
THE IMPACTS OF SHORT-LIVED OZONE PRECURSORS ON CLIMATE AND 
AIR QUALITY 

 
 
 
 

Meridith McGee Fry 
 
 
 
 

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill 
in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the 

Department of Environmental Sciences and Engineering. 
 
 
 
 

Chapel Hill 
2013 

 

 

 

 

 

Approved by: 

Dr. J. Jason West 

Dr. William Vizuete 

Dr. Jason Surratt 

Dr. Adel Hanna 

Dr. Vaishali Naik



ii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

©2013 
Meridith McGee Fry 

ALL RIGHTS RESERVED



iii 
 

 
 
 
 
 

Abstract 
 

MERIDITH MCGEE FRY: The Impacts of Short-Lived Ozone Precursors on Climate 
and Air Quality 

(Under the direction of Dr. J. Jason West) 
 

Human emissions of short-lived ozone precursors not only degrade air quality and 

health, but indirectly affect climate via chemical effects on ozone, methane, and aerosols.  

Some have advocated for short-lived air pollutants in near-term climate mitigation 

strategies, in addition to national air quality programs, but their radiative forcing (RF) 

impacts are uncertain and vary based on emission location. 

In this work, global chemical transport modeling is combined with radiative 

transfer modeling to study the impacts of regional ozone precursor emissions (NOx, CO, 

and NMVOCs) on climate, via changes in ozone, methane, and sulfate, and on regional 

and global air quality.  The first study evaluates NOx, CO, and NMVOC emission 

reductions from four regions across an ensemble of models, finding that NMVOC and 

CO reductions from all four regions cool climate (negative RF) by decreasing ozone and 

methane, while improving air quality.  NOx and NMVOC global warming potentials 

(GWPs), a measure of the relative radiative effects of individual climate forcers, vary 

strongly among regions, while CO GWPs show less variability.  The second and third 

studies investigate further the RF and air quality impacts of CO and NMVOC emission 

reductions from 10 world regions.  The greatest benefits to RF and air quality (per unit 

emissions) are achieved by CO reductions from the tropics, due to more active 
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photochemistry and convection.  CO GWPs are fairly independent of the reduction region 

(GWP20: 3.71 to 4.37; GWP100: 1.26 to 1.44), while NMVOC GWPs are more variable 

(GWP20: -1.13 to 18.9; GWP100: 0.079 to 6.05).  Accounting for additional forcings from 

CO and NMVOC emissions would likely change RF and GWP estimates.  Regionally-

specific GWPs for NOx and NMVOCs and a globally-uniform GWP for CO may allow 

these gases to be included in a multi-gas emissions trading framework, and enable 

comprehensive strategies for meeting climate and air quality goals simultaneously.      

Future research could investigate full climate responses using coupled chemistry-

climate models, and perform regional analyses of specific emission control measures to 

maximize climate and air quality benefits. 
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Chapter 1. Introduction 
 

Air pollution and global climate change are two leading environmental challenges 

facing the world today.  These interrelated problems are driven by common emission 

sources and chemical feedbacks, and can span both near and far-reaching spatial and 

temporal scales (Unger et al., 2012).  Many air pollutants influence climate, while climate 

change itself can worsen air quality (Fiore et al., 2012).  In this dissertation, we focus on 

ozone (O3) precursors (methane [CH4], nitrogen oxides [NOx], carbon monoxide [CO], 

and non-methane volatile organic compounds [NMVOCs]) as an opportunity to address 

air pollution and global climate change together.  We study the influence of O3 precursor 

emissions on several important short-lived air pollutants: O3 and aerosols, and climate 

forcers: CH4, O3, and aerosols (Pham et al., 1995; Unger et al., 2006; Shindell et al., 

2009; Leibensperger et al., 2011).   

Human-induced global climate change traditionally has been related to the 

increasing abundance of long-lived greenhouse gases (e.g. carbon dioxide [CO2]) in our 

atmosphere, whose impacts can take decades to centuries to be realized.  Short-lived 

climate forcers, on the other hand, have gained recent interest as an opportunity to slow 

the rate of near-term climate warming and to expedite the mitigation of climate impacts 

over the next few decades, while simultaneously improving air quality.  Current air 

quality legislation, however, does not consider the impacts of these short-lived species on 

climate, and international climate agreements have excluded them from the basket of 

relevant species for emissions trading (Unger et al., 2012), given the dependence of their 
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climate impacts on emission location and chemical interactions with co-emitted species 

(Fiore et al., 2012).  This dissertation aims to inform future policies and further the 

understanding of the climate and air quality effects of short-lived climate forcers. 

Tropospheric O3, a secondary air pollutant and short-lived climate forcer, forms 

through the nonlinear photochemical oxidation of O3 precursors: CH4, CO, or NMVOCs 

by the hydroxyl radical (OH) in the presence of NOx.  Given that the mean tropospheric 

lifetimes of O3 (~22 days) (Stevenson et al., 2006), CH4 (9 to 10 years), and NOx, CO, 

and NMVOCs (days to months) often exceed intercontinental transport times (5 to 10 

days) (Fiore et al., 2009), O3 precursor emissions can affect surface and tropospheric O3 

concentrations over intercontinental scales (Akimoto, 2003; TF HTAP, 2010).  O3 

concentrations also can respond more gradually over the long term due to changes in 

CH4, a longer-lived O3 precursor. 

By altering the availability of atmospheric oxidants, O3 precursors affect other 

short-lived climate forcers including secondary aerosols and tropospheric CH4.  SO4
2- 

aerosols form through the oxidation of sulfur dioxide (SO2) by OH in the gas phase or by 

H2O2 or O3 in the aqueous phase.  Because O3 itself is a source of OH (and thus, 

hydrogen peroxide [H2O2]), tropospheric O3 and sulfate aerosol (SO4
2-) chemistry are 

closely coupled in the troposphere (Unger et al., 2006, 2008).  Similarly by changing 

oxidant levels, O3 precursor emissions influence the abundance of nitrate (NO3
-) and 

secondary organic aerosols (SOA) (Bauer et al., 2007; Hoyle et al., 2009).  SO4
2-, NO3

-, 

and SOA are all important components of fine particulate matter (PM2.5), a key air 

pollutant that also impacts climate.  
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Tropospheric CH4 and O3 are also closely linked by precursor-driven changes in 

oxidants.  NOx emissions tend to increase OH and hence, decrease CH4 lifetime, while 

CO, NMVOC, and CH4 emissions have the opposite effect, decreasing OH and 

increasing CH4 lifetime (Prather et al., 1995; Wild et al., 2001; Fiore et al., 2002; Naik et 

al., 2005; Unger et al., 2008).  Through their influence on CH4, O3 precursors (including 

CH4 emissions themselves) also impact tropospheric O3 on the longer timescale of the 

CH4 lifetime (Berntsen et al., 2005; West et al., 2007).     

Radiative climate forcing (RF) is one measure used to assess the influence of 

climate forcers (i.e. greenhouse gases and aerosols) and their precursors on the Earth’s 

energy balance and thus, the relative warming or cooling of climate.  RF is the change in 

net radiation fluxes (net shortwave minus net longwave radiation) at the tropopause after 

allowing stratospheric temperatures to readjust to radiative equilibrium, where a positive 

RF implies climate warming and a negative RF indicates climate cooling.  Since 

preindustrial times, changes in tropospheric O3 and CH4 have contributed abundance-

based positive RFs of 0.35 [-0.1, +0.3] W m-2 and 0.48 ± 0.05 W m-2, approximately 21% 

and 31% of the RF due to CO2.  In addition, tropospheric SO4
2-, a component of PM2.5 

that scatters solar energy, has provided a negative RF of -0.40 ± 0.2 W m-2 (direct effect 

only) (Forster et al., 2007).  O3 precursors contribute importantly to these RFs, with 

emissions-based estimates of 0.99 ± 0.14 W m-2 (CH4), 0.25 ± 0.04 W m-2 (CO + VOCs), 

and -0.29 ± 0.09 W m-2 (NOx) (Shindell et al., 2009). 

1.1 Policy relevance 

In the U.S., the National Ambient Air Quality Standards set forth by the Clean Air 

Act establish both primary (protective of public health) and secondary (protective of 
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public welfare) standards for six criteria air pollutants including CO, NO2, O3, and PM2.5.  

These standards, however, do not take climate impacts into consideration, focusing 

mainly on individual air pollutant attainment in a particular area over annual time 

periods.  The Gothenburg Protocol, adopted by the United Nations Economic 

Commission for Europe and amended in 2012, is one of the first multi-national 

agreements that moves toward addressing transboundary air pollution by setting emission 

reduction commitments (including for NOx, VOCs, sulfur, and ammonia) for EU member 

states to meet by 2020 and beyond.  Existing air pollution legislation, however, will 

likely be inadequate to address rising O3 and PM2.5 levels worldwide, which will continue 

to harm human health and the environment, despite the downward trend of O3 levels in 

the U.S. and Europe.  Developing nations, in particular, may lack the experience needed 

to implement future air pollution control policies (Dentener et al., 2006).  As a result, 

more stringent emissions control measures will be needed to ensure a sustainable 

atmospheric environment in the future.   

As part of the United Nations Framework Convention on Climate Change, the 

Kyoto Protocol, an international agreement focused on climate change mitigation, sets 

long-lived greenhouse gas reduction targets for its Parties to achieve within a multi-year 

commitment period.  The Kyoto Protocol allows Parties to design and implement 

comprehensive and cost-effective policies, where emissions constraints can be met by 

substituting between different long-lived greenhouse gases (Forster et al., 2007).  Global 

warming potential (GWP), the climate metric adopted in the Kyoto Protocol, provides the 

framework for comparing the RF impacts of different greenhouse gases over time; thus 

allowing for their inclusion in emissions trading and multi-gas abatement strategies. 
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Over the past decade, several studies have suggested that short-lived climate 

forcers and their precursors be included in climate agreements like the Kyoto Protocol 

(Fuglestvedt et al., 1999; Rypdal et al., 2005, 2009; Naik et al., 2005; Unger et al., 2008; 

Fry et al., 2012), as a way to address climate change in the coming decades and to 

complement longer term CO2 mitigation efforts (Jackson et al., 2009; Shindell et al., 

2012; Unger et al., 2012).  Reducing certain short-lived climate forcers also provides 

important benefits to human health and the environment, as O3 and PM2.5 exposure have 

been linked to adverse respiratory and cardiovascular health effects, premature mortality, 

and ecosystem damages.  However, short-lived species including O3 precursors (apart 

from CH4) impact RF non-uniformly and can contribute to both climate warming and 

cooling, making it difficult to identify different regions’ contributions to global climate 

change.  As a result, geographically-varying GWPs may be needed (Fuglestvedt et al., 

1999; Wild et al., 2001; Berntsen et al., 2005; Naik et al., 2005; West et al., 2007; 

Derwent et al., 2008), in contrast to long-lived greenhouse gases (e.g. CO2) whose more 

uniform RF impacts allow for globally-uniform GWPs.  There is a need to more fully 

understand the effects of O3 precursors on the distributions of O3, SO4
2-, and other 

secondary species, and the corresponding variability in RF and GWP estimates (Berntsen 

et al., 2005).  Future mitigation efforts will likely need to consider air quality and global 

climate change together, as many air pollutants and climate forcers originate from the 

same precursors and emission sources (Unger et al, 2012).     

1.2 Motivation and objectives 

Several past studies have used global chemical transport and radiative transfer 

modeling to evaluate the air quality and RF impacts of regional and global NOx emission 
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reductions (Fuglestvedt et al., 1999; Wild et al., 2001; Berntsen et al., 2005; Naik et al., 

2005; West et al., 2007; Derwent et al., 2008), finding that O3 concentrations and RF 

depend considerably on the location or sector of NOx emissions, with greater sensitivity 

to emissions from the tropics.  One global model’s results show that NOx emission 

reductions from 9 world regions produce overall positive global net RFs (Naik et al., 

2005), while West et al. (2007) found that global reductions in CH4, CO, and NMVOCs 

result in negative net RFs.  Naik et al. (2005) also analyzed reductions in NOx, CO, and 

NMVOC emissions together from 3 regions, and Berntsen et al. (2005) evaluated CO 

emissions changes from 2 regions.    

This dissertation examines the air quality, tropospheric burden, and RF impacts of 

individual O3 precursor emission reductions through three separate studies (Table 1.1).  

The first study aims to evaluate O3 precursor emissions from 4 regions across an 

ensemble of 11 global chemical transport models (CTM) that participated in the Task 

Force on Hemispheric Transport of Air Pollution multimodel intercomparison of Source-

Receptor sensitivity (Chapter 2).  This study improves upon previous methods by 

providing the spread in tropospheric burden and RF estimates across multiple CTMs as 

an indicator of model uncertainty, and by differentiating the contributions of O3, CH4, 

and SO4
2- to global net RF and GWP using a radiative transfer model (RTM).  The RF 

and GWP estimates for each precursor are compared among the 4 regions and to previous 

studies, improving our understanding of the sensitivity to different regions’ emissions.   

The second and third studies, which build upon the first study, are mainly 

motivated by the absence of studies investigating CO and NMVOC emission reductions 

from many world regions, where previous studies examine four regions or less (Prather et 
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al., 1996; Wild et al., 2001; Fiore et al., 2002; Naik et al., 2005).  More detailed analyses 

of the air quality and RF impacts of CO (Chapter 3) and NMVOC (Chapter 4) emission 

reductions from 10 regions and globally, and how their magnitudes vary across regions, 

are presented using a global CTM and RTM.  These two follow-on studies provide the 

basis for assessing the potential climate impact of different emission control measures, 

where our estimated GWPs of CO and NMVOCs can be combined with those of co-

emitted species.  Stakeholders considering reductions in non-CO2 climate forcers, such as 

the G8 nations and the Arctic Council, may be especially interested in using these results 

to calculate the net climate impact of regionally-implemented emission controls (Shindell 

et al., 2012).  More broadly, our results may inform future policies and actions aimed to 

address air quality and climate change jointly at the regional to international level 

(Rypdal et al., 2005, 2009; Jackson et al., 2009; Shindell et al., 2012).  Chapter 5 

concludes the dissertation by reviewing the key scientific findings, uncertainties, future 

research needs, and policy implications across the three studies. 
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1.3 Table 

 

Table 1.1.  Summary of three dissertation studies. 

Study 
O3 precursors 

studied 

Number of 

regions 

Method of 

calculating air 

quality impacts 

Method of 

calculating 

climate impacts 

1. Chapter 2 
CH4, NOx, 

NMVOCs, CO 
4 

Ensemble of 

11 CTMs 
Standalone RTM

2. Chapter 3 CO 10, global Single CTM Standalone RTM

3. Chapter 4 NMVOCs 10, global Single CTM Standalone RTM



 
 

 
 
 
 
 

Chapter 2. The influence of ozone precursor emissions from four world regions on 
tropospheric composition and radiative climate forcing1 

 

2.1 Introduction 

Tropospheric ozone (O3), methane (CH4), and aerosols make important 

contributions to the global mean radiative forcing (RF) of climate (Forster et al., 2007; 

Ramaswamy et al., 2001).  Here we aim to quantify the net RF of these species due to 

regional changes in O3 precursor emissions, across an ensemble of global chemical 

transport models (CTMs).   We define net RF as the net (incoming minus outgoing) 

change in irradiance (solar and infrared) at the tropopause between a base and perturbed 

state (in Watts per square meter [W m-2]) after allowing stratospheric temperatures to 

readjust (Forster et al., 2007).  The contribution of changes in tropospheric O3 to the 

global mean RF since preindustrial times is an estimated 0.35 ±0.15 Wm-2, which is 

approximately 21% of the RF due to changes in carbon dioxide (CO2) (Forster et al., 

2007).  Changes in CH4 have contributed approximately 0.48 Wm-2, while those in 

sulfate aerosols (SO4
2-) have contributed approximately -0.4 ±0.2 Wm-2 (direct effect 

only) (Forster et al., 2007).   

 Changes in O3 precursor emissions (nitrogen oxides [NOx], non-methane volatile 

organic compounds [NMVOC], carbon monoxide [CO], and CH4) affect the abundance 

                                                       
1 Fry, M. M., V. Naik, J. J. West, M. D. Schwarzkopf, A. M. Fiore, W. J. Collins, F. J. Dentener, D. T. 
Shindell, C. Atherton, D. Bergmann, B. N. Duncan, P. Hess, I. A. MacKenzie, E. Marmer, M. G. Schultz, 
S. Szopa, O. Wild, and G. Zeng (2012), Journal of Geophysical Research, 117, D07306, 
doi:10.1029/2011JD017134 
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of gaseous species (O3 and CH4), and aerosols via changes in the availability of 

atmospheric oxidants (hydroxyl radical [OH], hydrogen peroxide [H2O2], O3) (Pham et 

al., 1995; Unger et al., 2006; Shindell et al., 2009; Leibensperger et al., 2011).  These 

perturbations in turn influence the RF due to O3 and CH4 and inorganic aerosol-phase 

species (Ming et al., 2005; Unger et al., 2006; Naik et al., 2007; Shindell et al., 2009).  O3 

precursors also affect organic aerosols, including the formation of secondary organic 

aerosols (SOA) (Carlton et al., 2010), but the resulting RF remains to be quantified.  O3 

decreases plant growth and hence reduces the removal of CO2 from the atmosphere 

(Felzer et al., 2007; Sitch et al., 2007; Collins et al., 2010), while NOx emissions 

influence nitrogen deposition and the subsequent uptake of CO2 in terrestrial and oceanic 

ecosystems (Holland and Lamarque, 1997; Duce et al., 2008).  Because of these 

influences, actions to control O3 precursor emissions affect both air quality and global 

climate (Fiore et al., 2002; Dentener et al., 2005; West et al., 2007).   

Past studies have shown that both regional and global reductions in NOx surface 

emissions produce an overall positive RF from global CH4 increases via decreases in OH, 

which outweigh the negative forcing from tropospheric O3 decreases.  The magnitude of 

forcing, however, depends on the location or sector of emission reduction (Fuglestvedt et 

al., 1999; Wild et al., 2001; Berntsen et al., 2005; Naik et al., 2005; West et al., 2007; 

Derwent et al., 2008).  In contrast, CO, NMVOC, and CH4 reductions contribute an 

overall negative RF by decreasing tropospheric O3 and increasing OH, leading to global 

CH4 decreases (Prather et al., 1996; Wild et al., 2001; Fiore et al., 2002; Naik et al., 

2005).  Global anthropogenic CH4 emission reductions were shown to produce the most 
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negative RF of the O3 precursors, mainly due to direct reductions in CH4 forcing (Fiore et 

al., 2002; Shindell et al., 2005; West et al., 2007).  

Because of the short atmospheric lifetimes of O3, aerosols, and their precursors 

(apart from CH4), studies of regional O3 precursor reductions show that air quality and 

RF effects depend strongly on the geographical location of emissions (Fuglestvedt et al., 

1999; Berntsen et al., 2005; Naik et al., 2005).  The dependence on location, however, 

has made it difficult to include O3 precursors in emissions trading schemes or 

international climate agreements (Rypdal et al., 2005), and to evaluate the co-benefits of 

actions to reduce O3 for slowing global climate change.  Studies have shown substantial 

dependence of O3 concentrations and RF on the region of NOx emissions (Fuglestvedt et 

al., 1999; Berntsen et al., 2005; Naik et al., 2005; Derwent et al., 2008; Fuglestvedt et al., 

2010), where O3 and RF are more sensitive to NOx reductions from tropical regions, yet 

positive global annual average net RFs result from NOx reductions in each of nine world 

regions (Naik et al., 2005).  While NMVOCs typically have atmospheric lifetimes 

comparable to NOx, CO has a longer atmospheric lifetime of 1-3 months (Seinfeld and 

Pandis, 2006), suggesting that the influence of CO on O3 and OH may be less dependent 

on reduction region (Berntsen et al., 2005; Rypdal et al., 2005).  Apart from Naik et al. 

(2005) who also examined combined reductions in NOx, CO, and NMVOCs from three 

regions, and Berntsen et al. (2005) who evaluated CO changes from two regions, less 

attention has been placed on regional CO and NMVOC emissions and their effects on 

tropospheric O3, CH4, and SO4
2- and global and regional net RF.  In response to 

nonuniform forcings, some regional climate responses are also sensitive to the location 

and distribution of O3, aerosols, and RF (Shindell and Faluvegi, 2009). 
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Here we investigate the effects of a 20% reduction in global CH4 abundance and 

20% reductions in anthropogenic emissions of NOx, NMVOC, and CO, individually and 

combined, from four world regions on tropospheric O3, CH4, and SO4
2- concentrations 

and on the resulting distribution and magnitude of global net RF for all precursor-region 

pairs.  We use results from an ensemble of global CTMs that participated in the Task 

Force on Hemispheric Transport of Air Pollution (TF HTAP) multimodel 

intercomparison study of Source-Receptor (SR) sensitivity (Fiore et al., 2009), which 

allows for an assessment of uncertainty as the spread across CTMs.  We examine the 

regional dependency of RF and global warming potential (GWP) to individual precursors 

by comparing estimates across the four regions of reduction. 

2.2 Methodology 

We use the results from an ensemble of 11 global CTMs (TF HTAP, 2010) to 

evaluate changes in the tropospheric distributions of O3, CH4, and SO4
2- for each 

reduction scenario.  The net RF is calculated from the simulated changes in O3, CH4, and 

SO4
2- using the standalone radiative transfer model (RTM) developed by the National 

Oceanographic and Atmospheric Administration (NOAA) Geophysical Fluid Dynamics 

Laboratory (GFDL) (Schwarzkopf and Ramaswamy, 1999; GFDL GAMDT, 2004).  We 

estimate the RF due to SO4
2-, as SO4

2- responds to oxidant changes, considering only its 

direct effects on radiation (Naik et al., 2007); few CTMs reported other aerosol species 

for all reduction scenarios.  Although we account for variability across the CTM 

ensemble in the O3, SO4
2-, and CH4 estimates, we likely underestimate the uncertainty in 

net RF by using only a single RTM.    
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2.2.1 HTAP CTM simulations 

The SR simulations performed by each CTM are outlined in Table 2.1.  We 

analyze O3 and CH4 results from 11 CTMs and SO4
2- results from four CTMs (Table 2.2).  

Each CTM utilized its own emissions inventory and prescribed meteorological fields for 

the year 2001 (Fiore et al., 2009).  Anthropogenic emissions of NOx, NMVOCs, CO, and 

all precursors combined were reduced by 20% in each of four world regions: East Asia 

(EA), Europe and Northern Africa (EU), North America (NA), and South Asia (SA).  For 

CH4, the present-day abundance (1760 parts per billion by volume [ppbv]) was imposed 

in all simulations except for the CH4 control simulation (SR2), where global CH4 

abundance was decreased by 20% to 1408 ppbv.  All simulations were performed for a 

full year (2001), after an initial spin-up of at least six months (Fiore et al., 2009).   

The multimodel mean ±1 standard deviation changes in the anthropogenic 

emissions of NOx, NMVOCs, and CO, across 11 CTMs, are presented in Table 2.3.  

There is considerable variability in the emission reduction magnitudes across CTMs.  

Coefficients of variation (CVs) (standard deviation / mean) are lowest for NOx emissions 

from EU, NA, and SA, while there is more variability in NMVOC and CO emissions 

from the four regions, consistent with the comparison of current global emission 

inventories by Granier et al. (2011). 

Previous publications based on the HTAP SR experiments have emphasized the 

effects of long-range transport on surface O3, and other components, and comparisons 

with observations (Sanderson et al., 2008; Shindell et al., 2008; Fiore et al., 2009; Jonson 

et al., 2010; Reidmiller et al., 2009).  Fiore et al. (2009) found that the HTAP ensemble 

mean surface O3 concentrations compared well with observations over EU for the year 
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2001, but overestimated measurements by more than 10 ppb during the summer and fall 

over the eastern United States and Japan.  Jonson et al. (2010) compared simulated 

vertical O3 profiles with observed ozonesonde profiles, finding that the spread in CTM 

results (and their over and underestimation of O3 soundings) increases in the spring and 

summer with more active chemistry.  In the winter and spring, seasonal averages for most 

CTMs were within 20% of sonde measurements in the upper and middle troposphere.  

Simulated SO4
2- concentrations at the surface for the base simulation (SR1) also have 

been compared to observations (M. Schulz, personal communication, 2011, preliminary 

results available at http://aerocom.met.no/cgi-bin/aerocom/surfobs_annualrs.pl), where 

the results show that the CTMs are generally realistic.   

Short-lived O3 precursors affect tropospheric O3 within hours to weeks after their 

emission; however, they also affect OH, which influences the lifetime of CH4 and in turn, 

O3 in the long term (Prather et al., 1996; Wild et al., 2001; Berntsen et al., 2005; Naik et 

al., 2005).  Global CH4 changes were calculated by Fiore et al. (2009), based on the CH4 

loss by tropospheric OH diagnostic reported for each CTM and SR3 through SR6, 

relative to the fixed CH4 abundance of 1760 ppbv.  Long-term O3 responses are then 

calculated in each grid cell, following West et al. (2007, 2009b), by scaling the change in 

O3 from the CH4 control simulation (SR2 minus SR1) to the calculated global CH4 

change for each SR simulation and CTM.  We then add the long-term O3 responses to the 

simulated short-term O3 responses to give O3 concentrations at steady state.   

Since the HTAP CTMs were typically not designed to model stratospheric 

chemistry, we use the same three-dimensional monthly mean O3 concentrations in the 

stratosphere and merge these with calculated steady-state (short-term + long-term) 
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tropospheric O3 concentrations for each simulation and CTM.  Stratospheric O3 is taken 

for the year 2001 from the AC&C/SPARC O3 database prepared for CMIP5 (Available: 

http://pcmdi-cmip.llnl.gov/cmip5/forcing.html).  Søvde et al. (2011) found that around 

15% of the RF from O3 precursors is due to O3 changes in the lower stratosphere, using a 

single model with both standard and updated chemistry.  Since we ignore lower 

stratospheric O3 changes, our RF estimates may underestimate the full effect of O3 

precursors.  After each CTM’s O3 and SO4
2- results are interpolated to a common 

resolution (longitude x latitude x level) as required by the RTM (72 x 37 x 33 for O3; 96 

x 80 x 14 for SO4
2-), the HTAP ensemble mean ±1 standard deviation O3 and SO4

2- 

distributions are calculated in each grid cell and month in three dimensions, in addition to 

the ensemble mean ±1 standard deviation global CH4 abundances (derived from the CH4 

loss by tropospheric OH diagnostics).  Global O3, CH4, and SO4
2- changes are calculated 

for each CTM as perturbation (SR2 to SR6) minus base (SR1) values.   

2.2.2 GFDL radiative transfer model 

We employ the GFDL RTM to estimate the net RF at steady state due to the 

changes in atmospheric gases (O3 and CH4) alone and due to combined changes in O3, 

CH4, and SO4
2- aerosols.  The GFDL RTM is a module of the GFDL coupled 

atmospheric-ocean model (AM2) and simulates solar and infrared radiative transfer 

(GFDL GAMDT, 2004; Naik et al., 2005, 2007).  It has been used in studies of long-

lived greenhouse gases (Schwarzkopf and Ramaswamy, 1999) and short-lived forcing 

agents such as O3 and aerosols (Naik et al, 2005, 2007; West et al., 2007; Fiore et al., 

2008; Saikawa et al., 2009).  Here the RTM is employed as for Naik et al. (2007) and 

Saikawa et al. (2009), at 144 x 90 x 24 levels, except for the following changes.  We 
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update well-mixed greenhouse gas concentrations based on observations for the year 

2001 included as part of the historical period (1750-2005) of the CMIP5 Representative 

Concentration Pathways (RCP) database (Meinshausen et al., 2011) (Available: 

http://www.iiasa.ac.at/web-apps/tnt/RcpDb/dsd?Action=htmlpage&page=download).  

We also update the solar data used by the RTM to the CMIP5 solar forcing data 

(Available: http://www.geo.fu-

berlin.de/en/met/ag/strat/forschung/SOLARIS/Input_data/CMIP5_solar_irradiance.html). 

The RTM simulations do not include the indirect effects of aerosols on clouds or the 

internal mixing of aerosols.  RF contributions from changes in nitrate aerosols, changes 

in stratospheric O3 and water vapor, changes to the carbon cycle via O3 and nitrogen 

deposition, and changes to CO2 from CH4, CO, and NMVOC oxidation are also omitted 

in the RTM simulations.   

The multimodel monthly mean ±1 standard deviation O3, CH4, and SO4
2- 

concentrations are used as input in the RTM simulations, along with meteorological 

fields from GFDL’s atmosphere model (AM2) and land model (LM2), sampled one day 

per month at midmonth for the year 2001 to represent monthly mean conditions (Naik et 

al., 2005).  Substantial variability in the SO4
2- estimates across only four CTMs precluded 

evaluating the mean -1 standard deviation for SO4
2- (e.g., several grid cells had standard 

deviations exceeding the mean).  We simulate the monthly mean net radiation fluxes for 

the base and perturbed cases and calculate the net RF as the difference between the 

perturbed and base net fluxes (net shortwave minus net longwave) at the tropopause, after 

allowing stratospheric temperatures to readjust to radiative equilibrium (Naik et al., 2007; 

Saikawa et al., 2009).   



17 
 

2.3 Tropospheric composition changes 

2.3.1 Tropospheric ozone changes 

Figure 2.1 shows the changes in global annually averaged steady-state 

tropospheric O3 burden and its variability across 11 HTAP CTMs.  Full troposphere and 

upper troposphere (UT) O3 burdens are distinguished because O3 in the UT has a higher 

RF efficiency on a per molecule basis (Lacis et al., 1990; Wang et al., 1993; Forster and 

Shine, 1997).  For each CTM’s regridded O3 distributions that have been blended with 

CMIP5 stratospheric O3 values (section 2.1), the UT is defined from 500 hPa to the 

tropopause, where the tropopause is identified at the 150 ppbv O3 level.   

The largest changes in full troposphere and UT O3 burden are found for the 20% 

CH4 reduction, followed by the 20% combined precursor reductions from NA and EA, 

respectively.  However, there is considerable diversity among the 11 CTMs’ estimates of 

full troposphere and UT O3 burden changes.  In these 17 SR simulations relative to the 

base case, the change in UT O3 burden per change in full troposphere O3 burden (UT O3 / 

full troposphere O3) is largest for reductions in global CH4 (0.36 to 0.47) and regional CO 

emissions (0.19 to 0.53), and smallest for regional NMVOC reductions (0.16 to 0.42) 

across the 11 CTMs, reflecting the longer lifetimes of CO and CH4 in comparison to 

NMVOCs and NOx.  UT O3 / full troposphere O3 is also largest for individual O3 

precursor (NOx, NMVOC, and CO) reductions from SA in comparison to the other 

regions.   

To evaluate regional sensitivities, we consider how changes in full troposphere 

and UT O3 burdens per unit change in emissions vary by region for each precursor 

(Figure 2.2).  The CTMs mostly agree that the SA NOx reduction produces the greatest 
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change in full troposphere and UT O3 burden per change in emissions out of the four 

regions, which can be attributed to more rapid vertical mixing, stronger photochemistry, 

and greater sensitivity of O3 to precursor emissions from the tropics and southern 

hemisphere (SH) (Kunhikrishnan et al., 2004; West et al., 2009a).  We find less 

variability across the four regions in reducing full troposphere and UT O3 burden per 

change in NMVOC and CO emissions (Figure 2.2), but six CTMs show that SA NMVOC 

and CO reductions produce the largest reductions in UT O3 burden per change in 

emissions.   

For each regional reduction, the greatest changes in steady-state tropospheric total 

column O3 occur over the reduction region, in each individual CTM and across the HTAP 

ensemble (Figure 2.3).  For NOx reductions from each region, slight increases in O3 

burden occur in the SH, in contrast to overall decreases in the northern hemisphere (NH), 

due to long-term O3 increases via CH4 that are globally-distributed (according to the 

pattern of O3 response to CH4) (West et al., 2007, 2009b) (see section 3.2).  As SA is 

further south than the other regions, the largest O3 decreases occur near the tropics and do 

not extend as far north.  The slightly higher increases in O3 in the SH from the NA NOx 

reduction correspond to this region producing greater increases in global CH4 (Figure 

2.4).  For NMVOC and CO reductions from the four regions, we find decreases in total 

column O3 in both the SH and NH, as sustained decreases in these precursors cause both 

short- and long-term global O3 decreases.  NMVOC reductions also reduce global annual 

average peroxy acetyl nitrate (PAN) burdens from the four regions by 1.4 ±0.6% 

(SR4EA), 2.0 ±0.8% (SR4EU), 1.5 ±0.5% (SR4NA), and 0.5 ±0.2% (SR4SA), relative to 

the base, through which NMVOCs can influence the nitrogen cycle and therefore long-
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range O3.  Across the 11 CTMs, we find that tropospheric PAN decreases are correlated 

to the changes in NMVOC emissions for the EA, EU, and NA reductions. 

2.3.2 Tropospheric methane changes 

Although global CH4 was held constant by each CTM in all perturbations, we 

analyze the changes in global tropospheric CH4 calculated off-line for each perturbation.  

NOx reductions from all four regions increase global CH4 abundance via decreases in 

OH, while NMVOC and CO reductions from all four regions decrease global CH4 

(Figure 2.4).  These changes in CH4 drive the long-term O3 changes discussed in the 

previous section.   For particular precursors, reductions from certain regions, e.g. CO 

reductions from EA, are slightly more effective at decreasing global CH4 than other 

regions.  However, there is noticeable variability among the CTMs’ changes in global 

CH4 (Figure 2.4), which is partly explained by variance in CTM emissions for CO, but 

not for NOx and NMVOCs.   

For several CTMs, some emissions perturbations had minimal impact on global 

OH, resulting in calculated steady-state CH4 changes of zero.  In addition, the CVs of 

CH4 change are lowest in magnitude for NOx reductions (0.22 to 0.39) and highest for 

NMVOC reductions (-0.40 to -1.12), perhaps reflecting differing NMVOC speciation and 

chemical schemes among the CTMs (Collins et al. 2002).   

We compare the change in global CH4 from the combined precursor reductions to 

the sum of global CH4 changes from NOx, NMVOC, and CO reductions to assess the 

additivity of individual precursor reductions on global CH4.  Based on the HTAP 

multimodel mean results, global CH4 changes from SA and NA combined precursor 

reductions are approximately 59% and 75%, respectively, of the sum of CH4 changes 
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from individual precursor reductions, while global CH4 changes from EA and EU 

combined precursor reductions are slightly negative in contrast to small positive global 

CH4 changes from the sum.  The three (of 11) CTMs that did not include reductions in 

SO2 and aerosols in the SR6 experiments (Fiore et al., 2009) show global CH4 changes 

from the combined precursor reductions close to the sum of CH4 changes from individual 

NOx, NMVOC, and CO reductions.  This suggests that deviations from additivity may be 

due to reductions in SO2 and aerosols (in SR6) affecting CH4.   

2.3.3 Tropospheric sulfate changes 

There is considerable variability and disagreement in the sign of SO4
2- responses 

among the four CTMs evaluated (Figure 2.5). The greatest variability in global SO4
2- 

burden across the CTMs occurs for the CH4 reduction and for NOx reductions from all 

four regions.  There is less variability across CTMs for NMVOC and CO reductions, but 

still differences in the sign of change.    

The four CTMs analyzed here account for SO4
2- formation through two main 

oxidation pathways: 1) gas-phase oxidation of sulfur dioxide (SO2) by OH, and 2) 

aqueous-phase oxidation of SO2 by H2O2 or O3 (Houweling et al., 1998; Jeuken et al., 

1999, 2001; Barth et al., 2000; Rasch et al., 2000; Horowitz et al., 2003; Rotman et al., 

2004; Tie et al., 2005).  Since CH4, NMVOC, and CO reductions increase OH 

concentrations, SO2 oxidation via pathway (1) is expected to increase tropospheric SO4
2-

formation.  At the same time, increases in H2O2 (occurring with increases in OH) are 

expected to increase SO2 oxidation via pathway (2), but decreases in O3 may decrease 

oxidation (also pathway (2)).  NOx reductions not only decrease O3, but can also decrease 

OH and H2O2, which leads to decreases in SO4
2- formation by pathways (1) and (2).  
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Figure 2.5 shows that the sign of SO4
2- response is not consistent across all four CTMs, 

suggesting uncertainty in the modeled effects of O3 precursors on oxidants, the relative 

importance of these oxidation pathways, and the lifetime and removal of SO2 and SO4
2-.   

The global distributions of tropospheric total column SO4
2- changes (Figure 2.6) 

show the greatest changes in SO4
2- over the region of emission change, with only slight 

changes globally.  The individual CTMs and HTAP ensemble mean results show that 

NOx reductions from EA, EU, and NA cause both increases and decreases in SO4
2- over 

the reduction region, which correspond to changes in oxidants (OH, H2O2, O3); localized 

decreases in SO4
2- are due in part, to localized decreases in OH (Figure A5) and decreases 

in O3.  The distributions of H2O2 are not analyzed, as they were not reported in the CTM 

simulations.  NMVOC reductions from EU increase SO4
2- over northeastern Africa and 

decrease SO4
2- over western Europe in three of the CTMs and the ensemble mean. All 

four CTMs consistently show that the EA NMVOC reduction decreases SO4
2- and the SA 

NMVOC reduction increases SO4
2- regionally, while two CTMs show SO4

2- decreases 

over the eastern U.S. from the NA NMVOC reduction.  For CO reductions from all four 

regions, the ensemble mean shows localized increases, while the individual CTMs differ 

in the sign of regional SO4
2- change for all CO reductions except SA.    Regional 

increases in SO4
2- from the NMVOC and CO reductions can be explained partly by 

localized increases in OH (Figure A5); however, decreases in SO4
2- may be related to the 

differing effects on oxidants (including H2O2) and on the SO2 oxidation pathways in each 

CTM, as discussed in the previous paragraph. 



22 
 

2.4 Radiative forcing due to precursor emission changes 

Figure 2.7 (and Table A1) show the global annual net RF due to O3, CH4, and 

SO4
2-, estimated from RTM simulations, first for multimodel mean O3 and CH4, and 

second for multimodel mean O3, CH4, and SO4
2-, for each SR scenario relative to the base 

case.  We calculated the net RF distributions for each perturbation scenario (SR2 through 

SR6) by subtracting (in each grid cell and month) the simulated radiative fluxes for the 

base case (SR1) from those for each perturbation.  To estimate the contribution of the 

multimodel mean SO4
2- to the global annual net RF, we subtracted the net RF results due 

to O3 and CH4 from the net RF due to O3, CH4, and SO4
2- for each SR scenario, assuming 

the effects of O3, CH4, and SO4
2- are additive.  To distinguish the contributions of O3 and 

CH4 to the global annual net RF, we estimated the net RF due to the multimodel mean 

CH4 for each SR scenario, using the formula of Ramaswamy et al. (2001), attributing the 

difference to O3 RF.   

Computational limitations prevented us from simulating the RFs individually for 

each CTM’s 18 SR scenarios.  Instead, we simulate RFs for multimodel means, and for 

the multimodel mean ±1 standard deviation O3 and CH4 and the multimodel mean +1 

standard deviation SO4
2- to account for uncertainty in the net RF due to differences in the 

CTMs.  We show uncertainty (mean ±1 standard deviation) for the resulting net RF, 

which includes the uncertainty in O3 and CH4 RFs, as changes in O3 and CH4 are not 

strongly correlated among the 11 CTMs for most scenarios (Figure A4). For NOx 

reductions, because the RF due to O3 opposes that of CH4, a broader uncertainty range 

would have resulted had we instead simulated together the multimodel mean +1 standard 
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deviation O3 and the multimodel mean -1 standard deviation CH4 (and the reverse) to 

estimate uncertainty.   

 Figure 2.7 shows that O3 and CH4 RFs have the same sign as the tropospheric 

composition changes in section 3; since SO4
2- is cooling, SO4

2- RF has the opposite sign.  

NOx  reductions from all four regions produce an overall positive net RF due to increases 

in CH4, which outweigh the negative net RF due to decreases in O3 (Figure 2.7a).  

Negative global net RFs are produced by CO and NMVOC reductions, due to O3 and 

CH4 decreases, and also by the combined precursor reductions, as increases in CH4 from 

NOx reductions roughly cancel CH4 decreases from NMVOC and CO reductions (Fiore et 

al., 2009).  The net RF due to the combined precursor reduction is 98% to 117% of the 

sum of the net RFs (of O3 and CH4) due to reductions of each individual precursor, across 

the four regions, showing approximate additivity for the different precursors. 

Consistent with the SO4
2- changes in Figure 2.5, NOx reductions from EU and SA 

contribute a positive SO4
2- RF, while EA and NA NOx reductions produce negative SO4

2- 

RF.  The SO4
2- RFs for NMVOC and CO reductions vary in magnitude and sign across 

the four regions, corresponding to the disagreement in SO4
2- response across the CTMs 

(Figure 2.5).  We do not estimate the contribution of SO4
2- to net RF for the combined 

reductions, since many of these perturbations included 20% reductions in SO2 and 

aerosols, making it difficult to isolate the effect of NOx, NMVOC, and CO on SO4
2- RF.    

Figure 2.7 also shows an estimate of the RF due to the CO2 equivalent emission 

resulting from the influence of surface O3 on plants’ ability to remove CO2 from the 

atmosphere, from Collins et al. (2010), based on one HTAP CTM (STOCHEM) and not 

the HTAP ensemble. The CO2 responses to pulse changes from Collins et al. (2010) were 



24 
 

converted to equilibrium responses by integrating over 100 years.  The range of CO2 RF 

represents high to low sensitivity of vegetation to O3.  With the additional consideration 

of CO2 RF, the global annual net RF due to regional NOx reductions changes sign to an 

overall net climate cooling (-0.83 to -4.28 mWm-2 for all four regions), while the negative 

net RFs for regional NMVOC and CO reductions are reinforced by the addition of CO2 

RF (Table A1). 

We normalize the global annual net RF estimates (Figure 2.7a) by each region’s 

reduction in emissions (Table 2.3).  The net RF per unit change in NOx and NMVOC 

emissions is greatest for SA reductions out of the four regions (Figure 2.7b), 

corresponding to the sensitivity findings in section 3.1.  For CO reductions, all four 

regions are approximately as effective at reducing global net RF per unit CO emissions, 

consistent with CO’s longer atmospheric lifetime. 

We compare our ensemble mean global annual net RF estimates per unit NOx 

emissions to those of Naik et al. (2005), who used a single CTM and analyzed 10% NOx 

reductions.  Our estimates are approximately 32% to 63% (EU, NA, SA) and 16% (EA) 

of those reported by Naik et al. (2005), but these differences in net RF (CH4 and O3 RF 

combined) are small in comparison to the magnitudes of CH4 and O3 forcing individually. 

The net RF distributions (Figure 2.8) correspond to the distributions of total 

column O3 (Figure 2.3) and SO4
2- changes (Figure 2.6), where regional to hemispheric 

RF corresponds to O3 changes and more localized RF is dominated by SO4
2- changes, as 

illustrated by shortwave forcings (Figure A2).  Changes in CH4 influence net RF 

globally, since a uniform CH4 mixing ratio was specified in each RTM simulation.  For 

NOx reductions, we find positive net RFs in the SH due to CH4 and long-term O3 
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increases globally, but in the NH these positive RFs are outweighed by the negative RF 

of O3 decreases (Figure 2.8).  For CH4, NMVOC, CO, and combined reductions, negative 

net RFs from O3 decreases in the NH overlay negative RFs globally due to CH4.  While 

Figure 2.7 presents globally averaged forcings, the regionally inhomogeneous forcings in 

Figure 2.8 are also relevant for regional climate change (Shindell and Faluvegi, 2009).  

However, regional RF patterns resulting from changes in tropospheric loadings do not 

directly translate to regional climate responses (Levy et al., 2008; Shindell et al., 2010).   

In Figure 2.9, the relationship between tropospheric O3 burden changes and global 

O3 RF is strongly linear, giving a RF efficiency of approximately 3.27 mW m-2 per Tg O3 

or 35.6 mWm-2 DU-1 (1 DU ≈ 10.88 Tg O3 [Park et al., 1999]).  This efficiency compares 

well with those estimated in previous studies, 34 to 48 mWm-2 DU-1 (Hauglustaine and 

Brasseur, 2001; Wild et al., 2001; Fiore et al., 2002) and 23 mWm-2 DU-1 (for NOx) and 

43 mWm-2 DU-1 (for CH4 and CO+VOCs) (Shindell et al., 2005).  Here reductions from 

EU and NA (with exception of NA NOx) fall at or above the average RF efficiency line, 

suggesting lower RF efficiency.  EA and SA reductions (except for EA NMVOC) have 

RF efficiency greater than average, as these regions have greater influences on the UT 

where RF is the most efficient (Lacis et al., 1990; Wang et al., 1993; Forster and Shine, 

1997; West et al., 2009a).     

2.5 Global warming potentials 

 Beyond analyzing RF, the climate impacts of O3 precursor emissions can be 

compared with each other, and with the emissions of other species using climate metrics 

such as the global warming potential (GWP).  Forster et al. (2007) suggest that there are 

serious limitations to the use of GWPs for comparing short-lived species. While other 
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metrics have been proposed to compare climate effects, such as the global temperature 

potential (GTP) (Shine et al., 2005; 2007), none are as widely used as the GWP.  We 

choose to analyze the GWP here for comparison with earlier studies. 

 The basis for the GWP calculation is the integrated RF following a pulse 

emission.  In section 4, O3 RF was calculated for equilibrium conditions for the sum of 

the short and long-term O3 responses (Figure 2.7 and Table A1).  Here long-term O3 RF 

is calculated by scaling O3 RF from SR2 by the ratio of steady-state O3 burden change in 

a particular SR scenario (SR minus base) to those of SR2 (SR2 minus base).  The short-

term O3 RF is then the difference between the steady-state RF (section 4) and long-term 

RF.  Following Collins et al. (2010), RF as a function of time is calculated for a one-year 

emissions perturbation, for each SR scenario. The short-term RF components (SO4
2- and 

short-term O3) are assumed to be constant over the one-year pulse and then drop to zero 

instantaneously; whereas, the long-term components (CH4 and long-term O3) respond and 

decay with the multimodel mean CH4 perturbation lifetime (11.65 years).  For the 20% 

CH4 reduction (SR2), an analytical expression is used to calculate the impact of a one-

year emissions pulse and subsequent decay (Collins et al., 2010).  This CH4 perturbation 

is used to scale the SO4
2- and O3 RFs from SR2 in Figure 2.7.  The formula by 

Ramaswamy et al. (2001) is used to calculate the CH4 RF. 

GWPH is given by the RF integrated out to a time horizon H and normalized by 

the change in emissions, divided by the equivalent for CO2.  In Figure 2.10 and Table A2, 

we present GWPs for the 20- and 100-year time horizons (GWP20 and GWP100).  The 

uncertainties are dominated by the variation in CH4 response across the CTMs.  For NOx 

emissions, this uncertainty is sufficiently large that it is not possible to identify the sign of 
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the GWPs.  The patterns of GWP100 are very similar to the normalized forcings in Figure 

2.7b (the patterns would be identical for GWP∞), whereas the GWP20 patterns give more 

emphasis to short-lived O3 and SO4
2- than GWP100.  For NOx emissions, this brings 

GWP20 proportionally closer to zero. 

For NOx reductions, the GWP100 estimates are similar to those of Forster et al. 

(2007) and Fuglestvedt et al. (2010), though substantially smaller than those found in 

Shindell et al. (2009).  The O3 contribution from Asian NOx found by Berntsen et al. 

(2005) is within the range of the HTAP CTMs’ results, but slightly higher than the HTAP 

multimodel mean.  We neglect RFs of nitrate aerosols, but Bauer et al. (2007) suggest 

nitrate contributions to NOx GWPs on the order of -80 for GWP20 and -20 for GWP100.  

The NMVOC GWPs (Figure 2.10) are generally smaller than Collins et al. (2002); 

however, Collins et al. (2002) covered a range of individual NMVOCs.  For CO, the 

GWPs are comparable to Derwent et al. (2001), but smaller than Berntsen et al. (2005), 

largely due to the lower O3 response of the HTAP multimodel mean; the O3 response to 

Asian CO emissions of Berntsen et al. (2005), however, is within the range of the HTAP 

CTMs.  The CO GWP100 estimates are also smaller than the no-aerosol results of Shindell 

et al. (2009), due to a lower CH4 response.  The O3 contribution to GWP100 for CH4 is 

smaller in this multimodel study (21% of the direct CH4 contribution) than the 25% 

assumed by Forster et al. (2007), mostly because changes in O3 above the tropopause are 

neglected.  Adding in the contribution of O3 in the lower stratosphere (15% of O3 RF) 

(Søvde et al., 2011), and that for stratospheric water vapor (15% of the CH4 contribution) 

would give a total GWP100 for CH4 of 24.2 ±4.2. 
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For NOx and NMVOCs, SA emissions have a larger impact than emissions from 

the other regions. This suggests that some latitudinal dependence may be appropriate for 

GWPs of O3 precursors. Note that equatorial or SH emission changes were not 

considered in this study, but Fuglestvedt et al. (2010) found a dependence on latitude.  

European NOx emissions have a more negative GWP than other regions in the northern 

mid-latitudes, as O3 production in this NOx-saturated region is lower. 

2.6 Conclusions 

We quantify the magnitude and distribution of global net RF due to changes in 

O3, CH4, and SO4
2- for 20% reductions in global CH4 and regional NOx, NMVOC, CO, 

and combined precursor emissions.  We find that the 20% NOx reductions produce 

global, annually averaged positive net RFs, as positive CH4 RFs outweigh negative O3 

RFs, consistent with previous studies (Fuglestvedt et al., 1999; Wild et al., 2001; Naik et 

al., 2005; West et al., 2007).  For CH4, NMVOC, and CO reductions, O3 and CH4 RFs are 

synergistic, yielding overall negative net RFs, consistent with previous global-scale 

studies (Fiore et al., 2002; West et al., 2007; Shindell et al., 2009).  Including the effects 

of O3 on plant growth and the carbon cycle may change the sign of net RF for NOx 

reductions to an overall net climate cooling, in contrast to previous results that neglect 

this effect, while reinforcing the negative net RFs due to NMVOC and CO reductions, 

but future research is needed to better quantify this effect. 

By normalizing the net RF estimates by changes in emissions (for NOx, NMVOC, 

and CO), we find that RF is more sensitive to NOx and NMVOC emission reductions 

from regions closer to the equator (i.e. SA), consistent with our findings that changes in 

O3 burden per change in emissions (full troposphere and UT O3 for NOx, and UT O3 for 
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NMVOC) are greatest for SA reductions.  RF is more uniformly sensitive to CO emission 

reductions from each of the four regions, which agrees with O3 burden changes per unit 

CO being less variable across the four regions.  The trends in GWP100 across the four 

regions, for each precursor, reflect the normalized net RF results.   Compared to GWP100, 

the GWP20 patterns are influenced more by short-term O3 and SO4
2-.   The large 

uncertainties in the NOx GWP estimates, mainly from the variation in calculated CH4 

responses across the CTMs, limit the determination of the sign of NOx GWPs.  The 

estimated GWPs for individual regions are from the largest model ensemble that has been 

analyzed to date, and are broadly comparable to previous studies.   

We find that regional RFs correspond to localized increases and decreases in 

SO4
2- burden.  O3 changes are most important for RF on the regional to hemispheric 

scales, and CH4 influences RF globally, dominating the RF response in the SH.  The 

estimated contribution of SO4
2- (direct effect only) to net RF is small compared to the RF 

of O3 and CH4.  Shindell et al. (2009) found with a single CTM that for global NOx, CO, 

and VOC emissions, changes in SO4
2- contributed a RF more comparable in magnitude to 

the RFs of O3 and CH4.  Our findings contrast with those of Shindell et al. (2009) on the 

importance of SO4
2- RF due to O3 precursors.  However, the robustness of these results is 

limited, since there was substantial variability in SO4
2- among only four HTAP CTMs.  

The effects of O3 precursors on SO4
2- via oxidants merit further research, using newer 

models that include improved treatment of oxidant-aerosol interactions. 

We account for variability in O3, CH4, and SO4
2- across the ensemble of CTMs, 

but our estimates of uncertainty only include the variability in CTMs, using a single RTM 

for all RF estimates.  We therefore understate the uncertainty in net RF.  In addition, 
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while we capture the most important forcings, a more complete analysis of RF could 

include RFs due to changes in nitrate aerosols (likely important for NOx reductions), the 

indirect effect of aerosols, internal mixing of aerosols, changes in stratospheric O3 and 

water vapor, and changes to the carbon cycle via nitrogen deposition.  Finally, we 

estimate RF due to changes in the radiative budget of the global atmosphere, but do not 

estimate the full climate response to regional forcings.  Future research should link global 

and regional RF to climate responses. 

Our analysis contributes to the understanding of the effects of O3 precursors on 

global and regional RF, and provides motivation for evaluating the climate benefits of 

policies addressing tropospheric O3 and its precursors.  We show that among short-lived 

O3 precursors, NMVOC and CO emission reductions most effectively reduce RF.  Our 

GWP estimates could form the basis for regionally-specific GWPs (or comparable 

metrics), which may allow O3 precursors to be included in future climate agreements and 

emissions trading schemes, as well as provide information that could be used to estimate 

the influence of national or regional policies.  Variability in GWPs among regions for 

NOx and NMVOCs suggests that regionally-specific estimates would be important.  For 

CO, the consistency in RF per unit emissions and GWP100 across the four regions implies 

that the error in using a uniform GWP for CO may be small.  However, the RF per unit 

CO emissions may differ in other regions not studied here.  Future studies should analyze 

additional source regions, such as near the equator and in the SH, as other precursors 

show greater sensitivity in these regions (e.g., Naik et al., 2005). 
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2.7 Tables and Figures 

 
Table 2.1. HTAP source-receptor sensitivity simulations, where the four regions of 
reduction are East Asia, Europe, North America, and South Asia for SR3 through SR6. 
 

Scenario  Description 

SR1 Base simulation 

SR2 20% reduction in global CH4 mixing ratio 

SR3 20% reduction in regional NOx emissions 

SR4 20% reduction in regional NMVOC emissions 

SR5 20% reduction in regional CO emissions 

SR6 20% reduction in regional NOx, NMVOC, CO, and aerosol emissions 
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Table 2.2. Global CTMs used for multimodel mean O3, CH4, and SO4
2- estimates. 

Model Institution 

CAMCHEM-3311m13a NCAR, USA 

FRSGCUCI-v01 Lancaster University, UK 

GISS-PUCCINI-modelE NASA GISS, USA 

GMI-v02f NASA GSFC, USA 

INCA-vSSz LSCE, France 

LLNL-IMPACT-T5aa LLNL, USA 

MOZARTGFDL-v2a GFDL, USA 

MOZECH-v16 FZ Juelich, Germany 

STOC-HadAM3-v01 University of Edinburgh, UK 

TM5-JRC-cy2-ipcc-v1a JRC, Italy 

UM-CAM-v01 University of Cambridge, UK/NIWA, NZ 

 

a The four global CTMs used for multimodel mean SO4
2- estimates. 
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Table 2.3. Multimodel mean ± 1 standard deviation reductions in the anthropogenic 
emissions of NOx, NMVOC, and CO (20% of total anthropogenic emissions) among the 
11 HTAP CTMs used herea. 
 

Region NOx (Tg N a-1) NMVOC (Tg C a-1) CO  (Tg a-1) 

EA 1.17 ±0.24  (0.20) 3.13 ±1.24  (0.40) 25.58 ±7.25  (0.28) 

EU 1.48 ±0.14  (0.09) 3.77 ±1.88  (0.50) 15.40 ±3.26  (0.21) 

NA 1.48 ±0.10  (0.07) 3.11 ±1.34  (0.43) 19.69 ±3.66  (0.19) 

SA 0.46 ±0.04  (0.09) 1.94 ±0.63  (0.33) 15.82 ±3.74  (0.24) 

 

a Coefficient of variation (CV = standard deviation/mean) is in parentheses. Emissions for 
the individual CTMs are provided in Tables A2 and A3 of Fiore et al. (2009). 
 
 



34 
 

 

Figure 2.1. Global annual average changes in full (blue) and upper (yellow) tropospheric 
O3 burden (Tg) at steady state (perturbation  minus base), where the upper troposphere is 
from 500 hPa to the tropopause, for the HTAP ensemble of 11 models, showing the 
median (black bars), mean (red points), mean ±1 SD (boxes), and max and min 
(whiskers), for each precursor reduction scenario (-20% global CH4 burden, and -20% 
regional emissions of NOx, NMVOC, CO, and combined from East Asia [EA], Europe 
and Northern Africa [EU], North America [NA], and South Asia [SA]). 
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Figure 2.2. Global annual average changes in full (blue) and upper (yellow) tropospheric 
O3 burden per change in emissions (Tg O3 / Tg emissions per year) at steady state for the 
individual 11 models, where the units of emissions are Tg N (for NOx), Tg C (for 
NMVOCs), and Tg CO (for CO), showing the median (black bars), mean (red points), 
mean ±1 SD (boxes), and max and min (whiskers) across the HTAP ensemble. 
 

-2.0

-1.6

-1.2

-0.8

-0.4

0.0
EA EU NA SA

-0.20

-0.16

-0.12

-0.08

-0.04

0.00
EA EU NA SA

-0.04

-0.03

-0.02

-0.01

0.00
EA EU NA SA

Δ 
Tr

op
os

ph
er

ic
 O

zo
ne

 p
er

 Δ
 E

m
is

si
on

s
(T

g 
oz

on
e 

/ T
g 

em
is

si
on

s p
er

 y
ea

r)
-20% NO -20% NMVOC -20% COx



36 
 

 

Figure 2.3. Annual average steady-state tropospheric total column O3 burden changes 
(10-2 DU) for the multimodel mean of 11 HTAP models, for each of the precursor 
reduction scenarios (-20% CH4 burden, and -20% regional emissions of NOx, NMVOC, 
CO, and combined).  The 4 regions of reduction (NA, EU, SA, EA) are outlined in red in 
the -20% CH4 plot. 
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Figure 2.4. Global annual multimodel changes (perturbation minus 1760 ppbv) in 
tropospheric CH4 (ppbv) for -20% regional emissions of NOx, NMVOC, CO, and 
combined: median (black bars), mean (red points), mean ±1 SD (boxes), and max and 
min (whiskers) for the HTAP ensemble of 11 models, estimated directly from the CH4 
loss by tropospheric OH archived by each HTAP CTM (Fiore et al., 2009).  Tropospheric 
CH4 changes were not available from INCA-vSSz for SA 20% NMVOC reduction and 
from LLNL-IMPACT-T5a for 20% NOx reductions (EA, EU, NA, SA); these models are 
excluded from the multimodel CH4 changes for these perturbations. 
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Figure 2.5. Global annual multimodel changes (perturbation minus base) in short-term 
tropospheric SO4

2- (Gg) for -20% CH4 burden and -20% regional emissions of NOx, 
NMVOC, and CO: mean (red bars) and mean ±1 SD (boxes) across the HTAP ensemble 
of four models.  The individual model results are shown in black (+). 
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Figure 2.6. Annual average tropospheric total column SO4
2- burden changes (g m-2) for 

the multimodel mean of four HTAP models for -20% CH4 burden and -20% regional 
emissions of NOx, NMVOC, and CO scenarios. 
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Figure 2.7. a) Global annual average RF (mW m-2) for the HTAP ensembles of 11 models 
(for O3 and CH4 forcing) and four models (for SO4

2- forcing) due to multimodel mean 
changes in steady-state O3, CH4, and SO4

2-.  Vertical black bars represent the uncertainty 
in net RF across models, calculated as the net RF of the multimodel mean ±1 standard 
deviation O3 and CH4, for each perturbation (-20% CH4 burden, and -20% regional 
emissions of NOx, NMVOC, CO, and combined), relative to the base simulation. The 
uncertainty estimates for -20% CH4 account only for the variability in simulated O3 
changes across the CTMs, since all CTMs uniformly reduced CH4 (1760 ppbv to 1408 
ppbv).  Vertical green bars represent the upper uncertainty bound of SO4

2- RF across 
models, calculated as the net RF of the multimodel mean +1 standard deviation SO4

2-.  
The RF of changes in CO2 uptake by the biosphere (yellow), are shown as a range from 
high to low sensitivity of vegetation to O3, estimated for a single CTM (STOCHEM) by 
Collins et al. (2010); these estimates are not included in the net RF (Supporting data 

-6

-4

-2

0

2

4

6

8

EA EU NA SA

G
lo

ba
l A

nn
ua

l N
et

 R
F 

/ Δ
Em

is
si

on
s 

(m
W

m
-2

/ T
g 

em
is

si
on

s p
er

 y
ea

r)

-1.2

-0.8

-0.4

0.0

0.4

0.8

EA EU NA SA

-20% NOx -20% NMVOC

-0.2

-0.1

0.0

0.1

EA EU NA SA

Methane RF/emissions
Ozone RF/emissions
Sulfate RF/emissions
CO  RF/emissions
Net RF/emissions

-20% CO

-8

-6

-4

-2

0

2

4

6

EA EU NA SA EA EU NA SA EA EU NA SA EA EU NA SA

G
lo

ba
l A

nn
ua

l N
et

 R
F 

(m
W

m
-2

)

Methane RF
Ozone RF
Sulfate RF
CO  RF
Net  RF

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

All

-20% NOx -20% NMVOC -20% CO -20% Combined -20% CH4

a)

b)

2

2



41 
 

provided in Table A1).  Note the difference in scale between the -20% regional (NOx, 
NMVOC, CO, combined) and -20% CH4 reduction scenarios. 
b) Global, annual average RF per multimodel mean change in emissions (mW m-2 / Tg 
emissions per year) due to multimodel mean changes in steady-state O3, CH4, and SO4

2-, 
and uncertainty (vertical black bars) as the net RF of the multimodel mean ±1 standard 
deviation changes in O3 and CH4 per unit change in emissions for each perturbation, 
relative to the base simulation. Vertical green bars represent the upper uncertainty bound 
of SO4

2- RF per unit change in emissions across models. 
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Figure 2.8. Annual average net RF distributions (mW m-2), calculated as the annual 
shortwave radiation minus the annual longwave radiation, due to tropospheric O3, CH4, 
and SO4

2- for the multimodel mean, for each of the precursor reduction simulations (-20% 
CH4 burden and -20% regional emissions of NOx, NMVOC, CO, and combined) minus 
the base simulation.  Note the difference in scale between the -20% regional (NOx, 
NMVOC, CO, combined) and -20% CH4 reduction scenarios. 
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Figure 2.9. Radiative forcing efficiency of O3 for the 16 SR simulations (SR3 through 
SR6) for the multimodel mean, showing the global, annual average O3 net RF (mW m-2), 
calculated as the difference between the simulated net RF due to O3 and CH4 and 
estimated net RF due to CH4 (Ramaswamy et al., 2001), versus the global, annual 
average steady-state changes in tropospheric O3 burden (Tg).  The SR simulations are 
distinguished by precursor (color) and region (shape). 
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Figure 2.10. GWPs for time horizons of a) 20 years and b) 100 years for the -20% CH4 
burden and -20% regional emissions of NOx, NMVOC, and CO scenarios.  The four 
regions estimates (labeled “All”) represent the GWP due to the sum of the four regions’ 
responses (to O3, CH4, SO4

2-, and all three species [Total GWP]). Uncertainty analysis is 
as in Figure 2.7, but also includes the uncertainty in the CH4 lifetimes for the base 
simulation (SR1) (Supporting data available in Table A2). 
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Chapter 3.  Net radiative forcing and air quality responses to regional CO 
emissions reductions2 

 

3.1 Introduction 

Carbon monoxide (CO) is emitted from the incomplete combustion of carbon 

fuels, and contributes indirectly to climate change through its influence on tropospheric 

ozone (O3) and atmospheric oxidants (e.g. hydroxyl radical [OH], hydrogen peroxide 

[H2O2], O3), which in turn affect the abundance of methane (CH4) and aerosols (Pham et 

al., 1995; Unger et al., 2006; Shindell et al., 2009).  CO emission reductions impact both 

climate and air quality by increasing tropospheric OH concentrations, which lead to 

decreases in global CH4 and thus, long-term O3 (Prather et al., 1996; Wild et al., 2001; 

Fiore et al., 2002; Naik et al., 2005), as CH4 is a longer-lived precursor to tropospheric O3 

(West et al., 2007, 2009a; Fiore et al., 2009).  Here, we assess the net climate impact of 

reducing anthropogenic CO emissions globally and from 10 world regions individually, 

to inform future policies that may address air quality and climate jointly.  We omit 

reductions in co-emitted species (e.g. black carbon [BC], organic carbon [OC]) that 

would be affected by measures to reduce CO emissions, to examine the sensitivity of air 

quality and RF to CO emissions alone, and to derive CO climate metrics.  Future studies 

may model emission control measures that address multiple species (e.g. Shindell et al., 

                                                       
2 Fry, M. M., M. D. Schwarzkopf, Z. Adelman, V. Naik, W. J. Collins, and J. J. West (2013), Atmospheric 
Chemistry and Physics, 13, 5381-5399, doi:10.5194/acp-13-5381-2013 
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2012), or combine these results with those for co-emitted pollutants to determine the net 

effect of emission control measures.   

Tropospheric O3 and CH4, both greenhouse gases, have contributed abundance-

based anthropogenic radiative forcings (RF) of 0.35 [-0.1, +0.3] W m-2 and 0.48 ±0.05 W 

m-2, respectively, the largest greenhouse gas forcings behind CO2 (Forster et al., 2007).  

CO and volatile organic compounds (VOC) emissions provide important contributions 

toward these forcings, estimated as 0.21 ±0.10 W m-2 due to tropospheric O3 and CH4 

changes (Shindell et al., 2005; Forster et al., 2007), and 0.25 ±0.04 W m-2 (from 1750 to 

2000) when the effects on sulfate and nitrate aerosols and CO2 are included (Shindell et 

al., 2009).     

In addition to being near-term climate forcers, products of CO reactions (O3 and 

aerosols) are important air pollutants.  CO emissions not only affect O3 concentrations 

locally, but also intercontinentally (Akimoto, 2003; TF HTAP, 2010), given tropospheric 

ozone’s mean lifetime of 22 days (Stevenson et al., 2006) and CO’s lifetime of one to 

three months, both of which exceed typical intercontinental transport times (5 to 10 days) 

(Fiore et al., 2009; West et al., 2009a).  Because of its lifetime, the transport of CO makes 

an important contribution to long-range O3 (Heald et al., 2003).  However, recent studies 

have identified large uncertainties in regional CO emissions inventories (Duncan et al., 

2007), compared to satellite data (Heald et al., 2004; Pétron et al., 2004, Pfister et al., 

2004, 2005; Kopacz et al., 2009), e.g., underestimating tropical biomass burning 

emissions and northern mid-latitude seasonal variation in bottom-up inventories (Kopacz 

et al., 2010).  CO emissions also affect atmospheric aerosols including sulfate (SO4
2-) by 

influencing the oxidation of sulfur dioxide (SO2) by OH in the gas phase, or by H2O2 or 
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O3 in the aqueous phase.  OH increases from CO reductions lead to increased gas-phase 

SO4
2- formation, and hence, climate cooling, while H2O2 and O3 decreases lead to 

decreased aqueous-phase SO4
2- formation (locally to intercontinentally) and climate 

warming (Unger et al., 2006; Leibensperger et al., 2011).  In addition, CO influences the 

abundance of ammonium nitrate (NH4NO3) and secondary organic aerosols (SOA) via 

oxidant changes (Bauer et al., 2007; Hoyle et al., 2009). 

For more than a decade, many have suggested that short-lived climate forcers and 

their precursors, like CO, be considered in international climate agreements, in addition 

to national air quality programs (Fuglestvedt et al., 1999; Rypdal et al., 2005, 2009; Naik 

et al., 2005; Fry et al., 2012), and it is among these short-lived climate forcers for which 

reducing emissions can slow the near-term rate of climate change (Jackson, 2009; 

Shindell et al., 2012). One reason why CO has not been included in a climate mitigation 

strategy is that its RF varies by region of emissions, given its relatively short lifetime in 

the troposphere (Berntsen et al., 2005).  Global warming potentials (GWP) have been 

estimated for global CO emissions, with values ranging from 1.0 to 3.0 for a 100-year 

time horizon (GWP100) (Fuglestvedt et al., 1996; Johnson and Derwent, 1996; Daniel and 

Solomon, 1998; Collins et al., 2002), based on O3 production and feedbacks on CH4.  

Few studies have estimated GWPs for CO emissions from particular world regions.  

Berntsen et al. (2005) estimated GWPs for CO emissions from Europe and Southeast 

Asia, finding that the GWP for Asian CO emissions was 25% higher than that for 

European emissions.  Fry et al. (2012) also calculated CO GWP estimates for four world 

regions using an ensemble of global models, showing a small range (GWP20: 4.6 ±1.3 to 

5.3 ±1.2; GWP100: 1.5 ±0.4 to 1.7 ±0.5) with coefficients of variation (CV = standard 
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deviation/mean) of 0.065 for GWP20 and 0.059 for GWP100, where the European 

reduction produced a lower GWP than North America, East Asia, and South Asia 

reductions.  Further research on the sensitivity of net RF and CO GWPs to the region of 

CO emissions, including regions within the tropics and southern hemisphere (SH), may 

inform future policies that address climate change over the next 30 years, in coordination 

with longer-term CO2 mitigation (Daniel and Solomon, 1998; Shindell et al., 2012).   

In this paper, we evaluate the effects of 50% anthropogenic CO emission 

reductions from 10 regions individually, and globally, on stratospheric-adjusted net RF, 

tropospheric burdens (O3, CH4, and aerosols), and surface O3 air quality to inform future 

coordinated actions addressing air quality and climate.  We simulate the influence of CO 

emission reductions on tropospheric chemical composition using a global chemical 

transport model (CTM) and then apply a standalone radiative transfer model (RTM) to 

estimate the RF from changes in O3, CH4, and the direct effect of aerosols.  We present 

the variability in CO RF and GWPs from 10 regions, while previous studies only 

evaluated CO emissions perturbations from a few regions (Berntsen et al., 2005; Fiore et 

al., 2009; TF HTAP, 2010; Fry et al., 2012).  The global annually averaged net RF 

estimates given here are indicators of global mean surface temperature changes, but do 

not account for regional climate changes from spatially nonuniform forcings (Shindell et 

al., 2009). 

3.2 Methods 

3.2.1 Chemical transport modeling 

Using the Model for Ozone and Related chemical Tracers, version 4 (MOZART-

4) (Emmons et al., 2010), we simulate anthropogenic CO emission reductions from 10 
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regions (North America [NA], South America [SA], Europe [EU], Former Soviet Union 

[FSU], Africa [AF], India [IN], East Asia [EA], Southeast Asia [SE], Australia and New 

Zealand [AU], and Middle East and Northern Africa [ME]) (Figure 3.1) and globally 

(sum of emissions from 10 regions only), relative to a base simulation.  We use the 

Coupled Model Intercomparison Project Phase 5 (CMIP5)  Representative Concentration 

Pathway 8.5 (RCP8.5) emissions inventory for the year 2005 (Riahi et al., 2007, 2011) 

and global meteorology from the Goddard Earth Observing System Model, version 5 

(GEOS-5) for the years 2004 to 2006 (Rienecker et al., 2008) as inputs to MOZART-4.  

The RCP8.5 volatile organic compound (VOC) species are re-speciated to 

MOZART-4 VOC categories by matching like species.  Monthly temporal variation is 

added to all emissions species from anthropogenic sources, in each grid cell, by scaling to 

the monthly profile of emissions species in the REanalysis of the TROpospheric chemical 

composition over the past 40 years (RETRO) global emissions dataset (Schultz et al., 

2007), while shipping, aircraft, and biomass burning emissions already have monthly 

temporal variation.  Biogenic emissions of isoprene and monoterpenes are calculated 

online in MOZART-4 using the Model of Emissions of Gases and Aerosols from Nature 

(MEGAN) (Guenther et al., 2006), based on the methods of Pfister et al. (2008); global 

annual isoprene and monoterpene emissions are 738 Tg yr-1 and 107 Tg yr-1.  All other 

natural emissions are taken from the Precursors of Ozone and their Effects in the 

Troposphere (POET) emissions inventory for the year 2000 (Olivier et al., 2003; Granier 

et al., 2005; Emmons et al., 2010).  The global annual mean lightning NOx and soil NOx 

emissions (for 2005) are estimated as 2.4 Tg N yr-1 and 8.0 Tg N yr-1, respectively, which 
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are within the range of other modeling studies (Schumann and Huntrieser, 2007; Hudman 

et al., 2012). 

The global and regional reduction simulations are run from July 1, 2004 through 

December 31, 2005 at 1.9˚ x 2.5˚ (latitude x longitude) horizontal resolution and 56 

vertical levels.  The base simulation is run through December 31, 2006 to allow further 

comparisons with observations.  Although the perturbation simulations are 1.5 years in 

length, we account for the influence of CO emissions on CH4 (via OH), and thus long-

term changes in O3 on the decadal timescale of CH4 perturbation lifetime, using methods 

from previous studies (Prather et al., 2001; West et al., 2007; Fiore et al., 2009; Fry et al., 

2012).  We set global CH4 to a uniform mixing ratio in the base and perturbation 

simulations of 1783 parts per billion by volume (ppbv) (WMO, 2006).  We then simulate 

an additional CH4 control simulation, which reduces global CH4 by 20% to 1426.4 ppbv.  

Using the results from the base and CH4 control simulations, we estimate CH4 lifetime 

against loss by tropospheric OH (OH, 11.24 years), total CH4 lifetime based on OH and 

CH4 loss to soils and the stratosphere (total, 9.66 years), and methane’s feedback factor 

(F, 1.29) by the methods of Prather et al. (2001) and more recently, Stevenson et al. 

(2013), finding that our OH agrees with a recent estimate of OH based on observations 

(11.2 ±1.3 years) (Prather et al., 2012), and is within the range of other models: 8.2 to 

11.7 years (Stevenson et al., 2006), 10.2 ±1.7 years (Fiore et al., 2009), and 9.8 ±1.6 

years (Voulgarakis et al., 2013).  Using the offline formulation of West et al. (2007) and 

our estimated parameters (OH, total, and F), we estimate the steady-state tropospheric 

CH4 change for each perturbation.  We then calculate long-term O3 responses by scaling 

the change in O3 from the CH4 control simulation (CH4 control simulation minus base) in 
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each grid cell by the ratio of global CH4 burden change calculated for each perturbation 

to that of the CH4 control simulation.  Long-term O3 responses are added to the short-

term O3 responses simulated directly for each CO emission reduction (described below) 

to yield O3 concentrations at steady state (West et al., 2007; Fiore et al., 2009; Fry et al., 

2012).  

Because MOZART-4 does not have complete stratospheric chemistry (Emmons et 

al., 2010), three-dimensional monthly mean stratospheric O3 concentrations from the 

AC&C/SPARC O3 database prepared for CMIP5 (Available: http://pcmdi-

cmip.llnl.gov/cmip5/forcing.html) (Cionni et al., 2011) are merged with the calculated 

steady-state (short-term + long-term) tropospheric O3 concentrations for each simulation 

including the base case.  Søvde et al. (2011) estimated that ~15% of the RF of O3 

precursors is due to lower stratosphere O3 changes, using a single model with both 

standard and updated chemistry.  Since we do not account for lower stratospheric O3 

changes, our RF estimates may underestimate the full effect of CO emissions.       

MOZART-4 simulates the tropospheric aerosols SO4
2-, BC, OC, primary and 

secondary organics, NH4NO3, and sea salt aerosols (Lamarque et al., 2005; Emmons et 

al., 2010).  Here we quantify the changes in SO4
2-, NH4NO3, and SOA, as these aerosols 

are most directly influenced by anthropogenic CO emissions via changes in oxidants.  

SO4
2- aerosols in MOZART-4 are produced from SO2 and dimethylsulfide (DMS) 

emissions through gas and aqueous-phase oxidation (Barth et al., 2000), while NH4NO3 

aerosols are calculated from the oxidation of nitrogen oxides (NOx) to nitric acid (HNO3), 

and subsequent reaction with NH3 emissions (Metzger et al., 2002).  SOA is formed 
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through the gas-phase oxidation of monoterpenes by OH, O3, and nitrate (NO3), and the 

gas-phase oxidation of toluene by OH (Chung and Seinfeld, 2002).   

Each perturbation simulation reduces anthropogenic CO emissions by 50% in one 

region (or globally), while leaving all other emissions unchanged.  Figure 3.2 shows the 

total anthropogenic CO emissions by region and sector for the base simulation.  

Anthropogenic CO emissions include all source categories in Figure 3.2, but exclude 

biomass burning (except for the agriculture and waste burning categories), such as forest 

fires and grassland fires, which are also large sources of CO.  We exclude biomass 

burning as actions to address biomass burning differ from the other sectors addressed 

here, and would reduce a suite of emissions simultaneously (Naik et al., 2007).  Using the 

global, three-dimensional results from each perturbation, global and regional changes in 

air quality (O3 and aerosols) at the surface (within the first vertical level) and across the 

troposphere (region with O3 levels less than 150 ppbv) are quantified, relative to the base 

simulation, including the influence of each regional reduction on O3 long-range transport. 

3.2.2 MOZART-4 Evaluation 

Previous MOZART-4 simulations, with comparable model formulations but 

different inputs, have reproduced O3 and CO observations well (e.g., Pfister et al., 2005, 

2006; Lapina et al., 2006; Horowitz et al., 2007; Pfister et al., 2008; Emmons et al., 

2010).  Table 3.1 summarizes the total anthropogenic CO emissions and annual average 

surface O3, SO4
2-, and CO concentrations regionally and globally for the base simulation.  

The base simulation produces an average bias of 4.5 ppbv O3 across all sites compared to 

the Clean Air Status and Trends Network (CASTNET) (Figure B1), and 0.8 ppbv O3 

compared to the European Monitoring and Evaluation Programme (EMEP) network 
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(Figure B2).  MOZART-4 performs the least well during the summer months (June to 

August) in the US, with biases of nearly 20 ppbv in the Great Lakes, North East US, and 

South East US regions.  Simulated annual average surface SO4
2- concentrations are 

mostly within a factor of two of observations from the Interagency Monitoring of 

Protected Visual Environments (IMPROVE) and EMEP monitoring networks for 2005 

(Figure B3).  The base simulated monthly mean surface CO concentrations also generally 

agree with the seasonal cycle of NOAA CMDL surface CO measurements, but 

overestimate CMDL measurements in the SH (Figure B4), as was also found by Emmons 

et al. (2010). 

Simulated monthly 2005 and 2006 vertical O3 profiles are comparable to 1995 to 

2009 monthly mean and median ozonesonde climatology (Tilmes et al., 2012) (Figure 

B5), with the greatest agreement at 800 and 500 millibar (mb) altitudes (Figure B6).  

Larger differences exist between the base simulated O3 and ozonesonde climatology at 

200 mb, which may reflect the model’s upper boundary conditions and constraints 

(Emmons et al., 2010). 

Our base 2005 simulated OH burdens are lower than Spivakovsky et al. (2000), 

but fairly comparable to those of Lawrence (1996), Lawrence et al. (1999), von 

Kuhlmann (2001), and Emmons et al. (2010) (Table B1).  Low modeled OH 

concentrations may contribute in part to the surface CO overestimates of CMDL 

measurements in the SH.  The percentage loss of tropospheric CH4 by reaction with OH 

in the base simulation is comparable to Fiore et al. (2008) (Table B2), yet slightly lower 

in the lower troposphere (surface to 750 hPa), and slightly higher in the mid and upper 

troposphere (750 to 250 hPa).  
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3.2.3 Radiative transfer modeling 

The NOAA Geophysical Fluid Dynamics Laboratory (GFDL) RTM is used to 

estimate the stratospheric-adjusted net RF due to changes in tropospheric steady-state O3, 

CH4, and SO4
2- aerosols (direct effect).  The GFDL RTM is a module of the GFDL 

coupled atmosphere-ocean model (AM2) and simulates solar and infrared radiative 

transfer (GFDL GAMDT, 2004; Naik et al., 2005, 2007).  This RTM has been applied in 

studies of long-lived greenhouse gases (Schwarzkopf and Ramaswamy, 1999) and short-

lived forcing agents (Naik et al, 2005, 2007; West et al., 2007; Fiore et al., 2008; Saikawa 

et al., 2009; Fry et al., 2012).  Here the RTM is employed as in Fry et al. (2012) at 144 x 

90 x 24 levels, and with updated well-mixed greenhouse gas concentrations including 

CO2 and nitrous oxide (N2O) (Meinshausen et al., 2011) and CMIP5 solar forcing data 

(http://www.geo.fu-

berlin.de/en/met/ag/strat/forschung/SOLARIS/Input_data/CMIP5_solar_irradiance.html). 

The RTM simulations do not include the indirect effects of aerosols on clouds or the 

internal mixing of aerosols.  Aerosol indirect effects are highly uncertain, and may 

account for considerable RF contributions beyond the direct effect of aerosols (Forster et 

al., 2007).  Changes in the RF contributions from nitrate aerosols, stratospheric O3, water 

vapor, the carbon cycle via O3 and nitrogen deposition, and CO2 (from changes in CH4 

and CO oxidation) are also excluded.  CO oxidizes to CO2 in the atmosphere, with a 

minor influence on the net RF of CO (Shindell et al., 2009).  Since this carbon is likely 

already accounted for in inventories of CO2, we do not estimate CO2 forcing here (Daniel 

and Solomon, 1998). 
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Tropospheric O3, CH4, SO4
2-, BC, and OC concentrations from the MOZART-4 

base and perturbed simulations are used as inputs to the RTM simulations, along with 

meteorological fields from GFDL’s atmosphere model (AM2) and land model (LM2), 

sampled one day per month at midmonth for the year 2005, to represent monthly mean 

conditions (Naik et al., 2005).  BC and OC concentrations are not evaluated further as 

changes in these species between the base and perturbed simulations are negligible, but 

we include them as inputs to the RTM simulations.  The RTM currently does not 

calculate the RF of SOA and NH4NO3 aerosols.  The net RF is calculated as the 

difference between the perturbed and base cases’ simulated monthly mean net radiation 

fluxes (net shortwave minus net longwave), in each grid cell and month, at the tropopause 

after allowing stratospheric temperatures to readjust to radiative equilibrium (Naik et al., 

2007; Saikawa et al., 2009; Fry et al., 2012). 

3.3 Global and regional air quality responses 

3.3.1 Surface CO concentrations 

We first analyze the magnitude and distribution of annual average surface CO 

concentrations for each 50% reduction in anthropogenic CO emissions, relative to the 

base.  Figure 3.3 shows that the largest decreases in surface CO occur within each 

reduction region, with lesser decreases intercontinentally.  The foreign region that most 

influences the U.S. is EA, which contributes 39% of the change in U.S. surface CO that 

results from the NA reduction (Table 3.2).  Responses normalized by emission change 

are listed in Table B3.  Given that modeled OH concentrations are lower than a previous 

study (Spivakovsky et al., 2000), simulated surface CO concentrations may be slightly 

overestimated, such as in the SH when compared to CMDL measurements. 
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3.3.2 Responses of methane and ozone 

Tropospheric methane 

Changes in global tropospheric steady-state CH4 abundance for each perturbation 

relative to the base are calculated using the tropospheric CH4 loss flux diagnosed from 

the model (West et al., 2007; Fiore et al., 2009; Fry et al., 2012) (Table 3.3).  The EA 

reduction produces the greatest change in global CH4 (-19.4 ppbv), followed by IN (-11.5 

ppbv) and AF (-10.9 ppbv) reductions.  Upon normalizing by the change in CO 

emissions, global CH4 varies little among regions (CV = 0.054), suggesting that the 

sensitivity of global CH4 to CO emissions is nearly independent of emission region 

(Figure B7, Table B9).   Fry et al. (2012) also found that CH4 sensitivity to CO emission 

changes varies little (0.22 to 0.24 ppbv CH4 (Tg CO)-1), in contrast to the more 

regionally-variable effects of NOx and NMVOC emissions on CH4. 

Surface and tropospheric ozone 

Global CH4 changes are used to calculate long-term tropospheric O3 changes, 

which vary little among regions, that are then added to short-term changes to give steady-

state O3 responses (Table 3.4).  Steady-state global O3 changes are 40 to 83% greater than 

short-term changes, suggesting that the long-term influence of CO via CH4 is relevant for 

air quality (West et al., 2007).  Both short-term and steady-state global surface O3 

responses are approximately proportional to the level of CO emissions change (Figure 

3.4).  Values in Table 3.4 could be scaled to other emissions changes, allowing long-term 

effects to be included in future global or regional modeling exercises (e.g. West et al., 

2009b for NOx).         
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Surface O3 responses are greatest within the hemisphere of reduction; since inter-

hemispheric transport takes about 1 year, little mixing occurs across hemispheres (Jacob, 

1999; West et al., 2009a).  The long-term O3 component (via CH4), however, impacts air 

quality globally.  The distributions of steady-state surface O3 changes are shown in 

Figure 3.5, and are quantified as annual average changes within all 10 regions and the 

U.S. (Table 3.5).  The greatest steady-state surface O3 decreases occur within the 

reduction region, with smaller decreases hemispherically, except for the AU reduction, 

which has little effect (< 2.1 pptv) on foreign regions (Table 3.5).  Similar trends are seen 

in regional steady-state surface O3 responses normalized per unit change in CO emissions 

(Table B4).     

The sum of global annual mean steady-state surface O3 changes from the 10 

regional reductions (-448 pptv) is nearly equivalent to that of the global CO reduction (-

450 pptv).  However, steady-state surface O3 (normalized per unit change in CO 

emissions) is most sensitive to FSU and EU reductions (-2.1 and -2.0 pptv/Tg CO yr-1, 

respectively) (Table 3.4).  The largest CO emitters (EA, IN, AF, and NA) (Table 3.1) 

produce the greatest impacts within the reduction region or between regions.  EA is the 

foreign region that most influences the U.S., with an influence on surface O3 that is 

nearly as large (93%) as the influence from NA CO emissions.  Fiore et al. (2009) also 

found that East Asia CO emissions can influence surface O3 in North America by as 

much as 50% of the response from domestic emissions.  Reducing NA CO emissions 

strongly impacts EU and ME surface O3, with an influence that is 77% and 75%, 

respectively, of domestic impacts.  In some cases, foreign CO emission reductions have a 

greater impact on O3 than a region’s own domestic reduction, such as EA which reduces 
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surface O3 in EU by 22% more than the EU reduction (Table 3.5).  As in Fiore et al. 

(2009), for NH sources and receptors, the greatest transport and intercontinental 

influences of each region on other regions are mainly from March to June (Figure B10).   

The distributions of steady-state tropospheric total column O3 changes (Figure 

3.6) are similar to surface O3 responses (Figure 3.5), yet more widespread 

hemispherically to globally.  The troposphere is defined for O3 less than 150 ppbv, and 

the upper troposphere (UT) from 500 hPa to the tropopause.  We distinguish between full 

troposphere and UT O3 burdens, since O3 in the UT has a higher RF efficiency per 

molecule (Lacis et al., 1990; Wang et al., 1993; Forster and Shine, 1997).  The EA 

reduction has the strongest impact on total column O3 across the NH, while the AU CO 

reduction has the least impact on total column O3 globally.  Tropospheric total column O3 

changes are less than 2% in all locations, for each perturbation (Figure B11).  Normalized 

global annual mean full and UT steady-state O3 burden changes (Table B5) are greatest 

for SE, IN, and AF reductions, due to the stronger photochemistry and more active 

vertical convection in the tropics. 

3.3.3 Response of aerosols 

Tropospheric annual mean burden changes in SO4
2-, NH4NO3, and SOA are 

presented in Table 3.3.  The IN, ME, and AF reductions increase global SO4
2- burden, 

while all other perturbations decrease global SO4
2-.  Global NH4NO3 burden also 

increases and decreases across the regional perturbations, but the global SOA burden 

decreases in all cases.  The sums of global SO4
2-, NH4NO3, and SOA burden changes for 

all 10 regional reductions are 0-8% less than those of the global CO reduction, suggesting 

some dependence on regional conditions and chemistry.  Increases in OH are expected to 
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increase the global annual average SO4
2-, NH4NO3, and SOA burdens, while decreases in 

O3 (and H2O2 for SO2 oxidation) are expected to decrease the global annual average SO4
2- 

and SOA burdens.   

Most regional perturbations show stronger increases in tropospheric OH within 

the source region, and smaller, widespread increases in the tropics (30˚S to 30˚N) (Figure 

B12).  Tropospheric total column H2O2 changes are opposite in sign, with the greatest 

decreases within the reduction region and extending longitudinally (Figure B13).   

In Figure 3.7, annual average tropospheric total column SO4
2- changes result from 

several SO2 oxidation pathways, where CO’s lifetime is long enough that the resulting 

SO4
2- patterns are fairly independent of reduction region.  In the northern mid-latitudes, 

SO4
2- decreases likely relate to the prevalence of clouds and decreased aqueous-phase 

SO2 oxidation (in clouds) by O3 and H2O2.  Near the equator and in drier regions (i.e. 

near ME and AF), gas-phase SO2 oxidation by OH dominates, leading to increases in 

SO4
2-.  The greatest total column SO4

2- percentage decreases (i.e. for NA, EU, and EA 

reductions) and greatest SO4
2- percentage increases (i.e. for AF, IN, EA, and ME 

reductions) over the reduction region are 2% or less.  Intercontinental to hemispheric 

effects are generally 0.1% or less, for all regional reductions (Figure B14).  Global annual 

average tropospheric NH4NO3 and SOA changes are likewise small: -21% and 61%, 

respectively, of tropospheric SO4
2- changes, for the global CO reduction.  Our regional 

annual average surface PM2.5 changes (0.059 g m-3 or less) are only slightly smaller than 

those estimated by Leibensperger et al. (2011) (~0.1 g m-3 from Asian NOx and CO on 

northern Europe and eastern China, and ~0.25 g m-3 from U.S. NOx and CO on northern 

Europe and eastern China) who zeroed-out anthropogenic emissions, while we halve 



60 
 

them here.  CO generally does not have a strong influence on PM2.5 air quality in our 

simulations. 

3.4 Changes in production and export of CO and ozone 

SA, EU, FSU, and AU reductions produce the greatest changes in global CO 

burden per unit change in CO emissions, and also result in the longest CO lifetimes (82 to 

94 days) (Table 3.6, Table B9).  More than 79% of CO burden changes occur outside of 

the reduction region for all perturbations, and between 41% and 50% of CO burden 

changes take place in the UT for SE, SA, AF, and IN reductions, consistent with the 

regions that have the greatest impact on O3 production in the UT (Table 3.7).  We find 

decreases in CO export from the reduction region in all cases, and increases in global CO 

production.  These increases in CO production (~2% for the global CO reduction) result 

from tropospheric OH increases that cause faster oxidation of CH4 and non-methane 

volatile organic compounds (NMVOCs) (Shindell et al., 2006).  However, the global CO 

loss frequency (or inverse lifetime) (Prather et al., 2012) increases by ~3.4% for the 

global CO reduction, indicating that as CO is reduced, increases in OH lead to further CO 

loss.  Therefore in this study, the CO perturbation lifetime (ΔBCO/ΔECO) is slightly 

greater than the CO atmospheric lifetime (BCO/(ECOanthro+ECOnatural+PCO)) (feedback factor 

of ~1.06), which suggests that perturbing CO emissions can have an overall amplifying 

effect.  Although we do not account for the long-term effects on CH4 directly in our 1.5-

year simulations, these can be calculated offline from the changes in CH4 lifetime as was 

done for O3. Global CH4 decreases also lead to decreases in CO production at steady 

state, and furthermore, increases in OH that cause increases in CO loss and production. 

These are summarized in Table B9. The long-term changes further amplify the CO signal 
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leading to a total increase in CO loss frequency of ~4.5%, and a total feedback factor 

(ΔBCO/BCO)/( ΔECO/(ECO+PCO)) of 1.19. 

O3 production and export changes are also calculated for each regional reduction 

to determine whether the transport of O3 or CO is more important for long-range O3.  

Table 3.7 shows that the change in short-term tropospheric O3 burden per unit change in 

CO emissions (Table B9 shows steady-state burden changes) is most sensitive to SE, IN, 

and AF reductions, which agrees with previous studies showing greater sensitivity of O3 

(especially in the mid- to upper troposphere) to emissions from the tropics, compared to 

more temperate regions (Fuglestvedt et al., 1999; Berntsen et al., 2005; Naik et al., 2005; 

West et al., 2009b).  In the tropics, stronger photochemistry enhances O3 and more active 

convection increases the transport of O3 and CO to the UT, where O3 lifetimes are longer 

(Naik et al., 2005; West et al., 2009b).  Table 3.7 also shows that SE, SA, AF, and IN 

reductions produce the highest fractions of change in global O3 production in the UT 

(above 500 hPa) (between 50% and 59%), suggesting that these regions also produce the 

greatest changes in the vertical convection of CO to the UT.  As in West et al. (2009a), 

the higher water vapor concentrations and convective mixing in the tropics, which would 

lead to shorter O3 lifetimes than at higher latitudes (Lawrence et al., 2003), appear to be 

less important, as CO reductions near the tropics have the greatest influence on global O3 

burden and production.     

For all of the regional reductions, more than 70% of the changes in global O3 

burden and global O3 production occur outside the reduction region, with changes in O3 

production (ΔP) outside the reduction region greatly exceeding changes in O3 export 

(ΔX)  (Table 3.7).  This demonstrates that the downwind production of O3 from CO is 



62 
 

more important for long-range O3 transport than the direct formation and export of O3 

from CO within each source region.  This differs from the case of NOx for which changes 

in O3 export exceed changes in O3 production downwind (West et al., 2009a), reflecting 

the longer lifetime of CO compared to NOx. 

3.5 Radiative forcing and global warming potentials 

The stratospheric-adjusted net RF impacts for the combined effect of tropospheric 

O3, CH4, and SO4
2- concentration changes are shown in Figure 3.8 and Table 3.8.  Annual 

average net RF distributions show widespread cooling (negative net RFs) across the NH 

and SH, for all of the regional (and global) CO reductions (Figure 3.8), due to global 

decreases in CH4 (and long-term O3) and regional to hemispheric decreases in short-term 

O3.  Localized to regional cooling and warming patterns, especially from the NA, EU, 

FSU, and EA reductions, correspond to localized increases and decreases in SO4
2- 

aerosols (Figure 3.7, Figure 3.8).  While changes in NH4NO3 and SOA are not accounted 

for by the RTM, regional SOA decreases (lesser in magnitude than SO4
2- changes) likely 

provide slight regional warming, while regional NH4NO3 increases and decreases (also 

less than SO4
2- changes) likely add small regional cooling and warming effects.  On the 

global scale, tropospheric changes in NH4NO3 and SOA, like SO4
2-, are expected to 

contribute little to the global net RF.  The large-scale influences of CH4 and O3 are 

consistent with the longwave radiation distributions (Figure B17), while the local 

influences of SO4
2- are reflected in the shortwave radiation distributions (Figure B18).  

The strongest annual average net RFs occur within the 28˚S to 28˚N latitudinal band in 

all cases (Table 3.8), despite the wide range of reduction regions.  This finding is 

explained by the hotter surface temperatures in the tropics, which result in greater 



63 
 

outgoing longwave radiation absorption by greenhouse gases.  However, longwave 

forcings are not as strong directly over the equator, since water vapor is abundant and 

competes with O3 absorption in this region (Figure B17).      

Across all 10 regional reductions, the global annual average net RF per unit 

emissions is -0.12 ±0.0055 mW m-2 (Tg CO yr-1)-1 (mean ±1 standard deviation) (CV = 

0.045), suggesting little variability.  Global annual net RF (normalized per unit change in 

CO emissions), however, is more sensitive to regions close to the equator (ME, SE, and 

IN).  This is consistent with the regions that produce the greatest changes in tropospheric 

O3 burden per unit change in CO emissions, but the response for ME emissions is larger 

than expected given its O3 burden change (Table 3.7, Table B9), due to the hotter and 

drier conditions of this region.  Monthly global net RF estimates also vary from ~56% 

less to ~34% greater than the annual mean, with the greatest RFs from June to September 

(Figure B20).  By doubling the global annual average net RF of the 50% global CO 

reduction (-0.0361 W m-2) and scaling for biomass burning emissions (43.6% of global 

anthropogenic CO emissions), which were excluded in the 50% anthropogenic CO 

emissions reductions, the global net RF of CO is 0.128 W m-2.  This is only ~11% greater 

than the ACCMIP multimodel mean global net RF of CO emissions due to O3 and CH4 

changes alone (0.115 W m-2) (for 1850-2000) (Stevenson et al., 2013).  It is smaller than 

the RF of CO + NMVOC emissions in previous studies: 0.21 ±0.10 W m-2 (Shindell et 

al., 2005; Forster et al., 2007) and 0.25 ±0.04 W m-2 (Shindell et al., 2009), and is 

approximately 8.2% of the global net RF of CO2 (1.56 W m-2).  Among the positive 

forcing agents with short lifetimes (CO, CH4, NMVOCs, and BC), our estimated CO RF 

is ~8.2% of their total RF (~1.57 W m-2) (Forster et al., 2007).   
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Following the methods of Collins et al. (2012) and Fry et al. (2012), we estimate 

GWPs for each regional perturbation at 20 and 100-year time horizons (Table 3.8, Figure 

3.9).  GWPH estimates are calculated as the RF integrated to a time horizon H due to an 

emission pulse, normalized by the change in emissions, and divided by the equivalent for 

CO2.  Since O3 RF has both short and long-term components, we calculate long-term O3 

RF by scaling the O3 RF from the CH4 control simulation by the ratio of long-term O3 

burden changes in each regional perturbation to those of the CH4 control simulation.  We 

then calculate short-term O3 RF as the difference between steady-state and long-term O3 

RF.  We assume that short-term RF components (SO4
2- and short-term O3) are constant 

over one year and then drop to zero instantaneously.  Long-term components (CH4 and 

long-term O3) respond and decay with the calculated CH4 perturbation lifetime (12.48 

years).  Figure 3.9 shows the breakdown of total GWP into short and long-term 

components, and error bars representing the average uncertainty of CO GWPs (GWP20: 

±1.4 and GWP100: ±0.5) from Fry et al. (2012) across multiple global CTMs (±1 standard 

deviation).  However, the error bars do not account for the full uncertainty, as additional 

forcings, such as from CO2, are excluded, which may alter total net RF and GWP 

estimates.  We estimate GWP20 and GWP100 values of 4.07 and 1.34, respectively, for the 

global CO reduction, and ranges of 3.71 to 4.37 (CV = 0.059) and 1.26 to 1.44 (CV = 

0.043) among regions, suggesting little regional variability.    

Our GWP100 estimates are comparable to those of Derwent et al. (2001) (GWP100 

of 1.0 due to O3 changes, and 0.6 due to CH4 changes) and Daniel and Solomon (1998) 

(GWP100 of 1.0), yet smaller than the GWP100 estimates of Fuglestvedt et al. (1996) 

(GWP100 of 3.0) and Johnson and Derwent (1996) (GWP100 of 2.1).  Our GWP20 and 
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GWP100 estimates are also about 65 to 70% lower than those estimated by Berntsen et al. 

(2005) for Europe and East Asia, but those did not include SO4
2- impacts as we do here, 

and 16 to 23% lower than those estimated by Fry et al. (2012), likely due to differences 

among the CTMs, such as a lower sensitivity of O3 and CH4 to CO emissions in 

MOZART-4, but regional definitions also differ (Table B10).  Although the absolute 

GWP estimates of Fry et al. (2012) are more robust than those presented here, reflecting 

an ensemble of CTMs, the present study more fully addresses the variability of GWPs 

over a wide range of regions encompassing the tropics and northern and southern extra-

tropics. 

As mentioned earlier, our GWP estimates do not include the forcing from CO2 

once CO oxidizes.  This reflects the accounting of carbon emissions in CO2 inventories 

(Fuglestvedt et al., 1996; Daniel and Solomon, 1998; Collins et al., 2002).  If the CO2 

forcing were accounted for, the GWP100 and GWP20 estimates would each increase by 

1.57 (44 g CO2 mol-1 (28 g CO mol-1)-1).     

3.6 Conclusions 

Reducing CO emissions can slow near-term climate change while improving air 

quality from O3 and CO itself.  The present-day CO RF is estimated as 8.2% of that from 

CO2, and also 8.2% of the short-lived forcing agents that provide an opportunity to slow 

climate change in the coming decades.  We find here that the global net RF of CO 

reductions varies little among the regions where it is emitted, but CO may cause changes 

in regional climate that were not quantified.  While emission control measures would 

likely affect co-emitted species (e.g. BC, OC), this study focuses on the sensitivity of air 

quality and RF to the location of CO emissions, which is also relevant for determining the 
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GWP of CO.  For measures affecting multiple pollutants, the results reported here can be 

combined with those for co-emitted pollutants.     

Halving anthropogenic CO emissions globally and from 10 regions has 

widespread effects on surface and tropospheric concentrations in addition to net RF.  For 

the global CO emission reduction, global annual net RF, GWP20, and GWP100 estimates 

are -0.124 mW m-2 (Tg CO)-1, 4.07, and 1.34, respectively, with ranges of -0.115 to -

0.131 mW m-2 (Tg CO)-1, 3.71 to 4.37, and 1.26 to 1.44 among the 10 regions, with 

regions in the tropics (ME, SE, and IN) having the greatest sensitivities.  We find little 

variability in the net RF and GWP estimates among source regions.  Our GWP estimates 

agree well with previous studies (Daniel and Solomon, 1998; Derwent et al., 2001), but 

are less than the GWP20 and GWP100 estimates of Berntsen et al. (2005) and Fry et al. 

(2012), likely related to differences among CTMs.  The GWP values should be increased 

by 1.57 for fossil fuel sources to account for the CO2 generated as an oxidation product. 

However, care should be taken to avoid double counting, as CO2 emissions are often 

calculated by assuming complete oxidation of the fuel rather than being measured in the 

exhaust. It is always preferable for climate to emit the carbon as CO2 rather than CO. 

Net RF distributions for the regional (and global) reductions show widespread 

cooling across the NH and SH corresponding to the patterns of regional short-term O3 

and global CH4 (and long-term O3) decreases, and localized positive and negative net RFs 

due to changes in SO4
2- aerosols.  The strongest annual net RFs occur within the tropics 

(28˚S to 28˚N), independent of the location of CO emissions change, due to higher 

temperatures and greater absorption of infrared radiation. 
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For all regional reductions, we show that the greatest changes in surface CO and 

O3 concentrations are within the reduction region, with lesser decreases hemispherically.  

The regions with the highest anthropogenic CO emissions (EA, IN, AF, and NA) show 

the largest impacts on surface CO and O3 concentrations within that region and between 

regions.  The impact of EA’s reduction on U.S. surface CO and O3 concentrations is 39% 

and 93%, respectively, of that resulting from NA.  The NA CO reduction also has a 

strong impact on EU and ME surface O3 concentrations.  Anthropogenic CO emissions 

overall contribute ~6.1% (1.6 ppbv) to global annual average steady-state surface O3, by 

doubling the change from the 50% global CO reduction (-0.45 ppbv) and scaling for 

biomass burning emissions. 

All of the reductions increase tropospheric OH leading to decreases in global CH4 

and hence, long-term O3.  At the same time, tropospheric H2O2 decreases in all cases.  

We generally find that increases in OH contribute to increases in SO4
2- through gas-phase 

oxidation, which is dominant in drier regions and near the equator. Decreases in H2O2 

and O3 contribute to decreases in SO4
2- via aqueous-phase oxidation, which prevails 

mostly in the northern mid-latitudes.     

For all regional reductions, more than 70% of the global O3 burden and 

production changes, and more than 79% of global CO burden changes, occur outside the 

reduction region.  In addition, O3 production changes outside the source region greatly 

exceed changes in O3 export from each region, suggesting that long-range O3 is 

influenced substantially by the transport of CO and subsequent production of O3 

downwind, and less by the transport of O3 itself.  Tropospheric O3 burden changes (per 

unit change in CO emissions) are most sensitive to SE, IN, and AF reductions, due to 
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stronger photochemistry and more active vertical convection in the tropics compared to 

other regions (Naik et al., 2005; West et al., 2009a). 

Limitations of this study include only accounting for O3, CH4, and SO4
2- changes 

in net RF and GWP estimates.  We exclude changes in nitrate aerosols, secondary organic 

aerosols, stratospheric O3, water vapor, the carbon cycle via O3 and nitrogen deposition, 

and CO2, as these components are not part of the current RTM configuration.  Our RTM 

simulations also do not include the indirect effects of aerosols on clouds or the internal 

mixing of aerosols, but these effects may be large.  We estimate only small changes in 

NH4NO3 and SOA, consistent with previous studies that show these aerosols contributing 

much less to CO RF than SO4
2- (Shindell et al., 2009).  Stratospheric O3 and water vapor 

RFs are believed to be relatively small (Forster et al., 2007).  The contribution of CO 

emissions to CO2 RF via changes in the CO2 uptake by plants is estimated as 12 and 42% 

of the net RF (Fry et al., 2012), which would increase GWPs and perhaps the variability 

among regions, depending on regional vegetation distributions.     

We do not assess climate responses as in Shindell and Faluvegi (2009), but show 

how CO emissions location affects the latitudinal distribution of net RF and CO GWPs.  

Regional CO emissions are also considered fairly uncertain (Duncan et al., 2007), 

according to a number of studies that have used inverse modeling or adjoint methods to 

constrain CO emissions by satellite data (Heald et al., 2004; Pétron et al., 2004, Pfister et 

al., 2004, 2005; Kopacz et al., 2009, 2010), but this uncertainty likely does not strongly 

influence normalized forcings and GWPs.   Uncertainties in the emissions of other O3 

precursors and in MOZART-4’s chemical and transport processes are likewise important 

(Berntsen et al., 2005).  Future work could examine the influence of dynamic climate 
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feedbacks on chemistry, and future changes in emissions that may alter the air quality and 

RF sensitivities given here for present-day emissions. 

Future international climate agreements or emissions trading mechanisms could 

include CO among a suite of long-lived greenhouse gases, using a single GWP globally, 

given that the uncertainty in the global GWP for CO is greater than the range among 

regions estimated here.  Alternatively, different GWPs could be applied to different 

continents.  In either case, this work provides an incentive to reduce CO emissions, as 

part of coordinated policies addressing climate and air quality. 
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3.7 Tables and Figures  

 
Table 3.1. For the base simulation, total anthropogenic CO emissions by region, and regional (or 
global) annual average area-weighted surface O3, SO4

2-, and CO concentrations. 
 

Reduction 
region 

Total 
anthropogenic 
CO emissions 
(Tg yr-1) 

Annual 
average 
surface O3 
(ppbv) 

Annual 
average 
surface SO4

2- 
(g m-3) 

Annual 
average 
surface CO 
(ppbv) 

NA 70.0 35.3 1.6 151.0 

SA 24.5 24.8 0.7 147.4 

EU 31.2 36.5 3.0 166.0 

FSU 21.9 33.2 1.4 166.3 

AF 86.9 30.0 0.9 172.9 

IN 96.4 41.2 2.9 279.4 

EA 152.9 42.4 4.3 235.0 

SE 54.3 28.1 1.6 174.5 

AU 2.9 22.8 0.5 101.9 

ME 42.6 40.4 2.5 147.5 

Global 584.7 26.2 1.0 122.7 
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Table 3.2. Source-receptor matrix of annual average surface CO concentration changes (ppbv), 
for the regional reduction simulations, with the United States (US) also defined as a receptor in 
addition to the 10 regions. The largest changes for each source reduction region are in bold. 
 

 Receptor  

Source NA SA EU FSU AF IN EA SE AU ME US 

NA -12.5 -0.69 -4.56 -4.07 -1.34 -1.75 -3.27 -1.17 -0.32 -3.36 -19.3

SA -0.19 -3.81 -0.13 -0.13 -0.56 -0.32 -0.17 -0.45 -0.83 -0.18 -0.15

EU -2.32 -0.31 -18.3 -4.96 -0.98 -0.85 -2.56 -0.63 -0.13 -3.90 -2.16

FSU -2.05 -0.18 -3.66 -9.70 -0.47 -0.69 -2.96 -0.49 -0.08 -2.03 -1.88

AF -1.05 -2.47 -0.87 -0.87 -10.2 -1.84 -1.11 -1.47 -1.58 -1.42 -0.95

IN -1.93 -1.03 -1.82 -2.00 -2.21 -75.5 -4.23 -3.50 -0.57 -2.76 -1.97

EA -7.08 -1.29 -6.53 -7.68 -2.36 -4.79 -50.0 -8.36 -0.73 -5.08 -7.52

SE -0.82 -0.72 -0.74 -0.73 -0.90 -1.90 -1.48 -8.96 -0.73 -0.83 -0.83

AU -0.01 -0.11 -0.01 -0.01 -0.07 -0.04 -0.01 -0.10 -0.81 -0.02 -0.01

ME -1.65 -0.49 -2.33 -2.95 -1.69 -5.91 -2.51 -0.94 -0.22 -13.7 -1.66
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Table 3.3. For the global and regional reduction simulations relative to the base, global annual 
mean burden changes in tropospheric and upper tropospheric (UT) steady-state O3, tropospheric 
CH4, SO4

2-, NH4NO3, and SOA.  The total global annual average tropospheric O3 (at steady 
state), SO4

2-, NH4NO3, and SOA burdens in the base simulation are 352 Tg O3, 1788 Gg SO4
2-, 

457 Gg NH4NO3, and 237 Gg SOA. 
 

Reduction 

region 

O3  

(Tg yr-1) 

UT O3 

(Tg yr-1) 

CH4 

(ppbv) 

SO4
2- 

(Gg yr-1) 

NH4NO3 

(Gg yr-1) 

SOA 

(Gg yr-1) 

NA -0.64 -0.37 -9.1 -0.54 0.24 -0.11 

SA -0.21 -0.14 -3.2 -0.05 -0.003 -0.02 

EU -0.27 -0.15 -4.1 -0.37 0.19 -0.07 

FSU -0.19 -0.11 -2.9 -0.22 0.12 -0.05 

AF -0.80 -0.51 -10.9 0.03 -0.09 -0.06 

IN -0.93 -0.61 -11.5 0.48 -0.29 -0.17 

EA -1.38 -0.84 -19.4 -1.25 0.22 -0.43 

SE -0.56 -0.38 -6.6 -0.11 -0.04 -0.12 

AU -0.02 -0.01 -0.4 -0.01 0.001 -0.001 

ME -0.38 -0.23 -5.6 0.37 0.003 -0.09 

Global -5.39 -3.35 -73.0 -1.82 0.39 -1.11 

CH4 control -8.76 -2.30 -356.6 -3.05 0.78 0.26 
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Table 3.4. For the global and regional reduction simulations, global annual mean changes in 
short-term surface O3, steady-state surface O3, steady-state surface O3 per unit change in CO 
emissions, and long-term surface O3 per unit change in CO emissions. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reduction 

region 

Short-

term 

surface O3 

(pptv) 

Steady-

state 

surface O3 

(pptv) 

Steady-state 

surface O3 per Tg 

CO emissions (pptv 

(Tg CO yr-1)-1) 

Long-term surface 

O3 per Tg CO 

emissions (pptv (Tg 

CO yr-1)-1)

NA -42.8 -63.0 -1.8 -0.58 

SA -8.7 -15.9 -1.3 -0.59 

EU -22.1 -31.2 -2.0 -0.58 

FSU -16.0 -22.4 -2.1 -0.58 

AF -31.3 -55.4 -1.3 -0.55 

IN -40.8 -66.4 -1.4 -0.53 

EA -77.8 -120.8 -1.6 -0.56 

SE -19.9 -34.5 -1.3 -0.54 

AU -1.2 -2.2 -1.5 -0.68 

ME -24.1 -36.5 -1.7 -0.58 

Global -287.8 -450.1 -1.5 -0.56 



   

 

Table 3.5. Source-receptor matrix of annual average steady-state changes in surface O3 concentrations (pptv), for the regional 
reduction simulations, with the United States (US) also defined as a receptor in addition to the 10 regions. The largest changes for 
each source reduction region are in bold. 
 

 Receptor 

Source NA SA EU FSU AF IN EA SE AU ME US 

NA -178.2 -26.0 -131.1 -97.3 -46.8 -71.5 -102.4 -35.1 -20.7 -119.6 -253.3 

SA -14.4 -25.3 -14.2 -11.9 -16.4 -17.5 -15.6 -12.9 -15.2 -17.1 -15.4 

EU -48.4 -11.3 -170.8 -68.9 -24.7 -32.9 -57.9 -16.4 -9.1 -91.5 -56.0 

FSU -36.9 -7.6 -58.3 -75.1 -14.5 -25.8 -53.3 -12.1 -6.3 -50.9 -43.5 

AF -59.8 -52.1 -59.6 -49.9 -97.2 -77.2 -66.4 -46.0 -41.5 -77.7 -64.1 

IN -85.0 -37.6 -89.0 -76.8 -66.9 -454.6 -129.2 -67.2 -30.7 -114.5 -96.0 

EA -197.0 -53.4 -209.2 -178.2 -90.5 -158.6 -437.7 -118.9 -45.7 -202.0 -235.7 

SE -41.5 -24.3 -42.6 -35.6 -34.5 -57.0 -52.3 -57.9 -24.0 -50.0 -46.4 

AU -1.6 -1.9 -1.6 -1.4 -1.9 -2.1 -1.8 -2.0 -4.8 -2.0 -1.7 

ME -49.7 -17.1 -63.4 -59.0 -38.4 -105.9 -69.1 -25.0 -13.4 -159.3 -57.5 
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Table 3.6. For each regional reduction, changes in global annual average (short-term) tropospheric CO burden (BCO), and BCO per unit 
change in CO emissions (ECO).  Also shown are CO lifetime calculated as BCO / (ECO + PCO), the fractions of BCO change outside 
each reduction region and in the UT, and the changes in net CO export (XCO) from the reduction region, global CO production (PCO), 
and PCO outside the reduction region.  The total global annual average CO burden in the base simulation is 462.6 Tg CO. 
 

Reduction 

region 

BCO 

short-term 

(Tg CO) 

BCO / 

ECO 

(days) 

CO 

lifetime 

(days) 

Fraction of 

BCO outside 

region 

Fraction 

of BCO 

in UT 

XCO from 

region (Tg 

yr-1) 

PCO 

global (Tg 

yr-1) 

PCO outside 

region (Tg 

yr-1) 

NA -6.7 70.3 78.2 0.82 0.37 -27.4 3.5 2.7 

SA -2.5 74.0 82.2 0.88 0.41 -10.4 1.2 1.0 

EU -3.4 79.3 88.2 0.92 0.30 -13.7 1.6 1.4 

FSU -2.5 83.7 93.1 0.79 0.29 -9.1 1.1 0.95 

AF -7.9 66.2 73.4 0.83 0.44 -33.6 4.3 3.3 

IN -8.0 60.5 66.7 0.92 0.45 -40.2 4.5 3.8 

EA -14.7 70.1 77.7 0.90 0.39 -64.6 7.5 6.5 

SE -4.9 66.4 73.4 0.89 0.50 -23.4 2.6 2.2 

AU -0.3 84.2 94.1 0.92 0.35 -1.3 0.2 0.14 

ME -4.0 68.2 75.8 0.90 0.36 -17.8 2.1 1.8 
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Table 3.7. Changes in global annual average (short-term) tropospheric O3 burden (BO3), O3 production (PO3), and net O3 export (XO3) 
from each regional reduction, normalized per change in CO emissions (ECO), and the fractions of these above each reduction region 
and in the upper troposphere (UT).  Regional O3 lifetimes are also shown.  For the base simulation, the total global annual average O3 
burden is 352.2 Tg O3, and the chemical production and loss rates are 4782.5 Tg yr-1 and 3975.0 Tg yr-1. 
 

Reduction 

region 

BO3   

short-term 

(Tg O3) 

BO3/E

CO (days) 

PO3  

(Tg yr-1)

PO3/ECO

(Tg O3 (Tg 

CO yr-1)-1)

Regional O3 

lifetime 

(BO3/PO3) 

(days) 

Fraction of 

global BO3 

above region 

Fraction of 

global PO3 

above region

Fraction of 

global PO3 

in UT 

XO3 from 

region (Tg 

yr-1) 

PO3 outside 

region (Tg 

yr-1) 

 

NA -0.413 4.31 -8.19 -0.234 18.4 0.14 0.30 0.37 -0.91 -5.75  

SA -0.135 4.02 -2.48 -0.202 19.9 0.07 0.17 0.50 -0.12 -2.06  

EU -0.168 3.93 -3.63 -0.233 16.9 0.05 0.18 0.30 -0.34 -2.98  

FSU -0.120 4.00 -2.53 -0.231 17.3 0.13 0.19 0.31 -0.13 -2.06  

AF -0.533 4.48 -9.59 -0.221 20.3 0.12 0.29 0.50 -1.02 -6.83  

IN -0.652 4.94 -11.0 -0.229 21.5 0.04 0.22 0.50 -1.26 -8.67  

EA -0.902 4.31 -16.8 -0.220 19.6 0.06 0.20 0.41 -1.58 -13.4  

SE -0.395 5.31 -6.19 -0.228 23.3 0.05 0.17 0.59 -0.40 -5.15  

AU -0.014 3.49 -0.27 -0.188 18.6 0.05 0.14 0.41 -0.01 -0.24  

ME -0.247 4.23 -4.98 -0.234 18.1 0.08 0.24 0.36 -0.47 -3.78  
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Table 3.8. Annual net RF globally and by latitude band (mW m-2) and total GWP20 and GWP100 estimates for the regional and global 
reduction simulations relative to the base simulation, due to changes in tropospheric steady-state O3, CH4, and SO4

2- concentrations.  
Global annual net shortwave radiation, net longwave radiation, and net RF per unit change in CO emissions (mW m-2 (Tg CO yr-1)-1) 
are also shown.  The 10 regions estimates represent the sum of the net RFs from all 10 regional reductions; these estimates are not 
directly estimated by the RTM. 
 

Reduction 

region 

Global 

annual 

net RF 

Global 

annual 

net 

shortwave

radiation

Global 

annual 

net 

longwave 

radiation

Global 

annual net 

RF per 

Tg CO 

Annual 

net RF 

90˚S – 

28˚S 

Annual 

net RF 

28˚S – 

28˚N 

Annual 

net RF 

28˚N – 

60˚N 

Annual 

net RF 

60˚N – 

90˚N 

Total 

GWP20 

Total 

GWP100 

NA -4.25 -0.31 -3.94 -0.122 -2.69 -6.20 -4.76 -3.32 3.98 1.33 

SA -1.51 -0.10 -1.40 -0.123 -1.04 -2.39 -1.45 -0.88 4.04 1.35 

EU -1.79 -0.07 -1.71 -0.114 -1.20 -2.70 -1.72 -1.36 3.71 1.26 

FSU -1.28 -0.07 -1.21 -0.117 -0.85 -1.89 -1.34 -1.00 3.78 1.28 

AF -5.46 -0.55 -4.92 -0.126 -3.61 -8.89 -5.25 -3.11 4.18 1.37 

IN -6.21 -0.85 -5.36 -0.129 -3.60 -10.0 -6.90 -3.70 4.34 1.41 

EA -9.12 -0.61 -8.50 -0.119 -5.80 -13.4 -10.3 -6.71 3.91 1.31 

SE -3.51 -0.34 -3.17 -0.129 -2.21 -5.79 -3.47 -1.99 4.34 1.41 

AU -0.18 -0.004 -0.17 -0.121 -0.12 -0.28 -0.18 -0.11 3.94 1.35 

ME -2.80 -0.40 -2.40 -0.131 -1.68 -4.36 -3.16 -1.81 4.37 1.44 
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Global -36.1 -3.25 -32.9 -0.124 -22.8 -56.0 -38.6 -24.1 4.07 1.34 

10 regions -36.1 -3.31 -32.8 - -22.8 -55.9 -38.6 -24.0 - - 
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Figure 3.1. Definition of 10 reduction regions. 
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Figure 3.2. Annual average anthropogenic CO emissions (Tg CO yr-1) by region and 
sector for the base simulation, from the RCP8.5 emissions inventory for the year 2005. 
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Figure 3.3. Global distribution of annual average surface CO concentration changes 
(ppbv) for each of the regional reduction simulations relative to the base.  The global 
annual average surface CO concentration changes (ppbv) for each simulation are noted in 
the lower right of each panel. 
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Figure 3.4.  Short-term and steady-state surface ozone changes as a function of CO 
emissions change for each of the regional reductions relative to the base. 
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Figure 3.5. Global distribution of annual average steady-state surface O3 concentration 
changes (ppbv) for each of the regional reduction simulations relative to the base.  The 
global annual average steady-state surface O3 concentration changes (ppbv) for each 
simulation are noted in the lower right of each panel. 
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Figure 3.6. Global distribution of annual average changes in tropospheric total column O3 
at steady state (1e-2 DU) for each of the regional reduction simulations relative to the 
base.  The global annual average steady-state tropospheric O3 changes (Tg O3) for each 
simulation are noted in the lower right of each panel. 
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Figure 3.7. Global distribution of annual average changes in tropospheric total column 
SO4

2- (g m-2) for each of the regional reduction simulations relative to the base.  The 
global annual average tropospheric SO4

2- changes (Gg) for each simulation are noted in 
the lower right of each panel. 
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Figure 3.8. Annual average net RF distributions (mW m-2) due to changes in tropospheric 
steady-state O3, CH4, and SO4

2- for the regional and global CO reduction simulations 
minus the base simulation.  Global annual average net RF (mW m-2) for each simulation 
are noted in the lower right of each panel.  Note the difference in scale between the 
regional and global reductions. 
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Figure 3.9. Global warming potentials for CO at time horizons of 20 and 100 years 
(GWP20, GWP100) for each regional reduction, and the contributions from short-term (O3 
and SO4

2- changes) and long-term (long-term O3 and CH4) components.  Uncertainty bars 
represent the average uncertainty found by Fry et al. (2012) based on the spread of 
atmospheric chemical models (1 standard deviation). 
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Chapter 4. Air quality and radiative forcing impacts of anthropogenic volatile 
organic compound emissions from ten world regions3 

 

4.1 Introduction 

Non-methane volatile organic compounds (NMVOCs) are chemically reactive 

gases emitted worldwide from natural and anthropogenic sources.  NMVOCs impact air 

quality and climate by contributing to tropospheric photochemistry (e.g., ozone (O3) 

production) and aerosol formation.   Because of their influence on short-lived climate 

forcers (e.g., O3, methane (CH4), aerosols), NMVOC reductions could help slow the near-

term rate of climate change (Shindell et al., 2012).  Here we evaluate the net climate and 

air quality effects of anthropogenic NMVOC emission reductions, to inform future 

policies that may address air quality and climate change.   

Tropospheric CH4 and O3 are the largest greenhouse gas contributors to global 

anthropogenic radiative climate forcing (RF) behind carbon dioxide (CO2) with 

abundance-based RFs of 0.48 ±0.05 W m-2 and 0.35 (-0.1, +0.3) W m-2, respectively 

(Forster et al., 2007).   Tropospheric sulfate (SO4
2-) has produced a global net RF of -0.40 

±0.2 W m-2 (direct effect only) (Forster et al., 2007).  NMVOCs and carbon monoxide 

(CO) emissions together have contributed an estimated global mean RF of 0.21 ±0.10 W 

m-2 due to O3 and CH4 (1750 to 1998) (Shindell et al., 2005; Forster et al., 2007) and 0.25 

±0.04 W m-2 (1750 to 2000) when SO4
2-, nitrate (NO3

-), and CO2 impacts are included 

                                                       
3 Fry, M. M., M. D. Schwarzkopf, Z. Adelman, and J. J. West, Submitted to Atmospheric Chemistry and 
Physics, May 2013 
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(Shindell et al., 2009).  More recently, the anthropogenic RF of NMVOC emissions (for 

1850-2000) was estimated as 0.090 W m-2  (due to changes in O3, CH4, and CO2) as part 

of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) 

(Stevenson et al., 2013).   

NMVOCs are mainly oxidized by the hydroxyl radical (OH) in the troposphere, 

producing peroxyl radicals (RO2) and hydroperoxy radicals (HO2) that then oxidize nitric 

oxide (NO) to yield O3.  Because thousands of NMVOC species with varying lifetimes 

(from fractions of a day to months) and chemical reactivities have been documented, 

global chemical transport models (CTMs) use simplified representations of NMVOCs 

and reaction pathways (Ehhalt et al., 2001; Prather et al., 2001; Ito et al., 2007).  Under 

high nitrogen oxide (NOx = NO + NO2) concentrations, NMVOCs contribute to the 

efficient cycling between OH and HO2 and hence, O3 production, while under low-NOx 

conditions OH depletes, resulting in NMVOC and methane (CH4) accumulation (Collins 

et al., 2002).  CH4 is a longer-lived O3 precursor (perturbation lifetime of ~12 years) 

(Forster et al., 2007) that decreases as tropospheric OH increases (from NMVOC 

reductions), resulting in long-term O3 decreases, in addition to direct, short-term O3 

decreases (Prather et al., 1996; Wild et al., 2001; Fiore et al., 2002; Naik et al., 2005).  

NMVOC emissions also affect O3 at local to intercontinental scales, given that the 

lifetimes of tropospheric O3 (~22 days) (Stevenson et al., 2006) and some NMVOCs 

(e.g., ethane, benzene) can exceed typical intercontinental transport times (5 to 10 days) 

(Fiore et al., 2009; West et al., 2009a).  NMVOC reductions indirectly influence sulfate 

aerosol (SO4
2-) formation via gas-phase oxidation of sulfur dioxide (SO2) by OH, and 

aqueous-phase oxidation of SO2 by H2O2 or O3 (Unger et al., 2006; Leibensperger et al., 
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2011).  NMVOCs are also precursors to secondary organic aerosols (SOA), and influence 

NO3
- aerosol abundance via oxidant changes (Ehhalt et al., 2001; Bauer et al., 2007; 

Hoyle et al., 2009). 

Previous studies have shown that the RF and global warming potential (GWP) of 

NMVOCs, like other short-lived O3 precursors, depend on emissions location given their 

short lifetime in the troposphere (Naik et al., 2005; Berntsen et al., 2006; Forster et al., 

2007; Fry et al., 2012), but few studies quantify the range among different source regions.  

Fry et al. (2012) calculated 100-year and 20-year GWPs (GWP100, GWP20) of 4.8 ±2.4 to 

8.3 ±1.9 and 15.5 ±6.8 to 26.5 ±5.3, respectively, for anthropogenic NMVOCs from four 

regions (due to O3, CH4, and SO4
2-) using an ensemble of models. Collins et al. (2002) 

also presented GWP100 estimates of 1.8 to 5.5 (-50 to +100% uncertainty) due to CH4 and 

O3, but for individual anthropogenic NMVOCs globally.   

Using global models of chemical transport and radiative transfer, we simulate the 

air quality and net RF impacts, via changes in O3, CH4, and SO4
2-, of halving all 

anthropogenic NMVOC emissions together, globally and from 10 regions, as was done 

for CO emissions by Fry et al. (2013).  We evaluate the sensitivity of air quality and RF 

to NMVOC emission location, and the corresponding NMVOC GWPs, which may 

support the inclusion of NMVOCs in multi-gas emission trading schemes for climate.  

We do not consider reductions in co-emitted species that would be affected by measures 

to reduce NMVOCs.  Future studies could evaluate the impacts of measures on multiple 

species, or combine the results presented here with those for co-emitted species to 

determine the net effect of emission control measures (Shindell et al., 2012).   
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4.2 Methods 

4.2.1 Global chemical transport model 

We evaluate the impacts on surface air quality and tropospheric composition of 

halving anthropogenic NMVOC emissions globally and from 10 regions (North America 

[NA], South America [SA], Europe [EU], Former Soviet Union [FSU], Southern Africa 

[AF], India [IN], East Asia [EA], Southeast Asia [SE], Australia and New Zealand [AU], 

and Middle East and Northern Africa [ME]) (Figure C1) (Fry et al., 2013).  We use the 

global chemical transport model (CTM), Model for OZone And Related chemical Tracers 

version 4 (MOZART-4) (Emmons et al., 2010).   

The base and CH4 control (where global CH4 was reduced by 20%) simulations 

are documented in a previous study in which the base simulation was shown to generally 

agree with surface and tropospheric observations (Fry et al., 2013).  Here we simulate 

new perturbation experiments that reduce regional and global anthropogenic NMVOC 

emissions by 50% for July 1, 2004 through December 31, 2005 using MOZART-4 at a 

horizontal resolution of 1.9˚ latitude x 2.5˚ longitude with 56 vertical levels.  We use the 

Coupled Model Intercomparison Project phase 5 (CMIP5) Representative Concentration 

Pathway 8.5 (RCP8.5) emissions inventory for the year 2005 (Riahi et al., 2007, 2011) 

and global meteorology from the Goddard Earth Observing System Model, version 5 

(GEOS-5) (2004 to 2006) (Rienecker et al., 2008).   Anthropogenic emissions include all 

anthropogenic sectors except biomass burning emissions (Figure C2), which are excluded 

since actions to address biomass burning differ from the other anthropogenic sectors, and 

would likely reduce a suite of emissions simultaneously (Naik et al., 2007).   
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RCP8.5 NMVOC species are re-speciated to MOZART-4 NMVOC categories, 

and monthly temporal variation is added to all anthropogenic species and source 

categories, except for shipping, aircraft, and biomass burning, which already have 

monthly temporal variation (Figure C2, Table C1).  The Model of Emissions of Gases 

and Aerosols from Nature (MEGAN) (Guenther et al., 2006) within MOZART-4 

calculates the biogenic emissions of isoprene and monoterpenes (C10H16) (global annual 

totals of 738 Tg C yr-1 and 107 Tg C yr-1, respectively), while all other natural emissions 

are from Emmons et al. (2010) (Table C2).  The global annual lightning NOx and soil 

NOx emissions are also calculated by MOZART-4 as 2.4 Tg N yr-1 and 8.0 Tg N yr-1 (Fry 

et al., 2013).     

Because the perturbation simulations are only 1.5 years in length, we account for 

the influence of NMVOC emissions on CH4 (via OH), and thus long-term changes in O3 

on the decadal timescale of the CH4 perturbation lifetime, using methods from previous 

studies (Prather et al., 2001; West et al., 2007; Fiore et al., 2009; Fry et al., 2012).  Global 

CH4 is set to a uniform mixing ratio of 1783 parts per billion by volume (ppbv) (WMO, 

2006) in the base and perturbation simulations.  The CH4 control simulation reduced 

global CH4 to 1426.4 ppbv.  The results from the base and CH4 control simulations were 

used by Fry et al. (2013) to estimate CH4 lifetime against loss by tropospheric OH (OH, 

11.24 years), total CH4 lifetime based on OH and CH4 loss to soils and the stratosphere 

(total, 9.66 years), and methane’s feedback factor (F, 1.29) by the methods of Prather et 

al. (2001) and Stevenson et al. (2013).  We use these parameters to estimate the steady-

state tropospheric CH4 change for each of the NMVOC perturbations.  Long-term O3 

responses are then calculated offline by scaling O3 changes from the CH4 control 



   

93 
 

simulation by the ratio of the global CH4 change from each perturbation to that of the 

CH4 control.  We add long-term O3 changes to direct short-term O3 changes to estimate 

the net change at steady state (West et al., 2007, 2009b; Fiore et al., 2009; Fry et al., 

2012).   

Since MOZART-4 does not have complete stratospheric chemistry (Emmons et 

al., 2010), we merge each simulation’s steady-state (short-term + long-term) tropospheric 

O3 distributions (in three dimensions) with the monthly mean stratospheric O3 

concentrations from the AC&C/SPARC (Stratospheric Processes And their Role in 

Climate) O3 database prepared for CMIP5 (Available: http://pcmdi-

cmip.llnl.gov/cmip5/forcing.html) (Cionni et al., 2011).  By omitting lower stratospheric 

O3 changes between each perturbation and the base simulation, our RF estimates likely 

underestimate the full effect of NMVOC emissions (Søvde et al., 2011).   

MOZART-4 accounts for the tropospheric aerosols SO4
2-, black carbon (BC), 

primary and secondary organics, NO3
-, dust, and sea salt aerosols (Lamarque et al., 

2005).  Here we focus on changes in SO4
2-, NO3

-, and SOA, as these species are most 

directly influenced by anthropogenic NMVOCs, where NMVOCs are precursors to SOA, 

and changes in oxidants affect all three aerosol species (Barth et al., 2000; Metzger et al., 

2002; Chung and Seinfeld, 2002).   

4.2.2 Radiative transfer model 

We use the NOAA Geophysical Fluid Dynamics Laboratory (GFDL) standalone 

radiative transfer model (RTM) to perform stratospheric-adjusted net RF calculations 

(Schwarzkopf and Ramaswamy, 1999; GFDL GAMDT, 2004; Naik et al., 2005, 2007) as 

in Fry et al. (2012), with the same updates to long-lived greenhouse gases (Meinshausen 



   

94 
 

et al., 2011) and solar forcing (http://www.geo.fu-

berlin.de/en/met/ag/strat/forschung/SOLARIS/Input_data/CMIP5_solar_irradiance.html) 

from Fry et al. (2013).  Net RF is calculated as the difference between the perturbed and 

base cases’ simulated monthly mean net radiation fluxes (net shortwave minus net 

longwave), in each grid cell and month, at the tropopause after stratospheric temperatures 

have readjusted to radiative equilibrium (Naik et al., 2007; Saikawa et al., 2009; Fry et 

al., 2012).  We quantify the net RF from changes in tropospheric steady-state O3, CH4, 

and SO4
2- (direct effect only), as modeled by the MOZART-4 simulations.  

Meteorological fields from GFDL’s atmosphere model (AM2) and land model (LM2), 

sampled one day per month at midmonth for the year 2005, are also used as input to the 

RTM simulations, representing monthly mean conditions (Naik et al., 2005).   

The RTM currently does not calculate the RF of SOA and NO3
- aerosols.  We also 

do not account for the RF of changes in stratospheric O3, water vapor, the carbon cycle 

(via O3 and nitrogen deposition, affecting plants), and CO2 (via NMVOC oxidation, 

which has a minor influence on the net RF of NMVOCs) (Shindell et al., 2009).  We do 

not estimate CO2 forcing here, because this carbon is likely accounted for in CO2 

inventories (Daniel and Solomon, 1998).  Our RTM simulations also exclude the indirect 

effects of aerosols on clouds and the internal mixing of aerosols, where aerosol indirect 

effects are highly uncertain and may account for considerable RF beyond aerosol direct 

effects (Forster et al., 2007; Shindell et al., 2013). 



   

95 
 

4.3 Tropospheric composition and surface air quality 

4.3.1 Methane and ozone 

Global annual average changes in steady-state tropospheric CH4 abundance, 

calculated from the tropospheric CH4 loss flux diagnosed from the model (West et al., 

2007; Fiore et al., 2009; Fry et al., 2013), are largest for ME (-7.37 ppbv) and SA (-5.41 

ppbv) reductions among the 10 regions (Table 4.1).  Normalized global CH4 changes 

range from 0.40 to 1.61 ppbv CH4 (Tg C yr-1)-1 among the 10 regions, and are most 

sensitive to reductions from AU, SA, SE, and AF.  These are regions of low NOx, as 

discussed below, where reducing NMVOCs lessens OH depletion creating greater global 

CH4 changes per unit emission.  CH4 decreases are least sensitive to NMVOC reductions 

from high-NOx regions (EA, EU, FSU).  Naik et al. (2005) also found greater global CH4 

sensitivities for NOx emissions from low-NOx regions (SE, SA, and AU), and lower 

sensitivities for high-NOx regions (EU, FSU).  

Global short-term and steady-state surface O3 changes for the 10 regional 

reductions are nearly proportional to NMVOC emissions changes (R2 = 0.69 and 0.81) 

(Figure C3), but not as strongly correlated as for regional CO reductions (Fry et al., 

2013).  NMVOC emissions produce long-term O3 decreases that augment short-term 

decreases by 13% for the global reduction, and by 5-18% for the regional reductions 

(Figure 4.1, Table 4.2), similar to Fiore et al. (2009) and West et al. (2007).  SA, AF, and 

SE reductions provide more substantial long-term global surface O3 changes, which 

account for ~34 to 89% of steady-state O3 decreases.   

Several of the regional reductions (SA, AF, SE, and AU) in the tropics and 

southern hemisphere (SH) produce regional to intercontinental tropospheric O3 column 
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increases (Figure 4.2), as the sensitivity of O3 to NMVOC emissions varies by world 

region.  All of the regional reductions slow the formation of peroxyacetyl nitrate (PAN), 

causing PAN to decrease regionally to hemispherically and NOx to increase regionally 

(Figures C5, C6, and C7).  For SA, AF, SE, and AU, these NOx increases cause O3 

column increases near or downwind of the region.  For the other regions, decreases in 

NMVOCs decrease O3, outweighing the influence of NOx increases via slowing PAN 

production.  Whether NMVOC reductions cause O3 to increase or decrease depends on 

the regional chemical state.  Here O3-NOx-VOC sensitivity is analyzed using the 

photochemical indicator ratios: P(H2O2)/P(HNO3), where P() refers to production rate, 

(H2O2)/(HNO3), and (H2O2)/(NO2) (Sillman et al., 1997; Liu et al., 2010).  The modeled 

indicator ratios show that NOx-sensitive conditions prevail in the tropics and southern 

midlatitudes, supporting the finding of tropospheric O3 increases from SA, AF, SE, and 

AU reductions (Figures C8, C9, and C10).  The northern mid- to high latitudes more 

frequently exhibit VOC-sensitivity (weaker NOx-sensitivity), particularly from November 

to March, resulting in O3 decreases.   

The global distributions of steady-state surface and tropospheric O3 show the 

greatest decreases within each reduction region, and smaller decreases intercontinentally 

(Figure 4.2, Figure C4, and Table C3).  Although the largest changes in surface O3 occur 

within the hemisphere of reduction, given that inter-hemispheric transport takes ~1 year 

(Jacob, 1999), more widespread decreases reflect global long-term O3 decreases (via CH4 

decreases).  NMVOC reductions in one region can also influence surface O3 

concentrations in other regions importantly (Tables C3 and C4).  In fact, the EA, ME, and 

EU NMVOC reductions have an impact on US surface O3 that is 43%, 34%, and 34%, 
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respectively, of that from the NA reduction.  Two of the low-NOx regions (SA and SE) 

experience greater decreases in surface O3 from foreign regions’ NMVOCs than domestic 

NMVOCs. 

The global annual average steady-state tropospheric O3 burden decreases by 0.073 

Tg O3 (Tg C yr-1)-1 for the global reduction and by -0.008 to 0.101 Tg O3 (Tg C yr-1)-1 for 

the 10 regions (Table 4.1).  Changes in O3 production (P) and export (X) are also 

calculated to determine the importance of long-range transport of O3 and its precursors.  

For most regions, changes in O3 production outside of each reduction region exceed 

changes in O3 export from each region, suggesting that the influence of NMVOC 

emissions on the downwind production of O3 has a greater impact on long-range O3 than 

the formation and export of O3 from each region (Table 4.1).  In contrast, for the SA, AF, 

and SE reductions, X is positive due to regional O3 increases.  O3 production outside the 

reduction region decreases for AF and SE, yet increases for SA, as SA causes widespread 

increases in tropospheric O3 (Figure 4.2).  For AU, regional tropospheric O3 export 

decreases, while tropospheric O3 production increases outside AU (Table 4.1, Figure 4.2). 

4.3.2 Aerosols 

NMVOC reductions affect the oxidation of SO2, NOx, monoterpenes, and toluene, 

influencing tropospheric SO4
2-, NO3

-, and SOA concentrations.  Reductions from regions 

near the equator and in drier areas (SA, AF, IN, SE, and ME) produce widespread SO4
2- 

increases (Figure 4.3), related to increased gas-phase SO2 oxidation by OH.  In fact, most 

of the regional reductions, except EA and AU, produce localized increases in SO4
2- over 

drier areas (e.g., Middle East and India).  Tropospheric O3 increases from the SA, AF, 

and SE reductions also contribute to SO4
2- increases via enhanced aqueous-phase SO2 
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oxidation by O3, where aqueous-phase SO2 oxidation is more efficient than gas-phase 

oxidation (Unger et al., 2006).  Regional reductions in the northern midlatitudes (NA, 

EU, FSU, and EA) result in widespread decreases in SO4
2-, due to the prevalence of 

clouds and decreased aqueous-phase oxidation (in clouds) of SO2 by O3 and H2O2 

(Figures 4.3, C11, and C12).  NO3
- changes include both regional increases and 

decreases.  As with SO4
2-, NO3

- increases are expected due to OH increases that are 

global in scale, yet largest over the source region (Figures C13 and C14).  SOA decreases 

globally, influenced not only by oxidant changes, but also by NMVOCs directly, as 

NMVOCs are precursors to SOA.  The largest SOA decreases occur over the reduction 

region (Figure C15).  While MOZART-4 accounts for SOA formation through the 

oxidation of monoterpenes and toluene, more research is needed to more fully model 

SOA.  Current models greatly simplify the physical and chemical processes contributing 

to SOA burden, and underpredict SOA formation compared to observations (Carlton et 

al., 2009).     

Global annual average SO4
2- burden decreases for most regional reductions, yet 

increases for SA, AF, and ME (Table 4.3).  For all 10 regional reductions, global NO3
- 

burden increases and global SOA burden decreases.  The sums of global burden changes 

for all 10 regional reductions, for SO4
2-, NO3

-, and SOA, are 95 to 99% of the burden 

changes for the global NMVOC reduction, suggesting some dependence on regional 

conditions and chemistry.  

4.4 Radiative forcing and global warming potential 

The global annual average net RF is estimated as -9.73 mW m-2 for the global 

50% NMVOC reduction or 0.21 mW m-2 (Tg C yr-1)-1 (Table 4.4).  To compare with 
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other estimates of anthropogenic forcing, we double this net RF and scale for biomass 

burning emissions (29.9% of global anthropogenic NMVOC emissions), which were 

excluded in the 50% reductions, yielding a global net RF of -0.0277 W m-2.  This 

approach assumes that biomass burning emissions have the same locations and mixture of 

NMVOCs as anthropogenic emissions.  This RF is ~49% of the ACCMIP multimodel 

mean global net RF of NMVOC emissions for 1850-2000 due to O3 and CH4 changes 

alone (0.057 W m-2)  (Stevenson et al., 2013).  It is also 11 to 13% of previous CO + 

NMVOC RF estimates: 0.25 ±0.04 W m-2 (Shindell et al., 2009) and 0.21 ±0.1 W m-2 

(Shindell et al., 2005; Forster et al., 2007).  The RF of anthropogenic NMVOCs is ~1.8% 

of global net RF of CO2 (1.56 W m-2), and among the positive short-lived forcing agents 

(CO, CH4, NMVOCs, and BC), ~1.8% of their total RF (1.57 W m-2) (Forster et al., 

2007).  Potential reasons for our smaller RF (and GWP) estimates are discussed below.    

Across the 10 regions, the global annual average net RF, normalized per unit 

change in NMVOC emissions, is 0.30 ±0.15 mW m-2 (Tg C yr-1)-1 (mean ±1 standard 

deviation), suggesting variability in the forcings due to different regions’ emissions.  The 

normalized RF is most sensitive to NMVOC emissions from regions in the tropics and 

SH (ME, AU, AF, and IN).  Monthly global net RF estimates vary from 0.03 to 3.5 times 

the annual mean (excluding EA, which has even greater variability), with the greatest 

negative RFs from June to August (Figure C17).   

Regional changes in NMVOC emissions cause widespread negative net RFs 

(cooling) across both hemispheres from decreases in global CH4 and long-term O3 

(Figure 4.4).  Negative RFs over several source regions (e.g., IN, ME) result from short-

term O3 decreases and regional SO4
2- increases (Figure 4.3).  Regional positive RFs 
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(warming) arise from regional SO4
2- decreases (e.g., NA, EU, FSU, EA, and SE 

reductions) (Figure 4.3), which can oppose the negative RFs of O3 decreases, and 

tropospheric O3 increases (e.g., SA, AF, SE, and AU reductions) (Figure 4.2).  These 

influences are supported by the distributions of changes in longwave radiation (Figure 

C18), dominated by O3 and CH4 changes, and shortwave radiation (Figure C19), 

dominated by SO4
2-.  If changes in SOA and NO3

- were accounted for by the RTM, 

tropospheric SOA decreases (greater than SO4
2- changes in some regions) would likely 

add small regional warming, while tropospheric NO3
- increases and decreases (mostly 

lesser than  SO4
2- changes) would add slight regional cooling and warming effects.  

Globally, NO3
- and SOA would contribute small negative and positive RFs, respectively, 

to global net RF. 

Using the methods of Collins et al. (2013) and Fry et al. (2012, 2013), we 

calculate GWPs for each reduction as the RF integrated to 20 and 100 years, normalized 

by the emissions change, and divided by the equivalent for CO2 (Table 4.4).  These 

GWPs represent short-term contributions from SO4
2- and O3 (assumed constant over one 

year and zero thereafter), and long-term contributions of CH4 and O3 (responding and 

decaying with the CH4 perturbation lifetime of 12.48 years) (Fry et al., 2013).  The long-

term O3 RF component is calculated by scaling the O3 RF from the CH4 control 

simulation by the ratio of the long-term O3 burden change from each perturbation to that 

of the CH4 control.  Short-term O3 RF is the difference between steady-state O3 RF 

(simulated by the RTM) and long-term O3 RF.     

GWP20 and GWP100 are estimated as 5.83 and 2.36, respectively, for the global 

reduction, and -1.13 to 18.9 and 0.079 to 6.05 among the 10 regions, suggesting strong 
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dependence on emission location, consistent with the normalized net RFs (Figure 4.5).  

GWP20 and GWP100 are greatest for ME, which also had the largest net RF sensitivity, 

and smallest for EA, because of the nearly equivalent (opposing) short- and long-term 

effects.  SA, SE, and AU reductions yield the largest (negative) short-term components 

for GWP20 and GWP100 due to the combined effect of SO4
2- and tropospheric O3 

increases, which act in the opposite direction to the long-term component.  Uncertainty in 

NMVOC GWPs is based on the spread across an ensemble of global CTMs from Fry et 

al. (2012) (±1 standard deviation, GWP20: ±6.0 and GWP100: ±2.1), but do not account 

for the full uncertainty, as additional forcings could change net RF and GWP estimates. 

Our GWPs (and RFs) do not include the forcing from CO2 as NMVOCs oxidize, 

since carbon emissions are often accounted for in CO2 inventories (Fuglestvedt et al., 

1996; Daniel and Solomon, 1998; Collins et al., 2002).  Including CO2 forcing, however, 

may provide a more complete accounting of the effects of NMVOCs, increasing each 

GWP20 and GWP100 estimate by 3.67 (44 g CO2 mol-1 (56.6 g C mol-1)-1 * 4.7 C per 

NMVOC molecule), based on the global annual average molecular weight and number of 

carbons per molecule for anthropogenic NMVOC emissions.  This increases the global 

GWP20 and GWP100 by 63% and 155%, respectively, and makes all regional GWP20 and 

GWP100 estimates positive.         

The GWP20 and GWP100 estimates for NA, EU, and IN (South Asia) reductions 

are approximately 32 to 41%, 61 to 69%, and 50 to 52% lower than the multimodel mean 

estimates of Fry et al. (2012) (Table C10).  EA GWP20 and GWP100 estimates, being near 

zero, also greatly contrast with Fry et al. (2012).  Here total NMVOC/NOx emissions 

ratios are 57% greater globally and in NA than the multimodel mean ratios, partly due to 
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greater biogenic NMVOC emission sources (calculated online in MOZART-4).  In EU, 

EA, and IN, the total NMVOC/NOx emissions are closer to the multimodel mean ratios: 

4% and 9% (EU and EA, respectively) less and 8% (IN) greater than those of the 

multimodel mean (Table C11).  Global O3 burden responses (in Tg O3 (Tg C yr-1)-1) are 

27% to 51% less than those in Fry et al. (2012), likely due to the greater NMVOC/NOx 

emission ratios in this study, which would suggest less sensitivity to NMVOC emissions, 

but differences in the representations of NMVOCs and oxidation chemistry among 

models may also contribute to these differences.  Global SO4
2- responses (in Gg SO4

2- 

(Tg C yr-1)-1) also highly vary, more commonly causing increases in SO4
2- compared to 

the decreases in Fry et al. (2012) (Table C12).  Collins et al. (2002) calculated GWP100 

estimates for individual NMVOC species (due to CH4 and O3 only) ranging from 1.9 to 

5.5 (-50% to 100% uncertainty), which are more similar to the GWP100 magnitudes 

estimated here.  While our NMVOC GWP estimates consider all anthropogenic 

NMVOCs together and are derived from only one CTM and RTM, they represent 

emissions from a greater number of regions, including the tropics and extra-tropics. 

4.5 Summary 

Reducing NMVOC emissions provides regional to global benefits to air quality 

and climate. Halving anthropogenic NMVOCs from each region creates widespread 

small negative net RFs across both hemispheres from global CH4 and long-term O3 

decreases.  RF is also negative near several source regions (e.g., IN, ME) due to regional 

SO4
2- increases and short-term O3 decreases.  Regional small positive RFs correspond to 

regional SO4
2- decreases (e.g., NA, EU, FSU, EA, and SE) and tropospheric O3 increases 

(e.g., SA, AF, SE, and AU).   
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The present-day NMVOC RF is estimated as 0.0277 W m-2, or ~1.8% of CO2 RF 

since the preindustrial.  Our RF, GWP20, and GWP100 estimates for the NA, EA, EU, and 

IN reductions are also lower than the multimodel mean estimates of Fry et al. (2012), due 

to differences in O3-NOx-VOC sensitivities and SO4
2- responses, and in particular, 

because of regional O3 increases and SO4
2- decreases for some regions that oppose the 

long-term cooling.  Considerable variability in the global net RF, GWP20, and GWP100 

estimates among regions suggests a strong dependence on emission location: 0.21 mW m-

2 (Tg C yr-1)-1, 5.83, and 2.36 for the global reduction, and 0.30 ±0.15 mW m-2 (Tg C yr-

1)-1, -1.13 to 18.9, and 0.079 to 6.05 for the 10 regions.  GWP20 and GWP100 are greatest 

for regions in the tropics and SH (i.e., ME, IN, and AF) and less for regions in the 

northern midlatitudes (i.e., EU and FSU).  The lowest GWP20 and GWP100 estimates are 

for EA, given the nearly equivalent (opposing) short- and long-term effects.  Including 

additional forcings beyond CH4, O3, and SO4
2- would likely change RF and GWP 

estimates.     

Variability in global annual average tropospheric CH4, O3, and SO4
2- responses 

contribute to the RF and GWP differences seen among regions: 0.81 ppbv CH4 (Tg C yr-

1)-1, 0.073 Tg O3 (Tg C yr-1)-1, and 0.33 Gg SO4
2- (Tg C yr-1)-1 for the global reduction, 

and 0.40 to 1.61 ppbv CH4 (Tg C yr-1)-1, -0.008 to 0.101 Tg O3 (Tg C yr-1)-1, and -0.21 to 

1.01 Gg SO4
2- (Tg C yr-1)-1 among the 10 regions.  Several regions with high GWPs are 

low-NOx regions (AF and AU), which have stronger CH4 sensitivities to NMVOC 

reductions, and weak increases or decreases in SO4
2-. 

Anthropogenic NMVOC emissions overall contribute ~5.1% (1.9 ppbv) to global 

annual average steady-state surface O3, by doubling the change from the 50% global 
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NMVOC reduction (-0.67 ppbv) and scaling for biomass burning emissions.  Some 

regional reductions contribute importantly to surface O3 in other regions, such as EA, 

ME, and EU, which impact US surface O3 by 43%, 34%, and 34%, respectively, of that 

from NA emissions.  NMVOC emission reductions mostly have a greater impact on 

downwind O3 production than the formation and export of O3 from each source region. 

Long-term surface O3 changes (via CH4) impact air quality globally, and for most regions 

add 5-18% to short-term changes.   

In this study, the air quality and RF impacts are derived from one CTM and RTM, 

which limits our ability to capture a more complete range of CH4, O3, aerosols, and RF 

responses, as a model ensemble would.  Previous studies have shown a large model 

spread in CH4, O3, and SO4
2- responses to regional NMVOC emissions (Collins et al., 

2002; Fiore et al., 2009; Fry et al., 2012).  Future work could examine the emissions 

inventories of NMVOCs and other species, as they are fairly uncertain among models 

(Berntsen et al., 2005).   

Other limitations include only accounting for CH4, O3, and SO4
2- (direct effect 

only) in our net RF and GWP estimates, which may affect the magnitude of our estimates 

and variability among regions.  Forcing mechanisms not accounted for include NO3
-, 

SOA, stratospheric O3, water vapor, the carbon cycle (via O3 and nitrogen deposition), 

the indirect effects of aerosols, and the internal mixing of aerosols.  Future research could 

include these additional forcings and their uncertainty.  The contribution of 

anthropogenic NMVOCs to SOA, in particular, is fairly uncertain, and often 

underpredicted by models (Volkamer et al., 2006).  The influence of climate feedbacks 

on chemistry and future changes in emissions also may alter the air quality and RF 



   

105 
 

sensitivities estimated here for present-day emissions.  In addition, while we focus on the 

sensitivity of air quality and RF to NMVOC emissions, which is useful in determining 

the GWP of NMVOCs, emission control measures would likely affect co-emitted species.  

Our results can be combined with those for co-emitted pollutants to evaluate the net 

effect of measures affecting multiple pollutants.  Full climate responses also could be 

evaluated, as in Shindell and Faluvegi (2009).  

These findings of high variability in GWPs among regions for NMVOCs contrast 

with our earlier findings for CO, with little variability in GWPs among source regions 

(Fry et al., 2013).  While it would be possible to include CO in multi-gas emissions 

trading schemes using a single GWP, with little error, using a single GWP for NMVOCs 

would cause significant error.  Instead, international climate agreements could consider 

including NMVOCs in multi-gas emissions trading schemes using GWPs that are specific 

to each region.  Although NMVOCs are a small climate forcing agent, this study 

motivates reductions in NMVOC emissions as part of future coordinated policies 

addressing air quality and climate change (Rypdal et al., 2005, 2009; Jackson et al., 2009; 

Shindell et al., 2012; Fry et al., 2013). 

 



   

 
 

4.6 Tables and Figures 

Table 4.1. Changes in global annual average short-term and steady-state tropospheric O3 burden (BO3) and tropospheric CH4 

for the global and regional reductions.  Changes in O3 production (PO3), PO3 normalized per unit change in NMVOC emissions 
(E), and PO3 outside each reduction region are shown for each regional reduction.  Changes in net O3 export (XO3) from each 
reduction region, and the fractions of BO3 and PO3 changes above each reduction region are also estimated. 
 

Reduction 
region 

 BO3 
(Tg 
O3) 

short-
term 

 BO3 
(Tg 
O3) 

steady
-state 

BO3/
 E 

(Tg O3 
(Tg C 
yr-1)-1) 
steady
-state 

 CH4 
(ppbv) 

CH4/ 
 E 

(ppbv 
(Tg C 
yr-1)-1) 

 
PO3 
(Tg 
yr-1) 

 PO3/ 
E (Tg 
O3 (Tg 

C yr-1)-1) 

 PO3 
outside 
region 

(Tg yr-1) 

 XO3 
from 

region 
(Tg yr-1) 

Fraction 
of global 
BO3 
above 
region 

Fraction 
of global 
PO3 
above 
region 

NA -0.30 -0.41 0.082 -4.05 0.80 -6.13 1.21 -3.92 -0.84 0.19 0.36 

SA 0.16 0.028 -0.008 -5.41 1.60 1.95 -0.58 0.67 0.72 0.13 0.66 

EU -0.31 -0.38 0.101 -2.30 0.61 -6.15 1.64 -4.17 -1.19 0.087 0.32 

FSU -0.21 -0.25 0.101 -1.61 0.64 -3.80 1.52 -2.83 -0.48 0.21 0.25 

AF -0.081 -0.20 0.049 -4.20 1.03 -2.22 0.54 -2.34 0.41 -0.041 -0.052 

IN -0.23 -0.30 0.081 -2.40 0.65 -5.09 1.38 -3.14 -0.67 0.071 0.38 

EA -0.90 -1.02 0.099 -4.10 0.40 -18.6 1.82 -11.2 -3.79 0.10 0.40 

SE 0.075 -0.066 0.016 -5.16 1.22 -0.18 0.04 -1.40 0.80 0.21 -6.75 

AU 0.013 0.00 0.000 -0.54 1.61 0.19 -0.58 0.20 -0.014 0.040 -0.032 

ME -0.50 -0.69 0.091 -7.37 0.97 -9.48 1.24 -6.31 -1.79 0.10 0.33 

Global -2.44 -3.33 0.073 -36.6 0.81 -52.1 1.15 - - - - 
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Table 4.2. For the global and regional reduction simulations relative to the base, 
global annual average changes in short-term and steady-state surface O3. 
 

Reduction 

region 

Surface 

O3 short 

term  

(pptv)

Surface 

O3 steady 

state  

(pptv)

NA -81.0 -89.9 

SA -1.40 -13.3 

EU -87.5 -92.6 

FSU -71.0 -74.5 

AF -18.2 -27.5 

IN -28.9 -34.2 

EA -167.1 -176.2 

SE -9.40 -20.8 

AU 0.60 -0.60 

ME -100.6 -116.8 

Global -592.9 -673.5 
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Table 4.3. For the global and regional reduction simulations relative to the base, 
global annual average tropospheric burden changes in SO4

2-, NO3
- (expressed as 

NH4NO3), and SOA.  The global annual average tropospheric SO4
2-, NH4NO3, and 

SOA burdens in the base simulation are 1785 Gg SO4
2-, 416 Gg NH4NO3, and 227 Gg 

SOA. 
 

Reduction 

region 

SO4
2- 

(Gg yr-1) 

NH4NO3 

(Gg yr-1) 

SOA 

(Gg yr-1) 

NA -1.63 0.61 -2.91 

SA 0.05 0.17 -4.57 

EU -2.26 1.47 -1.30 

FSU -1.45 0.88 -0.74 

AF 0.06 0.21 -2.84 

IN -0.03 0.05 -1.66 

EA -10.3 3.21 -3.69 

SE -0.06 0.38 -5.00 

AU -0.01 0.01 -0.25 

ME 1.63 0.09 -1.89 

Global -14.8 7.27 -24.9 



   

 

Table 4.4. Annual net RF globally and by latitude band (mW m-2) and GWP20 and GWP100 estimates for the global and regional reduction 
simulations relative to the base, due to changes in tropospheric steady-state O3, CH4, and SO4

2- concentrations.  Global annual net RF per 
unit change in NMVOC emissions (mW m-2 (Tg C yr-1)-1) is also shown.  The 10 regions estimate represents the sum of the net RFs from 
all 10 regional reductions; this estimate is not directly estimated by the RTM. 
 

Reduction 

region 

Global 

annual 

net RF 

Global annual 

net RF per Tg 

NMVOC 

Annual net 

RF 

90˚S – 28˚S 

Annual net 

RF 

28˚S – 28˚N 

Annual net 

RF 

28˚N – 60˚N 

Annual net 

RF 

60˚N – 90˚N 

GWP20 GWP100 

NA -1.50 0.30 -1.19 -2.13 -0.46 -2.09 9.20 3.27 

SA -1.17 0.35 -0.63 -1.20 -1.98 -1.38 8.56 3.86 

EU -0.70 0.19 -0.69 -1.46 1.05 -1.16 5.36 2.05 

FSU -0.51 0.20 -0.48 -1.05 0.58 -0.71 5.96 2.24 

AF -1.56 0.38 -1.24 -1.99 -1.79 -1.17 11.8 4.19 

IN -1.38 0.37 -0.83 -2.12 -1.54 -0.96 12.7 4.08 

EA -0.05 0.0045 -1.41 -0.24 5.98 -3.30 -1.13 0.079 

SE -1.23 0.29 -1.24 -0.79 -1.85 -1.39 7.58 3.23 

AU -0.13 0.40 0.016 -0.25 -0.21 -0.14 10.5 4.41 

ME -4.22 0.55 -2.29 -6.80 -4.56 -3.06 18.9 6.05 
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Global -9.73 0.21 -8.36 -13.8 -1.21 -14.0 5.83 2.36 

10 regions -12.5 0.28 -9.98 -18.0 -4.77 -15.3 - - 
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Figure 4.1. Global annual average surface O3 concentration changes (ppbv) for the 
regional and global reduction simulations, in the short term and at steady state. 
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Figure 4.2. Global distribution of annual average changes in tropospheric total column O3 
at steady state (1e-2 DU) for each of the regional reduction simulations relative to the 
base. 
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Figure 4.3. Global distribution of annual average changes in tropospheric total column 
SO4

2- (g m-2) for each of the regional reduction simulations relative to the base. 
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Figure 4.4. Annual average net RF distributions (mW m-2) due to changes in tropospheric 
steady-state O3, CH4, and SO4

2- for the regional and global NMVOC reduction 
simulations minus the base simulation. 
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Figure 4.5. Global warming potentials for NMVOCs at time horizons of 20 and 100 years 
(GWP20, GWP100) for the regional and global reductions, with contributions from short-
term (O3 and SO4

2-) and long-term (O3 and CH4) components, where total GWP is short-
term + long-term.  Uncertainty bars represent the average uncertainty found by Fry et al. 
(2012) based on the spread of atmospheric chemical models (±1 standard deviation). 
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Chapter 5. Conclusions 
 

O3 precursors influence climate and degrade air quality at regional to global 

scales.  This dissertation builds upon previous studies by evaluating the impacts of O3 

precursors from various world regions, and across an ensemble of models.  All three 

studies demonstrate that reducing anthropogenic O3 precursor emissions can provide 

benefits by mitigating air pollution and global climate change in both the short and long 

term.  Chapter 2 evaluates the impacts to tropospheric composition and RF from regional 

O3 precursor reductions across an ensemble of models, and Chapters 3 and 4 analyze the 

air quality, tropospheric burden, and RF impacts of regional and global reductions in CO 

and NMVOC emissions.  This chapter focuses on the key scientific findings, 

uncertainties, and future research needs from Chapters 2 to 4, as well as the implications 

for policy. 

5.1 Scientific findings 

Reducing O3 precursor emissions can benefit air quality and climate by 

influencing secondary species: O3, CH4, and SO4
2-, and atmospheric oxidants: OH and 

H2O2.  Among the short-lived O3 precursors, CO and NMVOC emission reductions most 

effectively mitigate climate warming (decreasing the tropospheric burdens of both CH4 

and O3), while improving air quality.  Regional CO and NMVOC emission reductions 

produce widespread cooling across the NH and SH due to large-scale O3 and CH4 

decreases, and localized warming and cooling from SO4
2- and regional O3 changes.  

Reducing CH4 also provides important benefits to global climate and air quality over a 
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longer timescale.  Regional NOx emission reductions alone can be detrimental to climate, 

producing warming in the opposite hemisphere of reduction, due to global CH4 increases 

and thus, long-term O3 (Chapter 2).  Including the impact of O3 on plant growth and the 

carbon cycle, however, may change the overall effect of NOx reductions to a net climate 

cooling (Chapter 2).   

The present day RF of CO and NMVOC emissions (anthropogenic and biomass 

burning) are estimated as 0.128 W m-2 and 0.0277 W m-2, which are ~8.2% and ~1.8%, 

respectively, of the global RF of CO2, and ~8.2% and ~1.8% of the RF due to short-lived 

forcing agents with the potential to slow climate change over the next few decades (CO, 

CH4, NMVOCs, and BC).  Based on the normalized net RF estimates, NOx and NMVOC 

emission reductions from South Asia, the region closest to the tropics, provide the 

greatest global net RF per unit emission (Chapter 2).  CO and NMVOC emission 

reductions from a greater number of regions (Chapters 3 and 4) also demonstrate that 

global net RF and tropospheric O3 changes are more sensitive to emissions from the 

tropics and southern hemisphere, due to more active photochemistry and vertical 

convection in the tropics and greater CH4 sensitivity.  However, the RF and tropospheric 

O3 impacts of CO vary much less among regions due to the longer lifetime of CO 

compared to NOx and NMVOCs, allowing for more widespread influences.  Some 

regional reductions (i.e. AU CO reduction, low-NOx regions for NMVOC reductions) 

more effectively reduce global CH4 than others, but there is substantial variability in 

tropospheric CH4 changes for each precursor reduction, as estimated by the ensemble of 

11 CTMs (Chapter 2).  In addition, each of the O3 precursors likely cause changes in 

regional climate that are not quantified as part of these studies.   
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Spatially, the impacts on O3 at the surface and across the troposphere are greatest 

within the reduction region, and smaller intercontinentally to globally.  Reducing global 

CH4 by 20% produces the largest decrease in tropospheric O3 globally.  NOx emission 

reductions result in overall decreases in tropospheric O3 burden in the NH, yet slight 

increases in the SH due to long-term O3 increases (via CH4) (Chapter 2).  CO and 

NMVOC emission reductions provide hemispheric to global decreases in tropospheric 

O3, yet several NMVOC reductions (SA, AF, SE, and AU) increase tropospheric O3 

regionally to intercontinentally (Chapter 4).  All of the regional NMVOC reductions slow 

the production of PAN, causing regional to hemispheric PAN decreases and regional NOx 

increases.  For the SA, AF, SE, and AU NMVOC reductions, a greater sensitivity to NOx 

increases causes tropospheric O3 to increase near or downwind of the region, 

outweighing the effect of NMVOC decreases.   

At the surface, short-term and steady-state surface O3 concentration changes are 

nearly proportional to the magnitude of CO and NMVOC emissions changes from each 

of the 10 regions (Chapters 3 and 4).  Some regions can considerably influence the air 

quality in other regions such as EA CO and NMVOC emissions, which impact U.S. 

surface O3 concentrations by 93% and 43%, respectively, of that from NA (CO and 

NMVOC) emissions.  CO and NMVOC emission reductions can also impact air quality 

over large spatial scales.  For all 10 regional CO reductions, more than 70% of global O3 

burden and production changes and more than 79% of global CO burden changes occur 

outside the reduction region.  O3 production changes outside of each reduction region 

greatly exceed changes in O3 export from each region, suggesting that large scale O3 

impacts are mainly due to the transport of CO and subsequent production of O3 
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downwind, rather than the transport of O3 itself (Chapter 3).  NMVOC emission 

reductions (excluding SA, AF, SE, and AU reductions) likewise have a greater impact on 

long-range O3 through downwind O3 production than the formation and export of O3 

from each reduction region (Chapter 4). 

Aerosol changes at the surface are generally small, but tropospheric SO4
2- changes 

show substantial variability and disagreement in the sign of change among the four 

CTMs evaluated in Chapter 2.  This suggests that future research is needed to better 

model and understand aerosol-oxidant interactions.  Across all three studies, tropospheric 

SO4
2- changes are largest over the region of emissions change, with smaller changes 

intercontinentally.  In general, OH increases contribute to increased SO4
2- formation, 

particularly in drier regions and near the equator.  H2O2 and O3 decreases, on the other 

hand, contribute to decreased SO4
2- formation, prevalent in the northern mid-latitudes.  

Reducing CH4, CO, and NMVOCs increases and decreases tropospheric SO4
2- by 

increasing OH (and H2O2), and decreasing O3, respectively, while NOx reductions 

decrease SO4
2- by decreasing O3, OH, and H2O2.  The influence of O3 precursors (via 

oxidant changes) on formation of other secondary aerosols (e.g. NO3
- and SOA) is 

equally complex, and requires further research and improved model representation.  

5.2 Uncertainties and future research 

The design and development of future policies and emissions control strategies 

will require more information than can be presented in this dissertation.  While these 

three studies were conducted mainly to evaluate the sensitivity of air quality and RF to 

different regions’ individual O3 precursor emissions, individual precursor reductions are 

likely infeasible to implement on regional to global scales.  Future studies should 
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simulate more realistic emission control policies that address multiple pollutants together 

from common sources and sectors, or that combine our results with those of co-emitted 

pollutants to determine the net climate impact of specific emission control measures.  

These studies will likely require global three-dimensional chemistry-climate modeling to 

account for the complex interactions and nonlinear chemistry of co-emitted species (Fiore 

et al., 2012).  More comprehensive studies could evaluate the climate impacts of long-

lived greenhouse gases and short-lived climate forcers together, in both the near and long 

term.  The net climate effects of specific emission control measures, however, are 

expected to change over time, with improvements and different applications.   

The results presented here for individual species are consistent with the approach 

of the IPCC assessment reports, where the RF and GWP of individual emission species 

are provided as the basis for comparing and evaluating overall climate effects.  Using 

methods similar to Shindell et al. (2012), priority emission control measures could be 

identified, ranking measures by their potential climate impact using the GWPs of each 

individual pollutant affected.       

Emissions inventories are another large source of uncertainty in current modeling 

applications, as seen by the variability in emissions used by the CTMs (Chapter 2).  

Future work should consider improving the accuracy of modeled results with 

observations by further developing bottom-up emissions inventories, which rely on the 

accounting of emissions at their sources.  Top-down (or inverse) methods, which utilize 

atmospheric measurements, could be used to further test and improve upon emissions 

estimates.   
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Global CTMs also greatly simplify atmospheric chemical mechanisms, such as by 

categorizing NMVOC species and streamlining various reaction pathways.  The role of 

organic nitrates in recycling NOx, affecting O3 responses to biogenic VOC emissions, is 

not fully understood and is very uncertain in models (Fiore et al., 2012).  There is also 

substantial variability in the simulated influence of O3 precursor emissions on oxidants, 

O3, and CH4 across the CTM ensemble (Chapter 2), which may be due in part to the 

different models’ meteorological inputs affecting the chemical production and lifetimes 

of short-lived species (Unger et al., 2012).  Results from the CTM ensemble (Chapter 2) 

also suggest large uncertainties in aerosol-oxidant interactions, the role of the different 

oxidation pathways, and the lifetime and removal of SO2 and SO4
2 among models.  

MOZART-4, used in Chapters 3 and 4, is an updated model including an expanded 

chemical mechanism with detailed hydrocarbon chemistry and bulk aerosols, and 

improved online calculation of dry deposition, isoprene and monoterpene emissions, and 

photolysis frequencies (Emmons et al., 2010).     

RF estimates derived here from the current version of the RTM are also uncertain, 

as they only account for tropospheric O3, CH4, and SO4
2- changes.  Future applications of 

the standalone RTM should consider updates to include additional forcing components 

such as changes in NO3
-, SOA, stratospheric O3, water vapor, and the carbon cycle via O3 

and nitrogen deposition.  The RTM also does not presently account for the internal 

mixing of aerosols or the indirect effect of aerosols on clouds.  With these additional 

forcing components, the RF and GWP of O3 precursors from different regional sources 

will likely change, both in magnitude and relative to other regions.  The variability in the 

RF and GWP among regions may increase, given that the importance of these forcings 
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can vary across regions, such as NO3
- and SOA-derived forcings, which are influenced by 

regional chemical states and oxidation chemistry.    

A fully coupled chemistry-climate model, such as the NOAA GFDL CM3, which 

includes an improved atmospheric component, AM3 (Donner et al., 2011), could be used 

in place of running a global CTM and RTM together.  AM3 includes new treatments of 

cloud-aerosol interactions, interactive tropospheric and stratospheric chemistry, and 

emissions driving atmospheric chemistry and aerosols through advective, convective, and 

turbulent transport (Donner et al., 2011).  Using CM3 would allow for an evaluation of 

the air quality and full climate responses due to emissions changes, including changes in 

surface temperature and precipitation.  A fully coupled model may also account for the 

effects of physical climate changes (i.e. temperature, humidity, and precipitation) on 

biogenic emissions (e.g. isoprene), shifts in vegetation distributions over time (due to 

climate change and/or anthropogenic activities), and stratosphere-troposphere exchanges 

(Unger et al., 2006).   Emissions changes over time or in a future year could be examined, 

as O3 precursor emissions are expected to change with increased industrialization, new 

emissions controls, and population growth.  Simulations could also be run for longer than 

1.5 years and without fixing global CH4 concentrations and meteorology.  This would 

allow for the role of changing meteorology on climate and air quality to be studied, given 

that climate variables – temperature, humidity, precipitation, clouds, and convection all 

impact tropospheric O3, CH4, and SO4
2- lifetimes and distributions (Unger et al., 2006).  

However, coupled chemistry-climate model simulations can be more computationally 

intensive than using a single offline global CTM and RTM.   
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Using the results of Shindell et al. (2012), future work could also focus on 

identifying the technical and regulatory emissions control measures that are most 

practical to implement in each region of the world, determining their effectiveness based 

on climate, air quality, human health, and agriculture benefits.  An integrated assessment 

model (e.g. ObjECTS GCAM or IIASA MESSAGE) also could be applied in future 

studies to estimate the potential benefits of domestic and international climate policies 

and technology implementation strategies. 

5.3 Policy implications 

While several studies have investigated the impacts of regional short-lived O3 

precursor emissions on air quality and RF (Fuglestvedt et al., 1999; Wild et al, 2001; 

Berntsen et al., 2005; Naik et al., 2005), this dissertation offers results from a greater 

number of regions and across an ensemble of models.  Because emissions from Asia, 

Africa, and South America are expected to rise over the next few decades (Akimoto, 

2003), interest in assessing these countries’ contributions, in particular, is growing and 

must be better understood before short-lived species can be considered in a 

comprehensive treaty.  Actions to reduce O3 and its precursors would also benefit human 

health and ecosystems, which may further motivate countries to undertake air quality and 

climate change mitigation programs and participate in joint climate agreements (Naik et 

al., 2005).    

Examining the air quality and climate impacts of regional O3 precursor emissions 

may support the inclusion of O3 precursors in a comprehensive climate treaty, similar to 

the Kyoto Protocol, which uses GWPs to compare the climate change contribution of 

various greenhouse gas emissions over time.  The 20 and 100-year GWPs calculated in 
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these three studies allow for the climate impacts of O3 precursors to be compared to other 

species.  A single global GWP for CO, for example, could be applied in a future 

international climate agreement or emissions trading mechanism among a suite of long-

lived greenhouse gases, while NOx and NMVOCs likely require different GWPs for each 

continent.  For CO, the uncertainty in the global GWP is greater than the range in GWPs 

among regions, while the reverse is true for NMVOCs (Chapters 3 and 4).   

The GWPs of regional O3 precursor emissions also could be used, along with 

those of co-emitted species, to assess and identify the most effective emission control 

measures to implement in different regions of the world for maximum climate benefits 

(Shindell et al., 2012).  Using satellite observations and adjoint modeling methods, grid-

cell based RF sensitivities of O3 precursor emissions also could provide insight into the 

design and implementation of effective policies and control measures (Bowman and 

Henze, 2012).  We acknowledge that GWPs are imperfect and are only one indicator of 

climate impacts; they do not account for the rate of climate change or the sensitivity of 

climate responses (i.e. surface temperature, precipitation, and circulation) to RF 

distributions or RF location (Shindell et al., 2009).   

We expect that short-lived species will continue to be regulated by local to 

regional scale policies aimed at improving air quality, but their effects should also be 

considered in future climate agreements (Shindell et al., 2009).  Unlike long-lived 

greenhouse gases, short-lived climate forcers provide an opportunity to address near-term 

climate change with simultaneous benefits to human and ecosystem health.  However, 

reductions in short-lived cooling agents (e.g. SO4
2-) will need to be coordinated with 

long-lived greenhouse gas reductions to avoid potential warming surges from long-lived 
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greenhouse gases that have yet to be realized (Unger et al., 2012).  Ultimately, 

policymakers will need to base their decisions on both long and short-lived species, when 

considering climate change impacts, costs, and feasibility (Unger et al., 2008; 2010). 

  Less attention has been given to the specific actions needed to maximize the 

climate and air quality benefits from reducing O3 precursor emissions.  The United 

Nations Environment Programme (UNEP) recently analyzed the climate, health, and air 

quality benefits from implementing control measures targeting BC and CH4 emissions 

(UNEP, 2011).  Building upon this analysis, Shindell et al. (2012) estimated that the 

global implementation of 14 of these measures (both technical and regulatory) to the 

maximum extent possible by 2030 would reduce global mean warming by ~0.5˚C (by 

2050), decrease annual premature deaths by 0.7 to 4.7 million, increase annual crop yield 

by 30 to 135 million metric tons, and achieve nearly 90% of the maximum reduction in 

net GWP.  Seven (of the 14) measures from Shindell et al. (2012) target emissions from 

the incomplete combustion of carbon fuels, including the O3 precursors evaluated here 

(CH4, NOx, CO, and NMVOCs) in addition to BC, OC, SO2, ammonia (NH3), and PM2.5.   

While Shindell et al. (2012) estimated the benefits to near-term climate, human 

health, and agriculture from global implementation, this dissertation and the methods 

developed herein could provide a way to evaluate the benefits to RF and air quality from 

the regional implementation of a given set of control measures.  As we have 

demonstrated, the climate and air quality impacts of O3 precursors vary by location, and 

therefore, each region may require different mixes of control measures to achieve the 

maximum benefit. 
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Beyond this dissertation, further integrated analyses of the costs and benefits of 

reducing O3 precursor emissions as part of climate and air pollution control policies are 

warranted (Dentener et al., 2006).  By including O3 precursors in a joint climate 

agreement or coordinated climate and air quality policies, we may find a greater incentive 

to reduce them in the future, and could lower the costs of meeting climate goals.
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Appendix A. The influence of ozone precursor emissions from four world regions 
on tropospheric composition and radiative climate forcing:  Supporting material  

 
 



 

 
 

Table A1. Global annual net RF (mW m-2) for the multimodel mean, corresponding to Figure 2.7a in the text.  CO2 RF is 
shown for high and low sensitivity of vegetation to O3, and the global annual net RF including CO2 RFs is shown in the last 
two columns. The 4 regions estimates represent the sum of the net RFs from all 4 regions; these estimates are not directly 
estimated using the RTM and are not presented in Figure 2.7a. 
 

Simulation Net RF 
(O3, CH4, 

SO4
2-) 

Net RF 
(O3) 

Net RF 
(CH4) 

Net RF 
(SO4

2-) 
Net RF 

(CO2 high 
sens.) 

Net RF 
(CO2 low 

sens.) 

Net RF (O3, 
CH4, SO4

2, 
CO2 high 

sens.) 

Net RF (O3, 
CH4, SO4

2, 
CO2 low 

sens.) 
-20% CH4 burden -162.6 -26.8 -137.2 1.48 - - - - 
-20% NOx EA 0.21 -2.58 2.94 -0.15 -3.78 -2.90 -3.57 -2.69 
-20% NOx EU 1.72 -1.19 2.38 0.53 -6.00 -4.02 -4.28 -2.30 
-20% NOx NA 0.63 -3.19 3.98 -0.16 -4.34 -2.83 -3.71 -2.20 
-20% NOx SA 0.77 -1.75 2.29 0.23 -2.36 -1.60 -1.59 -0.83 
-20% NOx 4 regions 3.33 -8.71 11.6 0.45 - - - - 
-20% NMVOC EA -1.30 -1.07 -0.51 0.28 -1.55 -1.22 -2.85 -2.52 
-20% NMVOC EU -1.74 -0.97 -0.74 -0.03 -2.80 -1.74 -4.54 -3.48 
-20% NMVOC NA -1.28 -0.93 -0.54 0.19 -1.71 -1.07 -2.99 -2.35 
-20% NMVOC SA -1.39 -0.73 -0.66 0.00 -0.68 -0.39 -2.07 -1.78 
-20% NMVOC 4 regions -5.71 -3.70 -2.45 0.44 - - - - 
-20% CO EA -3.67 -1.72 -2.23 0.29 -0.88 -0.57 -4.55 -4.24 
-20% CO EU -2.01 -0.80 -1.26 0.05 -0.84 -0.51 -2.85 -2.52 
-20% CO NA -2.90 -1.30 -1.80 0.21 -1.01 -0.60 -3.91 -3.50 
-20% CO SA -2.35 -1.14 -1.26 0.06 -0.49 -0.27 -2.84 -2.62 
-20% CO 4 regions -10.9 -4.96 -6.55 0.61 - - - - 
-20% combined EA - -5.02 -0.13 - - - - - 
-20% combined EU - -2.86 -0.17 - - - - - 
-20% combined NA - -5.05 1.23 - - - - - 
-20% combined SA - -3.42 0.22 - - - - - 
-20% combined 4 
regions - -16.4 1.15 - - - - - 
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Table A2. GWPs for 20- and 100-year time horizons for O3 precursor emissions, 
corresponding to Figure 2.10 in the text. The O3 and SO4

2- contributions include both 
short- and long-term effects.  The 4 regions estimates represent the GWP due to the sum 
of the four regions’ responses (to O3, CH4, SO4

2-, and all three species [Total]). 
Uncertainty analysis is as in Figure 2.7, but also includes the uncertainty in the CH4 
lifetimes for the base simulation (SR1). 
 

  GWP20 

 O3 CH4 SO4
2- Total Uncertainty 

-20% CH4 burden 10.5 50.9 -0.6 60.8 6.4 
-20% NOx EA 95.1 -85.1 6.2 16.1 21.0 
-20% NOx EU 35.8 -54.7 -14.2 -33.1 14.9 
-20% NOx NA 93.4 -90.9 5.5 8.0 28.2 
-20% NOx SA 165.0 -167.8 -18.6 -21.4 69.9 
-20% NOx 4 regions 82.4 -85.5 -3.1 -6.1 26.1 
-20% NMVOC EA 13.8 5.6 -3.7 15.7 5.0 
-20% NMVOC EU 10.4 6.6 0.2 17.2 7.1 
-20% NMVOC NA 12.0 6.0 -2.6 15.5 6.8 
-20% NMVOC SA 15.1 11.6 -0.1 26.5 5.3 
-20% NMVOC 4 regions 12.5 7.0 -1.6 17.9 6.1 
-20% CO EA 2.6 2.9 -0.5 5.1 1.6 
-20% CO EU 2.0 2.7 -0.2 4.6 1.3 
-20% CO NA 2.6 3.1 -0.5 5.2 1.6 
-20% CO SA 2.9 2.7 -0.2 5.3 1.2 
-20% CO 4 regions 2.5 2.9 -0.4 5.1 1.4 
 
  GWP100 
 O3 CH4 SO4

2- Total Uncertainty 

-20% CH4 burden 3.6 17.5 -0.2 20.9 3.7 
-20% NOx EA 25.6 -29.3 1.8 -1.9 8.7 
-20% NOx EU 9.3 -18.8 -3.9 -13.4 6.0 
-20% NOx NA 25.1 -31.3 1.6 -4.6 10.9 
-20% NOx SA 44.2 -57.8 -5.1 -18.7 25.9 
-20% NOx 4 regions 22.0 -29.4 -0.8 -8.2 10.2 
-20% NMVOC EA 4.0 1.9 -1.0 4.8 1.7 
-20% NMVOC EU 3.0 2.3 0.1 5.3 2.5 
-20% NMVOC NA 3.5 2.1 -0.7 4.8 2.4 
-20% NMVOC SA 4.4 4.0 0.0 8.3 1.9 
-20% NMVOC 4 regions 3.6 2.4 -0.4 5.5 2.1 
-20% CO EA 0.8 1.0 -0.1 1.6 0.5 
-20% CO EU 0.6 0.9 0.0 1.5 0.4 
-20% CO NA 0.8 1.1 -0.1 1.7 0.5 
-20% CO SA 0.8 0.9 -0.1 1.7 0.4 
-20% CO 4 regions 0.8 1.0 -0.1 1.6 0.5 
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Table A3. Global annual net RF (mW m-2) estimates from additional RTM simulations:  
1) multimodel mean +1SD O3 and multimodel mean +1SD CH4; 2) multimodel mean -
1SD O3 and multimodel mean -1SD CH4; 3) multimodel mean O3, multimodel mean 
CH4, and multimodel mean +1SD SO4

2-.   
 
Simulation: 
Mean +1SD O3, Mean +1SD CH4 

Net RF (O3, 
CH4) 

Net RF 
(O3) 

Net RF 
(CH4) 

-20% CH4 burden -165.9 -28.7 -137.2 
-20% NOx EA 1.01 -2.56 3.57 
-20% NOx EU 1.76 -1.21 2.97 
-20% NOx NA 1.78 -3.30 5.08 
-20% NOx SA 1.50 -1.69 3.19 
-20% NMVOC EA -1.03 -0.95 -0.08 
-20% NMVOC EU -0.81 -0.85 0.04 
-20% NMVOC NA -0.85 -0.91 0.07 
-20% NMVOC SA -1.03 -0.63 -0.39 
-20% CO EA -3.51 -2.24 -1.27 
-20% CO EU -1.69 -0.94 -0.74 
-20% CO NA -2.63 -1.60 -1.03 
-20% CO SA -2.22 -1.38 -0.84 
-20% combined EA -4.13 -5.23 1.10 
-20% combined EU -2.09 -2.80 0.71 
-20% combined NA -2.90 -5.13 2.23 
-20% combined SA -2.33 -3.34 1.01 
 
Simulation: 
Mean -1SD O3, Mean -1SD CH4 

Net RF (O3, 
CH4) 

Net RF 
(O3) 

Net RF 
(CH4) 

-20% CH4 burden -162.0 -24.8 -137.2 
-20% NOx EA -0.30 -2.61 2.31 
-20% NOx EU 0.63 -1.18 1.80 
-20% NOx NA -0.20 -3.09 2.89 
-20% NOx SA -0.44 -1.83 1.39 
-20% NMVOC EA -2.14 -1.20 -0.94 
-20% NMVOC EU -2.63 -1.12 -1.51 
-20% NMVOC NA -2.10 -0.95 -1.14 
-20% NMVOC SA -1.77 -0.84 -0.92 
-20% CO EA -4.36 -1.17 -3.19 
-20% CO EU -2.43 -0.64 -1.79 
-20% CO NA -3.55 -0.97 -2.58 
-20% CO SA -2.58 -0.89 -1.69 
-20% combined EA -6.17 -4.81 -1.36 
-20% combined EU -3.98 -2.93 -1.04 
-20% combined NA -4.73 -4.97 0.24 
-20% combined SA -4.10 -3.52 -0.58 
 
 



   

131 
 

Simulation: 
Mean O3, Mean CH4, Mean +1SD 
SO4

2- 

Net RF 
(O3, CH4, 

SO4
2-) 

Net RF 
(O3) 

Net RF 
(CH4) 

Net RF 
(SO4

2-) 

-20% CH4 burden -159.4 -26.9 -137.2 4.65 
-20% NOx EA -0.43 -2.58 2.94 -0.79 
-20% NOx EU 2.13 -1.19 2.38 0.93 
-20% NOx NA 0.22 -3.19 3.98 -0.57 
-20% NOx SA 0.54 -1.75 2.29 0.00 
-20% NMVOC EA -1.30 -1.07 -0.51 0.28 
-20% NMVOC EU -1.75 -0.97 -0.74 -0.04 
-20% NMVOC NA -1.33 -0.93 -0.54 0.14 
-20% NMVOC SA -1.50 -0.73 -0.66 -0.11 
-20% CO EA -3.44 -1.72 -2.23 0.51 
-20% CO EU -1.95 -0.80 -1.26 0.11 
-20% CO NA -2.84 -1.30 -1.80 0.26 
-20% CO SA -2.35 -1.14 -1.26 0.06 
-20% combined EA - - - - 
-20% combined EU - - - - 
-20% combined NA - - - - 
-20% combined SA - - - - 
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Table A4.  Regional annual average net RF (mW m-2) for the multimodel mean for each 
of the precursor reduction simulations. The greatest net RF for each precursor-source 
region pair is in bold, with the caveat that RFs over source regions (vs. over receptor 
regions) may be lower due to combining the effects of positive and negative RFs from 
local changes in O3 and SO4

2-.  Regional net RFs do not translate to regional climate 
responses. 
 

                   Receptor region 
 Source 

region EA EU NA SA 
 EA -5.36 -1.57 -2.38 -1.99 

-20% NOx EU 0.71 0.60 0.56 3.41 
 NA 0.05 -7.72 -9.07 1.60 
 SA -2.57 -0.32 -0.07 -0.22 

-20% NMVOC 

EA -0.14 -2.13 -2.02 -2.27 
EU -2.27 -2.83 -2.16 -3.55 
NA -1.01 -2.73 -2.10 -1.84 
SA -1.88 -1.73 -1.39 -5.80 

-20% CO 

EA -5.26 -4.27 -4.01 -5.86 
EU -2.08 -3.41 -2.08 -3.33 
NA -2.87 -3.87 -4.36 -4.14 
SA -3.01 -2.73 -2.42 -7.08 

-20% Combined 

EA -15.66 -8.00 -8.38 -9.50 
EU -5.07 -10.58 -4.18 -4.65 
NA -4.49 -13.76 -16.96 -3.96 
SA -7.28 -4.56 -3.85 -18.72 



 

   
 

Table A5.  Global annual average changes in full tropospheric O3 burden (Tg) at steady state for the 11 CTMs, for each 
precursor reduction scenario (-20% CH4 burden, and -20% regional emissions of NOx, NMVOC, CO, and combined).   
 

 
Source 
region 

CAMCHEM-
3311m13 

FRSGCUCI-
v01 

GISS-
PUCCINI-

modelE 

GMI-
v02f 

INCA-
vSSz 

LLNL-
IMPACT-

T5a 
20% CH4 burden -8.60 -12.60 -10.86 -11.59 -8.14 -17.29 
20% NOx EA -0.91 -0.55 -0.62 -0.71 -0.75 -0.67 

EU -0.67 -0.44 -0.22 -0.55 -0.54 -0.56 
NA -1.32 -0.62 -0.50 -1.14 -0.96 -1.13 

  SA -0.41 -0.30 -0.24 -0.44 -0.36 -0.72 
20% NMVOC EA -0.21 -0.68 -0.14 -0.38 -0.30 -0.04 

EU -0.59 -0.78 -0.08 -0.15 -0.35 -0.10 
NA -0.29 -0.60 -0.08 -0.31 -0.40 -0.05 

  SA -0.16 -0.36 -0.11 -0.24 -- -0.03 
20% CO EA -0.58 -0.49 -0.90 -0.87 -0.33 -0.40 

EU -0.22 -0.28 -0.36 -0.38 -0.17 -0.24 
NA -0.36 -0.47 -0.61 -0.52 -0.18 -0.31 

  SA -0.33 -0.30 -0.36 -0.42 -0.23 -0.46 
20% Combined EA -1.51 -1.69 -1.58 -1.85 -1.37 -1.86 

EU -1.32 -1.47 -0.66 -1.05 -1.04 -1.66 
NA -1.79 -1.67 -1.13 -1.87 -1.57 -2.07 

  SA -0.80 -0.96 -0.58 -1.08 -0.76 -2.02 
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Source 
region 

MOZARTGFDL-
v2 

MOZECH-
v16 

STOC-
HadAM3-

v01 

TM5-JRC-
cy2-ipcc-

v1 

UM-
CAM-

v01 
20% CH4 burden -16.35 -9.10 -10.10 -12.15 -8.61 
20% NOx EA -0.50 -0.81 -0.50 -0.46 -0.98 

EU -0.36 -0.57 -0.58 -0.27 -0.72 
NA -0.82 -1.18 -0.81 -0.59 -1.32 

  SA -0.31 -0.44 -0.35 -0.11 -0.78 
20% NMVOC EA -0.20 -0.45 -0.45 -0.58 -0.58 

EU -0.28 -0.55 -0.64 -0.49 -0.64 
NA -0.19 -0.69 -0.40 -0.56 -0.38 

  SA -0.17 -0.25 -0.27 -0.28 -0.31 
20% CO EA -0.36 -0.48 -0.40 -0.42 -0.44 

EU -0.35 -0.31 -0.25 -0.16 -0.28 
NA -0.34 -0.46 -0.39 -0.54 -0.41 

  SA -0.24 -0.36 -0.25 -0.22 -0.29 
20% Combined EA -0.89 -1.53 -1.32 -1.29 -1.95 

EU -0.80 -1.19 -1.44 -1.06 -1.62 
NA -1.17 -1.88 -1.58 -1.58 -2.14 

  SA -0.65 -0.91 -0.80 -0.63 -1.41 
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Figure A1. Seasonality of global annual average, ensemble mean tropospheric O3 (at 
steady state) and SO4

2-
 burden changes (perturbation minus base), for 11 and 4 HTAP 

models, respectively. 

-1.2

-0.8

-0.4

0
DJF MAM JJA SON

Δ
Tr

op
os

ph
er

ic
 O

3
B

ur
de

n 
(T

g)

SR3EA
SR3EU
SR3NA
SR3SA

-0.6

-0.4

-0.2

0
DJF MAM JJA SON

Δ
Tr

op
os

ph
er

ic
 O

3 
B

ur
de

n 
(T

g)

SR4EA
SR4EU
SR4NA
SR4SA

-0.6

-0.4

-0.2

0
DJF MAM JJA SON

Δ
Tr

op
os

ph
er

ic
 O

3
B

ur
de

n 
(T

g)

SR5EA
SR5EU
SR5NA
SR5SA

-2

-1.5

-1

-0.5

0
DJF MAM JJA SON

Δ
Tr

op
os

ph
er

ic
 O

3
B

ur
de

n 
(T

g)

SR6EA

SR6EU

SR6NA

SR6SA

Tropospheric O  Burden Changes Tropospheric SO    Burden Changes3 4

-4

-2

0

2
DJF MAM JJA SON

Δ
Tr

op
os

ph
er

ic
 S

O
4

B
ur

de
n 

(G
g)

SR3EA

SR3EU

SR3NA

SR3SA

-1.5

-1.0

-0.5

0.0

0.5
DJF MAM JJA SON

Δ
Tr

op
os

ph
er

ic
 S

O
4

B
ur

de
n 

(G
g)

SR4EA

SR4EU

SR4NA

SR4SA

-1.5

-1.0

-0.5

0.0

0.5
DJF MAM JJA SON

Δ
Tr

op
os

ph
er

ic
 S

O
4

B
ur

de
n 

(G
g)

SR5EA

SR5EU

SR5NA

SR5SA

2-



 

136 
 

 

Figure A2. Annual average shortwave (solar) radiation distributions (mW m-2) due to 
tropospheric O3 (at steady state), CH4, and SO4

2- for the multimodel mean, for each of the 
precursor reduction simulations (-20% CH4 burden and -20% regional emissions of NOx, 
NMVOC, CO, and combined) minus the base simulation. 
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Figure A3. Annual average longwave (infrared) radiation distributions (mW m-2) due to 
tropospheric O3 (at steady state), CH4, and SO4

2-
 for the multimodel mean, for each of the 

precursor reduction simulations (-20% CH4 burden and -20% regional emissions of NOx, 
NMVOC, CO, and combined), where positive values correspond to a positive RF. 
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Figure A4. Global annual average changes in steady-state tropospheric O3 burden (Tg) 
versus global annual average changes in tropospheric CH4 concentration (ppbv) for the 
11 HTAP models, showing the 16 SR simulations (-20% regional emissions of NOx, 
NMVOC, CO, and combined, SR3 to SR6) relative to the base (SR1). 

R² = 0.40
-0.8

-0.4

0

0 5 10

-20% NO

-20% CO

-20% Combined

EA EU NA SA

x

Δ Tropospheric Methane (ppbv)

Δ 
Tr

op
os

ph
er

ic
 O

zo
ne

 (T
g) -20% NMVOC

R² = 0.50
-1.6

-0.8

0

0 10 20

R² = 0.38
-1.2

-0.8

-0.4

0

0 10 20

R² = 0.39
-1.2

-0.8

-0.4

0

0 10 20

R² = 0.44
-0.8

-0.4

0

-4 -2 0

R² = 0.49
-1.2

-0.8

-0.4

0

-10 -5 0

R² = 0.02
-0.8

-0.4

0

-6 -4 -2 0

R² = 0.53
-0.4

-0.2

0

-4 -2 0

R² = 0.82
-1.2

-0.8

-0.4

0

-20 -10 0

R² = 0.37
-0.4

-0.2

0

-10 -5 0

R² = 0.41
-0.8

-0.4

0

-10 -5 0

R² = 0.28
-0.6

-0.4

-0.2

0

-10 -5 0

R² = 0.01
-2.4

-1.6

-0.8

0

-10 -5 0 5

R² = 0.09
-2.4

-1.6

-0.8

0

-10 -5 0 5

R² = 0.31
-2.4

-1.6

-0.8

0

-5 0 5 10

R² = 0.05
-2.4

-1.6

-0.8

0

-5 0 5 10



 

139 
 

 

Figure A5. Annual average tropospheric total column OH burden changes (ng m-2) for the 
multimodel mean of 4 HTAP models for -20% CH4 burden and -20% regional emissions 
of NOx, NMVOC, and CO scenarios. 
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Appendix B. Net radiative forcing and air quality responses to regional CO 
emission reductions:  Supporting material 

 
Table B1.  Base simulated tropospheric OH burdens (labeled OH) compared to 
tropospheric OH burdens of Spivakovsky et al. (2000) (labeled OH-S), Lawrence et 
al. (1996) (labeled OH-L1), Lawrence et al. (1999) (labeled OH-L2), von Kuhlmann 
(2001) (labeled OH-V), and Emmons et al. (2010) (labeled OH-E) in 1e6 OH 
molecules cm-3. 
 

Region OH OH-S OH-L1 OH-L2 OH-V OH-E 
Surface-750 hPa             

90◦S - 30◦S 0.43 0.47 0.44 0.35 0.51 0.42 
30◦S - 0◦ 1.11 1.44 1.56 1.30 1.51 1.25 
0◦ - 30◦N 1.35 1.52 1.86 1.52 1.76 1.37 

30◦N - 90◦N 0.81 0.76 0.86 0.79 0.86 0.77 
750 - 500 hPa 

90◦S - 30◦S 0.46 0.72 0.56 0.36 0.46 0.53 
30◦S - 0◦ 1.15 2.00 1.65 1.20 1.48 1.39 
0◦ - 30◦N 1.41 1.99 1.94 1.37 1.61 1.59 

30◦N - 90◦N 0.67 0.88 0.91 0.65 0.72 0.72 
500 - 250 hPa 

90◦S - 30◦S 0.40 0.64 0.65 0.37 0.36 0.54 
30◦S - 0◦ 0.80 1.43 1.55 1.04 0.82 1.05 
0◦ - 30◦N 1.05 1.36 1.76 1.15 0.96 1.26 

30◦N - 90◦N 0.59 0.64 0.95 0.59 0.52 0.72 
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Table B2.  Base simulated tropospheric CH4 loss by reaction with OH (%) compared 
to Fiore et al. (2008). 
 

 
  

Region 

Base CH4 
loss by OH 

(%) 

CH4 loss by 
OH (%) 

(Fiore et al., 
2008) 

Surface-750 hPa 
90◦S - 30◦S 4.7% 4.4% 

30◦S - 0◦ 15.5% 18.9% 
0◦ - 30◦N 19.6% 23.6% 

30◦N - 90◦N 9.7% 9.8% 
Total 49.4% 56.7% 

750 - 500 hPa 
90◦S - 30◦S 3.7% 3.2% 

30◦S - 0◦ 12.0% 11.3% 
0◦ - 30◦N 14.6% 13.1% 

30◦N - 90◦N 5.8% 5.3% 
Total 36.1% 32.9% 

500 - 250 hPa 
90◦S - 30◦S 1.5% 1.2% 

30◦S - 0◦ 4.5% 3.4% 
0◦ - 30◦N 6.0% 4.0% 

30◦N - 90◦N 2.5% 1.8% 
Total 14.5% 10.4% 
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Table B3.  Source-receptor matrix of annual average surface CO concentration 
changes per unit change in CO emissions (pptv CO (Tg CO yr-1)-1), for the regional 
reduction simulations, with the US also defined as a receptor in addition to the 10 
regions. The largest changes for each source reduction region are in bold.  
 

Receptor 
Source NA SA EU FSU AF IN EA SE AU ME US 

NA -358 -19.8 -130 -116 -38.3 -50.0 -93.6 -33.4 -9.1 -96.0 -552 
SA -15.7 -310 -10.4 -10.4 -45.4 -25.7 -14.1 -37.0 -67.9 -14.6 -12.6 
EU -149 -20.0 -1174 -318 -63.0 -54.8 -164 -40.1 -8.3 -250 -139 
FSU -187 -16.8 -335 -886 -43.1 -62.8 -270 -45.1 -7.7 -185 -172 
AF -24.3 -56.9 -20.0 -20.0 -235 -42.4 -25.5 -33.9 -36.2 -32.6 -21.8 
IN -40.0 -21.3 -37.8 -41.4 -45.9 -1567 -87.8 -72.7 -11.9 -57.3 -40.9 
EA -92.6 -16.8 -85.4 -100 -30.8 -62.6 -654 -109 -9.5 -66.4 -98.3 
SE -30.1 -26.4 -27.3 -26.9 -33.2 -69.9 -54.4 -330 -27.0 -30.5 -30.6 
AU -8.3 -74.2 -6.3 -6.3 -47.4 -24.6 -10.2 -70.1 -551 -10.3 -7.4 
ME -77.6 -23.0 -109 -139 -79.3 -277 -118 -44.0 -10.3 -642 -77.9 
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Table B4.  Source-receptor matrix of annual average steady-state changes in surface 
O3 concentrations per unit change in CO emissions (pptv O3 (Tg CO yr-1)-1), for the 
regional reduction simulations, with the United States (US) also defined as a receptor 
in addition to the 10 regions. The largest changes for each source reduction region are 
in bold.  
 

Receptor 
Source NA SA EU FSU AF IN EA SE AU ME US 

NA -5.09 -0.74 -3.75 -2.78 -1.34 -2.04 -2.93 -1.00 -0.59 -3.42 -7.24
SA -1.17 -2.06 -1.16 -0.97 -1.34 -1.43 -1.27 -1.05 -1.24 -1.39 -1.26
EU -3.10 -0.72 -11.0 -4.42 -1.58 -2.11 -3.71 -1.05 -0.58 -5.87 -3.59
FSU -3.37 -0.69 -5.32 -6.86 -1.32 -2.36 -4.87 -1.10 -0.58 -4.65 -3.97
AF -1.38 -1.20 -1.37 -1.15 -2.24 -1.78 -1.53 -1.06 -0.95 -1.79 -1.47
IN -1.76 -0.78 -1.85 -1.59 -1.39 -9.43 -2.68 -1.39 -0.64 -2.38 -1.99
EA -2.58 -0.70 -2.74 -2.33 -1.18 -2.07 -5.73 -1.56 -0.60 -2.64 -3.08
SE -1.53 -0.89 -1.57 -1.31 -1.27 -2.10 -1.93 -2.13 -0.88 -1.84 -1.71
AU -1.09 -1.30 -1.09 -0.96 -1.30 -1.43 -1.23 -1.36 -3.28 -1.36 -1.16
ME -2.33 -0.80 -2.98 -2.77 -1.80 -4.97 -3.24 -1.17 -0.63 -7.48 -2.70
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Table B5.  For each regional reduction, changes in global annual average, steady-state 
full and upper tropospheric (UT) O3 burden (BO3) per unit change in CO emissions 
(ECO) (Tg O3/Tg CO). 
 

 
Full BO3 / 

 ECO 
 UT BO3 / 
 ECO 

NA 0.0182 1.05E-02 
SA 0.0174 1.10E-02 
EU 0.0172 9.43E-03 
FSU 0.0174 9.68E-03 
AF 0.0184 1.18E-02 
IN 0.0194 1.27E-02 
EA 0.0180 1.10E-02 
SE 0.0205 1.38E-02 
AU 0.0171 9.55E-03 
ME 0.0180 1.07E-02 



   

 
 

Table B6.  Source-receptor matrix of annual average surface SO4
2- concentration changes (ng m-3), for the regional reduction simulations, 

with the United States (US) also defined as a receptor in addition to the 10 regions.  
 

Receptor 
Source NA SA EU FSU AF IN EA SE AU ME US 

NA -8.82 -0.11 -9.10 -2.83 0.16 1.01 -3.10 -0.37 -0.04 -0.18 -15.59 
SA -0.16 -0.06 -0.25 -0.09 0.01 -0.05 -0.19 -0.11 -0.14 0.06 -0.20 
EU -1.61 -0.04 -19.21 -4.26 0.17 0.53 -2.22 -0.22 -0.02 -0.43 -2.58 
FSU -1.29 -0.02 -4.70 -4.67 0.10 0.45 -2.07 -0.18 -0.01 -0.28 -2.08 
AF -0.96 -0.15 -2.15 -0.77 0.71 0.36 -1.18 -0.32 -0.24 0.32 -1.47 
IN -1.92 -0.11 -4.34 -1.88 0.39 21.75 -3.90 0.55 -0.07 0.82 -3.30 
EA -6.65 -0.10 -13.42 -4.96 0.28 1.17 -41.29 -3.70 -0.08 -0.15 -11.23 
SE -0.85 -0.05 -1.60 -0.56 0.08 0.01 -2.98 -0.81 -0.07 0.11 -1.44 
AU -0.01 -0.01 -0.01 -0.01 0.00 -0.01 -0.02 -0.02 -0.02 0.01 -0.01 
ME -1.40 -0.05 -4.91 -3.05 1.10 6.73 -2.39 -0.18 -0.03 5.98 -2.36 
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Table B7.  Source-receptor matrix of percentage changes in surface CO concentrations, for each of the regional reduction simulations 
relative to the base.  The largest percentage changes for each source reduction region are in bold. 
 

 
   

Receptor 
Source NA SA EU FSU AF IN EA SE AU ME 

NA -8.29% -0.47% -2.75% -2.45% -0.77% -0.63% -1.39% -0.67% -0.31% -2.28% 
SA -0.13% -2.58% -0.08% -0.08% -0.32% -0.11% -0.07% -0.26% -0.82% -0.12%
EU -1.53% -0.21% 11.03% -2.98% -0.57% -0.31% -1.09% -0.36% -0.13% -2.64%
FSU -1.36% -0.12% -2.21% -5.83% -0.27% -0.25% -1.26% -0.28% -0.08% -1.38%
AF -0.70% -1.68% -0.52% -0.52% -5.91% -0.66% -0.47% -0.84% -1.55% -0.96% 
IN -1.28% -0.70% -1.10% -1.20% -1.28% 27.02% -1.80% -2.01% -0.56% -1.87% 
EA -4.69% -0.87% -3.93% -4.62% -1.36% -1.71% 21.26% -4.79% -0.72% -3.44%
SE -0.54% -0.49% -0.45% -0.44% -0.52% -0.68% -0.63% -5.14% -0.72% -0.56%
AU -0.01% -0.07% -0.01% -0.01% -0.04% -0.01% -0.01% -0.06% -0.79% -0.01%
ME -1.10% -0.33% -1.40% -1.78% -0.98% -2.11% -1.07% -0.54% -0.21% -9.28%
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Table B8.  Source-receptor matrix of percentage changes in steady-state surface O3 concentrations, for each of the regional reduction 
simulations relative to the base.  The largest percentage changes for each source reduction region are in bold. 
 

Receptor 
Source NA SA EU FSU AF IN EA SE AU ME 

NA -0.50% -0.10% -0.36% -0.29% -0.16% -0.17% -0.24% -0.12% -0.09% -0.30% 
SA -0.04% -0.10% -0.04% -0.04% -0.05% -0.04% -0.04% -0.05% -0.07% -0.04% 
EU -0.14% -0.05% -0.47% -0.21% -0.08% -0.08% -0.14% -0.06% -0.04% -0.23% 
FSU -0.10% -0.03% -0.16% -0.23% -0.05% -0.06% -0.13% -0.04% -0.03% -0.13% 
AF -0.17% -0.21% -0.16% -0.15% -0.32% -0.19% -0.16% -0.16% -0.18% -0.19% 
IN -0.24% -0.15% -0.24% -0.23% -0.22% -1.10% -0.30% -0.24% -0.13% -0.28% 
EA -0.56% -0.22% -0.57% -0.54% -0.30% -0.38% -1.03% -0.42% -0.20% -0.50% 
SE -0.12% -0.10% -0.12% -0.11% -0.11% -0.14% -0.12% -0.21% -0.11% -0.12% 
AU 0.00% -0.01% 0.00% 0.00% -0.01% -0.01% 0.00% -0.01% -0.02% 0.00% 
ME -0.14% -0.07% -0.17% -0.18% -0.13% -0.26% -0.16% -0.09% -0.06% -0.39%
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Table B9.  For each regional reduction, changes in global annual average steady-state tropospheric CO production (PCO), loss (LCO), 
burden (BCO), and BCO per unit change in CO emissions (ECO).  Global annual average changes in steady-state tropospheric O3 burden 
(BO3), BO3 per unit change in ECO, and steady-state tropospheric CH4 per unit change in ECO are also shown.  Steady-state CO and O3 
changes represent the sum of short and long-term changes, where long-term changes are calculated by scaling PCO, LCO, BCO, and 
BO3 from the CH4 control simulation to the ratio of global CH4 burden changes from each scenario divided by that from the CH4 control 
simulation.  
 

Reduction 
region 

PCO 
(Tg CO) 

LCO 
(Tg CO) 

BCO 
(Tg CO) 

BCO / ECO 
(days) 

BO3 
(Tg O3) 

BO3 / ECO 
(days) 

CH4 / ECO 
(pptv (Tg CO yr-

1)-1) 

NA 1.12 -27.1 -7.56 78.9 -0.637 6.64 260 
SA 0.39 -9.13 -2.78 82.6 -0.214 6.37 262 
EU 0.49 -12.0 -3.76 88.0 -0.269 6.29 263 
FSU 0.34 -8.45 -2.77 92.4 -0.191 6.37 265 
AF 1.42 -33.1 -8.86 74.4 -0.800 6.72 250 
IN 1.48 -35.9 -9.02 68.3 -0.934 7.08 239 
EA 2.41 -57.7 -16.4 78.4 -1.38 6.58 253 
SE 0.85 -20.4 -5.53 74.4 -0.557 7.49 243 
AU 0.04 -1.09 -0.38 93.7 -0.024 6.08 289 
ME 0.67 -16.6 -4.48 76.8 -0.384 6.58 262 
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Table B10.  Comparison of GWP20 and GWP100 estimates, due to regional changes in CO 
emissions, to those in Fry et al. (2012) and Berntsen et al. (2005), where the region 
definitions differ slightly in the three studies. 
 

Current study Fry et al. (2012) Berntsen et al. (2005) 
Source region GWP20 GWP100 GWP20 GWP100 GWP20 GWP100 
North America 3.94 1.30 5.21 1.70 -- -- 
Europe 3.67 1.23 4.60 1.50 10.5  3.8 
East Asia 3.87 1.27 5.07 1.64 -- -- 
South Asia 4.31 1.38 5.35 1.70 13 4.4 

 



 

 
 

 
Table B11. Annual total anthropogenic and biomass burning emissions by region and globally for the year 2005 (Tg CO yr-1) 
in the base simulation. 
 

Anthropogenic NA SA EU FSU AF IN EA SE AU ME Global
Energy 1.25 1.03 0.53 0.68 9.45 1.73 1.87 1.36 0.04 3.17 21.10 

Residential, 
commercial 

7.26 4.34 9.05 3.69 65.88 66.21 56.14 31.76 0.65 16.05 261.17

Industrial 4.57 2.90 5.89 1.78 1.70 19.02 65.65 10.79 0.32 1.65 114.29
Land 

Transportation 
53.40 13.91 13.83 13.91 7.32 8.57 21.64 7.82 1.36 20.06 161.90

Waste 1.51 0.19 1.38 0.13 0.18 0.25 0.12 0.13 0.00 0.19 4.06 
Agriculture 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

Solvent 0.04 0.00 0.02 0.01 0.00 0.00 0.88 0.01 0.00 0.00 0.96 
Waste burning 1.80 2.15 0.38 1.70 2.36 0.60 6.53 2.39 0.54 1.45 19.91 

Shipping 0.11 0.02 0.13 0.01 0.03 0.01 0.05 0.05 0.03 0.06 1.27 
Total 

Anthropogenic 
69.95 24.53 31.19 21.91 86.92 96.38 152.87 54.31 2.93 42.62 584.69

Biomass burning 
Grassland fires 5.49 19.95 1.28 11.65 162.75 0.83 1.16 2.61 16.59 0.19 222.52

Forest fires 20.09 43.96 0.82 33.61 18.68 6.16 5.32 97.54 3.28 0.04 229.51
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Figure B1.  Comparison of the base simulated regional monthly mean short-term surface 
O3 concentrations (red) for the year 2005 with 2005 observations from the CASTNET 
monitoring network in the U.S., showing CASTNET regional mean (black) and 
individual monitoring locations (grey).  An overall model bias of 4.5 ppbv is calculated 
across all stations. 
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Figure B2.  Comparison of the base simulated regional monthly mean short-term surface 
O3 concentrations (red) for the year 2005 with 2005 observations from the EMEP 
monitoring network in Europe, showing EMEP regional mean (black) and individual 
monitoring locations (grey).  An overall model bias of 0.8 ppbv is calculated across all 
stations. 
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Figure B3.  Comparison of the base simulated annual average (2005) surface SO4
2- 

concentrations (g m-3) with annual average (2005) observations from (a) the IMPROVE 
surface monitoring network for remote locations in the U.S., and (b) the EMEP surface 
monitoring network for Europe.  The left panels show modeled versus observed 
concentrations (g m-3) with the dashed 1:2 and 2:1 lines representing agreement within a 
factor of 2.  The right panels show a map of [(modeled-observed)/observed] values. 
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Figure B4.  Comparison of the base simulated monthly mean (2005) surface CO 
concentrations with monthly mean NOAA CMDL surface CO measurements (in ppbv). 
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Figure B5.  Vertical profile comparisons of the base simulated monthly mean 
tropospheric O3 concentrations (ppbv) for the years 2005 (red line) and 2006 (blue line) 
with the monthly mean (black dot) and median (blue dot) ozonesonde climatology 
(average of 1995 through 2009) (Tilmes et al., 2012) for six selected ozonesonde stations 
that are latitudinally representative across the northern and southern hemispheres (Alert, 
Resolute, Hohenpeissenberg, Wallops Island, Samoa, and Lauder) in the months of 
January, April, July, and October. 
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Figure B6.  Time series comparisons of the base simulated monthly mean tropospheric O3 
concentrations (ppbv) for the years 2005 (red line) and 2006 (blue line) with the monthly 
mean (black dot) and median (blue dot) ozonesonde climatology (averaged over 1995 
through 2009) (Tilmes et al., 2012) for six selected ozonesonde stations that are 
latitudinally representative across the northern and southern hemispheres (Alert, 
Resolute, Hohenpeissenberg, Wallops Island, Samoa, and Lauder) at altitudes of 800, 
500, and 200 millibars (mb). 
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Figure B7.  Changes in global steady-state tropospheric CH4 burden as a function of CO 
emissions change for each of the regional reductions relative to the base. 
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Figure B8.  Global annual average surface O3 concentration changes (ppbv) for each of 
the regional reduction simulations, in the short term and at steady state. 
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Figure B9.  Changes in the three-month average of daily 8-hour maximum surface O3 
concentration changes (ppbv) relative to the base, for each of the regional reduction 
simulations, for the consecutive three-month period where daily 8-hour maximum surface 
O3 changes are highest in each grid cell. 
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Figure B10. Changes in monthly average short-term surface O3 (ppbv) for each of the 
regional reduction simulations, where the influence of each reduction region (noted in 
bottom right of each plot) on all 10 receptor regions (colored lines) is shown. 
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Figure B11.  Global distribution of annual average percentage changes in tropospheric 
total column O3 at steady state for each of the regional reduction simulations relative to 
the base. 
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Figure B12.  Global distribution of annual average changes in tropospheric total column 
OH burden (ng m-2) for each of the regional reduction simulations relative to the base. 
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Figure B13.  Global distribution of annual average changes in tropospheric total column 
H2O2 burden (g m-2) for each of the regional reduction simulations relative to the base. 
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Figure B14.  Global distribution of annual average percentage changes in tropospheric 
total column SO4

2- for each of the regional reduction simulations relative to the base. 
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Figure B15.  Global distribution of annual average surface SO4
2- concentration changes 

(ng m-3) for each of the regional reduction simulations relative to the base. 
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Figure B16.  Global distribution of annual average changes in surface PM2.5 (sum of BC, 
OC, (NH4)2SO4, NH4NO3, SOA) (ng m-3) for the global and regional reduction 
simulations relative to the base. 
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Figure B17. Annual average longwave (infrared) radiation distributions (mW m-2) due to 
changes in tropospheric steady-state O3, CH4, and SO4

2- for the regional and global CO 
reduction simulations minus the base simulation. 
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Figure B18. Annual average shortwave (solar) radiation distributions (mW m-2) due to 
changes in tropospheric steady-state O3, CH4, and SO4

2- for the regional and global CO 
reduction simulations minus the base simulation. 
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Figure B19.  Short-term annual average shortwave (solar) radiation, longwave (infrared) 
radiation, and net RF distributions (mW m-2) due to changes in tropospheric short-term 
O3 and SO4

2- for the NA and EA reduction simulations minus the base simulation. 
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Figure B20.  Global monthly and annual average net RF (mW m-2) due to changes in 
tropospheric steady-state O3, CH4, and SO4

2- for each regional CO reduction simulation 
minus the base simulation. 
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Appendix C. Air quality and radiative forcing impacts of anthropogenic volatile 
organic compound emissions from ten world regions:  Supporting material 

 
Table C1.  Anthropogenic NMVOC emission species in MOZART-4 simulations 
(Emmons et al., 2010). 
 

MOZART-4 species Description 

BIGALK C5H12, lumped alkanes (C > 3) 

BIGENE C4H8, lumped alkenes (C > 3) 

C2H4 ethene 

C2H5OH ethanol 

C2H6 ethane 

C3H6 propene 

C3H8 propane 

CH2O formaldehyde 

CH3CHO acetaldehyde 

CH3COCH3 acetone 

CH3COOH acetic acid 

CH3OH methanol 

MEK CH3C(O)CH2CH3, methyl ethyl ketone 

TOLUENE C6H5(CH3), lumped aromatics 



   

 
 

Table C2.  Annual total anthropogenic, biomass burning, and natural NMVOC emissions by region and globally for the year 
2005 (Tg C yr-1) in the base simulation. 
 

Anthropogenic NA SA EU FSU AF IN EA SE AU ME Global 

Shipping 0.13 0.16 0.18 0.02 0.26 0.03 0.07 0.10 0.03 0.76 2.64 

Waste burning 0.09 0.13 0.02 0.10 0.14 0.03 0.58 0.14 0.02 0.06 1.31 

Solvents 2.90 0.88 2.61 1.22 0.48 0.63 3.87 1.00 0.12 0.57 14.30 

Agriculture 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Waste 0.25 0.04 0.04 0.06 0.03 0.03 0.08 0.03 0.00 0.02 0.58 

Land transportation 3.25 2.40 2.11 1.81 0.89 1.40 4.79 3.44 0.25 2.82 23.18 

Industrial 1.67 0.29 0.93 0.51 0.11 0.22 1.74 0.13 0.08 0.41 6.08 

Residential, 
commercial 0.81 0.32 0.74 0.26 3.96 4.56 8.21 2.29 0.05 1.25 22.46 

Energy 0.99 2.54 0.89 1.02 2.31 0.48 1.11 1.33 0.13 9.33 20.13 

Total Anthropogenic 10.10 6.76 7.52 4.99 8.17 7.38 20.47 8.47 0.67 15.23 90.67 

Biomass burning 

Grassland fires 0.48 1.49 0.09 0.98 12.15 0.06 0.08 0.21 1.20 0.01 16.75 

Forest fires 1.79 4.18 0.07 2.90 1.77 0.59 0.42 9.79 0.31 0.00 21.83 

Natural 

C10H16 12.12 37.72 2.20 5.84 16.77 1.77 4.27 20.61 4.18 0.52 107.08 

Isoprene 61.75 227.85 7.94 19.17 158.57 16.59 20.08 136.10 75.69 6.76 738.21 
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Table C3. Source-receptor matrix of annual average steady-state changes in surface O3 concentrations (pptv), for the regional 
reduction simulations, with the United States (US) also defined as a receptor in addition to the 10 regions. 
 

Receptor 

Source NA SA EU FSU AF IN EA SE AU ME US 

NA -426.8 -16.2 -174.7 -137.6 -45.1 -45.2 -100.4 -28.2 -9.8 -127.6 -657.2 

SA -18.0 -7.6 -20.6 -16.5 -12.6 -19.8 -18.9 -15.5 -7.9 -23.7 -22.0 

EU -143.6 -10.3 -915.4 -303.3 -56.8 -36.7 -144.2 -25.9 -5.6 -278.5 -138.4 

FSU -113.2 -6.5 -222.5 -525.0 -26.0 -30.4 -173.4 -22.2 -3.9 -134.7 -108.6 

AF -23.7 -23.3 -22.1 -18.6 -72.0 -27.0 -21.6 -20.0 -21.5 -29.5 -24.3 

IN -31.4 -12.7 -29.1 -31.7 -25.6 -843.3 -53.4 -36.5 -8.8 -50.7 -33.1 

EA -258.5 -25.5 -214.5 -263.5 -63.6 -111.3 -1594.4 -273.8 -15.9 -170.7 -280.3 

SE -25.1 -13.8 -25.4 -21.1 -19.9 -25.4 -26.4 -30.1 -13.6 -30.6 -27.9 

AU -1.7 -0.4 -1.9 -1.5 -1.4 -2.0 -1.9 -1.4 -5.1 -2.1 -1.9 

ME -143.6 -32.9 -216.9 -228.7 -114.9 -258.2 -164.7 -61.9 -20.1 -922.3 -147.7 
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Table C4. Source-receptor matrix of annual average steady-state changes in surface O3 concentrations per unit change in 
NMVOC emissions (pptv (Tg C yr-1)-1), for the regional reduction simulations, with the United States (US) also defined as a 
receptor in addition to the 10 regions. 
 

Receptor 

Source NA SA EU FSU AF IN EA SE AU ME US 

NA 84.53 3.21 34.60 27.25 8.93 8.95 19.88 5.59 1.94 25.27 130.16 

SA 5.33 2.25 6.10 4.88 3.73 5.86 5.59 4.59 2.34 7.01 6.51 

EU 38.21 2.74 243.6 80.71 15.12 9.77 38.37 6.89 1.49 74.11 36.83 

FSU 45.33 2.60 89.10 210.23 10.41 12.17 69.44 8.89 1.56 53.94 43.49 

AF 5.80 5.70 5.41 4.55 17.62 6.61 5.29 4.90 5.26 7.22 5.95 

IN 8.51 3.44 7.89 8.60 6.94 228.67 14.48 9.90 2.39 13.75 8.98 

EA 25.26 2.49 20.96 25.75 6.21 10.88 155.80 26.76 1.55 16.68 27.39 

SE 5.93 3.26 6.00 4.98 4.70 6.00 6.24 7.11 3.21 7.23 6.59 

AU 5.08 1.20 5.68 4.48 4.18 5.98 5.68 4.18 15.24 6.27 5.68 

ME 18.85 4.32 28.48 30.03 15.08 33.90 21.62 8.13 2.64 121.09 19.39 
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Table C5.  Changes in global annual average tropospheric PAN (PAN) per unit change in NMVOC emissions (E), PAN 
production (PPAN), and PAN production (PPAN) per E for the global and regional reductions. 
 

Reduction 
region 

PAN / E 
(Gg PAN 

(Tg C yr-1) -1) 

 PPAN           

(Tg PAN yr-1)

 PPAN / E    
(Tg PAN (Tg 

C yr-1)-1) 

NA 10.3 -18.4 3.65  
SA 4.7 -4.0 1.18  
EU 12.8 -16.1 4.30  
FSU 14.0 -9.7 3.88  
AF 4.4 -7.1 1.74  
IN 5.7 -10.3 2.79  
EA 9.9 -36.5 3.57  
SE 5.4 -5.5 1.30  
AU 6.0 -0.5 1.38  
ME 8.0 -28.8 3.78  

Global 8.5 -138.3 3.05  
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Table C6. Source-receptor matrix of annual average changes in surface SO4
2- concentrations (ng m-3) for the regional reduction 

simulations, with the United States (US) also defined as a receptor in addition to the 10 regions.  
 

Receptor 

Source NA SA EU FSU AF IN EA SE AU ME US 

NA -27.30 -0.06 -7.16 -2.59 -0.26 -0.07 -3.11 -0.57 -0.01 -1.88 -50.76 

SA -0.16 -0.37 -0.34 -0.10 0.02 -0.08 -0.29 -0.11 -0.04 -0.01 -0.31 

EU -2.60 -0.03 -93.20 -16.51 -1.26 -0.02 -6.49 -0.77 -0.01 -12.13 -4.25 

FSU -2.02 -0.02 -15.97 -37.87 -0.38 0.21 -11.67 -0.78 0.00 -5.86 -3.35 

AF -0.29 -0.04 -0.60 -0.24 0.06 0.02 -0.50 -0.11 -0.07 0.04 -0.45 

IN -0.56 -0.03 -1.11 -1.26 0.01 -34.62 -2.46 0.46 -0.01 -0.63 -0.91 

EA -5.75 -0.11 -7.91 -9.26 -0.38 -1.94 -313.71 -33.48 -0.03 -2.24 -9.75 

SE -0.36 -0.02 -0.68 -0.21 -0.01 -0.17 -2.90 -1.32 -0.04 -0.04 -0.59 

AU 0.00 0.00 -0.02 -0.01 0.00 0.00 -0.01 -0.01 -0.03 0.00 -0.01 

ME -2.23 -0.05 -13.57 -11.56 3.61 6.90 -5.73 -0.54 -0.02 10.55 -3.86 
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Table C7.  Regional and global annual average changes in surface PM2.5 concentrations (in ng m-3 and %) for the global 
NMVOC reduction simulation. 
 

 PM2.5 
(ng m-3) 

% 
change 

NA -40.22 -0.99 

SA -3.00 -0.08 

EU -197.10 -1.79 

FSU -49.28 -0.83 

AF -3.57 -0.06 

IN -66.09 -0.41 

EA -383.86 -2.30 

SE -49.97 -0.76 

AU -1.76 -0.10 

ME -6.51 -0.12 

US -61.94 -1.05 

Global -28.02 -0.89 
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Table C8.  Source-receptor matrix of annual average changes in surface PM2.5 concentrations (ng m-3) for the regional 
reduction simulations, with the United States (US) also defined as a receptor in addition to the 10 regions. 
 

Receptor 

Source NA SA EU FSU AF IN EA SE AU ME US 

NA -20.79 -0.21 -14.38 -2.56 -0.84 -1.46 -6.33 -0.89 -0.03 -3.63 -32.27 

SA -0.28 -1.32 -0.47 -0.10 -0.34 -0.35 -0.45 -0.30 -0.36 -0.12 -0.35 

EU -3.10 -0.09 -108.62 -8.90 -2.28 -1.13 -10.73 -1.12 -0.01 -13.74 -4.45 

FSU -2.33 -0.05 -18.81 -19.98 -0.67 -0.40 -12.22 -1.09 -0.01 -5.85 -3.41 

AF 0.36 -0.42 -0.89 -0.22 -1.42 -0.50 -0.82 -0.28 -0.26 -0.19 -0.50 

IN -0.69 -0.10 -1.99 -1.08 -0.17 -49.96 -2.15 -0.29 -0.03 -0.67 -1.02 

EA -7.05 -0.26 -16.65 -6.25 -0.95 -5.64 -325.08 -42.52 -0.05 -3.82 -11.07 

SE -0.45 -0.23 -1.00 -0.21 -0.23 -0.67 -3.48 -2.57 -0.25 -0.20 -0.66 

AU 0.00 -0.04 -0.04 -0.01 -0.02 -0.02 -0.03 -0.07 -0.66 0.00 -0.01 

ME -2.56 -0.18 -17.59 -7.58 3.88 2.63 -8.83 -0.96 -0.04 24.77 -3.96 
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Table C9.  Source-receptor matrix of annual average percentage changes (%) in surface PM2.5 concentrations for the regional 
reduction simulations, with the United States (US) also defined as a receptor in addition to the 10 regions. 
 

 Receptor 

Source NA SA EU FSU AF IN EA SE AU ME US 

NA -0.511 -0.006 -0.131 -0.043 -0.014 -0.009 -0.038 -0.014 -0.002 -0.065 -0.546 

SA -0.007 -0.034 -0.004 -0.002 -0.006 -0.002 -0.003 -0.005 -0.021 -0.002 -0.006 

EU -0.076 -0.002 -0.988 -0.151 -0.037 -0.007 -0.064 -0.017 -0.001 -0.248 -0.075 

FSU -0.057 -0.001 -0.171 -0.338 -0.011 -0.003 -0.073 -0.017 0.000 -0.106 -0.058 

AF -0.009 -0.011 -0.008 -0.004 -0.023 -0.003 -0.005 -0.004 -0.015 -0.004 -0.009 

IN -0.017 -0.002 -0.018 -0.018 -0.003 -0.312 -0.013 -0.004 -0.002 -0.012 -0.017 

EA -0.174 -0.007 -0.152 -0.106 -0.015 -0.035 -1.947 -0.650 -0.003 -0.069 -0.187 

SE -0.011 -0.006 -0.009 -0.004 -0.004 -0.004 -0.021 -0.039 -0.014 -0.004 -0.011 

AU 0.000 -0.001 0.000 0.000 0.000 0.000 0.000 -0.001 -0.038 0.000 0.000 

ME -0.063 -0.005 -0.160 -0.128 0.063 0.016 -0.053 -0.015 -0.002 0.447 -0.067 
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Table C10.  Comparison of GWP20 and GWP100 estimates, due to regional changes in 
NMVOC emissions, to the multimodel mean ± 1 standard deviation of Fry et al. (2012), 
where the regional definitions differ slightly. 
 

Current study Fry et al. (2012) 

Source region GWP20 GWP100 GWP20 GWP100 

North America 9.20 3.27 15.5 ± 6.8 4.80 ± 2.35 

Europe 5.36 2.05 17.2 ± 7.1 5.33 ± 2.47 

East Asia -1.13 0.08 15.7 ± 5.0 4.82 ± 1.73 

South Asia 12.7 4.08 26.5 ± 5.3 8.31 ± 1.92 



   

 
 

Table C11.  Comparison of global and regional anthropogenic (including biomass burning emissions) and total NOx (Tg N yr-

1) and NMVOC (Tg C yr-1) emissions from the base simulations to the multimodel mean ±1 standard deviation of Fiore et al. 
(2009), where the regional definitions differ slightly. 
 

Current study Fiore et al. (2009) 

Global NA EU EA IN Global NA EU EA SA 

Anthropogenic 
NOx 37.8 6.6 3.7 6.8 2.0 32.5 ±6.0 7.4 ±0.4 7.3 ±0.6 6.0 ±1.4 2.4 ±0.4 

Total NOx 45.8 7.5 4.2 7.4 2.5 46.5 ±5.7 8.5 ±0.8 8.4 ±1.1 7.1 ±1.4 3.3 ±0.5 

Anthropogenic 
NMVOC 129.3 12.4 7.7 21.0 8.0 96.8 ±41.8 16 ±7.0 19.0 ±11 16 ±6.5 10 ±3.9 

Total NMVOC 974.5 86.2 17.8 45.3 26.4 630 ±221 62 ±24 37 ±13 48 ±14 33 ±8.8 
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Table C12.  Comparison of global tropospheric CH4, O3, and SO4
2- responses per unit emissions from 4 regional reductions to 

the multimodel mean ±1 standard deviation of Fry et al. (2012), where the regional definitions differ slightly.   
 

 Current study Fry et al. (2012)  

NA EU EA IN NA EU EA SA 

Global CH4           
(ppbv (Tg C yr-1)-1) 0.80 0.61 0.40 0.65 0.50 ±0.54 0.45 ±0.41 0.46 ±0.42 0.86 ±0.34 

Global O3              
(Tg O3 (Tg C yr-1)-1) 0.059 0.082 0.088 0.061 0.12 ±0.05 0.12 ±0.05 0.12 ±0.04 0.11 ±0.04 

Global SO4
2-           

(Gg SO4
2- (Tg C yr-1)-1) 0.32 0.60 1.01 0.0092 -0.12 ± 0.43 0.11 ± 0.69 -0.40 ±0.38 -0.039 ±0.18 
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Figure C1.  Definition of 10 regions.
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Figure C2.  Annual average anthropogenic NMVOC emissions (Tg C yr-1) by region and 
sector (top), and by region and fraction of individual MOZART-4 NMVOC species 
(bottom) for the base simulation, from the RCP8.5 emissions inventory for the year 2005.
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Figure C3.  Changes in tropospheric CH4 (top) and short-term and steady-state surface O3 
(bottom) as a function of NMVOC emissions change for each of the regional reductions 
relative to the base. 
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Figure C4.  Global distribution of annual average changes in steady-state surface O3 
(ppbv) for each of the regional reduction simulations relative to the base. 
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Figure C5.  Global distribution of annual average changes in tropospheric PAN (mol m-

2) for each of the regional reduction simulations relative to the base. 
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Figure C6.  Global distribution of annual average changes in tropospheric NOx (NOx = 
NO + NO2) (mol m-2) for each of the regional reduction simulations relative to the base. 
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Figure C7.  Global distribution of annual average changes in tropospheric NOy (NOy = 
NO + NO2 + HNO3 + PAN + HONO + NO3 + N2O5 + organic nitrates + particulate 
nitrate + all other reservoir species) (mol m-2) for each of the regional reduction 
simulations relative to the base. 
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Figure C8.  Global distribution of monthly average surface (top) and tropospheric column 
(bottom) H2O2 production / HNO3 production (P[H2O2] / P[HNO3]) for the base 
simulation, where the transition between VOC-sensitive and NOx-sensitive regimes is 
~0.2 (Liu et al., 2010). 
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Figure C9.  Global distribution of monthly average surface (top) and tropospheric column 
(bottom) H2O2 / HNO3 for the base simulation, where the transition between VOC-
sensitive and NOx-sensitive regimes is ~0.3 to 0.6 (Sillman et al., 1997). 
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Figure C10.  Global distribution of monthly average surface (top) and tropospheric 
column (bottom) H2O2 / NO2 for the base simulation, where the transition between VOC-
sensitive and NOx-sensitive regimes is ~0.2 to 0.35 (Sillman et al., 1997). 
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Figure C11.  Global distribution of annual average changes in surface SO4

2- (ng m-3) for 
each of the regional reduction simulations relative to the base.
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Figure C12.  Global distribution of annual average changes in tropospheric H2O2 (g m-2) 
for each of the regional reduction simulations relative to the base. 
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Figure C13.  Global distribution of annual average changes in tropospheric OH (ng m-2) 
for each of the regional reduction simulations relative to the base. 

ng m-2

NA SA EU FSU

AF IN EA SE

AU ME



 

196 
 

 
 
Figure C14.  Global distribution of annual average changes in surface NO3

- (expressed as 
NH4NO3 in ng m-3) for each of the regional reduction simulations relative to the base. 
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Figure C15.  Global distribution of annual average changes in surface SOA (ng m-3) for 
each of the regional reduction simulations relative to the base.
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Figure C16.  Global distribution of annual average changes in surface PM2.5 (sum of BC, 
OC, (NH4)2SO4, NH4NO3, SOA) (ng m-3) for the global and regional reduction 
simulations relative to the base. 
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Figure C17. Global monthly and annual average net RF (mW m-2) due to changes in 
tropospheric steady-state O3, CH4, and SO4

2- for each regional CO reduction simulation 
minus the base simulation. 
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Figure C18. Annual average changes in longwave (infrared) radiation (mW m-2) due to 
changes in tropospheric steady-state O3, CH4, and SO4

2- for the regional reduction 
simulations minus the base simulation. 
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Figure C19. Annual average changes in shortwave (solar) radiation (mW m-2) due to 
changes in tropospheric steady-state O3, CH4, and SO4

2- for the regional reduction 
simulations minus the base simulation. 
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