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ABSTRACT

Monica Chaudhari : Study Design and Methods for Evaluating Sustained Unresponsiveness to
Peanut Sublingual Immunotherapy

(Under the direction of Michael R. Kosorok)

The length of time off-therapy that would represent clinically meaningful sustained unresponsiveness

(SU) to peanut allergen remains undefined. Our work has three-fold objectives: first, to delineate

aspects of the altered clinical trial design that would allow us to assess effectiveness of sublingual

immunotherapy (SLIT) in achieving SU; second, to discuss methodology for evaluating the time to

loss of SU and associated risk factors in context of the proposed study design; finally, to develop

a flexible methodology for assessing mean reverting threshold and prognosis of SU failure in the

presence of study risk factors. Failure refers to the loss of SU upon therapy cessation in peanut

allergic children who are administered sublingual immunotherapy (SLIT).

The salient feature of the new design is the allocation scheme of study subjects to staggered

sampling timepoints following therapy suspension when a subsequent food challenge is administered.

Due to a fixed sequence of increasing allergen doses administered in a challenge-test, the subjects

true threshold at either occasion is interval-censored. Additionally, due to the timing of subsequent

DBPCFC, the time to loss of SU for subjects who pass the DBPCFC at study entry is either left-

or right-censored. In this thesis, we elaborate on the features of the study design, develop and

extensively validate methods to evaluate study end points and discuss their potential to inform

individualized treatments.

The thesis is compartmentalized as follows: (i) an innovative clinical trial design that aims at

studying SU to SLIT; (ii) a newly developed mixture proportional hazards model for evaluating the

time to loss of SU in context of the study generated interval-censored data subject to instantaneous

failures; (iii) a time-dependent Ornstein Uhlenbeck (OU) diffusion process for modeling immunologic
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SU degradation trajectories using stochastic differential mixed effect model (SDMEM) framework;

(iv) the estimation of mean-reverting threshold and prognosis of the loss of SU; (v) lastly, the clinical

implementation and future scope of work. Through this work, we are presented with an opportunity

to dedicate these inter-connected parts to three core issues of failure: model description, prediction

and prevention.
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CHAPTER 1: INTRODUCTION

Allergic responses to peanut are among the most prevalent, deleterious and long lasting of all

food allergies [8; 91]. Prevalence has been rising over the past decade, particularly in the United

States pediatric population [72]. The IgE-mediated allergic response is characterized by acute

onset of symptoms generally within 2 hours of peanut exposure and can progress to more serious

symptomatic sequelae such as anaphylaxis, hypotension, and multiple organ dysfunction syndrome

[8; 91]. While the current standard of care for peanut allergy is a strict avoidance of peanut and

ready access to self-injectable epinephrine, implementation of an avoidance diet is complex leaving

majority of patients with a life-long risk of allergic reactions and even death due to unintentional

ingestions [33]. Therapeutic interventions that provide everlasting defense against accidental peanut

ingestion are thus needed [76].

Lately, the use of allergen immunotherapy (AIT) is gaining grounds in clinical research for

the treatment of food allergy. Based on current research, it is unclear whether permanent tolerance

and cure can be be achieved. As a result, the objective, in general, is to increase the reaction

threshold in food-allergic individuals to prevent a catastrophic response following inadvertent

exposure. Although AIT has long been used as treatment for aeroallergens and hymenoptera venoms,

no licensed immunotherapy products are available for the treatment of food allergy. Investigators

are pursuing several different routes of its administration including subcutaneous, oral, sublingual,

and epicutaneous to treat individuals presented with allergic symptoms to IgE mediated food (6).

In contrast to the subcutaneous immunotherapy that has evidenced an unacceptably high rate of

systemic reactions, oral immunotherapy has shown some promise but needs more investigation due to

more common oral and gastrointestinal disease effects. On the other hand, sublingual immunotherapy

(SLIT), which involves the administration of small amounts (micrograms to milligrams) of allergen

extract under the tongue and is the locus of our investigation, has been claimed safer with fewer

systemic reactions and easier mode of administration.

1



The Double-Blind Placebo-Control Food Challenge (DBPCFC) test is considered the gold

standard in diagnosis of food allergy. The test exposes a patient to a fixed sequence of increasing dose

levels of an allergen until he/she demonstrates clinical symptoms. The lowest amount of the allergen

that evokes objective symptoms is termed as the eliciting dose (ED). One approach to evaluate the

effectiveness of AIT in an investigation is by administering repeated DBPCFCs, one before and one

after the course of AIT, to assess the change in threshold of allergic sensitivity (ED) from baseline.

Typically, the primary endpoint in these studies is the degree of change in threshold in the treatment

group compared with the placebo group. Specific ED based measures of clinical efficacy of AIT

include more commonly studied desensitization, which refers to an increase in reaction threshold

while receiving the study drug. Tolerance, on the other hand, refers to a non-reactive state of the

immune system that persists indefinitely after discontinuation of the study drug. Even though clinical

desensitization is demonstrated in almost all OIT and SLIT studies for food allergy, tolerance has

less commonly been tested and requires further study. The problem lies more in that there are no

well-defined markers proving tolerance; the DBPCFC off of therapy is the current best attempt at

assessing tolerance. A recent study [11] suggests that what we have previously thought to represent

immunological tolerance may be transient and hence, the term sustained unresponsiveness (SU)

is coined to refer to the phenomenon of a non-reactive state that persists after discontinuation of

therapy but wanes after a period. In other words, SU is the capacity to maintain desensitization

to the food allergen following cessation of therapy. With scarce published literature defining and

characterizing SU, the length of time off-therapy that would represent clinically meaningful benefit

remains undefined. Appropriate clinical efficacy parameters and study endpoints to demonstrate SU

have, therefore, not been established. With the FDA approval of food immunotherapy potentially

on the horizon, and an extensive longitudinal data that have been collected during an ongoing

randomized clinical investigation of pediatric population for peanut allergy conducted in North

Carolina, we are presented with a unique opportunity to address issues pertaining to SU with an

innovative study design and advanced statistical methodology.

In this dissertation, we extend the ongoing investigation of the desensitized pediatric cohort

towards two-fold objectives: first, to propose and discuss a unique clinical trial design that would

allow us to study SU; second, to explore and develop methodology to evaluate the time to loss of SU

and the mean reverting threshold in context of the data originating from the proposed study design.
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We propose two new statistical procedures that exploit data characteristics emanating from a typical

AIT trial and apply those methods to improve models for estimation and prognosis of SU in AIT

studies.

The rest of this dissertation is organized as follows. In Chapter 2, we provide a brief introduction

to the study design and motivation to develop methods in context of the data arising from this

clinical trial. It is then followed by a summary of the literature review of the existing approaches

to solving problems like the one described above. This includes an introduction of a mixture

model and a computationally efficient algorithm that can be used to analyze current-status data

subject to instantaneous failures, and finally, a brief discussion of stochastic differential models

with mixed effects with focus on time-dependent Ornstein-Uhlenbeck Process to model individuals

SU degradation trajectories. In Chapter 3, we provide a comprehensive methodology that can be

utilized to analyze interval-censored data subject to instantaneous failures; in particular, we examine

a recently proposed mixture model and a computationally efficient algorithm developed for fitting

the proposed model. In Chapter 4, we provide an in-depth discussion of the proposed study design

and investigate the finite-sample performance and power of the procedure proposed in Chapter 3.

Chapter 5 develops method to model SU degradation trajectories of individuals using Stochastic

Differential Mixed Effect Model (SDMEM) framework with a focus on Ornstein-Uhlenbeck latent

process, implements estimation using Metropolis-Hastings algorithm and ends with discussing future

directions.

3



CHAPTER 2: BACKGROUND

To provide motivation for this work, we start with a brief discussion of clinical trial design,

focusing on the alterations and the rationale that inspired the revised augmentation to the original

trial design.

The remainder of this chapter is organized as follows: in Section 2.2, we discuss peculiarities of

the data expected to originate from the ongoing clinical trial. This includes discussion of different

types of interval-censored data and other key aspects of the study relevant for the development

of proposed methodology. Section 2.3 reviews existing approaches for the regression analysis of

the interval-censored data and introduces recently developed mixture PH model for the analysis of

current-status data with instantaneous failures. This is then followed by a review of SU degradation

modeling using time-dependent Ornstein-Uhlenbeck Process under the framework of stochastic

differential mixed effect models.

2.1 Study Design

The Peanut SLIT and TLC Study is a revised augmentation to a pre-existing phase-II, prospective,

randomized, open label 66-month clinical study supported by the National Institutes of Allergy and

Infectious Diseases (NIAID) and conducted in the Allergy, Immunology and Rheumatology (AIR)

Division in the Department of Pediatrics at the University of North Carolina at Chapel Hill [26].

Protocols were approved by the Human Subjects Committee at the University of North Carolina.

We note that opposite of most studies that focus on estimating treatment effect, the study has an

objective to assess the effect of taking away therapy. Following the 48-month DBPCFC, the original

protocol mandated that the desensitized subjects be randomized in a blinded fashion 2:1 to placebo

or continued peanut SLIT for six months. To assess clinical SU, the placebo group would complete

the trial with 54-month DBPCFC, and the treatment group would discontinue open label SLIT for an

additional six months to complete the trial with 66-month DBPCFC. However, based on the results
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from [83] that showed only 50% SU after a month of using the presumed more robust OIT treatment

lead to suspicion that six months off SLIT would not work. Recognizing that the six-month period to

assess clinical tolerance was rather optimistic, arbitrary and less supported by prior research, and

possibility of negligible success rate would then translate into unacceptable risk and ethical concerns,

the protocol was revised with staggered sampling times beyond the dose maintenance period for

administration of final DBPCFC among desensitized subjects. This dissolved the need for a two-arm

trial and shortened the length of the overall clinical trial. Since time to loss of SU is an important

dimension that, in our knowledge, no prior study has investigated, the revised study offers a robust

framework and a systematic approach to study this clinically valuable information. In summary, a

randomized clinical trial is being conducted to evaluate the safety and efficacy of peanut SLIT in

inducing clinically SU among peanut allergic children.

Briefly, the study consists of a screening visit, baseline visit (sometimes combined with the

screening visit), build-up phase (approximately, 20 weeks), maintenance phase (42 months) and

lastly, SU phase (17 weeks). Upon enrollment, children between age 1 to 11 years underwent an

entry DBPCFC with 1000 mg of peanut protein to confirm the peanut allergy diagnosis and establish

a baseline threshold level. Following a positive DBPCFC, each subject was required to begin peanut

SLIT at a starting dose of 1 pump of a 1/100 dilution of peanut concentrate (∼ 1.5 mcg peanut

protein). During the build-up phase which lasted approximately 20 weeks, subjects were dosed

daily and administered increased number of pumps every 1-2 weeks as per the dosing schedule.

Subjects returned to the research unit for observed dosing with each change in peanut SLIT dilution

(1/100, 1/10, full concentration) and with every other dose increase on full concentration until the

maintenance dose of 16 pumps of full concentration peanut SLIT (4000 mcg peanut protein) was

achieved. During the maintenance phase which is underway, subjects continue daily administration

of the maintenance dose to return every 6 months for follow-up. At the end of this phase i.e. after at

least 48 months of peanut SLIT, subjects are required to undergo a second DBPCFC to 5000 mg of

peanut protein to assess desensitization. The desensitization criterion used for qualifying subjects for

the following phase of this study include meeting the minimal clinically relevant threshold (MCRT)

of 300 mg of peanut protein without symptoms [5]. Those who do not qualify are required to stop

peanut SLIT and conclude the study, with a recommendation to resume a strict peanut avoidance

diet. The desensitized subjects enter the SU phase during which peanut SLIT is discontinued. They
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are block randomized to one of the 17 weeks when the third and final DBPCFC, similar in structure

to the 48-month DBPCFC, is administered. The purpose of the final DBPCFC is to assess for

SU. This marks study completion and at the primary investigators clinical discretion, subjects are

recommended to transition to a daily peanut food equivalent to maintain the desensitized effect.

Due to the protocol revisions mid-way through the study, 24 of the total 51 who were awaiting

48-month DBPCFC, had an extended maintenance phase for a maximum of 6 months beyond the

initial 42 months. For analyses, this extension is disregarded based on prior evidence that suggests

negligible benefit of continued dosing on the overall treatment outcome.

2.1.1 Double Blind Placebo Controlled Food Challenge (DBPCFC)

Each study subject is administered the protocol DBPCFC at baseline, at the end of 48th month

and once during the 17-week SU phase. A nurse or physician who administers DBPCFC is blinded

to the testing material and so is the supervising investigator. Before each challenge, the subject is

required to have a physical exam and peak expiratory flow measurements performed.

The DBPCFC consists of randomly ordered administration of two parts: one, that consists of

graded doses of peanut flour and the other, of identical graded doses of placebo in the form of oat

flour. The doses are given every 10-20 minutes up to a cumulative dose of 1000 mg (25 mg, 50 mg,

100 mg, 250 mg, 575 mg) during the entry challenge and up to a cumulative dose of 5000 mg (100

mg, 200 mg, 500 mg, 800 mg, 1300 mg, 2100 mg) at the 48-month and final DBPCFCs. A minimum

10-minute observation period is allowed between doses to monitor for symptoms. Notably, unlike

latter challenges, the entry challenge is administered to a lower dose simply to prove allergy status

and not the treatment response.

Before resuming the second part of the challenge the subject is observed for a minimum period of

1 hour to allow for washout of dosing and the side effects of the first part of the challenge. Reactions

are scored using a Food Challenge Symptom Score (FCSS) sheet. If the subject begins to have

significant objective or persistent subjective symptoms, the food challenge is terminated and the

subject is given appropriate treatment. Subjects who are symptomatic and receive treatment are

observed for a minimum of 2 hours after the challenges are completed before being discharged from

the clinical research unit.
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2.1.2 Randomized Weekly Assignment for the Final Food Challenge

Before the start of the SU phase of the study, a computer-generated block randomization schedule

was prepared such that each subject had an equal probability of being randomized to one of the

following time periods: initial 6 weeks, between 7-12 weeks and between 13-17 weeks. A subject

was then assigned to a week sampled from the block of weeks they were randomized to. Based

on this randomization schedule, three desensitized subjects were randomly assigned to one of the

final DBPCFC administered each week during the 17-week SU phase. No desensitized subject is

administered a final challenge dose higher than the highest tolerated dose in the 48th month DBPCFC

for the ethical purposes of ensuring safety and because in this age group, continued increase in

threshold without treatment would not be expected.

2.2 Data Peculiarities: Case of Interval Censoring

This analysis is complicated by interval censoring due to the way the food challenges are

administered. In contrast to the missing data that provides no information, censoring refers to an

observation in the study being incomplete and hence, provide some information; that is, the quantity

of interest is observed only to fall into a certain range instead of being exactly known [38]. There are

three different types of censoring: left, right, and interval. Left censoring, usually a rare encounter,

occurs when the event has already occurred before the earliest study time. Right censoring, the most

common of all, occurs when the event does not occur before the study ends. This usually happens

due to time constraints or resource limitations. Interval censoring occurs when the exact quantity is

unknown but is known to occur within some range. Right and left-censored data are specific types of

interval-censored data. However, the statistical methods for right-censored data do not apply to the

interval-censored data and in general, interval-censored data is more challenging to compute.

This study presents a case of triple interval censored data: first, subject’s true threshold is

obscured by the nature of food challenges, it is bounded by no observed adverse event dose level

(NOAEL) and the lowest observed adverse event dose level (LOAEL). In other words, NOAEL is

defined to be the highest administered dose at which no adverse event is recorded and LOAEL is

the lowest administered dose at which an adverse event is recorded [77]. Therefore, subject’s true

threshold is interval censored and could be any value within the interval defined by NOAEL and
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LOAEL; second, in the absence of therapy, since it is assumed to be guided by a monotonically

non-increasing latent process, the time to loss of SU to a targeted dose administered at staggered

observation times is either left- or right-censored and depends on rate at which the individual’s

threshold is likely to fall once he/she is off-therapy. Interval-censored data is classified as either

Case-1 or Case-2 data.

2.2.1 Case-1 Interval-Censoring with Instantaneous Events

Case-1, also known as current-status data, usually refers to the case when the only knowledge

that exists on the quantity of interest is whether it is lower than the observed quantity [36]. In context

of our study design, the only known knowledge of the time to loss of SU is whether it has occurred

before the observation time when the final DBPCFC is administered. Unlike right censoring, the

exact value of the survival time is never observed. In other words, if T ∈ (L,R] where T is the

survival time of interest, then for Case-1 censored data, either L = 0 or R =∞.

2.2.2 Case-2 or Case-k Interval-Censoring

Case-2 interval-censored data includes at least one interval in which both endpoints belong to

(0,∞) [38; 36]. Thus, we only know that T has occurred either within some random time interval, or

before the left end point, or after the right end point of the interval. More precisely, with the two

observed endpoints, L and R, the data observed is: (ID≤L, IL<D≤R, L,R). In context of our study,

the threshold data of food challenge is Case-2 interval-censored, where D represents the unobserved

true dose threshold. Case-1 interval-censored data is a special case of Case-2 interval-censored data

when either L = 0 or R =∞. Case-k interval censoring arises when there are k interval-censored

observations per subject. This is a generalization of case-2 interval censoring. Our study does not

present this kind of censored data.

2.2.3 Independence Assumption

For interval-censored data, like the right-censored data, there is an independence assumption.

It is assumed that the mechanism that generates the censoring is independent about the event time

of interest [38]. By virtue of the study design, which has the final DBPCFCs at staggered sampling

examination times, the observational process is independent of the failure times, which is required by
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most approaches to the analysis of interval-censored data. Essentially this says that, except for the

fact the T lies between L and R, the interval does not provide any extra information about T .

2.2.4 Instantaneous Failures

At the 48-month DBPCFC, subjects who exhibit threshold lower than MCRT or the targeted

dose level are assumed to have lost tolerance for the targeted dose at the study initiation. This could

be construed as instantaneous failures suggesting that some subjects can never reach the targeted

threshold. The occurrence of instantaneous failures leads to some probability mass at time zero for

the distribution of time to loss of SU.

2.3 Methodology: Existing, New and Future Work

In this section, we develop methodologies to analyze two primary endpoints: the time to loss

of SU to a given target dose threshold and the mean reverting threshold, with focus on assessing

their association with risk factors based on data arising from the clinical trial, and to estimate the

baseline survival in the absence of covariate effect. It is worthwhile to note that these objectives are

studied through events during the SU phase of the clinical trial. Therefore, for analyses, we mark the

48-month DBPCFC as the ”zero” time-point embarking the study. We start with a straightforward

but a more constrained approach of defining our endpoint. By using more confined information than

that at our disposal, we devise a technique that serves an approximate solution. We later build more

sophisticate techniques capitalizing on threshold distribution from the challenge tests to find solution

to relatively more relaxed problem.

2.3.1 Mixture Proportional Hazards Model

For this method, we confine the scope of efficacy endpoint, time to loss of SU, to only those

dose levels that are administered during the final DBPCFC. Further, we assume that subject’s true

threshold upon cessation of therapy is guided by a monotonically non-increasing latent process. Then,

as discussed in the earlier section, the endpoints are not observable but rather are known relative to the

staggered sampling time-points of the final DBPCFC, resulting in case−1 interval censored data, with

non-informative censoring times. Additionally, subjects who exhibit a threshold lower than MCRT
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or the targeted dose, are assumed to have lost tolerance for the targeted dose at the study initiation;

i.e., in the context of evaluating time to loss of SU, these subjects experience what is commonly

referred to as an instantaneous failure. To analyze the resulting case− 1 interval-censored data with

instantaneous failures, we examine recently developed mixture model, which is a generalization

of the semi-parametric PH model. Under the standard PH assumption, the model assumes that the

covariates provide for a multiplicative effect on the baseline risk of experiencing a failure both at

study initiation and thereafter.

Originally proposed by [17], the proportional hazards (PH) model is (arguably) the most widely

used method for the purposes of analyzing time-to-event data. Unfortunately, the underpinnings of

the semi-parametric variants of this model to allow for the analysis of interval-censored (IC) data

has proven to be more challenging since the time of event is always obscured. Several advances

have been made to analyze interval-censored data under the PH model. Methods include joint

estimation of regression parameters and the baseline hazard function using a Newton-Raphson based

algorithm [25], a marginal likelihood approach [69] and Monte Carlo expectation maximization

(EM) algorithm [28] for the estimation of regression coefficients alone, Non-parametric maximum

likelihood methods such as Turnbull’s self-consistency algorithm [80], iterative convex minorant

(ICM) algorithm [32], generalization of Rosen algorithm [66; 93] that primarily focus on estimation

of baseline survival or the failure time distribution function in the absence of covariate effect.

Later, techniques such as ICM reformulated generalized gradient projection method [60] and a

semi-parametric alternative based on multiple imputation [61] allowed for the estimation of covariate

effects. More recent approaches include modeling formulations of baseline hazard allowing for

covariate effects using expectation-maximization (EM) algorithm [27], local likelihood techniques

[7], penalized likelihood with a piecewise-linear spline [14], monotone B-splines [92]. Methods

that focus on current status data pertaining to a single failure time of interest include proportional

hazards model of [34], proportional odds model using sieve method [35], a computationally efficient

EM algorithm [53; 87]. A compendium of methods relating to analysis of IC data could be found in

[38; 36; 94; 47].

The bulk of the aforementioned work can either be computationally resource intensive or have

difficult implementation. As a result, analysts tend to adopt well established partial likelihood

method (coxph in R, phreg in SAS) used for right-censored data by using the midpoint or the
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right endpoint of the observed interval as the exact failure time for the left- and interval-censored

observations [31; 4]. However, such an approach has been demonstrated to result in biased estimation

and inference [67; 58]. Further, none of these techniques are designed to account for the effect of

instantaneous failures. The proposed analyses is built upon a more flexible, robust to initialization and

computationally efficient semi-parametric methods of Wang et al, 2016 [87] with extensions detailed

in recent Withana Gamage et al, [89], that account for the special case of case− 1 interval-censored

data subject to instantaneous failures. For the ease of implementation, the code which implements the

proposed methodology has been added to the existing R software package ”ICsurv” and is freely

available from the CRAN.

Briefly, the methodology offers modeling flexibility through the use of monotone splines [64] for

estimating the cumulative baseline hazard. To estimate all the unknown parameters, a computationally

efficient EM algorithm is developed through a data augmentation scheme involving latent Poisson

random variables. At each iteration of this algorithm, the spline coefficients are updated in closed

form, with the regression parameters being updated through solving a low-dimensional system

of equations. Through extensive simulation studies [89], the proposed methodology is shown to

provide reliable estimation and inference with respect to the covariate effects, baseline survival

function, and baseline probability of experiencing an instantaneous failure. The in-depth discussion

of this approach is provided in Chapter 3. In Chapter 4, we assess performance and power of this

methodology in context of the data originating from the clinical trial.

2.3.2 SU Degradation Modeling Based on a Time-Dependent Ornstein Uhlenbeck

Process

In this analysis, we extend the scope of efficacy endpoint to include the time to loss of SU to any

arbitrary threshold, for e.g., expected population threshold reducing by half (also called ”half− life”

of population sensitivity threshold) or individual’s expected threshold dropping by at least a level of

the administered dose or even below MCRT. To this end, we consider modeling individual threshold

trajectories to emulate a systematic biological immune process that is expected upon therapy cessation.

This entails modeling a process-governing systematic trajectory that constitutes repeated threshold

measurements over time with perturbations due to individual differences; it is reasonable to assume
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that responses for all subjects follow the same biological process, but with varying initial thresholds

and random fluctuations among individuals.

Dynamical biological processes are often described by systems of stochastic differential equations

that account for noisy components often present in biological systems. The system noise responsible

for internal system uncertainties is modeled by including a diffusion term in the driving equations.

On other hand, external stochastic impacts such as inter-individual variability is modeled using

mixed-effects framework that allows splitting total variation into its within- and between-individual

components, leading to more precise estimation of population parameters. This inter-individual

variability is modeled with the random effect, and the intra-individual variability with an additive

noise term. When both system noise and random effects are considered, stochastic differential

mixed-effects models emerge [19]. This class of models, where random effects are incorporated

into a SDE model, enable simultaneous depiction of system noise in the process dynamics and

variability between experimental units, thus providing a powerful and flexible modeling tool suited

to biomedical applications involving pharmaco-kinetic/pharmaco-dynamic studies [63; 79].

SDEs are adopted widely in the field of reliability engineering to model degradation processes

with temporary fluctuations in an overall degrading trend [18]. But because of the complex parameter

estimation in SDE models, only a few cases can be solved explicitly using likelihood inference with

explicit transition density. The Ornstein-Uhlenbeck (OU) [45; 81] process is one of few cases which

can be solved explicitly with also explicit probability laws in SDEs. However, application of such a

process into the field of pharmacodynamics could be an interesting but challenging balance between

the modeling and the computability. Our concentration in this thesis will be put on extending and

estimating the time-dependent OU process given by dYt = [A(t)Yt + B(t)]dt + σ(t)dWt, where

dYt represents change in SU threshold over a finite time interval, A(t) is the process drift, B(t)

explains reverting mean, σ(t) represents process diffusion.

Taking into account expert clinical opinion, we justify the use of OU based diffusion process for

modeling SU degradation trajectories with the following assumptions: (i) in the absence of therapy,

individual’s threshold trajectory that on an average is monotonically non-increasing over time, will

have fluctuations over relatively short time intervals; (ii) thresholds are log normally distributed to

have normally distributed threshold change. This allows to measure percentage change in threshold

rather than absolute change, since the change is likely to depend on the initial value; (iii) individual
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will revert to the baseline threshold in the absence of immunotherapy, or perhaps have a slight boost

in the immune system forever; (iv) population mean will decay exponentially at a rate different from

the drift rate of an individual; (v) finally, individuals differ in their inherent tendency to lose their SU

threshold over time. Thus, the model assumes that the process dynamics responsible for evolving

threshold in each subject follows a common functional form, and the inter-individual differences

arise due to different realizations of the Brownian motion paths and of random parameters.

A variety of statistical inference methods for discretely observed system diffusion processes have

been developed during the past decades [20; 3]. On other hand, the theory for more commonly applied

mixed-effects models, both linear and non-linear, is also well developed for deterministic models

(without system error) [9; 84], and standard software for model fitting is available [15; 49]. However,

to our knowledge there is limited theory at present for SDE models with random effects. [59]

implemented SDEs in a non-linear mixed-e ects model, where parameter estimation was performed

by an approximation of the likelihood function that is constructed by combining the first-order

conditional estimation (FOCE) method with the extended Kalman filter. Recently, [22] considered

non-linear mixed models defined by SDEs wherein the parameters of the diffusion process have

random effects and proposed a maximum likelihood estimation method based on the stochastic

approximation EM algorithm. As SDE models are gaining more popular venue in biomedical

applications, there is a pressing need for developing mixed effects theory and parameter estimation.

[39] reviews methods for PK/PD modeling, but regrets that system noise is not considered due to

difficult estimation and lack of software in the pharmacokinetic field.

In this work, we present OU based SDMEM and derive an expression for the likelihood function

and transition density in context of the interval-censored data emanating from the study. Inspired by

the the works of [88; 90], we adopt Bayesian framework to estimate the process parameters using

hybrid Metropolis-Hastings algorithm within a Gibbs sampler and assess finite sample performance

of this procedure based on extensive simulation studies. Once the process parameters are estimated,

we propose to apply direct maximization techniques or use Bayesian framework to estimate FPT to

threshold levels of interest defined at the beginning of this section.
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CHAPTER 3: A PROPORTIONAL HAZARDS MODEL FOR INTERVAL-CENSORED DATA
SUBJECT TO INSTANTANEOUS FAILURES

The proportional hazards (PH) model is one of the most popular models used to analyze time to

event data arising from clinical trials and longitudinal studies, among others. In many such studies,

the event time of interest is not directly observed but rather is known relative to periodic examination

times; i.e., practitioners observe either current status or interval-censored data. The analysis of data

of this structure is often fraught with many difficulties. Further exacerbating this issue, in some

such studies the observed data also consists of instantaneous failures; i.e., the event times for several

study units coincide exactly with the time at which the study begins. In light of these difficulties,

this work focuses on developing a mixture model, under the PH assumptions, which can be used to

analyze interval-censored data subject to instantaneous failures. To allow for modeling flexibility,

two methods of estimating the unknown cumulative baseline hazard function are proposed; a fully

parametric and a monotone spline representation are considered. Through a data augmentation

procedure involving latent Poisson random variables, an expectation-maximization (EM) algorithm

is developed to complete model fitting. The resulting EM algorithm is easy to implement and is

computationally efficient. Moreover, through extensive simulation studies the proposed approach is

shown to provide both reliable estimation and inference. The motivation for this work arises from

an ongoing randomized clinical trial funded by the National Institutes of Allergy and Infectious

Diseases, aimed at assessing the effectiveness of a new peanut allergen treatment with respect to

desensitization in children.

3.1 Introduction

Interval-censored data commonly arise in many clinical trials and longitudinal studies, and is

characterized by the fact that the event time of interest is not directly observable, but rather is known

relative to observation times. As a special case, current status data (or case-1 interval censoring)
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arise when there exists exactly one observation time per study unit; i.e., at the observation time one

discovers whether or not the event of interest has occurred. Data of this structure often occurs in

resource limited environments or due to destructive testing. Alternatively, general interval-censored

data (or case-2 interval censoring) arise when multiple observation times are available for each study

unit, and the event time can be ascertained relative to two observation times. It is well known that

ignoring the structure of interval-censored data during an analysis can lead to biased estimation and

inaccurate inference; see [58; 23]. Further exasperating this issue, some studies are subject to the

occurrence of instantaneous failures; i.e., the event time of interest for a number of the study units

occurs at time zero. This feature can occur as an artifact of the study design or may arise during an

intent-to-treat analysis [50; 52; 44]. For example, [16] describes a registry based study of end-stage

renal disease patients, with the time of enrollment corresponding to the time at which the patient

first received dialysis. In this study, several of the patients expire during the first dialysis treatment,

leading to the occurrence of an instantaneous failure. Survival data with instantaneous events is not

uncommon in epidemiological and clinical studies, and for this reason, herein a general methodology

under the proportional hazards (PH) model is developed for the analysis of interval-censored data

subject to instantaneous failures.

Originally proposed by [17], the PH model has (arguably) become one of the most popular

regression models for analyzing time-to-event data. For analyzing interval-censored data under the

PH model, several notable contributions have been made in the recent years; e.g., see [25; 69; 28;

32; 60; 61; 27; 7; 14; 92; 38; 94; 47]. More recently, [86] developed a methodology under the PH

model which can be used to accurately and reliably analyze interval-censored data. In particular, this

approach makes use of a monotone spline representation to approximate the cumulative baseline

hazard function. In doing so, an expectation-maximization (EM) algorithm is developed through a

data augmentation scheme involving latent Poisson random variables which can be used to complete

model fitting. It is worthwhile to note, that none of the aforementioned techniques were designed to

account for the effects associated with instantaneous failures.

The phenomenon of instantaneous (or early) failures occur in many lifetime experiments; to

include, but not limited to, reliability studies and clinical trials. In reliability studies, instantaneous

failures may be attributable to inferior quality or faulty manufacturing, where as in clinical trials

these events may manifest due to adverse reactions to treatments or clinical definitions of outcomes.
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When the failure times are exactly observed, as is the case in reliability studies, it is common to

incorporate instantaneous failures through a mixture of parametric models, with one being degenerate

at time zero; e.g., see [54; 40; 57; 55; 62; 42]. In the case of interval-censored data, more common

among epidemiological studies and clinical trials, accounting for instantaneous failures becomes a

more tenuous task, with practically no guidance available among the existing literature. Arguably, in

the context of interval-censored data, one could account for instantaneous failures by introducing an

arbitrarily small constant for each as an observation time, and subsequently treat the instantaneous

failures as left-censored observations. In doing so, methods for interval-censored data, such as

those discussed above, could be employed. While this approach may seem enticing, in the case

of a relatively large number of instantaneous failures it has several pitfalls. In particular, through

numerical studies (results not shown) it has been determined that this approach when used in

conjunction with modeling techniques such as those proposed in [60; 86] may lead to inaccurate

estimation of the survival curves and/or the covariate effects. Further, after an extensive literature

review, it does not appear that any methodology has previously been developed to specifically address

data of this structure. For these reasons, herein a general methodology under the PH model is

developed for the analysis of interval-censored data subject to instantaneous failures.

This work seeks to provide a comprehensive methodology that can be utilized to analyze

interval-censored data subject to instantaneous failures. In particular, several primary contributions

are made: (1) a new mixture model is proposed, (2) a computationally efficient algorithm is developed

for fitting the proposed model, and (3) a technique for uncertainty quantification is outlined. The

new mixture model, which is a generalization of the semi-parametric PH model studied in [86],

is developed under the standard PH assumption; i.e., the covariates provide for a multiplicative

effect on the baseline risk of experiencing a failure both at time zero and thereafter. Two separate

techniques are developed for the purposes of estimating the cumulative baseline hazard function. The

first allows a practitioner to specify a parametric form (up to a collection of unknown coefficients)

for the unknown function, while the second provides for more modeling flexibility through the

use of the monotone splines of [64]. Under either formulation, a two-stage data augmentation

scheme involving latent Poisson random variables is used to develop an efficient EM algorithm

which can be used to estimate all of the unknown parameters. Through extensive simulation studies

the proposed methodology is shown to provide reliable estimation and inference with respect to
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the covariate effects, baseline cumulative hazard function, and baseline probability of experiencing

an instantaneous failure. This work is primarily motivated by an ongoing randomized clinical trial

supported by the National Institutes of Allergy and Infectious Diseases (NIAID) being conducted at

the University of North Carolina at Chapel Hill, and is aimed at developing, assessing, and validating

the proposed approach as a viable tool which can be used to analyze the data resulting from this trial

once it is complete.

The remainder of this article is organized as follows. In Section 2, an in depth discussion of the

motivating randomized clinical trial is provided. Section 3 presents the development of the proposed

model, the derivation of the EM algorithm, and outlines uncertainty quantification. The finite sample

performance of the proposed approach is evaluated through extensive numerical studies, the features

and results of which are provided in Section 4. Section 5 concludes with a summary discussion.

Further, code which implements the proposed methodology has been added to the existing R software

package ICsurv and is freely available from the CRAN (i.e., http://cran.us.rproject.org/).

3.2 Motivating Application

Supported by the National Institutes of Allergy and Infectious Diseases and conducted at the

University of North Carolina at Chapel Hill, the Peanut Sublingual Immunotherapy (SLIT) and

Induction of Clinical Tolerance in Peanut Allergic Children is an ongoing clinical trial that was

initiated in 2012 to assess the effectiveness of peanut SLIT to induce clinical tolerance. The protocol

was revised in 2016 with an altered study design to assess time to loss of tolerance among subjects

desensitized to peanut allergen after 48 months of peanut SLIT induction. Participants include

children between 1-11 years of age at the time of enrollment. The revised study, still underway,

consists of a build-up/maintenance phase (approximately, 48 months), wherein SLIT therapy is

incremented during the initial 6 months and maintained thereafter, and a tolerance phase (17 weeks),

wherein the therapy is discontinued. Each phase ends with a Double-Blind Placebo Control Food

Challenge (DBPCFC), a gold standard, to assess desensitization- (an increase in reaction threshold

while receiving peanut SLIT) and loss of tolerance- (maintaining an increase in reaction threshold

after discontinuing study drug) thresholds. The tolerance phase consists of staggered examination

time-points between 1-17 weeks that each subject has an equal probability of being randomized to for

17



administration of final DBPCFC. Further details on the study design can be found in the companion

paper [M et al.].

The study underway has a well defined end point, the time to loss of sustained unresponsiveness

(SU) to a targeted dose level, that is measured as the time from the 48th month DBPCFC (time

of study entry) until the final DBPCFC. Due to the staggered randomized time-points of the final

DBPCFC, the endpoints are not observable but rather are known relative to the times of the final

DBPCFC, resulting in case-1 interval-censored data, with non-informative censoring times. Further,

a few subjects that either fail to meet a minimal clinically relevant threshold (MCRT) or exhibit a

threshold lower than the targeted dose level at the study entry, result in instantaneous events with

some probability mass at time zero. At enrollment, several risk factors were collected on each patient

and include age, gender, and several clinical measurements. The primary objectives of the analysis

of the data arising from this study, once completed, involves assessing the association of risk factors

with the end point, as well as estimating the baseline survival function and the instantaneous failure

probability.

3.3 Model and Methodology

Let T denote the failure time of interest. Under the PH model, the survival function can be

generally written as

S(t|x) = S0(t)e
x′β

(3.1)

where x is a (r × 1)-dimensional vector of covariates, β is the corresponding vector of regression

coefficients, and S0(t) is the baseline survival function. Under the phenomenon of interest, there is a

baseline risk (probability) of experiencing an instantaneous failure; i.e., S(0|x = 0r) = S0(0) =

1−p, where p ∈ [0, 1] is the baseline risk and 0r is a (r×1)-dimensional vector of zeros. Thus, under

the PH assumptions, the probability of experiencing an instantaneous failure, given the covariate

information contained in x, can be ascertained from (3.1) as

P (T = 0|x) = 1− S(0|x)

= 1− (1− p)ex
′β
.
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Similarly, given that an instantaneous failure does not occur, it is assumed that the failure time

conditionally follows the standard PH model; i.e.,

P (T > t|x, T > 0) = 1− F (t|x),

where F (t|x) = 1 − exp{−Λ0(t) exp(x′β)} and Λ0(·) is the usual cumulative baseline hazard

function. Note, in order for F (·|x) to be a proper cumulative distribution function, Λ0(·) should be

a monotone increasing function with Λ0(0) = 0. Thus, through an application of the Law of Total

Probability, one has that

P (T > t|x) = P (T > t|x, T > 0)P (T > 0|x)

= {1− F (t|x)}(1− p)ex
′β
,

for t > 0. Based on these assumptions, the cumulative distribution function of T can be expressed as

the following mixture model,

H(t|x) =

 1− e−αex
′β
, for t = 0,

1− e−αex
′β{1− F (t|x)}, for t > 0,

where, for reasons that will shortly become apparent, 1 − p is re-parametrized as exp(−α), for

α > 0.

3.3.1 Observed data likelihood

In scenarios where interval-censored data arise, one has that the failure time (T ) is not directly

observed, but rather is known relative to two observation times, say L < R; i.e., one has that

L < T < R. In general, the four different outcomes considered here can be represented through the

values of L and R; i.e., an instantaneous failure (L = R = 0), T is left-censored (0 = L < R <∞),

T is interval-censored (0 < L < R < ∞), and T is right-censored (0 < L < R = ∞). For

notational convenience, let ψ be an indicator denoting the event that T is not an instantaneous

failure, and δ1, δ2, and δ3 be censoring indicators denoting left-, interval-, and right-censoring,
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respectively; i.e., ψ = I(T > 0), δ1 = I(0 = L < R < ∞), δ2 = I(0 < L < R < ∞), and

δ3 = (0 < L < R =∞).

In order to derive the observed data likelihood, it is assumed throughout that the individuals are

independent, and that conditional on the covariates, the failure time for an individual is independent

of the observational process. This assumption is common among the survival literature; see, e.g.,

[94; 51] and the references therein. The observed data collected on n individuals is given by

D = {(Li, Ri,xi, ψi, δi1, δi2, δi3); i = 1, 2, . . . , n}, which constitutes n independent realization of

{(L,R,x, ψ, δ1, δ2, δ3). Thus, under the aforementioned assumptions, the observed data likelihood

is given by

Lobs(θ) =
n∏
i=1

[
F (Ri|xi)δi1{F (Ri|xi)− F (Li|xi)}δi2{1− F (Li|xi)}δi3

]ψi
{
e−αe

x′β
}ψi{

1− e−αex
′β
}1−ψi

, (3.2)

where θ represents the set of unknown parameters which are to be estimated.

3.3.2 Representations of Λ0(·)

The unknown parameters in the observed likelihood involve the regression parameters β, α, and

the cumulative baseline hazard function Λ0(·). Herein, two techniques for modeling the cumulative

baseline hazard function are discussed. The first approach considers the use of a fully parametric

model, which is known up to a set of unknown coefficients. For example, a linear, quadratic, or

logarithmic parametric model can be specified by setting Λ0(t) = γ1t, Λ0(t) = γ1t + γ2t
2, and

Λ0(t) = γ1 log(1 + t), respectively. Note, all of these models obey the constraints placed on Λ0(·),

as long as the γl > 0, for l = 1, 2. In general, a parametric form for the cumulative baseline hazard

model can be specified as

Λ0(t) =
k∑
l=1

γlbl(t), (3.3)

where bl(·) is a monotone increasing function, bl(0) = 0, and γl > 0, for l = 1, ..., k. Under these

mild conditions, it is easily verified that Λ0(·) inherits the same properties, and therefore adheres to

the aforementioned constraints.
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The second approach, which is inspired by the works of [86; 48; 85; 13; 53; 87], views Λ0(·) as

an unknown function, and hence an infinite dimensional parameter. To reduce the dimensionality

of the problem, the monotone splines of [64] are used to approximate Λ0(·). Structurally, this

representation is identical to that of (3.3) with the exception that bl(·) is a spline basis function and

γl is an unknown spline coefficient, for l = 1, . . . , k. Again, it is required that γl > 0, for all l, to

ensure that Λ0(·) is monotone increasing function. Briefly, the spline basis functions are piecewise

polynomial functions and are fully determined once a knot sequence and the degree are specified.

The shape of the basis splines are predominantly determined by the placement of the knots while

the degree controls the smoothness [13]. For instance, specifying the degree to take values 1, 2 or 3

correspond to the use of linear, quadratic or cubic polynomials, respectively. Given the m knots and

degree, the k (k = m+ degree − 2) basis functions are fully determined. For further discussion on

specifying the knots, as well as their placement, see [86; 64; 53].

3.3.3 Data Augmentation

Under either of the representations of Λ0(·) proposed in Section 3.2, the unknown parameters

in the observed data likelihood consist of θ = (β′,γ ′, α)′, where γ = (γ1, . . . , γk)
′. Since the

observed data likelihood exists in closed-form, the maximum likelihood estimator (MLE) of θ could

be obtained by directly maximizing (3.2) with respect to θ; i.e., one could obtain θ̂, the MLE of

θ, as θ̂ = argmaxθLobs(θ). It is worthwhile to point out that the numerical process of directly

maximizing (3.2), with respect to θ, is often unstable and rarely performs well [87].

To circumvent these numerical instabilities, an EM algorithm was derived for the purposes of

identifying the MLE. This algorithm was developed based on a two-stage data augmentation process,

where carefully structured latent Poisson random variables are introduced as missing data. The first

stage relates both the instantaneous failure indicator and the censoring indicators to latent Poisson

random variables; i.e., the Zi, Wi, and Yi are introduced such that

Zi ∼ Poisson{Λ0(ti1) exp(x′iβ)},

Wi ∼ Poisson[{Λ0(ti2)− Λ0(ti1)} exp(x′iβ)],

Yi ∼ Poisson{α exp(x′iβ)},
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subject to the following constraints: δi1 = I(Zi > 0), δi2 = I(Zi = 0,Wi > 0), δi3 = I(Zi =

0,Wi = 0), and ψi = I(Yi = 0), where ti1 = RiI(δi1 = 1) + LiI(δi1 = 0), and ti2 = RiI(δi2 =

1) + LiI(δi3 = 1). At this stage of the data augmentation, the conditional likelihood is

LA(θ) =
n∏
i=1

{
PZi(Zi)PWi(Wi)

δi2+δi3Ci

}ψi
PYi(Yi)I(Yi = 0)ψiI(Yi > 0)(1−ψi), (3.4)

where Ci = δi1I(Zi > 0) + δi2I(Zi = 0,Wi > 0) + δi3I(Zi = 0,Wi = 0) and PA(·) is the

probability mass function of the random variable A. In the second and final stage, the Zi and Wi

are separately decomposed into the sum of k independent latent Poisson random variables; i.e.,

Zi =
∑k

l=1 Zil and Wi =
∑k

l=1Wil, where

Zil ∼ Poisson{γlbl(ti1) exp(x′iβ)},

Wil ∼ Poisson[{γlbl(ti2)− γlbl(ti1)} exp(x′iβ)].

At this stage, the augmented data likelihood is

LC(θ) =
n∏
i=1

k∏
l=1

[
PZil(Zil)I(Zi = Zi·){PWil

(Wil)I(Wi = Wi·)}δi2+δi3Ci

]ψi
PYi(Yi)I(Yi = 0)ψiI(Yi > 0)(1−ψi), (3.5)

where Zi· =
∑k

l=1 Zil and Wi· =
∑k

l=1Wil. It is relatively easy to show that by integrating (3.5)

over the latent random variables one will obtain the observed data likelihood depicted in (3.2).

3.3.4 EM algorithm

In general, the EM algorithm consists of two steps: the expectation step (E-step) and the

maximization step (M-step). The E-step in this algorithm involves taking the expectation of

log{Lc(θ)} with respect to all latent variables conditional on the current parameter value θ(d) =

(β(d)′ ,γ(d)′ , α(d))′ and the observed dataD. This results in obtaining the Q(θ,θ(d)) function, where

Q(θ,θ(d)) = E[log{Lc(θ)}|D,θ(d)]. The M-step then finds θ(d+1) = argmaxθQ(θ,θ(d)). This

process is repeated in turn until convergence of the algorithm is attained. In this particular setting,
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the E-step yields Q(θ,θ(d)) as

Q(θ,θ(d)) =
n∑
i=1

k∑
l=1

ψi

[
{E(Zil) + (δi2 + δi3)E(Wil)}{log(γl) + x′iβ}

−γlex
′
iβ{(δi2 + δi1)bl(Ri) + δi3bl(Li)}

]
+

n∑
i=1

E(Yi) log(αex
′
iβ)− αex′iβ +H(θ(d)),

where H(θ(d)) is a function of θ(d) but is free of θ. Notice that in Q(θ,θ(d)) we suppress, for

notational convenience, the dependence of the expectations on the observed data and θ(d); i.e., from

henceforth it should be understood that E(·) = E(·|D,θ(d)).

An enticing feature, which makes the proposed approach computationally efficient, is that all of

the expectations in Q(θ,θ(d)) can be expressed in closed-form, and moreover can be computed via

simple matrix and vector operations. In particular, from (3.4) it can be ascertained that if δi1 = 1

and ψi = 1 then Zi conditionally, given θ(d) andD, follows a zero-truncated Poisson distribution,

and it follows a degenerate distribution at 0 for any other values of δi1 and ψi. Thus, the conditional

expectation of Zi, given θ(d) andD, can be expressed as

E(Zi) = δi1ψiΛ
(d)
0 (ti1) exp(x′iβ

(d))
[
1− exp{−Λ

(d)
0 (ti1) exp(x′iβ

(d))}
]−1

,

where Λ
(d)
0 (t) =

∑k
l=1 γ

(d)
l bl(t). Through a similar set of arguments one can obtain the necessary

conditional expectations of Wi and Yi as

E(Wi) = δi2ψi{Λ(d)
0 (ti2)− Λ

(d)
0 (ti1)} exp(x′iβ

(d))(
1− exp[−{Λ(d)

0 (ti2)− Λ
(d)
0 (ti1)} exp(x′iβ

(d))]
)−1

,

E(Yi) = (1− ψi)α(d) exp(x′iβ
(d))

[
1− exp{−α(d) exp(x′iβ

(d))}
]−1

,

respectively. Further, from (3.5) it can be ascertained that if δi1 = 1 and ψi = 1 then Zil conditionally,

given Zi,D and θ(d), follows a binomial distribution with Zi being the number of trials and

γ
(d)
l bl(ti1){Λ(d)

0 (ti1)}−1 being the success probability, and it is follows a degenerate distribution at 0

for any other values of δi1 and ψi. Thus, through an application of the Law of Iterated Expectations,
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the conditional expectation of Zil, given θ(d) andD, can be expressed as

E(Zil) = E(Zi)γ
(d)
l bl(ti1){Λ(d)

0 (ti1)}−1.

Through a similar set of arguments one can obtain the necessary conditional expectation of Wil as

E(Wil) = E(Wi)γ
(d)
l {bl(ti2)− bl(ti1)}{Λ(d)

0 (ti2)− Λ
(d)
0 (ti1)}−1.

Note, in the expressions of the expectations of Zil and Wil the dependence on δi1, δi2, and ψi are

suppressed with the properties associated with these variables being inherited from the expectations

associated with Zi and Wi, respectively.

The M-step of the algorithm then finds θ(d+1) = argmaxθQ(θ,θ(d)). To this end, consider the

partial derivatives of Q(θ,θ(d)) with respect to θ which are given by

∂Q(θ,θ(d))

∂γl
=

n∑
i=1

ψi
[
γ−1
l {E(Zil) + (δi2 + δi3)E(Wil)} − ex

′
iβ{(δi2 + δi1)bl(Ri)

+δi3bl(Li)}
]
, (3.6)

∂Q(θ,θ(d))

∂α
=

n∑
i=1

−ex′iβ + α−1E(Yi), (3.7)

∂Q(θ,θ(d))

∂β
=

n∑
i=1

[
ψi{E(Zi) + δi2E(Wi)} − ψi{(δi1 + δi2)Λ0(Ri) + δi3Λ0(Li)}ex

′
iβ

−αex′iβ + E(Yi)
]
xi. (3.8)

By setting (3.6) equal to zero and solving for γl, one can obtain

γ∗l (β) =

∑n
i=1 ψi{E(Zil) + δi2E(Wil)}∑n

i=1 ψi{(δi2 + δi1)bl(Ri) + δi3bl(Li)}ex
′
iβ
, (3.9)

for l = 1, . . . , k. Similarly, by setting (3.7) equal to zero and solving for α, one can obtain

α∗(β) =

∑n
i=1E(Yi)∑n
i=1 e

x′iβ
. (3.10)
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Notice that γ∗l (β) and α∗(β) depend on β. Thus, one can obtain β(d+1) by setting (3.8) equal to zero

and solving the resulting system of equations for β, after replacing γl and α by γ∗l (β) and α∗(β),

respectively. Note, the aforementioned system of equations can easily be solved using a standard

Newton Raphson approach. Finally, one obtains γ(d+1)
l and α(d+1) as γ∗l (β(d+1)) and α∗(β(d+1)),

respectively.

The proposed EM algorithm is now succinctly stated. First, initialize θ(0) and repeat the

following steps until converges.

1. Calculate β(d+1) by solving the following system of equations

n∑
i=1

[
ψi{E(Zi) + δi2E(Wi)} − α∗(β)ex

′
iβ + E(Yi)

]
xi =

n∑
i=1

k∑
l=1

ψi{(δi1 + δi2)bl(Ri)

+δi3bl(Li)}γ∗l (β)ex
′
iβxi,

where γ∗l (β) and α∗(β) are defined above.

2. Calculate γ(d+1)
l = γ∗l

(
β(d+1)

)
for l = 1, . . . , k and α(d+1) = α∗

(
β(d+1)

)
.

3. Update d = d+ 1.

At the point of convergence, define θ(d) = (β(d)′ ,γ(d)′ , α(d))′ to be the proposed estimator θ̂ =

(β̂′, γ̂ ′, α̂)′, which is the MLE of θ.

3.3.5 Variance estimation

For the purposes of uncertainty quantification, several variance estimators were considered and

evaluated; e.g., the inverse of the observed Fisher information matrix, the Huber sandwich estimator,

and the outer product of gradients (OPG) estimator. After extensive numerical studies (results not

shown), it was found that the most reliable variance estimator, among those considered, was that of

the OPG estimator. In general, the OPG estimator is obtained as

V̂ (θ̂) =

[
1

n

n∑
i=1

ĝi(θ̂)ĝ
′
i(θ̂)

]−1
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where ĝi(θ̂) = ∂li(θ)/∂θ|
θ=θ̂

and li(θ) is the log-likelihood contribution of the ith individual.

Using this estimator, one can conduct standard Wald type inference.

3.4 Simulation Study

In order to investigate the finite sample performance of the proposed methodology, the following

simulation study was conducted. The true distribution of the failure times was specified to be

H(t|x) =

 1− e−αex
′β
, for t = 0,

1− e−αex
′β{1− F (t|x)}, for t > 0,

where p = 0.3 (i.e., α = − log(0.7)), x = (x1,x2)′, x1 ∼ N(0, 1), x2 ∼ Bernoulli(0.5), and

β = (β1, β2)′, where β1 and β2 take on values of -0.5 and 0.5 resulting 4 regression parameter

configurations. Additionally, these studies consider two cumulative baseline hazard functions; i.e., a

logarithmic Λ0(t) = log(t + 1)/ log(11) and a linear Λ0(t) = 0.1t. These choices were made so

that the hazard functions behave similarly but have different shapes. In total, these specifications

lead to eight separate data generating models for the failure times. Two generating processes were

considered for the observation times: an exponential distribution with a mean of 10 and a discrete

uniform over the interval [1, 17]. In both cases, a single observation time, O, was generated for each

failure time which was not instantaneous (i.e., T > 0), and the intervals were created such that L = 0

(R =∞) and R = O (L = O) if T was smaller (greater) than O. A few comments are warranted

on the selection of the observation processes. First, the latter process is actually indicative of the

observation process considered in the motivating clinical trial, while the former attempts to match

the baseline characteristics of the failure time distribution. Second, note that the specification of

the two observation processes result in case-1 interval-censored (i.e., current status) data. This was

done for two primary reasons: first, data of this structure is going to be collected as a part of the

motivating clinical trial, and second, data of this nature possess less information when compared

to general interval-censored data, and thus if the proposed approach works well in this setting it

could be inferred that it should perform better in the case of interval-censored data. In total, these

data generating steps lead to sixteen generating mechanisms, and each were used to create 500

independent data sets, each consisting of n = 100 observations.
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In order to examine the performance of the proposed approach across a broad spectrum of

characteristics, several different models were used to analyze each data set. First, following the

development presented in Section 3.2, three different parametric forms were considered for the

cumulative baseline hazard function: Λ01(t) = γ1 log(t+1), Λ02(t) = γ1t, and Λ03(t) = γ1t+γ2t
2,

which are henceforth referred to as models M1, M2, and M3, respectively. Note, these specifications

allow one to examine the performance of the proposed approach when the cumulative baseline

hazard function is correctly specified (e.g., M2 when Λ0(t) = 0.1t), over specified (e.g., M3 when

Λ0(t) = 0.1t), and misspecified (e.g., M1 when Λ0(t) = 0.1t). Further, for each data set a model

(M4) was fit using the monotone spline representation for the cumulative baseline hazard function

developed in Section 3.2. In order to specify the basis functions, the degree was specified to be 2, in

order to provide adequate smoothness, and one interior knot was placed at the median of the observed

finite nonzero interval end points, with boundary knots being placed at the minimum and maximum

of the same. The EM algorithm derived in Section 3.4 was used to complete model fitting for M1-M4.

The starting value for all implementations was set to be θ(0) = (β(0)′ ,γ(0)′ , α(0)) = (0′2, 1′k, 0.1),

where 0k(1k) is a (k × 1)-dimensional vector of zeros (ones). Convergence was declared when the

maximum absolute difference between successive parameter updates was less than the specified

tolerance of 1× 10−5.

Table 3.1 summarizes the estimates of the regression coefficients and the baseline instantaneous

failure probability for all considered simulation configurations and models, when the observation

times were drawn from an exponential distribution. This summary includes the empirical bias, the

sample standard deviation of the 500 point estimates, the average of the 500 standard error estimates,

and the empirical coverage probabilities associated with 95% Wald confidence intervals. Table 3.2

provides the analogous results for the case in which the observation times are sampled from a discrete

uniform distribution. From these results, one will first note that across all considered simulation

settings the proposed approach performs very well for M4 and the correct parametric model (i.e.,

M1 when Λ0(t) = log(t + 1)/ log(11) and M2 when Λ0(t) = 0.1t); i.e., the parameter estimates

exhibit very little bias, the sample standard deviation of the 500 point estimates are in agreement

with the average of the standard error estimates, and the empirical coverage probabilities are at their

nominal level. In summary, these findings tend to suggest that the proposed methodology can be

used to reliably estimate the covariate effects, the instantaneous failure probability, and quantify
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the uncertainty in the same. Additionally, these findings generally continue to persist for the case

in which the parametric model is over specified (e.g., M3 when Λ0(t) = 0.1t), with the resulting

estimates in some cases exhibiting a slightly larger bias and a bit more variability, as one would

expect. Further, from these results one will also note that when the parametric model is misspecified

(e.g., M2 and M3 when Λ0(t) = log(t+ 1)/ log(11)) the estimates tend to exhibit more bias and less

reliable inference, which is expected under the misspecification of the cumulative baseline hazard

function. Finally, the estimates obtained under M4 (i.e., the model which makes use of the monotone

splines) exhibit little if any difference when compared to the estimates resulting from the correct

parametric model. In totality, from these findings, it is conjectured that the approach which makes use

of the spline representation to approximate the unknown cumulative baseline hazard functions (i.e.,

M4) would likely be preferable, since it avoids the potential of model misspecification and it obtains

estimators of the unknown parameters, as well as their standard errors, that are roughly equivalent to

those estimators obtained under the true parametric model, the form of which is generally not known.
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True Λ0(t) = log(t+ 1)/ log(11)

M1(True) M2(Misspecified) M3(Misspecified) M4(Spline)

Parameter Bias SD ESE CP95 Bias SD ESE CP95 Bias SD ESE CP95 Bias SD ESE CP95

β1 = −0.5 -0.03 0.15 0.15 0.94 -0.06 0.17 0.15 0.89 -0.06 0.17 0.15 0.90 -0.04 0.16 0.16 0.93
β2 = −0.5 -0.01 0.29 0.28 0.94 -0.05 0.33 0.27 0.89 -0.05 0.33 0.28 0.90 -0.02 0.30 0.29 0.93
p = 0.3 0.00 0.06 0.06 0.95 0.00 0.06 0.06 0.94 0.00 0.06 0.06 0.94 0.00 0.06 0.06 0.95

β1 = −0.5 -0.03 0.15 0.14 0.94 -0.07 0.17 0.14 0.87 -0.07 0.17 0.14 0.88 -0.04 0.15 0.15 0.94
β2 = 0.5 0.01 0.26 0.26 0.94 0.06 0.30 0.25 0.89 0.06 0.30 0.26 0.89 0.03 0.27 0.27 0.94
p = 0.3 0.00 0.06 0.06 0.94 -0.01 0.06 0.05 0.92 -0.01 0.06 0.06 0.93 -0.01 0.06 0.06 0.94

β1 = 0.5 0.01 0.15 0.15 0.95 0.05 0.16 0.15 0.91 0.05 0.16 0.15 0.92 0.02 0.15 0.15 0.95
β2 = −0.5 0.01 0.28 0.28 0.94 -0.03 0.32 0.27 0.90 -0.03 0.32 0.27 0.91 0.01 0.29 0.29 0.94
p = 0.3 0.00 0.05 0.06 0.97 0.00 0.06 0.06 0.96 0.00 0.06 0.06 0.96 0.00 0.05 0.06 0.96

β1 = 0.5 0.02 0.14 0.14 0.95 0.07 0.15 0.14 0.89 0.07 0.15 0.14 0.90 0.03 0.14 0.15 0.95
β2 = 0.5 0.02 0.28 0.26 0.94 0.06 0.32 0.25 0.86 0.06 0.32 0.26 0.87 0.03 0.28 0.27 0.93
p = 0.3 0.00 0.06 0.06 0.93 -0.01 0.06 0.05 0.90 -0.01 0.06 0.06 0.91 0.00 0.06 0.06 0.93

True Λ0(t) = 0.1t

M1(Misspecified) M2(True) M3(Over specified) M4(Spline)

Parameter Bias SD ESE CP95 Bias SD ESE CP95 Bias SD ESE CP95 Bias SD ESE CP95

β1 = −0.5 0.01 0.15 0.16 0.96 -0.03 0.16 0.16 0.94 -0.05 0.17 0.16 0.94 -0.04 0.16 0.17 0.94
β2 = −0.5 0.04 0.28 0.29 0.95 0.00 0.30 0.30 0.95 -0.03 0.32 0.30 0.94 -0.02 0.32 0.31 0.95
p = 0.3 0.00 0.06 0.06 0.95 0.00 0.06 0.06 0.95 0.00 0.06 0.06 0.95 0.00 0.06 0.06 0.95

β1 = −0.5 0.02 0.15 0.15 0.94 -0.02 0.15 0.15 0.94 -0.04 0.16 0.15 0.93 -0.04 0.16 0.16 0.94
β2 = 0.5 -0.02 0.26 0.27 0.96 0.02 0.28 0.27 0.93 0.03 0.29 0.28 0.93 0.03 0.29 0.29 0.95
p = 0.3 0.01 0.06 0.06 0.94 0.00 0.06 0.06 0.94 -0.01 0.06 0.06 0.94 -0.01 0.06 0.06 0.94

β1 = 0.5 -0.02 0.14 0.16 0.96 0.02 0.15 0.16 0.96 0.03 0.16 0.16 0.95 0.03 0.16 0.17 0.95
β2 = −0.5 0.06 0.29 0.29 0.94 0.02 0.30 0.29 0.93 0.01 0.31 0.30 0.93 0.01 0.31 0.31 0.94
p = 0.3 0.00 0.05 0.06 0.97 0.00 0.05 0.06 0.96 0.00 0.05 0.06 0.96 0.00 0.06 0.06 0.97

β1 = 0.5 -0.02 0.14 0.15 0.95 0.02 0.15 0.15 0.95 0.04 0.15 0.15 0.95 0.04 0.15 0.16 0.95
β2 = 0.5 -0.02 0.27 0.27 0.94 0.02 0.29 0.27 0.94 0.04 0.30 0.28 0.93 0.04 0.30 0.29 0.93
p = 0.3 0.01 0.06 0.06 0.96 0.00 0.06 0.06 0.95 -0.01 0.06 0.06 0.94 -0.01 0.06 0.06 0.95

Table 3.1: Summary of regression coefficient estimates and baseline instantaneous failure probability obtained from M1-M4 across
all simulation settings, when the observation times were sampled from an exponential distribution. This include the average of the
500 point estimates minus the true value (Bias), the sample standard deviation of the 500 point estimates (SD), the average of the
estimated standard errors (ESE), and empirical coverage probabilities associated with 95% Wald confidence intervals (CP95). Note,
when Λ0(t) = log(t+ 1)/ log(11) then M1 is the true parametric model and when Λ0(t) = 0.1t then M2 is the true parametric model.
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True Λ0(t) = log(t+ 1)/ log(11)

M1(True) M2(Misspecified) M3(Misspecified) M4(Spline)

Parameter Bias SD ESE CP95 Bias SD ESE CP95 Bias SD ESE CP95 Bias SD ESE CP95

β1 = −0.5 -0.02 0.14 0.15 0.95 -0.03 0.15 0.15 0.92 -0.03 0.15 0.15 0.93 -0.03 0.15 0.15 0.94
β2 = −0.5 0.00 0.27 0.27 0.96 -0.02 0.29 0.27 0.94 -0.02 0.29 0.27 0.94 -0.02 0.28 0.28 0.96
p = 0.3 -0.01 0.06 0.06 0.95 -0.01 0.06 0.06 0.93 -0.01 0.06 0.06 0.94 -0.01 0.06 0.06 0.94

β1 = −0.5 -0.03 0.14 0.14 0.94 -0.05 0.15 0.14 0.92 -0.05 0.15 0.14 0.92 -0.04 0.15 0.14 0.94
β2 = 0.5 0.00 0.26 0.25 0.94 0.03 0.28 0.25 0.92 0.03 0.28 0.25 0.93 0.02 0.27 0.26 0.93
p = 0.3 0.00 0.06 0.06 0.95 0.00 0.06 0.06 0.94 0.00 0.06 0.06 0.94 0.00 0.06 0.06 0.95

β1 = 0.5 0.02 0.16 0.15 0.94 0.03 0.16 0.15 0.94 0.03 0.16 0.15 0.94 0.03 0.16 0.15 0.94
β2 = −0.5 0.00 0.28 0.27 0.95 -0.01 0.29 0.27 0.93 -0.01 0.29 0.27 0.93 -0.01 0.29 0.28 0.94
p = 0.3 0.00 0.06 0.06 0.95 0.00 0.06 0.06 0.95 0.00 0.06 0.06 0.95 0.00 0.06 0.06 0.95

β1 = 0.5 0.01 0.14 0.14 0.95 0.04 0.15 0.14 0.92 0.04 0.15 0.14 0.93 0.03 0.14 0.14 0.94
β2 = 0.5 0.03 0.27 0.25 0.94 0.05 0.29 0.25 0.91 0.05 0.29 0.25 0.91 0.04 0.28 0.26 0.92
p = 0.3 0.00 0.06 0.06 0.95 -0.01 0.06 0.05 0.94 -0.01 0.06 0.06 0.94 0.00 0.06 0.06 0.94

True Λ0(t) = 0.1t

M1(Misspecified) M2(True) M3(Over specified) M4(Spline)

Parameter Bias SD ESE CP95 Bias SD ESE CP95 Bias SD ESE CP95 Bias SD ESE CP95

β1 = −0.5 0.00 0.15 0.15 0.95 -0.02 0.15 0.15 0.93 -0.03 0.16 0.16 0.93 -0.03 0.16 0.16 0.94
β2 = −0.5 0.02 0.27 0.28 0.96 0.00 0.28 0.28 0.96 -0.01 0.29 0.29 0.96 -0.01 0.29 0.29 0.96
p = 0.3 -0.01 0.06 0.06 0.95 -0.01 0.06 0.06 0.95 -0.01 0.06 0.06 0.94 -0.01 0.06 0.06 0.95

β1 = −0.5 0.00 0.14 0.14 0.95 -0.02 0.14 0.14 0.94 -0.03 0.15 0.15 0.94 -0.03 0.15 0.15 0.93
β2 = 0.5 -0.03 0.25 0.26 0.95 0.00 0.27 0.26 0.94 0.01 0.27 0.27 0.94 0.01 0.27 0.27 0.94
p = 0.3 0.01 0.06 0.06 0.96 0.00 0.06 0.06 0.95 0.00 0.06 0.06 0.95 0.00 0.06 0.06 0.95

β1 = 0.5 0.00 0.15 0.15 0.94 0.02 0.16 0.15 0.94 0.02 0.16 0.16 0.94 0.02 0.16 0.16 0.94
β2 = −0.5 0.01 0.28 0.28 0.95 -0.01 0.29 0.28 0.95 -0.01 0.30 0.28 0.94 -0.01 0.30 0.29 0.94
p = 0.3 0.00 0.06 0.06 0.96 0.00 0.06 0.06 0.96 0.00 0.06 0.06 0.96 0.00 0.06 0.06 0.96

β1 = 0.5 -0.02 0.13 0.14 0.96 0.01 0.14 0.14 0.95 0.02 0.14 0.15 0.95 0.02 0.14 0.15 0.96
β2 = 0.5 0.00 0.26 0.26 0.96 0.03 0.27 0.26 0.95 0.04 0.28 0.27 0.95 0.04 0.28 0.27 0.95
p = 0.3 0.00 0.06 0.06 0.96 0.00 0.06 0.06 0.95 0.00 0.06 0.06 0.95 0.00 0.06 0.06 0.96

Table 3.2: Summary of regression coefficient estimates and baseline instantaneous failure probability obtained from M1-M4 across
all simulation settings, when the observation times were sampled from discrete uniform distribution. This include the average of the
500 point estimates minus the true value (Bias), the sample standard deviation of the 500 point estimates (SD), the average of the
estimated standard errors (ESE), and empirical coverage probabilities associated with 95% Wald confidence intervals (CP95). Note,
when Λ0(t) = log(t+ 1)/ log(11) then M1 is the true parametric model and when Λ0(t) = 0.1t then M2 is the true parametric model.
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Figure 3.1 summarizes the estimates of the baseline survival function (i.e., S0(t) = S(t|x = 0r))

obtained from M1-M4 across all considered regression parameter configurations when Λ0(t) =

log(t+1)/ log(11) and the observation times were sampled from the exponential distribution. Figures

3.2-3.4 summarizes the analogous results for the other simulation configurations. In particular, these

figures present the true baseline survival functions, the average of the point-wise estimates, and

the point-wise 2.5th and 97.5th percentiles of the estimates. These figures reinforce the main

findings discussed above; i.e., M4 and the correctly specified parametric model again provide reliable

estimates of the baseline survival function, and hence the cumulative baseline hazard function, across

all simulation configurations. Similarly the over specified model also provides reliable estimates,

but the same can not be said for the misspecified models. It is worthwhile to point out that the

baseline survival curves do not extend to unity as time goes toward the origin, this is due to the

fact that the baseline instantaneous failure probability is p = 0.3. Again, these findings support

the recommendation that the spline based representation of the cumulative baseline hazard function

should be adopted in lieu of a parametric model, thus obviating the possible ramifications associated

with misspecification.

In summary, this simulation study illustrates that the proposed methodology can be used

to analyze current status data which is subject to instantaneous failures, and moreover that the

monotone spline approach discussed in Section 3.2 should be adopted for approximating the unknown

cumulative baseline hazard function. A few additional details about the numerics of the approach

follow. First, the average time required to complete model fitting was approximately one second,

supporting the claim that the proposed approach is computationally efficient. Lastly, for reasons of

complete transparency, for a single data set, among 8000, the OPG estimator under M4 resulted in a

singular matrix, which prevented standard error estimation, and this issue was eaqsily resolved by

slightly shifting the placement of the interior knot.
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Figure 3.1: Simulation results summarizing the estimates of the baseline survival function obtained
by the proposed approach under M1 (first row), M2 (second row), M3 (third row), and M4 (fourth
row) when Λ0(t) = log(t+ 1)/ log(11) and the observation times were drawn from an exponential
distribution. The solid line provides the true value, the dashed line represents the average estimated
value, and the dotted lines indicate the 2.5% and 97.5% quantiles, of the point-wise estimates. Note,
M1 is the true parametric model in this setting.
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Figure 3.2: Simulation results summarizing the estimates of the baseline survival function obtained
by the proposed approach under M1 (first row), M2 (second row), M3 (third row), and M4 (fourth
row) when Λ0(t) = 0.1t and the observation times were drawn from an exponential distribution. The
solid line provides the true value, the dashed line represents the average estimated value, and the
dotted lines indicate the 2.5% and 97.5% quantiles, of the point-wise estimates. Note, M2 is the true
parametric model in this setting.
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Figure 3.3: Simulation results summarizing the estimates of the baseline survival function obtained
by the proposed approach under M1 (first row), M2 (second row), M3 (third row), and M4 (fourth
row) when Λ0(t) = log(t + 1)/ log(11) and the observation times were drawn from an discrete
uniform distribution over [1, 17]. The solid line provides the true value, the dashed line represents the
average estimated value, and the dotted lines indicate the 2.5% and 97.5% quantiles, of the point-wise
estimates. Note, M1 is the true parametric model in this setting.
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Figure 3.4: Simulation results summarizing the estimates of the baseline survival function obtained
by the proposed approach under M1 (first row), M2 (second row), M3 (third row), and M4 (fourth
row) when Λ0(t) = 0.1t and the observation times were drawn from an discrete uniform distribution
over [1, 17]. The solid line provides the true value, the dashed line represents the average estimated
value, and the dotted lines indicate the 2.5% and 97.5% quantiles, of the point-wise estimates. Note,
M2 is the true parametric model in this setting.
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3.5 Discussion

This work is aimed at developing, assessing, and validating a methodology which can be used

to analyze the data resulting from the clinical trial described in Section 2 once it is complete. To

this end, this work proposed a new model, under the PH assumption, which can be used to analyze

interval-censored data subject to instantaneous failures. Through the model development, two

techniques for approximating the unknown cumulative baseline hazard function are illustrated. To

complete model fitting, a novel EM algorithm is developed through a two-stage data augmentation

process. The resulting algorithm is easy to implement and is computationally efficient. These features

are attributable to the fact that the carefully structured data augmentation steps lead to closed-form

expressions for all necessary quantities in the E-step of the algorithm. Moreover, in the M-step the

regression coefficients are updated through solving a low-dimensional system of equations, while

all other unknown parameters are updated in closed-form. The finite sample performance of the

proposed approach was exhibited through an extensive numerical study. This study suggests that

the use of the monotone spline representation of the cumulative baseline hazard function would in

general be preferable, in order to circumvent the possibility of model misspecification. To further

disseminate this work, code, written in R, has been prepared and is available upon request from the

corresponding author.
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CHAPTER 4: STUDY DESIGN WITH STAGGERED SAMPLING TIMES FOR EVALUATING
SUSTAINED UNRESPONSIVENESS TO PEANUT SLIT

In this work, we delineate an altered study design of a pre-existing clinical trial that is currently

being implemented at the Department of Pediatrics at the University of North Carolina at Chapel

Hill. The purpose of the ongoing investigation of the desensitized pediatric cohort is to address

effectiveness of sublingual immunotherapy (SLIT) in achieving sustained unresponsiveness (SU)

through the use of repeated Double Blind Placebo Control Food Challenge (DBPCFC) tests. SU is

defined as the capacity to maintain desensitization to the food allergen following cessation of therapy.

With scarce published literature defining and characterizing SU, the length of time off-therapy that

would represent clinically meaningful benefit remains undefined. In this study, we use the new design

features to assess time to loss of SU as an important efficacy endpoint that, to our knowledge, no

prior study has investigated. Our work has two-fold objectives: first, to propose and discuss aspects

of the altered design that would allow us to study SU; second, to explore and apply methodology to

evaluate the time to loss of SU and risk factors in context of the data originating from the proposed

study design. The salient feature of the new design is the allocation scheme of study subjects

to staggered sampling time-points when a subsequent DBPCFC is administered. Due to a fixed

sequence of increasing allergen doses administered in the challenge test, a patient’s true threshold

at both occasions is interval-censored. Further, due to the timing of the subsequent DBPCFC, the

time to loss of SU is either left- or right-censored. Additionally, some participants at study entry

do not pass the DBPCFC, leading to what can be construed as an instantaneous failure. Thus, for

the purposes of analyzing data arising from this clinical trial, we also examine a recently proposed

mixture model, which was specifically designed for the analysis of interval-censored data subject to

instantaneous failures. In particular, through in-depth numerical studies we examine the performance

and power of this new methodology to inform the effect of risk factors on the hazard of loss of SU.
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4.1 Introduction

The prevalence of peanut allergy and the subsequent fatal reactions attributed to this allergen

has continued to rise over the past decade, particularly in the United States pediatric population

[37; 71]. In general, allergic reactions to peanuts can present with minor symptoms to include

itchiness, urticaria, swelling, eczema, sneezing, and abdominal pain with more severe reactions

leading to asthma, anaphylaxis, and even cardiac arrest. Although the current standard of care is

a strict avoidance of peanut and ready-access to self-injectable epinephrine, implementation of an

avoidance diet is complex. This leaves the majority of patients with a life-long risk of anaphylaxis

and death due to accidental ingestions. Therapeutic interventions that provide everlasting protection

from inadvertent allergen ingestion are, thus, needed.

Recently, the research surrounding the treatment of food allergies has shifted to consider

different types of immunotherapy, through exposing patients to small doses of the allergen. The

primary difference between different immunotherapy treatments involve the delivery mechanism. For

example, subcutaneous immunotherapy (SCIT) exposes patients to the allergen through injections,

oral immunotherapy (OIT) exposes patients to the allergen through direct ingestion, and sublingual

immunotherapy (SLIT) involves the patient holding allergen extract under the tongue. For the

purposes of desensitizing patients to food allergies, SCIT has shown little promise with a high rate of

systematic reactions, while OIT and SLIT have shown promise, but further investigations need to be

conducted. On other hand, SLIT, when compared to OIT, is often favored because it is thought to be

safer, results in fewer systemic reactions, and has an easier mode of administration. However, with

regard to the effectiveness of OIT or SLIT, almost all OIT and SLIT studies have demonstrated clinical

desensitization; i.e., the patients experience an increase in reaction threshold while receiving the study

drug [76], few studies have been successful in assessing tolerance or sustained unresponsiveness

(SU). Here, SU refers to a non-reactive state that persists after discontinuation of therapy but wanes

after a period [11]; whereas, tolerance refers to a non-reactive state of the immune system that

persists after discontinuation of the study drug.

Various studies of OIT and SLIT have looked at SU [83; 82; 12] but these studies have either been

small or have failed to investigate the loss of SU in a systematic fashion within a single population.

The failure, in part, is due to study designs that require desensitized subjects to take subsequent
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challenges at a specific time which could be too early to demonstrate SU. Considering that longer

study durations run the risk of high subject withdrawal rate, such study designs are less pragmatic

and more expensive. With the FDA approval of food immunotherapy potentially on the horizon, the

development of study designs targeted at assessing SU is imperative. In light of this fact, and through

having access to an extensive longitudinal dataset that is being collected on an ongoing clinical

investigation of peanut SLIT in pediatric population, we are presented with a unique opportunity to

address issues pertaining to SU with an innovative study design and advanced statistical methodology.

The Peanut SLIT Study is a revised augmentation of a pre-existing phase-II, prospective,

randomized, open label 66-month clinical study supported by the National Institutes of Allergy

and Infectious Diseases (NIAID) and conducted in the Allergy, Immunology, Rheumatology and

Infectious Diseases (AIRID) Division in the Department of Pediatrics at the University of North

Carolina at Chapel Hill [26]. We note that opposite of most studies that focus on estimating treatment

effect, the study has an objective to assess the effect of taking away therapy. During the first 48

months of this study, participants were exposed to a build-up/maintenance phase during which they

received peanut SLIT therapy in an incremental fashion during the initial 6 months and then treatment

was maintained at a constant level thereafter. At the conclusion of this phase, a Double Blind Placebo

Control Food Challenge (DBPCFC) was administered. Following the 48th month DBPCFC, the

original protocol randomized desensitized subjects in a blinded fashion (2:1) to a placebo or treatment

group, with the treatment group continuing peanut SLIT for 6 months. To assess clinical SU, the

placebo group would complete the trial with a 54th month DBPCFC. In contrast, the treatment

group would continue open label SLIT for an additional 6 months to complete the trial with a 66th

month DBPCFC. However, results from [83] that indicated only 50% possessed SU after a month of

using the presumed more robust OIT treatment lead to suspicion that 6 months on SLIT would work.

Recognizing that a 6 month time window to assess clinical SU was rather optimistic, arbitrary, less

supported by prior research, and that the study could result in a negligible success rate, the protocol

was revised with staggered sampling times beyond the dose maintenance period for administration

of the final DBPCFC among desensitized subjects. This dissolved the need for a two-arm trial and

shortened the length of the overall clinical trial. Since time to loss of SU is an important dimension

that, to our knowledge, no prior study has investigated, the revised study offers a robust framework

and a systematic approach to study this clinically valuable information.
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The revised study design presents an interesting case of censored data. First, due to the nature of

the food challenge, a subject’s true, time-dependent thresholds are obscured but are known relative

to the no- and lowest-observed adverse event dose levels of the administered DBPCFCs. Second,

because subject’s true threshold in the absence of therapy is assumed to be guided by a monotonically

non-increasing latent process, the time to loss of SU to a targeted dose administered at staggered

observation times is either left- or right-censored; Last but not least, at the 48th month DBPCFC,

subjects that exhibit a threshold lower than MCRT or the targeted dose level are assumed to have

lost tolerance for the targeted dose at the study initiation; i.e., in the context of evaluating time

to loss of SU, these subjects experience what is commonly referred to as an instantaneous failure.

Thus, in addition to outlining the key features of the aforementioned study design, an alternate yet

complimentary focus of this work is to evaluate a new statistical methodology that can be used to

analyze the data arising from this clinical trial.

The statistical methodology in question was developed and presented in [89], and is an adaptation

of the methods developed in [86]. This approach makes use of a generalization of the usual

proportional hazards (PH) model. In particular, this generalization considers the use of a mixture

model which allows one to account for instantaneous failures as well as interval-censored data, of

which current status data is a special case. Under this mixture model, the covariates provide for a

multiplicative effect on the hazard of experiencing a failure at both time zero and thereafter, thus

obeying the PH assumption. Further, the approach uses a flexible monotone spline representation

to approximate the cumulative baseline hazard function in the PH model. To complete model

fitting, [89] developed, through a data augmentation process involving latent Poisson variables, an

expectation-maximization (EM) algorithm. Through numerical studies, this method has shown a

great deal of promise with respect to providing reliable estimation and inference, when used to

analyze interval-censored data subject to instantaneous failures. The goal of the numerical studies

presented herein is to validate this methodology in context of the data emanating from the clinical trial

upon completion. In particular, this study examines the power of this procedure to detect significant

effects.

The remainder of this article is organized as follows. In Section 2, we present the novel study

design, and discuss in depth the ongoing clinical trial. Section 3 briefly outlines the salient features

of the chosen statistical methodology. Section 4 reports the results from two extensive simulation
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studies which were aimed at evaluating the finite sample performance of the proposed method when

used to analyze data arising from the proposed study design. Section 5 concludes with a summary

discussion.

4.2 Study Design and Primary Analysis

4.2.1 The Study Design

The study consists of a screening/baseline visit, build-up phase (approximately, 20 weeks),

maintenance phase (42 months) and lastly, SU phase (17 weeks). In total, three DBPCFCs are

administered, one at the baseline for subject screening and the other two at the end of the latter two

phases for assessing desensitization and loss of SU thresholds, respectively. Upon enrollment, 51

children between the ages of 1 to 11 years underwent an entry DBPCFC with 1000 mg of cumulative

peanut protein (25 mg, 50 mg, 100 mg, 250 mg, 575 mg) to confirm the peanut allergy diagnosis

and establish a baseline threshold level. Following a positive DBPCFC, each subject was required to

begin peanut SLIT at a starting dose of 2500 mcg to build up in increments to 4000 mcg during the

build-up phase and to maintain this dose daily over the maintenance phase. At the end of maintenance

phase, i.e., after 48 months of peanut SLIT administration, subjects were required to undergo a

second DBPCFC with 5000 mg of cumulative peanut protein to assess desensitization. Subjects who

were not able to consume more than the MCRT without symptoms were not considered desensitized

and were required to stop peanut SLIT and conclude the study. Before the beginning of the SU phase,

a computer-generated block randomization schedule was prepared such that each subject had an

equal probability of being randomized to one of the weekly challenges held in the initial 6 weeks,

between 7-12 weeks and between 13-17 weeks. Based on this schedule, three qualified subjects were

randomly assigned to one of the final DBPCFC administered each week during the study’s 17-week

SU phase to evaluate for the loss of SU effect. The final DBPCFC, which is similar in structure

to that of the 48th month, marks study completion. Since without continued antigen exposure,

changes to the immune system and a continued increase in threshold is not expected, no individual

is administered a final challenge dose higher than the highest administered dose that he/she was

desensitized to at the 48th month DBPCFC. At the primary investigator’s clinical discretion, subjects

are then recommended to transition to a daily peanut food equivalent to maintain the desensitized

effect.
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4.2.2 The DBPCFC Structure and Time boundaries

In contrast to the standard challenges designed in such studies with multiplicative increments

of a dose [68; 78], the similarly structured 48th month and the final DBPCFCs are inspired by the

Fibonacci series that serves as a good check of observable cumulative effect of doses. The DBPCFC

structure is illustrated in Figure 4.1. The rationale for the starting dose of 100 mg is based on the

findings of [41] that had the median tolerated dose of 1700 mg with a wide range, lowest being 85

mg after a year long treatment. After 3+ years of treatment, the study had nobody with symptoms at

less than 500 mg. The challenge size is kept at 5000 mg of cumulative peanut protein, chosen mostly

arbitrarily but with a goal of avoiding false negative challenges as described in [68]. This is also in

the range of what might be eaten; e.g., this is roughly equivalent to 1 tablespoon of peanut butter

(4000 mg of peanut protein) or 1 serving size of peanuts (7000 mg of peanut protein). Considering

these dose constraints, the end challenge is listed as (100, 200, 500, 800, 1300, 2100) mg with the

first Fibonacci dose of 300 mg, also the minimal clinically relevant threshold level, broken into two

incremental doses of 100 and 200 mg. Thus, compared to the structure with dose increments in

multiples, this DBPCFC not only allows an observable MCRT of 300 mg, but also maintains the

total maximum challenge size of 5000 mg. It also allows more granularity above the 500 mg dose

level where most subjects are expected to reach their threshold. Further, the gradual dose gradation

of this structure mitigates risk at the higher doses, providing enhanced safety from adverse events.

Each DBPCFC administered to a subject results in threshold bounds: NOAEL, the highest

administered cumulative dose that elicits no adverse event and LOAEL, the lowest administered

cumulative dose that elicits an adverse event [77]. Let DT0
i ∈ [NT0

i , LT0i ) define the ith subject’s true

desensitization threshold achieved at the 48th month (T0 = 0) and DT1i
i ∈ [NT1i

i , LT1ii ), the true

tolerance threshold achieved at the subject’s final DBPCFC randomized time, T1i, with corresponding

NOAEL and LOAEL observed bounds such that DT0
MCRT < NT1i

i ≤ NT0
i . Considering a subject’s

tolerance to a targeted dose DT = d in the absence of immunotherapy to be a non-increasing process,

the time to loss of SU, T di , is well approximated by an interval censoring framework as illustrated

in Figure 4.1. Depicting two scenarios: i) NT1i
i = NT0

i ; ii) NT1i
i < NT0

i , the subject’s threshold

trajectories end in an exhaustive set of possible targeted dose thresholds positioned relative to the

observed thresholds. The wider dashed lines represent the subject’s true latent trajectory representing
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each scenario. For example, when the true latent trajectory is originating at 2500 and ending in 900

i.e. when NT1i
i < NT0

i , a subject is expected to meet a targeted threshold, say DT ≤ NT1i
i = 800 at

or beyond T1i; when LT0i = 2900 > DT ≥ LT1ii = 1600 and DT < LT0i = 2900, it would be before

T1i. Similarly, when the true latent trajectory is originating at 4000 and ending at 3200, i.e., when

NT1i
i = NT0

i , a subject is expected to meet a targeted threshold, DT ≤ NT1i
i = 2900 at or beyond

T1i; however, when DT ≥ LT1ii = 5000, a subject is considered to have lost tolerance at time T0 = 0

discounting a rare positive outcome in favor of conservative treatment effect and assuming at large

that a subject’s threshold cannot rise in the absence of therapy. More precisely, the time to loss of SU

to a targeted dose, T di , including all possible scenarios illustrated in Figure 4.1, is summarized using

the following observables:

T di ∈



0, if NT0
i ≤ D

T0
MCRT or (NT1i

i = NT0
i and d ≥ LT1ii = LT0i )

or (NT1i
i < NT0

i and d ≥ LT0i ),

[0, T1i), if NT1i
i < NT0

i and LT1ii ≤ d < LT0i ,

[T1i, inf), if d ≤ NT1i
i ≤ NT0

i ,

(0, inf], if LT1ii > d > NT1i
i and NT1i

i ≤ NT0
i .

We note that NT1i
i ≤ NT0

i is always true under the study design construct. Further, a target

dose threshold that lies within an observed interval and not at the boundary does not contribute

to any information on time to failure. A subject’s loss of SU to an arbitrary targeted dose level,

DT (> DT0
MCRT ), is earliest claimed at T1i if NT1i

i ≥ DT . The non-desensitized subjects with

NT0
i ≤ D

T0
MCRT and those that exhibit LT0i ≤ DT are assumed to have lost tolerance for DT at T0

and are not administered the final challenge. This results in current status (or case-1 interval-censored)

data which is subject to instantaneous failures. Further, it is worthwhile to note that due to the study

design the censoring times are non-informative since the subjects are administered final DBPCFCs at

randomized observation times; i.e., the observation process is independent of the failure times of

interest.

4.3 Model and methods
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Figure 4.1: Peanut SLIT-TLC Study Design [26]: Subject’s threshold trajectories ending in an exhaustive set of targeted
thresholds relative to the observed thresholds for scenarios: i) when the NOAELs obtained at the 48th month and the final
DBPCFCs are the same; ii) when the NOAEL obtained at the final DBPCFC is at least a level lower than that obtained at the
48th month. The broad dashed line represents a subject’s true latent trajectory for either situation. All other trajectories end in
targeted thresholds relative to the subject’s final observed (NOAEL, LOAEL) and true latent threshold. For example, when the
true latent final threshold is 900, a subject is expected to meet the targeted threshold of ≤ 800 at or beyond the time when the
final DBPCFC is administered.
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Herein, a brief discussion of the statistical methods is provided. Let T d ≡ T denote the survival

time of interest for a fixed targeted dose d. The mixture model proposed in [89], provides the

cumulative distribution function (cdf) of T as

H(t|x) =


1− e−αex

′β
, for t = 0,

1− e−αex
′β
S(t|x), for t > 0 ,

(4.11)

where x is a (r × 1)-dimensional vector of covariates, β is the corresponding vector of regression

coefficients, S(t|x) = exp{−Λ0(t) exp(x′β)} is the survival function associated with the usual

PH model, and Λ0(·) is the cumulative baseline hazard function. A few comments are warranted.

First, the covariates provide for a multiplicative effect on the hazard of experiencing a failure at both

time zero and thereafter, thus obeying the PH assumption. Second, one will note that the mixture

model allows for a probability mass at time 0 through the parameter α, this allows the model to

account for the effect of instantaneous failures. Third, the baseline probability of experiencing an

instantaneous failure in the absence of covariate effect is given by p0 ≡ P (T = 0|x = 0r) =

1− S(T = 0|x = 0) = 1− exp(−α), where 0r is an (r × 1)-dimensional vector of zeros. Thus, a

subject with covariates x has a probability of experiencing an instantaneous failure given by

P (T = 0|x) = 1− [1− p0]e
x′β

= 1− e−αex
′β
.

Moreover, the survival function for individuals not experiencing an instantaneous failure is given by

P (T > t|x) = P (T > 0|x)P (T > t|x, t > 0) = e−αe
x′β
S(t|x),

where S(t|x) is as defined in (4.11).

The unknown parameters in the mixture model depicted in (4.11) involve the regression

parameters β, the baseline probability of experiencing an instantaneous failure p0 (or equivalently

α), and the cumulative baseline hazard function Λ0(·). It is worthwhile to point out that for (4.11)

to be a valid cdf Λ0(·) must be a monotone increasing function, such that Λ0(0) = 0. Moreover,

this unknown function is best regarded as an infinite dimensional parameter. In order to reduce

the dimensionality of the problem while allowing for adequate modeling flexibility, [89] suggest
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modeling Λ0(·) through the use of the monotone splines of [64]; i.e., specify

Λ0(t) =
k∑
l=1

γlbl(t), (4.12)

where the bl(·) are spline basis functions and the γl are unknown spline coefficient, for l = 1, . . . , k.

To assure that Λ0(·) is nondecreasing, the γl should be nonnegative; i.e., γl > 0, for all l = 1, . . . , k.

Briefly, the spline basis functions are piecewise polynomial functions and are fully determined once

a knot sequence and the degree are specified; for further details see [89; 86; 64].

4.3.1 Estimation and inference

For individuals not experiencing an instantaneous failure, let T1 denote the time at which an

individual is administered the final DBPCFC. This is when one learns whether or not the event of

interest has occurred. In the study design outlined in Section 2, one will encounter three different

scenarios; i.e., an instantaneous failure (T = 0), T is left-censored (0 < T < T1), or T is

right-censored (T > T1). For notational convenience, let ψ be the indicator denoting time to failure

is beyond time 0; i.e., ψ = 1, if T is not an instantaneous failure. Similarly, let δ be a censoring

indicator taking value 1 if the observation is left-censored.

In order to derive the observed data likelihood, it is assumed that conditional on the covariates,

the failure time for a subject is independent of the observational process. While common among

the survival literature (see, e.g., [51; 94] and the references therein), this assumption is valid in

this application by virtue of the study design; i.e., the study makes use of staggered randomized

sampling times. The observed data collected on N subjects is given by D = {(T1i,xi, ψi, δi); i =

1, 2, . . . , N}, which constituteN independent realizations of (T1,x, ψ, δ). Thus, under the aforementioned

assumptions, the observed data likelihood can be expressed as

L(θ) =
N∏
i=1

[
F (T1i|xi)δi{1− F (T1i|xi)}1−δi

]ψi{
e−αe

x′iβ
}ψi{

1− e−αe
x′iβ
}1−ψi

, (4.13)

where θ = (β′,γ ′, α)′ represents the set of unknown parameters which need to be estimated, with

γ = (γ1, ..., γk)
′. Since the observed data likelihood exists in closed-form, one could obtain the

maximum likelihood estimator (MLE) of θ, as θ̂ = argmaxθL(θ), through numerically maximizing

the logarithm of (4.13). However, due to numerical instabilities of this process [87], it is generally

46



suggested that the EM algorithm developed and detailed in [89] be used for the purposes of identifying

the MLE, which we denote herein as θ̂ = (β̂′, γ̂ ′, α̂)
′
.

For uncertainty quantification, two variance estimators were considered and evaluated: the Huber

sandwich estimator and the outer product of gradients (OPG) estimator. While both estimators in

general seem to be viable, after extensive numerical studies (results not shown), the Huber sandwich

estimator was found to be favorable in applications similar to the one described in Section 2 with no

convergence issues for smaller sample sizes. In general, the Huber sandwich estimator is obtained as

V̂ (θ̂) = −A−1B(−A)−1,

where A =
∑n

i=1 ∂
2li(θ)/∂θ2|

θ=θ̂
, B =

∑n
i=1 ĝi(θ̂)ĝi(θ̂)

′
, ĝi(θ̂) = ∂li(θ)/∂θ|

θ=θ̂
, and li(θ) is

the log-likelihood contribution of the ith individual. Using this estimator, one can conduct typical

Wald type inference. In the subsequent section, it is demonstrated that the methods outlined in this

section are capable of providing both reliable estimation and inference, with regard to analyzing data

that emulates the data which is being collected from the ongoing clinical trial described in Section 2.

4.3.2 Numerical experiments

We perform the following simulation studies to investigate the finite sample performance of the

proposed procedure within context of the data expected from the study described in section 2.

4.3.2.1 Simulation Study I

The true cumulative distribution function of the failure times was specified to be

H(t|x) =

 1− e−αex
′β
, for t = 0,

1− e−αex
′β
S(t|x), for t > 0,

where x = (x1, x2)′, x1 ∼ N(0, 1), x2 ∼ Bernoulli(0.5), p0 ∈ {0.1, 0.2, 0.3}, and β = (β1, β2)′,

where β1 and β2 each take on values -0.5 and 0.5, thus leading to 4 regression parameter configurations.

Recall, the relation between p0 and α, which is given by α = − log(1− p0). The true cumulative

baseline hazard function was specified to be Λ0(t) = 0.1t. Since the study is underway and the data

is still being collected, the choice of an exponential distribution for event times rests on a reasonable

assumption that a subject’s baseline hazard of losing SU remains approximately constant. For each of

the considered regression parameter configurations, this model was used to generate 500 independent
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data sets each consisting of individual level data for N subjects, to include their failure times T ,

where N ∈ {50, 100, 200, 400}.

Observation times, T1, as employed in the study, were generated using a block permutation

schedule such that each subject had an equal probability of being randomized to one of the following

time periods: initial 6 weeks, between 7-12 weeks and between 13-17 weeks. A subject was then

assigned to a week sampled from the block they were randomized to. By comparing the observation

times to the event times, it was determined whether or not the event time for each individual was left-

or right-censored; i.e., the event time T is either less than or greater than T1 leading to either left- or

right-censoring, respectively.

The specification of the monotone spline representation outlined in Section 3 for the cumulative

baseline hazard function proceeded to use basis functions of degree 2 and one interior knot placed at

the median of observation times and boundary knots placed at the minimum (maximum) of the same.

Then to complete the model fitting, the EM algorithm developed in [89] was used. The convergence

of the algorithm was declared when the maximum absolute difference of all of the consecutive

parameter updates were less that 1 × 10−5. Further, for each data set the aforementioned Huber

sandwich estimator was used to estimate the standard errors for the estimated regression coefficients.

Table 4.1 provides a summary of the estimated regression coefficients across all of the considered

parameter configurations for varying sample sizes, N ∈ {50, 100, 200, 400}. This summary includes

the sample mean, the mean standard error estimates, as well as sample standard deviation of the

500 estimates. Additionally, using the aforementioned Huber sandwich estimator, we conducted

Wald type inference for the set of hypotheses H0 : βj = 0 versus H1 : βj 6= 0 for each data set

and estimated power of this test to detect the effect at 0.05 significance level. From these results

one will note that even for small sample sizes, the bias is generally small and the sample standard

deviation of the 500 point estimates are generally in agreement with the mean standard error estimates

suggesting that the Huber sandwich estimator performs reasonably well in estimating the asymptotic

variances. As one might expect, the empirical power increases with the sample size. Further, from

these results, it appears that the power to detect a significant effect associated with a continuous

covariate dominates the power associated with the dichotomous covariate, which again is expected.

Also, the negative and positive values of β1 are expected to result in approximately similar power due
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to symmetry of the continuous covariate; however, this symmetry does not hold for the dichotomous

covariate. Figure 4.2 illustrates these findings for the case when p0 = 0.2.

Figure 4.3 summarizes the estimated baseline (i.e., when x = 0r) survival functions for the

4 different configurations of the regression parameters when N = 50 and p0 = 0.2. This figure

presents the true baseline survival functions (solid lines), the average of the point-wise estimates

(dashed lines), and the 2.5th and the 97.5th point-wise quantiles of the estimates (dotted lines). From

these curves, one will note that the estimated baseline survival functions are very close to the true

values. These results illustrate that the proposed methodology accurately estimates the baseline

survival function which is roughly equivalent to accurately estimating the cumulative baseline hazard

function. Moreover, this figure also illustrates that the proposed procedure can accurately estimate

p0, which is evidenced by the difference between 1 and the estimated baseline survival functions at

time 0.
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N = 50 N = 100 N = 200 N = 400
p0 Parameter Est SE SEE Power Est SE SEE Power Est SE SEE Power Est SE SEE Power
0.1 β1 = −0.5 -0.59 0.27 0.30 0.612 -0.54 0.17 0.19 0.910 -0.52 0.11 0.12 0.996 -0.51 0.08 0.09 1.000

β2 = −0.5 -0.59 0.53 0.51 0.204 -0.55 0.32 0.33 0.386 -0.52 0.22 0.23 0.670 -0.51 0.15 0.15 0.916
β1 = −0.5 -0.59 0.25 0.28 0.692 -0.54 0.16 0.17 0.934 -0.52 0.11 0.12 0.998 -0.51 0.08 0.08 1.000
β2 = 0.5 0.56 0.50 0.50 0.232 0.52 0.29 0.30 0.418 0.51 0.20 0.21 0.718 0.51 0.14 0.15 0.956
β1 = 0.5 0.58 0.32 0.32 0.572 0.53 0.17 0.17 0.910 0.52 0.11 0.13 0.998 0.51 0.08 0.08 1.000
β2 = −0.5 -0.61 0.58 0.52 0.206 -0.56 0.32 0.32 0.424 -0.53 0.22 0.24 0.682 -0.50 0.15 0.16 0.916
β1 = 0.5 0.59 0.27 0.28 0.667 0.53 0.15 0.16 0.954 0.53 0.11 0.12 1.000 0.51 0.08 0.08 1.000
β2 = 0.5 0.56 0.69 0.51 0.213 0.51 0.29 0.30 0.428 0.51 0.20 0.22 0.720 0.52 0.14 0.15 0.948

0.2 β1 = −0.5 -0.56 0.26 0.28 0.636 -0.53 0.16 0.17 0.928 -0.52 0.11 0.12 1.000 -0.51 0.08 0.08 1.000
β2 = −0.5 -0.57 0.53 0.47 0.222 -0.55 0.30 0.31 0.446 -0.51 0.21 0.22 0.710 -0.51 0.14 0.15 0.934
β1 = −0.5 -0.56 0.23 0.26 0.730 -0.54 0.15 0.16 0.960 -0.52 0.10 0.11 1.000 -0.51 0.07 0.07 1.000
β2 = 0.5 0.56 0.47 0.47 0.262 0.52 0.28 0.28 0.454 0.52 0.19 0.20 0.776 0.51 0.13 0.14 0.974
β1 = 0.5 0.56 0.31 0.27 0.612 0.53 0.18 0.16 0.928 0.52 0.11 0.12 1.000 0.51 0.08 0.08 1.000
β2 = −0.5 -0.59 0.63 0.46 0.228 -0.55 0.59 0.30 0.422 -0.53 0.21 0.22 0.724 -0.51 0.14 0.15 0.938
β1 = 0.5 0.58 0.24 0.26 0.709 0.53 0.15 0.16 0.962 0.52 0.10 0.11 1.000 0.51 0.07 0.07 1.000
β2 = 0.5 0.54 0.48 0.42 0.222 0.51 0.28 0.27 0.472 0.51 0.19 0.20 0.746 0.51 0.13 0.14 0.966

0.3 β1 = −0.5 -0.56 0.25 0.25 0.660 -0.53 0.15 0.16 0.942 -0.52 0.10 0.11 1.000 -0.51 0.07 0.08 1.000
β2 = −0.5 -0.57 0.55 0.44 0.214 -0.55 0.29 0.29 0.476 -0.52 0.20 0.21 0.738 -0.51 0.14 0.14 0.944
β1 = −0.5 -0.56 0.31 0.24 0.733 -0.54 0.14 0.15 0.970 -0.52 0.10 0.11 1.000 -0.51 0.07 0.07 1.000
β2 = 0.5 0.55 1.02 0.42 0.275 0.51 0.26 0.27 0.498 0.51 0.18 0.19 0.790 0.51 0.13 0.13 0.986
β1 = 0.5 0.56 0.26 0.26 0.668 0.53 0.15 0.16 0.950 0.52 0.10 0.12 0.998 0.51 0.07 0.07 1.000
β2 = −0.5 -0.59 0.87 0.44 0.248 -0.55 0.29 0.29 0.448 -0.52 0.20 0.22 0.740 -0.51 0.14 0.15 0.956
β1 = 0.5 0.57 0.26 0.24 0.737 0.53 0.14 0.15 0.978 0.52 0.10 0.11 1.000 0.51 0.07 0.07 1.000
β2 = 0.5 0.54 0.56 0.41 0.251 0.51 0.26 0.26 0.490 0.51 0.18 0.19 0.790 0.51 0.13 0.14 0.980

Table 4.1: Simulation Study I: Summary of regression parameter estimates across all considered configurations. This include
the average of the 500 point estimates (Est), the average of the estimated standard errors (SE), the standard deviation of the
500 point estimates (SD), and empirical power (Power) to detect the effect at 0.05 significance level.
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Figure 4.2: Simulation Study I: These figures provide empirical power curves, as a function of the
sample size N , for the different configurations of the regression parameters. Note, the dashed and
the dotted lines represent empirical power curves for the effects associated with the continuous and
dichotomous covariates, respectively. The negative and positive values of β1 are expected to result in
approximately similar power due to symmetry of the continuous covariate; however, this symmetry
does not hold for the dichotomous covariate.
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Figure 4.3: Simulation Study I: These figures depict the survival functions for the four different
configurations of the regression parameters when N = 50 and p0 = 0.2.Provided results include the
true baseline survival function (solid lines), the average of the point-wise estimates (dashed lines),
and the 2.5th and the 97.5th point-wise quantiles of the estimates (dotted lines).

4.3.2.2 Simulation Study II

This study was designed to emulate the data expected from the clinical trial outlined in Section

2. The data generating process in this study is identical to that described in the previous study,

with a few minor alterations. In particular, since the clinical trial described in Section 2 has 51
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participants, here we set N = 50. Further, this study sets the rate of instantaneous failure (i.e., the

proportion of participants not successfully being desensitized by the 48th month DBPCFC), p0 = 0.2,

an average of those considered in the previous study. The goal of this study will be to examine

the power of the procedure to detect significant effects ranging from a small to large signal level,

thus we specify β1 ∈ {0, 0.5, 1} and β2 ∈ {−1,−0.5, 0, 0.5, 1} for the continuous and dichotomous

covariate, respectively. Negative values of β1 are not considered since the continuous covariate in

the estimates is symmetric about zero. This symmetry does not hold for the dichotomous covariate

and hence, negative values of β2 are included. Table 4.2 provides the same summary offered in

Table 4.1 but for the parameter estimates arising from this study, and these results reinforce the main

findings discussed in the previous section. The primary interest in this study is to assess the power of

the procedure with respect to the set of hypotheses given by H0 : βj = 0 versus H1 : βj 6= 0, as a

function of the true effect size.

Figure 4.4 illustrates results associated with this aim. From this figure we see that the considered

procedure will allow us to reliably detect important effects with a sample size of 50, as long as they

are of a moderate size. It is worthwhile to point out that we do not assess the power of the procedure

for the regression parameter associated with the continuous covariate, across negative effect sizes

due to symmetry. Further, the size of the test is reasonably preserved. In summary, from the findings

of these studies, we conjecture that the proposed methodology will be a reliable statistical approach

which can be used to analyze data arising from the ongoing clinical trial outlined in Section 2.
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Parameter Est SE SEE Power

β1 = 0.0 0.00 0.27 0.28 0.098
β2 = −1.0 -1.14 0.68 0.54 0.568
β1 = 0.0 0.01 0.23 0.26 0.078
β2 = −0.5 -0.57 0.52 0.46 0.214
β1 = 0.0 0.00 0.22 0.24 0.074
β2 = 0.0 -0.02 0.47 0.44 0.032
β1 = 0.0 0.00 0.21 0.24 0.076
β2 = 0.5 0.56 0.47 0.47 0.240
β1 = 0.0 0.00 0.22 0.24 0.080
β2 = 1.0 1.16 0.55 0.52 0.717
β1 = 0.5 0.57 0.32 0.3 0.564
β2 = −1.0 -1.17 0.92 0.54 0.598
β1 = 0.5 0.56 0.31 0.27 0.612
β2 = −0.5 -0.59 0.63 0.46 0.228
β1 = 0.5 0.57 0.24 0.27 0.664
β2 = 0.0 -0.04 0.46 0.45 0.052
β1 = 0.5 0.58 0.24 0.26 0.708
β2 = 0.5 0.54 0.48 0.42 0.220
β1 = 0.5 0.57 0.24 0.25 0.691
β2 = 1.0 1.12 0.52 0.48 0.727
β1 = 1.0 1.15 0.36 0.36 0.940
β2 = −1.0 -1.19 0.66 0.57 0.540
β1 = 1.0 1.15 0.35 0.33 0.976
β2 = −0.5 -0.61 0.74 0.47 0.200
β1 = 1.0 1.14 0.34 0.34 0.964
β2 = 0.0 -0.03 0.63 0.45 0.038
β1 = 1.0 1.14 0.31 0.35 0.982
β2 = 0.5 0.54 0.53 0.46 0.208
β1 = 1.0 1.16 0.35 0.35 0.974
β2 = 1.0 1.11 0.63 0.48 0.676

Table 4.2: Simulation Study II: Summary of the regression parameter estimates across all considered
configurations. This includes the average of the 500 point estimates (Est), the average of the estimated
standard errors (SE), the standard deviation of the 500 point estimates (SD), and empirical power
(Power) to detect the effect at 0.05 significance level.
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Figure 4.4: Simulation Study II: This figure provides empirical power curves, as a function of the
effects sizes, for the different configurations of the regression parameters.
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4.4 Discussion

The clinical design of this study emanates from a revised protocol of an ongoing 66-month

SLIT study. The original study randomized desensitized subjects at the 48th month in a blinded

fashion (2:1) to a placebo or treatment group, with the treatment group continuing peanut SLIT for 6

months. To assess clinical tolerance, the original protocol mandated that the placebo group complete

the trial with a 54th month DBPCFC, while the treatment group completed the trial with a 66th

month DBPCFC. Due to concerns about negligible success rates, the ongoing study was revised

in hopes of effectively assessing clinical sustained unresponsiveness within patients after SLIT

discontinuation. Since time to loss of tolerance is an important dimension that, to our knowledge, no

prior study has investigated, the study incorporated amendments beyond 48 months of dose build-up

and maintenance to provide a robust framework for studying this clinically valuable information.

The altered design also reflects an innovative structure of a food challenge inspired by a Fibonacci

series that allows for more modest increments of allergen doses compared to a traditional design

wherein dose is incremented in multiples. In contrast to the larger gaps of the traditional design

between two consecutive higher dose levels, this challenge design helps mitigate subjects’ risk by

providing more opportunities of monitoring adverse events at higher doses of administered allergen.

It is important that the key criterion of safety is satisfied, especially when action levels are set for

regulatory purposes. Further, to ensure the identification of both NOAELs and LOAELs for all

subjects, such a structure not only allows for a low-dose challenge to reduce the chances of left

censoring, but also caps with high enough dose to limit right censoring. Also, due to narrower dose

intervals, it allows for more information for analyses. Last but not least, it serves to observe the

cumulative effect of doses which is more useful for the purposes of dose administration.

The presence of events at study entry (i.e., instantaneous failures) presents several challenges

when one wishes to conduct a thorough statistical analysis. Traditionally, methods that conduct the

regression analysis of censored survival data do not directly account for the effect of instantaneous

failures. In fact, little to no guidance on how to directly address this scenario is available in the

current literature. Typically, authors advocate introducing an arbitrary small constant, less than the

smallest observation time, for all instantaneous failures. The study’s smallest observation time is

either shifted to this constant to have riskset and event-set include subjects with instantaneous failures
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or the introduced constant is treated as the first observation time before the beginning of the study;

i.e., these events after the introduction of the small constant are treated as left-censored observations.

However, through numerical studies (results not shown) we have found that such strategies may be

deleterious to both estimation and inference. In studies of food challenges that suffer from lack of a

priori knowledge of threshold distribution, it is typical to have a minimal clinically relevant threshold

or a targeted dose tolerance set at the investigators discretion. Such studies bear the risk of higher

thresholds being set, which could lead to several failures at study initiation and hence could yield

biased survival estimates, if traditional methods of handling instantaneous failures are employed. In

light of these difficulties, we advocate the use of the methodology developed in [89], for the analysis

of interval-censored data subject to instantaneous failures. Through extensive simulation studies, this

new methodology has been shown to provide an accurate and efficient analysis in this context.

The simulation studies presented herein illustrate the finite sample performance of the methodology

developed in [89] within the venue of the motivating clinical trial. These studies demonstrate that this

methodology can accurately estimate all of the unknown parameters in the mixture model described

in (4.11); i.e., the regression coefficients, the survival functions, and the baseline probabliltiy of

experienceing an instantaneous failure. Further, the inferential techniques considered tend to preserve

the specified size of the test, when the null is infact true, and exhibt sufficient power to detect

departures from the null for both continuous and dichotomous covariates. Based on the numerical

studies conducted herein, we believe the methodology developed in [89] will be capable of detecting

clinically important effects in the data collected from the ongoing clinical trial, once it is complete.

However, in our approach, we have not capitalized on the information available in the threshold

distribution of DBPCFCs; instead, based on a subject’s initial and final threshold intervals, we assume

subjects have a non-increasing threshold trajectory to assess the period within which the targeted

threshold is likely to be achieved. Consequently, this restricts our inference to only administered

target dose thresholds rather than any arbitrary threshold in the distribution. However, we hope

to build more sophisticated methods in sequel papers that would allow us to use the additional

information on threshold trajectories.

In summary, we have illustrated a study design and accompanying method of analysis for

interval-censored outcomes subject to instantaneous failures. By virtue of the study design, which

has the final DBPCFCs at staggered sampling examination times, the observational process is
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independent of the failure times, which is required by the methodology under study, as well as many

previous proposals. The revised protocol has not only eliminated the need for a two-arm trial and

hence, the associated administrative burden, but also reduced the overall length of the clinical trial by

almost fifteen months. This feature significantly reduces the chance of non-compliance and drop-outs.

Further, with a few changes in the study design and efficacy analysis plan, this revised protocol now

will allow us to investigate new objectives of inquiry. We are hopeful that the knowledge shared here

will help facilitate future studies in this therapeutic area.
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CHAPTER 5: TOLERANCE DEGRADATION MODELING BASED ON TIME-DEPENDENT
ORNSTEIN-UHLENBECK PROCESS

We introduce a time-dependent Ornstein-Uhlenbeck (OU) process for stochastic degradation of

immunologic tolerance to peanut allergy. The model is a good choice due to its statistical properties

on controllable mean, variance and correlation and its mean-reverting property that allows temporary

correlated fluctuations from an overall degrading trend.

5.1 Ornstein-Uhlenbeck Process

5.1.1 General Process

Consider a one-dimensional structured differential equation (SDE) for an OU process:

dYt =
[
AYt +B

]
dt+ σdWt

where dYt represents change in tolerance threshold over a finite time interval, A,B, σ are constants,

Wt is the standard Weiner motion.The process drift is explained by the parameter A and its diffusion

by the parameter σ.

However, this model is restrictive and not flexible enough to be directly applied in degradation

modeling. While it probably seems reasonable that the tolerance threshold satisfy the Markov

property and have independent increments, it is not reasonable to assume that changes in thresholds

are normally distributed; after all, we know that tolerance threshold can never fall below zero. Another

issue of concern is a constant mean of the OU process. While there is no reason to presume changing

variance, a constant mean disobeys an overall degrading trend. Further, in a biomedical experiment,

a process is usually governed by a systematic trajectory that constitutes repeated measurements over

time, but is often perturbed by individual differences among experimental units. To account for both

system noise and random effects, stochastic differential mixed-effects models (SDMEM) naturally

emanate. This extension, where system noise is modeled by including a diffusion term, allows for
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simultaneous representation of randomness in the dynamics of the phenomena being considered and

inter-individual variability.

We introduce three modifications to compensate the inflexibility of the earlier model: (i) to

allow changes in thresholds to be log-normally distributed, we work with logarithm of threshold,

Xt = log(Yt), to follow OU process given by the above SDE, which is equivalent to Yt following a

Geometric process: dYt =
[
AgYt +Bg

]
dt+ σgYtdWt with difference in parametrization; (ii) start

with introducing time dependent coefficients and later relax this assumption due to the sparse data

emanating from the clinical trial that is less supportive of their estimation; (iii) allow systematic

mean of the process to vary by individuals. As a consequence, a revised Ito’s SDE incorporating

random parameters is proposed. By using this methodology on repeated measurements from different

subjects, it is not necessary to fit the individual data separately, but a single estimation procedure is

used to fit the overall data simultaneously. The proposed model with additional assumptions that

defines stochastic process for tolerance degradation modeling is considered in the following section.

5.1.2 SDMEM Framework

Consider a one-dimensional continuous process Xt evolving in M different experimental units

(subjects) randomly chosen from a theoretical population. An SDMEM is defined as:

dXi
t = At

[
Xi
t +

Bi
t

At

]
dt+ σtdW

i
t , (5.14)

where Xi
t is logarithm of threshold degrading process at time t ≥ ti0 in the ith subject; At = −θ, the

drift (defines speed of reversion) and σt = σ, the diffusion parameter, are assumed to be non-negative

constants similar for all subjects for model simplification; Bi
t is a time varying smooth function that

varies across subjects; W i
t is a standard Weiner motion. Additionally, we introduce a 1-dimensional

subject-specific random effects parameter, bi ∼ N(0, σb), that accounts for inherent individual

differences across the entire temporal trajectory. Under the following notations:

α(t, s) = −
∫ t

s
Audu,

βi(t, s) = −
∫ t

s
Bi
ue
α(u,s)du, (5.15)

γ(t, s) =

∫ t

s
Cue

2α(u,s)du
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where Ct = σ2

2 > 0, an explicit form of Xi
t can be derived from (5.14):

Xi
t = e−α(t,0)

[
Xi

0 + bi − βi(t, 0) +

∫ t

0
σeα(u,0)dW i

u

]
(5.16)

whereXi
0 represents initial log threshold measured for an ith subject at the 48th month food challenge.

Due to interval censored thresholds drawn from food challenge tests, the true threshold for a subject

is unknown and assumed to be a random variable, Xi
0 ∼ N(µ0, σ0). The Xi

0, W i
t and bi are assumed

independent of each other for all 1 ≤ i ≤M . We define the time varying smooth function Bi
t = θµit,

where µit = µ(Xi
t , γ); γ ∈ Γ ⊆ Rp is a p-dimensional fixed effects parameter (the same for entire

population) and is defined as:

µit = µ∞ + (µ0 − µ∞)eZ
iΓ−δti

= (µ0 − µd) + µde
ZiΓ−δti (5.17)

where µd = µ0 − µ∞ ≥ 0 and E(eZ
iΓ) is constrained to equal 1 such that when ti = 0, the

conditional mean µit=0 ≡ µi0 = (µ0− µd) + µde
ZiΓ; when ti →∞, µit → µ∞, a constant. Here, Zi

is 1 x p dimensional matrix of subject’s baseline covariates and the latest test results collected as of

the 48th month challenge. Further, we re-parameterize Xi
0 to incorporate random effect bi, which is

then expressed in terms of the population mean µ0 as below:

Xi
0 = (µ0 − µd) + µde

ZiΓ + bi, (5.18)

It should be emphasized that even though the OU process defines response over the entire

time spectrum, ti > 0, we observe only one instance of interval-censored threshold, Xi
t ≡ Xi

2

emanating from the final food challenge administered at randomized time-points for each individual.

Thus, model (5.16) assumes that the process dynamics responsible for evolving X in each of the

M subjects follows a common functional form, and the inter-individual differences arise due to

population differences and different realizations of the Brownian motion paths {W i
t }t≥ti0 and of the

random parameters bi.
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5.1.3 Statistical Properties

• The solution to the quantities referenced in (5.15) is given by:

α(t, s) = θ(t− s),

−β(t, s) = (µ0 − µd)(eθt − eθs) +
µd

1− δ
θ

[
e(θ−δ)t − e(θ−δ)s],

γ(t, s) =
σ2

4θ
(e2θ(t−s) − 1) (5.19)

Note that s = 0 corresponds to the 48th month challenge, and since subjects have their final

challenge administered at randomized time-points, the above quantities evaluate to:

α(ti, s = 0) = θti,

−β(ti, s = 0) = (µ0 − µd)(eθt
i − 1) +

µd

1− δ
θ

[
e(1− δ

θ
)θti − 1

]
,

γ(ti, s = 0) =
σ2

4θ
(e2θti − 1) (5.20)

• The conditional mean of the process is given by:

E(Xi
t) = e−θt

i
[µi0 − β(ti, 0)]

= µ0 − µd(1− eZ
iΓ−θti) +

µd

1− δ
θ

[
e−δt

i − e−θti
]

= µ0 − µd(1− eZ
iΓ−θti) +

µde
−θti

1− δ
θ

[
e(1− δ

θ
)θti − 1

]
(5.21)

and the overall process mean across all individuals is given by:

E(Xti) = µ0 − µd(1− e−θt
i
) +

µde
−θti

1− δ
θ

[
e(1− δ

θ
)θti − 1

]
(5.22)

• The process covariance is given by:

Cov(Xi
t , X

i
s) = e−θ(s

i+ti)
[
σ2

0 + σ2
b +

σ2

2θ
(e2θs − 1)

]
(5.23)
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Note that the Weiner process becomes stationary if σ2
0 + σ2

b = σ2

2θ . In this situation,

Cov(Xi
t , X

i
s) =

σ2

2θ
e−θ(t

i−si),

V ar(Xi
t) =

σ2

2θ
,

ρXi
t ,X

i
0

= e−θ(t
i−si) (5.24)

where ρXi
t ,X

i
s

is the process correlation coefficient.

• Mean-Reversion Properties:

Note that when ti →∞, the overall process mean, E(Xti)→ µ0 − µd = µ∞ if δ
θ > 1 and θ

is a finite positive constant. If δ
θ ≤ 1, the process may not converge and will depend on the

convergence rate of
[
e−δt

i − e−θti
]
.

5.2 Gauss-Markov (G-M) Process and Transition Density

5.2.1 Definition of G-M Process

A stochastic process {Xt, t ≥ 0} is called G-M process, if for a non-zero function ht and

non-decreasing function ft,

1. X0 = 0,

2. {Xt, t ≥ 0} has independent increments,

3. Xt = htW (ft) , ∀t > 0 , W (∗) is a standard Brownian motion derived from Wiener process,

Wt ∼ N(0, t), ∀t > 0.

4. The transition density for Wt is given by:

p(xt, t|xs, s) =
1√

2πσ2(t− s)
exp

[
− (xt − xs)2

2σ2(t− s)
]

5.2.2 Properties of G-M Process

Few properties of the Gauss-Markov process of interest are:

• E(Xt) = 0 and var(Xt) = htft where ht, ft could be chosen specific to application.

63



• Xt is a Markov process, allowing for memory-less property and exhibits fluctuating trajectories.

• G-M process is almost surely continuous without jumps. Therefore, it supposes no huge shocks

in the system process.

• G-M process allow modeling nonlinear-variance, zero-mean Gaussian noises. Hence, it is

natural to propose a drifted G-M Xt to model degradation process as follows:

Xt = qt + htW (ft),

with E(Xt) = qt.

• If f ∈ C
[
0, T

]
, then the process defined by Zt =

∫ t
0 fsdWs, t ∈

[
0, T

]
is a mean zero

Gaussian process with independent increments and with covariance function:

Cov(Zs, Zt) =

∫ min(s,t)

0
f2
udu.

• Note that Zt can be treated as a Brownian motion under the time-change Zt = W (ρt) with

ρt :=
∫ t

0 f
2
udu.

5.2.3 Connection between G-M process and Transition Density

Consider the general OU process Xi
t in (2.2.1) for an ith subject, assuming initial threshold to

be a constant Xi
s at time s ≥ 0, the solution of which is expressed from (2.2.3) as:

Xi
t :=Xi

t,s(Xi
s)

= e−α(t,s)
[
Xi
s − βi(t, s) +

∫ t

s
σue

α(u,s)dW i
u

]
then from (2.4.2) and (2.4.3),Xi

t is a drifted G-M process: Xi
t = qit+htW (ft) under the time change

2γ(t, s) :=
∫ t
s σ

2
ue

2α(u,s)duwhere qt,s = e−α(t,s)
[
Xi
s−βi(t, s)

]
, ht,s = e−α(t,s) and fu = σue

α(u,s).

This time-change technique can lead to the transition density for Xi
t . Note that the time-dependent

OU process is G-M process only if the initial value Xi
0 is deterministic.

64



5.3 Transition Density of OU based SDMEM

Since fu = σue
α(u,s) is deterministic and continuous, the stochastic integralZt,s :=

∫ t
s σue

α(u,s)dWu,

t ≥ s is a mean zero Gaussian process. Moreover, since Zt,s ∼ N(0, 2γ(t, s)), the transition density

of Xi
t,s = qit,s + ht,sZt,s, given an initial threshold Xi

s at time s ≥ 0, leads to:

p(xit, t− s|xis, bi,Γ, θ, σ) = Nxit|(xis,bi,Γ,θ,σ)(µ
i
ts, σ

2
ts), (5.25)

a Gaussian with mean µits = e−α(t,s)
(
xis − βi(t, s)

)
and variance σ2

ts = 2γ(t, s)e−2α(t,s) = σ2

2θ

[
1−

e−2θ(t−s)], where α(t, s), βi(t, s), γ(t, s) are as given in (5.19). For notational purposes, we will

continue to ignore the fact that individuals are measured at different times until deemed necessary

for computations.

5.3.1 Case when initial thresholds are random

In case of uncertain initial condition xi0 at s = 0 and assuming xi0 ∼ F0(t) = N(µ0, σ0), the

conditional probability of transitioning to xit at time t for ith subject is given by:

pt0(xit, t|bi,Γ, θ, σ) =

∫ +∞

−∞
p
(
xit, t|u, bi,Γ, θ, σ

)
dF0(u)

= N(µt0, σt0) (5.26)

where µt0 = e−θt
[
µ0 − βi(t, 0)

]
and σ2

t0 =
[
σ2

2θ (1− e−2θt)
]

+ σ2
0e
−2θt.

5.3.2 Case when Initial and Final Thresholds are Interval Censored

We note that subjects’ true thresholds are interval censored due to the structure of food

challenges with doses administered in J = 6 levels (Y = 100, 200, 500, 800, 1300, 2100). Let

[Y i
Lj
, Y i

Lj+1
), j = 1, ..., J , represent an interval with Y i

L0
= 0, Y i

LJ+1
= ∞ and correspondingly,

[Xi
Lj
, Xi

Lj+1
) define the log transformed counterpart. Let Iitj = I(Xi

Lj
≤ Xi

t < Xi
Lj+1

) represent

an indicator variable suggesting whether subject’s true threshold xit lies within the associated

interval. Similarly, let [Xi
Lj∗

, Xi
Lj∗+1

) define the log transformed interval for initial threshold and

Ii0j∗ = I(Xi
Lj∗
≤ Xi

0 < Xi
Lj∗+1

), the corresponding indicator. Then, the transition density of

interval censored log thresholds at time t with interval censored random initial thresholds for ith

subject is extended as:
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pic(x
i
t, t|bi,Γ, θ, σ) =

J∑
j∗=0

J∑
j=0

∫ XLj∗+1

XLj∗

∫ Xi
Lj+1

Xi
Lj

Ii0j∗I
i
tjNv|(u,s=0,bi,Γ,θ,σ)(µ

i
t0, σ

2
t0)Nu(µ0, σ

2
0)dv du

=

J∑
j∗=0

J∑
j=0

Ii0j∗I
i
tj

∫ XLj∗+1

XLj∗

∫ Xi
Lj+1

Xi
Lj

ce−q
i(v,u)dv du, (5.27)

where the normalizing constant, c = {2π
√

(1− ρ2)σvσu}
−1

. Under the constraints of a stationary

process, ρ ≡ ρXi
t ,X

i
0
|bi = e−θt, σ2

v = σ2
u = σ2

2θ , from (5.20) - (5.24). Further, with the following

defined quantities: E(v) = e−θt(µ0 − βi(t, 0)) and E(u) = µ0, the exponent term qi(v, u) for a

given bi is a quadratic function of v and u given by:

qi(v, u) =
[v − E(v)]2

σ2
v

+ 2ρ
σv
σ0

[v − E(v)] (u− µ0) +
(u− µ0)2

σ2
0

5.4 Maximum Likelihood

We assume that the distribution of Xi
t |
(
Xi
s, X

i
0, bi,Θ = {Γ, δ, θ, σb,Ω}, s < t

)
, has a strictly

positive density with respect to the Lebesgue measure on E and denote it by: x → pX(x, t −

s|xs, xi0,Θ) > 0, x ∈ E. Here, Θ is a set of unknown parameters and hyper-parameters Ω. Generally,

assume that subject i is observed ni + 1 discrete time points ti0, t
i
1, ..., t

i
ni , i = 1, ...,M . Let ~xi be the

vector of responses for subject i, ~xi = xi0, x
i
1, ..., x

i
ni , where xi(tij) = xij , and let ~x = (~x1, ..., ~xM )

be the N -dimensional total response vector, N =
∑M

i (ni + 1). Define ∆i
j = tij − tij−1 for the

time distance between the observations xij and xij−1. Then, the marginal density of ~xi is obtained

by integrating the conditional density of the data given the non-observable random effects bi and Θ,

with respect to their marginal densities, provided that W i
t and bi are independent of each other. This

yields the likelihood function:

L(Θ, bi | Xi
0, X

i
s) =

M∏
i

∫
B

∫
Θ
p ~X(~xi|bi,Θ) pB(bi|σb) pΘ db

idΘ (5.28)
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where the density functions:

pB(bi|σb) = N(0, σb)

p ~X(~xi|bi,Θ) =

ni∏
j=1

pX(xij ,∆
i
j |xij−1, b

i,Θ)

= {
ni∏
j=2

pX(xij ,∆
i
j |xij−1, b

i,Θ)} ∗ p10(xi1,∆
i
j |bi,Θ)

Note that pX(xij ,∆
i
j |xij−1, b

i,Θ) is a transition density given by (5.25) with t = tij and s = tij−1.

And, p10(xi1,∆
i
j |bi,Θ) is a transition density given by (5.26) with t = ti1.

However, in case of our application, each subject is observed only twice: at the 48th month

DBPCFC, t0 = 0 and at a randomized time ti of final DBPCFC. Further, the true thresholds at at

these time-points are interval censored due to the structure of food challenges, Under this scenario, we

directly use (5.27) towards computing the likelihood. This yields the following likelihood function:

L(Θ|Xi
Lj , X

i
Lj+1

, Xi
Lj′
, Xi

Lj′+1
) =

M∏
i

∫
B

∫
Θ
pic(x

i
t, t|bi,Γ, θ, σ) pB(bi|τ) pΘ db

i dΘ

=

∫
Θ

c

2π
√
σ2
b

M∏
i

J∑
j∗=0

J∑
j=0

Ii0j∗I
i
tj

∫ Xi
Lj∗+1

Xi
Lj∗

∫ Xi
Lj+1

Xi
Lj

∫
B

exp

(
−qi(v, u)− bi

2

2σ2
b

)
dbi dv du pΘ dΘ

(5.29)

Generally, there is no closed form for the likelihood function L(Θ). Due to the analytic

intractability of SDEs regulating most nonlinear multivariate diffusions, the likelihood-based inference

methods can be problematic. To overcome this challenge, few methods have been proposed that

include closed-form expansion of the transition density [1; 2; 75], exact simulation approaches [6; 70]

and use of the Euler-Maruyama approximation coupled with data augmentation [24; 29; 74; 43].

There has been relatively little work on SDMEMs due to the challenges that inference for SDEs

present. On the other side, [21] discuss inference for SDMEMs in a Bayesian framework, and

implement a Gibbs sampler when the SDE (for each experimental unit) has an explicit solution. When

no explicit solution exists they suggest that a solution might be found using the Euler-Maruyama

discretization.
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5.5 Bayesian Analysis

The Bayesian MCMC method that obtains posterior distributions of the parameters is a useful

alternative to perform inference on SDEs. The procedure’s validity rests on a careful analysis of

the stationary distribution of the chain, which involves an extension of the theory of [56]. Further,

[46] contend that the ”posterior” distribution of the profile likelihood with respect to a prior on Θ

is asymptotically equivalent to the distribution of the maximum profile likelihood estimator Θ̂ and

that inferences about Θ might also be based on the marginal posterior of Θ from the full likelihood

with respect to a joint prior on (Θ, η) where η is a nuisance parameter. Thus, the inference of the

parameters for the Bayesian method can be based on their posterior distributions.

For the class of SDMEM considered in this chapter, that uses incomplete discrete-time observations

made sparsely in time and is subject to censoring (so that only a subset of model components are

observed), we resort to Bayesian inference borrowing ideas from [88; 90]. Although a discretization

bias is introduced, this is made arbitrarily small (at greater computational expense). A Bayesian

approach then aims to construct the joint posterior density for parameters and the components of

the latent process. The intractability of the posterior density necessitates simulation techniques

such as Markov chain Monte Carlo. As is well documented in [65], care must be taken in the

design of the MCMC sampler due to dependence between the parameters entering the population

mean and the latent process. To capture nonlinear dynamics exhibited between observation times, a

key requirement is the ability to sample the latent process between two fixed values. For this, we

borrow strength of the study design that allows latter value to vary across individuals, thus enabling

information across the entire time spectrum of the study.

Essentially, a hybrid Metropolis-Hastings scheme is implemented for the interval-censored

threshold data to calculate the marginal likelihood of all parameters of interest, targeting their

posterior distribution. It involves generating a Markov chain {Θ(1),Θ(2), ...} with stationary density

proportional to p(Θ,n)(Θ) = ln(Θ)q(Θ), where q(Θ) = Q(dΘ)/(dΘ) for some prior measure Q.

The procedure begins with an initial value Θ(1) for the chain. For each k = 2, 3, ..., a proposal

ϑ(k + 1) is obtained by random walk from Θ(k). The quantities, η̂ϑ(k+1) and pϑ(k+1),n(ϑ(k+1)), are

computed and based on acceptance rule, a decision is made to accept ϑ(k+1) by evaluating the ratio

pϑ(k+1),n(ϑ(k+1))/pϑ(k),n(ϑ(k)). After generating a sufficiently long chain, the mean of the chain is
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computed to estimate the maximizer of ln(Θ) and the variance to estimate the inverse Information

matrix.

This algorithm is implemented in the publicly available software WinBUGS [73]. While building

the model, a bivariate Gaussian distribution for the initial and latter interval-censored log thresholds

is specified as in (5.27). Censoring is specified such that individual’s latent log thresholds are bound

by the observed lower and upper limit to contribute to the full conditional distribution. Priors are then

assigned to the unknown independent parameters. Regression coefficients, γ1 and γ2, are assigned

uninformative standard normal priors with zero mean and the intercept, γ0 is constrained to allow

E(expZiΓ) = 1. Uniform prior is assumed for the drift parameter θ ∼ U(0, 0.5) and the population

drift parameter is re-parametrized in terms of the ratio of population and process drift parameters,

δ
θ ∼ U(0, 10), which is constrained to not equal 1. The priors for the variance parameters, σ2

0 and

σ2
b , are assumed to be Inverse Gamma(shape = a, rate = b) with hyper-parameters (a, b) chosen

such that the priors are weakly informative. For example, for σ2
0 , we set a = b = 0.0001 and for

σ2
b , we set a = 5, b = 0.01. Due to stationarity of the latent process, we induce inverse relationship

between σ2
0 and σ2

b . For this reason, we allow uninformative prior on σ2
0 to cover a spectrum of

challenge thresholds than those observed, thus allowing it to reflect variability in observed covariates.

Further, the inherent individual’s variability, σ2
b , that remains unexplained by observed covariates is

constrained to be much smaller. This approach relaxes the inverse relationship and makes estimation

of the two parameters independent of each other. Parameter estimates and the 95% credible intervals

(CI) can be obtained from the MCMC samples.

Some caution is exercised because the choice of hyper-parameters may affect the final parameter

estimates. Initial values for the parameters are selected within ±2 standard deviations of the prior

means. To assess the stability of final estimates in our simulations, two parallel chains are run with

different initial values. The Gaussian proposal distribution used for this algorithm adapts for the

first 4000 iterations and these samples are discarded from the summary statistics. A further 1000

update burn-in followed by 15000 updates were considered to give final parameter estimates. The

convergence of the MCMC samples of optimization parameters is visually inspected and confirmed

using the criteria of [10]. Sample WinBUGS code is shown in the appendix.

69



5.6 Simulations: Finite Sample Performance

For simulating the data, the true conditional distribution of initial and final challenge log

thresholds, Xi = (Xi
0, X

i
2)′ is specified to be N2(µi,Σi

0,t) with conditional mean vector, µi =(
µi0, E(Xi

t)
)′ and covariance structure,

Σi
0,t =

σ2

2θ

 1 e−θt
i

e−θt
i

1


where µi0 = (µ0 − µd) + µde

ZiΓ, E(Xi
t) is as given by (5.21) and σ2 = 2θ(σ2

0 + σ2
b ) to ensure that

the process is stationary. Subjects are allocated their randomized times, ti as per the study protocol

described in chapter 4. Baseline covariates, Z = (Z1, Z2)′ are simulated such that Z1 ∼ N(0, 1),

Z2 ∼ Bernoulli(p = 0.7) and three settings of corresponding regression coefficients, Γ = (γ1, γ2)′ ∈

{(0.05,−0.05)′, (0.1,−0.1)′, (0.5,−0.5)′} are considered. The intercept coefficient, γ0 is restricted

to equal −
(
γ2

1/2 + log(peγ2 + 1− p)
)

to ensure E(eZ
iΓ) = 1 and σ2

0 is empirically evaluated to

equal
(
µ2
dV ar(e

Z′Γ)
)

to reflect variability in covariates. Here, we focus on the Γ parameters that

represent the effect of covariates on expected log-threshold at any time-point t where a positive

(negative) coefficient is associated with an increase (decrease) in log threshold. Further, µ0 = 7.8,

µd = 3.4, θ = 0.01, δθ = 5 and σb = 0.05 are chosen a priori to reflect potential data arising from the

trial. Finally, the challenge threshold intervals for a subject are evaluated based on the pre-decided

challenge dose levels the simulated thresholds originating from the latent process fall in. Due to

high variability attributed to larger regression coefficients, it is likely that the thresholds at time ti

simulated for the latter challenge fall in interval higher than that at the initial challenge. In such

cases, the latter threshold intervals are amended to (LOAELit=0,∞), since subjects in the actual

trial are not administered challenge doses above their initial LOAEL levels and there is no way to

assess where their potential threshold would lie in the spectrum. We then perform the following two

numerical experiments to investigate the finite sample performance of the proposed procedure within

context of the data expected from the study.
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5.6.1 Experiment-I: Varying Effect Sizes

In the first setting, the above configuration is adopted for two sample sizes, M = 51, the actual

study sample size, and M = 200 as a benchmark for method’s performance under large sample size.

This procedure is repeated for another dataset generated using a different seed, leading to twelve

simulations in total, six under each seed. The change in seed allow the set of covariates to differ for a

given set of parameters. This elucidates procedure’s consistency under two different set of covariates

for small and large sample sizes.

Table 5.1 summarizes parameter estimates and corresponding 95% Bayesian Credible Intervals

(BCI). In general, we observe more precise estimates with narrower intervals for higher sample size

unless more censoring is involved. As depicted by Scenario-1 where there is no censoring, the higher

sample size gives parameter estimates with little bias; on the other hand, the estimates from lower

sample size exhibit some bias but are in the right direction in vicinity of the truth with wider intervals

as expected. The estimates of (γ1, γ2, µd) appear more sensitive to differences in data. As evident by

Scenario-2, higher censoring rate is associated with larger bias when comparing datasets with the

same sample size but different seeds. Finally, larger covariate coefficients depicting absolute effect

aggravate bias due to higher censoring rate, as shown in Scenario 3. A large coefficient induces more

variability in threshold distribution leading to heavier tails beyond observation limits.
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Seed 1 Seed 2

M = 51 M = 200 M = 51 M = 200
Node Mean (SD) 95% BCI Mean (SD) 95% BCI Mean (SD) 95% BCI Mean (SD) 95% BCI

SCENARIO 1
γ1(0.05) 0.08 (0.015) (0.05, 0.11) 0.05 (0.007) (0.04, 0.07) 0.06 (0.014) (0.03, 0.09) 0.05 (0.007) (0.04, 0.06)
γ2(−0.05) -0.08 (0.029) (-0.13, -0.02) -0.05 (0.012) (-0.07, -0.02) -0.03 (0.023) (-0.08, 0.01) -0.04 (0.011) (-0.06, -0.02)
δ(0.05) 0.06 (0.012) (0.04, 0.09) 0.05 (0.006) (0.04, 0.06) 0.05 (0.01) (0.03, 0.07) 0.05 (0.006) (0.04, 0.06)
θ(0.01) 0.01 (0.002) (0.01, 0.02) 0.01 (0.001) (0.01, 0.01) 0.01 (0.002) (0.01, 0.02) 0.01 (0.001) (0.01, 0.01)
µ0(7.8) 7.81 (0.037) (7.74, 7.88) 7.8 (0.017) (7.77, 7.84) 7.77 (0.038) (7.7, 7.84) 7.78 (0.018) (7.74, 7.82)
µd(3.4) 2.79 (0.295) (2.27, 3.43) 3.26 (0.241) (2.84, 3.79) 3.48 (0.553) (2.58, 4.82) 3.59 (0.345) (2.99, 4.26)
σ0(0.19) 0.19 (0.025) (0.15, 0.25) 0.18 (0.012) (0.15, 0.2) 0.2 (0.027) (0.16, 0.26) 0.2 (0.014) (0.17, 0.22)
σb(0.05) 0.05 (0.012) (0.03, 0.08) 0.05 (0.011) (0.03, 0.07) 0.05 (0.012) (0.03, 0.08) 0.05 (0.014) (0.03, 0.08)

Censoring (N)
(L0,R0, Lt,Rt) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
Threshold ↑ (N) 0 1 0 0

SCENARIO 2
γ1(0.1) 0.11 (0.031) (0.06, 0.18) 0.11 (0.014) (0.08, 0.14) 0.1 (0.024) (0.06, 0.15) 0.08 (0.012) (0.06, 0.1)
γ2(−0.1) -0.06 (0.046) (-0.16, 0.02) -0.07 (0.02) (-0.11, -0.03) -0.09 (0.037) (-0.18, -0.03) -0.09 (0.019) (-0.13, -0.05)
δ(0.05) 0.05 (0.013) (0.03, 0.08) 0.05 (0.008) (0.04, 0.07) 0.05 (0.012) (0.03, 0.07) 0.05 (0.007) (0.03, 0.06)
θ(0.01) 0.01 (0.002) (0.01, 0.02) 0.01 (0.001) (0.01, 0.01) 0.01 (0.002) (0.01, 0.01) 0.01 (0.001) (0.01, 0.01)
µ0(7.79) 7.79 (0.067) (7.66, 7.92) 7.77 (0.031) (7.71, 7.83) 7.69 (0.057) (7.58, 7.8) 7.77 (0.031) (7.71, 7.83)
µd(3.4) 3.37 (0.708) (2.28, 4.97) 3.54 (0.336) (2.96, 4.27) 3.66 (0.736) (2.5, 5.46) 3.88 (0.468) (3.09, 4.95)
σ0(0.38) 0.44 (0.041) (0.36, 0.52) 0.39 (0.019) (0.36, 0.43) 0.36 (0.038) (0.29, 0.44) 0.39 (0.02) (0.36, 0.43)
σb(0.05) 0.05 (0.013) (0.03, 0.08) 0.05 (0.012) (0.03, 0.08) 0.05 (0.013) (0.03, 0.08) 0.05 (0.012) (0.03, 0.08)

Censoring (N)
(L0,R0, Lt,Rt) (0, 7, 0, 1) (0, 23, 0, 3) (0, 4, 0, 0) (0, 14, 0, 0)
Threshold ↑ (N) 1 2 0 2

SCENARIO 3
γ1(0.5) 0.43 (0.158) (0.17, 0.78) 0.32 (0.06) (0.22, 0.45) 0.37 (0.146) (0.14, 0.71) 0.33 (0.069) (0.21, 0.48)
γ1(−0.5) -0.36 (0.207) (-0.83, -0.02) -0.22 (0.079) (-0.39, -0.08) -0.31 (0.186) (-0.74, -0.01) -0.35 (0.091) (-0.55, -0.19)
δ(0.05) 0.04 (0.023) (0.01, 0.09) 0.03 (0.009) (0.02, 0.05) 0.05 (0.026) (0.01, 0.1) 0.04 (0.01) (0.02, 0.06)
θ(0.01) 0.01 (0.002) (0, 0.01) 0.01 (0.001) (0.01, 0.01) 0.01 (0.003) (0, 0.01) 0.01 (0.001) (0.01, 0.01)
µ0(7.74/7.5) 7.28 (0.299) (6.69, 7.86) 7.39 (0.146) (7.11, 7.68) 7.25 (0.306) (6.64, 7.85) 7.58 (0.157) (7.28, 7.89)
µd(3.4) 4.17 (2.058) (1.89, 9.13) 4.73 (0.905) (3.25, 6.75) 4.63 (2.17) (1.96, 10.21) 4.78 (0.911) (3.31, 6.81)
σ0(2.05) 1.95 (0.216) (1.58, 2.42) 1.89 (0.101) (1.7, 2.09) 2.01 (0.206) (1.65, 2.45) 2.02 (0.106) (1.82, 2.24)
σb(0.05) 0.05 (0.012) (0.03, 0.08) 0.05 (0.013) (0.03, 0.08) 0.05 (0.012) (0.03, 0.08) 0.05 (0.013) (0.03, 0.08)

Censoring (N)
(L0,R0, Lt,Rt) (10, 19, 8, 12) (31, 64, 42, 43) (10, 15, 13, 7) (30, 70, 50, 37)
Threshold ↑ (N) 13 40 10 36

Table 5.1: Experiment-I: Summary includes the mean parameter estimates and 95% Bayesian Credible Intervals (BCI) across
all considered configurations.
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5.6.2 Experiment-II: Fixed Effect Size, Different Datasets with Varying Covariates

In the second setting, we fix Γ = (γ1, γ2)′ = (0.1,−0.1)′ and for each of the two sample

sizes, M = {51, 200}, we perform three additional simulations using different seeds to total five

simulations corresponding to data sets with differing covariates originating from the same set of

parameters. This ensures consistency of the procedure under variety of covariate data with regards to

finite sample performance.

Based on prior information and the data collected thus far, this choice of Γ is expected to

represent study data more closely with regards to the level of left/right censoring between 2− 18%

on both the challenge tests. While unlikely in reality, it also presented us a case when final challenge

thresholds could be higher than the initial. Table 5.2 provides a summary of the estimated parameters

that had priors assigned. The summary includes posterior mean, estimated standard errors and 95%

BCI. Convergence is achieved for all parameters and their estimates are not sensitive to the choice of

hyper-parameters and initial values. From these results, one will note that the bias is generally small

and the BCI include the corresponding true parameters for all the datasets. The estimated parameters

for the two sample sizes within the same seed are quite close with wider BCI for smaller sample

size. In general, the posterior regression coefficient estimates are closest to the truth when the overall

left/right censoring rate is the lowest, as depicted by Seed 2.

Further, we assess the empirical goodness of model fit by comparing temporal curves of the

estimated mean log-thresholds as described by the latent process with that assumed. The curves,

as shown in Figure 5.1 are predictions based on all subjects without adjusting for covariates. Each

curve corresponds to the posterior distribution of expected log-thresholds with solid red depicting

median and dashed blue, the 95% posterior interval. The curve plotted in black dots corresponds to

the assumed parametric values and represents the truth. We observe that in majority of the cases, the

small sample size does reasonably well in predicting expected log-threshold. When compared to the

larger sample size, they have wider CI at later time points where we lack data. This observation is

not unexpected.

In summary, the two numerical experiments illustrate finite sample performance of the proposed

methodology in context of an innovative study design that is embarked on a typical interval censored

data from food challenges administered at randomized time-points. We have shown that this
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methodology could be used to study covariate effects on expected threshold trajectory, enabling

inferences on expected tolerance threshold at a specific time-point or time to reach an arbitrary

threshold with some added work. The procedure does reasonably well with small sample size when

left/right censoring is moderate.
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M = 51

Seed 1 Seed 2 Seed 3 Seed 4 Seed 5

Node Mean (SD) 95% BCI Mean (SD) 95% BCI Mean (SD) 95% BCI Mean (SD) 95% BCI Mean (SD) 95% BCI

γ1(0.10) 0.11 (0.031) (0.06, 0.18) 0.09 (0.023) (0.05, 0.14) 0.16 (0.042) (0.08, 0.24) 0.08 (0.022) (0.04, 0.13) 0.19 (0.043) (0.11, 0.28)
γ2(−0.10) -0.06 (0.046) (-0.16, 0.02) -0.09 (0.035) (-0.17, -0.03) -0.16 (0.077) (-0.32, -0.02) -0.12 (0.039) (-0.21, -0.05) -0.12 (0.055) (-0.24, -0.02)
δ(0.05) 0.05 (0.013) (0.03, 0.08) 0.06 (0.016) (0.03, 0.09) 0.07 (0.019) (0.04, 0.12) 0.06 (0.015) (0.04, 0.1) 0.06 (0.016) (0.04, 0.1)
θ(0.01) 0.01 (0.002) (0.01, 0.02) 0.01 (0.002) (0, 0.01) 0.01 (0.003) (0.01, 0.02) 0.01 (0.003) (0.01, 0.02) 0.01 (0.003) (0.01, 0.02)
µ0(7.79) 7.79 (0.067) (7.66, 7.92) 7.69 (0.057) (7.58, 7.8) 7.93 (0.062) (7.81, 8.05) 7.86 (0.05) (7.76, 7.96) 7.9 (0.066) (7.78, 8.03)
µd(3.40) 3.37 (0.708) (2.28, 4.97) 3.85 (0.822) (2.56, 5.84) 2.53 (0.419) (1.87, 3.53) 2.99 (0.5) (2.21, 4.19) 3.02 (0.531) (2.22, 4.28)
σ0(0.38) 0.44 (0.041) (0.36, 0.52) 0.36 (0.038) (0.29, 0.44) 0.39 (0.038) (0.32, 0.47) 0.31 (0.033) (0.25, 0.38) 0.41 (0.041) (0.34, 0.5)
σb(0.05) 0.05 (0.013) (0.03, 0.08) 0.05 (0.013) (0.03, 0.08) 0.05 (0.012) (0.03, 0.08) 0.05 (0.013) (0.03, 0.08) 0.05 (0.012) (0.03, 0.08)

Censoring (N)
(L0,R0,Lt,Rt) (0, 7, 0, 1) (0, 4, 0, 0) (0, 8, 0, 1) (0, 6, 0, 0) (0, 9, 1, 3)
Threshold ↑ (N) 1 0 1 0 0

M = 200

Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5

Node Mean (SD) 95% CI Mean (SD) 95% CI Mean (SD) 95% CI Mean (SD) 95% CI Mean (SD) 95% CI

γ1(0.10) 0.11 (0.014) (0.08, 0.14) 0.08 (0.012) (0.06, 0.1) 0.09 (0.012) (0.07, 0.12) 0.09 (0.014) (0.06, 0.11) 0.1 (0.014) (0.08, 0.13)
γ2(−0.10) -0.07 (0.02) (-0.11, -0.03) -0.09 (0.019) (-0.13, -0.05) -0.1 (0.02) (-0.14, -0.06) -0.09 (0.02) (-0.14, -0.06) -0.09 (0.021) (-0.14, -0.06)
δ(0.05) 0.05 (0.008) (0.04, 0.07) 0.05 (0.007) (0.03, 0.06) 0.07 (0.013) (0.05, 0.1) 0.06 (0.011) (0.04, 0.08) 0.06 (0.012) (0.04, 0.08)
θ(0.01) 0.01 (0.001) (0.01, 0.01) 0.01 (0.001) (0.01, 0.01) 0.01 (0.001) (0.01, 0.01) 0.01 (0.002) (0.01, 0.01) 0.01 (0.001) (0.01, 0.01)
µ0(7.79) 7.77 (0.031) (7.71, 7.83) 7.77 (0.031) (7.71, 7.83) 7.87 (0.028) (7.82, 7.93) 7.84 (0.029) (7.78, 7.9) 7.81 (0.031) (7.75, 7.87)
µd(3.40) 3.54 (0.336) (2.96, 4.27) 3.88 (0.468) (3.09, 4.95) 3.39 (0.317) (2.86, 4.1) 3.69 (0.42) (2.95, 4.56) 3.81 (0.389) (3.15, 4.67)
σ0(0.38) 0.39 (0.019) (0.36, 0.43) 0.39 (0.02) (0.36, 0.43) 0.36 (0.018) (0.32, 0.4) 0.37 (0.019) (0.34, 0.41) 0.4 (0.02) (0.36, 0.44)
σb(0.05) 0.05 (0.012) (0.03, 0.08) 0.05 (0.012) (0.03, 0.08) 0.05 (0.013) (0.03, 0.08) 0.05 (0.012) (0.03, 0.08) 0.05 (0.012) (0.03, 0.08)

Censoring (N)
(L0,R0,Lt,Rt) (0, 23, 0, 3) (0, 14, 0, 0) (0, 21, 0, 2) (0, 19, 0, 6) (0, 21, 1, 5)
Threshold ↑ (N) 2 2 2 2 1

Table 5.2: Experiment-II: Summary includes the mean parameter estimates and 95% Bayesian Credible Intervals (BCI) using data generated from five
different seeds with the same set of parameters and Γ = (0.1,−0.1)′.

75



Figure 5.1: This figure provides log-threshold projections for the two sample sizes, M = {51, 200},
derived from Experiment-II. Each curve corresponds to the posterior distribution of expected
log-thresholds with solid red depicting median and dashed blue, the 95% posterior interval. The
curve plotted in black dots corresponds to the assumed parametric values and represents the truth.
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5.7 Discussion

In this chapter, we focused on developing and validating a flexible methodology guided by a

scientifically motivated stochastic process under the mixed effects framework. The method builds on

the bulwark of the study design described in Chapter 2 by delineating individual trajectories from data

collected at random time-points and thus maximizing information from an otherwise typically sparse

food challenge study that administers challenges at two fixed occasions. To this end, this work has

proposed a model, under the assumptions of a latent process, which can be used to analyze covariate

effects on threshold projections. Through the model development, we adopt Bayesian approach for

estimating the parameters underlying the model. Primarily, a hybrid Metropolis-Hastings algorithm

is implemented within a Gibbs sampler until convergence is achieved on all the unknown parameters.

The resulting algorithm is flexible and easy to implement and the estimates are independent of the

choice of hyper-parameters and initial values.

The finite sample performance of the proposed approach was exhibited through extensive

numerical study. This study suggests that under moderate rate of censoring on extreme ends

of threshold distribution, the procedure performs fairly well in estimating parameters with low

sample size. Since the food challenge studies are typically small, a study can benefit from a

well-designed challenge built on a priori scientific information to form threshold intervals. Overall,

this methodological approach of assessing covariate effects on time-bound threshold decay is

promising and could be further extended or adapted.

5.8 Future Directions

In parlance of systematic immunology, the concept of FPT borrowed from reliability studies

is the time taken for the immune system to fail when the tolerance threshold deteriorates beyond a

preset level. Mathematically, if a stochastic degradation process Yt has been established, it would be

convenient to consider the failure time as the random time τ = inf t>0{Yt ≥ D(t)} where D(t) is

some specified threshold of interest [18]. Once the process parameters are estimated, one can apply

direct maximization techniques, e.g., the Newton-Raphson method or the Expectation-Maximization

(EM) algorithm, to estimate FPT. In a Bayesian framework, based on the posterior distribution of

expected log-thresholds, one can empirically measure the earliest time an estimated trajectory hits a
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specified threshold and derive posterior distribution of FPT which could then be used for inferential

purposes. Since it is possible to estimate an individual or population level curve, one can draw useful

inferences on ”half − life” of population sensitivity threshold or individual’s expected threshold

dropping by at least a level of the administered dose or even below MCRT.

Using a more flexible semi-parametric approach, the methodology could further be extended to

allow individual specific drift and diffusion parameters be functions of covariates and vary with time.

Similar estimation approach could be used to derive inferences based on the profile likelihood at an

individual as well as population level. To reduce computation burden, the model parameters and

latent trajectories could be updated jointly [30] and their conditional dependencies could be dealt

using blocking strategies as proposed by [88].

The flexibility that these models offer could be put to clinical use to inform individualized

treatments. Based on the study of risk factors and prognosis of individual SU failure, preventive

strategies could be adopted in practice and more targeted treatment could be administered.
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