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Three specific platelet-derived  growth  factor 
(PDGF)  isoforms are thought  to bind with  differing 
affinities  to  two  distinct  PDGF  receptors  which 
undergo  activation following  dimerization.  Recent  evi- 
dence  has  been  presented that  marked differences exist 
between  the  ability of PDGF-AA versus PDGF-AB and 
PDGF-BB to  stimulate  alterations  in second  messen- 
gers  in  cultures of vascular smooth  muscle  cells 
(VSMC), a result  which  was  thought  to  be  due  to  low 
numbers of the A-type  receptor  in  this cell type  (Sach- 
inidis, A., Locker, R., Vetter, W., Tatje, D., and Hoppe, 
J. (1990) J. Biol. Chem. 265,10238-10243,1990). In 
particular,  PDGF-BB  and PDGF-AB but not PDGF- 
AA could elicit  alterations  in cytosolic free calcium 
(Ca2+i). However,  because  these  studies were  per- 
formed  on  large cell  populations  using  biochemical as- 
says of PDGF activity, a minor  PDGF-AA-Ca2+-re- 
sponsive  population of cells  might go undetected.  To 
test  this possibility, VSMC were  isolated  from  either 
thoracic or abdominal  pig  aorta,  and  alterations  in 
Ca2+i  were monitored  using Multiparameter Digitized 
Video Microscopy following stimulation  with  PDGF 
isoforms  alone, or  either  before or after  exposure of 
VSMC to 5 mM EGTA. PDGF-AA-responsive  cells were 
found  to  exist  only  in  cultures of thoracic VSMC, 
caused  oscillations in Ca2+i, represented 20% of the 
PDGF-BB-responsive  cells, and  were subsequently  re- 
sponsive  to PDGF-BB. PDGF-BB  elicited  monophasic 
alterations  in Ca2+i in  both  thoracic  and  abdominal 
VSMC. Prior addition of EGTA inhibited PDGF-AA 
but not PDGF-BB-induced alterations  in Ca2+i. Addi- 
tion of EGTA during PDGF-AA-induced  Ca2+i  oscilla- 
tions  inhibited  subsequent  oscillations  in  Ca2+i,  while 
addition of EGTA at  the  peak of the  PDGF-BB  Ca2+ 
response  resulted  in a more  rapid  return of Ca2+i to 
prestimulation levels. These  data  suggest  that  regional 
differences in  the  distribution of PDGF-A- and B-type 
receptor  exists in  vivo, and  that  activation of the A- 
and B-type  PDGF  receptors  results  in  distinct  altera- 
tions  in Ca2+:. 
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PDGF’  elicits a variety of biological activities  in VSMC 
(mitogenesis, chemotaxis,  and  vasoconstriction)  through  the 
existence of distinct  PDGF isoforms and  receptors (1-4). 
Human  PDGF  consists of two  disulfide-bonded homologous 
peptide  chains, A and B (PDGF-AB).  Each  chain is the 
product of a distinct cellular  gene, their expression  being 
independently regulated and  the two chains  sharing  approxi- 
mately 50% homology (5-7). Porcine  PDGF  appears  to be a 
BB homodimer as  is  PDGF  isolated  from most animal species 
(except  human) (8). Skeletal  and  smooth muscle, growth 
factor-stimulated  fibroblasts  and a number of tumor cell lines 
produce exclusively PDGF-AA (9-11). 

These  different  types of PDGF molecules are  thought  to 
bind  to at least two distinct  types of PDGF receptors. The 
originally  described  receptor (B-type, 180 kDa,  similar  to  the 
CSF-1  receptor) was found  to  bind  the B chain of PDGF,  is 
located on chromosome 5 and possesses tyrosine  kinase  activ- 
ity  (12). A  second type of PDGF receptor (A-type, 170 kDa, 
similar  to  the  c-kit gene product) is thought  to  hind  both 
PDGF A and B chains,  is located on chromosome 4, and also 
contains  tyrosine  kinase  activity (13). Since  the  receptors 
display  some selectivity in terms of which PDGF  chains  they 
can  bind,  and because active  PDGF molecules are  thought  to 
exist as dimers, a number of models  have  recently been 
proposed  where PDGF  binding  to  its  receptors requires di- 
merization of the A- and  B-type  receptor  subunits  to elicit 
functional  activity (14-16). These models predict  that  dimer- 
ization of two A-type receptors could  lead to  binding of all 
three  types of PDGF isoforms (AA, BB, AB), while dimeri- 
zation of two B-type  receptors could  only  lead to  binding of 
PDGF-BB  (although  some  data suggests that  PDGF-AB  can 
bind  to cells containing only the  B-type  receptor  albeit at 10- 
fold lower affinity  than  PDGF-BB). A key aspect of these 
models is that  in cells lacking  the A-type PDGF  receptor, 
there  should  be  no response to  either  PDGF-AA  or  PDGF- 
AB. 

The mechanisms by which PDGF  binding to its receptor is 
transduced  into biological activity  are  still unclear. Our lab- 
oratory  has  been  studying  the role of PDGF-induced  altera- 
tion in Ca2+,  in  PDGF-stimulated mitogenesis (17-21). PDGF 
addition  to a variety of cells causes a rapid  transient increase 
in Ca2+, within  seconds of addition  (22),  and  results from our 
laboratory  as well as  others (17-21, 23-31) demonstrate  that 
inhibition of PDGF-stimulated  increases  in  Ca2+i also inhibit 

’ The abbreviations used are:  PDGF,  platelet-derived growth factor; 
Ca2+,,  cytosolic  free  calcium; VSMC, vascular smooth muscle cells; 
MDVM,  multiparameter digitized video microscopy; DMEH-H,  Dul- 
becco’s modified Eagle’s medium with high glucose; EGTA,  [ethyl- 
enebis(oxyetheylenenitrilo)]tetraacetic acid; IPa, inositol 1,4,5-tris- 
phosphate. 
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PDGF-mediated mitogenesis. Recently, we have  provided  evi- 
dence  that  alterations  in  Ca2+, which immediately follow 
PDGF  binding  are necessary for  PDGF-induced mitogenesis 
(32). Collectively, these  data  support  the  contention  that 
alterations  in  Ca2+,  are a  necessary component in the  signal 
transduction cascade of PDGF. However,  two recent  reports 
have  indicated  that  PDGF isoforms in VSMC  differ in  their 
ability  to  stimulate  components of the  second messenger 
pathways; in particular,  PDGF-AA was unable to  cause  an 
increase  in  Caz+i (33, 34). Both  PDGF-AA  and  PDGF-BB  in 
these  and  other  studies  stimulated mitogenesis (35-37), al- 
though  PDGF-AA was  a  less  effective  mitogen, a result  ex- 
plained by the lower number of A-type relative  to  B-type 
PDGF receptors. If correct,  these  results would suggest that 
Ca'+i is not a  necessary component of PDGF mitogenesis 
activity. However, we report  here  that  PDGF-AA does stim- 
ulate  increases  in  Ca2+i  in VSMC but  that  PDGF-AA-induced 
increases  in Ca'+, occur  only in a small  percentage of cells 
whose distribution is not  uniform  throughout  the  aorta.  In 
addition,  the  mechanisms  that  PDGF-AA  and  PDGF-BB 
employ to elicit alterations  in Ca"i in  VSMC  are  distinct. 

MATERIALS AND  METHODS 

Cell Culture-Secondary cultures of porcine VSMC were derived 
from  explants of thoracic or abdominal  aorta  and  cultured  as  previ- 
ously  described (18-19). Cells were grown in  DMEM-H  supplemented 
with 10% fetal bovine serum, 5.6 mM glutamine, 100 units/ml  peni- 
cillin,  and 10  pg/ml streptomycin. VSMC  used  for experiments were 
between  passages 3-12 and  either  serum  starved for 5-7 days before 
use or placed in  serum-free medium (DMEM/F-12 (1:l) supplemented 
with insulin/transferrin/selenium) for  48  h  before use. PDGF  respon- 
siveness was compared  in  thoracic  and  abdominal regions from  the 
same  or  different  animals. 

Source of PDGF Zsoforms-Recombinant PDGF-AA  and  PDGF- 
BB were obtained  from  either  Upstate Biotechnology  Inc., or Bio- 
source Inc. All PDGF isoforms were aliquoted  and  stored frozen in 
10 pg/ml in  aliquots of  0.1 N acetic acid. Before addition  to cells, the 
isoforms were diluted to  500 ng/ml  in  DMEM-H  containing 0.1% 
bovine serum  albumin  and  neutralized  with 5 mM Na'CO,. 

Cu", Measurements-Ca'+,  was measured  in individual  living  cells 
using MDVM and  ratio imaging. The method  and  the design of the 
instrumentation for measuring  Ca2+,  in  VSMC  has been  previously 
described (17-21). Briefly,  VSMC grown on glass  coverslips were 
chilled for 10 min a t  4 "C  then loaded with  the Ca'+-sensitive  fluoro- 
phore  Fura-2-AM ( 5  p~ Fura-2-AM, 20 min a t  37 "C). It has been 
previously demonstrated  that  the  Fura-2  in VSMC  loaded in  this 
manner is in  the cytosolic compartment  and does not become seques- 
tered  in  the  mitochondria  or  other organelles (38). Coverslips with 
the loaded  cells were then sealed in a  specially  designed chamber 
which  holds 0.5 ml of medium, and  mounted  on  the microscope  stage. 
Prior  to  stimulation of the cells with  PDGF, a background image of 
a n  area of the coverslip with no  cells and two base-line images of the 
cells to be stimulated were collected. An image  typically contained 
two to  five cells. After stimulation  with  PDGF, images were collected 
every  10 s for the  first 3 min,  and every 20 s for an additional 15-18 
min for a total of  20 min.  Images were obtained a t  two different 
wavelengths: 340 nm (Ca'+-bound Fura-2)  and 380 nm (Ca"+-free 
Fura-2)  with  the emission  recorded a t  >450 nm. Following subtraction 
of the background  image at  each  excitation wavelength, the  340-nm 
image was divided by the  380-nm image (ratioed)  to give a two- 
dimensional  representation of  Ca" within  the cells. The  ratio  ap- 
proach  corrects for problems  due  to differences in accessible  volume 
and  pathlength  in  the cell. Standard  curves were generated  through 
the microscope optics using  Ca'+-EGTA  buffers as previously de- 
scribed (17-21). Both average Ca2+, levels in all  cells in  the image and 
in  each individual cell were calculated. 

RESULTS 

Differential Response of Thoracic and Abdominal VSMC to 
PDGF Isoforms-Previous studies  in a variety of cell types 
have  reported considerable variability  in  the  ability of PDGF- 
AA to  stimulate mitogenesis (35-37). When  PDGF-AA was 

able  to  stimulate mitogenesis, it  was much  less effective than 
either  PDGF-AB or PDGF-BB, with PDGF-BB slightly  more 
effective than  PDGF-AB  at  similar doses (12, 15, 34). Two 
explanations  have  been  put  forth  to  account for these findings. 
1) The  ratio of A to  B-type  receptor is very low such  that cells 
respond weakly to  PDGF-AA  but  strongly  to  PDGF-BB  and 
PDGF-AB,  the  latter  potentially  acting via both  dimerization 
of A- and  B-type  receptors or through  just  the  B-type receptor 
alone.  2)  Differences in  the signal transduction  pathways 
stimulated by the  different  PDGF isoforms, with  the  B-type 
receptor  (but  not  the  A-type  receptor) efficiently  coupled to 
the mitogenic pathway.  Either of these  hypotheses,  alone or 
in  combination, could account for the previously reported 
data. However, all of these  experiments were performed  in 
cell culture where population heterogeneity may obscure in- 
dividual  cell responses, especially  when the  events  under  study 
occur  rapidly or suddenly. In  addition,  responses of distinct 
but  minor cell populations may also be obscured. For  example, 
the lack of a Ca"i response  to  PDGF-AA  in VSMC  could be 
due  to low A-type receptor levels on all VSMC  in the  popu- 
lation or to  the  presence of a small,  nondetectable  but fully 
functional  subpopulation of PDGF-AA-responsive VSMC. In 
an  attempt  to  determine if this  latter possibility might explain 
previously reported  data in  VSMC  (33, 34), we employed 
MDVM  and  the  Ca2+-sensitive fluorophore Fura-2,  to  monitor 
the  ability of PDGF-AA  and  PDGF-BB  to elicit increases  in 
Ca2+i in VSMC obtained from either  thoracic or abdominal 
aorta. A particular  advantage of the MDVM approach is that 
it allows examination of the  behavior of individual cells within 
a population,  permitting observance of very low frequency 
events  that  might  otherwise be obscured in  studies which 
employ whole cultures or suspensions of cells making  similar 
measurements. 

Fig. 1 demonstrates  PDGF-AA-  and  PDGF-BB-induced 
alterations  in Ca"+i in thoracic  and  abdominal VSMC. Fig. 1 ,  
a-f, represent  thoracic  VSMC  andg-i  abdominal VSMC. Basal 
Ca2+i levels were 41.3 nm -C 5.6 (S.E.) for the cells  shown  in 
Fig. 1, a ,  d, g; this value is  representative of that  seen  in  the 
many cells we have examined  (see below). In  thoracic VSMC, 
PDGF-AA  caused a small  percentage  (approximately  20%) of 
cells to  alter  their  Ca2+, (Fig. 1, a-c; see Fig. 2), while PDGF- 
BB elicited an  increase in  Ca2+;  in almost all (147)  thoracic 
VSMC examined ( n  = 155) (Fig.1, d-f; Fig. 2). In  contrast, in 
abdominal VSMC  (Fig. l h ) ,  PDGF-AA never  caused an  in- 
crease  in Ca"i, yet  these cells were universally  responsive to 
PDGF-BB (Fig. l i) .  Interestingly,  on average, the maximal 
increase  (percent  basal)  in  Ca2+& observed in  PDGF-AA-re- 
sponsive thoracic VSMC  was essentially  equivalent to that 
seen  in  PDGF-BB-responsive  thoracic VSMC  (393 f 73 (S.E.; 
n = 9) for PDGF-AA uersus 415 f 68 (S.E.; n = 8) for PDGF- 
BB). 

Fig.  2 presents a compilation of our  data  to  date.  In VSMC 
isolated  from two different pigs, we examined a total of  432 
cells  from different cell passages and regions of the  aorta. 
PDGF-AA-responsive cells were found only in VSMC isolated 
from  the  thoracic  segment of the  aorta  and  represented 17- 
20%  of the total PDGF-BB  responding  population.  The  ma- 
jority (>95%) of cultured VSMC obtained for either  thoracic 
or abdominal  aorta  responded  to  PDGF-BB. 

PDGF Isoforms Elicit Different Types of ea'+, Responses in 
Thoracic VSMC-In porcine VSMC, we previously reported 
that  PDGF-AB-induced  increases  in Ca'+i could be blocked 
by prior  treatment of cells with  EGTA or voltage-sensitive 
Ca2+  channel  antagonists  (19).  We also  found that  PDGF-AB 
induced increases in phosphatidylinositol  4,5-bisphosphate 
hydrolysis, but  at  concentrations  that were one log order 
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FIG. 1. Alterations in Ca2+i in tho- 
racic (a-f) and  abdominal (g-i)  
VSMC exposed to PDGF-AA (b,  c, 
and h)  or  PDGF-BB (e, f, and i ) .  
Cultured VSMC  were labeled with Fura- 
2, and Ca2+i in single cells was measured 
as described under "Materials and Meth- 
ods." Thoracic VSMC  were exposed to 
PDGF-AA (40 ng/ml) (b-d), and  the 
same cells were then exposed to PDGF- 
BB (40 ng/ml) 10 min later (e and f ) .  
Abdominal  VSMC (g) were first exposed 
to PDGF-AA (40 ng/ml) ( h )  and  then 10 
min later to PDGF-BB (40 ng/ml) ( i ) .  
The time elapsed from PDGF addition 
was as follows: a, zero; b, 30 s; c, 490 s; 
d, 570 s; e, 620 s; f, 640 s; g, zero: h, 30 s; 
i, 650 s. 
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FIG. 2. Alterations in Ca2+i in VSMC cultures obtained  from 
thoracic  and  abdominal aorta in response to  PDGF-AA  and 
PDGF-BB. VSMC isolated from either thoracic or abdominal seg- 
ments of porcine aorta from two pigs were loaded with Fura-2 and 
Ca2+i monitored following addition of PDGF-AA (40 ng/ml) or PDGF- 
BB (20 ng/ml). The fraction of cells responding to either PDGF-AA 
or PDGF-BB as a function of pig number, cell passage number, and 
region form  which  VSMC  were obtained was then calculated from a 
total of 432 cells examined. 

higher than those required to stimulate EGTA-inhibitable 
alterations in Ca2+i. We postulated that PDGF-AB activates 
both the A- and B-type PDGF receptors, which are coupled 
to distinct second  messenger  pathways. Subsequently, evi- 
dence has been presented in support of this hypothesis (34). 
To further clarify  whether A- and B-type PDGF receptors are 
coupled to distinct second  messenger pathways, we monitored 
alterations in Ca2+i  induced by the different PDGF isoforms 
in thoracic VSMC.  VSMC  exposed to a wide range of doses 
of PDGF-BB (140 ng/ml)  displayed a monophasic increase 
in Ca2+i  (Fig. 3A), while  PDGF-AA (20-80 ng/ml) elicited 
oscillations in Ca2+i (Fig. 3B). PDGF-AA-induced oscillations 
in Ca2+i  had a frequency of one oscillation every 3.4 k 0.38 
min. These distinct PDGF isoform-specific alterations in 
Caz+i could  also  occur in the same cell. VSMC  were first 
exposed to PDGF-AA (40 ng/ml), and a responsive  cell was 

identified by the typical oscillatory pattern of alterations in 
Ca2+i. PDGF-BB (20 ng/ml)  was then added, and  the oscilla- 
tory alteration in Ca2+i  was converted into the characteristic 
PDGF-BB monophasic increase in Ca2+i. Subsequent addition 
of 10% fetal bovine serum resulted in a rapid spike in Ca2+i 
followed  by smaller oscillations in Ca2+i. Thus, a single VSMC 
has  the capacity to sequentially respond to PDGF-AA, PDGF- 
BB, and fetal bovine  serum. This finding coupled with the 
distinct character of the alterations in Ca2+i elicited  by PDGF- 
AA and PDGF-BB supports the hypothesis that these agenta 
are altering Ca2+i by different mechanisms. 

PDGF-AA but Not PDGF BB-induced Alterations in Ca2+i 
Are Sensitive to EGTA-Ligand-induced alterations in Ca2+i 
are thought to occur through a combination of release of Ca2+ 
from intracellular stores and influx of Ca2+  from the extracel- 
lular environment (39). Monophasic alterations in Ca2+i are 
thought to be initially due to IP3-mediated release of Ca2+ 
from intracelluar stores and subsequent influx of extracellular 
Ca2+ (40). Characteristically, the initial rise  in  Ca2+i in this 
type of response is insensitive to chelation or removal of 
extracellular Ca2+, but  the duration of the Ca2+i response is 
shortened. Oscillations in Ca2+i are also thought to be due to 
an initial IPS-mediated  Ca2+  release followed  by  some type of 
feedback  response  involving replenishment of intracellular 
Ca2+ stores from influx of Caz+ from the extracellular medium 
(41-44). Here, the frequency of oscillations is diminished or 
inhibited by  removal or chelation of extracellular Ca2+, but 
an initial oscillation  always  occurs.  Cells may also contain 
voltage-sensitive or receptor-operated plasma  membrane  Ca2+ 
channels (45). Ligand-induced  changes in plasma  membrane 
potential may lead to opening of voltage-dependent Ca" 
channels. Ligand  binding  could  also  lead to alterations in 
plasma membrane potential by causing an increase in Ca2+i 
and stimulating Ca2+-activated K+ channels. Lastly, ligand 
binding could  also  open receptor-operated Ca2+ channels. The 
net effect is the influx of extracellular Ca2+. Here, removal  or 
chelation of extracellular Caz+ would prevent any ligand- 
induced alterations in Ca2+i. In order to determine the mech- 
anisms by  which  PDGF-AA and PDGF-BB cause alterations 
in  Ca2+; in VSMC,  buffered  EGTA (5 mM)  was added to cells 
before or after exposure to  the PDGF isoforms  (Fig. 4). EGTA 
addition both prior to  as well as after PDGF-AA  rapidly 
inhibited PDGF-AA-induced oscillations in Ca2+i (Fig. 4, A 
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and B ) .  Conversely, addition of EGTA  to VSMC after  PDGF- 
BB  shortened  the  duration of the monophasic Ca'+i response 
(Fig. 4C), while prior  addition of EGTA  did  not  inhibit  PDGF- 

500 - BB-induced  alterations in Ca2+, (Fig. 4 0 ) .  
A 

DISCUSSION 
400 - The  present  communication  presents evidence that  both 

PDGF-AA  and  PDGF-BB,  acting  through  the A- and  B-type 
PDGF  receptors,  cause  increases  in  Ca2+i,  but  the  character- 

8 - #P4& 2 300 
8 

c 

0" 

distinct.  Our  findings also indicate  that a nonuniform  distri- .- - 
istics of the  Ca2+i  response  as well as  the source of Ca2+i are 

%.*"&A/ tic VSMC exists,  with  PDGF-BB-responsive cells predomi- 

1' while PDGF-AA-responsive cells are localized to  the  thoracic 

0 " " " " " " " " "  total  PDGF-responsive cell population.  Lastly, we demon- 

8 200 bVY& bution of PDGF-AA-  and  PDGF-BB-responsive porcine aor- 

nating, being found  both  in  thoracic  and  abdominal  segments, 
100 

BB portion of the  aorta  and  make  up only  a small  portion of the 

-2  0 2 4 6 8 10 12 94 16 strate  that  the  same VSMC has  the  capability  to sequentially 
respond  to PDGF-AA, PDGF-BB,  and  fetal bovine seum,  and 
that  PDGF-BB Ca'+ mobilization mechanisms  predominate 
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or intracellular  pH.  In  these cells, 10-20-fold higher concen- 
trations of PDGF-AA were required to  stimulate mitogenesis 
as  compared  to  PDGF-BB or PDGF-AB (34). 

Common  to  these previous studies  examining  the differ- 
ences  in  the biological activity  and  potency of different  PDGF 
molecules is  the reliance on  measurements from  large cell 
populations,  either  in  suspension or culture.  This  situation 
has  the  danger  that  rare  events  occurring  in a minor  popula- 
tion of the cells  may be missed as a given response may be 
buried  in  the noise of the system. Our  data  indicate  that 
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to  be  considered noise in  the  measurement  system.  The  tech- 
nique of MDVM  has allowed us  to  detect  this low number of 
PDGF-AA-responsive VSMC in  thoracic  aorta. 

0 ' ' ' 1 ' 1 ' ' ' ' ~ ' ' ' ' 1  

-2  2 6 10 14  18  22  26 30 

Time (mid 

FIG. 3. Characteristics of changes in Ca2+; in VSMC cell 
cultures obtained from thoracic aorta following exposure to 
PDGF isoforms. Fura-2-loaded VSMC were exposed to  PDGF-BB 
( A ,  20 ng/ml),  PDGF-AA ( B ,  40 ng/ml) or sequentially  to  PDGF-AA 
(40  ng/ml),  PDGF-BB (20 ng/ml),  and 10% fetal bovine serum ( C ) .  
Arrows and labels indicate  point of addition of the various reagents. 
These  traces are representatives of 32 independent  experiments com- 
prising 134 cells examined. 

Further proof of the  existence of Ca'+i-responsive PDGF- 
AA VSMC, in  agreement  with previous findings  that  distinct 
PDGF  receptors  can be coupled to  different  signal  transduc- 
tion  pathways,  is  our  detection of distinct  types of alterations 
in Ca"i elicited by PDGF-AA  and  PDGF-BB. PDGF-AA 
caused  oscillations  in  Ca2+, which were blocked by chelation 
of extracellular  Ca2+, while PDGF-BB-induced  increases  in 
Ca2+i were only partially  sensitive  to  EGTA  treatment.  The 
source of Ca2+  in  response  to  exposure of cells to  PDGF-BB 
is likely to  be a combination of release  from intracelluar  stores 
and  influx of extracellular Ca'+. Data from our  laboratory  as 
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FIG. 4. Effect of EGTA on PDGF-AA and PDGF-BB-induced alterations in Ca2+i in VSMC. VSMC 
cell cultures  obtained from the thoracic portion of the  aorta were loaded with Fura-2  and exposed to PDGF-AA 
(40 ng/ml, A and B )  or PDGF-BB (20 ng/ml, C and D ) .  5 mM EGTA was added either  after ( A  and C)  or before 
( B  and D )  PDGF. These results are representative of  29 independent  experiments  comprising 147 cells examined. 

well as  others  have shown that  both  PDGF-BB  and  PDGF- 
AB (which can  bind  to  the  B-type  PDGF  receptor)  stimulates 
IPS production which would lead to release of intracellularly 
stored Ca2+ (19, 33, 34). The  fact  that  the  CaZfi response of 
VSMC exposed to  PDGF-BB was not blocked by EGTA 
treatment  but was shortened,  is  consistent  with  an  IPS-me- 
diated Ca2+  release mechanism  (40).  In  contrast  to  PDGF- 
BB, PDGF-AA-responsive VSMC displayed  oscillatory 
changes  in Ca2+i. Based  on  the  binding  properties of the two 
PDGF  receptors (14-16), and  the  differential  type of Ca2+ 
responses elicited by PDGF-AA  and  PDGF-BB  reported  in 
this  study  (purportedly  through  the A- and  B-type  receptor, 
respectively), and  the  ability of PDGF-AA-responsive cells to 
sequentially  alter  their Ca'+; in  response  to  PDGF-BB,  our 
data would indicate  that, minimally, the  thoracic  aorta  con- 
tains two cell populations,  one  with  both  the A- and  B-type 
receptor  and  the  other  with  just  the  B-type  receptor,  whereas 
abdominal VSMC  seem  only to  contain  the  B-type  PDGF 
receptor. 

Oscillations in Ca'+ can occur  in both  excitatable  and 
nonexcitatable cells and be of two types,  amplitude-dependent 
or frequency-dependent  (46).  In  amplitude-dependent oscil- 
lations,  the size of each oscillation is  dependent  on  agonist 
concentration, while in  frequency-dependent oscillations, the 
frequency of the oscillations is  agonist  dependent  but  the 

amplitude of the oscillations is  agonist  concentration-inde- 
pendent.  Such oscillations might  be  part of a frequency- 
encoded signaling  system  (47), whereby, certain cells can 
convey information by varying  the frequency of the oscilla- 
tions, which act  as a digital signal. Such a  signaling system 
obviates  the noise problems of an  amplitude-dependent sys- 
tem  (where  the biological response is proportional  to  the 
amplitude of the  signal).  Small  amplitudes  are  hard  to  detect 
over noise, whereas  constant large amplitudes with varying 
frequency are easy to  discriminate even in a noisy system. 

Oscillators are usually  classed as either  membrane oscilla- 
tors, where  a change  in  plasma  membrane  potential or the 
repetitive  opening  and closing of a receptor-operated Ca'+ 
channel  regulates  Ca2+  influx  into cells, or cytosolic  oscilla- 
tors, where the source of  Ca'+ for the oscillations is  intracel- 
lular. Cytosolic oscillators  can  generate Ca'+ responses in  the 
absence of extracellular  Ca2+  (although  the frequency of the 
oscillations  is  dependent  on  extracellular Ca'+), while mem- 
brane oscillators are  totally  dependent  on  extracellular Ca'+. 
Our  data  indicate  that PDGF-AA-induced  oscillations  require 
extracellular Ca'+; EGTA  addition before or during oscilla- 
tions  inhibits  any  subsequent  change  in Ca";. This would 
suggest that  PDGF-AA-induced Ca"; oscillations are  due  to 
influx of  Ca'+ from  extracellular sources (membrane oscilla- 
tor)  and  not from intracellular release,  (cytosolic  oscillator). 
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While the exact type of membrane oscillator involved in 
PDGF-AA-induced alterations in Ca2+; is not yet known, 
VSMC plasma membranes contain  potential  dependent  (volt- 
age regulated) Ca2+  channels (48), and  PDGF-AB  has been 
shown to cause a depolarization of the plasma membrane 
potential,  apparently opening an L-type (based on inhibitor 
specificity) voltage-sensitive Ca2+  channel  in  a  G  protein- 
dependent fashion (19). Earlier  studies have also demon- 
strated changes in plasma membrane potential  and  a depend- 
ence on extracellular Ca2+ for the increase in Ca2+; that follows 
growth factor (ie. PDGF) binding (49-53). Further work 
monitoring PDGF-induced alterations in VSMC plasma 
membrane potential relative to alterations  in Ca2+; and  the 
effects of antagonists of putative voltage-sensitive Ca2+-chan- 
nels and  Ca2+-activated K+ channels following exposure to 
the different PDGF isoforms should clarify the regulation of 
PDGF-AA induced Ca2+ oscillations in VSMC. 

A key question that remains is whether both PDGF-AA 
and PDGF-BB  are mitogenic and if so, whether the type of 
Ca2+ response we have observed differentiates the two PDGF 
molecules in terms of mitogenesis or  other  PDGF-dependent 
functions. Answers to these  questions will  have to wait until 
studies of sequential observation of alterations  in Ca2+, and 
mitogenesis can be performed at  the single cell level. Such 
studies  are now underway in our laboratories. However, at 
this time, preliminary data' indicate that between 20-30% of 
thoracic VSMC, but no abdominal VSMC, respond mitogen- 
ically to PDGF-AA (using  a BrdU single cell incorporation 
assay),  and  this mitogenic response can be inhibited by pre- 
treatment of cells with the Ca2+ chelator BAPTA. This is the 
same percentage of thoracic VSMC  which display alterations 
in Ca'+ to PDGF-AA. 70-80% of both  thoracic and abdominal 
VSMC respond to PDGF-BB and PDGF-AB. Thus,  these 
data are  consistent with the number of cells which display 
alterations  in  Ca2+; when exposed to  the different PDGF 
molecules and  support the contention that alterations in Ca2+; 
are associated with PDGF-stimulated mitogenesis. 
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