a model that simulates the movement of 16 chromosomes contains 32 bead-spring chains. By

representing each chromosome arm as a bead-spring chain composed of N beads and N − 1 springs,

we can track DNA spot fluctuations over time and thereby simulate the movement of both untethered

and double-tethered chromosomes during interphase. When doubly-tethered to the nuclear wall, the

two end beads on each chain are fixed and experience no forces, while the remaining N − 2 beads

move in response to four primary forces, including Brownian motion, spring forces, excluded volume,

and nuclear wall interactions. When the chain is untethered, all beads experience all forces.

Figure 2.1: The chromatin polymer (solid line) can be modeled as a bead-spring polymer chain (dotted
line indicates original chromatin polymer chain). Diagram of a bead-spring chain composed of 100
beads tethered at both ends and confined within a circle of radius 1um. Figure taken from [1].

2.1.1 Discretization

As we study mechanics and gene expression, we are modeling up quite a few levels from protein

structure; namely, we model and fluoresce on the order of several thousand base pairs, whereas

models at the protein structure level are on the order of 50 base pairs. As described in Chapter 4,

we consider chromosomes to be De Gennes blobs linked by nonlinear springs, where the size of the

blobs represents the spatial extent over which the motion of the chromatin fiber is uncorrelated [2].

From the biologist perspective, this translates to the DNA living in a given bead (blob) with some

frequency, and making excursions out of this blob with some lesser frequency.

The number of beads composing each of the 32 chromosome arms in our model directly correlates

with their respective experimentally-determined lengths, given in number of kilobase pairs. We chose

a discretization level of 5kb because genes are typically several thousand base pairs and because the

size of the spot that the biologists fluoresce is 5kb. This level of discretization produces a system
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Figure 2.2: Cartoon depicting discretization and energy penalty that prevents bead overlap.

of 2443, 2803, or 2804 total beads (depending on whether the system does not contain a nucleolus,

contains a single nucleolus, or contains a split nucleolus, respectively), which is manageable from a

computational standpoint. See Chapter 4 for further discussion.

2.1.2 Comparison of 2D and 3D models

The initial model was written in Matlab, first in 2D and later in 3D. The 2D Matlab model

simulated four double-tethered chromosome arms, each 52 beads in length, whereas the 3D Matlab

model simulated 32 double-tethered chromosome arms, each 52 beads in length. The current model

is written in C++ and DataTank, is 3D, and is fully reflective of experimental parameters. Therefore,

as noted in the previous section, the number of beads composing each of the 32 arms in the system

varies and reflects the experimental lengths of the 32 arms. Unless otherwise noted, all work in this

dissertation corresponds to the 3D C++/DataTank model. The 2D model was integral to Vasquez

et al. [2], and thus will be discussed further in Chapter 4. Additionally, we note that the 3D model

discussed in [2] corresponds to the C++/DataTank model version. The 2D model remains useful

[2]; however, as the 3D model provides a much more realistic representation of the biology, enables

quantitative comparison with experimental data, has more options for model variability, and is much

more computationally powerful, we restrict current and future work to the 3D model. Although

the 3D C++ code can be run locally on one’s computer for short times, I always submit runs to

KillDevil, often through the application DataTask, which enables easy submission of parameter

sweeps or groups of runs.

Regarding my role in model development, I joined this project when the model was a 2D

code, written in Matlab by Paula Vasquez. I helped adapt this code to allow for simulation of

damaged DNA and different boundary conditions. David Adalsteinsson ported the code to C++ and
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DataTank, in the process adapting it to 3D and to a more complicated model that is fully reflective

of experimental parameter values. I worked closely with David on further modifications of the code;

namely, how to incorporate dynamic looping into the code, the option to simulate a single or split

nucleolus, and particularly on development of the DataTank template document associated with the

code.

2.2 The mathematical model

As stated in [4], we require the balance of forces in the zero-mass limit for bead i to satisfy,

FThermal + FSpring + FDrag + FExcludedV olume + FWallInteractions = 0. (2.1)

Through the use of linear spring and drag laws, as well as an excluded volume potential described by

a Gaussian distribution, we can express the evolution equation for the position of bead i as follows:

ζ
dXi

dt
= FB

i (t) + FS
i (t) + FEV

i (t) + FW
i (t), (2.2)

where ζ represents the bead drag coefficient, FB
i (t) =

√
2kBTζdWi represents the Brownian motion

term, FS
i (t) = −ks(Xi−1 − 2Xi + Xi+1)dt represents the intra-molecular forces term captured by

a Hookean spring, FEV
i (t) = zks

2d5

[
Nb∑

j=1,j 6=i
(Xi −Xj) exp

(
− ks
kBT

(Xi−Xj)
2

2d2

)]
dt represents excluded

volume interactions among the beads, and FW
i (t) represents the influence of the nuclear wall on

bead movement. Note that since Xi and Xj are vectors, the expression (Xi −Xj)
2 denotes the

scalar dot product. A more in-depth description of these forces and a list of parameter definitions

follow in Sections 2.3 and 2.4. Verdaasdonk et al [1] cites Equation 2.2 as that given by Doi and

Edwards in “The Theory of Polymer Dynamics" [12]. Written out in its entirety, the full dimensional

evolution equation is that given by [4] as:

ζdXi = −ks(Xi−1−2Xi+Xi+1)dt+
√

2kBTζdWi+
zks
2d5

 Nb∑
j=1,j 6=i

(Xi −Xj) exp

(
− ks
kBT

(Xi −Xj)
2

2d2

) dt.
(2.3)
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2.3 Description of primary component forces

2.3.1 Brownian Motion

FB
i (t) =

√
2kBTζdWi (2.4)

Brownian motion is defined as the random motion of particles suspended in a fluid resulting from

their collision with the quick atoms or molecules in the fluid. In yeast cells, the chromatin fiber is

constantly moving around due to both thermal and non-thermal or ATP dependent fluctuations.

We capture this random forcing through the use of a Brownian motion force term in our model, and

it is this randomness that defines our evolution equation as a stochastic differential equation. Larson

[13] notes that over a time scale of perhaps microseconds, “there are so many random [thermal

bombardments of the polymer by the solvent] that the random force imparted by them averages

toward zero, except for a small drift force whose magnitude gets smaller with the inverse square root

of the averaging time." Wi is a Wiener process, ie., the stochastic process from which fluctuations

of the variable X originate. Wi is more fully discussed in the section on normal mode calculations.

We use a random number generator in our code to create the vector of random numbers in Wi.

Regarding the drag parameter ζ, [13] notes that a “relationship must exist between Brownian motion

and drag because the rate of Brownian motion determines the diffusion coefficient, which is also

reflected in the magnitude of the drag coefficient."

2.3.2 Spring Forces

FS
i (t) = −ks(Xi−1 − 2Xi + Xi+1)dt (2.5)

In early versions of this model, we assumed that all springs between beads were Hookean and

approximately one Kuhn length long. We could thereby describe the spring force relationship

between neighboring beads on a chain through a connectivity matrix (discussed further in normal

modes section). We can visualize the 2D spring force on bead i as follows:
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Figure 2.3: Spring forces on bead i. Figure created by Paula Vasquez.

In the current version of the model, we use the wormlike chain (WLC) force law proposed by

Marko and Siggia [14, 15]. This nonlinear, attractive potential prevents springs from stretching

indefinitely and captures intra-chain interactions in a much more biologically realistic way, and it

has been shown to describe the dynamics of naked DNA and chromatin in vivo well. We define the

WLC force as follows:

FS
i = Fi,j−1 + Fi,j+1, (2.6)

where

Fi,j =
kBT

4Lp

[(
1− Rij

R0

)−2
− 1 + 4

Rij
R0

]
Rij

Rij
(2.7)

and

Rij = Xi −Xj , Rij =
√

Rij ·Rij , R0 = Nk,s (2Lp) (2.8)

2.3.3 Excluded Volume

FEV
i (t) =

zks
2d5

 Nb∑
j=1,j 6=i

(Xi −Xj) exp

(
− ks
kBT

(Xi −Xj)
2

2d2

) dt (2.9)

Although conceptually straightforward, the excluded volume forces are perhaps the most difficult to

explicitly define. This is in part because there is no analytical solution to compare model output

with, in part because excluded volume potentials often lump together many different repulsive forces

under one heading. Various excluded volume potentials have been proposed in the literature — some

are designed to rigorously prevent chain-crossing, some impose spring-spring repulsions instead of

bead-bead repulsions, some prioritize the ability to vary with molecular discretization, etc. We

conducted a thorough literature review of ways to define excluded volume potential, and Eqn 2.9 is
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that presented in [13]. At its core, the physical basis for excluded volume is a repulsive force, a way

to ensure that different beads do not occupy the same space at the same time. Larson describes

excluded volume interactions as “the repulsive forces between monomers that prevent their overlap,

leading to a tendency of the chains to expand beyond the ideal random-walk conformations they have

in the melt" [13]. z and d are dimensionless parameters, where d describes the range of repulsion (or

width of the Gaussian) and z describes the strength of repulsion (or height of the Gaussian). Note

that in [2] and [11], we use the excluded volume potential proposed by Jenderjack et al. [16]. Larson

shows that these two potentials are identical if certain condition for z and d are met [13].

Parameter sensitivity study. Since we do not have an analytical solution or biological correlate

for excluded volume, we performed a parameter sensitivity study in order to “tune" the excluded

volume parameters. I ran a 121-run parameter sweep of possible z and d values using the application

DataTask, where the scaling factors for z ranged from 0.5 to 1.5 and for d from 0.5 to 1. I generated

16001 total position values for each of the 2803 beads in the system, for which positions were saved

every 0.1 seconds, for ∼26.6 minutes total. I converted each of these position values to 3-bead blob

center of mass position values, e.g. xi(centerofmass) = (xi−1(original) + xi(original) + xi+1(original))/3.

There are experimental results suggesting that when the 240kb spot (which corresponds to chain 4,

bead 49 in our model) falls within a 400nm z-band, the percentages of time that it is found in zones

1, 2, or 3 are approximately 5%, 25%, and 70%, respectively (Figure 2.4). Thus, we are interested in

determining how often our model’s correlate for the 240kb spot is found in a given section of the

nucleus. I wrote a code in C++/DataTank that computes these percentages for all of the runs in the

parameter sweep. In order to determine the location of the 400nm z-band that would encompass the

most possible position values, I found the mean and standard deviation of the bead’s center of mass

z-position values, for each run. Centering the 400nm wide z-strip at the mean saves between 9000

and 11000 values (out of the 16001), so we chose to use the z-band (mean−200) ≤ z ≤ (mean+200).

For each z-value in each run:

1. Check is z is within the z-band. If yes, go to step 2. If no, discard point.

2. Determine which zone the corresponding 2D point is in by converting the point to polar

coordinates and observing whether 0 ≤ r ≤ 1000

3
,

1000

3
≤ r ≤ 2000

3
,

2000

3
≤ r ≤ 1000.
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3. Add one to the count for the appropriate zone.

Based on Figure 2.5, we concluded that the scaling factors should be z=0.9 and d=0.9. This is

because: 1) it gives us 70% in zone 3, and this is the experimental measurement that the biologists

trust the most, since it is easier to verify if a spot is close to or far away from the wall than if they

are in zone 1 or zone 2, and 2) we do not have biological justification for choosing a combination of

scaling factors in which one is bigger than the other. Note that all results in chapters 4 and 6 use

position values that were generated using these scaling factors.

Figure 2.4: Picture depicting three zones used in excluded volume sensitivity study. Zone 1 radius:
[0,1000/3], Zone 2 radius: [1000/3, 2000/3], Zone 3 radius: [2000/3, 1000], where all values are in
nm.
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Figure 2.5: Selected values from parameter sweep. We chose z=0.9 and d=0.9 as scaling factors.

2.3.4 Geometric Confinement

FW
i (t) (2.10)

During interphase, yeast chromatin fibers remain inside the nucleus, trapped by the nuclear wall. In

our mathematical model, we therefore need to account for this geometric confinement and ensure

that none of the beads in the bead-spring chains “step outside" the nuclear wall as they move in

space over time. We can incorporate this geometric confinement into our code under the guise of

“nuclear wall interactions", in which we specify boundary conditions to describe beads’ interactions

with the nuclear wall. In this thesis, we define our boundary as a circle of radius 1000nm that is fixed

in place with a hard wall. After every time step, we calculate the new bead positions and perform a

check to see if any of them have stepped outside of our defined boundary. If the beads lie inside the
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boundary, we record their positions. If the beads lie outside the boundary — in other words, outside

the domain —, the hard wall confinement condition relocates the errant bead back to the boundary,

taking the shortest path possible. Although not discussed in this thesis, several other definitions of

wall confinement forces have been or are currently being considered in the bead-spring model. In the

biology, the nuclear wall is dynamic and the nucleus itself is able to move around within the cell.

The choice of a hard wall confinement, although effective in imposing a confining force on the beads,

is therefore not the most realistic representation of the nuclear wall. As described in Vasquez and

Bloom [4], an alternative boundary condition is a “soft-wall" confinement, in which we assume that

beads can leave the domain with a given probability governed by a normal distribution (Gaussian)

with mean in the boundary and a given standard deviation. Future work may allow the boundary to

fluctuate as a sort of “Fourier" wall (in which we allow the wall to pulse according to an imposed

Fourier spectrum), to rotate, and to slowly move through the surrounding cytoplasm.

Figure 2.6: Cartoon depiction of hard wall boundary condition. For the soft wall boundary condition,
the new bead position is calculated as rnew =r̃−rout + σW1, ie., normally distributed noise with a
given standard deviation. Figure created by Paula Vasquez.

2.3.5 Hydrodynamic Interactions

FHI
i (t)

In this model, we do not consider hydrodynamic interactions (HI). Defining HI as “the disturbance

to the flow field produced by one part of the chain that influences the drag on another part," Larson

[13] notes that although “HI is always important for long, flexible, polymer molecules," its effect
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can sometimes be “subsumed into the effective drag properties of the chain." Multiple groups have

compared results from models that do not consider hydrodynamic interactions, called free-draining

models (FD), with those that consider hydrodynamic interactions. Although HI effects are certainly

not inconsequential, the necessity of incorporating an HI force into a bead-spring model varies.

Groups such as Jendrejack et al. [16], Schroeder et al. [17], and Izmitli et al. [18] all suggest that

the magnitude of HI effects depends greatly on factors such as translocation time, chain length,

molecular weight, and whether the chain is a coiled state. In particular, Jenderjack et al. [16] showed

that it is possible for both models (HI and FD) to predict the configurational properties of 21 µm

DNA in shear and planar extension. (Vasquez report, 2015). Thus, at this stage in the development

of our model, we choose to omit explicit consideration of hydrodynamic interactions.

It is worth mentioning that we have done some preliminary work towards incorporating hy-

drodynamic interactions into the existing free-draining model. I worked with Wenhua Guan, an

August 2016 applied mathematics PhD graduate of The University of North Carolina at Chapel Hill

(UNC), in the summer of 2016 to investigate the extent to which HIs affects simulated chromosome

dynamics. Wenhua was the primary driver of the new code, as her dissertation work focused on

using the Fast Rotne-Prager-Yamakawa Solver with Laplace FMM and developing fast algorithms

for the hydrodynamic interactions of rigid bodies in suspension. The Rotne-Prager-Yamakama solver

is a common method for modeling colloidal suspensions and polymer solutions. As expected, adding

in the hydrodynamics greatly increased the required run time, and thus we have temporarily shelved

this project.

2.4 Values chosen for parameters

This section summarizes some of the input values we use in generating the position data.

Figure 2.7 defines some of the parameters that remain unchanged from simulation to simulation. See

my DataTank document “Tethered Setup" for the full, much more comprehensive list and description

of parameters. In particular, the options for dynamic looping are extensive and require careful

attention when submitting a new run.
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Figure 2.7: Parameter assignments that remain unchanged for all simulations.

2.5 Equilibration and Initial Conditions

The location of the centromere, the locations of the six telomere sites, and the particular

chromosome arms attached to each telomere remained the same for all simulations. The initial

configuration of the beads composing the 32 chromosome arms was also the same for all simulations,

as all interior beads in a given arm (i.e. all beads except the two tethered beads on each end of

the arm) were equidistantly spaced in a straight line at the start of the simulation (Figure 2.8).

Experimental results show that each of the 32 chromosome arms in yeast cells are tethered at the

same centromere location on one end and at one of typically 5-7 telomeres on the other, and that the

32 chromosome arms are fairly evenly distributed among those telomere sites. Thus, we chose six

telomere locations, and assigned 4-6 arms to each of those locations. The location of the six telomere

sites were chosen arbitrarily, since telomere sites can vary from cell to cell and the biologists do not

yet have a firm understanding of the importance (if any) of this variation (see Figure 2.11 for their

polar coordinates). It is noteworthy that in the split nucleolus case the total numbers of beads on

arms 6 and 24 differ from those in the single nucleolus case, see Chapter 6 for more details.
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Figure 2.8: Equilibration of the 32 arms. Black sphere=telomere, blue sphere=centromere, red=bead-
spring chains. Telomeres and centromeres have been enlarged for visualization purposes. Top left:
initial configuration. Top right: 0.1 seconds after start of simulation. Bottom left: 0.5 seconds after
start of simulation. Bottom right: 3700 seconds after start of simulation.

We need to allow our bead-spring chains to equilibrate before we begin recording bead positions.

We considered the “total length of all chromosomes" parameter in determining equilibration time

(Figure 2.12). The amount of required equilibration varied depending on whether dynamic looping

was imposed. For simulations without dynamic looping, i.e. the no loops or uniform looping cases,

equilibration was reached after approximately 100 seconds in real time. The position data obtained

from these simulations corresponds to 15 total minutes worth, from 400 seconds after the start of

the simulation to 1300 seconds after the start of the simulation. For simulations with dynamic

looping, we found that a longer equilibration was necessary in order for the portions of the genome

experiencing dynamic looping to be able to thoroughly “mix", as exemplified by contact maps of
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Figure 2.9: Visualization of the 6 telomere sites and chromosome arm assignments to telomere
locations. The axis is xyz-positive. Note that the telomeres are indexed differently in Figure 4.7.
Note as well that with the exception of the data generated for [2] (Chapter 4), we choose to assign
chromosome arm 6 to the same telomere as chromosome 24.

Figure 2.10: Table of parameter values for 3D model. Times given are "real time", not simulation
time.
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Figure 2.11: Polar and cartesian coordinates for the six telomere locations.

bead-bead distance (Figure 2.13). Thus, all simulations considering dynamic looping correspond to

the 15 minutes that correspond to between 2800 to 3700 seconds after the start of the simulation.
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Figure 2.12: Using total length of all chromosomes as a metric for determining equilibration time.
Data shown corresponds to a simulation in which dynamic looping has been imposed.

As discussed earlier, one challenge of modeling long chain polymers such as chromosomes is

effectively managing the considerable range of length and time scales present in the system. As

modelers, we must always be cognizant of what time scales are biologically realistic, and attempt

to ensure that our models reflect those realities as well as possible. Although a direct correlation

between biological and model time scales is not always possible, knowledge of the biology can help

validate and guide the formation of a model.
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Figure 2.13: Contact maps depicting bead-bead distances at varying points in time after simulation
start.

2.6 Analytical solution of Rouse chain and statistics

Often considered the cornerstone of polymer dynamics, the Rouse model serves as the foundation

for many polymer models, including our own, and has a well-known analytic solution. The existence

of an analytic solution is a useful tool for modelers, as it allows us to directly compare the statistics of

simulated data produced by computational models to the statistics required by the analytic solution,

and thereby to better test the accuracy of our model. The starting point for a Rouse model is a
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Gaussian chain, often represented by a mechanical model of beads connected by harmonic springs.

The beads in such a “Rouse chain" move only in response to thermal forces (Brownian motion) and

spring forces (such as those described by our connectivity matrix in sections 2.3 and 2.7). Thus, if

our chain is untethered and allowed to freely diffuse through a medium over time, we expect the

mean displacement of any given bead to be zero and the variance of any given bead to reflect the

viscosity of the medium, ie., we would expect a step-size distribution histogram for bead i to be a

Gaussian distribution centered at zero.

2.6.1 Sample Rouse chain analyses

The following figures show several basic types of Rouse chain analyses and highlight differences

we would expect to see between untethered and double-tethered Rouse chains. In all figures

(Figures 2.14, 2.15, 2.16, 2.17, 2.18, 2.19), the step-size dt = 1e− 3, we save every 100 time steps,

the total runtime is 5000 seconds, and the total number of position values saved is 50000.

Figure 2.14: Untethered Rouse chain at various points in time after simulation start. Time increases
as we move from top left, to top right, to bottom left, to bottom right. dt=1e-3.
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Figure 2.15: Double-tethered Rouse chain at various points in time after simulation start. Time
increases as we move from top left, to top right, to bottom left, to bottom right. dt=1e-3.

Figure 2.16: MSD averaged over a single run, estimating alpha using powerfit, for an untethered and
double-tethered Rouse chain. We look at Bead 2 in a 1002 bead chain, i.e. a bead located near the
end of the chain. Only values inside the light blue box are considered in the powerfit.
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Figure 2.17: MSD averaged over a single run, estimating alpha using powerfit, for an untethered and
double-tethered Rouse chain. We look at Bead 500 in a 1002 bead chain, i.e. a bead located near the
middle of the chain. Only values inside the light blue box are considered in the powerfit.

Figure 2.18: Plot of alpha versus bead number for a 1002 bead chain, where alpha is computed using
powerfit as in Figures 2.16 & 2.17.
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Figure 2.19: Mean bead step-size distance over time for untethered vs. double-tethered Rouse chain,
comparing cases with and without springs

We also note that the MSD is the same as the variance, at each lag time (Figure 2.20). This is a

useful check, both conceptually and as a way to check the accuracy of our code.
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Figure 2.20: Sample plot showing that the MSD is the same as the variance. At each lag time, τ , the
MSD is the variance of the corresponding van hove correlation function.

2.6.2 Mean Squared Displacement

One common way of analyzing polymer dynamics is through calculating mean-squared displacement,

a measure of the spatial distribution and potential area of exploration of particles over time. Vasquez

and Bloom [4] give an excellent introduction to and motivation for mean-squared displacement, as

they state: “The chromosome is floppy and constantly stepping forward, backward, up and down due

to thermal and non-thermal, ATP dependent fluctuations. Mean-square displacement measurements

are a quantitative tool to deduce the nature of the driving force (random or directed) and the area

of exploration (Rc). The mean-squared displacement (MSD) for a given lag time, tau, is defined as

MSDτ =
〈
(xt+τ − xt)2 + (yt+τ − yt)2

〉
," where 〈〉 denotes the ensemble average. They further note

that “if the movement is a random walk, a log-log plot of MSD vs. lag time is a straight line slope 1,

MSD ∼ τ ." Movement that results in a MSD vs. tau plot with a slope less than 1, ie., MSD ∼ τα where

α < 1, is called subdiffusive. Live cell experiments suggest that tagged DNA spots move subdiffusively,

as α ∼ 0.4. Molecular crowding makes it harder for beads to explore space, and thus contributes

to the smaller α value, and confinement forces imposed by cell walls and tethering additionally

restrict bead movement, “resulting in a MSD plot that ‘plateaus’ at large lag times" and estimates

the total area that can be explored [1]. In the case of a doubly-tethered chain, we expect beads
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located near the end of the chain to explore less space than beads located near the middle of the chain.

To compute the mean-squared displacement, we must first choose a lag time, denoted in our code by

the tau variable. If our position vector for bead i over time is defined as [x1, x2, x3, x4, x5, ..., xN ],

where N is the total number of recorded positions, then a τ value of 1 means that we will find

the displacements vector [(x2 − x1), (x3 − x2), (x4 − x3), ..., (xN − xN−1)], a τ value of 2 means that

we will find the displacements vector [(x3 − x1), (x5 − x3), (x7 − x5) , ..., (xN − xN−2)], a τ value of

3 means that we will find the displacements vector [(x4 − x1), (x7 − x4), ..., (xN − xN−3)], etc. To

complete the MSD calculation, we then square the displacements individually, and take the average.

This is our MSD value for a given τ value. Generating many paths for bead i, calculating the

MSD each time, and then averaging all of the resulting MSD values improves the accuracy of the

calculation. We can compute the MSD for different variables separately, or generalize the calculation

to 2D or 3D. MSD can be averaged over many different beads or compared among many different

beads. Note that the size of the lag time, τ , is bounded above by the total number of recorded

position values; if τ is too large, we will only be able to average over a few squared displacement

values, which would produce unrealistic effects and noise.

2.7 Normal mode analysis of a double-tethered Rouse chain

This section addresses and shows explicitly through mathematics how we determine the normal

modes of a Rouse chain. This section was originally written by Paula Vasquez, although I have

added a substantial amount of comments and more fully written out some of the steps.

We start with a Rouse chain with N + 2 beads, the equation of motion for bead i is

ζdXi = −ksAi,jXjdt+
√

2kBTζdWi (2.11)

where each W satisfies

〈W(t)〉 = 0,

〈W(t1),W(t2)〉 = δ(t1 − t2).
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Since we have N + 2 beads in our bead-spring chain, i ranges from 1 to 52, and thus Eqn.(2.11)

actually defines N + 2 total differential equations. (We will see shortly that these equations are

coupled.) The notation Xi is a (N + 2) × 1 vector, in which the entries denote the x-position

coordinate of each of the N + 2 beads at a specific time:

Xi(t
′) =



x-position of Bead 1 at time t′

x-position of Bead 2 at time t′

x-position of Bead 3 at time t′

...

x-position of Bead N+1 at time t′

x-position of Bead N+2 at time t′


(N+2)×1

=



X1(t′)

X2(t′)

X3(t′)
...

XN+1(t′)

XN+2(t′)


(N+2)×1

.

We abbreviate this notation as:

Xi =



X1

X2

X3

...

XN+1

XN+2


(N+2)×1

.

The delta function, δ(t1− t2), helps define the random noise term. We can think of the delta function

as a way to express the “impulse forces" of bead collisions; it says that there is no correlation between

the direction a bead moves at one time step and the direction it moves at the next time step, unless

t1 = t2 (ie. time does not change). Note that t1, t2, and t′ just represent two points in time.
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The matrix A is

A =



0 0 0 0 . . . 0 0 0 0

−1 2 −1 0 . . . 0 0 0 0

0 −1 2 −1 . . . 0 0 0 0

...
...

...
...

. . .
...

...
...

...

0 0 0 0 . . . −1 2 −1 0

0 0 0 0 . . . 0 −1 2 −1

0 0 0 0 . . . 0 0 0 0


(N+2)×(N+2)

.

We refer to this matrix as the connectivity matrix, A. This is how we describe the spring force

relationship between neighboring beads on a chain. Conceptually, we are thinking about the forces

pointing in towards whatever bead we are currently considering. Note that rows 1 and N + 2

represent the stationary end beads, 1 and N + 2. Note as well that there are three nonzero values

associated with each middle bead.

Thus, we can express Eqn.(2.11) in the following expanded form (purely for clarity purposes):



dX1

dX2

dX3

...

dXN+1

dXN+2


(N+2)×1

=
−ksdt
ζ



0

-X1+2X2-X3

-X2+2X3-X4

-X3+2X4-X5

...

-XN+2XN+1-XN+2

0


(N+2)×1

+

√
2kBT

ζ



dW1

dW2

dW3

...

dWN+1

dWN+2


(N+2)×1

.

In order to integrate the coupled system of equations defined in Eqn.(2.11), we first need to de-

couple the equations, meaning we need to rewrite them in a way that allows us to express Xi in

terms of only Xi and not Xj . Thinking ahead, we hypothesize that writing A as an eigenvalue

decomposition might be useful, as doing so might allow us to make a substitution in the equation

of motion that might in turn enable us to effectively rewrite the X term. In order to write A
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as an eigenvalue decomposition, we need to first calculate the eigenvectors and eigenvalues of A.

Since we are calculating this by hand, it would be very helpful if A was a symmetric tridiagonal matrix.

If we consider the following change of variables:

X̃i = Xi −X1 (2.12)

Ri = X̃i −
(
i− 1

N + 1

)
X̃N+2, (2.13)

the system reduces to

ζdRi = −ksAi,jRjdt+
√

2kBTζdWi. (2.14)

To break down this change of variables a bit:

Ri =



0

X2-X1- 1
N+1(XN+2-X1)

X3-X1- 2
N+1(XN+2-X1)

...

XN+1-X1- N
N+1(XN+2-X1)

0


(N+2)×1

.
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Since R1 = 0 and RN+2 = 0, the system becomes N ×N and

A =



2 −1 0 . . . 0 0 0

−1 2 −1 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . −1 2 −1

0 0 0 . . . 0 −1 2


N×N

.

The matrix A is now a tridiagonal symmetric matrix, and we can now determine its eigenvalues

λp = 4 sin2

(
pπ

2(N + 1)

)
. (2.15)

Note: In Matlab, there is a built-in eigenvalue decomposition function. Thus, there we do not need to

introduce a change of variables in Eqns (2.12) and (2.13) and rewrite Eqn.(2.11) — instead we can

directly evaluate A(N+2)x(N+2).

The matrix A is diagonalizable as,

A = QΛP,

where P is the matrix whose column vectors are composed of the eigenvectors of A, and P = Q−1,

and thus

Qi,j = 2 sin

(
ijπ

N + 1

)
,

Pi,j =
1

N + 1
sin

(
ijπ

N + 1

)
,

Λi,i = λi.
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Substituting in our decomposition, Eqn.(2.14) becomes

ζdRi = −ksQi,jΛi,jPi,jRjdt+
√

2kBTζdWi

ζPi,jdRi = −ksΛi,jPi,jRjdt+
√

2kBTζPi,jdWi

ζdYi = −ksΛi,jYidt+
√

2kBTζPi,jdWi

dYi =
−ks
ζ
λiYidt+

√
2kBT

ζ
Pi,jdWi.

Observe that this equation is now uncoupled! We are expressing Yi only in terms of itself. We want

to rewrite this equation as,

dYp =
kp
ζp

Ypdt+

√
2kBT

ζp
dWp (2.16)

because we want to investigate the effect that multiplying Pi,j has on the random noise, dWi. We

require that

〈√
2kBT

ζ
Pp,i,

√
2kBT

ζ
Pq,i

〉
=

2kBT

ζp
δp,q(√

2kBT

ζ

)2

〈Pp,i, Pq,i〉 =
2kBT

ζp
δp,q

〈Pp,i, Pq,i〉 =
ζ

ζp
δp,q

1

2(N + 1)
δp,q =

ζ

ζp
δp,q

1

2(N + 1)
=

ζ

ζp
,

and kp = ksλp(ζp/ζ) = 2(N + 1)ksλp. (We let p subscripts denote normal modes, while i subscripts

denote regular coordinates.)

We nondimensionalize with (these appear as our scaling factors ts and xs in the code)

t̃ =
2ks
ζ
t, Ỹ =

√
ks

kBT
Y,

32



dropping the tildes, the resulting dimensionless uncoupled equation is

dYp = −λp
2

Ypdt+

√
1

2(N + 1)
dWp. (2.17)

y (t+ ∆t) =

(
1− λp

2
∆t

)
y(t) +

√
dt

2(N + 1)
r1

y (t+ 2∆t) =

(
1− λp

2
∆t

)
y(t+ ∆t) +

√
dt

2(N + 1)
r2

=

(
1− λp

2
∆t

)[(
1− λp

2
∆t

)
y(t) +

√
dt

2(N + 1)
r1

]
+

√
dt

2(N + 1)
r2

=

(
1− λp

2
∆t

)2

y(t) +

(
1− λp

2
∆t

)√
dt

2(N + 1)
r1 + sqrt

dt

2(N + 1)
r2

...

so in general

Yp (t+ n∆t) =

(
1− λp

2
∆t

)n
Yp(t) +

√
dt

2(N + 1)

n∑
k=1

(
1− λp

2
∆t

)n−k
rk, (2.18)

where the rk’s are normally distributed random numbers.

Finally, we need to put our variables back in terms of R. The mapping between R and Y is

Yp = Pp,jRj

=
1

N + 1

N∑
k=1

Rk sin

(
pkπ

N + 1

)
, (2.19)

Ri = Qi,pYp

= 2

N∑
k=1

Yp sin

(
ikπ

N + 1

)
. (2.20)

33



We have now solved for the x-positions of all of the beads over time by integrating Eqn.(2.11). If

bead positions are desired in dimensions besides x, then this analysis must be repeated using the

appropriate variable. For example, if we wish to compute positions over time for our beads in 3D,

we must also solve the equations:

ζdYi = −ksAi,jYjdt+
√

2kBTζdWi

and

ζdZi = −ksAi,jZjdt+
√

2kBTζdWi.

All of the data generated for use in this thesis was produced using the C++ version of the code,

in which we implement forward Euler to numerically solve the SDEs. Most of the data generated

for use in my Master’s project was produced using a version of the Matlab code that computes the

classical solution (or full solution) of a Rouse chain with N+2 beads. In that code, we “evolve" the

bead positions by integrating using the forward Euler method, and the importance of the normal

modes is primarily apparent in the chosen size of our time step dt and in the amount of time we

choose to equilibrate the code. Paula Vasquez has also written a Matlab position-generating code

that more fully utilizes the normal mode analysis. As long as we know the random numbers that

were used in a given simulation, we can check for accuracy by computing the normal mode solution

and comparing to our model’s results.

Note that solving the normal modes for an untethered chain or a single-tethered chain follows the

same process, the only differences being in the definition of the transformations defined in Eqns 2.10

and 2.11, due to the consequent changes in several of the values of the connectivity matrix. Further

detail regarding the calculations for these two cases are described in “Viscoelasticity and molecular

rheology" by Alexei E. Likhtman [19].
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2.8 In vivo experiments

In order to obtain the experimental position data, the Bloom Lab used light microscopy to track

DNA movement in live yeast cells. They struck the cells with a laser at a designated spot on the

DNA previously tagged with GFP (green fluorescent protein). At each time step, they took a series

of images of the cell at multiple z-positions and chose the most in-focus image for consideration in

our data analysis. As they stepped along in time, the resulting images showed the tagged DNA spot

at 3D different positions, thus illustrating DNA movement. Using microscope simulation programs

like Metamorph to obtain xy-coordinates for these tagged spots, they obtained position data over

time for the tagged spots. This program determines spot coordinates by searching for the brightest

pixels, a method that is much more efficient than manually going through and locating the marked

spot on each image. Each tagged spot is approximately 100-5000 base pairs long and can be thought

of as representing one gene. The beads in our model’s bead-spring chains are proxies for these tagged

DNA spots, and allow us to track and to directly compare simulated and experimental position data

for specific locations on specific chromosomes. In addition to the figures and statistics that we can

produce through our computational model, the Bloom Lab can perform their own analysis of our

simulated data by inputing it into the same microscope simulator program that they use for their

experimental data. Importantly, this constant two-way discussion comparing simulated data from

the mathematical model and experimental lab data enables the biologists to ask questions that they

cannot see experimentally. Although there is a 0.25 micro resolution limit in light microscopy, we

are able to get motion analysis on the nanometer length scale through understanding how light is

defracted.

Figure 2.21: Yeast cell in G1 phase with DNA tagged at a certain spot. Images 1-3 are taken
consecutively. Images 4-10 are taken in 1 minute intervals.
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CHAPTER 3

Introducing Chapter 4

This chapter serves as an introduction to the paper presented in the following chapter, “Entropy

Gives Rise to Topologically Associating Domains". As stated in the abstract for that paper, here we

investigate chromosome organization within the nucleus using polymer models whose formulation is

closely guided by experiments in live yeast cells. Polymer models have been well-shown to successfully

recapitulate chromatin behavior in vivo. We employ bead-spring chromosome models together with

loop formation within the chains and the presence of nuclear bodies to quantify the extent to which

these mechanisms shape the topological landscape in the interphase nucleus. By investigating the

genome as a dynamical system, we show that domains of high chromosomal interactions can arise

solely from the polymeric nature of the chromosome arms due to entropic interactions and nuclear

confinement. In this view, the role of bio-chemical related processes is to modulate and extend the

duration of the interacting domains, rather than to be essential to their creation. This prediction of

the role of enzymatic processes is not fully expected by the biologists and represents an important

step towards better understanding how proteins influence chromosome dynamics. Furthermore, we

present findings for both 2D and 3D versions of our model and discuss how the 2D model effectively

captures the qualitative results of the 3D model, and thus although is not useful from a quantitative

standpoint, remains valuable for illustrating patterns and visualizing results.
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CHAPTER 4

Entropy Gives Rise to Topologically Associating Domains

1

4.1 Introduction

The genome comprises the entire genetic information that makes up an organism. This information

is encoded in DNA and stored, spatially and dynamically, in the nucleus of every cell in that organism.

Packaging while preserving functionality of DNA in the nucleus is one of the most remarkable tasks

performed by cells. To accomplish this task, the cell employs hierarchical levels of compaction and

organization. Understanding the spatial dynamics of the genome is a crucial step in characterizing

how DNA adopts and transitions between different functional states over the course of the cell

cycle, facilitating vital functions such as gene expression, DNA replication, recombination and repair.

Today, advances in instrumentation, experimental techniques, theory and computation are poised

for integration toward a predictive description of the structural organization and dynamics of the

living genome, and for understanding the entropy-dominated statistical mechanics underpinning

different cellular functions. Toward this goal, we hypothesize that in the nucleus, thermodynamics,

in particular entropy, dominates the spatial organization of chromosome arms while active kinetic

processes modulate this organization. This view represents a shift from that of enzymatic, biochemical

cellular processes playing the leading role in these cell functions. In short, enzymes do not create

a new topological and energetic landscape in the nucleus; rather they bias the entropy-dominated

stochastic dynamics into cycle-specific states. Here we show that entropy and confinement dictate

the leading order structure and dynamics of the genome, whereas the role of enzymes is to guide,

stabilize and sustain cycle-specific genome states.

1This chapter previously appeared as an article in Nucleic Acids Research. The original citation is as follows: Vasquez,
P.A., Hult, C., Adalsteinsson, D., Lawrimore, J., Forest, M.G., and Bloom, K. “Entropy gives rise to topologically
associating domains." Nucleic Acids Research, 44, 5540-5549. June 2 2016.
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The organization of the genome in the nucleus can be divided into three length scales [20]. At

the lower scale, between 1 base pair (bp) and several thousand base pairs (kb), the genome adopts a

beads-on-a-string structure, ∼11 nm in diameter, formed by nucleosomes and their linking DNA.

This is the building block of the chromatin fiber [21, 22, 23, 24, 25, 26]. Above the 11-nm fiber, the

structure is irregular and dynamically samples a variety of morphologies. Experiments in vitro, using

DNA templates with uniform arrays of repeating sequences, have shown that chromatin condenses

under specific salt conditions to a more compact structure of 30 nm [23, 27, 28]. However, the

regularity and existence of this 30-nm fiber in vivo continue to be debated [29, 30, 31, 32]. At length

scales on the order of the nuclear domain (micron scale > 100 Mb or mega base pairs), the genome

is divided into chromosomes, each of which occupies statistically defined territories. Previous work

has shown that polymer models, coupled with confinement in the nucleus and centromere/telomere

tethering, capture the essential features of experimental chromosome territories [1, 33, 34]. These

territories are defined statistically, indicative of dynamics of the chromatin chain, implying that the

chromosomes are not spatially confined to a given region, rather there is a high probability that

they will be found in a specific region (territory) in the nucleus [1, 33, 34, 4]. At intermediate and

large length scales (∼Mb), it is known that the genome is not randomly organized in the nucleus

and this spatial organization plays a key role in the execution of a variety of nuclear functions, e.g.

coordinately regulated genes and DNA repair factories [35, 36, 37]. A key question is to understand

the organizational principles that guide the hierarchical organization at this level of compaction.

Loops along the polymer chain are one such guiding principle. It has been shown that chromatin

loops influence the size and dynamic features of chromosome territories [38, 39, 40, 41, 42, 43, 44, 45].

Similarly, sub-nuclear compartments and sub-chromosomal interacting domains, such as the nucleolus,

gene bodies and topologically associating domains (TADs), play important roles in the organization

and dynamic interactions of the genome [46, 47, 8, 48, 49]; however much remains unknown at this

level.

Here, we explore the formation of subdomains in individual live cells during interphase that arise

solely from entropy-driven polymeric properties of the nuclear-confined chromatin fiber. We show

that entropic fluctuations and excluded volume interactions of confined, tethered polymer chains are

sufficient to represent a genome organization that is dynamic, with genes and chromosomal interacting

domains varying considerably in time and space and from cell to cell as observed experimentally
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[50, 51, 52, 53]. Addition of loops to the model provides a mechanism to tune contact frequencies,

also observed experimentally [41]. Finally, sub-nuclear compartments offer a mechanism to control

interactions at a local level.

Our modeling is based on experimental data from individual, live yeast cells. By quantifying

cellular phenomena at this level, we gain a unique perspective on different biological processes

that is distinct from the concepts gained by averaging data from populations of cells. Our studies

complement those obtained through high-throughput data by extrapolating single cell observations

to population averages. The use of dynamic imaging of sub-diffraction chromosomal loci in live cells

together with mathematical modeling offers a powerful approach to dissect chromosome interactions

in living cells. This approach yields insight into the mechanisms that govern the establishment and

maintenance of diverse functional chromatin states in a dynamic cell.

4.2 Materials and Methods

4.2.1 Modeling approach

Recent results on the diffusive behavior of proteins and DNA in vivo suggests that chromatin

motion obeys the dynamics of a polymer network [1, 54, 55, 56, 57, 58]. It has also been shown

that purely random chain behavior of isolated chromosomes cannot explain many of the specific

patterns observed in experiments [1, 4, 59, 60]. The question remains whether these patterns arise

from generic polymer physics, specific processes such as proteins binding to different sites of the

chromatin or higher order organizational principles. Computational simulations show that many

of the organizational features observed experimentally emerge from the coupling of the polymer

nature of chromatin and simplified geometric constraints [1, 33, 4, 51, 52, 61, 62, 63, 64]. These

studies investigate different numbers and sizes of chromosomes, confinement to the nuclear space,

centromere/telomere tethering and excluded volume effects. We extend these studies to include

the formation of loops within chromatin fibers and the inclusion of sub-nuclear compartments, and

explore their impact on global organization as well as local interactions of the genome.

The dynamics of chromatin loci are consistent with those of highly flexible polymers [1, 34,

4, 65, 66, 67]; for a review of polymer models of interphase chromosomes we refer the reader to

[34, 58]. Accordingly, modeling the four-dimensional behavior of a complex system such as multiple
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chromatin fibers in the yeast nucleus requires the exploration of a large conformational space.

The goal herein is to study the consequences of entropic fluctuations and polymer conformational

constraints (confinement, tethering, looping) on the formation of zones of local intra-chromosomal

interactions. To gain insights into the statistical features of this complex system, we use a simplified,

low dimensional, model that captures the essential physics and geometry: a two-dimensional (2D),

round nuclear domain and four entropic chains representing four chromosome arms. Results from

this simple model are consistent with a three-dimensional (3D) model of the yeast genome (32

chains), as discussed in the supplemental material, thereby providing a simplified context to convey

the spatial and dynamic features of chromatin organization.

The dynamics of the chains are modeled using a bead-spring polymer model where the chromo-

somes are represented by interacting beads connected via springs described by a worm-like chain

(WLC) force law [14, 15]. Each chain is tethered at both ends as shown in Figure 4.1, representing

the tethering of the telomeres to the nuclear membrane and the centromeres to the spindle pole body.

This tethering resembles the Rabl configuration observed experimentally [50, 63, 68, 69, 70]. In

addition to tethering, chains are confined within the nuclear (circular in 2D, spherical in 3D) domain;

both constraints reflect in vivo observations of yeast chromosomes [1, 70]. Within this description a

segment in a chain represents a ‘blob’ [71] of chromatin, rather than linear segments. Each blob

consists of Nk,s Kuhn lengths of length 2Lp, where Lp is the persistence length of the chromatin fiber.

Although a disparate set of values has been reported in the literature for the persistence length of

chromatin in vivo, ranging from 30 to 220 nm [33, 66, 72, 73, 74, 75]; here we consider a persistence

length of Lp = 50 nm, which corresponds to the persistence length of naked DNA and lies within

the reported range for yeast chromosomes. From this perspective it is assumed that the dynamics of

the Nk,s segments inside each blob follow those of a random walk, forming what is called a Brownian

bridge. In this sense, the size of the blobs represents the spatial extent over which the motion of

the chromatin fiber is uncorrelated. A detailed description of the model and parameter selection is

discussed in the next section.

4.2.2 Model formulation

In the model, the evolution of bead positions is governed by a force balance. In the nucleus,

forces controlling molecular interactions include van der Waals (attractive or repulsive), electrostatic

(attractive or repulsive), steric (repulsive), hydrodynamic and forces due to thermal fluctuations.
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Figure 4.1: Bead spring representation of chromosome arms. (A-B) Each segment, composed by
a spring connecting two beads, capture the dynamics of a ‘blob’. (C) The computational domain
consists of four chains, tethered at both ends to a circular domain of radius 1 µm.

In our coarse-grained representation, all attractive forces are captured through a spring-like force

and all repulsive effects by an excluded volume potential. Since the chromatin network is embedded

in a highly viscous environment, hydrodynamic interactions (HIs) are also considered. Here, we

incorporate viscous drag on the beads and the so-called free draining approximation, as discussed

below.

With these simplifications, our formulation is reduced to the balance of five forces acting on each

bead,

FD
i + FS

i + FEV
i + FW

i + FB
i = 0. (4.1)

Drag force. The drag force is assumed to follow a linear relation,

FD
i = −ζ dXi

dt
, (4.2)

where Xi is the vector position of bead i, and ζ is the effective drag coefficient. To determine

the drag coefficient we consider the relaxation of a single chain following experiments by Fisher et al.

[76]. In that study the authors found that it takes ∼40 times longer for the chromatin to relax in

vivo, compared to naked DNA in vitro. From this, and based on data from Jendrejack et al. [16], we

obtain an effective drag coefficient of ζ = 2.5× 10−3 pN s/nm.

For simplicity, we omit other types of HIs. Inclusion of HIs in bead-spring models has been

shown to be negligible in weak flows [13, 77], whereas the flows inside the nucleus are extremely weak.
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For this reason, and for computational cost considerations, we impose the so-called free draining

approximation.

Spring force. This force captures intramolecular interactions via an attractive potential. We use

the WLC force proposed by Marko and Siggia [14, 15], shown to describe well the dynamics of naked

DNA [14, 15, 16] and chromatin in vivo [76],

FS
i = Fi,j−1 + Fi,j+1,

Fi,j =
kBT

4Lp

[(
1− Rij

R0

)−2
− 1 + 4

Rij
R0

]
Rij

Rij
(4.3)

where,

Rij = Xi −Xj , Rij =
√

Rij ·Rij , R0 = Nk,s (2Lp) . (4.4)

Excluded volume force. This force imposes an energy penalty on the overlapping of two blobs.

In static polymer theory the excluded volume potential is assumed to be a δ-function of the form

[12],

E (rj − ri) = νkBTδ (rj − ri) , (4.5)

so that overlapping between two beads has an energy penalty of νkBT , where ν is the excluded

volume parameter, kB is the Boltzmann constant and T is the absolute temperature. For our

excluded volume potential we use the form proposed by Jendrejack et al. [16], where this function is

approximated by a narrow Gaussian function:

UEVi =
νkBT

2

(
3

2πS2
k

)3/2 N∑
i,j=1;i 6=j

exp

[
−

3R2
ij

2S2
k

]
, (4.6)

FEV
i = −∇UEVi ,

where S2
k = Nk,s(2Lp)

2/6.
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Interaction with the cell wall (FW
i ). To account for confinement due to the nuclear envelope,

whenever a bead moves outside the domain during a time step, it is moved to the nearest point on

the domain boundary as follows,

Xnew
i = Xout

i + ∆XHM
i , (4.7)

∆XHM
i = ∆piH (∆pi)

where ∆XHM
i is the displacement vector due to the Heyes-Melrose algorithm [78], ∆pi is the

vector from the position of the bead outside the domain boundary
(
Xout
i

)
to the nearest boundary

point and H (·) is the Heaviside step function.

Brownian force. This force captures the random motion due to thermal fluctuations,

FB
i =

√
2δkBTdWi, (4.8)

where dWi is a standard normal distribution.

4.2.3 Other model parameters

Validation with experimental data To validate the model parameters we developed a 3D model,

consisting of 32 chains corresponding to the arms of the 16 yeast chromosomes. Model settings

were selected by matching 3D simulations to experimental data, as discussed in the Supplementary

Material. While the 2D model is not appropriate for direct comparison to experimental data,

qualitative agreement between the 2D and 3D models, as shown in Figure 4.2 and Figure 4.3 and

Figure 4.13, demonstrates that even a simplified polymer model can emulate the domains of high

chromosomal interaction seen in experimental data. Given the ability of the 2D model to display

these results with experimentally derived parameters, the 2D model provides a simplified framework

to explore the effects of a large range of parameters on the formation and maintenance of domains

of high chromosomal interaction.
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Figure 4.2: Average separation between beads in the 3D model (2443 beads). The behavior of four
selected chains agrees qualitatively with the behavior obtained for the 2D, four-chains model (see
Figure 4.3 and Figure 4.13)

Number of beads The number of beads is related to the level of discretization used to describe

a chromosome arm. If we consider the number of kilo base pairs (kb) represented by each spring,

Nkb = 5 and the number of Kuhn lengths per spring, Nk,s = 17, the number of beads representing a

chromosome arm is determined by its length in kb. In our 2D model, we consider chains with 52

beads or equivalently 255 kb. For the 3D model, as explained in the supplemental material, the

given length of each chromosome arm determines the number of beads for the different chains, see

Table 4.1.

Loops Chromatin loops impose constraints on chromosome conformation; however, the detailed

mechanisms and driving forces of looping are not clear [43, 45, 79, 80]. In this work we assume that

protein complexes at the base of loops create a spring-like force, dictated by the binding constants

within the complex and the DNA. To form loops, we employ a linear spring force and assume

that the spring constant has the same order of magnitude as the springs used to form the chains.

Lacking experimental information regarding the distribution of co-localized chromatin loci, our
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Figure 4.3: Heat maps of distances between beads averaged over 1 h and divided into five regions
according to the mean bead-to-bead separation. (A) Beads confined to a circle of radius 1 micron
and moving through Brownian motion. (B) An attractive potential (worm-like spring) is added to
the same noise history as in (A). The addition of this potential also allows the division of the 208
beads into four chains as shown in Figure 4.1C. (C) Inter-molecular interactions are added to the
same simulation through an excluded volume potential. In addition to steric effects, this force also
captures any type of repulsion between different beads. (D) Percentage of the five bead-to-bead
separation areas for figures (A), (B), and (C), separated according to intra- and inter-chain regions
as shown in the inset.

first approximation is to distribute them in a uniform manner along the chain. As pointed out

by Fudenberg and Mirny [58] this approach falls short of quantitatively capturing experimental

observations; however here we show that they suffice, as a first order approximation, to understand

the qualitative role of loops in the organization of chromosomes. Furthermore, in spite of this uniform

localization, the distribution of loops within the chain is neither fixed nor uniform in time. At a
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given time, some of the ‘looping beads’ can be near each other (closed loops) while others can be

farther from each other (open loops); this is a consequence of the coupling between the spring forces

at the base of the loops and the global dynamics within the domain. An example of this dynamic

behavior is shown in Figure 4.17.

Tethering The first and last beads of each chain correspond to the centromere and telomere sites

of a chromosome arm. The position of these beads remain fixed to the boundary throughout the

simulations to mimic the attachment of the centromeres to the spindle pole body and telomeres to

the nuclear membrane in budding yeast.

4.3 Results and Discussion

4.3.1 Entropic forces acting on chromosome arms generate domains of high intra-
chromosomal interactions

In our coarse-grained representation of chromosome arms, the movement of individual beads

captures the dynamics of groups of genes. In this sense, analysis of the distance between beads

provides the means to make quantitative conclusions about the contact dynamics between genes.

We bin the range of interactions represented by averaged separation between beads as shown at the

top of Figure 4.3. We start with the simplest approximation of 208 beads inside a circular domain

(representing the nuclear envelope) moving via thermal fluctuations. The beads are independent

of each other, meaning the only forces acting on the beads are the confinement force, viscous drag

and Brownian forces; these last two are coupled according to the fluctuation-dissipation principle.

Figure 4.3A shows the separation of the beads averaged over 1 h. As expected, there are no preferential

interactions between any groups of beads. A quantitative description is given in Figure 4.3D, which

shows the corresponding percentage for the five ranges of separation. In the absence of linkage

between beads, the majority of beads remain, on average, separated by distances greater than 750

nm (green and white regions).

To simulate chromosome arms, non-linear springs are introduced between beads (4 chains of

52 beads each) and each chain is attached at both ends (centromere and telomere) to the nuclear

envelope as shown in Figure 4.1C. Figure 4.3B shows the resulting contact map obtained by averaging

bead- to-bead distances. The attractive potential, represented by the spring law, captures intra-
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chain interactions; for instance an increase in histone occupancy is reproduced by stiffer springs

[31]. Introduction of chain configurations into the model allows differentiation between intra-chain

and inter-chain interactions in the contact maps (Figure 4.3D). The addition of springs effectively

decreases the number of possible configurations for the 208 beads, which in turn decreases the

entropy of the system. In other words, a decrease in the system’s entropy results in an increase

in local interactions. This is represented in Figure 4.3D by an increase in the percentage of blue

(500-750 nm separation) and black (250-500 nm separation) regions. We note that 500 nm is the

radius of gyration (Rg) of a 20 kb random coil of DNA: Rg =
√
N(2Lp)2/6, validating the estimate

of bead separation and the black regions as domains with high bead-bead interactions mimicking

TADs.

Finally, excluded volume interactions are incorporated into the model and the resulting contact

map is shown in Figure 4.3C. Excluded volume is a mathematical construct that captures the physical

basis for molecular exclusion, which is about 8× the intrinsic volume of the polymer chain [81].

Addition of this repulsive potential further reduces the degrees of freedom in chain configurations

and accordingly the entropy of the system. This additional reduction in entropy results in a decrease

of inter-chain interactions, as shown by the increase in the percentage of white regions (>1000 nm

separation) within the inter-chain plot of Figure 4.3D.

Numerical simulations of polymer models have shown that, in addition to tethering, the spatial

organization of chromosomes is regulated by excluded volume effects. The latter becomes crucial

when confinement is introduced, as chromosomes ‘compete’ for the limited nuclear space [1, 33, 34, 4].

In this context, the changes in inter- and intra-chromosomal interactions shown in Figure 4.3 are

not surprising. The main conclusion from Figure 4.3 is the formation of high-frequency intra-chain

interactions, as the black regions within the contact maps imply that those beads remain on average

separated by <500 nm over the course of 1 h. By modeling chromosome arms as polymer chains

(bead-spring model) interacting via entropic potentials, such as the spring and excluded volume

forces, we have shown that domains of high interaction arise naturally in the system without the

need for other mechanical or chemical potentials. However, these regions are not static and vary

from cell to cell (Supplementary Movie 1).

Finally, we note that previous work argues that loops are responsible for both the formation of

chromosome territories and TADs [43, 67]. Here, we argue that loops, or any other type of contact
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dynamics, are not necessary to create these domains, as they arise from first principles. Below we

show that the role of loops is to modulate these domains by reducing the conformational degrees of

freedom of the chains.

4.3.2 Changes in chain configuration through the addition of loops result in compart-
mentalization of chain interactions

A distinguishing feature of eukaryotic chromosomes is an underlying scaffold from which a series

of chromatin loops emanate [38, 40, 42]. Loops represent mechanisms to confine topologies to

sub-regions of the chromosome providing structural differentiation for processes such as transcription,

replication and repair. To examine the consequences of loops in the entropic model, we implemented

linear springs connecting specific pairs of beads along each chain. The resulting contact maps are

shown for two different loop configurations in Figure 4.4. To assess the changes imposed in the

system, simulations were run using the same thermal noise with and without loops. In this manner,

subtraction of bead distances, as shown in Figure 4.7, exposes changes arising solely from loop

dynamics. These changes are divided in three main categories: distances between beads in the

backbone, distances between beads in the outer loops and distances between beads in the backbone

and beads in the outer loops; each is shown in the bar plots of Figure 4.4. We further consider intra-

and inter-chain distances dividing each bar plot into these two categories.

Figure 4.4 shows that the majority of the interactions remain unchanged after the addition of

loops (gray bars). The next largest change comes from beads in the backbone of the same chain (blue

bars, intra-chain), since loops in the chain bring the backbone beads closer. In addition, distances

between beads in different chains increase (red bars, inter-chain). The fact that this change is the

same in both outer-loop and backbone beads suggests an enhancement in chromosome territories. To

further illustrate this, we plot the positions of beads with and without loops and show that indeed

chromosome territories are more defined with loops (Figure 4.8). Thus chromosome loops increase a

chromosome arm’s individuality, in agreement with previous studies [43, 67].

Loops arise from several different sources in vivo. Cohesin together with CTCF (CCCTC-binding

factor) are found in many organisms to tether distant sites and promote expression of the intervening

genes [49, 82, 83, 84]. Condensin along with tDNA (DNA encoding transfer RNA (tRNA) genes) and

rDNA (ribosomal DNA) transcription factors function to bridge distant sequences in the nucleolus

of most organisms [85, 86], as well as pericentric chromatin in yeast [56, 87]. We refer to these
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Figure 4.4: Contact maps for different conformations that include loops and changes in the average
distance between beads. bead interactions are divided into backbone-to-backbone (dark beads),
outer loop-to-outer loop (light beads) and backbone-to-outer loop. Intra-chain interactions are given
y the ‘same chain’ bars, while inter-chain interactions correspond to ‘different chain’ bars. Shades of
the bars correspond to increase, decrease, and no change in the distance between two beads due to
the presence of loops. These bars correspond to the regions discussed in Figure 4.14. (A) Chain
conformation consists of eight loops per chain, each loop comprising six beads. (B) Chains are
organized into four loops per chain, each loop with 13 beads. Calculation of the changes in the
average distance is described in Figure 4.14.

complexes in general as topology adjusters [88]. The finding herein indicates that rather than de novo

creation of subdomain with high interactions, these complexes enhance and extend the duration of

domains that stochastically arise from the entropic interactions of the chromosome arms in a confined

domain. It will be important in future extensions of the model to explicitly include the stochastic

dynamics of these complexes and their interactions with chromosome arms as their biophysical

properties become better understood. However, it is clear that such topology adjusters such as

cohesin and condensin bias the longevity of naturally ‘transient’ loops, thus influencing the overall

genome architecture (Figure 4.9 & 4.10).

To test whether loops alone can modify the territory of a given chromosome, we introduce loops
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in only one of the four chains. The data is shown in Figure 4.5. Addition of loops in only one chain

results in a decrease of the intra-chain distances, but only for the chain with loops. This implies that

the extent of the territory for that given chain is reduced, while other territories remain unchanged.

Furthermore, increase in inter-chain distances also implies that loops serve as a mechanism to isolate

individual chains to increase interactions within the chain and to decrease interaction with other

chains. These changes in distances are quantified in Figure 4.9.

Figure 4.5: Chain’s territories as a function of chain configuration. Rows correspond to territories of
the same chain, columns correspond to different configurations, from left to right: no loops, loops
only in chain 1, loops only in chain 2, loops only in chain 3 and loops only in chain 4. A quantitative
analysis of the change in bead-to-bead distances is given in Figure 4.16.

4.3.3 Nuclear bodies are secondary levels of regulation of subdomains of high intra-
chromosomal interactions

In addition to loops, the cell can employ other secondary mechanisms to bias genome archi-

tecture toward a given state. Figure 4.6 explores two such mechanisms: the first one introduces

a nuclear body by defining a circular sub-domain within the cell that beads cannot penetrate
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(Figure 4.6B); the second one is similar to the previous nuclear body, but, in addition, a set of

beads belonging to one chain is confined to the sub-domain (Figure 4.6C). Comparison of the

resulting contact maps clearly shows that these nuclear bodies only affect genome interactions at

a local level, independent of whether or not the chains have a linear or a loop configuration. As

discussed in the previous section, the addition of loops results in enhanced isolation for the re-

gions of high bead-interactions and smaller modifications to the interactions in the rest of the nucleus.

Figure 4.6: Secondary levels of regulation of intra-chain interactions. (A) Simulation without of
nuclear bodes and resulting contact maps for chains without and with loops. (B) Simulations where
beads are excluded from a circular region of radius 300 nm placed inside the nucleus (radius 1000
nm). (C) Simulations where most beads are excluded from a circular region while beads 15-30 from
chain 4 (purple) are confined to the sub-domain.

4.4 Conclusion

Critical chromosomal functions have been linked to the spatial conformation of chromosomes.

While sequencing-based techniques such as Hi-C provide an overall impression of genome organization,
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as pointed out in [58], a large number of contacts observed in Hi-C data does not imply a specific

physical or functional interaction between the contacting loci. Rather, mechanistic models of

chromatin are necessary to deduce the major physical influences on genome organization. Using

mathematical models, we investigated the role that entropic forces, confinement and chromatin

looping play in the formation of domains of higher order chromosomal interactions. A persistent

view is that this spatial organization is primarily established by enzymatic, protein-guided cellular

processes. Here we showed that entropy and the fundamental polymeric nature of chromatin dictate

the structure and dynamics of the genome. The role of proteins is to guide, stabilize and sustain

cycle-specific genome states.

An important feature of protein-guided chromatin organization is chromatin looping. In addi-

tion to their role in the organization of interphase chromatin, loop formation has been shown to

play an important role in models of meiotic and mitotic chromosomes [89, 90]. In contrast to the

work of Bohn and Heermann [43], the loops in our model are mediated by long-range interactions

(linear springs). In [43] the authors showed that ‘the formation of loops can be accomplished

solely on the basis of diffusional motion.’ A next step in the refinement of genome models is to

introduce the dynamics for the formation and modulation of loops and to investigate their role

in the spatial organization and interaction of the yeast genome. Furthermore, as the biological

understanding of specific DNA-protein interactions increase, future models of dynamic genome

organization will need to incorporate these interactions to better understand how proteins adjust an

entropically-organized genome. In this way, mathematical models of genome organization, together

with live cell experiments, will identify genomic signatures that define cell states and protein functions.

4.5 Supplementary Data

Supplementary Data are also available at NAR Online.

4.5.1 Non-dimensional equations of motion

We use the following relations to scale the model’s variables, (prime denotes dimensional

quantities)

t = t′

(
kBT

N2
k,s (2Lp)

2 ζ

)
, Xi = X′i

(
1

2Nk,sLp

)
, ν = ν ′

(
1

(2Nk,sLp)
3

)
. (4.9)
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Dimensional equation of motion for bead i,

ζdX′i =
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where

R′ij = X′i −X′j , R′ij =
√

R′ij ·R′ij , R0 = 2Nk,sLp, S2
k = Nk,s (2Lp)

2 /6.

Non-dimensional equation of motion for bead i ,

dXi =
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]
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)
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)
dt+

√
2dWi.

(4.11)

Here c0 is a constant and N is the total number of beads, i.e., 208 for 2D model and 2443 for the

3D model.

Inspection of Equation (3) shows that the only parameters that can change the qualitative

behavior of the model are Nk,s and ν. Other parameters only affect the magnitude of the dimensional

variables. With an increasing level of discretization, Nk,s, both the spring force and the excluded

volume force increase. However, a change in the value of Nk,s has a larger effect on the strength of

the excluded volume interaction. Note that an increase in Nk,s corresponds to a more coarse-grained

representation of the chromosomes, i.e., more kb per springs or equivalent less springs in a given

chain.

4.5.2 Simulation parameters

For the 2D calculations, we run 25 simulations per parameter set, for a total dimensionless time

corresponding to 2 hours. We assume equilibration after 1000 non-dimensional time steps and data

between 0-1000 is not considered in our analysis. The non-dimensional time step used is 0.001. Other

model parameters are given in the table below.
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4.5.3 Three-dimensional model

We model the dynamics of the yeast genome during interphase using a bead-spring model as

explained in the main text. Assuming a discretization of 5kb per spring, the number of beads per

chromosome arms is shown in Table 4.1.

Centromere and telomere positions. Both the centromere and telomere sites are kept fixed

throughout the simulations. Bead 1 for each chain corresponds to the centromere site and it is shown

in Figure 4.7 by a red dot. The telomeres of the 32 chains are distributed among 6 sites as shown in

blue dots in Figure 4.7. The corresponding telomere site for each chain is given in Table 4.1.

Figure 4.7: Telomere and centromere locations. The first bead of each chain is attached to the
centromere location (red), the last bead of each chain is attached to one of the six telomere locations
(blue) as stated in Table 4.7.

54



Chromosome Arm Chain number Length (kb) Number of beads Telomere
Site (Fig.
S1)

I 1 1 151.465 31 T1
2 2 78.752 17 T2

II 1 3 238.207 49 T3
2 4 574.976 116 T1

III 1 5 114.385 24 T4
2 6 202.234 41 T5

IV 1 7 449.711 91 T5
2 8 1082.221 217 T1

V 1 9 151.987 31 T1
2 10 424.886 86 T5

VI 1 11 148.51 31 T6
2 12 121.65 25 T4

VII 1 13 496.92 100 T5
2 14 594.019 120 T3

VIII 1 15 105.586 22 T3
2 16 457.056 92 T2

IX 1 17 355.629 72 T6
2 18 84.258 18 T4

X 1 19 436.307 88 T3
2 20 309.443 63 T5

XI 1 21 440.129 89 T2
2 22 226.686 46 T3

XII 1 23 150.828 31 T6
2 24 927.348 186 T4

XIII 1 25 268.031 55 T2
2 26 656.399 132 T3

XIV 1 27 628.758 127 T4
2 28 155.574 32 T6

XV 1 29 326.584 66 T2
2 30 764.706 154 T6

XVI 1 31 555.957 112 T1
2 32 392.108 79 T2

Table 4.1: Number of beads used to simulate the arms of the 16 yeast chromosomes.

Comparison to experimental data The experimental and simulated dynamics of the 240kb

LacO array are shown in Sup Movie 1. Figure 4.8 below the poster frame from the movie. The DNA

is in green, the spindle pole body is in red, and the scale bar is one micron. The simulated image

was created using Microscope Simulator 2.3.0 (http://cismm.cs.unc.edu/downloads/, [91]).
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Figure 4.8: Experimental and simulated dynamics of 240 kb LacO.

Radius of confinement. Using the temporal distribution of the spot position with respect to the

centromere, on can calculate the radius of confinement as explained elsewhere [1]. Results from the

simulations are compared to experimental data in Table 4.2.

Table 4.2: Radius of confinement of chromosome loci for simulated and experimental data. Experi-
mental values are obtained from [1]. Simulated values are averaged over 10 runs for 6200 total time
steps, each time step is 0.5 s.

Mean distances. Following experimental results from Cheng et al. [67] we look at the mean

separation between two loci in the long arm of chromosome 5. The spots are toto 242 and lacO 386,

which correspond to beads 18 and 47 of chain 10 in our model.

The mean distances from the model are 988, 828, and 877 nm for the linear, 5-beads per loop,
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and 10-beads per loop configurations. The mean distance reported in Cheng et al. [67] is 670 nm.

We note that our values are obtained assuming a persistence length of 50 nm, as explained in the

previous section, changes in the persistence length only change the quantitative results of the model.

In other words, if a persistence length of 30 nm is assumed, the resulting mean distances would be

592, 497, and 526, respectively. Figure S3 shows the statistics for the distance obtained with the 3D

model for beads 17-48 and beads 48-77; both of these have separations of 145 kb.

Figure 4.9: Distribution of mean distance between two beads separated 145 kb in arm 2 of chromosome
5, (A) beads 17-48 and (B) beads 48-77.

In addition to the mean distance, we calculate the kurtosis, following results from Cheng et

al. [67] who found kurtosis for the experimental data between 2.5 and 3. Figure 4.10 displays the

calculated kurtosis for the three types of chain configurations considered in our simulations. The

kurtosis is obtained from the distribution of distances between beads 17 and 48 of chromosome 5,

arm 2. All reported values are averaged over 6200 time steps (∆t = 0.5s), correspond to ∼58 min,

and 10 repeats of our model simulations. Kurtosis is a non-dimensional parameter and as such is

independent of our choice of persistence length.
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Figure 4.10: Kurtosis values calculated from simulations for three chain configurations and beads
17-48 of arm 2 – chromosome 5.

Contact probabilities. The contact probability as a function of genomic separation is shown

in Figure 4.11. The probability decays with a power law of 1.1. Duan et al. [69] reported an

experimental value for the power law exponent in yeast cells of -1.5.

Figure 4.11: Contact probability for 3 chromosomes. At small genomic distances the probability
decays with a power law exponent of -1.1. Shorter arms (See Table S1) deviate from this trend at
shorted distances.
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Chromosome spot occupancy. Next we look at the percentage a given chromosome locus is

found in different regions within the nucleus. For these, we project the 3D data into the 2D plane as

shown in Figure 4.12. In the figure, this projection is color-coded to show the number of times a

beads was found in a given point in the xy-plane, but a different positions in the z-direction.

Figure 4.12: Chromosome occupancy. Three-dimensional data is projected into the xy-plane. The
percentage of times a bead is found in either the inner or outer regions is reported.

From simulations with linear chains, bead 43 in arm 2 of chromosome 5 remains in the inner

region 25.6% and 74.4% in the outer region; for chains with 5-beads-per-loop configurations the

percentages are 34.1% - 65.9%; and for chains with 10-beads-per-loop they are 31.3% - 68.7%.

Experimental values are 30% - 70% (Barry et al., In Press).

4.5.4 Two-dimensional model

Comparison with 3D model. To compare the results from the 2D model to the 3D model

we choose 4 arms in the 3D model. here we use chromosomes X and XI, since their arms have

comparable sizes. Figure 4.13 shows the reduction of intra-chain interactions due to the addition of

excluded volume as described in Figure 4.3.
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Figure 4.13: Normalized separation between beads for 4 chains. The average bead-to-bead separation
resulting from the 2D and the 3D model are shown for simulations with and without excluded
volume.

Quantification of differences in contact maps. by controlling the parameters in the model,

including the random noise, differences arising from a given condition can be easily quantified.

Figure 4.14 represents such quantification for chains with and without loops.
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Figure 4.14: Calculated differences in bead-to-bead averaged separation. Since the noise history in
(a) and (b) are the same, the differences arise solely from the inclusion of loops in the chains. In
the right hand side, red represents regions in which separation between beads has increased, blue
beads for which the separation has decreased and white are regions where there are not changes in
mean separation.

4.5.5 Loops Dynamics
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Figure 4.15: Chromosome territories for different looping configurations corresponding to Figure 4.3.

4.5.6 Captions for supplemental movies

Sup. Movie 1. Temporal evolution of bead-to-bead distances for two different runs with the

same model parameters.

Sup. Movie 2. Comparison between experimental and simulated data.
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Figure 4.16: Changes in the average distance between beads from simulations where only one chain
has loops compared to simulations where all chains have linear configurations. Red bars indicate
changes in intra-chain distances and gray bars give changes in the inter-chain distances.
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Figure 4.17: Temporal behavior of distance between beads at the base of loops. (a) Separation
between one pair of red beads as a function of time. (b) Percentage of times two red beads were
within 200 nm of each other (closed loops) and farther than 600 nm from each other (open loops).
Data obtained from all pairs of connecting (red) beads in a chain over 7000 time steps (∆t = 0.5s)
and 10 different simulations. The chain corresponds to the longest arm of chromosome II in the 3D
simulations.

64



CHAPTER 5

Introducing Chapter 6

This chapter serves as an introduction to the work presented in the following chapter, “Enrichment

of dynamic chromosomal crosslinks drive phase separation of the nucleolus". As stated in the abstract

for that paper, here we discuss how regions of highly repetitive DNA, such as those found in the

nucleolus, show a self-organization that is marked by spatial segregation and frequent self-interaction.

The mechanisms that underlie the sequestration of these sub-domains are largely unknown, in part

due to the difficulty of distinguishing among DNA repeats experimentally. Using a stochastic, bead-

spring representation of chromatin in budding yeast, we find enrichment of dynamic chromosomal

cross-links recapitulates the segregation, morphology, and self-interaction of the nucleolus. Rates

and enrichment of crosslinking have profound consequences on domain morphology. Our model

demonstrates that the nucleolus is phase separated from other chromatin in the nucleus, and predicts

that multiple rDNA loci would form a single nucleolus independent of their location within the

genome. Fluorescent labeling of budding yeast nucleoli with CDC14-GFP revealed that a split

rDNA locus indeed forms a single nucleolus. We propose that nuclear sub-domains, such as the

nucleolus, result from phase separations within the nucleus, which are driven by the enrichment of

protein-mediated, chromosomal crosslinks. We show through visualization and statistical analyses

that weak dynamic binding kinetics in the nucleolus leads to the formation of clusters, whereas strong

dynamic binding kinetics promotes a more equilibrated and uniformly mixed spatial organization

of the nucleolus beads. This clustering, or lack thereof, in response to different dynamic binding

kinetics is robust; namely, clusters form when we change from strong to weak dynamic binding

kinetics partway through the simulation, and clusters break apart and uniformly mix with other

nucleolus beads when we change from weak to strong dynamic binding kinetics partway through.

As will be discussed in the following chapter, these predictions regarding nucleolus dynamics have

significant potential biological implications.
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CHAPTER 6

Enrichment of Dynamic Chromosomal Crosslinks Drive Phase Separation of
the Nucleolus

1

6.1 Introduction

The eukaryotic nucleus is a complex three-dimensional environment in which genome function

depends not only on the linear arrangement of regulatory sequence elements but also on their spatial

organization for effective control of gene expression and nucleic acid metabolism [92, 93, 94]. The

spatial organization is in constant flux; individual genes can reposition within the nucleus in response

to environmental or developmental cues, and the genome can be mobilized in times of genotoxic stress.

The nucleus is composed of a variety of sub-domains or different compartments, each of them with a

distinct structure and function. The mechanisms by which subnuclear compartments are formed and

maintained as well as what determines their composition, size, shape, and number at various stages

of the cell cycle remain largely unknown. Integration of current advances in microscopy, chromosome

engineering, theory and computation enable exploration and validation of the statistical mechanical

underpinnings that account for formation and maintenance of different subnuclear compartments.

In this paper we investigate the dynamic organization of the nucleolus, the site of ribosomal RNA

synthesis, within the nucleus of budding yeast. The nucleolus is composed of repeat DNA sequences

and, as a result, is often not included in large-scale sequencing or chromosome conformation studies

[64]. The nucleolus can readily be identified as an approximately crescent-shaped structure adjacent

to the nuclear envelope and typically opposed to the spindle pole body [95, 96]. In addition to

housing the ribosomal DNA (rDNA), the nucleolus is a reservoir for cell cycle regulatory factors

1This chapter has been submitted as an article in Nucleic Acids Research. The projected citation is as follows: Hult, C.,
Adalsteinsson, D., Vasquez, P.A., Lawrimore, J., Bennett, M., York, A.C., Forest, M.G., and Bloom, K. “Enrichment
of dynamic chromosomal crosslinks drive phase separation of the nucleolus." Nucleic Acids Research. Submitted 11
March, 2017.
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such as FEAR and MEN. Upon anaphase onset, several of the regulatory proteins are modified

and released from the nucleolus to carry out anaphase. In yeast, the nucleolus is found in arm 2 of

chromosome XII. Albert et al. [65] performed a comprehensive investigation of this chromosome and

found that the dynamics of non-rDNA loci consistently followed those of homogeneous, tethered

polymer chains. In contrast, the dynamics of the rDNA loci showed a distinctive deviation from

such behavior; namely, larger separation with respect to the nuclear center and slower movement. In

agreement with these results, Wong et al., [64, 53] used polymer models to simulate chromosome

XII as a heteropolymer assigning a 10x larger size to the rDNA segments of the chain. This size

was used so that the resulting nucleolus occupied roughly one third of the nuclear volume. Using

this minimalistic dynamic model the authors were able to explain a large set of quantitative data

reported on yeast nuclear architecture including locus positions, contact frequencies, and motion

characteristics [53]. Although the nucleolus plays a unique role in the organization of the nuclear

architecture, to our knowledge no other modeling efforts have included its dynamics in an explicit

manner. Few exceptions remain where the nucleolus is included as a topological constraint within

the computational domain [33, 97, 98]. However, in these works the nucleolus was assumed to be

static and uniform.

Stochastic simulations of entropy-driven, bead-spring polymer chain models account for many fea-

tures of the dynamic properties of chromatin fibers confined within the yeast nucleus [2, 53, 65, 1, 4].

In this study we explore key parameters that endow a sub-domain of the genome with characteristics

that define the nucleolus. As discussed above, previous work has modeled the nucleolus as a chain of

increased diameter [53]. This approach provides a physical basis for chain thickening and manifests

experimental findings. Here we take a different approach and introduce crosslinking within or

between chains representing chromatin interactions with condensin or other SMC proteins. The

model herein is fully reflective of experimentally based biological parameters including chromosomal

DNA properties, nuclear confinement, tethering of chromosome arms to the centromere and telomere

sites, and the relative lengths of all 32 chromosome arms (16 chromosomes, 32 arms roughly meta-

centric). We translate simulated data from the 3D computational models into equivalent microscope

images, to view and analyze experimental images obtained from live cell microscopy. Through

these visualization tools and comparison of simulation results and experimental data, we report the

statistical mechanics sufficient to account for nucleolar dynamics and conformation due to molec-
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ular mechanisms (SMC protein, crosslinking kinetics) that are beyond current experimental resolution.

6.2 Materials and Methods

6.2.1 Strains and Imaging

Budding yeast strains EMS219 (Mat alpha, his5 leu2-3,212 ura3-50 CAN1 asp5 gal2 (form I1

rDNA::leu2 URA3+)), intact rDNA, and EMS60-UVR-12 (LEU2+, URA3+ CANS form I1 rDNA),

translocated rDNA [99], were transformed with CDC14-GFP:KAN to label the nucleolus to generate

DCY1021.1 and DCY1017.2, respectively. Cells were grown in YPD with excess adenine. Strains

were grown until mid-log phase prior to imaging. Images were acquired at room temperature (25

degrees C) using an Eclipse E600FN microscope (Nikon) with a 100x Plan Apo TIRF 1.45 NA

objective (Nikon) and ImagEM EM-CCD digital camera (Hamamatsu) with a custom Lumencor LED

illumination system (Lumencor Inc.) using MetaMorph 7.7 imaging software (Molecular Devices).

Single stacks contained 7 Z-planes sections with 300 nm step-size. Image stacks were cropped and

maximum intensity projections were created using ImageJ.

6.2.2 Modeling approach

The observed motion of chromatin loci is consistent with those of highly flexible polymers. As a

consequence, polymer models have proved valuable in the understanding of chromatin dynamics

[2, 67, 34, 4, 66, 1, 53, 58, 33, 63, 62, 89]. In our approach, chromosome chains are modeled using a

bead-spring polymer model where each arm is represented by interacting beads connected via springs

following a worm-like chain (WLC) force law [14, 15]. Each chain is tethered at both ends representing

the tethering of the telomeres to the nuclear membrane and the centromeres to the spindle pole

body. This tethering resembles the Rabl configuration observed experimentally [50, 63, 68, 69, 70].

In addition to tethering, chains are confined within the nuclear domain represented by a sphere of

radius 1 µm; both constraints reflect in vivo observations of yeast chromosomes [1, 70]. The basis of

the model is a balance of forces acting on each bead,

FD
i + FS

i + FEV
i + FW

i + FB
i = 0. (6.1)

The forces considered in our model are the drag force FD
i opposing the movement of the bead; the

spring force FS
i capturing bead-bead interactions via an attractive potential; the excluded volume
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force FEV
i that opposes overlapping of two beads; interactions with the cell wall FW

i that ensures

that beads remain within the spherical domain and that beads corresponding to centromere and

telomere sites remain fixed to the domain wall; and the Brownian force FB
i that captures the random

motion of the beads due to thermal fluctuations. For details of the functional form of these forces

and the model parameters, we refer the reader to [2].

6.2.3 Nucleolus modeling

The discretization in our model corresponds to 5kb of DNA per spring. The total number of

beads composing each chromosome arm are determined based on this discretization; for specific

numbers see [2]. The nucleolus is approximately 1.8 million bp in length, corresponding to 361

beads. Here, we simulate the nucleolus by increasing the size of arm 2 in chromosome XII by ∼ 361

beads. The position of these beads is in agreement with experimental observations; however the

qualitative observations presented in this study are independent of the location of these 361 beads

within arm 2 of chromosome XII. In general, nucleolus beads follow the same force laws and have

the same parameter values as all other beads in our computational domain, with the exception that

crosslinking molecules (condensin or other SMC proteins) are introduced that bind and unbind to the

nucleolus beads. For simulations where the nucleolus is split the nucleolus beads are divided between

arm 2 of chromosome III and arm 2 of chromosome XII, consistent with experiments. Table 6.1

summarizes modeling assumptions regarding number of beads.

Table 6.1: Summary of number of beads used in each type of simulation. All other chromosome arms
are discretized as in (Vasquez et al. 2016).
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6.2.4 Crosslinking

As in [2], we assume a pair-wise binding of beads by introducing a spring-like force between them.

This spring force obeys a WLC law, just like the one between neighboring beads in the bead-spring

chromatin chain. However, in the crosslinks, the springs are 50x stronger. Note that, when these

crosslinks occur intrachain, loops are formed. We explore several assumptions about crosslinking in

the nucleolus and external to the nucleolus.

(a). Absence of crosslinks throughout the whole domain. This set of data is used as baseline

comparison with all other simulations.

(b). Fixed loops in the nucleolus only. Here we assume that the 361 beads composing the nucleolus

are arranged such that strong WLC springs connect every third, fifth, or seventh bead. This

results in chain configurations of permanent 3-bead, 5-bead, and 7-bead loops, respectively.

(c). Dynamic cross linking in the nucleolus only. We assume stochastic dynamic crosslink formation

within the nucleolus, with all beads within the nucleolus available for binding-unbinding kinetics,

and assume no crosslinks outside the nucleolus. We tune dynamic cross linking through the

use of six parameters, defined below. Unlike single molecule analysis or imaging, this approach

enables us to discern how the dynamics of entropic chain fluctuations, together with on and off

timescale distributions of the binding protein, influence the strength of interactions within the

nucleolus.

(d). Preferential dynamic cross linking interval vs. external to the nucleolus. We assume dynamic

cross linking throughout the genome, but with a fraction (1/3, 1/10) of active binding sites

external to the fully active nucleolus.

6.2.5 Dynamic looping parameters

(a). Barrier. The distance (90 nm) between which two beads must fall in order to be eligible to

form a crosslink. Experimental work suggests that the binding protein condensin can reach

and bind portions of DNA that are at most 90 nm apart [100].

(b). Maximum loop distance. The distance where the WLC spring has a singularity. the bond

might start at a larger distance when they form the crosslink, but will quickly move within
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this distance. This value was chosen base on experimental work suggesting that condensin can

stretch to 45 nm [100].

(c). Loop force scale. Applicable in both the uniform looping and dynamic looping cases, this

parameter is a coefficient that scales the linear part of the WLC spring; namely, it makes the

spring stiffer at shorter length scales.

(d). Mean on, Mean off, Standard Deviation on, Standard Deviation off. These parameters are

times in seconds. They are the mean and standard deviation for how long a crosslink is active

or inactive. In our simulations, we have varied the values for “Mean On" and “Mean Off"

(often choosing values so that the ratio Mean On:Mean Off = 9) but have kept both “Standard

Deviation On" and “Standard Deviation Off" set to 20% of their respective mean value for all

simulations. For example, if “Mean On" = 0.09 sec and “Mean Off" = 0.01 sec, then “Standard

Deviation On" = 0.018 sec and “Standard Deviation Off" = 0.002 sec.

(e). Formation and destruction of links. Due to the dynamic nature of the loop formation and the

constantly changing spatial organization of the beads, the pair bonds need to be updated each

time step. Bonds might break because one of the beads in the pair became inactive. Bonds

can form because two active and available beads might be close enough to form a bond. To do

this, we compute the pairwise distance between all beads that are active and not currently

bonded, and put the distance in a strictly upper triangular matrix. If all of those distances are

larger than the barrier then no more bonds need to be created. Otherwise the smallest value in

this matrix means that there will be a dynamic bond formed between the beads corresponding

to the row and column of this entry. The bond is made and the corresponding row and column

is removed from the upper triangular matrix since a bead can at most dynamically link with

one other. This process is repeated until the smallest distance is above the barrier distance. In

the end this matrix does not have to be empty, since the number of available beads might be

odd and there are often lone beads that are too far away from the other unattached beads. We

also note that, in the case of dynamic looping, it is likely that two beads will be more than the

maximum loop distance apart from one another when they first join to form a loop, since the

barrier value is larger than the maximum loop distance value. Thus, at every subsequent time

step after the initial loop connection is made, the distance between the two beads is halved
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until that distance is less than the maximum loop distance value.

6.2.6 Microscope simulator

We have created two distinct pipelines —one for experimental images, and the other for simulated

bead position data. Simulated data goes through a program, which we call the microscope simulator,

to create images that can be post-processed the same way as images that come from experiments.

This allows us to analyze the entire simulation run. This is done by using and extending DataTank,

an object-oriented programming environment offering large data set support and visualization tools

made by Adalsteinsson http://www.visualdatatools.com/DataTank. The metric we use is nucleolar

area.

(a). Experimental input. Images from light fluorescence microscopy are input into the DataTank

script. The script takes the max projection of the z-stack to produce a single image for a

given time. We use the Otsu thresholding method (OTSU 1979) to determine the appropriate

nucleolar contour threshold for each frame. This gives us a polygonal representation of the

boundary, and allows us to compute the area for the cell at each frame and compute statistics

from the collection of images.

(b). Simulated input. When analyzing simulated data, the process is similar, but we must first

transform the simulated data into an image. This is the program we refer to as the Microscope

simulator and was created as a module in DataTank. This module contains information about

how a single point of light spreads and is visualized in 3D; namely, it utilizes a point spread

function (PSF) to generate a simulated 3D image. This PSF was captured using the same

microscope that the Bloom Lab uses in their experimental work. In the DataTank script, the

simulator module takes as input a three-dimensional stack of images coming from a single

fluorescent bead along with the x,y,z coordinates from the simulation. The module goes over

each simulated data point and shifts the three dimensional input image to that center and

adds together all of those images to form a three dimensional image. At this point it computes

a max projection to create a single two-dimensional image. This is done for every frame of the

simulation. After this, we use the same process as for the experimental images, except that

the threshold is kept the same for all of the images, at 68% of the maximum light intensity.
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6.3 Results

6.3.1 The nucleolus is a heterogeneous and dynamic nuclear sub-domain.

In the yeast cell, 1.8 Mb of a tandem repeat of 9.1 kb (about 180 repeats) resides on the right

arm of chromosome XII. This repeat contains the genes for 5S, 5.8S, 18S and 25S rRNA and

several transcribed and non-transcribed spacer regions. The repeat array occupies a specific nuclear

domain throughout the cell cycle in living yeast. To visualize the nucleolus we fused several protein

components to GFP including Cdc14 (protein phosphatase), Cbf5 (pseudouridine synthase), and a

multiply integrated array of lacO/lacI-GFP [101]. Nucleolar protein fusions and integrated lacO

arrays occupy a distinct region of the nucleus adjacent to the nuclear envelope and typically opposed

to the spindle pole body. We have developed analytical tools to quantitate changes in nucleolar

morphology and distribution (Methods). Our analysis shows that the distribution of areas occupied

by a nucleolar protein (Cdc14-GFP) display a lognormal distribution in wild-type cells in G1 of the

cell cycle (Figure 6.1A & Figure 6.2). For each of these distributions we calculated the expected

value (E[X]) and coefficient of variation (CV) as measures of central tendency and dispersion of the

data (Figure 6.1B).

6.3.2 Nucleolar position and morphology is not dependent on rDNA continuity along
a single chromosome.

In yeast cells, rDNA can be experimentally manipulated through chromosome translocation

to split the locus among different chromosomes. We have utilized a strain where the rDNA has

been split between chromosome XII and III (Figure 6.2). Through an engineered chromosome

translocation, Mikus and Petes [99] have generated a yeast strain where a translocation between two

chromosomes results in splitting the rDNA. Remarkably, the split nucleolus is indistinguishable from

the nucleolus in wild-type cells (Figure 6.2), similar to that found in cells with rDNA at ectopic sites

(34). Figure 6.1A-B show that the area within the nucleolus, as well as the quantitative analysis of

central tendency and dispersion, are comparable between the two biological situations. This finding

provides the impetus to explore models that account for the biological merger of rDNA when the

gene arrays lie on disparate chromosomes.
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Figure 6.1: Quantitative analysis of nucleolus area in wild-type and rDNA translocation strains. (A)
Histogram of experimental results for wild type (WT, 88 cells) and rDNA translocation (127 cells).
Y-axis is percentage in each bin. (B) Measures of central tendency (Expected value, E[X]) and
dispersion (Geometric coefficient of variation, CV) obtained from best fit to lognormal distributions
to experimental data in (A). (C) Histogram of simulations results for no crosslinks, uniform crosslinks
and dynamic crosslinks, with Keq = 9 and two different (slow and fast) binding times ton for single
and split nucleolus. Y-axis is percentage in each bin. (D) Measures of central tendency (E[X]) and
dispersion (CV) obtained from best fit to lognormal distributions of simulated data in (C).

6.3.3 Implementation of crosslinks through molecular springs to simulate the nucleo-
lus

To directly compare bead-spring models to experimental data we convolved beads that occupy

the position comparable to the rDNA repeats in chromosome XII with a point-spread function from

a fluorescence microscope used to image the nucleolus (Methods). The strategy was implemented

in DataTank (http://www.visualdatatools.com). Analyses of nucleolus area from simulations also

display a lognormal distribution (Figure 6.1C). Figure 6.1D shows the resulting measures of central

tendency and dispersion. Examples of microscope-simulator images and area thresholds are shown

in Figure 6.3, for different modeling assumptions.

Structural maintenance of chromosomes (SMC) proteins, including condensin (SMC2,4) and

cohesin (SMC1,3), are major structural components of eukaryotic chromosomes and are enriched
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Figure 6.2: Experimental results for CDC14-GFP of intact and translocated rDNA.Maximum intensity
projections of CDC14-GFP in strains with (A) WT (DCY102.1) and B translocated (DCY1017.2)
rDNA.

in the nucleolus throughout phylogeny. The proteins comprise small rings (25-50 nm dia.) that

function to build chromatin loops, hold sister chromatids together, and are the basis for the 3D

organization of the chromatin fiber into TADs ([2]). To simulate rings that physically aggregate

remote chromatin domains, we implemented molecular springs in the model that bridge and hold

pairs of beads for prescribed statistical durations. This spring force obeys a worm-like chain law,

based on polymer models of random coils [14, 15] and is the same as the one implemented in the

springs between neighboring beads of the bead-spring chromatin chains. These crosslinking springs

are proxies for a ∼45 nm diameter condensin ring complex. In addition, the crosslinking springs are

50x stronger than those connecting neighboring beads. In this way, crosslinking springs represent

relatively stiff protein complexes (small persistence length, Lp) while springs between neighboring

beads represent chromatin tension blobs (large Lp).

To explore whether introducing crosslinking via simple springs is sufficient to segregate sub-

domains in the genome, we implemented simulations with no crosslinks (Figure 6.4A), permanent

crosslinks formed by springs located at fixed locations (uniform crosslinks —Figure 6.4B), and
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Figure 6.3: Qualitative analysis of nucleolus area. Simulation results converted to microscope images
(Methods). (A) Without crosslinks, (B) uniform, fixed cross-links, (C) dynamic crosslinks for single
nucleolus with ton = 0.09 s, (D) dynamic crosslinks for single nucleolus with ton = 90 s, (E) dynamic
crosslinks for split nucleolus with ton = 0.09 s, (F) dynamic crosslinks for split nucleolus with ton =
90 s.

crosslinks formed by springs whose locations are changed dynamically (dynamic crosslinks —Fig-

ure 6.4C), as described in the Methods section. In Figure 6.4, for uniform crosslinks we impose

chain configurations with 3-bead loops: two looping beads separated by one bead, as described

in Methods. For dynamic crosslinks we assume stochastic dynamic crosslink formation within the

nucleolus, with all beads within the nucleolus available for binding-unbinding kinetics, and assume no

crosslinks outside the nucleolus (see below for inclusion of crosslinks outside the nucleolus). Several

noteworthy differences distinguish the dynamic crosslinks case from the uniform, fixed-loops case.

For instance, dynamic crosslinking allows for the possibility of a transient, fluctuating “loops within

loops" structure. We tune dynamic crosslinking through the use of six parameters, defined in detail

in Methods. The parameters are the distance (90 nm) between which two beads must fall in order

to be eligible to form a crosslink, maximum separation (45 nm) that beads cannot breach when they

are bound by a dynamic crosslinking spring, spring force that makes the spring stiffer at shorter

length scales (50x), and mean ton, mean toff, standard deviation on, and standard deviation off. The
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last four parameters are in seconds and they define the distribution of times at which beads can turn

“on" and “off", i.e., are eligible for binding with other active beads. In the model, we have varied the

values for ton and toff, keeping the equilibrium rate constant, Keq= ton/toff = 9, and have set the

standard deviations of both distributions equal to 20% of the mean value for all simulations.

6.3.4 Crosslinks in the model promote compaction and spatial segregation while dy-
namic cross linking promotes connectivity and substructure within the nucleolus

Unlike single molecule analysis or imaging, simulation enables us to discern how the dynamics

of entropic chain fluctuations, together with permanent versus dynamic crosslinking, influence the

strength of interactions within the nucleolus. Figure 6.4 shows contact maps consist of average

bead-bead distances over a 15-minute period. In the absence of crosslinking, the maps in Figure 6.4A

reveal a fairly uniform distribution of bead-bead distances across the genome. Although the average

distance is about 1 micron, there is heterogeneity across the genome and different simulations show

different distributions (top-bottom Figure 6.4). Upon introducing static 3-bead looping, Figure 6.4B

shows that the major change is a decrease in average bead-bead distances, from 1 micron to 600

nm, in the region where the looping was implemented (denoted as the rDNA containing 1.8Mb of

ribosomal DNA gene repeats). However the remaining beads exhibit similar contact statistics as in

the non-crosslinking configuration, except for their interactions with beads belonging to the nucleolus

region, which show an increase in bead separation (lighter “cross" in the contact maps), indicating

enhanced sequestration of the nucleolus. In contrast, fast dynamic crosslinking has a major impact

on the behavior of the rDNA cluster (Figure 6.4C). There is a predominant compaction of bead-bead

distance in the dynamic case, down to 300-400 nm among a subset of beads (further explored below)

within the nucleolar region and less dramatic yet still much closer bead-bead proximity within the

rest of the nucleolus relative to the rest of the genome. Furthermore, the distance between the rDNA

beads and the rest of the genome increases, corresponding to more enhanced sequestration of the

nucleolus. This implies that the rDNA beads are interacting more frequently with themselves, and

therefore less frequently with the remainder of the genome. This is notable in the perpendicular cross,

lighter regions vertical and horizontal from the rDNA, signifying the rDNA bead interactions with

unlinked chromosomes. This somewhat non-intuitive impact of weak binding relative to tight binding

kinetics has been explored in other biological contexts (Newby et al., Nature Communications,

revisions submitted), both experimentally and theoretically.
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Figure 6.4: Contact Maps depicting the average 3D bead-to-bead distance over 15 minutes. Each plot
corresponds to a different data set; however data sets in the same row (top or bottom) share the
same random seed and only differ in the type of crosslinking imposed in the nucleolus. Fast dynamic
crosslinking dramatically increases nucleolus connectivity, whereas static crosslinking has a far lesser
effect. (A) No crosslinks, (B) 3-bead fixed loops, (C) Fast dynamic crosslinking (Keq = ton/toff =
9, ton = 0.09 s).

6.3.5 Binding kinetics timescales tune segregation and heterogeneity of the nucleolus

In the previous section we showed that fast dynamic crosslinking enhances interactions within the

active binding domain, leading to enhanced compaction and segregation of the nucleolus relative to

permanent or no crosslinking. Here we explore the critical biological parameters involved in dynamic

crosslinking, the on and off timescales of binding kinetics between nucleolar beads via the molecular

springs, and their influence on nucleolar morphology and nucleus-wide genome organization. We

simulated 3 dynamic kinetic regimes, each with Keq = ton/toff = 9, spanning fast to slow (weak

to tight) binding with ton = 0.09, 0.9, and 90 seconds, shown from left to right in Figure 6.5.

These bead-bead contact maps reveal that faster binding kinetics induces closer bead-bead contacts

(progressively darker shades) within the nucleolus. Further, upon closer inspection of Figure 6.5 left

column, fast kinetics induces heterogeneity of bead-bead contacts within the nucleolus, indicative of

structure-within-structure in nucleolus morphology, which homogenizes with slower binding (left to
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right in Figure 6.5).

Figure 6.5: Nucleolus and genome-wide interactions as functions of crosslinking parameters. (A)
Faster kinetics (lower ton) result in more interactions within the nucleolus. From left to right ton
= 0.09, 0.9, 90 s. Dynamics outside the nucleolus are controlled by the number of beads that are
actively crosslinking. From top to bottom: all beads outside the nucleolus are inactive, every 10th
bead is active and every 3rd bead is active. All contact maps correspond to an average over 15 min
for a single run. All data shown are simulated using the same random noise. (B) Distribution of
bead-to-bead distances for dynamic crosslinking with Keq=9 and ton=0.09s. Substructures within
the nucleolus are formed by groups of beads that interact more frequently, leading to the darker
regions in the contact maps and the peaks in the distribution functions. Although dynamic, these
substructures persist over time for a given run (see Sup. Movie 1) and vary from run to run. (C)
The substructures are lost in the population averages resulting in a more uniform distribution of
bead-to-bead distances within the nucleolus.

6.3.6 Dynamic crosslinking is a segregation mechanism within the nucleus.

By allowing a preferential interaction of beads in a specific part of the genome, a crosslink-induced

phase separation occurs within the nucleus. In our simulations, one phase consists of beads in

the nucleolus and this region is characterized by being denser than the rest of the nucleus. This

compaction comes from enhanced interactions among these beads together with reduced interactions

with other beads in the genome. To take into account different binding kinetics outside the nucleolus

we define the number of ‘actively crosslinking’ beads outside. Figure 6.5 (top to bottom) shows

that as this number decreases (less externally active beads) the nucleolus becomes more compact.

As more beads outside the nucleolus participate in binding kinetics the identity of the nucleolus is

weakened: less separation between bead-bead contacts within and external, and less compaction and
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segregation of the nucleolus (Fig. 6.12).

Figure 6.5A shows that substructures are formed within the nucleolus exclusively in the fast

kinetics case, ton = 0.09 s. These substructures are formed by clusters of nucleolar beads that reside

closer and interact more frequently with members of their cluster, as suggested by the nonuniformity

in the contact maps (left column of Figure 6.4). To amplify this feature, in Figure 6.5B we show

histograms of bead-bead distances for two individual simulations and for a population average over 10

individual simulations, all with ton = 0.09 s and identical initial data. Note the remarkable similarity

of histograms for both individual runs shown (indeed for all 10 individual runs), with striking peaks

within the nucleolus bead-bead distances yet with smooth proximity distributions of the population

average and all bead-bead statistics involving extra-nucleolar beads. The first peak at ∼10 nm

identifies subsets of beads tightly and persistently packed (forming clusters), and the second peak

at ∼300 nm implies a robust separation between the persistent clusters. To visualize this implied

morphology, Figure 6.6 is a 3D snapshot of all nucleolus beads for both individual runs, revealing

∼25 clusters of 10-25 beads each. Distances within these clusters correspond to the leftmost peak in

the graphs for individual runs in Figure 6.5B, while inter-cluster distances correspond to the second

and third peaks in the same histograms. Although dynamic, these substructures persist in time for

each individual run and vary from run to run (see Figure6.16). We note that these peaks are not

present in runs with slower dynamics (see Fig. 6.11 for ton = 90 s and Figure 6.17). Furthermore,

these substructures are lost in the population averages that show uniformly distributed bead-to-bead

distances within the nucleolus as shown in Figure 6.5C). That these peaks do not survive population

averaging, despite the remarkable similarity in the cluster morphology of both runs in Figure 6.5A

(indeed all ten runs), is due to the fact that nucleolar beads are randomly distributed in the clusters

for each run, so the tight associations of beads in any one cluster for any individual realization are

different in every other realization. This result indicates that population averages might obscure a

rich set of dynamic structures, which can only be appreciated at the single, live cell level.

Dynamic crosslinking within the nucleolus imposes itself on the remainder of the chromosomes as

seen in the contact maps. By taking out a large segment of potential interactions (rDNA), contacts

between the remainder of the genome occur with greater frequency. This indicates that despite a

large block of the chromosome segregated in its own territory, the ability of remaining chromosomes

to independently interact, e.g., by different SMC proteins, is not impeded. There is a small increase
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Figure 6.6: Snapshots of 3D nucleolus simulations. Bead distributions for (A) ton = 0.09 s and (B)
ton = 90 s. Red symbols represent bead positions, dark blue segments represent transient crosslinks
between beads both inter- and intra-chain, light blue lines represent intra-chain neighboring bead
connections. Inserts in A and B are blow-ups of small volumes around bead clusters.

in the average distance between nucleolus beads and beads outside the nucleolus (Figure 6.5B-S3).

These results suggest that dynamic crosslinking, although segregating nucleolar beads, still allows

them to explore the nuclear state. There is physiological evidence for nucleolar DNA exiting the

nucleus under conditions of DNA damage [102]. The simulation indicates that rDNA is constantly

able to “explore" the nucleus, and perhaps DNA damage takes advantage of this naturally occurring

process.

We can divide our simulations along 3 main conditions: 1) static/uniform vs. dynamic crosslinking,

2) magnitude of dynamic binding-unbinding timescales, and 3) percentage of active binding domains

throughout the nucleus. A summary of these conditions is shown in Fig. 6.9 where we compare the

statistics of bead-bead separation using best fits to lognormal distributions and their measures of

central tendency (expected value, E[X]) and dispersion with respect to the mean (geometric coefficient

of variation, CV). These statistics allow us to quantitate the degree of nucleolar structure. Imposing

uniform looping in the nucleolus has little effect in the average bead-bead distance for beads both

inside and outside of the nucleolus. Dynamic crosslinking, on the other hand, reduces the average

distance between intra-nucleolar beads, while an increase of active beads outside the nucleolus has

the opposite effect, i.e., increasing the average intranucleolar distance. As more beads outside the
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nucleolus participate in the crosslinking dynamics, the average separation between nucleolus beads

increases (Fig. 6.9). This effect is more pronounced in the slow kinetics (ton = 90 s), which shows

bead-bead distances that are comparable with those found in the case where crosslinking was absent

throughout the whole nucleus. With more active beads outside the nucleolus, the nucleolar beads

are more spread out, indicating that the area increases as nucleolar beads spend more time outside

the nucleolus.

6.3.7 Split nucleolus: Co-linearity is not required to form a single domain.

A critical prediction of the model is that the coalescence of beads into a distinct phase is

not dependent on their co-linearity, (i.e., contiguous on the same chromosome arm) rather it is a

consequence of binding kinetics. To test this in the model we simulate a split nucleolus by dividing

“nucleolar beads" into two different chains as described in the Methods section. The objective of this

numerical experiment is to assess whether dynamic crosslinking suffices to create different regions

within the nucleus or if co-linearity of such beads is required. Our results indicate that the split

chains occupy a single region within the nucleus as shown in the contact maps in Figure 6.7 & 6.13.

In addition, the distance between all nucleolar beads are comparable, consistent with them being

in close proximity (Figure 6.6B). These results suggest that the main driving mechanism in the

formation of nucleolar-like regions is a “preferential crosslinking" within that region. In our case,

this preferential crosslinking is controlled by the on/off binding dynamics and the number of active

beads outside the nucleolus.

Remarkably, the dynamics observed in our single nucleolus simulations are mirrored by those in

the split nucleolus. Namely, faster binding kinetics result in a decrease in the nucleolar area (compare

Figs. 6.9 and 6.14) arising from beads within the nucleolus being closer to each other and interacting

less with beads outside the nucleolus (Figs. 6.10 & 6.15 ). The introduction of crosslinking dynamics

outside the nucleolus results in an increase in nucleolar area and increased interactions of nucleolus

beads with non-nucleolus beads. Finally, for slow crosslinking dynamics and large number of active

beads outside the nucleolus, the resulting distribution of bead-bead distances shows a complete

mixing throughout the nucleus; evident in the contact maps shown in Figure 6.7. We note that this

“mixing" effect is more pronounced in the split nucleolus case than in the single nucleolus (compare

bottom right of Figure 6.5A & Figure 6.7A).

Results discussed above point toward a different understanding of the formation of nucleolar-
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Figure 6.7: Distribution of bead-to-bead distances for split nucleolus. (A) Contact maps show that
there is a marked increased in bead interactions within the nucleolus as a function of decreasing
the on/off times of binding (left to right). Faster kinetics result in more interactions. Left column
ton=0.09 s, right column ton=90 s. Active beads outside the nucleolus are introduced to account for
binding interactions throughout the nucleus. In the non-nucleolar chromatin, interactive beads are
inactive outside the nucleolus (stride zero —top row), every 10th bead is active (stride 10) and every
3rd bead is active (stride 3 —bottom row). (B) Substructures within the nucleolus are formed by
clusters of beads that are closer, interact more frequently, and maintain some separation between
clusters. These fluctuating substructures create darker regions in the contact maps and peaks in the
bead-bead proximity histograms within the nucleolus. Although dynamic, these substructures persist
over time for a given run (see Fig. 6.18) and are robust from run to run although the nucleolar bead
cluster assignments are random. (C) The substructures are lost in the population averages, even
though the cluster morphology is robust, because of random cluster assignments, resulting in a more
uniform distribution of bead-to-bead distances within the nucleolus.

type regions in the nucleus. As previously discussed, assuming different polymeric properties for

the nucleolar beads results in segregation and slower dynamics of the nucleolus, consistent with

experimental results [53]. However, this assumption alone cannot describe the results observed

experimentally for a split nucleolus. Our approach of distinguishing the nucleolar beads not by

their polymeric properties but by their affinity to certain proteins (binding kinetics), recapitulates

segregation, slower dynamics and split nucleolus observations. We note, however, that in vivo the

most probable scenario is a combination of different non-specific (entropy, polymeric properties,

macromolecular crowding, etc.) and specific interactions (e.g., crosslinking).
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6.4 Discussion

The numerical study presented here suggests that preferential crosslinking in different regions

of the genome results in the self-segregation, compaction, and morphology of these regions, with

each feature tunable by the timescales of crosslinking. Using bead-spring polymer models, we have

shown that the only necessary condition to “create" a nucleolus is that certain beads (which we

labeled “nucleolar beads") have binding affinity to each other in a dynamic way. Whether or not the

nucleolar beads belong to the same chain, has little effect in the formation of the nucleolus or its

dynamics. The important parameters are their interaction kinetics and their ability to interact with

non-nucleolar beads. We control the interaction kinetics via on/off binding timescale distributions

and the interactions with other beads through the fraction of active beads outside the nucleolar

region. We have summarized the parameter space explored in this study in Figure 6.8, where the

radius of gyration of the resulting nucleolus is used as a metric for nucleolus size.

Figure 6.8: Summary of nucleolus size with respect to crosslinking parameters. Radius of gyration,
Rg, for each of the parameter values investigated in this study. For single nucleolus dynamics the
values for ton are 0.09, 0.9 and 90 s. For split nucleolus dynamics ton = 0.09 and 90 s. Increase
in “on" time leads to an increase in the nucleolus size. Similarly, increase in the fraction of beads
that are active outside the nucleolus (stride) increases the size of the nucleolus. For slow kinetics
and comparable number of active beads inside and outside the nucleolus (light blue), there is little
difference with respect to the case where no crosslinks are included (black). All dynamic crosslinking
simulations have Keq = 9.
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The kinetics of the crosslinking agent relative to the motion of the substrate is a major driver

of sub-nuclear organization. If the crosslinkers bind and release more rapidly than the chains

can relocate, the non-intuitive consequence is that the chains explore less space. When nodes

of protein/binding sites arise, they persist for extended time periods. The result is evident in

Figure 6.5 as peaks and valleys in the histogram of bead-bead distances and as a 3D array of bead

clusters in the snapshots of nucleolus beads in Figure 6.6, with persistence revealed in Supplemental

movies. The primary peak in the fast-binding histograms represents an increased number of beads

interacting within small areas, the array of clusters in Figure 6.5C. The valleys are a consequence of

cluster-cluster separation statistics. Importantly, this heterogeneity is lost if one averages across a

population (compare population average vs. individual runs, Figure 6.5). A second consequence of

the rapid kinetics relative to chain motion is the increase in distance for a portion of beads (tail

toward increasing distance). This can be seen in the increase in coefficient of variation for dynamic

looping. This may have important biological consequences in terms of a mechanism for extending

the DNA, thereby facilitating RNA transcription.

In previous studies we described some general principles driving nuclear organization during

interphase [2]. We showed that entropic and/or other non-specific interactions dictate, to first order,

the structure and dynamics of the yeast genome. We hypothesized that the role of biochemical and

other specific interactions is to modulate this organization by guiding, stabilizing and sustaining cycle-

dependent genomic states. One objective of the present work is to validate such hypotheses and indeed

we have shown how certain specific interactions (modeled as crosslinks) drive the rearrangement into

different functional phases within the nucleus. While entropic and other non-specific interactions

such as macromolecular crowding [103, 104, 105, 106] and viscoelastic phase separation [107, 108]

promote the association of different regions or compartments, specific interactions are ultimately

responsible for shaping and maintaining such compartmentalization.

One can view the nuclear environment as a complex, cross-linked network formed by chromosomes,

proteins and other macromolecular components. This cross-linked network exhibits characteristics

observed in gel solutions such as subdiffusive behavior [109, 110, 1]. By assuming “preferential"

crosslinking kinetics we had effectively modified the local gel properties of the network. In this

view, one could consider the nucleolus formation to be driven by a gel-gel transition, where one gel

phase, the nucleolus, exhibits properties corresponding to a “stiffer" gel compared to the rest of the
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genome. In addition, the formation of different phases within the nucleus via crosslinks favors the

formation of nuclear compartments through self-organization allowing the development of diverse

dynamic structures [103], which gives the genome the ability to rearrange into different functional

states according to modifications of the crosslinking mechanisms. These mechanisms can arise from

the fast exchange of proteins across different regions in the genome, which has been observed in the

nucleolus [111], Cajal [112] and PML bodies [113].

6.5 Supplementary Data

Supplementary figures and screenshots from supplementary movies are included below. Supple-

mentary Data is also available at NAR Online.
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Figure 6.9: Quantitative analysis of bead-bead distances within the nucleolus for different crosslinking
parameters. Expected value (E[X]) and geometric coefficient of variation (CV) obtained from best
fit to lognormal distribution of the population averages of bead-to-bead distances. Dark gray bar
corresponds to the no loops case. In the uniform loops group, 3, 5, 7 correspond, respectively, to
3-bead, 5-bead, and 7-bead loops. In the dynamic crosslink case, for a given value of ton, the three
bars correspond, respectively, to 0, every 10th, and every 3rd bead is active outside the nucleolus,
i.e., from left to right, within each group of bars, there are more active beads outside the nucleolus.
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Figure 6.10: Quantitative analysis of bead-bead distances outside the nucleolus for different crosslinking
parameters. Results for single nucleolus dynamics.
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Figure 6.11: Distribution of bead-to-bead distances for dynamic crosslinking with single nucleolus,
Keq = 9 and ton = 90s.
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Figure 6.12: Distribution of bead-to-bead distances for different model parameters. Top to bottom,
change n stride outside the nucleolus. Right to left decrease in ton.
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Figure 6.13: Distribution of bead-to-bead distances for dynamic crosslinking with SPLIT nucleolus,
Keq = 9 and ton = 0.09s.
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Figure 6.14: Quantitative analysis of bead-bead distances for different cross linking parameters in
SPLIT nucleolus simulations. Expected value (E[x]) and geometric coefficient of variation (CV)
obtained from best fit to lognormal distribution of the population averages of bead-to-bead distances.
For a given value of ton, the three bars correspond, respectively, to stride 0, 10, and 3 outside the
nucleolus.
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Figure 6.15: Quantitative analysis of bead-bead distances outside the nucleolus for different crosslinking
parameters. Results for split nucleolus dynamics.
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Figure 6.16: Various forms of visualization and analysis for the single nucleolus, with dynamic
looping parameter ton = 0.09s. One frame of the movie is shown.
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Figure 6.17: Various forms of visualization and analysis for the single nucleolus, with dynamic
looping parameter ton = 90s. One frame of the movie is shown.

95



Figure 6.18: Various forms of visualization and analysis for the split nucleolus, with dynamic looping
parameter ton = 0.09s. One frame of the movie is shown.
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CHAPTER 7

Additional Analyses & Interpretation of Results

7.1 Visualization

In mathematical modeling, appropriate visualization of a system can prove extremely valuable for

advancing understanding. Model visualization may offer a means of comparison with experimental

work or a quick check that the system is behaving as we expect. In the case of yeast spatiotemporal

dynamics, since our model contains easily tunable parameters and discretizes to a much higher

resolution than what can be seen experimentally, visualization of the simulated data provides valuable

insight into the system dynamics. A combination of visualization and other forms of analyses, such

as the investigation of persistence length discussed later in this chapter, has resulted in insights to

system behavior that would otherwise have likely gone unnoticed or remained somewhat unclear. A

central focus of my dissertation work has been on the development of visualization techniques. In

my dissertation defense I will show many movies that I have made illustrating chromatin dynamics,

with a particular focus on nucleolus dynamics. Selected frames from selected movies are presented

in this chapter.

7.2 Additional nucleolus results and analyses

7.2.1 Microscope simulator: further work and details

As discussed in the previous chapter, in order to better assess and compare simulated and experi-

mental data in a consistent and systematic way, we developed a microscope simulator computational

program using DataTank. This program is more versatile than indicated in the previous chapter;

namely, there are two types of valid experimental input. Experimental input option i corresponds

to a population of cells (∼120, depending on the dataset), where each cell has 1 time value and 11

z-slices. Note that the number of z-slices corresponds to the number of different “heights" along the

z-axis at which the 2D image of the cell is taken by the microscope. This is the input type used in

the submitted paper [11]. Experimental input option ii corresponds to 41 time values of a single cell,
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where each cell has 7 z-slices. Thus, instead of looking at a single time value for many cells, we are

looking at a time-lapse of a single cell.

If we are using input option ii, then we need to account for the fact that the experimental images

bleach over time, to the point where it is no longer possible to obtain an accurate area measurement

for the nucleolus. Therefore, we need to use an extended version of the pipeline described in Chapter

6. At each time step, following the computation of the nucleolus area using the Otsu thresholding

method previously described, we do an n-to-n ratio computation to assess whether the bleaching has

progressed to the point at which the data has become too noisy to use. In other words, as we move

forward in time, once the “n-to-n" ratio drops below 0.04 for a given time value, I only consider the

data from the time steps before that point when computing the nucleolus area over time. I have

automated the entire microscope simulator process in DataTank for both experimental input options,

including but not limited to the computation of specific nucleolus thresholds over different cells or

time values, nucleolus areas computation, and the calculations determining which time values should

be discarded due to noise. 8 “toggle" options allow users to alter the pipeline as they see fit. Users

can also easily adjust the number of desired passes through the Otsu thresholding scheme or the

n-to-n ratio.

Identifying and discarding noisy data: The goal is to obtain the background-corrected signal

with respect to integrated intensity. This is a way of dealing with the background noise, to be used

instead of superimposing an arbitrarily-created bleaching function over the image using DataTank.

Josh Lawrimore suggested this procedure, and I wrote and implemented it in DataTank. In the

steps below, we let Total area = “total area of all pixels in contour", and Integrated intensity (“II")

= “sum of pixel intensity values within contour".

Steps:

(a). Fback = “the background noise for something of this particular area"

Fback =
(IInucleus − IInucleolus) ∗ (TotalAreanucleolus)

(TotalAreanucleus − TotalAreanucleolus)

(b). Fkinetochore = “background-corrected signal with respect to integrated intensity"

Fkinetochore = IInucleolus − Fback
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(c). Ratio =
Signal

Noise
=
Fkinetochore
Fback

? The condition required for keeping a time value is:
Fkinetochore
Fback

≥ 0.04 (in other words, the

nucleolus is at least 4% brighter than the nucleus).

Note that this process requires the choice of a nucleus contour threshold. We chose this value

through a somewhat arbitrary eyeballing of the image, for lack of a more experimentally-verified

method. Currently, this threshold value remains constant over time and across cells. Figure 7.1

shows selected sequential images of a G1 cell over time. Note how bleaching increases over time.

Figure 7.1: Microscope simulator output of the first four sequentially taken experimental images of a
single cell. Images were taken every 30 seconds.

Figure 7.2: Visualization of how the point spread function we define within our microscope simulator
module influences the way light from a simulated fluorescent bead spreads. This PSF is used in the
simulated input pipeline to translate simulated position data to simulated fluorescent beads. Left:
View from xy-plane. Right: View from xz-plane.
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Otsu thresholding code. Sample Matlab code for Otsu thresholding algorithm (Figure 7.3). The

microscope simulator pipeline uses a C++ version of the code that I wrote.

Figure 7.3: Sample Otsu thresholding algorithm, written in Matlab.

7.2.2 Loop size variability and persistence over time.

Nucleolus beads dynamically form loops of varying sizes. In the previous chapter we showed

that dynamic looping promotes increased compaction, associativity, and substructure formation

among nucleolus beads; however, we did not explicitly discuss which nucleolus beads bind with one

another over the course of the simulation. Figures 7.5 & 7.4 show how often two nucleolus beads

form a loop during the course of the simulation; in other words, how many of the 9000 total time
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steps does nucleolus bead i spend bound to other nucleolus beads, and what are the indices of those

other nucleolus beads? Parts A and B from Figure 7.5 show a single frame from two movies that

I created – using the data sets for slow and fast kinetics, respectively –, in which each frame of

the movie shows the amount of time steps that a single nucleolus bead (index specified by the blue

dotted line) spends bound to one of the other 360 nucleolus beads during the 15-minute simulation.

Figure 7.4: Four selected frames corresponding to the dataset for ton=0.09 and a single nucleolus.
Dynamic loop partners are shown for nucleolus beads 11, 12, 77, and 180, as indicated by the dotted
blue line.

We note that dynamic looping allows for loops of differing sizes to form and that a single nucleolus

bead will dynamically bind with multiple other nucleolus beads during the course of the simulation.

Thus, loops truly are forming and breaking during the simulation. Furthermore, beads do not appear

to preferentially form loops based on location within the chain; in other words, which two beads

form a loop does not appear to be closely correlated with those beads’ indices. This behavior is also

evident in the split nucleolus case (Figures 7.6 & 7.7). It is particularly noteworthy that beads

dynamically bind with beads in both regions of the split nucleolus, not just their own, indicating

that the two split nucleolus regions are spatially intermixing and in close proximity.
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Figure 7.5: Frequency with which a given nucleolus bead forms a loop with other nucleolus beads. In
the single nucleolus there are 361 total beads; here we look at nucleolus bead 77. (A) Slower kinetics,
i.e. ton=90. (B) Faster kinetics, i.e. ton=0.09.

Figures 7.8 & 7.7 similarly highlight the fact that “loop size" (ie. the number of beads composing

a loop) is variable, through the lens of contact maps.
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Figure 7.6: Frequency with which a given nucleolus bead forms a loop with other nucleolus beads. In
the split nucleolus there are 362 total beads; here we look at nucleolus bead 77. The yellow region
incorporates the beads that compose region 1 of the nucleolus, the green region incorporates the
beads that compose region 2 of the nucleolus. We see that bead 77 binds to beads in both nucleolus
regions. Dynamic looping, ton=90.

Figure 7.7: Contact map representation of nucleolus loop binding frequency, corresponding to split
nucleolus.
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Figure 7.8: Contact map representation of nucleolus loop binding frequency, corresponding to single
nucleolus.

Persistence of looping. In addition to learning which nucleolus beads bind to one another, I also

wanted to investigate how long these dynamic loops persisted over the course of the simulation. For

example, Figure 7.5 shows that nucleolus bead 77 spends 761 of 9000 time steps bound to nucleolus

bead 72, but it does not provide information about the persistence of that bond – did beads 77 and

72 bind and unbind several times, or did they remain bound for all 761 time steps? Figures 7.9& 7.10

show that the magnitude of the on/off binding rates significantly influences the longevity of a dynamic

crosslink. As hypothesized, slow dynamic looping enables dynamically formed loops to remain unbro-

ken for a longer period of time than fast dynamic looping, in which loops are breaking and forming

at almost every time step. Very interestingly, however, we see that, when viewed in conjunction

with the 3D visualizations of the nucleolus shown in Figure 6.6, weak (i.e fast) dynamic looping

enables sections of the genome to remain in close proximity for an extended period of time, longer

than what is seen when strong (i.e. slow) dynamic looping is imposed. This might suggest a mecha-
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nism for phase separation, or provide a long enough period of proximity for cellular processes to occur.

Figure 7.9: Persistence of looping for nucleolus bead 115. (A) Slow dynamic looping, ton=90 s. (B)
Fast dynamic looping, ton=0.09s .
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Figure 7.10: Same as Figure 7.9, just zoomed in (shorter range in x-axis).

7.2.3 3D Visualization within 3D Nucleus.

The figures in this section are snapshots of the system in time, corresponding to varying parameter

choices. I include them here to help readers better visualize the nucleolus within the context of the

entire nucleus. All figures (Figures 7.11, 7.12, 7.13, 7.14) are frames from movies that I created in

which the beads move over time.
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Figure 7.11: The nucleolus at a single point in time, when there is dynamic looping in the nucleolus
with ton=90.

Figure 7.12: The nucleolus at a single point in time, when there is dynamic looping in the nucleolus
with ton=0.09.
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Figure 7.13: The nucleolus at a single point in time, when the nucleolus is split into two regions.
Left) Dynamic looping in the nucleolus with ton=90. Right) Dynamic looping in the nucleolus with
ton=0.09.

Figure 7.14: The nucleolus at a single point in time, when there is dynamic looping in the nucleolus
with ton=90. All 2803 beads in the system are shown as red spheres. Springs between non-nucleolus
neighbor beads are light red, springs between nucleolus neighbor beads are light blue.

108



7.3 Changes in cell nucleus viscoelasticity in response to DNA damage

In yeast cells, damaged DNA will attempt to repair itself through homology search, or through

non-homologous mechanisms. The collective environment within the cell nucleus exhibits viscoelastic

properties, meaning it experiences both viscous and elastic fluctuations. We are interested in

determining how the mechanical properties of the cell environment change after a DNA strand is

cut, and how the resulting changes to the viscous or elastic nature of the environment may facilitate

the repair pathway. Taking into consideration varying boundary conditions for the nuclear walls,

we use mathematical analysis to investigate how the movement of damaged bead-spring chains and

subsequent interactions among all chains influence the viscoelastic moduli of the cell nucleus and offer

insight into the collective fluctuations of chromatin spots. Are effects from DNA damage felt both

locally and globally? As the lead mentor for an REU on this topic, I guided three undergraduate

students as we implemented the Mason-Weitz Protocol [114, 115], as well as other analysis techniques

such as mean squared displacement, to study how the movement of simulated damaged DNA and

the stiffness of the nucleus wall influence the environment within the nucleus. We found that the

local viscoelastic signature of a chosen DNA spot is position- and chain-dependent.

It would be interesting to expand this project to a study of colored noise, and of how colored

noise may be facilitating repair processes. For example, through implementing the differences power

law scaling of the mean squared displacement of beads located near a damaged site or away from a

damaged site, we could investigate how DNA damage translates to different colored noise signatures

of the local environment.
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CHAPTER 8

Conclusions

8.1 Conclusions

In this dissertation, we present a comprehensive 3D model describing the spatiotemporal dynamics

of interphase chromosomes in yeast cells that is fully reflective of experimental parameters. Our

findings support and expand on past results. We show that a model consisting of first principles

– thermal fluctuations, entropic forces, repulsive forces, tethering, and confinement – is enough

to produce and see evidence of topologically associating domains. We show that nuclear bodies

are secondary levels of regulation of subdomains of high intra-chromosomal interactions and that

enzyme-related processes modulate these domains. In particular, we present novel modeling and

visualization techniques for the nucleolus. We explore the minimal physical requirements to segregate

this region of repeated DNA from the remainder of the genome. Through an investigation of different

types of looping, we found that imposing cross-links between non-adjacent beads in a bead-spring

polymer model promotes compaction, physical segregation, and heterogeneity of the nucleolus.

Through tuning the magnitude of the binding kinetics, we can further tune the degree of segregation

and connectivity; namely, fast dynamic crosslinking enhances interactions within the active binding

domain. We find that fast dynamic crosslinking promotes substructure within the nucleolus, as

evidenced by the formation of clusters of beads that persist over time as well as analyses of average

distance between nucleolus beads with other nucleolus beads over time. Notably, cluster formation

in response to fast kinetics but not in response to slow kinetics is robust, as clusters disappear when

we slow down the binding kinetics partway through a simulation and clusters form when we speed

up the binding kinetics partway through a simulation. From a biological standpoint, such results

have potentially very significant implications regarding our understanding of the factors driving and

mechanisms behind phase separation and various cellular processes such as gene expression.

Through development of analysis and visualization tools such as the microscope simulator, in

which we transform simulated position data into equivalent microscope images, we show that our
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model reproduces the nucleolar compaction, morphology, and statistics seen in live cells. Furthermore,

these distinct features persist when the nucleolus is split between two chromosome arms. Significantly,

our model reproduces the experimental result that co-linearity is not required to form a single domain;

preferential dynamic crosslinking is a sufficient segregation mechanism.

Perhaps most significantly, we highlight the importance of studying chromosome dynamics on

a single, live cell level. As stated in Hult et al. [11], we find that analyses based on population

averages are likely insufficient and perhaps misleading, as population averages might obscure a

variety of dynamic structures that are appreciable only when considering single, living cells. This also

underscores the value of continuing to develop comprehensive, time-dependent, experimentally-guided

mathematical models.

8.2 Future Work and Directions

As discussed earlier, there are many interesting future directions for this work. Of particular

interest and focus is further development of how we model the nucleolus. We plan to incorporate

additional levels of complexity to the dynamic looping parameters, i.e., additional types of binding

proteins, additional binding sites on proteins, variation of binding rates throughout the genome. We

also hope to develop better ways of quantifying the nucleolus, beyond the nucleolus area measurements

we can obtain through our microscope simulator. For instance, we would like to write a code to

describe the point cloud of the nucleolus over time. This would give us a volume metric and help us

to better analyze the dynamic shape of the nucleolus over time.

Another research focuses on developing a better understanding of the formation of clusters at

fast kinetics. We are working with Dane Taylor, Sam Heroy, and Peter Mucha to use network

techniques such as k-means clustering to study these clusters. Central goals of this study include

determining how long clusters persist, how system size or binding kinetics influence the number

and size of clusters that form, and developing a metric for measuring cluster robustness. Additional

studies include analyzing the local viscoelastic environment within and outside of clusters, as well as

a parameter sensitivity study of binding on/off rates to determine the optimal parameters for cluster

formation.

An underlying motivational factor for further development of the mathematical model introduced

in this thesis is the desire to better understand the movement of damaged DNA. In yeast cells,

damaged DNA will attempt to repair itself through homology search, or through non-homologous
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mechanisms. We are interested in determining how the mechanical properties of the cell environment

change after a DNA strand is cut, and how the resulting change to the viscous or elastic nature

of the environment may facilitate the repair pathway. It is known that DNA explores more space

when it is cut; through our future work, we hope to learn how much more space it explores, why it

explores more space when damaged, and how to modify our parameters and equations to describe

this movement.
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