Genome Sequencing and Phylogenetic Analyses as a Basis for Molecular Subtyping of Male-Specific (FRNA) Coliphages

by
Stephanie Dianne Friedman
A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Environmental Sciences and Engineering, School of Public Health

Chapel Hill
2008

Approved by:

Mark D. Sobsey, PhD
Jan Vinjé, PhD
Fred J. Genthner, PhD

Lola V. Stamm, PhD
Frederick K. Pfaender, PhD

Louise M. Ball, PhD
Rachel T. Noble, PhD
© 2008
Stephanie Dianne Friedman
ALL RIGHTS RESERVED

Abstract

Stephanie Dianne Friedman Genome Sequencing and Phylogenetic Analyses as a Basis for Molecular Subtyping of MaleSpecific (FRNA) Coliphages (Under the direction of Mark D. Sobsey)

Monitoring programs for recreational waters utilize indicator bacteria concentrations as predictors of sewage-exposure related illness risks. However, most illnesses contracted through exposure to recreational waters may be of viral etiology. Identifying the fecal sources (non-human vs human) is also valuable information for risk management and source mitigation. Male-specific (FRNA) coliphages are proposed as sensitive enteric viral indicators for source-tracking fecal pollution in environmental waters. Classified as family Leviviridae of two genera, Levivirus and Allolevivirus, and four genogroups (I, II, III, IV) the genogroups provide information regarding animal or human fecal sources. In order to design an assay for molecular identification of specific genogroups, a genomic sequence database of sufficient size must be generated from several FRNA coliphages collected from diverse sources or locations. The complete genome of 21 FRNA strains was sequenced and compared with 11 strains available in GenBank. Sequences of 30 out of 32 FRNA coliphages demonstrated very similar conserved regions, Open Reading Frame positions, amino acid compositions and gene maps when compared to the FRNA reference strains. The sequence of two strains could be placed in a new subcluster of genogroup I and further analysis suggests that these viruses are natural recombinants. Among viruses within each

genogroup, nucleotide sequence similarities ranged from $75-99 \%, 83-93 \%, 69-95 \%$ and $74-$ 95\% for genogroups I, II, III and IV, respectively. Genogroup II lysis protein tree formed a unique branch that was not observed in the full-length nucleotide tree. Thus, both full-length nucleotide and individual protein sequences need to be evaluated when genotyping or phylogenetically clustering these FRNA coliphages. From conserved regions within each genogroup, four genogroup-specific primer sets were designed for a reverse-transcription polymerase chain reaction (RT-PCR) assay. The assay was then evaluated successfully on a panel of environmental FRNA strains demonstrating their usefulness to assess the sanitary quality of recreational waters and provide data identifying and subsequently eliminating the contamination source.

Acknowledgments

It has been my privilege to be a member of the UNC Environmental Virology laboratory and to study under the direction of Drs. Mark Sobsey, Jan Vinjé and Fred Genthner. A generous thank you is extended to each of you for your guidance and assistance. A special gratitude to Dr. Genthner for going above and beyond to secure funding for the project and for dealing with the never ending layers of administration. I would also like to thank Drs. Ball, Stamm, Pfaender and Noble for serving on my committee.

The isolation and preliminary characterization of the majority of these phage was performed by Greg Lovelace and David Love (University of North Carolina at Chapel Hill). A portion of this work was funded by a RARE grant secured through the efforts of J. Paar, III, EPA Region 1 Laboratory, North Chelmsford, MA.

Table of Contents

Table of Contents vii
List of Tables ix
List of Figures x
I. Introduction 1
II. Background 5
III. Research Objectives 9
IV. Literature Review 10
References 49
V. Gene Mapping and Phylogenetic Analysis of the Complete Genome of 30 ssRNA Male-Specific Coliphages of the Family Leviviridae 56
Introduction 57
Purpose 59
Materials and Methods 60
Results 69
Discussion 88
Summary 94
References 95
VI. Genomic sequences of two novel Levivirus FRNA coliphages (Leviviridae): Evidence for recombination? 99
Introduction 100
Purpose 103
Materials and Methods 104
Results 112
Discussion 124
Summary 129
References 130
VII. A Reverse Transcription-PCR Assay to Distinguish the Four Genogroups of Male- Specific (F+) RNA Coliphages 133
Introduction 134
Purpose 136
Materials and methods 137
Results 148
Summary 153
References 154
VIII. Overall Discussion 157
IX. Summary and Conclusions 171
X. Recommendations for Future Research 173
References 179
Appendix A1 182
Group I 182
Group II 201
Group III 213
Group III QB-like 235
Group IV 253
Appendix B1 271
Group I 271
Group II 279
Group III 285
Group IV 294
Appendix C 303
Group I and JS Nucleotides 303
JS Amino Acids 325
Group I and JS Amino Acids. 329
Group I and JS Replicase Nucleotides 341

List of Tables

Table Page
Table 4.1 Bacteriophage classification. 14
Table 5.1 Open Reading Frames positions for Leviviridae. 70
Table 5.2 Leviviridae nucleotide percent similarity 72
Table 5.3 Start condons and Shine-Dalgarno sequences 76
Table 5.4 Leviviridae number of amino acids per gene 79
Table 5.5 Comparison of genomic traits. Allolevivirus and Levivirus 85
Table 6.1 JS strains and genogroup I 115
Table 6.2 Pairwise comparison JS strains and genogroup I 116
Table 6.3 Pairwise comparison of amino acids for JS and genogroup I 118
Table 6.4 Pairwise comparison of replicase protein JS and genogroup I. 119
Table 7.1 Sources of Leviviridae strains. 138
Table 7.2 Leviviridae accession numbers 142
Table 7.3 Genogroup-specific primer sets. 149

List of Figures

Figure Page
Figure 4.1 Somatic and male-specific coliphage hosts. 26
Figure 4.2. Schematic of male-specific coliphage classification. 29
Figure 5.1. Flow-chart of sequencing methods. 62
Figure 5.2 Phylogenetic analysis of Leviviridae nucleotide sequences. 73
Figure 5.3 SimPlot nucleotide similarity and genome organization. 73
Figure 5.4 (A) Phylogenetic analysis of each protein: Levivirus I, II. 86
Figure 5.4 (B) Phylogenetic analysis of each protein: Allolevivirus III, IV. 87
Figure 6.1 SimPlot analysis of genome nucleotide profile strain MS2 and DL52. 120
Figure 6.2 SimPlot analysis of genome nucleotide profile strain MS2 and fr. 120
Figure 6.3 SimPlot analysis of replicase amino acid profile strain MS2 and DL52 121
Figure 6.4 Phylogenetic analysis of replicase amino acids groups I, II and JS. 122
Figure 6.5 JS strains replicase frame-shift 123
Figure 7.1 Gel electrophoresis of FRNA phages using one-step RT-PCR. 143
Figure7.2 Alignment and primer design of FRNA phages for one-step RT-PCR 144

I. Introduction

A link between waterborne transmission of disease and sewage was first observed in 1854 by the historical achievements of Dr. John Snow. The observations by Dr. Snow pioneered the sciences of epidemiology, preventative medicine and public health intervention. His observations of the cholera outbreak led to the removal of the Broad Street pump handle in London followed by a rapid, subsequent decline in cholera-related deaths (Snow, 1855).

Sewage disposal into marine and freshwater systems has occurred since the establishment of community populations. In the USA and most developed countries treated wastewaters are commonly discharged into aquatic environments, including both drinkingwater resources and recreational waters. Fecal contamination introduced into waterways may potentially contain both human and/or zoonotic pathogens, including various enteric and respiratory viruses. A virus- infected individual may fecally shed viral particles for weeks at levels up to 10^{5} to 10^{12} per gram of stool (Bosch, 1998; Griffin et al, 2003; Gerba, 2000), depending upon the viral species or type. The majority of the shed viruses are thought to enter the aquatic environment primarily from sewage discharge, but additional routes include solid waste applications (Bosch. 1998), and shedding during recreational bathing (Gerba, 2000). Although treating wastewater by conventional primary and secondary treatment and terminal disinfection reduces the majority of fecal pathogens, resistant bacteria, parasite cysts, oocysts and spores and some viruses may not be removed adequately. Besides
municipal wastewater discharges, inputs such as stormwater runoff, septic-tank seepage from on-site systems, agricultural runoff, urban runoff and other fecal waste sources can enter aquatic environments. Other naturally occurring, non-pathogenic and potentially pathogenic viruses are already present in aquatic environments, thus adding to the complexity of the viral ecology of aquatic systems.

To minimize adverse impacts and to protect the public health and aquatic environments, management systems based on fecal indicators of microbial origin were implemented as a "warning flag" and a means by which to estimate fecal contamination based on direct microbial measurements. The World Health Organization (WHO; Ashbolt et al, 2001) defines microbial indicators of public health concern by one of three groups:
"(1) process indicator - group of organisms that demonstrates the efficacy of a process, such as total heterotrophic bacteria or total coliforms for chlorine disinfection
(2) fecal indicator - a group of organisms that indicates the presence of a fecal contamination, such as thermotolerant coliforms or E. coli. Hence, they only infer that pathogens may be present (3) index and model organisms - a group or species indicative of pathogen presence and behavior, respectively. For example, E coli as an index for Salmonella; F-RNA coliphages as models of human-enteric viruses."

Criteria for an ideal fecal indicator selection are as follows: (1) consistently present in feces at higher concentration than those of pathogens; (2) cannot/should not replicate outside the intestinal tract; (3) easily detected and quantified; (4) non-pathogenic; (5) at least as resistant as pathogens to disinfection treatments and environmental conditions/inactivation rates; (6) indicator concentration in water is quantitatively associated with potential risks to human populations, typically from enteric illness; and (7) applicable to all water types (marine, freshwater, estuarine).

Existing bacteriological culture methods for determining fecal contamination in water
provide quantitative estimates of E. coli and enterococci. These methods are neither realtime nor do they provide information regarding source. The best that current methods can do is indicate that possible fecal contamination occurred within the last 24 hours. To minimize risks to human health, resource managers and human health advisors need an early-warning indicator that will enable them to assess the sanitary condition of waters in real-time or at least shortly after the sample is collected for analysis. An additional limitation of the current indicators, enterococci and E. coli, is that they do not correlate with the presence and concentrations of all potential water-borne pathogens (Griffin et al., 2003). Most importantly, current EPA recreational water-quality criteria using two bacterial indicators have little or no correlation to the presence and concentration of human pathogenic viruses. To date, no viral indicator has been mandated for regulatory purposes in recreational waters in the USA.

Male-specific coliphages have been suggested as a viral indicator for: (1) fecal contamination (Osawa, 1981; Furuse, 1983), (2) enteric bacterial contamination (Gerba, 1987), (3) enteric viral contamination (Grabow, 2001; Leclerc et al, 2000) and (4) risks of gastro-intestinal illness from recreational water exposures (Colford et al., 2007). Malespecific coliphages, specifically the ssRNA Leviviridae family, are superficially indistinguishable from most human enteric viruses (Grabow, 2001), occur in higher numbers in sewage and wastewater effluents than viral enteric pathogens (Grabow, 2001), their presence implies the presence of pathogenic viruses (Grabow, 2001), and, in a majority of cases, they provide human/animal fecal-source specificity (Vinjé et al, 2004; Cole et al, 2003; Furuse, 1987; Schaper et al, 2002; Scott et al, 2002; Stewart, 2002; Long et al, 2005).

The focus of this research was to (1) generate a nucleotide sequence database by
sequencing at least three to five strains from each FRNA coliphage genogroup (I, II, III and IV), (2) develop and analyze for identification of preferred targeted genomic regions the sequence database representing environmental and prototype strains and (3) based on the primers identified in step 2 , design and validate a molecular assay to detect and ultimately subtype the different genogroups. To develop a genetic database, 19 FRNA strains were sequenced. In addition, two new undescribed Levivirus strains were sequenced. In addition, a one-step reverse transcription polymerase chain reaction (RT-PCR) detection method for the four FRNA coliphage groups (I, II, III and IV) was designed to distinguish human vs. animal fecal source. Highly precise forward and reverse genogroup-specific primers were designed based on a total of 30 FRNA sequences containing several strains from all four genogroups.

II. Background

To develop valid fecal-indicator criteria based on credible epidemiology design, US EPA undertook a series of marine and freshwater public-beaches studies (EPA-600/1-84004; EPA-600/1-80-031). Objectives were to assess the mathematical relationship between microbiological indicator concentrations in bathing water and illness rates resulting from recreational water exposure (swimming), in order to correct for perceived deficiencies in US Public Health Service studies conducted before 1972. Additional goals were to provide a statistically sound study outcome correlating the concentration of the best bacterial indicator with magnitude of health effects in bathers, resulting in specific bacterial concentrationhealth risk outcome relationships associated with swimming in sewage-contaminated waters. Two key US EPA documents were published from these epidemiological studies "Health Effects Criteria for Fresh Recreational Waters" (EPA-600/1-84-004) and "Health Effects Criteria for Marine Recreational Waters" (EPA-600/1-80-031). Epidemiological data supported the use of E. coli and enterococci as primary fecal indicators because they were associated with statistically significant increased gastrointestinal illness rates to swimmers/bathers at increasing concentration in water. Subsequently, EPA guidelines for recreational waters were established in the 1986 "Ambient Water Quality Criteria for Bacteria in Recreational Waters."

To overcome deficiencies in the 1986 US EPA guidelines, the agency was compelled to implement the Beaches Environmental Assessment and Coastal Health Program (BEACH)

Act of 2000. The BEACH Act was an amended Section 303 of the Clean Water Act. The focus was to improve public health and recreational water quality programs by 1) strengthening beach testing and standards, 2) providing faster testing methods, 3) predicting fecal pollution, 4) better defining the criteria as to which fecal indicators and water quality standards are based, 5) investing in health and methods research and 6) informing the public (EPA, 2003).

There are limitations associated with the two current bacterial fecal indicators for recreational water quality, enterococci and E. coli. They do not provide a complete assessment of the sanitary quality of water. Their presence and densities do not correlate with all potential water-borne pathogens causing adverse environmental effects (Griffin et al., 2003). For example, most illnesses contracted by swimmers appear to be of viral etiology. Environmental and health risks associated with microbes can be as much a consequence of viral contamination as it can of contamination by any other microorganisms. Both microbial and epidemiological evidence suggests that the current EPA recreational water-quality criteria using two bacterial indicators have little or no correlation to the presence of pathogenic viruses or to health-risks from non-point source fecal contamination. In microbial water quality studies conducted in Florida, indicator bacteria counts satisfied EPA criteria limits in the presence of detectable human pathogenic viruses (Griffin et al., 2003; Griffin et al., 1999). In other studies, waters satisfying E. coli standards for shellfish harvesting often harbored shellfish that contained human enteric viruses (Dore et al., 2000). In laboratory studies, bacterial indicators have been erroneous predictors of virus survival because viruses survived longer and were inactivated at slower rates than were bacteria (Burkhardt III et al.,

2000; Sinton et al., 1999; Sinton et al., 2002). Even when current bacteriological standards are met in recreational waters, risks to human health may be posed by viruses.

In other studies, E. coli and enterococci were detected in environmental niches of tropical or temperate climates (Hawaii, Guam and Florida) where there was no evidence of human fecal contamination. Such environmental reservoirs of these bacteria led to high indicator counts that were not associated with fecal contamination (Hardina and Fujioka, 1991; Roll and Fujioka, 1997; Byappanahalli and Fujioka, 1998; Fujioka and Byappanahalli, 2000; Solo-Gabriele HM et al., 2000; Genthner et al., 2005). In some cases, elevated bacterial indicator counts exceeding EPA water-quality criteria were influenced by soil run-off and not a result of sewage input (Byappanahalli and Fujioka, 2004).

The apparent weaknesses in current bacterial indicators and the need to develop better, faster methods to accurately measure fecal contamination and determine source (animal vs human) supports the proposed use of a suite of indicator species, including at least one viral indicator for more specific and timely water-quality public health assessments. An attractive viral candidate is male-specific ($\mathrm{F}+$), ssRNA bacteriophages (FRNA coliphages). They are viruses that are morphologically similar to most enteric viruses (Grabow, 2001), their presence in sewage and wastewater-impacted waters implies the presence of pathogenic viruses (Grabow, 2001), they are associated with "fresh" fecal contamination, they are easily detected in environmental samples, they survive disinfection treatments similar to other pathogenic viruses (Duran et al, 2003, Nappier et al, 2006) and they occur in higher numbers in sewage and wastewater effluents than viral enteric pathogens (Grabow, 2001). FRNA phages have been isolated from treated wastewater samples in the absence of fecal coliforms (Stewart, 2002), they provide insight as to contamination source (Vinjé et al., 2004; Cole et
al., 2003; Furuse, 1987; Schaper et al., 2002; Scott et al., 2002; Stewart, 2002; Long et al., 2005) and the potential exists to develop and use rapid nucleic-acid based molecular detection for real-time public-health risk management.

To design and develop a robust molecular genogroup-specific assay, the analytical system must be based on a genetically-representative sequence database. To identify appropriate genomic regions to target for primer design and amplification the use of only the few FRNA phages that have been fully sequenced over the past few decades is inadequate. As of 2007, eleven full-length genome sequences were available in GenBank (GenBank/EMBL/DDBJ). The use of more comprehensive and representative genetic sequence data for these coliphages would provide greater assurance of the development of a reliable molecular detection system based on RT-PCR amplification.

III. Research Objectives

Specific Goal:

1. To develop and validate a rapid genetic typing assay for the detection and characterization of FRNA coliphages from various geographical locations and sources representing each genogroup (I, II, III, IV).

Study Design:

1. Increase the full-genomic FRNA sequence database by selecting and sequencing representative strains from each genogroup.
2. Conduct phylogenetic analyses, identify nucleotide similarities, locate Open Reading Frame (ORF) positions and gene locations from these sequences.
3. Perform bioinformatics analysis to reveal protein domains, family conservations and discrete amino acid sequence features, or motifs, by Pfam and PROSITE patterns.
4. Identify optimal target regions for the development of a one-step reverse transcription-PCR assay specific for each genogroup.
5. Design and validate the one-step RT-PCR assay specific for each genogroup.
6. Identify optimal target regions to design primers and probes for the development of a real-time PCR assay specific for each genogroup.
7. Design the real-time assays to detect and discriminate the four Leviviridae genogroups, I, II, III and IV.

IV. Literature Review

Coliphage History

Between 1915-1917, bacterial viruses or bacteriophages, were first noted independently by Frederick William Twort and Felix Hubert d'Hérelle. Approximately 20 years earlier, plant viruses (1892 by Ivanowski) and animal viruses (1902 by Loeffler and Froesch) had been described (Duckworth, 1987). During the late 1930's, Emory L. Ellis isolated phages from Pasadena, CA, sewage by using E. coli as a host bacterium. In 1942, bacteriophages were first observed using electron microscopy (Ackermann, 2006) by Tom Anderson (www.asm.org). Bacteriophage lambda was discovered in 1951 by Esther Lederberg while observing a lysogenic phage isolate from E. coli (Ackermann, 2006). Throughout the $20^{\text {th }}$ century, the culmination of phage research laid the foundation of modern molecular biology.

An RNA phage, strain f2, was isolated and characterized in 1961 by Loeb and Zinder (Loeb and Zinder, 1961; Zinder, 1965; Furuse, 1987; van Duin, 1988) and in 1959, Dr. A.J. Clark isolated the most well-studied RNA phage, strain MS2 (personal communication). These ssRNA coliphages infect gram-negative bacteria expressing a sex-pili ($\mathrm{F}+$), are sensitive to RNase and are collectively known as male-specific phages (FRNA). Using electron microscopy, Bradley (1964) first described RNA-containing phage morphology as an icosahedral form. In 1976, strain MS2 was the first virus to be completely sequenced
(Fiers et al., 1976). Genomic sequences could now be compared to serological and physicochemical typing.

Taxonomy

Early taxonomic classification of phages, between 1920s and 1930s, was based on bacterial host specificity. In the 1940s and 1950s, the advent of electron microscopy propelled phage taxonomy to morphological descriptions (Nelson, 2004). Techniques to isolate nucleic acids and determine the genome composition, i.e., dsDNA, dsRNA, ssRNA, ssDNA, provided a system of viral taxonomy based on nucleic acid type and morphology published by Lwoff, Horne and Tournier in 1962 (Ackermann, 2006). Bradley proposed a classification scheme based on basic phage features, i.e., nucleic acid type (DNA or RNA, ss or ds, circular or linear), capsid morphology, tailed or filamentous phages, enveloped or nonenveloped, etc. By the late 1960s to early 1970s, the International Committee on Taxonomy of Viruses (ICTV) formalized phage classification into six genera based on Bradley's proposed scheme. As new phage types are discovered, they are added to the ICTV classification of one order and 13 families. The largest viral group is the bacteriophages, with the predominant phage type having dsDNA and a smaller number of phage types having ssRNA (Ackermann, 2006).

Genomic or partial genomic sequencing has become the norm in the modern virology laboratory displacing the historical electron microscopy visualization of phage structures. Rohwer and Edwards proposed a sequence-based taxonomic system based on "signature genes" elucidated in phage genomes comparable to the 16S rDNA classification in bacteria (Rohwer and Edwards, 2002). Since no single protein marker or motif was conserved throughout the range of phage genomes, phage relatedness was based on common
characteristics. The more individual characteristics that were shared such as protein sequences, nucleic acid form, etc, the stronger the relationship. Protein-distance programs calculated the number of amino acid changes from protein-to-protein and were a resourceful tool in determining the fine parameters of the phage proteomic tree. The resulting proteomic tree was compatible with the ICTV arrangement (Rohwer and Edwards, 2002).

Male-specific phages belong to either the Leviviridae, single-strand RNA, or Inoviridae, a single-stranded DNA family (Sobsey et al., 2005) (Fig 4.1, Fig 4.2). Malespecific RNA phages (FRNA) are non-enveloped, positive sense, single-strand RNA (ssRNA) contained within a 26 nm diameter icosahedral-shaped capsid (Buchen-Osmond, 2003). The Leviviridae family (Table 4.1) comprises two genera, Levivirus and Allolevivirus. These genera are further divided into four genogroups (I, II, III and IV). Levivirus are genetically divided into genogroups I and II, and Allolevivirus are subdivided into genogroups III and IV.

Leviviridae FRNA phages were initially grouped primarily according to their serological properties in that anti-phage sera prepared against specific phage strains could neutralize some of the other closely-related phages (Watanabe et al., 1967; Miyake et al., 1971). Other methods of grouping were through membrane filtration, elution patterns and buoyant densities (Miyake et al., 1969). Until 1969, three phage groups existed, groups I, II and III and subgroups a, b and c in group III. With the isolation and characterization of strains SP and FI, serological assays indicated that these two strains did not cross-react to anti-sera from groups I, II or III. A new group IV and group V were proposed for strains SP and FI, respectively (Miyake et al., 1969; Sakurai et al., 1988). Eventually, four major groups, I, II, III and IV and subgroups a,b, c and d in group III and subgroups a and b in
group IV were assigned to FRNA phages based on template specificity of RNA replicase (Miyake et al., 1971; Miyake et al., 1973).

Based on a limited number of complete sequences four FRNA genes could be identified (reviewed by Bollback \& Huelsenbeck, 2001). These genes code for an assembly or maturation protein, capsid protein, lysis protein and replicase protein in the Leviviruses whereas in Alloleviviruses, the lysis protein is replaced by a read-through protein. Each levivirus virion contains one molecule of positive sense ssRNA, 180 copies of the capsid or coat protein, one copy of the maturation protein and, in alloleviviruses, approximately 15 copies of the read-through protein (Weber \& Konigsberg, 1975; van Duin, 2000; van Duin and Tsareva, 2006). Read-through protein synthesis occurs at a rate of about 6% and, although the exact function is unknown, the combination of the read-through protein with the maturation protein is required for an infectious viral stage (van Duin and Tsareva, 2006). The Leviviridae maturation protein is needed for viral infection and virus particle maturation (Olsthoorn et al., 1995) whereas the numerous coat proteins in the virion are used for assembly of phage progeny (Klovins et al. 1997; Weber and Konigsberg, 1975). A single, small (<100 amino acids), hydrophobic peptide, the lysis peptide, is responsible for cell lysis at the end of the infection cycle in the Levivirus genogroups (van Duin, 1988). No distinct lysis protein is present in Alloleviviruses; lysis is mediated by the maturation protein (Karnik and Billeter, 1983). The replicase in both genera, also known as viral RNA-dependent RNA
polymerase, is required in small amounts early in the infection process. Twenty minutes after infection, synthesis of this protein ceases (van Duin, 1988).

Table 4.1 Bacteriophage classification.

Family	Number of Genera	Morphology	Nucleic Acid	Enveloped
Cystoviridae	1	isometric	ssRNA, L, S	Yes
Leviviridae	2	icosahedral	ssRNA, L	
Corticoviridae	1	isometric	dsDNA, C, T	
Microviridae	4	icosahedral	ssDNA, C	
Tectiviridae	1	icosahedral	dsDNA, L	
Inoviridae	2	rod	ssDNA, C	
Myoviridae	6	contractile tail	dsDNA, L	
Siphoviridae	6	noncontractile tail	dsDNA, L	
Podoviridae	3	short tail	dsDNA, L	
Lipothrixviridae	1	rod	dsDNA, L	Yes
Rudiviridae	1	rod	dsDNA, L	
Plasmaviridae	1	pleomorphic	dsDNA, C, T	Yes
Fuselloviridae	1	lemon-shaped	dsDNA, C, T	Yes

ss - single stranded; L - linear; S - segmented; C - circular; T - superhelical; ds - double stranded

Ecology and Source Specificity

Male-specific ssRNA phages, or FRNA, strains MS2 (isolated by A. Clark), R17 (isolated by Paranchych and Graham) and f2 collected in the late 1950's to early 1960's from the United States were typed into group I. Throughout the 1970's, K. Furuse, I. Watanabe and colleagues conducted a systematic survey by isolating several thousand ssRNA coliphage strains from sewage in domestic drains, feces from humans and various animals, municipal raw sewage, river water, seawater, irrigation, pond or lake waters from across the globe. They classified these phages into four groups, I, II, III and IV, based on antisera testing or sero-typing and by physicochemical characteristics such as a cesium chloride density profile. Some strains were further subdivided into three to seven subgroups. Group III phages were
predominant in the southwest islands of Japan, the Philippines, Indonesia, Taiwan and Singapore and group II phages were most abundant in mainland Japan (Furuse et al., 1978; Miyake et al., 1971). Domestic drains located in Asian countries had very few FRNA from groups I and IV. Phages isolated from domestic drainage in Korea were from groups II and III whereas southeast Asia phages were predominantly group III (Furuse, 1987). FRNA phages isolated from sewage water in Australia were from group II and, in the USA, groups II and III FRNA phages were collected (Furuse et al., 1975).

FRNA phage isolation frequencies from various countries varied greatly. Only 2.5\% of phages collected from sewage in a study in Peru were FRNA, 5% were FRNA in Brazil and by comparison, FRNA were 38% in Taiwan and 30% in Japan (Furuse et al., 1975). The FRNA phages from sewage samples in Brazil and West Germany belonged to group I exclusively. It was unknown whether or not these sewage treatment plants received slaughterhouse waste (Furuse, 1987). Furuse states "it can be reasonably assumed that group I phage observed in raw sewage from treatment plants are most likely introduced from animal sources, and group II and group III phage from human sources." A separate study in Brazil found that thirteen out of 353 sewage and/or fecal samples contained FRNA phages, or approximately 4% and of these thirteen, five were typed as group I, two as group II and six as group III (Miyake et al., 1973).

Out of 93 phages isolated from the Bangkok, Thailand collection, only eight were FRNA phages. Three independent samples were collected from river water, two samples were collected from sewage and no FRNA phages were isolated from stool samples. Of the eight phages, one strain was group I whereas three and four strains were typed as groups II
and III, respectively (Aoi et al., 1972).
Domestic sewage samples in Korea had 56\% RNA phages belonging primarily to groups II and III along with 4 group I phages (Osawa et al., 1981). Taiwan sewage and fecal samples included 20\% FRNA with 2 group IV, 22 group III, 8 group II and 6 group I isolates (Miyake et al., 1971).

Furuse and colleagues continued to further explore the distribution patterns of the four genogroups of FRNA phages in samples from the following sources: 1) gastrointestinal contents of cows and pigs, 2) feces of domesticated animals (pigs, horses, cattle and fowl), 3) human feces 4) animal feces and 5) sewage obtained from slaughterhouse treatment plants. FRNA groups II and III were isolated in almost equal proportions from human feces whereas the gastrointestinal tract of swine harbored groups I and II. Group I was isolated from feces and gastrointestinal contents from all other animals. Slaughterhouse samples were predominately group I along with a few isolates from group II. In theses studies, group III was only isolated from human subjects and from no other host organism. Group IV displayed the greatest habitat diversity as they were isolated from feces of animals, humans, domestic drainage and raw sewage (Furuse, 1987; Osawa et al., 1981). The Furuse study concluded group I phages were not found in humans or domestic drainage sewage but only in animals or
slaughterhouse sewage. However, their results conflict with the fact that group I strains MS2 and R17 were isolated from municipal sewage systems located in the USA.

FRNA phages isolated in The Netherlands from fecal samples obtained from humans and domesticated animals were serologically typed. As in the Furuse studies, groups I and IV phages were isolated exclusively from animals whereas human sources harbored groups II and III (Furuse, 1987)

Groups II and III were isolated from human feces in FRNA distribution studies from South Africa and Spain (Schaper et al., 2002). In contrast to earlier reports of groups II and III occurring only in human feces and I and IV in animals, the Schaper study isolated group II from cattle and swine and group II and III from poultry. This study casts doubt on the absolute association of phage genotype and source-specificity, but emphasized the observation that group I has not been isolated from human feces. Nonetheless, group I has been isolated in domestic sewage and whether or not animal waste was present in these municipal treatment facilities is a question that cannot be easily answered.

The lack of consistent numbers of FRNA in human feces and the discrepancies of phage types harbored in various animals does not minimize the fact that FRNA are isolated from sewage in numbers ranging from $10^{2}-10^{4} \mathrm{PFU} / \mathrm{ml}$ (Leclerc et al., 2000). From multiple samples over time, FRNA were isolated from raw sewage at an average of 4.2×10^{4} PFU/L (Brion et al., 2002).

FRNA Coliphages as Indicators of Fecal Pollution

FRNA coliphages have been recommended as a possible indicator of enteric viruses as their presence indicates fecal pollution from either humans or animals. A highly significant statistical correlation was observed between the presence of FRNA and
enterovirus virus concentrations in river water, coagulated effluent, chlorinated and UVirradiation effluents, coagulated river water and lake water but not in raw sewage or biologically-treated sewage (Havelaar et al., 1993). FRNA was proposed as a viral indicator in recreational waters due to the strong correlation between FRNA and enteroviruses. Limitations to this study were that only freshwater, not marine or other environmental water bodies were studied, and only a small geographical area was evaluated (Havelaar et al., 1993).

Marine, freshwater and estuarine waters were selected to study the relationship between coliphages, their E. coli host and a few pathogenic bacteria. Multiple sampling stations were located near domestic and industrial sewage discharges. A correlation between male-specific coliphage concentration and E. coli concentration were found to be dependent upon the direction and distance from the effluent plume. A greater statistical relationship was noted for male-specific coliphages and the pathogens Salmonella, P. areuginosa and C. albicans when compared to fecal and total coliforms (Borrego et al., 1987). In this study, FRNA and FDNA phages were not resolved separately.

Drinking water sources were analyzed for the presence of male-specific phages, somatic phages and Bacteroides fragilis phages for 30 months. Bacterial indicator assays, total coliforms and fecal coliforms, were also evaluated to determine if a relationship existed between the bacterial and viral indicators. B. fragilis HSP40 host was used to select the human-specific phage. Throughout the survey, total or fecal coliform positive sites were also positive for at least one or all three phage types. In some instances, coliform negative sites were bacteriophage positive. When the data was tabled as frequency of indicator organisms by year, $\mathrm{F}+$ specific phages had the highest percentage of positive samples two out of three years. This study did not differentiate between FRNA and FDNA male-specific phages.

Phage B. fragilis was isolated less frequently two out of three years. Male-specific phages were suggested as an indicator similar to total coliforms and phage B. fragilis was similar to fecal coliforms as a measure of fecal pollution (Armon and Kott, 1995).

For a period of two years, raw sewage and surface water samples were surveyed once or twice per week from sites reflective of different land use and agricultural areas. Following double-agar overlay and RNase sensitivity, plaques were genotyped by hybridization using Hsu's method (1995). FRNA phages were the most abundant $\mathrm{F}+$ phage collected in surface waters (67% out of 105 samples) and sewage (87.5% out of 288) samples. Surface waters were positive for type I (81%) and only one sample had type III, suggesting these surface waters were not influenced by human-impacted effluent. However, type III was the predominant genotype as 57% were isolated from raw sewage (Brion et al., 2002). During this study, type III FRNA were recovered more frequently than the other genotypes when a group of male campers were staying near the sampling site. Following their departure, the presence of type III declined and was no longer detectable after a week. Source-tracking with type III may indicate sewage contamination occurred within the past 7 days (Brion et al., 2002).

A ratio of FRNA to FDNA densities were compared from samples collected in animal feces, municipal wastewater facilities, in potentially impaired surface waters and in agricultural livestock wastewaters. To establish a correlation between FRNA genogroups and sample source, FRNA isolates were serotyped. Background samples were defined as an upstream or background site that was sampled concurrently with the surface water sample. FRNA phages were isolated from bovine waste (18\%), swine wastewater (50\%), gull (96\%), goose (100%) and municipal/human wastewater samples (23%). In comparison, FDNA
isolation frequencies were bovine waste (82%), swine wastewaters (50%), gull (4%), goose (0) and human wastewater (77\%) FDNA. The remaining animals, horse, buffalo, cat, cormorant, rooster, dog, llama, donkey and pig did not yield F+ coliphages. In animals, goose had the highest percentage of group I (approximately 98\%) followed by swine (51\%) and cattle (30\%). Groups II and III were only isolated from human (50\% group II, 15\% III), swine (5% II, 22\% III) and bovine (15% II, 0 III). Both FDNA and FRNA phages were isolated from surface waters impaired by human, swine, bovine and background sources. Group I FRNA were predominant in background surface waters (97%) whereas bovineimpacted surface waters had 82% group I followed by 75% group I from human-impaired waters. Human land use sites had the greatest percentage of group II isolates (12\%) with a low group II recovery from background (2\%) and bovine-waste sites. A correlation of FRNA source-associated genogroups was confounded by differential survival rates for each genogroup and/or strain. The authors concluded that there was a statistically significant link of group II FRNA associated with human-land use sites (Cole et al., 2003).

The US EPA sponsored a field validation of Methods 1601 and 1602 to detect coliphages, both male-specific and somatic, in groundwater systems. In addition, fecal indicators E coli, enterococci, total coliforms, Clostridium perfringens spores and the presence of enteric viruses (enterovirus, hepatitis A, norovirus, rotavirus and adenovirus) were monitored monthly for one year. Male-specific coliphages, but not specifically FRNA, were recommended by the proposed Groundwater Rule as an alternate fecal indicator as they were detected more often in groundwater sources than somatic coliphages by Method 1602. The study concluded that the use of both a bacterium indicator and a coliphage increased the predictability of fecal contamination in groundwater wells (American Water Works

Association., 2004).
Distinct geographical locations (New Mexico, Massachusetts, Connecticut, Michigan, the Carolinas and Southern California) across the USA were surveyed in an ecological study of FDNA, FRNA and somatic phages. Phage concentrations were compared to fecal coliform counts. Viruses were isolated and enumerated on double-agar overlay and the appropriate phage-specific E. coli host. Further separation of phage types were determined by RNase sensitivity followed by serotyping. RT-PCR methods followed by Reverse Line Blot (RLB) methods were used to genotype the phages. Direct fecal samples did not have detectable levels ($<3 \mathrm{PFU} /$ gram feces) of male-specific phages in feces other than chicken litter, gull and goose. Only FRNA groups I and IV were detected in these avian species. Cow lagoon isolates typed to group I, whereas hog lagoon predominantly typed group I (32\%), 3\% group IV along with 18% group III. Hog lagoon had the highest percent of group III FRNA. Wastewater influent and effluent were predominately group II with 12 and 15%, respectively. In addition, wastewater influent had 6% group III, 2% I and 1% IV of FRNA phages. Interestingly, septic water samples did not contain FRNA, but had 100% FDNA strain M13. Grazing animal feces contained large numbers of somatic phages. It was concluded that FDNA M13-like was most prevalent in wastewaters, FDNA were detectable in fecal samples and the link between FRNA group III as a human-associated effluent was not absolute (Long et al., 2005).

To add to the body of information on FRNA occurrences from different sources, phages were collected from wastestreams at two hospitals, a cattle feedlot, pig farm and a poultry farm. Environmental river water samples were taken adjacent to farming fields. Male-specific phages were selected on S. typhimurium WG 49 host by double-agar overlay,
transferred and fixed onto a membrane and hybridized with the Beekwilder et al., (1996) designed probes. Hybridization probes detected groups II and III in hospital wastewaters, groups III and IV from swine waters, groups I, III and IV from poultry and groups I and IV from cattle wastes. As a whole, river water samples contained all four genogroups. However, seven of the individual river samples were positive for only genogroup II. Analysis of FRNA from an assortment of sources led the authors to conclude that group III was not necessarily specific for human excreta, but the trend on the specificity of groups I and IV for animal sources and II and III for human sources supported previous findings (Sundram et al., 2006).

The ambiguous association of swine isolates of FRNA coliphages periodically grouping as type III led to the hypothesis that perhaps a refined genogrouping system could clarify if sub- or unique group III clusters existed. Forward and reverse primers for reversetranscription polymerase chain reaction (RT-PCR) were designed to the 5 ' untranslated region spanning into the maturation gene region in group III phages. Primers were based on known group III sequences to strains MX1, M11 and Q β. Isolates were first classified to group III by hybridization (Hsu et al., 1995; Beekwilder et al., 1996). Thirty-two type III coliphage strains were isolated from swine lagoons, surface and wastewater sources from North Carolina and South Carolina. RT-PCR amplification was performed on those isolates testing positive for group III. RT-PCR products of about 567 nucleotides were sequenced and phylogenetic trees were generated from these sequences. Phages isolated from North Carolina lagoons, surface and wastewaters grouped as $Q \beta$-like whereas those from South Carolina were closely related to prototype strain M11. In this case, group III isolates could not be genetically separated as human vs swine clusters. The authors noted genetic similarity
evidence from human and swine hepatitis E virus populations being consistent with their finding for FRNA phages (Stewart et al., 2006).

Ninety-six surface water stations on the State of South Carolina's impaired list were selected as study sites to quantify FRNA and somatic coliphages. Typing FRNA occurred by serological and/or nucleic acid hybridization methods. Fourteen of these sites identified FRNA genogroups II (5\%) and III (1\%) while the majority of isolates typed as group I (94\%). Direct wastewater samples typed 73% group III, 14% II and 11% group I. Isolates collected and typed from a swine lagoon had 70% group I, 19\% group III and 6\% group IV. Chicken litters contained approximately equal amounts of group I and IV FRNA. The presence of groups II and III from the 14 surface water sites were mainly located downstream of wastewater effluent discharges and considered to be contaminated by human fecal pollution (Stewart-Pullaro et al., 2006).

Sewage-polluted tropical river waters and animal fecal samples were examined for male-specific RNA, male-specific DNA and somatic coliphages. Male-specific DNA and FRNA occurred at similar quantities per gram feces or per ml of water at 7% and 6.5%, respectively. F-specific phages were isolated by plaque assay from 50% of the river samples and 4.4% from the animal fecal material. The study concluded the presence of FRNA phages in the tropical waters of Klang Valley, Malaysia, and proposed FRNA as a tool for monitoring fecal-polluted waters in their country (Yee et al., 2006).

A small-scale study using male-specific, somatic phages and F+ E. coli as tracers of sewage, of monthly fluctuations and of various populations were investigated in a small Israeli community, Kibbutz Yagur, near Haifa, Israel. The well-defined sewage lines collect from daycare centers, residential, factory, dairy, greenhouse, dining hall, laundry room and
clinic with manholes specific to each location. Phages were not isolated from the manholes that served the laundry area and were found to occur in very low numbers ($<10 \mathrm{PFU} / \mathrm{ml}$) from the elderly home, the day-care center that used pampers, the greenhouse and the factory. The dairy farm was prevalent in somatic phages $\left(10^{2}-10^{3} \mathrm{PFU} / \mathrm{ml}\right)$ but had low counts of male-specific phages (1-10 PFU/ml). Direct fecal material from newborn infants contained male-specific phages at concentrations of $10-10^{5} \mathrm{PFU} / \mathrm{g}$ feces with one child excreting phages for almost 8 months. Absence or presence of F+ E. coli in the same water sample(s) correlated with low or high male-specific phage counts. Throughout the year-long study, there were higher numbers and more positive samples of male-specific phages than somatic phages with approximately 96-98.5\% of typed phages being FRNA (Gino et al., 2007). Phages were not genogrouped or typed in this study.

FRNA Host Specificity

E. coli K-12 strain was studied in terms its ability or inability to transfer a sex factor, termed F. If cells transferred F to other cells by means of chromosomal markers, this was termed Hfr strains. If the F factor was transferred independent of the chromosome but through an extra-chromosomal state, or plasmid, the strains were known as F+ (Clark, 1963). Electron microscopy shed light onto the aggregate nature of FRNA phages adsorbed to the host cell's fimbriae, the F pili (Bradley, 1964) (Fig 4.1). The conjugative pili serve to transfer genetic information by horizontal gene transfer in gram-negative bacteria. Both Hfr and F+ strains are derived from E. coli K-12 (Havelaar and Hogeboom, 1984).

The male-specific DNA and RNA coliphages adsorb to these conjugative pili (Daehnel et al., 2005), a fertility ($\mathrm{F}+$) sex-pili, coded in E. coli by the F-plasmid (Paranchych, 1975). DNA and RNA coliphages bind to the F-pili in different manners.

DNA phages bind to the tip of the F-pili and RNA phages attach to the sides (Daehnel et al., 2005).

The Furuse studies enumerated FRNA phages by incorporating male strains of E. coli (F+, F' or Hfr) into the media plates followed by RNase treatment (Furuse, 1987). Salmonella typhimurium strain WG 49 that express F+ by the presence of an F-plasmid have also been used as a selective host to isolate male-specific phages (Havelaar et al., 1984). S. typhimurium detected somatic and FDNA phages, however, the host selected 90-95\% FRNA phages (Sundram et al., 2006). E. coli strain $\mathrm{F}_{\text {amp }}$ (ATCC 700891) is commonly used in hostselection procedures for $\mathrm{F}+$ coliphages.

Phage replication is restricted to environments such as the intestinal tract of warmblooded animals as the sex-pili are only expressed at temperatures greater than $30^{\circ} \mathrm{C}$ (Grabow, 2001). Interesting to note, Zinder (1963) and Bradley (1964) theorized that in order for male-specific phages to be plentiful in nature, then subsequently, the E. coli male strains must either be equally prevalent in nature or they are not the natural environmental host. However, bacteria from animal intestines harbor hosts with pili at $10^{4} \mathrm{CFU} / \mathrm{ml}$ in
wastewater, thereby possibly allowing phage replication (Long et al., 2005) in municipal wastewater systems.

FRNA phages are more abundant in sewage waters $\left(10^{3}-10^{4} \mathrm{PFU} / \mathrm{ml}\right)$ than in human and animal feces (up to 10^{3} per gram feces) (Gerba, 2006). To examine this phenomenon, FRNA strain GA was inoculated into pasteurized sewage, seawater, and/or river water. Infectious strain GA underwent multiplication at $20^{\circ} \mathrm{C}$ but only when host bacterium was cultivated at $37^{\circ} \mathrm{C}$ (Havelaar and Pot-Hogeboom, 1988). Due to temperature restrictions of
the host-pili expression, it seems plausible that FRNA phage environmental replication would be restricted to $>30^{\circ} \mathrm{C}$. Optimal phage growth temperatures were found to be $30^{\circ} \mathrm{C}$ for genogroup II and $37^{\circ} \mathrm{C}$ for genogroups I, III and IV when three strains per genogroup were evaluated (Furuse, 1987). Other studies also reported different survival temperatures in water temperatures $\geq 15^{\circ} \mathrm{C}$ (Sobsey, ftp.sccwrp.org). In addition, phage replication requires a host density of approximately 10^{4} bacteria/ml to be successful (Goyal et al., 1987). The need for concomitant events of optimal temperatures and the presence of an $\mathrm{F}+$ host in log phase would restrict environmental replication of FRNA coliphages.

Figure 4.1 Somatic and male-specific coliphage hosts.

Additional Potential Viral Indicators of Fecal Pollution

Bacteriophages are ubiquitous in nature and as a whole, are not suitable as an environmental water quality fecal indicator. However, unique bacteriophages are associated with sewage. Various phages have been proposed as viral indicators. Somatic coliphages (Fig 4.1), FRNA coliphages, FDNA coliphages and the Bacteriodes phage have been recommended. Advantages and limitations of each indicator will be addressed.

Somatic coliphages are present among four bacteriophage taxonomic groups, Myoviridae, Styloviridae, Podoviridae and Microviridae, hence the morphologic heterogeneity. Three families of somatic phages contain dsDNA and one family, Microviridae, contain ssDNA. The somatic phages are non-enveloped and are present in sewage, often in high abundance in untreated sewage, ranging from $10^{4}-10^{5} \mathrm{PFU} / \mathrm{ml}$ (Gerba, 2006). These coliphages have been detected in humans, chickens, pigs, other animals (Gerba, 2006) and are easily cultured using E. coli strain CN-13 (ATCC 700609). The concentrations of somatic phages are similar to FRNA, $10^{2}-10^{4}$ infectious units per liter (Sobsey, ftp.sccwrp.org) The phage adsorb to the E. coli host and other enterobacteria species via the cell wall with a basic receptor site. A limitation of somatic phages is the possibility that the bacteria host origin, especially from environmental reservoirs, may not have originated from a fecal source. Some somatic phages may replicate in environmental waters in the absence of fecal pollution (Ashbolt et al., 2001; Gerba, 2006). If the presence of somatic phages were unrelated to fecal contamination, then it would not serve to predict human health risk (Leclerc et al., 2000).

Inoviridae, a male-specific circular, single-stranded family of DNA viruses (Fig 4.2)
are filamentous, non-enveloped with a genome size of 6 kb to 9 kb and a virion length of approximately 700 nm to 2000 nm (www.virustaxonomyonline.com). Male-specific DNA coliphages are not morphologically similar to human enteric viruses and their ecology has not been extensively studied (Leclerc et al., 2000). Contradictions in the literature exist on whether FDNA or FRNA are more abundant in nature. Leclerc et al., (2000) noted FDNA were less abundant when compared to FRNA phages. Different distributions of FDNA and FRNA have been reported ranging from 52% FRNA and 48% FDNA (Vinjé et al., 2004) to 77% FDNA and 23% FRNA (Long et al., 2005). Cole et al., (2003) found higher numbers of FDNA in bovine wastes. Using Reverse-Line Blot hybridization and reverse-transcriptionPCR followed by sequence analyses, one study found no link between FDNA type and source (Vinjé et al., 2004). However, a second study observed FDNA strain M13 as the dominant phage in septic system samples (Long et al., 2005). Thus, a definitive association between FDNA and human fecal pollution has not yet been established.

Certain phages belonging to the Siphoviridae family are approx 60 nm virion size, contain dsDNA with long non-contractile tails and infect via cell wall attachment to the host bacteria, strain Bacteroides fragilis. Host strain B. fragilis HSP 40 selects for a humanspecific phage. The B. fragilis human-specific phage has been isolated in sewage, human fecal samples, polluted groundwater, seawater, river water and sediments but not detected in animal feces (Bitton, 2005; Cornax et al., 1990; Tartera and Jofre, 1987). Unlike other viral or bacterial indicators, the Bacteroides phage is considered to be an exclusive viral indicator of human fecal pollution and unlikely to replicate in the environment as the host is a strict anaerobe (Tartera et al., 1989). Human-specific phages can be rapidly detected with molecular primers without direct historical cultivation since animal vs human specific probes
are available (Bernhard et al., 2003). A limiting factor lies in the observations of a low isolation frequency, $0-15 \%$, of B. fragilis phages were isolated from human feces (Gantzer et al., 2002). B. fragilis host are anaerobic and die-off rapidly under ambient water environmental conditions. As with other viruses, molecular detection only reveals the nucleic acid presence or persistence of the phage, not necessarily the infective or biologically active form. Another Bacteroides host, strain RYC2056, is more abundant but not human specific (Ashbolt et al., 2001). B. fragilis strain RYC2056 occurs in domestic sewage and was used to select phage from 30% of swine and 28% of human fecal samples (Puig et al., 1999).

Figure 4.2. Schematic of male-specific coliphage classification.

age and Enteric Virus Inactivation and Survival

As sewage and its accompanying microbial population are dispersed from point or non-point sources, microbes entering marine and freshwaters are subjected to the surrounding ecological conditions. Water-quality parameters such as pH , hardness, salinity, degree and intensity of sunlight exposure and temperature (climate) strongly influence microbe survival. Survival differs among microbial types, even from virus to virus. Virus types, enveloped or non-enveloped, vary greatly in environmental survival, as enveloped viruses tend to survive poorly outside of their host compared to the survival of nonenveloped viruses. $\mathrm{F}+$ phages and enteric virus groups such as adenovirus, enterovirus, norovirus (calicivirus) and rotavirus are all non-enveloped viruses.

Survival was evaluated for the indicator organisms E. coli, C. perfringens, fecal coliforms and $\mathrm{F}+$ phages in estuarine conditions. A series of parameters were selected such as temperature, salinity, dissolved oxygen, solar radiation, season and geographic location to study inactivation rates. The highest decay rates were influenced by sunlight and/or temperature. F+ phages exhibited the least decay (83\%) whereas fecal coliforms had the highest decline at 99%. Phages and C. perfringens were least affected by temperature. This study provides corroborative evidence that $\mathrm{F}+$ phage inactivation rates differ from bacterial indicators (Burkhardt III et al., 2000).

Representative prototype and genotyped field isolated strains of FRNA were spiked at concentrations of $10^{5}-10^{7}$ infectious units into FRNA-free, untreated surface waters (freshwater). Samples were incubated at $25^{\circ} \mathrm{C}$ in the dark and titered over time to determine phage decline or inactivation. Aliquots were removed for FRNA quantitation at day 4, 7, 13 and 36. Initial titers were determined by double-agar overlay plaque assay. The last sample taken, day 36 , was enriched and assayed with the two-step enrichment procedure.

At day 4, rates of inactivation for prototype strains were as follows: genogroup I MS2 4.7 $\log _{10}$, genogroup II GA $2.6 \log _{10}$, genogroup III QB $1.7 \log _{10}$ and genogroup IV FI $2.7 \log _{10}$ and SP (inactivation log data not provided). Prototype strain SP had the poorest survival and was not detectable after 4 days. Neither strain SP or QB could be detected by the two-step enrichment at day 36. Strains MS2, GA and FI were detected by enrichment at day 36. GA had the longest survival duration and was detectable by DAL throughout the experiment (day 36) (Brion et al., 2002). Survival of genotyped environmental isolates for FRNA coliphages was compared to their respective prototype strain. Of four, group I field strains, two survived similar to MS2 whereas the remaining two isolates were detectable by DAL to the end of the experiment, day 36. In group II, GA and one field II strain survived the longest (day 36) and the remaining three, group II field isolates declined by day 15 . Type III isolates were below detection limits by day 13. Survivability was strain-specific and not necessarily influenced by genotype or prototype vs field isolates in freshwater systems (Brion et al., 2002).

A non-water matrix was used to compare the inactivation of MS2 to other pathogenic viruses, norovirus and poliovirus type 1, and E. coli. Different microcosms were filled with representative soils, i.e., organic muck, clay and sand. For one month, viruses seeded in a groundwater matrix at approx 10^{6} were dosed into the soil microcosm twice/week. The following month, the columns were dosed with a simulation of rainwater. Microcosm effluent was drained and viral strains were detected by RT-PCR or infectivity assays. With the exception of E coli, the viruses were detected and shown to pass through the column. The results suggested that E. coli was not a reliable viral indicator as the bacteria did not pass through the columns in the manner as the virus and ultimately, environmental bacterial
transport would not mimic virus transport. None of the tested indicators passed through the clay column (Meschke and Sobsey, 2003).

Freshwater, specifically lake waters, were used in a microcosm format to evaluate survival rates on the four FRNA genogroups for 110 days. Strains MS2, two environmental group I, a group II, a group III and two group IV phages were inoculated ($2 \times 10^{4} \mathrm{PFU} / \mathrm{ml}$) into the microcosms. Incubation temperatures were 4 and $20^{\circ} \mathrm{C}$. Survival time was greater at lower temperature $\left(4{ }^{\circ} \mathrm{C}\right)$. Group IV had the fastest decay rate $\left(5 \log _{10}\right.$ within 10 days, 4° C) followed by group III ($5 \log _{10}$ at 3 weeks, $4^{\circ} \mathrm{C}$), where these isolates reached the limits of detection at 10 days and 3 weeks, respectively. Rates of inactivation for groups I and II at 110 days, $4{ }^{\circ} \mathrm{C}$ were $1 \log _{10}$ and $3 \log _{10}$, respectively. The more persistent genogroups, groups I and II, were detected at 110 days (Long and Sobsey, 2004).

Prototype strains MS2, GA, $\mathrm{Q} \beta$ and FI were spiked into seawater at concentrations of approximately $10^{6} \mathrm{PFU} / \mathrm{ml}$ and incubated, in the dark, at $21-23^{\circ} \mathrm{C}$. One ml aliquots were removed daily and titers observed by double-agar overlay (DAL) and real-time PCR, concurrently. Within 7 days, all four subgroups in seawater were no longer detected by DAL. In contrast, the real-time PCR detected the four groups after 20 days (Kirs and Smith, 2007). PCR detection of RNA, as demonstrated in these experiments, does not predict or indicate the presence of infectious phage but only the presence of RNA.

Viruses, including phage MS2, were tested as a molecular model for human norovirus. Spiked surface and groundwater samples were assayed for viral nucleic acid presence at 25 and $4{ }^{\circ} \mathrm{C}$ using QRT-PCR. In some strains, cell-culture infectivity and the DAL method for MS2 were used as concurrent methods of detection. MS2 nucleic acid detection was not effected by water source. Infectivity reduction rates were observed to
significantly increase at $25^{\circ} \mathrm{C}$ compared to $4^{\circ} \mathrm{C}$. Infectivity reduction rates were not observed at $4{ }^{\circ} \mathrm{C}$ (Bae and Schwab, 2008).

FRNA inactivation rates are influenced by sunlight intensity, fresh vs saltwater matrices and soil composition. For example, increasing salinity and temperature demonstrated faster rates of inactivation in FRNA strains. In contrast, lower temperatures (4 ${ }^{\circ} \mathrm{C}$) and freshwater environments decreased inactivation rates on FRNA coliphages. FRNA Coliphage Detection Methods - Plaque Assays

To quantify and accurately detect FRNA phages, initial purification methods are imperative. Depending upon the application, detection methods include Single Agar Overlay, Double-Agar Overlay, enrichment, Most Probable Number, RNase sensitivity, serotyping and genotyping.

To prepare a Single Agar Overlay (SAL) for enumeration of FRNA, collect 250 ml environmental water sample and place on ice up to 6 hrs. Beforehand, begin a log-phase of the E. coli host $\mathrm{F}_{\text {AMP }}$ (ATCC \# 700891) by adding a 1 ml inoculum from an overnight $(\mathrm{O} / \mathrm{N})$ culture into 50 ml Trypticase Soy Broth. Gently shake at $37^{\circ} \mathrm{C}$ for 4 hr . Host culture will be in log-phase at 4 hr . Divide the environmental sample by dispensing two aliquots of 100 ml into sterile bottles. To the 2X TSA (trypticase soy agar) add 1 ml of 100 X streptomycin/ampicillin, 0.5 ml sterile $4 \mathrm{M} \mathrm{MgCl}_{2}$. Add 10 ml log-phase $\mathrm{F}+$ host to the 100 ml sample. Quickly combine the sample/E. coli host with the 2X TSA/antibiotics flask. Gently swirl and allow host to contact sample for at least 3 minutes before pouring plates. Pour the agar/sample mix into a series of 20 mm petri dishes at approx $20 \mathrm{ml} /$ petri dish. Allow to harden and dry. Invert and incubate $36^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$. Count plaques per plate as

PFU/100 ml. Questionable plaques can be verified by spot plate assay (EPA Method 1602, 2001).

A presence/absence method involves a two-step enrichment. Using a sterile bottle, divide the 1 L environmental water sample into two, 500 ml aliquots. To each 500 ml , add the following: 50 ml of 10 X cold TSB per L (media is cold to diminish phage growth), 12.5 $\mathrm{ml} 4 \mathrm{M} \mathrm{MgCl}_{2}, 10 \mathrm{ml}$ of 100 X streptomycin/ampicillin and 5 ml log-phase $\mathrm{F}+$ host. Cap and invert to mix. Incubate overnight (16-24 hr) at $36^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$. The following day, spot 10 ul from each enrichment onto a grid spot plate (TSA) containing the appropriate host and incubate overnight. Score as positive or negative lysis zones in spots (EPA Method 1601).

An MPN (Most Probable Number) can be estimated from a 1L environmental water sample. Enrich the 1 L sample with 2 X TSB, antibiotics, $4 \mathrm{M} \mathrm{MgCl}_{2}$ and E. coli host as stated above. Once the reagents are added, quickly aliquot the enrichment into the following amounts in triplicate (A,B,C): (i) $300 \mathrm{ml} \mathrm{A}, 300 \mathrm{ml} \mathrm{B}, 300 \mathrm{ml} \mathrm{C}$ (ii) $30 \mathrm{ml} \mathrm{A}, 30 \mathrm{ml} \mathrm{B}, 30 \mathrm{ml}$ C and (iii) $3 \mathrm{ml} \mathrm{A} 3 \mathrm{ml} \mathrm{B},, 3 \mathrm{ml} \mathrm{C}$. This dilution series is for a 3×3 MPN matrix Incubate bottles/tubes at $37^{\circ} \mathrm{C} \mathrm{O} / \mathrm{N}$. Remove 12 ml from each enrichment of 300 and $30 \mathrm{ml}(\mathrm{A}, \mathrm{B}, \mathrm{C})$ except the 3 ml . Centrifuge all samples for 10 minutes at approx 5000 rpm . Transfer 10 ml of each supernatant into clean tubes; transfer most of the 3 ml supernatant into a clean tube. Briefly vortex the MPN supernatant and apply 10 ul from the appropriate supernatant onto the respective labeled spot (spot plate). Allow the spots to dry approx 20-30 min. Invert and incubate at $37^{\circ} \mathrm{C} \mathrm{O} / \mathrm{N}$. Score as presumptive positive if a clear zone of lysis is visible in the spot and calculate the MPN from the number of positive (lysis zone) and negative (no lysis zone) spots. If necessary, verify the lysis zone by isolation of material from it and a repeated spot plate of this material.

Applications to detect somatic phages are the same as those for male-specific except the selection host is one that is F-minus (F-) such as E. coli strain CN-13 (ATCC 700609). For this host a 1% stock of antibiotic nalidixic acid is used in the media instead of strep/amp as used for E. coli Famp (EPA Method 1601, 2001). E. coli host C-3000 (ATCC 15597) selects for both F+ and somatic phages but findings from field studies reveal strain C-3000 recovers lower numbers of somatics and male-specific phages when compared to the sum of phages recovered by their respective host-specific strain. In a recent study, E. coli strain CB390 was effective at recovering the sum of both phage types (Guzman et al., 2008).

Coliphage antisera are obtained by inoculating experimental animals to elicit an immune response that results in polyclonal antibodies against the desired phage strain. For serotyping, isolated plaques are spotted (10 ul) onto an agar plate containing a specific antisera, either to MS2, GA, $\mathrm{Q} \beta$, SP or FI. The agar plate contains the antisera and \log phase host. Once the plaque is applied, the plate is incubated O / N at $37^{\circ} \mathrm{C}$. Phage growth suppression on one of the plates, which contains homologous neutralizing antibodies to the phage group, is scored as positive. Serotyping is not 100% reliable and can produce ambiguous results (Beekwilder et al., 1996). For example, two isolates in the UNC collection were first serotyped to group II but later sequenced and genotyped to group I.

RNase sensitivity is determined by re-plating phage isolates on plates containing or lacking Ribonuclease A. On the plates with RNase, FRNA phages do not form lysis zones, however, FDNA phages will form zones of lysis.

FRNA Coliphage Detection Methods - Genotyping

Identification of male-specific phage by host selection does not discriminate between

FDNA and FRNA phages. An FRNA assay applicable for microbial source-tracking must first and foremost precisely identify FRNA. Genogroup-targeted methods solve two considerations, (i) FRNA selection and (ii) genotype-associated source tracking.

To distinguish the individual FRNA groups I, II, III, IV and a combination of groups I and II, III and IV, a molecular hybridization assay was developed. Genogroup-specific hybridization probes were designed using multiple alignment software to strains MS2, GA, Q β, and SP. Environmental isolates of FRNA phage as lysis zones on agar plates were adsorbed to a membrane, denatured to unfold RNA secondary structures and linked to the membrane using UV light. Digoxigenin (DIG-dUTP) labeled probes were incubated overnight with the fixed membranes and visualized with alkaline phosphatase-conjugated anti-DIG antibody. Assay development involved optimization of various hybridization solutions, selection of the most efficient membrane and denaturation solutions. To test the hybridization assay, 203 FRNA field isolates from sewage, oysters, surface waters and feces were first grouped by serotyping. Serotyping and hybridization classified 79 and 109 isolates, respectively, from surface waters, adult and piglet swine feces, treated and untreated sewage and oysters as genogroup II. Almost half of the piglet isolates, 12 out of 26, were type IV. Isolates from chickens were grouped almost equally into I and IV. Serotyping cross-reactivity was observed for 37 isolates neutralized by anti-sera GA and partial neutralization to anti-sera MS2. However, these 37 serotyped strains were eventually genotyped by hybridization to be in group II. Similar classification results were obtained by both serotyping and hybridization genotyping (Hsu et al., 1995).

A hybridization assay (Beekwilder et al., 1996) was developed similar to Hsu et al., (1995), but oligonucleotide probes targeted different regions of the genome. Probe to group I
was designed to MS2 nucleotide region 1248 (Hsu) and 1260 (Beekwilder), group II was designed to GA region 431 (Hsu) and 2100 (Beekwilder), group III was designed to $\mathrm{Q} \beta$ region 27 (Hsu) and 660 (Beekwilder) and group IV probe was designed to SP region 35 (Hsu) and 40 (Beekwilder). Probes were designed to each genogroup by Beekwilder and colleagues by alignment of 3-5 strains/group. If the completed sequenced genome was not available, they proceeded to sequence partial regions to provide adequate sequence representation for each genogroup. In addition, a probe A for Levivirus (groups I and II) and probe B for Allolevivirus (groups III and IV) was developed. To validate the hybridization probes, a combination of "blinded" but previously serotyped samples and field samples were analyzed. Approximately 78% of the samples were correctly identified by both the genogroup and genus-specific probes. Isolates collected from human impacted areas in the form of hospital waste and domestic wastewater identified 1 group I, 1 group II, 4 group III and 1 group IV. The two human feces samples had ambiguous classifications in that both samples were weakly positive for group I and positive for group IV but hybridized to both genus-specific probes, Levivirus and Allolevivirus. Twenty phages isolated from animal sources hybridized to groups I or IV in all cases except two. Of those two, one isolate was positive to groups I and II, and the second isolate (porcine slaughterhouse) was positive to group III (Beekwilder et al., 1996). These hybridization studies lend supporting evidence to the trends that genogroups II and III are associated with human waste and groups I and IV occur more often in animal sources.

Reverse-line blot is a nucleic hybridization-based assay designed to genotype both FRNA and FDNA coliphages. Using Clustal W 1.4 software, alignment of complete or partial sequences available in GenBank was the basis for primer and probe design. Six
cluster-specific oligonucleotide probes for hybridization were designed to FRNA strains, 1 group I probe for MS2-like, 1 probe for GA-like, 2 group III probes, $\mathrm{Q} \beta$ and M11, and 2 group IV probes, SP and FI-like. Three cluster-specific FDNA probes were also designed, M13, fd and CH and one generic FDNA consensus-specific probe, termed "con." In order to initially divide FRNA from FDNA isolates, a generic RT-PCR assay was performed. Broadly reactive primer sets yield different PCR amplicon sizes for Allolevivirus vs. Levivirus. Allolevivirus was amplified by primers MJV82 forward, JV41 reverse and Levivirus was detected by primers MJV82 forward and JV81 reverse. Primer pair SL2 forward and SL3 reverse amplified FDNA phages. Assay validation began by collecting a total of 557 environmental samples. Phages were isolated by single or double-agar overlay plating, followed by RNase sensitivity testing and serotyped by anti-sera neutralization or genotyped by hybridization (Hsu et al., 1995). RT-PCR identified 100\% of the FRNA and FDNA strains. Identified strains were used to validate the reverse-line blot hybridization (RLB), resulting in 98\% agreement of the FRNA strains and 100% confirmation of the FDNA phages (Vinjé et al., 2004).

When comparing the basic hybridization assays, the RLB involves a two-step process since the RT-PCR step occurs prior to hybridization. Nonetheless, RLB typing had a higher predictability, 100% FDNA, 98% FRNA, when compared to 38% by serotyping (Hsu et al., 1995), 54% by genotyping (Hsu et al., 1995) and 78% by genotyping (Beekwilder et al., 1996).

Prior to 2007, 10 full-length or nearly full-length FRNA phage genomes were available at NCBI GenBank. In 2007, Kirs sequenced strain FI (Kirs and Smith, 2007), for a total of 11 FRNA genomes. Studies describing molecular detection of FRNA phages base their primer design on these 10 or 11 sequences and partial sequences available in GenBank.

A universal forward and reverse primer set was designed (Kelly Reynolds, Univ of AZ) to a consensus sequence in the replicase gene to detect all FRNA strains. A two-step reverse transcription polymerase chain reaction (RT-PCR) was performed. Prior to RT-PCR, environmental samples were column filtered to remove inhibitors. RT-PCR sensitivity was improved when the samples were column filtered and detection limits were 0.10 PFU of laboratory control MS2. RT-PCR amplified FRNA from 2 samples that were plaquenegative by soft agar overlay and was in agreement with the plaque-positive overlay methods (Rose et al., 1997). According to the authors, the primers amplified all four FRNA coliphage groups, but specific strains were not mentioned.

Phage MS2 is routinely used as a surrogate for pathogenic and environmental studies. Five sets of real-time primers and probes were designed to strain MS2. Two sets targeted the assembly gene, 1 for the coat region, 1 targeted the lysis gene and 1 primer and probe set targeted the replicase gene. Cross-reactivity of the real-time PCR was tested against nontargeted organisms, specifically pathogenic bacteria. MS2 primer sets did not cross-react with bacteria (O'Connell et al., 2006). Detection or cross-reactivity to other FRNA phages was not discussed.

Two independent real-time assays to detect each FRNA genogroup were developed for microbial source-tracking. Primer and probe sets were designed to the limited genomic NCBI GenBank database, by aligning 2 to 3 strains/genogroup and partial sequences. Purified RNA and a two-step QRT-PCR assay were common to both investigations. Kirs and Smith (2007) used a multiplexed assay whereas Ogorzaly and Gantzer (2006) analyzed each genogroup in separate vials. QRT-PCR primer and probe specificity were evaluated in the reaction containing an RNA cocktail of the strains MS2, GA, Q β, SP (Ogorzaly and

Gentzer, 2006) and MS2, GA, Q β, SP and FI (Kirs and Smith, 2007). Although the authors state their assay was template specific and lacked cross-hybridization, assay validation was limited to four or five FRNA strains. Raw sewage (Ogorzaly and Gentzer, 2006) and raw sewage and chicken litter (Kirs and Smith, 2007) samples were collected for QRT-PCR field validation. Ogorzaly and Gentzer detected 100% of groups I, II and 85% group III by QRTPCR of double-agar overlay plaques. Group IV was not detected. Twenty plaques from sewage and 20 plaques from chicken litter were isolated, RNA purified and subjected to QRT-PCR (Kirs and Smith, 2007). Sewage isolates were group III and chicken stool isolates were group IV. Three genogroup-specific primer pairs were developed for a two-step RT-PCR assay and validated with strains MS2, GA and SP. Primer design for genogroups I, II and IV were based on GenBank genomic sequences for MS2, GA and SP, respectively. Phages isolated and enumerated from individual septic systems, poultry farm, municipal sewage and a background site were enumerated by SAL after filtration of the water sample. An MPN was also conducted. Purified phage RNA, from October 2004 environmental samples, tested positive for groups I and IV with RT-PCR and was in agreement with plaquepositive samples. The septic system tested negative with RT-PCR but positive by SAL and MPN. In January, 2005, 12 positive SAL and MPN samples tested positive for group I by RT-PCR. The May, 2005, sampling season had 3 out of 7 samples positive by SAL and MPN detection. In those 3 samples, RT-PCR identified group II upstream from the wastewater treatment plant and group I from the poultry farm-area of the lake. In contrast, SAL-positive samples downstream from the sewage treatment plant were negative by RTPCR. Similar results were obtained in the August, 2005, sampling season as 4 samples were positive by SAL and MPN. Of those 4 samples, RT-PCR identified group II in the upstream
wastewater treatment plant sample but the 3 remaining samples taken downstream of the sewage plant, upstream of a different sewage plant and lake waters near the poultry farm were negative by RT-PCR. The authors concluded FRNA indicators were not useful to distinguish between human and non-human sources and suggested the presence of either somatic or FDNA phages in their positive samples (Dryden et al., 2006). Limitations to their study design are as follows. Primers were designed to three individual strains and not an alignment of multiple strains per genogroup. These primers would not detect all four genogroups or environmental strains as reflected in the results. A group III primer set was not designed and yet, the authors concluded FRNA could not distinguish between human and non-human sources. SAL and MPN host selection was E. coli strain C-3000 (ATCC 15597), a host that selects for both somatic and male-specific phages.

An antibody-based agglutination assay, termed "latex agglutination", was developed to rapidly detect, $<24 \mathrm{hr}$, genogroups of FRNA coliphages. Environmental strains were collected from bird droppings, shellfish and water bodies from diverse geographical locations across the USA. A two-step enrichment protocol was modified to a culture time of 180 min based on preliminary sampling and phage measurement at $0,30,60,90,120,180$ and 360 min on TSA plates containing E. coli host $\mathrm{F}_{\mathrm{AMP}}$. Male-specific plaques were confirmed as FDNA or FRNA by RNase sensitivity, FRNA genera were determined by broadly reactive RT-PCR and preliminary genogrouping by RLB (Vinjé et al., 2004). Serotyping and sometimes even RLB genotyping, at times, yield ambiguous results. To address this ambiguity, an RT-PCR assay to the capsid region with primers DL10 forward and DL11 reverse and sequencing of the PCR amplicon was conducted. To develop the coliphage latex
agglutination and typing (CLAT) assay, polyclonal antibodies were first generated against MS2, GA, Q β, SP and FI. Phage strain-specific antisera was bound to polystyrene particles and used in the agglutination step of the CLAT. Coliphage enriched samples showed agglutination within 30-60 sec when 2.5 ul enriched phage cultures were mixed with 2.5 ul strain-specific antibody particle on an agglutination card. Out of 192 FRNA field isolates, CLAT correctly identified 185 (96\%) and RLB identified 92\%. When the two methods were compared, some ambiguity was noted in that CLAT identified more group II and RLB identified more groups III and IV. Twenty-four strains yielded inconsistent typing. Sequencing of the capsid region and phylogenetic clustering of these 24 strains yielded 19 group I and 5 group II. CLAT clustered 17 of the 19 group I strains as I and II, but matched
100% of the 5 sequenced group II isolates. A total of 164 FDNA isolates were also identified by CLAT at a rate of 97.7% (Love and Sobsey, 2007).

FRNA Relationship to Enteric Viruses and as Predictors of Health Risk

An important attribute of an ideal indicator is the relationship between the indicator density in polluted waters to human-health risks. Few epidemiology studies exists correlating health risks with F+ coliphage densities. A European cohort study (Lee et al., 1997) showed a statistically significant relative risk (RR) with increased $\mathrm{F}+$ coliphage exposures. However, a threshold value was not extrapolated and the slight increased RR (2.6-2.8) is minimal compared to the large coliphage density range of 26-32 and 69-308 PFU/10 ml, respectively.

A recent California beach study suggested an association between F+ coliphage densities (both FRNA and FDNA combined) and gastrointestinal illness rates, nausea, cough
and fever. The authors noted that when $\mathrm{F}+$ phages were detected, a low number of beachgoers were exposed (Colford et al., 2007).

Meta-analysis of epidemiological studies revealed no correlation between bacteriophage in marine waters to GI illness, whereas the freshwater studies reported an elevated GI risk with elevated bacteriophage exposure (Wade et el., 2003). The metaanalysis did not clarify which type of bacteriophage showed associations with human health risks.

Six wastewater treatment facilities from FL, AZ and CA producing and distributing reclaimed water were monitored for indicator and pathogen load. Although reclaimed water is routinely assessed for fecal or total coliforms, the degree of microbial indicator and pathogen removal has not been evaluated. Results using male-specific coliphages did not show a correlation with enteric viral load. However, the coliphage predicted an absence of enteric viruses at levels less than 10 coliphage/ 100 ml (Rose et al., 2004).

Adenovirus presence was statistically correlated to FRNA ($\mathrm{r}=0.99$) in a brackish (salinity from 9-34 ppt) but no correlation to FDNA phages were observed in coastal waters (Jiang et al., 2001).

Future Applications

Molecular detection methods, i.e., PCR, real-time PCR and microarrays, allow a more timely assessment of the microbial quality of recreational waters. A prospective study at two Great Lakes beaches using real-time PCR detection found that enterococci was statistically associated with increased gastro-intestinal (GI) illness at both beach sites. A strong positive trend was noted with the presence of Bacteroides at one of the beaches (Wade et al., 2006).

Microarrays have been constructed with genomic DNA purified from raw wastewaters (Lee and el., 2006) and 16S rRNA and cpn60 genes extracted from several specific pathogens (Maynard et al., 2005). Primers and oligonucleotide microarray probes were designed from sequences derived from specific pathogenic bacteria strains. Validation of the microarrays generated a positive hybridization signal in raw sewage samples for the E .coli gene uidA (Lee et al., 2006).

Commercially-available field PCR instruments could potentially be applicable to molecular detection of FRNA genogroups. For example, a hand-held fluorogenic real-time PCR instrument, the Advanced Nucleic Acid Analyzer (ANAA), was used to detect bacteria spores and MS2 virions. The microbes were analyzed using a micro-chip in the ANAA and a positive signal was viewed within 18-26 min (Belgrader et al., 1998).

Portable real-time thermocyclers (Cepheid, Inc) and nucleic acid sequence based amplification (NASBA) instruments (BioMereux, Inc) can be transported to provide on-thespot analysis of environmental samples. NASBA, unlike PCR, does not require a thermocycler. NASBA relies on an isothermal process ($41^{\circ} \mathrm{C}$), three RNA-associated enzymes and a molecular beacon. Single-stranded RNA is generated in a single-tube, emitting fluorescence by the molecular beacon upon hybridization with ssRNA and a targetspecific oligonucleotide. NASBA technology targets RNA viruses and would be applicable as a portable instrument to detect FRNA coliphages.

Summary and Conclusion

Microbial source-tracking is defined as a group of analytical protocols, typically microbial applications, which are used to ascertain or regulate the source of fecal input into a water body. Use of a potential microbial source-tracking "toolbox" is a complex process
whereby decisions must be made to select and validate the selection of such tools. For example, (1) define the problem (nearby source discharge or runoff, history of monitoring data, weather patterns, hydrology, etc), (2) formulate objectives as to the suspected source and category (human vs. non-human), (3) presence/absence vs. quantification of loading values (4) consider if the application linked to regulatory values for microbial indicator concentration or if fecal presence or absence is an acceptable result for decision making, (5) consider if fecal presence is linked to public health risk, (6) consider if there are legal ramifications, (7) select the most appropriate source-tracking protocol (8) define a sampling strategy or study design, (9) define a method of data collection and quality control, (10) define data analyses and (11) have a plan for data interpretation (Stoeckel, 2005).

Currently, the toolbox consists of DNA fingerprinting, antibiotic resistance, ribotyping, pulse-field electrophoresis and carbon utilization profiles of E. coli and/or enterococci (library-dependent), host-specific Bacteroides and Prevotella bacteria markers (library-independent) and serotyping or genotyping of FRNA or FDNA coliphages (libraryindependent). The "library" per se, is a collection of bacterial or viral isolates from which the source of collection is known as well as the fingerprint, marker, genotype or serotype. One aspect of method selection depends upon the analytical question, library-dependent (epidemiological matching or clustering) vs. library-independent (source could be traced in any water body type or geographical location).

FRNA source-specificity displayed by the four genogroups render FRNA phages applicable for microbial source-tracking. Groups I and IV are typically associated with animal wastes whereas groups II and III generally occur from human waste (Havelaar et al., 1986; Schaper et al., 2002). FRNA library collections began with known sources, i.e.,
domestic sewage/drainage or hospital waste sites, cattle, swine and poultry waste lagoons or litters, animal-specific fecal voids, and/or animal intestinal content and, following FRNA purification, these sources were further defined by serotyping or genotyping (Furuse et al., 1978; Miyake et al., 1971; Furuse et al., 1975; Miyake et al., 1973; Osawa et al., 1981; Schaper et al., 2002, Beekwilder et al., 1996; Hsu et al., 1995; Calci et al., 1998; Cole et al., 2003; Long et al., 2005; Sundram et al., 2006; Stewart-Pullaro et al., 2006; Kirs and Smith, 2007). Building upon trends in FRNA source specificity, investigators have isolated environmental phages, purified them and genotyped/serotyped as a strategy to classify fecal contamination (Dryden et al., 2006; Love and Sobsey, 2007; Stewart-Pullaro et al., 2006; Vinjé et al., 2004; Stewart et al., 2006; Yee et al., 2006; Sundram et al., 2006; Brion et al., 2002; Sobsey et al., 2006).

Types and trends of known FRNA host specificity were reported to indicate human source from sewage-collected FRNA as follows: genogroup I $38 \%, 15 \%, 12 \%, 11 \%, 2 \%$; genogroup II $50 \%, 38 \%, 21 \%, 15 \%, 14 \%$; genogroup III $100 \%, 73 \%, 58 \%, 57 \%, 50 \%$, $46 \%, 15 \%, 6 \%$; and genogroup IV $1 \%, 5 \%$ IV and animal sources: genogroup I $98 \%, 70 \%$, $51 \%, 50 \%, 50 \%, 32 \% 30 \%$; genogroup II 15%, 5%; genogroup III $22 \%, 19 \%, 18 \%$; and genogroup IV $100 \%, 50 \%, 50 \%, 46 \%, 6 \%, 3 \%$ (Aoi et al., 1972; Miyake et al., 1973; Brion et al., 2002; Miyake et al., 1971; Cole et al., 2003; Hsu et al., 1995; Kirs and Smith, 2007). Although the data from these studies is not comprehensive or exhaustive, a host-specific FRNA genogroup trend exists.

In this dissertation, a library-independent method to differentiate between sources of human and non-human fecal pollution was developed. Initially, nineteen FRNA strains were sequenced and compared to the eleven FRNA full-length sequences available in the National

Center for Biotechnology Information (NCBI) genetic database (GenBank) for a total of 30 FRNA strains. FRNA phages were collected from water, sewage, and various animals representative of diverse geographical locations (Table 7.1). The field-collected FRNA strains and prototype strains were represented by phages isolated from the United States, Japan, Europe, Brazil, Taiwan and/or Mexico (Table 7.1). FRNA sequences generated in this study tripled the genetic information currently available in the national genetic database for the Leviviridae. Based on the intensive sequencing effort, a robust, one-step reverse transcription polymerase chain reaction (RT-PCR) was designed to distinguish the four FRNA coliphage groups (I, II, III, IV). In the more immediate future this data can be applied to methods using FRNA coliphages as a fecal and viral indicator and as a sourcetracking tool.

To conclusively apply the "FRNA group II, III human fecal pollution" association for recreational or other surface water regulatory purposes, one must caution that one or two or a few isolates does not confirm a human-impacted area. Perhaps a more plausible application would be to propose an absolute percentage or value of group II and III isolates from a predetermined FRNA sample size detected from an area where wastewater discharges and/or other source delineations have been examined.

References

Ackermann HW. 2006. Classification of bacteriophages. In: The Bacteriophages by S T Abedon. R L Calendar, ed. Oxford University Press. pp:8-16.

American Water Works Association. 2004. Field testing of USEPA methods 1601 and 1602 for coliphage in groundwater. Prepared by MR Karim, MW LeChevallier, M Abaszadegan, A Alum, J Sobrinho and J Rosen. AWWA Research Foundation, Denver, CO.

Armon R and Y Kott. 1995. Distribution comparison between coliphages and phages of anaerobic bacteria (Bacteroides fragilis) in water sources, and their reliability as fecal pollution indicators in drinking water. Wat Sci Tech, 31(5):215-222.

Ashbolt NJ, WOK Grabow and M Snozzi. 2001. Indicators of microbial water quality. In: World Health Organization, Water Quality: Guidelines, Standards and Health. L Fewtrell and J Bartram, eds. IWA Publishing, London, UK. pp:289-316.

Aoi T, K Furuse, T Shiba and I Watanabe. 1972. Isolation and grouping of RNA phages III. A survey in Arabia, India and Thailand. J Keio Med Soc, 49:361-368.

Bae J and KJ Schwab. 2008. Evaluation of murine norovirus, feline calicivirus, poliovirus, and MS2 as surrogates for human norovirus in a model of viral persistence in surface water and groundwater. Appl Environ Microbiol, 74(2):477-484.

Beekwilder J, R Nieuwenhuizen, AH Havelaar and J van Duin. 1996. An oligonucleotide hybridization assay for the identification and enumeration of F-specific RNA phages in surface water. J Appl Bacteriol, 80:179-186.

Belgrader P, W Bennett, D Hadley, G Long, R Mariella, Jr, F Milanovich, S Nasarabadi, W Nelson, J Richards and P Stratton. 1998. Rapid pathogen detection using a microchip PCR array instrument. Clin Chem, 44(10:2191-2194.

Bernhard AE. T Goyard. , MT Simonich and KG Field. 2003. Application of a rapid method for identifying fecal pollution sources in a multi-use estuary. Wat Res 37(4):909-913.

Bitton, G. 2005. Microbial indicators of fecal contamination: application to microbial source tracking. Report submitted to the Florida Stormwater Association, Tallahassee, FL. June, 2005.

Borrego JJ, MA Morinigo, A de Vicente, R Cornax and P Romero. 1987. Coliphages as an indicator of faecal pollution in water. Its relationship with indicator and pathogenic microorganisms. Wat Res, 21(12):1473-1480.

Bradley DE. 1964. The structure of some bacteriophages associated with male strains of

Escherichia coli. J Gen Microbiol, 35:471-482.
Brion GM, JS Meschke and MD Sobsey. 2002. F-specific RNA coliphages: occurrence, types, and survival in natural waters. Water Res, 36:2419-2425.

Buchen-Osmond, C. (Ed.) 2004. Levivirus. In ICTVdB - The Universal Virus Database, version 3. ICTVdB Management, Columbia University. New York, NY.

Burkhardt III W, KR Calci, WD Watkins, SR Rippey and SJ Chirtel. 2000. Inactivation of indicator microorganisms in estuarine waters. Wat Res, 34(8):2207-2214.

Clark AJ. 1963. Genetic analysis of a "double male" strain of Escherichia coli K-12. Genetics 48:105-120.

Calci KR, W Burkhardt III, WD Watkins and SR Rippey. 1998. Occurrence of malespecific bacteriophage in feral and domestic animal wastes, human feces, and humanassociated wastewaters. Appl Environ Microbiol, 64(12):5027-5029.

Cole, D, SC Long and MD Sobsey. 2003. Evaluation of F+ RNA and DNA coliphages as source-specific indicators of fecal contamination in surface waters. Appl Environ Microbiol, 69(11):6507-6514.

Colford JM, Jr., TJ Wade, KC Schiff, CC Wright, JF Griffith, SK Sandhu, S Burns, M Sobsey, G Lovelace and SB Weisberg. 2007. Water quality indicators and the risk of illness at beaches with nonpoint sources of fecal contamination. Epidemiology 18(1):27-35.

Cornax R, MA Morinigo, IG Paez, MA Munoz and JJ Borrego. 1990. Application of direct plaque assay for detection and enumeration of bacteriophages of Bacteroides fragilis from contaminated water samples. Appl Environ Microbiol, 56(10):3170-3173.

Daehnel K, R Harris, L Maddera, and P Silverman. 2005. Fluorescence assays for F-pili and their application. Microbiology, 151:3541-3548.

Dryden SK, B Ramaswami, Z Yuan, DE Giammar, LT Angenent. 2006. A rapid reverse transcription-PCR assay for F+ RNA coliphages to trace fecal pollution in Table Rock Lake on the Arkansas-Missouri border. Water Res, 40:3719-3724.

Duckworth DH. 1987. History and basic properties of bacterial viruses. In: Phage Ecology. SM Goyal, CP Gerba and G Britton, eds. John Wiley \& Sons, Inc., NY. pp: 1-43.

Fiers W, R Contreras, F Duerinck, G Haegeman, D Iserentant, J Merregaert, W Min Jou, F Molemans, A Raeymaekers, A Van den Berghe, G Volckaert and M Ysebaert. 1976.

Complete nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene. Nature, 260:500-507.

Furuse K. 1987. Distribution of coliphages in the environment: general considerations. In: Phage Ecology. SM Goyal, CP Gerba and G Britton, eds. John Wiley \& Sons, Inc., NY. pp 87-124.

Furuse K, A Ando and I Watanabe. 1975. Isolation and grouping of RNA phages VII. A survey in Peru, Bolivia, Mexico, Kuwait, France, Australia and the United States of America. J Keio Med Soc, 52:353-361. (Japanese)

Furuse K, T Sakurai, A Hirashima, M Katsuki, A Ando, and I Watanabe. 1978. Distribution of ribonucleic acid coliphages in South and East Asia. Appl Environ Microbiol, 35(6):995-1002.

Gantzer C, J Henry and L Schwartzbrod. 2002. Bacteroides fragilis and Escherichia coli bacteriophages in human feces. Int J Hyg Environ Health, 205:325-328.

Gerba, CP. 2006. Bacteriophage as pollution indicators. In: The Bacteriophages by S T Abedon. R L Calendar, ed. Oxford University Press. pp: 695-701.

Gino E, J Starosvetsky and R Armon. 2007. Bacteriophage ecology in a small community sewer system related to their indicative role in sewage pollution of drinking water. Environ Microbiol, 9(10):2407-2416.

Guzman C, L Moce-Llivina, F Lucena and J Jofre. 2008. Evaluation of Escherichia coli host strain CB390 for simultaneous detection of somatic and F-specific coliphages. Appl Environ Microbiol, 74(2):531-534.

Goyal SM, CP Gerba and G Britton, eds. 1987. Phage Ecology. John Wiley and Sons, Inc. NYC, NY.

Havelaar AH, and WM Hogeboom. 1984. A method for the enumeration of male-specific bacteriophages in sewage. J Appl Bacteriol, 56:439-447.

Havelaar AH, WM Hogeboom, and R Pot. 1984. F-specific RNA bacteriophages in sewage: methodology and occurrence. Wat Sci Tech, 17:645-655.

Havelaar AH and WM Pot-Hogeboom. 1988. F-specific RNA-bacteriophages as model viruses in water hygiene: ecological aspects. Water Sci Tech, 20:399-407.

Havelaar AH, M van Olphen and YC Drost. 1993. F-specific RNA bacteriophages are adequate model organisms for enteric viruses in fresh water. Appl Environ Microbiol, 59(9):2956-2962.

Hsu FC, YS Carol Shieh, J van Duin, MJ Beekwilder and MD Sobsey. 1995. Genotyping male-specific RNA coliphages by hybridization with oligonucleotide probes. Appl Environ Microbiol, 61(11):3960-3966.

Jiang S, R Noble and W Chu. 2001. Human adenoviruses and coliphages in urban runoffimpacted coastal waters of southern California. Appl Environ Micro 76(1):179-184.

Kirs M and DC Smith. 2007. Multiplex quantitative real-time reverse transcriptase PCR for F+-specific RNA coliphages: a method for use in microbial source tracking. Appl Environ Microbiol, 73(3):808-814.

Lee JV, SR Dawson, S Ward, SB Surman and KR Neal. 1997. Bacteriophages are a better indicator of illness rates than bacteria amongst users of a white water course fed by a lowland river. Wat Sci Tech 35(11-12):165-170.

Lee DY, K Shannon and LA Beaudette. 2006. Detection of bacterial pathogens in municipal wastewater using an oligonucleotide microarray and real-time quantitative PCR. J Microbiol Meth, 65:453-467.

Leclerc H, S Edberg, V Pierzo and JM Delattre. 2000. Bacteriophages as indicators of enteric viruses and public health risk in groundwaters. A review. J Appl Microbiol, 88:5-21.

Loeb T, and ND Zinder. 1961. A bacteriophage containing RNA. Proc Nat Acad Sci, 47:282-289.

Long SC, SS El-Khoury, SJG Oudejans, MD Sobsey and J Vinjé. 2005. Assessment of sources and diversity of male-specific coliphages for source tracking. Environ Eng Sci, 22(3):367-377.

Long SC, and MD Sobsey. 2004. A comparison of the survival of F+ RNA and F+ DNA coliphages in lake water microcosms. J Water Health, 2(1):15-22.

Love DC and MD Sobsey. 2007. Simple and rapid F+ coliphage culture, latex agglutination, and typing assay to detect and source track fecal contamination. Appl Environ Microbiol, 73(13):4110-4118.

Maynard C, F Berthiaume, K Lemarchand, J Harel, P Payment, P Bayardelle, L Masson and R Brousseau. 2005. Waterborne pathogen detection by use of oligonucleotide-based microarrays. Appl Environ Microbiol, 71(12):8548-8557.
Meschke JS and MD Sobsey. 2003. Comparative reduction of Norwalk virus, poliovirus type 1, F+RNA coliphage MS2 and Escherichia coli in miniature soil columns. Water Sci Tech 47(3):85-90.

Miyake T, K Furuse, T Shiba, T Aoi, T Sakurai and I Watanabe. 1971. Isolation and grouping of RNA phages in Taiwan. J Keio Med Soc, 48:25-34. (Japanese).

Miyake T, K Furuse, T Shiba, T Aoi, T Sakurai and I Watanabe. 1973. Isolation and grouping of RNA phages. II. A survey in Brazil. J Keio Med Soc, 50:353-362. (Japanese).

Miyake T, I Haruna, T Shiba, YH Itoh, K Yamane, and I Watanabe. 1971. Grouping of RNA phages based on the template specificity of their RNA replicases. Proc Nat Acad Sci, 68(9):2022-2024.

Miyake T, T Shiba, T Sakurai, and I Watanabe. 1969. Isolation and properties of two new RNA phages SP and FI. Japan J Micro, 13(4), 375-382.

Nelson D. 2004. Phage taxonomy: we agree to disagree. J Bacteriol, 186(21):7129-7031.
O’Connell KP, JR Bucher, PE Anderson, CJ Cao, AS Khan, MV Gostomski and JJ Valdes. 2006. Real-time fluorogenic reverse transcription-PCR assays for detection of bacteriophage MS2. Appl Environ Microbiol, 72(1):478-483.

Ogorzaly L and C Gantzer. 2006. Development of real-time RT-PCR methods for specific detection of F-specific RNA bacteriophage genogroups: application to urban raw wastewater. J Virol Meth, 138:131-139.

Osawa S, K Furuse, MS Choi, A Ando, T Sakurai, and I Watanabe. 1981. Distribution of ribonucleic acid coliphages in Korea. Appl Environ Microbiol, 41(4):909-911.

Osawa S, K Furuse, and I Watanabe. 1981. Distribution of ribonucleic acid coliphages in animals. Appl Environ Microbiol, 41(1):164-168.

Paranchych, W. 1975. Attachment, ejection and penetration stages of the RNA phage infectious process. In: ND Zinder (ed). RNA Phages. Cold Spring Harbor Laboratory. pp. 85-111.

Puig A, N Queralt, J Jofre and R Araujo. 1999. Diversity of Bacteroides fragilis strains in their capacity to recover phages from human and animal wastes from fecally polluted wastewater. Appl Environ Microbiol, 65(4):1772-1776.

Rohwer F and R Edwards. 2002. The phage proteomic tree: a genome-based taxonomy for phage. J Bacteriol, 184(16):4529-4535.
Rose JB, X Zhou, DW Griffin and JH Paul. 1997. Comparison of PCR and plaque assay for detection and enumeration of coliphage in polluted marine waters. Appl Environ Microbiol, 63(11):4564-4566.

Rose JB, SR Farrah, VJ Harwood, AD Levine, J Lukasik, P Menendez and TR Scott. 2004.

Reduction of pathogens, indicator bacteria, and alternate indicators by wastewater treatment and reclamation processes. Water Environment Research Foundation (WERF). Water for Reuse; Final Report. Co-published by IWA.

Sakurai T, T Miyake, T Shiba and I Watanabe. 1988. Isolation of a possible fourth group of RNA phage. Japan J Microbiol, 12(4):544-546.

Schaper M, J Jofre, M Uys, and WOK Grabow. 2002. Distribution of genotypes of Fspecific RNA bacteriophages in human and non-human sources of faecal pollution in South Africa and Spain. J Appl Microbiol, 92:657-667.

Sobsey. Coliphage tracking to identify sources of fecal contamination. ftp://ftp.sccwrp.org/
Stewart JR, J Vinjé, SJG Oudejans, GI Scott and MD Sobsey. 2006. Sequence variation among group III F-specific RNA coliphages from water samples and swine lagoons. Appl Environ Microbiol, 72(2):1226-1230.

Stewart-Pullaro, J, JW Daugomah, DE Chestnut, DA Graves, MD Sobsey and GI Scott. 2006. F+RNA coliphage typing for microbial source tracking in surface waters. J Appl Microbiol, 101:1015-1026.

Stoeckel DM. 2005. Selection and application of microbial source tracking tools for waterquality investigations. In: Techniques and Methods Book 2, Chapter 3A.

Sundram A, N Jumanial, and MM Ehlers. 2006. Genotyping of F-RNA coliphages isolated from wastewater and river water samples. Water SA, 32(1):65-70.

Tartera C and J Jofre. 1987. Bacteriophage active against Bacteroides fragilis in sewagepolluted waters. Appl Environ Microbiol, 53:1632-1637.

Tartera C, F Lucena and J Jofre. 1989. Human origin of Bacteroides fragilis bacteriophage present in the environment. Appl Environ Microbiol, 55:2696-2701.
van Duin, J., 1998. The single-stranded RNA bacteriophages. in: Fraenkel Conrat, H., Wagner, R.R. (Eds). The Bacteriophages. Series The Viruses. Plenum Press, NY. pp. 117-167.

Vinjé J, SJG Oudejans, JR Stewart, MD Sobsey and SC Long. 2004. Molecular detection and genotyping of male-specific coliphages by reverse transcription-PCR and reverse line blot hybridization. Appl Environ Microbiol, 70(10):5996-6004.

Wade TJ, RL Calderon, E Sams, M Beach, KP Brenner, AH Williams and AP Dufour. 2006. Rapidly measured indicators of recreational water quality are predictive of
swimming-associated gastrointestinal illness. Environ Health Persp, 114(1):21-28.
Wade TJ, N Pai, JNS Eisenberg and JM Colford Jr. 2003. Do U.S. Environmental Protection Agency water quality guidelines for recreational waters prevent gstrointestinal illness? A systematic review and meta-analysis. Environ Health Persp 111(8):1102-1109.

Yee, SYF, NY Fong, GT Fong, OJ Tak, GT Hui and YS Ming. 2006. Male-specific RNA coliphages detected by plaque assay and RT-PCR in tropical river waters and animal fecal matter. Int J Environ Health Res, 16(1):59-68.

Zinder ND, RC Valentine, M Roger, and W Stoeckenius. 1963. F1, a rod-shaped malespecific bacteriophage that contains DNA. Virology, 20:638-640.

Zinder ND. 1965. RNA phages. Annu Rev Microbiol, 19:455-473.

V. Gene Mapping and Phylogenetic Analysis of the Complete Genome of 30 ssRNA Male-Specific Coliphages of the Family Leviviridae

Abstract

An international collection of male-specific ssRNA (FRNA) coliphages comprising the Leviviridae family exists but the genetic diversity of these strains is poorly characterized. FRNA coliphages belonging to the family Leviviridae are genetically divided into two genera (Levivirus and Allolevivirus) which can be further divided into four different genogroups (I, II, III and IV).

To better characterize this virus family and its genetic genogroups, strains were collected from the United States, Japan, Europe, Brazil, Taiwan and/or Mexico. The complete genomic sequences of 19 new FRNA strains (10 Levivirus and 9 Allolevivirus) from diverse sources were determined and compared to the eleven known genome sequences available in GenBank, for a total of thirty FRNA genomes. Phylogenetic analyses demonstrated all strains clustered into two genera, Levivirus and Allolevivirus, and in four distinct genogroups, I, II, III and IV. Out of ten genogroup I strains, nine strains shared nucleotide sequence similarities ranging from $91.68 \%-99 \%$ whereas genogroup I strain fr shared a 75.27-77.65\% sequence identity with the other genogroup I phages. Genogroup II FRNA strains shared 83.30-93.84\% nucleotide similarity. Allolevivirus strains shared a nucleotide similarity range of $69.77-95.69 \%$ and $74.90-95.03 \%$ for genogroups III and IV, respectively. An approximate 50% nucleotide sequence identity was shared between Levivirus groups I and II and between Allolevivirus groups III and IV. For all strains

genomic full-length nucleotide and individual protein phylogenetic trees were compared. Genogroup II lysis protein tree formed a unique branch that was not observed in the fulllength nucleotide tree. Thus, both full-length nucleotide and individual proteins need to be evaluated when genotyping or phylogenetically clustering these FRNA coliphages. Data for amino acid composition, nucleotide similarities and replicase catalytic domain location contributed to phylogenetic branches or strain subclusters. Eight nucleotides at the 3' termini clearly distinguished between the Levivirus, 5' ACCACCCA 3' from the Allolevivirus 5' TCCTCCCA 3' genera. This evidence suggests that the sequence data is valid.

Introduction

Male-specific RNA (FRNA) coliphages are single-strand RNA (ssRNA) viruses possessing a positive sense genome ranging from 3.8 to 4.2 kb in size enclosed by a nonenveloped 26 nm icosahedral-shaped capsid (Buchen-Osmond, 2003). The bacterial host is restricted to the gram-negative bacteria of the genera Escherichia, Pseudomonas, Caulobacter, Salmonella, and Vibrio (Loeb and Zinder, 1961). For successful infection, the host must possess a fertility (F) sex-pilus, coded on the F-plasmid of E. coli (Paranchych, 1975), as infection occurs by attachment to this receptor site (Crawford and Gesteland, 1964). As the sex-pili are only expressed at temperatures greater than $30^{\circ} \mathrm{C}$ (Grabow, 2001), phage replication is restricted to environments such as the intestinal tract of warmblooded animals. The inability to replicate outside the gut, environmental stability, high numbers in sewage and a strong correlation with water-borne pathogens are some of the properties which have
made FRNA phages attractive candidates as indicators of fecal contamination in water (Havelaar et al., 1993).

FRNA phages belong to the family Leviviridae and can be further subdivided into two genera (Levivirus and Allolevivirus). Levivirus are subdivided into genogroups I and II and Allolevivirus are subdivided into genogroups III and IV. Historically, these subgroups were based on serological properties (Sundram et al., 2006), sedimentation, density and molecular weight (van Duin, 1988). Recently, genomic data has provided an additional subgrouping tool (Stewart et al., 2006).

Based on a limited number of complete sequences four genes could be identified (reviewed by Bollback \& Huelsenbeck, 2001). These genes code for an assembly or maturation protein, capsid protein, lysis protein and replicase protein in the Leviviruses whereas in Alloleviviruses, the lysis protein is replaced by a read-through protein. Each levivirus virion contains one molecule of positive sense ssRNA, 180 copies of the capsid or coat protein, one copy of the maturation protein and, in alloleviviruses, approximately 15 copies of the read-through protein (Weber \& Konigsberg, 1975; van Duin, 2000; van Duin and Tsareva, 2006).

A few complete nucleotide sequences of Leviviridae strains are known, including prototype strains MS2, GA, Q β and FI, as only 11 FRNA phages have been fully sequenced over the past few decades. With rapid molecular advances, sequencing is now more affordable and feasible.

Purpose

- Generate a nucleotide (nt) sequence database of complete genomic sequences of representative strains and environmentally isolated strains for all four genogroups of FRNA coliphages.
- Determine phylogenetic profiles, nucleotide sequence similarity, amino acid composition, Open Reading Frame (ORF) positions and subsequent gene locations for a total of 30 FRNA sequences.
-

Approach

- \quad Sequence nineteen FRNA strains and compare to eleven full-length genome sequences available in GenBank (GenBank/EMBL/DDBJ).
- Determine Open Reading Frames by locating Shine-Dalgarno regions and start codons to map each gene.
-
- Translate nucleotide sequences into amino acid compositions for each protein.
-
- Compare nucleotide and amino acid percent similarities among each genogroup.
-
- Determine and compare each protein family, protein motifs and domains by use of bioinformatics tools.
-
- Compare phylogenetic clustering for each full-length nucleotide genome and individual proteins in all genogroups.

Materials and Methods

FRNA Coliphage Strains and RNA Extraction

FRNA strains used in this study include prototype strains MS2 (genogroup I), GA (genogroup II), Q β (genogroup III), FI (genogroup IV) and SP (genogroup IV) were kindly provided by Dr. K. Furuse (Toaki University, Japan) and FRNA strains ST4, TW18, VK and BZ1 were a gift from Dr. J. van Duin (Leiden University, The Netherlands). Field-collected strains BR1, BR8 and BR12 were a gift from Brian Robinson (NOAA, Charleston, SC) and prototype strain fr was provided by Dr. A. Boehm (Stanford University, Stanford, CA). Strain R17 was purchased from Felix D'Herelle Reference Centre for Bacterial Viruses, Universite Laval, Quebec, Canada. In addition, field strains isolated from wastewater, surface waters, swine lagoons and chicken litter were analyzed in this study (Table 7.1). Preliminary subgrouping of phages was previously determined by reverse line-blot hybridization (Vinjé et al., 2004).

Each strain was plaque purified and further enriched using Escherichia coli HS(pFamp)R as host (Vinjé et al., 2004). Single plaques were enriched overnight in Tryptic Soy Broth (TSB) supplemented with streptomycin-sulfate ($15 \mathrm{mg} / \mathrm{L}$) and ampicillin (15 $\mathrm{mg} / \mathrm{L})$. Cultures were centrifuged $(3,220 \mathrm{xg}$ for 10 min$)$ to pellet host cells and debris and the supernatant was chloroform extracted $(1: 1 \mathrm{~V}: \mathrm{V})$. Approximately $1-2 \mathrm{ml}$ aliquots of the purified supernatant were frozen at $-75^{\circ} \mathrm{C}$.

Coliphage titers were determined using a single agar layer procedure (SAL) (US EPA Method 1602, 2001). The procedure was as follows. A 1 ml of overnight E. coli Famp host culture was transferred into 50 ml trypticase soy broth with streptomycin and ampicillin
(TSB/strep/amp) and grown 4 hr to \log phase. A 150 ml volume of trypticase soy agar, TSA (4.5 g TSB and 1.2 g agar), was autoclaved and placed into a water bath $\left(47-55^{\circ} \mathrm{C}\right.$). A 300 ul aliquot of 500X strep/amp was added into the cooled 150 ml TSA. Serial 10-fold dilutions of the purified virus were prepared. For 10 -fold stock dilution, 100 ul of stock was transferred into 900 ul phosphate buffered saline (PBS), mixed and this process repeated to a serial dilution 10^{-15}. To sterile 15 ml plastic tubes, labeled -1 to $-15,1 \mathrm{ml}$ of the 4 hr E. coli, 100 ul of the appropriate virus dilution and 10 ml TSA were added. After quick manual mixing the tube contents were poured into labeled 20 mm petri plates which were then cooled, allowed to dry, inverted and incubated overnight at $37^{\circ} \mathrm{C}$. The coliphage titer was determined by counting the plates having a minimum of 5 to a maximum of 20 plaques per plate. Titer concentration was reported as $\mathrm{PFU} / \mathrm{ml}$.

Coliphage RNA was extracted from the purified viral supernatant using a QIAamp viral RNA mini kit (Qiagen, Valencia, CA) as follows. A 200 ul volume of purified virus stock was added into the 25 ul protease tube. Into the same tube, 200 ul of carrier RNA/Buffer AL mixture was added and the combined solutions were vortex mixed, incubated $56^{\circ} \mathrm{C}$ for 15 minute and clarified by a 1 minute centrifugation. To the same tube, 250 ul ethanol (EtOH) was added, vortex mixed and incubated 5 min at room temperature (RT). The lysate was applied into the QIAamp spin column and centrifuged 3-4 min at 6000 $\mathrm{xg}(8000 \mathrm{rpm})$ and the contents of the collection tube was discarded. To the column, 500 ul of Buffer AW2 was added, centrifuged 1 min and the contents of the collection tube were discarded. To the column, 500 ul EtOH was added, centrifuged 1 min and collection tube was discarded. The column was transferred to a clean collection tube and centrifuged for 1
minute. The column was again transferred a new, nuclease-free tube and 50 ul RNase free water was added onto column and incubated 5 min at RT. The final centrifugation, $(14,000$ rpm) for 1 min and the recovered purified RNA was frozen at $-20^{\circ} \mathrm{C}$.

Figure 5.1. Flow-chart of sequencing methods.

Generating cDNA from Polyadenylated RNA

For all procedures during cDNA synthesis, strain MS2 was used as a positive control. First, viral RNA was 3' polyadenylated with yeast PolymeraseA and 25 mM ATP in a 50 ul reaction volume (USB, Inc, Cleveland, OH). The reaction was prepared with 10 ul 5 X Reaction Buffer, 10 ul RNA, 2 ul 25 mM ATP, 0.7 ul 600 U Poly(A)Polymerase and 27.3 ul nuclease-free water. The mixture was incubated at $37^{\circ} \mathrm{C}$ for 5 min and placed on ice for
enzymatic termination. Polyadenylated RNA was either immediately frozen or used as a template for cDNA.

Second, full-length cDNA was prepared using oligo-dT reverse primer supplied with the reverse transcriptase MonsterScript $1^{\text {st }}$ Strand cDNA Synthesis Kit (EpiCentre, Madison, WI) or with a gene-specific reverse primer. To a 250 ul thin-walled PCR tube, the following reagents were added: 4 ul nuclease-free water, 10 ul polyadenylated RNA or RNA template and 1 ul of 10 uM PolyT primer or 1 ul of 10 uM gene-specific primer. The mixture was heated for 1 min at $65^{\circ} \mathrm{C}$ and chilled for 1 min on ice. To the same tube, 1 ul MonsterScript Reverse Transcriptase and 4 ul of 5X cDNA reaction buffer were added. The mixture was placed in a thermocycler with the following cycle regime: $37^{\circ} \mathrm{C}$ for $5 \mathrm{~min}, 42^{\circ} \mathrm{C}$ for 5 min , $60^{\circ} \mathrm{C}$ for 40 min . The reaction was terminated by incubating at $90^{\circ} \mathrm{C}$ for 5 min and chilled on ice for 1 min . The single-stranded cDNA was either frozen or used for PCR template (Fig 5.1). To verify the generation of full-length cDNA, a partial region of the the 5' end of MS2 was amplified using primers MS25 and MS23 (Lovmar et al., 2003).

To amplify the 1 kb region between the replicase and the 3^{\prime} end of the genome, strain-specific forward primers were designed based on a 200 nucleotide (nt) region of the replicase gene (Vinjé et al., 2004). To amplify the 5 ' end of the genome, reverse primers were designed based on the replicase gene sequence of each strain and forward primers were designed based on available full-length sequences (GenBank) of each genogroup. As sequences were generated (Sequetech, Mountain View, CA), reverse primers were designed
to amplify overlapping sections of the genome. The majority of the genome was sequenced by "primer walking."

5' Amplification of cDNA Ends

The nucleotide sequence of the 5^{\prime} region was determined by rapid amplification of cDNA end (RACE) with the Smart Race cDNA Amplification Kit (Clontech, Mountain View, CA). First-strand cDNA synthesis was prepared on ice in a 250 ul thin-walled PCR tube by combining 3 ul RNA, 1 ul of 10 uM gene-specific reverse primer and 1 ul Smart oligo (from kit). The 5 ul reaction volume was briefly centrifuged and the following components were added: 2 ul of 5X First Strand buffer, 1 ul of 20 mM DTT, 1 ul of 10 mM dNTP and 1 ul SuperScript II (Invitrogen, Carlsbad, CA). Following a brief centrifugation, the mixture was incubated for 90 min at $42^{\circ} \mathrm{C}$. To dilute the first-strand cDNA, 20 ul of Tricine-EDTA buffer was added and heated for 7 min at $72^{\circ} \mathrm{C}$. The reaction generated double stranded cDNA. The cDNA was frozen at $-20^{\circ} \mathrm{C}$ and used for subsequent PCR reactions. Concentration of cDNA was determined with a NanoDrop spectrophotometer (NanoDrop Technologies, Wilmington, DE).

Long Template PCR, Cloning and Sequencing

The cDNA was amplified by using Phusion DNA Polymerase (New England Biolabs, Ipswich, MA), with final concentrations of 1X of 5X Phusion Buffer, $0.2 \mathrm{mM} \mathrm{dNTP}, 1 \mathrm{ul}$ of 10 uM forward primer, 1 ul of 10 uM reverse primer, $3 \% \mathrm{DMSO}, 2 \mathrm{ul}$ cDNA and 0.5 ul Phusion Taq in a 50 ul reaction using the following cycle parameters: one round denaturation at $98{ }^{\circ} \mathrm{C}(1 \mathrm{~min}), 35$ rounds at $98^{\circ} \mathrm{C}(30 \mathrm{sec}), 48^{\circ} \mathrm{C}(1 \mathrm{~min}), 72{ }^{\circ} \mathrm{C}(3 \mathrm{~min})$ followed by 10 min extension at $72{ }^{\circ} \mathrm{C}$. For each reaction, positive controls were prepared using primers

MJV82 and JV81 for Leviviruses and MJV82 and JV41 with Alloleviviruses (Vinjé et al., 2004). A no-template negative control was included.

PCR products were separated by electrophoresis in a 1.5% agarose gel, stained with SYBR Gold Nucleic Acid Gel Stain (Molecular Probes, Carlsbad, CA) and visualized under blue light (Dark Reader Transilluminators, Clare Chemical Research, Dolores, CO).

Blunt-end PCR products were excised using a gel extraction tool (USA Scientific Plastics, Ocala, FL) and then purified (QuickClean 5M Gel Extraction Kit, GenScript Corporation, Piscataway, NJ). Excised bands were weighed in 1.5 ml microcentrifuge tubes and 3 volumes of Binding Solution II per gel slice were added. The gel solution was heated at $50^{\circ} \mathrm{C}$ until melted. One volume of isopropanol was added and the mixture was transferred into the Genprep spin column and centrifuged for 1 min at $12,000 \mathrm{rpm}$. The column effluent was discarded and 500 ul of Wash Buffer was added, the column was centrifuged and the liquid waste discarded. The 500 ul wash was repeated and waste discarded. The column was placed into a clean 1.5 ml microcentrifuge tube, 30 ul of Elution Buffer was added and the column was incubated 1 min at room temperature. The tube was centrifuged 1 min at $12,000 \mathrm{rpm}$ and the collected DNA eluate was transferred to a clean tube. Concentration of the DNA was determined using a NanoDrop spectrophotometer. The DNA was either cloned or the PCR product was sequenced.

Gel-purified DNA was cloned using a ZeroBlunt TOPO Cloning Kit, pCR-Blunt II TOPO plasmid kit (Invitrogen, Carlsbad, CA). To prepare a TOPO cloning reaction, 4 ul DNA, 1 ul salt solution and $1 \mathrm{ul} \mathrm{pCR} \mathrm{II} \mathrm{Blunt} \mathrm{TOPO} \mathrm{were} \mathrm{added} \mathrm{to} \mathrm{a} \mathrm{nuclease-free} \mathrm{tube} \mathrm{and}$ incubated 30 min at room temperature. To a vial of One Shot E. coli competent cells, 2 ul of
the TOPO cloning reaction were added and incubated on ice for 30 min . The cells were heatshocked at $42^{\circ} \mathrm{C}$ and immediately placed on ice. A 250 ul volume of SOC medium was added to the One Shot cells and shaken (200 rpm) for 1 hr at $37^{\circ} \mathrm{C}$. Fifty ul of transformed cells were plated onto pre-warmed LB agar plates containing $50 \mathrm{ug} / \mathrm{ml}$ kanamycin, the transformed cells were spread to isolate colonies and the plates were incubated overnight at 37° C.

Colonies of transformed E. coli cells were screened for positive inserts using wholecell PCR. Using aseptic techniques, individual colonies were selected with a sterile toothpick, the toothpick was briefly rinsed into a 50 ul Phusion master mix (as described above) then dropped into $10 \mathrm{ml} \mathrm{LB} / \mathrm{kan}$ broth and incubated overnight at $37^{\circ} \mathrm{C}$. Whole-cell PCR was performed on individual colonies using Phusion DNA Polymerase and the same primers used to generate the pre-cloned amplicon with the following cycle modifications: one round denaturation at $98{ }^{\circ} \mathrm{C}(3 \mathrm{~min}), 35$ rounds at $98{ }^{\circ} \mathrm{C}(10 \mathrm{sec}), 57{ }^{\circ} \mathrm{C}(30 \mathrm{sec}), 72^{\circ} \mathrm{C}$ (30 sec) followed by 10 min extension at $72^{\circ} \mathrm{C}$. Amplicons were separated by electrophoresis in 1.5% agarose gel in 0.5 X Tris-acetate-EDTA (TAE), stained with 20 $\mathrm{ug} / \mathrm{ml}$ ethidium bromide and visualized under UV light (UVP, Upland, CA). Those clones with the appropriate size PCR amplicon were selected for plasmid purification.

Positive clones were plasmid-purified (QIAprep Spin Miniprep Kit, Qiagen, Valencia, CA). An E. coli colony that had been selected with a toothpick and incubated overnight was centrifuged 10 min at $8000 \mathrm{rpm}(6800 \mathrm{xg})$. The supernatant was discarded and the cell pellet was resuspended and processed as follows. A 250 ul volume of Buffer P1 was added to the cell pellet, vortexed to mix and transferred to a clean 1.5 ml
microcentrifuge tube. A 350 ul volume of Buffer P2 was added to the resuspended pellet and mixed by inversion followed by addition of 350 ul Buffer N3. The buffer mixture was inverted 4-6 times and centrifuged 10 min at $13,000 \mathrm{rpm}(17,900 \mathrm{xg})$. The supernatant was decanted into the QIAprep spin column and centrifuged 1 min at $13,000 \mathrm{rpm}$. The column effluent was discarded and the column was washed with 500 ul Buffer PB, the column was centrifuged 1 min and the wash was discarded. To the spin column, 750 ul Buffer PE was added, the column was centrifuged and the wash was discarded. The column was incubated with 50 ul Buffer EB to elute the plasmid. Following a 1 min incubation at room temperature, the column was centrifuged 1 min . Purified plasmid was shipped frozen for sequencing. Each cDNA PCR amplicon was cloned and sequenced in triplicate to obtain the consensus sequence. In some cases, PCR products were sequenced directly. To achieve publication quality data, both forward and reverse strands were sequenced (Sequetech, Mountain View, CA). This process was repeated until complete genomes were obtained.

To avoid contamination, a PCR hood (AirClean 600, AirClean Systems, Raleigh, NC) located in a designated room was used to prepare master mixes separate from template additions. PCR amplification, electrophoresis, template and/or viral preparations (EPA, 2004) were conducted in individual assigned rooms based on designated use.

Sequence Analyses

Raw sequences from three to five individual clones were imported and aligned using BioEdit v7.0.1 (Hall, 1999) followed by Basic Local Alignment Search Tool (BLAST, National Center for Biotechnology Information) analyses for sequence and phylogenetic confirmation. Completed sequences from all strains were aligned with full-length prototype
strains (GenBank) using BioEdit ClustalW application. Open Reading Frames (ORF) for each strain was determined using BioEdit.

Similarity analyses were evaluated using SimPlot v3.5.1 (Lole et al., 1999). Relationships among aligned nucleotide sequences were depicted in similarity plots. The SimPlot program determines the percent identity between a reference sequence and the queried sequence. Percent similarity was calculated within a sliding window 160 bp wide with a step size of 10 bp between plots.

Amino Acid Analysis

Deduced amino acid sequences for each of the four genes were determined using a computer-generated DNA-to-protein translation tool, ExPASY (http://ca.expasy.org/). Prediction of protein sequence motifs were identified by PROSITE (http://ca.expasy.org/) and protein families and domains were modeled in Pfam (http://pfam.janelia.org).

Genetic distance was calculated for each protein within their respective genogroup as follows. Protein amino acid composition was aligned using BioEdit ClustalW followed by protein distance matrix using Neighbor Joining analysis (BioEdit). Matrices values are the fraction of mismatches at aligned positions. Protdist (BioEdit) protein distance matrix compares the number of amino acid mismatches within each protein. Therefore, the smaller the distance value, the higher the amino acid similarity.

Phylogenetic Analysis

Sequence data were analyzed using BioNumerics Software v.3.5 (Applied Maths, Saint-Martens-Latem, Belgium). Phylogenetic trees were built by global cluster analysis performed on multiple aligned sequences and clustered by UPGMA using the Jukes and

Cantor correction (Jukes \& Cantor, 1969). A bootstrap analysis, based on 10,000 substitutions, was used to measure cluster significance. The reliability of each cluster was expressed on a percentage basis.

Nucleotide Sequence Accession Numbers

The accession numbers of full-length leviviruses sequences available in GenBank were as follows: Genogroup I MS2 (NC_001417.1), M12 (AF195778), fr (NC_0011333.1); Genogroup II GA (NC_001426.1), KU1 (NC_002250.1); Genogroup III M11 (NC_004304.1), Qbeta (AY099114.1), MX1 (NX_001890.1); and Genogroup IV SP (X07489.1), NL95 (AF059243.1), FI (EF068134.1).

Results

Comparison of Full-length Genome Sequences

Full-length genome sequences of 19 FRNA strains were determined in this study and compared to 11 strains previously published in GenBank with respect to genome size and Open Reading Frame(s) locations (Table 5.1).

Nucleotide sequence similarities among the Leviviridae strains are shown in Table 5.2. A total of 7 group I strains were sequenced, DL1, DL2, DL13, DL16, ST4, R17 and J20 and compared to GenBank group I strains MS2, M12 and fr. Group I strains DL2 and DL13 were omitted from this table as they were $>99 \%$ identical having only 4 nt single-point mismatches to DL16. MS2 and ST4 were 98.71% similar to each other. Sequence similarity among genogroup I strains ranged from $75.27-96.67 \%$ with strain fr forming a separate subgroup (Table 5.2, Fig 5.2).

Table 5.1 Open Reading Frames positions for Leviviridae.

Open Reading Frame Location (nt)

Strain	Group	Full length nt	ORF1	ORF2	ORF3	ORF4
DL1	I	3570	130-1311	1335-1727	1678-1905	1761-3398
DL2	I	$3491{ }^{\text {b }}$	130-1311	1335-1727	1678-1905	1761-3398
DL13	I	$3491{ }^{\text {b }}$	130-1311	1335-1727	1678-1905	1761-3398
DL16	I	3569	130-1311	1335-1727	1678-1905	1761-3398
J20	I	3569	130-1311	1335-1727	1678-1905	1761-3398
ST4	I	3569	130-1311	1335-1727	1678-1905	1761-3398
R17	I	3569	130-1311	1335-1727	1678-1905	1761-3398
MS2 ${ }^{\text {a }}$	I	3569	130-1311	1335-1727	1678-1905	1761-3398
M12 ${ }^{\text {a }}$	I	$3340^{\text {b }}$	130-1311	1335-1727	1678-1905	$1761-3340^{\text {b }}$
$\mathrm{fr}^{\text {a }}$	I	3575	129-1310	1336-1728	1691-1906	1762-3399
$\overline{\mathrm{GA}^{\text {a }}}$	II	3465	136-1308	1325-1717	1717-1908	1749-3347
KU1 ${ }^{\text {a }}$	II	3486	137-1309	1325-1717	1683-1929	1770-3368
T72	II	$3393{ }^{\text {b }}$	137-1309	1325-1717	1683-1916	1770-3368
DL10	II	$3376{ }^{\text {b }}$	136-1309	1326-1718	1715-1906	1747-3345
DL20	II	3458	137-1309	1326-1718	1718-1909	1750-3348
TW18	III	4218	62-1324	1345-1746	1345-2334	2344-4122
HL4-9	III	4221	62-1324	1345-1746	1345-2337	2347-4125
BR12	III	4218	62-1324	1345-1746	1345-2334	2344-4122
VK	III	4218	62-1324	1345-1746	1345-2334	2344-4122
BZI	III	4219	62-1324	1346-1747	1346-2335	2345-4123
QB ${ }^{\text {a }}$	III	$4215^{\text {b }}$	56-1319	1339-1741	1339-2329	2338-4117
M11 ${ }^{\text {a }}$	III	4217	57-1322	1344-1744	1344-2333	2352-4118
MX1 ${ }^{\text {a }}$	III	4215	56-1321	1343-1744	1343-2332	2351-4111
HP-P22		4241	52-1374	1395-1793	1395-2387	2407-4137
HP-P24		4243	53-1378	1397-1795	1397-2389	2409-4139
BR1	IV	4273	52-1404	1424-1822	1424-2419	2439-4169
BR8	IV	4273	52-1404	1424-1822	1424-2419	2439-4169
NL95 ${ }^{\text {a }}$	IV	4248	53-1318	1402-1800	1402-2394	2414-4144
$\mathrm{SP}^{\text {a }}$	IV	4276	55-1407	1427-1825	1427-2422	2442-4172
$\mathrm{FI}^{\text {a }}$	IV	$4184{ }^{\text {b }}$	55-1371	1392-1791	1392-2391	2406-4167
$\mathrm{nt}=$ nucleotide; ${ }^{\mathrm{a}}$ previously published GenBank genomes; ${ }^{\mathrm{b}}$ nearly full-length genome Three environmental group II strains, DL10, DL20 and T72 were sea						

compared to GenBank group II GA and KU1. Among group II strains nucleotide sequence similarity ranged from 83.30 to 93.84% with strains DL10, DL20 and GA having the highest sequence identities (93.43-93.67\%) whereas strains T72 and KU1 formed a separate subcluster (Table 5.2, Fig 5.2). Strains in group I had only 50% sequence identity (range of 46.74-53.85\%) with strains in group II (Table 5.2, Fig 5.3A). However, all Levivirus strains shared an eight nucleotide sequence at the 3^{\prime} terminus, 5^{\prime} ACCACCCA 3^{\prime}.

Among Allolevivirus group III, two different subclusters were formed. The first subcluster was composed of strains VK, HL4-9, BR12, BZ1, TW18 and GenBank strain Q β having a nucleotide sequence similarity ranging from 91.87-95.69\%. The second subcluster formed with GenBank group III strains MX1 and M11 having an 87% nucleotide similarity to each other. The nucleotide similarity of strains between the two group III subclusters ranged from 69.77-71.33\%. Group III strains shared $<40 \%$ identity (29.73-39.06\%) to Levivirus groups I and II (Table 5.2). Allolevivirus strains share the 3 ' terminus signature sequences 5' TCCTCCCA 3' (Table 5.5).

Genogroup IV environmental strains BR1, BR8, HB-P22 and HB-P24 were sequenced and compared to GenBank group IV strains SP, FI and NL95. Group IV Allolevivirus shared sequence identities ranging from 74.90-95.03 \% with the closest identities being 95.03% between strains BR8 and BR1. Strain HB-P24 shared 90.22\% identity with prototype strain NL95, whereas strains BR8 and BR1 shared a greater percent similarity with prototype strain SP (91.05-91.73\%). Group IV sequence identity was 53.53-
57.99% when compared to Allolevivirus group III (Table 5.2, Fig 5.3B) and $<40 \%$ (31.81-

38.73\%) when compared to Levivirus groups I and II.

Table 5.2 Leviviridae nucleotide percent similarity.

Number/ Strain/ Group	\% Nucleotide sequence similarity with the indicated strain																											
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
1/ MS2/I	100.00																											
2/ ST4/ I	98.71	100.00																										
3/R17/ I	96.39	96.67	100.00																									
4/ M12/ I	92.78	92.93	92.93	100.00																								
$5 / \mathrm{J20/} 1$	92.19	92.47	92.38	91.82	100.00																							
$6 / \mathrm{DLI/I}$	92.16	92.41	92.16	92.48	93.95	100.00																						
7/ DL16/ /*	91.68	92.07	91.96	92.00	94.73	94.79	100.00																					
$8 / \mathrm{fr} / 1$	75.27	77.09	75.89	75.43	76.63	76.55	75.65	100.00																				
9/ DL10/ II	53.13	52.18	52.54	52.29	53.47	53.15	52.35	49.93	100.00																			
10/ DL20/ II	52.89	52.23	52.17	52.18	53.85	50.65	53.69	51.68	93.84	100.00																		
11/ T72/ II	52.37	52.35	52.49	50.41	51.42	49.99	49.93	46.74	85.97	85.17	100.00																	
$12 / \mathrm{GA} / \mathrm{II}$	51.35	51.44	51.76	51.75	51.14	50.17	51.79	48.25	93.67	93.43	84.79	100.00																
13/ KU/ II	49.55	49.61	49.69	49.72	51.15	50.23	49.58	48.71	84.69	83.83	89.89	83.30	100.00															
14/ VK/ III	38.66	34.85	37.90	33.79	34.59	37.31	36.13	33.01	37.39	37.37	36.40	37.61	36.39	100.00														
15/ HL4-9/ III	37.55	36.25	37.05	36.19	35.25	32.75	36.68	36.13	34.16	38.11	36.51	34.38	39.25	91.97	100.00													
16/ QB/ III	36.87	36.33	36.94	36.15	38.27	34.07	37.88	32.05	38.02	38.44	36.58	34.85	36.62	92.09	94.76	100.00												
17/ BR1/ III	36.85	36.91	36.91	36.47	37.17	36.32	36.19	32.69	37.95	38.49	36.83	38.73	36.44	95.69	91.87	91.97	100.00											
18/ BZ1/ III	36.79	36.91	37.61	36.31	36.68	37.05	36.53	37.00	31.95	32.27	36.70	33.04	39.06	93.37	92.30	92.24	92.87	100.00										
19/ TW18/ III	36.39	36.73	36.39	35.97	35.28	32.71	36.19	31.71	37.63	38.22	36.13	34.73	36.31	92.25	95.90	95.58	92.06	92.65	100.00									
$20 / \mathrm{SP} / \mathrm{IV}$	36.29	34.64	34.73	34.64	34.90	34.77	34.18	33.77	37.09	36.69	32.80	37.13	32.32	55.49	57.75	54.19	54.64	53.09	55.92	100.00								
21/ HB-P24/ IV	35.39	35.47	34.70	35.43	37.00	33.64	38.54	35.85	37.30	33.03	37.54	36.81	38.73	56.13	55.93	53.53	56.73	54.87	55.89	79.37	100.00							
22/ BR1/ IV	34.13	34.13	36.77	34.61	34.59	37.12	34.30	37.55	37.21	33.08	32.77	33.18	31.81	53.61	57.37	53.93	55.36	54.31	56.94	91.73	79.60	100.00						
23/ FI/ IV	34.05	33.96	32.90	37.03	33.81	37.93	37.63	33.20	31.99	33.41	33.07	33.30	32.53	54.43	56.67	55.65	54.85	55.98	56.15	76.63	76.85	74.90	100.00					
24/ BR8/IV	34.04	36.61	34.19	33.43	34.70	36.68	34.76	33.66	36.66	36.19	36.83	36.91	36.92	55.27	56.64	53.17	55.33	55.49	54.82	91.05	78.87	95.03	74.57	100.00				
25/ M11/ III	33.47	31.11	33.49	30.54	35.66	32.79	32.95	36.14	33.59	33.47	31.82	33.75	30.57	71.33	70.43	70.45	71.05	70.66	71.23	53.67	55.84	52.33	56.03	51.61	100.00			
26/ NL95/ IV	33.10	37.11	32.64	32.55	36.94	32.75	32.87	33.46	36.05	36.04	37.76	37.58	36.99	55.99	56.39	55.81	55.80	54.64	53.92	78.50	90.22	78.47	76.07	78.32	55.89	100.00		
27/ MX1/ III	32.53	32.33	31.21	29.73	36.44	37.49	32.27	33.09	33.47	32.59	37.81	33.45	32.81	70.27	70.55	69.90	70.13	69.77	70.92	52.00	55.08	52.46	54.03	51.19	87.15	54.77	100.00	
28/ HB-P22/ IV	32.30	32.87	32.39	32.28	33.43	32.55	32.65	33.06	36.29	37.01	37.56	36.69	37.54	57.79	57.99	57.37	57.65	56.32	57.34	81.80	82.83	82.07	77.69	81.38	54.97	82.25	54.43	00.00

Figure 5.2 Phylogenetic analysis of Leviviridae nucleotide sequences.

Figure 5.3 SimPlot nucleotide similarity and genome organization.

Open Reading Frame Analyses

Genome lengths, in nucleotides (nt), gene and Open Reading Frame (ORF) locations of all sequenced FRNA phages belonging to genus Levivirus and genus Allolevivirus are shown in Table 5.1. Shine-Dalgarno sequences and start codons for all genes of these phages are presented in Table 5.3.

Levivirus

For all group I strains except strain fr, the ORF start and stop codons were located at the same nucleotide (nt) positions as was previously reported for strain MS2 (Fiers et al., 1976). Four proteins and four ORFs were located at the following nt positions: maturation/assembly protein (130-1311), coat protein (1335-1727), lysis protein (1678-1905) and replicase (1761-3398) (Table 5.1). In contrast, the ORF positions for strain fr were as follows: maturation protein A (129-1310), coat protein (1336-1728), lysis protein (16911906) and replicase (1762-3398). The start codon for ORF1, ORF2, ORF3 and ORF4 of genogroup I were AUG with two exceptions (1) MS2, ST4 and fr start codon for ORF1 was GUG and (2) lysis gene start codon, ORF3, for strain fr was UUG (Table 5.3).

Group II lysis and replicase genes were more similar in nucleotide position among strains T72 and KU1 whereas strains DL10 and DL20 were similar to strain GA (Table 5.1, Table 5.3). Group II start codons for all ORFs were AUG (Table 5.3). The four genes in group II differed from group I in their ORF nucleotide positions. Lengths of the 5^{\prime} untranslated regions of groups I and II genomes were 128 to 129 nt and 135-136 nt length, respectively. Lengths of the 3^{\prime} untranslated regions were 168-177 nt in group I and 135-140 nt length in group II (Appendix A).

Table 5.3 Start condons and Shine-Dalgarno sequences. Start codons (bold, underlined) and ShineDalgarno (underlined) sequences for each gene. (A) alignment of strains DL1, DL2, DL13, DL16, J20, ST4, R17 and strains M12 and MS2 from Group 1 Levivirus. Strain fr is shown separately. (B) alignment of strains T72, DL10, DL20, and strains KU1 and GA from Group II Levivirus, (C) alignment of strains TW18, HL4-9, BR12, BZ1, VK and strains QB, MX1 and M11 from Group III Allolevivirus, (D) alignment of strains HB-P22, HB-P24, BR1, BR8 and strains SP, NL95 and FI from Group IV Allolevivirus.
(A). Levivirus Group I.

$\frac{\text { ORF }}{1}$	Gene assembly strain fr
2	capsid strain fr
3	lysis strain fr
4	replicase strain fr

CCAUUCCUAGGAGGUUUGACYYRUGCGAGC
GCUAGGGAGCCUCGUGUGCGAAAGU
AACCGGAGUUYGAAGCAUGGCUUCUAA
CCGA $\underline{\text { AGGGAGAGCCACAUGGCUUCG }}$
RAUGCAAGGUCUCCURAAAGAUGGAAACCC
AACUGGUAACCCAAUUGCAACAGC
CAUGAGGAUUACCCAUGUCGA
ACAUGAGGAAUACCCAUGUCAAAAU
(B) Levivirus Group II.

$\frac{\text { ORF }}{1}$	Gene assembly
2	capsid
3	lysis
	strains T72, KU1 strains DL10, DL20, GA

AUACCGGAGGADCUAUGUUUCCGA
AAWWAY $\underline{G G A G U U A G C C A Y \underline{A U G G C A A C U U U A}}$

GAUUGGGAACCCGGUUGCUGAUGCCAUCUC CDCAGAGYGGCUUCUACGCGUAAUGGGUCUG

4
replicase
strains T72, KU1
strains DL10, DL20, GA

CAUAAGGAAAACCUAUGUUCCGAUUCA
AAACAUAAGGAAAACCUAUGUUCCGAUUCA

(C) Allolevivirus Group III.

ORF	Gene assembly
$2 / 3$	capsid/readthrough
4	replicase
	TW18, HL4-9, BR12, BZ1, VK, QB
	MX1 and M11

Sequences
DRGAGGMMAYAUGCCWM
UUGGGUCAAUUHGAUCAUGGCWAAA
AGUAACUAAGGAUGAAAUGCAUGUCUAAG AGUAACURAAGGAGAUCUGCAUGUCWA

(D) Allolevivirus Group IV.

$\frac{\text { ORF }}{1}$	Gene assembly
$2 / 3$	capsid/readthrough
	strains BR1, BR8, NL95, SP strains HB-P22, HB-P24, FI

CUACAGAGGAGAGUCUAUGCC

CUUUGGGUCAAUUYGAUCAUGGCAA
YUUUGGGUCAAUUYGAUCAUGGCWA
4
replicase
strains BR1, BR8, NL95, SP

CUUAARRGAGRWAGCAUGYCAA

Allolevivirus

The Allolevivirus genome possesses four genes and 3 start codons as the capsid and readthrough genes share a single ORF (ORF2/ORF3).

For all group III strains, except MX1 and M11, the ORF alignment positions were very similar or identical. Although ORFs of strain $\mathrm{Q} \beta$ aligned perfectly with the other group III strains, the GenBank acquired $\mathrm{Q} \beta$ sequences were not complete. Thus, individually mapped ORF positions varied slightly (Table 5.1). MX1 and M11 ORF and Shine-Dalgarno positions were similar to the other group III strains for the assembly, capsid and readthrough genes, but differed for the replicase gene (Table 5.3).

Within group IV phages BR1, BR8, NL95 and SP had similar ORF positions whereas strains HB-P22, HB-P24 and FI ORFs had similar nt positions (Table 5.1, Table 5.3).

The 5' untranslated length in groups III and IV ranged from 56-62 nt and 50-53 nt, respectively. Groups III and IV 3' untranslated sequence length were 96-98 nt and 97-104 nt, respectively.

Shine-Dalgarno Sequences

Shine-Dalgarno sequences for Levivirus groups I and II were located within 5-9 nt upstream from ORF1 and ORF2, 9-16 nt upstream from ORF3 and 7-8 nt upstream from ORF4. Shine-Dalgarno sequences for Allolevivirus groups III and IV were located 5-6 nt upstream from ORF1, 12 nt upstream from ORF2/ORF3, and 6-9 nt upstream from ORF4 (Table 5.3).

With respect to the entire Leviviridae family, the ORF positions for the coliphage genes were preceded by Shine-Dalgarno sequences located within 5-16 nt upstream from the ORF start codon(s).

Amino Acid Composition - Levivirus

The numerical amino acid (aa) positions are denoted as to their location within their respective protein. Levivirus group I demonstrated the most conservative amino acid composition when compared to groups II, III and IV (Table 5.4, Appendix B).

With the exception of strain fr, amino acid number was consistent in each of the four protein types in group I phages (Table 5.4, Appendix B). In the lysis protein, strain fr had 71 amino acids, a four codon deletion, when compared to 75 amino acids in the other group I strains. Alignment of the group I lysis protein, including strain fr, indicated 2 stretches of conserved amino acids; one region of 11 amino acids and another region having 13 amino acids. A 15 aa deletion was observed in group II lysis protein strains DL10, DL20, TL2 and GA when compared to T72 and KU1. No consensus sequence was noted in the lysis protein between groups I and II. The capsid protein of all strains in group I was 130 amino acids in length. Levivirus groups I and II capsid proteins shared a conserved region consisting of a 10 amino acid, FVLVDNGGTG, consensus sequence. Groups I and II maturation protein shared a consensus region RWLELQ at amino acid positions number 198-203. Groups I and II replicase shared a 24 amino acid conserved region at positions 198-221 and the YDGG sequence near amino acid position 340 (Appendix B).

Table 5.4 Leviviridae number of amino acids per gene. Male-specific coliphage family Leviviridae, genera Levivirus (groups I and II) and Allolevivirus (groups III and IV) table of amino acids. Proteins were determined by mapping of Open Reading Frames and translation of nucleotide sequences to amino acids using ExPASY (http://ca.expasy.org/) DNA-to-protein translation tool. The number of amino acids per protein is listed for each genogroup. If differences existed within groups, the amino acid numbers are listed for individual strains. (A) Group I, (B), Group II, (C) Group III and (D) Group IV.

	Maturation	Capsid	Lysis	Replicase
(A) Group I strains				
MS2, M12, DL1, DL2, DL13, DL16, J20, ST4, R17:	393	130	75	545
fr:	393	130	71	545
(B) Group II strains				
GA, DL10, DL20:	390	130	63	532
T72:	390	130	75	532
KU1:	390	130	79	532
	Maturation	Capsid	Read-thru	Replicase
(C) Group III strains				
QB, BR12, TW18, BZ1, VK:	420	133	328	592
HL4-9:	420	133	329	592
MX1:	421	133	328	586
M11:	421	133	328	588
(D) Group IV strains				
SP, BR1, BR8:	450	132	330	576
FI:	438	132	332	586
NL95:	442	132	331	576
HB-P24:	441	132	329	576
HB-P22:	440	132	329	576

Pfam-Levivirus

Not all of the four genes, as determined by ORF mapping, were grouped into both a protein domain and family membership by Pfam. A PfamA maturation protein search generated "phage_mat-A" domain and a total of 24 Leviviridae phages including all four genogroups and the additional species PRR1, PP7 and AP205. Levivirus capsid amino acid compositions were placed into the "Levi_coat" family and the replicase protein was placed into the "RNA replicase, beta-chain" domain. The group I lysis protein was not sorted to a family or domain in a PfamA search. A subsequent PfamB search for the group I lysis protein linked it to a lysis domain and the results generated Levivirus group I species fr, M12, MS2 and JP501.

For each protein, Pfam recognized Leviviridae ssRNA viral species. In some cases, such as the group I capsid protein, GenBank Leviviridae strains from groups I, II, III, IV and bacteriophage PRR1 were included in the Pfam species tree. In addition to the Leviviridae family, results of searches for the groups I and II replicase species tree added bacteriophages PRR1, ZR, BO1 and Acinetobacter phage AP205.

Protein sequence motifs - Levivirus

Predicted protein motifs, casein kinase II phosphorylation, cAMP and cGMPdependent protein kinase phosphorylation, protein kinase C phosphorylation, N myristoylation, N -glycosylation and tyrosine kinase phosphorylation, occurred frequently in the FRNA coliphages. Excluding strain fr, the maturation protein of groups I and II shared one amino acid motif with the casein kinase II phosphorylation protein and the replicase gene shared one amino acid position motif with the N -myristoylation protein.

No amino acid motif positions were shared between groups I and II in the capsid or lysis proteins. Unique to strain fr was the presence of a leucine zipper in the lysis protein and an amidation motif in the replicase region. The replicase gene RNA-dependent RNA polymerase catalytic domain occurred at amino acid positions 243-373 and 245-375 for groups I and II, respectively. Common to every group II strain was a prenyl group binding site (CAAX box) at amino acid positions 529-532 in the replicase region.

Genetic distances - Levivirus

Excluding strain fr, group I amino acid compositions were very similar as the genetic distance was very close among all four proteins. The capsid protein was most similar (distance of 0.0000-0.0411) followed by replicase (0.0033-0.0887), maturation protein (0.0046-0.0889) and lysis (0.0232-0.3416). Capsid protein was identical among strains DL1, DL2, DL13, DL16 and J20 (distance 0.0000). Amino acid composition of all four strain fr proteins showed the greatest distance from the other group I strains (0.23160.5685).

Closest to furthest genetic distance in the amino acid composition for the group II strains were as follows: capsid (0.0135-0.1116), maturation (0.0235-0.2036), replicase (0.0415-0.2160) and lysis (0.0500-4.6735).

Amino Acid Composition - Allolevivirus

The length of the maturation protein of groups III and IV varied from 420 aa to 450 aa (Table 5.4) and possessed a mutual conserved aa region LWLEFRYGL (Appendix B). The length of the capsid protein was 133 and 132 aa for groups III and IV, respectively, and conserved stretches of amino acids occurred in both groups. Groups

III and IV read-through protein was 328 to 332 aa in length and possessed conserved regions between aa positions 290-310. Consensus, however, was unique to each group. Compared to the other group III strains MX1 and M11 shared a three amino acid deletion at the 5^{\prime} end. The group IV maturation protein in strains HB-P22, HB-P24, NL95 and FI had a 9 amino acid deletion when compared to the other group IV strains. The Allolevivirus replicase gene was 576-592 amino acids in length revealing the longest region of conserved amino acids ranging from amino acid positions 202-247 in group IV and positions 207-240 in group III. Groups III and IV replicase shared the sequence KAVTVPKNSKTDRCIAIEPGWNMFFQL in the 210-235 aa region and the YGDD sequence near amino acid position 360 (Appendix B).

Pfam - Allolevivirus

Identical results were obtained for groups III and IV PfamA and PfamB searches. Similar to the Levivirus, a maturation protein search generated "phage_mat-A" domain and a total of 24 Leviviridae phages including all four genogroups and the additional bacteriophage strains PRR1, PP7 and AP205. PfamA displayed the capsid protein in the family "Levi_coat" and linked to a 31-member Leviviridae species tree which included all four genogroups along with phages ZR, TH1, TL2, SD, f2 and BO1 plus bacteriophage strains PRR1. Strains PP7 and AP205 were not included in the capsid species tree.

Read-through proteins were grouped as "A1-protein coat readthrough" with PfamB generating a 5-member species tree of SP, QB, NL95, MX1 and M11. As with the Levivirus, the Allolevivirus replicase protein was sorted into the "RNA replicase, beta-
chain" family including a 24 -member Leviviridae species tree with additional bacteriophages PRR1, ZR, PP7, BO1 and AP205.

Protein sequence motifs - Allolevivirus

As observed in the Levivirus genus, the most prevalent Allolevivirus protein motifs were casein kinase II phosphorylation, cAMP and cGMP-dependent protein kinase phosphorylation, protein kinase C phosphorylation, N-myristoylation, N glycosylation and tyrosine kinase phosphorylation. With the exception of group III strains MX1 and M11 and group IV strain HB-P24, a cell attachment motif (RGD) in the maturation protein was present in the majority of group III and IV strains. Group IV strains SP, BR8, BR1 and HB-P22 had a cell attachment motif in the read-through protein.

The catalytic domain of the RNA-dependent RNA polymerase (replicase protein) was located at amino acid positions 262-394 in group III strains except for M11 and MX1. Their catalytic domain was located at amino acid positions 259-391. Group IV catalytic domain was located at amino acid positions 259-391.

Genetic distances - Allolevivirus

Group III amino acid genetic distances were most similar in the capsid protein (distance $0.0000-0.3734$) followed by replicase ($0.0278-0.6571$), maturation protein (0.0347-0.8289) with the greatest genetic distance in the read-through protein (0.04440.5128). Strains BR12 and VK shared identical capsid proteins (distance of 0.0000).

In group IV, highly similar amino acid compositions were found in the replicase
(distance 0.0474-0.3382), followed by the capsid (0.0535-0.2569) and read-through protein (0.0555-0.5072). The greatest genetic distance was observed in the maturation protein (0.0607-0.5646) in group IV strains.

Phylogenetic Analyses

An algorithmic approach was selected to construct phylogenetic trees from the nucleotide sequence and amino acid data (Fig 5.2, Fig 5.4). Nucleotide sequences in the phylogenetic tree of Levivirus group I strains produced two branches, with 9 strains clustered as MS2-like and strain fr an individual branch (Fig 5.2). Within group II nucleotide sequences, strains KU1 and T72 formed one branch and strains DL10, DL20 and GA formed a second branch. Allolevivirus group III nucleotide sequences clustered into a MX1, M11 branch and a second branch with $\mathrm{Q} \beta$-like strains BR12, VK, BZ1, HL4-9, TW18 and prototype $\mathrm{Q} \beta$. Nucleotide sequence analysis formed three branches in group IV strains as follows: 1) HB-P24, HB-P22 and prototype NL95, 2) BR1, BR8 and prototype SP and 3) prototype FI (Fig 5.2).

Individual proteins were clustered into phylogenetic trees (Fig 5.4). In some cases, phylogenetic protein trees formed more subclusters or branches that the nucleotide trees. For example, Levivirus group II lysis protein formed a separate branch (strains T72, KU1) whereas the remaining genogroup II strains (DL20, TL2, DL10, GA) formed a branch off of the group I strains (Fig 5.4). Protein trees generated for Allolevivirus were similar to nucleotide phylogenetic clustering. Group III formed two branches, MX1 with M11 and QB-like (6 strains). Group IV generated four subclusters for each protein
tree with the least amount of variation, $>90 \%$ similarity, noted for the capsid protein.
SimPlots provide a visual picture of regions of similarity when two or more strains are compared. When nucleotide genomes were compared for all Groups I and II strains, SimPlots showed that the replicase was most similar whereas the maturation gene shared the least amount of nucleotide regions (Fig 5.3A). When complete genome nucleotide sequences were compared between groups III and IV, SimPlot graphs showed similar nucleotide regions in the capsid and the 5 ' portion of the replicase, but least similar in the maturation and 3^{\prime} region of the replicase (Fig 5.3B)

Table 5.5 Comparison of genomic traits. Allolevivirus and Levivirus.

	Allolevivirus	Levivirus
Genome size (nt)	4215-4276	3458-3575
Gene number	4	4
Proteins	4	4
Number of ORF initiation sites	3	4
Protein names	assembly/maturation capsid read-through replicase	assembly/maturation capsid lysis replicase
ORF initiation sites	same for $2^{\text {nd }}$ and $3{ }^{\text {rd }}$ genes	no sharing of ORF initiation sites
replicase gene	single gene	Start codon occurs within lysis protein
3 ' terminus	5^{\prime} TCCTCCCA 3'	5^{\prime} ACCACCCA 3'

Figure 5.4 (A) Phylogenetic analysis of each protein: Levivirus I, II.

ORF 1 - maturation

ORF 3 - Iysis

Figure 5.4 (B) Phylogenetic analysis of each protein: Allolevivirus III, IV.

ORF 1 - maturation

ORF 3 - readthrough

ORF 2 - capsid

ORF 4 - replicase

Discussion

Geographically dispersed strains showed more than 90% sequence identity (van Duin, 1998). Our data supports this finding (Fig 5.1, Table 5.2). Although strains DL13, DL2 and DL16 were collected from widely different geographic locations (Table 7.1), sequence alignment among these three strains revealed only 4 nt single-point mismatches throughout the genome with a $>99 \%$ sequence similarity (Appendix A). With the exception of strain fr , group I sequence identities were greater than 90% (Table 5.2). Strain fr shared a sequence identity no closer than 77.09 \% to any of the other group I phages (Table 5.2).

Sequence analyses of the 11 FRNA GenBank strains showed uniformity throughout the Leviviridae family (Klovins et al., 2002). Data reported here supports and advances those findings. Capsid/coat protein amino acid length was highly conserved in the Leviviridae family ranging from 130-133aa (Table 5.4). Capsid amino acid length is apparently constant in ssRNA phages (Klovins et al., 2002) and may be related to restrictions by capsid infrastructure (Nishihara et al., 2006). In both the previously sequenced Levivirus groups I and II phages and in those sequenced in the present study the lysis gene was embedded out of frame as the initiation codon lies at the 3^{\prime} end of the capsid gene and the termination codon was at the 5^{\prime} region of the replicase gene. Subsequently, the replicase ORF4 initiation site begins at the 3 ' region of the lysis gene (Fig 5.3 map, Appendix A). A replicase secondary structure was reported as a conserved amino acid motif, YGDD, in all ssRNA replicases (Olsthoorn et al., 1995). Replicase amino acids from the 30 Leviviridae strains reported here and the bacteriophages PP7, AP205 and PRR1 shared the YGDD motif. Also, noteworthy from the sequence data was confirming the Leviviridae family conserved
sequence, $\mathrm{CCCA}_{\mathrm{OH}}$, at the 3 ' end of the genome (Klovins et al., 2002; van Duin and Tsareva, 2006). This observation was extended by identifying genus-specific Allolevivirus and Levivirus signatures of 8 nucleotides at the 3^{\prime} termini that clearly distinguish Allolevivirus, 5' TCCTCCCA 3' from Levivirus, 5' ACCACCCA 3' (Table 5.5).

In all members of the Leviviridae family, the ORF positions for the coliphage genes were preceded by Shine-Dalgarno sequences located 5-16 nt upstream from the start codon(s) (Table 5.3). In prokaryotes, greater than 80% of Shine-Dalgarno sequences occur within 5-13 bases upstream (Ma et al., 2002). Thus, the positions reported here for these viral genomes are similar to the prokaryote criteria.

Stop codons, UAG, UAA, UGA serve as signals for peptide chain termination. During translation of the viral RNA coat protein cistron, the UGA stop codon can be read through, resulting in an additional translated product (Weiner and Weber, 1973). In Allolevivirus, a read-through protein resulted when a leaky UGA stop codon is misread as a tryptophan codon (UGG) (van Duin, 2006), influencing regulatory control and efficiency of gene expression (Beier and Grimm, 2001). Alignment of group III nucleotides revealed that the Allolevivirus maturation protein stop codon is also a UGA; however, in this instance, a non-leaky codon. This may occur because the 5 ' and 3 ' codons flanking the UGA influence translation termination efficiency (Namy et al., 2001, Bertram et al., 2001, Skuzeski et al., 1990). It was proposed that programmed read-through in strain $Q \beta$ was regulated by the 3^{\prime} nucleotides, specifically an A residue, flanking the stop codon in strain $\mathrm{Q} \beta$ (EngelbergKulka, 1981). However, alignment of group III and IV nucleotide data in the present study did not reveal a 3' flanking pattern following the UGA stop codon nor was a 3 ' residue
observed immediately following the stop codon in all group III strains. Noticeably, $\mathrm{Q} \beta$-like strains did contain the 3' A residue but not MX1 or MX11. Interestingly, in all Allolevivirus sequences, a 5' pattern emerged at the read-through stop codon but was absent in the maturation UGA stop codon. Beginning 12 nt upstream from read-through UGA, the sequence AAY CCR GCR UAY STOP in group III and AAY CCW GCN UAC STOP in group IV was observed. Nucleotides common to both III and IV are underlined. These findings suggest the upstream sequences may reduce translation termination efficiency of the UGA read-through stop codon in Allolevivirus $s p$.

Representation of protein domain, family conservation and discrete amino acid sequence features, or motifs, were observed by Pfam and PROSITE patterns. Pfam domain groupings were more broadly defined. The replicase beta-chain and capsid domains were distributed throughout the Leviviridae family, along with a few additional bacteriophages. In contrast, the lysis and read-through domains were genogroup-specific.

As Pseudomonas aeruginosa ssRNA phage PP7 shared secondary regulatory RNA structures with Leviviridae it was classified into the genus Levivirus (van Duin and Tsareva, 2006) despite the lack of sequence similarity (Olsthoorn et al., 1995, van Duin and Tsareva, 2006) and amino acid clustering (Ruokoranta et al., 2006). Pfam protein domain profile in this study supported the observations that the lysis and capsid proteins of phage PP7 failed to cluster to these same proteins in members of the Levivirus or the capsid and read-through proteins in members of the Allolevivirus. Data from the present study also indicated that phage PP7 replicase protein did not cluster to the replicase members of the Levivirus but did cluster to Allolevivirus replicase protein. Common to ssRNA phages, the replicase amino
acid motif, YGDD, was present in phage PP7 replicase. Phage PP7 maturation protein did cluster to this same protein in both Levivirus and Allolevivirus. Data from this and previous studies suggest that the ssRNA phage PP7 genetic map was structured similar to Levivirus groups I and II (Ruokoranta et al., 2006).

Phage PRR1 has a broad host range related to a plasmid IncP-encoded receptor, adsorbs to host pili and displays a genetic map similar to Leviviridae (Ruokoranta et al., 2006). PRR1 shared approximately $43-48 \%$ sequence identity to other ssRNA phages and clustered outside the Levivirus and Allolevivirus genera (Ruokoranta et al., 2006). PRR1 genetic map was similar to Leviviridae and subsequently phage PRR1 was grouped into the Levivirus genus (Ruokoranta et al., 2006). Pfam analysis presented here resulted in phage PRR1 sharing Pfam domains with Leviviridae maturation, capsid and replicase proteins. PRR1 displayed the ssRNA amino acid YGDD replicase motif but did not share the signature Levivirus 3' terminus ACCACCCA.

The ssRNA phage from Acinetobacter, AP205, shared Pfam domains in the Levivirus and Allolevivirus maturation and replicase proteins only. Amino acid compositions from AP205 and their corresponding coat, maturation, lysis and replicase proteins clustered outside the Levivirus and Allolevivirus tree (Ruokoranta et al., 2006). AP205 lacked significant sequence similarity but shared important structural features with Leviviridae (Klovins et al., 2002). As with phages PRR1 and PP7, phage AP205 did not share the 3' termini Levivirus or Allolevivirus signatures but had the replicase YGDD motif. NCBI GenBank classified bacteriophages PRR1, PP7 and AP205 into an "unclassified" category. Using PROSITE, conserved amino acids and subsequent motifs identified in amino
acid sequences of the phage proteins provided insight to structural features. A cellattachment motif (RGD) was identified in both the maturation and/or read-through proteins in the majority of Allolevivirus strains but was absent in Levivirus strains. The function of the RGD motif in Leviviridae coliphages has yet to be experimentally demonstrated but may be explained because in Levivirus strains the phage attaches to the host's pili via the maturation protein; in Allolevivirus strains both the maturation and read-through proteins are required for phage infection (van Duin, 1999). The Arg-Gly-Asp (RGD) motif was shown to be involved in cell-to-cell adhesion in the passaged foot-and-mouth disease virus (Martinez et al., 1997), in enterovirus, echovirus 9 strain Barty, coxsackievirus A9, echovirus 22 (Nelsen-Salz et al., 1999) and the blue-tongue virus (Tan et al., 2001). In nearly all Astrovirus sp. an RGD or similar integrin-recognition motif was observed (van Hemert et al., 2007). In contrast, a second RGD motif in a SAT1 foot-and-mouth virus was not necessary for cell-to-cell attachment (Storey et al., 2007).

As more Gram negative bacteriophage sequences are elucidated, the protein domains, phylogenetic relationships and novel virus groups will likely emerge and enrich the database. Conclusion

The findings of this study agree with previously determined FRNA features and phylogenetic analyses which concluded that the Leviviridae contain two genera and four distinct genogroups consisting of two genogroups within each genus. Despite the fact that genogroup I strain fr, and genogroup III strains MX1and M11 only shared between a 70-78\% sequence identity with the rest of the strains in their respective genogroups, the analyses suggested that fr does belong in Levivirus group I, and MX1 and M11 belong in Allolevivirus
group III. Distinguished features such as amino acid and nucleotide similarity and catalytic domain location tend to sub-cluster the strains. For example, $\mathrm{Q} \beta$-like strains clustered together when compared to MX1 and M11 in group III. Genogroups within each genera shared approximately 50% sequence identity whereas between the two genera, Levivirus and Allolevirus, $<40 \%$ nucleotide sequence identity was observed. Genome organization, amino acid conservation and identical or very similar nucleotide start and stop positions supported the genogroup designation. In addition, eight nucleotides on the 3 ' termini clearly distinguish the Allolevivirus, 5' TCCTCCCA 3', from the Levivirus, 5' ACCACCCA 3'.

Summary

- Alignment of nine group I environmental strains with reference strain MS2 showed identical ORF and start codon positions for all four Levivirus genes, indicating that the sequence data generated in the present study was valid.
- All strains for groups II, III and IV had similar results in that the sequenced genomes and gene maps showed identical or very similar nucleotide positions to the GenBank reference strains.
- Basic Local Alignment Search Tool (BLAST) of all environmental strains placed them into their respective genogroups.
- Amino acid composition was similar among FRNA coliphage genogroups, further validating the nucleotide sequences and the groupings based upon them.

References

Beier, H, and M Grimm. 2001. Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs. Nucl Acids Res, 29(23):4767-4782.

Bertram G, S Innes, O Minella, JP Richardson, and I Stansfield. 2001. Endless possibilities: translation termination and stop codon recognition. Microbiol, 147:255-269.

Bollback, J.P. and J.P. Huelsenbeck. 2001. Phylogeny, genome evolution, and host specificity of single-stranded RNA bacteriophage (family Leviviridae). J Mol Evol 52:117-128.

Buchen-Osmond, C. (Ed.) 2004. Levivirus. In ICTVdB - The Universal Virus Database, version 3. ICTVdB Management, Columbia University. New York, NY.

Crawford, EM, and RF Gesteland. 1964. The adsorption of bacteriophage R17. Virol, 22:165-167.

EPA. 2004. Quality assurance/quality control guidance for laboratories performing PCR analyses on environmental samples. EPA 815-B-04-001. October 2004.

Engelberg-Kulka, H. 1981. UGA suppression by normal tRNA ${ }^{\text {Trp }}$ in Escherichia coli: codon context effects. Nucl Acids Res, 9(4):983-991.

Fiers W, R Contreras, F Duerinck, G Haegeman, D Iserentant, J Merregaert, W Min Jou, F Molemans, A Raeymaekers, A Van den Berghe, G Volckaert and M Ysebaert. 1976. Complete nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene. Nature, 260:500-507.

Grabow, W.O.K., 2001. Bacteriophages: update on applications as models for viruses in water. Water S.A. 27, 251-268.

Havelaar, A. H., M. van Olphen, and Y. C. Drost. 1993. F-specific RNA bacteriophages are adequate model organisms for enteric viruses in fresh water. Appl. Environ. Microbiol. 59:2956-2962.

Jukes, T. H., and C. R. Cantor. 1969. Evolution of protein molecules, p. 21-123. In H. N. Munro (ed.), Mammalian Protein Metabolism. Academic Press, New York.

Karnik, S. and M. Billeter. 1983. The lysis function of RNA bacteriophage Q β is mediated by the maturation protein. EMBO J. 2:1521-1526.

Klovins, J., G.P. Overbeek, S.H.E. van den Worm, H.-W. Ackermann and J. van Duin. 2002.

Nucleotide sequence of a ssRNA phage from Acinetobacter: kinship to coliphages. J Gen Virol, 83, 1523-1533.

Loeb, T. and N.D. Zinder. 1961. A bacteriophage containing RNA. Proc. Natl. Acad. Sci. U.S. 47:282-289.

Lole, KS., RC Bollinger, RS Paranjape, D Gadkari, SS Kulkarni, NG Novak, R Ingersoll, HW Sheppard and SC Ray. 1999. Full-length human immunodeficiency virus type 1 genomes from subtype c-infected serconverters in India, with evidence of intersubtype recombination. J Virol, 73(1):152-160.

Ma J, A Campbell and S Karlin. 2002. Correlations between Shine-Dalgarno sequences and gene features such as predicted expression levels and operon structures. J Bact 184(20):5733-5745.

Martinez, MA, N Verdaguer, MG Mateu, and E Domingo. 1997. Evolution subverting essentiality: dispensability of the cell attachment Arg-Gly-Asp motif in multiply passaged foot-and-mouth disease virus. Proc Natl Acad Sci, 94:6798-6802.

Murphy FA, Fauquet CM, Bishop DHL, Ghabrial SA, Jarvis AW, Martelli GP, Mayo MA, Summers MD (1995) Virus taxonomy: The classification and nomenclature of viruses. The sixth report of the International Committee on Taxonomy of Viruses. Springer-Verlag, Vienna

Namy, O, I Hatin and JP Rousset. 2001. Impact of the six nucleotides downstream of the stop codon on translation termination. EMBO Reports, 2(91):787-793.

Nelsen-Salz, B, HJ Eggers, and H Zimmermann. 1999. Integrin $\alpha_{v} \beta_{3}$ (vitronectin receptor) is a candidate receptor for the virulent echovirus 9 strain Barty. J Gen Virol, 80:2311-2313.

Nishihara T., S. Fujisaki, Y. Nishimura, Y. Minami and T. Yubisui. 2006. Analysis of six new genes encoding lysis proteins and coat proteins in Escherichia coli Group A RNA phages. Microbiol. Immunol., 50(1), 61-66.

Olsthoorn, RCL, G Garde, T Dayhuff, JF Atkins, and J van Duin. 1995. Nucleotide sequence of a single-stranded RNA phage from Pseudomonas aeruginosa: kinship to coliphages and conservation of regulatory RNA structures. Virol, 206:611-625.

Paranchych, W. 1975. Attachment, ejection and penetration stages of the RNA phage infectious process. In: ND Zinder (ed). RNA Phages. Cold Spring Harbor Laboratory. pp. 85-111.

Ruokoranta, TM, AM Grahn, JJ Ravantti, MM Poranen and DH Bamford. 2006. Complete genome sequence of the broad host range single-stranded RNA phage PRR1 places it
in the Levivirus genus with characteristics shared with Alloleviviruses. J Virol, 80(18):9326-9330.

Skuzeski, JM, LM Nichols and RF Gesteland. 1990. Analysis of leaky viral translation termination codons in vivo by transient expression of improved beta-glucuronidase vectors. Plant Mol Biol, 15(1):65-79.

Stewart, J.R., J. Vinjé, S.J.G. Oudejans and G.I. Scott., 2006. Sequence variation among group III F-specific RNA coliphages from water samples and swine lagoons. Appl. Env. Micro, 72, 1226-1230.

Storey, P, J Theron, FF Maree and HG O'Neill. 2007. A second RGD motif in the 1D capsid protein of a SAT1 type foot-and-mouth disease virus field isolate is not essential for attachment to target cells. Viral Res, 124:184-192.

Sundram A, N Jumanial, and MM Ehlers. 2006. Genotyping of F-RNA coliphages isolated from wastewater and river water samples. Water SA, 32(1):65-70.

Tan, BH, E Nason, N Staeuber, W Jiang, K Monastryrskaya and P Roy. 2001. RGD tripeptide of bluetongue virus VP7 protein is responsible for core attachment to Culicoides cell. J Virol, 75(8):3937-3947.
van Duin, J. 1988. The single-stranded RNA bacteriophages. In: Fraenkel Conrat H and Wagner RR. (eds). The Bacteriophages. Series The Viruses. Chapter 4. Plenum Press, NY. pp. 117-167.
van Duin, J., 1998. The single-stranded RNA bacteriophages. In: Fraenkel Conrat, H., Wagner, R.R. (eds). The Bacteriophages. Series The Viruses. Plenum Press, NY. pp. 117-167.
van Duin, J. 1999. Single-stranded RNA phages (Leviviridae). In: Granoff, A and R Webster (eds). Encyclopedia of Virology. Academic Press, London. pp. 16631668.
van Duin, J. 2000. Family Leviviridae. In: M.H.V. van Regenmortel, C.M. Fauquet, D.H.L. Bishop, E.B. Carstens, M.K. Estes, S.M. Lemon, J. Maniloff, M.A. Mayo, D.J. McGeoch, C.R. Pringle, R.B. Wickner (eds). Virus Taxonomy. Seventh Report of the International Committee on Taxonomy of Viruses. Academic Press, San Diego. pp. 645-646.
van Duin, J, and Tsareva, 2006. Single-stranded RNA phages. In: The Bacteriophages by S T Abedon. R L Calendar, ed. Oxford University Press. pp:175-196.

Weber, K, and W Konigsberg. 1975. Proteins of the RNA phages. In: ND Zinder (ed).

RNA Phages. Cold Spring Harbor. pp. 51-84.
Weiner, AM and K Weber. 1973. A single UGA codon functions as a natural termination signal in the coliphage $\mathrm{Q} \beta$ coat protein cistron. J Mol Biol, 80:837-855.
van Hemert, FJ, VV Lukashow and B Berkhout. 2007. Different rates of (non-) synonymous mutations in astrovirus genes; correlation with gene function. Virol J, 4:25-37.

Vinjé, J., S.J.G. Oudejans, J.R. Stewart, M.D. Sobsey and S.C. Long., 2004. Molecular detection and genotyping of male-specific coliphages by reverse-transcription-PCR and reverse line blot hybridization. Appl. Env. Micro., 70(10), 5996-6004.

VI. Genomic sequences of two novel Levivirus FRNA coliphages (Leviviridae): Evidence for recombination?

Abstract

Male-specific ssRNA coliphages, family Leviviridae, contain two genera and four distinct genogroups. The Levivirus genus is subdivided into genogroups I and II whereas the Allolevivirus genus consists of genogroups III and IV. During an environmental genotyping study of Leviviridae ssRNA coliphages, two novel strains became evident. Nucleotide sequences and phylogenetic analysis of a 189 bp amplicon in the replicase gene clustered the strains between Levivirus genogroups I and II, leading to a proposed genogroup I Levivirus subcluster, termed JS-like. Seventeen strains from genogroups I and II, including two JS strains, were used to examine the genomic and phylogenetic relationships among these Levivirus groups. The two JS strains were 96.73% similar in nucleotide sequences to each other and 80-84 \% nucleotide sequence similarity was shared between the JS strains and nine MS2-like strains. Amino acid composition between JS strains and MS-2 like strains of the maturation, capsid and lysis proteins shared $99-100 \%, 98-100 \%$ and $95-100 \%$, respectively. However, the replicase amino acid sequences of the JS strains shared only 84-85\% amino acid similarity to nine MS2-like strains. Levivirus JS strains diverged from group I in the replicase gene downstream from the conserved catalytic site. Analysis of complete genome sequences, amino acid composition, phylogenetic relationships and unique clustering suggest the JS strains are recombinants.

Introduction

Vinjé et al (2004) investigated the genetic diversity of male-specific (FRNA) phages. In that Vinjé study, a phylogenetic analysis of 32 Levivirus (genogroups I and II) field strains using a 189 bp replicase gene fragment revealed three main clusters: genogroup I, genogroup II and a potential novel group, designated JS, which clustered between genogroup I and genogroup II. The putative JS group, represented by phages, WWTP1_50 and 2GI13, had a $>40 \%$ sequence diversity in the 189 bp replicase gene sequence with strains from genogroups I and II. As these strains were isolated from geographically different regions (Massachusetts and South Carolina) Vinjé et al (2004) proposed that JS may form a stable lineage and suggested that further genomic sequence and serological data were needed to confirm whether these strains form a novel genogroup or whether these strains are the result of recombination or rearrangement events (Chetverin, 1999). In the present study complete genome sequences of two additional phages, belonging to the putative JS group (Sobsey et al., 2006; Love et al., 2008), were determined allowing a phylogenetic study into the nature of this proposed subgroup.

Whether or not the putative JS subgroup represents a novel genogroup, recombinations (sequence exchange and rearrangements) between RNA molecules may have occurred in these viruses. Largely responsible for the diversity of RNA viruses (Lai, 1992) RNA-RNA recombination has been shown to occur in several positive-sense, ssRNA human and animal viral taxa including caliciviruses, coronaviruses, hepatitis, dengue, enteroviruses and astroviruses (Cristina and Colina, 2006; Pantin-Jackwood et al., 2006; Holmes et al., 1999;

Oberste et al., 2004; Banner and Lai, 1991; Oprisan et al., 2002; Walter et al., 2001; Jiang et al., 1999; Belliot et al., 1997).

RNA recombination events occur, in some cases, when two or more strains infect the same host. Proposed models for the formation of novel RNA sequences include (i) cleavage and ligation in RNA molecules or RNA secondary structures (Lutay et al., 2007), (ii) replicative template switching whereby the RNA-dependent RNA polymerase (replicase) switches from one template to another RNA template, also known as copy choice (Chetverin, 1999; Chetverin et al., 2005), and (iii) RNA transesterification reaction that occurs when the polymerase adds a separate RNA fragment to the 3 ' terminus of the original RNA template (Chetverin, 1999)

The first indication of non- replicative RNA recombination in a male-specific FRNA phage was reported by Munishkin et al., (1988) who found small, nonhomologous, recombinant RNA molecules produced in vitro in a purified template-free $\mathrm{Q} \beta$ replicase molecule. These investigators noted similar RNA molecules were present in E. coli cells infected with phage $\mathrm{Q} \beta$. Chetverin et al (2005), studied this phenomenon by observing the formation of novel sequences in a colony of RNA molecules, suggested that this recombination event occurred as a transesterification reaction catalyzed by a conformation acquired by $\mathrm{Q} \beta$ replicase during RNA synthesis (Chetverin et al., 2005; Chetverin, 1999). Nucleotide sequences of recombined RNA molecules were non-homologous to the parent RNA and were formed in the absence of DNA intermediates, demonstrating an RNA
recombination mechanism in the presence of $\mathrm{Q} \beta$ replicase (Chetverin, 1999). Therefore, it is plausible to have recombination in environmental ssRNA male-specific coliphage (Leviviridae) isolates.

Two JS strains, DL52 and DL54, were isolated during an environmental genotyping study of Leviviridae FRNA phages (Sobsey et al., 2006; Love et al., 2008). These phages were placed into the putative JS subgroup using the genotyping methods of Vinjé et al (2004). The objective of the present study was to determine whether the existence of a novel JS-like subgroup representing a third Levivirus cluster as proposed by Vinjé et al (2004) could be verified. The approach was to analyze recently generated nucleotide and amino acid sequence data from entire genomes of 10 levivirus group I strains, 5 levivirus group II strains and two JS group strains. Analysis of the novel JS strains should provide evidence as to whether or not these Levivirus strains were genogroup I, II, a combination of groups I and II (recombinant strain) or a unique genogroup. To further understand the composition of these JS strains, complete genomic sequencing, amino acid composition and phylogenetic analyses were examined.

Purpose

- Evaluate the genomic nucleotide and amino acid sequences to determine the uniqueness of JS strains and to clarify why JS strains do not hybridize to group I or group II reverse-line blot hybridization probes.

Approach

- Sequence the two JS-like strains, DL52 and DL54, to determine their taxonomic classification.
- Map Open Reading Frames and determine gene locations.
- Translate nucleotide sequences into amino acid compositions for each protein.
- Compare JS strains to Levivirus groups I and II.
- Analyze similarities and differences between JS and groups I and II using various bioinformatic methods.

Materials and Methods

Coliphage Isolates and Propagation

FRNA phage strains CICEET 29 and CICEET 24 were isolated and placed into the putative JS subgroup by Love et al., (2008; Sobsey et al., 2006) using the genotyping methods of (Vinjé et al., 2004). CICEET 29, renamed DL52, was isolated from estuarine waters in Rachel Carson W Reserve (Beaufort), NC, and CICEET 24, renamed DL54, and was isolated from Naragansett Bay, RI.

Sequencing was performed on plaque-purified coliphages which were enriched using Escherichia coli HS(pFamp)R as host (Vinjé et al., 2004). Overnight enrichments were centrifuged $(3,220 \mathrm{X}$ g for 10 min$)$ to pellet host cells and debris. A 1:1 (V/V) chloroform to virus supernatant mixture was vortex mixed and centrifuged again. Approximately 1-2 ml aliquots of the supernatant containing the phage enrichments were stored frozen at $-75^{\circ} \mathrm{C}$.

Coliphage titers were determined using a single agar layer procedure (SAL) (US EPA Method 1602 , 2001). The procedure was as follows. A 1 ml of overnight E. coli Famp host culture was transferred into 50 ml trypticase soy broth with streptomycin and ampicillin (TSB/strep/amp) and grown 4 hr to log phase. A 150 ml volume of trypticase soy agar, TSA (4.5 g TSB and 1.2 g agar), was autoclaved and placed into a water bath $\left(47-55^{\circ} \mathrm{C}\right)$. A 300 ul aliquot of 500 X strep/amp was added into the cooled 150 ml TSA. Serial 10 -fold dilutions of the purified virus were prepared. For 10 -fold stock dilution, 100 ul of stock was transferred into 900 ul phosphate buffered saline (PBS), mixed and this process repeated to a serial dilution 10^{-15}. To sterile 15 ml plastic tubes, labeled -1 to $-15,1 \mathrm{ml}$ of the 4 hr E. coli, 100 ul of the appropriate virus dilution and 10 ml TSA were added. After quick manual mixing the
tube contents were poured into labeled 20 mm petri plates which were then cooled, allowed to dry, inverted and incubated overnight at $37^{\circ} \mathrm{C}$. The coliphage titer was determined by counting the plates having a minum of 5 to a maximum of 20 plaques per plate. Titer concentration was reported as $\mathrm{PFU} / \mathrm{ml}$.

Coliphage RNA Isolation

Coliphage RNA was extracted from the purified viral supernatant using a QIAamp viral RNA mini kit (Qiagen, Valencia, CA) as follows. A 200 ul volume of purified virus stock was added into the 25 ul protease tube. Into the same tube, 200 ul of carrier RNA/Buffer AL mixture was added and the combined solutions were vortex mixed, incubated $56^{\circ} \mathrm{C}$ for 15 minute and clarified by a 1 minute centrifugation. To the same tube, 250 ul ethanol (EtOH) was added, vortex mixed and incubated 5 min at room temperature (RT). The lysate was applied into the QIAamp spin column and centrifuged 3-4 min at 6000 xg (8000 rpm) and the contents of the collection tube was discarded. To the column, 500 ul of Buffer AW2 was added, centrigued 1 min and the contents of the collection tube was discarded. To the column, 500 ul EtOH was added, centrifuged 1 min and collection tube was discarded. The column was transferred to a clean collection tube and centrifuged for 1 minute. The column was again transfered a new, nuclease-free tube and 50 ul RNase free water was added onto column and incubated 5 min at RT. The final centrifugation, (14,000 rpm) for 1 min and the recovered purified RNA was frozen at $-20^{\circ} \mathrm{C}$.

Generating cDNA from Polyadenylated RNA

Phage MS2 serves as a positive, procedural control. Viral RNA was 3 ' polyadenylated with yeast PolymeraseA and 25 mM ATP in a 50 ul reaction volume (USB, Inc, Cleveland,

OH). The reaction was prepared with 10 ul 5X Reaction Buffer, 10 ul RNA, 2 ul 25 mM ATP, 0.7 ul 600 U Poly(A)Polymerase and 27.3 ul nuclease-free water. The mixture was incubated at $37^{0} \mathrm{C}$ for 5 min and placed on ice for enzymatic termination. Polyadenylated RNA was either immediately frozen or used as a template for cDNA.

Full-length cDNA was prepared using oligo-dT reverse primer supplied with the reverse transcriptase MonsterScript $1^{\text {st }}$ Strand cDNA Synthesis Kit (EpiCentre, Madison, WI) or with a gene-specific reverse primer. To a 250 ul thin-walled PCR tube, the following reagents were added: 4 ul nuclease-free water, 10 ul polyadenylated RNA or RNA template and 1 ul of 10 uM PolyT primer or 1 ul of 10 uM gene-specific primer. The mixture was heated for 1 min at $65^{\circ} \mathrm{C}$ and chilled for 1 min on ice. To the same tube, 1 ul MonsterScript Reverse Transcriptase and 4 ul of 5 X cDNA reaction buffer were added. The mixture was placed in a thermocycler with the following cycle regime: $37^{\circ} \mathrm{C}$ for $5 \mathrm{~min}, 42^{\circ} \mathrm{C}$ for 5 min , $60^{\circ} \mathrm{C}$ for 40 min and $90^{\circ} \mathrm{C}$ for 5 min and chilled on ice for 1 min . The single-stranded cDNA was either frozen or used for PCR template.

5' Amplification of cDNA Ends

The nucleotide sequence of the 5^{\prime} region was determined by rapid amplification of cDNA end (RACE) with the Smart Race cDNA Amplification Kit (Clontech, Mountain View, CA). First-strand cDNA synthesis was prepared on ice in a 250 ul thin-walled PCR tube by combining 3 ul RNA, 1 ul of 10 uM gene-specific reverse primer and 1 ul Smart oligo (from kit). The 5 ul reaction volume was briefly centrifuged and the following components were added: 2 ul of 5 X First Strand buffer, 1 ul of 20 mM DTT, 1 ul of 10 mM dNTP and 1 ul SuperScript II (Invitrogen, Carlsbad, CA). Following a brief centrifugation, the mixture was
incubated for 90 min at $42^{\circ} \mathrm{C}$. To dilute the first-strand cDNA, 20 ul of Tricine-EDTA buffer was added and heated for 7 min at $72^{\circ} \mathrm{C}$. The reaction generated double stranded cDNA. The cDNA was frozen at $-20^{\circ} \mathrm{C}$ and used for subsequent PCR reactions. Concentration of cDNA was determined with a NanoDrop spectrophotometer (NanoDrop Technologies, Wilmington, DE).

PCR, Cloning and Sequencing

The cDNA was amplified by using Phusion DNA Polymerase (New England Biolabs, Ipswich, MA), with final concentrations of 1X of 5X Phusion Buffer, $0.2 \mathrm{mM} \mathrm{dNTP}, 1 \mathrm{ul}$ of 10 uM forward primer, 1 ul of 10 uM reverse primer, 3% DMSO, 2 ul cDNA and 0.5 ul Phusion Taq in a 50 ul reaction using the following cycle parameters: one round denaturation at $98{ }^{\circ} \mathrm{C}(1 \mathrm{~min}), 35$ rounds at $98{ }^{\circ} \mathrm{C}(30 \mathrm{sec}), 48^{\circ} \mathrm{C}(1 \mathrm{~min}), 72{ }^{\circ} \mathrm{C}(3 \mathrm{~min})$ followed by 10 min extension at $72^{\circ} \mathrm{C}$. For each reaction, positive controls were prepared using primers MJV82 and JV81 for Leviviruses and MJV82 and JV41 with Alloleviviruses. A no-template negative control was included.

To verify the generation of full-length cDNA, the 5 ' end of phage MS2 was PCR amplified using primers MS25 and MS23 and the same protocol as stated above (Lovmar et al., 2003).

PCR products were separated by electrophoresis in a 1.5% agarose gel, stained with SYBR Gold Nucleic Acid Gel Stain (Molecular Probes, Carlsbad, CA) and visualized under blue light (Dark Reader Transilluminators, Clare Chemical Research, Dolores, CO).

Blunt-end PCR products were excised using a gel extraction tool (USA Scientific Plastics, Ocala, FL) and then purified (QuickClean 5M Gel Extraction Kit, GenScript Corporation, Piscataway, NJ).

Excised bands were weighed in 1.5 ml microcentrifuge tubes and 3 volumes of Binding Solution II per gel slice were added. The gel solution was heated at $50^{\circ} \mathrm{C}$ until melted. One volume of isopropanol was added and the mixture was transferred into the Genprep spin column and centrifuged for 1 min at $12,000 \mathrm{rpm}$. The column effluent was discarded and 500 ul of Wash Buffer was added, the column was centrifuged and the liquid waste discarded. The 500 ul wash was repeated and waste discarded. The column was placed into a clean 1.5 ml microcentrifuge tube, 30 ul of Elution Buffer was added and the column was incubated 1 min at room temperature. The tube was centrifuged 1 min at $12,000 \mathrm{rpm}$ and the collected DNA eluate was transferred to a clean tube. Concentration of the DNA was determined using a NanoDrop spectrophotometer. The DNA was either cloned or the PCR product was sequenced.

Gel-purified DNA was cloned using a ZeroBlunt TOPO Cloning Kit, pCR-Blunt II TOPO plasmid kit (Invitrogen, Carlsbad, CA). To prepare a TOPO cloning reaction, 4 ul DNA, 1 ul salt solution and 1 ul pCR II Blunt TOPO were added to a nuclease-free tube and incubated 30 min at room temperature. To a vial of One Shot E. coli competent cells, 2 ul of the TOPO cloning reaction were added and incubated on ice for 30 min . The cells were heatshocked at $42^{\circ} \mathrm{C}$ and immediately placed on ice. A 250 ul volume of SOC medium was added to the One Shot cells and shaken (200 rpm) for 1 hr at $37^{\circ} \mathrm{C}$. Fifty ul of transformed cells were plated onto pre-warmed LB agar plates containing $50 \mathrm{ug} / \mathrm{ml}$ kanamycin, the
transformed cells were spread to isolate colonies and the plates were incubated overnight at $37^{\circ} \mathrm{C}$.

Colonies of transformed E. coli cells were screened for positive inserts using wholecell PCR. Using aseptic techniques, individual colonies were selected with a sterile toothpick, the toothpick was briefly rinsed into a 50 ul Phusion master mix (as described above) then dropped into $10 \mathrm{ml} \mathrm{LB} / \mathrm{kan}$ broth and incubated overnight at $37^{\circ} \mathrm{C}$. Whole-cell PCR was performed on individual colonies using Phusion DNA Polymerase with the following cycle modifications: one round denaturation at $98{ }^{\circ} \mathrm{C}(3 \mathrm{~min}), 35$ rounds at $98^{\circ} \mathrm{C}(10 \mathrm{sec}), 57^{\circ} \mathrm{C}(30$ sec), $72{ }^{\circ} \mathrm{C}(30 \mathrm{sec})$ followed by 10 min extension at $72{ }^{\circ} \mathrm{C}$. Amplicons were separated by electrophoresis in 1.5% agarose gel in 0.5 X Tris-acetate-EDTA (TAE), stained with $20 \mathrm{ug} / \mathrm{ml}$ ethidium bromide and visualized under UV light (UVP, Upland, CA). Those clones with the appropriate size PCR amplicon were selected for plasmid purification.

Positive clones were plasmid-purified (QIAprep Spin Miniprep Kit, Qiagen, Valencia, CA). An E. coli colony that had been selected with a toothpick and incubated overnight was centrifuged 10 min at $8000 \mathrm{rpm}(6800 \mathrm{xg})$. The supernatant was discarded and the cell pellet was resuspended and processed as follows. A 250 ul volume of Buffer P1 was added to the cell pellet, vortexed to mix and transferred to a clean 1.5 ml microcentrifuge tube. A 350 ul volume of Buffer P2 was added to the resuspended pellet and mixed by inversion followed by addition of 350 ul Buffer N3. The buffer mixture was inverted 4-6 times and centrifuged 10 \min at $13,000 \mathrm{rpm}(17,900 \mathrm{xg})$. The supernatant was decanted into the QIAprep spin column and centrifuged 1 min at 13,000 rpm. The column effluent was discarded and the column was washed with 500 ul Buffer PB , the column was centrifuged 1 min and the wash was
discarded. To the spin column, 750 ul Buffer PE was added, the column was centrifuged and the wash was discarded. The column was incubated with 50 ul Buffer EB to elute the plasmid. Following a 1 min incubation at room temperature, the column was centrifuged 1 min. Purified plasmid was shipped frozen for sequencing (Sequetech, Mountain View, CA). Each cDNA PCR amplicon was cloned and sequenced in triplicate to account for errors. In some cases, the PCR product was sequenced directly. To achieve publication quality data, both forward and reverse strands were sequenced (Sequetech, Mountain View, CA). This process was repeated until complete genomes were obtained.

To avoid contamination, a PCR hood (AirClean 600, AirClean Systems, Raleigh, NC) located in a designated room was used to prepare master mixes separate from template additions. PCR amplification, electrophoresis, template and/or viral preparations (EPA, 2004) were conducted in individual assigned rooms based on designated use.

Primer Design

PCR amplicons were first generated from an approximate 200 nt region using degenerate primers (MJV82 and JV81 for Leviviruses) specific to the replicase region (Vinjé et al., 2004) and sequenced (UNC, NC). The combination of these primer sets was termed "generic PCR" as the primers were genus specific but not genogroup specific. A strainspecific forward primer was designed from this 200 nt region. A combination of the strainspecific forward primer and a PolyT reverse primer amplified an approximate 1 kb PCR fragment. The amplicon was cloned and sequenced. As sequences of the fragments were generated, reverse primers were designed to amplify overlapping sections of the genome. Forward primers were designed by alignment (BioEdit v7.0.1 Clustal W application; Hall,
1999) of representative group I (J20, M12) and II (KU1) strains sequenced in this study or available in GenBank.

Sequence Analyses and Open Reading Frames

JS sequences were compared to nucleotide and/or amino acid sequences from 10 group I strains (MS2, DL1, DL2, DL13, DL16, ST4, R17, J20, M12, fr) and 5 group II strains (T72, DL10, DL20, GA, KUI). Sequences and/or amino acids were aligned using BioEdit v7.0.1 ClustalW application (Hall, 1999). Basic Local Alignment and Search Tool (BLAST) finds regions of local similarity between sequences and is used to search similar matches in the National Center for Biotechnology Information (NCBI) genetic databse. BLAST analyses for sequence and phylogenetic confirmation were performed on each individual FRNA clone or PCR fragment. Open Reading Frames (ORF) were determined using BioEdit (Hall, 1999).

Nucleotide percent similarity and dendograms were constructed using Bionumerics software v. 3.5 (Applied Maths, Saint-Martens-Latem, Belgium). Phylogenetic trees were built using the global cluster analysis performed on multiple aligned sequences and clustered by UPGMA using the Jukes and Cantor correction. A bootstrap analysis, based on 10,000 substitutions, was used to measure cluster significance.

Cluster analysis of Levivirus Groups I, II and JS phages were generated from pairwise similarities of the amino acid sequences of their replicase genes (Bionumerics). Standard deviations of the average similarites of the clusters were determined using Bionumerics. The resulting phylogenetic tree produces a cophenetic correlation which represents the faithfulness of the clusters expressed on a percentage basis (Bionumerics).

Amino Acid Analysis

Amino acid compositions for each of the four genes were determined using a computer-generated DNA-to-protein translation tool, ExPASY (http://ca.expasy.org/). Prediction of protein sequence motifs were identified by PROSITE (http://ca.expasy.org/).

Amino acid sequence data were analyzed using BioNumerics Software v.3.5 (Applied Maths, Saint-Martens-Latem, Belgium). Phylogenetic trees were built by global cluster analysis performed on multiple aligned sequences and clustered by UPGMA using the Jukes and Cantor correction (Jukes \& Cantor, 1969). Cophenetic correlations and cluster Cutoff method were employed to measure faithfulness and relevancy of the clusters. Average similarities with standard deviations were calculated for the relevant clusters.

Relationships among aligned amino acid sequences were depicted in similarity plots generated by SimPlot, v3.5.1 (Lole et al., 1999). The SimPlot program determines the percent identity between a reference and the queried sequence. Percent similarity was calculated within a sliding window of 160 bp wide with a step size between plots of 10 bp .

Results

Degenerate replicase primers in an RT-PCR assay identified the two strains, DL52 and DL54, to the Levivirus genus. Nucleotide sequences of the 189 bp amplicon classified the strains as JS-like (Vinjé et al., 2004). Reverse-line blot hybridization failed to genotype the two strains into subgroups I or II.

A total of 17 strains (MS2, ST4, DL1, DL2, DL13, DL16, R17, M12, J20 and fr in genogroup I, DL52 and DL54 in the JS genogroup and T72, DL10, DL20, GA and KU1 from
genogroup II) were used to examine the relationships among nucleotides and amino acids in the Levivirus genus. The first 9 strains in genogroup I are referred to as "MS2-like."

With respect to nucleotide sequences, the MS2-like strains shared 91.68-99\% fulllength genome nucleotide sequence similarity to each other (Fig 5.2) and the two JS strains, DL52 and DL54, were 96.73% similar in nucleotide sequences to each other (Table 6.2). The JS strains were more similar to MS2-like genogroup I FRNA coliphage ($80-84 \%$ sequence similarity) than the fr strain was to MS2-like phages (75.27-77.65\% sequence identity). Despite their sequence similarities, genome lengths for JS strains (3525 nt) were shorter than the MS2-like group I (3569-3575 nt) (Table 6.1) but longer than genogroup II genomes (3458-3486 nt) (Table 5.1). Numerous deletions in the 3^{\prime} untranslated region and a portion of ORF4 (replicase) in JS strains accounted for the decreased length (Appendix C).

Within genogroup I, the amino acid sequences of all four proteins of strain fr were distinctly different from the proteins of the MS2-like strains (Fig 5.4A, Fig 6.2). A different pattern, however, emerged when comparing the sequences of the four proteins of the JS strains to the protein sequences of the MS2-like genogroup I strains. Sequence similarities of the maturation, capsid and lysis proteins of the JS strains were very similar to those of the MS2-like group strains, sharing $99-100 \%, 98-100 \%$ and $95-100 \%$ sequence similarities, respectively (Table 6.3, Fig 6.1). However, the replicase protein sequences of the JS strains were quite dissimilar to the replicase protein sequences of the MS2-like genogroup I strains, displaying a similarity range of $84-85 \%$. In contrast, a similarity of $97-99 \%$ was observed among the highly conserved replicases of the nine MS2-like strains. Strain fr shared an 80% replicase similarity to JS strains and approximately $88-90 \%$ similarity to MS2-like strains
(Table 6.3). Group II replicase was approximately $50-53 \%$ similar to JS strains and to the other genogroup I strains (Table 6.4).

Table 6.1 JS strains and genogroup I. Open Reading Frame positions and genome lengths of FRNA coliphage JS strains DL52 and DL54 compared to genogroup I strains.

Open Reading Frame Location (nt)

Strain Group	Full length nt	ORF1	ORF2	ORF3	ORF4
DL1 I	3570	130-1311	1335-1727	1678-1905	1761-3398
DL2 I	$3491{ }^{\text {b }}$	130-1311	1335-1727	1678-1905	1761-3398
DL13 I	$3491{ }^{\text {b }}$	130-1311	1335-1727	1678-1905	1761-3398
DL16 I	3569	130-1311	1335-1727	1678-1905	1761-3398
J20 I	3569	130-1311	1335-1727	1678-1905	1761-3398
ST4 I	3569	130-1311	1335-1727	1678-1905	1761-3398
R17 I	3569	130-1311	1335-1727	1678-1905	1761-3398
MS2 ${ }^{\text {a }}$ I	3569	130-1311	1335-1727	1678-1905	1761-3398
DL52 JS	3525	130-1311	1335-1727	1678-1905	1761-3398 ${ }^{\text {c }}$
DL54 JS	$3398{ }^{\text {b }}$	130-1311	1335-1727	1678-1905	1761-3398 ${ }^{\text {c }}$
${ }^{\text {a }}$ GenBank prototype strain					
${ }^{\text {b }}$ nearly full-length					
${ }^{\mathrm{c}}$ deletions and nt - nucleotide	${ }^{\text {c }}$ deletions and insertions in JS ORF4				

Table 6.2 Pairwise comparison JS strains and genogroup I. Pairwise comparisons of nucleotide percent similarity.
(A) JS strains and group I (B) JS strains and group II.
(A) Group I and JS strains.

	DL52	DL54
Strain		
DL52	100	
DL54	96.73	100
DL1	81.48	81.87
DL16	85.41	84.72
ST4	80.30	80.11
R17	80.55	80.53
J20	82.00	82.01
MS2	80.12	80.01
fr	69.18	69.06

(B) Group II and JS strains.

	DL52	DL54
Strain		
DL52	100	
DL54	96.73	100
T72	53.96	53.53
DL10	54.07	53.89
DL20	52.87	52.65
GA	52.44	52.29
KU1	52.94	52.66

The replicase protein of all genogroup I strains including the JS subgroup was shown to be 545 amino acids in length (Appendix C). The JS replicase protein was, however, distinctive from the MS2-like replicase protein as it possessed a single amino acid insertion at position 467 and aone amino acid deletion at the 3^{\prime} termini of the stop codon (Appendix C). The catalytic domain of the replicase protein was in the same location, between amino acid positions 243-373. In the JS replicase proteins from amino acid position 455 and continuing to the 3 ' end, the sequences of the JS replicase protein diverge from the parental MS2-like strains and were unique in composition (Fig 6.3, Appendix C) resulting from a frame shift having a two nucleotide insertion (Fig 6.5).

A nucleotide alignment revealed numerous deletions in the JS strains when compared to the other genogroup I strains. Beginning approx 40 nt downstream of the replicase ORF4 stop codon and continuing to the 3 ' termini, 53 nt deletions were observed in the JS strains. JS strains, however, share the 3 ' "signature", ACCACCCA, sequence with groups I and II Levivirus (Appendix C).

A cluster analysis of the amino acids sequences from the replicase proteins of group I, JS subgroup and group II strains was performed. Cophenetic correlations showed the MS2like strains including strain fr, the JS subgroup strains, and the group II strains all formed faithful clusters with correlations of 100, 90 and 98, respectively, The cluster cutoff method, however, showed only two relevant clusters, genogroup I strains, which included fr and JS, and genogroup II strains (Fig 6.4).

Table 6.3 Pairwise comparison of amino acids for JS and genogroup I. Percent similarity in amino acid
sequences between JS strains and genogroup I maturation, capsid, lysis and replicase proteins.

```
ST4 -I 100.00
MS2 -I 99.85100.00
R17 -I 98.18 98.33 100.00 Maturation protein
M12 -I 97.73 97.89 97.36 100.00
DL1 - }97.6897.8397.23 97.21 100.00
J20 -I 97.85 98.01 97.11 97.07 98.26 100.00
DL13 -I 97.45 97.61 97.13 97.45 98.07 98.11 100.00
DL16 -I 97.45 97.61 97.13 97.45 98.07 98.11 100.00 100.00
DL52 JS 97.45 97.61 97.13 97.45 98.07 98.11 100.00 100.00 100.00
DL54 JS 97.45 97.61 97.13 97.45 98.07 98.11 100.00 100.00 100.00 100.00
DL2 -I }\quad97.6397.79 97.31 97.63 98.25 98.11 99.83 99.83 99.83 99.83 100.00
fr-I 
ST4 -I 100.00
R17 -I 100.00 100.00
MS2 -I 100.00100.00 100.00
M12 -I 98.70 98.70 98.70 100.00
DL1 - \ 98.48 98.48 98.48 98.23100.00
DL2 -I 98.48 98.48 98.48 98.23 100.00 100.00
DL13 -I 98.48 98.48 98.48 98.23 100.00 100.00 100.00
DL16 -I 98.48 98.48 98.48 98.23 100.00 100.00 100.00 100.00
J20 -I }98.4898.48 98.48 98.23100.00 100.00 100.00 100.00 100.00
DL 52 JS 98.48 98.48 98.48 98.23100.00 100.00100.00100.00 100.00100.00
DL54 JS 98.48 98.48 98.48 98.23100.00 100.00 100.00 100.00 100.00 100.00 100.00
fr - l }\quad91.20 91.20 91.20 90.92 91.85 91.85 91.85 91.85 91.85 91.85 91.85 100.00
ST4 -I 100.00
MS2 - I 100.00 100.00
R17 -I }98.8798.87100.0
DL13 -I }94.9994.99 94.99100.0
Lysis protein
DL16 -I 94.99 94.99 94.99100.00 100.00
DL2 -I }94.9994.99 94.99100.00100.00 100.0
DL52 JS 94.99 94.99 94.99100.00 100.00 100.00 100.00
DL54 JS 94.99 94.99 94.99100.00 100.00 100.00 100.00 100.00
DL1 -I 95.89 95.89 95.89 99.15 99.15 99.15 99.15 99.15 100.00
J20-I 91.13 91.13 91.13 96.40 96.40 96.40 96.40 96.40 95.49100.00
M12-I 
fr -l 
ST4 -I 100.00
R17 - 99.06 100.00
MS2 -I 99.03 98.57 100.00
DL13 - 97.39 97.01 97.41 100.00 Replicase protein
DL2 -I 97.51 97.13 97.53 99.89100.00
DL16-I 97.22 96.84 97.25 99.61 99.73 100.00
DL1 - I 97.99 97.61 97.79 99.29 99.41 99.13 100.00
J20-I }97.6797.20 97.47 98.87 98.99 98.71 99.13 100.00
fr-l 
DL52 JS 84.40 83.86 83.95 85.38 85.41 85.18 85.33 84.81 79.70 100.00
DL54 JS 84.15 84.12 83.93 85.02 85.05 84.82 85.03 84.81 79.81 97.20 100.00
```

Table 6.4 Pairwise comparison of replicase protein JS and genogroup I. Percent similarity in amino
sequences between JS strains and genogroups I and II replicase protein. Pairwise alignments were performed in Bionumerics.
Group I
ST4
R17
MS2
DL2
DL13
DL16
DL1
J20
fr

100.00

ST4
R17
MS2
99.06100 .00
$99.03 \quad 98.57100 .00$
$97.5197 .13 \quad 97.53100 .00$
$97.3997 .01 \quad 97.41 \quad 99.89100 .00$
$\begin{array}{lllllll}97.22 & 96.84 & 97.25 & 99.73 & 99.61 & 100.00\end{array}$
$97.9997 .6197 .7999 .41 \quad 99.29 \quad 99.13100 .00$
J20 $\quad 97.6797 .2097 .4798 .9998 .8798 .7199 .13100 .00$
$\begin{array}{llllllllllllllllll}\text { fr } & 88.51 & 88.38 & 88.17 & 89.04 & 88.90 & 88.71 & 88.89 & 88.81 & 100.00\end{array}$

Group JS
DL52 JS
$84.4083 .86 \quad 83.9585 .4185 .38 \quad 85.18 \quad 85.3384 .8179 .70100 .00$
DL54 JS

$$
\begin{array}{lllllllllll}
84.15 & 84.12 & 83.93 & 85.05 & 85.02 & 84.82 & 85.03 & 84.81 & 79.81 & 97.20 & 100.00
\end{array}
$$

Group II
$\begin{array}{llllllllllll}\text { T72 } & 51.90 & 51.54 & 51.09 & 52.61 & 52.61 & 52.29 & 52.64 & 52.69 & 52.75 & 52.85 & 53.11 \\ 100.00\end{array}$
KU $1 \quad \begin{array}{lllllllllllllllllllllllll} & 51.16 & 50.80 & 50.35 & 51.90 & 51.91 & 51.57 & 51.93 & 51.97 & 52.49 & 52.54 & 52.59 & 97.13 & 100.00\end{array}$
DL10
$51.1650 .80 \quad 50.3551 .9051 .91 \quad 51.57 \quad 51.93 \quad 51.97 \quad 52.49 \quad 52.5452 .59 \quad 97.13100 .00$
DL20
$\begin{array}{lllllllllllllllll}52.67 & 52.31 & 51.87 & 53.37 & 53.37 & 53.05 & 53.39 & 53.66 & 52.74 & 53.68 & 53.83 & 93.29 & 93.02 & 100.00\end{array}$
GA

Figure 6.1 SimPlot analysis of genome nucleotide profile strain MS2 and DL52.

Figure 6.2 SimPlot analysis of genome nucleotide profile strain MS2 and fr.

Figure 6.3 SimPlot analysis of replicase amino acid profile strain MS2 and DL52.

Figure 6.4 Phylogenetic analysis of replicase amino acids groups I, II and JS.
Cluster analysis of Levivirus Groups I and II phages generated from pairwise similarities of the amino acid sequences of their replicase genes. Horizontal bars at three of the branches show the standard deviations of the average similarites of the clusters. Numbers at each branch are the cophenetic correlations which represent the faithfulness of the clusters. Two relevant clusters, as determined by the cluster Cutoff method, are grouped to the right of the dashed lines.

Pairwise (OG:100\%,UG:0\%) (FAST:2,10) Conv. cost (Jukes\&Cantor)
Group separation replicase
Group separation replicase

Figure 6.5 JS strains replicase frame-shift.
Replicase frame shift in two JS strains when compared to genogroup I strains. Alignment (BioEdit v7.0.1) of the replicase nucleotide sequences from genogroup I strains DL1, DL2, DL13, DL16, ST4, J20, MS2 with JS strains DL52 and DL54. For clarity, only a portion of the alignment is shown. Alignment of each genogroup is depicted in discontinuous blocks to illustrate the nucleotide position. The numbers along the top are the nucleotide positions. Genome sequences read 5' - 3' direction. Dots indicate identity with the consensus sequence. Degenerate bases are noted in the standard IUB codes. The replicase start codon and two nucleotide insertions are highlighted in red.

Discussion

The JS strains and fr diverged from the MS2-like reference strains but in different ways. Across the entire genome strain fr consistently differed from the MS2-like strains (Fig 6.2). However, with JS strains, major differences were only observed downstream of the catalytic site in the 3^{\prime} end of the replicase gene and the adjacent noncoding region, suggesting a specific genetic rearrangement or recombination event (Fig 6.3).

Cophenetic correlations strengthen the possibility that JS strains are recombinants as the JS is only a subgroup of genogroup I and not a novel genogroup. Throughout the Leviviridae family, subgroups emerge within genogroups, however, as with strain fr, subgroup strains differ in all four genes from the parent genogroup (Fig 5.4A, B).

Genetic exchange in ssRNA viruses was first demonstrated in polioviruses (Hirst, 1962; Ledinko, 1963). Subsequent experiments with ssRNA coliphage mutants failed to provide evidence for recombination. Horiuchi (1975) concluded that RNA phages would not undergo recombination. Those attempts to detect recombination occurred in the time when FRNA phages were thought to possess only three genes, not four. In all likelihood, laboratory-applied selective pressure failed to detect or generate a specific recombinant and may not necessarily reflect the lack of recombination or responsible mechanisms that could occur under conditions that better represent the natural history and ecology of these ssRNA coliphages. Eventually, ssRNA recombination was demonstrated in a Leviviridae coliphage Q β replicase (Munishkin et al., 1988).

Recombination events sometimes alter the RNA polymerase region. Human Noroviruses, a positive sense ssRNA virus with a genome length of 7400-8300 nt, are
considered to belong to a prototype strain if they share approximately 85% overall nucleotide sequence identity and a high amino acid sequence identity ($>95 \%$) to the RNA polymerase gene (Jiang et al., 1999). The naturally occurring human Norovirus strain shared 95% amino acid sequence identity with the capsid sequences from a Mexico cluster and 95% animo acid identity to the RNA polymerase in a Lordsdale virus cluster. Sequences from the natural strain were obtained from one viral isolate. The combination of sequences in the one strain being complementary to two distinct human Norovirus clusters led to the proposition that this strain was a naturally occurring recombinant (Jiang et al., 1999).

Genetic recombination is known to occur in certain Enteroviruses, a positive ssRNA virus having an approximate 7500 nt genome. Poliovirus recombination occurs in vaccinederived strains (Kew et al., 2002) in the human population as a single infected individual excretes a high proportion of recombinants (Oprisan et al., 2002). To determine if other enteroviruses undergo natural recombination, isolates of echoviruses were collected from a meningitis outbreak. Nucleotide sequences were clustered based on a capsid protein (VP1) and RNA polymerase (3D). Dendogram relatedness of the echovirus strains grouped the VPI sequences to the prototype strains. However, the RNA polymerase sequences did not cluster to the prototype strains, suggesting genetic recombination among the outbreak strains (Oprisan et al., 2002).

Human astroviruses are positive sense, ssRNA with a genome length of approximately 6,800 nucleotides (Walter et al., 2001) and a polyadenylated 3' tail (Belliot et al., 1997). Two sets of strains were investigated for recombination; one set was identified from a child care center in Houston, TX and the two other strains originated in stool samples from two children
in Mexico City. The pool of strains shared $>97 \%$ nucleotide sequence similarity in two out of three genomic regions. The novel strain clustered to one group based on the capsid region. When the RNA polymerase gene was analyzed, the novel strain clustered to a separate human astrovirus group. The strains were identified as naturally occurring recombinants on the evidence of high sequence similarity to a few genes of one prototype and similarity to different genes in a second prototype. A total of 64 additional human astroviruses lacked these novel traits (Walter et al., 2001).

Evidence for recombination among positive ssRNA viruses exists within the RNAdependent RNA polymerase. Turkey astrovirus is a non-enveloped, positive sense ssRNA virus with a polyadenylated 3 ' tailed genome of approximately 7 kb . Astroviruses are associated with enteric disease (Pantin-Jackwood et al., 2006). The most conserved gene in the avian and mammalian astrovirus is the RNA-dependent RNA polymerase. Genetic analysis of capsid and polymerase sequences from twenty-three turkey astrovirus strains resulted in 8 clusters for the capsid gene and two phylogenetic clusters for the RNA polymerase gene. Computer-generated analyses identified polymerase gene recombination in strains of turkey astrovirus (Pantin-Jackwood et al., 2006).

Numerous reports of positive sense ssRNA viral recombinants are documented in the scientific literature (Cristina and Colina, 2006; Pantin-Jackwood et al., 2006; Holmes et al., 1999; Oberste et al., 2004; Banner and Lai, 1991; Oprisan et al., 2002; Walter et al., 2001; Jiang et al., 1999; Belliot et al., 1997). Virus strains are classified as natural recombinants when one virus strain is complementary to two different proteins or stretch of nucleotide sequences originating from two genetically distinct clusters or in other rearrangements events
(Chetverin, 1999). In this study, two JS strains shared $>95 \%$ amino acid identity in three (maturation, capsid and lysis) Levivirus genes but only $84-85 \%$ amino acid identity to the otherwise highly conserved replicase protein. A nucleotide frame shift occurred downstream of the catalytic site in the replicase gene thereby accounting for the lack of nucleotide or amino acid similarity between the JS strains and the genogroup I replicase. Therefore, it is plausible to propose natural recombination in these two FRNA coliphages.

Conclusion

Phylogenetic tree analysis produced a cophenetic correlation which showed 1) ten genogroup I strains, including strain fr, 2) the JS subgroup strains, and 3) the genogroup II strains all formed faithful clusters with correlations of 100,90 and 98 , respectively. The cluster cutoff method, however, showed only two relevant clusters, 1) genogroup I strains, which included fr and JS, and 2) genogroup II strains (Fig 6.4). Therefore, the novel JS strains are not a unique Levivirus genogroup. The proposed classification of JS strains is a genogroup I subgroup "JS-like".

The results of this study provide molecular genetic evidence indicative of recombination in two JS strains of FRNA coliphages. There was high nucleotide and amino acid identity in three genes, the maturation, capsid and lysis genes ($\geq 95 \%$) but a lack of similarity in the replicase gene. A nucleotide frame shift occurred downstream of the replicase catalytic. Therefore, the catalytic site was conserved resulting in viable progeny.

Each JS strain was isolated from two different geographical states, North Carolina and Rhode Island, and the remaining group I strains were collected from other geographical locations across the USA and Germany (Table 7.1). Geographical distinctness does not play a
role in sequence variation within the Leviviridae family (Table 7.1, Appendix A). Recombination may explain why Leviviridae strains circulate as discrete sub-groups independent of geographical location.

Although the two JS strains were sequenced in the same laboratory, these strains were field-collected by different investigators and shipped to another location where they were plaque-purified and preliminarily classified. Therefore, the possibility that contamination resulted in false recombinants seems unlikely. This is the first description of possible recombinant strains from natural isolates in ssRNA Leviviridae bacteriophages.

Summary

- Two novel JS strains, DL52 and DL54, were initially isolated from North Carolina and Rhode Island, respectively.
- Three genes, maturation, capsid and lysis, shared $>95 \%$ amino acid similarity when JS strains were compared to nine MS2-like genogroup I strains.
- Among nine MS2-like strains, replicase amino acid similarity was highly conserved (97-99 \% amino acid identity).
- In contrast, JS strains shared 85% replicase amino acid identity to group I MS2-like strains, 80% to group I fr and 53% to group II strains.
- \quad High ($>95 \%$) amino acid identity in three genes and a lack of similarity in the otherwise highly conserved replicase gene along with a statistical cluster cutoff analysis suggests the JS strains are recombinants.

References

Banner LR and MMC Lai. 1991. Random nature of coronavirus RNA recombination in the absence of selection pressure. Virol, 185:441-445.

Belliot G, H Laveran, and SS Monroe. 1997. Detection and genetic differentiation of human astroviruses: phylogenetic grouping varies by coding region. Arch Virol, 142:13231334.

Chetverin AB. 1999. The puzzle of RNA recombination. Minireview. FEBS Lett, 460:1-5.
Chetverin AB, DS Kopein, HV Chetverina, AA Demidenko and VI Ugarov. 2005. Viral RNA-directed RNA polymerases use diverse mechanisms to promote recombination between RNA molecules. J Biol Chem, 280,8748-8755.

Cristina J and R Colina. 2006. Evidence of structural genomic region recombination in Hepatitis C virus. Virol J, 3:53

EPA. 2004. Quality assurance/quality control guidance for laboratories performing PCR analyses on environmental samples. EPA 815-B-04-001. October 2004.

Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41, 95-98.

Hirst GK. 1962. Genetic recombination with Newcastele disease virus, polioviruses, and influenza. Cold Spring Harb Symp Quant Biol, 27:303-309.

Holmes EC, M Worobey and A Rambaut. 1999. Phylogenetic evidence for recombination in Dengue virus. Mol Biol Evol, 16(3):405-409.

Horiuchi K. 1975. Genetic studies of RNA phages. In: RNA Phages. N. Zinder, ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. pp:29-50.

Jiang X, C Espul, WM Zhong, H Cuello and DO Matson. 1999. Characterization of a novel human calicivirus that may be a naturally occurring recombinant. Arch Virol, 144:2377-2387.

Kew, O., V Morris-Glasgow, M Landaverde, C Burns, J Shaw, Z Garib, J André, E Blackman, CJ Freeman, J Jorba, R Sutter, G Tambini, L Venczel, C Pedreira, F Laender, H Shimizu, T Yoneyama, T Miyamura, H van Der Avoort, MS Oberste, D Kilpatrick, S Cochi, M Pallansch, C de Quadros. 2002. Outbreak of poliomyelitis in Hispaniola associated with circulating type 1 vaccine-derived poliovirus. Science, 296(5566):356-359.
Lai, M.C. 1992. RNA recombination in animal and plant viruses. Microbial. Rev 56:61-79.

Ledinko, N. 1963. Genetic recombination with poliovirus type 1 studies of crosses between a normal horse serum-resistant mutant and several guanidine-resistant mutants of the same strain. Virology, 20(1):107-119.

Lole, KS., RC Bollinger, RS Paranjape, D Gadkari, SS Kulkarni, NG Novak, R Ingersoll, HW Sheppard and SC Ray. 1999. Full-length human immunodeficiency virus type 1 genomes from subtype c-infected serconverters in India, with evidence of intersubtype recombination. J Virol, 73(1):152-160.

Love, DC., J Vinjé, SM Khalil, J Murphy, GL Lovelace and MD Sobsey. 2008. Evaluation of RT-PCR and reverse line blot hybridization for detection and genotyping F+ RNA coliphages from estuarine waters and molluscan shellfish. J Applied Microbiol, 104:1203-1212.

Lovmar, L., C. Fock, F Espinoza, F Bucardo, A-C Syvanen and K Bondeson. 2003. Microarrays for genotyping human Group A Rotavirus by multiplex capture and typespecific primer extension. J Clin Microbiol 41:5153-5158.

Munishkin AV, LA Voronin, and AB Chetverin. 1988. An in vivo recombinant RNA capable of autocatalytic synthesis by $\mathrm{Q} \beta$ replicase. Nature, 333:473-475.

Munishkin AV, LA Voronin, VI Ugarov, LA Bondareva, HV Chetverina and AB Chetverin. 1991. Efficient templates for QB replicase are formed by recombination from heterologous sequence. J Mol Biol 221:463-472.

Oberste MS, K Maher and MA Pallansch. 2004. Evidence for frequent recombination within species Human Enterovirus B based on complete genomic sequences of all thirtyseven serotypes. J Virol, 78(2):855-867.

Oprisan G, M Combiescu, S Guillot, V Caro, A Combiescu, F Delpeyroux and R Crainic. 2002. Natural genetic recombination between co-circulating heterotypic enteroviruses. J Gen Virol, 83:2193-2200.

Pantin-Jackwood MJ, E Spackman and PR Woolcock. 2006. Phylogenetic analysis of turkey astroviruses reveals evidence of recombination. Virus Genes, 32:187-192.

Sobsey MD, DC Love and GL Lovelace. 2006. F+RNA coliphages as source tracking viral indicators of fecal pollution. A final report submitted to the NOAA/UNH Cooperative Institute for Coastal and Estuarine Environmental Technology (CICEET).

Vinjé J, SJG Oudejans, JR Stewart, MD Sobsey and SC Long. 2004. Molecular detection and genotyping of male-specific coliphages by reverse transcription-PCR and reverse
line blot hybridization. Appl Environ Microbiol, 70(10):5996-6004.
Walter JE, J Briggs, ML Guerrero, DO Matson, LK Pickering, G Ruiz-Palacios, T Berke and DK Mitchell. 2001. Molecular characterization of a novel recombinant strain of human astrovirus associated with gastroenteritis in children. Arch Virol, 146:23572367.

VII. A Reverse Transcription-PCR Assay to Distinguish the Four Genogroups of MaleSpecific (F+) RNA Coliphages

Abstract

Identifying, managing and reducing exposure risks from fecal contamination in recreational, drinking, shellfishing and other waters and accurately assessing risk from exposure can best be attained if tools to distinguish between sources of pollution are available. The male-specific RNA coliphage (FRNA) genogroups exhibit some degree of source specificity at the human vs animal level. Reverse-transcription PCR (RT-PCR) can be effectively used for source identification if specific primer sets are designed to be capable of identifying all members within each genogroup. In this study methods were developed for a heat-release procedure that eliminated the need for RNA purification and an RT-PCR method employing genogroup-specific primers to genotype FRNA for potential use in source tracking fecal contamination. Each genogroup-specific primer set was designed from a minimum of 5 to a maximum of 10 strains of complete genome sequences per genogroup using a total genome database of 30 strains. The four genogroup-specific primer sets generated discrete PCR amplicon sizes from a variety of environmental phage strains. Cross-reactivity with strains from other genogroups was not observed.

Introduction

F-specific ssRNA (FRNA) coliphages, family Leviviridae, genera Levivirus and Allolevivirus, are recognized as promising indicators of both pathogenic enteric viruses and human sewage (Grabow, 2001). They generally meet the criteria for an effective indicator of sanitary quality of water (Gerba, 1987; Sobsey et al., 2005). Host-specificity displayed by their four sub-groups also renders FRNA coliphages capable of providing information regarding sources of fecal pollution (Griffin et al., 2000). Group II and III phages generally originate from human waste, whereas groups I and IV are associated with animal waste (Havelaar et al., 1986). While data has not been invariably conclusive as to fecal source vs phage grouping, this trend occurs in a majority of cases (Schaper et al., 2002; Brion et al., 2002; Cole et al., 2003; Stewart-Pullaro et al., 2006). Subgrouping was originally based on serological properties (Sundram et al., 2006). As serological typing was shown to sometimes yield inconclusive results (Hsu et al., 1995; Beekwilder et al., 1996), genotyping techniques to group FRNA phage isolates were developed as an alternative approach for fecal source determination (Hsu et al., 1995; Beekwilder et al., 1996; Griffin et al., 2000; Vinjé et al., 2004). Initially these techniques required the isolation of phages and subsequent RNA release and membrane hybridization. Recently, reverse transcription polymerase chain reaction (RTPCR) (Dryden et al., 2006) and reverse quantitative (RTQPCR) techniques (Kirs and Smith, 2007; Ogorzaly and Gantzer, 2006) for genotyping were developed. In these reports primer design was based on a limited number of complete or partial nucleotide sequences available in the National Center for Biotechnology Information (NCBI) GenBank. Thus, broad primer and probe genogroup specificity may not have been achieved due to the limited nucleotide
data from the few strains available in GenBank. In this study a design of highly precise, forward and reverse genogroup-specific, RT-PCR primers were based on a total of 30 FRNA phages of several strains from all four genogroups. Data were based upon full genomic sequences of nineteen newly sequenced FRNA coliphages along with eleven full-length FRNA coliphage sequences available in GenBank.

Purpose

- Design genogroup-specific primer sets and develop a one-step Reverse-Transcription PCR to be capable of identifying all members within each FRNA genogroup.

Approach

- Designed genogroup-specific primer sets based on alignment of full-length genome nucleotide sequences to a minimum of 5 strains/genogroup to a maximum of 10 strains/genogroup.
- Designed primer sets to produce discrete PCR amplicon sizes specific to each genogroup.
- Evaluated primers for hairpin loops, primer-dimers and melting profiles for RT-PCR optimization.
- Optimized the heat-release of purified FRNA viral stocks to serve as a template for RT-PCR.
- Optimized the one-step format and cycling temperatures for RT-PCR.
- Validated the one-step RT-PCR with 25 FRNA phages and tested for cross-reactivity.

Materials and methods

Coliphage Isolates and Propagation

FRNA phages were collected from water, sewage and various animals representative of diverse geographical locations (Table 7.1). Vinjé et al., (2004) designed two degenerate primer sets, MJV82 and JV81 for Leviviruses and MJV82 and JV41 for Allolevivirus, specific to the replicase region. The combination of these primer sets was termed "generic PCR" as the primers were genus specific but not genogroup specific. Preliminary subgrouping of phages was previously determined by generic RT-PCR and reverse line-blot hybridization (Vinjé et al., 2004). Environmental and prototype phages were provided from The University of North Carolina at Chapel Hill collection. Strain R17 was purchased from Felix D'Herelle Reference Centre for Bacterial Viruses, Universite Laval, Quebec, Canada.

Table 7.1 Sources of Leviviridae strains.

Origin of Leviviridae Strains

Group I

Strain	Group	Source	Collected	Site collected
D L1	I	water	Jan 2004	Tijuana River, CA
D L2	I	water	Feb 2004	Delaware Bay, DE
DL13	I	oyster	Oct 2004	Whiskey Creek (Mason boro Is), NC
DL16	I	water	Nov 2004	Great Bay (Nannie Is), NH
J20	I	chicken litter	Sept 2000	South Carolina
ST4	1	UNK	UNK	UNK
R 17	I	sewage	1962	Philadelphia, PA ${ }^{\text {a }}$
M S2	1	sewage	Sept 1959	Berkeley, CA ${ }^{\text {b }}$
M 12	I	UNK	UNK	Germany ${ }^{\text {c }}$
fr	1	dung-hill	1963	Heidelberg, Germany ${ }^{\text {d }}$

Group II

T72	II	bird	June 2002	Talbert Marsh san dflats, Huntington Beach, CA
GA	II	sewage	Oct 1964	Ookayama, Japan

Group III

TW 18	III	sewage	1970	Changhua, Taiwan ${ }^{\text {t }}$
HL4-9	III	hog lagoon	M ay 2000	Duplin County, NC
BR12	III	water	July 2005	New Market Creek Charleston, SC
vK	III	sewage	Oct 1963	Tokyo, Japan ${ }^{\text {e }}$
BZ 1	III	sewage/feces	Oct-Nov 1971	Recife, Brazils
QB	III	human feces	June 1961	Kyoto, Japan ${ }^{\text {e }}$
M 11	III	UNK	UNK	Netherlands ${ }^{\text {b }}$
M X 1	III	raw wastewater	1973	Campeche, Mexico ${ }^{\text {i, }}$

Group IV

HB-P 22	IV	bird	April 2002	Talbert Marsh sandflats, Huntington Beach, CA
HB-P 24	IV	bird	April 2002	Talbert Marsh sandflats, Huntington Beach, CA
BR1	IV	water	Feb 2005	Guerin Creek (Charleston), SC
BR8	IV	water	June 2005	Bull Creek (Charleston), SC
NL95	IV	calves	UNK	Netherlands ${ }^{h}$
SP	IV	Siamang gibbon	1968	Tokyo, Japanj
FI	IV	infants	1969	Hachioji, Japan ${ }^{k}$
UNK = unknown				

${ }^{\text {a }}$ Paranchych and Graham, 1962, ${ }^{\text {b }}$ Dr. Alvin J. Clark, personal communication, ${ }^{\text {c }}$ Zinder, 1965, ${ }^{\text {d }}$ Marvin and Hoffman-Berling, 1963, ${ }^{\mathrm{e}}$ Watanabe et al., 1967, ${ }^{\mathrm{f}}$ Miyake et al., 1971, ${ }^{\mathrm{g}}$ Miyake et al., 1973, ${ }^{\mathrm{h}}$ Beekwilder et al., 1996, ${ }^{\text {i }}$ Hirashima et al., 1983, ${ }^{\text {j }}$ Sakurai et al., 1968, ${ }^{\mathrm{k}}$ Miyake et al., 1969, ${ }^{\mathrm{m}}$ Furuse et al., 1975.

UNK - unknown

Single-plaque coliphages were further purified and enriched using Escherichia coli HS(pFamp)R as host (Vinjé et al., 2004). Overnight enrichments were centrifuged (3,220 X g for 10 min) to pellet host cells and debris. A 1:1 chloroform to supernatant mixture was vortexed and centrifuged again. Approx 1-2 ml aliquots of the purified supernatant were frozen at $-75^{\circ} \mathrm{C}$.

Coliphage titers were determined using a single agar layer procedure (SAL) (US EPA Method 1602 , 2001). The procedure was as follows. A 1 ml of overnight E. coli Famp host culture was transferred into 50 ml trypticase soy broth with streptomycin and ampicillin (TSB/strep/amp) and grown 4 hr to \log phase. A 150 ml volume of trypticase soy agar, TSA (4.5 g TSB and 1.2 g agar), was autoclaved and placed into a water bath $\left(47-55^{\circ} \mathrm{C}\right.$). A 300 ul aliquot of 500 X strep/amp was added into the cooled 150 ml TSA. Serial 10 -fold dilutions of the purified virus were prepared. For 10 -fold stock dilution, 100 ul of stock was transferred into 900 ul phosphate buffered saline (PBS), mixed and this process repeated to a serial dilution 10^{-15}. To sterile 15 ml plastic tubes, labeled -1 to $-15,1 \mathrm{ml}$ of the 4 hr E. coli, 100 ul of the appropriate virus dilution and 10 ml TSA were added. After quick manual mixing the tube contents were poured into labeled 20 mm petri plates which were then cooled, allowed to dry, inverted and incubated overnight at $37^{\circ} \mathrm{C}$. The coliphage titer was determined by counting the plates having a minum of 5 to a maximum of 20 plaques per plate. Titer concentration was reported as $\mathrm{PFU} / \mathrm{ml}$.

Coliphage RNA Isolation

Coliphage RNA was extracted from the purified viral supernatant using a QIAamp viral RNA mini kit (Qiagen, Valencia, CA) as follows. A 200 ul volume of purified virus
stock was added into the 25 ul protease tube. Into the same tube, 200 ul of carrier RNA/Buffer AL mixture was added and the combined solutions were vortex mixed, incubated $56^{\circ} \mathrm{C}$ for 15 minute and clarified by a 1 minute centrifugation. To the same tube, 250 ul ethanol (EtOH) was added, vortex mixed and incubated 5 min at room temperature (RT). The lysate was applied into the QIAamp spin column and centrifuged 3-4 min at 6000 xg (8000 $\mathrm{rpm})$ and the contents of the collection tube was discarded. To the column, 500 ul of Buffer AW2 was added, centrigued 1 min and the contents of the collection tube was discarded. To the column, 500 ul EtOH was added, centrifuged 1 min and collection tube was discarded. The column was transferred to a clean collection tube and centrifuged for 1 minute. The column was again transfered a new, nuclease-free tube and 50 ul RNase free water was added onto column and incubated 5 min at RT. The final centrifugation, (14,000 rpm) for 1 min and the recovered purified RNA was frozen at $-20^{\circ} \mathrm{C}$.

Heat Release of Viral RNA

A direct heat-release procedure was applied to aliquots of undiluted viral supernatant. Ten ul of viral supernatant was heated in thin-walled 250 ul size PCR tubes for 5 min at $98^{\circ} \mathrm{C}$ and chilled on ice for 2 min (Schwab et al., 1997; Vinjé et al., 2004). Aliquots of 5 ul were immediately placed into the RT-PCR mixture for amplification.

Reverse-Transcription PCR

A one-step single tube format, Qiagen One-Step RT-PCR kit (Qiagen, Valencia, CA), was used. The 50 ul reaction volume contained 24 ul RNase free water, 10 ul 5X Qiagen reaction buffer, 2 ul 10 mM dNTP, 1 ul 10 uM forward primer, 1 ul 10 uM reverse primer and 2 ul Qiagen RT-PCR enzyme. To each 50 ul reaction volume, 5 ul of heat-released viral RNA
or 5 ul of purified RNA were used for reverse transcription. Thermal cycle (GeneAmp PCR System 9700, PE Applied Biosystems, Foster City, CA) conditions were as follows: $50{ }^{\circ} \mathrm{C}$ for $30 \mathrm{~min}, 95^{\circ} \mathrm{C}$ for 15 min followed by 40 cycles of $94^{\circ} \mathrm{C}$ for $1 \mathrm{~min}, 55^{\circ} \mathrm{C}$ for $1 \mathrm{~min}, 72^{\circ} \mathrm{C}$ for 1 min with a final extension of $72{ }^{\circ} \mathrm{C}$ for 10 min . Amplicons were separated by electrophoresis in 1.5\% agarose gel in 0.5X Tris-acetate-EDTA (TAE), stained with $20 \mathrm{ug} / \mathrm{ml}$ ethidium bromide and visualized under UV light (UVP, Upland, CA).

A genus-specific RT-PCR assay with primers MJV82 forward and Levivirus JV41 reverse or Allolevivirus JV81 reverse were utilized as a positive control (Vinjé et al., 2004). For each reaction, a no-template RT-PCR negative control was prepared.

PCR master mixes were prepared in a PCR hood (AirClean 600, AirClean Systems, Raleigh, NC) separate from template additions. To avoid contamination, PCR master mixes, amplification, electrophoresis and template and/or viral preparations were conducted in separate assigned rooms based on designated use.

Primer Design

Sequences (Table 7.2) were aligned using BioEdit v7.0.1 Clustal W application (Hall, 1999). Genogroup-specific primers (Table 7.3) targeting each of the four genogroups were designed to produce discrete amplicon sizes (Fig 7.1) for rapid genogroup-positive visualization. Details of the aligned sequences from which the primers were derived are shown in Fig 7.2. Primer set FRNA I was designed by alignment of isolates DL1, DL2, DL13, DL16, ST4, R17, J20 and GenBank strains MS2, M12 and fr. Primer set FRNA II was designed by alignment of phages T72, DL10, DL20 and GenBank strains GA and KU1.

Primer set FRNA III was designed by alignment of TW18, HL4-9, BR12, BZ1, VK and GenBank strains QB, M11 and MX1. Primer set FRNA IV was designed by alignment of HB-P22, HB-P24, BR1, BR8 and GenBank strains SP, NL95 and FI. Primers were evaluated for primer-dimers and hairpin loops by NetPrimer freeware (Premier Biosoft International, Palto Alto, CA) www.premierbiosoft.com/netprimer/netprlaunch/netprlaunch.html).

Table 7.2 Leviviridae accession numbers. Accession numbers of Leviviridae male-specific ssRNA coliphages (FRNA) available and/or submitted to the GenBank/EMBL/DDBJ database.

Strain	Genogroup		Accession number
MS2	I		NC_001417.1
fr	I	NC_0011333.1	
M12	I	AF195778	
DL1	I	EU341815	
DL16	I	EU341816	
ST4	I	EU341817	
R17	I	EU341818	
J20	I	EU341819	
GA	II	NC_001426.1	
KU1	II	NC_002250.1	
T72	II	EU372691	
DL10	II	EU372692	
DL20	II	EU372693	
Qbeta	III	AY099114.1	
M11	III	NC_004304.1	
MX1	III	NX_001890.1	
TW18	III	EU372694	
HL4-9	III	EU372695	
BZ1	III	EU372697	
VK	III	EU372698	
SP	IV	X07489.1	
NL95	IV	AF059243.1	
FI	IV	EF068134.1	
HB-P22	IV	EU403427	
HB-P24	IV	EU403428	
BR1	IV	EU403429	
BR8	IV	EU403430	

Figure 7.1 Gel electrophoresis of FRNA phages using one-step RT-PCR.
Gel electrophoresis of heat-released FRNA coliphages following RT-PCR with genogroup-specific primers. (A, B) Genogroup I, 142 bp (C, D) Genogroup II, 471 bp (E) 1 kb Plus Track-It Ladder (F, G) Genogroup III, 795 bp (H, I) Genogroup IV, 1159 bp and (J) negative control.

Figure7.2 Alignment and primer design of FRNA phages for one-step RT-PCR.
Primer design based on alignment of genome sequences and nucleotide positions from each respective Leviviridae male-specific FRNA genogroup. Alignment for each genogroup is depicted in discontinuous blocks to illustrate the nucleotide position of the primers. The numbers along the top are the nucleotide positions. Primers are underlined. Genome sequences read 5' - 3' direction. Dots indicate identity with the consensus sequence. Degenerate bases are noted in the standard IUB codes. (A) Genogroup I. (B) Genogroup II. (C) Genogroup III. (D) Genogroup IV.

(A) Group I

Primer Design for 1-Step Reverse-Transcription PCR

Group I forward primer

Group I reverse primer

(B) Group II

Group II forward primer

$5^{\prime} \quad \underset{90}{ } \operatorname{lil}_{100} \ldots|\ldots|_{110} \ldots|\ldots|_{120} 3^{\prime}$
Consensus ATGCCGTTAG GTTTAGRTGA CGGTATRTTC
T72
DL10A. -
DL20
GA
KU1

Group II reverse primer

(C) Group III

Group III reverse primer

(D) Group IV

Group IV forward primer

$5{ }^{\prime}$						$3 '$
	2960	2970	2980	2990	3000	
Consensus	TCGTGGAAGC ATGCCTGTCC GCAGGATGTW ACCAAACGYG CRYTVAARTA					
BR1			T	.C. .	AT.C. .G.	
BR8			T	.C. .	AC.C. .G.	
HB-P22			T	.C. . A	AT.C. . A. .	
HB-P24			A	.T. .	AC.G. A. .	
SP			. T	.C. . A	AT.C. .G. .	
NL95			.	.C. .	AC.A. . ${ }^{\text {. }}$	
FI			T	C. .	GC.G..G.	

Group IV reverse primer

5^{\prime}

Results

Detection of the Four Genogroups of FRNA Coliphages

Within the aligned genomic sequences of each FRNA coliphage genogroup, areas of genetic variability were observed (Appendix A). Robust, genogroup specific RT-PCR primers were designed to conserved sequences from a variety of strains (10 strains from group I, 5 strains from group II, 8 strains from group III and 7 strains from group IV) (Table 7.1, Fig 7.2).

The four genogroup-specific primer sets generated discrete PCR amplicon sizes (Fig 7.1). The discrete amplicon sizes allowed rapid visualization of genogroup-positive FRNA strains. In addition, primer sets lacked primer-dimers or hairpin loop formations thereby allowing optimal PCR amplification. Primer set FRNA I (Table 7.3) produced 142 base pair (bp) amplicons from isolates DL1, DL2, DL13, DL16, ST4, R17, J20 and strain MS2. Primer set FRNA II produced 471 bp amplicons from isolates T72, DL10, DL20 and strain GA.

Primer set III produced 795 bp amplicons from isolates TW18, HL4-9, BR12, BZ1, VK and strain QB. Primer set IV produced 1159 bp amplicons from isolates HB-P22, HB-P24, BR1, BR8 and strains SP and NL95.

Table 7.3 Genogroup-specific primer sets. Genogroup-specific primer sets designed to detect the FRNA coliphage (Leviviridae). Degenerate bases are highlighted in bold and written in the standard IUB code. UTR - untranslated region.

Group	Primer	Sequence	Amplicon (bp)	Gene
I	FRNA IF (forward)	5' CAAACCAGCATCCGTAGCC 3'	141	Replicase
I	FRNA IR (reverse)	5^{\prime} CTTGTTCAGCGAACTTCTTRTA 3'		Replicase
II	FRNA II F (forward)	5' ATGCCGTTAGGTTTAGRTGAC 3'	471	5^{\prime} UTR
II	FRNA II R (reverse)	5^{\prime} GCAATHGCAACCCCAATA ${ }^{\prime}$		Maturation
III	FRNA III F (forward)	5' CTACTGCTGGTAATCTCTGGC 3'	795	Maturation
III	FRNA III R(reverse)	5'CAACRCCGTTRTGGGATTTAC 3'		Capsid
IV	FRNA IVF (forward)	5' CTGTCCGCAGGATGTWACCA 3'	1159	Replicase
IV	FRNA IV R (reverse)	5' GGCACTGTCCTGAATCCACG 3'		Replicase

Detection of FRNA Coliphages Using Heat-released Viral RNA

For most coliphage strains, heat-released viral RNA (Schwab et al., 1997; Vinjé et al., 2004) produced the desired amplicon. If the amplicon was not observed, purified RNA was used to supplement the RT-PCR assay. Strains requiring purified RNA were J20, GA, QB and NL95. Use of RNA vs heat-release was not titer dependent as phage QB had a titer > 10^{10} but this strain would not amplify with heat-release whereas strain SP amplified at a 10^{3} titer.

Testing for Cross-reactivity of Primer Sets

Although BLAST (www.ncbi.nlm.nih.gov/BLAST) results did not indicate crossreactivity in GenBank strains, each primer set was tested using a total of 25 environmental and prototype FRNA strains representing each genogroup. Cross-reactivity was not observed between groups I and II (genus Levivirus) or between groups III and IV (genus Allolevivirus). However, primer set IV produced faint non-specific amplification when Levivirus genogroups I and II strains were tested with RT-PCR (data not shown). Preliminary screening of environmental FRNA strains using generic primers as described (Vinjé et al., 2004) will determine the genus. Once the genus is determined by generic RT-PCR, subsequent genogroup-specific primers, I and II for Levivirus or III and IV for Allolevivirus, will eliminate non-specific amplification. However, the non-specific PCR amplification products were faint and amplicons were not the same molecular size or intensity as generated by each genogroup-specific primer set.

Discussion

In this study are reported the first broadly representative but specific RT-PCR primer
sets for each of the four separate FRNA coliphage genogroups designed from a large (30 strains) genetic sequence database. The robust genogroup-specific primers detected a variety of purified FRNA coliphages from various sources and samples collected around the world. Diverse FRNA coliphage sources were adequately represented, as those used for primer design came from a variety of water bodies, fecal waste sources and their animal hosts including birds, chickens, swine, oyster, mussel, clam, sewage, human feces, calves and lesser apes (Table 7.1). Each genogroup-specific primer set was designed from a minimum of 5 strains per group in which the complete genome was known. In addition, FRNA genogroup strains were isolated from the United States, Japan, Europe, Brazil, Taiwan and/or Mexico.

Previous investigations using real-time PCR or RT-PCR for detection and genotyping of FRNA coliphages used extracted viral RNA from either purified virus or environmental water samples (O’Connell et al., 2006; Dryden et al., 2006; Kirs and Smith, 2007; Ogorzaly and Gantzer, 2006). In this study, coliphage RNA was made available for amplification by RT-PCR using a heat-release RNA technique directly applicable to culture enriched coliphage isolates (Schwab et al., 1997; Vinjé et al., 2004). This heat-release procedure reduces RTPCR preparation time by omitting initial coliphage isolation followed by RNA chemical purification steps. In field samples where low numbers of coliphages are present, it may be necessary to first enrich for FRNA coliphages (Love and Sobsey, 2007) followed by heatrelease of enrichments for RT-PCR amplification.

Using primers designed from only a limited number of complete or partial nucleotide sequences available in the NCBI GenBank, Dryden et al., (2006), failed to detect FRNA coliphages in several environmental samples, despite the fact that coliphages were detected at
all sites by the single agar layer method (SAL). The authors acknowledged the possibility that their RT-PCR assay failed to detect unknown FRNA phages. Indeed, this may have been the case as their primer sets were designed to the limited FRNA sequences in GenBank, and, primers were not designed to genogroup III.

In previous studies, the sensitivity of lower detection limits appears to be generally consistent. Using purified RNA, RTQPCR for all four genogroups of FRNA phages detected 0.1 plaque-forming units (PFU) per 50 ul reaction in seawater and $0.5 \mathrm{PFU} / 50 \mathrm{ul}$ reaction in stool samples (Kirs and Smith, 2007). These findings were comparable to a sensitivity of 0.1 PFU in laboratory-prepared MS2 in an RT-PCR assay using a single primer set that detects, but does not differentiate, the Leviviridae family (Rose et al., 1997). Lower detection limits for various FRNA phage strains with RTQPCR ranged from 1-10 PFU/ml for MS2, 0.01-0.1 PFU/ml for GA and SP and 0.1-1 PFU/ml for phage QB (Ogorzaly and Gantzer, 2006). The sensitivity of a real-time fluorogenic RT-PCR for FRNA strain MS2 detected 40-0.4 fg of RNA per 20 ul reaction (O'Connell et al., 2006). Sensitivity of detection based on a lower limit or dilution endpoint to extinction was not measured in this assay. The method was applied to phage enrichments that contained $>10^{3} \mathrm{PFU}$. Further studies are planned to determine the lower limit of FRNA coliphage detection and genotyping when the method is applied directly to enriched and serially diluted coliphages and coliphages in unenriched environmental samples such as feces, manure, biosolids and wastewater.

The new genogroup-specific primers, RNA preparation and RT-PCR amplification procedures described here should facilitate improved and more reliable genotyping of different FRNA coliphage isolates in environmental samples.

Summary

- Using genogroup-specific primers directed to highly conserved consensus sequences in each genogroup, a one-step RT-PCR was developed that detected all four genogroups when applied to 25 environmental and prototype FRNA strains.
- Primer sets produced PCR amplicon sizes of $142 \mathrm{bp}, 471 \mathrm{bp}, 795 \mathrm{bp}$ and 1159 bp to genogroups I, II, III and IV, respectively.
- Discrete amplicon sizes allow easy visualization of genogroup-specific amplicons produced in the RT-PCR.
- The RT-PCR successfully amplified 25 FRNA coliphages when applied to direct heatreleased viral RNA template, which reduced RNA sample preparation time by omitting the time-consuming and costly chemical RNA purification steps.
- These genogroup-specific primers sets can aid in source-tracking FRNA coliphages.

References

Beekwilder, J., Nieuwenhuizen, R., Poot, R., van Duin, J., 1996. Secondary structure model for the first three domains of QB RNA. Control of A-protein synthesis. J. Mol. Biol. 256(1), 8-19.

Brion, G.M., Meschke, J.S., Sobsey, M.D., 2002. F-specific RNA coliphages: occurrence, types, and survival in natural waters. Water Res. 36, 2419-2425.

Cole, D., Long, S.C., Sobsey, M.D., 2003. Evaluation of F+ RNA and DNA coliphages as source-specific indicators of fecal contamination in surface waters. Appl. Env. Micro. 69, 6507-6514.

Dryden , S.K., Ramaswami, B., Yuan, Z., Giammar, D.E., Angenent, L.T., 2006. A rapid reverse transcription-PCR assay for F+ RNA coliphages to trace fecal pollution in Table Rock Lake on the Arkansas-Missouri border. Water Res. 40, 3719-3724.

Furuse, K., Ando, A., Watanabe, I. 1975. Isolation and grouping of RNA phages VII. A survey in Peru, Bolivia, Mexico, Kuwait, France, Australia and the United States of America. J. Keio. Med. Soc., 52, 353-361.

Gerba, C.P., 1987. Phage as indicators of fecal pollution, in: Goyal, S.M., Gerba, C.P., Bitton, G. (Eds), Phage Ecology. Wiley Interscience, New York, pp. 197-210.

Grabow, W.O.K., 2001. Bacteriophages: update on applications as models for viruses in water. Water S.A. 27, 251-268.

Griffin, D.W., Stokes, R., Rose, J.B., Paul, J.H. III., 2000. Bacterial indicator occurrence and the use of an $\mathrm{F}(+)$ specific RNA coliphage assay to identify fecal sources in Homosassa Springs, Florida. Microbial. Ecol. 39, 56-64.

Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41, 95-98.

Havelaar, A.H., Furuse, K., Hogeboom, W.M., 1986. Bacteriophages and indicator bacteria in human and animal faeces. J. Appl. Bacteriol. 60, 255-262.

Hirashima A., Inokuchi,Y., Harigai, H., Furuse, K., Watanabe, I., 1983. Biochemical characterization of RNA coliphage MX1. J. Gen. Virol. 64(4), 939-946.

Hsu, F.C., Shieh,Y.S., van Duin, J., Beekwilder, M.J., Sobsey, M.D., 1995. Genotyping malespecific RNA coliphages by hybridization with oligonucleotide probes. Appl. Env. Micro. 61(11), 3960-3966.
Kirs, M., Smith, D.C., 2007. Multiplex quantitative real-time reverse transcriptase PCR for F+
specific RNA coliphages: a method for use in microbial source tracking. Appl. Env. Micro. 73(3), 808-814.

Love, D.C., Sobsey, M.D., 2007. Simple and rapid F+ coliphage culture, latex agglutination, and typing assay to detect and source track fecal contamination. Appl. Env. Micro. 73(13), 4110-4118.

Marvin, D.A., Hoffman-Berling, H., 1963. Physical and chemical properties of two new small bacteriophages. Nature. 197(4866), 517-518.

Miyake, T., Shiba, T., Sakurai, T., Watanabe, I., 1969. Isolation and properties of two new RNA phages SP and FI.. Japan. J. Micro. 13(4), 375-382.

Miyake, T., Furuse, K., Shiba, T., Aoi, T., Sakurai, T., Watanabe, I., 1971. Isolation and grouping of RNA phages in Taiwan. J. Keio Med. Soc. 48, 25-34. (Japanese)

Miyake, T., Furuse, K., Shiba, T., Aoi, T., Sakurai, T., Watanabe.I., 1973. Isolation and grouping of RNA phages. II. A survey in Brazil. J. Keio Med. Soc. 50, 353-362. (Japanese)

O’Connell, K.P., Bucher, J.R., Anderson, P.E., Cao, C.J., Khan,A.S., Gostomaki, M.V., Valdes, J.J., 2006. Real-time fluorogenic reverse transcription-PCR assays for the detection of bacteriophage MS2. Appl. Env. Micro. 72(1), 478-483.

Ogorzaly, L., Gantzer,C., 2006. Development of real-time RT-PCR methods for specific detection of F-specific RNA bacteriophage genogroups: application to urban raw wastewater. J. Virol. Meth. 138, 131-139.

Paranchych, W., Graham, A.F., 1962. Isolation and properties of an RNA-containing bacteriophage. J. Cell Comp. Physiol. 60, 199-208.

Rose, J.B., Zhou, X., Griffin, D.W., Paul, J.H., 1997. Comparison of PCR and plaque assay for detection and enumeration of coliphage in polluted marine waters. Appl. Env. Micro., 63(11), 4564-4566.

Sakurai, T., Miyake, T., Shiba, T., I. Watanabe, 1968. Isolation of a possible fourth group of RNA phage. Japan. J. Micro. 12, 544-546.

Schaper, M., Jofre, J., Uys, M., Grabow, W.O., 2002. Distribution of genotypes of F-specific RNA bacteriophages in human and non-human sources of faecal pollution in South African and Spain. J. Appl. Micro. 92, 657-667.

Schwab, K.J., Estes, M.K., Neill, F.H., Atmar, R.L., 1997. Use of heat release and an internal RNA standard control in reverse transcription-PCR detection of Norwalk virus from
stool samples. J. Clin. Micro. 35(2), 511-514.
Sobsey, M.D., Love, D., Lovelace, G., Stewart, J.R., Robinson. B., 2005. Methods to detect and genotype coliphages in water and shellfish. Biennial Meeting of the Interstate Shellfish Sanitation Conference. http://www.unc.edu/sobseylab/ISSCcoliphagedemo.pdf

Stewart, J.R., Daugomah, J.W., Chestnut, D.E., Graves, D.A., Sobsey, M.D., Scott, G.I., 2006. FRNA coliphage typing for microbial source tracking in surface waters. J. Appl. Micro. 101, 1015-1026.

Stewart, J.R., Vinjé, J., Oudejans, S.J.G., Scott, G.I., 2006. Sequence variation among group III F-specific RNA coliphages from water samples and swine lagoons. Appl. Env. Micro. 72, 1226-1230.

Sundram, A., Jumanial, N., Ehlers, M.M., 2006. Genotyping of F-RNA coliphages isolated from wastewater and river samples. Water S.A. 32(1), 65-70.

US EPA., 2001. Method 1602: Male-specific (F+) and somatic coliphage in water by single agar layer (SAL) procedure. Office of Water, EPA 821-R-01-029. Washington, D.C., 20460. www.epa.gov/nerlcwww/1602ap01.pdf
van Duin, J., 1998. The single-stranded RNA bacteriophages. in: Fraenkel Conrat, H., Wagner, R.R. (Eds). The Bacteriophages. Series The Viruses. Plenum Press, NY. pp. 117-167.

Vinjé, J., Oudejans, S.J.G., Stewart, J.R., Sobsey, M.D., Long, S.C., 2004. Molecular detection and genotyping of male-specific coliphages by reverse-transcription-PCR and reverse line blot hybridization. Appl. Env. Micro. 70(10), 5996-6004.

Watanabe, I., Miyake, T., Sakurai, T., Shiba, T., Ohno.T., 1967. Isolation and grouping of RNA phages. Proc. Jap. Acad. 43(3), 204-209.

Zinder, N.D., 1965. RNA phages. Ann. Rev. Microbiol. 19, 455-473.

VIII. Overall Discussion

Male-specific RNA coliphages, among the smallest autonomous viruses known, are positive sense, single-strand RNA (ssRNA) phages possessing a genome, 3.8 to 4.2 kb , enclosed within a non-enveloped 26 nm icosahedral-shaped capsid (Buchen-Osmond, 2003). These coliphages belonging to the family Leviviridae were initially grouped primarily according to their serological properites. The Leviviridae family contain two genera, Levivirus and Allolevivirus which are further subdivided into four major serogroups, I, II, III, IV and branched subgroups (a,b,c,d) according to serological cross-reactivity (Sundram et al., 2006). Levivirus are subdivided into genogroups I and II and Allolevivirus are subdivided into genogroups III and IV. It became apparent as early as the 1970s that the four genogroups of FRNA coliphages had somewhat different fecal source and geographic distributions. In the 1990s the development of genotyping methods based on synthetic oligonucleotide probes (Hsu et al., 1995; Beekwilder et al., 1996) made it possible and convenient to genotype FRNA coliphages and better understand their ecology, their value as fecal and viral indicators, their ability to distinguish human from animal fecal wastes and the impacts of these different waste sources on ambient waters. By employing these methods it became apparent that more information regarding source of fecal pollution could be obtained by comparing full-length genomic sequences from FRNA coliphages collected from various animals and water bodies.

Male-specific coliphages have been suggested as a viral indicator for: (1) fecal contamination (Osawa, 1981; Furuse, 1983), (2) enteric bacterial contamination (Gerba, 1987), (3) enteric viral contamination (Grabow, 2001; Leclerc et al, 2000) and (4) risks of gastro-intestinal illness from recreational water exposures (Colford et al., 2007). FRNA coliphages are almost indistinguishable from most human enteric viruses (Grabow, 2001), occur in higher numbers in sewage and wastewater effluents than viral enteric pathogens (Grabow, 2001), their presence implies the presence of pathogenic viruses (Grabow, 2001), and, in a majority of cases, they display fecal-source specificity (Vinjé et al, 2004; Cole et al, 2003; Furuse, 1987; Schaper et al, 2002; Scott et al, 2002; Stewart, 2002; Long et al, 2005).

The focus of this study was to develop and validate a rapid, genogroup-specific molecular assay for the detection of FRNA coliphages as a potential viral indicator of fecal pollution. Before the molecular assay could be developed, a genetic sequence database was generated representing environmental and prototype FRNA coliphage strains from all four genogroups.

A ssRNA viral assay would need a large (at least 5 strains/genogroup) genetic sequence database. To develop a genetic database, 19 FRNA strains were sequenced and compared to the 11 FRNA full-length sequences available in the National Center for Biotechnology Information (NCBI) genetic database (GenBank) for a total of 30 FRNA strains. FRNA phages were collected from water, sewage, and various animals representative of diverse geographical locations (Table 7.1). The field-collected FRNA strains and prototype strains were represented by phages isolated from the United States, Japan, Europe, Brazil, Taiwan and/or Mexico (Table 7.1). The majority of groups II (80\%) and III (75\%)
strains were collected at municipal sewage sources or water bodies with the exception of one group II strain (collected from bird droppings), one group III strain (collected from swine lagoon) and one group III strain was from an unknown source. Two out of 10 group I strains (20\%) were collected from sewage, 4 out of 10 group I strains (40\%) were collected from ambient waters and/or sentinel organisms (oyster, clam, mussel), one strains' source was unknown and one strain was collected from a dung-hill. Four out of seven group IV strains (57\%) were collected from animal sources (bird, gibbon, calves), two strains (29%) were collected from ambient water sources and one strain was obtained from an infant (Table 7.1).

Phages were sequenced by primer walking. A polyadenylated (Poly-A) tail was added to the 3' end of purified viral RNA, the poly-A RNA was reverse transcribed with a Poly-T reverse primer; the resulting cDNA was used as a PCR template. A gene-specific forward and a poly-T primer used in the PCR mixture produced an approximate one kilobase (kb) amplicon. PCR products were gel-purified (GenScript, Piscataway, NJ), cloned (Invitrogen, Carlsbad, CA) and sequenced (Sequetech, Mountain View, CA). This process was repeated until the majority (all sequences except 100-200 bp at the 5^{\prime} end) of the genome was obtained. A rapid amplification of cDNA ends (RACE) Smart RACE kit (Clontech, Mountain View, CA) was used to amplify the 5^{\prime} portion of the genome.

When full-length genome nucleotide sequences were aligned with the published GenBank strains within their respective genogroup, very similar or identical gene mapping, or Open Reading Frames (ORF), were observed for all four Leviviridae genes indicating the sequence data generated in this study was valid. Sequence similarity among genogroup I strains ranged from $75.27-96.67 \%$ with strain fr forming a separate subgroup (Table 5.2, Fig
5.2). Among group II strains, nucleotide sequence similarity ranged from 83.30 to 93.84% with strains DL10, DL20 and GA having the highest sequence identities (93.43-93.67\%) whereas strains T72 and KU1 formed a separate subcluster (Table 5.2, Fig 5.2). Among Allolevivirus group III, two different subclusters were formed. The first subcluster was composed of strains VK, HL4-9, BR12, BZ1, TW18 and GenBank strain Q β having a nucleotide sequence similarity ranging from 91.87-95.69\%. The second subcluster formed with GenBank group III strains MX1 and M11 having an 87% nucleotide similarity to each other. The nucleotide similarity of strains between the two group III subclusters ranged from 69.77-71.33\% (Table 5.2, Fig 5.2). Group IV Allolevivirus shared sequence identities ranging from 74.90-95.03 \% with the closest identities being 95.03% between strains BR8 and BR1.

Amino acid composition was similar among genogroups, further validating the nucleotide sequences. With the exception of strain fr, amino acid number was consistent in each of the four protein types in group I phages (Table 5.4, Appendix B). The capsid protein of all strains in group I was 130 amino acids in length. Levivirus groups I and II capsid proteins shared a conserved region consisting of a 10 amino acid, FVLVDNGGTG, consensus sequence. Groups I and II maturation protein shared a consensus region RWLELQ at amino acid (aa) positions number 198-203. The length of the maturation protein of groups III and IV varied from 420 aa to 450 aa (Table 5.4) and possessed a mutual conserved aa region LWLEFRYGL (Appendix B). The length of the capsid protein was 133 and 132 aa for groups III and IV, respectively, and conserved stretches of amino acids occurred in both groups.

An algorithmic approach was selected to construct phylogenetic trees from the nucleotide sequence and amino acid data (Fig 5.2, Fig 5.4). Nucleotide sequences in the
phylogenetic tree of Levivirus group I strains produced two branches, with 9 strains clustered as MS2-like and strain fr an individual branch (Fig 5.2). Within group II nucleotide sequences, strains KU1 and T72 formed one branch and strains DL10, DL20 and GA formed a second branch. Allolevivirus group III nucleotide sequences clustered into a MX1, M11 branch and a second branch with Q β-like strains BR12, VK, BZ1, HL4-9, TW18 and prototype $\mathrm{Q} \beta$. Nucleotide sequence analysis formed three branches in group IV strains as follows: 1) HB-P24, HB-P22 and prototype NL95, 2) BR1, BR8 and prototype SP and 3) prototype FI (Fig 5.2). Individual proteins were clustered into phylogenetic trees. In some cases, phylogenetic protein trees formed more subclusters or branches that the nucleotide trees (Fig 5.4). Genome organization, amino acid conservation and identical or very similar nucleotide start and stop positions supported the Leviviridae genogroup designation. In addition, eight nucleotides on the 3 ' termini clearly distinguish the Allolevivirus, 5' TCCTCCCA 3', from the Levivirus, 5' ACCACCCA 3'.

In addition, two new undescribed Levivirus strains which did not hybridize to previously designed geno-specific hybridization probes (Vinjé et al., 2004) were sequenced. The two unique FRNA strains were collected from North Carolina and Rhode Island. Fulllength genomic sequences from the novel strains were compared to nucleotide and/or amino acid sequences from 10 group I strains (MS2, DL1, DL2, DL13, DL16, ST4, R17, J20, M12, fr) and 5 group II strains (T72, DL10, DL20, GA, KUI). Based on full-length genome sequences and phylogenetic analyses, these novel strains were placed into a "JS" subcluster of genogroup I. Sequence similarities of the maturation, capsid and lysis proteins of the JS strains were very similar to those of the MS2-like group I strains, sharing 99-100\%, 98-100\%
and $95-100 \%$ sequence similarities, respectively (Table 6.3, Fig 6.1). However, the replicase protein sequences of the JS strains were quite dissimilar to the replicase protein sequences of the MS2-like genogroup I strains, displaying a similarity range of 84-85\% and a frame shift resulting from a two nucleotide insertion (Fig 6.5). The resuls of this study provide molecular genetic evidence indicative of recombination in two JS strains of FRNA coliphages. The JS strains provided insight to phage ecology and recombination events in natural FRNA strains.

In this study, analyses of complete genomic sequences from 30 FRNA phages plus two novel strains support the known classification scheme. That is, the Leviviridae consist of two genera and four distinct genogroups. From this analysis an observation was made that to better define the sub-groupings, it may be more reasonable to assign an association to a specific strain name, i.e., Q β-like instead of genogroup III, subgroup a; MX1-like instead of genogroup III, subgroup b; and in group IV SP-like instead of genogroup IV, subgroup a; and FI-like instead of genogroup IV, subgroup b. Thus, a recommendation based on these findings would be to dismiss the alphabetical sub-grouping nomenclature.

Rose et al (1997) designed a one-step reverse transcription polymerase chain reaction (RT-PCR) using a single primer set that detects, but does not differentiate, FRNA coliphages. In this dissertation, a RT-PCR was designed to distinguish the four FRNA coliphage groups (I, II, III, IV) and ultimately, to distinguish human vs animal fecal sources. Primer sets were designed based on the complete genomic sequences of 30 FRNA strains. Genogroup specific RT-PCR primers were designed to conserved sequences from a variety of strains (10 strains from group I, 5 strains from group II, 8 strains from group III and 7 strains from group IV) (Table 7.1, Fig 7.2). Unique amplicon sizes were generated to allow rapid visualization of
each genogroup (Fig 7.1). The traditional one-step RT-PCR was developed, optimized for use with heat-released viral nucleic acid and tested for cross-reactivity. Rigorous validation to ensure lack of cross-reactivity was performed whereby each primer set was tested against 25 environmental and prototype strains. This assay was developed, in part, to allow laboratories lacking real-time equipment the ability to genotype FRNA isolates.

A limitation of molecular detection is that nucleic acid presence or persistence of the phage is detected and is not necessarily representative of the presence of infectious viruses. It has been suggested that if the virion capsid is disrupted, the RNA should degrade rapidly under environmental conditions. This position has not been supported by some lab and field studies which addressed long-term persistence of viral nucleic acids in environmental waters (Kirs and Smith, 2007). Another proposed approach is the discrimination between an intact but non-infectious FRNA phage based on degradation of accessible viral RNA by RNase to eliminate detection of free RNA from damaged (leaky) capsids.

The molecular FRNA phage assay developed in this study may be applicable to an accelerated turnaround time as the assay omits the RNA purification procedure by use of direct heat-release. The traditional primers developed not only allow genogroup identification but provide a comprehensive assessment as to the sanitary quality of the water. If any FRNA phages are detected, then fecal contamination has occurred. This approach utilized a noncultivation library-independent method for differentiating between human and animal fecal contamination.

In a global phage genotyping assessment, genotypes were reported to be differentially distributed. For example, the FRNA phage from sewage samples in Brazil and West

Germany were from group I exclusively. However, it was unclear as to whether or not sewage treatment plants received slaughterhouse waste (Furuse, 1987). If, however, both slaughterhouse and domestic sewage were combined, and, if only groups II and III are specific to humans, then presumably at least genogroups I, II and III would have been detected in their study. Furuse argued that group I phages observed in raw sewage from treatment plants were most likely introduced from animal sources, and group II and group III phage were from human sources. This begs the question as to why their study only detected group I in sewage treatment facilities from Germany and Brazil. However, several explanations are possible for this result. Group I could have out-competed groups II and III or they could have slower inactivation rates. This trend of persistent goup I FRNA coliphages should be apparent in other sampling stations if these explanations are correct. However, only limited genotyping from other studies are available for making such observations (Osawa et al., 1981; Miyake et al., 1971). Certain FRNA genogroups may predominate in various human and/or animal populations and their occurrence may also be influenced by climate, diet, intestinal fauna, etc. Further study is needed in different geographical locations to better understand the ecology or natural history of the different FRNA coliphage genogroups; methods developed in the current study should contribute to this effort. Despite the lack of an absolute association between an FRNA genogroup and a unique source, these coliphages likely signal the presence of fecal contamination from either animal and/or human origin. Thus, an FRNA positive sample(s) warrants further investigation, intervention and under some circumstances a public notification alert.

The following three paragraphs will discuss governmental and organizational standards for sanitary quality of recreational water as they pertain to applications of this dissertation. Many of our nation's ambient water resources are impaired and fail to achieve US EPA implemented water-quality standards. In a report dated April 29, 2008, the number of national impaired waters was 39,918 and the leading impairment was pathogens, totaling 9191 of reported impaired waters, or 14.16\% (iaspub.epa.gov/waters/national_rept.control). A water body is defined as impaired when the water body fails to maintain water quality standards even after applying effluent limits for point sources (Clean Water Act Section 303(d); ww.epa.gov/waterscience/standards/303.htm). Water quality standards are based on water quality conditions and pollution sources, i.e., pathogens, nutrients, sediments, metals, habitat alteration and specific chemicals (www.epa.gov/waterscience/standards/about/).

The EPA Beaches Environmental Assessment and Coastal Health Program (BEACH) Act of 2000 was decreed to improve public health and recreational water quality. Fecal contaminated recreational waters may pose a potential health risk as bathers could contract a waterborne disease spread by fecal-oral route (www.epa.gov/waterscience/beaches/report/chapter02.pdf). Beach-goers who swim or bath in fecal-contaminated waters are at a greater risk than non-swimmers for contracting gastroenteritis. To protect public health, the use of fecal indicators as water quality standards were implemented (EPA, 1983; EPA, 1984). The BEACH Act (amended Section 303 of the Clean Water Act) requires states, tribes and territories to integrate EPA's water quality criteria, E. coli and/or enterococci, as their water quality standard (EPA, 2003). The focus of the BEACHs program is to strengthen beach testing and standards, provide faster testing
methods, predict pollution, to better define the criteria as to which fecal indicators and water quality standards are based, to invest in health and methods research and to inform the public (EPA, 2003). The BEACH Act requires states to adopt water quality standards that are "as protective of human health" as the federal criteria. The federal water quality criteria "Ambient Water Quality Criteria for Bacteria in Recreational Waters, 1986" was developed from US EPA epidemiology studies conducted over a period of years $(1972-1978)$ at beaches located in New York, Louisiana, Massachusetts and Egypt (EPA, 1983; EPA, 1984). Epidemiological data supported the use of E. coli and enterococci as primary fecal indicators associated with statistically significant increased gastrointestinal illness rates to swimmers/bathers (EPA, 1983; EPA, 1984). A review of epidemiological studies and fecal indicators (Pruss, 1998) concluded the following: 1) an exposure-response relationship exists in recreational waters between bacterial indicator counts and gastrointestinal symptoms in exposed beach-goers (swimmers) and 2) there was no demonstrated relationship between bacterial indicator counts and non-gastrointestinal symptoms, i.e., rash, eyes, nose, ears.

The primary aim of the World Health Organization's (WHO) "Guidelines for Safe Recreational Water Environments" (2003) is to protect the public health by addressing such issues as exposure to sewage-contaminated waters, exposure to freeliving pathogenic organisms such as Vibrio, Aeromonas sp. and N. fowleri, exposure to contaminated beach sand and other potential exposures encountered in recreational water use. Unlike the EPA epidemiology studies conducted in the United States, the WHO based their selection of fecal water quality indicators and health-risk outcomes on a series of randomized control trials conducted in the United Kingdom (REF). The selected bacterial fecal indicator for marine
waters was enterococci whereby a dose-response relationship between enterococci density and health outcome, i.e., gastrointestinal illness and acute febrile respiratory illness (AFRI), was demonstrated. However, the WHO document did not recommend or find a statistical salient
fecal indicator for freshwaters. Enterococci are also the EPA fecal indicator for monitoring marine recreational waters and E. coli is an indicator in freshwaters.

Obstacles to current fecal indicator methods include bacterial culture-based methods, or if a molecular assay is used, the protocols usually involve bacterial or viral RNA/DNA concentration and purification steps thereby increasing the time frame between sample collection, data analysis, public health intervention and protection. Most culture-based detection methods currently require at least a $24-48 \mathrm{hr}$ time lag from sample collection to outcome and therefore, provide information that fecal contamination occurred within the past 24-48 hr. Public health intervention to protect bathers prior to exposure would necessitate sample analysis and data confirmation to occur within hours of sample collection, not days. This lag time between sample collection, completion of analysis and public notification causes a window of potential risk to bathers from exposure to pathogens. Clearly, real-time or short-term detection, with limited (1-4 hr) turnaround time from water sample collection to results to public notification are imperative for timely protection of bathers.

Although both the EPA and WHO have developed rigorous recreational water quality guidelines, one limitation is that the bacterial indicators have little or no correlation to the presence of pathogenic viruses (Griffin et al., 2003). Bacterial indicators may be an erroneous predictor of viral presence as their survival rates do not match those of viruses. Even when
current bacterial standards are met in recreational waters, risks to human health may be posed by viruses. For example, most illnesses contracted by swimmers appear to be of viral etiology (Griffin et al., 2003). Erroneous bacterial counts have been documented as these fecal indicator bacteria periodically occurred naturally in temperate climates (Hardina and Fujioka, 1991; Roll and Fujioka, 1997; Byappanahalli and Fujioka, 1998; Fujioka and Byappanahalli, 2000; Solo-Gabriele HM et al., 2000; Genthner et al., 2005). Elevated bacterial indicator counts exceeding EPA water-quality criteria were influenced by soil run-off and not a result of sewage input (Byappanahalli and Fujioka, 2004).

To date, a viral indicator has not been mandated for regulatory purposes in recreational waters. Additional gaps for determining fecal contamination are that these methods are not real-time nor do they provide information regarding source. To minimize risks to human health, resource managers and human health advisors need an early-warning indicator, an indicator that addresses fecal source and an indicator indicative of enteric viral presence.

This attribute as to the selection of a fecal indicator(s) is based on the relationship between the indicator densities in polluted waters to human-health risk. Few epidemiology studies exists correlating health risks with male-specific $(\mathrm{F}+)$ coliphage densities. A California beach study comparing the male-specific ssRNA phage (FRNA) and male-specific DNA phage (FDNA) densities and gastrointestinal illness rates, nausea, cough and fever suggested an association between F+ phages and illness (Colford et al., 2007). Meta-analysis of epidemiological freshwater studies reported an elevated gastrointestinal illness risk with elevated bacteriophage exposure (Wade et al., 2003). However, the meta-analysis did not
specify which type of bacteriophage was evaluated.

In conjunction with microbial source-tracking, a tiered approach to rapid and effective detection and management of pathogen risks from fecal contamination encompasses a "big picture" investigation of a contaminated area. For example, Boehm et al., (2003) applied the tiered approach to resolve a closure of a local beach populated by tourists in the following manner: (1) determine the contamination source, i.e., runoff or wastewater discharge (2) survey the potential source area, i.e., beach gull droppings, broken sewer pipes, stormwater drains and (3) apply microbial library-independent microbial source tracking to water samples. Results of the above study suggested that a suite of indicator organisms and an established FRNA threshold value with a concomitant tier could potentially yield a more accurate, precise and timely environmental site assessment.

Methods developed in this study could also be used to address waterborne transmission of infectious diseases. For example the Severe Acute Respiratory Syndrome (SARS) was disseminated through aerosolized droplets of sewage (WHO, 2003). Had a viral indicator such as FRNA been detected during surveillance studies perhaps the sewage transmission via fecal droplets may have been detected sooner and thereby prevented or minimized the outbreak. The proposed viral indicator of recreational water quality, FRNA, and the molecular assays developed here could improve 1) monitoring criteria for Total Maximum Daily Loads (TMDL), state and federal recreational water quality regulations, ambient water monitoring programs, 2) combined microbiological-epidemiological studies designed to improve water quality criteria and 3) monitoring systems for wastewaters, biosolids, beach (recreational) waters, drinking waters, irrigation waters and reuse waters.

This dissertation project concluded the following: (1) analysis of complete genomic sequences from 30 Leviviridae FRNA coliphage strains plus two novel JS strains support the current classification scheme of two genera, Levivirus and Allolevivirus and four distinct genogroups, I, II, III and IV (2) FRNA sequences generated in this study will triple the genetic information currently available in the national genetic database for Leviviridae viruses (3) this is the first report of evidence for recombination in FRNA coliphages and (4) the genogroup-specific primer sets and RT-PCR amplification procedures should facilitate improved and reliable genotyping of FRNA coliphages.

IX. Summary and Conclusions

Environmental pressures, genetic mutation rates, microbial cross-species plasmid exchange, episodic outbreaks, global health threats, i.e., SARS and Avian Flu, and natural disasters such as floods and hurricanes along with an increasing societal coastal population contribute to the need for better indicator species. Public health microbiologists are challenged to address those needs.

Various wastewater treatment processes, environmental stressors and predation may influence selection of one indicator versus another indicator species. Therefore, a suite of microbial indicator species would add confidence to water-quality public health assessment.

FRNA phages are valuable models as surrogates for enteric viruses for the following reasons: (i) structure - similar icosahedral structure (ii) size - virion diameter (iii) morphology - are almost indistinguishable, by electron microscopy, to Picornoviruses, i.e.. poliovirus, enterovirus (iv) composition - most enterics contain ssRNA with the exception of Adenovirus (DNA) (v) site of replication - gastro-intestinal tract. FRNA and enteric viruses are both excreted by humans, FRNA are easily detectable and are approx 100X more abundant in wastewaters and raw sewage when compared to cytopathogenic enteric viruses (Grabow, 2001).

FRNA infect the host when bacteria are in log phase and under optimal conditions and temperatures whereas somatic phages infect a greater variety of bacteria genera, including
attachment to dead host cells. Somatic phages may replicate, under certain temperature and climate conditions, but it is very unlikely FRNA would replicate in the environment. Sourcetracking of FDA phages is inconclusive although strain M13 occurs at approximately 77% in wastewaters. The presence of somatic, male-specific and B. fragilis phages in waters associated with animal and/or human wastes generally indicates the presence of enteric viruses and these phages potentially outnumber enteric viruses.

Rarely, if ever, does a direct correlation exist between the number of coliphages and enteric viruses at any given time. Enterics are excreted by infected humans whereas coliphages are excreted at all times. The incidence of human enterics in the form of outbreaks is seasonal and influenced by vaccination regimes. The excretion of coliphages is not affected by these occurrences.

Among various phages, FRNA are probably the best model for the presence of enteric viruses in the environment. Genogroup nucleotide and amino acid sequence alignment of FRNA phages originating from world-wide sources demonstrates the potential of FRNA to be applicable to various geographical locations and water sources.

FRNA sequences generated in this study tripled the genetic information currently available in the national genetic database for the Leviviridae. This additional genetic information may someday contribute to a better understanding of the basic molecular biology of these phages in terms of gene expression, control and regulation, recombination, mutations, virus-host interactions and phylogenetic relationships. In the more immediate future, this data can be applied to methods using FRNA coliphages as a fecal and viral indicator and as a source-tracking too

X. Recommendations for Future Research

Reverse-transcription PCR (RT-PCR) and real-time can be effectively used for source identification if specific primer sets are designed to be capable of identifying and distinguishing all members within each genogroup. Recently, reverse transcription polymerase chain reaction (RT-PCR) (Dryden et al., 2006) and reverse quantitative (RTQPCR) techniques (Kirs and Smith, 2007; Ogorzaly and Gantzer, 2006) for genotyping FRNA coliphages were developed. In these reports, primer design was based on the limited number of complete or partial nucleotide sequences available in GenBank. Thus, broad primer and probe genogroup specificity may not have been achieved due to the limited nucleotide data from the few strains available. To provide an advanced decision making tool for a comprehensive assessment of the sanitary quality of recreational water, a real-time RTQPCR FRNA phage-based assay will be designed to allow for rapid detection and greater sensitivity. When developing real-time primers and TaqMan probes, guidelines for design included the absence of a G residue at the probe's 5^{\prime} end, standard primer Tm should be 58-60 ${ }^{\circ} \mathrm{C}$, probe should be 7-10 degrees higher than the primer set and the probe should be located close, just downstream from the forward primer. The large data set of 30 complete FRNA phage genomes will be used to align the members of all four genogroups. Therefore, optimal FRNA sequence target regions will be used to develop genogroup specific real-time primers and probes. Primer and probe sequences will be selected from the replicase gene for groups I
and IV and the capsid gene for groups II and III (Table 8.2). Tm's of cleavage probes will range from $66-70^{\circ} \mathrm{C}$, Tm 's for the primers from $58-61^{\circ} \mathrm{C}$. Amplicons produced from all four primer sets will range from 99-153 bp in length. The method will incorporate a rapid heatrelease procedure. To evaluate and control for false-negatives resulting from inhibition or other impurities leading to negative PCR outcomes, a non-competitive purified RNA (courtesy of Dr. Bill Burkhardt) will be incorporated as an internal RNA real-time control to account for false-negatives resulting from inhibition or other impurities leading to negative PCR outcomes. Variations in detection format, instrumentation, amplification efficiency, inhibition, various water matrix compositions, technical expertise and the step-wise process of real-time PCR will be accounted for by means of this internal control. This RNA molecule, approximately 300 nucleotides in length, possessed a unique pseudo-randomly generated ribonucleotide sequence. The primer set produces an amplicon of 149 bases. The probe will be labeled with Texas red with a Black Hole 1 quencher. Validation of this assay will begin in a phosphate buffer amended with raw sewage, representing a human source and/or feces from a variety of warm-blooded animals. Once validated with amended samples then water samples contaminated with known sources of fecal pollution will be used for the field validation.

In some recreational water samples FRNA coliphage densities would be below the limit of detection. When present in low numbers $\left(<5 \times 10^{2} \mathrm{PFU} / \mathrm{ml}\right)$ phages need to be enriched in vivo. Thus, an enrichment procedure will bring the densities of these FRNA phages above the limit of detection. Briefly, 18 ml of a recreation water sample will be placed in a $37^{\circ} \mathrm{C}$ water bath. To the water sample, two ml of 10 X TSB, streptomycin sulfate
$(15 \mathrm{mg} / \mathrm{L})$, ampicillin $(15 \mathrm{mg} / \mathrm{L})$ and 0.5 ml of an overnight culture of the host strain, E. coli HS (pFamp)R (DeBartolomeis and V.J. Cabelli, 1991) will be added. This suspension will be incubated for at least 90 min to allow the completion of one lytic cycle. Coliphage enrichment elevates the phage densities above the limit of detection as the burst size of each strain can range from between 2000 and 4500 PFU (Furuse, 1987). Therefore, the proportion of phages belonging to each genogroup may differ from what was present in the origin sample thereby introducing genogroup bias.

Although the one-step RT-PCR molecular assay designed in this study was based on full-length genomic sequences from 30 FRNA coliphages with a minimum of 5 to a maximum of 10 full-length genomic sequences/genogroup, more sequencing data is needed. In this study, phages were collected from ambient water sources, oysters, mussels, sewage and a few animal droppings (birds), swine lagoon or obtained from international collections. Future research would be to collect more phages from specific sources and, if possible, use a direct fecal swab or fresh voids. To prepare a large library of known FRNA coliphages and the respective source, collections need to be obtained directly from adults, children, pets and livestock and not mixtures of municipal sewage or livestock lagoons.

Limits of detection were not established in the traditional one-step RT-PCR, however, future plans are to perform limits of detection when developing the real-time PCR assay. To further develop the one-step RT-PCR, limits of detection will also be determined by first preparing $\log 10$ serial dilutions in phosphate buffered saline (PBS) using known amounts of plaque-forming units $/ \mathrm{ml}(\mathrm{PFU} / \mathrm{ml})$ as established with titer plates. At least two different strains/genogroup, for a total of 16 FRNA strains, will be titered and serial dilutions prepared.

From the respective serial dilution, each PCR reaction will be prepared using heat-released viral RNA followed by RT-PCR. When a PCR amplicon is no longer detected the limits of the assay will have been obtained.

Future studies will be to conduct a collaborative or round-robin performance evaluation of the RT-PCR and QRT-PCR methods developed in this study. In these performance evaluations multiple laboratories and technical staff subject the coliphage molecular assays to environmental samples and also evaluate "blinded" (positive control or reference) specimens in order to verify that it is possible for the labs and their analysts to correctly detect the FRNA coliphage genotype. Collaborative studies would serve to standardize the methods and would reveal any possible deficiencies or discrepancies that may have gone unnoticed during the initial assay development.

Short-term enrichments possibly followed by centrifugation, sterile filtration, heatrelease and the use of PCR thermal cycles designed for short cycling regimes could very well lead to a rapid turnaround time from sample collection to results outcome for decision making. The use of heat-release of viral RNA templates alleviates the need for cumbersome and costly RNA purification by chemical methods. Ultimately, the molecular coliphage assay may be applicable to the development and eventual use of a field-portable kit whereby all reagents would be available in one tube. The field staff would only need to add an aliquot of an enriched water sample, heat and place into a portable thermal cycler.

Epidemiology field studies such as those of the current EPA Beaches program (National Epidemiological and Environmental Assessment of Recreational Water) could readily implement the FRNA RT-PCR or QPCR into their microbiological monitoring. Data
gathered in the EPA Beaches program is analyzed to evaluate exposed-bather health-risk associations with microbial water quality parameters. If FRNA coliphage quantification and genotyping is incorporated into the Beaches study, the data would provide epidemiological information on bather health impacts in relation to the concentrations of different coliphage genotypes in water, making it possible to associate FRNA presence and concentration thresholds with bather health effects.

The FRNA genome sequences provided by this dissertation research project are applicable to the development of an indicator-based microarray or hand-held fluorogenic detector assay. A comprehensive microarray constructed from viral and bacteria indicators and pathogens could potentially detect multiple pathogens and indicators and pin-point their sources with minimal laboratory lag time. Pathogen detection kits, similar to the AgPath-ID One-Step RT-PCR (Ambion) could be designed to detect FRNA genogroup targets. Results from such assays are generated in about 1 hr using a single-tube, real-time RT-PCR. The availability of the FRNA genetic database in conjunction with the primer and probes developed and evaluated in this dissertation provides the foundation for an assortment of rapid molecular detection assays.

Future applications of molecular FRNA coliphage assays include surveillance, monitoring and quality verification of groundwater and surface waters, shellfish beds, produce, red meat and poultry, assessments of wastewater treatment plant performance and effluent quality, wastewater reuse and surveillance for contamination incidents harboring emerging waterborne pathogens in sewage and ambient water bodies, surrogate for biological warfare and surrogate for enteric virus presence and control measures. In addition to current
bacterial indicators, FRNA coliphages have the potential to serve as effective viral indicators of fecal pollution.

References

Ashbolt NJ, WOK Grabow and M Snozzi. 2001. Indicators of microbial water quality. In: WHO Water Quality: Guidelines, Standards and Health.

Boehm, AB, JA Fuhrman, RD Mrse and SB Grant. 2003. Tiered approach for identification of a human fecal pollution source at a recreational beach - case study at Avalon Bay, Catalina Island, CA. Env Sci \& Technol, 37(4):673-680.

Bosch A. 1998. Human enteric viruses in the water environment: a minireview. Internatl Microbiol 1:191-196.

Byappanahalli MN and RS Fujioka. 1998. Evidence that tropical sould environment can support the growth of Escherichia coli. Wat Sci Tech 38(12):171-174.

Cole D, SC Long and MD Sobsey. 2003. Evaluation of F+ RNA and DNA coliphages as source-specific indicators of fecal contamination in surface waters. Appl Environ Micro 69(11):6507-6514.

Colford JM, Jr., TJ Wade, KC Schiff, CC Wright, JF Griffith, SK Sandhu, S Burns, M Sobsey, G Lovelace and SB Weisberg. 2007. Water quality indicators and the risk of illness at beaches with nonpoint sources of fecal contamination. Epidemiology 18(1):27-35.

Dore WJ, K Henshilwood and DN Lees. 2000. Evaluation of F-specific RNA bacteriophage as a candidate human enteric virus indicator for bivalve molluscan shellfish. Appl Environ Micro 66(4):1280-1285.

Durán AE, M Muniesa, L Mocé-Llivina, G Campos, J Jofre and F Lucena. 2003. Usefulness of different groups of bacteriophages as model micro-organisms for evaluating chlorination. J Appl Microbiol, 95:29-37.

EPA. 1984. Health Effects Criteria for Fresh Recreational Waters. EPA-600/1-84-004.
EPA. 1983. Health Effects Criteria for Marine Recreational Waters. EPA-600/1-80-031.
EPA. 1986. Ambient Water Quality Criteria for Bacteria - 1986. EPA 440/5-84-002.
EPA. 2003. Bacterial water quality standards for recreational waters (freshwater and marine waters) status report. EPA-823-R-03-008. June, 2003.

Fujioka RS and MN Byappanahalli. 2000. Microbial ecology controls the establishment of
fecal bacteria in tropical soil environment. Proc Int Symp of the Center of Excellence, March 2000, pp 99-108. University of Tokyo and Minister of Education, Science, Sports and Culture of Japan.

Furuse K, S Osawa, J Kawashiro, R Tanaka, A Ozawa, S Sawamura, Y Yanagawa, T Nagao and I Watanabe. 1983. Bacteriophage distribution in human faeces: continuous survey of healthy subjects and patients with internal and leukaemic diseases. J Gen Virol, 64:2039-2043.

Furuse K. 1987. Distribution of coliphages in the environment: general considerations. In: Phage Ecology. SM Goyal, CP Gerba and G Britton, eds. John Wiley \& Sons, Inc., NY. pp 87-124.

Genthner FJ, JB James, DF Yates and SD Friedman. 2005. Use of composite data sets for source-tracking enterococci in the water column and shoreline interstitial waters on Pensacola Beach, Florida. Mar Poll Bull 50:724-732.

Grabow, W. 2001. Bacteriophages: Update on application as models for viruses in water Water, SA 27: 251-268.

Gerba, CP. 2000. Assessment of enteric pathogen shedding by bathers during recreational activity and its impact on water quality. Quant Microbiol (2):55-68.

Gerba, CP. 1987. Phage as indicators of fecal pollution. In: Phage Ecology. SM. Goyal, CP. Gerba, and G. Britton (eds). John Wiley \& Sons, Inc., NY. pp:197-209..

Griffin D, CJ Gibson III, EK Lipp, K Riley, JH Paul, and JB Rose. 1999. Detection of viral pathogens by reverse transcriptase PCR and of microbial indicators by standard methods in the canals of the Florida Keys. Appl Environ Micro 65:4118-4125.

Griffin DW, KA Donaldson, JH Paul and JB Rose. 2003. Pathogenic human viruses in coastal waters. Clin Micro Rev 16(1):129-143.

Hardina CM and RS Fujioka. 1991. Soil: the environmental source of Escherichia coli and enterococci in Hawaii's streams. Environ Tox Water Qual 6:185-195.

Leclerc H, S Edberg, V Pierzo, and JM Delattre. 2000. Bacteriophages as indicators of enteric viruses and public health risk in groundwater. J Appl Microbiol, 88(1):5-21.

Long SC, SS El-Khoury, SJG Oudejans, MD Sobsey, and J Vinjé. 2005. Assessment of sources and diversity of male-specific coliphages for source tracking. Env Eng Sci 22(3):367-377.

Nappier SP, MD Aiken and MD Sobsey. 2006. Male-specific coliphages as indicators of thermal inactivation of pathogens in biosolids. Appl Environ Microbiol, 72:2471-
2475.

Osawa S, K Furuse, and I Watanabe. 1981. Distribution of ribonucleic acid coliphages in animals. Appl Environ Microbiol 41(1):164-168.

Pruss A. 1998. Review of epidemiological studies on health effects from exposure to recreational water. Int J Epidemiol, 27:1-9.

Roll BM and RS Fujioka. 1997. Sources of fecal indicator bacteria in a brackish tropical stream and their impact of recreational water quality. Wat Sci Tech 35:179-186.

Schaper M, J Jofre, M Uys and WO Grabow. 2002. Distribution of genotypes of F-specific RNA bacteriophages in human and non-human sources of faecal pollution in South Africa and Spain. J Appl Micro 92(4):657-667.

Scott TM, JB Rose, TM Jenkins, SR Farrah and J Lukasik. 2002. Microbial source tracking: current methodology and future directions. Appl Environ Micro, 68:5796-5803.

Snow J. 1855. On the mode of communication of cholera. London: John Churchill, New Burlington Street, England.

Solo-Gabriele HM, MA Wolfert, TR Desmarais and CJ Palmer. 2000. Sources of Escherichia coli in coastal subtropical environment. Appl Environ Micro 66(1):230-237.

Stewart JR. 2002. Microbial source tracking using F+ RNA coliphage typing and Escherichia coli antibiotic resistance assays. Ph.D Dissertation. University of North Carolina at Chapel Hill, NC. School of Public Health, Department of Environmental Sciences and Engineering.

Vinjé J, SJG Oudejans, JR Stewart, MD Sobsey and SC Long. 2004. Molecular detection and genotyping of male-specific coliphages by reverse transcription-PCR and reverse line blot hybridization. Appl Environ Micro 70 (10):5996-6004.

World Health Organization. 2003. Emerging issues in water and infectious disease. 22 pp .
World Health Organization. 2003. Guidelines for safe recreational water environments. Vol 1. Coastal and Fresh Waters.

Alignment of Nucleotide Genomic Sequences
Appendix A1
Group I

Alignment: Levivirus Group I.

Consensus GGGTGGGACC CCTTTCGGGG TCCTGCTCRA CTTCCTGTCR AGCTAAATGC

DL1

DL2
DL13
DL16
A.
. G

ST4
R17
J20
MS2
M12
fr

Consensus
DL1
CATTTTTAAT GTCTTTAGCG AGACGCTACC WTGGCTATCG CTGTAGGTAG

DL2
DL13
DL16
ST4
......... A
A

R17 \qquad
A.

J20 \qquad
MS2
. A
M12
fr \qquad
A

0RF1

Consensus CCGSAATTCC ATTSCTAGGR RGYYTSRYBY RYGMRAGYTY WYASYRHYCK

DL1
DL2 ...G..... ... C.....A G.TT.GACTC AT.CG..C.T TC.GTGTC.T

DL13 ...G.........C.....A G.TT.GACTC AT.CG..C.T TT.GTGTC.T
DL16 ...G.............A G.TT.GACTC AT.CG..C.T TT.GTGTC.T
ST4 ...G........C.....A G.TT.GACCT GT.CG..C.T TT.GTACC.T
R17 ...G..... ...C.....A G.TT.GACCT AT.CG..C.T TT.GTGCC.T
J20
MS2
M12 ...G..... ...C.....A G.TT.GACTC AT.CG..C.T TT.GTGTC.T ...G..... ...C.....A G.TT.GACCT GT.CG..C.T TT.GTACC.T ...G..... ...C.....A G.TT.GACTC AT.CG..C.T TT.GTGTT.T
fr ...C........G.....G A.CC.CGTGT GC.AA..T.C AT.CCAAC.G
Consensus
DL1
DL2
DL13
DL16
ST4
R17
J20
MS2
M12
fr
fr
Consensus
DL1
DL2
DL13
DL16
ST4
R17
J20
MS2
M12
fr
fr

Consensus
 DL1
 DL2
 DL13
 DL16
 ST4
 R17
 J20
 MS2
 M12
 fr

Consensus
DL1
DL2
DL13
DL16
ST4
R17
J20
MS2

Consensus
DL1
DL2
DL16
ST4
R17
J20
MS2

WGAKMRKGAR WVYRARASCY WYGTSSYBHB CRTYCGCRHH TAYGCKRACG T..TAAG..G TCTG.G.C.T TT..CCCGCT .G.C...ACC ..T..TG... T..TCAG..G TCCG.G.C.T TC..CCCTAG .G.C...GTT ..T..GG... T..TCAG..G TCCG.G.C.T TC..CCCTAG .G.C...GTT ..T..GG.. T..TCAG..G TCCG.G.C.T TC..CCCTAG .G.C...GTT ..T..GG. T..TAGG..G AACG.G.C.T TC..CCCCTC .G.T...GTT ..C..GG.. T..TAAG..G AGCA.G.C.T TC..CCCTTC .A.T...GTT ..C..GA.. T..TAGG..A TCCG.G.C.T TC..CCCCTC .G.T...GTT ..T..TG.. T..TAGG..G AACG.G.C.T TC.. CCCCTC .G.T...GTT ..C..GG.. T..TCAG..G AACG.A.C.T TC..GCCCTC .G.T...GTT ..T..GG.. A..GAAT..G --TA.G.G.C AC..GGTCTC .G.C...GAA ..T..TG.. GBSARVYYGA RGATAACTCD TTHYCBYTVA WWTAYCGHTC SAAYTGGWCB .CG.GGTT.. A.......G ..CT.CT.G. AA..C..T.. G..C...A.C .GC.GGTC.. A.......G ..TT.CC.A. AA..C..T.. G..C...A.T .GC.GGTC. A.......G ..TT.CC.A. AA..C..C.. G..C...A.T .GC.GGTC. A.......G ..TT.CC.A. AA..C..C.. G..C...A.T .TG.GACT.. A.......A ..CT.TT.A. AA..T..T.. G..C...A.T .TG.GACC.. A.......A ..CT.TT.A. AA..T..C.. G..C...A.T .GG.GGTC.. G.......A ..TT.CT.A. AA..C..T.. G..C...A.T .TG.GACT.. A.......A ..CT.TT.A. AA..T..T.. G..C... A.T .CG.GACT.. A........G ..TT.CC.C. AA..T..C.. G..C...A.C .GG.ACTC.. G........T ..AC.GT.G. TT..C..A.. C..T...T.G
 CCBGGYCRDT WYAMHWSKAC BGGKNCBMRM ACRRADSART GGCACTAYCC ..T..T.GT. TT.ACTCG.. T..GG.TAGA ..GA.AC.G. T.. ..C..T.GA. TT.ATTCG.. C..GT.TAGA ..GA.AC.G.T..
..C..T.GA. TT.ATTCG.. C..GT.TAGA ..GG.AC.G. T..
..C..T.GA. TT.ATTCG.. C..GT.TAGA ..GG.AC.G.T..
..C..T.GT. TT.ACTCG.. T..GG.CAAA ..GA.AC.G. C..
..C..T.GT. TT.ACTCG.. T..GG.CAGA ..GA.GC.G. T..
..T..C.GA. TT.ACTCG.. T..GA.CAGA ..GA.TC.G. T..
..C..T.GT. TT.ACTCG.. T..GG.CAAA .. GA.AC.G. C..
..G..T.GA. TT.ACTCG.. T..GG.CAGA .. GA.AC.G. T..
..G..C.AG. AC.CAAGT.. G..TC.GCGC ..AA.GG.A. C..

VTCBYCBTAY TCDMGDGGDG CGHTNRGHRT YAMDKCKVTN GATCAAGGTD
G..CT.T..T ..TA.A..T. ..C.TA.CG. C.CAT.GG.G G G..CC.T..T ..TA.G..T. ..C.CA.TG. C.CAT.GG.A G G..CC.T..T ..TA.G..T. ..C.CA.TG. C.CAT.GG.A G G..CC.T..T ..TA.G..T. ..C.CA.TG. C.CAT.GG.A G C..TC.G..T ..AC.G..G. ..T.AA.TG. C.CAT.GA.A G C..CC.G..T ..GC.G..G. ..T.AA.TG. C.CGT.GA.A G G..CC.T..C ..TA.G..A. ..C.TA.TG. C.CTT.GG.C T C..TC.G..T ..AC.G..G. ..T.AA.TG. C.CAT.GA.A G
C..CC.T..C ..TC.G..A. ..T.GA.TG. T.CTG.GA.A G
fr
A..GT.C..C ..AC.T..G. ..A.AG.AA. C.AGG.TC.TA

Consensus
DL1
DL2
DL13
DL16
ST4
R17
J20
MS2
M12
fr
Consensus
DL1
DL2
DL13
DL16
ST4
R17
J20
MS2
M12
fr
fr
Consensus
DL1
DL2
DL13
DL16
ST4
R17
J20
MS2
M12
fr
....
 T..T..G..C C.G..T.AC. .T..A..G.. GCA.....T ..G..T.. G. T..T..G..T C.G..T.AC. .C..A..G.. GCA.....T .. G..C.. G. T..T..G..T C.G..T.AC. .C..A..G.. GCA......T ..G..C.. G. T..T..G..T C.G..T.AC. .C..A..G.. GCA.....T .. G..C.. G. A..C..G..C T.G..T.AC. .C..A..G.. GCA.....T... G..C.. G. A..C..G..C T.G..T.AC. .C..A..G.. GCA.....T ..G..T.. G. C..T..A..T A.G..T.AC. .C..A..G.. GCA.....T ..G..T..G. A..C..A..C T.G..T.AC. .C..A..G.. GCA......T ..G..C..G. A..C..G..C C.G..T.AC. .C..A..G.. GCA.....T ..G..C.. G. T..T..A..C T.A..A.GG. .A..C..A.. AAC.....A ..T..T.. C.

Consensus
DL1
DL2
DL13
DL16
ST4
R17
J20
MS2
MBTAYRMRCG MWBKGGSWCR TCGTGGGGYC GYSMGTWCGA RGARMRWRCY CT..TAAG.. CTCT..GT.AT. . CCC.. A... G..GAAAG.C
CC.. CAAG.. CTCT..GT.AT. . CCC..A... G.. GAAAG.C
CC.. CAAG.. CTCT..GT.AT. . CCC. .A... G.. GAAAG.C
CC.. CAAG.. CTCT..GT.AT. .CCC.. A... G.. GAAAG.C
CC..CAAG.. AAGT..GT.AT. . CCC.. A... G..GAAAG.C
CC..TAAG.. CAGT..GT.AT. . CCC. . A... G.. GAAAG.C
CC..CAAG.. CTCT..GT.AT. .TCC.. A... G..GAAAG.T
CC.. CAAG.. AAGT..GT.AT. . CCC.. A... G.. GAAAG.C
CC..TAAG.. AAGT..GT.GT. . CCC. . A... G.. GAAAA.C

AG..CGCA.. ATTG..CA.AC. .CGA..T... A..ACGTG.C

GGTTWYGGYW TSTCNMTCGA CGCACGYWSY TGYTAYAGCC TMTTCCCYGT
....AT..CT .C..AC.... CTCC .. C..C.... .C..... T..
....TT..CT .C.. AC....TTCC ..C..T.... .C.....T..
....TT..CT .C..AC...TTCC ..C..T.... .C.....T.
....TT..CT .C..AC...TTCC .. C..T.... .C.....T.
....TC..CT .C..CC.... CTCC ..C.. C.... .C.....T..
....TT..CT .C..TC.... CTCC ..C.. C.... . C.....T..
....TT..CT .C..GC....TTCC ..C..C.... .C.....T..
....TC.. CT .C..CC.... CTCC ..C..C.... .C.....T..
....TT..TT .C..AC...CTCC ..C..C... .C.....T.AT..CA .G..TA....TAGT ..T..T.... .A..... C..

CBWCGACYGA RGTCYTRSRD AAGGTYACYC ARGGNAAYTT YAACCTTGGB
.GT....C.. A...C.GCAGC..C. .A..C..T.. C.........T .GT....C.. A...C.GCAGC..T. .A..A..T.. C.........T
.GT.....C.. A...C.GCAGC..T. .A..A..T.. C..........T
.GT....C.. A...C.GCAGC..T. .A..A..T.. C......... T
.GT....C.. A...C.GCAAC..C. .G..T..T.. T......... T
.GT....C.. A...C.GCAAT..C. .A..T..T.. С......... T
.GT....C.. A...C.GCAGT..C. .G..T..T.. T.........C
.GT....C.. A...C.GCAAC..C. .G..T..T.. T.........T

[^0]| | $\begin{array}{r} \ldots \\ 560 \end{array}$ | | | $\begin{array}{r} \mid \\ 590 \end{array}$ | 600 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Consensus | GTNGCYYTWG | CWGARGCVMG R | RTCKACRGCC | TCACAACTSK | CGACGCAAAC |
| DL1 | ..A..CT.A. | .A..G..GA. G | G. G. . A. | CG | |
| DL2 | ..G..CC.A. | .A..G..CA. G | G..G..A. | CG | |
| DL13 | ..G..CC.A. | .A..G..CA. G | G..G. A. | . CG | |
| DL16 | ..G..CC.A. | .A..G..CA. G | G..G. . A. | . CG | |
| ST4 | ..T..TT.A. | .A..G..CA. G | G. G. . A. | CG | |
| R17 | ..C..CC.A. | .A..G..CA. A | A. G. . A. | CG | |
| J20 | ..A..TT.A. | .A..G..CA. G | G..G..A. | CG | |
| MS2 | ..T..TT.A. | .A..G..CA. G | G..G. . A. | CG | |
| M12 | ..G..CC.T. | .A..G..AA. G | G..G. . A. | . CG | |
| fr | .G..CC.T. | .T..A..CC. G | G..T..G. | . GT | |

Consensus	AGVCRSTCCG	CTAYYTHGCS	CTDAACGAR	AYCGRAART	YMRDTCRAAR
DL1	. .A.GC.	.TC.C..C	. T.....AG	. $\mathrm{C} . . \mathrm{A} . \mathrm{A}$.	TCGG..A..A
DL2	. A.GC	TC.T..C	. A. . . . AG	.T..G..G	CCGA. .G..A
DL13	. A.GC	TC.T..C	. A. . . . AG	.T..G..G	CCGA. .G..A
DL16	. A.GC	TC.T..C	.A.....AG	.T..G..G.	CCGA. .G..A
ST4	. .G.GC.	сс.т..C	. A.....AG	.T..A..G..	TCGA. .A. A
R17	..G.GC.	cc.c..c	.A.....AG	.T..A..A..	TCGA. .A. A
J20	..G.GC	TC.T. . $С$. A. . . . AG	.t. .G. .A.	CCGG. .A. A
MS2	..G.GC	СС.T..C	. A.....AG	.T..A..G.	TCGA. .A. A
M12	..C.GG.	CC.C..C	. A.....AG	.T..A..G..	TCGA. .A..A
fr	G.AC	CT		T..A.	CAAT..G..G

Consensus	YMCGTSGCVR	GYAGRTGGYT	GGAGTTGCAG TTCGGNTGGH	TRCCRCTHMT
DL1	CA...G..GG	.C..G...T.	C... T	. A. G. . CA .
DL2	CA...G..AG	.C. G...T.	C. . C	.A. G. . CA.
DL13	CA...G..AG	.C..G...T.	C...C	.A. G. . CA .
DL16	CA...G..AG	C. .G...T.	C...C	.A. G. . CA .
ST4	CA...G..CG	.C..G...T.	T	.A. A. . AA.
R17	CA...G..CG	C. .G...T.	A. . ${ }^{\text {T }}$.A. A. . AA.
J20	CA...G..AG	T..A...T.	T...C	.A. G. .TA.
MS2	CA...G..CG	C. G...T.		.A. A. . AA.

		770	780		
Consensus	SAGYGATATC	CARGGYGCRT	AYGAGATGCT	YACSAARGTK	CAYCTTMARG
DL1	G. . C.	. G..C. .A.	.	T..G..G..T	..C...C.A.
DL2	G..C.	..G..C. A.	.	T..G..G..T	..C...C.A.
DL13	G..C.	..G.C. A.	.	T..G..G..T	C...C.A.
DL16	G..C.	. G..C. A.	. T	T..G..G..T	.C...C.A.
ST4	G. .T.	. G..t..A.	. T	T..G..G..T	. C...C.A.
R17	G. .T.	..A..T..A.	. T .	T..G..G..T	. C...C.A.
J20	G..C.	..A..T..A.	. T .	T..G..G.. ${ }^{\text {d }}$..T...C.A.
MS2	G. .T	..G..T..A.	. T	T..G..G..T	..C...C.A.
M12	G. .T.	..G..C. A.	. C	T..G..G..T	. C...C.A.
fr	C. . C	..A..T..G.	. T	C..C..A..G	T...A.G.
	$\begin{aligned} & .1 \\ & 810 \end{aligned}$	826	830	840	850
Consensus	MRTTTMTBCC	TATGMGDGCC	GTRMGNCARG	TNGGHMMWAA	CRTYARKTTR
DL1	AG...C.C.	..A.A.	. .GC.C..G.	. $\mathrm{A} . \mathrm{CACT}$.	.G.C.AG..A
DL2	AG...C.T.	.A.G.	. AC.G. A.	. $\mathrm{G} . \mathrm{CACT}$.	.A.T.AG..A
DL13	AG...C.T.	.A.G.	. AC.G. A.	. G. .CACT.	.A.t.AG..A
DL16	AG...C.T.	.A.G.	. AC.G..A.	. $\mathrm{G} . \mathrm{CACT}$.	.A.T.AG..A
ST4	AG...C.T.	A.A.	. AC.T..G.	.C..TACT.	.A.C.AG..A
R17	AG...C.T.	.A.A.	. AC.T..A.	.T. .tACT.	.A.T.AG..A
J20	AG...C.T.	.A.A.	. AC.A..G.	. $\mathrm{G} . . \mathrm{TACT}$.	.G.T.AG..A
MS2	AG...C.T.	.A.A.	. AC.t..g.	. C.	.A.C.AG. . ${ }^{\text {a }}$
M12	AG...C.C.	A.A.	. . AC.t..g.	. C. . СACT.	.A.t.AG..A
fr	CA...A.G.	C.T	.GA.G..A.	C. . ACAA.	.G.C.GT..G

	860	870	880	890	900
Consensus	DMTGGCCGBY	TBDCKTMTCC	RGCTGCAARC	TWYMARWCWA	CGTGCAACAT
DL1	GA......CC	.GT.G.A.	A.A.	. ACC.AA.T.	
DL2	GA.......TT	.GT.G.A.	A.......A.	. ACC.GA.t.	
DL13	GA...... TT	.GT.G.A.	A.A.	. ACC.gA.t.	
DL16	GA.......tT	.GT.G.A.	A.......A.	. ACC.gA.t.	
ST4	AA...... TC	.GT.G.A.	A.......A.	.tcC.ga.a.	
R17	GA...... CT	.GG.G.A.	A.......A.	.tCC.gA.A.	
J20	GA.CT	.GT.G.A.	A.......A.	. ACC.GA.T.	
MS2	GA.......TC	.GT.G.A.	A.......A.	.tCC.GA.A.	
M12	GA......CC	.TT.G.A.	A.......A.	. ACC.GA.A.	
fr	TC.......GC	.CA.t.C.	G........G.	.ATA.GT.t.	

Consensus
DL1
DL2
DL13
DL16
ST4
R17
J20
MS2
 ATCRCGACGH ATYGTGATAT GGTtTTTACAT AAACGATGCA CGWYTGGCHT ...G.....T ..C.......TT.....T. ...A......A ..C.......TT..... C. ...A.....A ..C.......TT.....C. ...A.....A .. C....... C. ...G.....T ..C....... A. ...A.....T ..C....... TT.....A. ...G......A ..C....... TT.....C. ...G.....T ..C.......TT..... A.

M12 ...G....T ..C...... AT....C.
fr ...A.....C ..T......TC....T.

	$\begin{aligned} & \ldots \\ & \\ & 960 \end{aligned}$		$\begin{gathered} .1 \\ 980 \end{gathered} .$	$.$	$\begin{aligned} & . \mid \\ & 1000 \end{aligned}$
Consensus	GGYTGTCSTC	YYTRGGKATY T	TTGAACCCRC T	TAGGWATAGT G	GTGGGAAAAG
DL1	. T....G.	TC.A..T..C	. A .	T.	
DL2	..T....G..	TC.A..t..C	A.	T.	
DL13	..T....G..	TC.A..T..C	A.	T.	
DL16	..T....G..	TC.A..T..C	A.	T.	
ST4	..T....G..	TC.A..T..C	A.	T.	
R17	..T....G..	TC.A..T..C	A.	T.	
J20	..T....G..	TC.A..T..C	A.	T	
MS2	..T....G..	TC.A..t..C	A.	T	
M12	..T....G..	tC.G..t..C	A.	T.	
fr	..C....c.	CT.A..G..t	G.	A.	
	$\begin{aligned} & \text { I } \\ & 1010 \end{aligned}$	$\underset{10}{ } \cdot{ }_{1020}$	$\underset{20}{\ldots}{ }_{2030}$		$\left.\begin{gathered} \ldots \\ 0 \\ 0 \end{gathered} \right\rvert\,$
Consensus	GTSCCBTTCT	CWTTCSTKGT C	CGAYTGGYTS C	CTDCCKGTDG G	GDAACATGCT
DL1	..G..T....	.A...G.T..	...C...C.C .	..T..T..A. .A	. A .
DL2	..G..T.	.A...G.t..	...c...c.c	..T..T..T. .	. G .
DL13	..G..T.	.A...G.t.	.c...c.c	..T..T..T. .	. G .
DL16	..G..T.	.A...G.t..	...C...C.C .	..T..T..T. .	.G.
ST4	..G..T.	.A...G.t..	...c...c.C	. A..T..A. .	.T.
R17	..G..T.	.A...G.t..	...c...c.c	. A..t..A. .	.t.
J20	..G..T	.A...G.t.	...c...c.c	..T..T..A. .A	A.
MS2	..G..T.	.A...G.t..	...c...c.c	. A..t..A. .	. T .
M12	..G..C.	.A...G.t..	...c...c.c	. G..T..G. .	. .
fr	..C..G.	.T...C.G.	T...T.G	..G..G..T. .	..
	$\begin{aligned} & \text {. } 106 \\ & 1060 \end{aligned}$		$\underset{0}{ } \cdots \mid \cdots{ }_{108}$		$\begin{gathered} \ldots \mid \\ 0 \\ 1100 \end{gathered}$
Consensus	HGAGGGSCTH	ACVGCYCCVR T	TDGGMTGYTC B	BTAYMWRTCD G	GGRACMGTWA
DL1	C.....C. ${ }^{\text {A }}$. .G..C..CG	.A. A. .T.. T	T..CATG..G .	. A. A. .t.
DL2	c.....c..c	. A..C..CG	.A. A..C.. C	C..CATG..T .	. A. A. .T.
DL13	c.....c..c	. A..C..CG	.A. A. C.. C	C. . CATG. . ${ }^{\text {d }}$. A..A..T.
DL16	c.....c..c	. A..C..CG	.A. A. C.. C	C. . CATG. . ${ }^{\text {d }}$. A..A..T.
ST4	C.....c.. ${ }^{\text {c }}$. .G..C. CG	.G..A..C.. C	C. .cATG. . A	. A..A..t.
R17	C.....c..T	..G..T..CG	.T..A..C.. C	C. .CATG. . A	. A. A..T.
J20	c.....c.. ${ }^{\text {T }}$..A..C..CG	.A. A. C.. C	C. . CATG..T .	..A. A..T.
MS2	C.....c..T	..G..C..CG	.G..A..C.. C	C. .CATG. . A	..A.A..T.
M12	A.....C.. ${ }^{\text {T }}$..G..T..AG	.A. A. T.. T	T..CATG. . A	..G.A..T.
$f r$	T.....G..T	..C..C..GA	.A..C..T.. G	G. .tCAA. . G	..A..C. A.
	$\text { - } 111$	$\underset{10}{ }{ }^{\ldots}\|\ldots\|$	${ }_{20} \cdots\|\cdot\|$	${ }_{30}{ }^{\ldots}\|\ldots\|$	
Consensus	CYGACGTAAT	AWCRGGWGAG T	TCSAYMATAA S	SCGYYGAYGM Y	YMYCTAYGGK
DL1	. T	.A.G..T.	..C.TC.... G	G..TT..C.C T	TCC...T..G
DL2	. T	.A.G. .t.	..C.TC.... G	G..tC..C.C TC	TCC...T..g
DL13	. T	.A.G..t.	..C.TC.... G	G..TC..C.C TC	TCC...T..g
DL16	.T.	.A.G..T...	..C.TC.... G	G..TC..C.C TC	TCC...T..g
ST4	.T.	.A.G..T...	..C.TC.... G	G..TT..C.C T	TCC...C..G
R17	.T........	.A.G..T.	..C.TC.... G	G..TT..C.C T	TCC...T..G
J20	.T........	.A.G..T...	..C.TC.... G	G..tT..C.C T	TCC...T..g
MS2		.A.G. .T.	C.TC.... G	G..TT..C.C T	TCC...C..g

M12 .T....... .A.G..T... ..C.TC.... G..TT..C.C TCC...C..G
fr
C........ .T.A..A... ..G.CA.... C..CC..T.A CAT...T..T

Consensus
DL1
DL2
DL13
DL16
ST4
R17
J20
MS2
M12
fr

TGGRMDRYRG WKMGACMKGS MACYGCTAAG GYSCADRTYW SDGCYRTSCA ...ACAGTG. AGA...AG.G C..T...... .CC..GA.CT CA..CA.G..
...ACGGTG. ATA...AG.G C..T...... .CC..AG.CT CA..CA.G..
...ACGGTG. ATA...AG.G C..T...... .CC..AG.CT CA..CA.G..
...ACGGTG. ATA...AG.G C..T...... .CC..AG.CT CA..CA.G..
...ACTGTG. AGA...AG.G C..T...... .CC..AA.CT CA..CA.G.
...ACTGTG. AGA...AG.G C..T..... . CC..TG.TT CA..CA.G.
...ACTGTG. AGA...AG.G C..T...... .CC..GA.CT CG..CA.G..
...ACTGTG. AGA...AG.G C..T...... .CC..AA.CT CA..CA.G..
...ACTGTG. AGA...AG.G C..T...... .CC..AG.CT CA..CA.G. ...GATACA. TGC...CT.C A..C..... .TG..AA.CA GT..TG.C..
Consensus
DL1
DL2
DL13
DL16
ST4
R17
J20
MS2
M12
fr

YCGRGGGGTR CARWSCGTRT GSCCMACWAC KGGCGYRTAC GTDAARTCWC
T..A.... A ..GTC...A. .G..A..A.. T....TA... .. A..G.. A.
T..A.... G ..ATC...A. .G..A..A.. T....TA... ..G..G.. A.
T..A....G ..ATC... A. .G..A..A.. T....TA... ..G..G.. A.
T..A.... G ..ATC...A. .G..A..A.. T....TA... .. G..G.. A.
T..A....A ..ATC...A. .G..A..A.. T....CG... ..A..G..T.
T..A.....A ..ATC...A. .G..A..A.. T....CA... ..A..G..T.
T..A.... G ..ATC... A. .G..A..A.. T....TA... ..G..A.. A.
T..A....A ..ATC...A. .G..A..A.. T....CG... ..A..G..T.
T..A..... A..ATC...A. .C..A..T.. T....TA... .. A..G.. T.
C..G.....A ..AAG...G. .G..C..A.. G....TA... ..T..G.. A.

Consensus

DL1
DL2
TCGAT KGTCCAYACY TTAGAYGCST TRGCAYTWWT CAGGCAACGS

DL13
DL16
ST4
R17
J20
MS2
M12
fr

.T..C.... G.....C..TT..G. .G...T.AA.
.T..C.... G.....T..CC..G. .G...T.AA.
.T..C.... G.....T..CC..G. .G...T.AA. G
.T..C.... G.....T..CC..G. .G...T.AA. G
.T..C.... G.....T..CT..G. .A...T.AA.
.T..C.... G.....T..CT..G. .A...T.AA.
.T..C.... T.....T..CT..G. .A...T.AA.
.T..C.... G.....T..CT..G. .A...T.AA. G
.C..T.... G.....T..CT..G. .G...T.AA.
.T..C.... G.....T..CT..C. .G...C.TT. C
STOP 1 ORF2

Consensus
DL1
DL2
DL13
DL16
ST4
R17
J20
MS2
M12
CTCTBDARAT AGAGSCCYYA ACCGRAGKKH GARCCRCATG GCTTCKAACT
....CA.G.C..TC.G..TTC ..A--G....T....
....TA.G.C..TC.G..TTC ..A--G....T.
....TA.G..C..TC.G..TTC ..A--G....T....
....TA.G..C..TC.G..TTC ..A--G....T....
....CT.G..C..TC.G..TTT ..A--G....T....
....CT.A.C..TC.G..TTT ..A--G....T....
....CA.G..C..TC.G..TTT ..A--G....T....
....CT.G..C..TC.G..TTT ..A--G....T....
....CT.A..C..TC.G..TTT ..A--G....T....
..A..GGA ..G..A....G....
TTRMWSAGTT YGTTCTCGTC GACAATGGCG GAACBGGHGA YGTRAMWGTC
..ACTC.... C.........T.. C.. C..G.CT...
..ACTC.... C........T.. C. C. . G.CT
..ACTC.... C........T.. C.. C..G.CT
..ACTC.... C.........T.. C.. C.. G.CT.
..ACTC.... T........T.. C.. C.. G.CT.
..ACTC.... T.........C..C.. C..G.CT.
..ACTC.... C.........T.. C.. C.. G.CT.
..ACTC.... T.........T.. C.. C..G.CT.
..GAAG.... C........ G..A.. T..A.AA.

Consensus
DL1
DL2
DL13
DL16
ST4
R17
J20
MS2
M12
fr
Consensus
DL1
DL2
DL13
DL16
ST4
R17
J20
MS2
M12
fr
 GCBCCRAGCA ACTTCGCTAA CGGGGTYGCW GAATGGATYA GCTCBAACTC ..C..A...C.. TT.T..... ..T..A... C..TT.T..... ..T..A... C..TT.T..... ..T..A... C..TT. T. ..C..A... C.. T C. T ..T..A...C..TC. T. ..T..A... C..T C.T..... ..C..A... C..T C.T..... N.G..A... C..TC. C..... ..T..G...T..A C.G. \qquad

Consensus

DL1
DL2
DL13
VCGYTCWCAR GCTTACAAAG TRACYTGTAG YGTKCGTCAG AGCTCTGCGM
G..C..T..GA..C.... C..T...... C
A..T..T..GA..C.... C..T...... C
A..T..T..GA..C.... C..T...... C

DL16
ST4
R17
J20
MS2
M12
fr
A..T..T..G A.. C..... C..T...... C
G..T..A..G A.. C..... C..T...... C
G..C..A.GA..C.... C..T...... C
A..C..T..GA..C.... T..T...... C
G..T..A..GA..C.... C..T...... C
C..C..A..AA..T.... C..G...... C
A..T..T..GG..C.... C..G...... A

Consensus
ASAAYCGSAA RTACACYRTY AARGTYGARG TRCCDAARGT GGCWACYCAR
DL1
DL2
.G..T..C.. G.....TA.C ..G..C..A. .G..G..A.. ...T..C..G
DL13
.G..C..C.. G.....CA.T ..G..T..G. .A..A..A.. ...T..C.. A
DL13 .G..C..C.. G.....CA.T ..G..T..G. .A..A..A.. ...T..C..A
DL16 .G..C.C.. G.....CA.T ..G..T..G. .A..A..A.. ...T.. C.. A
ST4
R17
J20
.G..T..C.. A.....CA.C ..A..C..G. .G..T..A.. ...A..C..G
.G..T..C.. A.....CA.T ..A..C..G. .G..T..G.. ...A..T..G
.G..C..C.. G.....CA.C ..A..C..A. .G..A..A.. ...T..T..G
.G..T..C.. A.....CA.C ..A..C..G. .G..T..A.. ...A..C..G
$\begin{array}{ll}\text { M12 } & \text {.G..C.C.. A....CA.C ..G..C..G. .G..G..A.. ...A..C..A } \\ \mathrm{fr} & \text {.C..T..G.. A.....CG.C ..G..C..G. .G..G..A.. ...A..T..G }\end{array}$

	156	01570	$\begin{array}{ll} 0 & 1580 \end{array}$	$\begin{array}{ll} 30 & 1590 \end{array}$	01600
Consensus	RYYSWHGGYG	GYGTWSAGCT	TCCTGTWGCS G	GCRTGGCGYT C	CGTAYHTRAA
DL1	ACCGTT..T.	.C. . AC	A. . C	. G. . . . T.	TC.G.
DL2	ACCGTC. .T.	.T. . AC	A.. C	. A. . . . T.	CT.G.
DL13	ACCGTC. .T.	.T. . AC	A..C .	..A.....T. .	CT.G.
DL16	ACCGTC. . T .	.T. AC	A..C .	..A.....T.	. CT. G .
ST4	ACTGTT. .T.	.T. . AG	A. C .	. A.....T.	CT. A.
R17	ACTGTT. . T .	.T. . AG	A..C .	. A.... ${ }^{\text {. }}$	CT. A.
J20	ACCGTC..T.	.C. . AC	A. C	. A. ... T.	CT.A.
MS2	ACTGTT. . T .	.T. . AG	A..C .	. A.....T.	CT. A.
M12	ACCGTT. . C .	.T. . AG	A..C .	. A.... ${ }^{\text {T. }}$	CC.G.
fr	GTCCAA. . C .	.C. .TG	T..G .	. G.....C.	CA.G.
	$\begin{array}{r} \cdots \\ 16 \end{array}$	$\cdots \cdots \cdots 1620$		$\ddot{m} \quad \cdots \quad 1640$	$\underset{1650 \mid}{\cdots}$
Consensus	TATGGAAYTR ACYATTCCDR THTTCGCDAC GAAYKMCGAY TGYGMSYTWA				
DL1	.T.G	. .T..... $A A$. C.....A..CGA...C .	. C.CGC.A.
DL2	T.A	.T.....TA	.T.... A.	. C CAA. . T .	. .C.CGC.T.
DL13	T.A	T.....TA	.T.....A.	. CGA... ${ }^{\text {T }}$.	. .C.CGC.T.
DL16	.T.A	.T.... TA	. C..... A.	.CGA...T .	. C. CGC.T.
ST4	.C.A	..C.....AA	.T.....T.	.TTC...C .	..C.AGC.T.
R17	.T.A	. T..... A A	.T.....T.		. C.AGC.T.
J20	.T.A	.T..... A A	.T.....G.	. CGA...T .	. C. CGC.T.
MS2	C. A	.C.... AA	.T.....T.	.TTC...C .	. C.AGC.T.
M12	.T.A	. T. . . . GA	.T.....T.	. CTC...T .	. C.CGC.T.
fr	ORF3				
	$\text { \| . . . }{ }_{166}$	$\ldots 0^{. . . .} \mid$	$\begin{gathered} \cdots \\ 0 \end{gathered}$		$\ldots{ }_{0} . . .$
Consensus	TYGTYAARGC RWTGCAAGGY MYCYTDAAAR MTGGWAACCC RATYSCHWCR				
DL1	.T..T..G.	GA. T	CT.C.A...G A	A...A.... ${ }^{\text {G }}$	G. . CC.CT.A
DL2	.T..T..G.	GA....... ${ }^{\text {C }}$	CT.C.A...G A	A...A.... G	G. .CC.CT.A
DL13	.T..T..G.	GA....... ${ }^{\text {C }}$	CT.C.A...G A	A...A.... G	G. . CC.CT.A
DL16	.T..T..G.	GA....... ${ }^{\text {C }}$	CT.C.A...G A	A...A.... G	G. . CC.CT.A
ST4	.T..T..G.	AA....... ${ }^{\text {C }}$	CT.C.A...G A	A...A.... G	G. .TC.CT.A
R17	T..T..G.	AA....... ${ }^{\text {P }}$	CT.C.A...G A	A...A.... G	G..TC.CT.A
J20	.T..T..G.	GA....... ${ }^{\text {P }}$	CT.C.A...G A	A...A..... A	A. . CC.CT.A
MS2	.T..T..G.	AA....... ${ }^{\text {T }}$	CT.C.A...G A	A...A.... G	G. .TC.CT.A
M12	.T..C.A.	AA....... ${ }^{\text {C }}$	CT.C.G...G A	A...A.... G	G. .TC.TT.G
fr	.C..T..G.	AT.......C	AC.T.T...A C	C...T..... A	A. .TG.AA.A
	STOP 2				
	\| . . . ${ }^{171}$		$\underset{1730}{ }$	17401750	${ }_{0}^{\ldots} \mid . . .$
Consensus	GCMATCGCAG CMAACTCSGG 1720		GCMATCGCAG CMAACTCSGG MATCTAYTAA KARAYNYSKK CCATTCMAAC		
DL1	.A....... .A.....C.. A.....C.. T.G.TTTCGGA...				
DL2	.A...... .A.....C.. A.....C.. T.G.TTCCGT				
DL13	.A...... .A.....C.. A.....C.. T.G.TTCCGT				
DL16	..A...... .A.....C.. A.....C... T.G.TTCCGT				
ST4	..A...... .A.....C.. C.....C... T.G.CGCCGG ${ }^{\text {A }}$				
R17	..A....... .A.....C.. C.....C.. T.G.TGCCGG ${ }^{\text {A }}$				
J20	..A....... .C.....C.. A.....T... T.G.TTCCGG ${ }^{\text {C }}$				
MS2	..A...... .A.....C.. C.....C... T.G.CGCCGG ${ }^{\text {A }}$				
M12	..A...... .A.....C.. C.....C... T.G.TACCGG				

..c........ .C......... A.......... G.A.CCCGTG

> AYGACGARGC RACCCGYMGN RSYYTAGCTA TYGCTAAGCT NCKGGAGGCG
> CC. A GCTT .CC.G GCTC . T T.G. .T.....G.. G..... CC.G GCT . C. C. G CC.G GCTC...... .C........ C. G .T.....G.. G.....CC.G GCTC...... .C....... C. G .T.....G.. G.....TC.T ACCT...... .C....... A. .T.....G.. G.....TC.C ACCT...... .T....... G.G .T.....G.. G.....CC.G GCTT...... .C....... C.G .T.....G.. G.....TC.T ACCT...... .C....... A.G .T.....G.. G.....CC.T GCTT...... .T........ A.G .C.....A.. A.....CA.A AGCC...... .C....... G.T

Consensus

DL1
DL2
DL13
DL16
ST4
R17
J20
MS2
M12
fr
Consensus
DL1
DL2
DL13
DL16
ST4
R17
J20
MS2
M12
fr
 AATGRNSRDY GYGGYCAGAT HAAYAGRGAD GGTTTCTTAC AYGAYRMAWCAACGAT .T..C.... C..T..A.. G T.. CAA.T.AGCGGT .C..C.... T..T..G..A C.. TAA.T.AGCGGT .C..C.... T..T..G..A C.. TAA.T.AGCGGT .C..C.... T..T..G..A C.. TAA.T.ATCGGT .C..T.... A..T..A..AT.. CAA.T.ATCGGT .C..C.... A..T..A..AT.. CAA.T.AACGAT .T..C.... T..C..A.. AT.. CAA.T.GTGATC .C..T.... A..T..A..AT.. CAA.T.ATCGAT .T..C.... T..C..A..AT.. CAA.T.ACCGTT .T..T..... A..T..G..TT..CGC.A.
Consensus
DL1
DL2
DL13
DL16
ST4
R17
J20
MS2
M12
fr

CKYRTCRTGG GATCCGGATG TTTTACAAAC CAGCATCCGT AGCCTWATHG
.TTG..A... T. . .TTA..G... T. T. .TTA..G.. T. . T. .TTA..G.. T. . .TTG..A... T. . T. .TTG..A...T. C. .TTG..G... T. . .TTG..A.. T. . .TTG..G.. A.. A. .GCG..G.. T. . T.

Consensus
GYAAYCTYCT YTCTGGYTAY MRHWSKYMGT TGTTTRGRCA MTGYACRTTY
DL1
DL2
.C..C..T.. C.....C..T CGTTCGTC C. C.T C...C C CGCTCGTC.... G G A. C. C

DL13 .C..C..T.. C.....C..C CGCTCGTC..G.G.. A..C..G..C
DL16 .C..C..T.. C.....C..C CGCTCGTC..G.G.. A..C..G..C
ST4 .C..C..C.. C.....C..C CGATCGTC..G.G.. A..C..G..C
R17
J20
.C..T..T.
.C..C..T.. C.....C..T CGTTCGTC..G.G.. A..C..G..T G.G.. A..C..G..C .C..C..C.. C.....C..C CGATCGTC..G.G.. A..C..G..C

M12 .C..C..C.. C.....T..C CGATCGTC..G.G.. A..C..G..C
fr .T..C..С.. T......... AGCAGTCA..A.A.. C..T..A..C

Consensus
DL1
DL2
DL13
DL16
ST4
R17
J20
MS2
M12
fr
Consensus
DL1
DL2
DL13
DL16
ST4
R17
J20
MS2
M12
fr
fr
TCMAACGGTG CYYCDATGGG GCACAAGTTG CAGGATGCAG CGCCTTAYAA ..C....... .CT.G..... C. ..C...... .CT.A.... C.
..C...... .CT.A.... C.
..C...... .CT.A.... C.
..C...... .CT.T.... C.
..C...... .CT.T.....
..C...... .CT.T.....
..C...... .TC.T....
..C..... .CT.G.... C. ..A...... .CT.T....
 GAAGTTCGCT GAACAAGCAA CCGTKACSCC SMGSGCKYTR ARAGCGGCNB CC.C..TC.A .G.......CCT..C.. CC.C..TC.G .G.......ACT..C.. CC.C..TC.G .G.......AC CC.C..TC.G .G.......ACT..C.. CC.C..TC.G .G.......TCT..C.. CC.C..TC.G .G.......TCT..C.. CC.C..TC.G .G.......GTT..C.. CC.C..TC.G .G.......TCT..C.. CC.C..TC.A .G.......CC GA.G..GT.G .A.......AG

Consensus	TRYTGGTCMR	AGAYCARTGY	RBKCCSTGGA	TYMGWCACKC	GSWCSDCTWY
DL1	. AC.....CG	C. .G. ${ }^{\text {T }}$	GTG. . G	.TA.A...G.	. GT.CG . AC
DL2	. AC CG	C. .G. T	GTG. . G .	.CA.A...G.	. GT.CG. . AC
DL13	. AC. . . . CG	C. . G. T	GTG. . G	.CA.A...G.	. GT.CG. . AC
DL16	. AC. . . . CG	C. . G. T	GTG. . G .	.CA.A...G.	.GT.CG. . AC
ST4	. AT. . . . ${ }^{\text {CG }}$	C. A. T	GCG. . G	.CA.A...G.	. GT.CG. . AT
R17	. AT.....CG	C. A. T ${ }^{\text {c }}$	GCG . . G	.CA.A...G.	.GT.CA. .AT
J20	. AC. . . . AG	C. G. . T	GCG . . G .	.CA.A...G.	.GT.CG. . AT
MS2	. AT.....CG	C. A. T	GCG. . G .	.CA.A...G.	. GT.CG. . AT
M12	. GC. . . . AG	C. . G. T	GCG. . G .	.TA.A...G.	.GT.CG. . AC
fr	. GC..... AA	T..G..C	AGT. . C	CC.T...T.	.CA.GT. . TC

Consensus
DL1
DL2
DL13
DL16
ST4
R17
J20
MS2

MMYGARTCAT ATRMATTTAG RCTCGTBGKA GGSAACGGWG TGTTYACWGT AAT..G.... ..GA..... G.....T.T. ..G..... A.T.. A.. AAC..G.... ..GA...... G.....C.T. ..G.....A.T.. A.. AAC..G.... ..GA...... G.....C.T. ..G.....A.T.. A.. AAC..G.... ..GA..... G..... C.T. ..G..... A.T.. A.. AAC..G.... ..GA...... G.....T.T. ..G.....A.T.. A.. AAC..G.... ..GA...... G.....T.T. ..G.....A.T.. A.. AAC..A.... ..AA...... A.....T.T. ..G.....A.T.. A.. AAC..G.... ..GA...... G.....T.T. ..G.....A.T.. A..

M12 AAC..G......GA..... G.....T.T. ..G.....A.C.. A..
fr
CCC..G.... ..AC..... G....G.G. ..C.....T.T..T.
Consensus
DL1
DL2
DL13
DL16
ST4
R17
J20
MS2
M12
fr
Consensus
DL1
DL2
DL13
DL16
ST4
R17
J20
MS2
M12
fr ATATGTACYT HCAGAAAGGR GTHGGHGSYT TYATHMGDCG YCGBCTYARR CG ..T..C.CC. .C..TA.A.. C..C..C.AAC. C........A ..T..C.CC. .C..AA.G.. T..C.. C.AAC. C........A ..T..C.CC. .C..AA.G.. T..C..C.AAC. C........A ..T..C.CC. .C..AA.G.. T..C..C.AAC. C........G ..C..T.CC. .T..CA.A.. C..G..C.AAC. C........G ..C..C.CT. .T..TA.A.. C..G..C.AA CA ..T.. C.CT. .T..AC.G.. T..T..C.GAC. C........G ..C..T.CT. .C..CA.A.. C..G..C.AA T........A ..A..A.CC. .C..CA.G.. C..T.. C.AA frT. A.......G ..C..C.GT. .C..CC.T.. C..C..T.AG

Consensus RCARGGYAGY VBHGATGGNT CDYTDGCRAC KATAGAYYTA TCGTCNGCNT

DL1
DL2
DL13
DL16
ST4
R17
J20
MS2

TCCGAAGAAY AATAAAATAG ATCGGGCTGC YTGYAARGAG CCYGATATGA
........T C..T.. G... .. C......
........T C..T..G... .. C.......
.......T C..T..G... .. C......
........T C..T..G... .. C.......
........ T
. T .
C..T..G... ..T.
C..T..G... ..T
C..T..G... . C.
C..T..G... ..T.......
T..C..A... ..C......
T..C..A... ..T.

Consensus

DL1

DL2
DL13
DL16
ST4
R17
J20
MS2
M12
fr
A.T..G. A..G..C..C ATA.....T. .TT.A..G.. G.....CC.. A..T. A..G..C..C ATA.....C. .TT.A..A.. G.....TT.. G..T. A..G..C..C ATA.....C. .TT.A..A.. G.....TT.. G.. T. A..G..C..C ATA.....C. .TT.A..A.. G.....TT..G..T. G..G..C..C GTA.....T. .GC.T..G.. G.....CT..T.. A. G..A..C..C GCA.....T. .GC.T..G.. G.....CT..C.. G. A..A..C..C GTC.....C. .AT.G..G.. G.....CT.. G..C. G..G..C..C GTA.....T. .GC.T..G.. G.....CT..T.. A.

M12 A..A..C..T ATA.....A. .GT.A..G.. T.....CT..T.. A.

Consensus
DL1
DL2
DL13
DL16
ST4
R17
J20
MS2
M12
fr TAYTCATATC TYGAYMKKAT YCGMWSVCAC TAYGGWWWCR TARATGGNRA ..T....... .C..TCGT.. C..CTCC... ..C..AAT.G ..G....CG. ..T....... .C..TCGT.. C..CTCC... ..C..AAT.G ..G....GG.
..T....... . C.. TCGT.. C.. CTCC... .. C.. AAT.G ..G.....GG.
..T....... TCGT.. C.. CTCC... .. C.. AAT.G ..G.....GG.
..T....... . C..TCGT.. C..CTCA... ..C..AAT.G ..G.....CG.
..T....... .T..TCGT.. C..CTCG... ..C..AAT.G ..G....CG.
..T....... .C..TCGT.. C..CTCC... ..T..AAT.A ..G....AG.
..T....... .C..TCGT.. C..CTCA... ..C..AAT.G ..G....CG.
..C....... .C..TCGT.. C.. CTCC... ..C..AAT.G ..G....TG.
..T....... . C..CATG.. T..AAGC... ..C..TTA.G ..A....CA.

Consensus	GAYGATWCGD	TGGGAACTAT	TTTCSACRAT	GGGWAAYGGG	TTYACNTTYG
DL1	..C...A..G		.C..A.	...A..T.	С..T..C.
DL2	.C...A..A		C..A.	T..T	C..T..C.
DL13	..C...A. A		C. A.	T. T	C..T..C.
DL16	..C...A. A		C. . A.	.T. T	C..T..C.
ST4	..C...A. A		C. A.	A. ${ }^{\text {T }}$	C. .G..T.
R17	..C...A. A		C..G..	A. ${ }^{\text {t. }}$..t. A..t.
J20	..C...A..A		C..A..	. A. T .	..С..T..T.
MS2	. C...A. A		C. A.	A. ${ }^{\text {t. }}$	C. .A. T .
M12	..C...A. A		C..A.	A. . C	с..т..t.
fr	..T...T..T				с. . С. т.

Consensus
DL1
DL2
DL13
DL16
ST4
R17
J20
MS2
arctagagtc catgathtty tggacwatag tvarrgcdac ycaratccat
.A........A..TT.... .G.AA..G.. C..G......
.A........C..TT.... .G.AA..A.. C..G.......
.A........C..TT.... .G.AA..A.. C..G......
.A........ C..TT.... .G.AA..A.. C..G......
.G........A..CA.... . C.AA..G.. C.. A.
.G........A..CA.... .C.AA..A.. C..A.
.A........A..TT.... .A.AA..A.. C..G......
.G........A..CA.... .C.AA..G.. C..A......
$\begin{array}{lll}\text { M12 } & \text {.G............A..TT.... .C.AA..G.. C..A..... } \\ \text { fr } & \text {.A.......T..CT.... .C.GG..T.. T..G..... }\end{array}$

Consensus
DL1
DL2
DL13
DL16
ST4
R17
J20
MS2
M12
fr
Consensus
DL1
DL2
DL13
DL16
ST4
R17
J20
MS2
M12
fr

TTTSGTAACR CCGGAACCAT WGGCATCTAY GGGGACGATA TYATATGYCC
\qquad ...G....G A....... C T.....T. ...G....G A....... C T..... T. ...G....G A........ CG....G A....... CT.....T. ...G....G A....... C C..... T. ...G....G A....... CT.....T. ...G....G A........ CT.....T. ...G....G A........ C.......... .T...... T. ...C....A T.......TT..... C.
 CASWGAGATT GCACCYCGYG TGCTRGARGC RCTDRSCTWC TACGGTTTYA ..GT.....C..T.A..G.. A..TGC..A. T. ..GT.....C..T.A..G.. A..TGC..A. C.
..GT.....C..T.A..G.. A..TGC..A. C.
..GT.....C..T.A..G.. A..TGC..A. C.
..GT.....C..T.G..G.. A..TGC..A. C.
..GT.....C..T.A..G.. A..TGC..A. T.
..GT.....C..T.A..G.. G..AGC..A. C.
..GT.....C..T.A..G.. A..TGC..A. T.
..GT.....C..T.A..G.. A..TGC..A.T.
..CA......T..C.G..A.. A..GAG..T. C.
 AACCGAATCT HCGWAARACG TTCRYGTCVG GSYYYTTTCG CGAGAGCTGY
Consensus
DL1
DL2
T..T..A... ...GT...G. .GCTC

. C
DL13 T..T..A.. ...GT...A. .GCTC..... T
DL16 T..T..A... ...GT...A. .GCTC..... T
ST4
R17
J20
MS2
M12
C..T..A... .. GT...C. . GCTC
.
T..T..A... ...GT...C. .GCTC..... C
T..T..A... ...GT...A. .GCTC..... T
T..T..A... ...GT...C. .GCTC..... C
T..T..A... ...GT...C. .GCTC..... C
fr
A..A..G... ...AC...C. .CTCT..... C

Consensus
RGCGCGCACT WTTWCCGTGG TGTCGATGTY AAACCRTTYT AYATCARGAA
DL1
DL2
DL13
DL16
ST4
R17
J20
MS2
G........ T.. A..... C G..T. . C.... A... G........ T..A..... CG..C. .C.... A... G........ T..A..... C.....G.. C. . C.... A... G........ T..A..... C.....G..C. . C....A... G........ T..A..... C G..T. . C.... A........ T..A..... C G..T. .C.... A. G......... T..A......CG..T. .C....G... G........ T..A.....CG..T. .C....A..

M12
fr
G........ T..A..... G.. C. . C.... A...
G........ A..T......TA..T. .T....A...
Consensus
DL1
DL2
DL13
DL16
ST4
R17
J20
MS2
M12
fr

ACCWRTYRMY RAYCTMTTYK CCCTDATGCT KATMHTDAAY CGKMTWMGSG ...AG.TGAC A.C..C..CTT.... G..AA.G..T ..GC.TA.G. ...AG.TGAC A.T..C..CTT.... G..CA.G..T ..GC.TA.G. ...AG.TGAC A.T..C..CTT.... G..CA.G..T ..GC.TA.G. ...AG.TGAC A.T..C..CTT.... G..CA.G..T ..GC.TA.G. ...TG.TGAC A.T..C..CGT.... G..AT.G..T ..GC.AC.G. ...TG.TGAC A.C..C..TGG.... G..AT.A..T ..GC.AC.G. ...AG.CGAC A.T..C..CTT.... G..CA.G..T ..GC.TA.G. ...TG.TGAC A.T..C..CGG.... G..AT.A..T ..GC.AC.G. ...AG.TGAC A.C..C..TTT.... G..AC.G..T ..GC.AC.G. ...AA.CACT G.C..A..CTA.... T..AC.T..C ..TA.AC.C.
Consensus
DL1
DL2
DL13
DL16
ST4
R17
J20
MS2
M12
fr

GDTGGGGNGT WGTCRRMGGW ATRKCAGAYC CDCGCCTHTA YRAGGTDTGG .G.....C.. T...GGA..T ..GT....T. .G.....T.. TA....T... .G.....C.. T...GGA..T ..GT....T. .G.....T.. TA....T... .G.....C. T...GGA..T ..GT....T. .G.....T.. TA....T... .G.....C.. T...GGA..T ..GT....T. .G.....T.. TA....T. .T.....A. T...GGA..T ..GT....T. .A.....T.. CA.... G. .T.....G.. T...GGA..T ..GT....T. .A.....T.. CA....G... .A.....T.. T...GGA..T ..GT....T. .T.....A.. TA....T... .T.....A.. T...GGA..T ..GT....T. .A.....C.. TA.... G. .T....G.. T...GGA..T ..GT....T. .G.....T.. CA....T.. .A.....G.. A...AAC..A ..AG....C. .A.....C.. CG....A.

Consensus
DL1
DL2
DL13
DL16
ST4
R17
J20
MS2 BSMKGCYGAY TAYTACGTMG TBWSMCCBCC NAHNSYDRWM KSRRTWTAYW TGCT..C..C ..T.....A. .CAGC..C.. G.CCGCAGTC TCAG.T..TA TGCT..C..C ..C.....A. .TAGC..T.. G.ATGCTGTC TCGG.T..TA TGCT..C..C ..C.....A. .TAGC..T.. G.ATGCTGTC TCGG.T..TA TGCT..C..C ..C....A. .TAGC..T.. G.ATGCTGTC TCGG.T..TA CGCT..C..C ..C.....A. .CAGC..G.. C.CGGCAGTC TCGG.A..TA CGCT..C..C ..C.....A. .CAGC..G.. T.CGGCGGTC TCGG.A..TA TGCT..T..C ..C.....A. .CAGC..C.. G.CAGCGGTC TCAG.T..TA CGCT..C..C ..C.....A. .CAGC..G.. T.CGGCAGTC TCGG.A..CA

CGCT..T..C ..C.....A. .CAGC..T.. A.CTGCTGTC TCAG.A..TA
Consensus
DL1
DL2
DL13
DL16
ST4
R17
J20
MS2
M12
fr CYAARACYSM VTRBGRRMSG YKRSTAYGCS GAHRCYMGWA CMWCRGGYTT .T..A..TGC C.AC.GGAG. TTAC.-C..G ..TA.CC.T. .CT.G..T.. .C..A..TGC A.AT.GGAG. TTAC.-C..G ..CG.CC.T. .CT.G..T.. .C..A..TGC A.AT.GGAG. TTAC.-C..G ..CG.CC.T. .CT.G..T.. .C..A..TGC A.AT.GGAG. TTAC.-C..G ..CG.CC.T. .CT.G..T.. .C..G..TCC G.AT.GGCG. CTAC.-C..G ..TA.CC.T. .CT.G..T.. .C..G..TCC G.AT.GACG. CTGC.-C..G ..TA.CC.T. .CT.G..T.. .T..G..CGC A.AT.GGAG. TTGC.-C..G ..CG.CC.T. .CT.G..T.. .C..G..TCC G.AC.GGCG. CTGC.-C..G ..TA.CC.T. .CT.G..T.. .T..G..CGC G.AT.GGAG. CTGC.-C..G ..TA.CC.T. .CT.G..T.. .C..G.-TGA A.GG.AGAC. CGAG..T..C ..AG.TA.A. .AA.A..C..
Consensus
DL1
DL2
DL13
DL16
ST4
R17
J20
MS2
M12
fr

CMRKCTYGCT MGHAYCGCDM RRKRRCGHAA GYDCTTYWSC GADAAGCAYG .CGT..T... C.T.T...AA AAGAG..A.. .CG...TAG. ..G.....T. .CGT..T... C.T.T...GA AAGAG..A.. .CA...TAG. ..G.....T. .CGT..T... C.T.T...GA AAGAG..A.. .CA...TAG. ..G.....T. .CGT..T... C.T.C...GA AAGAG..A.. .CA...TAG. ..G.....T. .CGT..T... C.T.T...TC GAGAA..C.. .TT...CAG. ..A..... T. .CGT..T... C.T.T...TC GAGAA..C.. .TT...CAG. ..A.....T. .CGT..T... C.T.T...GA AAGAG..T.. .CA...TAG. ..G.....T. .CGT..T... C.T.T...TC GAGAA..C.. .TT...CAG. ..A..... C. .CGT..T... A.A.T...AA AAGAG..T.. .CG...TAG. ..G.....T. .AAG..C... C.C.T...GA GGTGG..A.. .CA...TTC. ..T..... C.

Consensus
DL1
DL2
DL13
DL16
ST4
R17
J20
MS2
M12
fr RCWSWGGYCG STACATWGCR TGGTTCCATA CTGGAGGTGA RRTCACCGAY A.AGT..T.. C..... A. A GA...... A.AGT..T.. C.....A..A AA....... T
G.AGT..T.. C.....A.A AA........ T
A.AGT..T.. C.....A.A AA....... T
A.AGT..C.. C.....A..G AG........ C
A.AGT..T.. C.....A..........
A.AGT..T.. C.....A.A AA.......
A.AGT..T.. C.....A.G AA....... C
A.AGT..T.. C.....A.G AA.......
A.TCA..T.. G.....T..G GA...... . T

Consensus
AGYATGAAGT CCGCYGGYGT RCGYRTHMTR CGYACTTCGG ARTGGCTRMM
DL1
DL2
..T.......T..C.. G..CG.AA.G ..C....... .G..... GAC
DL13
..T.......T..C.. G..TG.AA.A ..C....... . G...... GAC
DL16
..T......T..C.. G..TG.AA.A ..C...... .G.....GAC
ST4
R17
J20
MS2
..T.......T..C.. G..TG.AA.A ..C........ . G......GAC
..T......C..C.. G..TA.TA.G ..C....... .G..... AAC
..T......C..C.. G..CA.CA.G ..C...... .G..... AAC
..T......C..C.. G..TG.TA.G ..C...... . A..... AAC
..C.......C..C.. G..CG.TA.A ..C....... .G.....AAC

C....TA... .TGG...CGA ...GTCA.G.

Alignment: Levivirus Group II.

$$
\left.\left.\cdots|\cdots|_{10} \cdots \cdot|\cdots|_{20} \cdots \cdot|\cdots|_{30} \cdots\right|_{40} \ldots\right|_{50}
$$

Consensus
T72
DL10
DL20
GA
KU1

GGKTGGBKVS SMHYYYDKKS SGSKTBCYBY YHHMCTTSMW GKCGMKMKRR

$$
\cdots|\cdots|_{60} \cdots \cdot|\cdots|_{70} \cdots \cdot|\cdots|_{80} \cdots \cdot|\cdots|_{90} \cdots \cdot|\cdots|_{100}^{\mid}
$$

Consensus
T72
DL10
DL20
GA
KU1

Consensus
T72
DL10
DL20
GA
KU1

Consensus
T72
DL10
DL20
GA
WKSBWTTKYW WWARYGDCTY WWKYSWGMMG TCKTTYYAYC ATGCCGTTAG
T72
DL10
DL20

TGCCA..TTT TT.AT.T..T TAGCGA.AC. -----CT.C.
ATGGT..GCA TA.GC.G..T AATTCT.CA. ..G..CC.C.
ATGTT..GCA AA.GC.A..C ATGCCT.CA. ..T..TC.T.
ORF1
 GTTTAGRTGA CGGTATRTTC CAYATACCGG AGGADCTATG TTTCCGAARYG... A.-. ..T...... G..... ACA..A.-. ..T......T..... ${ }^{\text {.... }}$
......A...A... ..T......T..... ${ }^{\text {... }}$
......G...G.-. ..C......T.....
KU1
.A...A.-. ..T.......A.....AC

MRAATATMGA YMGAAHYTAY MAKGTTAMAC TTRTHTCTTA CGAYRAKAAR AG.....C.. TC...CC..C A.G....C.. ..A.T..... ...CA.G.. G CG.....A.. CA...AT..C A.G....C.. ..A.A..... .. CG.G.. A CA.....C.. CA...AT..C A.G....A.. ..A.T..... ...CA.G.. G CA.....A.. CA...AT..C A.G....A.. ..A.A..... ...CA.G.. A
KU1 AG.....C.. TC...TT..T C.T....A.. ..G.C.... ...TA.T..A

Consensus GGDAADSTHR YTTCYGAYGA YTCTTTYGAR YMDRYMGARA AYTAYCTCYT
T72
DL10
..T..TG.CA C...T..T.. T.....C..A TCGACA..G. .C..T... C.
..G..GC.TG T...C..C.. C.....C..G CAAGTC..A. .C..T...T.
DL20
..G..TC.TG T...C..C.. C.....T..G CAAGTC..A. .C..T...T.
GA ..G..GC.TG T...C..C.. C.....T..G CAAGTC..A. .C..T...T.
KU1 ..A..AG.AA C...T..C.. C.....T..G TCTGTC..G. .T..C...C.
Consensus
T72
DL10
DL20
GA
KU1

Consensus
T72
DL10
YCAAAAYCGT TCGAMYWCGT ATAAACCYGG WTAYRTYCGW MRNGRHTTYC
T.....T...ATT...T.. T..CG.T..A AAG.GA..C. T.....T...ATA... C.. T..TA.C..T CGT.AC..C. T.....C...ATA...T.. A..TA.T..T CGC.AC..T. T.....T...CTA...T.. T..CA.C..T CGT.AC..T. C.....T...CCA...T.. T..TA.T..A AAA.AT..C.

GWARACCVAC DAACTTYTGG AAYGGCTWTC GCTRTTTCMA TCAGCCMGTY
.T.A...G.. A.....T... ..T....A.. ...A....A. C. . C
.A.G...A.. G.....T... ..T....T.. ...A....A. A..T
.A.G...A.. T.....T.. .. C....A.. ...G....A. A.. T
.A.G...A.. G.....C.. ..C....A. ... G....A. A.. T
.T.A...C.. G.....T... ..T....A.. ...A....C.C..C

> GGYRYSTTYA CTCGGAAACT HKMYRAYGGT GGGMGWCAAG WBGCYGATTA
> ..CGTC..T. TGACA.C... ... A.A.... TC..T....
> ..TACC..C. CTCTG.T... ...A.A.... TT..T.....
> ..TACC..C. CTCTG.T... ...A.A.... TT..T....
> ..TACC..C. CTCTG.T... ...A.A.... TC..T....
> ..CACG..T. ATCTG.T... ...C.T.... AG..C....

Consensus
T72
DL10
DL20
GA
KU1

Consensus
T72
DL10
DL20
GA
KU1

YGGYATHGTR AACCCTAATA AGTTYACBGS YAAYAGYCAG CAYYTKGGRG
C..T..C..G C..T.C T..T..T... .. CT.G.. A.
T..C..C.GC..G.G C..C..C... . CT.G..G.
T..C..T..GC..T.C C..C..T... .. CT.G..G.
T..T..C..AT..T.C C..T..C... ..CT.G..G.
T..T..A..G C.. C.C C..C..T... ..TC.T.. A.

Consensus T72
DL10
DL20
GA
KU1
ABAACATGGT DATTTAYCCW GGTCCYTTYT CDATHAATAT TGAYMABMGW
.G....... G.....T..AT..C. .G.. C..... ...TA.TA.A
.C....... T.....C..TC..T. .T..T..... ...TC.CC.A
.C....... A.....C..TC..C. .T..A..... ...TC. GC.T
.T....... A.....C..TC..T. .T..A..... ...TC.GC.T
.G....... T.....T..AT..C. .A..A..... ...CA.CA.A

Consensus
T72
DL10
GCTWSYGTYG AAGTCCTYAA YAARCTYTCD CARTCNAACC TCAATATTGG
...AGT..C.T. T. A..T..T .. A..T....
..TCT..C.C.. T..A..T..G ..A..A....
.TCT..C.C.. T..G..T..A ..G..G....

GA KU1 ..TCC..T.C. C..G..C.. G ..A..T....TCT..C.C. T..A..T..T ..A..C....

	. . 560	$\underset{0}{ } \quad . . . \mid$	$\begin{array}{r} \ldots \\ 0 \end{array} \quad . . . \mid$	$\begin{array}{r} \text { • } . . . \mid \\ 590 \end{array}$	$\begin{array}{r} \ldots \\ 60 . \end{array}$
Consensus	GGTTGCDATT	GCDGARGCYA	ARATGACTGC	TTCRYTRCTY	KCWMRDCAAT
T72	G	..A. A. .T.	. A.	. AC.G. . ${ }^{\text {T }}$	T.TCGT.
DL10	. A .	..T..A..T.	. G	...AT.A. C	G. TAAA .
DL20	. G	. T. .G..T.	. G	...AT.A..C	G. TAAG .
GA	. A.	..T..A.C.	. G	...GT.A. C	G. TAAA.
KU1	T	..G..A. C.	. G	...AT.A. C	T. ACGT.
	$\begin{array}{r} \text {. }\|. . .\| \\ 616 \end{array}$		$\begin{array}{r} \text {. . . . } \\ 630 \end{array}$	$\begin{array}{r} \ldots \\ 640 \end{array}$	$\begin{array}{r} \text {....... \| } \\ 650 \end{array}$
Consensus	CDATHKCKCT	CATCMGAGCC	TACACTGCTG	CAAAGCGCGG	TAADTGGCGR
T72	.G. CT.T. .	. C			...G.....G
DL10	.A. AG.T..	. A.			. A.... A
DL20	.T..AG.T..	. A			.T.... A
GA	.T..AG.T..	. A.			.T..... A
KU1	.T..TG.G..	. A			. G..... A
	$\begin{aligned} & \mid . . \\ & 660 \end{aligned}$		$\begin{aligned} \text {. }\|. . .\| \\ 680 \end{aligned}$	$\begin{array}{r} \text {. . . }\|. . .\| \\ 690 \end{array}$	$\begin{array}{r} \ldots\|. . .\| \\ 700 \end{array}$
Consensus	GAGGTGYTWT	CWCARCTCCT	YATYKCCGAA	CACCGTTTCA	SRRSWCCYKY
T72T.A.	. A. A	T..CG		CGAGA. . CTC
DL10C.T.	.T..G	C. . CT		GAGCT. . TGT
DL20	. T.T.	.T..A.	C. . CT		GAGCT . . TGC
GA	. C.T.	.T..G.	C. . CT		GAGCT . . TGC
KU1	...C.T.	. A. . G.	C. . TG		CGAGA. . CTC
	$\cdots \mid \cdot .$			$\cdots \cdot \mid \cdot \cdots{ }_{740}$	$\cdots \cdot\|\cdot\|$
Consensus	WARGGATCTC	GGAGGTCGAT	GGCTCGAACT	GCAGTACGGY	TGGYTWCCYC
T72	A. G			. T	...T.A. T.
DL10	T.A.			. T	...T.A. T.
DL20	T.A.			. T	...T.A. C.
GA	T.A.			. C	...C.A. C.
KU1	T.A.			. T	...C.T..T.
	$\begin{array}{r} \|\ldots\| \\ 766 \end{array}$	$.1$	$\begin{aligned} & 1 \\ & 780 \end{aligned}$	$\begin{array}{r} \ldots \\ 790 \end{array}$	$\begin{array}{r} \ldots \\ 80 . \end{array}$
Consensus	TTATGAGYGA	TWTVAARGCT	GSHTATGAYY	TGCTYACGCA	RACYMAWYTR
T72T..	. A.C..G...	.GC.....TCT....	G. . TA.AT.A
DL10C.	.A.G. A.	.CA. . . . TT	. .T....	A. CA.AC.G
DL20	. T	.T.G. .A.	. CA. .. . TT	.C....	A. CA.AC.G
GA	. T	.T.G.A.	. CA. . . . TT	. T	A. .CA.AT.G
KU1	. T .	.A.A. A.	.GT.....CT	. T.	A. .TC.TT.A
	$\text { . . } \mid . .$	${ }_{0} \ldots\|\ldots\|$	$\begin{array}{r} \text {. . . . } \\ 830 \end{array}$	$\begin{array}{r} \ldots \\ 840 \end{array}$	$\begin{array}{r} \ldots \\ 0 \end{array}$
Consensus	CCTGCKTTHA	TGCCYYTDMG	RGTWASYCGY	ACCGTTGGCG	SHACRCAYAA
T72	..T. A.	. . . TC.TA.	A. T.CC. . C		GC. . A. . C. .
DL10T. C CT.GA.	G. T. CC. . ${ }^{\text {c }}$. .	GA. . G. C. .
DL20	. T. . CCT.GA.	G. .T.CC. .	..	GA. . G. .C. .

GA
.....T..C.CT.AA. G..T.CC..C .
GA. . G. .C. .
KU1G..T.TC.TC. A..A.GT..T CT..G..T. .

| | .1 860 | ${ }_{0} . . .\|\ldots\|_{870}^{\mid}$ | $\begin{array}{r} \text {. \| . . . \| } \\ 880 \end{array}$ | | . . . \| . . . | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Consensus | TTAYAAAGTG | CGYAAYGTCG | AATCTGCAGG | RGATACTTGG | TCMTATAGSS |
| T72 | . T | T..C | | A. | . A. . . . CG |
| DL10 | . T | . C. . C | | G | C. . . . CG |
| DL20 | T | . C. . C | | G | C. . . . CG |
| GA | ...C. | . C. . C | | G. | ..C.....GC |
| KU1 | . C | T..T. | . | G. | ..C.....CG |
| | $\ldots \mid$ | ${ }_{0} . . .\|\cdot . .\|_{920}^{\mid}$ | | $\text { - \| . . \| } \left\lvert\, \begin{aligned} & \mid \\ & 940 \end{aligned}\right.$ | \| | |
| Consensus | AYCGBYTSTC | RGTRAATTAC | CGAATATGGT | ATTTYATYTC | YGAYCCVCGV |
| T72 | .T..GC.C. | A. . G | | C. C. . | T..T..C..A |
| DL10 | .T..TT.G. | G. . G | | C. T. . | C..T..A..G |
| DL20 | .T..TT.G. | G. . G | | C. .T. | C..C..G..A |
| GA | .C..CT.G.. | G. . G | | C. T. . | C..C..G. C |
| KU1 | .C..GC.C. | A. . A | | T..T.. | T..T..G..A |
| | $\text { . } \cdot \ldots \mid$ | $\begin{array}{r} \ldots \\ 0 \end{array}$ | $\begin{gathered} \text {. \| } \\ 980 \end{gathered}$ | 990 | $\begin{array}{r} \ldots \\ \\ \\ 1000 \end{array}$ |
| Consensus | CTCGCATGGG | CHAGTTCYCT H | HGGKCTYYTW | AACCCWYTRG | AAATYTAYTG |
| T72 | | . A.....T.. A | A. T. . CT.A | AT.A. |T..T.. |
| DL10 | | T.....C.. T | T..G..TC.A | .TC.A. | . С. T. |
| DL20 | | T.....C.. T | T..G..TC.T | .TT.G. | C. . C. . |
| GA | | .T....C. C | C..G..TC.T | . TT.A. | . С. T . |
| KU1 | | .C.....C. A | A. T...CT.A |TC.A. | . C. . ${ }^{\text {. }}$ |
| | $\left.\begin{array}{r} \ldots \\ 101 \end{array} \right\rvert\,$ | $10^{\ldots\|. . .\|}$ | | $30^{\cdots}\|\cdot\|$ | \|... | |
| Consensus | GGARAAGACR | CCBTGGTCKT T | TCGTYGTTGA | CTGGTTYYTR | CCYGTHGGWA |
| T72 | ...A..... A | . .G.....G. | T | . .TC.G | ..C. A. A. |
| DL10 | ...G.....G | . T.....T. | C |CT.A | ..T..T..T. |
| DL20 | ...A.....G | . C.....G. | T | . CT.A | ..T..C..T. |
| GA | .G.....G | . C.G. | T | . CT. A | ..T..C..T. |
| KU1 | ...A....A | ..G.....G. | . T . | . .TC.G | ..T..C..A. |
| | $\begin{array}{r\|} \ldots \\ 10 € \end{array}$ | | $\begin{aligned} & \cdots \cdot\|\cdot\| \\ & 0 \quad 108 \end{aligned}$ | | |
| Consensus | ATCTKATMGA | AGCYATGAGY A | AAYCCKCTYG | GCYTMGAYAT | HATTTCYGGS |
| T72 |G..C. | . C. . . . T | ..C..T..T. | ..T.A..C. | C.....T..G |
| DL10 |T..A. | . C. . . . T | ..T..T..T. | ..C.C..T.. | T.....C..C |
| DL20 |T..A. | ...C.... T | ..T..T..T. | ..C.C..C.. | T.....C..C |
| GA | .T.A. | . $\mathrm{C} . . .$. T | ..T..T..T. | ..C.C..T.. | T.....C..C |
| KU1 |T..C. | ...T.....C | ..T..G..C. | ..C.A..T.. | A.....C..G |
| | $\begin{array}{r} \|\ldots\| \\ 111 \end{array}$ | $10^{\ldots\|. . .\|}$ | $\therefore 0^{2} \cdot \mid$ | $30 \text {....... }$ | $\ldots 0_{1150}$ |
| Consensus | ACDAARACYT | GGCAACTYGA | ATCWAARHTK | AAYGCRWCSM | TTMMVGCDBM |
| T72 | . A. .G..C. | . C. . | ...T. AT.G | . C. . AA.CA | . . AAC. . ATC |
| DL10 | ..G..G..C. | . C. . | ...A. AC.T | ..T..GA.GC | . . ACA. .TTC |
| DL20 | ..G..G..C. | .T. . . | ...A. AC.T | . .C. GA.GC | . .CCG . .TCC |

GA ..G..G..T.C.. ...A..AC.T ..T..GA.GC ..CCG..TTC KU1 ..T..A..C.C.. ...T..GA.G ..T..GT.CC .. AAA..GGA
Consensus
T72
DL10
DL20
GA
KU1

Consensus DGGHTGGKYY GGRACWGCAA AGYTRWCTGC ATAYGCGAAW RMVKRYGACA A..C...TCT ..G..A.... ..T.AT.... ...T.....A GCGTAT.... G..T...TCT ..A..T.... ..T.AT.... ... C.....A GCATAT G..T...TCT ..A..T.... ..T.GA.... ...T.....A GCGTAT G..T...TCT ..A..T.... ..T.GA.... ...C.....A GCATAT T..A...GTC ..A..T.... ..C.AT.... ...C.....T AACGGC

T72
DL10
DL20
GA
KU1

Consensus
GRTCDACTTT CTAYTCCTTY CCHACBCCKH TGCCKTAYGT GAAATCYCCA
.G..T.... ...T.....T .. A..G..TAT..C. C...
.G..A.... ...C....T ..A..T..TAT..T.. C...
.A..G.... ...T.....C ..C..C..GTG..C..T.
.A..G.... ...T.....T ..C..T..TTG..C.. C.
.A..T.... ...T.....T ..T..T..TCT..C..T...

CTWAGTGGRC TTCACHTRGC VAAYGCRYTM GCMYTAATYA ACCAACGCCT
..T.....G.A.G.. C..T..GC.C ..AT....T.
..T....G.T.A. G..T.. AT.A ..CT....C.
..T....G.C.A. G..T..GT.A ..CT....C.
..T....G.T.A.. G..T.. AT.A ..CT....C.
..A....A.A.G.. A..C..AC.C ..CC....T.

STOP 1 ORF2

Consensus GAAAAGGTAA WWAYGGAGTT AGCCAYATGG CAACTTTACG YAGTTTCGTA
T72
DL10
DL20
GA
KU1

Consensus
CTCGTCGATA ATGGCGGTAC GGGGAATGTT ACTGTCGTTC CTGTTAGCAA
T72
DL10
DL20
GA
KU1

$$
\begin{aligned}
& \text { TGCCAACGGC GTCGCTGAGT GGCTTTCTAA TAACTCDCGC AGTCARGCTT } \\
& \text {.G...A... } \\
& \text {.G... A.... } \\
& \text {.A...A... } \\
& \text {.G... G. } \\
& \text {.T...A. }
\end{aligned}
$$

T72
DL10
DL20
GA
KU1

> ATCGCGTGAC TGCMAGTTAT CGTGCGTCAG GYGCSGAYAA GCGCAARTAY
>C...... C.. G..C.. A.. C
> .C.....C..G..C. G.. C

Consensus T72
DL10
DL20
GA
KU1

Consensu
T72
DL10
DL20
GA
KU1

Consensus
T72
DL10
DL20
GA
KU1
...
..T..G...C.... ...
...C..C...G...- ---------------.. ... T
...T..C...G...- ---------------.. ...
...T..C...G...- --------------... ...
...T..G...C... A

ORF4

GA KU1
.G .
GG.... G..... C..
Consensus
T72
DL10
DL20
GA
KU1 GGTTTGTTTT CTGTTCCGAA GAACAATAAA ATAGATCGGG CTGCCTGYAA
T72
DL10

GA KU1

Consensus
T72
DL10
DL20
GA
KU1

Consensus
T72
DL10
DL20
GA
KU1

Consensus
 T72
 DL10
 DL20
 GA
 KU1

Consensus
T72
DL10
DL20
GA
KU1

Consensus TYTWAGTAGY GCTAGYGAYT CYRTCTCTGA YCGYCTYGTM TGGGATYTAC T72
DL10
DL20
GA
KU1
.T.A.....TC..T. .CG....... T..C..C..C T... .С.T.....CT..T. .TG...... С.. С..T.. С T. .C.T.....CT..C. .CA....... C..T..C..C T. .C.T..... СC..T. .CA...... С..T..T.. C C. .T.A....CC..T. .CG...... C.. C..C.. A T.

Consensus
T72
DL10 TTCCRCCRCA YGTYTATTCA TAYCTCSMYC GYATYCGHWC RTCKTTCACWG..G.. T..T..... ..T... CAC. .T..C..CT. A..T..... TG..A. C..T..... .. C...GCT. .C..C..TT. A..G..... T DL20A..G.. C..C..... ..C...GCT. .T..T..CT. G..T.....T

GAG.G.. C..T..... .. C...GCT. .T..C..AA. A..G.....T KU1 ...G.G.. T..T..... ..T...CAC. .C..T..CT. A..T.....
Consensus
T72
DL10
DL20
GA
KU1
ATGATYGAYG GDCRBYTRCA YAAGTGGRRY CTRTTTTCTA CBATGGGWAA
.....C..T. . G.AGT.A.. T......AAC ..A....... . G..... T..
.....C..T. .T.GGT.G.. C......GGC ..G....... .T..... A..
.....T.. C. .G.GCT.A. C.....GGT ..A...... .C.....T.
.....C..T. .G.GTT.A.. T......GGT ..A....... . C..... T..
.....T..T. .A.GTC.G.. T......AAC ..A...... .G.....T..

YGGYTTYACR TTCGARCTCG AGTCCATGAT HTTYTGGGCY YTDAGYAASA C..T..T..AG.... A..T.... T C.G..T.. G. C..C..T..AA... T.. C.....T T.G..T.. G. C..C..T..AA... C.. T.....C C.G..T.. G. T..C..C.GA.... C..T.....T T.A..C.. G. C..T..T..GA.... A..T.....T C.T..C.. C.
 SYRTWATGYY GTMCMTSGGT GTTACTGGCT YAYTWGGCRT CTAYGGDGAY GTG.A...TC ..A.C.C... T.C.T...A. ...T.. A.. C GTG.T...CT ..C.A.G... C.T.A...A. ... C..T.. T GCG.T...CT ..C.A.G... C.T.A...G. ...C..T.. C GCA.T...CT ..C.A.G... C.T.A...A. ... C..T.. T CTG.T...TC ..A.C.C... T.C.T...A. ...T..G..C

Consensus
T72
DL10
DL20
GA
KU1

Consensus
T72
DL10
DL20 SGCYGTRAAY TTTCTTCCKA AYVAGRAGAA RACRTTYACD ACSGGKTAYT G..T..G..CT. .CC..A.... G..G..T..T ..C..T..T. C..T..G..CT. .TA..A.... G..G..C..T ..G..T..C. C..T..G..CG. .TC..A.... G..G..T..G ..G..T..C. C..T..A..CT. .TG..G.... A..A..T..A ..G..T..C. G..C..A..TT. .CC..A.... A..A..C..G ..C..G..T.
 TYCGTGARAG TTGYGGKGCH CAYTTCTTTYA AAGRYGCYKM MRTRAAACCT .C.....G.. ...T..G..A ..T......T. ...GT..TTC AG.A...... .T......A.. ...T..T..T ..C......T. ...GT..CGA CA.G....... .T.....G.. ...C..T..T ..T.....T. ...GC..CGA CA.G......

GA .T.....A.. ...T..T..C ..C.....C. ...AT..CGA CA.G...... KU1 .C.....G.. ...T..G..A ..T.....C. ...GT..TTC AG.A......

Consensus
T72
DL10
TTTTACTGCA AGCGGCCRAT GGAAACCCTT CCSGAYRTHM TRTTRCTMTG
.........G.. C..TA.TA .G.. A..C.
.........A. C..TG.CA .G..G..A.
DL20
GA
KU1

Consensus
T72
DL10
DL20
GA
KU1

Consensus
T72
DL10
DL20
GA
KU1
Consensus
T72
DL10
DL20
GA
KU1
Consensus
T72
DL10
DL20
GA
KU1
 TGGTRWHWCA YTRGTTCGWR WYGCKAMGRW RCGHWSTGGT TTTAACYAYDAAAA.. T.A.....TG TT..G.A.AA A..AAG.... C.TAGTCA.. T.G.....AG TC..T.A.GT A..TTC.... C.TT
....GTCA.. C.G.....TA TT..T.A.GT A..CTC....C.CG
....GTTT.. T.G.....TA TT..T.A.GT A..CTC....C.TG
....GTAA.. T.A.....TG AT..G.C.GT G..TAG....T.CA

Consensus
T72
DL10
DL20
MRTTYCSKWR BSRCYAWGAA AAYGGYCGYT AYRTYCAYTG GYTRCATATG
AG..T.GTAG TGA.T.T... ..T..T..C. .TA.T..T.. .T.A......
CG..C.CGTA CGG.C.T... ..T..T..C. .CG.C..C.. .T.G......
CG..C.CGTA CGG.T.T... ..C..C..T. .CG.C..T.. .C.A......

GA
CG..C.CGTA CGG.C.T... ..T..T..C. .CG.C..C.. .T.G......
KU1
AA..C.GTAG GCG.C.A... ..T..C..C. .TA.C..T.. .T.A.....

Alignment: Allolevivirus Group III.
Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
M11
MX1
Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
M11
MX1

GGGKKHCCCC	CCKTAGGGGG	KYWCYYYAYR	YAGYAGTAYT	TCAMYVAKTA
. GGA	. . T	TCA.CTC.CA	C..C....C.	. . . CTA.G.
. GGA .	. T	TCA.CTC.CA	C..C... T.	. . CTG. G
. GGA .	. T	TCA. CTC.CA	C..C.... ${ }^{\text {C. }}$. . CTG. G .
. GGA.	. T	TCT. СTC.CA	C..C....T.	. . .CTG.G.
. GGA	T	TCA.CTC.CA	C..C....	. . . CTG.G.
				- . . CTG. G
TTC	. . G	GTA.TCT.TG		. ACC. T.
. GTT	. . G	GTA.TCT.TG	T..T	-. . ACC. T
	ORF1			

Consensus	AWKGARRTYY	TWARYGAYTT	YCARGARCTC	TGGTWTCCAG	ABYYCHKYRT
TW18	. AT. . AA. TC	.T.AT. . T	T..G. . G	. T	. CCT. TTTA.
HL4-9	. AT. . AA. TC	.T.AT. . ${ }^{\text {T }}$	T..A. G	T	. TCT. TTTA.
BR12	. AT. . AA. TC	.T.AT. . ${ }^{\text {T }}$	T..G. . G	T	. TCT. TTTA.
BZ1	. AT. . AA. TC	.T.AT..T	T..G..G	T	.TCT. TTTA.
VK	. AT. . AA. TC	.T.AT..T	T..G..G	T.....	.TCT. TTTA.
QB	.AT. .AA.TC	.T.AT. . ${ }^{\text {T }}$	T..G..G	T....	. CCT. TTTA.
M11	.TG..GG.CT	.A.AT. . C .	C. G. . A.	A.	. GTC. CGCG .
MX1	.TG..GG.CT	.A.GC. . C	C..G. A.		. GTC. ATTA.

Consensus
TW18
HL4-9
CGAWTCYKMY RHSAHDYWYC CKTKGTAYAC MYTSARRGGT MRYRTSKKKR
...A..TTCC GAC.CGCAT. .G.G...C.. AC.G.AA... CGTG.GTTGA
...A..TTCC GAC.CGCAT. .G.G...C.. AC.G.AA... CGTG.GTTGA
BR12
...A..TTCC GAC.CGCAT. .G.G...C.. AC.G.AA... CGTG.GTTGA
BZ1
VK
QB
M11
...A..TTCC GAC.CGCAC. .G.G...C.. AC.G.AA... CGTG.GTTGA
...A..TTCC GAC.CGCAT. .G.G...C.. AC.G.AG... CGTG.GTTGA
...A..TTCC GAC.CGCAT. .G.G...C.. AC.G.AG... CGTG.GTTGA
...T..CGAT ACG.TTTTC. .T.T...T.. CT.C.AA... AACA.GGGTG
MX1 ...T..CGAT GTG.AATAC. .T.T...T.. CT.C.GA... AGCA.CGGTG

	210	
Consensus	RHKCYYWYHT NGAYDMYYRY	BKMMCNAAYR
TWWRKYGKYCG YSARRTHMGD		
HL4-9	ACG.TCATC. T..TGATCGC CTAC.T..TG TAGGT.GT.. CC.GG.CA.G	
BR12	ATG.CCATC. T..TGATCGT CTAC.T..TG TAGGC.GT.. TC.GA.CA.G	
BZ1	ACG.TCACA. G..TGACCGC TTAC.T..TG TAAGT.GT.. CC.AG.AC.G	
VK	ACG.TCATT. A..TGATCGT CTAC.T..TG TAGGC.GT.. TC.AA.AA.G	
QB	ACG.TCATA. T..TGACCGT TTAC.C..TG TAAGC.GT.. CC.AG.AA.G	
M11	ACG.CCACC. T..TGATCGT CTAC.T..TG TAGGC.GT.. CC.GG.AA.G	
MX1	GCT.TTTTT. C..CACTTAC GGCA.A..CA ATATT.TC.. TC.GG.TC.A	
	GAT.TTTCT. T..TTCTTAC GGCA.G..TA ATATC.TC.. CG.GA.TC.T	

Consensus	MGNACDCCDC	AYYGYGYYAC	HGTHCCKATW	GCCWSTWCWG	GCYTWMGKCC
TW18	C.T..T..A.	.TC.T.TT.	T..T..G..T	...TC.T.A.	..C.TC.T.
HL4-9	C.T..T.A.	.TC.T.CT.	T..T..G..T	...TC.T.A.	..C.TC.T.
BR12	C.T..T.A.	.TC.C.CT.	T..T..G..T	.TC.A.A.	. C.TC.T.
BZ1	C.T..T..G.	. CC.T.CT.	C..C..G..T	TC.T.A.	C.TC.T.
VK	C.T.A.A.	.TC.C.TT.	T..C..G..T	.TC.T.A.	. С. TC.T.
QB	C.C..T.A.	.TC.C.TC.	C..T..G..T	TC.T.A.	. C.TC.T.
M11	A.G.G. A.	. CC.T.CT.	A. T..T..A	TC.T.T.	T.AA.G.
MX1	A.A.G..T.	. СT.T.CT.	A. A. T..A	AG.T.T.	T.AA.G.
	316	320	330	$\begin{array}{r} \cdots \\ 340 \end{array}$	$\begin{array}{r} \ldots \mid \\ 350 \end{array}$
Consensus	VKKWACMWCY	GTWYRGTATG	AYCCHDCMRS	MYTRYYBTTC	AGGATTVYTG
TW18	GGTA. .AA.C	. .TCA.	.T..CG.AGC	AC.ATCG.	AT.
HL4-9	GGTA. .AA.C	. TTCA.	.T..CA.AGC	AC. ATCG	. AT
BR12	AGTA. .AA.C	. TCA.	.T..CG.AGC	AC.ATCG	. AT .
BZ1	GGTA. . AA. C	. TCA.	.T..TA.AGC	AC. GTCG .	- . . AT .
VK	AGTA. .AA.C	. TCA.	.T..CG.AGC	AC. ATCG .	. GT
QB	GGTA. .AA.C	. TCA.	.T..CG.AGC	AC. ATCG	. AT
M11	CTGT..CT.T	. . ATG .	.C. .AT.CAG	CT.GCTT	CC
MX1	CTGT..CT.C	. .TTG.	.C..AA.CAG	CT. GCTC.	. CC

Consensus	ARCRYBMGDG YKGWBTGGGA YWWYGGYRWK GGYGAYRSTG SRRAYMTYGT
TW18	.A.GCTC.T. TT.AT..... TTTC..TAAT
HL4-9	.A.GCTC.T. TT.AT..... TTTC..TAAT

	410	420	430	440	450
Consensus	CWWTAAWGAC	TTYBTBTTYM	RYACBYYBGC	RCCTAARGAK	TTYGATTTYT
TW18	. AT. . T .	.TT.G..TC	GC. . TTCC.	A.....G..G	C.....C.
HL4-9	. AT...T.	.TT.G. .TC	GT . . TTTC.	G.....G..G	. C..... C.
BR12	. AT...A.	.TG.T. .CC	GT. . CTTT.	A.....G..T	..C.....C.
BZ1	. AT...T.	.TT.G. .CC	GC. . TTTC.	A.....G..G	C..... C .
VK	. AT...A.	.CG.G. .TC	GC. . CTTT.	A.....G..T	C.... C.
QB	. AT. . T.	TC.G..TC	GC. . CTTT.	A.....G..G	T.....T.
M11	.TA...T.	. TC.C..CA	AT. .GCCG. .	A.....G..G	. C..... C.
MX1	.TA...A.	.TC.C..CA	GC. . CCCG .	A.....A..G	C.....C

Consensus	CKAAYTCYTT RGYKCCWCGY	TAYASYMAKG	CCTTCTCYGC BTTTAAYGCY
TW18	.G..T..T.. A.TT..T..T	. T.CTC.G.	C.. T.....T..C
HL4-9	.G..T..C.. A.TT..T..T	. T.CTC.G.	C.. T.....T..C
BR12	.G..T..C.. A.CT..T..T	.T.CCC.G.	C.. C.....T..C
BZ1	.G..C..C.. G.CT..T..C	T. CCC.G.	C. T.....T..C
VK	.G..C..C.. A.TT..T..T	T.CCC.G.	C. . T.....T..C
QB	.G..C..C.. A.TT..T..T	.T.CTC.G.	C. . G.....T..C
M11	.T..T..C.. A.CG..A..C	. C.GTA.T.	T.. T.....C..T
MX1	.G..T..C.. A.CG..A..C	C.GTA. T	C.. T.....T..C

Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
M11
MX1

Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
M11
MX1

AARTATGGCR YTATSATYGG HGAAGGGCDC GARACWMTWA ARTATYTCGS
..G......A C...G..C.. C.......T. ..G..TA.A. .A... C... G
..G......A C...G..C.. C.......T. ..G..TA.A. .A...C...G
..A.....G T...G..C.. T.......T. ..G..TA.A. .A...C...
..G......A C...G..C.. C......T. ..G..TA.A. .A...C... G
..A.....G T...G..C.. T......T. ..G..TA.A. .A...C...
..G......A C...G..C.. C.......T. ..G..TA.A. .A...C... G
..A.....G T...C..T.. A......G. ..G..AC.T. .G...T... C
..A......G T...C..C.. T.......A. ..A..AC.T. .G...T...C

GCTDTTACTK CGCAGRCTRC RTRARGSWKW CCGYGCYGTT MRRCRYGGMG ...G....GA..G. G.G.G.GTTA ...C..T... AAA.GC..C. ...T....GA..G. G.G.G.GTTA ...C..T... AAG.GT..C.
...T....GA..G. G.G.G.GTTA ...C..T... AAG.GC..C.
...T....GA..G. G.G.G.GTTT ...T..T... AAG.AC..C.
...T....GA..G. G.G.G.GTTA ...T..T... AAG.GC..C.
...T....GA..G. G.G.G.GTTA ...C..T... AAG.GT..C.
...A....TG..A. A.A.A.CAGT ...T..C... CGG.AC..A.
...G....TG..A. A.A.A.CAGT ...T..C... CGG.AC..A.
Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
M11
MX1

MX1

ATTTACGHGS TCTYCGBARR RTYMTYSAST CYTAYMAYAA DGGTMRDTGG
.......T.C ...T..C.GG G.TA.CC.G. .T..CC.T.. T...AAG..T.C ...T..T.GG G.TA.CC.G. .C.. CC.T.. G...AAG...
.......T.C ...T..C.GG G.TA.CC.G. .T..CC.T.. A... AAA...
.......C.C ...T..T.GG G.TA.CC.G. .T..CC.C.. G... AAA...
......T.C ...T..T.GG G.TA.CC.G. .T..CC.T.. A... AAA...
......T.C ...T..T.GG G.TA.CC.G. .C..CC.T.. T...AAG...
.......A.G ...C..G.GG A.CC.TG.C. .T..CC.T.. G...CAT...
.......T.G ...C..G.AA A.CC.CG.C. .T..TA.T.. G...CGT..

AARCCDRCTA CTGCTGGTAA TCTCTGGCTY GARTTYMGKT AYGGYYTHRY ..G..GA... T .. A..TC.T. .T.. CC.TAT ..A..AA.. T .. A.. CC.T. .T..TC.TAT
..A..GA...T .. A..TC.T. .T..CC.TAT
..A..GA...T .. A..TC.T. .T.. CC.TAT
..A..GA...T .. A..TC.T. .T.. CC.TAT
..A..GG...T .. A..TC.T. .T.. CC.TAT ..G..TG... C .. A..TC.T. .T..CC.CGT ..G..TG... C ..G..TA.G. .C..TT.AAC

Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
M11
MX1

```
Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
M11
MX1
```

BCCBCTCTTY YAYGACATYA RARRYGTYAT GNWHGAYTGG MMVMRBMKYM
G..T..... C T.T.....C. A.GAC..C. . TTA..T... CAGAACCGTC
G..T.....C T.T.....C. A.GAC..C. .TTA..C... CAGAAGCGCC
G..T.....C T.C.....C. G.GAT..T.. .TTA..T... CAGAGCCGCC
G..C.....C T.T.....C. G.GAT..C.. .TTA..T... CAGAATCGTC
G..T.....C T.T.....C. G.GAT..C.. .CTA..T... CAAAACCGCC
G..T.....T T.T.....C. G.GAT..C.. .TTA..C... CAGAACCGTC
C..G.....C C.T.....C. A.GAT..C.. .AAC..C... ACGCGCATTA T..G.....C C.T.....T. A.AGT..T.. .GAT..T... AACCGTATTA

AYGAYARRAT YCARMRMYWY CKYCGDTTYT CDGTBGGTCA YGGYGAGGAY
.T..T.AA.. T..ACGCCTC .TT..G..T. .T..C.... C..T..... C .T..T.GG.. T..ACGCCTC .TT..G..T. .G..T..... C..T.....T
.T..T.AG.. T..ACGCCTC .TT..A..T. .A..T..... T..T.... C
.C..T.AG.. T..ACGCCTC .TT..G..T. .T..C.... T..C.... T
.T..T.AG.. T..ACGCCTC .TT..G..T. .T..T..... C..C..... C
.T..T.AG.. T..ACGCCTC .TT..G..T. .T..T..... C..C.... T
.C..T.AG.. C..GAAATAT .GC..A..C. .G..G..... T..T.....T
.C..C.AG.. C..GAAACTT .GC..T..C. .T..T.... C..T.....T

	81	82	830	840	850
Consensus	TTYRHGYTRT	CDARTTHGAY	RRYYTRTAYC	CHGSYBTWDC	YYAYTTYMRR
TW18	.--GC.T.G.	.G.A.C. C	AACT.A..T.	. A.CCG.TG.	TT.C. .TAAA
HL4-9	.--AT.T.G.	.A.A.C. C	AGCT.A. . T.	. A.CCG.TT.	TT.C. .TAAA
BR12	.--AC.T.G.	.A.G..T..C	AACT.G. . T.	.C.CCT. AG.	CT.C. .TAAA
BZ1	.--AT.T.G.	.G.A..T..C	AACT.A..T.	.C.CCG.AG.	TT.C. .TAAA
VK	.--AT.T.G.	.A.A.C..C	AACT.A. C.	. C.CTT. AG .	CT.C. .TAAA
QB	--AC.T.G.	G.A.C. C	AATC. G. . C .	.T.CCG.TG.	TT.C. .TAAA
M11	. TAA.C.G.	.T.--.C..C	GGCT. A. . ${ }^{\text {. }}$.T.GCC.TA.	TC.T. . CCGA
MX1	CAA.C.A.	A.--. A.	GGTT.G. . T	T.GCC.AA.	CC.C. .CAGG

	860	870	880	890	900
Consensus	YTRWVHGGBG	AGATTACHST	CSARCGCCGT	CATCGDYRBG	GYATADYYTA
TW18	C. GAAA. . T.	. AC.	. G. A.	.TCAT.	.T...TCT.
HL4-9	C. AAGA. G.	. AC.	G.A.	. TCAT.	.T...TCT.
BR12	C. GAAA. T.	.TC.	.G.A.	. TCAT.	. C. . .TCT.
BZ1	C. GAAA. . ${ }^{\text {. }}$	TC.	.G.A.	. TCAT.	. T. . TTCT.
VK	C. GAAA. T.	AC.	G.A.	. TCAC.	. T. . .TCC.
QB	C. GAAA. . G.	AC.	.G.A.	TCAT.	. C. . TCT.
M11	T. ATCT. . ${ }^{\text {. }}$	CG.	. C.G.	. ATGG	. T...GTC.
MX1	T.ATCC. C .	CG .	C. G.	GTGG	T...ACC

Consensus CGCKAAYCGC GRRGGHTAYG CYRYWTTYGA YAACGGTTCC MTTCGGCCYG
TW18
HL4-9
...T..T... .AA..A..T. .TGTT..C.. T........ C....... T.
...T..T... .AG..A..T. .TGTT..C. T........ C....... T.
BR12 ...G..T... .AA..A..T. .TGTT..C.. T......... C........ T.
BZ1 ...T..T... .AA..A..T. .TGTT..C.. T........ C....... T.
VK
...G..T... .GG..A..T. .TGTT..C.. C........ C....... T.
QB
M11
...T..C... .AA..A..T. .TGTT..C.. C........ C....... T.
...T..T... .AA..T..C. .CACA..C.. C......... A....... C.

Consensus	TGTCCGAYTG	GAAGGARCTY	GCYRHYGCDT	TYATCAAYCC	KSRHGAAGTT
TW18	. T.	G. . T	. . CACC. . A .	. C.....T.	GCAT.
HL4-9	T.	A. . ${ }^{\text {T }}$. . CACT. . A .	. C..... ${ }^{\text {T }}$	TCAT
BR12	T.	A. . ${ }^{\text {T }}$. . CGTC. . G .	. C.....T.	TCAC.
BZ1	T.	G. . T	. . CACC. . G .	. C.....T	TCAA.
VK	T.	G. . T	. . CGTC. . G .	. C..... ${ }^{\text {C }}$	TCAC.
QB	T.	G. . T	. . CACT. . A .	. C. . . . T	GCAT
M11	C.	A. C	. TAAC. T.	.T.....T.	TGGC
MX1		A. C	TAAC. . G		TGGC

Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
M11
MX1

Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
M11
MX1

Consensus
 TW18
 HL4-9
 BR12
 BZ1
 VK
 QB
 M11
 MX1

YGGYGAYATH MTYGMKCARC ARRRKCARYK RTATCAKAAY ATYGABATYG C..T..C..A C.T.CT..A. .GGGT..GCT A.....T..T..C..T..T. C..T..C..A C.T.CT..G. .GGGT..GCT A.....T..T ..C..T..T. T..C..C..A C.T.CT..G. .AGGT..GCT A.....T..T ..C..G..C. C..T..C..A C.C.CT..A. .AGGT..ACT A.....T..T ..C..T..T. C..C..C..A C.T.CT..G. .AGGT..ACT A.....T..T ..C..T..T. T..T..C..A C.T.CT..A. .AGGT..GCT A.....T..T... C..T..T. T..C..T..C A.C.AG..G. .GAAG..ATT G.....G..C ..C..C..T. T..C..T..T A.T.AG..G. .GAAG..ATG G.....G..T ..T.. C..T.

THGAYGGHTW YSASMGWCGY GAYATHCGNH TSMRHTCNKT YWCYMTHAAA .A..C..T.T TG.CA.A..T ..C..C..GC .CAAA..CT. CA.TA.A... .A..C..T.T TG.CA.A..T ..C..T..AC .CAAA..TT. CA.TA.A... .A..T..T.T CG.CA.A..T ..C..A..GT .CAAA..AT. CA.TA.T... .A..C..C.T CG.CA.A..T ..C..A..GT .CAAA..GT. TA.CA.A... .A..T..T.T TG.CA.A..T ..C..A..GT .CAAA..GT. TA.CA.T... .A..C..C.T TG.CA.A..T ..C..C..GC .CAAA..TT. CA.CA.A... .T..C..A.A CC.GC.A..T ..T..A..TA .GCGC..CG. TA.TC.C... .C..C..T.A CC.GC.T..C ..T..A..CA .GCGT..CG. CT.TC.T...

GGWGWRCGDA ATGGVMDRCC TGTWMRCGTW WCTGCBRRYY WRTCKRACYT ..T.AA..A.GCGG.. ...TAA...T T....TGACC TG..TG--C. ..T.AA..A.GCGA.. ...TAA...T T....CGACC TG..TG--C. ..T.AA..A.ACAG.. ...TAA...A T....GGACT TA..TA--C. ..T.AG..A.ACAG.. ...TAA...T T....GGACC TG..TG--C. ..T.AA..A.ACAG.. ...TAA...A T.... GGACC TA..TG--C. ..T.AA..A.GCGG.. ...TAA...T T....TAGCC TG..TG--C. ..A.TA..T.CATA.. ...ACG...T A...--GATC AG..GA..T. ..A.TA..G.CATA.. ...ACG...T A...--GATC AG..GA..T.

	1210	1220	01230	1240	01250	
Consensus	RTYGATWYMT TTTAYARYCG M		MYYYCATRCK ASYMRBMTYC CGYWMGCYAC			
TW18	G.C...TTA.	.C.GC. .	ACTC...A.G .	. GCAGTC.T.	TTC. . T.	
HL4-9	G.C...TCA.	C.GC.	ACTC...A.G .	. CCAAGC.T.	TTC. . ${ }^{\text {T }}$	
BR12	A.C.. ACA	T.GT..	ACTT... G. T	. GCAATA. T .	TTC	
BZ1	G.T... ACA.	T.GT..	ACTC. . A. G	. GCAGTA. T .	TTC. . T	
VK	A.C... ACA.	T.GT..	ACTT...G.T .	. GCAACA. T.	TTC. . ${ }^{\text {T }}$	
QB	G.C...TTA.	.C.GC..	ACTC...A.G .	. GCAATC.T.	TTC. . ${ }^{\text {T }}$	
M11	G.T...TCC.	C. AT.	CTCT...A.T	. CTCGTA.C.	CAA. C	
MX1	G.T...TCC.	C. AT .	CTCT...A.T	. CTCGTA.C.	CAA. . C	
			$\begin{array}{ll} 0 & 1280 \end{array}$	$0 \quad 1290$	$0 \quad 1300$	
Consensus	ACTHGMWMTY GATACDWCYT T		TYWSKWSBWW T	TAARCACGTB H	HTNGAYAGTR	
TW18	...T.ATC.C .	. TA.C.	.TAGTTCGTA	. A.....C C	C.T..T...A	
HL4-9	...C.ATC.C	.TA.C.	. TAGTTCGTA	A.... ${ }^{\text {C }}$	C.T..T... A	
BR12	...A.ATC.C	TA.C.	. TAGTTCGTT	A....C C	C.A..T... A	
BZ1	...A.ATC.C	.TA.C.	.TAGTTCGTT	A..... ${ }^{\text {C }}$	C.C..T... A	
VK	...T.ATC.CTA.C.	.TAGTTCGTT	A.... ${ }^{\text {T }}$	C.A..T...G	
QB	...A.ATC. T	.TA.C.	.TAGTTCGTT	A..... $\mathrm{T}^{\text {C }}$	C.T..T... A	
M11	...A.AAC.C	. AT. T.	. CTCGAGCAT	G.....G T	T.A..T... A	
MX1	\ldots...CAA.C .	.GT.C.	. CTCGAGTAT	A.....G A	A.G..C...A	
				$\left.\begin{aligned} & 1 \\ & \cdots \end{aligned}{ }^{1} \cdot \ldots \right\rvert\,$	$\begin{gathered} \ldots \\ 0 \quad . . . \\ 1350 \end{gathered}$	
Consensus	TYKYTYTWWT AACYCARCGC R		RTWAARCGYT G	GAMMWCWTTG G	GGTCAATTHG	
TW18	. CTT.T.AT. .	..C..A... A	A.T..G..T.	AA	T.	
HL4-9	. CTT. T. AT.	..C..A... A	A.T..G..T.	. AA-. T		
BR12	. CTT.T.AT.	.C..A... A	A.T..G..T.	. AA- . T	T.	
BZ1	. CTT.T.AT.	C. A... A	A.T..G..C.	. AAT. T	T.	
VK	. CGC.T.AT.	C. . A... A	A.T..G..T.	AA- . T	T.	
QB	. CTT.T.AT.	.C.A...	G.A..G..T.	. AA- . ${ }^{\text {I }}$	T.	
M11	. CTC.C.TA.	..T..G..N	A.A.A. C.	. CCA. ${ }^{\text {a }}$	A.	
MX1	TTC.C.TA. ORF2/3	. .T. .G...	A.A..A..C. .	CCA. A.		
		$\begin{gathered} \ldots \\ 0 \end{gathered}$		$\cdots \cdots\|. .$.$\|\begin{tabular}{ll} 1390$\end{tabular} & $\begin{gathered} \ldots \\ 0 \end{gathered}$ \hline Consensus & \multicolumn{2}{\|l	}{ATCATGGCWA AATTASARRC T} & TRTYACTTTA R & RGTRRYATYG G & GGAARRAHGG \hline TW18 & . A. & . .G.GA. & .G.T..... A & A. AAC. . C.	AG.T.
HL4-9	. A. G.GA.	.G.T..... A	A. AAC. . C.	. AG. T	
BR12	. A.	. G.GA.	.G.T..... A	A. . AAC. . C.	AG.T.	
BZ1	. A.	. G.GA.	.G.T..... A	A. . AAC. . ${ }^{\text {. }}$	AG.T.	
VK	. A.	. G.GA.	.G.T..... A	A. AAC. . C.	AG.T.	
QB	. A.	. G.GA.	.G.T..... G	G. . AAC. . C.	AG.T.	
M11	. T. C.AG.	.A.C..... A	A. GGT. .T.	GA.A.	
MX1		C. AG.	. A.C..... A	A. GGT..T.	GA.C	

Consensus	TACYTGTCCY	TTCSSWATWT	GGKMHYTDKM	VRRSRTTTAY	GARSCTSCKA
TW18	. C. . . . C	. GCA. .T.	. .TCCC.AGA	GGAGG C	. .GC. C.T.
HL4-9	T.... ${ }^{\text {T }}$.GCA. T.	. TTCCC.AGA	GGAGG C	..GC..C.T.
BR12	T.....C	.GCA. . ${ }^{\text {. }}$. .TCTC.GGA	AGAGG T	.GC. .C.T.
BZ1	C.... T	GCA. .T.	. .TCAT. AGA	GGAGG T	.GC. C.T.
VK	T.... ${ }^{\text {T }}$.GCA. .T.	. TTCTC.AGA	GGAGG T	. AC. .C.T.
QB	C.... C	.GCA. . ${ }^{\text {. }}$. .TCCC. AGA	GGAGG C	GC.C.T.
M11	C.... T	...CGT. . A.	. . GATC. GTC	CAGCG T	AG. . G.G.
MX1		CGT. . A.	GATC. TTC	CAGCA.	AG. . G.G.

Consensus

TW18
HL4-9
BR12
BZ1
VK
QB
M11
MX1

Consensus
 TW18
 HL4-9
 BR12
 BZ1
 VK
 QB
 M11
 MX1

Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
M11
MX1

Consensus
TW18
HL4-9
BR12
BZ1
YTGGGAYKSH MGRCTBAGDT AYACCACGTT YCGCGGTWGC CGWRGYAAYG
C.....TTCA C.G..G..T. .T....... C......T.. ..TG.C..T.
C.....TTCA C.G..T..T. .T....... T......T.. ..TA.C.. C.
C.....TTCT C.G..T..G. .T....... C.....T.. ..TG.C..T.
C.....TTCA C.G..T..T. .T....... C......T.. ..TG.C..T.
C.....TTCA C.G..C..A. .T....... C......T.. ..TG.C..C.
T.....TTCT C.G..T..T. .T....... C.....T.. ..TG.C..T.
C.....CGGC A.A..G..A. .C....... T......T.. ..TG.C..C.
T.....CGGC A.A..T..G. .T....... T......A.. ..AG.T..C. GDTAYATTGA CCTYGAYGCV WCTTMKYTBR YKMMDGAYSA RTRYNWTRCD .T..T.... ...C..T..G A...ATC.TG CTACT..TC. G-GCTA.G.G .T..T.... ...T..T..G T...ATC.TG CTACT..TC. G-GCTA.G.G .T..T.... ...T..T..G A...ATC.CG CTACT..TC. A-GCTA.G.T .T..T.... ...T..T..G A...ATC.TG CTACT..CC. A-GCGA.G.T
VK .T..T.... ...T..T..G A...ATC.CG CTACT..CC. A-GCAA.G.T
QB
M11
MX1

Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
M11
MX1

Consensus
 TW18
 HL4-9
 BR12
 BZ1
 VK
 QB
 M11
 MX1

 MHRTYGARCR RTTYRTYTAT CTTAARTCGA TAAAYGCHTA YTGYTCKCTY ACA.T..G.G A..CA.T...G....T..T.. T.. C..T..T ACG.T..G.G A..CA.T...G....T..T.. T..C..T..T AAA.T..A.A A..TA.T...G....T.. A.. T..T..T.. C
ACA.C..A.A A..CA.C... G....T..C.. T..T..T..T
ATA.T..A.A A..TA.T...G...T.. A.. T..T..T.. T
ACA.T..G.G A..CA.T...G....T..T.. T.. C..T..T
ACA.C..G.G G..TG.T...G....C..T.. C..C..G..C
CAA.T..A.G G..TG.T...A...C..A.. C..T..T..T

Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
M11
MX1

CGSAMAAYTS CGCCGHGCYG CGAACACAAG AATYGWGGTH GAAGRTAACC
..C.C..T.GA..T.T.A...A G.....
..C.C..T.GA..T.T.A... C G.....
..C.C..T.GA..T.T.A...TG.....
..C.C..T.GA..C.T.A... C G
..C.C..T.GA..T.T.A... C G.....
..C.C..T.GA..C.T.A...TG....
..G.A..C.CT..T.C.T...T
..G.A..C.CC..T.C.T...TG.....

Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
M11
MX1

TCGCACTKTC YATYGCVAAY GAYYTAHTRT YBGCNYWDGR TSWDKMRYCRT.. C..T..C..C ..TT..C.A. TG..TTAT.G .CAATCGC.AT.. C..C..C..C ..TC..C.G. TG..TTAT.G .CAATCGC.AT.. C..T..C..C ..CT..A.G. TG..ATAT.G .CAATCGC.AT.. C..T..C..C ..TT..A.G. TG..TTAT.G .CAATCGC.AG.. C..T..C..C ..TT..A.G. TG..ATAT.G .CAATCGC.AT.. C..T..C..C ..TT..C.G. TG..CTAT.G .CAGTCGC.AT.. C..C..A..C ..TC..T.G. CT..GTTG.A .GTTGAGT.GG.. T..C..G..T ..TC..T.A. CC..GCTA.A .GTAGAAC.G

Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
M11
MX1
TTTARYTCBG ARKMNGASTG TATHWSHYKY DSHCCGARAT TYGRCVDVWC
....AC..T. .AGCT..G.. ...TTCACTC AGT....G.. . C.A.GGGA.
....AC..C. .AGCT..G.. ...TTCACTC AGT....G.. .T.A.GGGA.
....GT..T. .GTCT..G.. ...TTCACTC AGC....A.. . C.A.GGAA.
....AT..C. .GTCC..G.. ...TTCACTC GGT....A.. .C.A.GAAA.
....GT..C. .GTCT..G.. ...TTCACTC AGC....A.. .C.A.GGAA.
....AC..T. .GGCT..G.. ...TTCATTC AGC....G.. . C.A.GGGA.
....GT..G. .GGAG..C.. ...CAGCCGC TCC....A.. .C.A.CTCT.
....AT..G. .AGAA..C.. ...AAGTCGT TCA....A.. .C.G.ATCT.

```
Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
M11
MX1
```


HSCRGAYVAM TTTAGGAWWW MYTATCTTVV WGCYGAGRTH ATGTCGAAGT
CC.G..TG.CTAA AT......AA A..C...G.C
CC.G..TC.CTAA AT......AA A..C...G.C
CC.G..TA.CTAA AT......AA A..C...A.C
CC.G..CA.CTAA AT......AA A..C...A.C
CC.G..TA.CTAA AT......AA A..C...A.C
CC.G..TG.CTAA AT......AA A..C...A.C

TG.G..TC.AATT CC......GC T..C...A.T
AC.A..TC.AATT CC......CG T..T...A.A

			02640	2650
Consensus	AYGAYKMHTT YAGCCTAGGT AT	ATYRATACCG A	AAGCYGYWGC M	MTGGRARAAG
TW18	.T..CGAT.. C	. .TG.	.T.CT.. C	C...G.A.
HL4-9	.T..CGAT.. C	.TG.	.t.CT.. С	C...G.A.
BR12	.T..CGAT.. C.	.TG.	.T.CT.. A	A...A.G.
BZ1	.T..CGAT.. C.	.TG.	T.CT.. A	A...G.G.
VK	.T. .CGAT.. C.	. .CG	.T.CT.. A	A...G.A.
QB	.T..CGAC.. C.	. .TG	.t.tt.. C	C...G.G.
M11	.T..CTCA.. C.	. .ta.	.c.ta.. C	C...G.G.
MX1	.C. .TTCT.	. .ta.	.C.TA. . A	A...G.A.
Consensus	TTYCTRGCWG CRGAGGCTGA	RTGTGCTWWR A	ACGAAYSHKM G	ghCTCTATAG
TW18	..C..G..A. .A.	A. TTA	.CGCTC	. T
HL4-9	..C..G..A. .A.	A. TTA	. .CGCTC	.
BR12	..T..A..A. .A.	A. TTA $^{\text {a }}$. .CGCTC	. T .
BZ1	..C..A..A. .A.	A. TTA $^{\text {a }}$. .CGCTC	. T .
VK	..C..A..A. .A.	A.tTA	. .CGCTC	. C .
QB	..C..G..A. .A.	A.tTA	. .CGCTC	. T .
M11	..C..G..T. .G.	G. ATA	. .TCAGC	
MX1	..C..A..T. .G.	G......AAG	.TCTGA	. A .
	$\mid \ldots{ }_{2710}^{\mid} \ldots{ }_{2720}$	20_{2730}	$\underset{0}{\ldots} \underset{2740}{ }$	$\underset{2750}{\ldots}$
Consensus	RCCTRACTAC ARTGAGGATT	TCAATTTCTC A	AYTGGGYGAG D	DCRTGTMTWC
TW18	G...G..... .G.		.C....C... T	T.A...A.t.
HL4-9	G...G..... .G.		.C....C... T	T.A...A.t.
BR12	A...A..... .G.		.C....T... T	t.g...C.t.
BZ1	G...A..... .G.		.C....C... T	T.A...A.t.
VK	A...A..... .G.	.	.C....T... T	T.A...C.T.
QB	G...G..... .G.		.C....C... T	T.A...A.A.
M11	A...A..... .A.T....T... G	G.A...A.T.
MX1	G...A..... .A.		.T....T... A	A.A...A.t.

Consensus ACATGGCYCG YMGAAAAATA GYYAAGYTRW TAGGAGAYKY NSYKYCSKTT

TW18
HL4-9
BR12
BZ1
VK
QB
M11
MX1
........T.. TA........ .CC...T.AACGC TCCGT.CG..
.......T.. CA........ .TC...C.AATGC TCCGT.CG..
........T.. CC........ . .tT...T.GATGC TCCGT.CG..
.......T.. TA........ .TT....C.AA CGC GCCGT.CG..
........T.. СС........ . .TT....T.AA CGC GCCGT.CG..
........T.. TA........ . .CC...C.AA TGT TCCGT.CG.
........C.. CC......... .TT...T.ATCTC CGTTC.GT..
........T.. CC......... .TT....C.ATTTC AGTTC.GT..
Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
M11
MX1

Consensus
TW18
HL4-9
BR12
BZ1
GAGGSTRTGY TGCGHCAYTG CCGDTTTTCY GGYGGTGCYA CAACRACGAAG.A..TT..C. ...T..... C ..T.....C. A.....G.A..TT..C. ...A.....T ..C.....C.A.....G.A..TT..T. ...A....T ..C.....C. A.....G.A..CT..C. ...T..... C ..T.....T. A..... ...G.A..TC..T.. ...G.... T ..C.....C. A.... ... G.A..TT..C.. ...A....T ..C.... T. A....C.A..TA..C. ...T.....T ..T.....C. G.....C.G..TA..T.. ...G.....C ..C.....C.A.....

QB
M11
MX1
TARCCGTYYR YAYGGYCATC CGTCCTTCAA GTTTGCKCTT VCRCAAGMGT
..A....TCG T.C..T... G... C.A.... C..
..A....TCG C.C..C...G... C.A.... C..
..A....TCA T.T..T... G... C.A.... C..
..A....TCA T.C..T....G... C.A....C..
..A....TCA T.C..T...G... C.A.... C..
..A....TCG T.C..T....G... C.G....C.
..A....TCA T.C..T....T... A.G.... A..
..G....CTA T.C..C...T... G.G....A..

Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
M11
MX1

GTACSCCWCG GGCTKTKMMR TAYGTKYWRG CYYTHARRGC YTSWACRVRY
....G..T..T.GAAA ..T..TTTA. .TC.T.GA.. T.CT..ACATG..T..T.GAAA ..T..TTTG. .TC.T.GA.. T.CT.. ACATG..T..T.GAAA ..T..TTTG. .TC.T.GA.. T.CA..GCATG..T..T.GAAG ..T..TCTG. .TC.T.GA.. C.CT.. GCACG..T..T.GAAA ..C..TTTG. .TC.C.GA.. C.CA.. ACATG..T..T.GAAG ..T..TTTA. .TC.C.GA.. T.CT..ACATG..A..G.TCCA ..C..GCAG. .CC.T.AG.. C.GT..AGGTC..A..G.TCCA ..T..GCAA. .TT.A.AG.. C.GT.. AAAC

Consensus

TW18
HL4-9
BR12
BZ1
VK
QB
M11
MX1

Consensus TTTRARGTYC TKWYGGMYYT HMGRTCACSH ARRGGBMDVT TGCCWRAYGG
TW18
HL4-9
BR12
BZ1
VK
QB
M11
MX1

Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
M11
MX1
...G.G..C. .TAT..ACC. CA.A....CT .AA..GCGG.TG.C..
...G.G..T. .TAT..ATC. CA.A....CA .AA..GCGG.TG.C..
...G.G..C. .TAC..ATC. CA.A....CT .AG..GCAA.TG.C..
...G.A..C. .TAT..ACC. TC.A....CT .AG..GCGA.TA.C..
...G.G..C. .TAT..ACC. CA.A....CT .AG..GCGA.TG.C..
...G.G..T. .TAT..ACC. CA.A....CT .AG..GCGA.TG.C..
...A.G..C. .GTT..CCT. AA.A....CC .AG..CATC.AG.T..
...A.A..C. .TAC..ACC. TA.G....GA .GG..TATG.AG.C..

TASHRTYRTT AYYTAYGAGA ARATWTCYTC NATGGGTAAY GGHTWYACMT
..GTG.TG.. .CC..T.... .G..T..C.. T........ C ..A.AC..A.
..GTG.TG.. .CC..T.... .A..A..C.. G....... C .. A. AC.. A.
..GTG.TA.. .CC..T.... .A..T..T.. C.......T..T.AC..A.
..GTG.CG.. .CT..T.... .G..T..T.. C....... C ..T.AC..A.
..GTG.CA.. .TC..C... .G..T..T.. C.......T ..T.AC.. A.
..GTG.TG.. .CC..C.... .G..T..T.. T........C ..T.AC..A.
..CCG.CA.. .CT..T.... .A..A..C.. A.......T ..C.AT..C.
..GAA.CA.. .CC..T.... .A..T..C.. A........C ..T.TC..C.

TCGARCTYGA GTCGCTTATH TTYGCDKCTC TYGCYCGKTC YKTWTGYGARG..T.. C ..T..TT... .T..T..T.. CG.T..T..GG..T..C ..T..TT... .T..T..T.. CG.T..T..GG..C..T ..T..TT... .C..C..T.. CG.T..T..GA..C..T ..T..TT... .T..T..T.. CG.T..T.. GG..T.. C ..C..TT... .T..T..T.. CG.T..T..GG..C..T ..T..TT... .C..T..T.. CG.T..T..GG..T..A ..T..GG... .T..T..G.. TT.A..C..A ... G..C..A ..T..AG... .T..T..G.. TT.A..C..G
Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
M11
MX1
Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
M11
MX1

WTACTGRRCT TASRMYCRTC DRRKGTYACK GTYTAYGGMG AYGAYATWAT
A.....GA.. ..GACT.A.. TGAG..C..T ..C..C..A. .C..T..T..
A.....GA.. ..GACT.G.. TGAG..C..T ..T..C..A. .C..T..T..
A.....GA.. ..GACT.A.. TGAG..C..T ..T..C..A. .T..C..T..
A.....GA.. ..GACT.A.. TGAG..C..T ..C..C..A. .C.. C..T..
A.....AA.. ..GACT.A.. TGAG..C..T ..T..C..A. .T.. C..T..
A.... GA.. .. GACT.G.. TGAG..C..T ..T..C..A. .C..T..T..
T....GG.. .. CGAC.G.. AGAT..T..G ..C..T..C. .T..C..A..
T.....AA.. .. CAAC.G.. GAGT..C..G ..C..T..C. .T..T..T..

HTTRCCRTCM BRYGCRKKYM SYBCBYTNVD KGAAGTYTTY WMSTAYGTWG C..A..G..C TGT..AGTCC CTG.CC.TCG G.....C..T AAG..T..T. T..A..G..C TGT..AGTCC CTG.CC.TCG G.....T..T AAG..T..T. T..G..A..C CGT..AGTCC CTG.TC.TCA G.....C..T AAG..T..T. T..G..G..C TGT..AGTCC CTG.TC.TCA G.....C.. C AAG..T..T. T..G..A..C CGT..AGTTC CTG.TC.TCA G..... C..T AAG..T..T. T..A..G..C TGT..AGTCC CTG.CC.CCG G.....T..T AAG..T..T. A..G..A..A GAC..GTGCA GTC.TC.AGT T.....T..C TCC..T..T. A..G..A..A GAC..GTGCA GCT.GT.GAT T.....T..C TCC..C..A.

Consensus
GTTTTMSDAC CAAYRMKAAR AARACBTTYT YYRRNGGRCC GTTCMGAGAGACA.. ...TACT..A ..G..T..T. CCGAG..G.. A.....ACG.. ...TACT..A ..G..T..C. CCGAG..G..A.....ACT.. ...TACT..A ..G..T..C. CTGAG..G..A.....ACT.. ...TACT..A ..G..C..T. CCGAA..G.. A....ACT.. ...TACT..G ..G..T..T. CTGAG..G.. A....ACG.. ...TACT..A ..G..T..T. CCGAG..G.. A.....CGT.. ...CAAG.. G ..A..G..T. CTAGT.. A.. C.....AGA.. ...CGAG..G ..G..C..T. TCGAC..G.. C.....

Consensus
 TW18
 HL4-9
 BR12
 BZ1
 VK
 QB
 M11
 MX1

ACGYCRCCGY ATAGTGAVYC CYDCYGATYT MATAYTGGTT TTGAAYMASM
...T.A...TCC. .TG.C...T. A...C.....TA.CC
...T.A...TAT. .TA.C...T. A...T.....TA.CC
...T.G...CGT. .TG.C...T. A...T.....TA.CC
...C.G...CGT. .TG.C...T. A...T.....TA.CC
...T.G...TGT. .TG.C...T. A...T.....TA.CC
...T.A...TGT. .TG.C...T. A...C.....TA.CC
...T.G...TGT. .CT.C...C. C...C.....CC.GA
...C.A...TGT. .CT.T...C. C...C.....CC.GA

Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
M11
MX1

Consensus
 TRTATCGKTG GGCCACRATT GAYGGCGTAT GGGATCCTAG RGYMYATYCY

TW18
HL4-9
BR12
BZ1
.A.....G..G... ..T...... G.CCC. C.C
.A....G..G... ..T...... G.CCC..T.C
.A....G..G... ..C...... A.CCC..T.T
.A....G..G... ..C...... G.CCC..T.C
VK
QB
M11
MX1
.A.....G..G... ..C...... A.CAC..T.C
.A.....G..A... ..C...... G.CCC..T.T
.G.....T..A... ..C...... G.TAT..C.T
.G.....T..G.. ..T...... G.TAT.. C.T

Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
M11
MX1
GTRTAYMYCA AGTAYMGWMR KYWSCTKCCK RAWMWKCTSC RVMGDAATRY
..G..CCT..TC.TAA GTTG..G..T A.ACAG..G. AAC.T...AC
..A..CCT..TC.TAA GTTG..G..T A.ACAG..G. AAC.T...AC
..A..TCT..TC.TAA GCTG..G..T A.ACAG..G. AGC.T... AC
..G..CCT..TC.TAA GTTG..G..T A.ACAG..G. AGC.T...AC
..A..CCT..TC.TAA GCTG..G..T A.ACAG..G. AGC.T...AC
..G..CCT..TC.TAA GTTG..G..T A.ACAG..G. AAC.T... AC
..A..CAC..TA.ACG TTAC..T..G G.AATT..C. GGA.G...GT
..A..CAC..CA.ACG TCTG..G..G G.TATT..C. GCA.A...GT

Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
M11
MX1

YRTRCCTGAT GGWTAYGGTG ATGGNGCYCT CGTCGGATCK GTCYTDAYCA
TA.A..... ..T..C...G..C..G ...C.G.T..
TA.A..... ..T..C...A..C.. G ...T.G.T..
TA.A...... ..T..C...T..T.. G ...T.G.T..
TA.A..... ..T..C...C..C.. ${ }^{\text {....C.G.T.. }}$
TA.A..... ..T..C... C..T.. G ...T.G.T..
TA.A..... ..T..C...T..C.. G ...C.A.T..
CG.G...... ..A..C...T..C..T ...T.A.T..
CG.A..... ..A..T....T..C..T ...C.T.C..

	38103820		03830		3840 3850
Consensus	RTCCHTTCGC R	RRAAAAYCGC G	GGDTGGRTYC G	GGYRYGTDC	CC GRTGATHAYD
TW18	A...T..... G	GA. . . . C	. G...A.C. .	. TAC. . A.	.G....C.CG
HL4-9	A...T.... G	GA. . . . C	.G...A.C. .	. TAC. . A.	. G. . . C.TA
BR12	A...T.... G	GA. . . C	. G...A.C.	. TAT. . T.	.G....C.TA
BZ1	A...A.... G	GA. . . . C	..G...A.C.	.TAT. . A.	.G....C.TT
VK	A...C.... G	GA. . . . C	. A...A.C.	. TAT. . T .	. G. . . C.TA
QB	A...T.... G	GA. . . C	. G...A.C.	. TAC. . A.	.G....T.CG
M11	G...T.... A	AG....T	..T...G.T.	. CGT. . G.	. A. . . T.TA
MX1	G...T.... A	AG....T	.T...G.T.	. CGT. . G .	. A. . . A. TT
	$\begin{array}{r} \text { \| . . } \\ 3860 \end{array}$	$\cdots \cdot{ }_{3870}$		$\cdots \cdot \cdots$	$3890 \quad \cdots \quad \cdots \mid$
Consensus	GACMABAVRA R	RRGACCGAGW D	DCGYRHYGAR Y	YNDGGDTCR	RT ATCTYTAYGA
TW18	C.T.CA. G	GG.......A G	G..CGCT..G T	TTA..G..G	G.T..C.
HL4-9	..C.C.CA. G	GG.......A G	G..CGTT. . A T	TCG..G..G	G.T..C.
BR12	$\ldots \mathrm{C} . \mathrm{T} . \mathrm{CA}$. G	GG.......A A	A..CACT..G T	TCA. .A..G	G.C..C.
BZ1	.C.C.CA. G	GG.......A G	G..CACT..G	CCG. .G. . A	A.C..T.
VK	$\ldots \mathrm{C} . \mathrm{T} . \mathrm{CA}$. G	GG.......A A	A..CACC..G T	TCG. .A..G	G.C..C.
QB	..C.T.CA. G	GG.......A G	G..CGCT..G T	TTG..G..G	G.C..C.
M11	...A.G.GG. A	AA.......T T	T..TGAC.. ${ }^{\text {T }}$	TAT..T..G	G.C.C.
MX1	A.G.AG. A		G..TGAC..G C	CGT. .T. . A	A.

Consensus	NCTHTKBTCK YKNYRBYWVY YSGAADGTRA CRRTGRGTTS	CCBYTHARSG
TW18	C..C.TC..G CGTTGTCTCC	CG...A..A. .GA..G...G

Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
M11
MX1

GKYCRYYGRK YKKYGRTHCY RHNDATSBVN YYBBYRYHKA YSVRCWTATH .TC.GTC.AG TTGC.A.T.T GTAA..CTGT CTGCTGTCG. TCAA.T...C .TC.GTC.AG TTGC.A.T.T GTAG.. CTAT CTGCCATTG. TCAA.T...C .TC.GTC.AG TTGC.A.C.T GTAT.. CCAC TTGCCATAG. TCAG.T...A .TC.GTC.AG TTGC.A.T.T ATAT.. CGGT TTGCCGTTG. CCAA.T...A .TC.GTC.AG TTGC.A.T.T ATAT..CCGC TCGCTATCG. TCAG.T...T .TC.ATC.GG TTGC.A.T.T GCGG.. CTAT TTGCCATCG. TCAG.T...C .GT.GCT.GT CGTT.G.T.C ACTG..GGCA CTCTCGCTT. CGCA.A---C .GT.GCT.GT TGTT.G.A.C AACG..GGAG TTTGCACTT. CCGA.A---C

Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
M11
MX1

YGWRRRMGBD WWYCTACVRH DRTMAGYRRD KCBRYHRGBR MRTWYGAYRT T.TAGGA.CA ATC....AAA GA.A..TAGA T.TACTG.CA AG.TC..TA. T.TAGGA.TA ATC....AAA GA.A..TAGA T.TACCG.TA AG.TC..TA. T.TAAGA.TA ATC....AAA AA.A..CAGA T.TACTG.TA AG.TT..TG. T.TAAGA.CA ATC....AAA AG.A..CAGA T.TACTG.GA AA.TT..TA. T.TAAGA.TA ATC....AAA AA.A..CAGA T.TACTG.TA AG.TC..TA. T.TAGGA.TA ATC....GAA GA.A..CAGG T.TACCG.CA AA.TC..TA. C.AGAAC.GT TAC....CGT TA.C..TGAT G.CGTAA.TG CG.TT..CA. C.AGAGC.GG TTT....CGC TA.C..TGAT T.GGTTG.CG CA.AC..CA.

Consensus

TW18
HL4-9
BR12
BZ1
VK
QB
M11
MX1

Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
M11
MX1

MVWRTRKATM SCGTGCRGTA GYCGTGTYCT GGCWCCCTAC GGGGWYTTCC
ACAG.AT..C G.....A... .C.....T.. ... A...... TC....
ACAG.AT..C G.....G... .C.....T.. ... A......TT....
ACAG.AT..C G.....A... .C.....T.. ...A......TC....
ACAG.AT..C G.....A... .C.....T.. ...A......TT....
ACAG.AT..C G.....A... .C....T.. ...A......TT....
ACAG.AT..C G.....A... .C.....T.. ...A...... TC. CATG.GG..A C.....A... .T.....C.. ...T...... AT.... CGTA.GG..A C.....A... .T.....C.. ...T...... AC....

STOP 4

RGAGGCACGA AGGYTVYRYC YYWAMAAYRR GGYRKMRCCT GGGAGGGSKS
A.-...... ...T.ACAT. TCT.C.-CGA ..TGTAA... CGC
A.-....... ...T.ACAT. TCT.C.-CGA ..TATAA...CGC
A.-....... ...T.GCGT. TCT.C.-CGA ..CGTAA... CGC
A.-...... ...T.ATGC. TCT.C.-CGA ..CATAA... CGC
A.-...... ...T.GCGT. TCT.C.-CGA ..CGTAA... CGC
A.-...... ...T.GCGT. TCT.C.-CGA ..CGTAA... CGC
G........ ...C.CTAT. CTA.A..TGG ..TAGCG... GTG
G........ ...T.CTAT. CTA.A.-TAG ..TAGCA... GTG
Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
M11
MX1

YWHTAYRSMS CCTRRGTTRK SAATMMWTWA WCWMAMYTWC TCDWWMGAGW CAA..TGGCG ...AA-..GT G...AAA.T. T.AC.AT.A. ..TTAC...T CAA..TGGCG ...AA-..GT G...AAA.T. T.AC.AT.A. ..TTAC... T TAT..TAGCG ...AG-..GT G...CAA.T. T.AC.AC.A. ..TTAC... T CAC..TGGCG ...AA-..GT G...AAA.T. T.AC.AT.A. ..TTTA...T TAT..TGGCG ...GG-..GT G...AAA.T. T.AC.AC.A. ..TTAC... T CAA..TGGCG ...AA-..GT G...AAA.T. T.AC.AT.A. ..TTAC... T CAT..TGCAC ...AG...AG C...ACT.A. A.TA.CC.T. ..AAAA... A CTA.. CGCAC ...AG...AG C..-ACT.A. A.TA.CC.T. ..GAAA... A
$\cdots \cdot|\cdots|{ }_{4210} \cdots|\cdots| \ldots|\cdots|$

Consensus	GAGWTGRRGG MTCTGCTTWG	CCCTCWCTCC TCCCA
TW18	...A-.AG.. A.......T.	. T.
HL4-9	..A-.AG.. A......A.	.T.
BR12	. A-.AG.. A.......T.	T.
BZ1	. A-.AG.. A.......T.	T.
VK	. A-.AG.. A.......T.	T
QB	. A-.GG. . A.	
M11	T-.AA.. C.......T.	A.
MX1	T..AG.. C.	

> Appendix A3b
> Group III QB-like

Alignment: Allolevivirus Group III QB-like.

$$
\left.\cdots|\ldots|_{10} \cdots \cdot|\cdots|_{20} \cdots \cdot|\cdots|_{30} \cdots \cdot|\cdots|_{40} \cdots \cdot\right|_{50}
$$

Consensus	GGGGGACCCC	CCTTAGGGGG	TCWCCTCACA	CAGCAGTAYT	TCACTRAGTA
TW18			. A.C. A.
HL4-9			. A.	. T. G
BR12 A.	. T.	. G
BZ1			. T .	. T.	. G
VK			. . A.	. T.	. G .
QB					- G
		ORF1			

Consensus TRAGAGGACA TATGCCTAAA TTACCRCGTG GTCTGCGTTT CGGAGCCGAT

TW18
HL4-9
BR12
BZ1
. G
.... A
.G.......
.A....... A
VK
. G
QB
.G....... A
.A....... G

Consensus AATGAAATTC TTAATGATTT TCARGAGCTC TGGTTTCCAG AYCTCTTTAT
TW18
HL4-9 . . G
. C

BR12
. A.
T.

BZ1
VK
QB

Consensus	CGAATCTTCC	GACACGCAYC	CGTGGTACAC	ACTGAARGGT	CGTGTGTTGA
TW18		. T.	 A. .	
HL4-9		T.		. A .	
BR12		. T.		. A.	
BZ1		. C.		...A..	
VK		T.		. G .	
QB				G	

Consensus
TW18
HL4-9
BR12
BZ1
VK
QB

QB

1				250			
210	220	230	240				

AYGCYCAYHT DGATGAYCGY YTACCYAATG TARGYGGTCG YCARRTMMGG .C..T..TC. T.....T.. C C....T.... ..G.T..... C.. GG.CA.. .T..C..TC. T.....T..T C....T.... ..G.C.... T.. GA.CA.. .C..T..CA. G.....C..C T....T.... ..A.T..... C.. AG.AC.. .C..T..TT. A.....T..T C....T.... ..G.C..... T..AA.AA.. .С..T..TA. T..... С..T T....C.... ..A.C.... C.. AG.AA.. .C..C..CC. T.....T..T C....T.... ..G.C.... C..GG.AA..

Consensus	CGYACWCCRC	AYCGYGYYAC	YGTYCCGATT	GCCTCTWCAG	C
TW18	..T..T..A.	.T..T.TT.	T..T....T.	
HL4-9	..T..T..A.	.T..T.CT.	T..T.	T.	
BR12	..T..T..A.	.T..C.CT.	T. T.	. A .	
BZ1	..T..T..G.	.C..T.CT.	C. C.	T.	
VK	..T..A..A.	.T..C.TT.	T..C.	T.	
QB	..C..T..A.	.T..C.TC.	C. . T.	T	

Consensus
 RGTAACAACC GTTCAGTATG ATCCYRCAGC ACTRTCGTTC TTRTTGAACG

TW18
HL4-9
BR12
BZ1
VK
QB
G........ CG.... ... A...... .. A......
G........CA.... ... A..... .. A......
A........CG.... ...A...... .. A......
G........TA.... ...G..... .. A.......
A........CG.... ...A...... .. G.......
G.
.CG.... ...A

CYCGTGTTGA YTGGGATTTC GGTRATGGYG AYAGTGCGRA CCTTGTCATT
TW18
HL4-9
BR12
BZ1
VK
QB
.T....... T......... ...A.... C. .T...... A.
.T...... T........ ... A....C. .T...... A.
.T....... T........ ... A....C. .C...... G.
.C....... T........ ...G....T. .T..... G.
.T....... T........ ...A....C. .C...... G.
.T....... C........ ...A....C. .T...... A.

Consensus
TW18
HL4-9
BR12
BZ1
VK
QB

AAWGACTTYB TKTTYCGYAC YTYYGCRCCT AAGGAKTTYG ATTTYTCGAA
..T.....TT .G..T..C.. T.CC..A...G..C. C. .
..T.....TT .G..T..T.. T.TC..G...G..C. C.....
..A....TG .T..C..T. C.TT..A...T..C.C....
..T.... TT .G..C..C.. T.TC..A...G..C. C....
..A.... CG .G..T..C.. C.TT..A...T..C.C....
..T.....TC .G..T..C.. C.TT..A...G..T.T.....

	$\begin{aligned} & .1 \\ & 460 \end{aligned}$	$\underset{470}{ } \quad . . . \mid$		490	${ }_{0} \quad . . \mid$
Consensus	YTCYTTRGYT	CCTCGYTATA	CYCAGGCCTT	CTCCGCBTTT	AATGCCAART
TW18	T..T..A.T.	T.	. T	T.	G
HL4-9	T..C.A.T.	T.	. T	T.	G.
BR12	T..C.A.C.	T.	C.	C.	A.
BZ1	C. C. G.C.	C.	. C	T.	G
VK	C. C. A. T.	T.	. C .	T.	A.
QB	C. C. A. T.				

Consensus
ATGGCRYTAT GATCGGYGAA GGGCTCGAGA CTATAAAATA TCTCGGGCTK
TW18
HL4-9
..... AC... C
... G
.....AC.. C..
BR12GT...T... T
B71
VK
.....AC... C
. T
.....GT...T.
T
QB
.AC... C.
. T

Consensus TTACTGCGCA GACTGCGTGA GGGTTWCCGY GCTGTTAARC RYGGCGATTT

TW18

HL4-9
BR12
BZ1
......... A.
A. GC
.A...C
G. GT

VK
A...C
G. GC

QB
T...T
G. AC

.A...C
G. GT
Consensus
TW18
HL4-9
BR12
BZ1
VK
QB ACGYGCTCTT CGYAGGGTTA TCCAGTCYTA CCAYAADGGT AARTGGAARC ...T...... ..C......T.. ...T..T... ..G..... G. ...T..... ..T...... C.. ...T..G... ..G..... A. ...T..... ..C......T.. ...T..A... .. A..... A. ...C..... ..T......T.. ...C..G... .. A..... A. ...T..... ..T......T.. ...T..A... ..A..... A. ...T..... ..T......C. ...T..T... ..G.....A.

Consensus	CRRCTACTGC	TGGTAATCTC TGGCTTGAAT	TYCGTTATGG	YCTTATGCCY
TW18	. GA.		.T.....	C....... ${ }^{\text {T }}$
HL4-9	. AA.		. C.	T....... ${ }^{\text {T }}$
BR12	. GA.		. T	C....... ${ }^{\text {T }}$
BZ1	.GA.		. T .	C....... C
VK	. GA.		. T .	C....... ${ }^{\text {T }}$
QB	. GG .		. T .	

Consensus
TW18
HL4-9
BR12
BZ1
VK
QB

Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
Consensus
TW18
HL4-9
BR12
BZ1
VK
QB

Consensus
TW18
HL4-9
BR12
BZ1
VK
QB

CTCTTYTAYG ACATCARAGA YGTYATGYTA GAYTGGCARA RBCGYCAYGAC..T. A... C..C...T.. ..T.....G. AC..T..T..C..T.A... C..C...T.. ..C.....G. AG.. C..T..C..C.G... T..T...T.. ..T.....G. GC..C..T..C..T.G... T..C...T.. ..T.....G. AT..T..C..C..T.G... T..C...C.. ..T.....A. AC..C..T..T..T.G... T..C...T.. ..C....G. AC..T..T..

TARRATTCAA CGCCTCCTTC GRTTTTCDGT YGGTCAYGGY GAGGAYTRYG ..AA..... G.....T. C..... C. T C. GC. ..GG.....G.....G.. T..... C. .TT. $A T$. ..AG.....A.....A.. T.....T..T C.AC. ..AG.....G.....T.. C.....T.. CT. $A T$. ..AG.....G.....T.. T.....C..CC.AT. ..AG.....G.....T.. T.....C..CT. $A C$. TTGTCRARTT YGACARYYTR TAYCCHGCYK TWKCYTACTT TAAACTRARAG.A.. C....ACT.A ..T..A..CG .TG.T..... G. A.A.A.. C....GCT.A ..T..A..CG .TT.T..... A.G.A.G.. T....ACT.G ..T..C..CT .AG.C.....G.A.G.A.. T....ACT.A ..T..C..CG .AG.T....G.A.A.A. C....ACT.A ..C..C..TT .AG.C....G.A.G.A. C....ATC.G ..C..T..CG .TG.T.....G.A.

$$
\begin{aligned}
& \text { GGKGAGATTA CWCTCGAACG CCGTCATCGT CAYGGYATAT CYTACGCKAA } \\
& \text {..T...... . A....... T..T.... .T.....T. } \\
& \text {..G...... .A.......T..T.... .T.....T. } \\
& \text {..T...... .T....... T.. C.... .T..... G.. } \\
& \text {..T..... .T......T..T... .T.....T. } \\
& \text {..T...... .A....... C..T.... .C..... G.. } \\
& \text {..G...... .A.......T.. C.... .T.....T.. }
\end{aligned}
$$

YCGCGRRGGA TATGCTGTTT TCGAYAACGG TTCCCTTCGG CCTGTGTCCG
YCGCGRRGGA TATGCTGTTT TCGAYAACGG TTCCCTTCGG CCTGTGTCCG
T....AG...
T....AA... T
T....AA... T
T....GG... C
C....AA... C

Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
Consensus
TW18
HL4-9
BR12
BZ1
VK
QB

GAGYTAACTC CYTACAGCTT YGTTGYYGAT TGGTTYTTGA AYGTYGGYGA
...C..... . C....... C....TT... C.... .T.. C..T.. ...T..... . C........ C....TT...T.... .T.. C..T.. ...T..... .T....... С.... СС...T.... . С..T.. С. ...T..... .C....... T....TT...T.... .C..C..T.. ...T..... .T....... T....TT...C.... .C..C..C.. ...T..... .C....... C....TT...C.... .T..T..T..

Consensus CATACTYGCT CARCARGGTC ARCTATATCA TAATATCGAK ATYGTAGAYG

TW18

HL4-9
BR12
BZ1
......T.. .. A..G.... .G....... T .. T..... C.
......T.. ..G..G... .G.......T ..T..... C.
.....T... ..G..A... .G....... G .. C..... T.

QB
.T... ..A..A... .G.......T ..T..... C.

Consensus	CGAAATGGRC	RRCCTGTTAA	CGTWTCTGCB	RRCYTRTCTR	CTRTYGATWY
TW18	. G	GG	T.... ${ }^{\text {T }}$	GA.C.G...G	.G.C. . .TT
HL4-9	G.	GA.	T.....C	GA.C.G...G	..G.C...TC
BR12	A.	AG	A.... ${ }^{\text {G }}$	GA.T.A...A	. A.C... AC
BZ1	A.	AG	T.....G	GA.C.G...G	. G.T... AC
VK	A.	AG .	A.....G	GA.C.A...G	.A.C. . AC
QB	G.	GG	T	AG.C.G...G	.G.C. . TT

Consensus GGTATCHCAG CCTTCYCGYA ATCGYAAGAA CTACAAGGTY CARGTTAARA

TW18
HL4-9
BR12
BZ1
VK
QB
......
..... A A.
.T..C.C
C.....
. C ..G.....G.
.....T..T.T.....
...T...T..T.T..... G..... A.
.....T..T..T.T....T ..G..... A.
.....T...C..C.T.....C ..G..... A.
......T...T..C.T..... ${ }^{\text {......G. }}$

Consensus
 TCCARAACCC RACCGCTTGY HCTGCAAACG GTTCTTGTGA CCCATCCGTT

TW18
HL4-9
BR12
BZ1
VK
QB
....G.... G........ C A.
....G..... G........T A
....G.... G........T C
...A.... A........ T T.
....A.... G........T T.
....G.... G........C A.

Consensus ACTCGCCAGG CATATGCTGA CGTGACYTTY TCGTTCACGC AGTATAGYAC
TW18
HL4-9
BR12
BZ1
VK
QB

.T.C

.T.
.T. T
$. T . T^{-T}$
.T. .
.T..T
. C. T T.
C..T T.

Consensus CGATGAGGAA CGAGCTTTTG TTCGYACAGA GCTTRYYGCT CTGCTCGCTR
TW18
HL4-9
.........
.T....
. A
.........T.....GTC... A
BR12T.....GCT...
BZ1T.....GCT...
VK
QB
..... GC
. A

Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
Consensus
TW18
HL4-9
BR12
BZ1
VK
QB

CWCGGCTBAG DTATACCACG TTYCGCGGTT GCCGTRGCAA YGGTTATATT
.A.....G.. T........ .. C....... G.... T........
.A.....T. T........ ..T...... A.... C
.T.....T.. G........ .. C....... G.... T
.A.....T.. T........ ..C...... G.... T.........
.A.....C.. A........ ..C......G.... C.
.T.....T.. T........ ..C...... G.... T.........

Consensus GACCTYGATG CGWCTTATCT YGCTACTGAY CARGCDATGC KYGATCAGAA

TW18

HL4-9
BR12
BZ1
.....C... .. A....... T........T .. G..T.... GT
.....T... ..T...... T.......T .. G..T.... GT.
.....T............ C.......T TC.
VK
.T.... ..A...... T....... C ..A..G.... TT.
QB
...
.T... .. A...... C....... C .. A..A... TT.
TGTTGCCCTY RAWGATCTYT TGGGYAAYAC WRADTGGCGH GAYTGGGATT
.........C G.A.....T.C..T.. AA.T.....C ..C......
.........T A.A.....T. C..T.. AA.A..... C.. C.......
........T G.T.....C.T..C.. TA.A....T... $C . . .$.
........T G.T.....C.T..C. TA.A..... A ..C......
........C G.T.....C.T..C.. TG.A.....T...
. C A.A.....T.C..T.. AA.G.....T ..T.......

Consensus	RATTYATYTA	TCTTAAGTCG	ATAAATGCHT	ATTGYTCTCT	YAGCGATATT
TW18	G...C..T.		. T.	. . . C.	T........
HL4-9	G...C..T.		T.	. C.	T
BR12	A...T..T.		. A.	. T	C.
BZ1	A...C.. ${ }^{\text {. }}$. C.	T.	T.
VK	A...T..T.		. A.	. T .	T........
QB	G...C..T.		.T.	. C.	T.

Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
Consensus
TW18
HL4-9
BR12
BZ1
VK
QB

GYMGAAAAAT AGYYAAGYTR ATAGGAGAYG YKCCGTCCGT TGAGGGTATG
.TA...... .. CC...T.A C. CT........
.CA....... ..TC...C.AT. CT.
.CC...... ..TT...T.GT. CT.
.TA...... ..TT...C.AC. CG
.CC....... ..TT...T.AC. CG
.TA...... .. CC...C.A T. TT

Consensus

 RYAYGGYCAT CCGTCCTTCA AGTTTGCGCT TCCRCAAGCG TGTACGCCTCTW18
HL4-9
BR12
BZ1
VK
QB

GC.C. . C	

AT.T..T... A
AT.C..T... A
AT.C..T... A
GT.C..T...

Consensus	GGGCTTTGAA	RTAYGTTYTR	GCTCTYAGAG	CYTCWACRCA	YTTCGATATC
TW18		A..T...T.A	T	.T..T..A.	T.
HL4-9		A..T...T.G	T	.T..T..A.	T
BR12		A..T...T.G	T	.T..A..G	T
BZ1		G..T...C.G	T	C. .T..G.	C
VK		A..C...T.G	C	.C. A. A.	T.
QB		G..T...T.A	C	T..T..A	

Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
Consensus
TW18
HL4-9
BR12
BZ1
VK
QB
Consensus
TW18
HL4-9
BR12
BZ1
VK
QB

CGCGTGCRGT AGCCGTGTTC TGGCACCCTA CGGGGTYTTC CAGGGCACGA
........A. ..
.......A.. ...
.........G..
\qquad
......... A.

Consensus AGGTTRYRYC TCTACACGAG GYRTAACCTG GGAGGGCGCY AHTATRGCGC
TW18
HL4-9
BR12
BZ1
VK
QB
.....ACAT.TG....... C . A... G....
.....ACAT.TA....... A... G
.....GCGT. CG....... T . T.... A...
.....ATGC.CA....... C.... G....
.....GCGT. CG....... T.
Consensus
CTRRTTGTGA ATMAATTATC ACAAYTACTC TTWMGAGTGA GAGRGGGATC
TW18
HL4-9
.. AA..... .. A...... T..... .. AC...... ... A......
..AA..... ..A......T..... .. AC...... ... A.....
BR12 ..AG..... ..C.............. .. AC...............
BR12 ..AG..... ..C......C..... .. AC...... ...A......
BZ1 ..AA..... ..A......T..... ..TA...... ...A.....
VK ..GG..... ..A......C.... .. AC...... ...A.....
QB

GTTGCGATYC TRYRDATCBR YYYGCYRTHG AYCARCTTAT HTGTARGAGY
........ T. .GTAA...TG TCT..TG.C. .T..A.... C....G... C
........T. . GTAG...TA TCT..CA.T. .T..A..... C....G... T
....... C. .GTAT...CA CTT..CA.A. .T..G.... A....A... T
........ . . ATAT...GG TTT..CG.T. .C..A.... A.... A... C
........T. .ATAT...CG CTC..TA.C. .T..G..... T....A...T
.......T. . GCGG...TA TTT..CA.C. .T..G..... C....G... T

AATCCTACRA ARRTAAGYAG RTCTACYGGB AARTTYGATR TACAGTATAT
........ A. .GA....T.. A.....T.. C ..G.. C... A
.......A. .GA....T. A.... C..T ..G..C...A
.......A. .AA....C. A.....T..T ..G..T...G
.......A. .AG....C.. A.....T.. G ..A..T...A
.......A. .AA....C.. A....T..T ..G..C...A
.......G. .GA....C.. G.....C..C ..A..C...A

Consensus	AGGTTRYRYC	TCTACACGAG	GYRTAACCTG	GGAGGGCGCY	AHTATRGCGC
TW18ACAT.		. TG .	. . C	. A. . G....
HL4-9	. ACAT.		. TA.	C	.A...G...
BR12	. GCGT.		. CG		.T...A.
BZ1	. ATGC .		. CA.	. C	C. . . G
VK	. GCGT .		. CG	T	.T...G
QB					

..GG..... .. A...... C..... .. AC...... ... A

Alignment: Allolevivirus Group IV.

Consensus
BR1
BR8
HB-P22
HB-P24
SP
NL95
FI
gGgagtaggs sssrtaang g gacctaccy tcamcgcact acagaggaga
-.........C CCCG...--. T ... C.
-.........C CCCG...--.T C.
-..........C CCCG...--. T ... $С$
-.........C CCCA....-. T ... A
......
.
.......... CCCA...--. T....A......
ORF1

ATCTATGCCW RCCCTWCCRA KAGGWCTTCG CTTYGGWTCG AAHGGCGARR
Consensus
BR1
BR8
HB-P22
HB-P24
SP
NL95
FI
.........A A....T..G. G...T..... ...C..A... ..T.....GG
.........A A....T..G. G...T..... ...C..A... ..T......GG
.........A G....A..A. G...T..... ...T..T... ..T.....AA
.........A A....T..G. G...T..... ... C..A... .. C...... GG
..........A A....T..G. G...T..... ... C.. A... .. T......AG
.........A A....T..G. G...A..... ...C..A... ..T..... AA
T A....T..A. T...T..... ...T..A... ..A..... AA

Consensus
TYBTWAAYGA YTTCRRSGMG CTYTGGTTTC CRRAGCKCSW HDCHKYMGAH
BR1
BR8
HB-P22
HB-P24
SP
NL95 .CT.A..T.. C...GAG.C. ..C....... . AG...G.CA TA.CGTC.. T .CT.A..C.. C...GAG.C. ..C........ .AG....G.CA TA.CGTA..T .CT.A..C.. T...AAC.A. ..C....... . GG....T.GT CT.ATCC.. A .CG.T..C.. C...AAC.C. ..C....... .AG...G.GA AA.CTTC.. C .TC.T..T.. C...GAG.C. ..C........ .GG...G.CA TA.CGTA..T .CG.A..T.. T...AAC.C. ..C....... .AG...G.GA AG.ATTC..T .CT.A..T.. T...AGC.C. ..T....... .GA...G.GT CT.TTTC.. C

Consensus YYNVRSHWHG GVHSCTRYRM VCTCWCKGGY TAYDTNAVTR RYCWGYYBKV
BR1
BR8
HB-P22
HB-P24
SP
NL95
FI

CTGAGCAAT. .GAC..GCAA G...A.T..T ..TA.C.C.A AC.T.CCTGG
CTAAGCAAT. .GAC..GCAA G...A.T..T ..TA.C.C.A AC.T.CCGGA
TTGAACTTA. .AAC..ATAA C...A.G..T ..CA.T.G.A AC.T.CCGGG
TCCGGGCTT. .ATC..ACGA A...A.T..T ..CG.A.G.A AT.A.CCGGG
CTAAGCAAT. .GAC..GCAA G...A.T..T ..TA.C.C.A AC.T.CCTGG
CTCGAGCTC. .CTC..ACAC A...A.T..T ..CG.A.G.A AT.A.CCTGG
TCTCAGCTT. .ACG..ACGA A...T.T..C ..TT.G.A.G GC.A.TTCTC
Consensus
BR1
BR8
HB-P22
HB-P24
SP
NL95
FI

VKAYDVNRNN MNVDWSCSBA ATMMDVSVDY BMMWKBBNYK MRDACRCCGY CT. CAGTAAT ATATTC.CG. ..AAGGGAGT CACTGTTGCT CGT..G...T CT. CAGCAAC ACATTC.CG. ..AAGGGGGT CACTGTTGCT CGT..G... T AT. CGAAGTG AAGGAG.GC. ..AAAGGCTC TCATGTGCTT CGA..A...T AT. CGAGACA CGCATG.GT. .. CCTAGCAT GCATTGTATT CGT..A...C CT. CAGTGAC ATATTC.CT. ..AAAGGAGT CACTGCTGCT CGT..G...T CT.TACGACG CGCATG.GT. ..CCTCGCAT GCATTGCGTT CGT..A...C GG.CTACGGC AGG-----. . .CCTGCCTT GCAAGTCTCG AAG..A...C

Consensus BR1
BR8
HB-P22
HB-P24
SP
NL95
FI
Consensus
BR1
BR8
HB-P22
HB-P24
SP
NL95
FI

Consensus
BR1
BR8
HB-P22
HB-P24
SP
NL95
FI

```
Consensus
BR1
BR8
HB-P22
HB-P24
SP
```

GTWGAGTAYR HTCCHVWBGG NACBTWCRTV CGCCTNGAYG GSVMYGTDMR
..T.....CA T...CGAC.. C..C.A.G.GA..T. .GCAC..AAA ..T.... CA T...CGAC.. C..T.A.G.GT..T. .GCAC..GAA
..A.....TA A...ACTG.. A..T.T.A.CG..T. .GGAT..AAA
..T.....CA C...TAAT.. G..T.T.A.CT..C. .GGAT..GAA
..T.....CA T...CGAC.. A..T.A.G.AC..T. .GCAC..GAA
..T.....TG T...AAAC.. A..T.T.A.CA..T. .GGAT..AAA
..A.....CG T...CAAT.. T..G.T.G.GT..T. .CACC..TCG

> VWTYDVMGGD GRVKYGGTYA RYGSSWCRST BRRDCTHRVS AAYTWYRTKR GT.CGAA..G .GCTT...T. AT.GGT.AG. TGAT..CACG ..T.ACG.GA GT.CGAA..G .GCTT...T. AT.GGT.AG. TGAT..CACG ..T.TCG.GA GT.TTCC..A .GCTT...T. GC.CGT.GC. TAGA..TGAC ..C.ACG.TG GT.TTCC..T .GAGC...C. GT.GGT.GC. CAAA..TAGC ..C.ATG.TG AT.TGAA..G .ACTT...T. AT.GGT.AG. TGAT.. CACG ..T.TCG.GA GT.TTCC..T .GATC...T. GT.GGT.GC. TAAG..AAAC ..C.TCG.TG CA.CAGC..G .AGTT...T. AT.GCA.AG. GAGG..TGAC ..C.ATA.TG

AYMGDRSWAC NGTVCCNGTW AACCATYTYG GWTAYMGGCC NGTYACVACD
.CA.AAGT.. A..G..T..TC.T. .T..CC.... C..T.. G..T
.CA.AAGT.. T..G..T..TC.C. .T..CC.... A..T.. A..T
.CC.TAGT.. C..G..A..AC.T. .A..CA.... G..T..G..A
.CA.AAGT.. G..G..A..TC.T. .T..CA.... T..T..G..T
.CA.AAGT.. A..G..C..TC.T. .T..CA.... A..T..G..T
.CA.AAGT.. T..A..T..TT.T. .T..TA.... A..T..G.. T
.TC.GGCA.. A..C..G..TC.T. .T..CC.... T..C..C.. G
$\ldots|\ldots| \ldots|\ldots| \ldots|\ldots| \ldots|.$.

.

TYDVNYTVGC KKCNCAGGSY GGYTTCGATT ACCARTCGGT AATCGGWCCW
.CTCGT.A.. TG.T....GT ..C...... A..... A.. T
.CTCAT.A.. TG.T....GT ..C......G..... A.. T
.CGGTC.G.. TT.G....CC ..T...... G..... A. . A
.TAACT.G.. GG.C....GT ..C......G..... T.. A
.CTCAT.A.. TG.T....GT ..C......A..... A.. T

NL95
.TAACT.A.. GT.A....GC ..C......G..... A. . A
FI
.TAACC.C.. TG.C....GT ..C.......G.....A..A
Consensus
BR1
BR8
HB-P22
HB-P24
SP
NL95
FI
FI
Consensus
BR1
BR8
HB-P22
HB-P24
SP
NL95
FI

FI
 AGGTTCTCDK CGCRMTTYKC YGCGTTYAGY ACCAARTATG GTRYBTTRCT TG ...AC..CT. C..... C.. CA.... .. GTC..A..TG ...AC..CT. C..... C.. CA.... ..GTC.. G..AT ...AA..CT. C....T..TA.... .. ACT..G..TG ...AA..CG. T..... C..TG.... .. ACG.. A.TG ...GC..CT. C.....T.. CA.... .. GTC.. A.. .GT ...AA..CT. C.....T..TG.... ..GCT..G.. TT ...AA..TT. C.....T..TA.... ..ACT..A..

MGGVGAAGGG AGAGARACDC TTARKTATCT TCTCCTSSTS BTTCGCAGRR C..G......G..T. ...AG.....GC.G C........AA C. .A......A..T. ...AG.....GC.G C........AA C..G......A..A. ...GT.....GC.G T........AG A..C......A..A. ...GT.....GC.G T........GG C..A......A..T. ...AG.....CG.C G........AA C..G......A..A. ...GT.....GC.G T........AA C. .A......A.. G. ...G GC.G T . AA
Consensus
BR1
BR8
HB-P22
HB-P24
SP
NL95
FI
 TRCGTGAAGG GWWCCKYGCY GTWARGCRHG GHGATYTCAA RCGYCTCAGG .G....... .TA..GC..C ..A.G..GT. .C...C... G..C..... .G....... .TA..GC..C ..A.G..GT. .C...T.... G..T...... .A....... .AT..GC..C ..A.G..GT. .A...C.... G..T..... .G....... .AT..GC..T ..A.A..AC. .T...C.... G..C..... .G....... .TA..GC..C ..A.G..GT. .C...C.... G..T...... .G....... .AT..GT..C ..A.G..GC. .T...C... G..T..... .G....... .TT..TC..T ..T.A..GA. .A...C... A..C.....

Consensus

BR1
BR8
HB-P22
HB-P24
SP
NL95
FI
AATSTKRTHH SDASVTWCGA RCCDMBNWCC NHDNVHGGNM RDMDRSMAVS
...G.GA.CT CT.CG.T... G..GACAT.. TCTAAA..GA GGAAGGC.AG
...G.GA.CT CT.CG.T... G..GATCT.. CCGAGA..GA AGATGGC.AG
...C.GG.TA GG.GC.A... A..GACGT.. GTGAAT..AC GTCGACA.GC
...C.GA.AC GT.CG.T... G..GCGCT.. GTTCCC..AA AGCGGCA.AG
...G.GA.AT CG.CG.T... G..GAGTA.. ATAAAA..TA AACGAGC.AG
...C.GA.AC GT.CA.T... A..ACGGT.. ATTTCT..CC GACGGCA.CG
...G.TA.CC GA.CG.T... A..TCGTT.. CAAGCT..GA AGAGGCA.CG

Consensus
BR1
BR8
HB-P22
HB-P24
SP

RDCNDMSTTY WMMVRRDCCT ATYGCGAYVR RMYYRYCRGW AACAAGGTYR
AT.TGAG..C TCACAAA... ..C....CAA GCTTAC.G.TTG
AT.AGAG..C TCACAGA... ..C....CAA ACTTAC.G.TTA
AG.CTCC..T TCAGGGA... ..C....CGA ACTTGC.A-- -----------
AG.ATCG..C TCAGAAG... ..C....CAG AACTGC.A--
GG.CGAG..T TCACAGA... ..C....CAA GCTTAC.G.ACG

NL95
FI

AT.GTCG..T AACAAGT... ..T....CAA GCTCGC.A-------------

Consensus
BR1
BR8
HB-P22
HB-P24
SP
NL95
FI
Consensus
BR1
BR8
HB-P22
HB-P24
SP
NL95
FI

Consensus
BR1
BR8
HB-P22
HB-P24
SP
NL95
FI
FI

AAGTTARACC RAGTGRNGRY RRKTGGAADR RCAGTAGTGC GAGYRACCTG
...... A... A....AG.GT AAG.....TA G......... ... TG
.....A.. A....AA.GT AAG.....TA G........ .. . TG.....
------------AT. GC AAG.....AG A........ ... CG.....
-------------AT.GC AGT.....AG A......... ... TG
......G... G....AA.GT AAG.....TA G......... ... TG
-------------AC.AC GGG.....AG A........ ... TG
-------------GT.GC GAG.....GA A........TA
TA. . . .
 TGGYTMGART TCCGHTAYGG RYTKATGCCK TTRTTYTAYG ACATHMARTC ...T.A..G.T..T.. GC.T.... G ..G..C..C.TC.G.. ...C.A..G.T..T.. AC.G.....T ..G..T..T.TC.G.. ...C.C..A.T..T.. GT.G....G ..G..C..C.AC.A.. ...T.A..A.T..C.. GT.G.... G ..A..T..C.CC.G.. ...T.A..G.T..T.. GC.G.... G ..A..C..C.AC.G.. ...T.A..G.A..C.. AC.G.....G ..G..T..C.CA.G.. ...C.C..A.C..C. AT.G.....G ..A..T..C.TC.G..

YKTVATGGAR GAYTTCATGC GYRTBCAYAA GARRATCGCR AARHTWCARC
CG.G.....A ..C...... .TG.C..T.. ..AG.....G ..AA.A..G.
CG.C.....A ..C....... .TG.C..T.. .. AG.....A .. GA.A..G.
TT.A..... A.. C....... .TG.T..T.. .. AA..... A .. AA.T.. G.
CG.A.....A ..C...... .TG.C..T.. .. AG.....G .. AC.T..G.
CG.C.....A ..C....... .TG.T..T.. .. AG.....A .. AA.T..G.
TG.A....G ..C...... .TA.C..T.. ..AG.....G ..AT.A..G.
TG.A.... A ..T...... .CG.G..C.. ..GA.... G ..AA.T..A.

Consensus

BR1
BR8
HB-P22
HB-P24
SP
NL95
GRTTYTCDGC HGGRCAYGGB AAGCTNGWDR MGGTNWVBKV KMNDTTYTWY
.A..T..T.. A..G..C..TG.AGA C...TAGTTC GCGG..T.AC
.A..C..T.. C..A..C..TG.AGA C...TAGTTC GCGG..T.AC
.A..C..G.. T..G..C..TC.TTG A...GTCCGG GACT..C.AC
.A..C..T.. A..A..C..CA.TTG A...AAAGGG TAAG..C.TC .G..T..A.. T..A..T..TC.AGA C...TAGTTC GCGG..T.AC
.A..T..A.. A..A..C..TT.TGA C...TAAGGG TAGG..C.TC
FI .A..C..T.. C..G..T..GA.AAA A...CTCGGA TATA..T.AT

```
Consensus
BR1
BR8
    HB-P22
HB-P24
SP
```

CCKRRYVYBY AYTTCVVBMT YGAGGTYACY GCRGTGTTRC AGCGGCGTCA
..GGACGTCC .C...GCTC. T.....C..C ..A.....A.
..GGACGTCC .C...GCTC. T.....C..C ..A..... A.
$\begin{array}{ll}\text { NL95 } & \text {..TGACCCGC .C...GCTA. T.....C..C ..G.....A. } \\ \text { FI } & \text {..GAGCACTT .T...CAGC. C.....T..C ..A.....A. }\end{array}$

		97	980		1000
Consensus	TCGTTGGGGK	GTNRTMTAYC	AGGATACTGR	TWCBTWBSCM	MCYTTYRAYA
BR1		. CA.A..C.	G	.T.T.ATG.C	A.T. .TA.C.
BR8T	. CG.A.C.	G	.T.t.ATG.C	A.T. CA.T.
HB-P22T	. CA.A.C.G	.T.t.ATG.C	A.T..CG.C.
HB-P24	G	. GA.A.C.		.t.g.tCG.C	A.C. .CA.T.
SPT	. CA.A.C.		.t.t.tTG.C	A.t. CA.C.
NL95	G	. AA.A..C.		.t.g.tgC.A	C.t. CA.t.
FI	T	.TA.C..T.	A	.A.C.TTG.C	A.C. .tG.C.
	1	0 102	201030	$30 \quad 1049$	$\cdots{ }_{10}{ }^{\prime} \cdot{ }_{1050}$
Consensus	ATGGTCRKCT	DRTCCCGGTR	ARGGAYTGGM	AgACRGCGGC	KTTWGCAYTC
BR1	GT	AG. ${ }^{\text {G }}$.A...C...A	A.	G..T...C.
BR8	GT	AG. ${ }^{\text {G }}$.A...C...A	A.	G..T...C.
HB-P22	GG.	GG. G	.A...C...C	A.	G..T...C.
HB-P24	GG. .	AA. G	.G...T...C	. A.	T..A...C.
SP	GT.	AG.......A	.A...C...A	. A .	G..T...C.
NL95	. AG. .	TA........G	.G...T...C	.A.	T..A...C.

Consensus

BR1
BR8
HB-P22
CTTAAYCCBG CYGARRYTGC NTGGGARNTH ACWCCYTWSA GYTTCGTBGY
.....T..T. .C..AGT... A.....GG.A ..T..T.AC. .C.....T.TT..C. .T..AGT... G.....GA.C ..T..C.AC. .C.....T.T

HB-P24C..G. .T..AAC... A.....AT.A ..A..C.AC. .T.....T.C

SP
NL95
FI
.....T..C. .C..GAC... T......GT.A ..T..T.AC. .T......C.C
.....T..C. .C..AGT... G.....AG.T ..T..C.AC. .C.....G.T
.....T..T. .C..AAC... T.....GT.A ..T..C.AC. .C.....T.C
.....T..G. .T..AAC... C.....GC.T ..T..C.TG. .T.....C.C

Consensus
BR1
BR8
HB-P22
HB-P24
SP
NL95
FI

Consensus

BR1
BR8
HB-P22 TATMGKTCHA YGTYGAYGTH GTYGACGGNT TYGAYMGRAA RGACRTRARR ...A.G--C. C..C..T..C ..T.....T. .C..CC.G.. G...A.A.AA
...C.G--C. C..C..T..C ..T.....T. .T..CC.G.. G...A.A.GG
...C.G-C. C..C..C..T ..C.....C. .T..TA.A.. G...G.G.AA
HB-P24
...C.--.C. T..C..C..T ..C.....G. .T..TA.A.. G...G.G.AG
SP

NL95 ...C.G..A. C..T..C..A..C....G. .C..TA.G.. G...G.G.AG
FI
...С.T-T. С..С..T..A ..T....A..C..TA.G.. G...G.G.AG

Consensus
BR1
BR8
HB-P22
HB-P24
SP
NL95
FI

GGTWACDCTT WCCRRDHTHG GWAAGRMNGS NRATMAGACT WTRACWCTWA
...A..T... T..AAAA.C. .A...AAT.G GG..C.... T.A..T..T.
...A..T... T..AAAC.T. .A...AAC.G GG..C..... T.A..T..T.
...A..A... A..AAAT.A. .T...GCG.G CG..C.... T.A..T..T.
...T..G... A..GGTA.T. .T...GCT.G AG..C..... T.A..T..T.
...A..T... T..AAAA.C. .A...AAT.G GG..C.... T.A..T..T.
...T..G.. A..GGTA.T. .T...GCT.G AA..C.... T.A..T..T.
...A..T... A..AAGC.T. .T...GAA.C TA..A.... A.G..A..A.

Consensus BR1
BR8
HB-P22
HB-P24
SP
NL95
FI
CDCCDCGYgG SGTWAAYCCB ACKAACGGVG TGGCRWCRCT VTCYGAAGCT
.A..G..C.. G..A..C..G ..G......C.GT.G.. G..T......
.A..G..C.. G..A..C..G ..G.....C.GT.G.. G.. T.
.T..A..T.. G..A..T..C ..T.....A.GT.G.. G..C......
.A..G..T.. G..A..T..C ..T.....C.GT.G.. A..T......
.A..G..C.. G..A..C..G ..G.....C.GT.G.. A..T......
.A..G..T.. G..A..C..T ..T.....C.GT.G.. A..T......
.G..T..C.. C..T..T..T ..G.....G.AA.A.. C.. C......

Consensus
BR1
BR8
HB-P22
HB-P24
SP
NL95
FI
GGHGCTGTDC CGGCNYTVGA RAARCGMGTR ACTGTGTCAG TYGCKCAGCC
..A.....T.TT.G.. A..G..C..GT.. G.....
..A....T.TT.G.. A..G..C..GC.. G....
..T.....A.TC.C.. G..G..A..AT..T.....
..A....T.GT.G.. G..G..A..AT..T....
..A....T.AT.A.. G..G..C..AT.. G.
..A....T.TT.G.. G..G..A..AT..T....
..C....G.CT.G.. G..A..C..GC..G....

Consensus

BR1
BR8
HB-P22
HB-P24
SP
NL95
FI
HTCYCGKAAY CGTAAGAAYT WYAARRTYCA RATTAARCTY CARAACCCGA
T..C..T..CC. TT..AG.T.. G.....A..C ..A......
C..C..T..C.......C. TT..AG.T.. G.....A..C ..A.......
A..C..T..CC. AT..AG.T.. G.....G..C ..A......
A..T..T..CC. AT..GA.C.. G.....A..C ..G......
A..T..G..CC. TT..AG.T.. G.....A..C ..A.......
A..T..T..CC. AT..AG.T.. G.....A..C .. G.......

Consensus

BR1
BR8
HB-P22
HB-P24
SP
A..T..T..TT. TC..GG.C.. A.....G..T ..G.......

A..T..T..T

CTGCATGCAC GARGGAYGCR TGYGACCCWT CTGTGACGCG WTCYGCKTTC
......... .. A...C.. A ..T.....A. A.. T.. T...
........ ..A...C..A ..T.....A. A..T..T...
.............. C.A ..T....A. T.. C.. G.
......... ..A...C..A ..C.....T. T.. C.. G.C.A ..T.....A. A..T..T...

Consensus
BR1
BR8
HB-P22
HB-P24
SP
NL95
FI

Consensus
BR1
BR8
HB-P22
HB-P24
SP
NL95
FI

Consensus
BR1
BR8
HB-P22
HB-P24
SP
NL95
FI

KCRCGAYSTA ACGCTKTCGT TCACGTCRTA TTCWACYGAS SNDGARCGYG G.A-..CG..G....G.. ...T..C..C GAA..A..T. G.A-..TG..G....A.. ...T..T..C GCA..A..T. G.G-..CC..T....G.. ...T..T..C GCT..A..T. G.G-..CC..G...G.. ...T..T..C GTT..A..T. G.A-..CG..G....G.. ...T..C..C GAG..A..T. T.G...CG..G....G.. ...A..C..G CGT..G..C. G.A-..CC..G...G.. ...T..T..C GAA..A..T.

CGCTRRTTCG YACTGARYTR GCRGCTCTVY TSVMRGAYVM HYTGATYRYC
....AA.... C.....GT.G ..A.....GT .GCAG..CAA TC....CAT.AA.... C.....GT.A ..G.....GT .GCAG..TCC CT....TGT.GA.... C.....AT.G ..G.....GT .GCAA..TCC TC....TGT.AG.... C.....AC.G ..A.....GT .GAAG..TGA TT....TGT.GA.... C.....AT.G ..A.....AC .GGCG..TCC AC....TGT.AA.... C.....AT.A ..G.....GT .GAAG..TGA TC....TGT. GA.... T.....GT.A ..G.....CC .CGCG..TCC TT....TAC. STOP 2

GATGCDATYG AYAAYCTKAA YCCWGCNTAC TGAGCRGCGT TAYTGGYWRS
.....A..C. .T..T..G.. T..T..T...A.... .. C...TAGC
.....G..T. .C..C..G.. T..T..C...G.... .. C...TAGCA..C. .T..T..G.. C..T..A...G.... ..T... CAGCT..T. .C..T..T.. T..T..A...A.... .. C... CAGCT..T. .C..T..G.. C..A..C...G.... ..C...TAGCA..C. .T..T..G.. T..T..A...A.... .. C... CAGCT..C. .T..T..G.. T..T..G...G.... ..T...TTAG

Consensus
BR1
BR8
HB-P22
HB-P24
SP
NL95
FI CTCGYCNRGY GGYGRGRWTA AHCCMYCMDW NCCWGRCGTY CCGGWTVKTCT.CG.C ..T.G.GA.. .C..CT.AAT G..A.A...TA.CT..T.CG.C ..T.G.GA.. .C..CT.AAA G..A.A...TA.CT.T.TA.C ..T.G.GA.. .C..A---AA G..A.A...TA.CG.C.GG.T ..C.G.AA.. .T..C---AA C..T.G...CA.AG.T.CG.C ..T.G.GA.. .T..CT.CGA T..A.A...CT.GT.C.GG.T ..C.G.AA.. .T..C---TA C..T.G...CA.AG.T.AG.C ..T.A.GT.. .A..CC.AAT A..T.A... CA.GT..

Consensus
BR1
BR8
HB-P22
HB-P24
SP
NL95
FI

CRRRCGTYAA RCCGCCHGRC GGWACDGGSH SSTWTMVSTG YCCSTTYDSY .AGA...C.. A.....T.A. ..A..G..GC GC.A.ACG.. C..C..CTCC .AGA...C.. A.....C.A. ..A..G..GC GC.A.ACG.. C..C..CGCT .AGA...C.. A.....A.G. ..A..G..CA GC.A.CGC.. T..G..TACC .GAA...C.. G.....T.G. ..T..A..CA CC.A.CGG.. C..G..CGCC .AGA...C.. A.....A.A. ..T..G..GC GC.A.AAG.. C..C..CGCC .GAA...C.. G.....T.G. ..T..T..CA CC.A.CGG.. C..G..CGCC .GAG...T.. A.....T.G. ..A..G..CT CG.T.ACG.. C..G..CAGC

Consensus
BR1
BR8
HB-P22
HB-P24
SP
NL95
FI

TGYTAYCGCC KYGRTRVWHT HWWCRMGGHV GSBMARRASG GWKYYYSYGM ..T..C... TC.G.AGTA. CTA.GA..AG .GTA.GG.C. .TTCTCCT.A ..T..C... TC.G.AGTA. TTA.GA..TG .GTA.GG.C. .TTCTCCT.A ..T..C... TC.G.AATA. CAT.GA..TA .GGC.AA.C. .TTCTCCT.A ..C..C.... GT.G.GAAC. CAT.AC..AG .CTA.GG.C. .AGCTTGT.C ..T..C... TC.G.AGTA. TTA.GA..TC .GTA.GG.G. .TTCTCCT.A ..C..C... GT.G.GAAT. AAT.AC..AG .CTA.GG.C. .AGCTTGC.C ..T..T.... TC.A.ACTA. TAT.GA..CG .GCA.GG.C. .TGTCCCT.A

Consensus BR1
BR8
HB-P22
HB-P24
SP
NL95
FI

Consensus
BR1
BR8
HB-P22
HB-P24
SP
NL95
FI
BMTHTAYGMV HDKGGMVVBG ARGYCHHVGT YRHKTTYGAK TAYGCKSTYG
CA.C..C.AA AGG..AGAC. .A.T.TCG.. TACT..C..T..T..TC.C.
CA.T..C.AA AGG..AGAC. .A.T.TCG.. TACT..C..T ..C..TC.C.
CA.C..T.CC AGG..AGAC. .G.T.CAG.. TATG..C..T ..T..TC.C.
GC.T..T.CG CTT..CAGT. .G.C.ATA.. TGAG..C..T ..C..TC.T.
CA.T..T.AA AGG..AGAC. .A.T.TCA.. CACT..C..T ..C..TC.C.
GC.A..C.CG TGT.. CAGT. .G.C.CTA.. TGAG..C..G ..C.. GC.C.
TC.C..T.AA CAG..ACCG. .G.T.ACC. TACG..T..T ..T..TG.C.
 AGGATTTYCT YGGKAACRHN WWYTGGCGHA ACTGGGAYVR BCGMYTRTCRT.. T..G...ACA AAT.....T.TCA G..AT.G..A C.. T..G...ACG AAT.....T.TCA G..AT.G..A
....... C. T..G...ACC AAT.....T.TCA G..AC.A..A
.......C. C..G...GTG TTC.....C. CGG T..CT.A.. G
....... C. T..G...ACG AAT.....T.TCA G..AT.A..A
....... C.. C..G...GAG TTC.....A.TGG T..AT.A..A
....... C.. C..T...ACT AAT.....T.TAG C..AC.A..A

Consensus
BR1
BR8
HB-P22
HB-P24
SP
NL95
FI

```
Consensus
BR1
BR8
HB-P22
HB-P24
SP
```

DMWTAYGAYW TMGVBAMYCD YCGTCGTTGY MGHGGYAAYG GKTAYRTHGA
TCA..T..CT .A.CT.AT.G T........C C.T..C..C. .G..CA.T..
TCA..T..CT .A.CT.AT.G T........C C.T..C..C. .G..CA.T.
AAT..T..TA .A.CT.AT.G T....... C C.A..C..T. .T.. CG.T..
ACA..C..TA .C.AC.CT.A C........T C.C..T..C. .G..CG.T..
GAT..T..TA .A.CT.AT.G T....... C C.T..C..T. .G..CA.C..
AAA..T..TA .C.AG.CT.A T.......T C.C..T..C. .G..CG.T..
AAT..T..TA .C.GC.AC.T C........C A.A..T..C. .G..TG.A..

YYTDRAYGCH WCHRYVATGC ARWCHGAYRV NTDYGTDYTR TCNGGYVVBT
CT.AG.T..C A.TGTG.... .GT.A..CGA A.TC..TC.G ..T.. CCGT.
CT.AA.C..T A.CGCG.... .GT.A..CGA A.GT..TC.G ..T..CCGC.
CC.GG.C..A A.TGCG.... .GA.C..CAG C.TT..GC.A ..C..TAAG.
CC.AG.C..A A.CATG.... .GT.A..CGC T.AT..AT.G ..T.. CGCT.
CC.AG.T..A A.CGCC.... .GT.T..TGA T.TC..AT.G ..A..CCGC.

NL95 CC.TG.C..C T.CGTA.... AT.A..CGA G.AT..AT.G ..T..TGCT.
FI TC.TG.C..T A.AGCG.... .GT.C..CAG C.AT..GC.G ..G..CAAG.
Consensus
BR1
BR8
HB-P22
HB-P24
SP
NL95
FI

2210	-	. 1.		2250
	2220	2230	2240	

AYSVNGTDSK NAAGRKVMWR YYNCCMRGYR YHTTYGVMKC MMYYARRTAY .TCCA..GCG C...GTCAAG TTT..CG.CG CT..C.GCT. CATC.AG..T .CCCG..ACG T...GTCAAG TTT..CG.CG CA..T.GCT. CATC.AG..T .TCCA..GCG G...GTCAAG TTT..AG.TG CC..T.GCG. CCTC.AG..T .TGAT..TGT C...ATGCAA CCA..CA.TA TC..C.ACT. CCCT.GG..C .CGGC..GCG A...GTCAAG TTT..CG.CG CC..C.GCT. AATC.AG..T .CGAT..TGT T...ATGCAA CCG..CG.TA CC..C.ACT. CCCT.GG..C .TCGA..ACG C...GGACTA CCC..CG.TA TC..T.CAT. ACCC.GA..C

Consensus
 YWYYTBVAHM TWMWRGRYGR YRYCTRKKTD GAYYTDKCCG MGGTRACRGC

 BR1BR8
HB-P22
HB-P24
SP
NL95
FI
Consensus
BR1
BR8
HB-P22
HB-P24
SP
NL95
FI

CTCT.GA.CA .TCAA.GC.A TGC..GGT.G ..CT.AT... A...G..A..
CTCT.GA.CA .TCAA.GT.A TGC..GGT.G ..CT.AT... A...G..A..
CTCC.TA.CA .AAAG.AT.A TGC..GGG.G ..CT.GT... A...A..G..
TACC.CC.TC .AATG.AT.G TAT..ATG.G ..CT.AG... A...A..G..
CTCT.GA.CA .TCAA.GT.A TGC..GGT.A ..CT.AT... A...A..A..
TACC.CC.TC .TATG.AT.G TAT..ATG.G ..CT.AG... A...A..G..
TATC.TG.AC .ACAA.AT.G CGC..GGG.T ..TC.TG... C...A..G..

VTACCRYTCY TAYGGAATGG TYATYGGYTT CTGGACRGAC TCTAARAGYC
C....GT..C ..C...... .T..T..T.. A... G.. C.
A....GC..C ..C...... .T..T..T..A... A..T.
C....GT..C ..T...... .C..C..T..G...G.. C.
A....AT..T .. C...... .C..T.. C..A...G.. C.
G....GT..C ..C...... .T..T..T..A...G.. C.
A....GT..C ..C...... .C..T..C..A... G.. C.
G....GT..C ..T...... .C..C..C..A...G.. C.

Consensus
BR1
BR8
HB-P22
HB-P24
SP
NL95
FI

TGYCWAAGAC AGCWWGTCRC ARRARRRAAA TTACYCAVVY ATTGRGTAAG
..T.A..... ...TA...G. .GA.GAG...T..GCTG
..T.A.... ...TA...G. .GA.GAG...T..GCTG.....
..T.T.... ...TA...A. .GA.AGA...T.. CCTA....
..T.T.... ...TA...A. .AG.AGA...T..AGCA.....
..C.A.... ...TA...G. .GA.GAG...T..GCTG....
..T.A.... ...TT...A. .AG.AGA...T..AACA....
..T.T.... ...AA...G. .GA.GAG...C..CCTG.....

Consensus GTCGACATMD MYTTYGAAGA CGACATCCAY WTGTCKATYG CYAAYGAYCT
BR1
BR8
HB-P22
HB-P24
........CA AC..C.... C A....T..T. . C.. C.. C..
........CA AC..C.....T A....T..T. . C..T.. C..
....... CG AC..C.....T A....T..C. .C..T..T..
SP
$\ldots . .$. CA AC..T.....T A....T..T. . C..T.. C..
NL95
CA AC..C.....T A....T..T. .T..T..C..
FI
A AC..C.....C A....T..C. .C..C..C.

Consensus

BR1
BR8
HB-P22
HB-P24
SP
NL95
FI
YTKKVRGGCS TDYGGCRTHS SNVHDCTTVV BDVNGCKGAR SARTGYATYA C.TTGA...C .AC...A.CC CGAAA...CA GAAT..T..G G.G..C..T. C.GTGA...C .AC...A.CC CGATG...CG TGAC..T..G G.G..C..T. T.TTAA...C .TT...G.TG CACCA...AC GTCA..G..G C.G..T..C. C.TTGA...C .AC...A.TG CACCT...GC GTCG..G..G C.G..T..C. C.TTGA...C .AC...A.CC CTAAA...GA TTCG..G..G G.G..C..T. C.TGCA...C .GC...G.TG CGCCA...GC GTCG..G..G C.G..T..C. T.TTAG...G .AT...G.AG GCGAA...AG CAGC..T..A G.A..C..T.

Consensus
 BR1
 BR8
 HB-P22
 HB-P24
 SP
 NL95
 FI

```
Consensus
BR1
BR8
HB-P22
HB-P24
SP
```


RYACYSCRTT CCCDVRYMYK KMDMWRRVYS YDGAYRMRTT YCGBRYYSMD
AC..CG.A.. ...AAGCCTT GATCAAGGCG CA..CACA.. T..TGTCGAG
AC..CG.A.. ...AAGCCTT GATCAGAGCG CA..CACG.. T..TGTCGAG
AC..TC.G.. ...TGACACT TCGATGACTG CT..TGCA.. T..CATCGCG
GC..TC.G.. ...TGACACT TCAATGGACG CT..TGCA.. T..CATCCAT
AC..CG.A.. ...GAGCCTG GATCAAGGCG TT..CACG.. C..TGTCGAA
AC..TC.G.. ...TGACACT TCAATGAACC CA..TGAA.. T..GATTCAA
AT..CG.A.. ...GCGTCTG GATCAGAGTC CG..TACG.. T..TACCGAG
 TAYYTVMGNK CHGARATMYT NWSNAAGTWY RRYGSSCAYC CTCTHGGTAY ..TT.GC.CG .T..G..CT. ATCG....TC GAC.GG..C.A....C ..CT.AC.CG .C..G..CC. ATCG....TT GAC.GG..T.T....T
..TC.GC.GT .A..G..CC. TAGT....AT AGT.CG..C. C... T
..CC.GC.TT .A..G..CC. TAGC....TC AGT.CG..C. C.... T
..CT.AC.CG .C..A..CT. ATCA....TT GAT.GG..C.C.... T

NL95 ..TC.GC.TT .A..G..AC. CAGC....TT AGC.CG..C.C....T
FI ..CC.CA.AT .C..G..CC. GTCT....TC AAT.CC..C.C....T

Consensus

BR1
BR8
HB-P22
HB-P24
SP
NL95
FI
 ATTTTRTCRT GGGGYGAGCG YGTWATYCAY ACBGCYCGYC GAAAAATACTG..G.C.... T.. A..T..T ..T..T..C.A..G.T..... C..A..T..T ..C..T..C
....G..A.C.... T..T..C..C ..T..T..T.
....G..A.C.... T..T..T..C ..T..T..T.
....G..G.C.... T..T..T..C ..G..C..T.
....G..G.C.... T..T..T..C ..T..C..T.
....G..A.C.... T..T..T..C ..T..C..T.

Consensus

BR1
BR8
HB-P22
HB-P24
SP
NL95
TAARCTDATH GGYGAGDCYG YNCCRYTBGG GGATGTGGCG YTRCGYKSCC
...A..A. T ..C...T.T. TG..GT.C.. T.G.. CTG..
...G..A..T ..C...T.C. TG..GT.C.. T.G..TTG..
...G..T..A ..C...T.T. TT..GC.C.. C.G..CTG..
...A..G..C ..T...A.T. TC..GC.G.. T.G..CGC..
...A..A..T ..C...T.T. TA..GT.C.. T.G..CTG..
...A..G..A ..T...G.T. CG..AT.G.. T.G.. CGC..
FI
...G..T..C ..C...T.T. TT..GT.T.
T.A..CTG. .

NL95
.A..T..G.. C..C..G...T. C.. C...
FI
.G..C..T.. T..C..A...T.T.. C...


```
C..GCTC..C .A...AAAG. .G..C..C.. TACG.AC..A C.C..TA..G
```

> AC..G.....A... T..T..
> AC..G.....A... G.. ...T..T.. G
> AT..G.....G... A.. ...C..T.. G
> AT..G.....A... $C . . C . . A$
> AC..G.....A... A.. ... C..T.. A
> AT..G.....G...A.. ...C..T.. A
> GC..A.....A... C..T.. A

Consensus

BR1
BR8
HB-P22
HB-P24
SP
NL95

Consensus

BR1
BR8
HB-P22
HB-P24
ACYGATCGYT GYATYGCYAT CGARCCYGGN TGGAAYATGT TTTTYCARYT

SP
NL95
..T......С. .T..C..T.. ...A..C..GT....T.. AC.
..С.....T. .С..Т..С.. ...A..C..AT.... С..AC.
..T.....T. .C..T..C.. ...G..C..CT....C..GT.
..T.....C. .T..T..T.. ...G..C..CT....C..GT.
FI
..T.....C. .C..T..T.. ...G..C..CT....C..GT.
..C.....C. .T..T..C.. ...G..T.. C C..GC.

Consensus	VGGYGTMGGT	GCDGTRCTMC	GYGATMGGTT	GCGYYtDTGG	NVKATYGAYC
BR1	C..T. A.	. .G..G.A.	.C...A.	TT.A...	AAG. .T..C.
BR8	C..T. A.	G. G..A.	.C...A.	CT.A.	AAG. .T..T.
HB-P22	G..T..C.	G..G.A.	.C...A	CC. ${ }^{\text {T }}$	GGG..T..C.
HB-P24	A..C..A.	t.g..c.	.C...A.	cc.t.	CAG. .T..t.
SP	A..C.				AAG..T..T.

NL95 A..C.C.....T..G..C. .T...C.......CC.T... CAT..T..T.

[^1]Consensus
BR1
BR8
HB-P22
HB-P24
SP
NL95
FI

TYAATGAYCA RTCBVYYAAY CARCGYCTYG CRCGBGATGS RTCDCWGYTD .T.....T.. G..GACC..C ..A..C..C. .G..G....G G..T.T.C.A .T.... C.. A..GACC..T ..G..T..C. .G..G....G G..T.T.C.A .T.....T.. A..CATC..T ..G..C..C. .A..C....C G..A.A.C.T .T.....C.. A..TGTT..T ..G..C..C. .A..C....C G..G.A.T.G .T.....C.. A..GACC..T ..A..C..C. .G..T....G G..T.T.C.A .C.....T.. A..TGTT..T ..G..C..C. .A..T....C A..G.A.T.G .C.....T.. A..GCTC..C ..G..C..T. .A..C....C G..A.A.T.A

Consensus BR1
BR8
HB-P22
HB-P24
SP
NL95
FI
RAYCATTTRG CYACYRTHGA YTTRTCNGCA GCMAGYGAYT CDATMAGYHT
A.T.....A. .T..CA.A.. C..A..C... ..C..T..T. .G..C.. CT.
A.T.....A. .T..CA.A.. C..A..C... .. C..T..T. .G..A..CT.
G.C....G. .C..TG.T.. C..A..C... ..A..T..T. .A..C..CC.
G.C....G. .C..TG.C.. C..A..A... ..A..T..T. .G..A..CT.
A.T.....A. .T..CA.A.. C..A..T... ..C..C..T. .A..C..CC.
G.C.....G. .C..TG.C.. T..A..A... ..A..C..T. .G..A..CT.
G.C....G. .C..TG.T.. C..G..G... ..C..C..C. .T..A..TA.
 WMRRCTDGTB GARYTRCTVM TNCCBCCTGM NTGGTWYGRH STYYTRACVG AAAG..A..T ..AT.G..GC .C..T....A A....AT.AC C.TC.G..A. AAAG..A..T ..AT.G..GC .C..T....A A....AC.AC C.TT.A..G. TAAG..G..G ..GT.A..AC .A..G....A C....TT.GC G.CC.G..C. ACGG..T..T ..AT.G..AA .G..G....C T....TT.AT C.CC.G..C. TAAG..T..T ..GT.G..CA .G..C....A A....AT.AC C.TC.A..G. ACGG..T..T ..AC.G..AA .G..G....C T....TT.AT C.CC.G..C. AAAA..T.. C .. GT.A.. GC .T..T.... C G....TT.AA C.TC.A.. C.

Consensus

BR1
BR8
HB-P22
HB-P24
SP
NL95
ATCTCCGATC BGAYSARGGH RTHYTRCCHR AYGGDSRWGY YGTBACYTAY
........ T..TG.A..C G.TT.A..TG .T..ACGA.T T..G..C..T
......... C..TC.A..C G.TT.A..TG .T..ACGA.T T..G..C..T
........ G..TC.G..T A.CC.A..TG .T..GCGT.C C..T..C..C
........ G..CC.G..T G.CC.G..AG .T..GCGT.T C..T..T..C
......... C..TG.A..A A.AC.G..TG .C..GCGA.T T..G..C..T
......... G..CC.G..A A.CC.G..TG .C..GCGT.T C..T..T..C
FI G..TC.A..A G.TC.A..CA .T..TGAA.T T..C..C..C

Consensus
BR1
BR8
GAGAAAATAT CCTCCATGGG WAATGGCTAC ACTTTYGARY TNGAGTCGYT
......... A........ C.. $G C$.T...... C.
A........C..GC .T......C.

HB-P22
T........C.. GC .T......C.

HB-P24
T........C.. GC .G......C.

SP
T........C.. AC .C......C.

NL95 T.........T..GC .A.......T.

```
T........ .....C..GT .A......C.
```

Consensus
BR1
BR8
HB-P22
HB-P24
SP
NL95
FI

HATHTTYGCR GCBMTMGCHM GRAGTGTGTG YGAGTTRYTR GAHMTYGACC
T..T..C..G ..GC.C..AA .A....... T..... AC.A .. AA.C....
T..T..C..G ..GC.C..AA .A....... C.....AC.A ..AA.C....
C..A..T..A ..GA.C..TC .G....... C.... AC.G ..TC.T....
A..C..T..G ..CC.A..CA .G....... C.....GT.G ..CC.T
T..T..T..G ..TA.C..TC .A....... C..... AC.G ..AA.T....
A..T..C..G ..TC.C..CA .A....... C.... AT.G ..CC.T...
T..C..T..G ..TA.C..TC .G....... T.....AC.G ..CC.C...

Consensus
ARTCHRCYGT YAGCGTSTAY GGDGATGATA TWATCATCSM YWCNSRTGCY
BR1
BR8
HB-P22
HB-P24
SP
NL95
.A..TA.T.. T.....G..C ..G....... . A......GA CA.TCG... C
.A..TA.T.. T.....G..C ..G....... .A......GA CA.TCG... C
.A..AA.T.. C.....G..C ..A...... .A......GA TT.CCG...T
.G..AA.C.. C.....G..C ..T...... . A......GA CT.ACG...C
.A..TA.T.. T.....G..C ..G...... . A......GA TA.CCG...C
.G..AA.T.. C....G..C ..T...... .A..... GA TT.ACG...C
FI
.G..CG.C.. C.....C..T ..A...... .T......CC CT.GGA...T

Consensus
BR1
BR8
HB-P22
HB-P24
SP
NL95
FI GCDSMDVYMY TDATGGMKGT BTTYGARTAY GTYGGSTTYA CBSCKAAYMR ..AGCTCCAT .A....AT.. C..T..A..C ..T..G..C. .GC.T..CAA ..AGCTCCAT .A....AT.. C..C..A..C ..T..G..T. .GC.T..CAA
..TGCAACCC .T....AT.. G..C..G..C ..T..G..C. .CC.T..CAG
..TGATGTCC .G....CG.. T..T..G..T ..T..G..C. .GC.T..CAG
..AGCTCCAT .A....AT.. C..T..G..C ..C..G..C. .TC.T..CAG
..TGATGTCC .T....CG.. T..C..G..T ..T..G..T. .GC.T..TCG
..GCAGACCC .G....AT.. C..C..G..T ..T..C..T. .GG.G..CAG

Consensus
 BR1
 BR8
 HB-P22
 HB-P24
 SP
 NL95
 FI

```
Consensus
BR1
BR8
HB-P22
HB-P24
SP
```

RAAGAARACB TTYDKHRVBG GHCCSTTYMG VGARTCSTGY GGWAARCACT
A....G..G ..CTGCGAT. .A..C..CC. C..A..G..C ..T..G....
G.....A..G .. CTGCGAT. .A..C..CC. C..A..G..C ..T..G.
A.....G..C ..TGTAAGT. .T..C..TA. A..G..G..C .. A..G....
A.....G..T ..CATTAAG. .C..C..TA. A..G..G..C ..T..G....
A.....A..G ..CTGCGAT. .A..C..CC. C..A..G..C ..T..G....
A.....A..T .. CATTAAG. .C..C..TA. A..G..G..C ..A..G.
A.....A..T ..CATCACC. .C..G..CC. G..A..C..T ..A..A...

GGYWYYHHGG KGTDGAYGTR ACGCCYTTTT ACATACGHCG MCCRATHCGY
..TTCCAA.. G..A..T..AC... C.. A.. A..T.. T
..TTCCAA.. G..A..T..AC...C.. A.. A..T..T

NL95 ..CACTCC.. G..T..C..AC..........C.. C..A..C..C

..TTTCTC.. T..G..C..GT....T.. C..G.. A..T

Consensus
BR1
BR8
HB-P22
HB-P24
SP
NL95
FI

WGYCTWGYYG AYATGATAYT BGTWYTRAAY ARYMTMTAYM GRTGGGGYAC
T.C..T.CT. .T......C. G..TT.A..C .GTA.C..CA .G.....C..
T.C..T.CT. .T.......C. C..TT.G..T .GTA.C..CA .A......C..
T.C..A.TC. .C......C. T..TC.G..T .GTA.C..TC .G...... C.
T.C..A.CC. .C.......C. T..TT.A..C .GTA.A..TC .G......C..
T.C..A.CC. .T......C. T..AT.A..T .GTA.C..TA .G......C..
T.C..A.CC. .C.......C. T..AT.G..C .GTA.C..CC .G......T..
A.T..T.CC. .T......T. G..TT.G..T .ACC.C..TC .G.....C..

Consensus BR1
BR8
HB-P22
HB-P24
SP
NL95
FI
Consensus
BR1
BR8
HB-P22
HB-P24
SP
NL95
FI

KRTYGAYGGB RTRTGGGATC CTAGRGYVCT GMCYGTDTAY SARAAGTAYS
TG.T..T..T G.A.......A.CA.. .A.C..G..C G.A......TC
TG.T..T..C G.G.......A.CA.. .A.C..A..C G.A......TC
GA.T..C..C G.A.......G.TG.. .C.C..A..C C.G......CG
GA.T..C..G G.G.......A.TA.. .C.T..G..C C.G......CG
TG.T..T..C A.A.......A.CA.. .A.C..T..C G.A......TC
GA.t..C..T G.G.......G.TA.. . C.C.. A..T C.G......TG
TG.C..C..T G.A.......A.CC.. .A.C..A..C C.G......CG
 TBAADHTSCT RCCRAGRRAT TGGMGDMGBA AYMSDATACC DGAYGGYTAC
.C..GT.G.. G..A..AA.. ...C.AC.C. .CCGG..... A..C..C...
.C..AT.G.. G..A..AA.. ...C.AC.C. .CCGG..... G..C..C...
.G..TA.G.. G..G..AA.. ...C.GC.T. .CACG..... T..T..T...
.G..GC.G.. A..A..AG.. ...C.GC.C. .CACT..... T..T..T...
.T..AC.G.. G..A..AA.. ...C.TC.C. .TCGG..... A..C..C...
.G..AT.G.. A..A..AG.. ...C.GC.T. .CACA..... T..T..T...
.G..GC.C.. A..A..GA.. ...A.GA.G. .CACG..... T..T..T...

Consensus
 BR1
 BR8
 HB-P22
 HB-P24
 SP
 NL95
 FI

GGWGACGGNG CYCTCGTCGG ATYKGCYWYR ACKAAYCCRT TYGTWMTMGT
..A......A. .T........ .. TG..TACG ..G..C..G. .C..TA.A..
..A.....A. .T........ .. TG.. TACG ..G..C..G. .C..TA.A..
..A.....C. .T........ ..TG..TACA ..G..T..G. .T..TA.A..
..T.....T. .T........ ..TG..CACG ..T..C..A. .C..TA.C..
..A.....A. .T......... ..TG..TACG ..G..C..G. .T..AA.A..
..A.....T. .C........ ..TG..CACA ..T..C..G. .T..TA.C..
..A.....G. .T........ .. CT.. CTTA ..G.. C..G. .C..AC.C..

```
Consensus
BR1
BR8
HB-P22
HB-P24
SP
```

 BMRRAAYTWY YMVMGMBDRT AYCCKGTRTT RGTTGARGTM CAGARGGAYR TAAG..T.AT TCAA.ACTA. .C..G..A.. A.....A..C G...CG TAAG..T.AT TCAA.ACTA. .C..G..A.. A.....A..C G...CG CAAG..T.TC TCGA.ACTA. .C..G..A.. A.....A..CA...CG
CCGG..T.AT TCCA.ATGG. .T..T..G.. G.....G..CG...TG
TAAA..T.AT TCAA.ACTA. .C..G..A.. A....A..C G...CG

NL95 CCGG..T.AT TCCA.ATGG. .T..T..G.. G.....G..C G...TTG

GCGA..C.TC CAGC.CGAG. .C..G..G.. A.....G..A A...TA

FI ..AC.....T. T..GC..A.. A......TGC ..A......

Consensus	RGGBSBYMKY	TGASSBCCVR	RRRRGAGAAA	AA	
BR1	G..CGGTCTT	...CCG..CG	AGAG.		
BR8	G. .CGGTCTT	..CCG..CG	AGAG.		
HB-P22	G. .GCTCATT	.GGC..CG	GAAG.		
HB-P24	G. .GCCTCTT	...GGT..CG	GAAG.		
SP	G. .TGGTCTC	.CCG..CG	AGAG.		
NL95	G. . GCCTCGT	. $\mathrm{GGC} . . \mathrm{AG}$	GAAG.		
FI	A. .GGCTCGT	.GCC..GA	GAGA.		
	\|		$\underset{50}{\ldots} \underset{427}{ }$	$\cdots \quad \cdots \cdots 428$	
Consensus	GAGRGKKGGC	TCTGCTTTGC	CCWCTCTCCT	CCCA	
BR1	...G.TG.		. A.		
BR8	...G.TG.		. A.		
HB-P22	...G.TG.		. .T.		
HB-P24	. . .G.TG.		. A.		
SP	...G.TG.		. A.		
NL95	...G.TG.		A.		
FI					

Alignment of Amino Acid Sequences for each Gene
Appendix B1
Group I

Amino acid sequences of Leviviridae Group I. Note the YGDD motif in all Leviviridae replicase proteins.

Group I isolates DL1, DL2, DL13, DL16, J20, ST4, R17, M12, MS2 and fr. GenBank strain M12 sequences were not complete; therefore, the replicase gene was omitted. The most conserved stretch of amino acids are highlighted in red. Gaps indicate degenerative sites.

Group I maturation protein:

Alignment: Align Group I maturation protein.

	10			4	
Consensus	MR F	$\checkmark \quad \mathrm{R}$	YA G EDNS	L YRSNW	PG STG
DL1 matura	MRAFSVLDKE	SETFVPLVRT	YADGEVEDNS	FSLKYRSNWT	PGRFNSTGAR
DL2 matura	MRAFSVLDQE	SETFVPSVRV	YADGQVEDNS	FSLKYRSNWT	PGRFNSTGSR
DL13 matur	MRAFSVLDQE	SETFVPSVRV	YADGQVEDNS	FSLKYRSNWT	PGRFNSTGSR
DL16 matur	MRAFSVLDQE	SETFVPSVRV	YADGQVEDNS	FSLKYRSNWT	PGRFNSTGSR
J20 matura	MRAFSVLDRE	SETFVPSVRV	YADGEVEDNS	FSLKYRSNWT	PGRFNSTGTR
ST4 matura	MRAFSTLDRE	NETFVPSVRV	YADGETEDNS	FSLKYRSNWT	PGRFNSTGAK
R17 matura	MRAFSALDKE	SKTFVPSIRV	YANGETEDNS	FSLKYRSNWT	PGRFNSTGAR
M12 matura	MRAFSVLDQE	NETFVPSVRV	YADGETEDNS	FSLKYRSNWT	PGRFNSTGAR
MS2 matura	MRAFSTLDRE	NETFVPSVRV	YADGETEDNS	FSLKYRSNWT	PGRFNSTGAK
fr maturat	MRKFIPTERM	SKSHVVSVRE	YADGELEDNS	LPLIYRSNWS	PGQYTSTGPR

	60		80		00
Consensus	T WHYPS Y	SRGA	DQG Y R G	SWGR EE	G G S DARS
DL1 matura	TKQWHYPSSY	SRGALSVTSV	DQGAYKRSGS	SWGRPYEEKA	GYGFSLDARS
DL2 matura	TKQWHYPSPY	SRGALSVTSV	DQGAYKRSGS	SWGRPYEEKA	GFGFSLDARS
DL13 matur	TEQWHYPSPY	SRGALSVTSV	DQGAYKRSGS	SWGRPYEEKA	GFGFSLDARS
DL16 matur	TEQWHYPSPY	SRGALSVTSV	DQGAYKRSGS	SWGRPYEEKA	GFGFSLDARS
J20 matura	TNQWHYPSPY	SRGALSVTSV	DQGSYKRSGS	SWGRPYEEKA	GFGFSLDARS
ST4 matura	TKQWHYPSPY	SRGALSVTSI	DQGAYKRSGS	SWGRPYEEKA	GFGFSLDARS
R17 matura	TKQWHYPSPY	SRGALSVTSI	DQGAYKRSGS	SWGRPYEEKA	GFGFSLDARS
M12 matura	TKQWHYPSPY	SRGALSVTAI	DQGAYKRSGS	SWGRPYEEKT	GFGFSLDARS
MS2 matura	TKQWHYPSPY	SRGALSVTSI	DQGAYKRSGS	SWGRPYEEKA	GFGFSLDARS
fr maturat	TKEWHYPSSY	SRGAIGIKAL	DQGKYARLGT	SWGREFEERA	YGMSIDARS

Consensus
DL1 matura
DL2 matura
DL13 matur
DL16 matur
J20 matura
ST4 matura
R17 matura
M12 matura
MS2 matura
fr maturat

CYSLFPVSQN T I VP NV ANRA TEVL KVTQGNFNLG VALAEARSTA CYSLFPVSQN LTYIEVPQNV ANRASTEVLQ KVTQGNFNLG VALAEARSTA CYSLFPVSQN MTYIEVPQNV ANRASTEVLQ KVTQGNFNLG VALAEARSTA CYSLFPVSQN LTYIEVPQNV ANRASTEVLQ KVTQGNFNLG VALAEARSTA CYSLFPVSQN LTYIEVPQNV ANRASTEVLQ KVTQGNFNLG VALAEARSTA CYSLFPVSQN LTYIEVPQNV ANRATTEVLQ KVTQGNFNLG VALAEARSTA CYSLFPVSQN LTYIEVPQNV ANRASTEVLQ KVTQGNFNLG VALAEARSTA CYSLFPVSQN LTWIDVPTNV ANRATTEVLG KVTQGNFNLG VALAEARSTA

SQL TQTIAL KAYTAARRG NWRQ RYLA LNE RKF SK VA RWLELQ SQLATQTIAL VKAYTAARRG NWRQTLRYLA LNEDRKFRSK HVAGRWLELQ SQLATQTIAL VKAYTAARRG NWRQALRYLA LNEDRKFRSK HVAGRWLELQ SQLATQTIAL VKAYTAARRG NWRQALRYLA LNEDRKFRSK HVAGRWLELQ SQLATQTIAL VKAYTAARRG NWRQALRYLA LNEDRKFRSK HVAGRWLELQ SQLATQTIAL VKAYTAARRG NWRQPVRYLA LNEDRKFRSK HVAGRWLELQ SQLATQTIAL VKAYTAARRG NWRQALRYLA LNEDRKFRSK HVAGRWLELQ

Consensus
DL1 matura DL2 matura DL13 matur DL16 matur J20 matura ST4 matura R17 matura M12 matura MS2 matura fr maturat

SQLSTQTIAL IKAYTAARRG NWRQALRYLA LNENRKFNSK SVASRWLELQ

FGW PL SDI QGAYEMLTKV HL F PMRA VRQVG N L GRL PAA FGWLPLMSDI QGAYEMLTKV HLQEFLPMRA VRQVGTNVKL DGRLSYPAAN FGWLPLMSDI QGAYEMLTKV HLQEFLPMRA VRQVGTNIKL DGRLSYPAAN FGWLPLMSDI QGAYEMLTKV HLQEFLPMRA VRQVGTNIKL DGRLSYPAAN FGWLPLMSDI QGAYEMLTKV HLQEFLPMRA VRQVGTNIKL DGRLSYPAAN FGWLPLMSDI QGAYEMLTKV HLQEFLPMRA VRQVGTNVKL DGRLSYPAAN FGWLPLMSDI QGAYEMLTKV HLQEFLPMRA VRQVGTNIKL NGRLSYPAAN FGWLPLMSDI QGAYEMLTKV HLQEFLPMRA VRQVGTNIKL DGRLAYPAAN FGWLPLMSDI QGAYEMLTKV HLQEFLPMRA VRQVGTNIKL DGRLSYPAAN FGWLPLMSDI QGAYEMLTKV HLQEFLPMRA VRQVGTNIKL DGRLSYPAAN FGWMPLLSDI QGAYEMLTKV HLKAFMPMRA VRQVGQNVSL SGRLTSPAAS

TCNISRR IVIWFYINDA RLAWLSSLGI LNPLGIVWEK VPFSF VDWL YQTTCNISRR IVIWFYINDA RLAWLSSLGI LNPLGIVWEK VPFSFVVDWL FQTTCNISRR IVIWFYINDA RLAWLSSLGI LNPLGIVWEK VPFSFVVDWL FQTTCNISRR IVIWFYINDA RLAWLSSLGI LNPLGIVWEK VPFSFVVDWL YQTTCNISRR IVIWFYINDA RLAWLSSLGI LNPLGIVWEK VPFSFVVDWL

MS2 matura FQTTCNISRR IVIWFYINDA RLAWLSSLGI LNPLGIVWEK VPFSFVVDWL fr maturat YKSTCNISRR IVIWFYINDA RLAWLSSLGI LNPLGIVWEK VPFSFLVDWL

$$
\left.\left.\ldots\left|\ldots{ }_{360} \ldots\right|_{370} \ldots\right|_{380} \ldots\right|_{390} \ldots
$$

	SA	QSV PTTG Y VKSPFS VHT	LDALAL RQR	
1	QISAMHRG	QSVWPTTGVY VKSPFSMVH	LDALALIRQR	LSR
DL2	AQVSAMHR	QSVWPTTGVY VKS	LDALALIRQR	LR
DL13 mat	AQVSAMHR	QSVWPTTGVY VKSPFSMV	LDALALIRQR	LR
DL16 mat	AQVSAMHRG	QSVWPTTGVY VKSPFSMVH	LDALALIRQR	LR
J20 mat	AQISAMHR	QSVWPTTGVY VKSPFSIVHT	LDALALIRQR	
ST4 m	AQISAMHRG	QSVWPTTGAY VKSPFSMVH	LDALALIRQR	LSR
R17	AHVSAMHR	QSVWPTTGAY VKSPFSMVH	LDALALIRQR	LSK
M12	AQVSAMHR	QSVCPTTGVY VKSPFSMVHT	LDALALIRQR	SK
MS2 m	AQISAMHRG	QSVWPTTGAY VKSPFSMVHT	LDALALIRQR	
fr maturat	VQISAVHRGV	QSVWPTTGVY VKSPFSMVHT	LDALALFRQR	

Group I capsid protein:
 Alignment: Align Group I capsid.

Consensus DL1 coat DL2 coat DL13 coat DL16 coat J20 coat ST4 coat
R17 coat
M12 coat
MS2 coat fr coat
Consensus
DL1 coat
DL2 coat
DL13 coat
DL16 coat
J20 coat
ST4 coat
R17 coat
M12 coat
MS2 coat
fr coat
................................| ${ }_{120}^{\mid}$
Consensus DC LIVKA Q G K GNPI AIAANSGIY
DL1 coat DCALIVKAMQ GLLKDGNPIP SAIAANSGIY
DL2 coat DCALIVKAMQ GLLKDGNPIP SAIAANSGIY
DL13 coat DCALIVKAMQ GLLKDGNPIP SAIAANSGIY
DL16 coat
J20 coat
ST4 coat
R17 coat
M12 coat MS2 coat fr coat QSSA NRKYT KVEVPKVAT Q GGV LPV AAWRSY NME LTIP FATN

DCALIVKAMQ GLLKDGNPIP SAIAANSGIY
DCALIVKAMQ GLLKDGNPIP SAIAANSGIY
DCELIVKAMQ GLLKDGNPIP SAIAANSGIY
DCELIVKAMQ GLLKDGNPIP SAIAANSGIY
DCALIVKAMQ GLLKDGNPIP SAIAANSGIY
DCELIVKAMQ GLLKDGNPIP SAIAANSGIY
DCALIVKALQ GTFKTGNPIA TAIAANSGIY

MASNF FVL VDNGGTGDV V PSNFANGV AEWISSNSRS QAYKVTCSVR MASNFTQFVL VDNGGTGDVT VAPSNFANGV AEWISSNSRS QAYKVTCSVR masnftefvL Vdnggtgdvt vapsnfangv aewissnsrs Qaykvtcsvr MASNFTQFVL VDNGGTGDVT VXPSNFANGV AEWISSNSRS QAYKVTCSVR MASNFTQFVL VDNGGTGDVT VAPSNFANGV AEWISSNSRS QAYKVTCSVR MASNFEEFVL VDNGGTGDVK VAPSNFANGV AEWISSNSRS QAYKVTCSVR
 QSSAQNRKYT IKVEVPKVAT QTVGGVQLPV AAWRSYLNME LTIPIFATND QSSAQNRKYT IKVEVPKVAT QTVGGVELPV AAWRSYLNME LTIPIFATNS QSSANNRKYT VKVEVPKVAT QVQGGVELPV AAWRSYMNME LTIPVFATND

Group I lysis protein:

Alignment: Align Group I lysis.

Consensus	M SQ	S	PF HE YPC	QQRSSTLYV	LI LAIFLSK
DL1 lysis	METRSPQQSQ	QTPESTNRFR	PFKHEDYPCR	RQQRSSTLYV	LIFLAIFLSK
DL2 lysis	METRSPQQSQ	QTPESTNRFR	PFQHEDYPCR	RQQRSSTLYV	LIFLAIFLSK
DL13 lysis	METRSPQQSQ	QTPESTNRFR	PFQHEDYPCR	RQQRSSTLYV	LIFLAIFLSK
DL16 lysis	METRSPQQSQ	QTPESTNRFR	PFQHEDYPCR	RQQRSSTLYV	LIFLAIFLSK
ST4 lysis	METRFPQQSQ	QTPASTNRRR	PFKHEDYPCR	RQQRSSTLYV	LIFLAIFLSK
R17 lysis	METRFPQQSQ	QTPASTNRCR	PFKHEDYPCR	RQQRSSTLYV	LIFLAIFLSK
J20 lysis	METQSPQQSQ	PTPESINRFR	PFQHEDYPCR	RQQRSSTLYV	LIFLAIFLSK
M12 lysis	METRFLRQSQ	QTPASTNRYR	PFKHEDYPCR	XQQRSSTLYV	LIFLAIFLSK
MS2 lysis	METRFPQQSQ	QTPASTNRRR	PFKHEDYPCR	RQQRSSTLYV	LIFLAIFLSK
fr lysis	MQ---QPSQ	PTRESTKKPV	PFQHEEYPCQ	NQQRSSTLYV	LICLAIFLSK

$\left.\cdots\left|. . .\left.\right|_{60} \ldots\right| \cdots\right|_{70} \ldots .$.
Consensus FTNQLL SLL IR V T QLLT
DL1 lysis FTNQLLLSLL EAVIRTVETL QQLLT
DL2 lysis FTNQLLLSLL EAVIRTVETL QQLLT
DL13 lysis FTNQLLLSLL EAVIRTVETL QQLLT
DL16 lysis FTNQLLLSLL EAVIRTVETL QQLLT
ST4 lysis FTNQLLLSLL EAVIRTVTTL QQLLT
R17 lysis FTNQLLLSLL EAVIRTVTTL QQLLT
J20 lysis FTNQLLLSLL EAVIRTVETL RQLLT
M12 lysis FTNQLLLSLL DAVIRTVTTF QQLLT
MS2 lysis FTNQLLLSLL EAVIRTVTTL QQLLT
fr lysis FTNQLLASLL DLLIRIVTTL QQLLT

Group I replicase protein:

Alignment: Align Group I replicase.

	10			40	
Consensus	MSK	LCIDL DLS	LE YQSIASV	ATGS	DFTAIAYLRD
DL1 replic	MSKTTKKFNS	LCIDLPRDLS	LEIYQSIASV	ATGSGDPHSR	DFTAIAYLRD
DL2 replic	MSKTTKKFNS	LCIDLPRDLS	LEIYQSIASV	ATGSGDPHSR	DFTAIAYLRD
DL13 repli	MSKTTKKFNS	LCIDLPRDLS	LEIYQSIASV	ATGSGDPHSR	DFTAIAYLRD
DL16 repli	MSKTTKKFNS	LCIDLPCDLS	LEIYQSIASV	ATGSGDPHSR	DFTAIAYLRD
ST4 replic	MSKTTKKFNS	LCIDLPRDLS	LEIYQSIASV	ATGSGDPHSD	DFTAIAYLRD
R17 replic	MSKTTKKFNS	LCIDLPRDLS	LEIYQSIASV	TGSGNP	DFTAIA
J20 replic	MSKTTKKFNS	LCIDLPRDLS	LEIYQSIASV	TGSGDPHSR	DFTAIAYLRD
MS2 replic	MSKTTKKFNS	LCIDLPRDLS	LEIYQSIASV	TGS	DF
fr replica	MSKSTKKF	LCIDLSRDLS	LEVYQSIASV	TGSSDP	DFTAI

```
Consensus
DL1 replic
DL2 replic
DL13 repli
DL16 repli
ST4 replic
R17 replic
J20 replic
MS2 replic
fr replica
```


ELLTKHP LG GNDEATRR LAIAKL EAN GQINR G FLHD SWD
ELLTKHPSLG NGNDEATRRA LAIAKLREAN ERCGQINREG FLHDKSLSWD
ELLTKHPTLG SGNDEATRRT LAIAKLREAN DRCGQINREG FLHDKSLSWD
ELLTKHPTLG SGNDEATRRT LAIAKLREAN DRCGQINREG FLHDKSLSWD
ELLTKHPSLG NGNDEATRRA LAIAKLREAN ERCGQINREG FLHDKSLSWD
ELLTKHPTLG SGNDEATRRT LAIAKLREAN GDRGQINREG FLHDKSLSWD
ELLTKHPNLG DGNDEATRRS LAIAKLLEAN DRCGQINRDG FLHDATASWD

Consensus
 DL1 replic
 DL2 replic
 DL13 repli
 DL16 repli
 ST4 replic
 R17 replic
 J20 replic
 MS2 replic fr replica

PDVLQTSIRS LIGNLLSGY S LF CTFS NGA MGHKLQ DAAPYKKFAE PDVLQTSIRS LIGNLLSGYR SSLFGQCTFS NGASMGHKLQ DAAPYKKFAE PDVLQTSIRS LIGNLLSGYQ SSLFGQCTFS NGASMGHKLQ DAAPYKKFAE PDVLQTSIRS LIGNLLSGYR SSLFGQCTFS NGASMGHKLQ DAAPYKKFAE PDVLQTSIRS LIGNLLSGYR SSLFGQCTFS NGAPMGHKLQ DAAPYKKFAE PDVLQTSIRS LIGNLLSGYS SQLFRHCTFS NGASMGHKLQ DAAPYKKFAE

Consensus
DL1 replic
DL2 replic
DL13 repli
DL16 repli
ST4 replic
R17 replic
J20 replic
MS2 replic
fr replica

QATVTPRAL AA LV DQC PWIRH ESY FRLV G NGVFTVPKNN QATVTPRALR AALLVRDQCV PWIRHAVRYN ESYEFRLVVG NGVFTVPKNN QATVTPRALR AALLVRDQCA PWIRHAVRYN ESYEFRLVVG NGVFTVPKNN QATVTPRALR AALLVRDQCA PWIRHAVHYN ESYEFRLVVG NGVFTVPKNN QATVTPRALR AALLVRDQCA PWIRHAVRYN ESYKFRLVVG NGVFTVPKNN QATVTPRALR AALLVRDQCA PWIRHAVRYN ESYEFRLVVG NGVFTVPKNN QATVTPRALK AAVLVKDQCS PWIRHSHVFP ESYTFRLVGG NGVFTVPKNN
 KIDRAACKEP DMNMYLQKGV G FIRRRL VGIDLNDQ I NQ LAQQGS KIDRAACKEP DMNMYLQKGV GAFIRRRLKS VGIDLNDQTI NQRLAQQGSI KIDRAACKEP DMNMYLQKGV GAFIRRRLKS VGIDLNDQSI NQLLAQQGSV KIDRAACKEP DMNMYLQKGV GAFIRRRLKS VGIDLNDQSI NQRLAQQGSA KIDRAACKEP DMNMYLQKGV GAFIRRRLRS VGIDLNDQTI NQRLAQQGSV KIDRAACKEP DMNMYLQKGV GAFIRRRLKS VGIDLNDQSI NQRLAQQGSV KIDRAACKEP DMNMYLQKGV GGFIRRRLKT VGIDLNDQTI NQRLAQQGSR

Consensus

DL1 replic
DL2 replic
DL13 repli
DL16 repli
ST4 replic
R17 replic
J20 replic
MS2 replic
fr replica
 DGSLATIDLS SASDSISDRL VW FLPPELY SYLD IRSHY G G IRW DGSLATIDLS SASDSISDRL VWSFLPPELY SYLDRIRSHY GIVDGETIRW DGSLATIDLS SASDSISDRL VWNFLPPELY SYLDRIRSHY GIVDGETIRW DGSLATIDLS SASDSISDRL VWSFLPPELY SYLDRIRSHY GIIDGETIRW DGSLATIDLS SASDSISDRL VWSFLPPELY SYLDRIRSHY GIVDGETIRW DGSLATIDLS SASDSISDRL VWSFLPPELY SYLDMIRSHY GYVNGKMIRW

ELFSTMGNGF TFELESMIFW AIV ATQIHF N GTIGIYG DDIICP EIA ELFSTMGNGF TFELESMIFW AIVKATQIHF GNAGTIGIYG DDIICPSEIA ELFSTMGNGF TFELESMIFW AIVRATQIHF RNTGTIGIYG DDIICPTEIA

	360	370	380	390	
Consensus	PRVLEAL	GFKPNLRKTF	SG FRESC	AH RGVDVK	PF
DL1 replic	PRVLEALAYY	GFKPNLRKTF	VSGLFRESCG	AHFYRGVDVK	PFYIKKPVVD
DL2 replic	PRVLEALAYY	GFKPNLRKTF	VSGLFRESCG	AHFYRGVDVK	PFYIKKPVDN
DL13 repli	PRVLEALAYY	GFKPNLRKTF	VSGLFRESCG	AHFYRGVDVK	PFYIKKPVVDN
DL16 repli	PRVLEALAYY	GFKPNLRKTF	VSGLFRESCG	AHFYRGVDVK	PFY
ST4 replic	PRVLEALAYY	GFKPNLRKTF	VSGLFRESCG	A	FY
R17 replic	PRVLEALAYY	GFKPNLRKTF	VSGLFRESCS	AHFYRGVDVK	PFY
J20 replic	PRVLEALAYY	GFKPNLRKTF	VSGLFRESCG	AHFYRGVDVK	PFYIRKPVDN
MS2 replic	PRVLEALAYY	GFKPNLRKTF	VSGLFRESCG	A	PFYIKKPVDN
fr replica	PR	KPNLRK	SGSF	AHYFRGVDVK	PFYIKKPITD

	$\dot{410}$	420	430	440	50
Consensus	LF LMLI NR	RGWGVV G	DPRLY VW	LS VP	FGGTDL ADY
DL1 replic	LFSLMLIMNR	LRGWGVVGGM	SDPRLYKVWV	RLSSLVPSMF	FGGTDLAADY
DL2 replic	LFSLMLIMNR	LRGWGVVGGM	SDPRLYKVWV	RLSSLVPSMF	FGGTDLAADY
DL13 repli	LFSLMLIMNR	LRGWGVVGGM	SDPRLYKVWV	RLSSLVPSMF	FGGTDLAADY
DL16 repli	LFSLMLIMNR	LRGWGVVGGM	SDPRLYKVWV	RLSSLVPSMF	FGGTDLAADY
ST4 replic	LFALMLILNR	LRGWGVVGGM	SDPRLYKVWV	RLSSQVPSMF	FGGTDLAADY
R17 replic	LFALMLILNR	LRGWGVVGGM	SDPRLYKVWV	RLSSQVPSMF	FGGT
J20 replic	LFSLMLIMNR	LRGWGVVGGM	SDPRLYKVWV	RLSSLVPSMF	FGGT
MS2 replic	LFALMLILNR	LRGWGVVGGM	SDPRLYKVWV	LSSQVPSMF	FGGT
fr replica	LML	IRGWG	DPRL	SRL	FGGTDLQADY

	460		480	490	
Conse	YVVSPP	Y K R	RT GF	LAR A RK	FS
DL1 replic	YVVSPPTAVS	VYTKTAYGRL	LADTRTSGFR	LARIAKERKR	FSEKHD
DL2 replic	V	VYTKTAYGR	LADARTS	LAR	FSEKHDSGRY
DL13 repli	VSPPNAVS	VYTKTAYGRL	LADARTSGFR	LARIAKERK	FSEKHGSGRY
DL16 repli	YVVSPPNAVS	VYTKTAYGRL	LADARTSGFR	LARTAKERK	FSE
ST4 replic	YVVSPPTAVS	VYTKTPYGRL	LADTRTSGFR	LARIARERKF	FSE
R17 replic	YVVSPPTAVS	VYTKTPYGRL	LADTRTSGFR	LARIARERKF	FSEKHDSGRY
20 replic	S	VYTKTAYG	AD	LAR	FSEKHDSGRY
2 replic	VSPPTAVS	VYTKTPYG	LADT	AR	
repli	VV	IYS	YA	ARI	

Consensus

DL1 replic DL2 replic
DL13 repli
DL16 repli
ST4 replic
R17 replic
J20 replic
MS2 replic
fr replica
IAWFHTGGE TDSMKSAGVR RTSEWL P VP FPQECGP ASSP IAWFHTGGEI TDSMKSAGVR VMRTSEWLTP VPTFPQECGP ASSPR IAWFHTGGEI TDSMKSAGVR VIRTSEWLTP VPIFPQECGP ASSPR IAWFHTGGEI TDSMKSAGVR VIRTSEWLTP VPIFPQECGP ASSPR IAWFHTGGEI TDSMKSAGVR VIRTSEWLTP VPIFPQECGP ASSPR IAWFHTGGEV TDSMKSAGVR IMRTSEWLTP VPTFPQECGP ASSPR IAWFHTGGEI TDSMKSAGVR IMRTSEWLTP VPTFPQECGP ASSPR IAWFHTGGEI TDSMKSAGVR VMRTSEWLTP VPTFPQECGP ASSPR IAWFHTGGEI TDSMKSAGVR VIRTSEWLTP VPTFPQECGP ASSPR IAWFHTGGEI TDSMKSAGVR VMRTSEWLQP VPVFPQECGP ASSPQ

Appendix B2
Group II

Amino acid sequences of Leviviridae Group II. Note the YGDD motif in all Leviviridae replicase proteins.

Group II isolates DL10, DL20, T72, GA, KUI and TL2. Partial genome sequences of strain TL2 were available in GenBank. The most conserved stretch of amino acids are highlighted in red. Gaps indicate degenerative sites.

Group II maturation protein:

Alignment: Align Group II maturation.

	10		30		
Consensus	MFPK NIDR	Y V L SYD	KG SDDSF	ENYL QN	RS YKPGY
DL10 matur	MFPKSNIDRN	YKVTLISYDE	KGKLVSDDSF	EQVENYLFQN	RSNTYKPGYI
DL20 matur	MFPKSNIDRN	YKVKLISYDK	KGNLVSDDSF	EQVENYLFQN	RSNTYKPGYI
GA maturat	MFPKSNIDRN	YKVKLISYDK	KGKLVSDDSF	EQVENYLFQN	RSTTYKPGYI
T72 matura	MFPKQNIDRT	YKVTLISYDK	KGNVTSDDSF	ESTENYLLQN	RSNSYKPGYV
KU1 matura	MFPKQNIDRI	YHVKLVSYDN	KGKVTSDDSF	ESVENYLLQN	RSTTYKPGYI
	60			90	
Consensus	R FR PTNF	WNG R F QP	VG FTRKL	GGRQ ADYGI	VNPNKFT NS
DL10 matur	RRDFRRPTNF	WNGFRYFNQP	VGTFTRKLSD	GGRQVADYGI	VNPNKFTGNS
DL20 matur	RRDFRRPTNF	WNGYRCFNQP	VGTFTRKLSD	GGRQVADYGI	VNPNKFTANS
GA maturat	RRDFRRPTNF	WNGYRCFNQP	VGTFTRKLSD	GGRQVADYGI	VNPNKFTANS
T72 matura	RKGFRKPTNF	WNGYRYFNQP	VGVFTRKLDN	GGRQVADYGI	VNPNKFTANS
KU1 matura	RKDFRKPTNF	WNGYRYFHQP	VGTFTRKLSD	GGRQEADYGI	VNPNKFTANS
	$\begin{aligned} & 1 \\ & 110 \end{aligned}$				
Consensus	QHLG NMVIY	PGPFSINID	RASVEVLNKL	SQSNLNIGVA	IAEAKMTASL
DL10 matur	QHLGDNMVIY	PGPFSINIDH	RASVEVLNKL	SQSNLNIGVA	IAEAKMTASL
DL20 matur	QHLGDNMVIY	PGPFSINIDQ	RASVEVLNKL	SQSNLNIGVA	IAEAKMTASL
GA maturat	QHLGDNMVIY	PGPFSINIDQ	RASVEVLNKL	SQSNLNIGVA	IAEAKMTASL
T72 matura	QHLGENMVIY	PGPFSINIDN	RASVEVLNKL	SQSNLNIGVA	IAEAKMTASL
KU1 matura	QHLGENMVIY	PGPFSINIDN	RASVEVLNKL	SQSNLNIGVA	IAEAKMTASL

			18	19	200
Consensus	L QSI LIR	AYTAAKRG	REV SQLLI	EHRF P D	LGGRWLELQY
DL10 matur	LAKQSIALIR	AYTAAKRGKW	REVLSQLLIS	EHRFRAPVKD	LGGRWLELQY
DL20 matur	LAKQSIALIR	AYTAAKRGNW	REVFSQLLIS	EHRFRAPAKD	LGGRWLELQY
GA maturat	LAKQSIALIR	AYTAAKRGNW	REVLSQLLIS	EHRFRAPAKD	LGGRWLELQY
T72 matura	LSRQSISLI	AYTAAKRGKW	REVLSQLLIA	EHRFTRPSRD	LGGRWLELQY
KU1 matura	LSRQSIALIR	AYTAAKRGKW	REVLSQLLIA	EHRFTRPSKD	LGGRWLELQY

Consensus DL10 matur DL20 matur GA maturat T72 matura KU1 matura

GWLPLMSD K A YDLLTQT LPA MPLRV RTVG THNYK VRNVESAGDT GWLPLMSDMK AAYDLLTQTK LPAFMPLRVT RTVGGTHNYK VRNVESAGDT GWLPLMSDLK AAYDLLTQTK LPAFMPLRVT RTVGGTHNYK VRNVESAGDT GWLPLMSDLK AAYDLLTQTK LPAFMPLRVT RTVGGTHNYK VRNVESAGDT GWLPLMSDIK AGYDLLTQTK LPALMPLRVT RTVGGTHNYK VRNVESAGDT GWLPLMSDIK AGYDLLTQTH LPAFMPLRVS RTVGATHNYK VRNVESAGDT

Consensus DL10 matur DL20 matur GA maturat T72 matura KU1 matura

WSY RLSVN YRIWYFISDP RLAWASSLGL LNPLEIYWEK TPWSFVVDWF WSYSDRLSVN YRIWYFISDP RLAWASSLGL LNPLEIYWEK TPWSFVVDWF WSYSDRLSVN YRIWYFISDP RLAWASSLGL LNPLEIYWEK TPWSFVVDWF WSYRHRLSVN YRIWYFISDP RLAWASSLGL LNPLEIYWEK TPWSFVVDWF WSYSDRLSVN YRIWYFISDP RLAWASSLGL LNPLEIYWEK TPWSFVVDWF WSYSDRLSVN YRIWYFISDP RLAWASSLGL LNPLEIYWEK TPWSFVVDWF

Consensus DL10 matur DL20 matur GA maturat T72 matura KU1 matura

LPVGNLIEAM SNPLGLDIIS GTKTWQLESK NA A GW GTAKL AYA LPVGNLIEAM SNPLGLDIIS GTKTWQLESK LNATLTASGW SGTAKLSAYA LPVGNLIEAM SNPLGLDIIS GTKTWQLESK LNATLPAPGW SGTAKLTAYA LPVGNLIEAM SNPLGLDIIS GTKTWQLESK LNATLPASGW SGTAKLTAYA LPVGNLIEAM SNPLGLDIIS GTKTWQLESK LNATINASGW SGTAKLSAYA LPVGNLIEAM SNPLGLDIIS GTKTWQLESK MNASLKADGW VGTAKLSAYA

Consensus DL10 matur DL20 matur GA maturat T72 matura KU1 matura

DRSTFYS FPTP PYVKS PLSGLH ANA LALINQRLKR KAYDRSTFYS FPTPMPYVKS PLSGLHLANA LALINQRLKR KAYDRSTFYS FPTPLPYVKS PLSGLHLANA LALINQRLKR KAYDRSTFYS FPTPLPYVKS PLSGLHLANA LALINQRLKR KAYDRSTFYS FPTPMPYVKS PLSGLHMANA LALINQRLKR NNGDRSTFYS FPTPLPYVKS PLSGLHMANA LALINQRLKR

Group II capsid protein:

Alignment: Align Group II capsid.

$$
\cdots|\cdots|_{10} \cdots \cdot|\cdots|_{20} \cdots \cdot|\cdots|_{30} \cdots \cdot|\cdots|_{40} \ldots .\left.\right|_{50}
$$

Consensus

 DL10 coat DL20 coat GA coat T72 coat KU1 coat TL2 coatMATLRSFVLV DNGGTGNVTV VPVSNANGVA EWLSNNSRSQ AYRVTASYRA MATLRSFVLV DNGGTGNVTV VPVSNANGVA EWLSNNSRSQ AYRVTASYRA

Consensus
DL10 coat DL20 coat GA coat T72 coat KU1 coat TL2 coat

SGADKRKY I KLEVPKIVTQ VNGVELP S AWKA ASIDL TIPIFAATDD SGADKRKYTI KLEVPKIVTQ VVNGVELPVS AWKAYASIDL TIPIFAATDD
SGADKRKYTI KLEVPKIVTQ VVNGVELPVS AWKAYASIDL TIPIFAATDD
SGADKRKYAI KLEVPKIVTQ VVNGVELPGS AWKAYASIDL TIPIFAATDD
SGADKRKYTI KLEVPKIVTQ TVNGVELPVS AWKAYASIDL TIPIFAATDD
SGADKRKYTI KLEVPKIVTQ SVNGVELPVS AWKAFASIDL TIPIFAATDD
SGADKRKYTI KLEVPKIVTQ VVNGVELPVS AWKAYASIDL TIPIFAATDD

Consensus VT ISKSLAG LFK G P A AISSQSGFYA
DL10 coat
DL20 coat
GA coat
T72 coat
VTVISKSLAG LFKVGNPIAE AISSQSGFYA
VTVISKSLAG LFKVGDPIAD AISSQSGFYA
VTVISKSLAG LFKVGNPIAE AISSQSGFYA
VTLISKSLAG LFKIGNPVAD AISSQSGFYA
KU1 coat VTLISKSLAG LFKIGNPVAD AISSQSGFYA
TL2 coat VTVISKSLAG LFKVGNPIAD AISSQSGFYA

Group II lysis protein:

Alignment: Align Group II lysis.

			${ }_{0} \cdots\|\cdots\|_{30} \cdots \cdot\|\cdots\|_{40}$		$\cdots{ }^{\text {a }}$. $\cdot . .\| \|_{50}$
Consensus	G	K S	S K		D F
T72 lysis	MPSLHRVGST	PKAFFSIGSE	SNTGKPMFRF	TEIKKTLCMD	RTRDCAVRFH
KU1 lysis	MPSLHRVGST	PKAFFSIGSE	SITGKPMFRF	TEIEKTLCMD	RTRDCAVRFH
DL10 lysis	------MGLK	AKHKENLCSD	SQRSKRLYVW	IALA--IVLS	---DFTSIFS
DL20 lysis	------MGLK	AKHKENLCSD	SQRSKRLYVW	IALA--IVLS	---DFTSIFS
GA lysis	------MGLK	AKHKENLCSD	SERSKRLYVW	IALA--IVLS	---DFTSIFS
TL2 lysis	------MGLK	AKHKENLCSD	SQRSKRLYVW	IALA--IVLS	---DFTSIFS
	$\cdots\|\cdots\|_{60}$	$\ldots\|\ldots\|$. . .		
Consensus	L	D			
T72 lysis	VYLQSLDLGS	SDPHSPDFDG	LAYLR---		
KU1 lysis	VYLQSLDLGS	SDPHSPDFDG	LAYLRDECL		
DL10 lysis	HWIWGLLILI	LQ-TLMDLPT	FVMSV---		
DL20 lysis	HWIWGLLILI	LR-TLMDLPT	FVMNV---		
GA lysis	HWIWGLLILY	LQ-TLMDLPT	FVMNV---		
TL2 lysis	HWIWGLLILI	LR-TLMDLPT	FVMNV---		

Group II replicase protein:
 Alignment: Align Group II replicase.

Consensus MFRF EI KT LCMDRTRDCA VRFHVYLQSL D GSSDP SP DFDGLAYLRD T72
DL10
DL20
GA
KU1
MFRFTEIKKT LCMDRTRDCA VRFHVYLQSL DLGSSDPHSP DFDGLAYLRD
MFRFTEIEKT LCMDRTRDCA VRFHVYLQSL DMGSSDPHSP DFDGLAYLRD
MFRFTEIEKT LCMDRTRDCA VRFHVYLQSL DLGSSDPHSP DFDGLAYLRD
MFRFREIEKT LCMDRTRDCA VRFHVYLQSL DLGSSDPLSP DFDGLAYLRD
MFRFTEIEKT LCMDRTRDCA VRFHVYLQSL DLGSSDPHSP DFDGLAYLRD

Consensus ECLTKHPSLG SNSDA RKE LAYAKLMDSD QRCKIQNSNG YD SHI V
T72
DL10
DL20
GA
KU1 ECLTKHPSLG DSNSDALRKE LAYAKLMDSD QRCKIQNSNG YDLSHIDSGV ECLTKHPSLG NSNSDARRKE LAYAKLMDSD QRCKIQNSNG YDYSHIESSV ECLTKHPSLG DSNSDARRKE LAYAKLMDSD QRCKIQNSNG YDYSHIESGV ECLTKHPSLG DSNSDARRKE LAYAKLMDSD QRCKIQNSNG YDYSHIESGV ECLTKHPSLG DSNSDALRKE LAYAKLMDSD QRCKIQNSNG YDLSHIDAGV

Consensus L GIL TA A A LL GFE SHFLNDCSFS NGASQGFKL DAAPFKKIAG
T72
DL10
DL20
GA LNGILLTAKA SIAKLLMGFE SHFLNDCSFS NGASQGFKLQ DAAPFKKIAG LSGILKTAQA LVANLLTGFE SHFLNDCSFS NGASQGFKLR DAAPFKKIAG LSGILKTAQA LVANLLTGFE SHFLNDCSFS NGASQGFKLR DAAPFKKIAG LSGILKTAQA LVANLLTGFE SHFLNDCSFS NGASQGFKLR DAAPFKKIAG KU1 LNGILLTAKA LIAKLLIGFE SHFLNDCSFS NGASQGFKLR DAAPFKKIAG

Consensus	QATVTAPAY AV AVKTC	PW YMQETY	GDET WFRRV YGNGLFSVPK
T72	QATVTAPAYD LAVHAVKTCG	PWLRYMQETY	GDETRWFRRV YGNGLFSVPK
DL10	QATVTAPAYN	IAVAAVKTCA PWYAYMQETY	GDETRWFRRV YGNGLFSVPK
DL20	QATVTAPAYD	IAVAAVKTCA	PWYAYMQETY
GDETKWFRRV YGNGLFSVPK			
GA	QATVTAPAYD	IAVAAVKTCA	PWYAYMQETY
GDEEKWFRRV YGNGLFSVPK			
KU1	QATVTAPAYD LAVLAVKTCG	PWLRYMQETY	GDETRWFRRV YGNGLFSVPK

Consensus	NNKIDRAACK EPDMNMYLQK
T72	NNKIDRSAACK EPDMNMYLQK
GAGSFIR RL	

| Consensus | SIDGSLATID | LSSASDS SD RLVWDLLPPH VYSYL RIR | SFTMIDG LH |
| :--- | :--- | :--- | :--- | :--- |
| T72 | SIDGSLATID | LSSASDSVSD RLVWDLLPPH VYSYLHRIRS SFTMIDGQLH | |
| DL10 | SIDGSLATID | LSSASDSVSD RLVWDLLPPH VYSYLARIRS SFTMIDGRLH | |
| DL20 | SIDGSLATID | LSSASDSISD RLVWDLLPPH VYSYLARIRS SFTMIDGRLH | |
| GA | SIDGSLATID | LSSASDSISD RLVWDLLPPH VYSYLARIRT SFTMIDGRLH | |
| KU1 | SIDGSLATID | LSSASDSVSD | RLVWDLLPPH VYSYLHRIRS SFTMIDGRLH |

Consensus	KW LFSTMGN GFTFELESMI	FWALS M M	GVTG LG YGDDIIVP	
T72	KWNLFSTMGN	GFTFELESMI	FWALSKSVMS YLGVTGLLGI YGDDIIVPTK	
DL10	KWGLFSTMGN	GFTFELESMI	FWALSKSVML	SMGVTGSLGI YGDDIIVPVE
DL20	KWGLFSTMGN	GFTFELESMI	FWALSKSVML	SMGVTGSLGV YGDDIIVPVE
GA	KWGLFSTMGN	GFTFELESMI	FWALSKSIML	SMGVTGSLGI YGDDIIVPVE
KU1	KWNLFSTMGN	GFTFELESMI	FWALSNTVMS	YLGVTGLLGI YGDDIIVPTK

| Consensus | C P LL VLS AVNFLPN K TFTTGYFRES CGAHFFK A | KPFYCKRPM | |
| :--- | :--- | :--- | :--- | :--- |
| T72 | CAPLLLQVLS AVNFLPNQKK TFTTGYFRES | CGAHFFKGAS VKPFYCKRPM | |
| DL10 | CAPTLLKVLS AVNFLPNKKK TFTTGYFRES CGAHFFKGAD MKPFYCKRPM | | |
| DL20 | CAPTLLKVLS AVNFLPNQKK TFTTGYFRES CGAHFFKGAD MKPFYCKRPM | | |
| GA | CRPTLLKVLS AVNFLPNEEK TFTTGYFRES CGAHFFKDAD MKPFYCKRPM | | |
| KU1 | CAPLLLQVLS | AVNFLPNQKK TFTTGYFRES | CGAHFFKGAS VKPFYCKRPM |

Consensus	ETLPD LLC	NRIRGW T G G SDPRLFPI	WKEFADMIPP	KFKGGCNLDR
T72	ETLPDIMLLC	NRIRGWGTIG GISDPRLFPI	WKEFADMIPP	KFKGGCNLDR
DL10	ETLPDVMLLC	NRIRGWQTVG GMSDPRLFPI	WKEFADMIPP	KFKGGCNLDR
DL20	ETLPDVMLLC	NRIRGWQTVG GMSDPRLFPI	WKEFADMIPP	KFKGGCNLDR
GA	ETLPDVMLLC	NRIRGWQTVG GMSDPRLFPI	WKEFADMIPP	KFKGGCNLDR
KU1	ETLPDVLLLC	NRIRGWGTIG GISDPRLFPI	WKEFADMIPP	KFKGGCNLDR

	460		470		480
Consensus	DTYLVSPDKP	G LVR A	RSGFN	F	ENGRY
T72	DTYLVSPDKP	GKTLVRVAKK	RSGFNHKFRS	DYENGRYIHW	LHMGSGEVLE
DL10	DTYLVSPDKP	GVTLVRVAKV	RSGFNHSFPY	GHENGRYVHW	LHMGSGEVLE
DL20	DTYLVSPDKP	GVTLVRIAKV	RSGFNHAFPY	GYENGRYVHW	LHMGSGEVLE
GA	DTYLVSPDKP	GVSLVRIAKV	RSGFNHAFPY	GHENGRYVHW	LHMGSGEVLE
KU1	DTYLVSPDKP	GVTLVRDATV	RSGFNYKFRR	RQENGRYIHW LHMGSGEVSE	

Consensus TISSAR RCK PNSEWR QIP LFPQE EACV LS
T72
DL10
TISSARFRCK PNSEWRTQIP LFPQEIEACV LS
TISSARFRCK PNSEWRTQIP LFPQELEACV LS
DL20

GA TISSARYRCK PNSEWRTQIP LFPQELEACV LS KU1 TISSARFRCK PNSEWRIQIP LFPQEVEACV LS

Appendix B3
Group III

Amino acid sequences of Leviviridae Group III. Note the YGDD motif in all Leviviridae replicase proteins.

Group III isolates BR12, BZ1, HL4-9, TW18, VK, QB, MX1 and M11. The most conserved stretch of amino acids are highlighted in red. Gaps indicate degenerative sites.

Group III maturation protein:

Alignment: Align Group III maturation.

	10		30		50
Consensus	MP LPR	G E	Q	$S \quad P \quad Y T$	G
BR12 matur	MPKLPRGLRF	GADNEILNDF	QELWFPDLFI	ESSDTHPWYT	LKGRVLNAHM
BZ1 matura	MPKLPRGLRF	GADNEILNDF	QELWFPDLFI	ESSDTHPWYT	LKGRVLNAHL
HL49 assem	MPKLPRGLRF	GADNEILNDF	QELWFPDLFI	ESSDTHPWYT	LKGRVLNAHL
TW18 matur	MPKLPRGLRF	GADNEILNDF	QELWFPDLFI	ESSDTHPWYT	LKGRVLNAHL
VK assembl	MPKLPRGLRF	GADNEILNDF	QELWFPDLFI	ESSDTHPWYT	LKGRVLNAHI
QB assembl	MPKLPRGLRF	GADNEILNDF	QELWFPDLFI	ESSDTHPWYT	LKGRVLNAHL
MX1 assemb	MPRLPRALRF	GPNMEVLSDF	QELWYPESII	DSDVKYPLYT	FRGSIGGSFF
M11 assemb	MPRLPRGLRF	GANMEVLNDF	QELWYPESRV	DSDTIFPLYT	FKGNMGGSFF

Consensus $\quad \mathrm{D} \quad \mathrm{R}$ RRTPH T VPIAS GLRP TV YDP L F R
BR12 matur DDRLPNVSGR QVRRTPHRAT VPIASTGLRP VTTVQYDPAA LSF-LLNARV
BZ1 matura DDRLPNVGGR QIRRTPHRAT VPIASSGLRP VTTVQYDPTA LSF-LLNARV HL49 assem DDRLPNVGGR QIRRTPHRAT VPIASSGLRP VTTVQYDPTA LSF-LLNARV TW18 matur DDRLPNVGGR QVRRTPHRVT VPIASSGLRP VTTVQYDPAA LSF-LLNARV VK assembl DDRLPNVSGR QVRRTPHRVT VPIASSGLRP VTTVQYDPAA LSF-LLNARV QB assembl DDRLPNVGGR QVRRTPHRVT VPIASSGLRP VTTVQYDPAA LSF-LLNARV MX1 assemb DSYGTNNIVR EIRRTPHCAT VPIASSGLRP CTSVWYDPTS LLFRIPEMRA M11 assemb DTYGTNNIVR QVRRTPHRAT VPIASSGLRP CTSVWYDPSS LLFRIPEMRA

Consensus BR12 matur BZ1 matura HL49 assem TW18 matur VK assembl QB assembl MX1 assemb M11 assemb

WD G GD V DF F T APK FDFS NSL PRY A FSAFNAKYG DWDFGNGDSA DLVIKDFVFR TFAPKDFDFS NSLAPRYTQA FSAFNAKYGV DWDFGDGDSA DLVINDFLFR TFAPKEFDFS NSLAPRYTQA FSAFNAKYGT DWDFGNGDSA NLVINDFLFR TFAPKEFDFS NSLVPRYTQA FSAFNAKYGT DWDFGNGDSA NLVINDFLFR TSAPKEFDFS NSLVPRYTQA FSAFNAKYGT DWDFGNGDSA DLVIKDFVFR TFAPKDFDFS NSLVPRYTQA FSAFNAKYGV DWDFGNGDSA NLVINDFLFR TFAPKEFDFS NSLVPRYTQA FSAFNAKYGT EWDNGMGDAG DIVYKDFLFS TPAPKEFDFS NSLAPRYSNA FSAFNAKYGV VWDNGMGDTG DIVYNDFLFN TPAPKEFDFS NSLAPRYSNA FSAFNAKYGV

Consensus
BR12 matur BZ1 matura HL49 assem TW18 matur VK assembl QB assembl MX1 assemb M11 assemb

Consensus BR12 matur BZ1 matura HL49 assem TW18 matur VK assembl QB assembl MX1 assemb M11 assemb

D LYP F L GEIT RRHR GI YA NR GYA FDN GS RPVSDWK FDNLYPALAY FKLKGEITLE RRHRHGISYA NREGYAVFDN GSLRPVSDWK FDNLYPAVAY FKLKGEITLE RRHRHGISYA NREGYAVFDN GSLRPVSDWK FDSLYPAVSY FKLRGEITLE RRHRHGISYA NREGYAVFDN GSLRPVSDWK FDNLYPAVAY FKLKGEITLE RRHRHGISYA NREGYAVFDN GSLRPVSDWK FDNLYPALAY FKLKGEITLE RRHRHGISYA NRGGYAVFDN GSLRPVSDWK FDNLYPAVAY FKLKGEITLE RRHRHGISYA NREGYAVFDN GSLRPVSDWK IDGLYPGLTH FRLSGEITVQ RRHRWGITYA NREGYATFDN GSIRPVSDWK IDGLYPGLTH FRLSGEITVQ RRHRWGIVYA NREGYATFDN GSIRPVSDWK

 AGNLWLEFRY GL PLF DI VM DW D IQ RFS VGHGED AGNLWLEFRY GLMPLFYDIR DVMLDWQSRH DKIQRLLRFS VGHGEDYVVK AGNLWLEFRY GLMPLFYDIR DVMLDWQNRH DKIQRLLRFS VGHGEDYVVE AGNLWLEFRY GLMPLFYDIK DVMLDWQKRH DRIQRLLRFS VGHGEDYVVK AGNLWLEFRY GLMPLFYDIK DVMLDWQNRH DKIQRLLRFS VGHGEDCVVE AGNLWLEFRY GLMPLFYDIR DVMLDWQNRH DKIQRLLRFS VGHGEDYVVK AGNLWLEFRY GLMPLFYDIR DVMLDWQNRH DKIQRLLRFS VGHGEDYVVE AGNLWLEFRY GLTPLFHDIK SVMDDWNRIN DKIQKLRRFS VGHGEDFKLS AGNLWLEFRY GLVPLFHDIK DVMNDWTRIN DKIQKYRRFS VGHGEDFKLS

| Consensus | ELA AFINP | EVAWELTPYS | F DWF NVG DI QQ Q Y NI IVDG | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| BR12 matur | ELAVAFINPH | EVAWELTPYS | FVADWFLNVG DILAQQGQLY | HNIEIVDGFD |
| BZ1 matura | ELATAFINPQ | EVAWELTPYS | FVVDWFLNVG DILAQQGQLY HNIDIVDGFD | |
| HL49 assem | ELATAFINPH EVAWELTPYS | FVVDWFLNVG DILAQQGQLY HNIDIVDGFD | | |
| TW18 matur | ELATAFINPH EVAWELTPYS | FVVDWFLNVG DILAQQGQLY HNIDIVDGFD | | |
| VK assembl | ELAVAFINPH EVAWELTPYS | FVVDWFLNVG DILAQQGQLY HNIDIVDGFD | | |
| QB assembl | ELATAFINPH EVAWELTPYS | FVVDWFLNVG DILAQQGQLY HNIDIVDGFD | | |
| MX1 assemb | ELANAFINPG EVAWELTPYS | FIVDWFINVG DIIEQQKQWY QNIDIVDGYQ | | |
| M11 assemb | ELANAFINPG EVAWELTPYS | FVVDWFINVG DIIEQQKQLY QNIDIVDGYQ | | |

Consensus	RRDIR S	KG RNG	V D	FY R H	P ATL DT
BR12 matur	RRDIRFKSFT	IKGERNGQPV	NVSADLSTID	TFYSRLHASN	IPFATLDLDT
BZ1 matura	RRDIRFKSFT	IKGERNGQPV	NVSADLSAVD	TFYSRLHTSS	IPFATLDLDT
HL49 assem	RRDIRLKSFT	IKGERNGRPV	NVSADLSAVD	SFYSRLHTTK	LPFATLDLDT
TW18 matur	RRDIRLKSFT	IKGERNGRPV	NVSADLSAVD	LFYSRLHTSS	LPFATLDLDT
VK assembl	RRDIRFKSFT	IKGERNGQPV	NVSADLSAID	TFYSRLHASN	IPFATLDLDT
QB assembl	RRDIRLKSFT	IKGERNGRPV	NVSASLSAVD	LFYSRLHTSN	LPFATLDLDT
MX1 assemb	RRDIRMRSVS	LKGVRNGIPV	RVTGSVELVD	SFYNRSHTTR	IPQATLAIDT
M11 assemb	RRDIRMRSVT	LKGVRNGIPV	RVTGSVELVD	SFYNRSHTTR	IPQATLELDT

$\ldots\left|. . .\left.\right|_{410} \ldots\right| . . .\left.\right|_{420} ^{\mid}$.
FSS KHV D S L TQ K R
Consensus BR12 matur BZ1 matura HL49 assem TW18 matur VK assembl QB assembl MX1 assemb M11 assemb

TFSSFKHVLD SIFLLTQRIK R TFSSFKHVLD SIFLLTQRIK R TFSSYKHVLD SIFLLTQRIK R TFSSYKHVLD SIFLLTQRIK R TFSSFKHVLD SVALLTQRIK R TFSSFKHVLD SIFLLTQRVK R SFSSIKHVMD SISLITQRIK R SFSSIKHVLD SISLITQXIK R

Group III capsid protein:

Alignment: Align Group III capsid.

	10				50
Consensus	MAKL TL	IGK G	LNPRGVNPT	NGVA LS AG	AVPALEKRVT
BR12 coat	MAKLETVTLS	NIGKDGKQTL	VLNPRGVNPT	NGVASLSEAG	AVPALEKRVT
BZ1 capsid	MAKLETVTLS	NIGKDGQKTL	NLNPRGVNPT	NGVASLSEAG	AVPALEKRVT
HL49 capsi	MAKLETVTLS	NIGKDGKQTL	VLNPRGVNPT	NGVAALSQAG	AVPALEKRVT
TW18 capsi	MAKLETVTLS	NIGKDGQQTL	VLNPRGVNPT	NGVAALSQAG	AVPALEKRVT
VK capsid	MAKLETVTLS	NIGKDGKQTL	VLNPRGVNPT	NGVASLSEAG	AVPALEKRVT
QB coat	MAKLETVTLG	NIGKDGKQTL	VLNPRGVNPT	NGVASLSQAG	AVPALEKRVT
MX1 capsid	MAKLQAITLS	GIGKNGDVTL	NLNPRGVNPT	NGVAALSEAG	AVPALEKRVT
M11 capsid	MAKLQAITLS	GIGKKGDVTL	DLNPRGVNPT	NGVAALSEA	AVPALEKRVT

Consensus	SVSQPSRNR KNYKVQVKIQ NPT C A G	CDPSVTR AY	DVTFSFTQY
BR12 coat	VSVSQPSRNR KNYKVQVKIQ NPTACPANGS CDPSVTRQAY ADVTFSFTQY		
BZ1 capsid	ISVSQPSRNR KNYKVQVKIQ NPTACSANGS CDPSVTRQAY ADVTFSFTQY		
HL49 capsi	VSVSQPSRNR KNYKVQVKIQ NPTACTANGS CDPSVTRQAY ADVTFSFTQY		
TW18 capsi	VSVSQPSRNR KNYKVQVKIQ NPTACTANGS CDPSVTRQAY ADVTFSFTQY		
VK capsid	VSVSQPSRNR KNYKVQVKIQ NPTACSANGS CDPSVTRQAY ADVTFSFTQY		
QB coat	VSVSQPSRNR KNYKVQVKIQ NPTACTANGS CDPSVTRQAY ADVTFSFTQY		
MX1 capsid	ISVSQPSRNR KNYKVQVKIQ NPTSCTASGT CDPSVTRSAY ADVTFSFTQY		
M11 capsid	ISVSQPSRNR KNYKVQVKIQ NPTSCTASGT CDPSVTRSAY SDVTFSFTQY		

Consensus ST EERA VR TEL ALLA P L AID LN PAY
BR12 coat STDEERAFVR TELAALLAGP LLIDAIDRLN PAY
BZ1 capsid STDEERAFVR TELAALLADP LLIDAIDQLN PAY
HL49 capsi STDEERAFVR TELVALLASP LLIDAIDQLN PAY
TW18 capsi STDEERAFVR TELIALLASP LLIDAIDQLN PAY
VK capsid STDEERAFVR TELAALLAGP LLIDAIDRLN PAY
QB coat
MX1 capsid
STDEERAFVR TELAALLASP LLIDAIDQLN PAY
M11 capsid
TDEERALVR TELKALLADP MLIDAIDNLN PAY
STVEERALVR TELQALLADP MLVNAIDNLN PAY

Group III read-through protein:

Alignment: Align Group III read-through protein.

Consensus	MAKL TL	IGK G TL	LNPRGVN	NGVA LS	
TW18 readt	MAKLETVTLS	NIGKDGQQTL	VLNPRGVNPT	NGVAALSQAG	AVPALEKRVT
HL49 readt	MAKLETVTLS	NIGKDGKQTL	VLN	NGVAALSQ	AVPALEKRVT
BR12 readt	MAKLETVTLS	NIGKDGKQTL	VLNPRGVN	NGVASL	AVPALEKRVT
BZ1 readth	MAKLETVTLS	NIGKDGQKTL	NLNPRGVNPT	NGVA	AVPALEKRVT
VK readth	MAKLETVTLS	NIGKDGKQTL	VLNPRGVNPT	NGVASLSEAG	AVPALEKRVT
QB readthr	MAKLETVTLG	NIGKDGKQTL	VLNPRGVNPT	NGVASLSQAG	AVPALEKRVT
M11 rea	MAKLQAITLS	GIGKKGDVTL	DLNPRGVNPT	NGVAALSEAG	AVPALEKRVT
MX1 readt	MAKLQAITLS	GIGKNGD	NLNPRGVN	NGVAALSE	AVPALEKRVT

 SVSQPSRNR KNYKVQVKIQ NPT C A G CDPSVTR AY DVTFSFTQY VSVSQPSRNR KNYKVQVKIQ NPTACTANGS CDPSVTRQAY ADVTFSFTQY VSVSQPSRNR KNYKVQVKIQ NPTACTANGS CDPSVTRQAY ADVTFSFTQY VSVSQPSRNR KNYKVQVKIQ NPTACPANGS CDPSVTRQAY ADVTFSFTQY ISVSQPSRNR KNYKVQVKIQ NPTACSANGS CDPSVTRQAY ADVTFSFTQY VSVSQPSRNR KNYKVQVKIQ NPTACSANGS CDPSVTRQAY ADVTFSFTQY VSVSQPSRNR KNYKVQVKIQ NPTACTANGS CDPSVTRQAY ADVTFSFTQY ISVSQPSRNR KNYKVQVKIQ NPTSCTASGT CDPSVTRSAY SDVTFSFTQY ISVSQPSRNR KNYKVQVKIQ NPTSCTASGT CDPSVTRSAY ADVTFSFTQY

MX1 readth NPDPPLEPPP GTGSYTCPFR IWDLSSIYEA ANSSHSWDIY NAVELSPRKF

				24	250
Consensus	DV L DLLGN	T WRDWD RL	YTTFRG R	NGYIDLDA	
TW18 readt	DVALEDLLGN	TNWRDWDSRL	SYTTFRGCRG	NGYIDLDATY	LATDQAMRDQ
HL49 readt	DVALKDLLGN	TKWRDWDSRL	SYTTFRGCRS	NGYIDLDASY	LATDQAMRDQ
BR12 readt	DVALDDLLGN	TKWRDWDSRL	RYTTFRGCRG	NGYIDLDATY	LATDQAMLDQ
BZ1 readth	DVALDDLLGN	TKWRDWDSRL	SYTTFRGCRG	NGYIDLDATY	LATDQAMLDQ
VK readthr	DVALDDLLGN	TEWRDWDSRL	RYTTFRGCRG	NGYIDLDATY	LATDQAMLDQ
QB readthr	DVALKDLLGN	TKWRDWDSRL	SYTTFRGCRG	NGYIDLDATY	LATDQAMRDQ
M11 readth	DVALDDLLGN	TNWRDWDGRL	RYTTFRGCRG	NGYIDLDATS	LMKDEYLTSS
MX1 readth	DVTLDDLLGN	TDWRDWDGRL	RYTTFRGSRG	NGYIDLDATS	LMQDEYLTSS

Consensus

 TW18 readt HL49 readt BR12 readt BZ1 readth VK readthr QB readthr M11 readth MX1 readthKY R GK P G FG E F YLKSINAYCS LSDI AY D GV VGFWRDP KYDIREGKKP GAFGNIERFI YLKSINAYCS LSDIAAYHAD GVIVGFWRDP KYDIREGKKP GAFGNVERFI YLKSINAYCS LSDIAAYHAD GVIVGFWRDP KYDIRTGKRP GAFGKIEQFI YLKSINAYCS LSDIAAYHAD GVIVGFWRDP KYDIRTGKKP GAFGNIEQFI YLKSINAYCS LSDIAAYHAD GVIVGFWRDP KYDIRTGKRP GAFGNIEQFI YLKSINAYCS LSDIAAYHAD GVIVGFWRDP KYDIREGKKP GAFGNIERFI YLKSINAYCS LSDIAAYHAD GVIVGFWRDP KYLVREGKRP GVFGNIERFV YLKSINAYCS LSDITAYRTD GVIVGFWRDP KYLVREGKRP GAFGSIERFV YLKSINAYCS LSDITAYHSD GVVVGFWRDP
$\ldots . . .\left.\right|_{310} ^{\mid} \ldots|\ldots| \ldots|\ldots| . .$.
SSGGAIPFDF FD KCPI QAVIVVPR SSGGAIPFDF TKFDKTKCPI QAVIVVPRA SSGGAIPFDF TKFDKTKCPI QAVIVVPRA SSGGAIPFDF TQFDKTKCPI QAVIVVPRA SSGGAIPFDF TEFDKTKCPI QAVIVVPRA SSGGAIPFDF TEFDKTKCPI QAVIVVPRA SSGGAIPFDF TKFDKTKCPI QAVIVVPRA SSGGAIPFDF NEFDSNKCPI QAVIVVPRL SSGGAIPFDF SEFDSNKCPI QAVIVVPRL

Group III replicase:

Alignment: Align Group III replicase.

Consensus	MSKT S	SLS LRR	AANTRI VE	NLALSIANDL	$A \quad F$
BR12 repli	MKCMSKTASS	HNSLSAQLRR	AANTRIEVEG	NLALSIANDL	MLAYGQ
BZ1 replic	MKCMSKTASS	RNSLSAQLRR	AANTRIEVEG	NLALSIANDL	MLAYGQSPFN
HL49 repli	MKCMSKTASS	HNSLSAQLRR	AANTRIEVEG	NLALSIAND	LLAYGQSPFN
TW18 repli	MKCMSKTASS	HNSLSAQLRR	AANTRIEVEG	NLALSIANDL	LLAYGQSPFN
VK replica	MKCMSKTASS	HNSLSAQLRR	AANTRIEVEG	NLALSIANDL	MLAYGQSPFS
QB replica	MKCMSKTASS	RNSLSAQLRR	AANTRIEVEG	NLALSIANDL	LLAYGQSPFN
MX1 replic	---MSKTLQS	RKSLSGKLRR	AANTRIVVEG	NLALSIANDL	LSALDVEPFN
M11 replic	---MSKTSQS	RKSLSGKLRR	AANTRIVVED	NLALSIAND	LSALDVESFS
Consensus	SE CIS P	D FR	YL AE MS	KYD FSLGI	TEA AW KFL
BR12 repli	SESECISLSP	KFDGTPDNFR	INYLKAEIMS	KYDDFSLGID	TEAAAWKKFL
BZ1 replic	SESECISLGP	KFDETPDNFR	INYLKAEIMS	KYDDFSLGID	TEAAAWEKFL
HL49 repli	SEAECISLSP	RFDGTPDHFR	INYLKAEVMS	KYDDFSLGID	TEAAAWEKFL
TW18 repli	SEAECISLSP	RFDGTPDDFR	INYLKAEVMS	KYDDFSLGID	TEAAAWEKFL
VK replica	SESECISLSP	KFDGTPDNFR	INYLKAEIMS	KYDDFSLGID	TEAAAWEKFL
QB replica	SEAECISFSP	RFDGTPDDFR	INYLKAEIMS	KYDDFSLGID	TEAVAWEKFL
MX1 replic	SEEDCISRSP	KFGISPDQFR	NSYLRAEIMS	KYDSFSLGIN	TEAVAWEKFL
M11 replic	SEEDCISRSP	KFDLSADQFR	NSYLAAEIMS	KYDSFSLGIN	TEAVAW

	110	120		14	
Consensus	TN	RLYRP Y E	DFNFSLGE C		
BR12 repli	AAEAECALTN	ARLYRPNYSE	DFNFSLGESC	LHMARRKIV	LI
BZ1 replic	AAEAECALTN	ARLYRPNYSE	DFNFSLGESC	IHMARR	LIGDAPSVEG
HL49 repli	AAEAECALTN	ARLYRPDYSE	DFNFSLGESC	IH	LIGDAPSVEG
TW18 repli	TN	ARLYRPDYSE	DFNFSLGESC	IHMARRKIAK	LIGDAPSVEG
VK replica	AAEAECALTN	ARLYRPNYSE	DFNFSLGESC	LHMARRKIVK	LIGDAPSVEG
QB replica	TN	AR	DFNFSLGESC	IHM	LIGDVPSVEG
MX1 replic	AAEAECAKTN	LR	DFNFSLGETC	IHMARRKIVK	
M11 replic	AAEAECAITN	QRLYRPNYNE	DFNFSLGEAC	IHMARRKIVK	GGSVPFEA

 LRHCRFSGG ATTTN R G HPSFKFAL Q CTPRA YV AL A T D MLRHCRFSGG ATTTNNRSYG HPSFKFALPQ ACTPRALKYV LALRASTHFD MLRHCRFSGG ATTTNNRSYG HPSFKFALPQ ACTPRALKYV LALRASTHFD MLRHCRFSGG ATTTNNRSHG HPSFKFALPQ ACTPRALKYV LALRASTHFD MLRHCRFSGG ATTTNNRSYG HPSFKFALPQ ACTPRALKYV LALRASTHFD MLRHCRFSGG ATTTNNRSYG HPSFKFALPQ ACTPRALKYV LALRASTHFD MLRHCRFSGG ATTTNNRSYG HPSFKFALPQ ACTPRALKYV LALRASTHFD VLRHCRFSGG ATTTNSRLYG HPSFKFALAQ ECTPRAVPYV QALKACTNMD

M11 replic MLRHCRFSGG ATTTNNRSYG HPSFKFALTQ ECTPRAVPYV QALKACTGMD

Consensus	SPFN	KAVTVPKNSK	EPG	GIG	G \quad L W
BR12 repli	IRVSDISPFN	KAVTVPKNSK	TDRCIAIEPG	WNMFFQLGIG	GI
BZ1 replic	IRVSDISPFN	KAVTVPKNSK	TDRCIAIEP	GI	GILRDRLRCW
HL49 repli	SDIS	KAV	TDRCIAIEPG	WNMFFQLGIG	GILRDRLRCW
TW18 repli	IRISDISPFN	KAVTVPKNSK	TDRCIAIEPG	WNMFFQLGIG	GIL
VK replica	IRVSDISPFN	KAVTVPKNSK	TDRCIAIEPG	NMFFQLGIG	GIL
QB replica	IRI	KAVTVPKNSK	TDRCIAIEPG	WNMFFQLGIG	GILRDRLRCW
MX1 replic	LGITKVSPFN	KAVTVPKNSK	TDRCIAIEPG	WNMFFQLGIG	GVI
M11 replic	LGITKVSPFN	KAVTVPKNSK	TDRCIAIEPG	WNMFFQLGIG	GVI

Consensus	N	RA GS	LATVDLS	ASD ISLAL	ELL PP WF
BR12 repli	GIDLNDQTIN	QHRAHEGSVT	NDLATVDLSA	ASDSISLALC	ELLLPPGWFE
BZ1 replic	GIDLNDQTIN	QRRAHEGSVT	NNLATVDLSA	ASDSISLALC	ELLLPPGWFE
HL49 repli	GIDLNDQTIN	QHRAHEGSVT	NNLATVDLSA	ASDSISLALC	ELLLPPGWFE
TW18 repli	GIDLNDQTIN	QRRAHEGSVT	NNLATVDLSA	ASDSISL	ELLLPPGWFE
VK replica	GIDLNDQTIN	QRRAHEGSVT	NDLATVDLS	ASDSIS	LLPPGWFE
QB replica	GIDLNDQTIN	QRRAHEGSVT	NNLATVDLSA	ASDSISLALC	ELLLPPGWFE
MX1 replic	NIDLNDQTIN	QVRAYSGSCS	NELATVDLSS	ASDTISLALV	ELLLPPAWFK
M11 replic	GIDLNDQTIN	QTRAYLGSRD	DNLATVD	ASDTISLALV	ELLMPPEWFK

	31	32	330	340	
Consensus	VL LRS	LP	GNG	FA	LARS CE L
BR12 repl	VLTDLRSPKG	QLPDGSVITY	GY	TFELESLIFA	SLARSVCEIL
BZ1 replic	VLMDLRS	RLP	EKISSMGNGY	TFELESLIFA	SLARSVCEIL
HL49 repli	RS	TY	EKI	TFELESLIFA	SLARSVCEIL
TW18 repli	VLMDLRSPKG	RLPDGSVVTY	EKISSMGNGY	FELESLIFA	CEIL
VK replica	VLMDLRSPKG	RLPDGSVIIY	EKISSMGNGY	ESLIFA	EIL
QB replica	VLMDLRSPKG	RLPDGSVVTY	EKISSMGNGY	ELES	SLARSVCEIL
MX1 replic	VLTDLRSRRG	ML	EKIS	TFELESLIFA	ALARSLCELL
M11 replic	VLLA	IL	EKISS	FELESLIFA	

Consensus

 BR12 repli BZ1 replic HL49 repli TW18 repli VK replica QB replica MX1 replic M11 replicL S VTVY GDDIILPS A L EVF Y VGF TN KKT F GPFRESC DLDSSEVTVY GDDIILPSRA VPALQEVFKY VGFTTNTKKT FSEGPFRESC DLDSSEVTVY GDDIILPSCA VPALQEVFKY VGFTTNTKKT FSEGPFRESC DLDSSEVTVY GDDIILPSCA VPALREVFKY VGFTTNTKKT FSEGPFRESC DLDSSEVTVY GDDIILPSCA VPALREVFKY VGFTTNTKKT FSEGPFRESC NLDSSEVTVY GDDIILPSRA VPALQEVFKY VGFTTNTKKT FSEGPFRESC DLDSSEVTVY GDDIILPSCA VPALREVFKY VGFTTNTKKT FSEGPFRESC NLQPSSVTVY GDDIILPSDA CSSLIEVFSY VGFRTNEKKT FFDGPFRESC GLRPSDVTVY GDDIILPSDA CSPLVEVFSY VGFRTNKKKT FSSGPFRESC

| Consensus | GKHY GVDV TPFYIR RIV | P DLILVLN | YRWATIDG VWDPR |
| :--- | :--- | :--- | :--- | ---: | :--- |
| BR12 repli | GKHYYSGVDV TPFYIRRRIV SPADLILVLN | NLYRWATIDG VWDPRAHSVY | |
| BZ1 replic | GKHYYSGVDV TPFYIRRRIV SPADLILVLN NLYRWATIDG VWDPRAHSVY | | |
| HL49 repli | GKHYYSGVDV TPFYIRHRIV NPTDLILVLN NLYRWATIDG VWDPRAHSVY | | |
| TW18 repli | GKHYYSGVDV TPFYIRHRIV TPADLILVLN NLYRWATIDG VWDPRAHPVY | | |
| VK replica | GKHYYSGVDV TPFYIRRRIV SPADLILVLN NLYRWATIDG VWDPRAHSVY | | |
| QB replica | GKHYYSGVDV TPFYIRHRIV SPADLILVLN NLYRWATIDG VWDPRAHSVY | | |
| MX1 replic | GKHYFMGVDV TPFYIRHRIV SPSDLILVLN QMYRWATIDG VWDPRVYPVY | | |
| M11 replic | GKHYFLGVDV TPFYIRRRIV SPSDLILVLN QMYRWATIDG VWDPRVYPVY | | |

Consensus KYR LP L RN PDGY GDGALVGSVL PFA NRGW R VP I D
BR12 repli
BZ1 replic
HL49 repli
TW18 repli
VK replica
QB replica
MX1 replic
M11 replic
LKYRKLLPKQ LQRNTIPDGY GDGALVGSVL INPFAKNRGW IRYVPVIIDH
LKYRKLLPKQ LQRNTIPDGY GDGALVGSVL INPFAKNRGW IRYVPVIIDH
LKYRKLLPKQ LQRNTIPDGY GDGALVGSVL INPFAKNRGW IRYVPVIIDH
LKYRKLLPKQ LQRNTIPDGY GDGALVGSVL INPFAKNRGW IRYVPVITDH
LKYRKLLPKQ LQRNTIPDGY GDGALVGSVL INPFAKNRGW IRYVPVIIDH
LKYRKLLPKQ LQRNTIPDGY GDGALVGSVL INPFAKNRGW IRYVPVITDH
TKYRRLLPDI LRRNVVPDGY GDGALVGSVL TSPFAENRGW VRRVPMIIDK
TKYRRYLPEI LRRNVVPDGY GDGALVGSVL ISPFAENRGW VRRVPMIIDK

Consensus
BR12 repli
BZ1 replic
HL49 repli
TW18 repli
VK replica
QB replica
MX1 replic
M11 replic
DR R E G SYLY L S E P G
TRDRERTESG SYLYDLFSRC FSESNDGLPL RGPSSCDPVY PLAIDQLICK
TRDRERTEPG SYLYDLFSRC FSESNDGLPL RGPSSCDSIY RFAVDQLICK
TRDRERVESG SYLYDLFSRC FSEGNDGLPL RGPSSCDSVD LSAIDQLICR
TRDRERAELG SYLYDLFSRC LPESNDGLPL RGPSSCDSVN LSAVDQLICR
TRDRERTESG SYLYDLFSRY FSESNDGLPL RGPSSCDSIY PLAIDQLICK
TRDRERAELG SYLYDLFSRC LSESNDGLPL RGPSGCDSAD LFAIDQLICR
KKDRVRDERG SYLYELWSLQ QLECDSEFPF NGSLVVGTND GVCTYRHRER
RKDRVRDEYG SYLYELWSLQ QLECDSEFPF NGSLVVGSTD GTLAYAHRER

Consensus
BR12 repli
BZ1 replic
HL49 repli
TW18 repli
VK replica
QB replica
MX1 replic
M11 replic

SNPTKISRST GKFDVQYIAC SSRVLAPYGV FQGTKVASLH EA SNPTKVSRST GKFDIQYIAC SSRVLAPYGV FQGTKVMPLH EA SNPTKISRST GKFDIQYIAC GSRVLAPYGV FQGTKVTSLH EV SNPTKISRST GKFDIQYIAC SSRVLAPYGV FQGTKVTSLH EV SNPTKISRST GKFDIQYIAC SSRVLAPYGV FQGTKVASLH EA SNPTKISRST GKFDIQYIAC SSRVLAPYGV FQGTKVASLH EA -VSTAISDSV GAYDIVWIPC SSRVLAPYGD FRRHEGSILK ---LPTVISDAV SAFDIMWIPC SSRVLAPYGD FRRHEGSILK MG

Amino acid sequences of Leviviridae Group IV. Note the YGDD motif in all Leviviridae replicase proteins.

Group IV isolates BR1, BR8, HB-P22, HB-P24, SP, NL95 and FI. The most conserved stretch of amino acids are highlighted in red. Gaps indicate degenerative sites.

Group IV maturation protein:

Alignment: Align Group IV maturation.

	10	20			
Consensus	MP LP GLRF	GS GE NDF	LWFP	G	
BR1 assemb	MPTLPRGLRF	GSNGEVLNDF	EALWFPERHT	VDLSNGTCKL	TGYITNLPGY
BR8 assemb	MPTLPRGLRF	GSNGEVLNDF	EALWFPERHT	VDLSNGTCKL	TGYITNLPDY
SP assembl	MPTLPRGLRF	GSNGEVLNDF	EALWFPERHT	VDLSNGTCKL	TGYITNLPGY
HB-P22 asm	MPALPRGLRF	GSNGEILNDF	NELWFPELVS	SELNLGTYNL	TGYISNLPGY
HB-P24 asm	MPTLPRGLRF	GSNGEVVNDF	NALWFPERET	FDSGLGSYEL	TGYVSNQPGY
NL95 assem	MPTLPRGLRF	GSNGEIVNDF	NALWFPEREA	FDLELGSYTL	TGYVSNQPGY
FI assembl	MPTLPIGLRF	GSKGEILNDF	SALWFPKRVS	FDSQLGRYEL	SGYLNGQ--F

Consensus	N	TP R TV PVNH GYRPV TTVEY P GT	RLDG V
BR1 assemb	SNIFPNKGVT VARTPYRSTV PVNHLGYRPV TTVEYIPDGT YVRLDGHVKF		
BR8 assemb	SNTFPNKGVT VARTPYRSTV PVNHLGYRPV TTVEYIPDGT YVRLDGHVKF		
SP assembl	SDIFPNKGVT AARTPYRSTV PVNHLGYRPV TTVEYIPDGT YVRLDGHVKF		
HB-P22 asm	EVKERNKGSH VLRTPYRSTV PVNHLGYRPV TTVEYNPLGT	FIRLDGDVKF	
HB-P24 asm	ETRMRNPSMH CIRTPHRSTV PVNHLGYRPV TTVEYTPNGT	FIRLDGDVKF	
NL95 assem	TTRMRNPRMH CVRTPHRSTV PVNHFGYRPV TTVEYVPNGT	FIRLDGDVKF	
FI assembl	SDYGRNPALQ VSKTPHRATV PVNHLGYRPV TTVEYVPNGT	FVRLDGTVRI	

	110		13	140	
Consensus			Q GFDYQSVI	GPRFS F A	FSTKYG LLG
BR1 assemb	EGGLVNGSVD	LTNYVISLAA	QGGFDYQSVI	GPRFSAHFSA	FSTKYGVLLG
BR8 assemb	EGGLVNGSVD	LTNFVISLAA	QGGFDYQSVI	GPRFSAHFSA	FSTKYGVLLG
SP assembl	EGDLVNGSVD	LTNFVISLAA	QGGFDYQSVI	GPRFSARFSA	FSTKYGVLLG
HB-P22 asm	SGGLVSASLR	LDNYVVGLAS	QAGFDYQSVI	GPRFSSQFSA	FSTKYGTLLG
HB-P24 asm	SGGAVSGSLK	LSNYVVNLAA	QGGFDYQSVI	GPRFSAQFAA	FSTKYGTLLG
NL95 assem	SGGSVSGSLK	LNNFVVNLAS	QGGFDYQSVI	GPRFSSQFSA	FSTKYGALLG
FI assembl	SGELVNGTVR	LDNYIVNLAA	QGGFDYQSVI	GPRFSSQFSA	FSTKYGTLLG

Consensus BR1 assemb BR8 assemb SP assembl HB-P22 asm HB-P24 asm NL95 assem FI assembl

 F Y D W SSAS LWLEFRYGL MPLFYDI S EFSQTYRDKL TGNKVEVKPS EGKWNSSSAS DLWLEFRYGL MPLFYDIQSV EFSQTYRDKL TGNKVKVKPS EGKWNSSSAS DLWLEFRYGL MPLFYDIQSV EFSQTYRDKL TGNKVEVRPS EGKWNSSSAS DLWLEFRYGL MPLFYDIQSV SFSGTYRDEL AN------- -GKWKDSSAS DLWLEFRYGL MPLFYDIQSL SFSEAYRDRT AN------- -GSWKDSSAS DLWLEFRYGL MPLFYDIQSV TFSETYRDRL VN------- -DGWKDSSAS DLWLEFRYGL MPLFYDIKSV SFNKSYCDKL AS------- -GEWKNSSAS NLWLEFRYGL MPLFYDIQSV

Consensus

BR1 assemb
BR8 assemb
SP assembl
HB-P22 asm
HB-P24 asm
NL95 assem
FI assembl
 MEDFMR HK IAK QRFSAG HGKL V F P F E VTAVLQRRHR MEDFMRVHKK IAKIQRFSAG HGKLETVSSR FYPDVHFALE VTAVLQRRHR MEDFMRVHKK IAKIQRFSAG HGKLETVSSR FYPDVHFALE VTAVLQRRHR MEDFMRVHKK IAKIQRFSAG HGKLETVSSR FYPDVHFSLE VTAVLQRRHR MEDFMRVHKK IAKIQRFSAG HGKLVEVSGT FYPDVHFGLE VTAVLQRRHR MEDFMRVHKK IAKLQRFSAG HGKLVEVKGK FFPDPHFALE VTAVLQRRHR MEDFMRIHKK IAKLQRFSAG HGKLVTVKGR FFPDPHFAIE VTAVLQRRHR MEDFMRVHKR IAKIQRFSAG HGKLEKVSDI FYPSTYFQLE VTAVLQRRHR

Consensus BR1 assemb BR8 assemb SP assembl HB-P22 asm HB-P24 asm NL95 assem FI assembl

WGV YQDT F NG L PV DW TAA A LNPAE AW E TP SFV D WGVIYQDTGS YATFNNGRLV PVKDWKTAAF ALLNPAEVAW EVTPYSFVVD WGVVYQDTGS YATFNNGRLV PVKDWKTAAF ALLNPAEVAW EITPYSFVVD WGVIYQDTGS FATFNNGRLV PVKDWKTAAF ALLNPAEVAW EVTPYSFVVD WGVIYQDTGS YATFDNGRLV PVKDWQTAAF ALLNPAETAW ELTPYSFVAD WGVIYQDTGS FATFNNGRLI PVRDWQTAAL ALLNPAETAW ELTPYSFVAD WGVIYQDTGS LPPFNNGQLI PVRDWQTAAL ALLNPAETAW ELTPYSFVAD WGVIYQDTDT FATFDNGRLI PVRDWQTAAL AFLNPAETAW ELTPLSFVAD

Consensus
 BR1 assemb BR8 assemb SP assembl
 HB-P22 asm HB-P24 asm

WFVNVGDMLE Q L V DVVDGFDRKD L S SVRV A 400 WFVNVGDMLE QMG-QLYRHV DVVDGFDRKD IKLKSVSVRV LTGDSAHVAK WFVNVGDMLE QMG-QLYRHV DVVDGFDRKD IRLKSISVRV LTSDSAHVAS WFVNVGDMLE QMG-QLYRHV DVVDGFDRKD IKLKSVSVRV LTNDVAHVAS WFVNVGDMLE QIG-QLYRHV DVVDGFDRKD VKLRSVSVRV IA-NGATNTQ WFVNVGDMLE QIG-QLYRHV DVVDGFDRKD VKLKSVSVRV IR-DDATHTS

NL95 assem WFVNVGDMLE QTRPALSVNV DVVDGFDRKD VKLRSVSVRV IR-DDATTTS
FI assembl WFVNVGDMLE QIG-QLYRYV DVVDGFDRKD VKLKSVSVRV IA-PSADSAT

Group IV capsid protein:
 Alignment: Align Group IV capsid.

Consensus MAKLN VTL GK T TLTPRGVNPT NGVA LSEAG AVPALEKRVT BR1 coat MAKLNQVTLS KIGKNGDQTL TLTPRGVNPT NGVASLSEAG AVPALEKRVT BR8 coat SP coat HB-P22 coa HB-P24 coa NL95 coat FI coat MAKLNTVTLT KLGKEANKTM TLTPRGVNPT NGVATLSEAG AVPALEKRVT MAKLNQVTLS KLGKNGDQTL TLTPRGVNPT NGVASLSEAG AVPALEKRVT MAKLNQVTLS KIGKNGDQTL TLTPRGVNPT NGVASLSEAG AVPALEKRVT MAKLNQVTLT KLGKAGDQTL TLTPRGVNPT NGVASLSEAG AVPALEKRVT MAKLNKVTLT GIGKAGDQTL TLTPRGVNPT NGVASLSEAG AVPALEKRVT MAKLNKVTLT GIGKAGNQTL TLTPRGVNPT NGVASLSEAG AVPALEKRVT

$$
\cdots|\cdots|_{60} \ldots .\left.\right|_{70} \ldots .\left.\left.\right|_{80} \ldots\right|_{90} \ldots|\ldots|_{90} \ldots .\left.\right|_{100} ^{\mid}
$$

Consensus VSVAQPSRNR KN K QIKLQ NPTACT DA DPSVTRS D TLSFTSYS BR1 coat VSVAQPSRNR KNFKVQIKLQ NPTACTKDA- DPSVTRSAFA DVTLSFTSYS BR8 coat VSVAQPSRNR KNFKVQIKLQ NPTACTKDAC DPSVTRSAFA DVTLSFTSYS SP coat VSVAQPSRNR KNFKVQIKLQ NPTACTRDAC DPSVTRSAFA DVTLSFTSYS HB-P22 coa VSVAQPSRNR KNYKVQIKLQ NPTACTKDAC DPSVTRSAFA DLTLSFTSYS HB-P24 coa VSVAQPSRNR KNYKIQIKLQ NPTACTKDAC DPSVTRSAFA DLTLSFTSYS NL95 coat VSVAQPSRNR KNYKVQIKLQ NPTACTKDAC DPSVTRSGSR DVTLSFTSYS FI coat VSVAQPSRNR KNFKVQIKLQ NPTACTKDAC DPSVTRSAFA DLTLSFTSYS

Consensus T ERAL RT ELAALL D L I DAIDNLNP AY BR1 coat TDEERALIRT ELAALLQDNL IIDAIDNLNP AY BR8 coat SP coat HB-P22 coa HB-P24 coa NL95 coat FI coat

TDAERALIRT ELAALLQDPL IVDAIDNLNP AY TDEERALIRT ELAALLADPL IVDAIDNLNP AY TDAERALIRT ELAALLQDPL IVDAIDNLNP AY TDVERALVRT ELAALLKDDL IVDAIDNLNP AY TERERALIRT ELAALLKDDL IVDAIDNLNP AY TDEERALIRT ELAALLADPL ITDAIDNLNP AY

Group IV read-through protein:

Alignment: Align Group IV read-through.

Consensus	MAKLN VTL	GK	TLTPRGVNPT	NGVA LS	AVPALEKRVT
BR1 readth	MAKLNQVTLS	KIGKNGDQTL	TLTPRGVNPT	NGVASLSEAG	AVPALEKRVT
BR8 readth	MAKLNQVTLS	KLGKNGDQTL	TLTPRGVNPT	NGVASLSEAG	AVPALEKRVT
SP readthr	MAKLNQVTLS	KIGKNGDQTL	TLTPRGVNPT	NGVASLSEAG	AVPALEKRVT
HB-P22 rea	MAKLNQVTLT	KLGKAGDQTL	TLTPRGVNPT	NGVASLSEAG	AVPALEKRVT
HB-P24 rea	MAKLNKVTLT	GIGKAGDQTL	TLTPRGVNPT	NGVASLSEAG	AVPALEKRVT
NL95 readt	MAKLNKVTLT	GIGKAGNQTL	TLTPRGVNPT	NGVASLSEAG	AVPALEKRVT
FI readthr	MAKLNTVTLT	KLGKEANKTM	TLTPRGVNPT	NGVATLSEAG	AVPALEKRVT

Consensus VSVAQPSRNR KN K QIKLQ NPTACT DAC DPSVTRS D TLSFTSYS BR1 readth BR8 readth SP readthr HB-P22 rea HB-P24 rea NL95 readt FI readthr

K K K VSVAQPSRNR KNFKVQIKLQ NPTACTKDAC DPSVTRSAFA DVTLSFTSYS VSVAQPSRNR KNFKVQIKLQ NPTACTKDAC DPSVTRSAFA DVTLSFTSYS VSVAQPSRNR KNFKVQIKLQ NPTACTRDAC DPSVTRSAFA DVTLSFTSYS VSVAQPSRNR KNYKVQIKLQ NPTACTKDAC DPSVTRSAFA DLTLSFTSYS VSVAQPSRNR KNYKIQIKLQ NPTACTKDAC DPSVTRSAFA DLTLSFTSYS VSVAQPSRNR KNYKVQIKLQ NPTACTKDAC DPSVTRSGSR DVTLSFTSYS VSVAQPSRNR KNFKVQIKLQ NPTACTKDAC DPSVTRSAFA DLTLSFTSYS

Consensus

BR1 readth
BR8 readth
SP readthr
HB-P22 rea
HB-P24 rea
NL95 readt
FI readthr
VP P VKP P GTG DVPDLPDVKP PDGTGRYTCP FSCYRLGSIY EEGKDGSPDI YERGDEVSVT DVPDLPDVKP PDGTGRYTCP FACYRLGSIY EVGKDGSPDI YERGDEVSVT DVPVVPDVKP PDGTGRYKCP FACYRLGSIY EVGKEGSPDI YERGDEVSVT DVPDRPDVKP PGGTGSYRCP FTCYRLGNII EVGQNGSPDI YARGDEVQVM GVPDSPNVKP PGGTGTYRCP FACYRRGELI TEAKDGACAL YALGSEAIVE GVPDSPNVKP PGGTGTYRCP FACYRRGELI TEAKDGACAL YACGSEALVE DVPDVPSVKP PGGTGSFTCP FSCYRLDTII EAGKDGVPDL YEQGPEVTVT

	210	220	230	240	250
Consensus	F YA EDFLG N	N WRNWD R	LS YD R	RCRGNGY DL	A MQ D
BR1 readth	FDYALEDFLG	NTNWRNWDQR	LSSYDLANRR	RCRGNGYIDL	DATVMQSDEF
BR8 readth	FDYALEDFLG	NTNWRNWDQR	LSSYDLANRR	RCRGNGYIDL	NATAMQSDEC
SP readthr	FDYALEDFLG	NTNWRNWDQR	LSDYDIANRR	RCRGNGYIDL	DATAMQSDDF
HB-P22 rea	FDYALEDFLG	NTNWRNWDQR	LSNYDIANRR	RCRGNGYVDL	DATAMQTDSF
HB-P24 rea	FDYALEDFLG	NVFWRNWDGR	LSTYDIDTHR	RCRGNGYVDL	DATMMQSDAY
NL95 readt	FEYALEDFLG	NEFWRNWDGR	LSKYDIETHR	RCRGNGYVDL	DASVMQSDEY
FI readthr	FDYAVEDFLG	NTNWRNWDSR	LSNYDIGNLR	RCRGNGYVDL	DATAMQSDSY
	260	270	280	290	300
Consensus	VLSG Y V K	P F	Y L	DL VTAY	SYGMVIGFW
BR1 readth	VLSGRYPVRK VK	VKFPGAFGSI	KYLLNIQGDA	WLDLSEVTAY	RSYGMVIGFW
BR8 readth	VLSGRYPVRK VK	VKFPGAFGSI	KYLLNIQGDA	WLDLSEVTAY	RSYGMVIGFW
SP readthr	VLSGRYGVRK VK	VKFPGAFGSI	KYLLNIQGDA	WLDLSEVTAY	RSYGMVIGFW
HB-P22 rea	VLSGKYPVRK V	VKFPGAFGAL	KYLLNIKDDA	WVDLSEVTAY	RSYGMVIGFW
HB-P24 rea	VLSGAYDVVK M	MQPPSIFDSP	RYYLHLMDGI	YVDLAEVTAY	HSYGMVIGFW
NL95 readt	VLSGAYDVVK M	MQPPGTFDSP	RYYLHLMDGI	YVDLAEVTAY	RSYGMVIGFW
FI readthr	VLSGKYRVRK GL	GLPPGIFASP	RYYLELQDGA	WVDLAAVTAY	RSYGMVIGFW

Group IV replicase:

Alignment: Align Group IV replicase.

	$\ldots \mid \ldots .$				
Consensus	M KTA	IT L KVDI	FEDDIH SI	ANDL A G	AE CI
BR1 replic	MSKTASRRRE	ITQLLGKVDI	NFEDDIHMSI	ANDLFEAYGI	PKLQNAEECI
BR8 replic	MSKTASRRRE	ITQLLGKVDI	NFEDDIHMSI	ANDLCEAYGI	PMLRDAEECI
SP replica	MPKTASRRRE	ITQLLGKVDI	NFEDDIHMSI	ANDLFEAYGI	PKLDSAEECI
HB-P22 rep	MSKTASHRKK	ITHLLSKVDI	DFEDDIHMSI	ANDLFKAFGV	APLTSAEQCI
HB-P24 rep	MSKTASHKK	ITQALSKVDI	NFEDDIHMSI	ANDLFEAYGI	APLASAEQCI
NL95 repli	MSKTACHKKK	ITQTLSKVDI	NFEDDIHMSI	ANDLLQACGV	APLASAEQCI
FI replica	MSKTASRRRE	ITHLLGKVDI	SFEDDIHLSI	ANDLFRAYGV	GELSSAEECI

Consensus
BR1 replic
BR8 replic
SP replica
HB-P22 rep
HB-P24 rep
NL95 repli
FI replica
H PLG TE A WEKFLAAEEG NTAFPSLDQG ADTFRVEYLR AEILSKFDGH PLGTDTEKTA WEKFLAAEEG NTAFPSLDQS ADTFRVEYLR AEILSKFDGH PLGINTEEAA WEKFLAAEEG NTAFPSLDQG VDTFRVEYLR AEILSKFDGH PLGIDTEAAA WEKFLAAEEG NTPFPDTSMT ADAFRIAYLR SEILSKYSAH PLGIDTEAVA WEKFLAAEEG STPFPDTSMD ADAFRIHYLR SEILSKFSAH PLGIDTEAAA WEKFLAAEEG NTPFPDTSMN PDEFRIQYLR SEILSKFSAH PLGIDTEAAA WEKFLAAEEG NTAFPRLDQS PDTFRTEYLR SEILSKFNAH PLGIDTEAVA WEKFLAAEEG

CR TN RL KYHDNSILS WGERVIHTAR RKILKLIGE P GDVALR
CRLTNERLSQ VKYHDNSILS WGERVIHTAR RKILKLIGES VPFGDVALRC
CRRTNERLSQ AKYHDNSILS WGERVIHTAR RKILKLIGES VPFGDVALRC CRQTNERLSL VKYHDNSILS WGERVIHTAR RKILKLIGES VPFGDVALRC CRQTNERLSQ AKYHDNSILS WGERVIHTAR RKILKLIGES VPLGDVALRC CRQTNERLTK VKYHDNSILS WGERVIHTAR RKILKLIGET VPLGDVALRA CRLTNERLTK VKYHDNSILS WGERVIHTAR RKILKLIGEA APLGDVALRA CRLTNARLSS CKYHDNSILS WGERVIHTAR RKILKLIGES VPFGDVALRC

Consensus
BR1 replic
BR8 replic
SP replica
HB-P22 rep
HB-P24 rep
NL95 repli
FI replica

RFSGGATTSV NRLHGHPSWK HACPQDVTKR A KYL A K ACGD LR RFSGGATTSV NRLHGHPSWK HACPQDVTKR AFKYLQAFKR ACGDVVDLRV RFSGGATTSV NRLHGHPSWK HACPQDVTKR ALKYLQAFKR ACGDVVDLRV RFSGGATTSV NRLHGHPSWK HACPQDVTKR AFKYLQAFKR ACGDVVDLRV RFSGGATTSV NRLHGHPSWK HACPQDVTKR AFKYLQAYKM ACGDIVDLRV RFSGGATTSV NRLHGHPSWK HACPQDVTKR ALKYLMAYKK ACGDVVDLRV RFSGGATTSV NRLHGHPSWK HACPQDVTKR ALKYLIAYKK ACGDVVDLRV RFSGGATTSV NRLHGHPSWK HACPQDVTKR ALKYLLAYKK ACGDTDELRI

Consensus BR1 replic BR8 replic SP replica HB-P22 rep HB-P24 rep NL95 repli FI replica

EVRTSNKAV TVPKNSKTDR CIAIEPGWNM FFQLGVGAVL RDRLRLW ID NEVRTSNKAV TVPKNSKTDR CIAIEPGWNM FFQLGVGAVL RDRLRLWKID NEVRTSNKAV TVPKNSKTDR CIAIEPGWNM FFQLGVGAVL RDRLRLWKID NEVRTSNKAV TVPKNSKTDR CIAIEPGWNM FFQLGVGAVL RDRLRLWKID NEVRTSNKAV TVPKNSKTDR CIAIEPGWNM FFQLGVGAVL RDRLRLWGID NEVRTSNKAV TVPKNSKTDR CIAIEPGWNM FFQLGVGAVL RDRLRLWQID NEVRTSNKAV TVPKNSKTDR CIAIEPGWNM FFQLGVGAVL RDRLRLWHID GEVRTSNKAV TVPKNSKTDR CIAIEPGWNM FFQLGVGAVL RDRLRLWSID

Consensus
BR1 replic
BR8 replic
SP replica
HB-P22 rep
HB-P24 rep
NL95 repli
FI replica
 LNDQS NQRL ARD S L HL AT DLSAASD SIS LVELL PP W LT LNDQSTNQRL ARDGSLLNHL ATIDLSAASD SISLKLVELL LPPEWYDLLT LNDQSTNQRL ARDGSLLNHL ATIDLSAASD SISLKLVELL LPPEWYDLLT LNDQSTNQRL ARDGSLLNHL ATIDLSAASD SISLKLVELL MPPEWYDLLT LNDQSINQRL ARDASQLDHL ATVDLSAASD SISLKLVELL LPPDWFGVLT LNDQSVNQRL ARDASQLDHL ATVDLSAASD SISLRLVELL MPPAWFDLLT LNDQSVNQRL ARDASQLDHL ATVDLSAASD SISLRLVELL MPPAWFDLLT LNDQSLNQRL ARDASQLDHL ATVDLSAASD SISIKLVELL LPPAWFELLT

Consensus
BR1 replic
BR8 replic
SP replica
HB-P22 rep
HB-P24 rep NL95 repli FI replica

DLRSD G LP G VTYEKI SSMGNGYTFE LESLIFAA A RSVCELL D DLRSDEGVLP DGRVVTYEKI SSMGNGYTFE LESLIFAALA RSVCELLEID DLRSDQGVLP DGRVVTYEKI SSMGNGYTFE LESLIFAALA RSVCELLEID DLRSDEGILP DGRVVTYEKI SSMGNGYTFE LESLIFAAIA RSVCELLEID DLRSDQGILP DGRAVTYEKI SSMGNGYTFE LESLIFAAIA RSVCELLDLD DLRSDQGVLP DGRVVTYEKI SSMGNGYTFE LESLIFAALA RSVCELLDLD DLRSDQGILP DGRVVTYEKI SSMGNGYTFE LESLIFAALA RSVCELLDLD DLRSDQGVLP NGEVVTYEKI SSMGNGYTFE LESLIFAAIA RSVCELLDLD
 QS VSVYGDD III AA LM VFEYVGF T N KKTF GPFRESCGKH QSTVSVYGDD IIIDTRAAAP LMDVFEYVGF TPNKKKTFCD GPFRESCGKH QSTVSVYGDD IIIDTRAAAP LMDVFEYVGF TPNKKKTFCD GPFRESCGKH QSTVSVYGDD IIIDTRAAAP LMDVFEYVGF TPNRKKTFCD GPFRESCGKH QSTVSVYGDD IIIDSRAAAT LMDVFEYVGF TPNRKKTFVS GPFRESCGKH QSTVSVYGDD IIIDSRAADV LMAVFEYVGF TPNRKKTFIK GPFRESCGKH QSTVSVYGDD IIIDSRAADV LMAVFEYVGF TPNRKKTFIK GPFRESCGKH QSAVSVYGDD IIIPSDAAQT LMDVFEYVGF TANRKKTFIT GPFRESCGKH
 W GVDVTPF YIRRPIR L DMILVLN Y RWGT DG WD PR L VY KY WFQGVDVTPF YIRRPIRCLA DMILVLNSIY RWGTVDGVWD PRALTVYEKY WFQGVDVTPF YIRRPIRCLA DMILVLNSIY RWGTVDGVWD PRALTVYEKY WFQGVDVTPF YIRRPIRCLA DMILVLNSIY RWGTVDGIWD PRALTVYEKY WHSGVDVTPF YIRRPIRCLV DMILVLNSIY RWGTIDGVWD PRVLPVYQKY WHSGVDVTPF YIRRPIRCLA DMILVLNSIY RWGTIDGVWD PRVLPVYQKY

NL95 repli WHSGVDVTPF YIRRPIRCLA DMILVLNSIY RWGTIDGVWD PRVLPVYQKY FI replica WFLGVDVTPF YIRRPIRSLA DMILVLNNLY RWGTVDGVWD PRALTVYQKY

Consensus BR1 replic BR8 replic SP replica HB-P22 rep HB-P24 rep NL95 repli FI replica

LPR WRR N IPDGYGDG ALVG A TNP FV V N R YPVLVEVQ D LKLLPRNWRR NRIPDGYGDG ALVGLATTNP FVIVKNYSRL YPVLVEVQRD LKLLPRNWRR NRIPDGYGDG ALVGLATTNP FVIVKNYSRL YPVLVEVQRD LKLLPRNWRR NRIPDGYGDG ALVGLATTNP FVIVKNYSRL YPVLVEVQRD VNMLPRNWRR NTIPDGYGDG ALVGLATTNP FVIVKNFSRL YPVLVEVQKD VKLLPRDWRR NTIPDGYGDG ALVGLATTNP FVIVRNYSRW YPVLVEVQRD VKLLPRDWRR NTIPDGYGDG ALVGLATTNP FVIVRNYSRW YPVLVEVQRD VKLLPRNWRR NTIPDGYGDG ALVGSALTNP FVLVRNFQRE YPVLVEVQKD

R E G YL Y LR R R PFL D FDE PLAT LRRKTGRYK VKRSEVGSYL YALLRDRETR YSPFLRDADR TGFDEAPLAT SLRRKTGRYK VKRSEVGSYL YSLLRNRETR YSPFLRDADR TGFDEAPLAT SLRRKTGRYK VKRSEEGSYL YALLRDRETR YSPFLRDADR TGFDEAPLAT SLRRKTGRYK VKRHEYGSYL YAMLRDRETR YNPFLRVADG TGFDEAPLAT SLRRKTGRYK AKRHEFGSYL YALLRDREAR YNPFLRTADG SGFDETPLAT SLRRKTGRYK AKRHEFGSYL YALLRDRDAR YSPFLRVADG TGFDEAPLAT SLRRKTGRYK TPRSEKGAYL YHLLRDREAR HNPFLYDTDW VRFDEAPLAT RLRRKTGRYK

VAWIQDSAFI RPPY G P EVK A
BR1 replic BR8 replic SP replica HB-P22 rep HB-P24 rep NL95 repli FI replica

VAWIQDSAFI RPPYFITGIP EVKLAS---- ------
VAWIQDSAFI RPPYFITGIP EVKLAS---- ------
VAWIQDSAFI RPPYLITGIP EVKLAS---- ------
VAWIQDSAFI RPPYFLTGLP EVKLAS---- ------
VAWIQDSAFI RPPYFIKGIP EVKLAS---- ------
VAWIQDSAFI RPPYFIKGIP EVKLAS---- ------
VAWIQDSAFI RPPYS-TGLP EVKFARKTLV RNGKGAR

Appendix C
 Group I and JS Nucleotides

Alignment: Align Group I and JS nucleotide sequences.

	10	20	030		
Consensus	GGGTGGGACC	CCTTTCGGGG	TCCTGCTCAA	CTTCCTGTCG	AGCTAAATGC
DL1 I					
DL2 I					
DL13 I					
DL16 I					
ST4 I					
R17 I					
J20 I					
MS2 I					
M12 I					
DL52					
DL54					

DL54

Consensus CATTTTTAAT GTCTTTAGCG AGACGCTACC WTGGCTATCG CTGTAGGTAG
DL1 I
DL2 I
......... A
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54
Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54

	160	170	180	190	200
Consensus	TGATMRGGAR	WVYRARACCT	TYGTSCCBHB	CRTYCGCRYY	TAYGCKRACG
DL1 I	. AA. . . G	TCTG.G.	.T..C..GCT	. G.C. . . ACC	T. .TG
DL2 I	. CA... ${ }^{\text {a }}$	TCCG.G.	.C..C..TAG	.G.C...GTT	. .T..GG.
DL13 I	CA...G	TCCG. G	.C..C..TAG	. G.C...GTT	.T. . GG
DL16 I	CA...G	TCCG. G	.C. C. .TAG	. G.C...GTT	T. . GG
ST4 I	. AG . . . G	AACG. G	.C..C..CTC	.G.T...GTT	. C. . GG
R17 I	. AA... G	AGCA.G.	.C. . C. .TTC	.A.T...GTT	. C. .GA.
J20 I	. AG . . . A	TCCG.G.	.C..C..CTC	.G.T...GTT	. T. .TG.
MS2 I	AG . . . G	AACG. G	.C. C. . CTC	.G.T...GTT	. C. . GG
M12 I	CA...G	AACG. A .	.C. .G..CTC	.G.T...GTT	T. . GG
DL52	CA...G	TCCG. G	.C..C..TAG	. G.C...GTT	T. . GG
DL54	. CA... ${ }^{\text {g }}$	TCCG.G.	.C..C..TAG	. G.C...GTT	. .T..GG .
	$\begin{aligned} & 1 \\ & 210 \end{aligned}$	22	$\begin{aligned} & \\ & \cdots 30 \end{aligned}$	$\text { \| . . . }{ }_{240}$	$\begin{aligned} & \because 1 \\ & 250 \end{aligned}$
Consensus	GBSAGRYYGA	RGATAACTCR	TTYTCYYTVA	AATAYCGYTC	GAACTGGACY
DL1 I	. CG. .GTT. .	A....... ${ }^{\text {G }}$..C..CT.G.	.C. . T.	
DL2 I	. GC. . GTC.	A....... ${ }^{\text {G }}$..T..CC.A.C. T.	
DL13 I	.GC..GTC	A....... ${ }^{\text {G }}$..T..CC.A.	.C..C.	
DL16 I	. GC. . GTC.	A....... ${ }^{\text {G }}$..T..CC.A.	.C. C.	
ST4 I	.TG. . ACT.	A....... A	..C..TT.A.	T. T.	T
R17 I	.TG. . ACC. .	A....... A	..C..TT.A.	.T..C.	
J20 I	. GG . . GTC.	G....... A	..T..CT.A.	. . $\mathrm{C} . \mathrm{T}$.	
MS2 I	.TG. . ACT.	A....... A	..C..TT.A.	. T. .T.	
M12 I	. CG. . ACT .	A....... ${ }^{\text {G }}$..T..CC.C.	.T..C.	C
DL52	. GC. . GTC.	A....... ${ }^{\text {G }}$..T..CC.A.	. C. . C .	T
DL54	.GC..GTC. .	A........G	..T..CC.A.	. C. . C .	
	$\begin{aligned} & \because \\ & 260 \end{aligned}$	27	$\begin{aligned} & . .1 \\ & 280 \end{aligned}$	$\begin{gathered} \ldots \\ 290 \end{gathered}$	$\begin{aligned} & . .1 \\ & 306 \end{aligned}$
Consensus	CCBGGYCGWT	TTAAYTCGAC	YGGGDCYARA	ACGRADCAGT	GGCACTAYCC
DL1 I	..T..T..T.	. C.	T...G.T.G.	...A.A.	T.
DL2 I	..C..T..A.	. T	C...T.T.G.	...A.A	T.
DL13 I	..C..T.. ${ }^{\text {a }}$	T	C...T.T.G.	...G.A.	T.
DL16 I	..C..T.. ${ }^{\text {a }}$	T.	C...T.T.G.	. G.A.	T.
ST4 I	..C..T..T.	C.	T...G.C.A.	. A.A.	C
R17 I	..C..T..T.	. C	T...G.C.G.	...A.G.	T.
J20 I	..T.C. A.	C	T...A.C.G.	...A.T	T.
MS2 I	..C..T..T.	C	T...G.C.A.	. A.A	C
M12 I	..G..T..A.	C	T...G.C.G.	. A.A.	T.
DL52	..C., T.. A.	T.	C...T.T.G.	.G.A.	T.
DL54	..C., T..A.	. T.	C...T.T.G.	...G.A.	T.

	. . . ${ }^{1} 1$	320	330	340	350
Consensus	STCYYCKTAY	TCDMGRGGDG	CGYTNAGYGT	YACDKCGRTV	GATCAAGGTK
DL1 I	G..CT.T..T	. .ta.A. T .	..C.T..C.. C	C. .AT..G.G	
DL2 I	G..CC.T..T	. TA.G. .T.	..C.C..T.. C	C..AT..G.A	G
DL13 I	G..CC.T..T	. TA.G..T.	..C.C..T.. C	C..AT..G.A	G
DL16 I	G..CC.T..T	. TA.G. .t.	..C.C..T.. C	C. AT..G.A	G
ST4 I	C..TC.G..T	. .AC.G..G.	..T.A..T.. C	C. AT..A.A	G
R17 I	C..CC.G..T	..GC.G..G.	..T.A..T.. C	C..GT..A.A	G
J20 I	G..CC.T..C	. TA.G..A.	..C.t..t.. C	C..TT..G.C	T
MS2 I	C..TC.G..T	. AC.G..G.	..T.A..T.. C	C. AT. .A.A	G
M12 I	C..CC.T..C	..TC.G..A.	..T.G..T.. T	T..TG..A.A	
DL52	G..CC.T..T	. .ta.g..t.	..c.C..T..	C..AT..G.A	G
DL54	G..CC.T..T	.TA.G..T.	.C.C..T.. с	C. .AT..G.A	
	$\|\ldots\|_{360}$	370	$\text { }{ }_{380}{ }^{\circ}$	390	$\begin{gathered} .\|\ldots\| \\ 400 \end{gathered}$
Consensus	CYTAYAAGCG	MWSTGGGTCR	TCGTGGGGTC	GYCCGTACGA	GGAGAAARCY
DL1 I	.T..T.	CTC...... A		. C .	.G.C
DL2 1	.C.C.	CTC...... ${ }^{\text {a }}$. C	G.C
DL13 I	.C.C.	CTC......A		.	G.C
DL16 I	.C..C.	CTC......A		.	G.C
ST4 I	.C.C.	AAG......A		.	.G.C
R17 I	.C..T.	CAG......A		.	.G.C
J20 I	.C.C.	CTC...... ${ }^{\text {A }}$.	.G.T
MS2 I	.c..c.	AAG. A		. C	.G.C
M12 I	.c..t.	AAG. G		.	. A.C
DL52	.c..c.	CTC...... ${ }^{\text {A }}$.	.G.C
DL54	.C..C.	CTC...... A		.	.G.C
	$\text { . } \mid \ldots .$	$\because{ }_{420}^{l}$	$\begin{gathered} .1 \\ 430 \end{gathered}$	$\begin{aligned} 1 \\ 440 \end{aligned}$	$\underset{450}{ } \cdot\|\ldots\|$
Consensus	GGTTWYGGYT	TCTCNCTCGA	CGCACGYTCC	TGCTAYAGCC	TCTTCCCTGT
DL1 IAT..C.A.	. C .	. C	
DL2 1TT..C.	. . A.	T.	. T	
DL13 ItT..C.	. A.	. T .	.	
DL16 I	. .tt..c.	. A .	.t.	.	
ST4 I	. .tc. . C .	. C	c.	.	
R17 I	.TT..C.	. T	C.	C.	
J20 I	.TT..C.	.G.	T.	C	
MS2 I	.TC..C.	. C	C.	C	
M12 I	. .tT..t.	. A.	C.	. C	
DL52	. .TT. . C .	. A.	T.	T.	
DL54	TT. . C.	A.	T.	T.	

> HAGYCARAAY HTGACTTACA TYGAAGTGCC GCAGAACGTT GCGAAYCGGG
> T..T..G..C C........ . T....... T....
> T..T..G..T C......... .C....... C...
> T..T..G..T C........ .C....... C...
> T..T..G..T C........ .C....... C.
> A..C..G..C T......... .C.......
> A..C..G..C T........ .C.......
> C..T..A..T A........ . C.......
> A..C..A..C T......... .C........ C....
> A..C..G..C C........ .C....... C....
> T..T..G..T C........ .C.......
> T..T..G..T C........ .C.......

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54

Consensus CKWCGACCGA AGTCCTGCAR AAGGTYACYC ARGGNAAYTT YAACCTTGGB
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54

Consensus
DL1 I
DL2 I
. GT
GT
GT......C..T. .A..A..T.. C........ T
.GT......GC..T. .A..A..T.. C........ T
.GT......GC..T. .A..A..T.. C........ T
.GT...... AC..C. .G..T..T.. T........ T
.GT......AT..C. .A..T..T.. C........ T
.GT...... GT..C. .G..T..T.. T....... C
.GT......AC..C. .G..T..T.. T........ T
.TA...... GT..C. .A..G..C.. C........ G
.GT...... GC..T. .A..A..T.. C....... T
.GT......GC..T. .A..A..T.. C........ T

DL13 I
GTNGCYYTWG CAGAGGCVAG RTCGACAGCC TCACAACTCG CGACGCAAAC

DL16 I
ST4 I
..A..CT.A.G.. G.
..G..CC.A.C. G.

R17 I
..G..CC.A.C.. G.
..G..CC.A.C. G
..T..TT.A.C. G.
J20 I
MS2 I
M12 I
DL52
DL54
..C..CC.A.C.. A.
..A. TT.A.C. G.
..T..TT.A.C. G.
..G..CC.T.A.. G.
..G..CC.A.C. G
..G..CC.A.C.. G.

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54

CATTGCGCTC GTGAAGGCGT ACACTGCCGC TCGTCGCGGY AAYTGGCGCC
........... $С$.. $С$........
. C..T.......
..........
...........
.......... T .. T.
T ..T
..........
.......... T
........... T .. T........
..........
......... $С$..........

AGVCGSTCCG CTAYCTYGCC CTWAACGAAG AYCGRAARTT YCGRTCRAAA
..A..C... ...T.. C... ..T...... . C.. A..A.. T.. G.. A...
..A..C... ...T..T.. ..A...... .T..G..G.. C..A..G...
..A..C.... ...T..T... ..A...... .T..G..G.. C..A..G.
..A.C.... ...T..T... ..A...... .T..G..G.. C..A..G.
..G.C.... ...C..T... ..A...... .T..A..G.. T..A..A...
..G..C... ...C..C... ..A...... .T..A..A.. T..A..A..
..G..C... ...T..T... ..A...... .T..G..A.. C..G..A..
..G..C... ...C..T.. ..A...... .T..A..G.. T..A..A...
..C..G.... ...C..C... ..A...... .T..A..G.. T..A..A.
..A..C.... ...T..T... ..A...... .T..G..G.. C..A..G.
..A.C.... ...T..T... ..A...... .T..G..G.. C..A..G...

CACGTGGCVG GYAGRTGGTT GGAGTTGCAG TTCGGHTGGY TACCRCTHAT
........ . . C..G..... C...T G.. C. .
........A. .C..G....C... C G.. C.
.......A. .C..G....C...C G..C..
........A. .C..G....C...C G..C..
.......C. .C..G.....T...TA..A..
.......C. .C..G....A...TA..A..
........ A. .T..A....T... CG..T..
.......C. .C..G....T...T A.. A..
.......C. .C..G....C...T

.A. .C..G.....C...CG..C..

	.1 760	0770		790	800
Consensus	GAGYGATATC	CARGGYGCAT	AYGAGATGCT	TACGAAGGTT	CAYCTTCAAG
DL1 I	. . C	. $\mathrm{G} . \mathrm{C}$. T.		. C.
DL2 I	...C.	. G. . C	. T		. C.
DL13 I	.	. G. . C	. T.		. C
DL16 I	. C .	. G. . C.	T.		. C.
ST4 I	T.	.G. .T.	. T.		. C.
R17 I	T.	. A. T.	. T .		. C.
J20 I	$\ldots \mathrm{C}$. A. T.	. T .		. T .
MS2 I	T.	.G. .T.	. T		. C
M12 I	. T.	. G. C.	. C.		. C.
DL52	. C.	. G. . C.	. T .		. C
DL54	. C.	. G. . C.	.T.		. C.

$$
\left.\cdots|\cdots|\right|_{810} \cdots|\cdots|_{820} \cdots|\cdots|_{830} \cdots|\cdots|_{840} \cdots|\cdot|_{850}^{\mid}
$$

Consensus

DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54

$$
\because
$$

AGTTTCTYCC TATGAGRGCC GTRCGNCARG TNGGYACTAA CRTYAAGTTA
....... C..A... ..G..C..G. .A..C..... . G.C
......T..G... ..A..G..A. .G..C..... .A.T.
......T..G... ..A..G..A. .G..C..... .A.T
......T..G... ..A..G..A. .G..C..... .A.T
......T..A.. ..A..T..G. .C..T..... .A.C.....
.......T..A... ..A..T..A. .T..T..... .A.T
......T..A... ..A..A..G. .G..T..... .G.T
......T..A... ..A..T..G. .C..T..... . A.C
....... C.A... ..A..T..G. .C..C..... .A.T
......T..G... ..A..G..A. .G..C.... .A.T.
......T..G... ..A..G..A. .G..C..... .A.T.....

Consensus
RATGGCCGYY TKKCGTATCC AGCTGCAAAC TWCCARACWA CGTGCAACAT
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54

G

G.......

G.......TT .GT....... A... G..T
G.......TT .GT...... A... G.. T.
G.......TT .GT....... A... G..T.
A.......TC .GT.......T...G..A.
G.......CT .GG.......T...G..A.
G.......CT .GT....... A... G.. T.
G.......TC .GT...... T... G.. A.
G.......CC .TT...... A... G..A.
G...... TT .GT....... A...G..T.
G......TT .GT.......A...G..T. \qquad

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I

ATCRCGACGW ATCGTGATAT GGTTTTACAT AAACGATGCA CGWTTGGCHT
...G....T T.....
...A....A T..... C.
...A....A

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54
Ggttgtcgic tctrgatatc ttgaicccac taggtatagt gtgagaiang
......... ... A.
......... ... A
......... ... A.
......... ... A
......... ... A
......... .. A
......... ... A
......... ... A
.........
............. A

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54
GTGCCYTTCT CATTCGTTGT CGACTGGCTC CTDCCTGTDG GDAACATGCT
..... T
.T.
.....T....
..T.....A. .A.
.T.....T. .G.
..... T
T.
T..
.......................................
.....T.... A. .
.....т....
.....T....A. .T.
.....C....G......G. .G.
.....т.... G.
......т.
T. .

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54
 MGAGGGCCTH ACRGCYCCMG TDGGATGYTC YTACATGTCD GGRACAGTTA C.........A ..G..C..C. .A.....T.. T.........G ..A....... C........C ..A..C..C. .A.....C.. C.........T ..A....... C........C ..A..C..C. .A.....C.. C.........T ..A....... C........ C..A..C..C. .A.....C.. C........ T .. A....... C.........T ..G..C..C. .G......C.. C.........A ..A....... C.........T ..G..T..C. .T......C.. С......... A .. A.
 C........T ..G..C..C. .G.....C.. C.........A ..A....... A........T ..G..T..A. .A.....T.. T.........A ..G.......
 C........ С ..A..C..C. .A......C.. C.........T .. A.

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54

GYTCWCARGC TTACAAAGTA ACYTGTAGYG TKCGTCAGAG CTCTGCGCAG .C..T..G.. C.....C. .T .T..T..G.. C.....C. . T .T..T..G.. C.....C. . T
.T..T..G.. C..... C. . T
.T..A..G..C.....C. .T
.C..A..G.. C.....C. .T
.C..T..G.. C.....T. .T
.T..A..G.. C.....C. .T
.C..A..A.T.....C. . G
.T..T..G.. C..... C. . T
.T..T..G.. C.....C. .T

AAYCGCAART ACACYATYAA RGTYGARGTR CCDAARGTGG CWACYCARAC
..T....G.T..C.. G..C..A..G ..G..A.... .T.. C..G..
..C....G.C..T.. G..T..G..A ..A..A.... .T.. C.. A..
..C....G.C..T.. G..T..G..A ..A..A.... .T..C..A..
..C....G.C..T.. G..T..G..A ..A..A.... .T..C..A..
..T....A.C..C.. A..C..G..G ..T..A.... .A..C..G..
..T.....A.C..T.. A..C..G..G ..T..G.... .A..T..G..
..C....G.C..C.. A..C..A..G ..A..A.... .T..T..G..
..T.....A.C..C. A..C..G..G ..T..A.... .A..C..G..
..C....A.C..C. G..C..G..G ..G..A.... .A..C..A..
..C....G.C..T.. G..T..G..A ..A..A.... .T..C..A..
..C....G.C..T.. G..T..G..A ..A..A.... .T..C..A.. YGTYGGYGGY GTASAGCTTC CTGTAGCCGC RTGGCGTTCG TAYYTRAATA C..T..T..C ...C..... G......... .. TC.G.... C..C..T..T ...C..... A......... .. CT.G.... C..C..T..T ...C...... A......... .. $C T . G$. C..C..T..T ...C..... A......... .. $C T . G$. T..T..T..T ...G...... A......... .. CT.A....
T..T..T..T ...G..... A........ .. $C T . A . .$.
C..C..T..C ...C...... A......... .. CT.A....
T..T..T..T ...G...... A......... .. CT.A....
C..T..C..T ...G...... A......... .. $C C . G$.
C..C..T..T ...C..... A........ .. $C T . G$.
C..C..T..T ...C...... A......... .. CT.G....

R17 I
J20 I
MS2 I
M12 I
DL52
DL54

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54
GATCTTCCTY GCGATCTTTC TCTCGAAATT TACCAATCAA TTGCTTCTGT
..........C
........... C
.......... C
......... T
...........
.......... C
.......... C
.......... C
........... C
.......... C
...........
C \qquad
\qquad
\qquad
. C \qquad
\qquad

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54

CGCTACTGGA WGCGGTRATC CGCACAGTRR MGACTTTWCR GCAATTGCTT
A.....G...AG A......A.A
A.....G...AG A......A.A
A....G...AG A......A.A
A.....G...AG A......A.A
A.....G...GA C......A.A
A.....A.. GA C......A.A
A....G... AG A......A. G
A.....G...GA C......A.A
T.....A...GA C...... T.A
A.....G...AG A......A.A
A.....G...AG A......A.A

STOP 3

Consensus
ACYTAAGRGA YGARTTGCTH ACWAAGCAYC CVWCNTTRGG HWMYGGTAAT
DL1 I
DL2 I
..C....G.. C..G..... A ..T.....T. .CT.C.. A.. CAAT
..C....A.. C..A..... A ..T.....T. .GT.C..A.. AAAT
DL13 I
..C....A.. C..A..... A..T.....T. .GT.C.. A.. AAAT
DL16 I
..C....A.. C..A.....A ..T.....T. .GT.C..A.. AAAT.
ST4 I
..T....G.. C..A..... C..A.....T. .GA.C..A.. TTCT
R17 I
..C....G.. C..A....T ..A.... T. .GA.T..A.. CTCT
J20 I
MS2 I
..C....A.. C..G.....C ..A.....T. .GT.T..A.. AAAT.
M12 I
..T....G.. C..A.... C ..A.....T. .GA.C..A.. TTCT.
DL52
..C....G.. C..G.....T ..T.....C. .GA.G..A.. TTCC.
DL54
..C....A.. C..A..... A ..T.....T. .GT.C.. A.. AAAT
..C....A.. T..G.....T ..T.....T. .AT.A..G.. CAAT.

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54
GACGAGGCGA CCCGYCGNRC YYTAGCTATY GCTAAGCTNC GGGAGGCGAA
.........C..AG. TT.......T T.
.........C..GG. TC...... C C
.........C..GG. TC...... C C.
.........C..GG. TC.......C C.
T..TA. CT....... C
T..CA. CT.......T
C..GG. TT.......C C.
T..TA. CT....... C A.
C..TG. TT.......T A.
C..GG. TC.......C C.
C..GG. TC...... T C.

TGRDSRDYGY GGYCAGATHA AYAGRGARGG TTTCTTACAY GAYAAATCCT
..AACGAT.T ..C.....C. .T..A..G.. T .. C.
..AGCGGT.C ..C.....T. .T..G..A.. T.
..AGCGGT.C ..C.....T. .T..G..A..C ..T.
..AGCGGT.C ..C.....T. .T..G..A..
..ATCGGT.C ..T.....A. .T..A..A..T .. C.......
..ATCGGT.C ..C.....A. .T..A..A..T .. C.......
..AACGAT.T ..C.....T. .C..A..A..T .. C.......
..GTGATC.C ..T.....A. .T..A..A.T .. C.......
..ATCGAT.T ..C.....T. .C..A..A..T .. C.
..AGCGGT.C ..C.....T. .T..G..A..
..AGCGAT.T ..C....T. .T..A..A..T .. C......

TRTCRTGGGA TCCGGATGTT TTACAAACCA GCATCCGTAG CCTWATHGGC
.G..A.... T. . T. . .
.A.G....
.A..G.... T. ..
.A..G....
.G..A.... T.. T
.G..A.... T. . C.
.G..G.... T..
.G..A.... T..
.G..G.... A.. A.
.A..G.... T.. T.
.G..A....T..T.. AAYCTYCTCT CTGGYTAYCR HTCGTCGTTG TTTGGGCAAT GCACGTTYTC
DL1 I
..C..T....C..T.G T.
T........ C.
DL2 I
..C..T....C..C.G C. C. .
DL13
.C..T....C.C.G C
.C.
DL16 I ..C..T....C..C.G C...................................
ST4 I
.C..C....C..C.G A.

	2160	2170	2180	2190	2200
Consensus	CAACGGTGCY YCDA	GC AC	CA GG	GCG CC	
DL1 IC T.G.				
DL2 I	$\ldots \mathrm{C}$ T.A.				
DL13 IC T.A.				
DL16 IC T.A.				
ST4 I	..C T.T.				
R17 I	..C T.T.				
J20 I	. C T.T.				
MS2 I	\ldots...T C.T.				
M12 I	..C T.G.				
DL52	..C T.A.				
DL54	C T.G.				

Consensus AGTTCGCTGA ACAAGCAACC GTTACCCCCC GCGCTCTRAG AGCGGCNYTR
DL1 I
DL2 I CC.A

DL13 I
.G..AC.A
DL16 I
G.. AC.A

ST4 I
......AC.A
R17 I
J20 I
G..TC.A

MS2 I
....TC.A

M12 I
........GT.A
......TC.A
DL52
.A.CC.G
DL54
G.TC.A

Consensus	YTGGTCMGAG	ACCARTGTGY	GCCGTGGATY	AGACACGCGG	TCCRCTAYAR
DL1 I	C.... C.	. G....T	T		...G...C.A
DL2 I	C..... C .	.G....T	. C		.G...C.A
DL13 I	C..... C	. G. . . . T			G. . C.A
DL16 I	C..... C	G.... T	C		G. . C. A
ST4 I	T.....C.	A....C			.G...T.A
R17 I	T..... C .	. A.... C	C		.A..T.A
J20 I	C.... A.	. G....C	C		G. . T.A
MS2 I	T..... C.	. A....C			G. . T.A
M12 I	C.... A.	.G....C			G. . C.A
DL52	C.... C.	. G. . . . T			.G...C.A
DL54	C.....C.	G....C			A. . C. G

	$2310 \quad 2320 \quad 2330$	

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54

Consensu ATGTACCTYC AGAAAGGRGT HGGHGVYTTY ATHMGVCGYC GBCTCMRHTCT.G.. T..C.CC..C ..TA.A..C. .C... AAAC.A.. T..C.CC..C ..AA.G..T. .C... AAA..C.A.. T..C.CC..C ..AA.G..T. .C...AAA..C.A. T.. C.CC.. C ..AA.G..T. . C... AAA.. C.G.. C..T.CC..T ..CA.A..C. .G... AAA.C.G.. C..C.CT..T ..TA.A..C. .G...AAA.T.A.. T..C.CT..T ..AC.G..T. .T...AGA.C.G.. C..T.CT..C ..CA.A..C. .G...AAA..T.A.. A..A.CC..C ..CA.G..C. .T...AAA.T.A.. T..C.AT..T ..AC.C..T. .T...CGC.T.G.. T..T.GC..C ..AC.C..C. .C...CGT..

Consensus YRTYGGTATM GAYCTGAATG ATCARWCGAT CAAYCARCKT YTDGCWMARC

TG.C..... A ..C...... AA.... ...T..G.G. C.A..TC.A.

DL16 I

TG.C.... A ..C......AA.... ...T..G.G. T.A..TC.A.
TG.C.... A ..C......AA... ...T..G.G. T.A..TC.A.

ST4 I CG.T.....A ..T......AT.... ...C..G.T. C.G..TC.G.
R17 I CG.T.....A ..C......GT.... ...C..G.G. C.A..TC.G.
J20 I
MS2 I
M12 I
DL52
DL54
CG.T.....A ..C......AA.... ...C..G.G. C.G..TC.A.
CG.T.....A ..C......AT.... ...C..G.G. C.G..TC.G.
CG.T.....A ..C......AA.... ...C..G.G. C.G..TC.A.
TA.C..... $. . C A A T . . G . G . C . T . . A A . A$.
TA.C..... .. C.......AA.... ...T..A.G. C.T..AA.A.

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54

WNGGCAGYRY MGATGGHTCD YTDGCRACKA TWGAYYTATC GTCNGCNTCB
AG......CAT A.....T..T T.A..G..G. .A..CC.... A..T.. G
AG.....CAT A.....C..T T.A..A..G. .A..TT.... ...G..T..T
AG.....CAT A.....C..T T.A..A..G. .A..TT.... ... G..T..T
AG......CAT A.....C..T T.A..A..G. .A..TT.... G..T.. T
AG......CGT A.....T..G C.T..G..G. .A..CT.... ...T.. A.. C
AA......CGC A.....T..G C.T..G..G. .A..CT.... ...C.. G.. C
AA.....CGT C.....C..A T.G..G..G. .A..CT.... ...G.. C.. T
AG.....CGT A.....T..G C.T..G..G. .A..CT.... ...T..A..C
AA.....TAT A.....A..G T.A..G..T. .A..CT.... ...T..A.. C
TT......CAT C.....T..T T.A..G..G. .T..TT....T..T..T
TC......TAT C.....T..T T.A..G..G. .A..TT....T..T.. T

GAYTCYATHT CBGAYCGCCT NGTKTGGRRN TTYCTYCCAY CKSARHTRTA ..T..C..C. .T..C..... G..G...AGC ..T..C...C .TG.GC.A.. ..T..T..C. .T..C..... G..G...AGT ..C..C...C .TG.GT.A..
..T..T..C. .T..C..... G..G...AGT ..C..C... C .TG.GT.A..
..T..T..C. .T..C.... G..G...AGT ..C..C...C .TG.GT.A.
..T..C..C. .C..T..... G..G...AGT ..T.. C...C .TG.GC.A..
..T..C..T. .C..C..... A..G...AAT ..C..T...C .TG.GC.A..
..C..C..C. .T..C..... G..G...AGT ..C..C...C .TG.GC.A..
..T..C..C. .C..T..... G..G...AGT ..T..C...C .TG.GC.A..
..T..C..C. .T..C..... G..G...AGT ..C..C...C .TG.GC.A..
..T..C..A. G..C..... C..T...GAA ..C..C...T .GC.AA.G..
..C..C..A. .G..C..... T..T...GAG ..T..C...C .GC.AA.G..

YKCRTAYCTB KMKMRWATYC GYTCVYMMYR HGGAATCRTW GAYGGNSRKR
TT.A..T..C GATCGT..C. .C..CCACTA C......G.A ..T..CGAGA
TT.A..T..C GATCGT..C. .C..CCACTA C.......G.A ..T..GGAGA
TT.A..T.. C GATCGT..C. .C.. CCACTA C.......G.A ..T.. GGAGA
TT.A..T.. C GATCGT..C. .C.. CCACTA C.......G.A ..T..GGAGA
TT.A..T..C GATCGT..C. .C..ACACTA C.......G.A ..T..CGAGA
TT.A..T..T GATCGT..C. .C..GCACTA C.......G.A ..T..CGAGA
TT.A..T..C GATCGT..C. .C..CCACTA T.......A.A ..T..AGAGA
TT.A..T.. $С$
СТ.A..T.. С GATCGT..C. .C..CCACTA C.......G.A ..T..TGAGA
CG.G..C..G TCGAAA..T. .T..GTCACG A.......G.T ..C..ACGTG
TG.G..C..G TCTAAA..T. .T..GCCACG A......G.T ..C..ACGTA
Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54

YRRTMSRVTG GSAMCTATTT TCCACDATGG GWAAYGGDTT YACNTTYGAR CGA.ACGG.. .G.A......A.... .A..T..G.. C..T..C.. A CGA.ACGA.. .G.A.....A.... .T..T..G.. C..T.. C.. A CGA.ACGA.. .G.A.....A... .T..T..G.. C..T.. C. . A
CGA.ACGA.. .G.A.....A.... .T..T..G.. C..T..C.. A
CGA.ACGA.. .G.A..... A.... .A..T..G.. C..G..T.. G
CGA.ACGA.. .G.A.....G.... .A..T..G.. T..A..T..G
CGA.ACGA.. .G.A.....A... .A..T..G.. C..T..T.. A
CGA.ACGA.. .G.A.....A.... .A..T..G.. C..A..T..G
CGA.ACGA.. .G.A.....A.... .A..C.. G.. C..T..T.. G
TAG.CGAC.. .C.C..... A.... .T..T..T.. T..C..T.. G
TGA.CGAC.. .C.C.....T.... .T..T..A.. T..C..T.. A

Consensus	CTAGAGTCCA	TGATMTTYTG	GGCWATAGTN	AARGCRACYM	WRAYYCATTT
DL1 I		A. .T.	.T.....G	..A..G..CC	AG. TC
DL2 I		C. . T.	T.....G	..A..A. CC	AG. TC.
DL13 I		C. . T.	T.... G	..A. A. . CC	AG. TC.
DL16 I		C. . T.	T.....G	..A..A. CC	AG. TC.
ST4 I		A. C.	. A.C	..A..G..CC	AA. TC.
R17 I		A. C.	. A. . . . C	..A..A. CC	AA. TC
J20 I		A. . T.	T..... ${ }^{\text {A }}$..A..A..CC	AG. TC.
MS2 I		A. C.	A.... C	..A..G..CC	AA.TC....
M12 I		A. T.	T.....C	..A..G..CC	AA.TC....
DL52		. A. T. .	. A. . . . C	..G..A..TA	TG.TC
DL54		C..T.	...A.....T	..G..A..CA	TG.CT.

Consensus
DL1 I
DL2 I
TGGTAACSYY GGAACMATWG GCATCTAYGG GGACGATATY ATATGTCCCA
.......GCC C..A. C.. T
DL13 I
....... GCC .
C. T

DL16 I
ST4 I
.......GCC .
...C.A.
.......GCCC..A. C. T

R17 I
.......GCC .
..... C.
.......GCCC..A.C..C
J20 I
....... GCC .
.....C.. A.C. T
MS2 I
.......GCCC..A.C. T
M12 I
........GCCC..A.
DL52
DL54
.CTTA..T.

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54

SWGAGATTGC ACCYCGTGTG CTRGAGGCDC THRSCTWCTA CGGTTTYAAA
GT....... ... C..... .. A..... A. .TGC.. A... T...
GT....... ...C..... .. A.....A. .TGC..A... C...
GT....... ...C..... .. A.....A. .TGC..A... C..
GT....... ...C..... .. A.....A. .TGC..A... C.
GT....... ...C..... .. G.....A. .TGC..A... C...
GT....... ...C..... .. A.....A. .TGC.. A... T.
GT....... ...C..... .. A.....G. .AGC..A... C.
GT........ ...C..... .. A.....A. .TGC..A... T.
GT....... ...C..... .. A.....A. .TGC.. A... T.
CA....... ...T..... .. A.....T. . CAG..T... T.
CA....... ...T..... .. A.....T. .CAG..T...T..

CCGAATCWBY SKAARACGTT CRTSWCVGGK CKCTTTCGCG AGWSCTGYRG
.......TTC GT..A.... .G.GT.G..G .T........ .. AG... CG.
.......TTC GT..A.... .G.GT.A..G .T....... .. AG...TG.
.......TTC GT..A.... .G.GT.A..G .T........ .. AG...TG.
TTC GT..A.... .G.GT.A..G .T....... .. AG...TG.
TCC GT..A..... .G.GT.C..G .T....... .. AG...CG.
.TTC GT..A..... .G.GT.C..G .T....... .. AG...CA.
.TTC GT..A.... .G.GT.A..G .T....... .. AG...TG.
TTC GT..A..... .G.GT.C..G .T........ .. AG...CG.
TTC GT..A.... . G.GT.C..G .T....... . . AG...CG.
.AGT CG..G..... .A.CA.G..T .G........ ..TC...TG.
AGT CG..G..... .A.CA.G..T .G........ ..TC...TG.

YGCRCAYTWY TWCSGYGGTG YYGATKKCAA ACCGWTYTAY ATCARGAAAC
C..G..C.TT .A.C.T.... TC...GT...T.T.. C A.....
C..G..C.TT .A.C.T.... TC...GT...T.C..CA....
C..G..C.TT .A.C.T.... TC...GT...T.C.. C A.....
C..G..C.TT .A.C.T.... TC...GT...T.C..CA....
C..G..C.TT .A.C.T.... TC...GT...T.T..CA....
C..G..C.TT .A.C.T.... TC...GT...T.T..CA....
C..G..C.TT .A.C.T.... TC...GT...T.T..CG.....
C..G..C.TT .A.C.T... TC...GT...T.T.. C A.....
C..G..C.TT .A.C.T.... TC...GT...T.C..CA....
T..A..T.AC.T.G.C... CT...TG...A.T..TA....
T..A..T.AC.T.G.C.... CT...TG...A.T..TA....

Consensus
DL1 I
CHGTYRACAA YCTCTTYKCC STBWKKCTGW TMHTNAAYMG RCTDMGSGGN
DL2 I
.A..TG.... C.....CT.. C.TATG...A .AA.G..TC. G..TA.G..G
DL13 I
.A..TG.... T.....CT.. C.TATG...A .CA.G..TC. G..TA.G..G
.A..TG.... T.....CT.. C.TATG...A .CA.G..TC. G..TA.G..G
DL16 I
ST4 I
.A..TG.... T.....CT.. C.TATG...A .CA.G..TC. G..TA.G..G
.T..TG.... T.....CG.. C.TATG...A .AT.G..TC. G..AC.G..T

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54

MTGCHGACTA YTACGTRGTY AGYCSBCMNR MNGCYADRWM KCRKTDYGAB
C...C..... T.....A..C ..C.CC.CGA CC..--AGTC T.AG.TT-.T
C...C..... C.....A..T ..C.CT.CGA AT..--TGTC T.GG.TT-.T
C...C.... C.....A..T ..C.CT.CGA AT..--TGTC T.GG.TT-.T
C...C.... C.....A..T ..C.CT.CGA AT..--TGTC T.GG.TT-.T
C...C.... C.....A..C ..C.CG.CCA CG..--AGTC T.GG.AT-.T
C...C..... C.....A..C ..C.CG.CTA CG..--GGTC T.GG.AT-.T
C...T..... C.....A..C ..C.CC.CGA CA..--GGTC T.AG.TT-.T
C...C..... C.....A..C ..C.CG.CTA CG..--AGTC T.GG.AT-.C
C...T..... C.....A..C ..C.CT.CAA CT..--TGTC T.AG.AT-.T
A...A.... C.....G..T ..T.GT.AGG AA..T.AAAA G.GT.AC.. G
A...A.... T.....G..C ..C.GC.AGG AA..C.GGAA G.GT.GC.. G

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I

RVYMANMCHB YNTAYGGRMG BHYVCTYKCK SAYDYYCRYA SCWCKSSTYW ACTA.AA.TG CC..C..GA. GTTA..CG.G G.TACC.GT. C.T.GGG.TT ACCA.AA.TG CA..T..GA. GTTA..CG.G G.CGCC.GT. C.T.GGG.TT ACCA.AA.TG CA..T..GA. GTTA..CG.G G.CGCC.GT. C.T.GGG.TT ACCA.AA.TG CA..T..GA. GTTA.. CG.G G.CGCC.GT. C.T.GGG.TT ACCA.GA.TC CG..T..GC. GCTA..CG.G G.TACC.GT. C.T.GGG.TT ACCA.GA.TC CG..T..AC. GCTG..CG.G G.TACC.GT. C.T.GGG.TT ACTA.GA.CG CA..T..GA. GTTG..CG.G G.CGCC.GT. C.T.GGG.TT ACCA.GA.TC CG..C..GC. GCTG..CG.G G.TACC.GT. C.T.GGG.TT ACTA.GA.CG CG..T..GA. GCTG..CG.G G.TACC.GT. C.T.GGG.TT AGTC.CC.AT CT..T..GC. CACC.. CT.T C.CTTT.AT. G.A.TCC.CA GATC.TC.AG TA..T..AC. TACC..TG.T C.TTTC.AC. G.T.TCC.CA

YCGKYTKKMY MGHRYRCCCG YNHVWRARCG HRARYDYTCT YMRCGHRAAG
C..TC.TGCT C.TAT--... CAAAAG.G.. AA.GCGC.-. TAG..AG...
C..TC.TGCT C.TAT--... CGAAAG.G.. AA.GCAC.-. TAG.. AG...
C..TC.TGCT C.TAT---.. CGAAAG.G.. AA.GCAC.-. TAG..AG.
C..TC.TGCT C.TAC--... CGAAAG.G.. AA.GCAC.-. TAG..AG...
C..TC.TGCT C.TAT---.. CTCGAG.A.. CA.GTTC.-. CAG..AA...
C..TC.TGCT C.TAT--... CTCGAG.A.. CA.GTTC.-. CAG..AA...
C..TC.TGCT C.TAT--... CGAAAG.G.. TA.GCAC.-. TAG.. AG..
C..TC.TGCT C.TAT--... CTCGAG.A.. CA.GTTC.-. CAG.. AA..
C..TC.TGCT A.AAT---.. CAAAAG.G.. TA.GCGC.-. TAG.. AG.
T..GC.TTAC C.CGTG.... TATCTA.A.. TG.ATTT... CCA..TG..
T..GT.GTAC C.CGTA.... CCTCTA.A.. CG.ATTT... TCG..CG...

MRYGRCASYG GYCGCYWCAT MRCDTGGTWC CATAMTGGHG GTSARRTYAY
CAT.A..GT. .T...TA... AG.A....T.C...A. ..G.GA.C.C
CAT.A..GT. .T...TA... AG.A....T.C...A. ..G.AA.C.C
CAT.G..GT. .T...TA... AG.A....T. C...A. ..G.AA.C.C
CAT.A..GT. .T...TA... AG.A....T.C...A. ..G.AA.C.C
CAT.A..GT. .C...TA... AG.G....T.C...A. ..G.AG.C.C

R17 I
J20 I
MS2 I
M12 I
DL52
DL54

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54

CAT.A..GT. .T...TA... AG.G....T.C...A. ..G.AA.C.C
CAT.A..GT. .T...TA... AG.A....T. C...A. ..G.AA.C.C
CAC.A..GT. .T...TA... AG.G....T. C...A. ..G.AA.C.C
CAT.A..GT. .T...TA... AG.G....T. C...A. .. G.AA.C.C
AAT----CC. .T...CT... CA.T....A.A...T. ..C.AG.T.T
AGT----CC. .T...CT... CA.T....A.A...C. ..C.AA.T.T

YGAYASYAYK AMGWCCSCHR GSGTKCGYVT HVTRCGMACD TCGGARTGGC
C..T.GT.TG .A.T..G.TG .C..G..CG. AA.G..C..TG....
C..T.GT.TG .A.T..G.TG .C..G..TG. AA.A..C..T
C..T.GT.TG .A.T..G.TG .C..G..TG. AA.A..C..TG....
C..T.GT.TG .A.T..G.TG .C..G..TG. AA.A..C..TG....
C..C.GT.TG .A.T..G.CG .C..G..TA. TA.G..C..TG....
C..C.GT.TG .A.T..G.CG .C..G..CA. CA.G..C..T G....
C..T.GT.TG .A.T..G.CG .C..G..TG. TA.G..C..TA....
C..C.GC.TG .A.T..G.CG .C..G..CG. TA.A..C..TG....
C..T.GT.TG .A.T..G.TG .C..G..CG. AC.G..C..TG..-T..C.CC.CT .C.A..C.AA .G..T..CC. TG.G..A..GA.... T..C.CC.CT .C.A..C.AA .G..T..CC. TG.G..A..AA....
 TRRCRSYRGT KCCMHYMTTC CCKCAGGARK RTGRCRMMHG CGAGCTCTCC
.GA.GCCG.. T..CACA... ..T......GT G..G-GCCA.
.GA.GCCG.. T..CATA... ..T......AT G..G-GCCA.
.GA.GCCG.. T..CATA... ..T......AT G..G-GCCA.
.GA.GCCG.. T.. CATA... ..T......AT G.. G-GCCA.
.AA.GCCG. . T..CACA... ..T..... GT G..G-GCCA.
.AA.GCCG.. T..CACA... ..T......GT G..G-GCCA.
.AA.GCCG.. T..CACA... ..G......GT G..G-GCCA.
.AA.GCCG.. T..CACA... ..T......GT G..G-GCCA.
.AA.AGTG.. G..ACTC... ..T......AG A..G.AACT.
.AG.GGTA.. G..ATCC... ..T......AG A..A.ACAC.
STOP 4 Grp I STOP 4 JS

TMGKYAGCWS RSCKAGGGAC CCCCGTAAWC GGGGTGGGTG TGCYCGMRAR
Consensus
DL1 I
.C.GT...TG AC.G...... A.
.C.GT...TG AC.G......A.T.. AA.G
DL2 I
.C.GT...TG AC.G......A.AA.G
DL13 I
.C.GT...TG AC.G......A.AA.G
DL16 I
.C.GT...TG AC.G...... A. T.. AA.G
.C.GT...TG AC.G......A.T.. AA.G
.C.GT...TG AC.G......A. AA.G
.C.GT...TG AC.G......A.T..AA.G
M12 I

DL54
.A.TC...AC GG.T...... ---C. CG.A
Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
M12 I
DL52
DL54

AGCRSSKRTY CRYSDWARCR RYCCGGMTSS AYMGRARKRW BSKCSKRMTT ...ACGGG.C .GCGAA.G.G GT--..C.CC .CC.A.AGGT GGG.GGGC.. ...ACGGG.C .GCGTA.G.G GT--..C.CC .CC.A.AGGT GGG.GGGC.. ...ACGGG.- -GCGAA.G.G GT....C.CC .CC.A.AGGT GGG.GGGC..
 ...GGCTA.T .ATCGT.A.A AC---.A.GG .TA.G.GTAA TCT.CTAA..
DL54
...GGCTA.T .ATCGT.A.A AC---.A.GG .TA.G.GTAA CCT.CTAA..

(See App C4) This 3' alignment of JS is not accurate.

```
Consensus
DL1 I
DL2 I
DL13 I
```

YGGYSMMKRR MYYTSCYYBK VWAGWSASSR CCCRGGATTC TCCCGATTTG
C..CCCAGGG ACC.C.CCCT AA..AG.GGA ...G
C..CCCAGGG ACC.C.CCCT AA..AG.GGA ...G
C. . CCCAGGG ACC.C.CCCT AA..AG.GGA ...G
C..CCCAGGG ACC.C.CCCT AA..AG.GGA ...G
C..CCCAGGG ACC.C.CCTT GA..AG.GGG ...G
C..CCCAGGG ACC.C.CCCT GA..AG.GGA ...G......
C..CCCAGGG ACC.C.CCCT AA..AG.GGA ...G......
C..CCCAGGG ACC.C.CCCT AA..AG.GGA ...G

Consensus GTAACTAGCT GCTTGGCTAG TKACCACCCA
DL1 I
.........T.......
DL2 I
......................
DL13 I
...........
DL16 I
.T.......
ST4 I
.T.......
R17 I
.........
......... G
G........
J20 I
MS2 I

.........T.......
M12 I
---------- --------------------
DL52
---------- ---------- ---------
DL54

Appendix C2
JS Amino Acids
Amino acid sequences of Leviviridae Group JS. Note the YGDD motif in all Leviviridae replicase proteins.

Group JS isolates DL52 and DL54. The amino acid composition is highly conserved among these two strains.

Alignment: Align JS strains maturation protein.

Consensus DL52 matur DL54 matur

> MRAFSVLDQE SETFVPSVRV YADGQVEDNS FSLKYRSNWT PGRFNSTGSR

MRAFSVLDQE SETFVPSVRV YADGQVEDNS FSLKYRSNWT PGRFNSTGSR
MRAFSVLDQE SETFVPSVRV YADGQVEDNS FSLKYRSNWT PGRFNSTGSR

$$
\cdots|\ldots|_{60} \cdots \cdot|\ldots|_{70} \ldots .\left.\left.\left.\right|_{80} \ldots\right|_{90} \ldots\right|_{100}
$$

Consensus DL52 matur DL54 matur

TEQWHYPSPY SRGALSVTSV DQGAYKRSGS SWGRPYEEKA GFGFSLDARS TEQWHYPSPY SRGALSVTSV DQGAYKRSGS SWGRPYEEKA GFGFSLDARS TEQWHYPSPY SRGALSVTSV DQGAYKRSGS SWGRPYEEKA GFGFSLDARS

Consensus	CYSLFPVSQN LTYIEVPQNV ANRASTEVLQ KVTQGNFNLG VALAEARSTA
DL52 matur	CYSLFPVSQN LTYIEVPQNV ANRASTEVLQ KVTQGNFNLG VALAEARSTA
DL54 matur	CYSLFPVSQN LTYIEVPQNV ANRASTEVLQ KVTQGNFNLG VALAEARSTA

Consensus SQLATQTIAL VKAYTAARRG NWRQTLRYLA LNEDRKFRSK HVAGRWLELQ

Consensus DL52 matur DL54 matur

FGWLPLMSDI QGAYEMLTKV HLQEFLPMRA VRQVGTNIKL DGRLSYPAAN FGWLPLMSDI QGAYEMLTKV HLQEFLPMRA VRQVGTNIKL DGRLSYPAAN FGWLPLMSDI QGAYEMLTKV HLQEFLPMRA VRQVGTNIKL DGRLSYPAAN

Consensus YQTTCNISRR IVIWFYINDA RLAWLSSLGI LNPLGIVWEK VPFSFVVDWL DL52 matur DL54 matur

YQTTCNISRR IVIWFYINDA RLAWLSSLGI LNPLGIVWEK VPFSFVVDWL YQTTCNISRR IVIWFYINDA RLAWLSSLGI LNPLGIVWEK VPFSFVVDWL

Consensus	LPVGNMLEGL TAPVGCSYMS GTVTDVITGE SIISVDAPYG WTVDRQGTAK
DL52 matur	LPVGNMLEGL TAPVGCSYMS GTVTDVITGE SIISVDAPYG WTVDRQGTAK
DL54 matur	LPVGNMLEGL TAPVGCSYMS GTVTDVITGE SIISVDAPYG WTVDRQGTAK

Consensus AQVSAMHRGV QSVWPTTGVY VKSPFSMVHT LDALALIRQR LLR DL52 matur AQVSAMHRGV QSVWPTTGVY VKSPFSMVHT LDALALIRQR LLR DL54 matur AQVSAMHRGV QSVWPTTGVY VKSPFSMVHT LDALALIRQR LLR

Alignment: Align JS strains capsid.

$$
\cdots|\cdots|_{10} \cdots \cdot|\cdots|_{20} \cdots \cdot|\cdots|_{30} \cdots \cdot|\cdots|_{40} \cdots \cdot|\cdots|_{50}
$$

Consensus	MASNFTQFVL VDNGGTGDVT VAPSNFANGV AEWISSNSRS QAYKVTCSVR
DL52 capsi	MASNFTQFVL VDNGGTGDVT VAPSNFANGV AEWISSNSRS QAYKVTCSVR
DL54 coat	MASNFTQFVL VDNGGTGDVT VAPSNFANGV AEWISSNSRS QAYKVTCSVR

$$
\left.\left.\left.\left.\left.\left.\cdots\right|_{60} \cdots \cdot\right|_{70} \cdots\right|_{80} \cdots\right|_{90} \cdots\right|_{90} \cdots\right|_{100}
$$

Consensus	QSSAQNRKYT	IKVEVPKVAT QTVGGVQLPV AAWRSYLNME LTIPIFATND
DL52 capsi	QSSAQNRKYT	IKVEVPKVAT QTVGGVQLPV AAWRSYLNME LTIPIFATND
DL54 coat	QSSAQNRKYT	IKVEVPKVAT QTVGGVQLPV AAWRSYLNME LTIPIFATND

$$
\left.\ldots{ }_{110} \ldots\right|_{120} \ldots|\cdot|
$$

Consensus DCALIVKAMQ GLLKDGNPIP SAIAANSGIY
DL52 capsi DCALIVKAMQ GLLKDGNPIP SAIAANSGIY
DL54 coat DCALIVKAMQ GLLKDGNPIP SAIAANSGIY

Alignment: Align JS strains lysis protein.

Consensus
DL52 lysis
METRSPQQSQ QTPESTNRFR PFQHEDYPCR RQQRSSTLYV LIFLAIFLSK METRSPQQSQ QTPESTNRFR PFQHEDYPCR RQQRSSTLYV LIFLAIFLSK DL54 lysis METRSPQQSQ QTPESTNRFR PFQHEDYPCR RQQRSSTLYV LIFLAIFLSK

Consensus
DL52 lysis
DL54 lysis
FTNQLLLSLL EAVIRTVETL QQLLT
FTNQLLLSLL EAVIRTVETL QQLLT
FTNQLLLSLL EAVIRTVETL QQLLT

Alignment: Align JS strains replicase protein.

Consensus
DL52 repli
DL54 repli

MSKTTKKFNS LCIDLPRDLS LEIYQSIASV ATGSGDPHSR DFTAIAYLRD MSKTTKKFNS LCIDLPRDLS LEIYQSIASV ATGSGDPHSR DFTAIAYLRD MSKTTKKFNS LCIDLPRDLS LEIYQSIASV ATGSGDPHSR DFTAIAYLRD

$$
\left.\left.\left.\left.\cdots\right|_{60} \cdots \cdot\right|_{70} \cdots\right|_{80} \ldots|\cdots|_{90} \ldots\right|_{100}
$$

Consensus ELLTKHPSLG NGNDEATRRA LAIAKLREAN ERCGQINREG FLHDKSLSWD DL52 repli DL54 repli ELLTKHPSLG NGNDEATRRA LAIAKLREAN ERCGQINREG FLHDKSLSWD ELLTKHPSLG NGNDEATRRA LAIAKLREAN ERCGQINREG FLHDKSLSWD

Consensus	PDVLQTSIRS LIGNLLSGYR SSLFGQCTFS NGASMGHKLQ DAAPYKKFAE
DL52 repli	PDVLQTSIRS LIGNLLSGYR SSLFGQCTFS NGASMGHKLQ DAAPYKKFAE

PDVLQTSIRS LIGNLLSGYR SSLFGQCTFS NGASMGHKLQ DAAPYKKFAE
Consensus QATVTPRALR AALLVRDQC PWIRHAV Y ESYEFRLVVG NGVFTVPKNN DL52 repli DL54 repli QATVTPRALR AALLVRDQCV PWIRHAVRYN ESYEFRLVVG NGVFTVPKNN QATVTPRALR AALLVRDQCA PWIRHAVHYS ESYEFRLVVG NGVFTVPKNN

Consensus KIDRAACKEP DANMYLQKGV G FIRRRLRS IGIDLNDQTI NQRLAKLGSI DL52 repli KIDRAACKEP DANMYLQKGV GDFIRRRLRS IGIDLNDQTI NQRLAKLGSI DL54 repli KIDRAACKEP DANMYLQKGV GGFIRRRLRS IGIDLNDQTI NQRLAKLGSI

> DGSLATIDLS SASDSISDRL VWEFLP QMY AYLSKIRS R GIVDGR DW DGSLATIDLS SASDSISDRL VWEFLPSQMY AYLSKIRSSR GIVDGRVVDW DGSLATIDLS SASDSISDRL VWEFLPPQMY AYLSKIRSPR GIVDGRMIDW
Consensus
DL52 repli
DL54 repli

Consensus
DL52 repli
DL54 repli
hLFSTMGNGF TFELESMIFW AIVKATM HF GNLGTIGIYg DDIICPTEIA hLFSTMGNGF TFELESMIFW AIVKATMIHF GNLGTIGIYG DDIICPTEIA HLFSTMGNGF TFELESMIFW AIVKATMTHF GNLGTIGIYG DDIICPTEIA

Consensus
 DL52 repli
 DL54 repli

PRVLEALSFY GFKPNQSKTF ITGRFRESCG AHYFGGADCK PIYIKKPVNN PRVLEALSFY GFKPNQSKTF ITGRFRESCG AHYFGGADCK PIYIKKPVNN PRVLEALSFY GFKPNQSKTF ITGRFRESCG AHYFGGADCK PIYIKKPVNN

Consensus LFAVCLLLNR LRGWGVVNGV SDPRLFETWK WLSERVPSIL FGGSNLDADY DL52 repli LFAVCLLLNR LRGWGVVNGV SDPRLFETWK WLSERVPSIL FGGSNLDADY
DL54 repli LFAVCLLLNR LRGWGVVNGV SDPRLFETWK WLSERVPSIL FGGSNLDADY

Consensus YVVSRQEA K R E HP YGR TL HFHS PH RLYRVP SKR EFS REESGR
DL52 repli YVVSRQEAKK RYESHPSYGR TLSHFHSTPH RLYRVPVSKR EFSPREESGR
DL54 repli YVVSRQEARK RCEDHPVYGR TLAHFHSSPH RLYRVPASKR EFSSREESGR

Consensus LITWYHNGGQ IDTTTTPRV RLVRTSEWL VVP FPQED ELS
DL52 repli LITWYHNGGQ VIDTTTTPRV RLVRTSEWLT VVPLFPQEDG NCELS
DL54 repli LITWYHNGGQ IIDTTTTPRV RLVRTSEWLA VVPSFPQEDD TRELS

Appendix C3
Group I and JS Amino Acids
Amino acid sequences of Leviviridae Group I and JS strains (DL52, DL54). Group I strains DL1, DL2, DL13, DL16, J20, ST4, R17, M12, MS2, fr.
A. Align maturation protein.

	10			4	50
Consensus	MR F	$\checkmark \quad \mathrm{R}$	YA G EDNS	L YRSNW	PG STG
DL52 matur	MRAFSVLDQE	SETFVPSVRV	YADGQVEDNS	FSLKYRSNWT	PGRFNSTGSR
DL54 MATUR	MRAFSVLDQE	SETFVPSVRV	YADGQVEDNS	FSLKYRSNWT	PGRFNSTGSR
DL1 matura	MRAFSVLDKE	SETFVPLVRT	YADGEVEDNS	FSLKYRSNWT	PGRFNSTGAR
DL2 matura	MRAFSVLDQE	SETFVPSVRV	YADGQVEDNS	FSLKYRSNWT	PGRFNSTGSR
DL13 matur	MRAFSVLDQE	SETFVPSVRV	YADGQVEDNS	FSLKYRSNWT	PGRFNSTGSR
DL16 matur	MRAFSVLDQE	SETFVPSVRV	YADGQVEDNS	FSLKYRSNWT	PGRFNSTGSR
J20 matura	MRAFSVLDRE	SETFVPSVRV	YADGEVEDNS	FSLKYRSNWT	PGRFNSTGTR
ST4 matura	MRAFSTLDRE	NETFVPSVRV	YADGETEDNS	FSLKYRSNWT	PGRFNSTGAK
R17 matura	MRAFSALDKE	SKTFVPSIRV	YANGETEDNS	FSLKYRSNWT	PGRFNSTGAR
M12 matura	MRAFSVLDQE	NETFVPSVRV	YADGETEDNS	FSLKYRSNWT	PGRFNSTGAR
MS2 matura	MRAFSTLDRE	NETFVPSVRV	YADGETEDNS	FSLKYRSNWT	PGRFNSTGAK
fr maturat	MRKFIPTERM	SKSHVVSVRE	YADGELEDNS	LPLIYRSNWS	PGQYTSTGPR

Consensus T WHYPS Y SRGA DQG Y R G SWGR EE G G S DARS DL52 matur DL54 MATUR DL1 matura DL2 matura DL13 matur DL16 matur J20 matura ST4 matura R17 matura M12 matura MS2 matura fr maturat TEQWHYPSPY SRGALSVTSV DQGAYKRSGS SWGRPYEEKA GFGFSLDARS TEQWHYPSPY SRGALSVTSV DQGAYKRSGS SWGRPYEEKA GFGFSLDARS TKQWHYPSSY SRGALSVTSV DQGAYKRSGS SWGRPYEEKA GYGFSLDARS TKQWHYPSPY SRGALSVTSV DQGAYKRSGS SWGRPYEEKA GFGFSLDARS TEQWHYPSPY SRGALSVTSV DQGAYKRSGS SWGRPYEEKA GFGFSLDARS TEQWHYPSPY SRGALSVTSV DQGAYKRSGS SWGRPYEEKA GFGFSLDARS TNQWHYPSPY SRGALSVTSV DQGSYKRSGS SWGRPYEEKA GFGFSLDARS TKQWHYPSPY SRGALSVTSI DQGAYKRSGS SWGRPYEEKA GFGFSLDARS TKQWHYPSPY SRGALSVTSI DQGAYKRSGS SWGRPYEEKA GFGFSLDARS TKQWHYPSPY SRGALSVTAI DQGAYKRSGS SWGRPYEEKT GFGFSLDARS TKQWHYPSPY SRGALSVTSI DQGAYKRSGS SWGRPYEEKA GFGFSLDARS TKEWHYPSSY SRGAIGIKAL DQGKYARLGT SWGREFEERA GYGMSIDARS

Consensus DL52 matur DL54 MATUR DL1 matura DL2 matura DL13 matur DL16 matur J20 matura ST4 matura R17 matura M12 matura

CYSLFPVSQN T I VP NV ANRA TEVL KVTQGNFNLG VALAEARSTA CYSLFPVSQN LTYIEVPQNV ANRASTEVLQ KVTQGNFNLG VALAEARSTA CYSLFPVSQN MTYIEVPQNV ANRASTEVLQ KVTQGNFNLG VALAEARSTA CYSLFPVSQN LTYIEVPQNV ANRASTEVLQ KVTQGNFNLG VALAEARSTA CYSLFPVSQN LTYIEVPQNV ANRASTEVLQ KVTQGNFNLG VALAEARSTA CYSLFPVSQN LTYIEVPQNV ANRATTEVLQ KVTQGNFNLG VALAEARSTA

MS2 matura CYSLFPVSQN LTYIEVPQNV ANRASTEVLQ KVTQGNFNLG VALAEARSTA fr maturat CYSLFPVSQN LTWIDVPTNV ANRATTEVLG KVTQGNFNLG VALAEARSTA

Consensus DL52 matur DL54 MATUR DL1 matura DL2 matura DL13 matur DL16 matur J20 matura ST4 matura R17 matura
M12 matura MS2 matura fr maturat

SQL TQTIAL KAYTAARRG NWRQ RYLA LNE RKF SK VA RWLELQ SQLATQTIAL VKAYTAARRG NWRQTLRYLA LNEDRKFRSK HVAGRWLELQ SQLATQTIAL VKAYTAARRG NWRQALRYLA LNEDRKFRSK HVAGRWLELQ SQLATQTIAL VKAYTAARRG NWRQALRYLA LNEDRKFRSK HVAGRWLELQ SQLATQTIAL VKAYTAARRG NWRQALRYLA LNEDRKFRSK HVAGRWLELQ SQLATQTIAL VKAYTAARRG NWRQPVRYLA LNEDRKFRSK HVAGRWLELQ SQLATQTIAL VKAYTAARRG NWRQALRYLA LNEDRKFRSK HVAGRWLELQ SQLSTQTIAL IKAYTAARRG NWRQALRYLA LNENRKFNSK SVASRWLELQ

Consensus DL52 matur DL54 MATUR DL1 matura DL2 matura DL13 matur DL16 matur J20 matura ST4 matura R17 matura M12 matura MS2 matura fr maturat

FGW PL SDI QGAYEMLTKV HL F PMRA VRQVG N L GRL PAA FGWLPLMSDI QGAYEMLTKV HLQEFLPMRA VRQVGTNIKL DGRLSYPAAN FGWLPLMSDI QGAYEMLTKV HLQEFLPMRA VRQVGTNIKL DGRLSYPAAN FGWLPLMSDI QGAYEMLTKV HLQEFLPMRA VRQVGTNVKL DGRLSYPAAN FGWLPLMSDI QGAYEMLTKV HLQEFLPMRA VRQVGTNIKL DGRLSYPAAN FGWLPLMSDI QGAYEMLTKV HLQEFLPMRA VRQVGTNIKL DGRLSYPAAN FGWLPLMSDI QGAYEMLTKV HLQEFLPMRA VRQVGTNIKL DGRLSYPAAN FGWLPLMSDI QGAYEMLTKV HLQEFLPMRA VRQVGTNVKL DGRLSYPAAN FGWLPLMSDI QGAYEMLTKV HLQEFLPMRA VRQVGTNIKL NGRLSYPAAN FGWLPLMSDI QGAYEMLTKV HLQEFLPMRA VRQVGTNIKL DGRLAYPAAN FGWLPLMSDI QGAYEMLTKV HLQEFLPMRA VRQVGTNIKL DGRLSYPAAN FGWLPLMSDI QGAYEMLTKV HLQEFLPMRA VRQVGTNIKL DGRLSYPAAN FGWMPLLSDI QGAYEMLTKV HLKAFMPMRA VRQVGQNVSL SGRLTSPAAS

TCNISRR IVIWFYINDA RLAWLSSLGI LNPLGIVWEK VPFSF VDWL YQTTCNISRR IVIWFYINDA RLAWLSSLGI LNPLGIVWEK VPFSFVVDWL FQTTCNISRR IVIWFYINDA RLAWLSSLGI LNPLGIVWEK VPFSFVVDWL FQTTCNISRR IVIWFYINDA RLAWLSSLGI LNPLGIVWEK VPFSFVVDWL YQTTCNISRR IVIWFYINDA RLAWLSSLGI LNPLGIVWEK VPFSFVVDWL FQTTCNISRR IVIWFYINDA RLAWLSSLGI LNPLGIVWEK VPFSFVVDWL YKSTCNISRR IVIWFYINDA RLAWLSSLGI LNPLGIVWEK VPFSFLVDWL

	$\left.\left.\cdots\right\|_{310} \cdots\right\|_{320}$	330	340	50
onsensus	EGL TAP GCSY S	GE	S I D YG	
DL52 matur	LPVGNMLEGL TAPVGCSYMS	GTVTDVITGE	SIISVDAPYG	VDRQGTAK
DL54 MATUR	LPVGNMLEGL TAPVGCSYMS	GTVTDVITGE	SIISVDAPYG	VDRQGTAK
DL1 matu	LPVGNMLEGL TAPVGCSYMS	GTVTDVITGE	SIISVDAPYG	K
DL2 ma	LPVGNMLEGL TAPVGCSYMS	GTVTDVITGE	SIISVDAPYG	VDRQGTAK
13 m	LPVGNMLEGL	GTVTDVITGE	SIISVDAPYG	VDRQGTAK
16 m	LPVGNMLEGL TAPVGCSYMS	GTVTDVITGE	SIISVDAPYG	RQGTAK
J20 ma	GN	GTVTDVITGE		AK
ST4	LPVGNMLEGL TAPVGCSYMS	GTVTDVITGE	SIISVDAPYG	QGTAK
R17	LPVGNMLEGL TAPVGCSYMS	GTVTDVITGE	SIISVDAPYG	QGTAK
M12	LPVGNMLEGL TAPVGCSYMS	GTVTDVITGE	SIISVDAPYG	ERQGTAK
MS2 matura	LPVGNMLEGL TAPVGCSYMS	GTVTDVITGE	SIISVDAPYG	RQGTAK
fr matur	LPVGNMLEGL TAPIGCSY	TVTDVISGE	STITADDIYG	

Consensus SA HRGV QSV PTTG Y VKSPFS VHT LDALAL RQR L DL52 matur DL54 MATUR DL1 matura DL2 matura DL13 matur DL16 matur J20 matura ST4 matura R17 matura M12 matura MS2 matura fr maturat

AQVSAMHRGV QSVWPTTGVY VKSPFSMVHT LDALALIRQR LLR AQISAMHRGV QSVWPTTGVY VKSPFSMVHT LDALALIRQR LSR AQVSAMHRGV QSVWPTTGVY VKSPFSMVHT LDALALIRQR LLR AQVSAMHRGV QSVWPTTGVY VKSPFSMVHT LDALALIRQR LLR AQVSAMHRGV QSVWPTTGVY VKSPFSMVHT LDALALIRQR LLR AQISAMHRGV QSVWPTTGVY VKSPFSIVHT LDALALIRQR LSR AQISAMHRGV QSVWPTTGAY VKSPFSMVHT LDALALIRQR LSR AHVSAMHRGV QSVWPTTGAY VKSPFSMVHT LDALALIRQR LSK AQVSAMHRGV QSVCPTTGVY VKSPFSMVHT LDALALIRQR LSK AQISAMHRGV QSVWPTTGAY VKSPFSMVHT LDALALIRQR LSR VQISAVHRGV QSVWPTTGVY VKSPFSMVHT LDALALFRQR LWK

B. Alignment of capsid proteins.

Consensus MASNF FVL VDNGGTGDV V PSNFANGV AEWISSNSRS QAYKVTCSVR DL52 capsi MASNFTQFVL VDNGGTGDVT VAPSNFANGV AEWISSNSRS QAYKVTCSVR DL54 coat MASNFTQFVL VDNGGTGDVT VAPSNFANGV AEWISSNSRS QAYKVTCSVR DL1 coat \mathbf{p} MASNFTQFVL VDNGGTGDVT VAPSNFANGV AEWISSNSRS QAYKVTCSVR DL2 coat DL13 coat DL16 coat J20 coat ST4 coat p R17 coat p M12 coat MS2 coat p MASNFTQFVL VDNGGTGDVT VAPSNFANGV AEWISSNSRS QAYKVTCSVR MASNFTQFVL VDNGGTGDVT VXPSNFANGV AEWISSNSRS QAYKVTCSVR fr coat pr MASNFEEFVL VDNGGTGDVK VAPSNFANGV AEWISSNSRS QAYKVTCSVR

Consensus	DC LIVKA Q G K GNPI
DL52 capsi	DCALIVKAMQ GLLKDGNPIP SAIAANSGIY
DL54 coat	DCALIVKAMQ GLLKDGNPIP SAIAANSGIY
DL1 coat p	DCALIVKAMQ GLLKDGNPIP SAIAANSGIY
DL2 coat	DCALIVKAMQ GLLKDGNPIP SAIAANSGIY
DL13 coat	DCALIVKAMQ GLLKDGNPIP SAIAANSGIY
DL16 coat	DCALIVKAMQ GLLKDGNPIP SAIAANSGIY
J20 coat	DCALIVKAMQ GLLKDGNPIP SAIAANSGIY
ST4 coat p	DCELIVKAMQ GLLKDGNPIP SAIAANSGIY
R17 coat p	DCELIVKAMQ GLLKDGNPIP SAIAANSGIY
M12 coat	DCALIVKAMQ GLLKDGNPIP SAIAANSGIY
MS2 coat p	DCELIVKAMQ GLLKDGNPIP SAIAANSGIY
fr coat pr	DCALIVKALQ GTFKTGNPIA TAIAANSGIY

C. Alignment of lysis proteins.

Consensus	M SQ	S	PF HE YPC	QQRSSTL	LI LAIFLSK
DL52 lysis	METRSPQQSQ	QTPESTNRFR	PFQHEDYPCR	RQQRSSTLY	LIFLAIFLSK
DL54 lysis	METRSPQQSQ	QTPESTNRFR	PFQHEDYPCR	RQQRSSTLY	LIFLAIFLSK
DL2 lysis	METRSPQQSQ	QTPESTNRFR	PFQHEDYPCR	RQQRSSTL	LIFLAIFLSK
DL13 lysis	METRSPQQSQ	QTPESTNRFR	PFQHEDYPCR	RQQRSSTLY	LIFLAIFLSK
DL16 lysis	METRSPQQSQ	QTPESTNRFR	PFQHEDYPCR	RQQRSSTLYV	LIFLAIFLSK
J20 lysis	METQSPQQSQ	PTPESINRFR	PFQHEDYPCR	RQQRSSTLY	LIFLAIFLSK
DL1 lysis	METRSPQQSQ	QTPESTNRFR	PFKHEDYPCR	RQQRSSTLY	LIFLAIFLSK
ST4 lysis	METRFPQQSQ	QTPASTNRRR	PFKHEDYPCR	RQQRSSTLYV	LIFLAIFLSK
R17 lysis	METRFPQQSQ	QTPASTNRCR	PFKHEDYPCR	RQQRSSTLYV	LIFLAIFLSK
M12 lysis	METRFLRQSQ	QTPASTNRYR	PFKHEDYPCR	XQQRSSTLYV	LIFLAIFLSK
MS2 lysis	METRFPQQSQ	QTPASTNRRR	PFKHEDYPCR	RQQRSSTLYV	LIFLAIFLSK
fr lysis p	MQ----QPSQ	PTRESTKKPV	PFQHEEYPCQ	NQQRSSTLYV	LICLAIFLSK

$\cdots|\ldots|_{60} \ldots . . .\left.\right|_{70} \ldots . \mid$
Consensus FTNQLL SLL IR V T QLLT DL52 lysis FTNQLLLSLL EAVIRTVETL QQLLT DL54 lysis FTNQLLLSLL EAVIRTVETL QQLLT DL2 lysis FTNQLLLSLL EAVIRTVETL QQLLT DL13 lysis FTNQLLLSLL EAVIRTVETL QQLLT DL16 lysis FTNQLLLSLL EAVIRTVETL QQLLT J20 lysis FTNQLLLSLL EAVIRTVETL RQLLT DL1 lysis FTNQLLLSLL EAVIRTVETL QQLLT ST4 lysis FTNQLLLSLL EAVIRTVTTL QQLLT R17 lysis FTNQLLLSLL EAVIRTVTTL QQLLT M12 lysis FTNQLLLSLL DAVIRTVTTF QQLLT MS2 lysis FTNQLLLSLL EAVIRTVTTL QQLLT fr lysis p FTNQLLASLL DLLIRIVTTL QQLLT

D. Alignment of replicase.

Consensus
DL52 repli
DL54 repli
DL1 replic
DL2 replic
DL13 repli
DL16 repli
ST4 replic
R17 replic
J20 replic
MS2 replic
fr replica

MSK TKKFNS LCIDL DLS LE YQSIASV ATGS PHS DFTAIAYLRD MSKTTKKFNS LCIDLPRDLS LEIYQSIASV ATGSGDPHSR DFTAIAYLRD MSKTTKKFNS LCIDLPCDLS LEIYQSIASV ATGSGDPHSR DFTAIAYLRD MSKTTKKFNS LCIDLPRDLS LEIYQSIASV ATGSGDPHSD DFTAIAYLRD MSKTTKKFNS LCIDLPRDLS LEIYQSIASV ATGSGNPHSD DFTAIAYLRD MSKTTKKFNS LCIDLPRDLS LEIYQSIASV ATGSGDPHSR DFTAIAYLRD MSKTTKKFNS LCIDLPRDLS LEIYQSIASV ATGSGDPHSD DFTAIAYLRD MSKSTKKFNS LCIDLSRDLS LEVYQSIASV ATGSSDPHSD DFTAIAYLRD

Consensus
DL52 repli
DL54 repli
DL1 replic
DL2 replic
DL13 repli
DL16 repli
ST4 replic
R17 replic
J20 replic
MS2 replic
fr replica
$\cdots . . .\left.\right|_{60} \ldots|\cdots|_{70} \ldots .\left.\left.\left.\right|_{80} \ldots\right|_{80} \ldots\right|_{90} \ldots .\left.\right|_{100} ^{\mid}$
ELLTKHP LG GNDEATRR LAIAKL EAN GQINR G FLHD SWD
ELLTKHPSLG NGNDEATRRA LAIAKLREAN ERCGQINREG FLHDKSLSWD
ELLTKHPTLG SGNDEATRRT LAIAKLREAN DRCGQINREG FLHDKSLSWD
ELLTKHPTLG SGNDEATRRT LAIAKLREAN DRCGQINREG FLHDKSLSWD
ELLTKHPSLG NGNDEATRRA LAIAKLREAN ERCGQINREG FLHDKSLSWD
ELLTKHPTLG SGNDEATRRT LAIAKLREAN GDRGQINREG FLHDKSLSWD
ELLTKHPNLG DGNDEATRRS LAIAKLLEAN DRCGQINRDG FLHDATASWD

Consensus
DL52 repli DL54 repli
DL1 replic
DL2 replic
DL13 repli
DL16 repli
ST4 replic
R17 replic
J20 replic
MS2 replic fr replica

PDVLQTSIRS LIGNLLSGY S LF CTFS NGA MGHKLQ DAAPYKKFAE PDVLQTSIRS LIGNLLSGYR SSLFGQCTFS NGASMGHKLQ DAAPYKKFAE PDVLQTSIRS LIGNLLSGYQ SSLFGQCTFS NGASMGHKLQ DAAPYKKFAE PDVLQTSIRS LIGNLLSGYR SSLFGQCTFS NGASMGHKLQ DAAPYKKFAE PDVLQTSIRS LIGNLLSGYR SSLFGQCTFS NGAPMGHKLQ DAAPYKKFAE PDVLQTSIRS LIGNLLSGYS SQLFRHCTFS NGASMGHKLQ DAAPYKKFAE

| Consensus | QATVTPRAL | AA LV DQC | PWIRH | ESY FRLV G NGVFTVPKNN |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DL52 repli | QATVTPRALR AALLVRDQCV PWIRHAVRYN | ESYEFRLVVG NGVFTVPKNN | | |
| DL54 repli | QATVTPRALR AALLVRDQCA PWIRHAVHYS | ESYEFRLVVG NGVFTVPKNN | | |
| DL1 replic | QATVTPRALR AALLVRDQCV PWIRHAVRYN | ESYEFRLVVG NGVFTVPKNN | | |
| DL2 replic | QATVTPRALR AALLVRDQCV PWIRHAVRYN | ESYEFRLVVG NGVFTVPKNN | | |
| DL13 repli | QATVTPRALR AALLVRDQCV PWIRHAVRYN | ESYEFRLVVG NGVFTVPKNN | | |
| DL16 repli | QATVTPRALR AALLVRDQCV PWIRHAVRYN | ESYEFRLVVG NGVFTVPKNN | | |
| ST4 replic | QATVTPRALR AALLVRDQCA PWIRHAVRYN ESYEFRLVVG NGVFTVPKNN | | | |
| R17 replic | QATVTPRALR AALLVRDQCA PWIRHAVHYN ESYEFRLVVG NGVFTVPKNN | | | |
| J20 replic | QATVTPRALR AALLVRDQCA PWIRHAVRYN ESYKFRLVVG NGVFTVPKNN | | | |
| MS2 replic | QATVTPRALR AALLVRDQCA PWIRHAVRYN ESYEFRLVVG NGVFTVPKNN | | | |
| fr replica | QATVTPRALK AAVLVKDQCS PWIRHSHVFP ESYTFRLVGG NGVFTVPKNN | | | |

Consensus
DL52 repli
DL54 repli
DL1 replic
DL2
DLeplic
DL13 repli
DL16 repli
R17 replic
J20 replic
MS2 replic
fr replic

KIDRAACKEP D NMYLQKGV G FIRRRL GIDLNDQ I NQ LA GS
KIDRAACKEP DANMYLQKGV GDFIRRRLRS IGIDLNDQTI NQRLAKLGSI
KIDRAACKEP DANMYLQKGV GGFIRRRLRS IGIDLNDQTI NQRLAKLGSI
KIDRAACKEP DMNMYLQKGV GAFIRRRLKS VGIDLNDQTI NQRLAQQGSI
KIDRAACKEP DMNMYLQKGV GAFIRRRLKS VGIDLNDQSI NQLLAQQGSV
KIDRAACKEP DMNMYLQKGV GAFIRRRLKS VGIDLNDQSI NQRLAQQGSA
KIDRAACKEP DMNMYLQKGV GAFIRRRLRS VGIDLNDQTI NQRLAQQGSV
KIDRAACKEP DMNMYLQKGV GAFIRRRLKS VGIDLNDQSI NQRLAQQGSV
KIDRAACKEP DMNMYLQKGV GGFIRRRLKT VGIDLNDQTI NQRLAQQGSR

Consensus
DL52 repli
DL54 repli
DL1 replic
DL2 replic
DL13 repli
DL16 repli
ST4 replic
R17 replic
J20 replic
MS2 replic fr replica

DGSLATIDLS SASDSISDRL VW FLP Y YL IRS G G W DGSLATIDLS SASDSISDRL VWEFLPSQMY AYLSKIRSSR GIVDGRVVDW DGSLATIDLS SASDSISDRL VWEFLPPQMY AYLSKIRSPR GIVDGRMIDW DGSLATIDLS SASDSISDRL VWSFLPPELY SYLDRIRSHY GIVDGETIRW DGSLATIDLS SASDSISDRL VWNFLPPELY SYLDRIRSHY GIVDGETIRW DGSLATIDLS SASDSISDRL VWSFLPPELY SYLDRIRSHY GIIDGETIRW DGSLATIDLS SASDSISDRL VWSFLPPELY SYLDRIRSHY GIVDGETIRW DGSLATIDLS SASDSISDRL VWSFLPPELY SYLDMIRSHY GYVNGKMIRW

Consensus
DL52 repli
DL54 repli
DL1 replic
DL2 replic
DL13 repli
DL16 repli
ST4 replic
R17 replic
J20 replic
MS2 replic
fr replica

LFSTMGNGF TFELESMIFW AIV AT HF N GTIGIYG DDIICP EIA HLFSTMGNGF TFELESMIFW AIVKATMIHF GNLGTIGIYG DDIICPTEIA HLFSTMGNGF TFELESMIFW AIVKATMTHF GNLGTIGIYG DDIICPTEIA ELFSTMGNGF TFELESMIFW AIVKATQIHF GNAGTIGIYG DDIICPSEIA ELFSTMGNGF TFELESMIFW AIVRATQIHF RNTGTIGIYG DDIICPTEIA

Consensus

DL52 repli
DL54 repli
DL1 replic
DL2 replic
DL13 repli
DL16 repli
ST4 replic
R17 replic
J20 replic
MS2 replic
fr replica

PRVLEAL Y GFKPN KTF G FRESC AH G D K P YI KP
PRVLEALSFY GFKPNQSKTF ITGRFRESCG AHYFGGADCK PIYIKKPVNN
PRVLEALSFY GFKPNQSKTF ITGRFRESCG AHYFGGADCK PIYIKKPVNN
PRVLEALAYY GFKPNLRKTF VSGLFRESCG AHFYRGVDVK PFYIKKPVDN PRVLEALAYY GFKPNLRKTF VSGLFRESCS AHFYRGVDVK PFYIKKPVDN PRVLEALAYY GFKPNLRKTF VSGLFRESCG AHFYRGVDVK PFYIRKPVDN PRVLEALAYY GFKPNLRKTF VSGLFRESCG AHFYRGVDVK PFYIKKPVDN PRVLEALSFY GFKPNLRKTF TSGSFRESCG AHYFRGVDVK PFYIKKPITD

Consensus

DL52 repli DL54 repli
DL1 replic
DL2 replic
DL13 repli
DL16 repli
ST4 replic
R17 replic
J20 replic
MS2 replic fr replica

LF L NR RGWGVV G DPRL W LS VP FGG L ADY
LFAVCLLLNR LRGWGVVNGV SDPRLFETWK WLSERVPSIL FGGSNLDADY
LFAVCLLLNR LRGWGVVNGV SDPRLFETWK WLSERVPSIL FGGSNLDADY LFSLMLIMNR LRGWGVVGGM SDPRLYKVWV RLSSLVPSMF FGGTDLAADY LFALMLILNR LRGWGVVGGM SDPRLYKVWV RLSSQVPSMF FGGTDLAADY LFALMLILNR LRGWGVVGGM SDPRLYKVWV RLSSQVPSMF FGGTDLAADY LFSLMLIMNR LRGWGVVGGM SDPRLYKVWV RLSSLVPSMF FGGTDLAADY LFALMLILNR LRGWGVVGGM SDPRLYKVWV RLSSQVPSMF FGGTDLAADY LFSLMLILNR IRGWGVVNGI ADPRLYEVWE KLSRLVPRYL FGGTDLQADY

Consensus
 YVVS R L R FS SGR

DL52 repli
DL54 repli
DL1 replic
DL2 replic
DL13 repli
YVVSRQEAKK RYESHPSYGR TLSHFHSTPH RLYRVPVSKR EFSPREESGR YVVSRQEARK RCEDHPVYGR TLAHFHSSPH RLYRVPASKR EFSSREESGR YVVSPPTAVS VYTKTA-YGR LLADTRTSGF RLARIAKERK RFSEKHDSGR YVVSPPNAVS VYTKTA-YGR LLADARTSGF RLARIAKERK HFSEKHDSGR YVVSPPNAVS VYTKTA-YGR LLADARTSGF RLARIAKERK HFSEKHGSGR

| DL16 repli | YVVSPPNAVS VYTKTA-YGR | LLADARTSGF RLARTAKERK | HFSEKHDSGR |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ST4 replic | YVVSPPTAVS VYTKTP-YGR | LLADTRTSGF RLARIARERK | FFSEKHDSGR |
| R17 replic | YVVSPPTAVS VYTKTP-YGR | LLADTRTSGF RLARIARERK FFSEKHDSGR | |
| J20 replic | YVVSPPTAVS VYTKTA-YGR LLADARTSGF RLARIAKERK HFSEKHDSGR | | |
| MS2 replic | YVVSPPTAVS VYTKTP-YGR LLADTRTSGF RLARIARERK FFSEKHDSGR | | |
| fr replica | YVVSPPILKG IYSKMN-GRR EYAEARTTGF KLARIARWRK HFSDKHDSGR | | |

Consensus I W H GG D V R RTSEWL VP FPQE

DL52 repli LITWYHNGGQ VIDTTTTPRV RLVRTSEWLT VVPLFPQEDG NCELS-
DL54 repli LITWYHNGGQ IIDTTTTPRV RLVRTSEWLA VVPSFPQEDD TRELS-
DL1 replic YIAWFHTGGE ITDSMKSAGV RVMRTSEWLT PVPTFPQECG PASSPR
DL2 replic YIAWFHTGGE ITDSMKSAGV RVIRTSEWLT PVPIFPQECG PASSPR
DL13 repli YIAWFHTGGE ITDSMKSAGV RVIRTSEWLT PVPIFPQECG PASSPR
DL16 repli YIAWFHTGGE ITDSMKSAGV RVIRTSEWLT PVPIFPQECG PASSPR
ST4 replic YIAWFHTGGE VTDSMKSAGV RIMRTSEWLT PVPTFPQECG PASSPR
R17 replic YIAWFHTGGE ITDSMKSAGV RIMRTSEWLT PVPTFPQECG PASSPR
J20 replic YIAWFHTGGE ITDSMKSAGV RVMRTSEWLT PVPTFPQECG PASSPR
MS2 replic YIAWFHTGGE ITDSMKSAGV RVIRTSEWLT PVPTFPQECG PASSPR
fr replica YIAWFHTGGE ITDSMKSAGV RVMRTSEWLQ PVPVFPQECG PASSPQ

Alignment: Group II replicase and JS strains.

				4		50
Consensus	M	LC D RD	S	GS DP S	DF	AYLRD
DL52 repli	MSKTTKKFNS	LCIDLPRDLS	LEIYQSIASV	ATGSGDPHSR		AYLRD
DL54 repli	MSKTTKKFNS	LCIDLPRDLS	LEIYQSIASV	ATGSGDPHSR		IAYLRD
DL10 repli	MFRFTEIEKT	LCMDRTRDCA	VRFHVYLQSL	DMGSSDPHSP		LAYLRD
DL20 repli	MFRFTEIEKT	LCMDRTRDCA	VRFHVYLQSL	DLGSSDPHSP		GLAYLRD
GA replica	MFRFREIEKT	LCMDRTRDCA	VRFHVYLQSL	DLGSSDPLSP		GLAYLRD
T72 replic	MFRFTEIKKT	LCMDRTRDCA	VRFHVYLQSL	DLGSSDPHSP		GLAYLRD
KU1 replic	MFRFTEIEKT	LCMDRTRDCA	VRFHVYLQSL	DLGSSDPHSP		GLAYLRD

Consensus
DL52 repli
DL54 repli
DL10 repli
DL20 repli
GA replica
T72 replic
KU1 replic
 $\begin{array}{lllll}\text { E LTKHPSLG } N \text { A R LA AKL } & \text { RC } & \mathrm{N} \text { G } & \\ \text { ELLTKHPSLG NGNDEATRRA } & \text { LAIAKLREAN } & \text { ERCGQINREG } & \text { FLHDKSLSWD }\end{array}$ ELLTKHPSLG NGNDEATRRA LAIAKLREAN ERCGQINREG FLHDKSLSWD ECLTKHPSLG NSNSDARRKE LAYAKLMDSD QRCKIQNSNG YDYSHIESSV ECLTKHPSLG DSNSDARRKE LAYAKLMDSD QRCKIQNSNG YDYSHIESGV ECLTKHPSLG DSNSDARRKE LAYAKLMDSD QRCKIQNSNG YDYSHIESGV ECLTKHPSLG DSNSDALRKE LAYAKLMDSD QRCKIQNSNG YDLSHIDSGV ECLTKHPSLG DSNSDALRKE LAYAKLMDSD QRCKIQNSNG YDLSHIDAGV

Consensus
DL52 repli
DL54 repli
DL10 repli
DL20 repli
GA replica
T72 replic
KU1 replic

LL G S C FS NGAS G KL DAAP KK A
PDVLQTSIRS LIGNLLSGYR SSLFGQCTFS NGASMGHKLQ DAAPYKKFAE PDVLQTSIRS LIGNLLSGYR SSLFGQCTFS NGASMGHKLQ DAAPYKKFAE LSGILKTAQA LVANLLTGFE SHFLNDCSFS NGASQGFKLR DAAPFKKIAG LSGILKTAQA LVANLLTGFE SHFLNDCSFS NGASQGFKLR DAAPFKKIAG LSGILKTAQA LVANLLTGFE SHFLNDCSFS NGASQGFKLR DAAPFKKIAG LNGILLTAKA SIAKLLMGFE SHFLNDCSFS NGASQGFKLQ DAAPFKKIAG LNGILLTAKA LIAKLLIGFE SHFLNDCSFS NGASQGFKLR DAAPFKKIAG

Consensus

 DL52 repli DL54 repli DL10 repli DL20 repli GA replica T72 replic KU1 replic QATVT A A C PW E FR V GNG F VPK QATVTPRALR AALLVRDQCV PWIRHAVRYN --ESYEFRLV VGNGVFTVPK QATVTPRALR AALLVRDQCA PWIRHAVHYS --ESYEFRLV VGNGVFTVPK QATVTAPAYN IAVAAVKTCA PWYAYMQETY GDETRWFRRV YGNGLFSVPK QATVTAPAYD IAVAAVKTCA PWYAYMQETY GDETKWFRRV YGNGLFSVPK QATVTAPAYD IAVAAVKTCA PWYAYMQETY GDETKWFRRV YGNGLFSVPK QATVTAPAYD LAVHAVKTCG PWLRYMQETY GDETRWFRRV YGNGLFSVPK QATVTAPAYD LAVLAVKTCG PWLRYMQETY GDETRWFRRV YGNGLFSVPK

Consensus
DL52 repli
DL54 repli
DL10 repli
DL20 repli
GA replica
T72 replic
KU1 replic

NNKIDRAACK EPD NMYLQK G G FIR RL RS IDLNDQ T NQ LA LG NNKIDRAACK EPDANMYLQK GVGDFIRRRL RSIGIDLNDQ TINQRLAKLG NNKIDRAACK EPDANMYLQK GVGGFIRRRL RSIGIDLNDQ TINQRLAKLG NNKIDRAACK EPDMNMYLQK GAGSFIRKRL RSVGIDLNDQ TCNQELARLG NNKIDRAACK EPDMNMYLQK GAGSFIRKRL RSVGIDLNDQ TRNQELARLG NNKIDRAACK EPDMNMYLQK GAGSFIRKRL RSVGIDLNDQ TRNQELARLG NNKIDRAACK EPDMNMYLQK GAGSFIRRRL RSVNIDLNDQ TRNQELARLG NNKIDRAACK EPDMNMYLQK GAGSFIRRRL RSVNIDLNDQ TRNQELARLG

Consensus SIDGSLATID LSSASDS SD RLVW LP Y YL IR DG
DL52 repli
DL54 repli
DL10 repli
DL20 repli
GA replica
T72 replic
KU1 replic
SIDGSLATID LSSASDSISD RLVWEFLPSQ MYAYLSKIRS SRGIVDGRVV SIDGSLATID LSSASDSISD RLVWEFLPPQ MYAYLSKIRS PRGIVDGRMI SIDGSLATID LSSASDSVSD RLVWDLLPPH VYSYLARIRS SFTMIDGRLH SIDGSLATID LSSASDSISD RLVWDLLPPH VYSYLARIRS SFTMIDGRLH SIDGSLATID LSSASDSISD RLVWDLLPPH VYSYLARIRT SFTMIDGRLH SIDGSLATID LSSASDSVSD RLVWDLLPPH VYSYLHRIRS SFTMIDGQLH SIDGSLATID LSSASDSVSD RLVWDLLPPH VYSYLHRIRS SFTMIDGRLH

Consensus

DL52 repli
DL54 repli
DL10 repli
DL20 repli
GA replica
T72 replic
KU1 replic
 W LFSTMGN GFTFELESMI FWA M G G G YGDDII P DWHLFSTMGN GFTFELESMI FWAIVKATMI HFGNLGTIGI YGDDIICPTE DWHLFSTMGN GFTFELESMI FWAIVKATMT HFGNLGTIGI YGDDIICPTE KWGLFSTMGN GFTFELESMI FWALSKSVML SMGVTGSLGI YGDDIIVPVE KWGLFSTMGN GFTFELESMI FWALSKSVML SMGVTGSLGV YGDDIIVPVE KWGLFSTMGN GFTFELESMI FWALSKSIML SMGVTGSLGI YGDDIIVPVE KWNLFSTMGN GFTFELESMI FWALSKSVMS YLGVTGLLGI YGDDIIVPTK KWNLFSTMGN GFTFELESMI FWALSNTVMS YLGVTGLLGI YGDDIIVPTK

Consensus P L LS F PN K TF TG FRES CGAH F A KP Y K P DL52 repli DL54 repli DL10 repli DL20 repli GA replica T72 replic KU1 replic

IAPRVLEALS FYGFKPNQSK TFITGRFRES CGAHYFGGAD CKPIYIKKPV IAPRVLEALS FYGFKPNQSK TFITGRFRES CGAHYFGGAD CKPIYIKKPV CAPTLLKVLS AVNFLPNKKK TFTTGYFRES CGAHFFKGAD MKPFYCKRPM CAPTLLKVLS AVNFLPNQKK TFTTGYFRES CGAHFFKGAD MKPFYCKRPM CRPTLLKVLS AVNFLPNEEK TFTTGYFRES CGAHFFKDAD MKPFYCKRPM CAPLLLQVLS AVNFLPNQKK TFTTGYFRES CGAHFFKGAS VKPFYCKRPM CAPLLLQVLS AVNFLPNQKK TFTTGYFRES CGAHFFKGAS VKPFYCKRPM

Consensus

DL52 repli
DL54 repli
DL10 repli
DL20 repli
GA replica
 L LL NR RGW G SDPRLF WK P GG NLD NNLFAVCLLL NRLRGWGVVN GVSDPRLFET WKWLSERVPS ILFGGSNLDA NNLFAVCLLL NRLRGWGVVN GVSDPRLFET WKWLSERVPS ILFGGSNLDA ETLPDVMLLC NRIRGWQTVG GMSDPRLFPI WKEFADMIPP KFKGGCNLDR ETLPDVMLLC NRIRGWQTVG GMSDPRLFPI WKEFADMIPP KFKGGCNLDR ETLPDVMLLC NRIRGWQTVG GMSDPRLFPI WKEFADMIPP KFKGGCNLDR

T72 replic KU1 replic

Consensus	
DL52	repli
DL54	repli
DL10	repli
DL20 repli	
GA replica	
T72 replic	
KU1 replic	

DL52 repli DYYVVSRQEA KKRYESHPSY GRTLSHFHST PHRLYRVPVS KREFSPREES DL54 repli DYYVVSRQEA RKRCEDHPVY GRTLAHFHSS PHRLYRVPAS KREFSSREES DL10 repli DTYLVSPDKP ---.-.-.-. GVTLVRVAKV RSGFN--.-- -HSFPYGHEN DL20 repli DTYLVSPDKP ---------- GVTLVRIAKV RSGFN----- -HAFPYGYEN GA replica DTYLVSPDKP --.-.-.-.- GVSLVRIAKV RSGFN-.-.- -HAFPYGHEN DTYLVSPDKP ---------- GVTLVRDATV RSGFN----- -YKFRRRQEN

Consensus GR WHE G T R R SE W P FPQ E LS DL52 repli GRLITWYHNG -GQVIDTTTT PRVRLVRTSE WLTVVPLFPQ EDGNCELS DL54 repli GRLITWYHNG -GQIIDTTTT PRVRLVRTSE WLAVVPSFPQ EDDTRELS DL10 repli GRYVHWLHMG SGEVLETISS ARFRCKPNSE WRTQIPLFPQ ELEACVLS DL20 repli GRYVHWLHMG SGEVLETISS ARFRCKPNSE WRTQIPLFPQ ELEACVLS GA replica GRYVHWLHMG SGEVLETISS ARYRCKPNSE WRTQIPLFPQ ELEACVLS T72 replic GRYIHWLHMG SGEVLETISS ARFRCKPNSE WRTQIPLFPQ EIEACVLS KU1 replic GRYIHWLHMG SGEVSETISS ARFRCKPNSE WRIQIPLFPQ EVEACVLS

Appendix C4
Group I and JS Replicase Nucleotides
Alignment: Group I and JS replicase nucleotides.
ORF4 START

Consensus ATGTCGAAGA CAACAAAGAA GTTCAACTCT TTATGTATTG ATCTTCCTYG
DL1 I
DL2 I C.

DL13 I
C
DL16 I
ST4 I
.........
R17 I
........
J20 I
MS2 I
. C.
DL52
C
DL54

$$
\left.\cdots|\cdots|\right|_{60} \cdots|\cdots|_{70} \cdots|\cdots|_{80} \cdots|\cdots|_{90} \cdots \cdot|\cdots|_{100}^{\mid}
$$

Consensus CGATCTTTCT CTCGAAATTT ACCAATCAAT TGCTTCTGTC GCTACTGGAA

DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
DL52
DL54

Consensus GCGGTRATCC GCACAGTRRM GACTTTACRG CAATTGCTTA CYTAAGRGAY
DL1 I
DL2 I
.... .
G.... AGA
. A.
C....G. . C

DL13 I
.....
G.... AGA
. A
C....A..C
......... AGA
ST4 IG..........GACA. C
R17 IA..........GACA.C..... ... C
J20 IG....AGAG.C..... A..C
MS2 I
.... G
G.... GAC

DL52
. G.... AGA
AGAA.C....A..C
DL54
G.... AGA
A.C.... A..T

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
DL52
DL54

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
DL52
DL54

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
DL52
DL54

GARTTGCTHA CWAAGCATCC VWCHTTRGGH WM
..A.... A. .T....... GT.C..A..A AA
..A....A. .T....... GT.C..A..A AA
..A.....A. .T....... GT.C..A..A AA
..A....C. .A....... GA.C.. A..T TC
..A....T. .A....... GA.T..A..C TC
..G.....C. .A....... GT.T..A..A AA
..A.....C. .A....... GA.C..A..T TC
..A.....A. .T....... GT.C..A..A AA
..G.....T. .T....... AT.A..G..C AA
 CCGYCGNRCY YTAGCTATYG CTAAGCTNCG GGAGGCGAAT GRDSRDYGYG ...C..AG.T T.......T.T..AACGAT.T. ...C..GG.T C.......C.C.. AGCGGT.C. ...C..GG.T C.......C.C. AGCGGT.C.
...C..GG.T C.......C. C. AGCGGT.C.
...T..TA.C T.......C. A.. ATCGGT.C.
...T..CA.C T.......T.G.. ATCGGT.C.
...C..GG.T T.......C.C..AACGAT.T.
...T..TA.C T....... C. A.. ${ }^{\text {GTGATC. } .}$
...C..GG.T C.......C. C.. AGCGGT.C.
...C..GG.T C.......T.C. AGCGAT.T.

GYCAGATHAA YAGRGARGGT TTCTTACAYG AYAAATCCTT RTCRTGGGAT
.C.....C.. T..A..G... T. . C....... G.. A.....
.C.....T.. T..G..A...C. .T....... A.. G......
.C.....T. T..G..A... C. .T....... A.. G......
.C.....T.. T..G..A...C. .T........ A..G.
.T.....A.. T..A..A...T. . C....... G.. A.
.C.....A.. T..A..A...T. .C....... G.. A.
.C.....T.. C..A..A...T. .C....... G.. G
.T.....A.. T..A..A...T. . C....... G.. A.
.C.....T.. T..G..A... C. .T........ A.. G.
.C.....T.. T..A..A...T. .C....... G..A.

CCGGATGTTT TACAAACCAG CATCCGTAGC CTTATYGGCA AYCTYCTCTC
DL1 I
DL2 I
DL13 I
.........
T.... .C..T....
.T.... .C..T
DL16 I
.T.... .C..T.
ST4 I
.T.... .C..T.

R17 I
.T.... .C..C.
J20 I
.C.... .T..T.

MS2 I
.T.... .C..T.

	360	370	380	390	$\begin{array}{r} \text {. . . }\|. . .\| \\ 400 \end{array}$
Consensus	TGGCTAYCRH	TCGTCGTTGT	TTGGGCAATG	CACGTTYTCC	AACGGTGCYY
DL1 I	. T.GT			C	. CT
DL2 IC.GC			. C	. CT
DL13 IC.GC		C.	. CT
DL16 I	.C.GC			C	CT
ST4 I	.C.GA			C	CT
R17 I	.C.AA			C.	. CT
J20 I	.T.GT			T.	. CT
MS2 IC.GA			C.	. TC
DL52	.C.GC			C	CT
DL54	.T.GT			C.	. CT
	$\begin{array}{r} . . . \mid \\ 410 \end{array}$	$\begin{array}{r} \ldots \\ 0 \end{array}$	$\begin{gathered} \ldots \\ . \\ 430 \end{gathered}$	$\ldots .$	$\cdots \cdot\|\ldots\|$
Consensus	CDATGGGGCA	CAAGTTGCAG	GATGCAGCGC	CTTACAAGAA	GTTCGCTGAA
DL1 I	. G .				
DL2 I	. A.				
DL13 I	. A.				
DL16 I	. A.				
ST4 I	. T				
R17 I	. T				
J20 I	. T .				
MS2 I	. T.				
DL52	. A.				
DL54	. G .				
	$\begin{array}{r} \mid \\ 460 \end{array}$	$\underset{0}{ } \quad . . . \mid$		$\begin{array}{r} \text {. . . }\|. . .\| \\ 490 \end{array}$	$\begin{array}{r} . . .\|\cdot\| \\ 500 \end{array}$
Consensus	CAAGCAACCG	TTACCCCCCG	CGCTCTRAGA	GCGGCNYTAY	TGGTCMGAGA
DL1 I			. ACC. . C C.
DL2 I			G	. AC. . C	. C.
DL13 I			. G.	. AC. . C	. C
DL16 I			. G .	. AC . C	. C. . .
ST4 I			. G	.TC. . ${ }^{\text {T }}$C.
R17 I			. G	.TC. . ${ }^{\text {T }}$. C.
J20 I			. G	. GT. . C	. A....
MS2 I			. . G	.TC. . ${ }^{\text {T }}$. C
DL52			. G	. AC. . C	. C
DL54			. G	. TC. . C	. C
	$\begin{array}{r} \ldots \\ \\ 510 \end{array}$	$\underset{0}{ } \quad . . .\|\ldots\|$	$\begin{array}{r} \|\ldots\| \\ 530 \end{array}$		$\begin{array}{r} \text { \| . . } \\ 550 \end{array}$
Consensus	CCARTGTGYG	CCGTGGATYA	GACACGCGGT	CCRCTAYARY	GARTCATATR
DL1 I	...G....T.	. T.		. G. . . C.AT	. .G..... G
DL2 I	. G. . . T.	. C .		. G...C.AC	. G G
DL13 I	. G....T.	. C .		. G. . C.AC	. G. G
DL16 I	...G....T.	. C .		..G...C.AC	. .G...... ${ }^{\text {G }}$
ST4 I	...A....C.	. C.		..G...T.AC	. .G......G
R17 I	...A....C.	. C		..A...T.AC	. . G..... ${ }^{\text {G }}$
J20 I	...G....C.	. C.		..G...T.AC	..A...... A
MS2 I	. A....C.	. C .		.G...T.AC	. G...... ${ }^{\text {d }}$

$\begin{aligned} & \text { DL52 } \\ & \text { DL54 } \end{aligned}$	$\begin{array}{ll} \ldots \text {.....T. } \\ \text {...G.... } \\ \text {........ } \end{array}$..G...C.AC ..G......G				
				.A...C.GC	G		
	- \| . . .			$\begin{array}{r} \ldots \\ 580 \end{array}$	$\begin{array}{r} \text {. }\|. . .\| \\ 59 \end{array}$.1
Consensus	AATTTAGRCT	CGTYGTAGGG	AACGGAGTGT	TYACAGTTCC	GAAG	AAT	
DL1 I	. G	. T		. T.			
DL2 I	. .G .	. . C		. T.			
DL13 I	. GC		.T.			
DL16 I	. G .	. C		.T.			
ST4 I	. .G. .	. T.		. T.			
R17 I	. G .	.T		.T.			
J20 I	. .A. .	. T		. T.			
MS2 I	. G .	. T.		.T.			
DL52	. .G. .	. C.		. T.			
DL54	. .G. .	. C.		. C.			

Consensus

DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
DL52
AAAATAGATC GGGCTGCCTG YAAGGAGCCH GATRYGAAYA TGTACCTYCA
........ T....... C ... AT...T. T.
......... T........... AT...T. C.
......... T........ AT...T.
........ T....... C ... AT...T. C.
......... T....... T ... AT...T. C.
........ T........T ... AT...T.
......... C........ T ...GC...C.
DL54

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
DL52
DL54 GAAAGGRGTY GGYGVYTTYA THMGVCGYCG BCTCMRHTCY RTYGGTATMGG..T ..C.CC..C. .TA.A..C.. C...AAA..T G.C......A.A..T ..C.CC..C. .AA.G..T.. C...AAA..T G.C......A.A..T ..C.CC..C. .AA.G..T.. C...AAA..T G.C......A.A..T ..C.CC..C. .AA.G..T.. C...AAA..T G.C.....A.G..C ..T.CC..T. .CA.A..C.. G...AAA..C G.T......A.G..C ..C.CT..T. .TA.A..C.. G...AAA..C G.T......A.A..T ..C.CT..T. .AC.G..T.. T...AGA..C G.T......A.G..C ..T.CT..C. .CA.A..C.. G...AAA..C G.T......A.A..T ..C.AT..T. .AC.C..T.. T...CGC..T A.C......C.G..T ..T.GC..C. .AC.C..C.. C...CGT..T A.C......C.

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
..C..G.T.C .G..TC.G.A G......CGTA
.GT.... .. C..G.G.C .A..TC.G.A A.....CGCA

J20 I	. C.	. AA.	..C..G.G.C	.G..TC.A.A	A.	CGTC
MS2 I	. C	AT.	.C..G.G.C	.G..TC.G.A	G.	CGTA
DL52	..	. AA	.t..g.G.C	.T. AA.A.	T.	CATC
DL54	. C.	AA.	A.G.C	.T. .AA.A.T	c	TAT

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
DL52
DL54
Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
DL52
DL54
Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
DL52
DL54

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
GATGGYTCDY TDGCRACGAT WGAYYTATCG TCNGCNTCBG AYTCYATHTC
.....T..TT .A..G..... A..CC..... ..A..T..G. .T..C..C..
.....C..TT .A..A.... A..TT..... ..G..T..T. .T..T..C..
.....C..TT .A..A.... A..TT..... ..G..T..T. .T..T..C..
.....C..TT .A..A.... A..TT.... ..G..T..T. .T..T..C..
....T..GC .T..G.... A..CT..... ..T..A..C. .T.. C..C..
....T..GC .T..G.... A..CT.... ..C..G..C. .T..C..T..
....C..AT .G..G.... A..CT.... ..G..C..T. .C.. C..C..
.....T..GC .T..G.... A..CT..... ..T..A..C. .T..C..C..
.....T..TT .A..G.... T..TT..... ..T..T..T. .T..C..A..
....T..TT .A..G.... A..TT.... ..T..T..T. .C..C..A..

BGAYCGCCTN GTKTGGRRNT TYCTYCCAYC KSARHTRTAY KCRTAYCTBK T..C....G ..G...AGC. .T..C...C. TG.GC.A..T T.A..T..CG T..C....G ..G...AGT. .C..C...C. TG.GT.A..T T.A..T..CG T..C....G ..G...AGT. .C..C...C. TG.GT.A..T T.A..T..CG T..C.... G ..G...AGT. .C..C...C. TG.GT.A..T T.A..T.. CG C..T.... G ..G...AGT. .T..C...C. TG.GC.A..T T.A..T..CG C..C.....A..G...AAT. .C..T...C. TG.GC.A..T T.A..T..TG T..C....G ..G...AGT. .C..C...C. TG.GC.A..T T.A..T..CG C..T.... G ..G...AGT. .T..C...C. TG.GC.A..T T.A..T..CG G..C.... C ..T...GAA. .C..C...T. GC.AA.G..C G.G..C..GT G..C....T ..T...GAG. .T..C...C. GC.AA.G..T G.G..C..GT

MKMRWATYCG YTCVYMMYRH GGAATCRTWG AYGGVSRKRY RRTMSRVTGG
ATCGT..C.. C..CCACTACG.A. .T..CGAGAC GA.ACGG...
ATCGT..C.. C..CCACTACG.A. .T..GGAGAC GA.ACGA. .
ATCGT..C.. C..CCACTACG.A. .T..GGAGAC GA.ACGA.
ATCGT..C.. C..CCACTACG.A. .T..GGAGAC GA.ACGA.
ATCGT..C.. C..ACACTACG.A. .T..CGAGAC GA.ACGA.
ATCGT..C.. C..GCACTACG.A. .T.. CGAGAC GA.ACGA..
ATCGT..C.. C..CCACTATA.A. .T..AGAGAC GA.ACGA..
ATCGT..C.. C..ACACTACG.A. .T..CGAGAC GA.ACGA.
CGAAA..T.. T..GTCACGAG.T. .C..ACGTGT AG.CGAC...
CTAAA..T.. T..GCCACGAG.T. .C.. ACGTAT GA.CGAC...

SAMCTATTTT CCACDATGGG WAATGGDTTY ACNTTYGARC TAGAGTCCAT
G.A......A.... A..... G.. C..T..C.. A.
G.A......A.... T.....G..C ..T..C..A.
G.A......A.... T.....G..C ..T..C..A.
G.A......A.... T.....G..C ..T..C..A.
G.A......A.... A.....G..C ..G..T..G.
G.A......G..... A.....G..T ..A..T..G.
G.A......A.... A..... G..C ..T..T..A.
G.A......A.... A.....G..C ..A..T..G.

DL52
DL54
C.C.......A.... T.....T..T ..C..T..G.
C.C......T..... T.....A..T ..C..T..A.

	960	970	980	990	1000
Consensus	GATMTTYTGG	GCWATAGTNA	ARGCRACYMW	RAYYCATTTT	GGTAACSYYG
DL1 I	. A. . T	.T.....G.	.A. G. . CCA	G.TC	GCC.
DL2 I	C. . T	.T.... G.	.A. A. . CCA	G.TC	GCC .
DL13 I	C. .T	.T.... G.	.A. A. . CCA	G.TC	GCC .
DL16 I	C. . T	.T.....G.	. A. A. . CCA	G.TC	GCC .
ST4 I	A. C.	. A.C.	.A..G..CCA	A.TC	GCC .
R17 I	A. C.	. A.... C.	.A. A. . CCA	A.TC.	GCC .
J20 I	. A. . ${ }^{\text {. }}$.T..... A.	.A. A. . CCA	G.TC	GCC.
MS2 I	. A. C	. A.....C.	.A..G. CCA	A.TC	GCC.
DL52	. A. .T	. A.....C.	.G..A. .TAT	G.TC	CTT.
DL54	C. .T	.A.....T.	.G..A. . CAT	G.CT	. CTT

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
DL52
DL54

GAACMATWGG CATCTAYGGG GACGATATYA TATGTCCCAS WGAGATTGCAC..A..C.. T. T........C..A..C...T.G T.........C..A.C..T.G T.........C..A.C..T.G T.C..A..C.. T. T.C..A..C...C. TC..A..C...T.G TC..A..C...T. TA..T..T..C. C A.
DL54

Consensus
DL1 I
DL2 I
.A..T..T.
T... C.
......... C A.

DL13 I
CCYCGTGTGC TRGAGGCDCT HRSCTWCTAC GGTTTYAAAC CGAATCWBYS

DL16 I
..C...... .A.....A.. TGC..A....T....TTCG

ST4 I
..C...... .A.....A. TGC..A.... C.... TTCG
..C...... .A.....A.. TGC..A....C.... TTCG

R17 I
J20 I
..C...... .A.....A.. TGC..A....C....TTCG

MS2 I
DL52
..C...... .G.....A.. TGC..A....C.... TCCG
..C...... .A.....A.. TGC..A....T....TTCG
..C...... .A.....G.. AGC..A.... C.... TTCG
..C...... .A.....A.. TGC..A....T....TTCG
DL54

Consensus
..T...... .A.....T.. CAG..T....T.... AGTC
..T...... .A.....T.. CAG..T....T.... AGTC

DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I

Consensu
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
DL52
DL54
Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
DL52
DL54
Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
CTCTTYKCCS TBWKKCTGWT MHTNAAYMGR CTDMGSGGNT GGGGNGTTGT
.....CT.. C .TATG...A. AA.G..TC.G ..TA.G..G. C....
.....CT..C .TATG...A. CA.G..TC.G ..TA.G..G.C....
.....CT..C .TATG...A. CA.G..TC.G ..TA.G..G. C.....
.... CG..C .TATG...A. AT.G..TC.G ..AC.G..T.A....
.....TG.. C .GATG...A. AT.A..TC.G ..AC.G..T. G
.....CT..C .TATG...A. CA.G..TC.G ..TA.G..A. T
.....CG..C .GATG...A. AT.A..TC.G ..AC.G..T.A....
.....CG..G .CTGT...T. AC.C..CA.G ..AC.C..G.T....
.... CG..G .CTGT...T. AC.T..CA.A ..GC.C..C.T.....

J20 I CC.TG..T.. A.....GT.CA .GG....T.C ...T.....C

MS2 I
DL52
DL54
CC.AG..G.. T.....GT.CA .GG....C.C ...C.... C

AA.GT..T.. T.....AC.TT .TA....T.A ... A..... C
AA.GT..T.. C.....AC.TT . A A....T.A ... A..... T

First nt insertion
Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
DL52
DL54

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
DL52
DL54
Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
DL52
DL54

GYRYRCCCGY NHVWRARCGH RARYDYTCTY MRCGHRAAGM RYSRCAGYGG
.TAT---..C AAAAG.G..A A.GCGC.-.T AG..AG...C ATGA...T..
.TAT---..C GAAAG.G..A A.GCAC.-.T AG..AG...C ATGA...T..
.TAT---..C GAAAG.G..A A.GCAC.-.T AG..AG...C ATGG...T..
.TAC---..C GAAAG.G..A A.GCAC.-.T AG..AG...C ATGA...T..
.TAT---..C TCGAG.A..C A.GTTC.-.C AG..AA...C ATGA...T..
.TAT---..C TCGAG.A..C A.GTTC.-.C AG..AA...C ATGA...T..
.TAT---..C GAAAG.G..T A.GCAC.-.T AG..AG...C ATGA...T..
.TAT---..C TCGAG.A..C A.GTTC.-.C AG..AA...C ACGA...T..
.CGTG....T ATCTA.A..T G.ATTT...C CA..TG...A ATC----C..
.CGTA....C CTCTA.A..C G.ATTT...T CG..CG...A GTC----C..

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
YCGCYWCATM RCDTGGTWCC ATAMTGGHGG TSARRTYAYY GAYASYAYKA
T...TA...A G.A....T.. ...C... A.. .G.GA.C.CC ..T.GT.TG.
T...TA...A G.A....T.. ...C...A.. .G.AA.C.CC ..T.GT.TG.
T...TA...A G.A....T.. ...C...A.. .G.AA.C.CC ..T.GT.TG.
T...TA...A G.A....T.. ...C...A.. .G.AA.C.CC ..T.GT.TG.
C...TA...A G.G....T.. ...C...A.. .G.AG.C.CC ..C.GT.TG.
T...TA...A G.G....T.. ...C...A.. .G.AA.C.CC ..C.GT.TG.
T...TA...A G.A....T.. ...C...A.. .G.AA.C.CC ..T.GT.TG.
T...TA...A G.G....T.. ...C...A.. .G.AA.C.CC ..C.GC.TG.
T...CT...C A.T....A.. ...A...T.. .C.AG.T.TT ..C.CC.CT.

Consensus	YCTCCCCYTR	ARGAKAGGRC	CCGGKAWYCT	CCYRATTYGG	TRACTARCTT
DL1 I	C..... C.A	.A..G...A.	. G. TT	. CG . . T	. A....G. .
DL2 I	C.....C.A	.A.G...A.	. G.TT	. CG . . T	. A. . . G
DL13 I	C.....C.A	.A..G... ${ }^{\text {. }}$	G.TT	. CG . . T	. A. . . G
DL16 I	C..... C.A	.A..G...A.	G.TT.	. CG. . T.	. A.... G
ST4 I	C......T.G	.A..G...G.	G.TT.	. CG. . . T.	.A....G.
R17 I	C.....C.G	.A. G...A.	G.TT.	. .CG...T.	. A. . . G
J20 I	C.....C.A	.A.G...A.	G. TT	. CG . . . T	. A. . . G
MS2 I	C.....C.A	.A..G...A.	G.TT	. CG . . . T	. A. . . G
DL52		-G..T...A-	-. T.AT	.TA. . T	.G.... A.
DL54	T-	-G. .T...A-	T. AC	TA... C	G.... A

Consensus
DL1 I
DL2 I
DL13 I
DL16 I
ST4 I
R17 I
J20 I
MS2 I
TGCTTGGCTA GTBACCACCC A
-........ .. T.
-........ ..T...... .

DL52
DL54
-.........
-......... .. .T....... .
-..........
-.......... ..G....... .
-.......... .. T.
-......... ...
.......... .. C....... .

[^0]: .TA....C. . A...C.GCAG
 CA....T.. G...T.AGGT

[^1]: C..T..C... ..A..A..A. .T...A.... ...CT.G... TCG..C..T.

