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Abstract
Qiong Han: Proper Shape Representation of Single Figure and

Multi-Figure Anatomical Objects
(Under the direction of Stephen M. Pizer)

Extracting anatomic objects from medical images is an important process in various

medical applications. This extraction, called image segmentation, is often realized by

deformable models. Among deformable model methods, medial deformable models have

the unique advantage of representing not only the object boundary surfaces but also the

object interior volume.

Based on one medial deformable model called the m-rep, the main goal of this dis-

sertation is to provide proper shape representations of simple anatomical objects of one

part and complex anatomical objects of multiple parts in a population. This dissertation

focuses on several challenges in the existing medially based deformable model method:

1. how to derive a proper continuous form by interpolating a discrete medial shape rep-

resentation; 2. how to represent complex objects with several parts and do statistical

analysis on them; 3. how to avoid local shape defects, such as folding or creasing, in

shapes represented by the deformable model. The proposed methods in this dissertation

address these challenges in more detail:

1. An interpolation method for a discrete medial shape model is proposed to guaran-

tee the legality of the interpolated shape. This method is based on the integration

of medial shape operators.

2. A medially based representation with hierarchy is proposed to represent complex

objects with multiple parts by explicitly modeling interrelations between object

parts and modeling smooth transitions between each pair of connected parts. A

hierarchical statistical analysis is also proposed for these complex objects.
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3. A method to fit a medial model to binary images is proposed to use an explicit

legality penalty derived from the medial shape operators. Probability distributions

learned from the fitted shape models by the proposed fitting method have proven

to yield better image segmentation results.
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Chapter 1

Introduction

1.1 Motivation

Medical image processing is becoming an important component in modern medicine

because it assists physicians in diagnosing and treating diseases. The following list

shows some medical image processing applications:

• Computer-assisted nodule detection in chest CT images helps physicians to screen

for early-stage lung cancer, which significantly increases the survival rate of pa-

tients with early-stage lung cancer;

• Statistical shape analysis applied to neurological images sheds light on early diag-

nosis of children with autism;

• Image-guided radiation therapy (IGRT) helps radiation oncologists to locate tu-

mors and organs at risk more precisely and plan better radiation treatment plans.

These medical image processing applications are based on two fundamental tasks:

image segmentation and statistical shape analysis. The first task, image segmenta-

tion, tries to separate image regions corresponding to certain anatomical structures

from the background image. Various image segmentation methods have been proposed.

Deformable model methods tackle the problem by representing anatomical objects as



geometric shape models and deforming shape models into target images via object shape

and object-relative image intensity (appearance) information inferred from a population

of anatomical objects. The use of the inferred information from a population enables

deformable model methods to deal with challenging images, in which noise is apparent

or contrast across object boundaries is lacking. The second task, statistical shape anal-

ysis, applies learned shape statistics on two populations of shapes to infer differences

between the populations, e.g., by hypothesis testing.

Both tasks require the understanding of object shapes or appearance in one or more

populations. This is achieved by learning object shape or appearance variations of a

training set of anatomical objects from a respective object population. There are two

common approaches to use a set of training objects: 1. estimating shape or appearance

probability distributions from training objects or images from a population and then

computing the estimated probability on a new object for statistical shape analysis or on

a new image for image segmentation; 2. using the training set of anatomical objects to

solve problems without learned shape or appearance probability distributions. The first

approach is often used in posterior optimization for image segmentation or Bayesian clas-

sification, and the second approach is used in shape discrimination, via support vector

machine (SVM) or distance weighted discriminant methods [Vapnik (1993)]. This disser-

tation focuses on the first approach, which summarizes shape and appearance statistics

from a training set of objects and applies the estimated probability distributions to a

new object.

In the framework of UNC MIDAG (Medical Image Display and Analysis Group),

various projects use learned statistics: shape and appearance statistics are used to

guide image segmentation [Pizer et al. (2003)]; shape statistics are also used in the

discrimination between populations of object complexes by statistical shape analysis

[Gorczowski et al. (2007)]; in [Terriberry et al. (2005)], shape statistics of two populations

are used in a two-sample hypothesis testing to find significant differences between the
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two populations. Our experiences indicate that quality of the shape and appearance

statistics is crucial to the success of both image segmentation and shape analysis tasks.

Shape statistics are learned from shape parameters of a set of pre-extracted shape

models. Appearance statistics are learned from shape-relative volumetric regions around

shape boundaries. How the shapes are represented directly affects how shape and ap-

pearance information is obtained for each training object. Therefore the quality of both

shape and appearance statistics depends on the quality of the shape models.

Various shape model representations [Cootes et al. (1995); Pizer et al. (2003); Styner

et al. (2006); Yang et al. (2003)] have been proposed for anatomical objects, with model-

ing an object population as the goal in mind. In particular, the UNC MIDAG group has

developed a discrete medial shape representation called the m-rep [Pizer et al. (2003)]

that is especially suited to this population modeling task: discrete m-reps have local-

ized shape control allowing accurate and precise representation of anatomical structures;

discrete m-reps can represent objects with a fixed topology from a population and can

capture non-linear shape variations in these objects via learned shape statistics [Fletcher

(2005)]. However, the following challenges still remain:

1. Undesired shape defects, such as creasing, can not be efficiently prevented;

2. Objects with more than one component, such as a liver with two lobes, are only

represented as a whole, not in terms of its components;

3. Interpolation within discrete medial shape models is not well understood and im-

plemented.

The following subsections detail these challenges, followed my thesis objectives and

claims to face these challenges.
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1.1.1 Proper Shape for Population Modeling

Any undesired shape defects in training shape models are unnatural shape features, such

as local creasing or folding. These shape defects will be reflected in inferred statistics

based on those models. The ”tainted” statistics will yield undesirable results.

Shape representations in deformable model methods provide not only the geomet-

ric basis to infer shape statistics but also the object-relative coordinates via which the

image intensities are extracted to infer appearance statistics. A shape representation

that guarantees shapes as legal or proper, i.e. free of any local creasing and folding, are

necessary to obtain both good shape and good appearance statistics. These shape and

appearance statistics are used as priors and likelihoods, respectively, in image segmen-

tations, via posterior optimization on deformable models. Shape statistics are also used

in statistical shape analysis applications such as hypothesis testing. Shape legality is

thus important to the success of image segmentation using posterior optimization and

statistical shape analysis.

However, it is not trivial to maintain shape legality at feasible computational cost

for most proposed shape representations. Among shape representations, medially based

ones are richer in descriptive power than boundary surface representations by repre-

senting not only the object boundary but also the volumetric object interior. Medial

representations can be understood as multiscale descriptions that represent not only

global shape deformations but also local translation, bending, scaling, and twisting of

the object interior. Focusing on the object interior has led to mathematics that provide

explicit legality constraints on medially based shape models [Damon (2003, 2004, 2005)].

Constraints are key to acquiring proper shapes and generating correct statistics of an

object population. Providing and applying such shape legality constraints is one main

goal of this dissertation [Han et al. (2007)].

4



Figure 1.1: a) A prostate with two seminal vesicle protrusions. b) A liver represented
by the union of the left and right lobes. Object a has three single-figure parts while
object b has two such parts.

1.1.2 Multi-part Objects

Shape representation and statistics of simple one-part objects have been widely stud-

ied. Methods using various representations have been proposed and shown to be effective

[Cootes et al. (1995); Fletcher et al. (2004); Yang et al. (2003)]. However, many anatom-

ical objects have multiple named parts. For example, a prostate (Figure 1.1-a) has two

seminal vesicles attached to it, and a liver (Figure 1.1-b) has both left and right lobes.

The difficulty of representing multi-part objects lies in the fact that only modeling

each individual part is not sufficient. The inter-relations among parts have been elusive

for boundary based shape representations. The inter-relations include part-to-part con-

nection, global deformations to all the connected parts, and implied deformations from

one part to an adjacent part.

Due to the inherent complexity of objects with multiple parts, previous shape and

statistical descriptions of such objects concentrated on their global structures [Cootes

et al. (1995); Gerig et al. (2001)] or on the extremely local behavior of geometric prim-

itives, such as points, without references to the parts’ inter-relations [Csernansky et al.

(1998); Styner et al. (2003)].

One focus of this dissertation is to represent complex objects with multiple parts so

that statistical analysis can be effectively conducted on such objects from a population.
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Medially based shape representations parameterize both the object interior and the

adjacent exterior volumetric regions. This allows us to model the relations between

pairs of adjacent object parts because each part can be known in the local coordinates

of its connected neighboring part. The local coordinates also allow us to describe the

inter-part relations by a small set of parameters. This makes it feasible to explicitly

model multi-part objects as a connected set of parts [Han et al. (2004)] and to conduct

hierarchical statistical analysis on the parts of the objects from a population [Han et al.

(2005)].

1.1.3 Interpolation of Discrete Medial Representations

A parametric shape representation captures an object shape via continuous functions of

arguments on topologically equivalent shapes. For shapes with spherical topology, an

example is a shape representation based on piece-wise polynomial splines or a shape rep-

resentation based on Fourier basis functions [Duncan (1992); Staib and Duncan (1996)]

that globally represents an object shape with a set of parameters as the coefficients of

the basis functions. Such representations, however, do not provide a means to model

localized shape variations.

A discrete medial shape representation, such as a discrete m-rep, is composed of a

set of discrete medial samples, called medial atoms [Pizer et al. (2003)]. Each medial

atom has a hub position point and two to three spoke vectors from the hub position

to the boundary points, as shown in figure 2.1. Although the discrete m-rep does not

give a continuously parameterized representation of the object, it conveniently provides

localized control over the object shape. By interpolating or approximating the set of

discrete primitives, we can have a continuous and parameterized representation derived

from the discrete object, and we can still benefit from capturing the localized shape

variations by the discrete primitives.

An m-rep medial atom has the form of (p, r,U+1,−1), where p is the hub position
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as a 3D point, r is the radius or the length of spokes, and U+1,−1 are the directions of

the spokes (more detail about medially based representations can be found in section

2.1). An interpolation or approximation of (p, r,U+1,−1) can provide a parameterized

medial representation (p(u, v), r(u, v),U(u, v)+1,−1). In order for the interpolated atoms

to stay medial [Blum and Nagel (1978)], the interpolated or approximated atoms must

satisfy a set of constraints as follows:

1. The bisector spoke of each atom is tangential to the medial sheet surface formed

by p(u, v) at the point of which the atom hub p lies;

2. The normal of the medial sheet surface is in the direction of the difference vector

between the pair of spokes in a medial atom;

3. The derivatives of the spoke along the medial sheet and the medial sheet surface

fulfill certain conditions to keep the spokes from crossing one another.

Although interpolation of points in R3 has been well studied, a new interpolation

method is needed for medial atoms because the interpolated medial atoms must fulfill

the set of constraints above. In particular, each discrete medial primitive, i.e., each

medial atom lies in a curved Riemannian space, and the dimensions of each atom are not

independent because its spoke directions must reflect the derivatives of the medial sheet

surface and of the radius field on the medial sheet. There has not been an interpolation

method on discrete m-reps that fulfill such constraints. A method to interpolate m-rep

atom hubs into a smooth medial sheet surface and to interpolate m-rep spokes into a

smooth spoke field is proposed in this dissertation. The key is to maintain the relation

among all the atom dimensions so the legality of the interpolated medial sheet and spoke

fields on the sheet is upheld.

A direct application of the proposed interpolation method is to improve correspon-

dences between sample objects represented by m-reps in a population. When modeling

a population of objects, correspondence across models becomes important to efficiently

7



represent the shape variations in the population by shape statistics. Shape representa-

tions using dense boundary points have already approached this correspondence problem

via an interpolation of boundary points [Davies et al. (2002); Gerig et al. (2001)]. The

improvement to the correspondence across objects represented by m-reps relies on this

proposed interpolation method in this dissertation.

Complex objects, such as livers with more than one component, are more challeng-

ing to represent. This dissertation will propose a means to represent such objects by

establishing a hierarchy of connected parts. The connection between each pair of object

parts also requires interpolations, and this dissertation will propose a method for such

interpolation by a similar interpolation scheme as that within a medially represented

object part.

This dissertation thus concentrates on proper shape representations of anatomical

objects, including simple objects and complex objects with multiple parts, based on an

interpolation method of medial spokes.

1.2 Thesis Objectives and Claims

Thesis claim: An interpolation method, based on sound mathematics, and the hinge ge-

ometry, defining the interrelations between connected object parts, provide a powerful

tool to derive a medial representation of both single part and multi-part objects from dis-

crete m-reps. When incorporated with explicit geometric constraints, based on the same

mathematics, the shape models based on discrete m-reps guarantee proper shape repre-

sentations of both single and multi-part objects. These shapes allow statistical modeling

of both shape and appearances in a population.

The contributions of this dissertation are as follows:

• A method to interpolate a discrete medial model into a continuously parameterized

one for both simple objects with one part and complex objects with multiple parts
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• A description of geometric interrelations among adjacent parts for an object with

multiple parts

• A means to calculate hierarchical statistics of an object of multiple parts, from

the global level to the local level of each parts and their interrelations

• An explicit use of an illegality penalty in binary fitting to improve the smooth-

ness of fitted shapes, thereby leading to properly trained shape and appearance

statistics and eventually better segmentation results

• A way to generate standard test cases of deformable m-reps via synthesizing

warped ellipsoids or via sampling learned shape space

1.3 Dissertation Outline

The rest of my dissertation is organized as follows.

Chapter 2 reviews the related background literature including deformable model

methods in general for modeling a population of objects, medially based shape repre-

sentations, and the mathematics for medial structures.

Chapter 3 details the interpolation method on a medial shape representation. For

single part objects, the interpolation is applied to internal and end primitives. For

objects with multiple parts, the interpolation is based on the interpolation of each part,

with smooth transitions between each pair of adjacent parts generated via so-called

spoke interpolation.

Chapter 4 describes the representation of objects with multiple parts in detail, in-

cluding the definition of the interrelations among object parts, the coordinate system

to describe that interrelations, part deformation implied by adjacent part, and self-

deformation of parts without affecting adjacent parts.

Chapter 5 shows an application of the proposed method: using explicit geometric

9



legality constraints in the binary fitting process of fitting a template model into target

binary images.

Chapter 6 describes the validation of the atom interpolation methods in the binary

training process. The methods are evaluated on both synthetic and real world objects.

Chapter 7 begins with a discussion, provides conclusions, and indicates future work.

10



Chapter 2

Background

As the driving task of this dissertation, medical image segmentation is the process

of delineating anatomical structures from the background in an image. Segmenting

anatomical objects from a medical image containing information of complex anatomical

structures, already a challenge, is made even more difficult by image noise, sampling

artifacts, lack of contrast at object boundaries, and neighboring anatomical structures

with confusing intensities.

Deformable model methods are designed to overcome many of these difficulties in

image segmentation. A deformable model method segments an image by deforming a

geometric shape model into the image via the optimization on an objective function.

Various deformable model methods will be reviewed in section 2.1. Among the pro-

posed methods, medially based methods are the focus of this dissertation. Section 2.2

reviews three medially based deformable model methods. Sections 2.3 and 2.4 review

the mathematics related to the contributions of this dissertation including medial atom

interpolation, representation of complex objects by multi-figure m-reps, and preparation

of m-rep models for statistical training, described in chapters 3 to 5 respectively.



2.1 Deformable Model Methods

Early segmentation methods, such as the one proposed in [Marr and Nishihara (1978)],

used local image features such as edges and corners to construct a shape model in a

bottom-up fashion. Local edge or corner detectors applied to an image can, however,

produce false edges or gaps. These false edges can become parts of a segmented object

boundary that do not exist in a real anatomical object; these false gaps can distort or

break a segmented boundary. Such a problem can be overcome by incorporating larger

scale information in the image or a global model of the target object. Although such

information has been used for boundary delineation via grouping, labeling, and scale-

space analysis in [Kass et al. (1988)], this method did not guarantee finding a complete

object boundary. Furthermore, these early segmentation methods were mostly applied

to 2D image slices and are conceptually and computationally expensive to extend to 3D.

Where the local feature based methods fail is exactly where deformable model meth-

ods [McInerney and Terzopoulos (1996); Caselles et al. (1997)] shine. Deformable model

methods use information gathered from different scale levels. Recent deformable model

methods use learned shape probability distributions to guide their segmentation process.

In general, deformable model methods segment images in a top-down fashion, which is

more likely to find the global optimal object boundary in an efficient way.

Deformable model methods can be categorized by their model representations and

the means by which their image segmentation, i.e., the process of fitting a template

model into a target image, is conducted.

Among deformable model representations, the point distribution model (PDM) [Dry-

den and Mardia (1998); Kass et al. (1988)] using a set of landmarks is among the earliest.

Numerous boundary points formed landmarks in the shape representations of later meth-

ods, such as the active shape model (ASM) [Cootes et al. (1995)] and active appearance

model (AAM) [Cootes et al. (2001)] methods.

Some other deformable model methods use parametric models based on projection
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onto orthogonal functions. They represent object boundaries by the coefficients of or-

thogonal basis functions. Choices of the orthogonal basis functions include sinusoidal

functions [Duncan (1992)] and spherical harmonic functions [Gerig et al. (2001)].

There are also deformable model methods using medially based shape representa-

tions, including the ones following Blum’s notation for medial axis [Blum and Nagel

(1978)], such as in [Yushkevich et al. (2003); Terriberry et al. (2007)], and the discrete

m-rep method [Pizer et al. (2003)], in which each shape representation primitive is the

combination of a sample from a Blum medial axis and extra components.

These deformable model methods use quite different shape representations. They

also approach the image segmentation problem differently. The earlier deformable model

methods [Dryden and Mardia (1998); Kass et al. (1988)] segment medical images by

deforming a template model M into an image I via optimizing an objective function

summing two terms: image match Fimg and geometric typicality Fgeom. The image

match term Fimg measures how a deformed model M′ fits into a given target image

I, and the geometric typicality term penalizes peculiar shapes with creased or folded

surfaces to prevent or reduce shape defects in a fit shape model. I call this type of

deformable model methods the geometric type.

To guide their segmentation process, recent deformable model methods [Cootes et al.

(1995); Mitchell et al. (2002); Pizer et al. (2003)] use learned probability distributions of

both shape and appearance, i.e., image intensity relative to the object model. Based on

the Bayes’ theorem [Bayes (1958)], the posterior probability p(M|I) can be factored into

two terms: the shape prior p(M) and the image likelihood p(I|M), shown in equation

2.1, where p(I) is the marginal probability of a given image and is constant for a given

M:

log p(M|I) = log
p(M)p(I|M)

p(I)
= log p(M) + log p(I|M)− log(I) (2.1)

Equation 2.1 suggests a probabilistic framework for image segmentation. Deformable
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Method Shape representation Segmentation
Method using Boundary points Geometric
boundary point representation (B-rep)
Active contour Point distribution Geometric

model (PDM B-rep)
Geodesic active PDM B-rep Geometric or probabilistic
contour
ASM/AAM PDM B-rep Probabilistic

Fourier basis function Coefficients of Fourier Probabilistic
based method basis functions
SPHARM Coefficients of spherical Probabilistic

harmonics

Cm-rep Splines on {x, y, z, rad}∗, Probabilistic
only for 2D objects

Cm-rep based on Subdivided surface of Probabilistic
subdivision surfaces of {x, y, z, rad}∗ Probabilistic
Discrete m-rep Sampled medial atoms Probabilistic

Table 2.1: Categorization of deformable model methods. ∗ rad indicates a radius scalar
field on the 3D surface {x, y, z}

model methods within such a framework segment an image by optimizing the posterior

probability, calculated as the sum of the shape prior and image likelihood terms from the

learned shape and appearance statistics. I call such group of deformable model methods

the probabilistic type.

The geometric type of deformable model methods is still widely used to extract

shape models for learning shape and appearance statistics, because no shape or appear-

ance statistics are available at this step of learning. However, the probabilistic type

of deformable model methods are used to crack the most difficult image segmentation

problem using the learned probability distributions.

Some previously proposed deformable methods are listed in table 2.1. Details of

these methods will be reviewed in the coming subsections 2.1.1 to 2.1.4.
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2.1.1 Active Contour and Geodesic Active Contour Methods

The discrete active contour model, also known as the snake, was first proposed by Kass,

et al. in [Kass et al. (1988)]. The method is named ”snake” because the way an active

contour deforms resembles the movement of a snake.

An active contour V is a set of vertices pi on an object boundary. An energy function

is defined for V with two parts (shown in 2.5) that the authors of [Kass et al. (1988)]

called the internal and external part, which respectively correspond to the geometric

typicality term and image match term in an objective function for the geometric type

of deformable model methods.

E(V) = αEint(V) + βEext(V); (2.2)

Eint(V) = γEcontinuity(V) + δEballoon(V); (2.3)

Eext(V) = ηEintensity(V) + φEgradient(V); (2.4)

The internal energy Eint, i.e., the geometric typicality term, enforces V to stay

smooth and propagate in a desired direction. There are two sub-terms in Eint: the

continuity (or smoothness) term and the balloon force term. The weight γ for the

continuity term controls the smoothness of a deformed contour V′. If γ is too big, the

resulting contour V′ will be over-smoothed and fail to fit into the image well enough;

if γ is too small, V′ will be too jaggy with sharp features such as corners. The balloon

force term ensures that a snake curve keeps propagating in a desired direction, either

expanding or shrinking depending on the specific target object. These two internal

energy terms force a snake curve to propagate smoothly regardless of the image intensity

information.

The external energy Eext, i.e., the image match term, depends on the neighboring

intensity pattern around each vertex pi ∈ V. Eintensity determines whether V is attracted
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to a region of low or high image intensities; Egradient attracts V to edges in an image.

The key is that the direction of the image gradient at an object boundary point should be

similar to the unit normal direction of the active contour at that same point. In practice,

for noisy images, geometry-limited diffusion [Whitaker (1993)] helps V to converge to

the correct boundary at appropriate image scales.

In a continuous form of the energy function for active contours, the energy terms

Eint and Eext are both integrals of local energy measures on the contour parameterized

by q:

E(V) = α

∫ 1

0

(eint(V(q)))dq +

∫ 1

0

(eext(V(q)))dq (2.5)

where the integrand in the first term eint corresponds to the local internal energy at the

contour point V(q), i.e., the geometric typicality term, and the integrand in the second

term eext corresponds to the local external energy there, i.e., the image match term.

Geometric models of active contours using the continuous form of the energy func-

tions were proposed in [Malladi et al. (1995)]. Their method is based on the theory of

curve evolution and geometric flow. E(V) sums two terms: one related to the regu-

larity of the contour curve and the other related to the shrinking or expanding of the

contour towards object boundaries. Their method is driven by mean curvature flow,

implemented by solving partial differential equations (PDEs). Different from the energy

minimization process in the original snake method, the geometric active contours allow

automatic changes in the shape topology if implemented by level-sets [Kimmel et al.

(1995)]. As a result, multiple objects can be segmented simultaneously without any

pre-knowledge of a given image. This is arguably both the strength and weakness of a

geometric active contour method: it can segment multiple objects without guidance but

can also undesirably break a single object into multiple parts in the presence of image

artifacts.

Based on the relation between active contours and the computation of geodesics,
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i.e., minimal distance curves, the geodesic active contour method proposed in [Caselles

et al. (1997)] further pushed forward the methods in the active contour category. This

geodesic approach allows the connection of classical snake methods based on energy

minimization to geometric active contour methods based on curve evolution theory. The

geodesic contour method improves the geometric active contour methods by the use of a

new velocity term based on image appearance, allowing stable boundary detection when

image gradients suffer from large variations, e.g., gaps in image edges.

The deformable model methods in the active contour category share the same vertex

point based shape representation. These methods solely depend on local geometry and

image features, making them both efficient for image segmentations and sensitive to local

image defects, which might lead to undesired leaking of the contours or being stuck at

local sub-optimal solutions.

Attempts have been made to integrate global shape priors into these active contour

based methods [Yang et al. (2003)]. The proposed method applies principal component

analysis (PCA), a linear statistical analysis method, on distance maps implied by con-

tours. Problems can arise from the fact that a linear combination of two distance maps

does not guarantee to be a valid distance map. Methods, such as those in [Pohl et al.

(2007)], that are more theoretically sound have therefore been developed to solve the

problem of [Yang et al. (2003)].

2.1.2 ASM/AAM

Active shape model (ASM) [Cootes et al. (1995)] and active appearance model (AAM)

[Cootes et al. (2001)] methods use the object boundary point distribution model (PDM)

as their shape representation. As probabilistic type of deformable model methods, the

ASM and AAM both use learned shape prior statistics in image segmentation tasks.

PCA is applied to the acquired PDM models to form a Gaussian probability distribution

as the shape prior p(M). In the statistical training stage to learn such shape prior
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statistics, significant landmarks from an object shape model are carefully picked by

humans, and intermediate landmarks are then uniformly placed between the hand-picked

landmarks. Human intervention was a built-in step in both the ASM and AAM methods

until automatic correspondence building methods [Davies et al. (2002); Styner et al.

(2003)] were proposed and used as a refinement step before the statistics are calculated.

These methods update where to place the intermediate landmarks for optimal landmark

correspondences across a training set of objects from a population.

Both ASM and AAM methods incorporate image intensities in image segmentation.

In the ASM method image intensity profile vectors as appearance features are centered

at the landmarks and sampled along the surface normals at those landmarks. A seg-

mentation starts with a coarse alignment of a template PDM model into a target image.

The derivative of the image profile vector at each landmark determines the movement

of that landmark. After all landmarks are moved once as in one iteration, the entire

PDM as the set of landmarks is projected into the pre-learned shape prior space. By

this means the segmented shape is always constrained in the learned shape space. The

above process of moving and projecting the landmarks are repeated until an equilibrium

is reached.

The AAM method improves the ASM framework by learning image appearance

statistics as well as shape prior statistics. The shape prior statistics are built from

applying the PCA to a set of training shape models of landmarks. A thin-plate spline

deformation is calculated to warp landmarks in each training shape model to match the

landmarks in the mean shape model of the shape statistics. The calculated deformation

is then applied to each training image, and each warped training image is rasterized

and normalized into an appearance vector. A second PCA is applied to the pooled and

normalized appearance vectors to form an appearance probability distribution. In order

to reflect the correlation between the shape and appearance probability distributions, a

third PCA is applied to the combined feature of the shape and appearance PCA param-
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eters. The final combined PCA model is used in image segmentations. A multi-scale

search has also been proposed in the AAM framework [Mitchell et al. (2002)] to improve

the robustness and efficiency of the method.

Both ASM and AAM have proven to be effective in image segmentation. They are

also widely applied to computer vision tasks such as object tracking, detection, and

recognition.

2.1.3 Methods Based on the Projection onto Orthogonal Func-

tions

Deformable model methods in this category represent shapes by projecting an original

shape model to a space spanned by a set of orthogonal basis functions. The coefficients

of the basis functions are used to represent the original shape model.

The choices of the basis functions include sinusoidal basis functions [Duncan (1992)]

and spherical harmonic (SPHARM) functions [Brechbühler et al. (1995); Kelemen et al.

(1999)]. Compared with the methods using the PDM, these methods efficiently represent

a shape model by a small number of parameters. However, they tend to have trouble in

capturing localized shape variations.

The method proposed in [Staib and Duncan (1996)] projects a surface in the form of

contour meshes to a space spanned by sinusoidal basis functions and uses the coefficients

of the sinusoidal basis functions as the shape parameters. Four types of shapes can

be represented: tori, open surfaces, closed surfaces, and tubes. In the segmentation

framework of [Staib and Duncan (1996)], learned shape statistics of the basis function

coefficients are used as the shape prior. The image match term is measured via either

Gaussian derivatives applied to image profiles along model surface normals or a Gaussian

model for the image noise after pooling training image intensities from a population.

The segmentation is done by finding the optimal shape parameters for a target image via

optimizing an objective function summing geometric typicality and image match terms.
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Being a global shape representation, these shapes in [Staib and Duncan (1996)] have

fewer parameters to optimize for image segmentation, which makes this method run

faster but yield less accurate results because of the lack of local shape control. However,

better segmentation results might be achieved by increasing the dimension of their shape

space at higher computational cost.

Another method uses spherical harmonic basis functions (SPHARM) to form a pro-

jection space, which guarantees shape legality at expensive computational cost but does

not handle surface locality [Csernansky et al. (1998); Styner et al. (2006)], a common

problem of this type of deformable model methods.

2.1.4 Medially Based Methods

Some probabilistic deformable model methods are based on medial shape representa-

tions. Among these methods are the continuous m-rep method [Yushkevich et al. (2003,

2005)], the parameterized medial representation using Catmull-Clark subdivision scheme

[Terriberry et al. (2005)], and the discrete m-rep method [Pizer et al. (2003)]. The first

two medially based methods use (x, y, z, r) as their shape primitive, where (x, y, z) forms

a surface called the medial sheet and r is a radius field on both sides of the medial sheet

surface. The discrete m-rep method uses samples from the medial sheet surface and

the radius field on the medial sheet, plus two or three spokes connecting both sides of

the medial sheet to their corresponding object surface. All these three medially based

methods follow the Bayesian framework to segment images. In section 2.3 I will review

medial shape representations and these three medially based deformable model methods

in detail.

Next, I will show the training and segmentation framework shared by the probabilis-

tic type of deformable model methods.
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2.1.5 Summary of Probabilistic Deformable Model Methods

The shape and appearance statistics used by probabilistic deformable model methods

are learned from a set of training shape models and their corresponding images. In image

segmentation by these deformable model methods, fitting a model m into a target image

It is driven by maximizing a posterior probability in the learned shape prior space.

The two major components in probabilistic deformable model methods are thus the

training and the segmentation. The general procedures of these two components are

shown as follows.

1. Learning shape and appearance probability distributions

(a) Acquire a set of segmented training images, often by experts’ manual con-

touring (the accuracy and reliability of human manual segmentation, though

an important issue, is not the focus of this dissertation);

(b) Initialize a template deformable model into each training image by estimating

a global transformation for the model;

(c) Deform the respective initialized deformable model into each training image

by optimizing an objective function summing the geometric typicality and

image match terms;

(d) Calculate the shape probability distribution from the fitted deformable mod-

els from the training images, yielding a mean shape model and modes of

shape variations;

(e) Use the extracted shape models and their corresponding original images to

collect the image intensity information relative to the models, and calculate

the appearance probability distribution.

2. Segmentation of target image(s) using the learned shape and appearance proba-

bility distributions
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(a) Initialize a template deformable model into the target image, often by se-

lecting the position and orientation of the mean shape model in the learned

shape prior statistics;

(b) Repeat the following steps until convergence:

i. Calculate a sample image Is in the relative coordinates to the current

model;

ii. Compare the sample image Is against the target image It, and the dif-

ference between the two, together with the shape prior, generates defor-

mation forces to deform the template mean model.

In other words, the template model is deformed into a target image by op-

timizing the posterior probability as a combination of the shape prior and

image likelihood probabilities;

The probabilistic deformable model methods must handle the following two issues

in both the training and segmentation:

1. Initialization: the initial placement of a deformable model into a target image.

Often this is carried out by applying either a rigid or similarity transformation

to the initial deformable model. Various attempts have been made, including

manual or semi-automatic initializations based on landmarks or contours picked

or drawn by an human expert. Fully automatic initialization seems more attractive

to release the burden on humans. Methods based on evolutionary algorithms have

been proposed in [Heimann et al. (2007)] to provide such luxury at the cost of

longer computational time.

2. Locally optimal solutions: the objective function or the posterior probability func-

tion optimized for fitting training models or segmenting images often have multiple

local extreme points. The optimization of these functions will frequently trapped
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at such local extreme points to yield sub-optimal results. Given the high dimension

of the shape parameter space, the objective function for fitting training models

or the posterior probability function for image segmentation is almost inevitably

”bumpy”, which makes the optimization quite likely to yield suboptimal results.

Methods have been proposed to approach this issue, including brute force global

search, simulated annealing, and evolutionary algorithms. A common shortcoming

of these proposed methods is their speed.

In contrast to earlier segmentation methods using local image features, more recent

deformable methods make efficient use of the Bayes’s statistical framework shown in

equation 2.1. These deformable model methods appear to be less sensitive to image

noise and defects and more likely to find the global optimal object boundary without

being trapped by local image features. Some of these deformable model methods are

based on medial shape representations. Next section 2.2 starts with an introduction to

medially based shape representations and then reviews three deformable model methods

based on the medial shape representations.

2.2 Medially Based Deformable Models

In contrast to a shape representation using boundary landmarks or the point distribution

model (PDM), a medially based shape representation represents not only the boundary

but also the interior volume of the shape. It generates a local object-relative coordinate

system. This coordinate system improves the robustness of volumetric image access in

the object interior and in the adjacent object exterior regions. These medially based

shape representations arise from the Blum medial axis [Blum and Nagel (1978)].

23



2.2.1 The Blum Medial Axis and Blum Condition

A Blum medial axis describes a 3D object by a medial locus p = x, y, z as the center

of a maximal sphere with a radius r, which is entirely contained in the interior of the

object and tangential to two or more points on the object boundary. The radius r of

the maximal sphere is a part of the Blum medial axis representation. The set of points

p forms a smooth surface called a medial sheet, which is a smooth surface for a simple

object but a complicated branching structure for a complex object. Given an object, its

medial sheet surface plus a smooth radius field r attached to the medial sheet form a

Blum medial axis. Samples from a Blum medial axis are used in medially based shape

representations.

A sample (p, r) from a medial axis is a primary building block of a medially based

shape representation. A medial primitive (p, r) is called a 0th-order medial atom. A

set of such atoms can be used as the control points to describe the medial axis of an

object via an appropriate interpolation or approximation scheme. The object boundary

can be reconstructed as the envelope of the overlapping tangential spheres implied by

the interpolated 0th-order medial atoms (p(v1, v2), r(v1, v2)).

Beside (p, r), more information can be included in a medial primitive, such as a

pair of vectors Si from an internal medial sheet point p to the two object boundary

points at which the corresponding maximal sphere Sphere(p, r) is tangential to the

object boundary. These two vectors Si (i = −1,+1) are called medial spokes, which

have the same length r and the directions Ui, where |Ui| = 1. Each medial primitive

(p, r, {Ui|i = −1,+1}) is called a 1st-order medial atom.

The medial spokes Si can be derived from the first-order derivatives of p and r,

that is how a 1st-order medial atom is named. For simplicity, I will call each 0th-order

medial atom (p, r) a medial control point and call each 1st-order medial atom a medial

atom from now on. So a medial atom is a hub position p plus two spokes Si = rUi for

i = −1,+1, as shown in figure 2.1.
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Figure 2.1: From left to right: an internal atom of two spokes S+1 and S−1, with τ to
parameterize the object interior along the spokes; an end atom with an extra bisector
spoke S0 and parameter η that controls the shape of the boundary crest region; a discrete
m-rep as a mesh of internal atoms (with white hubs) and end atoms (with red hubs).

For an object in 2D, its medial sheet degenerates to a 2D curve, but the medial

control points or medial atoms to represent the 2D object have the same configuration

as that of a 3D object: (p2D, r) or (p, r, {Ui
2D}) for a medial control point or medial

atom in 2D, respectively. This dissertation focuses on representing objects in 3D.

There is a mapping between a medial sheet and its object boundary in each direction,

and the mappings in both directions have been studied:

1. From an object boundary to its medial axis - calculating the medial axis given an

object boundary

2. From a medial axis to its object boundary - generating an object boundary given

the medial axis of the object

The first mapping from an object boundary to its medial axis is sensitive to boundary

noise, and various methods have been proposed. Reviews of these methods can be found

in chapters 4-8 of [Siddiqi and Pizer (2007)]. The second mapping from a medial axis

to its implied boundary is stable and is a focus of this dissertation. Next, I will review

the mathematics behind a medial axis, leading to a set of medial constraints called the

Blum condition.
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Assume that a medial axis is represented by a pair of functions (p(v1, v2) and

r(v1, v2)), which corresponds to the medial sheet and the radius field on the medial

sheet, respectively. The medial spokes can be calculated at each point on the medial

sheet by the first-order partial derivatives pv1 ,pv2 , rv1 , rv2 of the functions p(v1, v2) and

r(v1, v2)).

The gradient of the radius is given by ∇r =

(
pu pv

)
I−1
p

 ru

rv

, where Ip is

the metric tensor of the medial sheet surface p:

Ip =

 < pu,pu > < pu,pv >

< pv,pu > < pv,pv >


In order to have a proper (legal), i.e., non-folding, boundary and spoke field, a set

of constraints called the Blum condition must hold as follows.

1. ‖∇r‖ < 1 for interior points on the medial sheet

2. ‖∇r‖ = 1 for edge medial points on the medial sheet

3. The Jacobian determinant of the medial-to-boundary mapping remains positive

4. ‖∇r‖ = 1 for all branching medial points shared by a set of one-piece partial

medial axes in a branching medial axis of a complex object

The second constraint is called the Blum boundary condition and is crucial for a

simple object with a non-branching medial axis, and the fourth constraint is important

for a complex object with a branching medial axis.

2.2.2 Three Medially Based Shape Representations

This subsection reviews three series of medially based shape representations in sections

2.2.3-2.2.5:
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1. The cm-rep based on B-splines in different forms, which uses B-spline patches of

medial control points [Yushkevich et al. (2003, 2005)];

2. The cm-rep based on the Catmull-Clark subdivision [Catmull and Clark (1978)],

which uses subdivision patches of medial control points and uses spline control

curves on the edges of the patches [Terriberry et al. (2007)];

3. The discrete m-rep, which uses 1st order medial atoms as shape representation

primitives [Pizer et al. (2003)].

The first two medial representations both use medial control points, i.e., 0th-order

medial atoms, as their shape primitives but apply different approximation schemes to

the control points. The derivatives of the approximated medial controls points are used

to calculate medial spokes, and the end points of the calculated medial spokes are used to

generate an object boundary. Both the medial representations handle types of branching

medial axes.

The third medial representation, the m-rep, uses a set of 1st-order medial atoms as

its shape primitives, with the medial spokes explicitly included in the shape representa-

tion. Approximation is applied to the control boundary points [Thall (2004)] implied by

medial atoms and to medial atoms directly [Han et al. (2006)]. An m-rep can represent

certain types of branching structure in 3D.

In order for a medially based shape representation to imply a proper (legal) boundary

surface without local shape defects, such as creasing or folding, the first-order derivatives

of all the medial points must meet the Blum condition, described in section 2.2.1. The

Blum condition directly affects approximation schemes used in medial shape represen-

tations, including the three medial shape representations to be reviewed in the following

subsection.
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2.2.3 Cm-reps by B-splines

Yushkevich et al. (2003) proposed a medial representation implemented by continuous

B-spline patches of medial control points. This medial representation generates a con-

tinuous boundary and volumetric interior of an object. The pair of continuous functions

(p(v1, v2), r(v1, v2)) are in the the form of cubic B-spline patches, controlled by medial

control points (pij, rij), i ∈ [1, 4], j ∈ [1, 4].

As stated in subsection 2.2.1, the two functions p and r representing a medial axis

must satisfy the Blum condition to ensure a non-folding surface and spoke field. Yushke-

vich’s cm-rep achieved first three constraints in the Blum condition by setting large

negative r to the edge medial control points and positive r to the interior medial control

points. This guarantees the level curve of ‖∇r‖ = 1 lie within the b-spline patches. The

b-spline patches are then trimmed along this level curve and the edge resulting from the

trimming forms the real edge of the medial sheet surface.

A side effect of this treatment to the real medial sheet edge is that the domain

of the trimmed level curve varies across different objects, so different objects do not

share a common parameter space. This varying parameter space for different objects

makes it difficult to apply statistical analysis on shapes represented by Yushkevich’s

cm-rep. Branching medial axes in 3D also remain a challenge to the proposed cm-rep

in [Yushkevich et al. (2003)] because of the lack of enough free parameters to meet the

fourth constraint in the Blum condition.

Yushkevich et al. (2005) proposed a second form of the cm-rep based on solutions

to Poisson equations that fulfill the Blum condition. This representation enforces a

fixed parameter space on different objects, which allows statistical analysis on different

objects. However, this form of cm-rep is limited to represent 2D structures because it

does not provide enough degrees of freedom to handle branching medial structures in

3D.

Sun et al. (2008) proposed a new form of the cm-rep by applying the Loop subdivision

28



scheme Loop and DeRose (1990)] to B-spline patches of medial control points plus soft

constraints to maintain the Blum condition for edge and branch medial points. This

form of the cm-rep has been shown to work with 3D branching medial axes. The soft

constraints used in this method were inspired by the control ”curve” idea proposed in

the next cm-rep method based on Catmull-Clark subdivision patches.

2.2.4 Cm-reps by Subdivision Patches

A Catmull-Clark subdivision based medial shape representation was proposed by Ter-

riberry et al. in [Terriberry et al. (2007)] to form the functions (p(v1, v2) and r(v1, v2))

of a medial axis. Medial control points (p, r) are the primitives in this representation,

and the Catmull-Clark subdivision is used to approximate the medial control points.

The Blum condition is met by modifying the edge subdivision patches with the help

of interpolating spline curves. This representation applies a degree reduction to the

polynomial equations implied by the Catmull-Clark subdivision scheme and shows a

direct solution to the Blum boundary condition, i.e., ‖∇r‖ = 1 at the edge of a me-

dial sheet. The solutions to the Blum boundary condition are then used to construct

a b-spline ”control curve” [Terriberry et al. (2007)] to replace the outer layer of medial

control points for the Catmull-Clark subdivision patches. Detailed descriptions on this

control curve approach to the Blum boundary condition are in [Terriberry et al. (2007)].

Furthermore, the same framework using control curves can be extended to handle the

fourth constraint in the Blum condition for branching medial axes. Terriberry’s cm-rep

can represent 2D and 3D objects of both non-branching and branching medial axes.

2.2.5 Discrete M-reps

The cm-reps of Yushkevich and Terriberry both use 0th-order medial control points (p, r)

in their shape representations. Medial spokes have to be implied by the derivatives of

smooth functions (p(v1, v2), r(v1, v2)). Pizer et al. developed the discrete m-rep, using
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1st-order medial atoms (p, r, {Ui}). In a discrete m-rep, medial spokes are explicitly

included in its shape representation. By doing so, a discrete m-rep can capture localized

shape variations, including bending, twisting, and tapering, and provide local shape

control via the discrete medial atoms.

The explicit inclusion of medial spokes in a discrete m-rep atom and the allowed

atom spokes that can be non-Blum by relaxing the Blum condition make an m-rep a

variant of medial models that is approximately but not precisely Blum. Such relaxations

are shown as follows.

• The included spokes in an m-rep can be non-perpendicular to the m-rep implied

boundary, which will be elaborated in section 3.4;

• The m-rep spokes in the crest region, i.e., at the edge of the medial sheet are han-

dled specially as a part of m-rep end atoms for reasons of computational stability,

to be described in next paragraph;

• The m-rep spokes in a branching structure are handled differently from a Blum

medial axis, to be described after the description of m-rep end atoms.

The m-rep handles spokes at the edge of the medial sheet differently from a Blum

medial axis. In a Blum medial axis, an internal medial point on the medial sheet has

a pair of spokes with equal length attached to the medial sheet at that point. When

approaching the edge of the medial sheet from an internal point, the pair of spokes swing

close to each other and finally collapse infinitely fast into each other to form one single

spoke at the very end, i.e., the edge, of the medial sheet. Such a collapsing process is

generic but extremely sensitive to small boundary noise, and it is reflected in the second

Blum condition, i.e., the Blum boundary condition, that ‖∇r‖ = 1. In an m-rep, the

basic shape representation primitive is a medial atom. A medial atom containing the

spoke at the edge of the m-rep medial sheet is called an end atom, in which there is a

pair of regular spokes S+1,−1 and a third spoke S0 = ηrU0 that bisects the pair of regular
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spokes. This third spoke represents the spoke at the edge of the m-rep medial sheet,

and the extra parameter η > 1 controls the shape of the object crest. The hub position

p of each end atom is not exactly an edge point on the m-rep medial sheet. Instead,

the edge point of an m-rep medial sheet is implied by an end atom to be p+ r(η− 1)U0,

which is on the bisector spoke S0 = ηrU0. As a result, each end atom in an m-rep is a

combination of an internal m-rep atom {p, r,U+1,U−1} with the pair of regular spokes

and a bisector spoke S0 corresponding to the crest of the object boundary. By adding

η > 1 as a free parameter for each end atom to control the shape of the crest, the

burden to fulfill the Blum boundary condition at the edge of a medial sheet is relieved

by allowing the edge of the medial sheet to slide on the bisector spoke of an end atom.

An m-rep handles spokes at a branching structure differently from a Blum medial

axis as well. In a Blum medial axis with a typical 3D ”fin” branching, the main medial

sheet, to which the fin part is attached, contains a curve shared by the main medial

sheet and the fin part. In order for the branching medial axis to meet the Blum condi-

tion, all the medial points on this curve must meet the fourth constraint in the Blum

condition such that ‖∇r‖ = 1. This requirement greatly complicates any approximation

or interpolation method on a branching medial axis [Yushkevich et al. (2005); Terriberry

et al. (2007)]. Furthermore, the branching part of a 3D Blum medial axis represents

little object volume, which reduces the stability in a shape representation following the

exact Blum branching constraint. In an m-rep, a set of single-piece medial axes is used

to represent a complex object. The set of medial axes are treated hierarchically and

connected geometrically. Such an m-rep with connected medial figures is called a multi-

figure m-rep. The hierarchy in a multi-figure m-rep is organized by connecting each

pair of adjacent figures via hinge geometry, to be detailed in section 4.2.1. Within each

pair of connected medial figures there are a host figure and a subfigure, as shown in fig-

ure 2.2. This multi-figure m-rep framework follows in the footsteps of how the natural

anatomy of a complex object is explained in medicine, by hierarchy and connectivity.
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Figure 2.2: An object with two parts represented by a two-figure m-rep.

A multi-figure m-rep relieves the burden of the exact Blum condition for a branching

axis by its geometric definition of connections between adjacent object parts and its

replacement of the branching part of a Blum medial axis representing little volume by a

skeletal structure [Damon (2005)], which is the underlying medial structure for a smooth

transition between each pair of connected parts, to be detailed in section 4.2.3.

Overall, the relaxed branching structure in a multi-figure m-rep has the following

advantages:

1. The interrelations and transformations between a pair of adjacent figures are ex-

plicitly defined by the hinge geometry, which allows each one of the two medial

figures to deform with or without affecting the other;

2. A subtractive part as an indentation subfigure connects in a completely equivalent

way as an additive part as a protrusion subfigure to its host figure, shown in

figure 2.2. This significantly simplifies the statistical analysis on objects with

indentations or protrusions;

3. The representation of an object as a set of m-rep figures with each figure consisting

of a sheet of medial atoms yields a multiscale shape representation that enables a

multiscale statistical analysis on such complex objects, to be detailed in chapter
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4. The fact that a host figure stands for the majority of an object volume and is

visited before its subfigure in a multi-scale fitting or segmentation process provides

more stability.

Given a medial shape representation, we often need to calculate its implied bound-

ary. In the cm-reps of Yushkevich and Terriberry, different approximation schemes are

applied directly to their shape primitives, i.e., medial control points, and the approx-

imation schemes are strictly constrained by the Blum condition. In the cm-reps, no

implied boundary points can be calculated, not even for the medial control points, until

smooth approximations are derived from the control points for both the medial sheet

and the radial field because a cm-rep implied boundary solely depends on the underly-

ing spokes, and the underlying spokes can only be calculated from the derivatives of the

medial sheet and radius field. It is different for a discrete m-rep because the included

spokes in an m-rep imply a coarse boundary mesh connecting all the spoke ends. As a

result, there are two types of methods to calculate an m-rep implied boundary by an

interpolation either on the mesh of medial atom spoke ends or directly on medial atoms

to form an interpolated medial sheet and spoke field.

The method based on the Catmull-Clark subdivision [Thall (2004)] was the first

one proposed to generate the implied boundary of an m-rep. This method uses an

interpolating variation of the Catmull-Clark subdivision scheme and belongs to the first

type of interpolation methods on m-reps. This interpolation method is applied to the

surface points and approximate normals implied by medial atoms in an m-rep figure:

medial spoke end points as the surface points and spoke directions as the surface normals

at those surface points.

A new method will be proposed in this dissertation to construct the boundary from

an m-rep, by a constrained medial atom interpolation, which directly interpolates m-rep

atoms and belongs to the second type of interpolation methods on m-reps.

At this moment, the Catmull-Clark subdivision based method is more efficient in
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computation. However, the new method based on atom interpolation has the advantage

of generating a spoke field on a medial sheet, which allows us to apply constraints to

enforce a shape model to stay proper (legal) or to implement medially based integrations

on the interpolated medial spoke field to assist deformable model fitting or image seg-

mentation. Furthermore, the new method provides a full parameterization of the entire

object volume by the interpolated spokes. The atom interpolation will be described in

detail by chapter 3.

I have reviewed three series of medial shape representations. The main advantages

of them are as follows.

1. They are volumetric representations: they model not only the boundary but also

the interior of an object and the immediately adjacent exterior of the object. This

provides robust accesses to volumetric image intensities.

2. They are multiscale representations: they can represent the geometry of objects or

object complexes in a coarse-to-fine fashion. Multiscale approaches for deformable

models have proven to be more robust to image defects such as noise, aliasing,

and missing data. Also, multiscale methods are more robust to the local opti-

mum problem during the maximum a posterior (MAP) optimization for image

segmentation;

3. They provide a figural coordinate system: such a coordinate system can be used

to describe the local interrelationships among adjacent object parts or adjacent

objects in an object complex.

The discrete m-rep framework has proven to yield one of the best segmentation

results on bladder and prostate CT images in the literature. In the rest of this chapter,

section 2.3 reviews the mathematical background of a medial axis that enables us to

design explicit legality constraints on m-reps, and section 2.4 reviews how to conduct

non-linear statistical analysis on m-reps.
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2.3 Mathematics of a Medial Structure

This section reviews the radial shape operator and its rSrad matrix, and the edge shape

operator and its rSE matrix. These algebraic operators characterize the geometry behind

a medial structure. The rest of this section lays out the definition and calculation of both

the shape operators and their extensions on a Blum medial structure, the application

of these shape operators to any smooth spoke field attached to a smooth medial sheet,

called a skeletal structure [Damon (2005)], and two legality conditions based on the

geometric property of these shape operators.

Recall that a shape operator defined on a 3D surface describes how the surface

normal swings along the surface, i.e., how a surface curves locally. Analogously, a radial

shape operator Srad tells how a unit length medial spoke U changes while walking on

the interior of a medial sheet, and an edge shape operator SE tells how U changes

while walking along the edge curve of a medial sheet. Both the radial shape operator

and the edge shape operator are defined by Damon in [Damon (2003, 2004, 2005)].

These medial shape operators record derivative information of a medial sheet surface

and medial spokes attached to it. A radial shape operator and an edge shape operator

can also be extended to an rSrad matrix and an rSE matrix, respectively, to represent

the rate of change of full spokes S instead of unit length spokes. Next I will show how

to calculate the shape operators and their extended matrices, starting with the radial

shape operator and the rSrad matrix followed by the edge shape operator and the rSE

matrix.

Each internal medial point on the medial sheet has a spoke at each side of a medial

sheet; thus the spoke fields on a medial sheet are double-valued. So there are two radial

shape operators defined for each medial atom: one for each spoke at one side of the

medial sheet. The following description focuses on one radial shape operator because

the same description applies to the other radial shape operator of an m-rep atom.

Consider one side of a medial sheet, and assume that there is a continuous spoke
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field S(u) with unit length spoke direction U(u) and spoke length r(u) on the side of

the continuous medial sheet p(u). S(u) = r(u) ·U(u), and u = (v1, v2) parameterizes

the two dimensional medial sheet and spoke field. The derivatives of the unit length

spoke direction U(u) by (v1, v2) are calculated as follows, with U and pv1/v2 being 1× 3

row vectors.

∂U

∂vi
= a0,iU− ai,1pv1 − ai,2pv2 , where i = 1, 2, (2.6)

or rewritten in matrix form:

∂U

∂u
=

a0,1

a0,2

U−

a1,1 a1,2

a2,1 a2,2


pv1

pv2

 (2.7)

where ∂U
∂u

is a 2 × 3 matrix with row i as the vector ∂U
∂vi

, and where pv1 and pv2 are

the derivatives of the medial sheet p by parameters v1 and v2. In these equations, the

derivative of U is decomposed by a generally non-orthogonal projection along the spoke

direction U to the tangent plane of the medial sheet spanned by pv1 and pv2 .

Let Au =

a0,1

a0,2

, and let Srad =

a1,1 a2,1

a1,2 a2,2

. Srad is called the radial shape

operator. In general, the radial shape operator has the following properties:

• 2× 2 matrix

• not self-adjoint

Then (2.17) implies

∂U

∂u
= AuU− STrad

pv1

pv2

 , (2.8)

U(u) is of unit length, implying U ·UT = 1 and ∂U
∂u
·UT =

0

0

. So
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Au = STrad

pv1

pv2

UT (2.9)

Substituting (2.9) into (2.17) yields the means of computing Srad given ∂U
∂u

, U andpv1

pv2

:

Srad =

(
∂U
∂u
·Q−1

)T
(2.10)

where Q =

pv1

pv2

 (UTU− I) is a 2× 3 matrix.

That is to say, Srad depends on the spoke direction U, and the derivatives of U and

p.

Besides the radial shape operator Srad describing the rate of change of unit length

spokes, we also need to describe the rate of change of full spokes S = rU. The derivative

of a full spoke S = rU of length r is given as follows, based on the derivative of a unit

length spoke U.

∂S

∂u
=
∂(rU)

∂u
= r

∂U

∂u
+

rv1
rv2

U (2.11)

Substituting (2.17) and (2.9) into (2.11) yields

∂S

∂u
= rSTrad

pv1

pv2

 (UTU− I) +

rv1
rv2

U (2.12)

According to Damon, a compatibility condition [Damon (2004)] requires that rv1/v2 =

−pv1/v2U
T , which implies that a spoke S is perpendicular to the implied boundary at

its spoke end. Then
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rSrad =


∂S

∂u
+

pv1U
T

pv2U
T

U

QT (QQT )−1


T

(2.13)

Based on the compatibility condition, equation (2.13) shows how to compute an

rSrad matrix given the derivatives of S, p, and U in a Blum medial axis. However in

a general skeletal structure [Damon (2004, 2005)], in which spokes are not necessarily

perpendicular to the object boundary, the derivatives of r are not directly related to

the derivatives of the medial sheet p and have to be calculated directly instead of being

implied by the compatibility condition. In the case of a skeletal structure, the calculation

of rSrad is shown in equation (2.14):

rSrad =


∂S

∂u
−

rv1
rv2

U

QT (QQT )−1


T

(2.14)

Besides the regular spokes on both sides of a medial sheet, there are also end spokes

lying on the edge curve of the medial sheet. As a result, each end m-rep atom has an

extra bisector spoke corresponding to the boundary crest. This bisector spoke swings

along the edge curve of the medial sheet, so a different shape operator is needed to record

its rate of change while walking along the edge curve. An edge shape operator SE serves

this purpose. The following describes the calculation of an edge shape operator and its

extension rSE matrix.

Let δ(t) be the edge curve of a medial sheet, parameterized by t, let p0 be an

edge point on δt as an edge medial point of interest, and let p(v1, v2) be a local edge

parameterization of an open set W with p(0, 0) = p0 ∈ δ(t) (the exact definition of

this local edge parameterization is out of the scope of this dissertation, and detail of

this special parameterization can be found in [Damon (2005)]). Assume that p(v1, v2)

is chosen such that the derivative of p along v1 is aligned with the tangent direction of

δ(t) at p0, i.e., p′v1 ∈ Tp0δ(t), and such that the derivative of p along v2 maps under the
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edge parameterization to cUtan, for cUtan the tangential component of U and c ≥ 0.

SE is then calculated by projecting the derivative of U via a non-orthogonal projection

along U to a plane, spanned by n, the normal to the medial sheet at p0, and pv1 :

∂U

∂vi
= a0,iU− ai,1pv1 − ai,2n, where i = 1, 2, (2.15)

or rewritten in matrix form:

∂U

∂u
=

a0,1

a0,2

U−

a1,1 a1,2

a2,1 a2,2


pv1

n

 (2.16)

where ∂U
∂u

, pv1 , and pv2 are defined as in .

SE =

a1,1 a2,1

a1,2 a2,2

 is defined as the edge shape operator. In general, the edge shape

operator also has the following properties:

• 2× 2 matrix

• not self-adjoint

Let Au,E =

a0,1

a0,2

. Then (2.16) implies

∂U

∂u
= Au,EU− STE

pv1

n

 , (2.17)

Following the derivation of the Srad and its extension rSrad, the means of computing

SE and its extension rSE given ∂U
∂u

, U and

pv1

n

 are as follows:

SE =

(
∂U
∂u
·Q−1

E

)T
(2.18)

where QE =

pv1

n

 (UTU− I) is a 2× 3 matrix.
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rSE =


∂S

∂u
+

pv1U
T

pv2U
T

U

QT
E(QEQT

E)−1


T

(2.19)

which is based on the compatibility condition in a Blum medial axis.

rSE =


∂S

∂u
−

rv1
rn

U

QT
E(QEQT

E)−1


T

(2.20)

which is not enforcing the compatibility condition for a general skeletal structure.

Equations (2.14) and (2.20) show the full power of an rSrad matrix and an rSE matrix

lying in the fact that they are applicable to a skeletal structure, i.e., any smooth spoke

field on a smooth medial sheet surface, either one-sided or two-sided. A Blum medial

axis is a special case of a two-sided skeletal structure such that each medial axis point

implies a maximal sphere inside the object and tangential to the object boundary at two

or more points, i.e., the medial spokes implied by a Blum medial axis are perpendicular

to the implied boundary at the spoke end points. The rSrad and rSE matrices allow

us to work with a skeletal structure, which can be non-Blum, such as the interpolated

spoke field of a blend region in a multi-figure m-rep, to be described in section 4.2.3.

So far this section has focused on the algebraic property of the two medial shape

operators and their extensions, recording first order derivatives of a medial sheet and

medial spokes. Both the shape operators and their extensions also have a geometric

property that is crucial to two medial legality conditions, coming next.

Geometrically, the property of a radial shape operator and an edge shape operator

are also analogous to the geometric property of a 3D surface shape operator. The

geometric property of a 3D surface shape operator is reflected by its eigenvalues, called

the principal curvatures [O’Neill (1997)]. The local curviness of a 3D surface at a surface

point is described by the principal curvatures at that point. Analogously, the eigenvalues

of a radial shape operator Srad reflect how the interior of a medial axis, including the
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interior of the medial sheet p and the corresponding spoke directions U, curves and

swings locally, and the generalized eigenvalue of (SE, I1,1), computed as a−1
2,2 · det(SE),

reflects how the edge curve and its attached end spokes of a medial axis change.

As an extension to a radial shape operator, an rSrad matrix automatically incorpo-

rates the curving of the interior of the medial sheet p when simultaneously measuring

the rate of change of the full spokes S on the interior of the medial sheet; as an extension

to an edge shape operator, an rSE matrix automatically incorporates the curving of the

edge curve of the medial sheet p when simultaneously measuring the rate of change of

the full spokes S along the medial sheet edge curve. The eigenvalues of an rSrad matrix,

i.e., the radial principal curvatures, and the generalized eigenvalue of an rSE matrix, i.e.,

the principal edge curvature will be used in the two legality conditions to be described

next [Damon (2005)].

Consider a local radial flow from the interior of a medial sheet p along one of the two

spokes S+1,−1 to the implied boundary as ϕ(p, t) = p+tS, t ∈ [0, 1]. ϕ can be generalized

to a global radial flow from the medial sheet to the entire object boundary via the

doubled-sided spoke field on the medial sheet. The spoke field is legal if and only if the

Jacobian matrix of this global radial flow ϕ is never singular. This implies that for a legal

spoke field in the interior of a medial sheet, i.e., one free of any intersections among the

spokes, it has to fulfill a legality condition called the radial curvature condition [Damon

(2005)] shown below. The radial curvature condition is mathematically equivalent to

the constraints in the Blum condition (listed at the end of section 2.2.1).

λri < 1, where λri = rκri, for all positive real eigenvalues λri, i = 1or2 of rSrad.

(2.21)

where r is the interior spoke length.

Based on a similar derivation of the legality of a local edge radial flow, for the spoke
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field on a medial sheet edge curve to be legal, it has to fulfill a legality condition called

the edge condition [Damon (2005)] shown below.

λE < 1, where λE = rκE, for the generalized eigenvalue κE of (SE, I1,1) (2.22)

where r is the end spoke length.

If the radial curvature condition and the edge condition are met at all medial points,

the legality of the implied boundary by m-rep atoms is guaranteed. Furthermore, the

edge condition can be greatly simplified for a crest region formed by sweeping planar

curves in an interpolated single figure m-rep (3.2.3), and the radial curvature condition

can be applied to a one-sided spoke field on a medial sheet, which allows the application

of this condition to the underlying one-sided spoke field of a blend region in a multi-

figure m-rep (4.2.3). The radial curvature condition and the edge condition can be also

converted into explicit constraints in a binary fitting process to extract shape models

from segmented medical images (5), which enforces the legality of the model boundary

and the model interior. The mathematics reviewed here, especially equations (2.13)

and (2.19), will be used to calculate the rSrad and rSE matrices for m-rep atoms in a

statistical training process using explicit legality constraints based on these extension

matrices.

This section showed how to calculate the rSrad matrix given the derivatives of S, p,

and U in equations (2.13) and (2.14). Conversely, if we know the rSrad at each interior

point on a medial sheet, we can calculate the first-order derivative of S by equation

(2.13) or (2.14) and recover a full spoke field S(u) on the interior of the medial sheet by

a first order integration. This integration will be used in the interpolation of internal

m-rep atoms, to be described in chapter 3.
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2.4 Statistics on Single Figure M-reps

This section reviews the mathematics required to build a shape prior on single figure

m-reps representing objects of one part. These mathematics are the base for building

hierarchical shape priors of multi-figure m-reps in section 4.3. First, I will describe the

definition and property of the manifold of single figure m-reps. Then I will review how

to calculate statistics of single figure m-reps via this manifold and how to represent

differences between m-reps via m-rep residues.

2.4.1 Manifold of Single Figure M-reps

As a primitive in an m-rep, each internal medial atom can be understood as a point on

a smooth manifold. Each such internal atom consists of (p, r,U+1,U−1), where p is the

atom hub position, r is the spoke length, and U+1,−1 are the spoke directions of the two

regular spokes. So the manifold of an internal atom is Mint(1) = R3 × R+ × S2 × S2.

Each end medial atom (p, r,U+1,U−1, η) in an m-rep has one more free parameter

η > 1 controlling the shape of the crest region of the boundary, so each end medial

atom is a point on a manifold Mend(1) = R3 × R+ × S2 × S2 × R+. Let M(1) be

an alias for a manifold of both an internal and an end medial atom without specifying

whether it is internal or end. An m-rep of n medial atoms, nint of which are internal

medial atoms, and nend of which are end medial atoms, can be treated as a point on

the manifold M(n) =M(1)×M(1)× ...×M(1) = [M(1)]n, i.e., M(n) = [M(1)]n =

[Mint(1)]nint × [Mend(1)]nend , where n = nint + nend. For simplicity, M(n) will be used

(instead of [Mint(1)]nint × [Mend]
nend) to represent the manifold an m-rep lies on.

The spaceM(n) is a particular type of manifold known as the Riemannian symmetric

space [Fletcher et al. (2004)]. Let dis(y, z) : M(n) ×M(n) → R+ ∪ {0} denote the

geodesic distance, i.e., the locally shortest distance on the manifoldM(n), between two

points y, z ∈M(n). There are a pair of maps Expy and Logy that map between M(n)
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and its tangent space TyM(n) at y and are inverse to each other. TyM(n) can be

identified with an Euclidean space R8n+nend where nend is the number of end atoms in y

and z.

• Logy(z) maps point z to a point in the tangent space TyM(n) at y. y is the origin

of TyM(n). The geodesic distance between y and z is calculated as the length of

the vector in the tangent plane from the Log map.

dis(y, z) = ‖Logy(z)‖ (2.23)

• Expy(v) maps a tangent vector v ∈ TyM(n) to a point onM(n) along the geodesic

curve γv(t), t ∈ [0, 1]. The distance between y and the point at which the tangent

vector v is mapped is calculated as follows:

dis(y,Expy(v)) = ‖v‖ (2.24)

2.4.2 Probability Distributions on Single Figure M-reps

Given the geodesic distance function dis, we can calculate the Fréchet mean M of N

points (m-reps) {Mi | Mi ∈ M(n), i = 1, 2, ..., N} by minimizing an average squared

geodesic distance of the Mi to M:

M = FMean(Mi) = arg min
M∈M(n)

1

N

N∑
i=1

dis2(M,Mi) = arg min
M∈M(n)

1

N

N∑
i=1

‖LogM(Mi)‖2 (2.25)

The Fréchet mean of N given m-reps is calculated by an iterative optimization

[Fletcher et al. (2003)]. Given the Fréchet mean, a novel statistical analysis as an

extension to linear principal component analysis (PCA) has been proposed by Fletcher,

called principal geodesic analysis (PGA) [Fletcher et al. (2003)]. Analogously to PCA,
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PGA tries to find principal geodesic directions, in terms of geodesic curves, on a curved

manifold in order to maximize the variance of the original manifold data points. There

are two means to do so. The first means is to define the maximization of the data vari-

ance on the manifold and to find geodesic curves on the manifold directly maximizing

the data variance. Finding these exact variance-maximizing geodesic curves on an m-rep

manifold is both theoretically and computationally challenging. Therefore, a practical

solution is to approximate the variance-maximizing geodesic curves.

In this approximation, PGA is implemented by projecting all original data points

onto the tangent plane TMM(n) of the m-rep manifold at the Fréchet mean, via the

Log map. A PCA is then applied to those projected points in the tangent plane to form

principal components in the tangent plane. The approximate principal geodesic curves

are given by mapping the linear principal components in the tangent plane TMM(n)

back to the m-rep manifoldM(n), via the Exp map. These geodesic curves approximate

the exact variance-maximizing geodesic curves on the m-rep manifold.

The fact that M(n) is a Riemannian symmetric space simplifies the calculation of

geodesic distances a great deal [Fletcher et al. (2004)]. This allows an efficient application

of PGA on m-rep models. Another important issue in calculating shape prior statistics

is the shape alignment, which is described in detail in [Fletcher et al. (2004)].

In a multi-scale m-rep, PGA can be applied to the entire m-rep to form global statis-

tics. The next natural scale level will be the level of individual figures in a multi-figure

m-rep or the level of medial atoms in each m-rep figure while reflecting the hierarchical

connectivity among adjacent figures or atoms. To build such hierarchical statistics, we

need to represent shape variations left after the global shape variations are removed from

sample objects. Left-over shape variations can be described by the differences between

m-reps or atoms, called the residue. The definition and calculation of the residue will

be explained in next subsection 2.4.3.
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2.4.3 Residues on M-reps

The residue, i.e., the difference between m-reps or m-rep figures, is calculated via the

difference between corresponding atoms. Let m1,m2 ∈ M(1) be two corresponding

atoms, and G(1) denote the group of composed transformations of hub translation,

spoke magnification(s), and spoke rotations that acts smoothly on each medial atom in

M(1). Then the difference between two atoms can also be represented as a medial atom

as follows.

m1 	m2 = g−1
m2
◦m1 ∈M(1) (2.26)

where g−1
m2
∈ G(1) is a composed atom transformation that transforms an atom m2 to

a pre-determined fixed ”origin” atom onM(1); ”◦” means applying the transformation

g−1
m2

to atom m1, carried out component by component: the hub translation is applied

to the hub position p; the spoke magnification is applied to the radius r; the spoke

rotations are applied to the corresponding spoke directions U.

Assume an m-rep template ∈ M(n) has n medial atoms {ai}. G(n) = [G(1)]n

acts smoothly on M(n) as the transformation between two such m-reps ∈ M(n). The

difference between two m-reps M1,M2 ∈M(n) from the same template is defined as

M1 	M2 =
n∏
j=1

(m1j 	m2j) ∈M(n) (2.27)

So the residue, i.e., the difference, between a pair of m-reps can be represented as a

new m-rep. The beauty of this is that we can apply PGA to m-rep or atom residues to

get an estimated probability distribution of the m-rep or atom residues, which allows

us to calculate multi-scale and multi-level statistics of especially multi-figure m-reps,

detailed in chapter 4.

Based on the background knowledge in section 2.3, chapter 3 first reviews previous

work on how to interpolate an m-rep, and then it describes how to interpolate a single
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figure m-rep by atom interpolation on both internal and end medial atoms. The atom

interpolation can be extended to multi-figure m-reps as to be described in chapter 4,

which covers all the aspects of multi-figure m-reps. Recall that medial mathematics

reviewed in section 2.3 can be converted to an explicit geometric constraint in a binary

training process to ensure the properness (legality) of fitted shape models for statistical

training. This binary training process using the explicit geometric constraint will be

detailed in chapter 5.
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Chapter 3

Atom Interpolation

An m-rep is composed of a set of discrete medial atoms. In order to use either a single-

figure or a multi-figure m-rep in a task such as image segmentation, it is often required

to calculate an implied boundary of the m-rep. The calculation of an m-rep implied

boundary is realized by interpolations. This chapter will describe a new method to

interpolate a single figure m-rep to generate an underlying medial structure and thus to

produce an m-rep implied boundary. Next chapter 4 will describe the interpolation of

a multi-figure m-rep, which is based on this new interpolation method of a single figure

m-rep. There are two types of method to generate an m-rep implied boundary, which

are listed as follows and described next.

1. The first type of method: interpolate spoke end points of m-rep medial atoms

as boundary points, and use the interpolated boundary points to form an m-rep

boundary;

2. The second type of method: interpolate m-rep medial atoms, and use end points

of interpolated atom spokes to form an m-rep boundary.

In the first type of method, spoke end points are interpolated as boundary points.

There can be locally improper shapes in the calculated boundary, such as surface creases

or folds. Even though some methods of this type do interpolate normals at control



points, improper shapes can still result, from the lack of control on surface normals of

the entire object boundary. These improper shapes are computationally expensive to

detect or avoid. Because this type of method does not provide an interpolated m-rep, it

is also difficult to have a valid parameterization for the object interior volume without

the underlying medial structure.

In the second type of method, to be developed in this chapter, medial atoms are

directly interpolated. The properness (legality) of the implied m-rep boundary by in-

terpolated medial atoms can be guaranteed if the legality of interpolated atom spokes

is maintained. This type of method produces an interpolated m-rep and thus an m-

rep implied boundary. Unlike the first type of method, it also interpolates the object

interior.

As summarized in section 2.2, the difficulty of interpolating medial atoms arises from

the fact that the components in a medial atom need to simultaneously fulfill certain

legality constraints (in section 2.2.1). The new method, belonging to this second type of

method, overcomes this difficulty by basing its interpolation on differential properties,

i.e., derivatives of the medial sheet and spokes. These derivatives are summarized by

the 2× 2 matrices called the radial shape operator and the edge shape operator. These

operators were described in section 2.3. They both will be used in the new m-rep

interpolation method to be detailed in this chapter.

Section 3.1 reviews previous attempts to generate m-rep implied boundaries by in-

terpolations. Section 3.2 details the new interpolation method of single figure m-reps.

Section 3.3 shows the results from the application of the new interpolation method to

synthetic and real-world m-rep models. Section 3.4 lists related open problems and

concludes this chapter.
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3.1 Previous Work on Generating M-Rep Implied

Boundaries by Interpolations

This section reviews various proposed methods of both types of method to generate an

m-rep implied boundary.

In the first type of method, spoke ends of m-rep atoms are interpolated as boundary

points. In computer graphics, methods have been proposed on boundary point interpo-

lations in [Biermann et al. (2000); Solem et al. (2007); Stiller (2007)]. These methods

are used to generate a smooth boundary from a sparse set of control points with or

without the consideration of surface normals. These methods can be applied to a mesh

formed by m-rep spoke end points.

Thall (2004) proposed to incorporate surface normals into an adapted Catmull-

Clark subdivision scheme and to interpolate rather than approximate the surface control

points. To interpolate the original surface control points, he shifted them an appropriate

amount along their normals. To incorporate normals, he post-processed a subdivision

control mesh after two levels of subdivision, by rotating local surface patches centered at

m-rep spoke ends to match the surface normals at those points to the normals implied

by corresponding control atoms. This processed control mesh is then plugged back in

the Catmull-Clark subdivision to calculate a resulting mesh. In the resulting mesh, the

surface normals at atom spoke ends approximate the normals implied by corresponding

control atoms. Because of the lack of legality constraints on the resulting mesh, Thall’s

method can generate unexpected surface creases or folds, which is a common problem

of interpolations that attempt to exact-match the control points.

The first type of method does not provide a valid parameterization of an object

interior volume. An interpolated object boundary and its normals do not suffice to

provide such a parameterization, which is important for gathering image intensities

relative to an object geometry. When marching along surface normals into the interior
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of an m-rep to gather intensity profiles, one does not know the distance to go before the

normal vectors cross one another.

In the second type of method, medial atoms are directly interpolated. The inter-

polated atoms provide a valid parameterization of the object interior if the legality of

the interpolated atoms is maintained. I will review two previous methods to interpolate

m-rep atoms.

Crouch (2003) used cubic b-spline patches to interpolate both a medial sheet and

an m-rep implied boundary. For each point on the B-spline patch of the medial sheet,

there is a corresponding point on the B-spline patch of the m-rep implied boundary.

The correspondence is determined by the same parameters of both the B-spline patches.

Each pair of these corresponding points are connected to form an interpolated spoke as

a part of an interpolated atom. A pair of the interpolated spokes, one at each side of the

medial sheet, and their shared medial hub position are combined into an interpolated

atom. Such an interpolation works efficiently for the volumetric subdivision proposed

in [Crouch (2003)] - chapter 3. However, because this method is based on separate

interpolations on the medial sheet and on the m-rep implied boundary, it does not

guarantee the legality of the interpolated spokes. Interpolated spokes could cross one

another without being detected.

Another method to interpolate m-rep atoms is based on a weighted geodesic average.

Recall that an m-rep atom can be considered as a point on a Riemannian manifoldM.

The weighted geodesic average of points on such a manifold is analogous to the weighted

average of points on a unit sphere S2, which has been studied by Buss and Fillmore [Buss

and Fillmore (2001)]. The weights used in the weighted average are provided by existing

weight functions in R3, such as bilinear weights, cubic Bézier weights, and cubic B-spline

weights. The approach in [Buss and Fillmore (2001)] was extended by Fletcher et al. to

interpolate diffusion tensors on a Riemannian manifold. The weighted geodesic average

of medial atoms follows the idea in [Fletcher et al. (2004)] by treating each medial atom
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as a point on a Riemannian manifold M.

Given N atoms {Ai = (pi, ri,U
+
i ,U

−
i ) ∈ the Riemannian manifoldM = R3×R+×

S2×S2, i = 1, 2, ..., N}, and given the weight ω = (ω1, ω2, ..., ωN), the interpolated atom

A(ω) is defined in equation 3.1:

A(ω) = arg min
A

N∑
i=1

ωi · dis2(A,Ai) (3.1)

The weighted average of the atoms {Ai} (i = 1...N) is based on a geodesic distance

dis(A,Ai) between two atoms A and Ai onM. When the weight components in ω are

all equal to 1
N

, the resulting atom is exactly the Fréchet (intrinsic) mean of N atoms

Ai; when N = 2 and when ω = (1−ω2, ω2), (ω2 ∈ [0, 1]), A(ω) forms the exact geodesic

path onM between A0 and A1. For N ≥ 2 and ω determined by weight functions, such

as cubic B-spline weights, equation (3.1) defines A(ω) as the weighted geodesic average

of the N atoms.

Equation (3.1) is solved by a minimization. The existence and uniqueness of the so-

lution to the minimization are not generally guaranteed. However, it has been discussed

in [Fletcher et al. (2004)] that the solution to this minimization exists and is unique

if the data are well-localized on a Riemannian manifold. Because the interpolation of

m-rep atoms is always applied to a set of adjacent m-rep atoms, which are indeed well

localized, the interpolation of m-rep atoms by the weighted geodesic average (3.1) is thus

expected to converge well and to yield unique solutions. Empirically, interpolated atoms

A(ω) have been successfully calculated for different control atoms {Ai} and weights ω.

The solution to equation (3.1) ends up optimizing each one of the atom components

separately. An interpolated m-rep by this means might still yield an improper shape

because it does not adequately reflect the relations within all components of a medial

atom.

Section 3.2 describes a new direct interpolation on m-rep atoms. The new interpola-

tion method tries to incorporate all the components of a medial atom by explicitly using
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Figure 3.1: Demonstration of the interpolated spoke fields from a discrete m-rep: the
medial sheet (in dark blue) with an end curve as its boundary, the interpolated spokes
(red and green on each side of the medial sheet) for the internal region, and the inter-
polated spokes (yellow) for the crest region.

the radial and edge shape operators. An interpolated medial sheet and its attached

two-sided spoke field, generated by this method, is demonstrated in figure 3.1.

3.2 Atom Interpolation in Single Figure M-reps

Each discrete single figure m-rep consists of a quad-mesh of two types of medial atom:

internal atoms and end atoms. This section starts with a brief review of the two types

of medial atom, and then it describes the interpolations on both of them.

3.2.1 Internal and End Medial Atoms

Recall that as shown in figure 2.1, each internal medial atom A has components {p,

r, U+1, U−1}, and each end medial atom is a combination of a special internal atom

{p, r,U+1,U−1} and a bisector spoke S0 = rηU0, where U0 = U+1+U−1

‖U+1+U−1‖ . In practice,

U+1 and U−1 are never back to back in an end atom. Therefore, U0 and S0 are well

defined.

In a single figure m-rep, its special internal atoms in end atoms and regular internal

atoms form a quad-mesh of internal atoms. This quad-mesh of internal atoms consists
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of quad-patches. Each quad-patch has one internal atom at one of its four corners.

The entire quad-mesh of internal atoms will be interpolated quad-patch by quad-patch,

taking care for some level of continuity at the patch boundaries. The interpolation on

internal atoms is detailed in section 3.2.2. The generations of end atoms and the crest

are detailed in section 3.2.3, based on interpolated internal atoms.

3.2.2 Interpolation of Internal Medial Atoms

The interpolation of internal medial atoms includes the interpolation of the medial

sheet p, the interpolation of rSrad matrices, and the interpolation of spokes S. These

interpolations are applied to one quad-patch, of four control atoms, at a time. It suffices

to describe these interpolations applied to one quad-patch.

Assume the four control atoms in a quad-patch are Ai = {pi, ri,U+1
i ,U−1

i }, i =

1, 2, 3, 4. The hub positions pi are first interpolated by a point-and-normal interpolation

to form a continuous medial sheet p(v1, v2) patch. Then rSrad matrices are estimated

for control atom spokes, and the estimated matrices are interpolated to ensure the

legality of each interpolated rSrad(v1, v2) matrix. The interpolated medial sheet p(v1, v2)

and interpolated rSrad matrices are then used to calculate the first-order derivatives of

spokes S, and these derivatives are integrated to calculate interpolated full spokes. The

interpolated medial sheet and interpolated spokes are combined to form interpolated

internal medial atoms.

Medial Sheet p(v1, v2) Interpolation

For each internal atom in a quad-patch, its hub position gives a medial sheet point, and

the difference vector between its two spokes gives the medial sheet normal at that point.

The points and normals of the medial sheet, given by the four control atoms, are pi and

ni =
U+1

i −U−1
i

|U+1
i −U+1

i |
for i = 1, 2, 3, 4, respectively. In practice, the two spoke directions in an

internal atom are never identical, so the medial sheet normals are well defined. With
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the points and normals known for the medial sheet at control atoms, the medial sheet p

is interpolated by a point-and-normal interpolation via a cubic Hermite patch. A cubic

Hermite patch requires 16 control elements:

Hcontrol =



h11 h12 h13 h14

h21 h22 h23 h24

h31 h32 h33 h34

h41 h42 h43 h44


,

which is written in a matrix form, including four control points, eight first-order deriva-

tives, and four second-order cross derivatives.

The four control points are set to be points pi, so the cubic Hermite patch interpolates

these points as its intrinsic property. In the current implementation, the four second-

order cross derivatives are set to be (0, 0, 0), so the patch also interpolates its eight

first-order derivatives. The following describes how to set the remaining eight first-order

derivatives.

First-order derivatives p′v1,i and p′v2,i of the medial sheet p are estimated for each

control point, where i = 1, 2, 3, 4. These estimations are carried out by finite differences

between neighboring hub positions pi, along each one of the parametric directions v1 and

v2. p′v1,i and p′v2,i are then projected onto the medial sheet tangent planes determined

by the given normals ni: pTvj ,i
= p′vj ,i

− (p′vj ,i
· ni)ni, for j = 1, 2. Let pTvj ,i

for j =

1, 2; i = 1, 2, 3, 4 be the eight first-order derivatives in the cubic Hermite patch. This

patch interpolates pTvj ,i
, so it interpolates each tangent plane, spanned by pTv1,i and pTv2,i,

and determined by ni, at each one of the four control points. Therefore, at each control

point, the normal of the cubic Hermite patch is exactly ni. A complete description of

such a cubic Hermite patch is shown as follows:
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p(v1, v2) =

(
H1(v1) H2(v1) H3(v1) H4(v1)

)
·Hcontrol ·



H1(v2)

H2(v2)

H3(v2)

H4(v2)


,

where H1,2,3,4(s) are cubic Hermite weight functions: H1(s) = 2s3 − 3s2 + 1, H2(s) =

−2s3 + 3s2, H3(s) = s3 − 2s2 + s,H4(s) = s3 − s2.

The elements in Hcontrol are set as follows. h11,h12,h21,h22 are the four control

points: h11 = p1,h12 = p2,h21 = p4,h22 = p3; h31,h32,h41,h42 are the four tangen-

tial first-order derivatives of p along the v1 direction: h31 = pTv1,1,h32 = pTv1,2,h41 =

pTv1,4,h42 = pTv1,3; h13,h14,h23,h24 are the four tangential first-order derivatives of p

along the v2 direction: h13 = pTv2,1,h14 = pTv2,2,h23 = pTv2,4,h24 = pTv2,3; h33,h34,h43,h44

are the four tangential second-order cross derivatives and are set as (0, 0, 0) in the current

implementation.

This cubic Hermite interpolation is then applied to the entire m-rep quad-mesh,

quad-patch by quad-patch. Each pair of adjacent quad-patches are set to share the

same tangential first-order derivatives across their shared boundary, so C1 continuity is

achieved across boundaries between adjacent quad-patches in the interpolated medial

sheet.

Because a cubic Hermite patch has an explicit form, the derivatives of the interpo-

lated medial sheet p(v1, v2)′vj
for j = 1, 2 can be analytically evaluated, as shown below.

These derivatives will be used in the spoke interpolation.

56



p(v1, v2)′v1 =

(
H ′1(v1) H ′2(v1) H ′3(v1) H ′4(v1)

)
·Hcontrol ·



H1(v2)

H2(v2)

H3(v2)

H4(v2)


and

p(v1, v2)′v2 =

(
H1(v1) H2(v1) H3(v1) H4(v1)

)
·Hcontrol ·



H ′1(v2)

H ′2(v2)

H ′3(v2)

H ′4(v2)


,

where H ′1,2,3,4(s) are the first-order derivatives of the cubic Hermite weight functions:

H ′1(s) = 6s2 − 6s,H ′2(s) = −6s2 + 6s,H ′3(s) = 3s2 − 4s+ 1, H ′4(s) = 3s2 − 2s.

rSrad Matrix Interpolation

Section 2.3 showed that the first-order derivatives of spokes S can be calculated from

known rSrad matrices and known derivatives of p, by equations (2.9) and (2.12). These

derivatives can be integrated to recover an interpolated full spoke field S(v1, v2). How-

ever, this integration requires an interpolated medial sheet, just described, and interpo-

lated rSrad matrices, to be described next.

rSrad matrices of four control atoms in a quad-patch are numerically estimated by

finite differences between components of adjacent atoms. The estimated rSrad matrices

are checked against the radial curvature condition, detailed in section 2.3, by comparing

the greater real eigenvalue of each matrix with 1.0. Given a legal m-rep, each estimated

rSrad matrix should pass this check with its greater real eigenvalue smaller than 1.0.
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Each internal control atom has two rSrad matrices, one for each spoke. The estimated

rSrad matrices for spokes at the same side of the medial sheet are interpolated by the

following three steps:

1. The estimated rSrad matrices are decomposed into eigenvalues and eigenvectors;

2. The eigenvalues and eigenvectors are interpolated, with the interpolated eigenval-

ues enforced to stay legal, i.e., to be smaller than 1.0;

3. The interpolated eigenvalues and interpolated eigenvectors are composed back into

interpolated rSrad matrices.

where the first step is straightforward. The second step and the third step are detailed

below.

Each rSrad matrix has two eigenvalues λrk, k = 1, 2 and two eigenvectors erk, k = 1, 2.

Assume the two eigenvalues from each rSrad matrix are ordered λr1 ≥ λr2, and assume

erk is the corresponding eigenvector to λrk. In order to interpolate the rSrad matrices of

the four control atoms bounding a quad-patch, I separately interpolate the λr1’s, λr2’s,

er1’s, and er2’s.

To interpolate the eigenvalues λr1,i < 1 ∈ R, i = 1, 2, 3, 4, each λ′r1,i = (1− λr1,i) > 0

is treated as an element in a multiplicative Lie group R+. The interpolation in this

group is calculated by a weighted arithmetic average of the logarithms of the elements.

The λ′r1,i are interpolated in R+ and then converted back to R via an exponential

map. Assume the weights for the arithmetic average are wi(v1, v2), so the interpolated

eigenvalue is λr1(v1, v2) = 1 − e
∑4

i=1 wi(v1,v2)·ln(λ′r1,i). The same method is applied to the

other four eigenvalues λr2,i to get the interpolated eigenvalue λr2(v1, v2). By this means,

an interpolated eigenvalue is always smaller than 1.0, fulfilling the legality condition.

To interpolate the eigenvectors er1,i, i = 1, 2, 3, 4, each eigenvector er1,i is treated as

an element in a Lie group SO(2). Geometrically, the manifold of SO(2) forms a 2D unit

circle, and each point on this circle represents a 2D rotational angle. Each er1,i is then

58



converted to a 2D rotational angle αi ∈ [0, 2π). The interpolation of four eigenvectors

er1,i is realized by an arithmetic average of their four converted angles, with the special

consideration that a 2D unit circle is a wrapped-around manifold. Assume the weighted

average of the angles is α(v1, v2), given the weights wi(v1, v2), then the interpolated

eigenvector is er1(v1, v2) = (cos(α(v1, v2)), sin(α(v1, v2))). The same method is applied

to the other eigenvectors er2,i to get the interpolated eigenvector er2(v1, v2).

The interpolated eigenvalues and eigenvectors are then combined into an rSrad(v1, v2)

matrix by the inverse of an eigen-decomposition, as shown below. The interpolated

rSrad(v1, v2) matrix is legal because both of its eigenvalues are smaller than 1.0, which

meets the radial curvature condition.

rSrad(v1, v2) = P ·

 λr1(v1, v2) 0

0 λr2(v1, v2)

 · P−1,

where P =

(
er1(v1, v2)T er2(v1, v2)T

)
.

This rSrad interpolation is applied to both sets of rSrad matrices in a quad-patch,

each for one side of the medial sheet. It is then applied to the m-rep quad-mesh, patch

by patch. C0 continuity is achieved for the interpolated rSrad matrices across a shared

boundary between two adjacent patches. Because rSrad matrices record the first-order

derivatives of p and S, the spoke interpolation, based on an integration over these

first-order derivatives, is designed to have C1 continuity across a shared quad-patch

boundary.

Problems with this rSrad interpolation are its speed and the existence of medial

umbilic points, with repeated eigenvalues. Furthermore, a numerical error in the rSrad

estimation might yield a matrix with complex eigenvalues and complex eigenvectors.

These problems are addressed in section 3.4.

The following details the spoke interpolation based on the interpolations of the medial

sheet and of the rSrad matrices.
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Spoke S(v1, v2) Interpolation

The first-order derivatives ∂S
∂u

of the spokes are computed by equations (2.9) and (2.12)

in section 2.3, and they are integrated to generate interpolated spokes. The spoke

interpolation consists of the following steps, applied to one quad-patch at a time:

1. First-order derivatives ∂S+1

∂u
are calculated for spokes at one side of the medial

sheet by equations (2.9) and (2.12), based on the interpolated medial sheet p and

the interpolated rSrad matrices in a quad-patch;

2. Spokes S+1(v1, v2) are interpolated, for one side of the medial sheet, by an inte-

gration of ∂S+1

∂u
along a straight path between (0, 0) and (v1, v2):

S+1
(v1,v2) = S+1

(0,0) +

∫ 1:(v1,v2)

0:(0,0)

(
∂S+1

∂v1

dv1 +
∂S+1

∂v2

dv2) (3.2)

where S(0,0) is S+1
1 , the spoke of one of the four control atoms.

This integral is numerically calculated along the line between (0, 0) and (v1, v2),

divided into equally spaced intervals. On each of the intervals, the partial deriva-

tives ∂S+1

∂v1
and ∂S+1

∂v2
are considered constant. Therefore, this integration requires

the integration path to be finely divided;

3. The same integration is used to generate the interpolated spokes S−1(v1, v2) on

the other side of the medial sheet;

4. Spoke directions and spoke length are both implied by the interpolated full spokes:

U+1,−1(v1, v2) = S+1,−1(v1,v2)

‖S+1,−1(v1,v2)‖ , and r(v1, v2) = ‖S+1(v1, v2)‖;

Each interpolated internal atom A(v1, v2) has components {p(v1, v2), U+1(v1, v2),

U−1(v1, v2), r(v1, v2)}. The internal atom interpolation is applied to all the quad-patches

in an m-rep quad-mesh, which yields a new quad-mesh of interpolated internal atoms.
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3.2.3 Generation of Interpolated End Atoms and a Swept Crest

Generation of interpolated end atoms and a swept crest for an m-rep depends on the

interpolated internal atoms created by the internal atom interpolation just described.

Each interpolated internal atom on the boundary of the quad-mesh of interpolated

internal atoms is extended by a bisector spoke to form an interpolated end atom. Then

a crest region of sweeping planar curves, each of which is fitted to one interpolated end

atom, is generated, and the legality of this crest is checked.

Generation of Interpolated End Atoms

Each interpolated end atom Aend
k is generated by adding a bisector spoke S0

k to each

interpolated internal atom Ain
k = (pk, S+1,−1

k = rkU
+1,−1
k ), k ∈ [1, N ], on the boundary

of the quad-mesh of interpolated internal atoms, where N is the total number of these

interpolated internal atoms. Assume S0
k = ηkrkU

0
k, where rk is the spoke length of

Ain
k . The bisector crest parameter ηk and the bisector spoke direction U0

k are yet to be

specified for each bisector spoke S0
k to be added.

Among all the interpolated internal atoms {Ain
k }, some are the special internal atoms

of original end atoms in the m-rep, so the η’s of bisector spokes to be added to these

special internal atoms are set to be the η’s of their corresponding end atoms in the

m-rep. For each interpolated internal atom Ain
k that is not a special internal atom, it

lies between two original end atoms, and the ηk of S0
k is interpolated between the η’s

of the two original end atoms. In the current implementation, a linear interpolation is

used.

Each bisector spoke direction U0
k is determined by the pair of regular spokes of Ain

k

as U0
k =

U+1
k +U−1

k

‖U+1
k +U−1

k ‖
. In practice, the pair of regular spokes of Ain

k are never back to

back, so U0
k is well defined.

As a combination of an interpolated internal atom Ain
k and an added bisector spoke

S0
k, each Aend

k is one of a series of interpolated end atoms at the boundary of the quad-
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mesh of interpolated atoms.

Generation of a Swept Crest

A crest is yet to be generated for the m-rep, from the series of interpolated end atoms.

For each interpolated end atom with a pair of regular spokes S+1,−1 and a bisector spoke

S0, it is necessary to generate a series of spokes smoothly filling the gaps between S+1

and S0, and between S0 and S−1, to form a part of a boundary crest.

Based on the swept surface generation proposed in [Damon (2008)], a planar curve is

fitted to the three spokes of each interpolated end atom. This planar curve then sweeps

along the edge curve of the interpolated medial sheet, generating a swept boundary

crest. According to [Damon (2008)], the calculation of the principal edge curvature for

such a swept crest is greatly simplified. This simplified calculation is used to check the

legality of the swept crest. How a planar curve is fitted to each interpolated end atom

and how the crest region is checked against a legality condition are detailed next.

An ellipse curve is fitted to each interpolated end atom to interpolate its three

spoke ends. The long axis of each interpolating ellipse is set to align with the bisector

spoke, so the medial sheet of the partial ellipse curve is a segment on the bisector spoke

S0. Without loss of generality, the three spokes of an interpolated end atom and the

interpolating partial ellipse are described in R2, as shown in figure 3.2-left. The resulting

partial ellipse is transformed to 3D by a change of coordinate.

Assume the ellipse is given by an implicit form (x−x0)2

a2 + y2

b2
= 1, where a, b, x0 ∈ R

are the unknowns, the constraints for the ellipse to fit an interpolated end atom are

described as follows:

• The ellipse interpolates the spoke end points e±1 = (xL,±yL) and e0 = (xR, 0),

corresponding to spokes S±1 and S0, respectively, where xL, yL, xR ∈ R are deter-

mined by an interpolated end atom;
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Figure 3.2: Left: three spokes S+1,−1/0 (thick arrows in dark blue) with length r/r/ηn
of an end atom forming a plane; interpolated spokes (thin arrows in cyan) filling the
gaps between the three spokes of each end atom; the medial sheet of the partial ellipse
fit to the three spoke ends is Mellipse, the thick red segment on S0 bisector spoke. Right:
planar curves sweeping along the end curve δ(t) of the medial sheet; a local frame implied
by end atom spokes also sweeps along δ(t), forming a frame field F(t).

• The tangents of the ellipse at the two spoke ends e±1 are set as t±1 = (yL,∓xL),

so the ellipse is perpendicular to spokes S±1.

Given the pose of the ellipse, it is perpendicular to the bisector spoke by default.

Therefore, the constraints above do not include the perpendicularity between the ellipse

and the bisector spoke. The unknowns (a, b, x0) are then solved as follows:

x0 =
xL(x2

L − x2
R + y2

L)

2x2
L − 2xLxR + y2

L

(3.3)

a =
−x3

L + xR(2x2
L + y2

L)− xL(x2
R + y2

L)

2x2
L − 2xLxR + y2

L

(3.4)

b =

√
(x2

L − xLxR + y2
L)2

2x2
L − 2xLxR − y2

L

(3.5)

if two conditions hold: 2x2
L−2xLxR−y2

L > 0 and −x2
L+xR(2xL+y2

L)−xL(x2
R+y2

L) > 0.

Let θ be the angle between two regular spokes S+1,−1, and let η be the bisector length

parameter in an interpolated end atom. The two conditions might be violated when θ

and η have extreme values. In practice, I maintain θ ∈ (π
3
, 2π

3
) and η ∈ (1.05, 1.2). With
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these empirically determined ranges for θ and η, a, b, and x0 have been successfully

solved for different m-reps.

Only the part of the ellipse connecting the three spoke ends of an interpolated end

atom is used as a part of the boundary crest. The medial sheet of the partial ellipse

is a segment lying on the bisector spoke, as the thick red segment Mellipse shown in

figure 3.2-left. Mellipse and its attached filling spokes S are analytically calculated from

the solved equation of the ellipse: Mellipse = {(a2−b2
a

cosφ + x0, 0)|φ ∈ [0, θ
2
]}, S±1(φ) =

((a− a2−b2
a

) cosφ,±b sinφ), φ ∈ (0, θ
2
], and S0(0) = (a− a2−b2

a
, 0). The filling spokes for

an interpolated end atom are shown as the cyan spokes in figure 3.2-left. Each fitted

partial ellipse forms a planar cross section of an m-rep crest. All the fitted partial ellipses

form a swept m-rep crest. The following describes how to check the legality of this swept

crest.

Recall that in section 2.3 a principal edge curvature was defined for the legality

condition of edge spokes on a medial sheet edge curve. For a crest region formed by

sweeping planar curves, the calculation of this principal edge curvature is greatly sim-

plified [Damon (2008)].

Assume the edge curve of the interpolated medial sheet is pδ(v), parameterized by v.

Each interpolated end atom pi,U
+1,0,−1, ri, ηi lying on this edge curve also determines

a local frame F(e1, e2, e3), where e1 is the bisector spoke direction U0, where e2 =

U+1−U−1

‖U+1−U−1‖ , and where e3 = e1 × e2, as shown in figure 3.2-right. The local frames of

interpolated end atoms form a frame field F(v) = (e1(v), e2(v), e3(v)) on pδ(v).

Given this local frame field F(v) on the edge curve pδ(v), the derivative of the edge

curve pδ(v) can be written in F(v) as:

pδ(v)′v = r1e1(v) + r2e2(v) + r3e3(v) (3.6)

In F(v), e1(v) = U0. The derivative of U0 can be written in terms of e2 and e3:
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U0′ = e′1 = ω12e2 + ω13e3 (3.7)

The derivative of U0, represented in the local frame field F(v), is used to simplify

the calculation of the principal edge curvature of a crest spoke [Damon (2008)]:

rκE = −ω13

r3

(3.8)

where r is the bisector spoke length.

The resulting κE from this simplified calculation is used to check the edge condition:

rκE < 1 iff the crest region is locally legal at a crest spoke. This condition is checked

against sample spokes on each partial ellipse curve. If this legality condition fails to hold

at any sample, it can be resolved by changing the η, i.e., by changing the bisector spoke

length of an interpolated end atom to maintain the local legality of the implied crest.

The overall atom interpolation method includes the interpolation on internal atoms,

the generation of interpolated end atoms based on the interpolated internal atoms, and

the generation of a swept crest. An implied boundary, as well as an interpolated spoke

field, is generated by this atom interpolation method. In the following section, the

atom interpolation method is applied to synthetic and real-world m-rep models, and the

results are shown. A careful evaluation of the atom interpolation method will be carried

out in section 6.1.1.

3.3 Results

The application of the atom interpolation to a single figure m-rep yields a double-sided

spoke field on a smoothly interpolated medial sheet. Both synthetic warped ellipsoid

m-reps and real-world kidney m-reps are used to test the atom interpolation method.

The synthetic ellipsoids are generated by applying three statistically independent
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global deformations to medial atoms in an m-rep, namely bending, twisting, and taper-

ing. Each global deformation is controlled by a variable sampled from a normal dis-

tribution. A detailed description of the synthetic ellipsoids is included in section 6.1.1.

There are also 39 kidney m-reps segmented from real-patient images as the real-world

test objects.

The interpolation results for both the synthetic warped ellipsoids and kidneys are

shown in figure 3.3: the underlying interpolated spokes and their implied boundary

meshes. In each interpolated m-rep, the red and green boundary meshes are generated

from the interpolated internal atoms, by connecting their interpolated internal spoke

ends at the same side of the medial sheet, quad-patch by quad-patch; the yellow bound-

ary mesh for the crest is generated from the sweeping planar curves fitted to interpolated

end atoms, by connecting corresponding points on adjacent planar curves. Recall that

each interpolated end atom has a pair of regular internal spokes as a part of a special

internal atom. The yellow mesh for the crest is connected to the red and green meshes

at the ends of both the regular spokes in interpolated end atoms. The red, green, and

yellow meshes form an overall implied boundary mesh of each interpolated m-rep.

The legality of the interpolated spokes are maintained. As a result, the overall

implied boundary mesh of each interpolated m-rep is free of any local shape defects,

such as creasing and folding, as shown in figure 3.3. The smoothness of an implied

boundary mesh depends on the continuity of the interpolated spokes, which is C0 in

this case. Further improvements may be desirable to achieve better smoothness of the

implied boundary meshes.

3.4 Discussion

There are open problems in the proposed internal and end atom interpolations. This

section lists these problems as follows, and the potential solutions will be discussed in
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Figure 3.3: Top: interpolation results on synthetic ellipsoid m-reps. Bottom: interpola-
tion results on real-patient kidney m-reps.
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section 7.2.1.

• Speed of the internal atom interpolation: each interpolation is calculated by an

integration, the speed of which can be improved.

• Continuity: currently C0 continuity is enforced across interpolated patches of in-

ternal atoms. Higher order continuity might be desirable.

• Medial umbilic points: a medial umbilic point having repeated principal radial

curvatures could be problematic for the rSrad interpolation and the spoke inter-

polation.

• A numerical error in computing the rSrad matrix can lead to a matrix with

complex-valued eigenvalues and eigenvectors. The method to interpolate rSrad

matrices by interpolating their real eigenvalues and real eigenvectors needs to be

changed to accommodate an rSrad matrix of complex eigenvalues and complex

eigenvectors.

Potential solutions to these open problems will be discussed in chapter 7, section

7.2.1.

This chapter has proposed a new interpolation method on a single figure m-rep. The

legality of interpolated internal atoms is implied by the interpolation, and the legality of

the boundary crest implied by interpolated end atoms is checked. Results have shown

that the atom interpolation method applies well to both synthetic and real-world single

figure objects.

The legality of an interpolated m-rep, including its implied boundary, is important

for an m-rep to represent anatomical objects. Local shape defects, such as creasing

and folding, rarely exist in real-world anatomical objects. These shape defects must

be avoided in a shape representation to model a population of such anatomical object.

Therefore, the proposed atom interpolation method is an important component of this

dissertation, with modeling a population of anatomical objects as a goal.
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This chapter has focused on the interpolation of single figure m-reps. The next

chapter describes multi-figure m-reps, representing complex objects of more than one

part. In order to handle the transition, i.e., the blend, between a pair of connected

object parts in a multi-figure m-rep, an interpolation on a one-sided spoke field is used.

This one-sided spoke interpolation is directly derived from the interpolation on internal

atoms described in this chapter.
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Chapter 4

Representing Multi-figure Anatomical

Objects

This chapter focuses on representing anatomical objects of multiple named parts. For

example, a prostate has two seminal vesicles attached to it, a liver has left and right

lobes, and a kidney has a renal pelvis region. Figure 4.1-a and -b show a prostate

with two attached seminal vesicles and a liver of two lobes, respectively, both as objects

having one or two additive parts (protrusions); figure 4.1-c shows a kidney with its renal

pelvis as an object having a subtractive part (indentation).

Due to the inherent complexity of these complex objects, previous shape represen-

tations of them concentrated on their global structure [Cootes et al. (1995); Gerig et al.

(2001)] or on the extremely local behavior of the geometric primitives, such as points,

without reference to the parts’ inter-relations [Csernansky et al. (1998); Styner et al.

(2003)]. The challenge of representing objects of multiple parts lies in the fact that

modeling each individual part alone is not sufficient. The inter-relations among object

parts have to be modeled, as well, to capture both global and local shape variations in

these complex objects. Such inter-relations include a host part and subpart connection,

global deformations of all connected parts, and the implied deformation from one part

to the part(s) connected to it. The word ”deformation” has two meanings: a change of

shape (form) or a deffeomorphism, such as a warping. In this chapter, the deformation



Figure 4.1: a) A prostate with two seminal vesicle protrusions. b) A liver represented by
the union of the left and right lobes. c) A kidney with the renal pelvis as an indentation
subfigure. Object a has three single-figure parts while objects b and c have two such
parts.

of an m-rep means the former, i.e., the change of the m-rep shape.

The multi-figure m-rep to be described in this chapter overcomes this challenge of

representing a complex object by treating the object as a set of connected parts and

by representing each object part with a separate single figure m-rep. The set of m-rep

figures is connected hierarchically, which allows an complex objects to be represented at

multiple levels of scale. A multi-figure m-rep allows us to study the object as a whole,

to study the inter-relations among object parts, and to study each individual part. The

main components of a multi-figure m-rep are listed as follows:

• The hinge geometry to connect adjacent figures;

• The multi-scale deformations to deform a multi-figure m-rep of connected figures;

• The smooth transition, i.e., the blend region, between each pair of connected

figures;

• The multi-scale statistics on multi-figure m-reps.

The rest of this chapter covers all these components. It starts with a review of a

single figure m-rep and a proposal of a spherical parameterization, on which a multi-

figure m-rep is based. It then describes the hinge geometry defined to connect a pair
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of adjacent m-rep figures in section 4.2. Based on the hinge geometry a set of multi-

scale deformations are also defined in section 4.2 to deform a multi-figure m-rep in

consecutively smaller scale levels. A blend is described to smoothly transit between

a pair of connected figures in section 4.2.3. A multi-scale way to conduct statistical

analysis on multi-figure m-reps is described in section 4.3. Section 4.4 shows statistics

resulting from the application of the hierarchical statistical analysis, and section 4.5

concludes this chapter with discussions.

4.1 Single Figure M-reps and a Spherical Parame-

terization

Each single figure m-rep is a quad-mesh of both internal and end medial atoms over a

spatially regular lattice, as shown in figure 2.1-right. An internal atom and an end atom

are both shown in figure 2.1.

Given a single figure m-rep, a smooth boundary can be generated both by a method

based on subdivision, proposed in Thall’s dissertation Thall (2004), and by a method

based on atom interpolation, proposed in chapter 3. The method, based on atom in-

terpolation, also provides a spoke field for the volumetric object interior. Both Thall’s

method and the proposed method provide a parameterized object boundary for a single

figure m-rep. A previously proposed parameterization of an m-rep implied boundary is

described next, followed by a newly proposed spherical parametrization.

A parameterization of an m-rep implied boundary is described in Han et al. (2004).

In this parameterization, an m-rep implied boundary is divided into three patches: two

internal patches implied by internal atom spokes, one on each of the two sides of a medial

sheet, and a crest patch implied by end atom spokes. An m-rep implied boundary is

then parameterized by three parameters (v1, v2, φ). Each one of the two internal patches

is parameterized by (v1, v2), with φ indicating on which side of the medial sheet the
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Figure 4.2: From top to bottom: a). the (u, v, ϕ) parameterization of a single figure
m-rep with discontinuities in its parametric space; b). the two ellipses, one for each
side of the medial sheet, mapped into a spherical coordinate system, with the two collar
regions corresponding to the crest region of the object.

patch stays: φ = +1 or φ = −1 indicates the top or bottom side of the medial sheet,

respectively. The crest patch is parameterized by (v1 or v2) and φ, where either v1 or

v2 is used depending on the position of a point on the crest patch, relative to the two

internal patches, and where φ changes smoothly from the top side (φ = +1) to the

bottom side (φ = −1) of the medial sheet. φ is zero at the exact boundary crest line,

formed by bisector spoke ends of end atoms.

The space of (v1, v2, φ) parameterizing an m-rep can be unfolded to form a wrapped-

around parametric space, as shown in figure 4.2-a. Such a parametric space has the

disadvantage of being discontinuous at its boundary. It requires special care to traverse

across the boundary of this parametric space.

A new spherical parametrization is proposed for an m-rep boundary. In this pa-

rameterization, a single figure m-rep implied boundary is divided into two parts by its

boundary crest line: a top part and a bottom part, corresponding to the top side and
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the bottom side of an m-rep medial sheet, respectively. The top part of the boundary

is further divided into two regions: a center region implied by internal atom spokes and

a half crest region implied by end atom spokes. The half crest region is collar-shaped,

surrounding the center region. The top part of the boundary, including the center and

the half crest regions, is mapped to an ellipse with a collar corresponding to the half

crest region. The same mapping is applied to the bottom part of the boundary. Both

of the ellipses with collars, as shown in figure 4.2-b, are then symmetrically mapped to

two hemispheres of a unit sphere, with a spherical coordinate (θ, φ), as shown in figure

4.2-b. This spherical parameterization is a natural choice, given the spherical topology

of the implied boundary of a single figure m-rep.

This spherical parameterization of each m-rep figure provides a basis for connecting

a subfigure to its host figure in a multi-figure m-rep. A subfigure is fully known in the

figural spherical coordinates of its host figure boundary at which the subfigure is attached

to its host. This spherical parameterization can be applied to an m-rep boundary

generated both by the subdivision based method and by the atom interpolation.

Based on a single figure m-rep and its parameterization, section 4.2 describes hinge

geometry and multi-scale deformations of a multi-figure m-rep.

4.2 Multi-figure M-reps

An multi-figure m-rep consists of a set of m-rep figures organized as a hierarchy of

connected figure pairs. Each connected pair contains a host figure and a subfigure.

The entire set of m-rep figures are then recursively connected to form a desired object

hierarchy. Such a hierarchy allows a representation of a subset of complex objects

that encompasses many anatomical objects. Most of these objects can be adequately

represented by two to three m-rep figures in two to three hierarchical levels, assuming

that each connection is defined via a host figure and a subfigure pair. With such a
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Figure 4.3: Left The host figure and subfigure arrangement, with the subfigure (six
medial atoms appearing) on top, the host figure (four medial atoms showing) on bottom,
and the blend region shown darker. Right Different shapes of the blend region.

hierarchy, neither a 6-junction connection [Damon (2003)] nor subfigures connected to

host figures along multiple curves are supported by the multi-figure m-rep, which will

be further discussed in section 7.2.1. The relation between a host figure and subfigure

are determined by the anatomical structure of a target object and by the tightness of

posterior probabilities of object parts.

The rest of this section describes how each pair of adjacent figures are connected by

hinge geometry, how a multi-figure m-rep is deformed, and how a smooth boundary is

generated for a multi-figure m-rep by a method called blending. A two-figure m-rep is

used as an example in the following definitions and descriptions. A two-figure m-rep has

one host figure and one subfigure, e.g., a liver with its right lobe as a host figure and its

left lobe as a subfigure. All the definitions and descriptions of a two-figure m-rep can

be recursively applied to a multi-figure m-rep. Note that here an m-rep ”deformation”

means the change in an m-rep shape.
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4.2.1 Hinge Geometry

Hinge geometry defines how a subfigure is connected to its host figure. In a two-figure

m-rep M, assume its subfigure Fsub has a quad-mesh grid of nrow × ncolumn atoms, and

assume these atoms are Ai,j, i = 1...nrow, j = 1...ncolumn. In M its subfigure Fsub is

attached to its host figure by a 1D curve of hinge atoms, which, when sampled, forms a

row of atoms A1,j, j = 1...ncolumn in the subfigure atom mesh. Generally, hinge atoms

form a curve of atoms. However, in the multi-figure m-rep I describe hinge atoms are

defined as a row of atoms. Each hinge atom A1,j rides on the medially implied boundary

of the host figure, with a known spherical figural coordinate (θj, φj) of the host figure

boundary. At each (θj, φj), there is a boundary point phost,j and a boundary surface

normal nhost,j of the host figure. The points {phost,j} and the corresponding normals

{nhost,j} are key to connecting a subfigure to its host figure because they allow the

method to reflect the relative position and orientation of a subfigure to its host figure.

The hinge geometry to represent a branching medial structure is a relaxation from

the exact Blum condition to avoid instability against boundary noise of the low-volume

portion of a branching medial axis, summarized in section 2.2.5. A host figure and

subfigure pair connected by hinge geometry is demonstrated in figure 4.3-left. An m-

rep allows both additive and subtractive subfigures, as shown in figure 4.1-a-c. Hinge

geometry, defined as a connection via hinge atoms between a host figure and a subfigure,

can be recursively applied to a multi-figure m-rep of more than two figures.

4.2.2 Multi-scale Deformations of a Multi-figure M-rep

Capturing the natural hierarchy in a complex anatomical object, a multi-figure m-rep

deforms in a hierarchical way, consisting of multiple scale levels. At the subfigure scale

level, hinge geometry is essential to how a multi-figure m-rep deforms.

Consider a two-figure m-rep of one host figure and one subfigure. At a global level,

the m-rep deforms as a whole, i.e., as a collection of medial atoms from both of its figures,

76



and after a global deformation is applied to the m-rep, the subfigure hinge atoms might

be re-projected back to the boundary of the host figure to maintain the hinge geometry

connection; at a host figure level, the host figure deforms, and its deformation must

be propagated to the subfigure via the hinge atoms connecting the two figures; at a

subfigure level, the subfigure deforms on its own without affecting its host figure, while

staying connected to its host figure, and the subfigure deformation originating from the

hinge atoms is propagated to the rest of the subfigure. The global deformation of a

two-figure m-rep and the figural deformation of a host figure are carried out in the same

way as the deformation of a single figure m-rep, reviewed in section 2.4.1. A subfigure,

however, goes through two types of deformation: an implied deformation by its host

figure and a spontaneous deformation without affecting its host. Both of the subfigure

deformations are realized via hinge atoms.

Before detailing the two subfigure deformations based on hinge geometry, I will

describe deformation propagation in a subfigure, from its hinge atoms to the rest of the

subfigure.

Deformation Propagation in a Subfigure

Deformation propagation in a subfigure includes the deformation to hinge atoms, either

implied by a host figure deformation or implied by a spontaneous subfigure deformation,

and the propagation of the hinge atom deformations to the rest of a subfigure.

When a host figure deforms, its boundary changes; when a subfigure deforms spon-

taneously, its hinge atoms transform on the implied boundary of the host figure. In both

of these cases, the points phost,j and the normals nhost,j at these points, connecting the

host figure and the subfigure, change. These changes must affect the hinge atoms and

then the rest of the subfigure.

Assume phost,j and nhost,j change to p′host,j and n′host,j, respectively. There is a

composed transformation gj ∈ R3 × SO(3) of a translation and a rotation implied by
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the changes in p′host,j and n′host,j for each hinge atom such that gj ◦ (phost,j,nhost,j) =

(p′host,j,n
′
host,j), where j ∈ [1, ncolumn]. These composed transformations gj, j = 1...ncolumn

are applied to the corresponding hinge atoms one by one, such that A′1,j = gj ◦A1,j.

The changes applied to the hinge atoms are then propagated to the rest of the

subfigure. This propagation is carried out row by row: the changes to the hinge atoms

in row i = 1 are propagated to the atoms in row i = 2, and the consequential changes of

the atoms in row i, nrow−1 ≥ i ≥ 2 are propagated to the atoms in row i+ 1. It suffices

to show the propagation from the hinge atoms to the second row of atoms because the

rest of the propagation follows. The process of this propagation includes representing

the relation between the two rows of atoms by atom residues, and applying the atom

residues to the deformed hinge atoms to acquire the deformed second row of atoms. By

this means, we propagate the changes in the hinge atoms to the second row of atoms,

while maintaining the relation between these two rows of atoms.

Recall that atom residues were defined in 2.4. Equation 2.26 suggests the atom

residues between the second row of atoms A2,j and the hinge atoms A1,j can be cal-

culated as ∆A1,j = A2,j 	 A1,j = g−1
A1,j

(∈ G(1)) ◦ A2,j(∈ M(1)), where G(1) denotes

the group of composed transformations of hub translation, spoke magnification(s), and

spoke rotations that acts smoothly on each medial atom as a point on the Riemannian

manifold M(1), where gA denotes one such composed transformation that transforms

a pre-fixed point as the origin on M(1) to A ∈ M(1), and where g−1
A is the inverse

transformation of g that transforms A to the origin on M(1).

Given the atom residues ∆A1,j representing the relation between the second row of

atoms and the hinge atoms, and given the deformed hinge atoms A′1,j, the deformed

second row of atoms are calculated as A′2,j = A′1,j ⊕∆A1,j, where j = 1...ncolumn, and

where ”⊕” is the inverse operation of ”	”.

The same propagation is sequentially applied to consecutive rows of subfigure atoms:

from row i, ncolumn − 1 ≥ i ≥ 2 to row i + 1 and one row at a time. This concludes
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the deformation propagation. The two types of subfigure deformation, based on this

propagation, are described next.

Host Figure Implied Subfigure Deformation

As the host figure deforms, its surface points and normals change, at the host figural

coordinates {(θj, φj)}. These changes are applied to the hinge atoms and then the rest

of the subfigure, by the deformation propagation just described. The advantage of the

host figure implied subfigure deformation is that the relation between the host figure

and the subfigure is maintained when the host figure deforms.

Spontaneous Subfigure Deformations

The subfigure can also translate, rotate, hinge, scale, and elongate on the host figure

boundary while the host stays put. These basic hinge-relative subfigure deformations

start in the figural coordinate of the host figure, described in the list below, with its

first item detailed and the rest briefed:

• Translation or rotation: implemented by translating or rotating the hinge atoms

in the host figure spherical coordinate and by propagating the deformations of the

hinge atoms to the rest of the subfigure. In detail, there are several steps:

1. Each hinge atom A1,j, j ∈ [1, ncolumn] corresponds to a point (θj, φj) in the

host figural coordinate, the space of which is a unit sphere, as described in

section 4.1. All the corresponding points of the hinge atoms form an open

curve on the unit sphere;

2. The curve is translated or rotated on the unit sphere. The translation or

rotation is implemented by a series of small steps. In each step, each point

(θj, φj) on the curve changes to a new point along a geodesic curve of the

sphere. After the translation or rotation, (θj, φj) changes to (θ′j, φ
′
j);
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3. Accordingly, each boundary point phost,j and its normal nhost,j, at which

the subfigure is connected to is host figure, change to p′host,j and n′host,j,

respectively;

4. The changes in p′host,j and n′host,j are applied as transformations to the hinge

atoms;

5. The deformations of the hinge atoms are then propagated to the rest of the

subfigure, via deformation propagation.

As a result, where a subfigure is connected to its host and how the subfigure orients

relatively to its host both change according to the changes in p′host,j and n′host,j;

• Hinging: implemented by rotating the row of hinge atoms around the curve of the

hinge atoms and by propagating the hinge atom deformations to the rest of the

subfigure;

• Scaling: implemented by scaling the curve of the hinge atoms in the host figural

coordinate, by scaling the radii of the hinge atoms, and by propagating the hinge

atom deformations to the rest of the subfigure;

• Elongation: implemented by modifying the distance between the second row of

atoms and hinge atoms, represented by atom residues ∆A1,j, and by propagating

the changed relation to the rest of the subfigure.

These spontaneous deformations of a subfigure combined with the host figure implied

subfigure deformation conclude the definition of subfigure deformations in a two-figure

m-rep.

As a summary, the multi-scale deformations to a two-figure m-rep include three levels:

a level of a global deformation to the entire m-rep, a level of a host figure deformation

with its implied deformation to the subfigure, and the level of spontaneous subfigure

deformations.

80



Section 4.2.3 describes the generation of a blend region as a transition between a

pair of connected figures. Both of the methods to generate an m-rep implied boundary,

the Catmull-Clark subdivision based method and the atom interpolation based method,

will be extended to a multi-figure m-rep.

4.2.3 Blending

In order to generate the boundary of a multi-figure m-rep, a smooth transition between

each pair of connected figures is required. The process of generating such a smooth

transition is called blending. The overall process of generating the boundary of a two-

figure m-rep, including a blend region, has the following key steps:

1. Generate the figural boundaries of both the host figure and the subfigure;

2. Intersect the two boundaries to find an intersection curve;

3. Transform the intersection curve into one cut curve on each one of the two figures;

4. Cut both the host figure and subfigure via the cut curves;

5. Create the smooth transition, i.e., the blend between the cut host figure and the

cut subfigure;

6. Combine the boundaries of both the cut figures and the boundary of the blend

region into an overall boundary of the object.

This subsection introduces two methods of blending. The first method is an ex-

tension to Thall’s adapted Catmull-Clark subdivision method. The second method is

an extension to atom interpolation, introduced in chapter 3. Given the efficiency and

simplicity of the Catmull-Clark subdivision scheme, the first method is computationally

faster. However, it does not provide an underlying medial structure for the blend re-

gion, and it does not guarantee the calculated boundary to be free of local shape defects.
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Unlike the first method, the second method generates a medial structure for the blend

region: between each pair of a host and subfigure, the medial sheet of the subfigure splits

and merges into the cut version of the medial sheet of the host. Importantly, the in-

terpolated spokes from the second method allow us to apply the available mathematics,

especially those reviewed in section 2.3 and in section 3.3, to the blend region. Again

without loss of generality, a two-figure m-rep will be used as an example in the rest of

this subsection.

Blending Based on Catmull-Clark Subdivision

The idea is to build an overall control mesh for a two-figure m-rep, including the blend

region, and to apply Thall’s adapted Catmull-Clark subdivision scheme to the overall

control mesh.

The original subdivision control meshes of both the host figure and subfigure, implied

by their m-rep atoms, are used as starting meshes. The two starting meshes meet and

merge into each other: designated sections from both figures’ initial control meshes are

removed, and the rest of both control meshes are re-meshed, as shown in figure 4.3-left.

Two parameters dhost and dsub, delimiting the top and the bottom of the blend region,

control the shape of the blend, as shown in figure 4.3-right. The detailed algorithm is

shown as follows:

1. Intersect two initial control meshes of the host figure and subfigure to form an

intersection curve Cint, which is mapped to the figural spherical coordinates of

both figures;

2. Generate a cut curve for each figure:

• Generate a cut curve for the host figure:

– Map the intersection curve Cint to the spherical parametric space of the

host figure;
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– Iteratively dilate the mapped curve by a smooth curvature flow in the

spherical parametric space. The amount of dilation is controlled by a

parameter dhost;

– Map the dilated curve from the spherical parametric space of the host

figure back to its initial control mesh as a cut curve Chost
cut ;

• Generate a cut curve for the subfigure:

– Map the intersection curve Cint to the spherical parametric space of the

subfigure;

– Iteratively dilate the mapped curve by a smooth curvature flow in the

spherical parametric space. The amount of dilation is controlled by a

parameter dsub;

– Map the dilated curve from the spherical parametric space of the subfig-

ure back to its initial control mesh as a cut curve Csub
cut ;

3. Re-sample and smooth the cut curves Chost
cut and Csub

cut if necessary to maintain the

number of points and length of each segment to stay in empirically determined

ranges;

4. Remove a designated section inside the cut curve from each of the two initial

control meshes;

5. Build point correspondences between the two cut curves Chost
cut and Csub

cut by mini-

mizing the sum of the squared distances between corresponding points on the two

curves;

6. Mesh between the two cut curves via the built correspondences, to connect the cut

control meshes of the host figure and subfigure; This results in an overall control

mesh for the entire object;
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7. Apply Thall’s adapted Catmull-Clark subdivision to the overall control mesh of

the object to generate a smooth boundary, including the blend region, for the

two-figure m-rep.

A second blending method, based on the spoke interpolation directly derived from

the atom interpolation, is introduced next.

Blending Based on Spoke Interpolation

The second blending method uses a one-sided spoke interpolation, which is directly

derived from the atom interpolation method. The atom interpolation is first applied to

both the host figure and the subfigure to obtain figural boundaries with smooth medial

sheets and attached spokes (step 1 below). The two figural boundaries are intersected,

and based on the intersection curve both of the figural boundaries and both of the

figural medial sheets are cut (steps 2-7 below). A one-sided collar-shaped medial sheet

is created to connect the two cut figural medial sheets (steps 8-10 below). Then, a

blend region is calculated by a one-sided spoke interpolation (steps 11-13 below). Here

again, there are two parameters that control the shape of the blend region. The overall

algorithm is shown as follows:

1. Interpolate the m-reps of both the host figure and the subfigure by atom interpo-

lation:

• Each interpolated figure has a boundary mesh Bhost or Bsub, parameterized

by a spherical coordinate;

• Each interpolated figure has an interpolated medial sheet phost or psub and

the implied normal nhost or nsub of the sheet;

• Each interpolated figure has a spoke field Shost or Ssub;

2. Intersect the two boundary meshes Bhost and Bsub to form an intersection curve

Cint, which is mapped to the figural coordinates of both figures;
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3. Generate a cut curve for each figure:

• Generate a cut curve for the host figure:

(a) Map the intersection curve Cint to the spherical parametric space of the

host figure;

(b) Iteratively dilate the mapped curve by a smooth curvature flow in the

spherical parametric space. The amount of dilation is controlled by a

parameter dhost;

(c) Map the dilated curve from the parametric space of the host figure back

to its interpolated mesh as a cut curve Chost
cut ;

• Generate a cut curve for the subfigure:

(a) Map the intersection curve Cint to the spherical parametric space of the

subfigure;

(b) Iteratively dilate the mapped curve by a smooth curvature flow in the

spherical parametric space. The amount of dilation is controlled by a

parameter dsub;

(c) Map the dilated curve from the parametric space of the subfigure back

to its interpolated mesh as a cut curve Csub
cut ;

4. Re-sample or smooth the cut curves Chost
cut and Csub

cut if necessary, in order to main-

tain the number of points to be same for both curves, and to maintain the length

of each segment on both curves to be in empirically determined ranges;

5. Remove designated sections from both boundary meshes inside the cut curves

Chost
cut and Csub

cut to form a cut version of the interpolated host figure boundary and

a cut version of the interpolated subfigure boundary, respectively;

6. Convert each boundary cut curve to a cut curve Chost medial
cut or Csub medial

cut on the

interpolated medial sheet of the host figure or of the subfigure, respectively. This
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conversion is done by the correspondences between the interpolated medial sheet

and the m-rep implied boundary;

7. Remove designated sections from both interpolated medial sheets inside the cut

curves Chost medial
cut and Csub medial

cut to form a cut version of the interpolated medial

sheet of the host and of the subfigure, respectively;

8. Build correspondences between points on the curves Chost medial
cut and Csub medial

cut by

minimizing the sum of the squared distances between corresponding points from

both the curves;

9. Based on the built correspondences, mesh between these two curves by a quad-

mesh of a series of quad-patches. This is made possible by the same number of

points on both the medial sheet cut curves Chost medial
cut and Csub medial

cut ;

10. Interpolate the medial sheet for the blend region between the two medial sheet cut

curves Chost medial
cut and Csub medial

cut by a point-and-normal interpolation:

(a) Each point on one of the medial sheet cut curves Chost medial
cut and Csub medial

cut

has a point and a normal, given by the interpolated medial sheets of the host

and of the subfigure, respectively;

(b) A point-and-normal interpolation is applied to the quad-mesh between the

two medial cut curves, quad-patch by quad-patch, to generate a smooth tran-

sitional medial sheet for the blend region.

This point-and-normal interpolation by cubic Hermite patches was detailed in

section 3.2.2.

11. Interpolate the spokes attached to the two medial sheet cut curves Chost medial
cut and

Csub medial
cut by a one-sided spoke interpolation:
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(a) Each point on the medial sheet cut curve Chost medial
cut or Csub medial

cut has an at-

tached spoke, given by the interpolated spoke field Shost or Ssub, respectively;

(b) In each quad-patch of the quad-mesh between the two medial sheet cut curves,

estimate the rSrad matrix of each spoke at one of four corners. Apply the

rSrad interpolation to the four estimated rSrad matrices, described in section

3.2.2;

(c) Based on the interpolated medial sheet and the interpolated rSrad matrices,

the spokes attached to the two curves Chost medial
cut and Csub medial

cut are inter-

polated. This interpolation is realized by a one-sided spoke interpolation

in each quad-patch, via an integration of the first-order derivatives of the

spokes, calculated from the derivatives of the interpolated medial sheet and

the interpolated rSrad matrices. This spoke interpolation is derived directly

from the two-sided spoke interpolation, detailed in section 3.2.2;

12. Connect the spoke ends of the interpolated spokes for the blend to form a smooth

boundary for the blend;

13. Combine the interpolated boundary of the blend and the cut boundaries of both

the figures into an overall boundary for the two-figure m-rep. The underlying

medial sheet and spokes of the blend are also given by this method.

As shown in figure 4.4, in this spoke interpolation based method, the cut medial sheet

of the subfigure splits into a one-sided collar-shaped surface. This split collar-shaped

medial sheet then merges with C1 continuity, almost everywhere, into the cut medial

sheet of the host figure. The only exceptions of C0 continuity exist at the medial points

that are on the cut curve of the host figure medial sheet and also on the original edge

curve of the host figure medial sheet. The resulting medial representation, as shown in

figure 4.5 for the blend region, is a skeletal structure, with the medial sheet appearing as
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Figure 4.4: Left: the spokes attached to the two medial sheet cut curves. Right: the
blue curves as a part of the one-sided collar-shaped medial sheet for the blend region.

a one-sided collar-shaped surface instead of a two-sided medial sheet in a Blum medial

axis.

The mathematics, described in section 2.3 can be applied to a such a skeletal struc-

ture, of which a Blum medial axis is a special case. In spite of the one-sided skeletal

structure for the blend, the legality of the blend region is implied by the spoke interpola-

tion, based on one assumption that the estimated rSrad matrices of the attached spokes

on both medial sheet cut curves are legal. This might not always hold for an arbitrary

multi-figure m-rep. However, if we start with a multi-figure m-rep that does uphold this

assumption, we can maintain it by penalizing deformations on the multi-figure m-rep

that might violate this assumption.

Both the subdivision based method and the atom interpolation based method for a

single figure m-rep have been extended to generate a boundary of a two-figure m-rep.

Furthermore, both the extended methods can be applied recursively to a multi-figure m-

rep of more than two figures, assuming that no two subfigures attached to the same host

figure intersect each other, even in their blend regions. Section 4.3 describes hierarchical

statistics of multi-figure m-reps.
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Figure 4.5: Demonstration of two interpolated multi-figure m-reps: each row of two
figure components shows a two-figure m-rep with its subfigure connected to its host
figure in a different orientation. In each of the two rows, the left figure component
shows the cut boundary meshes of both figures, and the right figure component shows
the interpolated medial sheet and medial spokes and the implied boundary mesh of the
blend region. In both of the left figure components, the medial atoms (hubs in yellow
and spokes in magenta and cyan) and the medial sheet meshes (in cyan) of the host
figure and subfigure are also shown.
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4.3 Hierarchical Statistics of Multi-figure Objects

The hierarchy in a multi-figure m-rep provides an extension of PGA statistics of single

figure m-reps, reviewed in section 2.4, to hierarchical PGA statistics of multi-figure

m-reps.

Hierarchical statistics of multi-figure m-reps are calculated in a similar way as that

in the hierarchical statistical framework for a multi-object complex, detailed in [Pizer

et al. (2005)]. Without loss of generality, a two-figure object is used as an example.

The hierarchical statistics of two-figure m-reps include the following parts: the global

statistics, the residue statistics at the host figural level, and the residue statistics at

the subfigural level, to be described in next two subsections. Recall that PGA of single

figure m-reps is applied to the union of all atoms in each m-rep. The global statistics

of two-figure m-reps are calculated by a PGA on the union of all the atoms from both

figures.

4.3.1 Global Statistics

Assume that each two-figure m-rep object O has two figures {Fhost,Fsub}, of nhost and

nsub atoms, respectively. Let nO be the total number of atoms in O. The global statistics

of such two-figure m-reps are computed as a Fréchet mean m-rep O and PGA statistics

on the m-reps, each as a union of all its nO atoms.

4.3.2 Hierarchical Statistics Based on Residues

In each two-figure object O, its host figure and subfigure are treated as the single figure

objects in the case of a multi-object complex, and the hinge atoms, which relate the

host figure’s deformation to the sympathetic subfigure deformation, are treated as the

augmenting atoms in the case of a multi-object complex, detailed in [Pizer et al. (2005)].

Let nO = nhost + nsub. Three definitions are briefed as follows:
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• M-rep residue: difference between two m-reps, calculated by the operation 	

(equations 2.26 and 2.27 in section 2.4.3). Because the m-rep residue can also

be represented as an m-rep, PGA can be directly applied to m-rep residues;

• Augmentation: U1 = Fhost ∪ Ahinge denotes the augmented union of host figure

atoms and subfigure hinge atoms Ahinge in Fsub;

• Projection: an m-rep M can be projected to a PGA subspace by πH(M) ≈

ExpM

∑k
i=1〈pi,LogM(M)〉pi, as detailed in [Pizer et al. (2005)].

Based on these definitions, the three parts in the hierarchical statistics of two-figure

m-reps are as follows:

1. PGAglobal: global PGA statistics of all the nO atoms making up the entire object.

PGAglobal describes the global shape variation of the original objects.

This shape variation is then removed from both the host figure atoms and the

subfigure atoms before steps 2 and 3, via the atom residues between the original

atoms and the atoms projected to a global PGA subspace, spanned by the first a

few principal geodesic modes in the global PGA;

2. PGAhost: PGA statistics of the residues of the union U1 of the host figure atoms

augmented by the subfigure hinge atoms. PGAhost describes the remaining shape

variation of the augmented U1 after the global shape variation has been removed

in step 1.

The changes in the hinge atoms, from the projection in step 1, are propagated

to the rest of the subfigure, via the hinge geometry and deformation propagation,

detailed in section 4.2.1.

Then the shape variation in U1 is removed, via atom residues between atoms in

U1 and the projection of U1 to a PGA subspace of PGAhost;
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Figure 4.6: Left: accumulated sum of the variances from the global statistics PGAg:
the first 7 modes capture over 95% of the total variability. Right: the residue shape
variation after the global variation is removed: each column shows the liver −2 standard
deviations from the residue mean along the respective eigenmode, the residue mean,
and the liver +2 standard deviations from the mean. The left column shows the first
principal mode of the host residue statistics PGAh; the other two columns show the
first two modes of the subfigure residue statistics: PGAs describes the remaining shape
variation of the subfigure after the global and host-implied variation have been removed.

3. PGAsub: PGA statistics of the residues of subfigure F2 atoms after the changes in

the hinge atoms, from the projection in step 2, are propagated to the rest of the

subfigure.

The hierarchical statistics on two-figure m-reps can be recursively extended to multi-

figure m-reps of more than two figures. The hierarchical statistics will be applied to liver

m-reps next.

4.4 Results

The results from applying the hierarchical statistics to a set of two-figure liver m-reps

are shown in figure 4.6. The hierarchical statistics of the two-figure livers include three

levels: the global level, the host figure level, and the subfigure level. As shown in figure

4.6, the shape variation in the three levels gradually diminishes, which is consistent with

the decreasing scale levels in the m-rep hierarchy.
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4.5 Discussion

The ability of representing complex objects, while reflecting the inter-part relations in

such objects, is a valuable asset of the m-rep to model anatomical objects in a population.

A multi-figure m-rep captures the natural hierarchy within a complex object, so it

allows learned shape statistics to follow the same anatomical hierarchy in such objects.

Relative to the object geometry, learned appearance statistics of multi-figure m-reps can

potentially follow this hierarchy as well.

A multi-figure m-rep also has the advantage that a subtractive part (indentation)

or an additive part (protrusion) connects to its host part in a geometrically equivalent

way. This uniform representation greatly simplifies the calculation of statistics of such

objects, which makes it feasible to model complex shapes in a population having additive

and subtractive parts.

At this moment, multi-figure m-rep statistics only handle objects of a fixed con-

nection topology, i.e., a fixed number of figures and fixed connection relations among

figures. Extending this framework to handle objects of varying connection topologies is

potentially valuable, to be discussed in section 7.2.2.
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Chapter 5

Geometrically Proper Models in Statistical

Training

In a deformable model framework, a statistical training process includes two steps: the

first step is to extract shape models from a set of training images, and the second

step is to calculate shape statistics from the extracted shape models and to calculate

appearance statistics relative to these shape models. This chapter focuses on the first

step, also called a fitting step.

The fitting step is to deform a template model into a set of binary characteristic

images for training, usually produced from a set of grey scale images by human experts.

The lack of any shape prior statistics to guide the model fitting can lead to shape models

with local shape illegalities. Local shape illegalities, such as surface folding or creasing

as shown in figure 5.1, are defects in shape models, which do not exist in anatomical

objects. These shape defects will taint learned shape and appearance statistics. Any use

of these tainted statistics can yield undesirable results. In order to ensure the quality of

the shape and appearance statistics, shape illegalities in extracted shape models must

be avoided.

On the one hand, it is desirable to avoid shape illegalities, but on the other hand, it

is not trivial to do so at feasible computational cost for existing shape representations.

Existing solutions to avoiding shape illegalities in a fitting step either require manual



Figure 5.1: Illegal local shape defects: folding and creasing.

enforcements on the smoothness of extracted deformable models [Cootes et al. (1995)]

or require expensive computation [Brechbuhler et al. (1995)]. Human interferences may

bring artificial biases into extracted shape models and into learned statistics as well.

As reviewed in section 2.3, a particular strength of the m-rep as a medial shape rep-

resentation is that powerful mathematics exist for medial geometry. This chapter shows

how to adapt these mathematics to a geometric shape penalty, which can be explicitly

applied to deformable m-reps in an automatic fitting step of reasonable computational

cost. The legality of boundary surfaces and interiors of extracted m-rep models is main-

tained in this fitting step, also called a proper fitting step.

The rest of this chapter is organized in the following way. Section 5.1 details the

proposed method for achieving medial legality and thus proper statistics in a training

process using m-reps. Section 5.2 shows the generation of synthetic test models and the

results from the application of the proper fitting to both synthetic and real world data.

Section 5.3 concludes this chapter with discussions.

5.1 A Proper Binary Fitting Step

The goal of a fitting step is to find a best model M in a shape space for each training

image I. This goal can be written in the form of arg minM Fobj(M|I), where Fobj(M|I)

is an objective function to be minimized to find the best shape parameters for M. This

objective function is typically the sum of two parts: a data match part measuring the

quality of the fit of M to target data and a geometric penalty part penalizing any
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inappropriate M.

The target data in a deformable model fitting step are what a template deformable

model is aimed to fit into. In our case, the data include a binary image and a small set

of selected image landmarks. As a result, the data match part used in the proper fitting

step has two terms: an image match term Fimg and an image landmark match term

Film. The use of selected image landmarks as a part of the data not only improves the

data fitting quality but also enforces correspondences between the model and identifiable

anatomical features in the image.

Maintaining appropriate geometry of fitted models is a common goal of a deformable

model fitting step. This goal is typically achieved by maintaining regular placements

of shape features of a deformable model and by maintaining shape smoothness. In our

case, the geometric penalty has two terms to penalize inappropriate geometry of a fitted

m-rep: an irregularity penalty term Freg and an illegality penalty term Fleg, where Fleg

is a new geometric penalty term proposed by this dissertation. It is used to maintain the

legality of a fitted m-rep and therefore improve shape smoothness of both the boundary

and the interior of an m-rep.

When minimized, the data match part and the geometric penalty part, summed up

as the objective function in our proper fitting, yield an m-rep that fits well to a target

image and its corresponding image landmarks without any irregular atom arrangement

and without illegal local shapes.

5.1.1 Data Match

Image Match

Fimg, the image match term in our objective function, measures whether an m-rep

implied boundary Ω(M) is in accordance with the voxel boundary B(I) in a binary image

I. An m-rep implied boundary, generated either by the subdivision based method or by

the atom interpolation method, consists of a set of discrete surface points ωi ∈ Ω(M);
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the voxel boundary of I consists of a set of discrete voxel points bi ∈ B(I). In a discrete

form, Fimg is defined as the sum of the squared distances d2(ωi,B(I)) from surface points

ωi ∈ Ω(M) i ∈ [1, N ] to their closest voxel points on B(I):

Fimg(M, I) =
∑

ωi∈Ω(M)

d2(ωi,B(I)) (5.1)

where d2(ωi,B(I)) = arg minb∈B(I) ‖b− ωi‖2.

In order to calculate Fimg efficiently, a space filling lookup table is pre-calculated

for a voxelized unit cube, into which the binary volumetric image and the model are

normalized. The lookup table, in the form of a distance map, contains the distance

from each voxel center in the unit cube to its closest voxel point b ∈ B(I) on the voxel

boundary B(I). The lookup table is created by Danielsson’s distance map propagation

from the original binary image [Danielsson (1980)], and the table is saved for later uses.

A trilinear interpolation in the lookup table gives a fast calculation of d2(ωi,B(I)) and

a fast calculation of Fimg.

There are two special cases to be handled carefully when using the image match term

Fimg in our binary fitting:

• If at a boundary point ωi, the surface normal ni of Ω differs from the distance

gradient of the distance map at that point by more than a certain empirically

determined angle, d2(ωi,B(I)) will be replaced by the distance from ωi along ni

to the nearest binary boundary voxel on B, detailed in [Xiaoxiao Liu and Pizer

(2008)];

• If the object in I is very thin, i.e., less than a voxel in thickness, d2(ωi,B(I))

is not accurate enough to guide the model M to deform into I. A solution is

to fit an initially dilated model, by scaling up the spoke length of m-rep atoms,

into a dilated version of the binary boundary in the training image and then to

contract the fitted model by the same amount as the dilation, via shrinking the
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spoke length. The contracted m-rep is the fitted m-rep for the original image I.

Landmark Match

Film, the landmark match term in our objective function, measures how good explicit

feature correspondences are between the m-rep implied boundary Ω(M) and the voxel

boundary B(I). An expert identifies a few anatomically important and easily identifiable

landmarks on each model boundary and in each binary image. Each image landmark

LIk identified in I is provided with a real tolerance value φk, which reciprocally weights

the associated distance from the image landmark to its corresponding model landmark

LMk, where k = 1..N , and N is the total number of image (model) landmarks.

A model landmark LMk on an m-rep model is identified as a spoke end of an medial

atom, and a corresponding image landmark in a binary image is identified as a point LIk

in the image volume. In our current implementation, a squared Euclidean distance from

a model landmark to its corresponding image landmark is computed as the measure of

fit. The squared distances are then summed up for all the model landmarks, weighted

by tolerance factors 1/φ2
k:

Film(M, I) =
N∑
k=1

1

φ2
k

d2(LMk,LIk) (5.2)

5.1.2 Geometric Penalty

Besides the measurement of the dissimilarity between a model and image data, includ-

ing the binary image and the corresponding image landmarks, by the data match, the

geometric penalty part in our objective function penalizes any inappropriate M when

being minimized.

The geometric penalty part penalizes any irregular arrangement of m-rep atoms in

M via an irregularity penalty term Freg, and it penalizes any illegality of the interior

and boundary implied by M via an illegality penalty term Fleg.
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Irregularity Penalty

The irregularity penalty term Freg for an m-rep measures the deviation of every atom

from the average of its neighboring atoms. This term penalizes non-uniform spacing of

medial atoms and inconsistent changes in the spoke length and direction of medial atoms.

It contributes to proper object geometry and to good correspondences among shape

models across training cases, which are especially important for modeling anatomical

objects in a population. For each medial atom mi, its irregularity penalty is calculated

as the squared Riemannian distance, as described in section 2.4.1, between mi and the

Fréchet mean of its neighboring atoms N(mi), defined by equation (2.25), section 2.3.

The penalties of m-rep atoms are then summed up to form the irregularity penalty for

an m-rep:

Freg(M) =
M∑
i=1

dis2(mi, FMean(N(mi))) (5.3)

where M is the total number of atoms in the m-rep.

Illegality Penalty

The illegality penalty term Fleg for an m-rep measures the likelihood of an m-rep to have

a local shape defect. The calculation of this penalty term depends on the calculation of

rSrad and rSE matrices, for internal atom spokes and edge atom spokes, respectively.

The legality conditions based on these two matrices, detailed in section 2.3, are converted

into explicit penalty functions. The calculations of these two matrices are summarized

first, followed by the definition of a penalty function and the definition of the illegality

penalty term.

According to equations (2.13) and (2.19) in section 2.3, the rSrad and rSE matrices

are calculated from the derivatives of the medial sheet p and spokes S. Briefly, the

derivatives of the medial sheet p and the regular spokes S+1,−1 are calculated by the
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Figure 5.2: Left: gradual formation of a self-intersection on a surface portion, ren-
dered by the maximal λri of corresponding spokes to surface points. Blue or red means
legal(λri ≤ 0) or illegal(λri ≥ 1), respectively, and any intermediate color shows the
tendency for corresponding surface points to become illegal; Right: a sample illegality
function fleg as a cubic Hermite curve.

finite differences between adjacent internal atom, and an rSrad matrix is estimated from

these derivatives for each internal spoke by (2.13); then the derivatives of the medial

sheet p and the bisector spokes S0 along the edge curve of the medial sheet are calculated

by the finite differences between adjacent end atoms, and an rSE matrix is estimated

for each end bisector spoke by (2.19).

An eigen-decomposition is applied to each estimated rSrad to calculate both its

eigenvalues λri, i = 1, 2 for each regular spoke S+1 or S−1. λE of each estimated rSE is

calculated for each end spoke S0 as well. Figure 5.2-Left shows a visualization of λri on

a portion of an m-rep implied boundary by internal m-rep atoms. λri and λE both serve

as distinct indicators of local shape illegalities. The following defines a penalty function

on λri’s and λE’s.

Assume that the two eigenvalues {λri, i = 1, 2} of an estimated rSrad matrix are

always ordered as λr1 > λr2. The local shape legality holds iff λr1 < 1 and λE < 1,

detailed in section 2.3. Theoretically, this legality condition is binary because the signs

of λr1 − 1 and λE − 1 determine the legality of the implied boundary, as well as the

object interior. However, smaller λr1 or λE desirably leads to a smoother surface in

practice. In order to incorporate the legality condition into the illegality penalty term
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Fleg, a smooth function fleg(λr1 or λE) is defined, which has the following properties:

1. Monotonically increasing;

2. Increasingly penalizing when λr1 or λE approaches and passes 1.

fleg is set to be smooth at λr1, λE ∈ [1,∞) in order to simplify the gradient-based

optimization on the overall objective function Fobj(M|I). Cubic Hermite curves are

used to form the penalty function fleg, providing the luxury of freely picking the desired

function slopes at certain control points of the argument of fleg, which in our case are

0 and 1. A cubic Hermite curve is C1 continuous everywhere, and it can be set to have

both the properties above. A sample fleg is shown in figure 5.2-Right. The penalties of

λr1’s of all internal spokes and λE’s of all edge spokes in an m-rep M are summed up

as one explicit illegality penalty term Fleg in the objective function Fobj(M|I):

Fleg(M) =
∑

S+1∈M

fleg(λr1(S+1)) +
∑

S−1∈M

fleg(λr1(S−1)) +
∑

S0∈M

fleg(λE(S0)) (5.4)

5.1.3 Objective Function

The overall objective function for our binary fitting step using the illegality penalty is

defined as follows:

Fobj(M|I) = αFimg(M, I) + βFilm(M, I) + γFreg(M) + δFleg(M) (5.5)

where α, β, γ, δ are parameters empirically determined to control the relative weights of

all the four terms.
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5.1.4 A Proper Statistical Training Process Based on the Proper

Fitting

The proper fitting step in our training process requires an initial normalization, a gross

alignment, and a fitting via the optimization (minimization) on the objective function

defined in equation (5.5).

In the initial normalization, each binary image I is uniformly scaled into a unit

cube, so the four terms in the objective function are unitless and commensurate to one

another. The binary fitting then continues with the gross alignment, typically via a

similarity transformation implied by the moments of a template m-rep model and the

moments of the binary image. The gross alignment is followed by the optimization

(minimization) on the objective function over m-rep parameters. In other words, a

template m-rep model is aligned and then fitted into each normalized target binary

image in the proper fitting step, which is the first step in our statistical training process.

Our statistical training process include two main steps. In the first step, a set of

m-rep models are extracted from a set of binary training images by the proper fitting.

In the second step, shape and appearance statistics are calculated from the fitted m-

reps. The shape statistics are calculated by applying PGA [Fletcher et al. (2003)]

to the fitted m-rep models. The fitted m-rep models are also mapped back to their

corresponding gray scale images, which are divided into regions using model relative

coordinates provided by the m-rep models. Intensity histograms of these divided image

regions are collected and converted into regional intensity quantile functions (RIQFs)

[Broadhurst et al. (2005); Stough et al. (2007)]. The appearance statistics are calculated

from these RIQFs. The calculated PGA shape statistics and RIQF appearance statistics

form the learned statistics that are used in applications, such as image segmentation and

shape discrimination.

This dissertation focuses on the task of image segmentation. Section 5.2 shows train-

ing and image segmentation results based on the proposed proper fitting step applied
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to both synthetic and real world images. The synthetic binary images are generated

by warping a standard ellipsoid, and the real world images are male pelvic CT images

containing target objects of prostates and bladders.

5.2 Results

5.2.1 Synthetic Images

A diffeomorphic deformation to the ambient space R3 of a standard ellipsoid was used

to generate synthetic binary images of warped ellipsoids. The proposed proper fitting

method was then used to fit a template m-rep model into these binary images, and the

quality of the fitted models was measured.

A detailed description of the generation of warped ellipsoids can be found in section

6.1.1. Briefly, three deformations, each controlled by an independent and normally

distributed variable, are applied to the ambient space of a standard ellipsoid. Figure

5.3-Left shows the three types of deformation: bending, twisting, and tapering. The

standard ellipsoid is used to generate an initial binary volumetric image. The initial

binary image is then warped by a sample set of the three deformations to a new sample

binary image. The standard ellipsoid is therefore transformed into a warped ellipsoid

in the new sample binary image. By this means, a set of 150 sample binary images

containing warped ellipsoids was generated. The ground truth boundary of each warped

ellipsoid was analytically calculated for each sample binary image.

In each sample binary image, image landmarks were also automatically identified,

corresponding to the four extreme points in the middle section of a warped ellipsoid

boundary, plus two vertices as the two warped tips of the warped ellipsoid. A template

m-rep model was generated by sampling the medial axis of the standard ellipsoid. This

template m-rep was then fitted into all the sample binary images using the proposed

binary fitting method with the geometric illegality penalty. The quality of the fit was
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Figure 5.3: Left: warped ellipsoids by three deformations of bending, twisting and
tapering. Each deformation is shown as -2λ, 0, +2λ away from the mean, where λ is the
standard deviation; Right: fitting results of 150 sample images shown as the average
surface distances (in number of voxels) from model boundaries to binary boundaries.

measured by the average surface distance between the fitted m-rep boundary and the

ground truth binary boundary.

Since the synthetic binary images are generated independently from our medial rep-

resentation, this study of the fitting quality serves as a valid consistency test of the

proposed proper fitting. The results in figure 5.3-Right show that the m-rep implied

boundaries are, on average, less than one image voxel from the binary boundaries as

the ground truth. This measurement should be compared to the three principal radii,

(a, b, c), of the original ellipsoid, approximately (50, 30, 23) voxels in a binary image,

indicating that the fitted m-rep boundaries are close to the the ground truth bound-

aries. Furthermore, in some test cases, the proper binary fitting shows more robustness

by providing good fitted shape models, which we failed to generate without using the

illegality penalty term.

5.2.2 Real World Shape Models

CT images (1 × 1 × 3mm) Ii, i ∈ [1, 80] of prostates and bladders from five patients

(80 images in total from different days) were used as the real world test data [Han

et al. (2007)]. Each patient has from 13 to 18 images from multiple days. All 80

images were segmented by a human expert to generate a set of segmented binary images
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{Ibi}, i ∈ [1, 80]. Both the proposed proper fitting and a binary fitting without using the

illegality penalty term were used to generate fitted m-reps {Mwith Fleg

i } and {Mwo Fleg

i }

from the segmented binary images {Ibi}.

Both of the sets of fitted m-reps {Mwith Fleg

i } and {Mwo Fleg

i } were used to learn leave-

one-day-out PGA shape statistics and RIQF appearance statistics for each patient: each

day was successively left out to learn on all remaining days for one patient, and the CT

image of the left-out day of that patient was segmented using the learned shape and

appearance statistics of all other days. The results based on the fittings with and without

using the illegality penalty were compared with each other. The comparison results are

shown in the next paragraphs.

The first comparison is conducted on the quality of fitted m-rep models {Mwith Fleg

i }

and {Mwo Fleg

i }. The results show that the models {Mwith Fleg

i } using the illegality

penalty not only have smoother surfaces (in figure 5.4) but also fit better (figure 5.5

- curves represented by triangle signs) into the binary images than the fitted models

{Mwo Fleg

i } without using the illegality penalty. The robustness of the proper fitting

provides good fitted models even from the binary images that we failed to fit without

using the illegality penalty.

The second comparison is conducted on the quality of the leave-one-day-out segmen-

tations. Sorted statistics over all 80 image segmentations are given in figure 5.5 - curves

represented by circle signs. The segmentations based on learned statistics from fitted

models using the illegality penalty {Mwith Fleg

i } are better than the segmentations based

on learned statistics from fitted models without using the illegality penalty {Mwo Fleg

i }.

For the majority of cases, the segmentation results of both bladders and prostates based

on the proper fitting were judged qualitatively good by experts.

The average agreement between the leave-one-day-out segmentations, based on the

proper training, and their corresponding segmentations by the human expert is 93%

volume overlap and 1.6mm average closest point surface separation. A second human
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Figure 5.4: Sample fitted models from fittings without and with using the illegality
penalty are shown. Green objects are for prostates, and cyan objects are for bladders.
The left column for each object shows the fitted models without using the illegality
penalty, and the right column shows the fitted models using the legality penalty. It
shows that the fitted models using the illegality penalty are smoother and free of local
shape defects.

expert also segmented 16 images of the total 80 images to get 16 prostate models, and

the average agreement between two humans’ segmentations of these 16 prostates is 81%

volume overlap and 1.9mm average closest point surface separation.

The results, as shown in figure 5.4 and 5.5, indicate that adding an illegality penalty

in our proper fitting step yields better fitted models and hence yields better statistics

on geometry and intensity patterns, which consequently generate considerably better

segmentation results. The segmentation results are indeed so good that on bladder and

prostate segmentations from CT images, the segmentations by the computer based on

the proper fitting were closer to the manual segmentations by the expert trainer, who

created the training binary images, than another expert’s manual segmentations were to

the trainer’s. The results show that the proposed proper fitting not only is mathemati-

cally sound but also improves segmentation results in practice. Training shape models

with their illegalities penalized have proven to be crucial to acquiring proper statistics,

summarizing the shape variation of anatomical objects in a population.
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Figure 5.5: Sorted measurements (volume overlap measured by Dice similarity coeffi-
cients [Dice (1945)] in the top row and average surface distance in mm in the bottom
row) for prostates (in the left column) and bladders (in the right column), comparing
fitted m-reps from binary images segmented by a human expert (represented by trian-
gle) and segmented m-reps from a leave-one-day-out experiment (represented by circle)
using the fitting without the illegality penalty (curves in yellow) and the fitting with
the illegality penalty (curves in blue). The measurements demonstrated in each curve
are sorted independently for that curve over all 80 test cases. The average surface dis-
tance is measured for each test m-rep as the arithmetic average of the shortest distances
between the m-rep implied boundary points to the target boundary mesh.
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5.3 Discussion

The proposed proper fitting on single figure m-reps can be extended to fit multi-figure

m-reps, representing anatomical objects with multiple parts, such as livers and hearts.

This extension is further discussed in section 6.2.

In the current implementation of the proper fitting, the adapted Catmull-Clark sub-

division is used to generate an m-rep implied boundary, and the illegality penalty term

is applied to original atom spokes in the m-rep. The atom interpolation method, de-

scribed in chapter 3, generates not only an m-rep implied boundary but also a smooth

spoke field, and it can be used in the proper fitting to further improve shape legality of

fitted m-rep models and learned statistics based on these models, which is discussed in

section 7.2.2.
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Chapter 6

Evaluation of Atom Interpolation and

Multi-figure M-rep Fitting

Chapters 3-5 described the main contributions of this dissertation: atom and spoke

interpolation used in the interpolation of a single figure or multi-figure m-rep, formation

of multi-figure m-reps with blend regions to represent complex objects, and proper fitting

using an illegality penalty in the objective function. This chapter further evaluates atom

interpolation used in the interpolation of single figure m-reps and evaluates formation

of multi-figure m-reps.

The evaluation of atom interpolation in this chapter focuses on the quality of the

m-rep boundary implied by interpolated atoms. As described in chapter 3, atom inter-

polation was used to generate interpolated spokes from an m-rep and hence to generate

an m-rep implied boundary. Section 3.3 qualitatively demonstrated the result of the

atom interpolation method. In the evaluation here, each m-rep implied boundary gen-

erated by the atom interpolation method was compared with the boundary generated

by the subdivision based method, reviewed in section 3.1. The quantitative comparison

result is shown in section 6.1.2.

The evaluation of the multi-figure m-rep is carried out by using a multi-figure m-rep

in a binary fitting. The binary fitting of a multi-figure m-rep was implemented via a

multi-resolution and multi-step method, based on the binary fitting of a single figure



m-rep, detailed in section 5.1. The quality of fitted multi-figure m-reps was measured,

and the result is shown in section 6.2.

6.1 Evaluation of Atom Interpolation

Atom interpolation was evaluated on samples of single figure m-reps from object popu-

lations. It is desirable for a test sample of m-reps to have the following properties:

1. The test sample well represents an object population, i.e., the sample captures the

shape variation in the population;

2. The test sample has a desirable size, reflecting the dimensionality of the original

shape models. Empirically the number of objects in a test sample should be

proportional to the dimension of the shape model representing the population of

objects;

3. The test sample is feasible to generate, with a small set of control parameters.

In section 6.1.1, two test samples that have the two properties are described: the

first test sample consists of synthetic m-reps, and the second test sample consists of m-

reps sampled from a learned shape space of real world objects. In section 6.1.2, implied

boundary surfaces of the sample m-reps generated by atom interpolation are compared

with implied boundary surfaces generated by the subdivision method.

6.1.1 Generation of Test Samples

Two test samples of m-reps were generated for the evaluation. The first test sample

was generated by warping a standard ellipsoid with three simple transformations, each

controlled by one independent and normally distributed parameter. The second test

sample was generated by sampling a pre-learned shape space of anatomical objects,
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kidneys in this case. The pre-learned shape space is given by learned PGA statistics

from a set of training kidney m-reps.

Warped Ellipsoids with Ground Truth Boundaries

In the method I developed, warped ellipsoids are generated from a standard ellipsoid

E0 given as x2

a2 + y2

b2
+ z2

c2
≤ 1, where a = 0.75, b = 0.5, and c = 0.375. A diffeomorphic

transformation is applied to the ambient space of the standard ellipsoid volume, so the

standard ellipsoid is warped to form a warped ellipsoid.

Each such diffeomorphic transformation consists of three sub-transformations: bend-

ing, twisting, and tapering, each controlled by an independent random variable α, β, and

γ, respectively. Each of these three random variables belongs to a zero-mean normal dis-

tribution. The standard deviations of the three normal distributions are pre-determined

to guarantee that the first three major modes of shape variations of the warped ellip-

soids are distinctly represented by variances in a decreasing order: 1.5 for bending, π
3

for twisting, and 3
2

√
2 for tapering. The application order of these three transforma-

tions is twisting first, tapering second, and bending last. The overall diffeomorphic

transformation F is defined as follows:

x′ = x (6.1)

y′ = (y cos(βx)− z sin(βx))eγx (6.2)

z′ = (y sin(βx) + z cos(βx))eγx + αx2 (6.3)

Because the Jacobian determinant of F is e2γx, which is always positive, F is indeed

a diffeomorphic transformation. The following outlines the overall method to generate

a sample of warped ellipsoids:

1. α, β, γ are randomly sampled from their corresponding normal distributions;
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2. Each set of sampled (αi, βi, γi), i ∈ [1, N ] is plugged into Fi, where N is the total

number of samples;

3. Fi is applied to a binary characteristic image I0 containing the volume of the

standard ellipsoid E0 in order to generate a warped binary image Ii containing a

warped ellipsoid Ei;

4. The marching cubes method [Lorensen and Cline (1987)] is applied to each warped

binary image Ii to reconstruct a ground truth voxel boundary Bi of the warped

ellipsoid Ei, with sub-voxel accuracy.

An m-rep Mi was extracted from each binary image Ii, implemented by proper binary

fitting, detailed in chapter 5, section 5.1. Each fitting requires the following steps:

1. The medial axis, x2

a2

a2−c2

+ y2

b2

b2−c2

≤ 1, of the standard ellipsoid x2

a2 + y2

b2
+ z2

c2
= 1 is

sampled to generate an m-rep M0 for the standard ellipsoid;

2. Fi is applied to M0, atom by atom, to generate a new m-rep Mi,0, which is a close

approximation to the underlying m-rep of the warped ellipsoid Ei in Ii;

3. Mi,0 is fitted into the binary image of Ii of Ei via the binary fitting step to generate

the optimal m-rep Mi for Ei.

The fitted m-reps Mi, i ∈ [1, N ] formed the first test sample for the evaluation. The

generation of a second test sample is described next before the evaluation results are

shown.

Sampled Kidneys

M-reps were sampled from a pre-learned shape space of kidney m-reps. This shape space

is given by a mean m-rep M and first five principal geodesic modes vk, k ∈ [1, 5]. These

five principal geodesic modes represent over 98% of the total shape variation in the
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original training sample of kidneys from a population. Monte Carlo sampling technique

[Metropolis and Ulam (1949)] was used to sample the pre-learned shape space:

1. A set of weights wi = (wi,k), k ∈ [1, 5], i ∈ [1, N ] is sampled, with each wi,k sampled

from a normal distribution N (0, 1), where N is the total number of sample kidney

m-reps;

2. M and
∑5

k=1 wi,kvk are used to reconstruct a sample kidney m-rep Mi, i ∈ [1, N ]

via the exponential map defined on the manifold of m-reps, reviewed in section

2.4.1.

The kidney m-reps Mi formed the second test sample for the evaluation. Both of the

test samples allow an arbitrary number of sample objects to be generated. Controlled

by a small set of parameters, the generation of both of the test samples is computation-

ally feasible. These sample m-reps capture the types of shape variation in real world

anatomical objects. They uphold the desirable properties of a test sample. Evaluation

results based on both the test samples are shown next.

6.1.2 Evaluation Results of Atom Interpolation

150 warped ellipsoid m-reps and 150 sample kidney m-reps were generated as two test

samples for the evaluation.

For the sample of warped ellipsoids, the implied m-rep boundary surfaces implied

both by the atom interpolation and by the subdivision based method were compared

with the ground truth voxel boundary surfaces re-constructed from the warped binary

images. The results are shown in figure 6.1.

For the sample of kidney m-reps, the implied boundary surfaces by atom inter-

polation were compared with the implied boundary surfaces by the subdivision based

method. The results are shown in figure 6.2.
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Figure 6.1: Left: comparison results of warped ellipsoids shown in terms of average
surface distance between two surface meshes. The distance is shown in number of voxels;
Right: comparison results of warped ellipsoids shown in terms of the Dice coefficient,
i.e., the volume overlap between two surface meshes. The measurements demonstrated
in each curve are sorted independently for that curve over all 150 test cases. The average
surface distance is measured for each test m-rep as the arithmetic average of the shortest
distances between the m-rep implied boundary points to the target boundary mesh.

Figure 6.2: Left: comparison results of sampled kidney m-reps shown in terms of average
surface distance between two surface meshes. The distance is shown in number of
voxels; Right: comparison results of sampled kidney m-reps shown in terms of the Dice
coefficient, i.e., the volume overlap between two surface meshes. The measurements
demonstrated in each curve are sorted independently for that curve over all 150 test
cases. The average surface distance is measured for each test m-rep as the arithmetic
average of the shortest distances between the m-rep implied boundary points to the
target boundary mesh.
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The left parts of figures 6.1 and 6.2 show the comparison results in terms of average

surface distances between pairs of compared surface meshes, which are within sub-voxel

accuracy for both the warped ellipsoid m-reps and kidney m-reps. The right parts of

the two figures show the comparison results in terms of the volume overlap measured by

the Dice coefficient [Dice (1945); Zijdenbos et al. (1994)] between object volumes within

surface meshes, which are over 94% for both the warped ellipsoid m-reps and the kidney

m-reps.

Given the adequate sample size of both the test samples, the comparison results show

both good validity and reliability of atom interpolation: atom interpolation works as

well as the subdivision method in generating implied boundary surfaces of single figure

m-reps. As an advantage, atom interpolation also provides the underlying spokes of

each interpolated m-rep.

6.2 Evaluation of the Multi-figure M-rep

The multi-figure m-rep was used in binary fitting to extract multi-figure m-reps from

a set of binary images of livers, and the quality of the fitted multi-figure m-reps was

evaluated. A two-figure m-rep is used to demonstrate the binary fitting.

In order to fit a two-figure m-rep into a set of binary images of livers, an objec-

tive function was optimized by a series of large-scale-to-small-scale optimizations over

transformations applied to a two-figure m-rep template. The fitting at a respective scale

corresponds to a fitting stage in the multi-scale and multi-stage process. The objective

function is based on the objective function 5.5 used in the binary fitting of single figure

m-reps, described in chapter 5. The overall objective function of fitting a two-figure

m-rep was evaluated on both its figures, shown as follows:

Fmulti
obj (M|I) = αFimg(M, I) + γFreg(M) + δFref (M,M0) (6.4)
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where Fimg was the image match term defined in equation 5.1, measured on the overall

boundary surface of M with blending, where Freg was the regularity penalty term defined

in equation 5.3, measured on the host figure Mhost and subfigure Msub of M, where Fref

is a reference penalty term to be described next, and where α, γ, δ > 0 are empirically

determined parameters such that α + γ + δ = 1.

Fref , the reference penalty term, penalizes any big shape change of M from a refer-

ence m-rep M0. Fref is defined as the geodesic distance between the current M and a

reference m-rep M0, with which the binary fitting starts:

Fref (M) = dis(M,M0)

where dis is the geodesic distance between M and M0, defined by equation 2.23 in

section 2.4.

The illegality penalty term was not included in the objective function. Adding it to

the fitting of the multi-figure m-rep will improve the fitting results. In this evaluation,

the Catmull-Clark subdivision based method was used to generate the implied boundary

meshes including blend regions of liver m-reps. The transformation associated with

each fitting stage and the overall binary fitting are described in subsection 6.2.1. The

evaluation result is shown in subsection 6.2.2.

6.2.1 Multi-scale Fitting Process

The binary fitting of a two-figure m-rep is realized by optimizing the objective func-

tion defined in equation 6.4 for the m-rep. This objective function is optimized over a

sequence of transformations, successively finer in scales, applied to a two-figure m-rep

template M0. M0 has n atoms in total: n1 atoms in its host figure Mhost and n2 atoms

in its subfigure Msub, where n = n1 + n2. Recall that G(n) stands for the composed

transformations applied smoothly to n m-rep atoms, reviewed in section 2.4.3. In the
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following description of transformations to be applied to a two-figure m-rep, SO(3) is

the special orthogonal group of all 3D rotations as a subgroup of G(1) for one m-rep

atom.

• Initial alignment: T1 ∈ R3 × R+ × SO(3) applied to align the template M0 to

a target binary image I;

• object stage: Tobj ∈ R3 × R+ × SO(3) applied to the entire m-rep object as a

whole;

• host figure: the host figure Mhost is the target of this stage, and the subfigure is

deformed by a deformation propagation from the hinge atoms to the rest of the

subfigure, described in section 4.2.1;

– figure stage: Thost fig ∈ R3 × R+ × SO(3) applied to the host figure;

– atom stage: Thost atom ∈ G(n1) applied to host figure atoms A1
1,2,...,n1

one by

one;

• subfigure stage: the subfigure Msub is the target of this stage;

– figure stage: Tsub fig ∈ R3 × R+ × SO(3) applied to the subfigure;

– atom stage: Tsub atom ∈ G(n2) applied to subfigure atoms A2
1,2,...,n2

one by

one.

The detailed fitting algorithm is shown as follows:

input:

a two-figure m-rep template M0 with a host figure Mhost and a subfigure Msub;

a binary target image I.

output:

a two-figure m-rep M extracted from I.
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framework:

for each binary target image I {

1. Find an optimal T1 to initially align M0 to I, M1 = T1 ◦M0;

2. T2 = arg minTobj
Fmulti
obj (Tobj ◦M1|I),M2 = T2 ◦M1;

3. T3 = arg minThost fig
Fmulti
obj (Thost fig ◦M2,host ⊂M2|I), M3 = T3 ◦M2;

4. T4 = arg minThost atom
Fmulti
obj (Thost atom ◦M3,host ⊂M3|I), M4 = T4 ◦M3;

5. Propagate the changes in hinge atoms to the rest of the subfigure, let the

new m-rep be M′
4;

6. T5 = arg minTsub fig
Fmulti
obj (Tsub fig ◦M′

4,sub ⊂M′
4|I), M5 = T5 ◦M′

4

7. T6 = arg minTsub atom
Fmulti
obj (Tsub atom ◦M5,sub ⊂M5|I), M = T6 ◦M5;

}

The overall binary fitting of a two-figure m-rep consists of fitting stages at increas-

ingly finer scales. The iteration of all fitting stages is repeated to improve the quality

of fitting. Starting from the second iteration, the resulting m-rep from the previous

iteration is used as the template m-rep in the current iteration. This framework can be

extended to a multi-figure m-rep of more than two figures. However, this evaluation and

its result focused on m-reps of two-figures.

6.2.2 Test Sample Generation and Evaluation Result

The diagram in figure 6.3 lays out the evaluation process based on a test sample of

liver m-reps (figure 6.4-left), which are generated using Monte Carlo sampling method,

described in section 6.1.1. A learned PGA shape space of livers was sampled to generate

50 liver m-reps of two figures in the test sample. Each liver m-rep was used to generate

a binary image and a ground truth boundary surface. The mean m-rep in the PGA
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Figure 6.3: Diagram flow to lay out the evaluate process given learned shape space
statistics p(M) from a population of livers

Figure 6.4: Left: 4 of the 50 sample m-reps used in the evaluation. Middle: evaluation
result of the binary fitting shown as a histogram of geodesic distances between the fitted
m-reps Mi and the ground truth m-reps. Right: in the first ten iterations of repeated
binary fittings, the quality of fitted m-reps improves while the average distances between
the m-rep implied surfaces and the ground truth surfaces decrease. The distances are
shown in number of image voxels.

statistics, used as the template m-rep, was fitted into each of the 50 binary images.

Each fitted m-rep was then compared with its corresponding ground truth surface.

The evaluation result is shown in figure 6.4. Figure 6.4-middle shows a histogram

of the geodesic distances, i.e., mismatches, between the fitted m-reps and their corre-

sponding ground truth liver m-reps, from which the target binary images are generated.

The average geodesic distance across all the livers is 0.054, which is equivalent to the

width of one image voxel in each binary image. Figure 6.4-right shows the trend of the

average surface distances between m-rep implied surfaces and the ground truth surfaces

in ten iterations of binary fittings. The average surface distance is 0.674 image voxels
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over all 50 test cases after ten iterations of binary fitting. The panels in figure 6.4 show

that repeated binary fittings improve the fitting quality and that the fitted two-figure

m-reps are close approximations to the ground truth.

This binary fitting can be extended to extract objects of more than two parts from

binary images. Fittings of this form can produce m-reps for most anatomic objects,

even complex ones.
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Chapter 7

Summary and Discussion

A general goal of shape representations in a deformable model framework is to form

shape models and probability distributions on these models in a population for use in

applications, such as image segmentation and statistical shape characterization. The

discrete m-rep, as a medial shape representation used in the deformable model frame-

work, is no exception. This dissertation focuses on enhancing the m-rep to better achieve

this goal.

This chapter revisits and discusses the main contributions of this dissertation and

their relations to the goal of forming models and model probability distributions in

section 7.1. Section 7.2 discusses open problems encountered in the previous chapters 3

and 4, and it discusses potential future research based on the proposed methods in this

dissertation.

7.1 Summary of Contributions

The contributions of this dissertation are reviewed as follows, followed by a summary of

my thesis claims.

1. A method to interpolate a discrete medial model into a continuously parameterized

one for both simple objects with one single part and complex objects with multiple

parts;



The advantage of a medial model over a boundary-based model is that the medial

model represents not only the boundary but also the interior of an object. Inter-

polation of a discrete medial model, if conducted properly, can provide a proper

object boundary and a valid parameterization of the object interior volume and

its adjacent exterior volume. Such a parameterization is crucial to forming proper

appearance probability distributions relative to the shape models. The challenge

of interpolating a medial shape model in a discrete form is that all the dimensions

of each medial component are strongly related and must fulfill certain legality

conditions.

The proposed method to interpolate a single figure m-rep overcomes this chal-

lenge by atom interpolation, described in chapter 3, section 3.2. The proposed

atom interpolation explicitly uses the rSrad and rSE matrices. These matrices, as

extensions to the radial shape operator Srad and the edge shape operator SE as

reviewed in section 2.3, record the rate of changes of both the medial sheet and the

medial spokes in an m-rep. Based on the rSrad and rSE matrices, the proposed

atom interpolation reflects the relations among all dimensions in an m-rep atom.

By making use of the powerful mathematics in terms of legality conditions based

on the same rSrad and rSE matrices, atom interpolation enforces the local legality

of an interpolated m-rep. The result in section 3.3 and the evaluation in section

6.1.2 showed that atom interpolation applied well to both synthetic and real-world

objects in order to form proper continuous shape models for these objects.

Based on atom interpolation on a single figure m-rep, spoke interpolation is used

to generate a blend region between each pair of connected figures in a multi-figure

m-rep, detailed in section 4.2.3. Briefly, atom interpolation is first applied to a

host figure and its connected subfigure, and then a one-sided spoke interpolation is

used to generate the underlying medial structure for a blend region as a transition

between the two connected figures. An interpolated multi-figure m-rep is a skeletal
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structure: the two-sided medial sheet of the subfigure splits into a one-sided collar-

shaped medial sheet, and this collar-shaped medial sheet for the blend merges into

the medial sheet of the host figure. As described in section 4.2.3, this skeletal

structure is a relaxation from a branching Blum medial axis for better stability.

The legality of the interpolated blend region is also maintained.

The proposed interpolation method on a discrete single figure or multi-figure m-

rep provides a continuous volumetric shape representation and still allows localized

shape controls via discrete m-rep atoms. Local shape changes, such as bending,

twisting, and tapering, are well captured. Furthermore, the enforced legality of

interpolated m-reps is important to forming proper probability distributions on

the appearance of anatomical objects in a population.

2. A description of geometric interrelations among adjacent parts in an object of

multiple parts

Many anatomical objects have more than one named part. The challenge of form-

ing shape models and shape probability distributions for these complex objects

lies in the fact that modeling each individual part alone is not sufficient. A com-

plex object is more than just the sum of all its parts. The inter-relations among

parts should be modeled explicitly to capture both the global and local shape

variations in these complex objects. Such relations include the host- and sub- part

connection, the global deformation to all connected object parts, and the implied

deformation from one part to its connected part(s).

The multi-figure m-rep described in chapter 4 overcomes this challenge by repre-

senting each object part with a single figure m-rep and by connecting the parts,

pair by pair, via hinge geometry, as detailed in section 4.2.1. Hinge geometry

explicitly models the interrelation in a host figure and subfigure pair. Based on

hinge geometry, global and local deformations are defined for a multi-figure m-rep
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in section 4.2.2 and 4.2.2, respectively. Hinge geometry and the series of defor-

mations defined in a multi-figure m-rep allow us to look at a complex object at

multiple levels of scale, from a global scale for the entire object, to an intermedi-

ate scale for the interrelation between each connected pair, and to a local scale for

each individual object part. Combined with figure and atom scales in each m-rep

figure, a multi-figure m-rep provides a multi-scale way to form shape models and

probability distributions on shape models for complex objects.

3. A means to calculate the hierarchical statistics of an object with multiple parts,

from the global level for the entire object to the local level for each individual figure

The hierarchy in a multi-figure m-rep follows the natural hierarchy in most anatom-

ical objects. This hierarchy provides the basis for the hierarchical statistical anal-

ysis on complex objects of multiple parts, detailed in section 4.3. Each multi-part

object is understood as a whole entity, as interrelations between each pair of con-

nected m-rep figures, and as individual figures, at decreasing levels of scale. The

formed multi-scale statistics in terms of probability distributions on shape mod-

els, as shown in section 4.4, capture the shape variations in complex objects at

different scales.

The multi-figure m-rep also has the advantage that a subtractive object part,

represented by an indentation subfigure, connects to its host figure in the same

way as an additive part, represented by a protrusion subfigure. This advantage

enables a uniform statistical analysis on multi-figure objects containing indentation

or protrusion subfigures, making it feasible to form probability distributions by one

work flow on the shapes and appearances of these objects from a population.

4. An explicit use of an illegality penalty in binary fitting to improve the smoothness

of fitted shapes, thereby leading to properly trained shape and appearance statistics

and eventually better segmentation results
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The rSrad and rSE matrices used in atom interpolation are also used in an ex-

plicit illegality penalty term of the objective function for binary fitting, detailed in

chapter 5, section 5.1. The illegality penalty term is based on the radial and edge

legality conditions, reviewed in section 2.3, and hence this penalty term enforces

the legalities of fitted shapes in a binary fitting step, in which there is no shape

prior available to guide the fitting. This binary fitting using the illegality penalty

is an important component in a proper training process, providing proper shapes

for learning shape and appearance statistics.

The results, as shown in section 5.2, indicate that adding an illegality penalty

yields better fitted models and hence better statistics on geometry and intensity

patterns, which consequently generate considerably better segmentation results.

The segmentation results are indeed so good that the segmentations by the com-

puter based on the proper training are closer to the manual segmentations by an

expert trainer than another expert’s manual segmentations were to the trainer’s.

The results show that the proposed proper fitting is both mathematically sound

and practically useful. Training shape models with their illegalities penalized have

proven to be crucial to forming proper shape models and to forming proper statis-

tics, summarizing the shape and appearance variations of anatomical objects in a

population, for use in image segmentation.

5. A way to generate standard test cases with known truth via synthesizing warped

ellipsoids or via sampling learned shape space

In order to evaluate atom interpolation and formation of multi-figure m-reps,

a means to synthesize warped ellipsoids and to generate objects by sampling a

learned shape space was designed. The method is detailed in chapter 6, section

6.1.1. The proposed method allows an arbitrary number of sample objects to be

generated. Controlled by only a small set of parameters, the generation of a test

125



sample is computationally efficient. Furthermore, the generated m-reps in a test

sample capture the types of shape variation in a real anatomical object population.

Here is a revisit of my thesis:

Thesis claim: An interpolation method, based on sound mathematics, and the hinge

geometry, defining the interrelations between connected object parts, provide a powerful

tool to derive a medial representation of both single part and multi-part objects from dis-

crete m-reps. When incorporated with explicit geometric constraints, based on the same

mathematics, the shape models based on discrete m-reps guarantee proper shape repre-

sentations of both single and multi-part objects. These shapes allow statistical modeling

of both shape and appearances in a population.

The main goal of my dissertation was to develop proper shape models and proper

probability distributions on the shape models for use in applications, such as image

segmentation, of simple anatomical objects of one part and complex anatomical objects

of more than one part in a population. The discrete m-rep is a powerful medial shape

representation, and it was chosen to be the underlying shape representation in this

dissertation. This dissertation focused on providing the means of representing complex

objects of multiple parts in a multi-scale way, the means of interpolating a discrete

single figure or multi-figure m-rep into a continuous legal spoke field on a medial sheet,

and the means of maintaining local shape legalities in fitted m-reps for training. These

contributions have proven to be crucial to achieving the goal of this dissertation.

The first thesis claim is supported by the mathematics behind the spoke and atom

interpolations applied to single figure and multi-figure m-reps and by hinge geometry

that defines interrelations between connected pairs of figures in a multi-figure m-rep.

Furthermore, the sound mathematics, in terms of the rSrad and rSE matrices and their

related legality conditions, provide an efficient way to enforce the legality of an interpo-

lated m-rep.
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The second and third thesis claims are supported by the importance of maintaining

the shape legality of fitted m-reps for training. As emphasized in chapter 1, shape defects

result in tainted probability distributions on shape models and their corresponding ap-

pearances and eventually impair results of applications, such as image segmentation and

statistical shape analysis, based on these probability distributions. The same rSrad and

rSE matrices used in atom and spoke interpolation are also used in an explicit geometric

illegality penalty on m-reps in binary fitting. This explicit legality penalty improves the

smoothness of fitted m-reps and consequently improves the learned shape and appear-

ance statistics. As a result, image segmentation results based on these learned statistics

are substantially improved.

This dissertation provides new means for the discrete m-rep, including represent-

ing complex objects of multiple parts, conducting hierarchical statistics on anatomical

objects of multiple parts, interpolating discrete m-reps into continuous forms, and en-

forcing legalities on interpolated m-reps and on fitted m-reps from binary fitting. These

new means allow us to represent not only simple anatomical objects but also complex

anatomical objects, by reflecting their parts and their inter-part relations, and to enforce

the proper quality of m-rep shape models to learn proper shape statistics and proper

appearance statistics relative to these shape models. These means are crucial to model-

ing anatomical objects in a population by forming proper shape models for these objects

and by forming proper probability distributions on these shape models for use in image

segmentation or shape characterization.

Compared with boundary-based representations in [Kass et al. (1988); McInerney

and Terzopoulos (1996); Caselles et al. (1997); Dryden and Mardia (1998); Cootes et al.

(1995, 2001)], the discrete m-rep and interpolated form have its distinct advantages

by providing not only a proper boundary surface mesh for an object but also a legal

underlying spoke field parameterizing the entire object interior volume and its adjacent

exterior volume. A valid parameterization of the object volume provides consistent
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access to object appearance relative to the object geometry in order to form proper

appearance probability distributions.

Compared with the proposed cm-rep methods in [Yushkevich et al. (2003, 2005);

Terriberry et al. (2007); Sun et al. (2008)], the discrete m-rep and interpolated form

have medial spokes as an explicit part in its shape representation. As a result, the first-

order medial atoms with the medial spokes in the discrete m-rep and interpolated form

allow intuitive shape controls over local shape changes, such as bending, twisting, and

tapering. Following the exact Blum condition, the cm-rep proposed in [Terriberry et al.

(2007)] is able to represent 3D branching medial structures, including the 6-junction

branch. The multi-figure m-rep does not support the 6-junction branch, but it provides

a robust relaxation from the Blum condition for medial branching structures. The open

problem of extending the multi-figure m-rep to support a 6-junction branch will be

discussed in the next section.

7.2 Discussion

7.2.1 Remaining Open Problems

A list of open problems and their potential solutions are briefly described as follows:

• Spoke and atom interpolation:

1. Speed of the internal atom interpolation: each interpolation is calculated by

a numerical integration;

An ideal speed-up lies in an analytical integration instead of the current nu-

merical implementation. In practice such an analytical integration is not

available. However, the current numerical implementation can be improved

by reducing the calculation for the integrand: in each step of the numeri-

cal integration, the integrand can be incrementally evaluated based on the
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integrand already evaluated in the previous step. By this means, a certain

amount of calculation can be saved in each integration step to speed up the

overall integration;

2. Continuity of interpolated spokes: currently C0 continuity is enforced be-

tween interpolated spokes across interpolated patches of internal atoms;

Recall that the original rSrad matrices at control atoms are numerically es-

timated via finite differences. A potential plan to improve this continuity

of interpolated spokes is to optimize these original rSrad matrices, on which

the spoke interpolation depends. An iterative process might be applied to

optimize these rSrad matrices for a higher order continuity, such as C1;

3. Medial umbilic points: a medial umbilic point in a medial axis having re-

peated principal radial curvatures is problematic for the eigen-decomposition

of an rSrad matrix and thus for the rSrad and spoke interpolation;

4. A numerical estimation of an initial rSrad matrix may lead to a matrix with

complex-valued eigenvalues and eigenvectors;

Problems 3 and 4 can be solved by a different rSrad interpolation method.

Recall that the proposed method interpolates rSrad matrices by interpolating

their real eigenvalues and real eigenvectors separately, in section 3.2.2. An

rSrad matrix at a medial umbilic point can be legal but cannot be successfully

decomposed into eigenvalues and eigenvectors; an rSrad matrix with complex

eigenvalues and eigenvectors are considered legal because in this case the

Jacobian of the medial flow along medial spokes is still non-singular [Damon

(2005)]. Therefore, the proposed method to interpolate real eigenvalues and

real eigenvectors cannot be applied to these two cases.

An alternative way to interpolate rSrad matrices can be used to solve these

two open problems: to directly interpolate the matrix entries one by one. As

long as the original rSrad matrices are legal, and the real weights used to in-
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terpolate these matrix entries are convex, the interpolated rSrad matrices will

stay legal. No eigen-decomposition is necessary in this new interpolation, and

the integration based on the interpolated rSrad matrices will not be affected

by any medial umbilic point. This new interpolation on rSrad matrices is also

computationally more efficient because no trigonometric functions need to be

evaluated;

• Multi-figure m-reps: the 6-junction branch;

Although a 6-junction branching medial axis is theoretically generic, it appears

to be rare in anatomical structures. It is not directly supported by the current

multi-figure m-rep, but a potential solution lies in an extension of hinge geometry

between a host figure and subfigure pair to a more complicated connection of

more than two figures. Alternatively, a small-scaled branching volume within a

6-junction branch might be well approximated by a multi-figure m-rep and its

boundary surface displacements. The boundary displacement method is detailed

in [Pizer et al. (2003)], and it can be easily adapted to a multi-figure m-rep given

the interpolated underlying spokes.

7.2.2 Potential Extensions

Atom Interpolation of Single and Multi-figure M-reps

Atom interpolation, described in chapter 3 and evaluated in chapter 6, has the potential

to generate the surface boundary with the following advantages:

1. It generates not only a boundary but also interior spokes, providing a parameter-

ization of the object interior;

2. It has more robust geometric legality constraints based on sound mathematics;
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The subdivision based interpolation is the standard method to generate m-rep im-

plied boundaries in the daily research of our MIDAG. Atom interpolation is currently

under further development as an alternative method to generate m-rep implied bound-

aries.

Extensions of Multi-figure M-reps

In this dissertation, a multi-figure m-rep makes the following assumptions:

1. A multi-figure m-rep hierarchy can have an arbitrary number of levels;

2. In each connection in a multi-figure m-rep hierarchy, there are only two figures

connected as the host and subfigure. If a host figure has two or more subfigures,

its subfigures have to be sufficiently apart to avoid inter-interferences;

3. The representation does not prohibit the case in which two connected figures share

more than one connection or in which more than two figures form a cyclic series

of connections;

4. All figures are regular ”slab” discrete m-reps.

In order to make such a multi-figure m-rep hierarchy more general, the following

extensions are necessary:

1. More complex connections should be allowed to handle the circumstance such as

two figures being very close to or even intersecting each other, e.g., two seminal

vesicles, as two subfigures, closely attached to a same prostate, as their host figure;

2. The quasi-tubular m-rep proposed in [Saboo et al. (2008)] should be allowed in

a multi-figure hierarchy, not only in a simple connection between a pair of m-rep

figures but also in a more complicated connection among more than two figures.
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The combination of these two extensions allows a representation of complex objects

with arbitrary branching structures, such as a lung vessel tree.

On the statistical side, the existing statistical analysis focuses on complexes of mul-

tiple single figure m-reps. Incorporating multi-figure m-reps into such a complex is a

natural extension to the current statistical analysis. Such an extension allows a sta-

tistical analysis on a combination of both single figure and multi-figure objects, which

typically exists in real human anatomy but has been a great challenge for boundary-

based shape representations. This extension can further improve the discrete m-rep to

form more comprehensive probability distributions on object complexes with multi-figure

objects while not requiring significant changes to the existing statistical framework of

the discrete m-rep.

Investigation into Spoke Correspondences

Correspondences among 3D shape features, such as landmarks or boundary points,

across different sample shapes from a population are important for forming proper prob-

ability distributions on shape models [Davies et al. (2001); Gerig et al. (2001); Styner

et al. (2003)]. By default, the discrete m-rep provides certain correspondences among

atom spokes across m-reps, which have been adapted in numerous statistical training

processes and have proven to be a reasonable choice. However, the natural questions to

be raised are whether the optimality of such spoke correspondences can be defined and

how to achieve such optimality of spoke correspondences.

I believe the answer is ”yes” to the first question. With the proposed atom inter-

polation in this dissertation the second question can be answered. Existing methods

on improving correspondences across sample shapes concentrated on PDM representa-

tions [Davies et al. (2001); Gerig et al. (2001); Styner et al. (2003)]. These proposed

methods require a surface mesh to be interpolated into a continuous form in order to

move the boundary points within the boundary surface without significantly changing
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the shape of the original object. Atom interpolation can be used to derive a continuous

spoke field on a medial sheet surface from a discrete m-rep, making an optimization

on spoke correspondences possible. Although the exact definition of the optimality of

spoke correspondences still requires substantial research, the investigation into spoke

correspondences via atom interpolation will be a challenging but rewarding topic.

Extension of the Multi-resolution Framework

The task to model geometric objects is better accomplished under the context of mod-

eling a population of objects instead of any individual object. Modeling a shape space

for a population is less sensitive to noise in individual shapes than modeling each indi-

vidual shape. The m-rep assumes that the objects to be modeled from a population are

represented at a fixed resolution, i.e., the size of the atom grid in a single figure m-rep,

or the number of subfigures in a multi-figure m-rep. Under such assumption, there are

two questions to be answered:

1. What is the optimal resolution for a single figure m-rep to model a specific popu-

lation of simple anatomical objects?

2. What is the optimal number of subfigures for a multi-figure m-rep to model a

specific population of complex anatomical objects?

In the single figure case, if one wants to capture the overall global deformation of

a human kidney, a 3 × 5 m-rep might be sufficient with the advantage of having a

lower dimensionality in the feature space; if one wants to achieve a segmentation of high

quality for a kidney CT image, a 5 × 7 version of the kidney m-rep might be required

instead.

In the multi-figure case, the optimal number of subfigures depends on the significance

of all existing branching structures shared by all the objects in a population.
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Under such circumstances, the grid size or the number of subfigures in an m-rep

can be considered as parameters of an objective function to be optimized. Such an

optimization on the m-rep grid size or on the number of subfigures requires the ability

to interpolate a discrete m-rep and the ability to represent complex objects with a

multi-figure m-rep. The proposed atom interpolation and multi-figure m-rep in this

dissertation make this optimization feasible for a discrete m-rep. A shape scale-space of

m-reps at varying resolutions can be a useful extension to the existing multi-resolution

m-rep framework.

M-reps with a Dynamic Topology

An m-rep with a fixed medial topology, i.e., a fixed hierarchy of connected figures, might

be sufficient if the shape variation of an object population can be well characterized by

the m-rep. However, the assumption of a fixed topology might be violated if there are

necessary changes in the medial topology, and such topology changes pose a significant

challenge to existing methods for shape representation and statistical analysis.

For example, lung vessel trees may have varying topologies from patient to patient

in a population; significant pathological changes in shapes of anatomical objects may

change the topology of underlying medial structures of the objects. The m-rep with

a fixed topology may not be adequate for these cases. As a result, an m-rep with a

dynamic topology will be inevitable, and novel statistical analysis will be necessary to

build a shape space reflecting these medial topology changes. Still, the multi-figure m-

rep framework provides a solid base as a reasonable starting point for potential research

in this direction.
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