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ABSTRACT 
 

Derek N. Pamukoff: The Effect Of Vibratory Stimuli On Cortical And Spinal Neuron 
Excitability  

(Under the direction of J. Troy Blackburn)  
 

Context: Muscle vibration enhances neuromuscular function, but the mechanism of 

improvement is unclear. Heightened motor neuron excitability within the spinal cord could be 

responsible for improved muscle function following vibration.  However, the response of 

supraspinal structures – such as the motor cortex – to vibration is unclear.  Vibratory treatments 

could benefit individuals with quadriceps dysfunction, such as patients with knee pathologies.  

Whole body (WBV) and local muscle vibration (LMV) improve quadriceps function but the 

efficacy of treatment may vary.  Objective: To compare the effects of whole body and local 

muscle vibration on measures of quadriceps function.  Participants: Sixty recreationally active 

young adults, and twenty individuals with anterior cruciate ligament reconstruction.  

Interventions: Healthy subjects were randomized to one of three groups (WBV, LMV and 

control) and completed three testing sessions.  Subjects completed testing of quadriceps spinal 

neuron excitability, corticomotor excitability, or a maximal voluntary isometric contraction and 

then completed an intervention based on group assignment. Subjects repeated the assessment 

immediately, ten minutes, and twenty minutes following the intervention. Subjects completed the 

remaining two assessments in separate sessions.  Injured subjects completed testing of 

quadriceps spinal neuron excitability, corticomotor excitability, and maximal voluntary isometric 

contraction, and then complete one of three treatment conditions (WBV, LMV, control). Subjects 
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completed follow up testing following the intervention. Subjects completed the remaining two 

treatment conditions in separate visits.  Main Outcome Measures: Quadriceps peak torque 

(PT), rate of torque development (RTD), electromyography (EMG), central activation ratio 

(CAR), active motor threshold (AMT), motor evoked potential (MEP) amplitude, and Hoffman 

Reflex.  Results: Healthy subjects in the WBV group improved in quadriceps PT, EMG, CAR, 

AMT and MEP amplitude.  Healthy subjects in the LMV group improved in quadriceps EMG 

and AMT.  Injured subjects improved in quadriceps PT, EMG, CAR, and AMT in the WBV and 

LMV conditions.  Conclusions: WBV and LMV improve quadriceps function and could be a 

useful tool to improve the efficacy of strengthening protocols in patients with knee pathologies.  

Improvements in quadriceps function resulting from WBV and LMV can be attributed to greater 

corticomotor excitability.  WBV may be more suitable to improve quadriceps function in healthy 

individuals compared to LMV.  
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CHAPTER 1: INTRODUCTION

As many as 250,000 anterior cruciate ligament (ACL) injuries occur each year in the 

United States.3  ACL reconstruction is costly, amounting to nearly $50,000 per procedure in 

direct medical costs.4,5  However, patients with ACL injury and reconstruction are at much 

greater risk for developing osteoarthritis (OA),6-10 which drastically elevates the cost associated 

with ACL injury.4  OA is a gradual reduction of articular cartilage within a joint, and patients 

with ACL injury are 3-5 times more likely to develop tibiofemoral OA compared to those 

without injury.6-11  Despite surgical reconstruction, patients with ACL injury show evidence of 

tibiofemoral OA between 5 and 15 years following initial injury.7,12-14  Radiographic evidence of 

OA is seen in up to 13% of all knees with no concomitant meniscal injury, and up to 48% of 

knees with a concomitant meniscal injury at 10 years or less of follow-up.8  Importantly, ACL 

injuries are most common among youth populations.15  Therefore, these patients develop 

degenerative joint changes at much younger ages, which elevates the lifetime cost of an ACL 

injury attributable to OA.  The annual lifetime cost of ACL injuries borne on the United States 

health care system, which includes the cost of long-term complications such as OA, is $7.6 

billion when treated with reconstruction and $17.7 billion when treated with rehabilitation.4  

Furthermore, OA affects nearly one third of older adults and is a leading cause of physical 

disability.16  In the long term, OA contributes to sedentary behavior and comorbidities such as 

cardiovascular disease.17,18  Overall, the direct costs attributable to knee OA in the United States 

is $51 billion and affects 9 million Americans.19   
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 The pathway from ACL injury to tibiofemoral OA is multifactorial and can in part be 

explained by alterations in neuromuscular function following injury.20-24 Quadriceps weakness is 

common following ACL reconstruction due to arthogenic muscle inhibition (AMI).21-24  

Alterations in afferent input to the central nervous system decrease the excitability of the 

quadriceps, ultimately leading to a compromised ability to activate the quadriceps voluntarily.20  

This altered afferent input stems from joint effusion, excessive joint laxity, pain, or 

deafferentation of the native ACL from reconstruction or deficiency, or a combination 

thereof.25,26  Lesser quadriceps activation leads to reductions in knee extensor strength, which 

may contribute to the development of OA.  Several studies suggest that baseline quadriceps 

function is a predictor of OA progression.23,24,27-30 Furthermore, OA is considered to be a 

mechanically driven disease, meaning that alterations in joint loading influence OA 

development.2,31-33  The quadriceps act as a shock absorber during the early stance phase of gait, 

and failure to effectively absorb energy caused by impact with the ground may alter the loading 

characteristics of articular cartilage.  Individuals with ACL injury have lesser internal knee 

extensor moments and knee flexion angles during gait resulting from quadriceps weakness and 

hamstring co-contraction.  These alterations reduce the time interval over which ground reaction 

force is absorbed, thereby increasing the impulsive load.2,34-36  Articular cartilage is viscoelastic 

and is, therefore, sensitive to loading rate.  Cartilage loaded at a faster rate will stiffen and is 

more likely to breakdown, potentially leading to OA.37  Additionally, kinematic alterations 

following ACL injury and reconstruction may change nutrient-waste exchange in the articular 

cartilage.  Altered gait kinematics shift the tibiofemoral contact areas and expose areas of 

articular cartilage that are not conditioned to habitual stress.  As these biomechanical alterations 

linked to the development of OA are, at least in part, attributable to quadriceps dysfunction, 
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improving neuromuscular function by addressing lingering quadriceps weakness is an important 

strategy to prevent or delay the development of OA in patients with ACL injury.  

 Rehabilitation strategies aimed to improve quadriceps strength are largely ineffective 

because they do not address underlying deficits in neuromuscular function (i.e. AMI).38,39  

Patients with inhibition respond poorly to traditional rehabilitation protocols and display minimal 

improvements in knee extensor strength.39  Therefore, novel strategies are needed to enhance the 

efficacy of current rehabilitation programs.  Vibration therapy (VT) is an increasingly popular 

mode of exercise due to reports of improved muscle strength, power, EMG amplitude, and 

physical function.40-49  When a muscle is vibrated, a reflexive contraction known as the tonic 

vibratory reflex (TVR) is evoked.50-52  Essentially, there is a discharge of the primary endings of 

the muscle spindle (Ia afferent) via repeated rapid lengthening of the muscle from vibration.53  

This excites the alpha motor neurons, resulting in muscle contraction.  However, the TVR only 

accounts for increases in muscle activity during VT, and does not account for improvements that 

are observed following cessation of VT.54,55  Therefore, it is likely that there are other 

mechanisms that explain why improvements in muscle function persist following VT.  The intent 

of VT is to increase the number and frequency of excitatory stimuli sent to α-motorneurons in an 

attempt to override the inhibitory afferents coming from the damaged joint.  Therefore, VT may 

be an effective method for improving quadriceps function following knee joint injury to prevent 

or delay the onset of OA.  

 Despite reports of enhanced muscle strength and power following VT,40,41,56 there is 

paucity in the literature regarding the mechanisms by which VT alters neuromuscular function.  

Early studies suggest that enhanced motor neuron excitability within the spinal cord is 

responsible for these improvements.51  However, reports are mixed because VT has both 
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excitatory and inhibitory influences on spinal reflex activity.  For example, some studies suggest 

a suppression of spinal neuron excitability following VT in healthy individuals57-59 and in 

patients with spinal cord injury,58 potentially due to presynaptic inhibition.60  These findings 

suggest that any improvement in muscle function following VT cannot be attributed to gains in 

spinal neuron excitability. What remains unclear is the role of supraspinal structures, such as the 

motor cortex following VT.  Cortical areas also receive and process afferent signals and produce 

cortical potentials in response to VT.61  Furthermore, muscle afferent input to the cerebral cortex 

is a major contributor in motor control.62  Limited evidence using transcranial magnetic 

stimulation (TMS) suggests that brief exposure to VT enhances corticospinal excitability.63-65  

This is particularly relevant, as studies show that patients with knee pathology have lesser 

corticospinal excitability.66,67  As such, if VT elicits improvements in cortical and spinal 

excitability, it could be a potent adjunct treatment to improve quadriceps function.  However, 

studies evaluating the effect of VT on corticospinal excitability have used small samples, and no 

study, to my knowledge, has concurrently evaluated spinal and cortical neuron excitability 

following VT.  

 The majority of studies have reported enhanced muscle function following whole body 

vibration (WBV).40,47,48,56,68-73  However, WBV platforms are cost prohibitive (up to $10,000) 

and provide limited portability.  Local muscle vibration (LMV) also improves muscle 

function,41,46,74 and may be a cost effective and portable alternative to WBV.  WBV and LMV 

provide similar stimuli, but the efficacy of the stimulus may differ.  During WBV, energy from 

vibration is dampened by the ankle joint, knee joint, and calf muscles, which may influence the 

magnitude of the vibration stimulus delivered to the quadriceps.  The reduction in energy from 

the vibration signal may be less if the stimulus is delivered directly to the muscle via LMV rather 
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than indirectly via WBV.  We recently demonstrate that LMV improves quadriceps activity for a 

sustained period of time post-application in healthy individuals55 and that WBV and LMV 

produce similar increases in voluntary quadriceps activation following experimental knee joint 

effusion.75  However, no studies have compared the effects of WBV and LMV on cortical and 

spinal neuron excitability.  

 Patients with ACL injury have deficits in corticospinal excitability that contribute to AMI 

and reduce quadriceps function.66,76,77  Reduced quadriceps function may contribute to the 

development of OA, and current rehabilitation strategies are largely ineffective in individuals 

with AMI.  Novel strategies are needed to address AMI, and VT may provide an adjunct 

treatment to improve quadriceps function.  However, it is unclear how VT alters neuromuscular 

function.  Therefore, the purpose of this study is to evaluate the effects of VT on measures of 

neuromuscular function.  The specific aims are as follows:  

 

1) To determine the effects of WBV and LMV on corticospinal excitability, spinal neuron 

excitability, electromyography (EMG) amplitude, and voluntary muscle activation during 

a maximal isometric contraction in healthy adults.  I hypothesize that WBV and LMV will 

increase EMG amplitude and corticospinal excitability, but will suppress spinal neuron 

excitability, and that these changes will be greater than those observed in a control 

group receiving no treatment.   

 

2) To compare the effects of WBV and LMV on corticospinal excitability, spinal neuron 

excitability, EMG amplitude, and voluntary muscle activation during a maximal 

isometric contraction in healthy adults. I hypothesize that LMV and WBV will enhance 



 20 

corticospinal excitability and EMG amplitude, but attenuate spinal neuron excitability, 

relative to the control group receiving no treatment, but the magnitude of these 

improvements will not differ between WBV and LMV. 

 

3) To determine the duration of the effect of WBV and LMV on corticospinal excitability, 

spinal neuron excitability, EMG amplitude, and voluntary muscle activation during a 

maximal isometric contraction in healthy adults. I hypothesize that the effect of LMV and 

WBV on corticospinal, spinal neuron excitability, and EMG amplitude will persist for at 

least 10 minutes following cessation of treatment.  

 

4) To compare the effects of WBV and LMV on EMG, corticospinal excitability, spinal 

neuron excitability, voluntary muscle activation, and EMG during a maximal isometric 

contraction in a subset of patients with ACL injury.  I hypothesize that LMV and WBV 

will enhance corticospinal excitability and EMG amplitude, but attenuate spinal neuron 

excitability, relative to the control condition receiving no treatment, but the magnitude of 

these improvements will not differ between WBV and LMV.  

 

 If VT enhances corticospinal excitability and quadriceps function, it would be a 

particularly potent treatment for individuals with knee pathologies who experience AMI.  

Furthermore, LMV represents a portable and less expensive alternative to WBV, and 

demonstrating equivalent effects would greatly enhance the viability of VT as a treatment.  A 

description of possible outcomes and interpretations is detailed in table 1.  
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Table 1: Possible Outcomes  
 

EMG H-Reflex AMT MEP Interpretation 
é	   ê	   ê é	   é in muscle function due to enhanced 

cortical neuron excitability 
é é ê	   é	   é in muscle function due to enhanced 

spinal neuron & cortical neuron excitability 
é	   é −	   −	   é in muscle function due to enhanced 

spinal neuron excitability 
é −	   −	   −	   é in muscle function due to post-

activation potentiation and warm-up  
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CHAPTER 2: REVIEW OF LITERATURE 

 

INTRODUCTION 

 The purpose of this literature review was to review pertinent studies and deficiencies in 

understanding.  Specifically, this review focuses on short-term and long-term neuromuscular 

alterations following anterior cruciate ligament injury, such as impaired quadriceps muscle 

function, and altered gait kinematics and kinetics.  This review addresses how deficiencies in 

quadriceps function alter knee joint loading during gait, and contribute to joint degeneration and 

tibiofemoral osteoarthritis development.  Second, this review identifies areas of deficiency in 

rehabilitation for ACL injuries, and why novel strategies to improve quadriceps function are 

needed.  Thirdly, this review provides evidence for the use of vibration therapy to improve 

muscle function, and how it may specifically apply to patients with ACL injury.  Additionally, 

this literature review illustrates how and why LMV may provide a cost-effective and portable 

alternative to WBV.  Lastly, results of this review are summarized and proposed aims are 

suggested. 

ANTERIOR CRUCIATE LIGAMENT INJURY  

Epidemiology  

 As many as 250,000 anterior cruciate ligament (ACL) injuries occur each year in the 

United States with nearly 200,000 ACL reconstruction procedures. 3 ACL reconstruction costs 

approximately $50,000 per procedure in direct medical costs, and ACL injury carries a cost of 
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$7.6 billion annually in the United States when treated with reconstruction, and $17 billion 

annually when treated with rehabilitation.4,5  Following ACL injury, alterations in muscle 

function and gait biomechanics elevate the risk of developing tibiofemoral osteoarthritis (OA). 6-

10  Patients with ACL injury are between three and five times more likely to develop OA 

compared to individuals with no injury. 6-11  Interestingly, patients with ACL injury are at greater 

risk for OA development regardless of reconstruction procedures. Patients with ACL injury that 

undergo reconstruction are 3-5 times more likely to develop OA compared to healthy 

individuals, and patients with ACL injury that do not undergo reconstruction are equally likely to 

develop OA compared to those with reconstruction.10  Overall, OA is seen in up to 13% of all 

knees with no concomitant meniscal injury, and up to 48% of knees with a concomitant meniscal 

injury at ten years or less of follow-up.8  Therefore, while ACL reconstruction may be effective 

for restoring near normal knee joint function, long-term consequences on joint health following 

injury are unchanged, and rehabilitation programs are ineffective.38,39  Importantly, the majority 

of ACL injuries occur in youth populations,15 which greatly elevates the lifetime cost of an ACL 

injury when considering the increased risk of OA development.   

 

Anterior Cruciate Ligament Anatomy 

 The ACL is a 2-4 centimeter long dense band of connective tissue between the femur and 

tibia. It is an important structure in the knee joint and serves primarily to resist and limit anterior 

tibial translation and rotational loads.78-82  The ACL is divided into two bundles largely 

comprised of type I collegen fibers: the anteromedial bundle, and the posterolateral bundle.83  

The anteromedial bundle originates at the most anterior and proximal aspect of the attachment to 

the femur and inserts along the anteromedial attachment of the tibia.78  The fibers of the 
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posterolateral bundle originate along the postero-distal aspect of the femoral attachment and 

insert along the posterolateral aspect of the tibial attachment.78  These bundles are not isometric, 

and the anteromedial bundle tightens as the knee moves into flexion, while the posterolateral 

sbundle becomes slack. 81  

The ACL receives innervation from the posterior articular branches of the tibial nerve, 

and also has several mechanoreceptors (Ruffini, Pacini, free nerve endings, and golgi-like 

receptors). 84-86  These mechanoreceptors have a role in proprioception and provide afferent 

information regarding knee position.  For instance, Ruffini receptors are sensitive to changes in 

length.  Deformation of the ACL influences output of the spindles in muscles surrounding the 

joint. 87,88  Furthermore, free nerve endings act as nociceptors for pain.  If the ACL is damaged or 

ruptured, loss of afferent information from these receptors contributes to diminished quadriceps 

function.88,89  Additionally, the ACL provides information regarding joint position sense.  

Therefore, patients with ACL injury would have diminished proprioceptive function.  

Reconstructive procedures are aimed to restore structural stability to the knee joint, and make no 

attempt at restoring function of the mechanoreceptors, which partially explains why quadriceps 

weakness may persist in patients with ACL injury.  Lastly, the ACL is also vascularized with 

blood supply from the middle gennicular artery.81  However, the distal area of the ACL that is 

subject to compressive loads has poor vascularity, which may explain why the ACL does not 

heal on its own.   

Injury Risk Factors 

The majority of ACL injuries (~70%) are the result of non-contact mechanisms.  Despite 

a vast body of literature regarding ACL injury, no single causative mechanism has been 

identified.  However, risk factors for non-contact ACL injury are anatomical, biomechanical, and 
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physiological.  Firstly, sex hormone concentration may influence collagen synthesis of the ACL 

thus contributing to its integrity and function.90,91  Furthermore, ACL function may vary 

depending on the phase of the menstrual cycle.  For instance, greater joint laxity is observed in 

the periovulatory and luteal phases of the menstrual cycle.92,93  Fluctuations in sex hormone 

concentration during the menstrual cycle may contribute to the high prevalence of ACL injuries 

among females compared to males.  Secondly, anatomical risk factors for ACL injury include 

smaller ACL size, greater quadriceps angle, and smaller intracondylar notch size.  Interestingly, 

females have smaller ACLs, greater quadriceps angles, and smaller intracodylar notches 

compared to males, and this likely increases their risk for ACL injury.  Thirdly, there are 

biomechanical factors that influence risk for ACL injury.  For example, landing with greater 

vertical impact force increases the risk for ACL injury.94,95  Furthermore, kinematic and kinetic 

differences during athletic tasks may influence ACL loading such as anterior tibial shear force, 

knee valgus position, internal knee extension moment, and knee flexion angle.  Females have 

greater anterior tibial shear force, greater knee valgus, greater knee extension moments, and 

lesser knee flexion during landing tasks compared to males.94,96,97  Importantly, while anatomical 

and hormonal risk factors are not modifiable characteristics, biomechanical factors may be 

modified through supplementary training.   

Lastly, current rehabilitation programs often leave individuals at risk for re-injury.  

Patients with ACL injury are 12% more likely to tear their ACL compared to healthy individuals.  

Therefore, it is likely that rehabilitation programs are not effective in restoring neuromuscular 

38,39 and biomechanical function.  Patients with ACL reconstruction have abnormal landing 

biomechanics such as lesser knee flexion 36 and greater internal rotation 2 compared to healthy 

individuals that may increase their risk for re-injury.  Additionally, patients with ACL 
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reconstruction have alterations in gait that influence risk for knee OA.2,36,98,99  These alterations 

are detailed later in this summary. 

KNEE OSTEOARTHRITIS EPIDEMIOLOGY  

  Osteoarthritis (OA) is a gradual reduction of articular cartilage within a joint.  Clinical 

diagnosis of OA is typically guided by symptoms and physical examination.  However, 

radiographic evidence is used to assess OA severity and progression, and is defined by joint 

space narrowing and presence of osteophytes.  The Kelgren-Lawrence scale is a common metric 

of OA progression (grade 1 – doubtful narrowing of joint space and possible osteophytic lipping, 

grade 2 – definite osteophytes and definite narrowing of joint space, grade 3 – moderate multiple 

osteophytes and definite narrowing of joint space, grade 4 – large osteophytes and marked 

narrowing of joint space).  OA affects approximately one third of adults older than 65, and is a 

leading cause of physical disability.16  Knee OA is the most common kind of OA, affecting 9 

million Americans at an annual cost of $51 billion.100  Specifically, patients with ACL injury are 

three to five times more likely to develop knee OA compared to those without injury, regardless 

of whether they undergo reconstruction.6-11   

Knee OA can be classified as post-traumatic (e.g. following ACL injury) or idiopathic (as 

a result of other non-specific causes).  Patients with ACL injury who develop knee OA account 

for nearly 10% of all knee OA cases.4  The direct cost of ACL when considering knee OA 

development is estimated at approximately $7.6 billion annually when patients undergo ACL 

reconstruction.4  The cost of knee OA also increases with severity.  Mild knee OA incurs a direct 

annual cost of $9,801 per patient, moderate knee OA has a direct annual cost of $14,761 per 

patient, and severe knee OA has a cost of $22,111 per patient.4  Therefore, slowing the 

progression of knee OA is an important strategy to reduce the financial burden associated with 
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knee OA.  Lastly, knee OA contributes to lower extremity disability, sedentary behavior, and 

comorbidities such as cardiovascular disease.17  Additional risk factors that may predispose one 

to post traumatic knee OA include concomitant meniscal injury,15 obesity,101 joint 

alignment,102,103 age, gender, sedentary lifestyle, and muscle weakness.104  

Articular Cartilage Anatomy  

 Articular cartilage is a connective tissue that provides a smooth and lubricated surface for 

articulation, and attenuates joint loading.105  Articular cartilage is made of hyaline cartilage and 

is between two and four millimeters thick.106  Interestingly, articular cartilage does not receive 

blood supply or innervation.  Therefore, it has limited intrinsic healing capabilities.  Despite a 

lack of innervation and blood supply to articular cartilage, patients with OA still experience pain 

from nociceptors in other areas of the knee joint, bone marrow lesions, joint effusion, and 

inflammation.  Articular cartilage is composed of a dense extracellular matrix and distribution of 

specialized cells called chondrocytes.  Chondrocytes are the dominant cell type in articular 

cartilage.  They are highly specialized metabolically active cells that play an important role in 

maintenance and repair of the extracellular matrix. 106  Chondrocytes respond to many stimuli 

such as growth factors, mechanical loads, and hydrostatic pressures.107  However, chondrocytes 

cannot replicate, and therefore have limited healing ability in response to injury.  The 

extracellular matrix is made primarily of water, collagen, proteoglycans, and glycoproteins. 106 

The contents of the extracellular matrix assist in retaining water, which is essential to proper 

function.   

The articular cartilage is divided into zones (superficial, middle, deep, and calcified).108  

The superficial zone is thin and comprises up to twenty percent of articular cartilage thickness.  

It is made of mainly type II collagen, and fibers are aligned parallel to the articular surface.  This 
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layer contains a high number of chondrocytes, and protects deeper layers from sheer stress.  The 

superficial zone is in contact with synovial fluid, and is responsible for providing resistance to 

sheer, tensile, and compressive forces from joint articulation.  The middle zone provides a 

transition between the superficial and deep zones and represents up to sixty percent of total 

cartilage volume.  It is comprised of proteoglycans and thicker collagen fibers.  These fibers are 

arranged obliquely, and the middle layer contains a low number of chondrocytes.  The middle 

layer functions to resist compressive force.  The deep zone represents nearly thirty percent of 

articular cartilage volume, and has the largest concentration of proteoglycans, but lowest water 

concentration compared to the other zones.  Collagen fibers are arranged perpendicular to the 

articular surface and provide the greatest resistance to tensile forces compared to the other zones.  

Lastly, the calcified zone secures the cartilage to the bone by anchoring the collagen fibers of the 

deep zone to the subchondral bone.  

 In addition to zones, the extracellular matrix consist of distinct regions based on 

proximity to the chondrocytes, composition, and collagen fiber diameter.  The extracellular 

matrix can be divided into pericellular, territorial, and interterritorial regions.  Firstly, the 

pericellular matrix is a thin layer adjacent to the cell membrane and completely surrounds the 

chondrocytes.  It is composed of proteoglycans and glycoproteins, and serves to initiate signal 

transduction within cartilage during load bearing.109  Secondly, the territorial matrix surrounds 

the pericellular matrix and is composed of fine collagen forming a network around the cells. This 

region is much thicker and protects cartilage against mechanical stresses.  110 Lastly, the 

interterritorial region is the largest of the regions, and largely contributes to the biomechanical 

properties of articular cartilage.111  
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 Articular cartilage has unique viscoelastic properties that facilitate the transmission of 

loads to the underlying subchondral bone.  Articular cartilage is able to undergo high cyclic 

loading while demonstrating little or no evidence of damage under normal circumstances.112,113  

Application of joint loading causes an increase in interstitial fluid pressure.  The increase in 

pressure causes fluid to flow out of the extracellular matrix, and create frictional drag on the 

matrix.114  When the load is removed, the interstitial fluid flows back into the tissue.  As stated 

above, articular cartilage is viscoelastic and displays a time-dependent behavior when subject to 

constant loading due to flow-dependent, and flow-independent mechanisms.  Firstly, the 

permeability of articular cartilage is very low, and thus there is frictional drag on the matrix as 

fluid slowly flows in and out of the tissue from changes in pressure.  Additionally, the amount of 

frictional drag on the matrix increases with higher loading rates, thus increasing the load placed 

on the articular cartilage.  Secondly, the structure of the collagen-proteoglycan matrix provides 

intrinsic viscoelastic characteristics.  Overall, these mechanisms provide support and reduce the 

stress that acts on the solid matrix.  The viscoelastic nature of cartilage has implications for 

cartilage loading and development of knee OA, and is detailed later in this summary.  

 Articular cartilage also exhibits creep and stress-relaxation responses to loading.  When a 

constant compressive stress is applied to cartilage, the cartilage will deform or creep until 

equilibrium between stress and deformation is reached.  Likewise, when a constant strain is 

applied, stress will increase until a peak when a stress-relaxation occurs.  Furthermore, articular 

cartilage stiffens when subject to greater strain, and is very sensitive to changes in strain rate.  

Animal models have shown that high loading rates (5 milliseconds to peak) provide more 

damage to articular cartilage compared to low loading rates  (50 milliseconds to peak) at the 
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same magnitude of impact load.37  Deficits in quadriceps function may contribute to greater 

loading rates during gait, and thus contribute to articular cartilage breakdown.  

 

 

NEUROMUSCULAR ALTERATIONS FOLLOWING INJURY  

Quadriceps weakness is common following ACL injury,20,115 despite surgical 

reconstruction and subsequent rehabilitation.22,38,39  Muscle weakness is likely attributable to 

disuse atrophy.  However, atrophy does not occur instantaneously, and thus does not acutely 

influence force production.  Alternatively, arthrogenic muscle inhibition (AMI) occurs 

immediately following injury causing an immediate reduction in force production.20  AMI also 

contributes to ongoing quadriceps weakness associated with ACL injury.38  AMI is a form of 

reflexive neural inhibition that results in diminished motor drive to muscles associated with the 

injured joint.20  Although AMI functions as a protective mechanism to prevent pain and 

excessive motion, the ultimate result is further weakness and wasting of the surrounding 

musculature.  AMI is commonly measured using the central activation ratio (CAR), which 

estimates the percentage of motor units (recruitment and rate coding) that can be activated 

voluntarily.  In patients with ACL injury, deficits in quadriceps activation are commonly 

reported, but vary between 8 and 45%.104  Unfortunately, deficits in activation persist for several 

years following reconstruction and rehabilitation, and may contribute to joint degeneration and 

osteoarthritis.  For instance, Urbach and colleagues 22 found that the quadriceps were still 

inhibited by 15% nearly 2 years following reconstruction in a sample of 12 patients with an 

isolated ACL injury.  In addition, similar findings exist in patients with knee OA.  A recent meta-

analysis suggests that the quadriceps in patients with tibiofemoral OA are inhibited by 
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approximately 20%.116  Interestingly, deficits in quadriceps activation are also observed in the 

uninjured limb in patients with ACL injury.77,117,118  Previous studies have found inhibition in the 

uninjured limb ranging from 7 to 24%, and some have reported nearly equal inhibition to that of 

the injured limb.39,118  Inhibition in the quadriceps of the contralateral limb suggest that AMI is 

caused by both local mechanisms surrounding the joint, and central mechanisms that control 

movement and muscle function throughout the body (Figure 1).   

  In addition to 

providing stability to the 

knee joint, the ACL also 

has mechanoreceptors that 

provide sensory 

information to spinal and 

supraspinal regions 

regarding joint movement, 

position, and loading.81  

Following injury, altered 

afferent information is transmitted to the central nervous system, resulting in a decrease in the 

excitability of the quadriceps alpha motoneuron pool.81  Abnormal afferent discharge can come 

from stimulation or damage to mechanoreceptors, joint effusion, joint laxity, or nociceptors in 

response to pain.  The ACL also has projections to the muscle spindles in adjacent muscles, 

which are sensitive to changes in length, thus providing additional proprioceptive information.  

Lastly, alterations in spinal reflex and corticospinal function can contribute to AMI and are 

detailed below.  

Figure 1: Mechanisms of Arthrogenic Muscle Inhibition (adapted from Rice 
and McNair1) 
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Changes in Afferent Discharge  

 Swelling is common following knee injury and surgery and contributes to AMI.  

Moreover, swelling persists for up to 3 months following initial ACL injury, and for up to 12 

months following reconstruction.119  Swelling can also contribute to AMI independently of other 

factors such as inflammation, pain, and structural damage.1  For instance, injecting saline into a 

knee joint to increase intra-articular pressure (IAP) in uninjured joints can artificially cause 

AMI.25,75  Swelling raises the IAP within the knee joint, thus increasing the firing frequency and 

recruitment of group 2 afferent fibers, which are sensitive to changes in stretch and 

pressure.120,121  Therefore, greater discharge of group 2 afferents likely has a large inhibitory 

effect on quadriceps function.  For instance, prior studies have also shown that swelling reduces 

quadriceps activation measured via electromyography,122-124 H-reflex amplitude,125,126 and force 

output.75,127,128  

Inflammation also occurs following injury and surgery.  Inflammation alters the 

sensitivity of articular nerve endings supplied by group 3 and 4 afferents via a process called 

peripheral sensitization.129  The activation threshold of these receptors is lowered following 

injury, thus increasing afferent output to the central nervous system.129-131  Importantly, these 

types of fibers constitute the majority of afferent fibers within the knee joint.  Group 3 and 4 

afferents are nociceptive, and inflammation increases pain in association with afferent discharge, 

and pain may contribute to the magnitude of AMI.132  Also, the inflammatory process may 

increase the activity of otherwise silent free nerve endings.130,131  In response to inflammation, 

the firing threshold of these receptors is lowered, thus increasing afferent output contributing to 

AMI.    
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Structural damage or joint degeneration results in greater translation of the knee joint 

surfaces (femur and tibia) during movement that increase activation of mechanoreceptors and 

nociceptors that signal the end ranges of joint motion.133  For example, animals with transected 

ACLs have greater afferent activity in the major nerves supplying the knee joint.134  Although 

ACL reconstruction reduces joint laxity and afferent discharge, alterations in afferent activity 

persist following reconstruction.135  These results suggest that ACLR is not entirely effective in 

restoring normal function, which may partially explain why AMI persists following 

reconstructive procedures.   

Lastly, acute injury may also damage the sensory endings located within the ACL, thus 

reducing afferent output.133,136  Although factors such as swelling, inflammation, and joint laxity 

increase joint afferent discharge, different types of joint afferents may have contrasting effects 

(inhibitory vs. excitatory) on motor neuron excitability.  Acute damage to articular receptors 

within the ACL or joint capsule may reduce excitatory afferent input to the alpha motoneuron 

pool, thus contributing to lower quadriceps activation.136  Overall, swelling, inflammation, pain, 

joint laxity, and damage to articular receptors contribute to alterations in afferent discharge to the 

central nervous system, which causes AMI.  

 

Spinal Reflex Pathways  

 Abnormal afferent discharge from a damaged knee joint alters the excitability of reflexive 

pathways within the spinal cord.133,136,137  As a result, excitability of the quadriceps alpha 

motoneuron pool is reduced, which prevents full activation of the corresponding muscle.133,136,137  

Essentially, there are four main spinal pathways that may contribute to AMI: Ib inhibitory 

pathway, the flexion reflex, gamma loop inhibition, and pre-synaptic inhibition of the Ia afferent.  
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Firstly, Ib inhibitory interneurons located within the spinal cord receive input from Ib afferent 

fibers and other joint afferents.138  Alterations in afferent discharge described above facilitate the 

Ib inhibitory pathway, thus contributing to AMI by inhibiting the agonist muscle.137  For 

example, artificial knee joint effusion has been shown to increase Ib inhibition of the quadriceps 

H-reflex during voluntary muscle contractions.137   

The flexion reflex is a polysynaptic pathway that produces a pattern of flexor facilitation 

and extensor inhibition.139,140  Therefore, any facilitation of the flexion reflex would contribute to 

knee extensor (quadriceps) AMI.  The flexion reflex is mediated by a variety of different 

interneurons that receive input from many peripheral afferents, such as the articular receptors.141  

In response to joint inflammation, the activation threshold of afferent neurons associated with the 

flexion reflex is lowered and these neurons become hyperexcitable.142  In addition, lower flexion 

reflex thresholds are found in patients with knee pathology – such as those with knee 

osteoarthritis and ACL injury – compared to healthy controls.143-145  Furthermore, activation of 

the flexion reflex also produces inhibition of the quadriceps during maximal isometric 

contractions of the knee extensors.  In summary, any activation or facilitation of the flexion 

reflex likely contributes to AMI of the quadriceps.  

 The gamma loop may also mediate quadriceps activation.  Gamma motoneurons 

innervate muscle spindles that in turn transmit excitatory input to the alpha motoneuron pool of 

the homonymous muscle.1  Therefore, it is necessary that the gamma loop functions normally to 

achieve full activation of a muscle, and any interruption in the gamma loop may contribute to 

AMI.136  Patients with ACL injury have deficits in the transmission of Ia sensory input, partially 

explained by gamma loop inhibition.146-148  These patients have a disruption of excitatory output 

to the gamma motoneuron pool thus decreasing gamma motoneuron discharge.136  Ultimately, 
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this leads to a reduction in Ia afferent facilitation of the quadriceps alpha motoneuron pool, thus 

reducing overall quadriceps activation.  Pre-synaptic inhibition may also influence excitability of 

the alpha motoneuron pool and thus contribute to AMI.26  Pre-synaptic inhibition excites 

inhibitory interneurons that project to the synaptic terminal of the Ia afferent fibers.  Excitation 

of an inhibitory interneuron causes a reduction in the quantity of neurotransmitter released 

following an afferent volley.  In addition, this form of inhibition contributes to further gamma 

loop inhibition, which leads to AMI.  

 

Supraspinal Centers  

 Joint afferents have projections to both spinal and supraspinal areas.149,150  Supraspinal 

centers are influenced by joint afferent activity and contribute to AMI.  Transcranial magnetic 

stimulation (TMS) of the motor cortex provides a method to quantify changes in corticospinal 

excitability associated with knee pathology.66,151  Interestingly, some studies have found that 

corticospinal excitability measured via TMS (amplitude of motor evoked potential) is greater in 

individuals with knee pathology compared to healthy control subjects.151  This seems 

counterintuitive since patients with knee pathologies would be expected to have lesser 

corticospinal excitability, and there is only limited evidence available suggesting lesser 

corticospinal excitability among patients with knee pathologies.  However, authors suggest that 

greater corticospinal excitability following injury may be indicative of a compensatory response 

in an attempt to overcome inhibition of the quadriceps alpha motoneuron pool. Heroux et al. 66 

found lesser resting motor thresholds in patients with unilateral ACL injury compared to healthy 

controls, suggesting enhanced excitability of musculature surrounding the injured joint.  

Secondly, the brainstem has inhibitory control over spinal neurons involved in pain perception 
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and the flexion reflex.  Injury to the knee joint enhances descending input from the brainstem, 

which increases excitability of the flexion reflex and increase AMI.  Last, studies show that 

changes in quadriceps activation rely on motivation.  Any reduction in quadriceps strength or 

activation may be due to an adjustment in voluntary effort in response to fear of pain or eliciting 

further damage to an injured joint.  

POST TRAUMATIC OSTEOARTHRITIS FOLLOWING ACL INJURY 

 Quadriceps weakness resulting from AMI is common following ACL injury despite 

reconstruction and rehabilitation, and AMI is found in up to 78% of patients with ACL 

reconstruction and up to 100% in patients who are ACL deficient.104  The quadriceps are 

essential to normal ambulation.  In healthy individuals, the quadriceps act to attenuate shock 

during gait, and assist in evenly distributing load across the knee joint.  However, deficits in 

quadriceps function from injury result in loads being transmitted in greater magnitude and at a 

faster rate to the lower limb.20  Specifically, patients with ACL injury have alterations in lower 

extremity kinematics and kinetics that may 

elevate the risk of developing OA, and quadriceps 

dysfunction is thought to play a major role in the 

genesis of these biomechanical alterations (Figure 

2).2   

 Osteoarthritis is a gradual breakdown of 

articular cartilage from repetitive joint loading.  

Moreover, articular cartilage is viscoelastic and is, 

therefore, sensitive to the rate at which it is 

Figure 2: How gait mechanics can initiate osteoarthritis 
(adapted from Andriacchi and Mundermann2) 
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loaded.152  When articular cartilage is loaded at faster rates it stiffens, thus elevating its risk for 

failure and breakdown.  Previous studies in animal models demonstrate that repetitive impulsive 

loading of the limbs results in rapid degeneration of articular cartilage, regardless of the 

magnitude of the load.152  Impulsive loading refers to the relationship of a force applied over 

time and can be mathematically expressed as the product of force and velocity (displacement 

over time).  Therefore, reducing the time interval over which ground reaction force is absorbed 

would elevate the impulse experienced in the lower extremity.   

Articular cartilage adapts to habitual loading that occurs during walking.153-155  

Immobilization of the knee joint causes cartilage thinning, suggesting that functional loading is 

necessary to maintain cartilage health.  Following acute loading of the limb, cartilage adjusts its 

metabolism, resulting in greater proteoglycan production and proliferation of chondrocytes – the 

functional unit of cartilage.99  Ultimately, these alterations result in thicker cartilage and 

improved joint health. However, alterations in gait kinematics may shift the contact areas 

between bony surfaces that form joints to areas that are not typically loaded.156  Therefore, areas 

of thickest cartilage that are conditioned to frequent load bearing are no longer in contact with 

each other.  Areas of pressure are shifted, resulting in lesser joint space and the initiation of 

osteoarthritis.  

Patients with ACL injury and knee osteoarthritis have lesser quadriceps strength resulting 

from AMI as discussed above.  Deficits in quadriceps function influence gait biomechanics in 

the sagittal plane.34,36,98,157  During weight acceptance, the limb must accept full support of the 

body, and attenuate shock by flexing the knees, which is largely controlled by eccentric action of 

the quadriceps. Patients who are ACL-deficient or ACL-reconstructed with weaker quadriceps 

display lesser knee flexion and smaller knee extensor moments during gait,36,98 a condition that 
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has been labeled “quadriceps avoidance gait”. Lesser knee flexion excursion reduces the time 

interval over which ground reaction forces are absorbed, and therefore increase impulse at the 

knee joint.  In brief, lesser quadriceps activation influences shock absorption during gait via 

lesser knee flexion, which elevates the impulsive load at the knee and likely increases the risk of 

osteoarthritis development. 

While the quadriceps largely act to control loading at the knee joint in the sagittal plane, 

alterations in quadriceps function also influence frontal plane loading.  The quadriceps have a 

small moment arm capable of contributing to adduction/abduction at the knee.31  Quadriceps and 

hamstrings co-contraction provides most of the support for the knee adduction moment during 

gait.31  The knee adduction moment is an indicator of osteoarthritis risk.158  Tibiofemoral 

osteoarthritis most commonly affects the medial compartment of the knee joint.  Excessive knee 

adduction places a greater load on the medial compartment, and increases the risk of joint 

degeneration.102,158  Furthermore, greater knee adduction moment is associated with greater 

disease incidence, progression, and severity.158-160  Importantly, patients with ACL injury have 

greater knee adduction moments compared to healthy individuals.161  However, the relationship 

between quadriceps strength and adduction moment in patients with ACL injury is not clear.  

Nevertheless, improvement of quadriceps strength may contribute to lesser adduction moments 

and reduce the risk of further joint degeneration following knee injury.  

 Lastly, patients who are ACL deficient or ACL reconstructed commonly display an offset 

towards excessive internal tibial rotation.156,162  The thickest areas of cartilage are loaded when 

the knee is at full extension at heel strike.  Any shift in rotational alignment shifts the normal 

load bearing contact areas to regions that are not conditioned to high loads.2  Therefore, 
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excessive internal rotation potentially loads thin areas of cartilage that are more likely to break 

down.  

 

VIBRATION TRAINING  

 Rehabilitation programs in patients with knee pathologies are largely ineffective in 

restoring quadriceps function due to AMI.38,39,163  Vibration therapy is a growing alternative 

modality for exercise due to reports of enhanced muscle strength, power, and 

electromyography.164  Vibration also has positive effects on flexibility, bone and joint health, and 

many common measures of physical function.53  However, despite several studies that report 

improvements in markers of physical health, there are studies that report detrimental or equivocal 

results following vibration.46,70  Nonetheless, vibration may provide a novel treatment that could 

be used in conjunction with traditional rehabilitation programs to reduce AMI. 

Vibration employs sinusoidal mechanical oscillations with periodic alterations of force 

and acceleration over time.  Vibration provides a forced oscillation, and energy is transmitted 

from an actuator (the source of vibration, i.e. – vibrating platform) to a resonator (i.e. the human 

body or muscle) to produce a neuromuscular response.  Essentially, the human body is 

accelerated by vibration, which causes a reactive force within.53  This force is proportional to 

acceleration, assuming a constant mass (F = m�a).  Muscles and tendons are capable of storing 

and releasing mechanical energy, and energy storage occurs when the frequency of the actuator 

matches the frequency of the resonator.  In turn, the vibration amplitude of the resonator begins 

to exceed that of the actuator (amplitude amplification).53 The resonator will experience a greater 

internal force, and is at risk for damage.  Importantly, the human body attempts to dampen the 

vibratory signal to avoid injury by altering stiffness or introducing a frictional element.  For 
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example, posture can adjust the axial stiffness of the body to reduce the transmission of the 

vibratory stimulus as it travels from its source throughout the body.  For example, standing in an 

erect posture compared to a squatting evokes a stronger transmission of vibration to the head 

during WBV.  Likewise, shifting body weight to the forefoot rather than the mid or rear foot 

reduces vibration transmission.  Attenuation of the signal increases as ankle, knee, and hip joint 

angle increases.  Modulation of muscle activity is also relevant, and assuming a squat position 

will increase tension within the lower extremity musculature and increase signal transmission to 

these muscles.  

There is also an internal response from muscle when vibration is applied to the body.  

Muscles go through a rapid series of eccentric (lengthening) and concentric (shortening) actions.  

Changes in muscle length trigger a neural reflex – the tonic vibratory reflex – due to stimulation 

of the muscle spindles.51,52,165  The muscle spindles are a specialized group of muscle fibers 

arranged in parallel with the contractile fibers of skeletal muscle.166  The functional unit of the 

muscle spindle is the intrafusal fiber, which is further categorized into three types: the nuclear 

chain fiber, the dynamic nuclear bag fiber, and the static nuclear bag fiber.167  Intrafusal fibers lie 

within connective tissue that forms the shape of a spindle.  Each muscle spindle is composed of 

up to 10 intrafusal fibers that lie between extrafusal fibers responsible for muscle contraction.167 

These intrafusal fibers are affixed by the extrafusal fibers by the perimysium.166 Therefore, any 

increase in muscle length also causes a change in length of the muscle spindles.  The muscle 

spindle receives innervation from two sensory neurons: the type Ia afferent, and the type II 

afferent.  Both the type Ia afferent and type II afferent are activated when the muscle spindle 

changes length.  However, the type Ia afferent is sensitive to the rate of change in length, 

whereas the type II afferent is sensitive to  the static length of a muscle.166 Excitation of the 
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muscle spindles following rapid increases in length from vibration will increase excitatory input 

to the alpha motoneuron pool.  This causes a reflexive contraction in the homonymous muscle, 

which may facilitate increases in muscle function (strength, power, EMG etc.).  

However, the tonic vibratory reflex only accounts for heightened muscle function during 

vibration, and there are studies that report enhancements of muscle function following vibration 

that persist for several minutes.54,55  Some authors suggest adaptations such as elevated muscle 

temperature and blood flow akin to traditional warm-up activities, increased gravitation force 

placed on a muscle producing a training effect, and enhanced corticospinal excitability and 

intracortical processes.69,168,169  Overall, it is unclear why muscle function improves following 

vibration, and additional research is necessary to evaluate other mechanisms that may be 

responsible for improvements in muscle function following vibration, such as changes in 

corticospinal excitability and intracortical processes. 

As described above, vibration largely activates the Ia afferents of the muscle spindle 

system to produce a reflexive contraction.  However, the spinal circuitry is the first stage within 

the motor feedback loop for generating fast efferent reactions to proprioceptive input.  Moreover, 

supraspinal areas also receive and process proprioceptive information and generate evoked 

cortical potentials following vibration.61  Afferent input from muscles is a requirement for proper 

neuromuscular control, and muscle afferent facilitation accounts for a large proportion of central 

motor drive.  Prior studies have shown that altered Ia afferent input influences the excitability of 

corticospinal pathways and activation of cortical motor areas.62  Vibration applied directly to a 

muscle or tendon facilitates Ia afferent firing rate.  Therefore, changes in spinal reflexes and 

corticospinal processes following vibration seem reasonable as explanations for improvements in 

neuromuscular function. 
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Effects on Spinal and Supraspinal pathways  

To my knowledge, there are only three studies that have evaluated the effects of vibration 

on the excitability of corticospinal pathways using TMS.  Mileva et al. ,64 Kossev et al.,170 and 

Siggelkow et al. 65 found that vibration heightens the activity of the brain in healthy individuals 

during vibration, suggesting enhanced corticospinal excitability.  Specifically, motor evoked 

potential (MEP) amplitude 64,65,170 and latency 65 measured using single-pulse suprathreshold 

transcranial magnetic stimulation were augmented and shortened, respectively.  Additionally, 

increases in corticospinal excitability were found during LMV 65,170 and WBV.64  For example, 

Mileva et al.64 found that tibialis anterior MEP amplitude was augmented during WBV at 30Hz 

and amplitude of 1.5mm, and Siggelkow et al.65 found that MEP amplitudes were increased in 

the extensor carpi radialis during 80Hz and 120Hz, 0.5mm peak-to-peak amplitude LMV.  These 

findings suggest that adaptations following vibration are not restricted to the periphery, but also 

involve corticospinal processes.  Moreover, these results suggest that vibration may improve 

corticospinal excitability.  However, these studies used very small samples (n=7, n=10) thus 

warranting more comprehensive evaluations.  Furthermore these studies largely evaluated MEP 

amplitude during the vibratory stimulus.  Siggelkow et al.65 measured MEP 1 second after the 

offset of LMV, and Mileva et al.64 measured MEP characteristics for up to 110 seconds post 

WBV.  Therefore, what also remains unclear is if the effect of vibration on corticospinal 

excitability persists following cessation of the stimulus.  A fourth study by Pollock et al.171 also 

found indirect evidence of enhanced corticospinal excitability during 1 minute bouts of 30Hz, 

3mm peak to peak amplitude WBV by measuring the recruitment threshold of single motor units 

in the vastus lateralis.  Specifically, the recruitment threshold of high threshold motor units was 

reduced following WBV, suggesting a lower active motor threshold.  However, this study only 
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used 7 healthy subjects and testing was completed and no testing was completed to determine if 

the change in recruitment threshold persisted following WBV.  

Alpha motoneuron excitability within the spinal cord can also influence muscle function.  

However, there is inconsistent evidence regarding the effect of vibration on spinal reflexes.  

Some studies have found a suppression of the Hoffman (H) reflex following prolonged LMV and 

WBV, 57,58,172,173 whereas others have observed facilitated reflexes after WBV.169,174  The 

duration of the vibratory stimulus can greatly influence the outcome.  Following prolonged 

vibration (15-30 minutes), it is possible that the muscle becomes fatigued due to neurotransmitter 

depletion from rapid muscle contractions.  Furthermore, prolonged vibration (several minutes to 

one hour) can temporarily dampen the transmission in Ia afferent fibers by increasing 

presynaptic inhibition, raising the activation threshold of Ia fibers.115,175,176  Therefore, the 

duration of the stimulus is a crucial moderator of the relationship between vibration and muscle 

function.  Ritwegger 53 suggests that WBV differentially influences reflex responses (H-reflex 

vs. spinal stretch reflex).  This is an important consideration because the H-reflex does not 

naturally occur in human movement despite being an electrically evoked analog of the stretch 

reflex.  Additionally, Arcangel et al.177 proposed that the time interval between WBV exposure 

and reflex measurement may influence the outcome. Lastly, muscle spindles are less responsive 

after vibration termination,177 lending further support that any enhancement following vibration 

may be due to elevated cortical activity.  Importantly, all studies evaluating the efficacy of 

vibration on neuromuscular function have used heterogeneous stimulus parameters, which 

diminish our ability to draw meaningful conclusions regarding the influence of vibration on 

neuromuscular function. 
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Effects on Muscle Function 

Surface electromyography (EMG) provides an easy method to measure activation of a 

muscle, and can be altered during and following vibration.  Authors suggest that vibration causes 

a change in motor unit discharge, which is observable via EMG.  However, there is discrepancy 

in the literature regarding the efficacy of vibration on EMG.  For example, some studies report 

elevated EMG amplitude following vibration 55,68,178-181  However, others report reductions or 

equivocal findings in EMG following vibration.46,70  Ambiguous findings in the current literature 

could be the result of heterogeneous stimulation parameters.  Muscle activity and function in the 

lower extremity may be modified as a response to changes in the frequency of stimulation.  

Greater damping of the vibration stimulus occurs when the stimulus frequency is close to the 

natural frequency of soft tissue.  Therefore, a muscle’s electrical and mechanical responses to 

vibration could be related to the frequency of stimulation.  For instance, Cardinale and Lim 

observed greater EMG amplitudes in the quadriceps during 30Hz WBV compared to 40Hz and 

50Hz.178  Likewise, we previously demonstrated that LMV also acutely increases EMG of the 

quadriceps by 5-10% in healthy control subjects, and is most effective at 30Hz compared to 

60Hz.55  Importantly, these effects were evident for several minutes following vibration 

treatment, which greatly enhances the utility of vibration as a treatment modality.  These same 

stimulating parameters and protocol will be utilized in this study.    

 There are studies that report improvements in muscle strength and power following 

vibration, suggesting that vibration may be useful as a rehabilitative and performance enhancing 

tool.  For example, Bosco et al.42 reported increased leg power of 6-8% in volleyball players 

following vibration, and increased elbow flexion power in boxers following vibration.  Other 

studies report similar findings 182,183 and suggest that enhanced neuromuscular facilitation is 
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responsible for muscle power improvements.  Similarly, there are studies that report increases in 

functional tasks such as vertical jump height 54,184 and one repetition maximum.56,185  However, 

some studies report equivocal findings on one repetition maximum 55,73,186 and rate of torque 

development,55 and detrimental effects on muscle strength.70,187,188  For example, De Ruiter et 

al.70 found that knee extensor strength was reduced by 7% following an acute bout of 5 by 1 

minute exposures to WBV.  However, this study used a vibration frequency of 30Hz and 8mm 

peak-to-peak amplitude, whereas Tihanyi et al.56 used the same frequency but smaller amplitude 

(2mm peak-to-peak), and found acute increases in peak knee extensor strength following WBV.  

Decreases in muscle strength may be a result of overstimulation of a muscle, which depletes the 

availability of excitatory neurotransmitters necessary for maximal muscle contraction.  Cochrane 

et al. 168 suggests that the improvement in muscle power is from a warm-up effect and elevated 

muscle temperature following vibration.  This study compared the effects of warm-up modality 

(stationary cycling for 10 minutes at 70W, hot water bath emersion, WBV – 26Hz, 6mm peak-to-

peak amplitude for 6 minutes) on muscle power and counter movement jump performance and 

found similar gains across warm-up modalities.  There is also evidence that vibration stimuli 

cause post-synaptic potentiation,68 which may be responsible for observed improvements in 

muscle strength and power.  However, no study has examined concurrent changes in muscle 

function and corticospinal excitability following vibration, and altered spinal and supraspinal 

function may be responsible for the ascribed gains or losses in muscle strength.   

Whole Body Vibration vs. Local Muscle Vibration 

Much of the current literature has evaluated the effects of WBV on muscle function.  

However, commercially available WBV platforms are cost prohibitive (~$12,000) and provide 

limited portability.  LMV also improves muscle function 43,55,75,189 and may provide a cost 
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effective (~$200) and portable alternative to WBV platforms.  For example, Iodice et al.190 

showed that leg extension muscle strength and counter movement jump performance were 

increased following acute and chronic exposure to focused local vibration.  Additionally, 

Pamukoff et al.55 found that EMG of the quadriceps was elevated following acute exposure to 

30Hz local vibration.  There are studies that show equivocal results following LMV.45,46  

However, it is difficult to gain an overall interpretation of results due to differential stimulating 

parameters.  For instance, Moran et al.46 and Luo et al.45 used a frequency of 65Hz with an 

amplitude of 1.2mm, whereas Pamukoff et al.55 used a frequency of 30Hz and acceleration of 2 

g, and Iodice et al.190 used a frequency of 300Hz and amplitude of 2mm.  Additionally, Moran et 

al.46 studied the biceps brachii and found no significant results.  Therefore, optimal treatment 

parameters (frequency, amplitude, duration) are unclear, and may vary by delivery method and 

muscle of interest.  While WBV and LMV provide similar stimuli, the efficacy of adaptation 

may be different due to differential damping characteristics.   

During WBV, the vibratory stimulus is damped by the musculature surrounding the ankle 

and knee joints, which reduces the magnitude of the vibration stimulus delivered to the 

quadriceps and, therefore, its neuromuscular response.68  This reduction in energy from the 

vibration signal may be minimized if the stimulus is delivered directly to the muscle via LMV 

rather than WBV.  However, only one study 75 has compared the effects of WBV and LMV on 

muscle function.  Albeit limited evidence, this study suggests that WBV and LMV have 

equivalent effects on voluntary quadriceps activation and peak torque in a group of healthy 

control subjects with artificial knee effusion.  However, no study has compared the effects of 

WBV and LMV on EMG, spinal reflexes, and cortical excitability.  
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MEASUREMENT TOOLS AND METHODOLOGICAL CONSIDERATIONS 

Electromyography  

 A motor unit is comprised of an alpha motoneuron and all of the muscle fibers that it 

innervates.  To produce force, muscle fibers must receive an impulse from their alpha 

motoneuron.  Once a motoneuron is activated by spinal or supraspinal inputs, an electrical 

impulse propagates down to the motoneuron to each motor endplate.  At this point, a muscle 

fiber’s membrane permeability to sodium increases and sodium begins to rapidly enter the cell.  

Eventually, action potential will be generated at the point where threshold is exceeded due to a 

shift in membrane polarity from sodium ion transport.  EMG refers to the experimental technique 

concerned with the development, recording, and analysis of myoelectric signals that are formed 

by the physiologic variations in the state of muscle fiber membranes.191  Furthermore, surface 

EMG provides an easy way to estimate overall motor unit activation.   

The nervous system can modulate muscle force via two mechanisms: motor unit 

recruitment and frequency of motor unit action potentials/rate coding.  In other words, an 

individual can create more force by recruiting more motor units, or recruiting motor units at a 

higher frequency.  At any point in time, the EMG signal is a composite electrical sum of all of 

the active motor units.  The EMG signal is observed by placing an electrode directly over a 

superficial muscle, and a second electrode over an electrically neutral site.  A differential 

amplifier detects the difference between the two recording electrodes, and attenuates any signal 

common to both sites.  Surface EMG must be interpreted with caution, and it can be influenced 

by several confounding factors.  Firstly, it is very important that the site of recording is carefully 

prepared to reduce signal impedance by removing dead skin cells and skin oils.  Affixing 

electrodes and their wires firmly to the skin can minimize motion artifact.  Careful electrode 
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placement is extremely important.  Electrodes must be placed in areas from which action 

potentials from the underlying muscle fibers can be recorded.  Therefore, they should be placed 

away from highly tendinous areas and motor end points, and the orientation of the electrode must 

be parallel to muscle fibers.  The EMG signal can also be influenced by blood flow, muscle 

length, muscle depth, and crosstalk from adjacent synergist or antagonist muscles.     

I have previously demonstrated that exposure to LMV applied to the patellar tendon 

causes acute increases in EMG amplitude of the quadriceps during maximal voluntary isometric 

contractions.55  However, no study has compared the effects of WBV, and LMV on quadriceps 

EMG.  Furthermore, it is unclear how long the effect lasts.  My previous data showed significant 

increases in EMG amplitude five minutes following treatment (p<0.01), and that seven additional 

subjects were needed to observe a significant increase up to thirty minutes following treatment.  

Hoffman’s Reflex 

 The Hoffman (H) Reflex is analogous to the spinal stretch reflex, but evoked electrically 

rather than mechanically.192  The spinal stretch reflex is initiated by an action potential generated 

by the muscle spindle in response to acute muscle stretch, whereas the H-reflex is initiated 

through external electrical stimulation of a nerve supplying the agonist muscle.193  With regard to 

the quadriceps, electrical stimulation is given to the femoral nerve in the femoral triangle.  The 

stimulus provided will bypass the muscle spindle and directly excite the Ia afferent neuron, 

causing an action potential in the homonymous alpha motoneurons that triggers a muscle 

contraction.193  Therefore, the H-reflex measures the efficacy of synaptic transmission as the 

electrical stimulus travels in afferent fibers to the motoneuron pool of the corresponding muscle 

and to the efferent fibers.194  Essentially, the H-reflex provides an estimate of the excitatory state 
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of the alpha motoneurons located in the spinal cord when presynaptic inhibition and intrinsic 

excitability are held constant.194,195 

 The H-reflex in the quadriceps can be measured using surface EMG on the vastus 

medialis.  The electrical stimulus of the femoral nerve results in clear deflections of the EMG 

signal.  The first deflection represents the stimulus itself (i.e. the stimulus artifact).  The second 

fluctuation is the M-wave, which occurs ~5 milliseconds following the electrical stimulus.  The 

M-wave results from direct stimulation of motoneuron axons in the nerve being stimulated and a 

subsequent action potential.  Lastly, the H-reflex in the quadriceps appears approximately 15 

milliseconds following electrical stimulation.  The order of the M and H waves are determined 

by the order of neural fiber recruitment and distribution of alpha motoneurons.  For example, 

fibers with larger diameters have less resistance to stimulation compared to smaller fibers, and 

can thus be stimulated at lower intensities.196  Additionally, Ia afferent fibers have larger cross 

sectional areas than efferent alpha motoneurons, and respond to lower stimulating intensities.  At 

very large stimulating intensities, both the afferent and efferent fibers are excited, which results 

in the M-wave because the alpha motoneurons have been directly stimulated.192  However, the 

H-reflex is controlled by monosynaptic pathways, and thus the M-wave will always occur before 

the H-reflex even when efferents and afferents are stimulated together.  When the stimulating 

intensity is small, initial recruitment only involves the largest alpha motoneurons and a small M-

wave is produced.  As the stimulus increases, smaller fibers are progressively recruited due to 

their higher activation thresholds, and an increase is seen in M-wave amplitude.192  

 Conversely, the H-reflex can be observed at fairly low intensities in the absence of an M-

wave.193 Low intensity stimuli depolarize Ia afferent fibers, resulting in an action potential in the 

alpha motoneurons and muscle contraction.  Essentially, small alpha motoneurons are excited by 
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synapses with Ia afferents and are not directly stimulated.   The recruitment curves of the M-

wave and H-reflex differ which make them distinguishable.  The M-wave is S-shaped, and the 

H-reflex is U-shaped.  The stimulus intensity threshold needed to stimulate the Ia afferent, the 

maximal H-reflex amplitude, and its decline with increasing intensity determine the shape of the 

H-reflex.  The decline observed in the H-reflex corresponds with an increase in the amplitude of 

the M-wave.  When the M-wave is maximal, the H-reflex is depressed and not observable.  The 

H-reflex will increase as stimulus intensity gradually increases until a maximal amplitude at 

which the M-wave is initially produced.  The reduction in H-reflex amplitude can be explained 

by antidromic collision.197 At this stimulus intensity, both the Ia afferent and the alpha 

motoneurons are stimulated.  However, the Ia afferent projects its afferent signal onto the alpha 

motoneuron, and the efferent signal is sent to the muscle by the alpha motoneurons.  The efferent 

signal is met by the stimulus from the alpha motoneurons resulting in a depression of the H-

reflex, and propagation of the M-wave.  Essentially, antidromic activity refers to a volley of 

electrical activity traveling in the incorrect direction in motor axons. The antidromic volley 

travels backward up the motor axon toward the spinal cord and it will collide with the reflexive 

volley, which is traveling in the correct direction from the sensory axon.  If both volleys are of 

similar size, then collision results in neither continuing along their respective pathways.  

However, if one is larger than the other, then it will be diminished but continue along its path. 

For example, if the antidromic volley is smaller than the afferent volley, then the afferent volley 

will be decreased but continue to the muscle. Therefore, the H-reflex tracing in the recruitment 

curve begins to decrease after it reaches plateau and stimulus intensity is increased. When the 

antidromic volley exceeds the afferent volley, no signal reaches the muscle and the H-reflex 

disappears from the tracing, and all that is observed is the M-wave.   
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 There are several factors that may confound or influence the H-reflex.  Firstly, the testing 

position while eliciting the H-reflex will influence the amplitude. Specifically, any change in 

joint position that influences muscle length will affect the amplitude of the H-reflex.  For 

instance, the H-reflex amplitude is larger when muscles are tested in shorter positions.  At longer 

lengths, greater background EMG activity is observed due to autogenic inhibition of the 

agonist.198 Secondly, background EMG activity in a muscle will influence H-reflex amplitude.  

The H-reflex increases if the background EMG of the agonist increases.  Therefore, muscle 

contraction, which increases EMG, would increase H-reflex amplitude.199-201  Likewise, similar 

H-reflex amplitudes can be elicited using smaller stimulus intensities if there is greater agonist 

background EMG.  However, the opposite is observed if there is excessive antagonist 

background EMG.200,202  Overall, baseline activity of a muscle should be kept minimal, and 

subject position should remain consistent to allow a clear interpretation of spinal reflex 

excitability.  

 There are limitations and assumptions of the H-reflex that must be considered when 

interpreting findings.  Firstly, the H-reflex does not occur naturally in human movement since 

it’s an electrically induced response.  Although it is considered the analog of the mechanically-

evoked spinal stretch reflex, it ignores the contribution of the muscle spindle system, which 

modulates reflex output during human movements.203  Secondly, the H-reflex precludes the 

influence of presynaptic inhibition.  Presynaptic inhibition influences neurotransmitter release at 

the synapse of the Ia afferent and the alpha motoneuron.  Therefore, the H-reflex can be modified 

independently of changes in motoneuron membrane potential.  Importantly, alterations in 

presynaptic inhibition occur following joint effusion,26 thus the H-reflex may not adequately 

describe neuromuscular function following ACL injury.  Interestingly, there is some limited 
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evidence to suggest that direct tendon vibration suppresses the H-reflex.  This could be due to 

disfacilitation and autogenic inhibition causing withdrawal of Ia afferent activation, and 

increased selectivity of Ib afferent fiber stimulation 204. 

Transcranial Magnetic Stimulation 

 Transcranial Magnetic Stimulation (TMS) provides a non-invasive and safe way to assess 

human motor control. TMS was developed nearly 30 years ago by Barker et al.205 who showed 

that the corticospinal tract could be activated by a short lasting magnetic stimulus applied over 

the scalp of a human subject.  Corticospinal activation is demonstrated as a contraction of 

muscles on the contralateral side of the body by measuring the latency and amplitude of the 

evoked potential using surface electromyography (EMG).206  This EMG response is referred to 

as a motor-evoked potential (MEP).  Characteristics of MEPs can be used to quantify 

corticospinal excitability and intracortical inhibition and facilitation.206  

Within the motor cortex, the TMS stimulus produces epidural waves, which are the 

summative effect of excitatory and inhibitory neurons in each layer.  If the stimulus is great 

enough and the net effect is excitatory, the signal will be sent down the corticospinal tract and an 

MEP will be generated.206  Essentially, passing an electric current through a wire coil generates a 

magnetic field, which is placed over the scalp.  The magnetic pulse created will induce a current 

in an electrically conductive region, like the motor cortex.  This current will flow perpendicular 

to the magnetic field at an intensity proportional to the magnetic field (measured in a percentage 

of Tesla).  The skull provides low impedance to magnetic fields, thus currents are produced in 

the brain and these currents can stimulate neural tissue.  When magnetic stimulation is provided 

to the motor cortex, the stimulus travels down the corticospinal pathway to stimulate the alpha 

motoneurons within the spinal cord, and electromyographic responses can be recorded (MEPs) in 



 53 

contralateral muscles.  TMS stimulates motoneurons indirectly and directly.207  Firstly, a direct 

(D) wave can also be created through direct stimulation of the axonal segment of the 

corticospinal neuron.208  The D-wave represents direct activation of the upper motoneurons.208  

The D-wave is observed first and its short latency suggests that it originates from direct 

activation of corticospinal axons just below the gray matter of the brain.208  Secondly, TMS 

produces descending volleys of the pyramidal neurons via presynaptic neurons that initially 

create an indirect (I) wave that stimulates the most superficial layers of the motor cortex, which 

propagates to the deep layers and eventually down to the spinal cord.207  Each I-wave is 

generated from the depolarization of an axon synapsing directly onto a corticospinal neuron.207  

I-waves on their own are very small, but continue to grow in size and number with increasing 

stimulus intensity.  Therefore, the propagation of I-waves can be considered dose-dependent. 

 Operationally, corticospinal excitability is commonly measured in two ways using single 

pulse TMS: the motor threshold (MT) and MEP amplitude.206  Firstly, MT reflects the minimum 

amount of magnetic energy needed to excite neural tissue and cause a measurable MEP.  This 

measure represents the excitability of motor neurons in the motor cortex, spinal cord, 

neuromuscular junction, and muscle.  Therefore, additional measures such as H-reflex must be 

measured concurrently to assist in distinguishing the location of corticospinal deficits.  In 

addition, the motor threshold represents activity of neural input to the pyramidal cells that 

influence membrane excitability.  A higher MT reflects a greater need for magnetic energy to 

elicit a response, and lower corticospinal excitability.  Conversely, lower MT means that less 

magnetic energy is required to excite neural tissue reflecting higher corticospinal excitability.  

Secondly, the peak-to-peak amplitude and latency of the MEP using suprathreshold TMS can 

also be used as a measure of corticospinal excitability.  MEP amplitude represents the 
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excitability and integrity of the corticospinal tract.  TMS excites both inhibitory and excitatory 

pathways, and the MEP reflects the balance between these pathways.  An MEP of larger 

amplitude reflects greater excitability and vice versa.  MEP latency represents the time interval 

between the TMS stimulus and observable MEP.  A shorter latency reflects greater excitability 

and vice versa. Interestingly, MEP amplitude 64,65,170 and latency 65 measured using single-pulse 

suprathreshold TMS can be augmented and shortened in the extensor carpi radialis following 

brief LMV 65,170 and WBV.64  These findings suggest that the effects of vibration are not 

restricted to the periphery, but also involve corticospinal processes.  

MT and MEP amplitude are commonly assessed using single pulse TMS.  However, 

paired pulse TMS can also be used to assess intracortical inhibitory and facilitatory processes.  

During paired-pulse testing, the two pulses termed the conditioning stimulus (CS) and testing 

stimulus (TS) are delivered separated by a specified stimulus interval. The conditioning stimulus 

is subthreshold when measuring intracortical inhibitory processes, and suprathreshold when 

measuring intracortical facilitatory processes.  The testing stimulus occurs several milliseconds 

following the CS.  The length of the interstimulus interval (ISI) between the CS and TS 

determines whether the effect of TMS is excitatory or inhibitory.   

Cortical inhibition refers to the attenuation of cortical output from gamma-Aminobutyric 

acidreceptor (GABA) interneurons.209  GABA is an inhibitory neurotransmitter and influences 

interneurons that can be divided into two types: GABAA and GABAB. The GABAA interneurons 

contain ligand-gated channel receptors and are responsible for fast acting inhibition (short 

interval intracortical inhibition – SICI),209 whereas the GABAB interneurons contain G-protein 

coupled receptors and are responsible for slow acting inhibition (long interval intracortical 

inhibition – LICI).210  ISIs that are very short (1-5ms), or very long (50-200ms) correspond with 
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inhibitory post-synaptic potentials mediated by GABAA and GABAB, respectively.  As stated 

above, the CS to measure SICI and LICI is subthreshold (60-80% of MT).  The immediate effect 

of the CS is synchronous activation of a small number of cortical pre-synaptic fibers.  The mild 

depolarization causes excitation of inhibitory neurons.  However, because the CS is below MT, 

yet still suppresses the MEP following the TS, it is thought that inhibitory interactions occurred 

at the cortical level and the CS suppressed further recruitment of descending volleys by the 

testing stimulus.  The TS is always suprathreshold.  A suprathreshold stimulus determines 

corticospinal output leading to an MEP, but a subthreshold stimulus will only excite local 

cortical neruons.  Therefore, a subthreshold CS and suprathreshold TS combined can assess the 

effects of interneurons on cortical output.  The overall result is a reduced MEP amplitude.   

Intracortical facilitation (ICF) occurs following a CS that is suprathreshold (110-120% 

MT) and an ISI lasting 7-20ms.208  These ISI’s correspond with intervals between the first 

indirect wave and the following I wave.208  Since the peaks of the I-waves are in phase, the input 

from the TS comes during epochs, which increases the firing probability (facilitation).  

Essentially, the peak of the second I-wave from the CS is in phase with the peak of the I-wave 

from the TS.  The effect of a facilitatory CS is synchronous activation of a large number of 

cortical fibers.  The CS may raise the excitability of spinal neurons that are more readily 

discharged, resulting in an increased MEP amplitude.   

There are several limitations that must be addressed with regard to using MEPs as a 

measure of cortical excitability.  First, the amplitude of the MEP is influenced by the excitability 

of the corticospinal cells stimulated by TMS, but also by the spinal motoneurons to which they 

project.206 Therefore, it is important to distinguish the contribution of spinal motoneurons by 

evaluating voluntary EMG activity and the H-reflex. The H-reflex is evoked using electrical 
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stimulation of a peripheral group of Ia afferents and recorded in the EMG from the muscle 

innervated by the stimulated nerve.  H-reflex is largely monosynaptic and is considered to 

represent the excitability of the spinal motoneurons and transmission over the group Ia synapses 

on the motoneurons.  However, comparison of MEPs to the H-reflex should be performed with 

caution, as the H-reflex is not exclusively monosynaptic and may be influenced by changes in 

spinal interneuronal pathway excitability.  Furthermore, changes in neurotransmitter release at 

the terminals of the Ia afferents (i.e. presynaptic inhibition) influence the H-reflex. The size of 

the MEP is influenced by changes in the transmitter release from the synapses of the 

corticospinal cells on the spinal motoneurons.   

SUMMARY 

 Quadriceps dysfunction is ubiquitous following ACL injury.  Despite reconstruction 

procedures and rehabilitation programs, quadriceps dysfunction persists for many years 

following injury and treatment due to arthrogenic muscle inhibition (AMI).  AMI is a result of 

altered afferent input, and deficits in corticospinal excitability.  These deficits likely contribute to 

the development of posttraumatic knee osteoarthritis via alterations in joint loading during gait.  

Novel treatments are needed to address AMI, and vibration therapy could be an adjunct 

treatment tool to reduce AMI and improve quadriceps function.  However, it is unclear how 

vibration improves muscle function.  There is limited evidence available to determine if vibration 

enhances corticospinal excitability.  Lastly, most research has shown that WBV improves muscle 

function, but there is also some evidence suggesting that LMV enhances muscle function, which 

may be a cost-effective substitute.  Therefore, the purpose of this study is to evaluate and 

compare the effects of WBV and LMV on measures of neuromuscular function 

(electromyography, H-reflex, corticospinal excitability). 
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CHAPTER III: EXPERIMENTAL DESIGN AND METHODS

 

Subjects 

Aims 1-3 

Sixty healthy individuals (30 males and 30 females) between the ages of 18 and 30 years 

will be recruited without history of musculoskeletal injury within 6 months prior to testing, lower 

extremity surgery, neurological disorder, cardiovascular disease, hypertension, diabetes mellitus, 

concussion or head injury, stroke, epilepsy, peripheral neuropathy, migraine headaches, cranial 

neural surgery, cancer in the brain or thigh musculature, cardiac pacemaker, implanted foreign 

metal object, or diagnosed psychiatric disorder.  Subjects will also be recreationally active, 

defined as participation in physical activity for 30 minutes at least 3 times per week.  Subjects 

will be recruited from the student and employee populations at the University of North Carolina 

at Chapel Hill and from the surrounding area.  Each subject will be required to read and sign an 

informed consent form prior to data collection.  Descriptive characteristics are listed in table xx.  

Aim 4 

 Twenty subjects with a history of ACL injury will be recruited from patient referrals and 

the student population at the University of North Carolina at Chapel Hill. In addition to the 

above criteria, subjects will have a history of unilateral ACL injury and reconstruction via 

patellar tendon or hamstring autograft, no history of ACL graft rupture or revision, and no 

history or symptoms of osteoarthritis, and will be required to be at least 6 months post ACL 
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reconstruction and cleared by a physician to resume physical activity.  Subjects will be excluded 

for history of musculoskeletal injury within 6 months prior to testing, lower extremity surgery, 

neurological disorder, cardiovascular disease, hypertension, diabetes mellitus, concussion or 

head injury, stroke, epilepsy, peripheral neuropathy, migraine headaches, cranial neural surgery, 

cancer in the brain or thigh musculature, cardiac pacemaker, implanted foreign metal object, or 

diagnosed psychiatric disorder.  Each subject will be required to read and sign an informed 

consent form prior to data collection.  Descriptive characteristics are listed in table xx. 

Experimental Design   

Aims 1-3 

 The investigation for aims 1-3 will utilize a randomized controlled trial design.  Subjects 

will be randomized to 1 of 3 groups following pre-test assessments to receive either WBV, LMV 

or control treatment (n = 20 per group).  All subjects will complete 3 testing visits to the 

Neuromuscular Research Laboratory at the University of North Carolina at Chapel Hill (1 visit 

for each of corticospinal excitability, H-reflex, and EMG during maximal contraction) in a block 

randomized order separated by 1-week washout periods, each lasting approximately 1 hour.  In 

each respective session, subjects will complete a baseline test, receive an intervention, and 

complete follow-up testing immediately, 10 minutes, and 20 minutes following the intervention.   

The primary hypotheses are that corticospinal excitability (Active Motor Threshold 

(AMT) and Motor Evoked Potential (MEP) amplitude) will increase (reduction in AMT, and 

increase in MEP amplitude) following whole body vibration (WBV) and local muscle vibration 

(LMV), but not increase following the control intervention.  Furthermore, I hypothesize that the 

magnitude of increase will be similar between WBV and LMV treatment groups and that the 

effects of WBV and LMV will persist for up to 10 minutes following treatment.  I also
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hypothesize that spinal neuron excitability (H-reflex amplitude) will be depressed following 

WBV and LMV compared to the control group, and that this effect will persist for up to 10 

minutes.  Lastly, I hypothesize that EMG amplitude of the quadriceps muscles during maximal 

voluntary knee extension will increase similarly following WBV and LMV compared to a 

control group, and that these effects will persist for up to 10 minutes following treatment.   

Aim 4 

The investigation for Aim 4 will utilize a crossover design.  Subjects will complete 3 

testing sessions in which they will receive one of three treatments (WBV, LMV or control) in 

each session in a block-randomized order to reduce the change of an order effect.  Subjects will 

complete baseline tests of corticospinal excitability, spinal neuron excitability, and EMG 

amplitude during a maximal contraction followed by an intervention (WBV, LMV, or control), 

and corresponding follow up tests immediately following each intervention.  I hypothesize that 

corticospinal excitability will increase (i.e. reduction in AMT, and increase in MEP amplitude), 

that spinal neuron excitability will decrease (i.e. reduced H-reflex amplitude), and that EMG 

amplitude during a maximal contraction will increase following the WBV and LMV treatments, 

but not the control treatment. I also hypothesize that there will not be a difference in 

improvement between the WBV and LMV treatments.   

Assessments 

EMG and Maximal Activation 

Subjects will first undergo a brief 5-minute aerobic warm-up on a stationary cycle 

ergometer followed by baseline tests of isometric knee extensor strength using a dynamometer 

(Humac Norm, Stoughton MA).  This test will be performed on the dominant limb in healthy 

subjects, defined as the limb that would be used to kick a ball, and in the ACLR limb in ACLR 



 60 

subjects. The thighs, hips and upper body will be firmly stabilized with straps (Figure 3, Right).  

The lever arm will be adjusted so that the ankle strap is placed 2 finger widths above the medial 

malleolus.  The knee will be positioned so that the lateral femoral epicondyle is aligned with the 

rotational axis of the dynamometer.  The knee will be flexed at 60° and 2 repetitions of 5 seconds 

will be completed.  The mean RMS of the EMG signal over the 5-second MVIC of the trial 

resulting in the highest recorded torque will be used for data analysis. Sixty seconds rest will be 

given between torque measurements.  Subjects will be instructed to “kick as hard and as fast as 

they can” and will receive verbal encouragement for each trial.   

Sites for EMG 

electrodes will be shaved if 

necessary and the skin will 

be lightly abraded and 

cleaned with alcohol to 

improve signal quality.  

Preamplified electrodes 

(Biopac systems) will be 

placed on the vastus 

lateralis (VL), vastus medialis (VM) and rectus femoris (RF) according to the SENIAM 

guidelines (VL – one third the distance along a line from the superior lateral side of the patella to 

the anterior superior iliac spine, RF – half the distance from the ASIS to the center of the patella, 

VM – 80% on the line between the ASIS and the joint space in front of the anterior border of the 

medial ligament) to record EMG activity during each contraction (Figure 3 Left). A reference 

electrode will be placed on the flat surface of the proximal anteromedial tibia.  All electrodes 

Figure 3: Left - Electrode placement, Right - Testing Position 
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will be secured with prewrap and athletic tape.  All data will be sampled at 2 KHz using the 

Biopac data acquisition system (MP150WSW, Biopac Systems Inc., Santa Barbara, CA).   

Voluntary activation will be assessed using CAR during the MVICs.  A brief non-painful 

electrical stimulus (2-pulse train, 600µs duration, 100Hz, 150V) will be manually delivered via 

two adhesive electrodes placed on the proximal and distal quadriceps once an individual reaches 

MVIC using an isolated stimulator (Grass Telefactor model SK84).  Hamstrings EMG will also 

be recorded from the biceps femoris and medial hamstrings to verify our interpretation of 

quadriceps CAR.  Subjects in the healthy cohort will complete this test prior to the intervention, 

immediately, 10 minutes, and 20 minutes following the intervention, whereas subjects in the 

injured cohort will only complete testing pre and immediately post intervention.  

Hoffman Reflex  

Hoffmann (H) reflex and M-wave measurements of the vastus medialis will be collected 

with surface electromyography (EMG).  Reflexes will be elicited with the BIOPAC stimulator 

module (STIM100A, BIOPAC Systems, Inc.), a 200 V maximum stimulus isolation adaptor 

(STIMSOC BIOPAC Systems, Inc), a 2 mm shield disk electrode, (EL254S BIOPAC Systems, 

Inc.) and a 7 cm carbon impregnated dispersive pad.  Subjects will lie supine on a padded table 

with their arms placed comfortably at their sides, their heads resting on a pillow, and their knees 

slightly flexed (~10-15º) with a bolster.  A stimulating bar electrode (EL351, BIOPAC Systems 

Inc) will be positioned over the femoral nerve.  A 1ms square wave stimulus will be delivered to 

the femoral nerve with a STMISOLA Constant Current and Constant Voltage Isolated Linear 

Stimulator (STMISOLA, BIOPAC Systems, Inc).  The electrical stimulus will be delivered to the 

femoral nerve and increased in 0.2 volt increments until a maximum H- reflex is elicited, and 

then 3 maximal H-reflexes will be collected at that voltage.  The stimulus will then be increased 
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until a maximal M-wave is elicited.  All data will be sampled at 2 KHz.  Subjects will complete 

this test prior to the intervention, and immediately, 10 minutes, and 20 minutes following the 

intervention.   H-max and M-max will be re-established for the post-intervention assessments to 

account for potential local effects of the vibratory stimuli on EMG characteristics (e.g. a 

“warmup” effect).  The ratio of maximal H-wave to maximal M-wave will be used for analysis.57 

Corticospinal Excitability  

Corticospinal excitability will be assessed via AMT and amplitudes of MEPs using 

transcranial magnetic stimulation (TMS).  This method involves introducing a brief, non-painful 

magnetic stimulus that excites neurons in the motor cortex associated with a specific muscle, and 

subsequent nervous system pathways are activated causing a contraction of the targeted muscle.  

These small contractions, MEPs, are measured to determine function of the brain cells and 

corresponding neural pathways that dictate muscle activation.  MEPs will be measured in the 

vastus medialis via EMG electrodes.  Subjects will be seated in the dynamometer with their knee 

in 60° of knee flexion. Subjects will be asked to produce 5% of their maximal voluntary 

isometric contraction (MVIC) during active motor threshold/MEP testing to standardize the level 

of effort.  A computer screen depicting real-time feedback of subject’s torque output will be used 

to ensure this criterion is met. First, the area of the motor 

cortex will be mapped to identify that elicits the greatest 

MEP response on the VM.  A lycra swim cap will be placed 

over the subject’s head, and the TMS coil will be moved 

until a maximal response is found.  The lycra swim cap 

features a grid that can be used to systematically and 

reliably stimulate portions of the motor cortex in 1cm intervals (Figure 4).  The coil will be 
Figure 4: Lycra Swim Cap 
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moved about each grid point until a maximal response is found.  The point that elicits the 

greatest MEP amplitude during stimulation will be marked for use during the remainder of the 

testing session.  AMT refers to the lowest TMS intensity necessary to evoke a MEP in the 

contralateral target muscle in response to a single stimulus applied over the motor cortex.  AMT 

will be determined as the lowest stimulator intensity required to elicit a measureable MEP 

(>100µV) in at least 5 out of 10 trials. MEP responses will be elicited at 120% of AMT.  Five 

MEPs will be recorded and averaged for analysis.  Subjects will complete tests of AMT and 

MEP amplitude prior to the intervention, immediately, 10 minutes, and 20 minutes following the 

intervention.  

Intervention Procedures 

Following baseline testing, subjects will be 

randomized to LMV, WBV, or control groups. The 

LMV group will receive 6 bouts of 60 seconds 

vibration with 2 minutes rest between each bout 

while standing with the knees flexed approximately 

60°. A custom-made LMV device will be placed on 

the quadriceps tendon (Figure 5, right).  Subjects 

randomized to the WBV group will stand on a 

vibrating platform that provides a similar stimulus (Figure 5, left).  The LMV and WBV stimuli 

will be held constant at 2g of acceleration at a frequency of 30Hz.  The control group will 

perform the same procedures but will not receive VT.  These parameters are the same as in prior 

studies in our laboratory demonstrating similar effects between LMV and WBV on voluntary 

muscle activation.  Immediately following the intervention, subjects will repeat the 

Figure 5: Left - WBV platform, Right - LMV device 
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aforementioned assessments of corticospinal excitability, spinal neuron excitability, and EMG 

amplitude during a maximal isometric contraction.   

Data Reduction 

The raw EMG signal during maximal contractions will be corrected for DC bias, 

bandpass filtered using a 4th order zero-phase lag Butterworth filter (20-350Hz) and notch 

filtered (59.5-60.5Hz). The filtered data will be smoothed using a 20ms root-mean-square (RMS) 

sliding window function. EMG amplitude will be calculated as the mean amplitude during the 

MVIC (RMSavg). All data will be normalized to an M-wave recorded at the start of each session.  

The baseline amplitude values from each respective session will be used as a standardization 

criterion, and the percent of baseline amplitude will be calculated [(Followupamp/Baselineamp) x 

100] for each muscle (VL, VM, and RF) and averaged across the VL, VM, and RF to create a 

composite measure of quadriceps activity for analysis.  CAR will be calculated as the ratio of 

maximal voluntary torque production divided by any additional torque produced by the 

superimposed electrical stimulus.  This value represents the amount of force that can be 

generated from a muscle voluntarily.  

H-reflex amplitude will be calculated as the peak-to-peak voltage following the stimulus 

and will be expressed as a percentage of maximal M-wave to allow for comparison between 

subjects.  M-wave amplitude will be calculated as the peak-to-peak voltage difference following 

maximal stimulus.  M-wave will also be treated as an outcome as vibration may induce post 

activation potentiation.  Corticospinal excitability will be assessed using AMT and MEP.  AMT 

will refer to the lowest stimulating intensity needed to generate a measurable MEP (>10mV) in 

the VM.  Secondly, peak-to-peak amplitude will be measured to determine the size of elicited 
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MEPs at 120% of AMT.  All MEPs will be normalized to an M-wave recorded at the beginning 

of each session.     

Data Analysis 

An a priori power analysis based on our previous data suggests that 16 subjects (f2=0.43) 

per group would be necessary to achieve 80% power for α ≤ 0.05.  However, this power analysis 

was on quadriceps EMG data only, thus effect size may vary for other neuromuscular measures.  

Mileva et al.64 reported an effect size of 0.9 (n=7 healthy young males) when measuring MEP 

amplitude of the tibialis anterior during WBV exposure compared to control (no WBV), and 

Ritzmann et al.57 reported an effect size of 0.6 (n=22 healthy young adults) when measuring the 

ratio of H-max/M-max in the soleus pre and post WBV.  However, we will have more degrees of 

freedom due to the fact that we will utilize 3 groups, and 4 time points.  Conservatively, 20 

subjects per group should ensure adequate power to test hypotheses. The effects of the 

interventions (Aims 1-3) will be evaluated via 3 (Group: WBV, LMV, Control) x4 (Time: 

Baseline, Immediately Post, 10 min post, 20 min post) repeated measures analyses of variance 

will be used to evaluate the difference between groups from pre to post intervention for all 

dependent variables (AMT, MEP, H-Reflex, M-wave, EMG amplitude, CAR).  Bonferroni post 

hoc procedures will be used to evaluate pairwise comparisons.  Aim 4 is considered exploratory 

and little data are available with regard to the effect of VT on patients with ACL injury.  

However, assuming similar effects as in healthy individuals, 14 subjects would be required to 

achieve 80% power for α ≤ 0.05 using a within-subjects design. 3x2 (condition x time) repeated 

measures analysis of variance will be used for all dependent variables (AMT, MEP, H-reflex, 

EMG amplitude, M-wave, CAR) and Bonferonni post hoc procedures will be used to evaluate 

pairwise comparisons.   
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Reliability  

 Reliability data are presented in Tables 2 – 6.  EMG amplitude intersession reliability 

was calculated between the average of two trials collected on two separate testing days one week 

apart by a single rater. EMG amplitude intrasession reliability was calculated between 2 trials of 

a single rater. EMG reliability data were collected in a prior study.55  Intrarater, intrasession, and 

intersession reliability for AMT, MEP amplitude and Hmax/Mmax were conducted using 5 

subjects.  Intrarater refers to the reliability of a single rater in a single session, intrasession refers 

to the reliability of a single rater in one session pre-test to post-test (removal from testing 

position and repositioned), and intersession refers to the reliability of a single rater on two days.   

Table 2: EMG - Intersession Reliability (n=20) 

Muscle ICC (2,k) 
Vastus Medialis 0.843 
Vastus Lateralis 0.739 
Rectus Femoris 0.871 

Calculated between the average of 2 measures  

Table 3: EMG - Intrasession Reliability (n=20) 

Muscle ICC (3,1) 
Vastus Medialis 0.941 
Vastus Lateralis 0.948 
Rectus Femoris 0.919 

Calculated between 2 measurements  
 
Table 4: Hmax/Mmax Reliability (n=5) 

 ICC  
Intrarater (ICC3,1)a 0.957 

Intrasession (ICC2,k)b 0.901 
Intersession (ICC2,k)b 0.864 

a calculated between 5 measurements  
b calculated between the average of 5 measurements  
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Table 5: AMT Reliability (n=5) 

 ICC  
Intrarater (ICC3,1)a 0.909 

Intrasession (ICC3,1)a 0.901 
Intersession (ICC3,1)a 0.851 

a calculated between 2 measurements  
 
Table 6: MEP Reliability (n=5) 

 ICC  
Intrarater (ICC3,1)a 0.942 

Intrasession (ICC2,k)b 0.951 
Intersession (ICC2,k)b 0.809 

a calculated between 8 measurements  
b calculated between the average of 8 measurements
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CHAPTER 4: RESULTS AND DISCUSSION SUMMARY 

Results – Healthy Cohort 

 The group by time interaction effect was significant for peak torque and post hoc 

analyses revealed a significant increase from pre-test to post-test in peak torque in the WBV 

group only.  The group by time interaction effect was significant for EMG amplitude, and post 

hoc analyses revealed a significant increase in EMG amplitude in the WBV group and LMV 

group.  Furthermore, EMG amplitude was greater in the WBV group and LMV group compared 

to control immediately post-test.  Next, there was no effect of WBV or LMV on RTD.  There 

was no difference between the WBV and LMV group immediately post-test, and no differences 

were observed at 10 or 20 minutes post-test among any variable.   

The group by time interaction was significant for AMT, and post hoc analyses revealed a 

significant reduction in AMT immediately post treatment, 10 minutes post treatment, and 20 

minutes post treatment in the WBV group and LMV group.  The group by time interaction was 

significant for MEP amplitude, and post hoc analyses revealed a significant increase in MEP 

amplitude immediately post treatment, 10 minutes post treatment, and 20 minutes post treatment 

in the WBV group only.  The group by time interaction was significant for quadriceps CAR, and 

post hoc analyses revealed a significant increase in CAR immediately post treatment in the WBV 

group. Relative to the control group, the WBV group had a greater CAR compared to the control 

group immediately post- treatment.  There was no difference in CAR between the WBV group 

and LMV group immediately post-treatment. No differences were observed in CAR in any group 

at 10 or 20 minutes post-treatment.  Lastly, there was no effect of WBV or LMV on H-reflex. 
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In evaluating the mechanisms that contributed to a change in quadriceps function, 

multiple regression indicated that the linear combination of AMT, MEP amplitude, H-reflex, and 

M-wave amplitude explained 17% of the variance in CAR, 25% in EMG amplitude, and 16% of 

the variance in PT.  

Results – ACLR Cohort 

The condition by time interaction was significant for peak torque and quadriceps EMG 

amplitude, but not for RTD. Post hoc analyses indicated that peak torque in the WBV and LMV 

conditions was greater than in the control condition at post-test.  However, the increase in peak 

torque was not significant in the WBV or LMV due to the conservative nature of the post hoc 

test procedure.  However, inspection of the 95% confidence intervals and effect sizes of the 

change from pre-test to post-test suggest a trend towards an increase in peak torque in the WBV 

and LMV conditions.  We also observed a decrease in peak torque in the control condition from 

pre-test to post-test. There was no difference in peak torque between the WBV and LMV 

conditions at post-test.  Post hoc analyses also indicated that quadriceps EMG amplitude 

increased in the WBV condition from pre-test to post-test.  Furthermore, quadriceps EMG 

amplitude was greater in the WBV condition compared to the control condition at post-test.  

Similar to the trend in peak torque data, an evaluation of the 95% confidence intervals and effect 

sizes of the change from pre-test to post-test suggest a trend towards an increase in EMG 

amplitude in the LMV condition.  There was no difference between the WBV and LMV 

conditions at posttest in quadriceps EMG.  

The condition by time interaction was significant for AMT and CAR, but not for MEP 

amplitude or H-reflex amplitude.  Post hoc analyses indicated a significant reduction in AMT in 

the WBV and LMV conditions from pre-test to post-test, and a significant increase in CAR in the 
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WBV and LMV conditions.  Furthermore, CAR in the WBV condition was greater than the 

control at post-test, and AMT was less than in the control condition at post-test in the WBV and 

LMV conditions.  CAR in the LMV condition was not greater than in the control condition due 

to the conservative nature of the post hoc testing procedure.   Finally, WBV did not differ from 

LMV at post-test for AMT or CAR.  

Discussion – Healthy Cohort 

The main findings of this study were that both WBV and LMV improved quadriceps 

function.  Specifically, the WBV group had enhanced knee extension peak torque, quadriceps 

EMG, voluntary activation (CAR), and corticomotor excitability immediately post-treatment.  

The LMV group improved quadriceps EMG and corticomotor excitability immediately post 

treatment.  Furthermore, improvements were sustained for up to 20 minutes in corticomotor 

excitability.  No improvements were observed in RTD or H-reflex in either group.  However, 

these individuals were healthy with no underlying deficits in quadriceps function.  Therefore, we 

could have observed a ceiling effect among some measures of neuromuscular function (i.e. 

RTD).   Next, given that we did not observe a change in H-reflex, it is likely that the overall 

improvement in quadriceps function is attributable to greater corticomotor excitability (Reduced 

AMT and increased MEP amplitude).  However, given that only up to 25% of the variance in 

quadriceps function could be explained by the mechanisms evaluated in this study, future 

research is needed to account for the remaining unexplained variability in quadriceps CAR, PT 

and EMG amplitude.  Finally, these findings indicate that muscle vibration – particularly WBV – 

could be a useful tool to acutely increase quadriceps function.  Future research should consider 

evaluating the effects of repeated treatments and the efficacy of adding vibratory stimuli to 

traditional strengthening protocols.    
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Discussion – ACLR Cohort  

The main findings of this study were that WBV and LMV improve knee extensor peak 

torque production, quadriceps EMG amplitude, corticomotor excitability (AMT) and voluntary 

activation (CAR) in individuals with ACLR.  We also found no difference in the magnitudes of 

the improvements caused by WBV and LMV, suggesting that these treatments produce 

equivalent effects.  Finally, we found no effect of WBV or LMV on spinal neuron excitability 

(H-reflex) or knee extensor RTD.   Given that we observed no change in H-reflex in either LMV 

or WBV, the improvements in quadriceps function are likely attributable to greater corticomotor 

excitability following treatment.  This is an important finding, as patients with ACLR have 

deficits in voluntary quadriceps activation, which may contribute to the development of knee 

OA.  Furthermore, traditional rehabilitation methods are often ineffective, and novel approaches 

such as WBV and LMV are needed to improve the efficacy of strengthening protocols.  

Therefore, WBV and LMV may provide a suitable adjunct treatment to other forms of muscle 

strengthening since they acutely increase quadriceps voluntary activation.  Future studies are 

needed to examine the duration of the effect in patients with ACLR, and the effects of adding 

WBV and LMV to strengthening exercises.      
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CHAPTER 5: MANUSCRIPT 1 

The Effects of Whole Body and Local Muscle Vibration on Peak Torque, Rate Of Torque 

Development, and Electromyography in Healthy Young Adults

Overview 

Context: Whole body vibration and local muscle vibration acutely improve muscle function, and 

may be suitable tools in performance enhancement and injury rehabilitation.  However, the 

efficacy of these treatments has not been compared.  Objective: To compare the effects of whole 

body and local muscle vibration on quadriceps function in healthy young adults.  Design: Single 

blind randomized controlled trial. Setting: Laboratory Patients or Other Participants: Sixty 

healthy and recreationally active young adults. Interventions: Subjects were randomized to one 

of three groups (WBV, LMV and control) and data were collected in a single session.  Subjects 

completed testing of maximal voluntary isometric strength, and then completed an intervention 

based on group assignment. Subjects repeated the assessment immediately, ten minutes, and 

twenty minutes following the intervention. Main Outcome Measures: Peak torque was defined 

as the maximal voluntary torque produced during the assessment. Rate of torque development 

was defined as the peak of the first derivative of the torque-time curve. Maximal EMG amplitude 

was defined as the greatest one second average during the strength assessment, and average 

across the quadriceps as a percentage of baseline for analyses.  Results: Data were analyzed 

using 3(goup) by 4(time) ANOVA. The group by time interaction was significant for peak 

torque, and EMG amplitude.  Subjects in the WBV group improved in quadriceps PT, and EMG 

amplitude.  Subjects in the LMV group improved in quadriceps EMG amplitude.  No effect was 
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observed on rate of torque development.  Conclusions: These findings suggest that whole body 

and local muscle vibration improve quadriceps EMG amplitude.  However, whole body vibration 

may be more effective as it caused a simultaneous increase in knee extensor torque.  

 

Introduction 

 Vibratory stimuli have practical uses in rehabilitation and performance enhancement.  

Vibratory treatments potentially enhance muscle function through stimulation of the muscle 

spindle system,50-52 increased corticospinal excitability,64,65,171 and increased muscle 

temperature.211 Vibration is commonly applied using whole body vibration (WBV) platforms, 

and these devices acutely increase muscle strength,40,45,47 muscle power,41 and EMG178 during 

and following the cessation of treatment.  Furthermore, WBV improves functional tasks such as 

vertical and countermovement jumps.54  However, WBV platforms are cost prohibitive and are 

not portable or specific to a muscle group.  Local muscle vibration (LMV) applied directly to a 

muscle-tendon unit also improves muscle function,212-214 and may provide a cost-effective 

alternative to WBV.  

 While WBV and LMV provide similar stimuli, their efficacy may differ.  During WBV, 

energy from vibration is dampened by the ankle joint, knee joint, and calf musculature, which 

may influence the magnitude of the vibration stimulus applied to more proximal structures (i.e. 

the quadriceps).40  The reduction in energy from the vibration signal could be less if it were 

applied directly to the muscle of interest via LMV rather than WBV.  In contrast, WBV could 

have a larger effect since it stimulates additional sensory receptors throughout the lower 

extremity that could influence excitability of the targeted musculature.215  However, there are 

few studies comparing the effects of WBV to LMV on muscle function.  For example, similar 
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improvements in voluntary quadriceps activation and peak torque production have been found 

following WBV compared to LMV. 212  However, this study utilized a sample with artificially 

induced quadriceps inhibition, and it is unclear if the same effects are present in a healthy 

population.  If muscle function improves following vibratory stimuli in healthy individuals, then 

it may be a suitable method to acutely increase the capacity for resistance training and improve 

the efficacy of traditional strengthening protocols.  Therefore, the primary purpose of this study 

was to compare the effects of WBV and LMV on quadriceps EMG amplitude, peak torque, and 

rate of torque development during maximal voluntary isometric contraction (MVIC) in a group 

of healthy individuals.  We hypothesized that there would be similar improvements in WBV and 

LMV following treatment.  

 Additionally, it is unclear how long the effects of WBV and LMV last following the 

cessation of treatment.  A previous study214 found that LMV acutely increased quadriceps EMG 

amplitude, and that these effects persisted for at least 5 minutes following treatment.  However, 

this study only evaluated muscle function at 5, 15, and 30 minutes following treatment, and it is 

unclear if these benefits persist beyond 5 minutes following treatment.  The utility of vibratory 

stimuli would be greatly enhanced if the effects persist for the duration of an exercise bout (i.e. a 

set of resistance training exercises), and understanding the time course of the effect is essential to 

program design.  Therefore, a secondary purpose of this study was to determine the duration of 

the effect during a 20 minute followup period of WBV and LMV on quadriceps EMG amplitude, 

peak torque, and rate of torque development during MVIC in a group of healthy individuals 

following the cessation of treatment.  We hypothesized that the effects of WBV and LMV would 

persist for up to 10 minutes following treatment.       
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Methods 

Experimental Design 

 A single blind randomized controlled trial design was used in this study in which subjects 

were randomized to 1 of 3 groups to receive either WBV, LMV, or control interventions (n = 20 

per group) following pre-test assessments of quadriceps function.  All subjects completed 3 

testing visits to the laboratory as a part of larger study in a block randomized order separated by 

1-week washout periods. The data reported here were obtained from one session.  Subjects 

completed a baseline test, received an intervention, and completed follow-up testing 

immediately, 10 minutes, and 20 minutes following the intervention.  Prior to testing, subjects 

completed a familiarization session of all testing and intervention procedures to reduce the 

chance of a learning effect.  The tester completing all analyses was blinded to group assignment.  

Subjects 

An a priori power analysis based on previous data214 suggested that 16 subjects per group 

(f2 = 0.43, α = 0.05, power = 0.8) would be necessary to detect a significant difference in 

quadriceps function between groups.  Therefore, 60 healthy individuals were recruited (Table 7) 

to provide adequate statistical power.  To be eligible for participation, subjects were required to 

be recreationally active, defined as participation in physical activity for 30 minutes at least 3 

times per week.  Subjects were excluded for a history of musculoskeletal injury within 6 months 

prior to testing, lower extremity surgery, neurological disorder, cardiovascular disease, 

hypertension, diabetes mellitus, concussion or head injury, stroke, epilepsy, peripheral 

neuropathy, migraine headaches, cranial neural surgery, cancer in the brain or thigh musculature, 

cardiac pacemaker, implanted foreign metal object, or diagnosed psychiatric disorder.  The study 
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was approved by the university’s institutional review board, and all subjects provided written 

informed consent prior to participation. 

Electromyography 

Sites for EMG electrodes were shaved if necessary and the skin was lightly abraded and 

cleaned with alcohol to improve signal quality.  Preamplified electrodes (EL503, Ag/AgCl 

contact 11mm diameter, Biopac systems) were placed over the vastus lateralis (VL), vastus 

medialis (VM), and rectus femoris (RF) according to the SENIAM guidelines (VL – one third 

the distance along a line from the superior lateral side of the patella to the anterior superior iliac 

spine, RF – half the distance from the ASIS to the center of the patella, VM – 80% of the 

distance between the ASIS and the joint space in front of the anterior border of the medial 

collateral ligament) to record EMG activity during each contraction.216  A reference electrode 

was placed on the medial malleolus.  All electrodes were secured with prewrap and athletic tape.  

All data were sampled at 2 KHz using the Biopac data acquisition system (MP150WSW, Input 

Impedance: 1.0 MΩ, Biopac Systems Inc., Santa Barbara, CA) and EMG100C Amplifiers 

(CMRR: 110 dB min, actual gain used: 10000, Biopac Systems Inc., Santa Barbara, CA).   

Maximal Voluntary Isometric Contraction (MVIC) procedures 

Subjects completed a 5-minute warm-up on a cycle ergometer at a self-selected pace, 

followed by a series of submaximal quadriceps contractions (25%, 50%, and 75% of their 

perceived maximal effort) to reduce the chance of injury.  An isokinetic dynamometer (Humac 

Norm, Stoughton MA) was used to assess quadriceps function during maximal isometric knee 

extension. This test was performed on the dominant limb, defined as the limb that would be used 

to kick a ball. The thighs, hips, and upper body were stabilized with straps (Figure 3), and the 

lever arm was adjusted so that the ankle strap was placed 2 finger widths above the medial 
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malleolus and the knee was flexed to 60°.   Subjects were instructed to “kick out as hard and fast 

as possible” and received verbal encouragement for all trials to ensure a maximal effort during 2 

repetitions of 5 seconds with 1 minute of rest between.   

Interventions 

Following baseline testing, subjects were randomized to LMV, WBV, or control groups. 

The LMV group received 6 bouts of 60 seconds vibration with 2 minutes rest between each bout 

while standing with the knees flexed approximately 60°. A custom-made LMV device was 

placed on the quadriceps tendon (Figure 5, right).  Subjects randomized to the WBV group stood 

with the knees flexed approximately 60°on a vibrating platform (PowerPlate Pro 5, Perfrormance 

Health Systems, Northbrook IL) that provided a similar stimulus (Figure 5, left).  The LMV and 

WBV stimuli were held constant at 2g of acceleration at a frequency of 30Hz.  The control group 

performed the same procedures but did not receive vibration.  These parameters were the same as 

in prior studies in our laboratory demonstrating similar effects between LMV and WBV on 

voluntary muscle activation.  Immediately following the intervention, subjects repeated the 

aforementioned MVIC procedures.   

Data Reduction 

The raw EMG signal was corrected for DC bias, bandpass (20-350Hz) and notch (59.5-

60.5Hz) filtered (4th order zero-phase lag Butterworth). The filtered data were smoothed using a 

20ms root-mean-square (RMS) sliding window function. Peak EMG amplitude was calculated as 

the largest 1-second moving average of the RMS.  All data were normalized to a maximal M-

wave recorded at the start of each session.  The M-wave was recorded by placing a stimulating 

bar electrode (EL351, BIOPAC Systems Inc.) over the femoral nerve while subjects were supine 

with their knees slightly flexed (10-15°).  The electrical stimulus was increased in 0.2 Volt 



 78 

increments until a maximal M-wave as elicited.  The baseline maximal EMG amplitude values 

were used as a standardization criterion, and the percent of baseline amplitude was calculated as 

[(Followupamp/Baselineamp) x 100] for each muscle (VL, VM, and RF) and averaged across the 

VL, VM, and RF to create a composite measure of quadriceps activity for analysis. 

Torque data were lowpass filtered at 50 Hz (4th order Butterworth), and peak torque and 

rate of torque development (RTD) were calculated from the torque vs. time curve.  Peak torque 

was defined as the maximal voluntary torque value and was normalized to body mass for 

analysis (Nm/kg).  Maximal RTD was defined as the peak of the first derivative of the torque-

time curve.  The peak derivative was identified and normalized to body mass for statistical 

analyses (Nm/s·kg-1).  

Statistical Analyses 

 All data were confirmed as being normally distributed using the Shapiro-Wilk test and 

evaluation of the skewness and kurtosis (ratio of statistic to standard error). All dependent 

variables (peak torque, rate of torque development, EMG amplitude) were compared between 

groups at baseline using one-way analysis of variance (ANOVA).  The effects of each 

intervention on peak torque, rate of torque development, and EMG amplitude were evaluated via 

3x4 (group x time) ANOVAs. The level of significance was set to α = 0.05 and Bonferroni 

adjustments (0.05/18 = 0.003) were used for post hoc analysis of significant ANOVA models.  

Results 

 Descriptive statistics for each group are presented in Table 7.  Data were screened for 

outliers and checked for normality prior to further analyses.  Four outliers were identified using 

boxplots in the peak torque dataset, and were removed for subsequent analyses (LMV=1, 

WBV=1, Control=2).  Upon removal of the outliers, data were found to be normal via evaluation 
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of skewness and kurtosis.  However, peak torque data violated the assumption of sphericity, thus 

the Greenhouse-Geisser test was used to assess the group x time interaction for this variable.  No 

group differences were identified at baseline for any of the dependent variables (Table 8).  

Table 7: Healthy Cohort Descriptive Statistics  
 Control  WBV  LMV  
Age (years) 20.5 (1.2) 20.2 (0.9) 19.5 (1.4) 
Sex (males) 8 10 9 
Mass (kg) 69.4 (12.9) 66.4 (10.5) 65.5 (10.7) 
Height (cm) 172.0 (10.7) 167.3 (8.9) 171.1 (8.8) 
 
Table 8: Healthy Cohort Baseline Comparison (mean (SD)) 
 Control WBV  LMV  p 
Peak Torque 2.61 (0.61) 2.56 (0.56) 2.58 (0.58) 0.68 
RTD 54.31 (20.83) 53.77 (30.83) 47.31 (19.85) 0.63 
Vastus Medialis EMG 0.27 (0.13) 0.32 (0.31) 0.32 (0.19) 0.78 
Vastus Lateralis EMG 0.28 (0.13) 0.32 (0.25) 0.33 (0.18) 0.71 
Rectus Femoris EMG 0.27 (0.13) 0.30 (0.25) 0.35 (0.23) 0.58 
 

 The group by time interaction effect was significant for peak torque (Table 9, F2,53=4.26, 

p=0.002) and EMG amplitude (Table 10, F2,53 =5.13, p<0.001), but not for RTD (Table 11, F2,53 

=0.81, p=0.563).  There was a significant increase from pre-test to post-test in peak torque in the 

WBV group only (+0.30 Nm/kg, p=<0.001), and a significant increase in EMG amplitude in the 

WBV group (+18.4%, p<0.001) and LMV group (+12.6%, p=0.002).  Furthermore, EMG 

amplitude was greater in the WBV group (+19.7%, p<0.001) and LMV group (+13.7%, p=0.001) 

compared to control immediately post-test. There was no difference between the WBV and LMV 

group immediately post-test, and no differences were observed at 10 or 20 minutes post-test for 

any variables.   
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Table 9: Healthy Cohort Peak Torque Results (mean (SD)) 
Peak Torque 
(Nm/kg) 

Pre Post 10 min Post 20 min Post P (group x 
time) 

Control (n=18) 2.61 (0.61) 2.62 (0.66) 2.59 (0.54) 2.56 (0.51) 
0.002 WBV (n=19) 2.56 (0.56) 2.85 (0.47)* 2.68 (0.51) 2.63 (0.53) 

LMV (n=19) 2.58 (0.58) 2.47 (0.60) 2.45 (0.57) 2.43 (0.52) 
*indicates significantly greater than pretest (p<0.003) 

 
Table 10: Healthy Cohort Rate of Torque Development Results (mean (SD)) 
RTD 
(Nm/sec/kg) 

Pre Post 10 min Post 20 min Post P (group x 
time) 

Control (n=18) 54.31 (20.83) 53.44 (25.15) 50.92 (23.89) 56.20 (29.48) 
0.563 WBV (n=19) 53.77 (30.83) 59.60 (25.36) 53.68 (25.13) 56.44 (23.31) 

LMV (n=19) 47.31 (19.85) 46.01 (19.71) 45.28 (19.47) 44.62 (20.93) 
 
 
Table 11: Healthy Cohort Quadriceps EMG Results (mean (SD)) 
EMG (% 
Baseline) 

Pre Post 10 min Post 20 min Post P (group 
x time) 

Control (n=18) 100 98.29 (15.98) 108.32 (22.99) 107.81 (30.06) 
<0.001 WBV (n=19) 100 118.06 (18.43)* Ŧ 104.59 (17.95) 103.78 (20.36) 

LMV (n=19) 100 112.55 (26.22)* Ŧ 103.54 (29.03) 103.40 (28.76) 
*indicates significantly greater than pretest (p<0.003) 
Ŧ indicates significantly greater than control (p<0.003) 

Discussion 

 The main findings of this study were that both WBV and LMV increased quadriceps 

EMG amplitude in healthy individuals immediately following the intervention, but the increase 

in quadriceps activity was accompanied by an increase in peak torque only in the WBV group.  

However, these improvements were not sustained 10 and 20 minutes following treatment.  We 

did not observe any effect of vibratory stimuli on RTD, which was contrary to our hypotheses.   

 These findings are partially in agreement with our hypotheses and are consistent with 

previous literature with regards to quadriceps EMG amplitude following WBV178,180,181 and 

LMV.190,213,214  Greater EMG activity following vibration suggests greater motor unit activation 

or firing frequency.  However, the physiological mechanisms underlying vibratory stimuli are 

unclear. Previous research 50,51 indicates that an increase in EMG amplitude and peak torque is 
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due to greater excitation of the alpha motoneurons via the muscle spindle system during 

vibration.  However, this mechanism would seemingly only be relevant while the vibration 

stimulus is applied, and does not account for improvements observed when the stimulus is 

removed as in this study.  Therefore, other mechanisms such as enhanced corticospinal 

excitability and intracortical processes may be responsible for the improvement in quadriceps 

function.64,65  For example, Mileva et al.64 found that motor evoked potentials from the tibialis 

anterior were augmented during and following WBV, and Siggelkow et al.65 found similar 

results in the extensor carpi radialis following LMV.  Other mechanisms that may explain the 

improvement in quadriceps function include a warm-up effect, as vibration has been known to 

acutely increase muscle temperature.211 However, while not an aim of the study, we also 

measured the maximal M-response to electrical stimulation to determine if the interventions 

produced local changes at the level of the muscle.  However, we did not observe significant 

changes with the interventions (group x time interaction F2,54= 1.95, p=0.12), suggesting that the 

observed effects on quadriceps EMG amplitude and peak torque were not attributable to a warm-

up effect.  

 Interestingly we only observed an increase in peak torque in the WBV group, and did not 

observe a similar improvement in the LMV group.  This was in contrast to our hypotheses, and 

contrary to a previous study comparing the effects of WBV and LMV on peak torque.212  

However, this study212 utilized a sample with experimental arthrogenic muscle inhibition caused 

by injecting saline into the knee joint, and improvement in that study in the LMV group could 

also be a result of saline diffusion from the knee joint following experimental joint effusion.  

Furthermore, the discrepancy in findings between WBV and LMV may be explained by 

differences in the application of the stimulus.  WBV stimulates multiple receptors throughout the 
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lower extremity that may influence excitability of a muscle,215,217 whereas LMV mainly 

stimulates the primary endings of muscle spindles and cutaneous receptors in the area of 

application.  However, WBV also influences cutaneous receptors in the plantar aspect of the 

foot, and mechanoreceptors throughout the ankle and knee joints.215,217  Therefore, the additional 

afferent sensory information provided to the central nervous system from WBV compared to 

LMV may be responsible for the increase in peak torque.  This may suggest that LMV, at least 

using the parameters from the current investigation, does not provide a stimulus that is sufficient 

to enhance torque production in healthy individuals with normal quadriceps function who are 

likely subject to a ceiling effect.  Lastly, while not an aim of the study, we did consider that 

hamstrings activity could influence peak torque of the knee extensors, and thus recorded biceps 

femoris and medial hamstrings EMG simultaneously as an explanatory variable.  However, no 

differences were observed between groups in the biceps femoris (F2,54 = 0.72, p=0.634) or medial 

hamstrings (F2,54 =  0.88, p=0.508) activation during the knee extension MVIC.  Future studies 

should examine the mechanisms underlying the changes in muscle function following LMV 

compared to WBV.       

 We also did not observe any significant improvements 10 and 20 minutes following the 

interventions.  Previous studies indicate that the effects of LMV and WBV on quadriceps 

EMG,214 vertical jump,54 and muscle force production218 persist for at least 5 minutes.  Our 

immediate post-intervention measurements occurred an average of 2 minutes and 29 seconds 

following the intervention, and it is unclear if effects were still evident between 2:29 and 10 

minutes following the intervention.  Future studies should continue to evaluate the duration of 

the effect and take into consideration the time between intervention and activity, as these 

findings are relevant to exercise programming.    
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 Lastly, the group by time interaction for RTD was not significant despite an increase in 

EMG amplitude.  RTD is governed by mechanical and neural contributors, and increases in 

neural drive contribute to greater RTD through enhanced motor unit activation and more 

importantly, firing frequency.219  As such, we hypothesized that RTD would increase following 

both WBV and LMV due to greater motor neuron excitability.  Given that motor neuron 

excitability was not directly assessed, it is difficult to speculate why a concurrent change in RTD 

was not observed.  However, because the cohort in this study was healthy and recreationally 

active and did not possess deficits in quadriceps function, it is likely that motor unit firing 

frequency was effectively maximized during MVIC, and a ceiling effect was observed.  

Therefore, WBV and LMV may have increased EMG amplitude via heightened motor unit 

recruitment, but had a negligible effect on firing frequency, thus not translating to a gain in RTD.  

Although this result was contrary to our hypotheses, it was in agreement with previous 

findings.218,220   

 There are limitations to address in this study.  Firstly, it is unlikely that a single bout of 

vibration is sufficient to elicit chronic effects on muscle function, and the effects of repeated 

exposure are on unclear.  Repeated bouts of vibratory stimuli may be required to elicit 

improvements.  Next, the observed effects were relatively short lived given that they did not 

persist beyond the immediate posttest.  However, this study utilized a healthy cohort, and the 

effects could persist and be larger in individuals with deficits in quadriceps function, such as 

patients with knee pathologies.  Finally, this study only used surface EMG to measure neural 

adaptations occurring following vibration.  Future studies should consider measures that 

contribute to muscle function such as corticospinal excitability, intracortical processes, and 

peripheral vascular perfusion.  
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Conclusion 

 Our findings suggest that LMV and WBV acutely increase EMG activity of the 

quadriceps muscles, and WBV also improves peak torque in healthy individuals.  LMV and 

WBV had no effect on RTD.  These findings suggest that muscle vibration – particularly WBV – 

could be a useful tool to increase quadriceps function.  Future research should consider 

evaluating the effects of repeated treatments and the efficacy of adding vibratory stimuli to 

traditional strengthening protocols.  
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CHAPTER 6: MANUSCRIPT 2 

The Effects of Whole Body and Local Muscle Vibration on Peak Torque, Rate Of Torque 

Development, and Electromyography in Patients with Anterior Cruciate Ligament 

Reconstruction

Overview 

Context: Individuals with anterior cruciate ligament reconstruction (ACLR) have deficits in 

quadriceps function that may contribute to the development of knee osteoarthritis.  Whole body 

vibration and local muscle vibration acutely improve muscle function, and may be suitable tools 

in injury rehabilitation. Objective: To compare the effects of whole body and local muscle 

vibration on quadriceps function in individuals with ACLR.  Design: Single blind, single group, 

crossover Setting: Laboratory Patients or Other Participants: Twenty individuals with ACLR. 

Interventions: Subjects completed an assessment of peak knee extensor torque, rate of torque 

development, and quadriceps electromyography (EMG) amplitude and then received a treatment 

of whole body vibration, local muscle vibration, or control.  Subjects repeated the assessment 

immediately following the intervention.  Subjects completed the remaining treatment conditions 

in separate sessions. Main Outcome Measures: Peak torque was defined as the maximal 

voluntary torque produced during the assessment. Rate of torque development was defined as the 

peak of the first derivative of the torque-time curve. Maximal EMG amplitude was defined as the 

greatest one second average during the strength assessment, and average across the quadriceps as 

a percentage of baseline for analyses.  Results: Data were analyzed using 3(condition) by 

2(time) ANOVA. The group by time interaction was significant for peak torque, and EMG 
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amplitude.  Post hoc analyses indicated a significant improvement in peak torque and quadriceps 

EMG amplitude following in the WBV and LMV conditions relative to the control condition.  

Conclusions: These findings suggest that whole body and local muscle vibration improve 

quadriceps EMG amplitude in individuals with ACLR. These treatments may alleviate 

quadriceps dysfunction and improve the efficacy of rehabilitation protocols to reduce the risk of 

knee osteoarthritis following ACLR. 

Introduction 

 Individuals who undergo anterior cruciate ligament (ACL) reconstruction are 3-5 times 

more likely to develop tibiofemoral osteoarthritis (OA) compared to healthy controls.6,9  OA 

results from a gradual reduction of articular cartilage within a joint, and patients with ACL 

reconstruction show evidence of OA as early as one year following reconstruction.221 Knee 

osteoarthritis (OA) affects 29 million Americans at an annual cost of $165 billion.19,222 In the 

long term, OA contributes to sedentary behavior and comorbidities such as cardiovascular 

disease.17,18 Overall, the lifetime burden associated with ACL injury amounts to $7.6 billion 

annually in the United States when treated with reconstruction, and $17 billion when treated with 

rehabilitation.4,5    

 Quadriceps weakness is common following ACL injury and reconstruction due, in part, 

to arthrogenic muscle inhibition (AMI).24,118  Alterations in afferent input to the central nervous 

system caused by joint effusion, joint laxity, pain, and/or deafferentation decrease the excitability 

of the quadriceps,25,26 ultimately leading to an impaired ability to activate the quadriceps.20  

Reduced quadriceps activation diminishes knee extensor force production, and impaired 

quadriceps function prospectively predicts OA progression.24,27,28  The quadriceps act 

eccentrically to attenuate impact loading during the early stance phase of gait.  Reduced 



 87 

quadriceps activity in patients with ACL injury manifests as lesser internal knee extension 

moments and knee flexion angles during gait.36 Therefore, impaired quadriceps function may 

influence how the articular cartilage is loaded, and may contribute to OA development and 

progression.  As such, improving quadriceps function in patients with ACL reconstruction 

(ACLR) may preserve articular cartilage health.      

Current rehabilitation strategies are often ineffective in restoring quadriceps 

function.39,223 Vibratory stimuli may enhance muscle function via stimulation of the muscle 

spindle system,50 increased corticospinal excitability,64,65 and/or increased muscle temperature.211 

Vibration is commonly applied using whole body vibration (WBV) platforms. WBV acutely 

increases muscle strength,183 muscle power,41 rate of force production,218 and EMG amplitude.178 

Therefore, these stimuli may be an appropriate adjunct treatment to traditional ACLR 

rehabilitation protocols.  Some studies have indicated that incorporating WBV in traditional 

rehabilitation is  superior to conventional rehabilitation alone in patients with ACL 

reconstruction in improving postural stability, strength, and coordination.224,225  However, WBV 

platforms are cost prohibitive and have limited portability.  Local muscle vibration (LMV) also 

improves muscle function212-214 and may provide a cost-effective alternative to WBV.  

 While WBV and LMV provide similar stimuli, the efficacy of the treatment may differ.  

During WBV, energy from vibration is dampened by the ankle joint, knee joint, and calf 

musculature, which may influence the magnitude of the vibration stimulus applied to more 

proximal structures (i.e. the quadriceps).226 The reduction in energy from the vibration signal 

could be less if it were applied directly to the muscle of interest via LMV rather than WBV. 

Blackburn et al.212 found similar improvements in voluntary quadriceps activation and peak 

torque production following WBV compared to LMV.  However, this study utilized a sample 
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with artificially induced quadriceps inhibition, and it is unclear if the same effects are present in 

individuals with ACLR who possess chronic quadriceps dysfunction.  Therefore, the primary 

purpose of this study was to compare the effects of WBV and LMV on quadriceps EMG 

amplitude, peak torque, and rate of torque development in a group of individuals with ACLR.  

We hypothesized that there would be similar improvements in WBV and LMV following 

treatment.  

Methods 

Experimental Design 

A single-group, repeated measures, single-blind crossover design was used in this study. 

Data collection occurred during 3 testing visits (WBV, LMV, control) separated by 1-week 

washout periods as part of a larger investigation evaluating the effects of vibratory stimuli on 

quadriceps function, and corticomotor and spinal neuron excitability.  Subjects completed a 

baseline test, received an intervention, and immediately completed follow-up testing.  Prior to 

testing, subjects completed a familiarization session of all testing and intervention procedures to 

reduce the chance of a learning effect. The order of the testing sessions was counterbalanced via 

a Latin square to reduce the chance of a learning or order effect.  The investigator conducting all 

analyses was blinded to group assignment, and all interventions were delivered by unblended 

investigators. 

Subjects 

An a priori power analysis based on previous data214 suggested that 14 subjects (f2 = 

0.43, α = 0.05, power = 0.8) would be necessary to detect a significant difference in quadriceps 

function in a crossover design.  Therefore, 20 individuals with unilateral ACLR were recruited 
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(mass = 77.2 ± 17.1 kg, height = 170.7 ± 11.1 cm, males = 6, age = 21.1 ± 1.2 years, time since 

ACLR = 50.7 ± 21.3 month, patellar tendon autograft = 16, hamstring autograft = 3, allograft = 

1) to provide adequate statistical power.  To be eligible for participation, subjects were required 

to have unilateral ACLR, be cleared by a physician for participation in physical activity, and be 

recreationally active, defined as participation in physical activity for 30 minutes at least 3 times 

per week.  Subjects were excluded for any re-injury or revision surgery for the injured limb, a 

history of musculoskeletal injury within 6 months prior to testing, lower extremity surgery (other 

than unilateral ACLR), neurological disorder, cardiovascular disease, hypertension, diabetes 

mellitus, concussion or head injury, stroke, epilepsy, peripheral neuropathy, migraine headaches, 

cranial neural surgery, cancer in the brain or thigh musculature, cardiac pacemaker, implanted 

foreign metal object, or diagnosed psychiatric disorder.  

Electromyography 

Sites for EMG electrodes were shaved if necessary and the skin was lightly abraded and 

cleaned with alcohol to improve signal quality.  Preamplified electrodes (EL503, Ag/AgCl 

contact 11mm diameter, Biopac systems) were placed on the vastus lateralis (VL), vastus 

medialis (VM), and rectus femoris (RF) according to the SENIAM guidelines (VL – one third of 

the distance along a line from the superior lateral side of the patella to the anterior superior iliac 

spine, RF – half the distance from the ASIS to the center of the patella, VM – 80% of the 

distance between the ASIS and the joint space in front of the anterior border of the medial 

collateral ligament.216  A reference electrode was placed on the medial malleolus.  All electrodes 

were secured with prewrap and athletic tape.  All data were sampled at 2 KHz using the Biopac 

data acquisition system (MP150WSW, Input Impedance: 1.0 MΩ Biopac Systems Inc., Santa 



 90 

Barbara, CA), and EMG100C Amplifiers (CMRR: 110 dB min, actual gain used: 10000, Biopac 

Systems Inc., Santa Barbara, CA).   

MVIC procedures 

Subjects completed a 5-minute warm-up on a cycle ergometer at a self-selected pace, 

followed by a series of submaximal quadriceps contractions to 

reduce the chance of injury.  An isokinetic dynamometer (Humac 

Norm, Stoughton MA) was used to test isometric knee extensor 

function in the ACLR limb. The thighs, hips, and upper body 

were firmly stabilized with straps (Figure 6).  The lever arm was 

adjusted so that the ankle strap was placed 2 finger widths above 

the medial malleolus.  The knee was positioned so that the lateral 

femoral epicondyle was aligned with the rotational axis of the 

dynamometer.  The knee was flexed 60° and 3 repetitions of 5 seconds (average used for 

analyses) were completed with 1 minute of rest between.  Subjects were instructed to “kick out 

as hard and fast as possible” and received verbal encouragement for all trials to ensure a maximal 

effort.  

Intervention 

Following baseline testing, subjects received LMV, WBV, or control interventions. The 

LMV condition consisted of 6 bouts of 60 seconds vibration with 2 minutes rest between each 

bout while subjects were standing with the knees flexed approximately 60°.  A custom-made 

LMV device was placed on the quadriceps tendon (Figure 5, right).  During the WBV condition, 

subjects stood in an identical position as in the LMV intervention on a vibrating platform 

(PowerPlate Pro 5, Perfrormance Health Systems, Northbrook IL) that provided a similar 

Figure 6: Subject Position for 
Dynamometer 
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stimulus (Figure 5, left).  The LMV and WBV stimuli were held constant at 2g of acceleration at 

a frequency of 30Hz.  During the control condition subjects performed the same procedures but 

did not receive vibration.  These parameters were the same as in prior studies in our laboratory 

demonstrating similar effects between LMV and WBV on voluntary muscle activation.  

Immediately following the intervention, subjects repeated the aforementioned MVIC assessment   

Data Reduction 

The raw EMG signal was corrected for DC bias, bandpass (20-350Hz) and notch (59.5-

60.5Hz) filtered (4th order zero-phase lag Butterworth filter). The filtered data were smoothed 

using a 20ms root-mean-square (RMS) sliding window function. Maximal EMG amplitude was 

calculated as the largest 1-second moving average of the processed signal.   All data were 

normalized to a maximal M-wave recorded at the start of each session.  The M-wave was elicited 

by placing a stimulating bar electrode (EL351, BIOPAC Systems Inc.) over the femoral nerve 

while subjects were supine with their knees slightly flexed (10-15°).  The electrical stimulus was 

increased in 0.2 Volt increments until a maximal M-wave was obtained.  The baseline amplitude 

values from each respective session were used as a standardization criterion, and the percent of 

baseline amplitude was calculated [(Followupamp/Baselineamp) x 100] for each muscle (VL, VM, 

and RF) and averaged across the VL, VM, and RF to create a composite measure of quadriceps 

activity for analysis. 

Torque data were lowpass filtered at 50 Hz (fourth order Butterworth), and peak torque 

and rate of torque development were calculated from the torque vs. time curve.  Peak torque was 

defined as the maximal voluntary torque value and was normalized to body mass for analysis 

(Nm/kg).  Rate of torque development was calculated as the first derivative of the torque/time 
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curve, and the peak value was identified and normalized to body mass for statistical analyses 

(Nm/s�kg-1).  

 

Statistical Analyses 

 All data were confirmed as being normally distributed using the Shapiro-Wilk test and 

inspection of skewness and kurtosis statistics. All dependent variables (peak torque, rate of 

torque development, EMG amplitude) were compared between conditions at baseline using one-

way ANOVA.  The effects of the interventions on the dependent variables were evaluated via 

separate 3x2 (condition x time) repeated measures ANOVA. The level of significance was 

established a priori as α = 0.05 and Bonferroni post hoc adjustments (α = 0.05/6 = 0.0083) were 

used to evaluate significant ANOVA models.  

Results 

 All data were found to be normal via the Shaprio-wilk test and evaluation of skewness 

and kurtosis.  No outliers were identified and all cases were included for analysis.  Baseline 

values for the dependent variables did not differ between conditions (Table 12).  The condition 

by time interaction was significant for peak torque (Figure 7, F2,17 = 8.46, p=0.001) and 

quadriceps EMG amplitude (Figure 8, F2,17 = 2.90, p=0.05), but not for RTD (Figure 9, F2,17 = 

0.12, p=0.89).   

Table 12: ACLR Cohort Baseline Characteristics (mean (SD)) 
Variable Control WBV LMV p 
Peak Torque (Nm�kg-1) 1.84 (0.79) 1.79 (0.80) 1.83 (0.93) 0.82 
RTD (Nm�kg�sec-1) 39.97 (19.03) 39.74 (20.98) 41.14 (22.68) 0.94 
Vastus Medialis EMG 0.32 (0.25) 0.36 (0.33) 0.26 (0.15) 0.47 
Vastus Lateralis EMG 0.33 (0.23) 0.31 (0.17) 0.26 (0.13) 0.45 
Rectus Femoris EMG 0.31 (0.22) 0.33 (0.25) 0.26 (0.14) 0.57 
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Figure 7: ACLR cohort peak torque condition by time interaction, p<0.001; * indicates p<0.0087, Ŧ indicates trend towards 
significance 
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Figure 8:  ACLR cohort quadriceps EMG amplitude condition by time interaction, p<0.001; * indicates p<0.0087, Ŧ indicates 
trend towards significance 
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Figure 9: ACLR cohort rate of torque development condition by time interaction, p=0.89 
 
 
 Post hoc analyses indicated that peak torque in the WBV (p=0.004) and LMV (p=0.002) 

conditions was greater than in the control condition at post-test.  However, the increase in peak 

torque was not significant in the WBV (+0.15 Nm/kg, p = 0.01) or LMV (+0.12 Nm/kg, p = 

0.03) conditions (Figure 7) due to the conservative nature of the post hoc test procedure.  This 

statistical limitation was evidenced by the fact that the 95% confidence intervals for the pre-post 

change scores did not cross 0 for the change in peak torque in the WBV (95%CI: 0.04 - 0.27, 

effect size = 0.73) and LMV (95%CI: 0.02 – 0.22, effect size = 0.65) conditions. We also 

observed a significant decrease in peak torque in the control condition from pre-test to post-test 
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(-0.21Nm/kg, p=0.002). There was no difference in peak torque between the WBV and LMV 

conditions at post-test (p = 0.96).   

Post hoc analyses also indicated that quadriceps EMG amplitude increased in the WBV 

condition (+16.17%, p=0.002).  Furthermore, quadriceps EMG amplitude was greater in the 

WBV condition compared to the control condition at post-test (p = 0.002).  Similar to the trend 

in peak torque data, the change in quadriceps EMG amplitude in the LMV condition (+11.18%, p 

= 0.018) was not significant (Figure 8) due to the conservative nature of the post hoc procedure, 

but the 95% confidence interval and effect size (95%CI: 2.37-19.99, effect size = 0.71) suggest 

that a moderate to large effect.  EMG amplitude was not different in the LMV condition 

compared to the control condition at post-test (p = 0.07).  There was no difference between the 

WBV and LMV conditions at posttest in quadriceps EMG (p = 0.44).  

Discussion  

 The main findings of this study were that both WBV and LMV increased peak knee 

extension torque and quadriceps EMG amplitude in individuals with ACLR.  Furthermore, 

though slightly larger following WBV, the magnitudes of improvement in these indices of 

quadriceps function did not differ statistically between the vibratory stimuli.  However, we 

observed no change in quadriceps RTD following either WBV or LMV.  Overall, these results 

suggest that vibratory stimuli may be an appropriate method to enhance quadriceps function 

following ACLR.   

Our findings are consistent with previous research regarding the increase in peak torque 

and EMG amplitude following WBV and LMV in healthy individuals,45,47,178,212,214   The 

increases in quadriceps peak torque and EMG activity are likely due to a number of factors.  Past 

studies indicate that improvements in muscle function following vibration result from repeated 
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stimulation of the muscle spindle and Ia afferent pathway causing a reflexive contribution to 

muscle force production.50  However, this mechanism would seemingly only account for 

enhancements that occur while the stimulus is being applied.  We observed an increase following 

the cessation of treatment, and other contributing mechanisms could include an increase in 

corticospinal excitability64,65 or a warm-up effect.168,211   However, while not an aim of this 

study, we also examined the quadriceps M-wave amplitude and found no effect of WBV or LMV 

(F2,17= 0.397, p = 0.68).  This suggests that improvements in quadriceps function are not due to a 

local warmup effect, potentially supporting effects of WBV and LMV on corticospinal 

excitability.  We also considered that a change in knee extensor torque could result from a 

reduction in hamstrings co-contraction, and therefore measured hamstrings EMG 

simultaneously.  However, we observed no effect of WBV or LMV on biceps femoris (F2,17 = 

0.93, p=0.41) or medial hamstrings (F2,17=0.28, p=0.75) EMG, thus isolating the effects of the 

vibratory stimuli to direct enhancements of quadriceps function. 

 Though not stististicaly different, WBV resulted in slightly larger improvements in peak 

torque (+0.15 Nm/kg vs. +0.12 Nm/kg ) and EMG amplitude  (+16.16% vs. +11.18%) than 

LMV.  WBV stimulates a variety of sensory receptors throughout the lower extremity such as 

cutaneous receptors in the foot,215 whereas the effects of LMV are likely restricted to 

musculotendinous and cutaneous receptors immediately surrounding the area to which it is 

applied. Only one study212 to our knowledge has compared these modalities, and reported 

equivocal improvements in peak torque and voluntary muscle activation similar to our results.  

However, this study utilized a sample that had artificial AMI from experimental knee effusion, 

and the results could have been partially attributable to saline effusion during testing.  Our 

findings confirm that WBV and LMV produce similar increases in knee extensor torque and 
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quadriceps EMG amplitude in a individuals with ACLR.  These findings are relevant as 

individuals with ACLR typically exhibit deficits in quadriceps function104 that may contribute to 

the development of knee OA.20  Importantly, baseline quadriceps function predicts knee OA 

progression,24 thus it is an important target for rehabilitation.  Unfortunately rehabilitation efforts 

are often ineffective due to quadriceps AMI.38,163  Our findings indicate that vibratory stimuli 

may be an appropriate method to enhance the efficacy of strengthening exercises for patients 

with knee pathologies.   

 We did not observe a change in RTD in either the WBV or LMV condition despite a 

improvements in peak torque and EMG amplitude.  While these findings were contrary to our 

hypotheses, they are in agreement with previous studies in healthy individuals.214,218,220  Neural 

and mechanical factors contribute to RTD, and increases in neural drive contribute to RTD via 

rate coding and motor unit activation.219   Therefore, we hypothesized that RTD would increase 

following WBV and LMV from greater motor neuron excitability.  It could be that a single 

session of vibration is not sufficient to elicit a detectable change in RTD.  For instance, Lamont 

et al.227 reported an increase in RTD with the addition of WBV to squat training, but only after a 

7 week period.  Furthermore, several studies demonstrating improvements speed of movement or 

force production utilized different tasks such as countermovement and vertical jumps.54,220,228  As 

such, it could be that the MVIC used in this study was not sensitive or dynamic enough to detect 

differences between conditions.  Future studies should consider evaluating other tasks where the 

rate of torque development is considered crucial.   

 There are limitations to address when interpreting the results of this study.  Firstly, a 

single session of vibration therapy likely does not produce lasting effects on muscle function. 

Furthermore, we propose that this treatment would be suitable to aid in rehabilitation to prevent 
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or delay the progression of knee OA.  However, given the short-term nature of this study, we 

were unable to assess knee OA progression.  Future studies should determine if vibratory 

treatments are appropriate to elicit a reduction in knee OA prevalence among patients with 

ACLR.  Finally, while we observed an increase in quadriceps peak torque and EMG, the 

mechanisms of WBV and LMV are unclear.  Future studies should evaluate the mechanisms that 

govern changes in muscle function following WBV and LMV, such as changes in corticospinal 

excitability.  WBV and LMV may influence the neuromuscular system differentially, thus these 

differences should continue to be investigated.  

Conclusion 

 Our findings indicate that WBV and LMV improve quadriceps peak torque and EMG 

amplitude in patients with ACLR.  WBV and LMV had no effect on quadriceps RTD.  Overall, 

our findings suggest that WBV and LMV are appropriate methods to acutely increase quadriceps 

function, and could be useful to aid in restoring quadriceps strength in patients with knee 

pathologies.  Future studies should evaluate the effects of repeated exposure to vibratory 

stimuliand the effects of adding vibration to strengthening exercises.  Finally, future research 

should continue to explore the differences between WBV and LMV, as LMV may provide a cost 

effective alternative to WBV if it provides similar effects.
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CHAPTER 7: MANUSCRIPT 3 

The Effects of Whole Body and Local Muscle Vibration on Quadriceps Corticomotor 

Excitability, Spinal Neuron Excitability, and Voluntary Muscle Activation in Healthy Young 

Adults

Overview 

Context: Whole body vibration and local muscle vibration acutely improve muscle function, and 

may be suitable tools in performance enhancement and injury rehabilitation.  However, the 

mechanisms underlying these improvements are unclear, and the efficacy of these treatments has 

not been compared.  Objective: To compare the effects of whole body and local muscle 

vibration on quadriceps function in healthy young adults.  Design: Single blind randomized 

controlled trial. Setting: Laboratory Patients or Other Participants: Sixty healthy and 

recreationally active young adults. Interventions: Subjects were randomized to one of three 

groups (WBV, LMV and control) and data were collected in a single session.  Subjects 

completed testing of quadriceps corticomotor excitability, spinal neuron excitability, and 

voluntary activation and then completed an intervention based on group assignment. Subjects 

repeated the assessment immediately, ten minutes, and twenty minutes following the 

intervention.  Main Outcome Measures: Corticomotor excitability was assessed using active 

motor threshold (AMT) and motor evoked potential (MEP) amplitude.  Spinal neuron 

excitability was assessed using Hoffmann (H) reflex.  Voluntary activation was assessed using 

the central activation ratio (CAR).  Results: Data were analyzed using 3(goup) by 4(time) 

ANOVA. The group by time interaction was significant for AMT, MEP amplitude, and CAR, 
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but not for H-Reflex.  Subjects in the WBV group improved in AMT, MEP amplitude, and CAR.  

Subjects in the LMV group improved in AMT.  No effect was observed on H-Reflex.  

Conclusions: These findings suggest that whole body and local muscle vibration improve 

corticomotor excitability, and whole body vibration also improves voluntary quadriceps 

activation.  As such, vibratory stimuli – in particular whole body vibration – may be an 

appropriate tool to acutely improve quadriceps function in healthy individuals.  

Introduction 

 Vibratory stimuli have practical applications to strength and conditioning, and injury 

rehabilitation, as they acutely increase muscle strength,183,212 power,41 and activation178,212,214 

during and following cessation of treatment.214  Furthermore, these treatments improve 

functional tasks such as vertical and countermovement jumps.54  Despite a preponderance of 

evidence linking muscle vibration to enhanced muscle function, there is still uncertainty 

regarding the mechanisms underlying the observed improvements.  Previous work suggests that 

improvements in muscle function are a result of enhanced reflexive activity from stimulation of 

the muscle spindle system.50  Essentially, discharge of the primary endings of the muscle spindle 

(Ia afferent) from repeated muscle lengthening invokes what is known as the tonic vibratory 

reflex (TVR).51,52  However, the TVR only accounts for alterations in muscle function that occur 

during vibration, and does not account for improvements following the cessation of treatment.  

For example, Pamukoff et al.214 demonstrated that quadriceps EMG activity during a knee 

extensor maximal voluntary contraction remained elevated at least 5 minutes following local 

muscle vibration.  Furthermore, some studies indicate a suppression of spinal neuron excitability 

following vibration in healthy individuals57 and in patients with spinal cord injury.58  These 
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findings suggest that improvements in muscle function following vibration are not likely 

attributed to gains in spinal neuron activity.   

What remains unclear is the role of supraspinal structures in mediating muscle function 

following vibration treatment.  Afferent input from muscles is a major contributor to motor 

control, and muscle vibration stimulates various areas of the cerebral cortex.61   There is some 

evidence to suggest that muscle vibration enhances cortical neuron excitability,64,65,171 which 

may be responsible for persisting improvements in muscle function.  Specifically, motor evoked 

potential (MEP) amplitude measured using single pulse transcranial magnetic simulation is 

augmented in response to muscle vibration.  For example, Mileva et al.64 found that tibialis 

anterior MEP amplitude was augmented during and following whole body vibration, and 

Sigglekow et al.65 found that extensor carpi radialis MEP amplitude increased during local 

muscle vibration. Overall, these findings suggest that adaptations from muscle vibration are not 

restricted to spinal reflex and peripheral activity, but also involve cortical processes.  However, 

these studies have used small samples, and have not concurrently evaluated the effects on 

cortical neuron excitability, spinal neuron excitability, and voluntary muscle activation.  

Additionally, these studies have used different kinds of vibration – whole body vibration (WBV) 

vs. local muscle vibration (LMV) - and it is unclear if these modalities yield similar results.  

WBV platforms are costly, and LMV may be a portable and cost-effective alternative.  

Furthermore, the efficacy of these modalities may vary.  During WBV, the vibration signal is 

applied at the feet and dampened as it passes to proximal structures (e.g. the quadriceps).  

However, the reduction in energy from the vibration signal could be less if it were applied 

directly to the muscle of interest via LMV.  In contrast, WBV may have a larger effect since it 

stimulates additional sensory receptors throughout the lower extremity that may influence 
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muscle activity.215  Lastly, these studies have only evaluated MEP amplitude during application 

of the vibratory stimulus, and it is unclear if the effects persist following the cessation of 

treatment.     

The purpose of this study was to evaluate and compare the effects of WBV and LMV on 

spinal neuron excitability, corticomotor excitability, and voluntary muscle activation.  A 

secondary purpose was to determine with the effects persisted for up to 20 minutes.  

Methods 

Experimental Design 

 A single blind randomized controlled trial design was used in this study in which subjects 

were randomized to 1 of 3 groups to receive either WBV, LMV, or control interventions (n = 20 

per group) following pre-test assessments of quadriceps function.  All subjects completed 3 

testing visits (spinal neuron excitability, corticomotor excitability, and voluntary muscle 

activation) in a block randomized order separated by 1-week washout periods. During each 

session subjects completed a baseline test, received an intervention, and completed follow-up 

testing immediately, 10 minutes, and 20 minutes following the intervention.  Prior to testing, 

subjects completed a familiarization session of all testing and intervention procedures to reduce 

the possibility of a learning effect.  The investigator conducting all analyses was blinded to group 

assignment.  

Subjects 

Descriptive statistics are presented in Table 7.  An a priori power analysis based on 

previous data214 suggested that 16 subjects per group (N=48, f2 = 0.43, α = 0.05, power = 0.8) 

would be necessary to detect a significant difference in quadriceps function between groups.  
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Therefore, 60 healthy individuals were recruited (Table 7) to ensure adequate power.  To be 

eligible for participation, subjects were required to be recreationally active, defined as 

participation in physical activity for 30 minutes at least 3 times per week.  Subjects were 

excluded for a history of musculoskeletal injury within 6 months prior to testing, lower extremity 

surgery, neurological disorder, cardiovascular disease, hypertension, diabetes mellitus, 

concussion or head injury, stroke, epilepsy, peripheral neuropathy, migraine headaches, cranial 

neural surgery, cancer in the brain or thigh musculature, cardiac pacemaker, implanted foreign 

metal object, or diagnosed psychiatric disorder.  

Hoffmann Reflex  

Hoffmann (H) reflex was used to assess excitability of the quadriceps alpha motoneuron 

pool (i.e. spinal neuron excitability).  H-reflex and M-wave measurements of the vastus medialis 

(VM) were collected with surface electromyography (EMG).  All measurements were recorded 

in the dominant limb, defined as the limb one would use to kick a ball.  Subjects lay supine on a 

padded table with their arms placed comfortably at their sides, their heads resting on a pillow, 

and their knees slightly flexed (15º) with a bolster.  Reflexes were elicited with a STMISOLA 

Constant Current and Constant Voltage Isolated Linear Stimulator (STMISOLA, BIOPAC 

Systems, Inc). A bipolar stimulating bar electrode (EL351, BIOPAC Systems Inc) was 

positioned over the femoral nerve, and a 1ms square wave stimulus was delivered to the femoral 

nerve. The electrical stimulus was increased in 0.2 Volt increments until a maximum H- reflex 

was elicited, and then 5 maximal H-reflexes were obtained at that voltage.  The stimulus was 

then further increased until a maximal M-wave was elicited.  EMG data were sampled at 2 KHz.  

H-max and M-max were re-established for the post-intervention assessments to account for 
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potential local effects of the vibratory stimuli on EMG characteristics (e.g. a “warmup” effect).  

The ratio of maximal H-wave to maximal M-wave was used for analysis.  

Corticomotor Excitability  

Corticomotor excitability was assessed via active motor threshold (AMT) and MEP 

amplitude using transcranial magnetic stimulation.  This method involves introducing a brief, 

non-painful magnetic stimulus that excites neurons in the motor cortex associated with a specific 

muscle, and subsequent nervous system pathways are activated causing a contraction of the 

targeted muscle.  These small contractions, MEPs, are measured to determine function of the 

cortical neurons and corresponding neural pathways that dictate muscle activation.  MEPs were 

measured in the VM via EMG electrodes in the dominant limb.  Subjects were seated in a 

dynamometer with the knee in 60° of flexion, and were asked to produce 5% of their maximal 

voluntary isometric contraction (MVIC) during active motor threshold/MEP testing to 

standardize the level of effort.  A computer screen depicting real-time feedback of subject’s 

torque output was used to ensure this criterion was met.  The motor cortex was mapped to 

identify the location that elicited the greatest MEP in the VM.  A lycra swim cap was placed over 

the subject’s head, and the TMS coil was moved until a maximal response was found.  The lycra 

swim cap featured a grid that was used to systematically and reliably stimulate portions of the 

motor cortex in 1cm intervals (Figure 11).  The coil was moved about each grid point until the 

location that elicited the largest response was found.  The point that elicited the greatest MEP 

during stimulation was marked for use during the remainder of the testing session.  AMT was 

determined as the lowest stimulator intensity required to elicit a measureable MEP (>100µV) in 

at least 5 out of 10 trials. MEP responses were then elicited at 120% of AMT, and eight MEPs 
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were recorded, averaged, and normalized to a maximal M-wave recorded at the beginning of the 

session for analysis.  

Voluntary Activation 

Voluntary activation was assessed via the central activation ratio (CAR) during a 

maximal voluntary isometric knee extension.  A brief electrical stimulus (10-pulse train, 600µs 

duration, 100Hz, 125V) was manually delivered via two adhesive electrodes placed on the 

proximal and distal quadriceps following plateau of the MVIC using an isolated stimulator 

(Grass Telefactor model SK48).  

Subjects completed this test prior 

to the intervention, and 

immediately, 10 minutes, and 20 

minutes following the intervention.  

CAR was calculated as the ratio of 

peak voluntary torque to the torque 

increment resulting from the 

electrical stimulus (Figure 10). The 

mean of 3 trials at each time point 

(pre and post) was used for 

analysis.  

 

Intervention 

Following baseline testing, subjects were randomized to LMV, WBV, or control groups. 

The LMV group received 6 bouts of 60 seconds vibration with 2 minutes rest between each bout 
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Figure 10: The central activation ratio was used to quantify voluntary 
quadriceps activation during an MVIC. Subjects received an electrical 
stimulus upon reaching their voluntary peak torque production. The ratio of 
voluntary torque to torque produced from the superimposed stimulus (A/B 
x 100) was used for analysis. 
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while standing with the knees flexed approximately 60°. A custom-made LMV device was 

placed on the quadriceps tendon (Figure 5, right).  Subjects randomized to the WBV group stood 

with the knees flexed approximately 60° on a vibrating platform (PowerPlate, Performance 

Health Systems, Northbrook, IL) that provided a similar stimulus (Figure 5, left).  The LMV and 

WBV stimuli were held constant at 2g of acceleration at a frequency of 30Hz.  The control group 

performed the same procedures but did not receive vibration.  These parameters were the same as 

in prior studies 212,214 demonstrating similar effects between LMV and WBV on voluntary 

muscle activation.  

Statistical Analyses 

 All data were confirmed as being normally distributed using the Shapiro-Wilk test. All 

dependent variables (AMT, MEP amplitude, H:M ratio, CAR) were compared between groups at 

baseline using one-way ANOVA.  The effects of the interventions on each dependent variable 

were evaluated via separate 3 (Group: WBV, LMV, Control) x 4 (Time: Baseline and 

Immediately, 10 min, and 20 min post-intervention) repeated measures ANOVA. The level of 

significance was set to α = 0.05 and Bonferroni post hoc adjustments (0.05/18 = 0.003)were used 

to evaluate significant ANOVA models.  

Results 

 Data were found to be normal via the Shapiro-Wilk test and evaluation of skewness and 

kurtosis.  No outliers were identified and thus all cases were used for analyses, and no 

differences were found at baseline between groups.  The group by time interaction was 

significant for AMT (Table 13, F2,57 = 13.39, p<0.001), MEP amplitude (Table 14, F2,57=4.21, 

p=0.001), and CAR (Table 15, F2,57 = 2.86, p = 0.011), but not for H-reflex amplitude (Table 16, 

F2,57 = 0.79, p = 0.619).   
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Table 13: Healthy Cohort AMT Results (mean (SD)) 
AMT  (%) Pre Post 10 min Post 20 min Post P (group x 

time) 
Control (n=20) 42.7 (8.6) 42.7 (9.0) 43.0 (8.9) 43.1 (8.6) 

<0.001 WBV (n=20) 45.4 (7.7) 42.9 (8.2)* 43.1 (8.3)* 43.4 (7.9)* 
LMV (n=20) 46.3 (11.5) 44.0 (11.5)* 44.0 (11.3)* 44.7 (11.3)* 

*indicates significantly less than pre test (p<0.003) 
 

Table 14: MEP Results (mean (SD)) 
MEP 
amplitude 

Pre Post 10 min Post 20 min Post P (group x 
time) 

Control (n=20) 0.060 (0.044) 0.058 (0.042) 0.059 (0.043) 0.058 (0.045) 
0.001 WBV (n=20) 0.045 (0.029) 0.068 (0.040)* 0.062 (0.036)* 0.068 (0.039)* 

LMV (n=20) 0.047 (0.024) 0.060 (0.044) 0.065 (0.050) 0.060 (0.043) 
*indicates significantly less than pre test (p<0.003) 

 
 
Table 15:  CAR Results (mean (SD)) 
CAR (%) Pre Post 10 min Post 20 min Post P (group x 

time) 
Control (n=20) 93.1 (3.9) 90.9 (5.7) 90.4 (6.6) 89.7 (6.4) 

0.011 WBV (n=20) 91.9 (4.6) 94.4 (3.9)* Ŧ 90.9 (6.5) 92.0 (5.9) 
LMV (n=20) 91.9 (3.2) 92.2 (3.9) 87.5 (8.8) 87.4 (8.7) 

*indicates significantly less than pre test (p<0.003) 
Ŧ indicates significantly greater than control (p<0.003) 

 
Table 16:  H-Reflex Results (mean (SD)) 
H-Reflex (H:M)  Pre Post 10 min Post 20 min Post P (group x 

time) 
Control (n=20) 0.27 (0.19) 0.26 (0.16) 0.25 (0.16) 0.25 (0.14) 

0.619 WBV (n=20) 0.26 (0.15) 0.20 (0.15) 0.23 (0.17) 0.23 (0.17) 
LMV (n=20) 0.28 (0.17) 0.23 (0.15) 0.24 (0.15) 0.23 (0.15) 
 

Post hoc analyses revealed a significant increase in CAR immediately post-treatment in 

the WBV group (+2.9%, p<0.01), a significant reduction in AMT immediately post-treatment in 

the WBV (-2.6%, p<0.001) and LMV (-2.1%, p<0.001) groups, and a significant increase in 

MEP amplitude in the WBV group (+0.03, p=0.001) immediately post-treatment.  The WBV 

group had a greater CAR compared to the control group immediately post- treatment (+3.51%, 
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p<0.0026).  There was no difference in CAR between the WBV group and LMV group 

immediately post-treatment. 

The reduction in AMT was significant 10 minutes following WBV (-2.3%, p<0.001) and 

LMV (-2.3%, p<0.001), and 20 minutes following WBV (-2.4%, p<0.001) and LMV (-1.6%, 

p<0.001).  The increase in MEP amplitude was significant 10 minutes following treatment 

(+0.02, p=0.001) and 20 minutes following treatment in the WBV group (+0.02, p=0.001).  No 

differences were observed in CAR in any group at 10 or 20 minutes post-treatment.    

Discussion 

The main findings of this study were that both WBV and LMV improved quadriceps 

function via an improvement in corticomotor excitability rather than from enhanced spinal 

neuron activity.  Furthermore, the effects may be more pronounced following WBV compared to 

LMV, as there was an increase in voluntary quadriceps activation (CAR) in the WBV group 

only.  Lastly, the effects of muscle vibration on AMT and MEP amplitude may persist for up to 

20 minutes following treatment. Interestingly and in contrast to our hypotheses, we found no 

change in spinal motorneuron activity.  

Improvements in muscle function following vibration are speculated to result from 

improved neural excitation through enhanced reflex activation51,52 and/or enhanced cortical 

processes.64,65 Vibration applied to a muscle or tendon is thought to excite the primary spindle 

endings, and thus stimulate the alpha motoneuron pool within the spinal cord causing a reflexive 

contribution to muscle force production.  However, prior research shows that the H-reflex is 

depressed during LMV229 and WBV,57,58 suggesting that other mechanisms contribute to 

improved muscle function following vibration. The suppression of the H-reflex amplitude is 

likely due to presynaptic inhibition.230,231 Repetitive  muscle contractions in response to vibration 
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may contribute to neurotransmitter depletion in the presynaptic terminals, and thus reduce 

postsynaptic output.57  Interestingly, our study found no influence of WBV or LMV on H-reflex 

amplitude, which was contrary to our hypotheses, but in agreement with previous research.218,232  

Given the discrepancy in the literature regarding the influence of vibration on the H-reflex, it 

could be that the effects of vibration on reflexive activity are limited to while the stimulus is 

applied, rather than following it.  We evaluated H-reflex an average of 2 minutes and 37 seconds 

following treatment, and the effects on the alpha motoneuron pool within the spinal cord may 

have dissipated by that time.  Ritzmann et al.57 reported a reduction of the soleus H-reflex while 

standing during WBV that persisted for 5 minutes  but less than 10 minutes following exposure.  

We attribute the difference in findings to a different muscle studied (quadriceps vs. soleus), 

testing position (standing vs. supine), and the vibratory stimulus parameters (frequency = 22 Hz, 

amplitude = 4mm).  

Our findings are in agreement with previous studies regarding the effect of WBV and 

LMV on quadriceps MEP amplitude.64,65  The reduction in active motor threshold observed in 

this study is novel, yet not unexpected.  Cortical areas within the brain receive and process 

afferent input from muscles, and generate evoked cortical potentials in response to vibration.61  

Afferent input from muscles contributes to neuromuscular control,62 and facilitation from muscle 

afferents contributes nearly one third of overall central motor drive.233  Alterations in afferent 

input from the muscle spindles change the excitability of the corticospinal pathway,234 and 

activation of the corticomotor region.235 Therefore, it is reasonable that vibration augments 

muscle function via alterations in cortical processes (increase in MEP amplitude, reduction in 

AMT).   
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Next, we observed an increase in voluntary quadriceps activation (CAR) in the WBV 

group.  This is in agreement with previous studies evaluating the effects of WBV on CAR.212  

Given that we observed no changes in spinal motor neuron excitability as measured by the H-

reflex amplitude, the improvement that we saw in CAR is likely due to the enhancement in 

corticomotor excitability.  Interestingly, we only observed an improvement in CAR in the WBV 

group, which is in contrast to previous research.212  However, that study212 utilized a group of 

individuals with artificial knee effusion, and the effects observed in that study could also be due 

to saline effusion from the knee joint.  Additionally, while both LMV and WBV stimulate the 

muscle spindle system, WBV also stimulates other sensory receptors throughout the lower 

extremity, such as cutaneous receptors in the foot known to influence motor control.215,217  As 

such, it could be that the reduction in AMT following LMV is not on its own sufficient to cause 

an improvement in CAR in healthy individuals.  We did consider that a change in quadriceps 

CAR could be attributable to a reduction in hamstrings co-contraction, and as such, we measured 

hamstrings EMG simultaneously to verify our interpretation of the findings.  We did not observe 

a change in biceps femoris (F2,57= 0.72, p=0.63)  or medial hamstrings (F2,57= 0.88, p=0.51) 

EMG during the assessment of quadriceps CAR.              

Finally, we observed an effect on AMT and MEP amplitude that persisted for up to 20 

minutes following the cessation of treatment in the WBV group.  Previous studies suggest that 

the effects of vibration last between 5 and 30 minutes,54,214 thus our findings are in agreement.  

Although the improvement in corticomotor excitability persisted for up to 20 minutes, we did not 

observe a similar effect on CAR.  Furthermore, a warm-up effect and increased muscle 

temperature may also contribute to the improvement in CAR following vibration.69,168,211 

However, we observed no evidence of a change in M-wave amplitude (group x time interaction 
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effect F2,57=1.95, p=0.12), indicating that improvements in quadriceps function were likely due 

to enhanced corticomotor excitability.         

 There are limitations to address when interpreting the findings of this study.  Firstly, our 

study group was healthy with no known deficits in quadriceps activation.  Therefore, our results 

may indicate a ceiling effect, and greater improvements may be seen in individuals with 

reductions in quadriceps activation, such as patients with knee pathologies.  Future studies 

should evaluate the effects of muscle vibration in pathologic populations, and on activities of 

daily living requiring normal quadriceps function such gait or stair ascent.  Secondly, we 

assessed each outcome variable on different days in order to test the duration of the effect.  It is 

possible that the effects differed by day.  However, testing occurred at the same time of day (± 2 

hours) for each subject, and the order of the testing sessions was randomized.  Future studies 

should consider evaluating these measures concurrently on the same day if time permits.  

Conclusion 

Overall, findings from this study indicate that quadriceps function improves following 

vibration via an augmentation in corticomotor excitability.  Furthermore, we found no change in 

spinal neuron activity, indicating that the effects of vibration on reflexive activity as previously 

reported may be limited to the time when the treatment is applied or very shortly thereafter.  As 

such, vibratory stimuli – particularly WBV – may provide a suitable treatment for those 

individuals with deficits in quadriceps function.  Future studies should investigate the effects of 

vibratory stimuli in pathologic populations, as the magnitude of the effects could be larger in 

those with underlying deficits. 
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CHAPTER 8: MANUSCRIPT 4 

The Effects of Whole Body and Local Muscle Vibration on Quadriceps Corticomotor 

Excitability, Spinal Neuron Excitability, and Voluntary Activation in Patients with 

Anterior Cruciate Ligament Reconstruction

Overview 

Context: Individuals with anterior cruciate ligament reconstruction (ACLR) have deficits in 

quadriceps function from alterations in neuromuscular function that may contribute to the 

development of knee osteoarthritis.  Whole body vibration and local muscle vibration acutely 

improve muscle function, and may be suitable tools in injury rehabilitation. Objective: To 

compare the effects of whole body and local muscle vibration on quadriceps function in 

individuals with ACLR.  Design: Single blind, single group, crossover Setting: Laboratory 

Patients or Other Participants: Twenty individuals with ACLR. Interventions: Subjects 

completed an assessment of quadriceps corticomotor excitability, spinal neuron excitability, and 

voluntary activation, and then received a treatment of whole body vibration, local muscle 

vibration, or control.  Subjects repeated the assessment immediately following the intervention.  

Subjects completed the remaining treatment conditions in separate sessions. Main Outcome 

Measures: Corticomotor excitability was assessed using active motor threshold (AMT) and 

motor evoked potential (MEP) amplitude.  Spinal neuron excitability was assessed using 

Hoffmann (H) reflex.  Voluntary activation was assessed using the central activation ratio 

(CAR). Results: Data were analyzed using 3(condition) by 2(time) ANOVA. The group by time 

interaction was significant for AMT and CAR, but not for MEP amplitude or H-reflex.  Post hoc 
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analyses indicated a significant decrease in AMT, and a significant increase in CAR following in 

the WBV and LMV conditions relative to the control condition.  Conclusions: These findings 

suggest that whole body and local muscle vibration improve voluntary quadriceps activation in 

individuals with ACLR. Furthermore, the increase in CAR is likely attributable to an increase in 

corticomotor excitability.  These treatments may alleviate quadriceps dysfunction attributable to 

deficits in neuromuscular function. As such, vibratory stimuli may be appropriate to improve the 

efficacy of rehabilitation protocols and reduce the risk of knee osteoarthritis following ACLR. 

Introduction 

 Individuals who experience ACL reconstruction (ACLR) are 3-5 times more likely to 

develop knee osteoarthritis (OA) compared to healthy controls.6,9  Despite reconstruction, 

patients with ACL injury show evidence of knee OA as soon as 1 year following 

reconstruction.221  When considering the additional of cost of knee OA, the annual lifetime 

burden of ACL injury is nearly $8 billion when treated with reconstruction, and nearly $18 

billion when treated with rehabilitation only.4,5,19  OA also contributes to comorbidities such as 

physical disability, cardiovascular disease, diabetes, and reduced quality of life.17,18    

 Quadriceps weakness following ACL injury is common and may contribute to the 

development of knee OA.1,20,104  Alterations in afferent input to the central nervous system 

decrease the excitability of the quadriceps alpha motoneuron pool.1  This leads to an inability to 

fully activate the quadriceps, termed arthrogenic muscle inhibition (AMI).  Interestingly, 

individuals with ACLR display activation deficits in the contralateral limb,118 suggesting central 

influences on AMI such as reduced cortical and spinal neuron excitability. Quadriceps AMI 

contributes to reduced knee extensor strength, which predicts knee OA progression and 

severity.24,28,30 Knee OA is considered a mechanically driven disease, and alterations in joint 
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loading influence disease progression.  The quadriceps act as a shock absorber during the early 

stance phase of gait, and failure to adequately absorb energy caused by impact with the ground 

may alter the loading characteristics of articular cartilage.99  Patients with ACL injury display 

lesser knee extensor moments, potentially contributing to greater cartilage loading and 

development of OA.34-36   

 Unfortunately, restoring quadriceps function following ACL injury is challenging, as 

persistent AMI presents a barrier to effective rehabilitation.38,39  Therefore, novel strategies are 

necessary to improve the efficacy of strengthening protocols for the quadriceps.  Vibration 

therapy (VT) is an increasingly popular mode of exercise with reports of improved muscle 

strength,183 power,41 electromyography,178,214 and physical function.54   Furthermore, VT 

improves voluntary quadriceps activation in individuals with artificially induced quadriceps 

AMI.212  Therefore, VT may be a suitable adjunct treatment for patients with ACL injury.  

However, it is unclear if VT influences quadriceps function in individuals with ACL injury.  

Importantly, presynaptic mechanisms such as impaired corticospinal excitability also contribute 

to AMI.25,26  There are also reports of enhanced corticospinal excitability during VT,64,65 thus VT 

may be a suitable treatment for quadriceps AMI.  Unfortunately, these studies have utilized small 

samples and healthy cohorts.  Lastly, VT is commonly delivered using whole body (WBV) 

platforms which are costly and lack portability.  Local muscle vibration (LMV) also improves 

quadriceps function212-214 and is potentially a portable and cost-effective alternative.  However, 

no investigations have compared the effects of WBV and LMV on corticospinal excitability, 

spinal motorneuron excitability, and voluntary quadriceps activation in patients with ACLR.    

The purpose of this study was to compare the effects of WBV and LMV on corticospinal 

excitability, spinal motorneuron excitability, and voluntary muscle activation in individuals with 
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ACLR.  We hypothesized that LMV and WBV would enhance corticospinal excitability and 

voluntary activation, but attenuate spinal motorneuron excitability, relative to a control 

condition, but that the magnitude of improvement would not differ between WBV and LMV.  

Methods 

Experimental Design 

A single-group, repeated measures, single-blind crossover design was used in this study. 

Data collection occurred during 3 testing visits (WBV, LMV, control) separated by 1-week 

washout periods.  Subjects completed a baseline test, received an intervention, and immediately 

completed follow-up testing.  Prior to testing, subjects completed a familiarization session of all 

testing and intervention procedures to reduce the chance of a learning effect. The order of the 

testing sessions was counterbalanced via a Latin square to reduce the chance of a learning or 

order effect.  The order of assessments within each testing session was fixed (H-Reflex, CAR, 

AMT, MEP amplitude at pre-test, and CAR, AMT, MEP amplitude, H-reflex at posttest) rather 

than randomized. Assessment of the H-reflex required a private and quiet testing setting, while 

other assessments took place in the same location within the laboratory while seated on a 

dynamometer.  Furthermore, peak torque was evaluated during the CAR assessment which 

provided us with a standardized activation level for subsequent AMT and MEP testing.  Finally, 

AMT was required to determine a standardized stimulating intensity to elicit MEPs for 

measurement.  For these reasons, it was necessary to use a standard rather than random testing 

order. The tester completing all analyses was blinded to group assignment, and all interventions 

were delivered by research assistants. 
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Subjects 

An a priori power analysis based on previous data 212,214 suggested that 14 subjects (f2 = 

0.43, α = 0.05, power = 0.8) would be necessary to detect a significant difference in quadriceps 

function in a crossover design.  Therefore, 20 patients with unilateral ACLR were recruited 

(mass = 77.2 ± 17.1 kg, height = 170.7 ± 11.1 cm, males = 6, age = 21.1 ± 1.2 years, time since 

ACLR = 50.7 ± 21.3 months, patellar tendon autograft = 16, hamstring autograft = 3, allograft = 

1, Tegner Score=6.8 ± 1.6) to ensure adequate statistical power since baseline data was based on 

quadriceps EMG amplitude following vibration.  To be eligible for participation, subjects were 

required to have unilateral ACLR, be cleared by a physician for participation in physical activity, 

and be recreationally active, defined as participation in physical activity for 30 minutes at least 3 

times per week.  Subjects were excluded for any re-injury or revision surgery for the injured 

limb, a history of lower extremity musculoskeletal injury within 6 months prior to testing, lower 

extremity surgery (other than ACLR), neurological disorder, cardiovascular disease, 

hypertension, diabetes mellitus, concussion or head injury, stroke, epilepsy, peripheral 

neuropathy, migraine headaches, cranial surgery, cancer in the brain or thigh musculature, 

cardiac pacemaker, implanted foreign metal object, or diagnosed psychiatric disorder.  

Hoffmann Reflex  

Hoffmann reflex (H-reflex) was used to assess excitability of the quadriceps alpha 

motoneuron pool (i.e. spinal motorneuron excitability).  H-reflex and M-wave measurements of 

the vastus medialis (VM) were collected with surface electromyography (EMG) from the injured 

limb. Subjects lay supine on a padded table with their arms placed at their sides, their heads 

resting on a pillow, and their knees slightly flexed (~10-15º) with a bolster.  Reflexes were 

elicited with a STMISOLA Constant Current and Constant Voltage Isolated Linear Stimulator 
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(STMISOLA, BIOPAC Systems, Inc).  A bipolar stimulating bar electrode (EL351, BIOPAC 

Systems Inc) was positioned over the femoral nerve where a 1ms square wave stimulus was 

delivered. The electrical stimulus was increased in 0.2 Volt increments until a maximum H-

reflex was elicited, and 3 maximal H-reflexes were collected at that voltage.  The stimulus was 

then increased until a maximal M-wave was elicited.  EMG data were sampled at 2 KHz.  H-max 

and M-max were re-established for the post-intervention assessments to account for local “warm-

up” effects of the vibratory stimuli on EMG characteristics.  The ratio of maximal H-wave to 

maximal M-wave was used for analysis.  

Voluntary Activation 

Voluntary activation was assessed via the central activation ratio (CAR) during a 

maximal voluntary isometric knee extension.  A brief electrical stimulus (10-pulse train, 600µs 

duration, 100Hz, 125V) was delivered via two adhesive electrodes placed on the proximal and 

distal quadriceps following plateau of the MVIC using an isolated stimulator (Grass Telefactor 

model SK48).  CAR was calculated as the ratio of peak voluntary torque to the peak torque 

resulting from the electrical stimulus (Figure 11). The mean of 3 trials at each time point (pre and 

post) was used for analysis.  

Corticomotor Excitability  

Corticomotor excitability was assessed via active motor threshold (AMT) and amplitudes 

of motor evoked potentials (MEPs) using transcranial magnetic stimulation (TMS).  This method 

involves introducing a brief, non-painful magnetic stimulus that excites neurons in the motor 

cortex associated with a specific muscle, and subsequent nervous system pathways are activated 

causing a contraction of the targeted muscle.  These small contractions, MEPs, are measured to 

determine excitability of the cortical neurons and corresponding neural pathways that dictate 
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muscle activation.  MEPs were measured in the VM via EMG electrodes.  Subjects were seated 

in a dynamometer with the knee in 60° of flexion, and were asked to produce 5% of their 

maximal voluntary isometric contraction (MVIC) to standardize the level of effort.  A computer 

screen depicting real-time feedback of subject’s torque output was used to ensure this criterion 

was met.   

The motor cortex was mapped to identify the 

location that elicited the greatest MEP response in the VM.  

A lycra swim cap with a 1x1 cm grid was placed over the 

subject’s head (Figure 11), and the TMS coil was moved 

along the grid until the location that elicited a maximal 

response was identified.  This point was marked for use 

during the remainder of the testing session.  AMT was 

determined as the lowest stimulus intensity required to 

elicit a measureable MEP (>100µV) in at least 5 out of 10 

trials, and 8 MEP responses were elicited at 120% of AMT and normalized to a maximal M-

wave for analysis.  

Intervention 

Following baseline testing, subjects received LMV, WBV, or a control intervention. 

Subjects completed the remaining two interventions on subsequent days in a counterbalanced 

order.  The LMV intervention consisted of 6 bouts of 60 seconds vibration with 2 minutes rest 

between each bout while standing with the knees flexed approximately 60°. A custom-made 

LMV device was placed on the quadriceps tendon (Figure 5, right). The WBV intervention 

consisted of similar treatment parameters (duration and position), however subjects stood with 

Figure 11: Lycra Swim Cap 
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the knees flexed approximately 60° on a vibrating platform (PowerPlate, Performance Health 

Systems, Northwood, IL) that provided a similar stimulus (Figure 5, left).  The LMV and WBV 

stimuli were held constant at 2g of acceleration at a frequency of 30Hz.  The control intervention 

consisted of the same procedures but without vibration.  These parameters were the similar to 

previous studies 212,214 demonstrating effects of LMV and WBV on voluntary muscle activation.  

Statistical Analyses 

 All data were confirmed as being normally distributed using the Shapiro-Wilk test and 

skewness an kurtosis statistics. All dependent variables (MEP amplitude, AMT, H:M ratio, 

CAR) were compared between conditions at baseline using one-way repeated measures 

ANOVA.  The effects of the interventions on the dependent variables were evaluated via 3x2 

(condition x time) repeated measures ANOVA. The level of significance was set to α = 0.05 and 

Bonferroni post hoc adjustments (α = 0.05/6 =  0.0083) were used to evaluate significant 

ANOVA models.  

Results 

 Data were found to be normal via the Shapiro wilk test and evaluation of skewness and 

kurtosis.  No outliers were identified and all 20 subjects were included for analyses.  Baseline 

values for the dependent variables did not differ between conditions (Table 17).  The condition 

by time interaction was significant for AMT (Figure 12, F2,17 = 29.47, p<0.001) and CAR 

(Figure 13, F2,17 = 13.31, p<0.001), but not for MEP amplitude (Figure 14, F2,17 = 1.25, p = 0.30) 

or H-reflex amplitude (Figure 15, F2,17 = 0.1.41, p = 0.26).   
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Table 17: ACLR Baseline Characteristics (mean (SD)) 
Variable Control WBV LMV p 
AMT 44.2 (9.3) 43.5 (8.9) 44.1 (9.2) 0.53 
MEP 0.07 (0.04) 0.09 (0.06) 0.08 (0.05) 0.09 
CAR 82.7 (11.1) 80.9 (11.0) 80.8 (10.8) 0.86 
H-Reflex 0.24 (0.18) 0.24 (0.19) 0.24 (0.14) 0.83 
 

Post hoc analyses indicated significant reductions in AMT in the WBV (-3.1%, p<0.001) 

and LMV (-2.9%, p<0.001) conditions from pre-test to post-test.  AMT was also less than in the 

control condition at post-test in the WBV (p<0.001) and LMV conditions (p<0.001).  Similarly, 

significant increases in CAR were observed for the WBV (+4.9%, p = 0.001) and LMV (+2.7%, 

p = 0.001) conditions, and CAR in the WBV condition was greater than the control condition at 

post-test (p = 0.005).  CAR in the LMV condition was greater than in the control condition 

(4.11%, p = 0.007 ).  Finally, WBV did not differ from LMV at post-test for AMT or CAR.  
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Figure 12: ACLR cohort active motor threshold condition by time interaction, p<0.001; * indicates p<0.0087 
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Figure 13: ACLR cohort central activation ratio condition by time interaction, p<0.001; * indicates p<0.0087 
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Figure 14: ACLR cohort motor evoked potential amplitude condition by time interaction, p=0.30 
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Figure 15: Hoffman’s reflex condition by time interaction, p=0.26 

 

Discussion 

 The main findings of this study were that WBV and LMV increased corticomotor 

excitability (AMT) and voluntary activation (CAR).  Furthermore, the magnitudes of the 

increases caused by WBV and LMV did not differ, suggesting that these treatments produce 

equivalent effects.  Finally, we found no effect of WBV or LMV on spinal neuron excitability 

(H-reflex).     

 Our findings are in agreement with previous research regarding improvement in 

corticomotor excitability with WBV64 and LMV.65  However, this is the first study to our 

knowledge to report these effects in individuals with ACLR.  Muscle vibration primarily 
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stimulates the Ia afferents of the muscle spindles, resulting in a reflexive contribution to muscle 

force production (i.e. the tonic vibratory reflex).50  While this mechanism accounts for 

improvements in muscle function during the stimulus, it does not likely explain enhancements in 

quadriceps function following the treatment as evidenced by the lack of influence on the H-reflex 

in our subjects.  Cortical areas receive and process sensory information and generate motor 

commands in response to vibration.61  Given that afferent input to the motor cortex contributes to 

motor control, it is plausible that enhanced muscle function could result from cortical stimulation 

via WBV and LMV.62  The reduction in AMT following WBV and LMV suggests greater 

corticomotor excitability, which may reduce the recruitment threshold.171  

Interestingly, we did not see a concurrent elevation in MEP amplitude.  However, we 

attribute the lack of significant findings to the order of testing.  Unfortunately we were not able 

to randomize the order of testing, and MEP amplitude was always assessed following CAR, and 

AMT.  Previous studies indicate that the effects of vibration on muscle function last 

approximately 5 minutes.54,214  Therefore, the effects of vibration likely diminished by the time 

MEP amplitude was assessed.  Future studies should evaluate MEP amplitude shortly after the 

cessation of treatment, and evaluate the precise duration of the effect from vibration.   

We also observed a significant increase in CAR in both the WBV and LMV conditions.  

These findings are in agreement with a previous study in individuals with artificial arthrogenic 

muscle inhibition from experimental knee effusion.212  Given that we did not observe an increase 

in spinal neuron excitability, it seems reasonable that the improvement in CAR is due to the 

enhancement in corticomotor function.  Quadriceps CAR could increase from reduced hamstring 

activity, thus we measured hamstring EMG simultaneously to verify our interpretation of the 

results.  However, we observed no changes in biceps femoris (F2,16= 0.93, p=0.41) or medial 
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hamstrings (F2,16= 0.28, p=0.75) activity with the interventions.  Similarly, while not an aim of 

this study, we also examined the quadriceps M-wave amplitude and found no effect of WBV or 

LMV (F2,16 = 0.397, p = 0.68).  This suggests that improvements in quadriceps function are not 

due to a local warmup effect, potentially supporting effects of WBV and LMV on corticospinal 

excitability.  This is a relevant finding as patients with ACLR have deficits in voluntary 

quadriceps activation104 from AMI that may stem from impaired supraspinal control.26  These 

deficits likely contribute to the development of posttraumatic osteoarthritis following ACL 

injury,104 and also limit the effectiveness of rehabilitation.38,163  Traditional strengthening 

exercises are ineffective in patients with knee pathologies because AMI prevents sufficient 

muscle activity to stimulate strength gains.39  Therefore, alternative methods of strengthening are 

required to improve the efficacy of rehabilitation.  Our findings indicate that WBV and LMV 

may be suitable adjunct treatments to acutely increase quadriceps activation prior to 

strengthening exercises.     

Finally, we observed no effect of WBV or LMV on H-reflex amplitudes.  Previous results 

are ambiguous regarding the effect of vibration on the H-reflex. For instance, some studies 

indicate no effect of vibration on the H-reflex in healthy populations,218,232 while others indicate 

a suppression57 or even facilitation169,174 of the H-reflex during and following vibration. Previous 

studies57,58,218 that have found an effect of vibration on the H-reflex have primarily investigated 

the triceps surae complex, whereas we investigated the H-reflex in the quadriceps.  A previous 

study232 utilizing similar WBV parameters reported equivocal findings.  Therefore, it could be 

that the H-reflex of the quadriceps responds in a different manner to vibratory stimuli compared 

to the triceps surae. Secondly, the testing position for H-reflex was not the same as the 
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intervention position or testing position for TMS and CAR.  As such, the change in position and 

quadriceps muscle length may have influenced the H-reflex data.236,237   

There are limitations to address when interpreting the results of this study.  Firstly, we 

were not able to randomize the order of testing within sessions due to laboratory constraints, thus 

an order effect cannot be ruled out and future studies should evaluate each of these outcomes 

independently to capture the duration of the effect for each measure.  The lack of effect on H-

reflex could be explained by the order of testing.  The H-reflex was assessed after dynamometry 

assessments (CAR, AMT, MEP amplitude) following the intervention, and may have returned to 

its baseline level by this time.  This seems in line with previous studies indicating that effects of 

vibration on the H-reflex seem to last at least 5 minutes, but less than 10 minutes.57,58 

Additionally, we only assessed AMT, and MEP amplitude at 120% of AMT.  These measures 

are indicative of overall corticomotor function, and do not reveal changes in intracortical 

inhibitory and facilitatory processes.  Future studies are necessary to ascertain the specific 

neurophysiologic mechanisms underlying the alteration in muscle function following WBV and 

LMV.   

Conclusions 

 This study demonstrated a reduction in AMT and increase in CAR following WBV and 

LMV in a sample of patients with ACLR.  These findings indicate that WBV and LMV are 

appropriate methods to acutely increase quadriceps function, and could be useful rehabilitative 

tools for patients with deficits in quadriceps function.  Future studies are needed to determine if 

implementing WBV and LMV with traditional strengthening leads to improved quadriceps 

function, and if these treatments lessen the risk of posttraumatic OA. 
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