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ABSTRACT
JUNGYEON YOON: Option Pricing with Stochastic Volatility Models

(Under the direction of Chuanshu Ji and Eric Renault)

Despite the success and the user-friendly features of Black-Scholes (BS) pricing, many

empirical results in the option pricing literature have shown the departures from the BS

model. The motivation of this dissertation starts from these departures.

In the first part of dissertation, we take the popular approach of stochastic volatility and

jump models that are known to give good explanations to the empirical phenomenon. In

order to keep analytic tractability, we derive the Generalized Black-Scholes (GBS) formula

by a proper conditioning in a general mixture framework. By taking advantage of this new

version of option pricing formula, we propose an approximation scheme that is well suited

for the conditional Monte Carlo method. The simulation study and Markov Chain Monte

Carlo (MCMC) algorithm give an evidence of a huge computational time reduction without

much loss of accuracy.

In the second part, we provide a new prospective on the forecasting ability and infor-

mation content of the BS implied volatility in the presence of nonzero leverage effect. The

leverage effect, which is the correlation between the return and volatility process, is intro-

duced to model the observed Black-Scholes implied volatility (BSIV) smile and its skewness.

We provide a simple theoretical framework that explains and justifies the use of BSIV from

at-the-money option for the volatility forecast. Based on this and simulation study, which

show the sensitivity of the concavity of option price with respect to the underlying stock

price (the “gamma effect”), we propose a new approach to improve option pricing accuracy

by a proper account for the gamma effect.
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CHAPTER 1

An approximation scheme for option pricing with
stochastic volatility and jump models

1.1 Introduction

In the empirical option pricing literature, departures from the Black and Scholes (BS)

model are often explained by the importance of both stochastic volatility and jumps in

stock returns. More often than not, this observation leads empirical researchers to give up

the tractability of the BS formula to compute option prices and price sensitivities. Instead,

we argue in this paper that most of the user-friendly features of BS pricing and hedging

can be kept thanks to proper conditioning on the future path of relevant state variables.

Our approach can actually be seen as a way to revisit and to correct a natural strategy of

mixture of BS formulas that is quite popular among practitioners. Typically, to account

for excess kurtosis and skewness in stock log-returns, a fast empirical approach amounts to

consider that the option price is given by a weighted average:

αBS(σ1) + (1− α)BS(σ2), (1.1)

where BS(σ) denotes the BS option price computed with the value for the volatility pa-

rameter σ. The rationale for (1.1) is to consider that a mixture of two normal distributions

with standard errors σ1 and σ2 and weights α and (1 − α) respectively may account for

both skewness and excess kurtosis. The problem with this naive approach is that it does

not take into account any risk premium associated to the mixture component.

A convenient way to specify various kinds of risk premiums is to introduce a Stochastic

Discount Factor (SDF) mt,T (see Hansen and Richard (1987)) such that the price pt paid



at time t for a terminal payoff gT at time T > t is given by:

pt = E[mt,T gT |Ft], (1.2)

where Ft stands for the information available to investors at time t. Then, it is well known

(see e.g. Garcia et al. (2007)) that the BS option pricing formula for an European call

written on a stock with price ST at time T (without dividend) is valid insofar as the joint

conditional distribution given Ft of [log(mt,T ), log(ST )] is normal. More generally, if we

want to accommodate a mixture of normal distributions with a mixing variable Ut,T , we

can write:

pt = E[E(mt,T gT |Ft, Ut,T )|Ft], (1.3)

where, for each possible value ut,T of Ut,T , the BS formula is valid to compute:

E[mt,T gT |Ft, Ut,T = ut,T ].

In other words, it is true that, as in (1.1), the final conditional expectation operator (given

Ft) in (1.3) displays the option price as a weighted average of different BS prices with the

weights corresponding to the probabilities of the possible values ut,T of the mixing variable

Ut,T . However, the naive approach (1.1) is applied in a wrong way when forgetting that the

additional conditioning information Ut,T = ut,T should lead to modify some key inputs in

the BS option pricing formula.

Suppose that investors are told that the mixing variable Ut,T will take the value ut,T .

Then, the current stock price would no longer be:

St = E[mt,T ST |Ft],

but

S∗t (ut,T ) = E[mt,T ST |Ft, Ut,T = ut,T ]. (1.4)

For the same reason, the pure discount bond which delivers $1 at time T will no longer be

2



priced at time t:

B(t, T ) = E[mt,T |Ft],

but

B∗(t, T )(ut,T ) = E[mt,T |Ft, Ut,T = ut,T ]. (1.5)

In other words, various BS option prices which are averaged in a mixture approach

like (1.1) must be computed, no longer with actual values B(t, T ) and St of the current

bond and stock prices, but with values B∗(t, T )(ut,T ) and S∗t (ut,T ) not directly observed

but computed from (1.4) and (1.5). In particular, the key inputs, underlying stock price

and interest rate, should be different in various applications of the BS formulas like BS(σ1)

and BS(σ2) in (1.1).

This remark is crucial for the conditional Monte Carlo approach put forward in this

paper. We extend in this respect the work of Willard (1997) in the context of option pricing

with stochastic volatility. Revisiting a formula initially derived by Romano and Touzi

(1997), Willard (1997) notes that the variance reduction technique, known as conditional

Monte Carlo, can be applied even when the conditioning factor (the stochastic volatility

process) is instantaneously correlated with the stock return as it is the case when leverage

effect is present. He stresses that “by conditioning on the entire path of the noise element

in the volatility (instead of just the average volatility), we can still write the option’s price

as an expectation over Black-Scholes prices by appropriately adjusting the arguments to

the Black-Scholes formula” However, Willard (1997) does not note that the “appropriate

adjustment” of the stock price as an argument of the BS formulas is precisely akin to the

replacement of St by S∗t (Ut,T ) given by (1.4). Moreover, he does not appropriately adjust

the interest rate according to (1.5) and works with a fixed risk neutral distribution. We will

see in Section 2 that this approach is in general flawed when the short term interest rate is

stochastic.

The contribution of this paper is threefold. First, we correct and generalize the mix-

ture/conditional extension of BS option pricing by characterizing the appropriate adjust-

ment of both bond and stock prices. While our adjustment of stock price is just a general-

ization of Willard (1997) to accommodate jumps, the adjustment of bond price is akin to

3



a proper conditioning of the risk neutral distribution. This resulting generalization of BS

pricing, dubbed Generalized Black-Scholes (GBS), has already been put forward by Garcia,

Luger and Renault (2003) in the context of stochastic volatility. Our second contribution

is to extend GBS pricing to a general model of stochastic volatility and jumps. This ex-

tension is important because it displays the relevant concept of average volatility over the

lifetime of the option. In this respect, it paves the way for new applications of the recent

techniques (see e.g. Barndorff-Nielsen and Shephard (2004)) for separate identification of

the two components of quadratic variation, namely (continuous) integrated variance and

sum of squared jumps. Finally, we take advantage of this new version of GBS option pricing

to design an approximation scheme well suited for conditional Monte Carlo simulation of

option prices under a popular stochastic volatility model in Heston (1993). Our approxima-

tion takes a spirit from Cheng, Gallant, Ji and Lee (2007) and Broadie and Kaya (2006).

The approximation scheme is illustrated through its usefulness to implement Markov Chain

Monte Carlo (MCMC) estimation procedures. Since our model is at least as general as the

stochastic volatility models in the common literature (e.g. Bates (2000), Pan (2002)), the

computational efficiency of our procedure must be compared with the available competi-

tors. Even though the extensive comparison is still in progress, we give evidence of huge

computational time reduction without much to pay in terms of accuracy.

The chapter is organized as follows. Section 1.2 sets up a general mixture framework

and develops an adjusted bond and stock prices. Section 1.3 provides the GBS option

pricing formula. Section 1.4 introduces an approximation scheme for GBS formula. Section

1.5 illustrates the MCMC estimation. Technical details, including proofs of all lemmas and

propositions, are collected in the appendices.

4



1.2 Adjustment of bond and stock prices in a general mixture

framework

1.2.1 Proper conditioning of the risk-neutral distribution

In a continuous time framework, the SDF mt,T is generally seen as the relative increment

of a pricing kernel process:

mt,T = πT /πt.

As already announced, the key idea of the mixture model is to define a conditioning variable

Ut,T such that the pricing kernel process follows a geometric Brownian motion under the

conditional probability distribution given Ut,T . The mixing variable Ut,T will typically show

up as a function of a state variable path (Xu)t≤u≤T . More precisely, let us assume that the

pricing kernel process is defined by:

d log(πt) = h(Xt)dt + a(Xt)dW1t + b(Xt)dW2t + ctdNt, (1.6)

where:

(W1t,W2t) is a two-dimensional standard Brownian motion,

(Nt) is a Poisson process with intensity λ(Xt) depending on the state variable Xt, and

the jumps sizes ct are i.i.d. normal variables independent of the state variable process (Xt).

The model (1.6) is devised such that, given the state variables path (Xu)t≤u≤T , the log of

SDF log(mt,T ) is normally distributed insofar as the number (NT − Nt) of jumps which

occurred in the time interval (t, T ] is given. In order to introduce some instantaneous

correlation between the state variable and the pricing kernel process, we also include the

first Brownian motion W1t as a component of Xt:

Xt = (Zt,W1t), (1.7)

5



where Zt is a vector of additional covariates possibly needed to describe the stochastic

time variations of the coefficients in (1.6). All the stochastic processes considered so far

are assumed to be (Ft)−adapted where (Ft) is an increasing family of σ−fields, assumed

to fulfill the usual hypotheses (see e.g. Protter (2004)) and to summarize the information

available at time t to all investors. As usual, the drift of the pricing kernel process is tightly

related to the short term interest rate. For sake of expositional simplicity, we have precisely

assumed that this drift is a deterministic function of Xt (through the functions h(·) and

λ(·)) to be sure that the short term interest rate is a function r(Xt) of the current state

variables. More precisely, we are able to define the short term interest rate function r(·) by

the standard condition:

1 = E

[
mt,T exp(

∫ T

t
r(Xu)du)|Ft

]
. (1.8)

This is akin to say that:

Bπ
t = πt exp

(∫ t

0
r(Xu)du

)

is a (Ft)−martingale. From this martingale condition, it is easy to deduce that:

Lemma 1.2.1. The short term interest rate is given by:

r(Xt) = −h(Xt)−
1
2
[
a2(Xt) + b2(Xt)

]
− λ(Xt)E[exp(ct)− 1].

Note that Lemma 1.2.1 actually characterizes a local martingale property but for all

practical purposes we will assume that it ensures that Bπ
t is a (Ft)−martingale. Within

the information structure defined by the filtration (Ft), the variable with unit conditional

expectation mt,T exp(
∫ T
t r(Xu)du) defines the Radon-Nikodym derivative of a risk-neutral

distribution. This risk neutral distribution is valid to price at time t future payoffs at time

T when the information available to all investors is Ft. Suppose now that investors are told

at time t that the future path of state variables will be (Xu)t≤u≤T . Then, this additional

information must of course be used to update the pricing measure and, by the law of iterated

6



expectations, a risk neutral distribution will now be given by its Radon-Nikodym derivative:

ηt,T = E[mt,T |Ft ∨ σ((Xu)t≤u≤T ), (Nu)t≤u≤T ] exp
(∫ T

t
r(Xu)du

)
.

The projected SDF E[mt,T |Ft ∨ σ((Xu)t≤u≤T ), (Nu)t≤u≤T ] can actually be interpreted as

a SDF valid to price the payoffs whose only randomness goes through the value (Xu) of

state variables and (Nu), the jump times, where t ≤ u ≤ T . The advantage of conditional

log-normality is to allow us to derive a closed-form formula for the updated risk neutral

distribution:

Proposition 1.2.1. The Radon-Nikodym derivative of a risk neutral distribution condi-

tional on Ft ∨ σ((Xu)t≤u≤T ), and (Nu)t≤u≤T is given by:

ηt,T = exp
[∫ T

t
a(Xu)dW1u −

1
2

∫ T

t
a2(Xu)du

]
exp

[
(NT −Nt) log [E (ect)]− [E (ect)− 1]

∫ T

t
λ(Xu)du

]

Note that, following the notation of the introduction, an alternative interpretation of

this result is to say that the adjusted bond price B∗
t,T is:

B∗
t,T = B∗

t,T (Ut,T ) = exp
[
−
∫ T

t
r(Xu)du

]
ηt,T ,

where the mixing variable Ut,T summarizes the values of the relevant conditioning variables,

namely:

∫ T
t a(Xu)dW1u,

∫ T
t a2(Xu)du,

∫ T
t λ(Xu)du,

∫ T
t r(Xu)du and (NT −Nt).

Irrespective of the interpretation, the key issue is to correctly update the quantities of

interest to account for the additional information (Xu, Nu)t≤u≤T . For instance, even in a

purely continuous stochastic volatility setting, the risk neutral distribution must be rescaled

with the exponential martingale factor:

exp
[∫ T

t
a(Xu)dW1u −

1
2

∫ T

t
a2(Xu)du

]
.

7



Omitting to do so would amount to assume that the part of the Brownian innovation that is

instantaneously perfectly correlated to the conditioning state variables has a zero weight in

the pricing kernel, which is quite a restrictive assumption about the sources of risk that are

actually compensated. The restrictive content of such an assumption will become obvious if

we consider, as in Willard (1997), that this instantaneous correlation corresponds to leverage

effect in the stochastic volatility process of the stock return of interest. This assumption is

made precise in the next subsection.

1.2.2 Adjustment of stock price

The key idea of GBS option pricing approach through iterated expectations as shown

in Garcia et al. (2003) is to get a conditioning over the relevant state variables in order

to be back to a geometric Brownian motion. In other words, the state variable Xt and Nt

must summarize the randomness in the stock return volatility and in jump dates. Thus, we

define a stock price process (St):

d(log St) = µ(Xt)dt + α(Xt)dW1t + β(Xt)dW2t + γtdNt, (1.9)

where the jump sizes γt are i.i.d. normal variables independent of the state process (Xt).

Consider

Vt = α2(Xt) + β2(Xt),

which is interpreted as the square volatility process. The key is that conditioning by Ft ∨

σ((Xu)t≤u≤T ) and (Nu)t≤u≤T will make the volatility path deterministic. Note also that

a non-zero coefficient α(Xt) captures the instantaneous correlation between the continuous

part of the price innovation and volatility. In other words,

ρ(Xt) =
α(Xt)√

α2(Xt) + β2(Xt)
=

α(Xt)√
Vt

can be interpreted as a leverage effect coefficient. The stock price equation is:

1 = E

[
πT

πt

ST

St
|Ft

]

8



That is, the discounted price process ϕπ
t = πtSt is a Ft−martingale. From the martingale

condition, it is deduced that

Lemma 1.2.2.

µ(Xt) = r(Xt)−a(Xt)α(Xt)−b(Xt)β(Xt)−
1
2
(α2(Xt)+β2(Xt))+λ(Xt)

[
E (ect)− E

(
ect+γt

)]
,

For all practical purposes, we will assume throughout that the condition in Lemma

1.2.2 ensures that ϕπ
t is a martingale. The drift coefficient µ(Xt) is actually not free but

determined in Lemma 1.2.2. Following the notation given in the introduction, we can now

state the second result for the adjusted stock price, S∗t .

Proposition 1.2.2.

S∗t = S∗t (Ut,T ) = E

[
πT

πt
ST |Ft ∨ σ((Xu)t≤u≤T ), (Nu)t≤u≤T

]
= Stξt,T ,

with:

ξt,T = exp
[∫ T

t
(a(Xu) + α(Xu))dW1u −

1
2

∫ T

t
(a(Xu) + α(Xu))2du

]
exp

[
(NT −Nt) log(E[ect+γt ])− E[ect+γt − 1]

∫ T

t
λ(Xu)du

]
.

Similarly, the mixing variable Ut,T summarizes the values of the relevant conditioning

variables, namely:

∫ T
t (a(Xu) + α(Xu))dW1u,

∫ T
t (a(Xu) + α(Xu))2du,

∫ T
t λ(Xu)du and (NT −Nt).

1.2.3 An equilibrium pricing interpretation

Asset pricing models typically use either no-arbitrage arguments or equilibrium to de-

rive explicit pricing formula. Equilibrium approach is often built upon certain general

equilibrium models, which balance consumption and investment, and incorporate prefer-

ences towards various risk factors by defining a utility function. Given a utility function,

the price of an asset would come as a part of the solution to the optimization problem.

The approach provides a better understanding for the preference of an investor or agent,

9



especially the risk premiums can be interpreted more explicitly. However, a general equi-

librium model tends to make empirical work (fitting a model based on real financial data)

more difficult due to strict restrictions imposed by the framework. In contrast, no-arbitrage

approach determines the value of a derivative (e.g. option, future) through its relation to

other assets (e.g. stock, bond or other derivatives) whose prices are taken as given. Black-

Scholes theory is a typical example. It is a practical way to price assets, and easy to link to

real data, but does not offer the insight of an agent’s preference as absolute pricing does. In

this section, we like to show that the specification of risk premium in the previous section

reconciles with the equilibrium approach.

Consider an economy in which an investor tries to solve a utility maximization problem

maxc E
[∫∞

0 J(ct, t)dt
]
, where J(ct, t) is the utility function of the consumption process

(ct). An endowment, which follows an exogeneous process, is available to the investor. In

equilibrium, the investor finds it optimal to just consume the exogenous endowment; i.e.

ct = δt. The economy is endowed with a stochastic flow of the consumption good. The

equilibrium price, p(t), must satisfy the Euler equation

p(t) =
E(Jc(δT , T )p(T )|Ft)

Jc(δt, t)
, (1.10)

where Jc is the partial derivative of J(c, t) with respect to c. We assume the endowment

(δt) follows the similar process to the stock price St:

d(log δt) = µδ(Xt)dt + αδ(Xt)dW1t + βδ(Xt)dW2t + γδ
t dNt. (1.11)

For simplicity, we adopt a utility function in Naik and Lee (1990). The utility function

has a form:

J(c, t) = exp(−θt)
cω

ω
,

where 0 < ω < 1. If ω = 0, then J(c, t) = exp(−θt) log(c). It exhibits a constant relative

risk aversion. Since Jc(δt, t) = exp(−θt)δω−1
t , a pricing kernel is, from (1.10),

πt = exp(−θt)δω−1
t .

10



By Ito’s formula, the pricing kernel process is

d(log πt) = (−θ + (ω − 1)µδ) dt + (ω − 1) (αδdW1t + βδdW2t) + (ω − 1)γδ
t dNt (1.12)

Lemma 1.2.3. The equivalence of Lemma 1.2.1 for (1.12) is

r(Xt) = θ − (ω − 1)µδ(Xt)−
1
2
(ω − 1)2

(
α2

δ(Xt) + β2
δ (Xt)

)
− λ(Xt)E

[
exp((ω − 1)γδ

t )− 1
]
.

Lemma 1.2.4. The equivalence of Lemma 1.2.2 is

µ(Xt) = r(Xt)− (ω − 1) (αδ(Xt)α(Xt) + βδ(Xt)β(Xt))−
1
2
(
α2(Xt) + β2(Xt)

)
+λ(Xt)

[
E(exp((ω − 1)γδ

t )− exp((ω − 1)γδ
t + γt)

]

By Lemma 1.2.3, the equilibrium pricing kernel is

d(log πt) =
[
−r(Xt)−

1
2
(ω − 1)2 − λ(Xt)E

(
exp((ω − 1)γδ

t − 1
)]

dt

+(ω − 1) (αδ(Xt)dW1t + βδ(Xt)dW2t) + (ω − 1)γδ
t dNt.

The equilibrium pricing kernel will be used in pricing bond, stock and option prices. Again,

by a proper conditioning by Ft ∨ σ((Xu)t≤u≤T ) and (Nu)t≤u≤T , we are back to Brownian

Motion. Thus, the joint probability distributions of
[
log
(

δT
δt

)
, log

(
ST
St

)]
and furthermore[

log
(

πT
πt

)
, log

(
ST
St

)]
are bivariate normal. We can derive a GBS option pricing formula

similarly to the previous setting.

Proposition 1.2.3. The adjusted bond price is:

B∗
t,T = E

[
πT

πt
|Ft ∨ σ((Xu)t≤u≤T )

]
= exp

[
−
∫ T

t
rudu

]
ηt,T ,

with

ηt,T = exp
[
(ω − 1)

∫ T

t
αδ(Xu)dW1u −

1
2
(ω − 1)2

∫ T

t
α2

δ(Xu)du

]

11



exp
[
(NT −Nt) log

[
E
(
exp((ω − 1)γδ

t )
)]
−
[
E
(
exp((ω − 1)γδ

t )− 1
)] ∫ T

t
λ(Xu)du

]
.

From Lemma 1.2.4, we get the adjusted stock price.

Proposition 1.2.4. The adjusted stock price:

S∗t = E

[
πT

πt
ST |Ft ∨ σ((Xu)t≤u≤T )

]
= Stξt,T ,

with:

ξt,T = exp
[∫ T

t
((ω − 1)αδ(Xu) + α(Xu))dW1u −

1
2

∫ T

t
((ω − 1)2αδ(Xu) + α(Xu))2du

]
exp

[
(NT −Nt) log[E(exp(γt + (ω − 1)γδ

t ))] + E[exp(γt + (ω − 1)γδ
t )− 1]

∫ T

t
λ(Xu)du

]

The proofs of Proposition 1.2.3 and Proposition 1.2.4 are not included since they are

basically the same as those of Proposition 1.2.1 and Proposition 1.2.2. Note that the prefer-

ence parameter ω appear explicitly in the adjusted bond prices and stock price and therefore

in the option pricing formula. Except for some factorization with ω, everything remains

the same as no-arbitrage approach in Section 1.2.1 and Section 1.2.2 given specification of

the endowment process. We do not discuss thorough study on the relationship between the

level of risk aversion and risk premium along with the specification of endowment process

since they are beyond the scope of our study.

1.3 The GBS option pricing formula

Except for a few cases, such as the stochastic volatility in Heston (1993), most dynamics

of the state variables in derivative pricing do not yield closed form solutions. Monte Carlo

simulation can be used to get a derivative price. Standard Monte Carlo simulation would

generate many sample paths of state variables, evaluate the payoff of the derivative on each

path, then take an average over them. The average gives an estimate of a derivative price.

In this section, we focus on an European call option and derive a BS like option pricing

formula by the proper conditioning. The conditional Monte Carlo approach has several ad-

vantages over competitors. First, it can be easily applicable in both pricing and calculating
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sensitivities (the ”Greeks”). Second, there is a big improvement in computational efficiency.

It is faster and gives a smaller variance than the traditional Monte Carlo method, as shown

in Willard (1997).

Following the notation in the introduction, the payoff gT of an European call option

written on a stock price St is gT = max(0, ST −K), where K is a strike price. The proof of

the option pricing formula in Proposition 1.3.1 is in Appendix E.

Proposition 1.3.1. The price of an European call option has the form:

Ct = E

[
πT

πt
max(0, ST −K)|Ft

]
,

where Ft is the information available at time t to the investor. We obtain the GBS option

pricing formula for the stochastic volatility and jumps model:

Ct = E[B̃S(Stξt,T , (σt,T )2)|Ft]

= E[Stξt,T Φ(d1)−KB∗
t,T Φ(d2)|Ft],

where

B̃S(·, ·) is a BS-like option pricing formula,

ξt,T and B∗
t,T defined as in Proposition 1.2.1 and Proposition 1.2.2(or Proposition 1.2.3

and Proposition 1.2.4),

d1 = 1
σt,T

[
log( Stξt,T

KB∗
t,T

) + 1
2(σt,T )2

]
,

d2 = d1 − σt,T ,

and

σt,T =

√∫ T

t
(1− ρ2(Xu))Vudu + (NT −Nt)V ar[γi]

Like the previous work by Willard (1997), Romano and Touzi (1997), this option pricing

formula extends to more general cases and still preserves tractability that BS pricing formula
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has. The characteristics of SDF explicitly shows up in the option pricing formula. That

is, we have nice interpretations on how risk premiums and/or preference parameters play

a role in pricing and sensitivities. Also, it is worthwhile noting that σt,T displays separate

identification of the two components of quadratic variation, namely (continuous) integrated

variance and sum of squared jumps, which is similar to quadratic variation in Barndorff-

Nielsen and Shephard (2004).

1.4 An approximation scheme for GBS formula

We propose an approximation scheme, which results in a significant dimension reduc-

tion by simulating certain key summary statistics in the model instead of generating the

entire volatility path. Hence, it is particularly well suited to our GBS pricing formula and

the related conditional Monte Carlo simulation. Cheng, Gallant, Ji and Lee (2007) demon-

strates the promise of this approach by applying it to the MCMC estimation of a log-linear

stochastic volatility model. Although the idea of the approximation scheme may be quite

general, we implement it in a setting of the square-root volatility process, which enjoys a

great popularity in the financial asset pricing. Our approximation scheme can be used in

the stochastic volatility (SV) model and extended to the SV model with jumps (SVJ), as

in Bates (2000) and Pan (2002). The jump times follows a Poisson process with volatility

dependent intensity (λVt).

Only for the certain specification of the GBS formula can be simply rewritten as

Ct = E[B̃S(Stξt,T , (σt,T )2|(W1τ )t≤τ≤T , NT −Nt)]

= E

[
B̃S

(
Stξt,T , (σt,T )2|

∫ T

t
Vudu,

∫ T

t

√
VudW1u, NT −Nt

)]
.

Note that NT −Nt is a Poisson random variable with an intensity parameter (λ
∫ T
t Vudu)

given
∫ T
t Vudu, in SVJ model. Thus, the conditional Monte Carlo simulation to calculate

an option price with the GBS formula is done by repeating the following steps many times:

step-(i) By simulation, get two volatility integrals,
∫ T
t Vudu and

∫ T
t

√
VudWu.
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step-(ii) Generate a sample of NT − Nt from Poisson distribution with a parameter,

λ
∫ T
t Vudu.

step-(iii) Place the simulated values
∫ T
t

√
VudW1u,

∫ T
t Vudu and NT −Nt in the the GBS

formula.

Note that the computational efficiency and the accuracy of the option price calculation

heavily depend on generation of two volatility integrals,
∫ T
t Vudu and

∫ T
t

√
VudWu. These

integrals are high-dimensional and create a significant computational challenges. For in-

stance, MCMC estimation of the model parameters, which is illustrated in the next section,

repeatedly needs to calculate option prices. Moreover, extra option calibration and time

are required if the Metropolis-Hastings algorithm in MCMC estimation for the nonstandard

conditional posteriors cannot be avoided when both option and return data are used. Thus,

it is crucial for the performance of MCMC that these integrals can be obtained fast.

The square-root process (Vt) has a form of:

dVt = kv(θ − Vt)dt + σv

√
VtdW1t. (1.13)

θ is the long-run mean, kv represents the mean reversion, and σv is a parameter which

determines the variance of the process. Under the assumption 2kvθ > σ2
v , Vt process is

always positive. The square-root process take an important role in many financial models,

including the interest rate model in Cox, Ingersoll and Ross (1985), stochastic volatility

model in Heston (1993). It has been widely used in derivative pricing models since the re-

formulation of the original Fourier integrals made computations of European option prices

numerically stable and efficient. Yet, many practical applications of models with this dy-

namics, which involve the pricing and hedging, require the introduction of Monte Carlo

method. Since our GBS option pricing formula is under the scope of the conditional Monte

Carlo method, we start with an illustration of the method. We outline the existing dis-

cretization schemes from the literature designed for the square-root volatility process, for

later comparative experiments. Then, we introduce our approximation scheme, followed by

numerical comparisons.
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1.4.1 Path simulation schemes

The simple Euler’s discretization does not guarantee the positivity of the process. There

have been research into the simulation scheme for the squared volatility process.

First, the volatility path can be generated by using the exact transition law of process.

The distribution of Vt given Vs, s < t is up to a scale factor, a noncentral chi-square distri-

bution. Details of this method are illustrated in Glasserman (2003). This method is rarely

used in practice because of the computational inefficiency.

Roger (1995) proposed the method using multi-dimensional Ornstein-Uhlenback process.

The drawback of this method is that we need to impose extra constraints on the parameters

in the square-root volatility process. Kahl and Jackel (2005) propose an application of an

implicit Milstein scheme:

Vt+∆ =
Vt + kvθ∆ + σv

√
Vt$v

√
∆ + 1

4σ2
v∆($2

v − 1)
1 + k∆

,

where $v is a standard normal random variable. It requires a restriction on volatility

parameters, 4kvθ > σv, which is rarely satisfied in practice. There is another scheme

suggested by Brigo and Alfonsi (2005):

Vt+∆ =

[
σv$v

√
∆ +

√
σ2

v$
2
v∆ + 4(Vt + (kvθ − σ2/2)∆)(1 + kv∆)

2(1 + kv∆)

]2

.

It does not require more than 2kvθ > σ2
v , which should be assumed to preserve a positivity of

volatility process. In addition, this method has nice convergence property(refer to Alfonsi

(2005)), which guarantees its small bias if we use a very small time interval. For these

reasons, we choose the simulation scheme by Brigo and Alfonsi (2005) to evaluate the

performance of our proximation scheme in Section 1.4.4. All these methods show slightly

different behaviors and convergence properties. In any case, if we use one of these methods,

we cannot avoid simulating whole paths and its computation cost is high, especially in

MCMC estmation when we need many iterations.
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1.4.2 Proposed approximation scheme

On the contrary to the path simulation schemes, the scheme proposed by Broadie and

Kaya (2006) allows us to avoid generating a whole path and reduce bias significantly. Since

the conditional distribution of
∫ T
t Vudu is not known in a close form, they use the numerical

inverse algorithm for the distribution, which turns out too complex and slow. We take

some essential parts of their scheme and propose a much simpler scheme. We propose an

approximation scheme on the conditional distribution of
∫ T
t Vudu. Simply, add three more

steps to step−(i) in the previously illustrated conditional Monte Carlo method. Other steps

remain the same.

step-(i-1) Generate a sample from the distribution of VT given Vt: using non-central chi-

squared distribution.

step-(i-2) Generate a sample from the approximated distribution of
∫ T
t Vudu given Vt.

step-(i-3) Recover
∫ T
t

√
VudW1u from given VT , Vt, and

∫ T
t Vudu.

The proposed scheme is an approximation with two reasons. First, the gamma distribution

for
∫ T
t Vudu is not exact. Second, VT and

∫ T
t Vu are simulated separately, ignoring the

correlation between the two. More details of the simulation steps are in the following

subsections.

Generating VT given Vt

Based on the results of Feller (1971) and Cox, Ingersoll and Ross (1985), the exact

transition law of the square-root process is known. The distribution of VT given Vt for some

t < T is a non-central chi-squared distribution up to a scale factor.

VT =
σ2

v(1− exp(−kv(T − t)))
4kv

χ′2p1
(p2),

where χ′2p1
(p2) denotes the non-central chi-square random variable with p1 degrees of free-

dom, and non-centrality parameter p2,

p1 =
4θkv

σ2
v

,
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and

p2 =
4kv exp(−kv(T − t))Vt

σ2
v(1− exp(−kv(T − t)))

Generating
∫ T
t Vudu given Vt from the proposed approximation

We observe that
∫ T
t Vu du has a skewed distribution. Since

∫ T
t Vu du is always positive,

we propose the gamma distribution as an approximation. Figure 1.1 shows how the skewed

distribution of
∫ T
t Vu du is well fitted with the gamma distribution. From Garcia, Lewis

and Renault (2001), we know the explicit form of the conditional mean and variance of∫ T
t Vu du. These two moments give the parameter values of the gamma distribution by the

method of moments.

Proposition 1.4.1. The conditional mean is

E

[∫ T

t
Vudu|Ft

]
= = VtAt,T + Bt,T ,

where

At,T =
1
kv

(
1− e−kv(T−t)

)
Bt,T = θ(T − t)− θ

kv

(
1− e−kv(T−t)

)
.

The conditional variance is obtained as

V ar

[∫ T

t
Vudu|Ft

]
= VtCt,T + Dt,T ,

where

Ct,T =
σ2

v

k2
v

[
1
kv
− 2(T − t)e−kv(T−t) − 1

kv
e−2kv(T−t)

]
Dt,T =

σ2
vθ

k2
v

[
(T − t)

(
1 + 2e−kv(T−t)

)
+

1
2kv

(
e−kv(T−t) + 5

)(
e−kv(T−t) − 1

)]

The proof of Proposition 1.4.1 is in Appendix F.1. Using the conditional mean and

variance, we can calculate the parameters in the gamma distribution. The scale parameter
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is expressed as
V ar[

∫ T
t Vudu|Ft]

E[
∫ T

t Vudu|Ft]
and the shape parameter as

E2[
∫ T

t Vudu|Ft]
V ar[

∫ T
t Vudu|Ft]

. We are ready to

sample
∫ T
t Vudu.

Recover
∫ T
t

√
VudW1u

∫ T

t

√
VudW1u =

(
1
σv

)(
VT − Vt − kvθ(T − t) + kv

∫ T

t
Vudu

)
,

is simply an integrated form of (1.13). Given VT , Vt, and
∫ T
t Vudu, we have

∫ T
t Vudu.

1.4.3 Improved approximation scheme using bivariate gamma distribu-

tion

In the previous section, the approximation scheme generates
∫ T
t Vudu and VT separately

by ignoring the correlation between these two. First, we want to check whether the correla-

tion is negligible by calculation and the simulation based on the estimates in the literature.

Proposition 1.4.2.

Corr

[∫ T

t
Vudu, VT |Ft

]
=

Cov
[∫ T

t Vudu, VT |Ft

]
√

V ar
[∫ T

t Vudu|Ft

]
V ar [VT |Ft]

,

where

V ar[VT |Ft] = VtIt,T + Jt,T

Cov

[∫ T

t
Vudu, VT |Ft

]
= VtQt,T + Rt,T ,

where

It,T = σ2
v

[(
1 +

σ2
v

kv

)(
1
kv
− 2(T − t)e−kv(T−t) − 1

kv
e−2kv(T−t)

)
+2
(

Te−kv(T−t) − t +
1
kv

(
e−kv(T−t) − 1

))]
Jt,T = σ2

v

[(
1 +

σ2
v

k2
v

)(
1
kv
− 2(T − t)e−kv(T−t) − 1

kv
e−2kv(T−t)

)
+2θ

(
Te−kv(T−t) − t + e−kv(T−t) − 1

)]
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Qt,T =
σv

kv

[
t + 1− (T + 1)e−kv(T−t) − σv

(
1
kv
− 2(T − t)e−kv(T−t) − 1

kv
e−2kv(T−t)

)]
Rt,T =

σvθ

kv

[
t + 1− (T + 1)e−kv(T−t) − σv

(
1
kv
− 2(T − t)e−kv(T−t) − 1

kv
e−2kv(T−t)

)]

The proof of Proposition 1.4.2 is given in Appendix F.2.

The simulation based on the estimates in the literature shows that the correlation is

between −0.35 and −0.5 and not negligible. Recall that a noncentral chi-square random

variable can be represented as an ordinary chi-square random variable with a random degrees

of freedom parameter. In detail, when N is a Poisson random variable with mean λ/2,

consider a random variable χ2
d+2N . Conditioning on N , the variable is an ordinary chi-square

distribution. On the other hand, the unconditional distribution is noncentral chi-square

distribution. Thus, using this mixture property, we can generate noncentral chi-square

random variable by generating Poisson random variable and chi-square random variable,

which is in the gamma class. Thus, both
∫ T
t Vudu and VT can be approximated by bivariate

gamma distributions up to constant.

Unlike multivariate normal distribution, a bivariate gamma distribution cannot be

uniquely identified by two gamma marginal distributions and the correlation. Among var-

ious forms of bivariate gamma distributions (see Kotz, Balakrishnan and Johnson (1999)),

we choose a bivariate gamma distribution that gives a simple algorithm without putting

restrictions on parameters. This algorithm was proposed by Shmeiser and Lal (1982). They

discuss different simulation methods for a bivariate gamma distribution. It allows a neg-

ative correlation between two variables, while many other algorithms only allow positive

correlations. This algorithm is based on a probability mixing. The algorithm results in two

marginals X1 ∼ gamma(α1, β1) and X2 ∼ gamma(α2, β2) with the correlation ρg. Denote

the cumulative and inverse cumulative distribution function of the gamma distribution with

the shape parameter α and a unit scale parameter as Fα(u) and F−1
α (u), respectively. C is

the minimum possible correlation, which occurs when X2 = β2F
−1
α2

(1−Fα1(X1/β1)). Thus,

C is obtained by

ρg =
E[F−1

α1
(U)F−1

α2
(1− U)]− α1α2√
α1α2

.
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The expected value can be easily calculated numerically using
∫ 1
0 F−1

α1
(u)F−1

α2
(1− u)du.

Algorithm 1.4.1. step-(1) Generate U from Uniform(0, 1).

step-(2) If U < ρg/C, go to step-(5).

step-(3) Generate X1 from gamma(α1, β1)

step-(4) Generate X2 from gamma(α2, β2) and go to step-(9).

step-(5) Generate V from Uniform(0, 1).

step-(6) Let X1 be β1F
−1
α1

(V ).

step-(7) If ρg < 0, replace V with 1− V .

step-(8) Let X2 be β2F
−1
α2

(V ).

step-(9) Deliver (X1, X2).

The problem with this algorithm is illustrated in Shmeiser and Lal (1982). However, it

is not an issue with our parameter setting. For the application of this scheme, we simply

let X1 be
∫ T
t Vudu and X2 be non-central chi-squared random variable in VT . Then, α1 and

β1 are obtained by the method of moments, as discussed in 1.4.2. α2 and β2 are based on

the degrees of freedom, noncentrality parameter and the previously mentioned simulation

method for non-central chi-squared random variable. Contrary to the first proposed approx-

imation scheme, α2 and β2 change each time. However, the increase in the computation

time is not significant and we still have a computational efficiency over the path simuation

method. Once (
∫ T
t Vudu, VT ) are obtained as illustrated here, the remaining steps are the

same as in Section 1.4.2. This simulation scheme improves the accuracy of the approxima-

tion, especially for options with a long maturity time. It will be discussed in the simulation

study.

1.4.4 Simulation study

We check the performance of our proposed approximation schemes in comparison to a

benchmark, the option prices calculated from GBS option pricing without any approxima-

tion. SV denotes stochastic volatility without jumps. SVJ denotes stochastic volatility with
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kv θ σv ρ ηv

Set1 0.019 4.08078 0.22 -0.569 0.01
Set2 0.019 1.933 0.22 -0.569 0
Set3 0.028 0.54365 0.127 -0.53 0
Set4 0.016 0.66 0.077 -0.38 0
Set5 0.023 0.905 0.143 -0.397 0

Table 1.1: Parameters for SV model

jumps. The comparative study is done for SV as well as SVJ described in the previous sec-

tions. As mentioned earlier, the volatility paths are generated by Brigo and Alfonsi (2005)

and the benchmark option prices are obtained by the conditional Monte Carlo. Before the

actual simulation study, we can expect much longer computational time for brute force

method than for our approximation scheme. To get a vector of
∫ T
t Vudu, the benchmark

method need to simulate n times (T − t)/∆ data points, where T − t is a time to maturity,

∆ is a discretization interval and n is the Monte Carlo iteration (more than 1,000,000).

Contrarily, our approximation scheme only needs to simulate n∗ (about 5,000) data points

from the gamma distribution for the first proposed scheme or 3n∗ data points for our second

proposed scheme.

We choose a discretization interval ∆ = 0.01 for the benchmark, which is often used in

the literature for small discretization bias. For option price calculation, we assume r =

0.01% (daily interest rate) and St = 1000 throughout simulations. Six different times to

maturity are considered, 20, 40, 60, 120, 180, 240 days (equivalently, 1, 2, 3, 6, 9, 12 months)

and 11 different moneyness
(
log
(

St
KBt,T (t,T )

))
from -0.1 to 0.1 to check the robustness. The

parameter values for the square-root stochastic volatility models in the comparative study

are based on parameter estimates in the previous studies. Set1 is a set of parameters under

Q (risk-neutral) measure and Set2 is a set of parameters under P (physical) measure in table

III in Eraker (2004). Similarly, Set3 is from Table 1 in Pan (2002). These three sets are

estimates from using both returns and options on S&P 500 index. Set4 is from Andersen,

Benzoni and Lund (1997), Set5 is from Eraker, Johannes and Polson (2003). These two are

estimates from using only returns. When we include jumps in the return process, we need

more parameter estimates. SVJ simulation is based on the parameter values in Pan (2002).

The parameter estimates in our simualation study are reported in Table 1.1 and Table 1.2,
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kv θ σv ρ ηv λ µ2 µ3

0.025 0.61 0.12 -0.53 0.012 0.123 0 -0.192

Table 1.2: Parameters for SVJ model

following the convention in Eraker (2004). The return data is scaled by 100 and a unit of

time is defined to be one day. For example, if we use Set2, then

dVt = 0.019((1.933)(0.01)(0.01)− Vt)dt + (0.22)(0.01)
√

V tdW v
t

will be the equation we use to generate volatilities. Annualized parameters kv, θ, σv (as

in Pan (2002)) are converted by dividing by 252 (approximate number of trading days per

year). Refer to Singleton (2006) for more on the parameter conversion. More details on

model specification and the option pricing formula will be given with MCMC estimation.

Figure 1.1 contains six different quantile-quantile (QQ) plot of our key elements:
∫ T
t Vudu,

VT and
∫ T
t

√
VudWu. Except for several extreme values, our approximation schemes work

well. For more careful study, we calculate errors and computational times. Table 1.3 and

Table 1.4 contain the mean of log ratios of the benchmark and the approximation under

stochastic volatility models without and with jumps. First, we calculate one option price,

Ct using the the method by Brigo and Alfonsi (2005) with 100,000 iterations in Monte

Carlo simulation. Assume this option price is a correct one and denote it as Ct. On the

other hand, the option prices by the approximation method are calculated with 5,000 Monte

Carlo iteration. Due to the dimensional reduction, we see that using the smaller number

of iteration is justified. The approximated price is denoted as Ca
t . The mean of log ratio,

ε(N) is calculated by

ε(N) =
1
N

N∑
i=1

log(Ca
t (i)/Ct).

If the approximation is accurate, this quantity is close to 0. In our simulation study, we

use N = 100. Time represents the average of N ratios of time required with approximation

scheme to the time required for the benchmark method.

Timeavg(N) =
1
N

N∑
i=1

(Timea(i)/T ime),
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Figure 1.1: The qq plots of
∫ T
t Vudu, VT and

∫ T
t

√
VudWu. The first approximation is

without incorporating the correlation and the second approximation is using the correlation
and the bivariate gamma sampling

where Timeavg represents the computational time to calculate one option price with the

approximation scheme and Time is the time to calculate one option price without approx-

imation.

The result of the first proposed approximation scheme

In both SV and SVJ settings, our simulation scheme performs well as in Table 1.3 and Table

1.4. Absolute mean errors are close to 0. We obtain a significant reduction in computational

time without losing accuracy.
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moneyness 20 days 40 days 60 days 80 days 180 days 240 days
-0.09 0.085 0.092 0.093 0.095 0.103 0.104
-0.06 0.083 0.085 0.092 0.096 0.099 0.102
-0.03 0.078 0.076 0.079 0.081 0.088 0.098
0 0.071 0.076 0.077 0.086 0.092 0.111
0.03 0.071 0.071 0.083 0.085 0.092 0.122
0.06 0.079 0.083 0.090 0.093 0.099 0.112
0.09 0.078 0.083 0.085 0.105 0.110 0.111
Timeavg 0.020 0.021 0.021 0.017 0.015 0.010

Table 1.3: Mean of log ratios and the computational times in option prices under SV based
on Set2, using the first approximation scheme

moneyness 20 days 40 days 60 days 80 days 180 days 240 days
-0.09 0.086 0.093 0.093 0.095 0.102 0.107
-0.06 0.083 0.086 0.097 0.098 0.099 0.104
-0.03 0.074 0.077 0.079 0.083 0.089 0.098
0 0.072 0.076 0.077 0.091 0.092 0.111
0.03 0.071 0.072 0.083 0.084 0.097 0.124
0.06 0.078 0.085 0.091 0.096 0.108 0.112
0.09 0.077 0.083 0.084 0.107 0.110 0.113
Timeavg 0.023 0.023 0.022 0.021 0.019 0.018

Table 1.4: Mean of log ratios and the computational times in option prices under SVJ,
using the first approximation scheme

The result of the second proposed approximation scheme

moneyness 20 days 40 days 60 days 80 days 180 days 240 days
-0.09 0.079 0.081 0.081 0.083 0.084 0.087
-0.06 0.076 0.079 0.080 0.081 0.084 0.086
-0.03 0.072 0.072 0.073 0.076 0.078 0.079
0 0.071 0.075 0.077 0.081 0.081 0.082
0.03 0.073 0.073 0.076 0.078 0.083 0.082
0.06 0.071 0.073 0.074 0.080 0.080 0.086
0.09 0.074 0.084 0.088 0.090 0.093 0.089
Timeavg 0.033 0.031 0.031 0.028 0.027 0.024

Table 1.5: Absolute mean errors and the computational times in option prices under SV
based on Set2, using the second approximation scheme
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moneyness 20 days 40 days 60 days 80 days 180 days 240 days
-0.09 0.079 0.082 0.081 0.085 0.087 0.091
-0.06 0.076 0.079 0.080 0.084 0.087 0.093
-0.03 0.073 0.072 0.075 0.077 0.079 0.089
0 0.071 0.075 0.076 0.083 0.085 0.087
0.03 0.073 0.072 0.074 0.079 0.086 0.087
0.06 0.071 0.076 0.078 0.084 0.086 0.087
0.09 0.074 0.084 0.089 0.092 0.093 0.092
Timeavg 0.032 0.030 0.030 0.025 0.026 0.025

Table 1.6: Absolute mean errors and the computational times in option prices under SVJ,
using the second approximation scheme

In both SV and SVJ settings, our simulation scheme performs better as in Table 1.5 and

Table 1.6 than the first proposed approximation scheme. Absolute mean errors are close

to 0. The computational time increased slightly because of the parameter adjustment in

Poisson random variable generation for VT . However, the computation is still efficient

without loss of accuracy.

1.5 MCMC estimation

The inference of our asset pricing model is about characterizing p(Θ, V, J, U |Y, C), where

Θ is a set of parameters, V is a volatility, J is a jump indicator and U is a jump size and Y, C

are observed stock and option prices. It is difficult because p(Θ, V, J, U |Y, C) is typically

high-dimensional and thus the standard sampling fails. Also, in the option pricing models,

the parameters and the state variables, such as V , are in a non-analytic form. MCMC

methods are well-suited in the setting. It is a unified estimation procedure, simultaneously

estimating both parameters and latent variables. Contrary to other methods, applying ap-

proximate filters or noisy latent variable proxies, MCMC directly computes the distribution

of the latent variables and parameters given the observed prices. Since it avoids any opti-

mization and does the unconditional simulation, it is computationally fast. Some MCMC

estimation techniques are based on the previous work by Jacquier, Polson and Rossi (1994)

and Jacquier, Polson and Rossi (2004). Among a growing amount of literature in finance

using MCMC estimation, work by Eraker (2004) is the closest to our estimation algorithm,

since both option and return data are used. The difference is the specification of jump and

jump risk premium. Also, details on discretization and specification of conjugate priors are
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in the chapter by Chib, Nardari and Shephard (2002) and Johannes and Polson (2006).

However, there is no precedent who uses the application of MCMC estimation algorithm in

our model setting with both option and return data. It will be shown in this section that

the approximation bias is minor and it will not affect the MCMC algorithm much. In the

current stage, this section serves only as a performance check for the approximation scheme

and a rough illustration of MCMC algorithm. Thus, careful study on the choice of priors

and diagnostics should follow.

1.5.1 The random-walk Metropolis-Hastings method

In our model setting, some conditional distributions cannot be recognized and conve-

niently sampled. In this case, the Metropolis-Hastings method can be used. Among several

different Metropolis-Hastings methods (refer to Robert and Casella (2004)), we choose to

use the random-walk Metropolis-Hastings method in order to tackle this issue. For exam-

ple, to generate samples for one parameter, say θ from π(θ), it draws a candidate from the

following random walk model, θ∗ = θ(g) + sε, where s is a tuning parameter and ε is a

symmetric density function. The random-walk Metropolis-Hastings method is:

(i) Draw θ∗.

(ii) Accept θ∗ with probability α, where α = min
[

π(θ∗)
π(θ(g))

, 1
]

In our simulation study, we use the normal distribution for ε and set different tuning

parameters and the uniform priors for each Metropolis-Hastings algorithm.

1.5.2 Model and discretization

For estimation purpose, we need to specify our models further. We use exactly the same

model as Pan (2002) for comparison purpose.

d(log St) = [rt + ηsVt −
1
2
Vt]dt +

√
VtdW s

t + (log St − log St−)dNt − µ1λVtdt (1.14)

dVt = kv(θ − Vt)dt + σv

√
VtdW1t, (1.15)

where rt is known, Cov(dW s
t , dW1t) = ρdt, log St − log St− = Ui is i.i.d. normal variable

with mean µJ , and variance σJ . µ1 = exp(µJ + σ2
J/2)− 1 and NT −Nt is a Poisson process
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with the intensity parameter λ
∫ T
t Vudu. The errors are specified as

log(Ct) = log(GBS) + δεt,

where Ct is an observed option price, GBS is the option price calculated from GBS option

pricing formula and δ is a price error parameter and εt ∼ N(0, 1). Taking log prevents us

from gettig a negative option price. Using the previous results, the GBS option price is

calculated as:

Ct = Et[B̃S(Stξt,T , (σt,T )2)]

= Et[Stξt,T Φ(d1)−KB∗(t, T )Φ(d2)],

where

B̃S(·, ·) is a BS-like option pricing formula

d1 = 1
σt,T

√
T−t

[
log( Stξt,T

KB∗(t,T )) + 1
2(σt,T )2(T − t)

]

d2 = d1 − σt,T

√
T − t

σt,T =

√
(1− ρ2)

∫ T
t Vudu + (NT −Nt)σ2

J

T − t

B∗
t,T

= exp
[∫ T

t

(
−ru −

1
2
η2

vVu − µ2λVu

)
du + ηv

∫ T

t

√
VudW1u

]
(µ2 + 1)NT−Nt .

ξt,T

= exp
[
−
∫ T

t
µ3λVudu

]
exp

[
(ηv + ρ)

∫ T

t

√
VudW1u −

1
2
(ηv + ρ)

∫ T

t
Vudu

]
(µ3 + 1)NT−Nt .
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Assuming the prices are observed at equally spaced, discrete time interval (t = 1, 2, . . . , T

days) and the equation(1.14) and equation(1.15) become

Yt = Yt−1 + rt + (ηs −
1
2
)Vt +

√
Vt$

s
t + UtJt − µ1λVt

= Yt−1 + rt + mVt +
√

Vt$
s
t + UtJt,

and

Vt = kvθ + (1− kv)Vt−1 + σv

√
Vt−1$

v
t ,

where Yt = log(St), m = ηs− 1
2−µ1λ, $s

t ∼ N(0, 1) and $v
t ∼ N(0, 1) with corr($s

t , $
v
t ) = ρ,

and a jump indicator Jt ∼ Bernoulli(λVt). ηs is obtained from m with values of the jump

parameters, µJ , σJ and λ.

1.5.3 MCMC algorithms

Now, we identify parameters that will be estimated. Although the model and the GBS

pricing formula have many parameters, the conditional posterior distributions can be sim-

plified with blocks, using conditional independence. Denote all parameters by Θ, where

Θ = (m, ρ, µJ , σ2
J , λ, kv, θ, σv, µ2, µ3, ηv, δ). The methods for performing the draws of the

parameters are contained in this section. In drawing these parameters, virtually flat priors

are used exclusively when a little information of the prior is found. First, recognize the

following distributions, which will be components of the posterior distributions.

� p(Ct|Yt, Vt,Θ) ∼ Lognormal(log(GBS), δ2) with mean log(GBS) and variance δ2

� p(Yt|Yt−1, Vt, Jt, Ut,Θ) = p(Yt|Yt−1, Vt, Jt, Ut,m, ρ)

∼ N(Yt−1 + rt + mVt + UtJt, (1− ρ2)Vt)

� p(Ut|Θ) = p(Ut|µJ , σ2
J) ∼ N(µJ , σ2

J)

� p(Jt|Vt,Θ) = p(Jt|Vt, λ) ∼ Bernoulli with p(Jt = 1|Vt, λ) = λVt

� p(Vt|Vt−1,Θ) = p(Vt|Vt−1, kv, θ, σv) ∼ truncated N(kvθ + (1− kv)Vt−1, σ
2
vVt−1)
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For the estimation for SV model, we simply skip updating jump related latent variables and

set all jump parameters to zero.

Latent Variables (Volatility, Jump Time and Jump Size)

We use the following notations: Y = {Yt}, C = {Ct}, V = {Vt}, U = {Ut}, J = {Jt}.

When the prior is missing, assume that we have a uniform prior.

Updating Volatility, V

By Markov property, Vt is only influenced by its neighbor, Vt+1 and Vt−1. Thus,

p(Vt|V(−t), Y, J, U,C,Θ) = p(Vt|Vt−1, Vt+1, Y, J, U,C,Θ)

Sample volatility Vt from

p(Vt|Vt−1, Vt+1, Y, J, U,C,Θ)

∝ p(Vt−1, Vt, Vt+1|Y, J, U, C, Θ)

∝ p(Ct|Yt, Vt,Θ)p(Yt|Yt−1, Vt, Jt, Ut,Θ)p(Ut|Vt, Jt,Θ)p(Jt|Vt,Θ)p(Vt|Vt−1,Θ)p(Vt+1|Vt,Θ)

Since this distribution is not recognizable, we cannot do direct simulation from the stan-

dard distribution. Thus, we use the random-walk Metropolis-Hastings method to sample

from it.

Updating Jump Sizes, U

Since the jump sizes do not depend on the option prices directly and the jump sizes are

i.i.d. random variable,

p(Ut|U(−t), Y, V, J, C,Θ) = p(Ut|Yt, Yt−1, Vt, Jt,Θ)

Sample jump size Ut from

p(Ut|Yt, Yt−1, Vt, Jt,Θ) ∝ p(Yt|Yt−1, Jt, Ut, Vt,Θ)p(Ut|Jt, Vt,Θ)

∝ exp
[
−(Yt − Yt−1 − rt −mVt − UtJt)2

2(1− ρ2)Vt

]
exp

[
−(Ut − µJ)2

2σ2
J

]
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∝ exp
[
−

(Ut − µ∗J)2

2(σ∗J)2

]
∼ N(µ∗J , (σ∗J)2)

First, consider the case when Jt = 0.

p(Ut|Yt, Yt−1, Vt, Jt = 0,Θ) ∝ exp
[
−(Ut − µJ)2

2σ2
J

]
,

which implies that µ∗J = µJ ,(σ∗J)2 = σ2
J .

Second, consider the case when Jt = 1.

p(Ut|Yt, Yt−1, Vt, Jt = 1,Θ) ∝ exp
[
−(Yt − Yt−1 − rt −mVt − Ut)2

2(1− ρ2)Vt

]
exp

[
−(Ut − µJ)2

2σ2
J

]
∝ exp

[
−(Ut − (Yt − Yt−1 − rt −mVt))2

2(1− ρ2)Vt

]
exp

[
−(Ut − µJ)2

2σ2
J

]
,

which implies that µ∗J = (σ∗J)2
[

Yt−Yt−1−rt−mVt

(1−ρ2)Vt
+ µJ

σ2
J

]
, (σ∗J)2 =

[
1

(1−ρ2)Vt
+ 1

σ2
J

]−1
. Thus, we

can generalize that the posterior distribution is

Ut|Yt, Yt−1, Vt, Jt,Θ ∼ N(µ∗J , (σ∗J)2),

where

µ∗J = (σ∗J)2
[
(Yt − Yt−1 − rt −mVt)Jt

(1− ρ2)Vt
+

µJ

σ2
J

]
(σ∗J)2 =

[
Jt

(1− ρ2)Vt
+

1
σ2

J

]−1

Updating Jump Indicator, J

Since the jump times do not depend on the option prices directly,

p(Jt|J(−t), Y, V, U,C, Θ) = p(Jt|Yt, Yt−1, Vt, Ut,Θ)
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The jump indicator Jt only takes two values, 0 and 1. The following two formula provide

the Bernoulli probability. Due to the lack of knowledge of its normalizing constant, we need

to update both.

p(Jt = 1|Yt, Yt−1, Vt, Ut,Θ) ∝ p(Yt|Yt−1, Vt, Jt = 1, Ut,Θ)p(Jt = 1|Vt,Θ)

∝ λVtp(Yt|Yt−1, Vt, Jt = 1, Ut,Θ)

∝ λVt exp
[
−(Yt − Yt−1 − rt −mVt − Ut)2

2(1− ρ)2Vt

]

p(Jt = 0|Yt, Yt−1, Vt, Ut,Θ) ∝ p(Yt|Yt−1, Vt, Jt = 0, Ut,Θ)p(Jt = 0|Vt,Θ)

∝ (1− λVt)p(Yt|Yt−1, Vt, Jt = 0, Ut,Θ)

∝ (1− λVt) exp
[
−(Yt − Yt−1 − rt −mVt)2

2(1− ρ2)Vt

]

Parameters in Return Process

Updating m

The conditional posterior distribution of drift parameter in stock return can be obtained

from the jump-adjusted stock prices, conditioning on jump times and sizes. That is,

Ỹt =
Yt − Yt−1 − rt − UtJt√

Vt
= m

√
Vt + $s

t .

Assuming that m has a prior distribution, N(µm, σ2
m),

p(m|Ỹ , V ) ∝ p(Ỹ |V,m)p(m)

∝ exp

[
−(Ỹ −m

√
V )T (Ỹ −m

√
V )

2(1− ρ2)

]
exp

[
−(m− µm)2

2σ2
m

]

∝ exp

[
−(m− m̂)2

√
V

T√
V

2(1− ρ2)

]
exp

[
−(m− µm)2

2σ2
m

]
,

where Ỹ is an (n×1) vector, (Ỹ1, Ỹ2, . . . , Ỹn)T and
√

V is an (n×1) vector, (
√

V1,
√

V2, . . . ,
√

Vn)T .
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Thus, the drift term in stock return has a posterior distribution

m|Y, V, J, U,Θ ∼ N(µ∗m, (σ∗m)2),

where m̂ is an OLS estimator of m,
√

V
T

Ỹ√
V

T√
V

µ∗m = (σ∗m)2
[

µm

σ2
m

+
√

V
T
Ỹ

(1− ρ2)

]
,

(σ∗m)2 =

[√
V

T√
V

(1− ρ2)
+

1
σ2

m

]−1

.

Updating ρ

We sample ρ from

p(ρ|Y, V, C,Θ) ∝ p(ρ)
∏

p(Ct|Yt, Vt, ρ, Θ)p(Yt|Yt−1, Vt, Jt, Ut,m, ρ),

where U is (n× 1) vector, (U1, U2, . . . , Un). It is not a recognizable distribution. Thus, we

use the random-walk Metropolis-Hastings method.

Updating Jump Parameters, µJ and σ2
J

Assume that jump size parameters, µJ and σ2
J , have a prior, the normal-inverse gamma

distribution with parameters, (a,A, b,B). That is, µJ |σ2
J ∼ N(a,Aσ2

J) and σ2
J ∼ IG(b, B).

p(µJ , σ2
J |U)

∝ p(U |µJ , σ2
J)p(µJ , σ2

J)

∝ (σ2
J)−

n
2 exp

[
−
∑

(Ut − µJ)2

2σ2
J

]
(Aσ2

J)−
1
2 exp

[
−(µJ − a)2

2Aσ2
J

]
Bb

Γ(b)
(σ2

J)−b−1 exp
[
− B

σ2
J

]
∝ (σ2

J)−(n
2
+b)−1 exp

[
−B +

∑
(Ut − U)2/2
σ2

J

]
(σ2

J)−
1
2 exp

[
−n(µJ − U)2

2σ2
J

]
exp

[
−(µJ − a)2

2Aσ2
J

]
,

where U =
∑

Ut/n. Thus, the posterior distribution is µJ , σ2
J |U ∼ N-IG(a∗, A∗, b∗, B∗),

where

b∗ = b +
n

2
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B∗ = B +
∑

(Ut − U)2

2

a∗ = (
∑

Ut + a)(n +
1
A

)−1

A∗ = (n +
1
A

)−1.

We first sample σ2
J |U from IG(b∗, B∗). Then, µJ |σ2

J , U from N(a∗, A∗σ2
J)

Updating λ

p(λ|V, J, U,Θ) ∝ p(J |V, λ)p(λ),

which is not a recognizable distribution. Thus, we use the random-walk Metropolis-Hastings

method.

Parameters in Volatility Process

Updating k, θ

We sample k, θ from

p(k, θ|Y, V, C,Θ) ∝ p(k, θ)
n∏

t=1

p(Ct|Yt, Vt,Θ)p(Vt|Vt−1, k, θ, σv),

which is not a recognizable distribution. Thus, we use the random-walk Metropolis-Hastings

method.

Updating σv

We sample σ2
v from

p(σ2
v |Y, V, C,Θ) ∝ p(σ2

v)
n∏

t=1

p(Ct|Yt, Vt,Θ)p(Vt|Vt−1, k, θ, σv),

which is not a recognizable distribution. Thus, we use the random-walk Metropolis-Hastings

method.

Parameters in GBS Formula and in Pricing Error

We use the random-walk Metropolis-Hastings method for all following parameters.
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Updating µ2

p(µ2|V, Y, U, J, C,Θ) ∝ p(µ2)
n∏

t=1

p(Ct|Yt, Vt,Θ)

Updating µ3

p(µ3|V, Y, U, J, C,Θ) ∝ p(µ3)
n∏

t=1

p(Ct|Yt, Vt,Θ)

Updating ηv

p(ηv|V, Y, U, J, C,Θ) ∝ p(ηv)
n∏

t=1

p(Ct|Yt, Vt,Θ)

Updating δ2

By assuming IG(f,F) prior for δ2,

p(δ2|V, Y, C,Θ) ∝ p(δ2)
n∏

t=1

p(Ct|Yt, Vt,Θ, δ2)

∝ (δ2)−n/2 exp
(
−
∑

(log(Ct)− log(GBS))2

2δ2

)
(δ2)−f−1 exp(−F/δ2),

The posterior distribution is δ2|V, Y, C,Θ ∼ IG(f∗, F ∗), where

f∗ = f + n/2

F ∗ = F +
∑

(log(Ct)− log(GBS))2

2
.

1.5.4 MCMC convergence diagnosis

In frequentist analysis, estimated parameters and associated standard errors are ex-

amined. In that setting, convergence assessment involves checking that the sequence has

converged to a single point. In MCMC estimation, the interest is estimating posterior distri-

butions of model parameters rather than individual parameter values and standard errors.

Thus, the convergence assessment of MCMC estimation involves checking the sequence has

converged to the posterior distribution. It is simple to check the convergence when the
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posterior distribution has a standard form. However, convergence to an unknown joint

posterior cannot be proved. There are some diagnostic tests that are developed to identify

MCMC output that has not converged to a stationary distribution. It is important to use

these diagnostic analysis since using option data introduced many non-standard posterior

distributions in MCMC algorithm. Here are several methods that we considered. We will

only report Gelman and Rubin’s statistic for MCMC estimation with approximation since

it is sufficient. For computing algorithm, we use coda R package developed by Plummer,

Best, Cowles and Vines(2007).

Gelman and Rubin’s method

Gelman and Rubin (1992) proposed diagnostic as a univariate statistic, referred to as

the potential scale reduction factor (PSRF), for assessing convergence of individual model

parameters. Calculation of this statistic is based on the last n samples in each of m parallel

chains. In particular, the PSRF is calculated as

PSRF =

√
n− 1

n
+

(m + 1)B
mnW

where B/n is the between-chain variance and W is the within-chain variance. As chains

converge to a common target distribution and traverse said distribution, the between-chain

variability should become small relative to the within-chain variability and yield a PSRF

that is close to 1. Conversely, PSRF values larger than 1 indicate non-convergence. A

corrected scale reduction factor (CSRF) was subsequently proposed to account for sampling

variability in the estimate of the true variance for the parameter of interest and is computed

as

CSRF = PSRF

√
df + 3
df + 1

where df is a method of moments estimate of the degrees of freedom, based on a t-

approximation in the posterior inference.

Geweke’s method

The diagnostic of Geweke (1992) is univariate in nature and applicable to a single

chain. Convergence is assessed by comparing the sample mean in an early segment of
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the chain {x1,j : j = 1, 2, . . . , n1} to the mean in a later segment {x2,j : j = 1, 2, . . . , n2}.

Geweke originally suggested that the comparison be between the the first n1 = 0.1n and last

n2 = 0.5n samples in the chain, although the diagnostic can be applied with other choices.

However, inference based on the proposed diagnostic is only valid if the two segments can be

considered independent. Thus, the chosen segments should not overlap and be far enough

apart so as to satisfy the independence assumption. The statistic upon which this diagnostic

is based has the general form

z =
x1 − x2√

Ŝ1(0)/n1 + Ŝ2(0)/n2

where the variance estimate Ŝ(0) is calculated as the spectral density at frequency zero to

account for serial correlation in the sampler output. If the two segments are from the same

stationary distribution, the limiting distribution for this statistic is a standard normal.

Thus, a frequentist p-value can be computed for this statistic as a measure of evidence

against the two sequences being from a common stationary distribution.

1.5.5 Simulation study

To check the MCMC algorithm, stock and option prices with length 2000 are generated.

True values are taken from Pan (2002). In option data generation, moneyness and maturity

time are randomly selected from (−0.1, 0.1) and (10, 180) days and any approximation

methods are not used. The simulation is designed by mimicking the data filtering, using a

subset of a whole data set in Eraker (2004). We assume that there is only one option price

per a day. The result using the number of iteration of MCMC algorithm equals to 100, 000 is

reported in this paper. For comparative study, we choose the second approximation scheme

with bivariate gamma distribution.

Based on the posterior means and standard deviations in Table 8 and Table 9, we

can see that the approximation scheme does not destroy MCMC results. We have a huge

computational time reduction when the approximation method is used in MCMC algorithm

for option calculation. In general, the results seem good. However, there are several unstable

parameters. We calculated the potential scale reduction factors (PSRF) by Gelman and
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Rubins method. All factors are smaller than 1. This is an evidence parameter estimates

converge to our final estimate.

prior tuning parameter
Vt NA 0.005
m N(3,0.5) NA
ρ Uniform[-0.8,-0.3] 0.005
µJ , σ2

J N(0, 0.01), IG(0.2, 0.2) NA
λ Uniform[10, 15] 0.005
kv Uniform[0, 0.05] 0.005
θ Uniform[0.2, 0.8] 0.02
σv Uniform[0, 0.3] 0.005
µ2 Uniform[0,0.2] 0.02
µ3 Uniform[-0.2,0.2] 0.005
ηv Uniform[0, 0.05] 0.005
δ2 IG(0.001, 0.1) NA

Table 1.7: Priors and the tuning parameters

parameters true value posterior mean posterior standard deviation
kv 0.025 0.031 0.104
θ 0.610 0.585 0.071
σv 0.120 0.141 0.090
ρ -0.530 -0.711 0.312
ηv 0.012 0.018 0.056
λ 12.3 11.0 0.570
m 3.1 2.0 0.073
µJ -0.008 -0.011 0.018
σ2

J 0.14972 0.037 0.061
µ2 0.1 0.08 0.022
µ3 -0.192 -0.203 0.112
δ2 0.005 0.032 0.078

Table 1.8: Parameters for simulation and posterior mean and standard deviations when we
did not use any approximation
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parameters true value posterior mean posterior standard deviation PSRF
kv 0.025 0.033 0.103 0.32
θ 0.610 0.594 0.072 0.24
σv 0.120 0.138 0.092 0.40
ρ -0.530 -0.71 0.311 0.91
ηv 0.012 0.017 0.052 0.42
λ 0.123 0.092 0.104 0.46
m -0.486 -0.520 0.050 0.21
µJ -0.009 -0.012 0.013 0.17
σ2

J 0.045 0.037 0.063 0.28
µ2 0 -0.008 0.012 0.29
µ3 -0.192 -0.203 0.109 0.60
δ2 0.005 0.046 0.088 0.57

Table 1.9: Parameters for simulation and posterior means, standard deviations and potential
scale reduction factor (PSRF) by Gelman and Rubins method when we used the second
approximation

0 2000 4000 6000 8000 10000

1
.4

2
.0

2
.6

every 10th iteration

m
P

a
th

0 2000 4000 6000 8000 10000

1
0

.4
1

1
.0

1
1

.6

every 10th iteration

la
m

b
d

a
P

a
th

0 2000 4000 6000 8000 10000

−
0

.4
0

.2
0

.8

every 10th iteration

m
u

2
P

a
th

0 2000 4000 6000 8000 10000

−
1

.5
−

0
.5

every 10th iteration

rh
o

P
a

th

Figure 1.2: Trace plots of four parameters after MCMC estimation step
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CHAPTER 2

Why are Black-Scholes implied volatilities not good
volatility predictors?

2.1 Introduction

“The volatility implied in an option’s price is widely regarded as the option market’s

forecast of future return volatility over the remaining life of the relevant option” (Christensen

and Prabhala (1998)). Surprisingly enough, most of the literature which asks whether Black-

Scholes implied volatility (BSIV) predicts future volatility and whether it does so efficiently

considers this question as tantamount to know whether the option markets process volatility

information efficiently. We argue in this chapter that two questions are not equivalent for

two reasons.

First, saying that the option price conveys some efficient forecasting information about

future volatility does not mean that the efficient volatility forecast should be the Black-

Scholes implied volatility (BSIV). After all, another function of the option price may provide

a better predictor. We will in particular document an important Jensen effect, which is due

to convexity of BS price with respect to the underlying stock price. We call it a gamma

effect. The gamma effect is generally overlooked by the literature on the relation between

implied and realized volatility.

Second, also due to Jensen effects, the definition of an optimal predictor depends on the

loss function at stake to elicit a predictor. As already stressed by Christoffersen and Jacobs

(2004), if one keeps in mind that volatility forecasting has held much attention especially

for the purpose of derivative pricing, the relevant loss function should rather be based

on option pricing errors than on Mincer-Zarnowitz type regression (Mincer and Zarnowitz



(1969)) about realized volatility. As already used in the context of volatility forecasting by

Andersen and Bollerslev (1998), Mincer-Zarnowitz type regression amounts to measure the

quality of a forecast of an arbitrary variable, zt, by the R2 in a regression of the ex-post

realized value of zt, on its forecast value (and a constant). Even though we briefly consider

such regressions to compare volatility forecasts, we rather put the main emphasis of the

improvement of option pricing accuracy provided by a proper account for the gamma effect.

The two above arguments are the main motivation of the study in this chapter. We

aim at devising a new way of taking advantage of BSIV, in spite of perverse Jensen effects.

The naive view of BSIV as “the option market’s forecast of future return volatility” may be

justified, especially for at-the-money options, by the following argument (see also Renault

and Touzi (1996)). Under a stochastic volatility model where the correlation between the

asset returns and the volatility is zero, an European call option is priced as

Ct = EQ[BS(Vt,T )|Ft] = EQ
t [BS(Vt,T )], (2.1)

where

Vt,T =
1

T − t

∫ T

t
Vudu, (2.2)

Q represents the risk-neutral measure and Ft is the information at time t, including the asset

price at t, St. Thus, if we may admit that BS option price is, for at-the-money option close

to be linear with respect to squared volatility, we deduce that the BSIV should be a good

proxy of the volatility forecast EQ
t (Vt,T ). Of course, this forecast is optimal only for the

risk-neutral probability measure and may be biased for the historical probability measure

P , as documented by Chernov (2007). The difference between P and Q and its impact on

volatility forecasting are not our focus of interest in this chapter, and we always do as if

the two probability measures were equal. It would actually be possible to merge Chernov’s

contribution on the impact of volatility risk premium (P 6= Q) with our methodology

devised to accommodate the gamma effect. Beyond the difference between P and Q, it is

generally believed that only the Jensen effect due to the non-linearity of BS pricing formula

with respect to squared volatility is responsible for biased forecasts. Surprisingly, people
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seem to overlook a much more severe Jensen effect, which is due to convexity of BS price

with respect to the underlying stock price, the gamma effect.

We are going to show that, due to this gamma effect, the above justifications of the

use of BSIV forecast does not work anymore if there is nonzero correlation between the

asset returns and the volatility (leverage effect) is introduced. Since the crash of 1987,

the observed implied volatility smiles are often skewed and the nonzero correlation needs

to be incorporated for the asymmetry of the distribution. Chernov (2007) shows through

a simulation study that the nonzero leverage effect does not affect the empirical linkage

between the future volatility and BSIV for at-the-money option. No theoretical result has

been established for BSIV as a proxy for the future volatility forecast in presence of leverage

effect.

The contribution of this work is twofold. First, we try to explain why the nonzero

leverage effect does not destroy the linkage between the future volatility and BSIV for

at-the-money option. This simple theoretical framework will explain the empirical results

given in Chernov (2007) and justify the use of the implied volatility from at-the-money

options as future volatility forecasts. Second, we propose a modified BSIV that works for a

wider range of moneyness. Only BSIV from at-the-money works as an unbiased volatility

forecast. In the design of this proposed implied volatility, our observation on two kinds of

Jensen effects on the option price caused by the nonzero leverage effect is used.

The paper is organized as follows. Section 2.2 argues that the linkage between the BS

implied volatility and future volatility is affected by the nonzero leverage effect. Also, it

discusses a simple simulation result. Section 2.3 introduces a modified BS option pricing

formula with an adjusted stock price. We have the good volatility forecast performance,

both in-the-sample and out-of-sample on real data. Section 2.4 studies the volatility forecast

performance of the modified BSIV in Mincer-Zarnowitz regression.
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2.2 The Black-Scholes implied volatility as a proxy for volatil-

ity forecast

In this section, the impact of nonzero leverage effect will be examined through the

generalized Black-Scholes (GBS) option pricing formula. As explained in Section 2.1, we do

not focus on the bias, possibly related to volatility risk premium. In other words, we can

simply refer to the risk-neutral measure. We assume the return process:

d(log St) = rtdt +
√

VtdW s
t

and the volatility process:

dVt = f1(Vt)dt + f2(Vt)dW v
t ,

where Corr(dW s
t , dW v

t ) = ρ and rt is a risk-free interest rate. For convenience, we can

assume rt is constant, r. Under this stochastic volatility model setting, the European call

option can be priced with GBS option pricing formula. It is given as

Ct = EQ
t [BS(Stξt,T , σt,T

2)], (2.3)

where

ξt,T = exp
(

ρ

∫ T

t

√
VudW v

u −
1
2
ρ2

∫ T

t
Vudu

)
σt,T

2 =
1− ρ2

T − t

∫ T

t
Vudu.

Contrary to the case of the zero leverage effect, the linkage between the BS implied

volatility and the future volatility forecast is not obvious because of two factors in (2.3).

ξt,T and 1 − ρ2 appear in front of St and 1
T−t

∫ T
t Vudu, respectively. In the stochastic

volatility setting, the use of the implied volatility as a proxy for the forecast of the future
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volatility implies the following relationship:

Ct = EQ
t

[
BS

(
Stξt,T ,

1− ρ2

T − t

∫ T

t
Vudu

)]
(2.4)

≈ BS

[
St, Et

(
1

T − t

∫ T

t
Vudu

)]
. (2.5)

Here is an interpretation from comparison between equation (2.4) and equation (2.5). Note

that (1 − ρ2) in front of the average future volatility in the equation (2.4) decreases GBS

option price since the Black-Scholes formula is an increasing function of the variance of

the underlying asset. On the other hand, the Jensen’s effect of ξt,T makes the GBS option

price bigger, since the Black-Scholes formula is convex with respect to the underlying asset

price and EQ
t [ξt,T ] = 1. These two effects by nonzero leverage effect work in the opposite

directions and can be canceled out, depending on the convexity of Black-Scholes formula

with respect to the asset, the gamma effect. This cancelation will justify the use of the

implied volatility as the proxy. In other words, using the implied volatility for the volatility

forecast is justified if nonzero leverage effect that shows up in two places, ξt,T and σ2
t,T , does

not have an impact in the GBS formula. In Section 2.2.1, we provide the simple theoretical

framework that gives a better understanding of the impact of the nonzero leverage effect.

2.2.1 The leverage effect on option prices

To investigate the impact of the leverage effect in GBS option prices, we consider the

first derivative of the GBS formula with respect to ρ. We can separate the derivative into

two, where each represents the effect associated with ξt,T and σt,T
2. Lebesgue’s dominated

convergence theorem allows us to do differentiation through the expectation. We can obtain

the following decomposition of ∂Ct
∂ρ :

Proposition 2.2.1.

∂Ct

∂ρ
=

∂Ct

∂(Stξt,T )
∂(Stξt,T )

∂ρ
+

∂Ct

∂σt,T

∂σt,T

∂ρ

= StE
Q
t

[
ξt,T

(∫ T

t

√
VudW v

u − ρ

∫ T

t
Vudu

)
Φ(d1)

]
− StE

Q
t

ξt,T φ(d1)
ρ√

1− ρ2

√∫ T

t
Vudu

 ,
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where Φ(·) and φ(·) are the cumulative distribution function and probability density function

of a standard normal distribution, respectively.

Proof of Proposition 2.2.1

Recall that the GBS option pricing formula is

Ct = EQ
t [Stξt,T Φ(d1)−K exp(−r(T − t))Φ(d2)]

where

d1 =
1

σt,T

√
T − t

[
log
(

Stξt,T

K exp(−r(T − t))

)]
+

1
2
σt,T

√
T − t

d2 =
1

σt,T

√
T − t

[
log
(

Stξt,T

K exp(−r(T − t))

)]
− 1

2
σt,T

√
T − t

Let F = Stξt,T Φ(d1)−K exp(−r(T − t))Φ(d2) for convenience. Then,

∂F

∂ρ
=

∂F

∂(Stξt,T )
∂(Stξt,T )

∂ρ
+

∂F

∂σt,T

∂σt,T

∂ρ
. (2.6)

Since

Stξt,T φ(d1) = K exp(−r(T − t))φ(d2),

we get

∂F

∂(Stξt,T )
= Φ(d1) + Stξt,T φ(d1)

1
σt,T

√
T − t

1
Stξt,T

−K exp(−r(T − t))φ(d2)
1

σt,T

√
T − t

1
Stξt,T

= Φ(d1), (2.7)

∂(Stξt,T )
∂ρ

= Stξt,T

(∫ T

t
VudW v

u − ρ

∫ T

t
Vudu

)
, (2.8)

45



∂F

∂σt,T
= ξt,T φ(d1)

√
T − t (2.9)

and

∂σt,T

∂ρ
= ρ

√ ∫ T
t Vudu

(T − t)(1− ρ2)
. (2.10)

By putting the equations (2.7),(2.8),(2.9) and (2.10) into (2.6), we obtain the proposition.

A simulation result based on this proposition will follow in Section 2.2.2.

2.2.2 Simulation study

We conduct simulation studies to see the impact of nonzero leverage effect. We assume

the volatility process in Heston (1993):

dVt = kv(θ − Vt)dt + σv

√
VtdWt.

The simulated volatilities will be used to demonstrate the numerical illustration of Proposi-

tion 2.2.1 and to generate option prices. We adopt a simulation method suggested by Brigo

and Alfonsi (2005). More details on the simulation and parameters are included in Section

1.4.4. Parameters are from Table 1.1 and the results reported in this section are based on

Set2. The moneyness xt is defined as

xt = log
(

St

K exp(−r(T − t))

)
, (2.11)

where K is a strike price, t is current time and T is a maturity time.

The numerical presentation of Proposition 2.2.1 is in Figure 2.1 and Figure 2.2. Figure

2.1 shows how two Jensen effects caused by the nonzero leverage effect change. Except for

the option with the longest maturity time, 12 months, the gamma effect is so big that two

effects with opposite directions are canceled out for at-the-money options. Figure 2.2 implies

the same. Total impact from nonzero leverage effect on the option price becomes close to

zero for at-the-money options. Figure 2.3 is to see the actual BSIV values with the change of

moneyness and maturity time and compare them with the future volatility. Figure 2.3 has
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Figure 2.1: Decomposition of ∂Ct/∂ρ
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Figure 2.2: The change of ∂Ct/∂ρ
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Figure 2.3: BSIV as a proxy for the forecast of the future volatility

three different lines. The first line (FV) is the averaged integrated volatility generated from

the above volatility process. The second line (IVρ=0) is BSIV from the simulated option

prices using GBS option pricing formula when ρ = 0. The third line (IVρ 6=0) is similarly

BSIV when ρ 6= 0, which gives a further interpretation. First, focusing on at-the-money

options that are often used for the forecast of the future volatility, we observe that the change

of the leverage effect does not affect the option prices with the short maturity. Thus, we

conclude that BSIV from at-the-money options with short maturity can be considered as a

reasonable proxy for the forecast of the future volatility. Although the leverage effect has

an impact on the at-the-money options with long maturity, it is shown in the simulation

study that it remains minor with the different parameter values and does not cause an extra

bias. As for the in-the-money and out-of-money options, two effects from the leverage effect

don’t get canceled and option prices calculated from GBS option pricing formula under zero

and nonzero leverage effect does not coincide and neither of them are close to the forecast

of the future volatility because of the smile effect. However, Figure 2.3 confirms that the

randomness in volatility and the smile effect disappear as the maturity increases. Two
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implied volatilities and the forecast of the future volatility do not differ much.

2.3 The modified Black-Scholes option pricing formula

From the simulation study in Section 2.2, we learn that BSIV from at-the-money option

with the short maturity time is a good proxy for the future volatility, since the impact of

the nonzero leverage effect is canceled for at-the-money option. However, this does not hold

for in-the-money and out-of-money options, since there is the remaining leverage effect and

the smile effect. Thus, to infer the right volatility forecasts from options, especially from in-

the-money and out-of-money options, we propose the modified BS option pricing formula,

where the stock price in the BS option pricing formula is replaced with the implied stock

price. The implied stock price is obtained by inverting BS option pricing formula given all

other information including the volatility, σ. This approach was introduced in Longstaff

(1995) and followed by Garcia, Luger and Renault (2004). They estimate both volatility

and the implied stock price simultaneously. We propose a slightly different approach. We

plug BSIV from at-the-money option, which is free from the leverage effect, into the place

for volatility in BS option pricing formula and obtain a new version of the observed implied

stock price by inverting BS option pricing formula. Based on the result in Section 2.2, the

implied stock price captures all the impact of the nonzero leverage effect (skewness) and the

smile effect with respect to the moneyness. We fit a model for the observed implied stock

price and use the estimate of the implied stock price in the BS option pricing formula. We

call this the modified BS option pricing formula. In other words, the modified BS option

pricing formula consists of three steps:

step-(i) For each day, obtain implied volatility from at-the-money. If it does not exist,

get the volatility from near-the-money option. We denote it as σ2
imp,x=0, where x = 0

means the moneyness is 0, that is, at-the-money.

step-(ii) Obtain the observed implied stock prices S∗t through

Ct = BS(S∗t , σ2
imp,m=0).

Due to the nonlinearity of the stock price in BS formula, the inversion is done through
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a numerical method, such as Newton-Ralphson method.

step-(iii) For forecast, first get an accurate Ŝ∗t , the estimate of S∗t and plug it with the BS

implied volatility into BS formula.

Furthermore, we can think about a modified BS implied volatility, σimp,mod. The mod-

ified implied volatility is obtained by inverting

Ct = BS(Ŝ∗t , σ2
imp,mod),

where Ŝ∗t is the estimated adjusted stock price. If the modified option pricing formula works

well and we can successfully capture the leverage effect and the smile effect in Ŝ∗t , σ2
imp,mod

from options with any moneyness is free from any effect and is a good proxy for the future

volatility. This will be investigated more in Section 2.4.

S∗t is a function of moneyness and the leverage effect, given the fixed maturity time. It

is reasonable to assume to have a constant leverage effect since most conventional stochastic

volatility models have a constant leverage effect. The time to maturity is given as 1 month

in most volatility forecast literature. Therefore, S∗t becomes the function of one parameter,

the moneyness. We know from GBS formula that the relationship between S∗t and the

moneyness will not be linear. To capture the non-linearity, we fit the polynomial regression

of degree 2 and degree 3.

When we estimate the coefficients of the polynomial regression, we use different loss

functions. This is based on Christoffersen and Jacobs (2004). They emphasize the critical

impact of the choice of loss functions in the estimation and the evaluation, although different

loss functions at the estimation and evaluation stages are widely used in the literature.

For example, if we fit the regular ordinary least square (OLS) regression, then the use

of the mean-squared errors in option prices to evaluate the performance can lead to a

wrong conclusion. We use three different loss functions in the estimation of the polynomial

regression.

More specifically, our polynomial regression is:

log(S∗i /Si) = β0 + β1Xi + β2X
2
i + ε
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where X is moneyness. The estimation is akin to solving

β̂ = arg min
β

L(β), (2.12)

where L(β) is a loss function.

The first loss function is the mean residual sum of squares, MRSS(β) = 1
n

∑n
i=1(Ri −

Ri(β))2, where Ri = log(S∗i /Si) and Ri(β) = log(S∗i (β)/Si). Solving (2.12) is the common

OLS. Two additional loss functions we consider are the following: the mean-squared dollar

errors

$MSE(β) ≡ 1
n

n∑
i=1

(Ci − Ci(S∗i (β)))2

and the relative mean-squared errors

%MSE(β) ≡ 1
n

n∑
i=1

((Ci − Ci(S∗i (β)))/Ci)2.

where Ci is option data, Ci(S∗i (β)) is the model option price.

2.3.1 Simulation study

In this section, we check the accurate and robust estimation of the adjusted stock price

using a polynomial regression with simulation study. We consider three different leverage

effect, -0.7, -0.5, -0.3, which is reasonable in the index option pricing literature. Moneyness

is fixed to 21 points. As for the maturity time, 20,40, 60, 80, 180, 240 days are considered.

This way, we generate 21 option prices for each maturity time with one fixed leverage effect.

Here, the option price is purely a function of moneyness and so is the adjusted stock price.

Following step-(i), step-(ii), step-(iii) described above, we get S∗i , the adjusted stock prices.

The result of polynomial regressions are illustrated in Figure 2.4, Figure 2.5 and Figure 2.6.

The R-squares are close to 99% for all the combination of 6 maturity times and 3 ρ’s. Using

a 2-degree polynomial regression for the estimation of log(S∗t /St) seems reasonable. Three

different loss functions give very close results in the simulation study.
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Figure 2.4: The Polynomial Regression when ρ = −0.7
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Figure 2.5: The Polynomial Regression when ρ = −0.5
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Figure 2.6: The polynomial regression when ρ = −0.3

2.3.2 Empirical Study

Our empirical study uses daily closing prices of S&P 500 index call options with a

maturity time of 30 calendar days from January 1, 1997 to December 31, 2004. The S&P

500 options have largest trading volume in all options traded on the Chicago Board Options

Exchange (CBOE). These options are European style and do not have complication from

early exercise. The time to maturity is measured as the number of calendar days from the

trade date to the Thursday immediately proceding the Friday when the option expires. We

use the closing price of the S&P 500 index as an index level. Criterion for data filtration are

adopted from some previous empirical studies, such as Bakshi, Cao and Chen (1997). First,

general arbitrage violations are eliminated, since the violation leads to a negative implied

volatility.

C ≥ max(0, S −K)

should be satisfied. Second, very deep out-of-money and very deep in-the-money options

are excluded because they are not actively traded and have liquidity-related biases. If the
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absolute value of the moneyness is greater 0.08, then the option price is discarded. Third,

quotes less than 3/8 are eliminated. Fourth, options are chosen not to have overlaps.

Our data filter yields a final daily sample of 1, 898 observations.

x ≤ −0.05 −0.05 < x ≤ −0.02 −0.02 < x < 0.02 0.02 ≤ x < 0.05 x ≥ 0.05
1997(n = 275) 29.09% 18.91% 11.27% 21.09% 19.64%
1998(n = 262) 32.44% 14.89% 12.97% 19.85% 19.85%
1999(n = 269) 30.86% 20.82% 13.01% 22.68% 12.64%
2000(n = 231) 30.74% 22.08% 17.75% 17.75% 11.69%
2001(n = 155) 27.74% 25.81% 14.19% 18.71% 13.55%
2002(n = 177) 32.20% 19.77% 18.64% 18.08% 11.30%
2003(n = 218) 32.57% 19.27% 12.84% 22.02% 13.30%
2004(n = 311) 31.19% 20.90% 14.47% 19.93% 13.50%

Table 2.1: The percentage of observations in each group and year (1997-2004). x is mon-
eyness as defined in (2.11)

The risk-free interest rates are obtained from zero-coupon data by matching with the

closest maturity time to option expiration. The data is not adjusted for dividend, following

the approach in Christensen and Prabhala (1998). They claim that the reduction in call

option values will lead to the reduction in implied volatility and the changes are almost

constant. More careful study on this adjustment can be done using the future daily divi-

dends (refer to Bakshi, Cao and Chen (1997)). All data in the empirical study are provided

by Wharton Research Data Services.

The first empirical study is a continuation of our simulation study that checks the

accuracy and the robustness of the estimation of the adjusted stock price using a polynomial

regression. The difference is that we only use options with 20-day (equivalently, one month)

maturity time. For the calculation of σimp,m=0, when at-the-money option is not available,

find the option price that has the closest at-the-money option. We observe that using a

whole data set does not give any useful information. To deal with noisy market data, we

split the data set by one year. Eight sub-data sets are ready for in-sample and out-of-

sample forecast. Figure 2.7 is an indication that putting a naive BS implied volatility from

at-the-money option and the market stock price into BS option price formula will not give

an accurate option price.

We fit polynomial regression for log(S∗/S) with three different loss functions described
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Figure 2.7: BSIV based on the market data during 1997-2004. The plots demonstrate the
violation of constant volatility and a proper adjustment is needed

in Section 2.3.1. Figure 2.8 shows that depending on loss functions, the results are different.

Especially, OLS estimation gives straight lines that do not capture the curvature in the data.

Market data has noise and we do not see as a perfect polynomial fit as in the simulation.

Since we do not know the exact relationship between log(S∗/S) and the moneyness, we

also try the nonparametric kernel regression. For details of this estimation method, refer to

Appendix G. Figure 2.9 displays the adjusted stock prices and the nonparametric regression

fit. For each year, the nonparametric regression fit seems to be good. However, some years

have a different pattern and the out-of-sample is questionable. More careful study with

out-of-sample test will follow.

Table 2.2 and Table 2.3 report results of in-sample and out-of-sample forecast during
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Figure 2.8: The observed log(S∗/S) and the fitted polynomial regression of log(S∗/S) using
three different loss functions using the market data during 1997-2004

1997− 2004. The columns represent the estimation methods and loss functions. The rows

represent errors for evaluation purposes. All four cases of the modified BS option pricing,

we have a much better performance than the traditional BS option pricing formula. Also,

we see that the results for polynomial regression confirms the claim in Christoffersen and

Jacobs (2004). That is, the choice of loss functions has a critical role in estimation. The

strange phenomenon of polynomial regression fitting with loss function $MSE and %MSE

in 2004 is still under investigation.
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modified BS BS
PR with %MSE PR with $MSE PR with MRSS NP

1997 %-errors 0.0056 0.0062 0.0076 0.0054 0.0103
$-errors 2.5490 2.4012 2.7637 2.5278 3.5082

1998 %-errors 0.0061 0.0114 0.0136 0.0108 0.0297
$-errors 5.5369 5.0463 6.5843 6.4432 8.1379

1999 %-errors 0.0024 0.0034 0.0080 0.0056 0.0976
$-errors 2.418 2.3813 3.9456 2.781 4.036

2000 %-errors 0.059 0.0071 0.0086 0.0068 0.0138
$-errors 3.2157 3.1732 3.7758 3.2055 4.5721

2001 %-errors 0.0028 0.0030 0.0041 0.0029 0.0068
$-errors 3.5678 3.4200 3.6533 3.451 4.7379

2002 %-errors 0.0035 0.0041 0.0094 0.0041 0.0168
$-errors 2.4765 2.2550 2.3819 2.3960 3.6518

2003 %-errors 0.0064 0.0085 0.0094 0.0076 0.0124
$-errors 2.5992 1.5161 1.516 1.6549 2.426

2004 %-errors 1.000 0.0600 0.0712 0.0615 0.0989
$-errors 1198.6328 2.6394 3.2038 2.874 4.573

Table 2.2: The in-sample result during year 1997 − 2004. Only errors in option prices are
reported for the comparison to BS pricing. For the second-order polynomial regression (PR),
we use three different loss functions (%MSE,$MSE, MRSS). NP represents nonparametric
kernel regression. We compare four different modified BS results with traditional BS pricing

modified BS BS
PR with %MSE PR with $MSE PR with MRSS NP

1998 %-errors 0.0095 0.0075 0.011 0.0082 0.0335
$-errors 10.4206 8.7134 10.7488 9.5489 13.2046

1999 %-errors 0.0033 0.0043 0.0078 0.0025 0.0174
$-errors 2.9486 2.3945 3.9297 2.3480 3.5068

2000 %-errors 0.0085 0.0105 0.0138 0.0088 0.0359
$-errors 6.3274 6.3857 6.7231 6.6104 8.047

2001 %-errors 0.0035 0.0051 0.0052 0.0042 0.0873
$-errors 3.5200 3.5916 3.6241 3.5417 4.975

2002 %-errors 0.0039 0.0047 0.0067 0.0050 0.0104
$-errors 2.4501 2.4131 2.4599 2.6479 2.889

2003 %-errors 0.0145 0.0253 0.0211 0.0204 0.0352
$-errors 3.3590 3.4053 3.4049 4.2061 5.002

2004 %-errors 0.1126 0.1419 0.1775 0.1483 0.1976
$-errors 4.8777 3.5877 3.5768 3.7662 5.490

Table 2.3: The out-of-sample result during year 1997−2004. Only errors in option prices are
reported for the comparison to BS pricing. For the second-order polynomial regression (PR),
we use three different loss functions (%MSE,$MSE, MRSS). NP represents nonparametric
kernel regression. We compare four different modified BS results with traditional BS pricing
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Figure 2.9: The observed log(S∗/S) and the fitted nonparametric regression of log(S∗/S)
using the market data during 1997-2004

2.4 Volatility forecast with the modified Black-Scholes im-

plied volatility

We expand our study into the modified Black-Scholes implied volatility. If the skewness

and the smile effect with respect to moneyness are captured well, the modified BS implied

volatilities are close to BS implied volatility from at-the-money option. Figure 2.10 and

Figure 2.11 show that some effects are not fully captured.

Before we conclude that there are remaining effects that are not captured by our scheme,

we want to see the relationship between the modified BS implied volatility and the realized

volatility. We fit Mincer-Zarnowitz type regression of realized volatility. When we estimate

the adjusted stock price S∗t , we use $MSE loss function. Also, we include options with

moneyness xt between −0.05 and 0.05. We compare this with the relationship between
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Figure 2.10: Scatter plot of our modified BSIV from all ranges vs. BSIV from at-the-money
option during 1997− 2000
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Figure 2.11: Scatter plot of our modified BSIV from all ranges vs. BSIV from at-the-money
option during 2001− 2004
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BS implied volatility from at-the-money option and the realized volatility. The realized

volatility is defined as

Rt,t+20 =
20∑
i=1

(
log(

St+i

St+i−1
)
)2

.

The predictive regression is

Rt,t+20 = a + bσ2,

where σ is the BS implied volatility or the modified BS implied volatility. Table 2.4 shows

that the volatility forecast with the BS implied volatility from at-the-money option performs

better. Our modified implied volatility captured the skewness and smile effect at some

degree, but the unsatisfactory results in fitting regression here also indicates the limitation

of this approach.

modified IV BS IV
a b R-squared a b R-squared

in-sample(year = 1997) 0.033 0.637 0.441 0.029 0.703 0.627
in-sample(year = 1998) 0.045 0.541 0.428 0.036 0.762 0.613
in-sample(year = 1999) 0.040 0.512 0.426 0.033 0.788 0.691
in-sample(year = 2000) 0.032 0.492 0.471 0.021 0.732 0.703
in-sample(year = 2001) 0.036 0.441 0.385 0.026 0.717 0.702
in-sample(year = 2002) 0.028 0.473 0.400 0.012 0.693 0.598
in-sample(year = 2003) 0.029 0.397 0.419 0.014 0.638 0.614
in-sample(year = 2004) 0.031 0.376 0.424 0.017 0.594 0.562

out-of-sample(year = 1998) 0.046 0.482 0.478 0.041 0.442 0.576
out-of-sample(year = 1999) 0.039 0.421 0.411 0.030 0.543 0.583
out-of-sample(year = 2000) 0.026 0.452 0.478 0.037 0.601 0.588
out-of-sample(year = 2001) 0.036 0.467 0.398 0.026 0.574 0.490
out-of-sample(year = 2002) 0.028 0.451 0.472 0.033 0.573 0.524
out-of-sample(year = 2003) 0.031 0.413 0.376 0.021 0.521 0.497
out-of-sample(year = 2004) 0.036 0.305 0.341 0.024 0.429 0.479

Table 2.4: The predictive regression of the realize volatility and the modified BS implied
volatility and the regression of the realized volatility and the traditional BS implied volatility
from at-the-money option
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APPENDIX A

Proof of Lemma 1.2.1

Note that

Bπ
t = πt exp

(∫ t

0
r(Xu)du

)
= exp

(
log πt +

∫ t

0
r(Xu)du

)
= f(log πt, t).

Thus, Ito’s formula gives

dBπ
t =

∂Bπ

∂t
dt +

∂(Bπ)
∂(log π)

d(log πt)c +
1
2

∂2(Bπ)
∂(log π)2

d[log π, log π]ct + [Bπ
t −Bπ

t−]dNt

= r(Xt)Bπ
t dt + [h(Xt)dt + a(Xt)dW1t + b(Xt)dW2t]Bπ

t +
1
2
[a2(Xt) + b2(Xt)]Bπ

t dt

+(Bπ
t −Bπ

t−)dNt,

where (log πt)c and [log π, log π]c denote continuous components of (log πt) and [log πt, log πt],

respectively.

(Bπ
t −Bπ

t−)dNt =
(

Bπ
t

Bπ
t−
− 1
)

Bπ
t−dNt = (ect − 1)Bπ

t−dNt is compensated by

E[ect − 1]Bπ
t−λ(Xt)dt. Thus,

dBπ
t =

[
r(Xt) + h(Xt) +

1
2
a2(Xt) +

1
2
b2(Xt) + E[ect − 1]Bπ

t−λ(Xt)
]

Bπ
t dt

+[a(Xt)dW1t + b(Xt)dW2t]Bπ
t + (ect − 1)Bπ

t−dNt − E(ect − 1)Bπ
t λ(Xt)dt

(A.1)

Bπ
t is a local martingale if and only if the drift term in (A.1) is zero. That is,

r(Xt) + h(Xt) +
1
2
a2(Xt) +

1
2
b2(Xt) + Et(ect − 1)λ(Xt) = 0.
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APPENDIX B

Proof of Lemma 1.2.2

Note that

ϕt
π = πtSt

= exp(log πt + log St)

= g(log πt, log St).

By Ito’s formula,

dϕπ
t

=
∂(ϕπ)

∂(log π)
d(log πt)c +

∂(ϕπ)
∂(log S)

d(log St)c +
1
2

∂2(ϕπ)
∂(log π2)

d[log π, log π]ct

+
1
2

∂2(ϕπ)
∂(log S2)

d[log S, log S]ct +
∂2(ϕπ)

∂(log π)∂(log S)
d[log π, log S]ct + [ϕπ

t − ϕπ
t−]dNt

= [h(Xt)dt + a(Xt)dW1t + b(Xt)dW2t]ϕπ
t + [µ(Xt)dt + α(Xt)dW1t + β(Xt)dW2t]ϕπ

t

+
1
2
[a2(Xt) + b2(Xt)]ϕπ

t dt +
1
2
[α2

t + β2
t ]ϕπ

t dt + (a(Xt)α(Xt) + b(Xt)β(Xt))ϕπ
t dt + (ϕπ

t − ϕπ
t−)dNt.

Note that (ϕπ
t − ϕπ

t−)dNt = ( ϕπ
t

ϕπ
t−
− 1)ϕπ

t−dNt = (ect+γt − 1)ϕπ
t−dNt is compensated by

E[ect+γt − 1]ϕtλ(Xt). By the result in Lemma 1.2.1, we obtain

dϕπ
t

=
[
a(Xt)α(Xt) + b(Xt)β(Xt) +

1
2
(α2(Xt) + β2(Xt)) + µ(Xt)− r(Xt)− E (ect − 1) λ(Xt)

+E
(
ect+γt − 1

)
λ(Xt)

]
ϕπ

t dt + [a(Xt)dW1t + b(Xt)dW2t + α(Xt)dW1t + β(Xt)dW2t]ϕπ
t

+
(
ect+γt − 1

)
ϕπ

t dNt − λ(Xt)E
(
ect+γt − 1

)
ϕπ

t dt

ϕπ
t is local martingale if and only if the drift term is zero:

a(Xt)α(Xt)+b(Xt)β(Xt)+
1
2
(α2(Xt)+β2(Xt))+µ(Xt)−r(Xt)−λ(Xt)[E (ect)−E

(
ect+γt

)
] = 0.
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APPENDIX C

Proof of Proposition 1.2.1

We introduce new notations for simplicity:

Et[·] = E[·|Ft ∨ σ((Xu)t≤u≤T ), (Nu)t≤u≤T ]

V art[·] = V ar[·|Ft ∨ σ((Xu)t≤u≤T ), (Nu)t≤u≤T ]

Covt[·] = Cov[·|Ft ∨ σ((Xu)t≤u≤T ), (Nu)t≤u≤T ]

B∗
t,T

= Et

[
πT

πt

]

= Et

exp

∫ T

t
h(Xu)du +

∫ T

t
a(Xu)dW1u +

∫ T

t
b(Xu)dW2u +

∑
Nt<i≤NT

ci


By Lemma 1.2.1 and Et

[
exp

(∫ T
t b(Xu)dW2u − 1

2

∫ T
t b2(Xu)du

)]
= 1,

B∗
t,T

=
[
exp

(∫ T

t
(−r(Xu)− 1

2
a2(Xu)− λ(Xu)E[ect − 1])du +

∫ T

t
a(Xu)dW1u

)]
E

exp

 ∑
Nt<i≤NT

ci


=
[
exp

(∫ T

t
(−r(Xu)− 1

2
a2(Xu)− λ(Xu)E[ect − 1])du +

∫ T

t
a(Xu)dW1u

)]
[E(ect)]NT−Nt

Thus,

B∗
t,T = exp

[
−
∫ T

t
r(Xu)du

]
ηt,T ,

with

ηt,T = exp
[∫ T

t
a(Xu)dW1u −

1
2

∫ T

t
a2(Xu)du

]
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exp
[
(NT −Nt) log [E (ect)]− [E (ect)− 1]

∫ T

t
λ(Xu)du

]
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APPENDIX D

Proof of Proposition 1.2.2

ξt,T = Et

[
πT

πt

ST

St

]
.

By using

Et

[
exp

(∫ T

t
(b(Xu) + β(Xu))dW1u −

1
2

∫ T

t
(b(Xu) + β(Xu))2du

)]
= 1

and the results in Lemma 1.2.1 and Lemma 1.2.2,

ξt,T = Et

exp

∫ T

t
h(Xu)du +

∫ T

t
a(Xu)dW1u +

∫ T

t
b(Xu)dW2u +

∑
Nt<i≤NT

ci

∫ T

t
µ(Xu)du +

∫ T

t
α(Xu)dW1u +

∫ T

t
β(Xu)dW2u +

∑
Nt<i≤NT

γi


= exp

(∫ T

t
(a(Xu) + α(Xu))dW1u −

1
2

∫ T

t
(a(Xu) + α(Xu))2du− E(ect+γt − 1)

∫ T

t
λ(Xu)du

)
E(ect+γt)NT−Nt
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APPENDIX E

Proof of Proposition 1.3.1: the GBS option pricing formulas

Computing the price of an European call:

Ct = E

[
πT

πt
Max[0, ST −K]|Ft

]

Equivalently,

Ct

St
= E

[
πT

πt
Max[0,

ST

St
− K

St
]|Ft

]
= E

[
πT

πt

ST

St
I
[
ST
St
≥ K

St
]
|Ft

]
− E

[
πT

πt

K

St
I
[
ST
St
≥ K

St
]
|Ft

]
=

Gt

St
− Ht

St
,

where
Gt

St
= E

[
πT

πt

ST

St
I
[
ST
St
≥ K

St
]
|Ft

]
Ht

St
= E

[
πT

πt

K

St
I
[
ST
St
≥ K

St
]
|Ft

]
.

By the law of iterated expectations,

Gt

St
= E

[
E

[
πT

πt

ST

St
I
[
ST
St
≥ K

St
]
| Ft ∨ σ((Xu)t≤u≤T ), (Nu)t≤u≤T

]
|Ft

]
(E.1)

Ht

K
= Et

[
Et

[
πT

πt
I
[
ST
St
≥ K

St
]
| Ft ∨ σ((Xu)t≤u≤T ), (Nu)t≤u≤T

]
|Ft

]
. (E.2)

The key of the derivation of GBS option pricing formula is bivariate conditional dis-

tribution of
[
log(ST

St
)− log( K

St
), log(πT

πt
)
]

and
[
log(ST

St
)− log( K

St
), log(πT

πt
) + log(ST

St
)
]
. The

following two lemmas on a bivariate normal distribution are useful in the proof.

Lemma E.0.1. If [X1, X2]T is a bivariate normal vector with E[X1, X2]T = [m1,m2]T ,

V ar[X1] = w1
2,V ar[X2] = w2

2, and Cov[X1, X2] = ρw1w2 then E[(expX1)I[X2≥0]] =

66



E(expX1)Φ(m2+ρw1w2

w2
), where Φ is the cumulative normal distribution function.

Lemma E.0.2. If Y = log(X) has a normal distribution with mean, µY , and variance, σ2
Y

then the mean of the lognormal random variable X, µX is exp(µY + σ2
Y /2). Thus, µY can

be written as log(µX)− σ2
Y /2.

E.1 The first part of the formula: Gt/St

By applying Lemma E.0.1 to E.1,

Et

[
πT

πt

ST

St
I
[
ST
St
≥ K

St
]

]
= Et

[
exp

(
log(

πT

πt
) + log(

ST

St
)
)

I
[log(

ST
St

)−log( K
St

)≥0]

]

= Et

[
πT

πt

ST

St

]
Φ[

Et

[
log(ST

St
)− log( K

St
)
]

+ Covt

[
log(ST

St
)− log( K

St
), log(πT

πt
) + log(ST

St
)
]

√
V art

[
log(ST

St
)− log( K

St
)
] ]

= ξt,T Φ(d1).

The remaining work is to simplify d1 and express it as B∗
t,T and ξt,T . Note the followings:

Covt

(
log(

ST

St
), log(

πT

πt
) + log(

ST

St
)
)

= V art

[
log(

ST

St
)
]

+ Covt

[
log(

ST

St
), log(

πT

πt
)
]

.(E.3)

Et[log(
ST

St
)− log(

K

St
)] = Et

[
log(

ST

St
)
]
− log(

K

St
)

= Et

[
log(

ST

St
) + log(

πT

πt
)
]
− Et

[
log(

πT

πt
)
]
− log(

K

St
). (E.4)

By Lemma E.0.2,

Et

[
log(

ST

St
) + log(

πT

πt
)
]

= log
[
Et

(
πT

πt

ST

St

)]
− 1

2
V art

[
log(

ST

St
) + log(

πT

πt
)
]

= log(ξt,T )− 1
2
V art

[
log(

ST

St
)
]
− 1

2
V art

[
log(

πT

πt
)
]
− Covt

[
log(

ST

St
), log(

πT

πt
)
]

,(E.5)
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Et

[
log(

πT

πt
)
]

= log
[
Et

(
πT

πt

)]
− 1

2
V art

[
log(

πT

πt
)
]

= log(B∗(t, T ))− 1
2
V art

[
log(

πT

πt
)
]

. (E.6)

Lastly,

V art

[
log(

ST

St
)
]

= V art

∫ T

t
µ(Xu)du +

∫ T

t
α(Xu)dW1u + β(Xu)dW2u +

∑
Nt<i≤NT

γi


=

∫ T

t
(1− ρ(Xu))Vudu +

∑
Nt<i≤NT

V ar(γi) (E.7)

Place (E.5) and (E.6) in (E.4) and then combining (E.4) with (E.3) will give the numerator

of d1. Let V art

[
log(ST

St
)
]

be σt,T , which is the denominator of d1. Thus, we obtain

d1 =
1

σt,T

[
log

(
Stξt,T

KB∗
t,T

)
+

1
2
(σt,T )2

]
.

E.2 The second part of the formula: Ht/St

By applying Lemma E.0.1 to (E.2),

Et

[
πT

πt
I
[
ST
St
≥ K

St
]

]
= Et

[
exp(log

πT

πt
)I

[log(
ST
St

)−log( K
St

)≥0]

]

= Et

[
πT

πt

]
Φ

Et

[
log(ST

St
)− log( K

St
)
]

+ Covt

[
log(πT

πt
), log(ST

St
)− log( K

St
)
]

√
V art

[
log(ST

St
)− log( K

St
)
]


= B∗

t,T Φ(d2).

To simplify d2 and express it as B∗
t,T and ξt,T , the result of the calculation of d1 can be

used.

d2 =
1

σt,T

[
log

(
Stξt,T

KB∗
t,T

)
− 1

2
(σt,T )2

]
= d1 − σt,T
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APPENDIX F

Moments of integrated volatility

F.1 Proof of Proposition 1.4.1

The conditional mean is

E

[∫ T

t
Vudu|Ft

]
=

∫ T

t
E(Vu|Ft)du

=
∫ T

t

[
Vte

−kv(u−t) + θ
(
1− e−kv(u−t)

)]
du

= Vt
1
kv

(
1− e−kv(T−t)

)
+ θ(T − t)− θ

kv

(
1− e−kv(T−t)

)
= VtAt,T + Bt,T , (F.1)

where

At,T =
1
kv

(
1− e−kv(T−t)

)
Bt,T = θ(T − t)− θ

kv

(
1− e−kv(T−t)

)
.

By Ito’s formula,

dE

[∫ T

t
Vudu|Ft

]
= −Vtdt + At,T σv

√
VtdW1t.

Since

E

[∫ T

T
Vudu|FT

]
= E

[∫ T

t
Vudu|Ft

]
+
∫ T

t
(−Vu)du +

∫ T

t
Au,T σv

√
VudW1u

and

E

[∫ T

T
Vudu|FT

]
= 0,
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we get

∫ T

t
Vudu− E

[∫ T

t
Vudu|Ft

]
=

∫ T

t
Au,T σv

√
VudW1u

Thus, the conditional variance is obtained as

V ar

[∫ T

t
Vudu|Ft

]
= E2

[∫ T

t
Vudu− E

(∫ T

t
Vudu|Ft

)
|Ft

]
= E2

[∫ T

t
Au,T σv

√
VudW1u|Ft

]
=

∫ T

t
A2

u,T σ2
vE(Vu|Ft)du

=
∫ T

t
A2

u,T σ2
v

[
Vte

−kv(u−t) + θ
(
1− e−kv(u−t)

)]
du

= VtCt,T + Dt,T , (F.2)

where

Ct,T =
σ2

v

k2
v

[
1
kv
− 2(T − t)e−kv(T−t) − 1

kv
e−2kv(T−t)

]
Dt,T =

σ2
vθ

k2
v

[
(T − t)

(
1 + 2e−kv(T−t)

)
+

1
2kv

(
e−kv(T−t) + 5

)(
e−kv(T−t) − 1

)]

F.2 Proof of Proposition 1.4.2

Note that

VT = Vt + kv

∫ T

t
Vudu + σv

∫ T

t

√
VudW1u.

Thus,

V ar[VT |Ft]

= V ar

[
kv

∫ T

t
Vudu + σv

∫ T

t

√
VudW1u|Ft

]
= k2

vV ar

[∫ T

t
Vudu|Ft

]
+ σ2

vV ar

[∫ T

t

√
VudW1u|Ft

]
−2kvσvCov

[∫ T

t
Vudu,

∫ T

t

√
VudW1u|Ft

]
(F.3)
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and

Cov

[∫ T

t
Vudu, VT |Ft

]
= Cov

[
−kv

∫ T

t
Vudu + σv

∫ T

t

√
VudW1u,

∫ T

t
Vudu|Ft

]
= E

[
−kv

(∫ T

t
Vudu

)2

|Ft

]
+ σvE

[∫ T

t

√
VudW1u

∫ T

t
Vu|Ft

]
+ kvE

2

[∫ T

t
Vudu|Ft

]
= −kvV ar

[∫ T

t
Vudu|Ft

]
+ σvE

[∫ T

t

√
VudW1u

∫ T

t
Vudu|Ft

]
. (F.4)

V ar
[∫ T

t

√
VudW1u|Ft

]
is equal to E

[∫ T
t Vudu|Ft

]
, which is already obtained in Section

1.4.2. V ar
[∫ T

t Vudu|Ft

]
is also given in Section 1.4.2. The remaining work is calculation of

Cov

[∫ T

t
Vudu,

∫ T

t

√
VudW1u|Ft

]
= E

[∫ T

t

√
VudW1u

∫ T

t
Vudu|Ft

]
.

By integration by parts,

E

[∫ T

t

√
VudW1u

∫ T

t
Vudu|Ft

]
= E

[∫ T

t

(∫ u

t

√
VsdW1s

)
Vudu +

∫ T

t

(∫ u

t
Vsds

)√
VudW1u|Ft

]
= E

[∫ T

t

(∫ u

t

√
VsdW1s

)
Vudu|Ft

]
(F.5)

= E

[∫ T

t

(∫ u

t

√
VsdW1s

)(
Vt +

∫ u

t
kv(θ − Vs)ds +

∫ u

t
σv

√
VsdW1s

)
du|Ft

]
= E

[
−kv

∫ T

t

(∫ u

t

√
VsdW1s

∫ s

t
Vsds

)
du|Ft

]
+ E

[
σv

∫ T

t

(∫ u

t
Vsds

)
du|Ft

]
(F.6)

By (F.5) and (F.6),

∫ T

t
E

[∫ u

t

√
VsdW1sVu|Ft

]
du

= −kv

∫ T

t

[∫ u

t
E

(∫ s

t

√
VτdW1τVs

)
ds

]
du + σv

∫ T

t
E (Vs|Ft) du.

71



By the result in Section 1.4.2,

∫ T

t
E

[∫ u

t

√
VsdW1sVu|Ft

]
du

= −kv

∫ T

t

[∫ u

t
E

(∫ s

t

√
VτdW1τVs|Ft

)
ds

]
du

σv

∫ T

t
Vt

[
1
kv

(
1− e−kv(u−t)

)
+ θ(u− t)− θ

kv

(
1− e−kv(u−t)

)]
du.

It gives the first order ordinary differential equation:

dE
[∫ y

t

√
VsdW1sVu|Ft

]
du

= −kvE

[∫ u

t

√
VsdW1sVu|Ft

]
+ (Vt − θ)e−kv(u−t).

Solving this equation yields:

E

[∫ u

t

√
VsdW1sVu

]
= −e−kv(u−t)E

[∫ t

t

√
VsdWsVu

]
+ (Vt − θ)ue−kv(u−t), (F.7)

since (F.7) gives

dE
[∫ y

t

√
VsdW1sVu|Ft

]
du

= −kve
−kv(u−t)E

[∫ t

t

√
VsdW1sVu

]
+ (Vt − θ)e−kv(u−t) − kv(Vt − θ)ue−kv(u−t)

= −kv

[
e−kv(u−t)E

[∫ t

t

√
VsdW1sVu|Ft

]
+ (Vt − θ)ue−kv(u−t)

]
+ (Vt − θ)e−kv(u−t)

= −kvE

[∫ u

t

√
VsdW1sVu|Ft

]
+ (Vt − θ)e−kv(u−t).

Since the first term on the right hand side of (F.7) equals to zero, completing the outside

integration operator now yields,

Cov

[∫ T

t
Vudu,

∫ T

t

√
VudW1u|Ft

]
= E

[∫ T

t

(∫ u

t

√
VsdW1sVu

)
du|Ft

]
= (Vt − θ)

∫ T

t
ue−kv(u−t)du
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= (Vt − θ)
[
− T

kv
e−kv(T−t) +

t

kv
+

1
k2

v

(
1− e−kv(T−t)

)]
. (F.8)

By plugging (F.1), (F.2) and (F.8) into (F.3), we obtain

V ar[VT |Ft] = VtIt,T + Jt,T ,

where

It,T = σ2
v

[(
1 +

σ2
v

kv

)(
1
kv
− 2(T − t)e−kv(T−t) − 1

kv
e−2kv(T−t)

)
+2
(

Te−kv(T−t) − t +
1
kv

(
e−kv(T−t) − 1

))]
Jt,T = σ2

v

[(
1 +

σ2
v

k2
v

)(
1
kv
− 2(T − t)e−kv(T−t) − 1

kv
e−2kv(T−t)

)
+2θ

(
Te−kv(T−t) − t + e−kv(T−t) − 1

)]

By plugging (F.2) and (F.8) into (F.3) into (F.4), we obtain

Cov

[∫ T

t
Vudu, VT |Ft

]
= VtQt,T + Rt,T ,

where

Qt,T =
σv

kv

[
t + 1− (T + 1)e−kv(T−t) − σv

(
1
kv
− 2(T − t)e−kv(T−t) − 1

kv
e−2kv(T−t)

)]
Rt,T =

σvθ

kv

[
t + 1− (T + 1)e−kv(T−t) − σv

(
1
kv
− 2(T − t)e−kv(T−t) − 1

kv
e−2kv(T−t)

)]
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APPENDIX G

Nonparametric estimation

Regression methods model the expected behavior of a dependent variable given a vector

of regressors. In our study, the above statement can be formulated as

S∗i = g(xi, τi, ρi) + ui,

where xi is moneyness, τi is time to maturity and ρi is the leverage effect. i indicates

the ith sample. Under some condition, E(S∗|x, τ, ρ) is the optimal predictor of S∗ given

xi,τi and ρi. To estimate this conditional expectation, we employ the statistical technique

known as nonparametric kernel estimation. Nonparametric kernel regression produces an

estimator of the conditional expectation without requiring that g(·) be parameterized by

the finite number of parameters. Kernel regression requires few assumptions other than

smoothness of the function to be estimated and it is robust to the potential misspecification

of any given parametric form of g(·). The choice of the regression type, the kernel type,

the bandwidth selection method all can affect the result of the estimation. The type of the

regression that is often used is the local constant kernel estimation. It is also known as the

Nadaraya-Watson kernel estimation. Denote all explanatory variables as Z. The estimate

for the conditional expectation, ĝ(Z) is given as

ĝ(Z) = Ê[S∗|Z]

=

∑n
i=1 S∗i K

(
Zi−Z

h

)
∑n

i=1 K
(

Zi−Z
h

) ,

where K
(

Zi−Z
h

)
= k

(
xi−x
h1

)
k
(

τi−τ
h2

)
k
(

ρi−ρ
h3

)
and k is a kernel function. Intuitively the

estimate is given by a weighted average of the observed modified stock prices, S∗i with more

weight given to the stock prices whose characteristics Zi are closer to the characteristics Z

of the stock price to be estimated. Thus, the closer h is to zero, the more peaked is the
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function around Zi and thus the greater is the weight given to realizations of the random

variable, Zi.

In our study, we also try the local linear kernel estimation. Three different types of

kernels are used:

the gaussian kernel : k(ν) = 1
2π exp

(
−1

2ν2
)

the uniform kernel : k(ν) = 1/2I(|ν| ≤ 1)

the epanechnikov kernel : k(ν) = 3
4(1− ν2)I(|ν| ≤ 1),

where I is the indicator function. For the bandwidth selection, the least squares cross-

validation is used. Only the result from the gaussian kernel is reported. Refer to Li and

Racine (2007) for details.
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