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ABSTRACT 

MARK CHRISTOPHER JOHNSON: INTERLEUKIN-2 BASED THERAPY FOR THE TREATMENT 

OF TYPE I DIABETES 

(Under the direction of Dr. Roland M. Tisch)  

 

 Type I diabetes (T1D) is an autoimmune disease characterized by the destruction 

of the insulin producing β cells. Although multiple cell types contribute, the main 

mediators of β cell destruction are pathogenic Th1 effectors (Teff). Preferential 

differentiation and expansion of pathogenic Teff is partly attributed to dysregulation of 

FoxP3+ regulatory T cells (FoxP3+ Treg). Consequently, current strategies for treating T1D 

have focused on re-establishing the balance between Teff and FoxP3+ Treg. The aims of 

the studies described are to: i) analyze the temporal effect of IL-2 on FoxP3+ Treg and 

disease incidence, ii) to test whether β cell-specific IL-2 secretion prevents T1D by 

expanding islet resident FoxP3+ Treg, and iii) to investigate the synergistic ability of T cell 

immunotherapies to induce remission in non obese diabetic (NOD) mice.  

 Our first study demonstrates that NOD mice congenic for a C57BL/6-derived 

disease-resistant Il2 allele (NOD.idd3) have a reduced incidence of T1D compared to 

NOD mice. Diabetes protection in NOD.idd3 mice was attributed to elevated systemic IL-

2 levels over time that maintained more suppressive FoxP3+CD62L+ Treg in the islets and 

draining pancreatic lymph nodes (PLN).  Therefore, our findings underscore the 
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relationship between systemic IL-2 expression, FoxP3+ Treg function in vivo and disease 

incidence.  

 Our second study investigated the ability of islet-localized IL-2 to prevent 

diabetes in NOD mice. We found that vaccination with a recombinant adeno-associated 

viral vector (rAAV) expressing IL-2 under control of the mouse insulin promoter 

(AAV8mIP-IL2) prevented diabetes. Protection correlated with increased number and 

function of islet FoxP3+ Treg. Importantly, the effects of AAV8mIP-IL2 vaccination were 

islet specific. This shows that IL-2 expression driven by AAV8mIP-IL2 protected NOD 

mice, highlighting the potential of targeted immunotherapeutic treatment.  

 Our third study examined the ability of AAV8mIP-IL2 to work synergistically with 

other immunotherapies to induce remission.  Co-administration of AAV8mIP-IL2 to 

diabetic NOD mice receiving nondepleting antibodies specific for the T cell co-receptors, 

CD4 and CD8, induced long-term remission. Notably, IL-2 levels in long-term remission 

NOD mice were elevated and maintained throughout treatment. Collectively, this shows 

that islet-localized IL-2 driven by rAAV vectors provides a viable immunotherapeutic 

approach for treating human patients. 
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CHAPTER 1 

INTRODUCTION 

1.1 Diabetes Mellitus  

Diabetes mellitus is a collection of metabolic diseases characterized by the body’s 

inability to properly produce and/or respond to insulin, resulting in high systemic blood 

glucose levels (1). The short peptide insulin is made by a specific cell type in the 

pancreatic islets of Langerhans, known as β cells, in response to rising systemic glucose 

levels (2). After its release, insulin induces glucose uptake by myocytes and adipocytes, 

thus reducing circulating glucose levels. If left unchecked at high levels, glucose can 

result in a multitude of complications, thereby underscoring the importance of insulin. 

 Diabetes mellitus can be further subdivided into distinct forms of disease. In 

addition to gestational diabetes and other situation specific forms which make up only a 

minor portion of all diabetes patients, the two major forms of diabetes are known 

appropriately enough as type I and type II diabetes (www.diabetes.org). Type II diabetes 

(T2D), formerly known as non-insulin dependent diabetes, comprises 90-95% of the 

total diabetic population (www.diabetes.org). It is initially characterized by the body’s 

reduced capacity to respond to secreted insulin, which can be further complicated by 

inhibited synthesis of insulin from the pancreas over time, and is commonly associated 

with obesity as a triggering factor (1).  
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On the other hand, type I diabetes (T1D), formerly known as juvenile diabetes, 

afflicts 5-10% of the total diabetic population and is found more commonly in 

industrialized nations (www.diabetes.org). Unlike T2D in which insulin is still secreted, 

T1D is classified as an autoimmune disease characterized by the destruction of the 

insulin producing β cells, resulting in a deficiency in insulin (3).  As a result, patients are 

maintained on life-long insulin therapy, given as daily injections, in order to regulate 

blood glucose levels. Despite insulin therapy, type I diabetics are susceptible to several 

complications, including increased risk for heart disease, high blood pressure, blindness, 

kidney disease, nerve damage, limb amputation and significantly shortened life 

expectancy (4).  

 

1.2 Islet Transplantation for the Treatment of T1D 

Currently, islet transplantation is the only approach offering a potential cure for T1D. 

Unfortunately, islet transplantation is hindered by a number of obstacles. First, the 

availability of donor islets is limited. As few as 7,000 donors in the United States each 

year are available (National Diabetes Information Clearinghouse), with only half being 

suitable for actual transplantation. Consequently, multiple donors are required for a 

single diabetic recipient. In addition, islet transplantation recipients are maintained on 

immune suppressive drugs for the remainder of their life in order to prevent rejection 

by both allogeneic and autoreactive T cells. Drugs used include daclizumab, sirolimus 

and tacrolimus, which can result in fatigue, high cholesterol, anemia, and hypertension, 



3 
 

as well as increased susceptibility to opportunistic infection and cancer (5-7). In spite of 

the widespread immune suppression, recent studies have shown that only 10% of islet 

transplant recipients remain insulin independent at a 5 year follow-up, even though the 

majority of patients experienced a decreased need for insulin and/or greater glucose 

stability (8). Current research is investigating the potential of encapsulating transplanted 

islets, preventing exposure to, and destruction by, autoimmune and allogeneic 

mediated events, which may reduce the need for immunosuppressive drugs (9, 10). 

Although the clinical results have been promising, the long-term burden on recipients 

and lack of available material for transplantation has hindered the progress of islet 

transplantation as a viable option in the short term, necessitating the investigation of 

alternative approaches.  

 

1.3 Protective Immunity  

In simplistic terms, the immune system is responsible for the protection against foreign 

pathogens. Immunity to pathogens is achieved via two complementary arms of the 

immune system, namely innate and adaptive immunity. The innate immune system 

responds rapidly, but non-specifically, to extracellular and intracellular pathogens by 

recognizing common pattern associated molecular patterns (PAMPs) found on bacteria 

and/or viruses, as well as through activation of the complement system (11, 12). This 

leads to the recruitment of granulocytes and phagocytes, as well as secretion of various 

pro-inflammatory molecules, that temper the infectious agent. On the other hand, the 
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adaptive immune response, comprised primarily of B lymphocytes (B cells) and T 

lymphocytes (T cells), takes longer to develop and does so in an antigen-specific 

manner. B cells differentiate into antibody secreting plasma cells after recognition of 

antigen by the B cell receptor (BCR), in addition to “co-stimulatory” signaling (13). T cells 

are comprised of various subsets, including cytotoxic T cells, T helper cells and 

regulatory T cells (Treg). During a normal immune response, all three subsets function in 

concert to control the infection, with cytotoxic and T helper cells contributing to 

elimination of the pathogen, while Treg dampen the immune response after clearance 

to minimize potential damage to surrounding healthy tissue (14-16).  

 

1.4 Central and Peripheral Self-Tolerance  

A key property of the immune system is the capacity to distinguish between foreign and 

self antigens by both central and peripheral mechanisms. The latter is partly achieved by 

establishing “self-tolerance”. Very early in life, T cell progenitors migrate from the liver, 

and later the bone marrow, into the thymus. These progenitors enter the thymus near 

the cortico-medullary junction and begin the process of forming a hetero-dimeric α/β or 

γ/δ T-cell receptor (TCR) (17). This occurs through the rearrangement of the variable (V), 

diversity (D), and joining (J) gene segments to form functional TCRs with varying 

specificities (18). After TCR expression, double-positive (DP) thymocytes randomly traffic 

through the cortex, interacting with cortical thymic epithelial cells (cTECs), which 

present complexes of self-peptide bound by major histocompatibility complex (MHC) 
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molecules. TCR binding of these complexes with intermediate affinity and/or avidity (19, 

20), delivers signals for DP thymocyte survival and subsequent lineage commitment into 

either a single-positive (SP) CD4+ or CD8+ T cell. Following the latter positive selection 

events, SP thymocytes then traffic into the medulla (17). 

 In the thymic medulla, SP thymocytes dwell on average 4-5 days undergoing a 

process known as negative selection (21, 22). Also known as clonal deletion, negative 

selection is the process by which SP thymocytes with a high affinity and/or avidity for 

self-peptide are eliminated, thereby purging T cells with an autoimmune potential (17) . 

This process is mediated by presentation of self-peptides by medullary thymic epithelial 

cells (mTECs) and thymic dendritic cells (DCs) (23). In turn, the key thymic DCs driving 

negative selection consist of two conventional DC (cDC) subsets, namely CD11b+CD8α-

/low migratory and CD11b-CD8α+ intrathymic cDCs (24, 25).  

Additionally, the negative selection process is mediated by the controlled 

expression of several tissue-restricted antigens (TRA) by the autoimmune regulator 

(AIRE) transcription factor (26, 27). While AIRE only allows for the expression of TRA on 

a small subset of mTECs at a time within a finite window, the overall process is thought 

to be enhanced through transfer of TRA to both thymic resident cDCs, as well as rapid 

turnover of the mTEC pools every 1 to 2 weeks, thereby increasing the total expression 

of different TRA (28-31). Notably, both human and mouse studies have shown that 

defects in AIRE expression lead to systemic autoimmunity (32-35).  
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Of interest, Treg develop during the process of negative selection from late DP to 

SP CD4+ high avidity and/or affinity precursors that do not undergo apoptosis (14, 15, 

36). It is noteworthy that mTECs and each thymic DC subset are effective in promoting 

immature thymocyte differentiation into Treg in vitro, suggesting that Treg development 

is T cell intrinsic, rather than one dependent on a specific antigen presenting cell (APC) 

interaction (37). Despite this, the interaction of other T cell expressed molecules 

including CD28, CD40L, and LFA-1 with appropriate binding partners on mTECs and APCs 

are known to contribute to Treg differentiation (38). The development of “natural” Treg 

from thymocytes coincides with the expression of the Forkhead box protein 3 (FoxP3), 

which is generally thought to be a master regulator for FoxP3+ Treg function (39, 40).  

After maturation, both CD4+ and CD8+ T cells egress from the thymus into the 

periphery. While the majority of self-reactive high affinity/avidity thymocytes are 

deleted during negative selection, high affinity/avidity thymocytes specific for TRA not 

presented by mTEC and low affinity and/or avidity self-reactive thymocytes do persist 

(31, 41). Therefore, a number of mechanisms exist to maintain self-tolerance in the 

periphery. Peripheral tolerance is in part established by the action of tolergenic APC. 

During an active infection, APC maturation is triggered through binding of microbial 

products to different innate immune sensors, most notably Toll-like receptors (TLR) (12). 

TLR ligation signaling results in the up-regulation of the co-stimulatory molecules 

CD80/CD86 and CD40 on APC, as well as increased MHC class II and MHC class I 

expression, required for efficient T cell activation (42). In the absence of inflammation, 

however, the constitutive uptake and presentation of antigen to T cells by APC occurs 
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without co-stimulation, leading to tolerance induction in naïve T cells (43, 44). 

Depending on the strength of signal, T cells may become nonresponsive to subsequent 

antigen stimulation, a state referred to as anergy, or with stronger signals T cells may be 

driven to undergo apoptosis. In addition, self-reactive T cells can be eliminated by 

apoptosis through continued recognition of self MHC complexes (45) involving a process 

mediated via Bim-dependent and/or Fas receptor engagement by FasL (46, 47).  

 

1.5 Treg Play a Key Role in Peripheral Self-Tolerance 

In addition to FoxP3+ Treg, which develop in the thymus, other Treg subsets 

differentiate in the periphery from CD4+CD25- naïve T cells, such as Tr1 and Th3 cells 

(48, 49). Tr1 cells, which require TGFβ, IL-10 and IL-27 for differentiation, are classically 

defined by the secretion of IL-10 (50, 51). Importantly, studies have shown that antibody 

mediated blockade of IL-10 negates the suppressive phenotype of Tr1 cells (49). On the 

other hand, TGFβ1 is required for differentiation and the suppressor function of Th3 

cells (48, 52). Collectively, Tr1 and Th3 function with FoxP3+ Treg to maintain peripheral 

tolerance and may benefit from the presence of FoxP3+ Treg for development, in a 

process known as “bystander suppression”. Furthermore, the combination of TGFβ1 and 

IL-2 in the periphery can induce the differentiation of antigen-specific adaptive FoxP3+ 

Treg (53). Adaptive FoxP3+ Treg have been shown to play a role in maintaining 

peripheral tolerance, specifically in organs with ongoing inflammation, such as the gut. 
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Early experiments highlighted the importance of FoxP3+ Treg in maintaining 

peripheral tolerance. Depletion of CD4+CD25+ T cells, which compromise the majority of 

FoxP3+ Treg in non-autoimmune prone mice, resulted in systemic autoimmunity and 

inflammatory bowel disease (IBD) (54, 55). Furthermore, mutations in the human FOXP3 

gene results in immunodysregulation polyendocrinopathy enteropathy X-linked 

syndrome, with up to 90% of patients developing T1D, among other diseases, within a 

few years of birth (56, 57). This human phenotype was later recapitulated in the scurfy 

mouse model, which express a naturally occurring loss-of-function mutation within 

foxp3 (58). FoxP3+Treg suppression is mediated by both contact dependent and 

independent pathways. While no one mechanism is thought to be universally required 

for FoxP3+ Treg mediated suppression, the combination of different mechanisms 

appears to contribute to the overall effectiveness of these Treg.  

 

1.6 Modes of FoxP3+ Treg-mediated Suppression 

In the steady state, FoxP3+ Treg express high levels of surface CD25, GITR, OX40, CD62L, 

CTLA-4 and LFA-1, but the relative contribution of each molecule to FoxP3+ Treg function 

has been debated.  Administration of OX40 agonists in studies investigating 

experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple 

sclerosis, either reduced or increased disease severity depending on the timing of 

administration (59). Furthermore, OX40 expression was shown to be dispensable for 

FoxP3+ Treg mediated suppression, but co-stimulation of OX40 reduced suppressor 
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activity, suggesting that OX40 is a negative regulator of FoxP3+ Treg (60). In addition, 

studies have shown that stimulation of GITR through the use of an agonist antibody 

abrogates the protective effect of CD4+CD25+ Treg in various settings, including allograft 

rejection, diabetes, and gastritis, implying that GITR engagement blocks the suppressor 

function of FoxP3+ Treg (61-63) .  

CD62L plays a role in the migration of both FoxP3+ Treg and conventional T cells 

in vivo to secondary lymphoid organs (64). Interestingly, FoxP3+ Treg which express high 

levels of CD62L have been shown to be more suppressive in T1D mouse models (65, 66) 

and other diseases (67). Additionally, adoptive transfer of CD62LHI FoxP3+ Treg from the 

spleen or draining pancreatic lymph nodes (PLN) resulted in enhanced suppression of β 

cell autoimmunity compared to CD62LLO FoxP3+ Treg (66). Interestingly, augmented IL-2 

expression was also shown to directly correlate with increased expression of CD62L on 

organ resident FoxP3+ Treg (65), including the islets (M.C.J. and R.T., manuscript in 

preparation). 

Reports also suggest that both CTLA-4 and LFA-1 expression enhance the 

suppressor function of FoxP3+ Treg. Deletion or blockade of CTLA-4, which is known to 

interact with both CD80 and CD86 on APC (68), reduces FoxP3+ Treg-mediated 

suppression both in vitro and in vivo (69, 70). Importantly, elimination of CTLA-4 

expression specifically by FoxP3+ Treg resulted in a phenotype similar to FoxP3-deficient 

mice (71). Furthermore, CTLA-4 and LFA-1 expression are thought to be intimately 

linked, as LFA-1-mediated cell adhesion and clustering was shown to be increased upon 
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CTLA-4 up-regulation (72). Of note, one recent study has shown that CTLA-4 and LFA-1 

on FoxP3+ Treg function collectively to both sequester APC away from responding T cells 

and cause down-regulation of the co-stimulatory molecules CD80 and CD86 (73). Lastly, 

CTLA-4 is thought to further alter APC function by down-regulating pro-inflammatory 

and/or increasing immune suppressive cytokine secretion (74, 75).  

Recent studies have also shown that FoxP3+ Treg express high endogenous levels 

of CD39 and CD73 (76), both members of ectonucleoside triphosphate 

diphosphohydrolase family (77, 78). CD39 hydrolyzes ATP, a classic immune “danger 

signal” into ADP/AMP, while CD73 further breaks down AMP into adenosine (77, 78). 

Combined, these two receptors serve to protect FoxP3+ Treg from ATP-induced death, as 

well as dampen ATP driven maturation of APCs (76). Furthermore, FoxP3+ Treg have 

been shown to lyse APCs or responding T cells through granzyme and perforin-

dependent mechanisms (79, 80), in addition to secreting soluble immune modulating 

factors including IL-10, TGFβ, galectin-1 and/or the recently identified IL-35 (81-85). 

Notably, FoxP3+ Treg are known to actively deprive responding T cells of pro-survival 

cytokines, by acting as sinks for IL-2 (86). This function is directly due to constitutively 

high levels of CD25 expression by FoxP3+ Treg (87). In sum, these studies highlight the 

importance of FoxP3+ Treg in maintaining peripheral tolerance. 
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1.7 Genetic and Environmental Factors Influencing T1D Susceptibility  

T1D is a multi-factorial disease, with both genetic and environmental factors 

contributing to disease susceptibility (88-92). Although ~85% of T1D occurs in the 

absence of family history, there remains a strong genetic component (93). Among 

immediate relatives, the highest risk exists among siblings of diabetic patients, which 

show a 15-fold increase compared to siblings of non-diabetic individuals (93). In 

addition, children of diabetic fathers and mothers have approximately a 12% and 6% 

chance of developing disease, respectively, before the age of 20 years (94). 

Interestingly, the incidence for the second twin developing diabetes decreases 

significantly with age of diagnosis in the first twin (95). Furthermore, studies have 

shown that the incidence of both monozygotic twins developing diabetes is >50%, which 

is reduced 5-fold in dizygotic twins (93).   

 Currently, over 50 insulin dependent diabetes (Idd) loci have been identified in 

humans (90). Of interest, several genes located within these identified regions are 

directly related to Treg development and/or function, including CD25, CD122, IL-2, IL-10 

and CTLA-4, indicating a direct link between Treg and genetic risk for T1D (90, 

91)(t1dbase.org). Other known susceptibility genes include insulin, protein tyrosine 

phosphatase non-receptor type 22 (PTPN22), and AIRE (90, 91) (t1dbase.org). 

Noteworthy is that AIRE has been shown to regulate in thymic mTECs the expression of 

insulin, which is believed to be a key autoantigen driving β cell destruction in human 

T1D (96, 97).  
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 The strongest genetic association with disease susceptibility is linked to the 

human leukocyte antigen (HLA) region, which contains genes encoding the HLA class I 

and II molecules. Notably, up to 90% of young type 1 diabetic patients express one or 

both of the HLA class II susceptibility alleles DR3 and/or DR4 (98). This has prompted 

increased screening of HLA, in addition to autoantibody analysis, in at risk patients (99, 

100). In NOD mice, the expression of the MHC class I H2Kd/Db and MHC class II IAg7 have 

also been shown to directly influence disease outcome. Specifically, the role of IAg7 in 

diabetes is thought to be due to its unique structural properties, allowing increased 

binding of a unique repertoire of low affinity peptides (101).   

The variable development of T1D in monozygotic twins suggests an 

environmental component for disease outcome. Noteworthy is that enteroviral 

infections have been strongly correlated to the emergence of autoantibodies in young 

at risk individuals (102). Enteroviruses, specifically coxsackie B virus, have been shown 

to infect β cells in vitro, resulting in cell death (103). Furthermore, enterovirus DNA has 

been detected in the islets of diabetic patients, suggesting that infection may act as an 

initiating trigger (104). In addition, rotaviruses have been associated with the initiation 

of disease, as viral proteins are known to mimic the T1D autoantigen glutamic acid 

decarboxylase (GAD) (105).  

Beyond viral initiation, other environmental factors have been debated as 

potential triggers of T1D. Limited evidence suggests the vitamin D deficiency in infants 

may increase the risk of developing T1D during infancy (106). Furthermore, the timing 
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of, and total exposure to, bovine derived milk proteins may influence the development 

of autoantibodies against bovine proteins (89). Moreover, gluten and other similar 

proteins have been implicated as driving antigens in T1D as well (107). Lastly, one study 

has shown that helminth infection of the gastrointestinal track may inhibit diabetes 

development, possibly through skewing of the immune response away from a 

destructive type I response (see below), towards a protective type 2 response 

characterized by IL-4 secreting Treg (108). As a whole, these studies suggest that 

predicting the emergence of T1D is complicated and involves the collective influence of 

genetic and environmental factors.   

 

1.8 The Non-obese Diabetic (NOD) Mouse Model of T1D 

In human patients, the progressive destruction of β cells typically occurs over a number 

of years, resulting in the destruction of 80-90% of β cell mass at the time of clinical 

onset (109). Although a variety of risk factors have been identified, one of the earliest 

and most reliable markers is the presence of serum autoantibodies, specifically against 

GAD, protein tyrosine phosphatase (IA2) and/or insulin (92). Importantly, studies have 

shown that the presence of autoantibodies against all three correlates with the 

development of T1D in 90% of patients, with risk decreasing in association with number 

of different autoantibodies present (110). However, understanding the earlier stages of 

disease has been complicated.  
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The NOD mouse model has been extremely useful in the study T1D, and closely 

mimics the disease process in humans (101). Diabetes develops spontaneously in 80-

90% of females and 20-30% of males by 35 weeks of age, suggesting a sex related 

component in disease progression (111). Based on studies in NOD mice, T1D is 

understood to progress through a number of stages of islet inflammation or “insulitis”.  

The first stage, known as peri-insulitis occurs between 3 and 4 weeks of age, and is 

marked by the surrounding of islets by mononuclear infiltrates (101). As NOD mice age, 

disease progresses to the next stage known as intra-insulitis. Occurring on average at 6-

10 weeks of age, intra-insulitis is noted by infiltration of the islets by mononuclear cells, 

resulting in β cell destruction. This process continues until a sufficient number of β cells 

have been destroyed leading to the onset of clinical diabetes, typically seen between 

12-35 weeks in female NOD mice. The composition of the islet infiltrating population is 

composed of CD4+ and CD8+ T cells, NK cells, B cells, and APCs, including DC and 

macrophages (111). While all cells are thought to contribute, the major mediators of β 

cell destruction are T cells (112).  

 

1.9 CD4+ and CD8+ T cells are the Primary Mediators of T1D 

Previous work indicates that both CD4+ and CD8+ T cells are required for the 

development and progression of T1D (113-115). The majority of pathogenic β cell-

specific T cells exhibit a type I effector phenotype, characterized by the secretion of 

interferon-gamma (IFNγ) and tumor necrosis factor-alpha (TNFα) (116). In addition, IL-
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17 secreting Th17 cells may also be involved in this process.  NOD.scid mice injected 

with diabetogenic BDC CD4+ T cells skewed in vitro towards a Th17 phenotype 

developed T1D, although the majority of transferred cells converted to IFNγ secreting 

type I effectors after transfer (117). Furthermore, studies show that the frequency of 

Th17 cells in the infiltrating islet population is low, suggesting that Th17 cells are not the 

main mediators of β cell destruction (118). Interestingly, antibody mediated 

neutralization of IL-17 may result in an enhanced Treg frequency through down 

regulation of the Th17 population (119). This result is not surprising given the mutual 

requirement for TGFβ in both FoxP3+ Treg and Th17 cell development (120) and 

warrants further investigation.  

Given the importance of MHC class II in disease, early studies focused on CD4+ T 

cells. Adoptive transfer of diabetogenic BDC2.5 CD4+ T cell clones was sufficient to 

induce diabetes in appropriate recipients (121). In addition, blockade using a CD4-

specific monoclonal antibody prevented diabetes in NOD mice (122). CD8+ T cells also 

play a key role in disease, as NOD mice either lacking MHC class I expression (123-125) 

or treated with anti-CD8 monoclonal antibodies (126) fail to develop diabetes.  

T1D is marked by CD4+ and CD8+ T cells targeting multiple β cell autoantigens 

(127). β cell autoantigens recognized by CD4+ T cell include the 65 kDa isoform of GAD 

(GAD65), IA-2, insulin B chain, proinsulin and heat shock protein 60 (128, 129). β cell 

autoantigens recognized by CD8+ T cells include islet-specific glucose-6-phosphatase, 

insulin-B chain, and dystrophia myotonica kinase (128, 129). Proinsulin has been 
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suggested by some as the initiating autoantigen in mouse models, as thymic deletion of 

the second proinsulin isoform resulted in accelerated diabetes in NOD mice (130) , while 

thymus specific transgene expression of proinsulin was found to be protective (131). 

However, NOD mice tolerized with proinsulin had reduced incidence (132), but were not 

completely protected from diabetes, and the role of proinsulin in human patients is not 

as clear (133, 134). Despite this, the β cell specificity of diabetogenic T cells is known to 

increase with time, in a process known as epitope spreading (135, 136). Therefore, the 

potential role of other autoantigens in disease progression has been investigated.  

IA-2 is known to be required for normal insulin secretion, but deletion of the IA-2 

gene in NOD mice did not alter diabetes incidence, suggesting a dispensable role in 

driving β cell autoimmunity (137). Additionally, NOD mice deficient in GAD65 expression 

(138, 139) have similar diabetes incidence compared to controls. This particular 

outcome was surprising, given that GAD65 is associated with early immune responses in 

the islets, and that GAD65 administration induces Treg and prevents diabetes in NOD 

mice (140, 141). Studies have indicated that administration of insulin B chains to pre-

diabetic NOD mice also efficiently protects against diabetes (129). As a result, clinical 

trials have investigated the usefulness of insulin-based immunotherapy to suppress β 

cell autoimmunity in at risk and diabetic patients, with at best modest results (133, 142, 

143). To further complicate matters, as of yet unidentified β cell autoantigen are 

thought to also contribute to pathogenicity (144). 
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The large number of β cell autoantigens targeted in T1D at late preclinical and 

clinical stages provide a major challenge in developing immunotherapies to directly 

tolerize pathogenic effector T cells (Teff) (135, 136). Accordingly, an emphasis has been 

placed on strategies that efficiently manipulate the Treg pool in a β cell-specific manner 

(136, 145-147).  

 

1.10 The Role of IL-2 in Autoimmunity  

IL-2 is one member of a family of cytokines bound by receptors containing the common 

γ-chain, which includes IL-4, IL-7, IL-9, IL-15 and IL-21 (148). Like most members of this 

cytokine family, IL-2 has pleiotropic effects on the immune system. While the majority 

of studies have investigated the effect of IL-2 on T cells, it is also known to induce 

signaling in B cells, NK cells and eosinophils, among others (149-151). IL-2 is primarily 

secreted by activated Teff and is required for the proliferation and survival of 

conventional T cells (87, 152), influencing for instance the expression of several anti-

apoptotic markers, including Bcl-2 (153). Conversely, high levels of IL-2 are known to 

induce apoptosis in Teff through a process known as activated induced cell death (AICD) 

(154) . Evidence also suggests DCs are a minor source of IL-2 in vivo (155). Earlier studies 

investigating IL-2 showed that IL-2 deficiency surprisingly resulted in autoimmunity (156, 

157). Furthermore, in mice lacking expression of either CD25 or CD122, which are 

components of the IL-2 receptor, autoimmunity was also observed, suggesting a critical 

role for the IL-2-IL-2R pathway in establishing and/or maintaining peripheral self-
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tolerance (158, 159). The emergence of autoimmunity in the absence of IL-2 was later 

shown to be linked to the lack of FoxP3+ Treg development and/or maintenance (87, 

160, 161). In addition, antibody blockade of IL-2 was also shown to reduce FoxP3+ Treg 

numbers, resulting in systemic autoimmunity (162). Moreover, ectopic expression of 

FoxP3 (163) or adoptive transfer of wild-type FoxP3+ Treg (160) into CD122-deficient 

mice restored FoxP3+ Treg function and immune homeostasis.  

 As previously stated, FoxP3+ Treg constitutively express high levels of CD25 (54). 

CD25 is also up-regulated on recently activated Teff and B cells, but only transiently, 

making high levels of CD25 expression a reliable marker for Treg identification and/or 

isolation (87, 149). Additionally, FoxP3+ Treg suppressor function has been directly 

linked to an enhanced ability to “soak-up” exogenous IL-2 from Teff cells in vivo, due to 

constitutive CD25 expression (86). After binding to the IL-2R, IL-2 induces the 

phosphorylation of STAT5 (164), which regulates the expression of various FoxP3+ Treg 

related genes, including FoxP3 itself (165, 166). Furthermore, ablation of STAT5 in mice 

results in a reduced FoxP3+ Treg pool (166, 167). 

 Studies in human T1D patients have shown a reduction in FoxP3+ Treg function 

and/or number (168, 169). In addition, polymorphisms in IL-2, CD25, and CD122 have 

been linked to T1D and other autoimmune diseases (170, 171). NOD mice are known to 

express low levels of IL-2 (153, 172, 173), which is associated with the IL-2 gene 

containing idd3 locus (173-176). A direct link between β cell autoimmunity and reduced 

FoxP3+ Treg over time has also been shown (177, 178).  Interestingly, our laboratory has 
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shown that replacement of the NOD idd3 locus with one derived from C57BL/6 mice 

resulted in a significant reduction in diabetes incidence (65). This protection was 

mediated by enhanced FoxP3+ Treg function and will be discussed at length in Chapter 2.  

 Recombinant (r) IL-2 has been successfully used to treat various human diseases. 

Separate studies showed that graft-versus-host-disease or Hepatitis C vasculitis were 

suppressed by low dose rIL-2 therapy, and a subsequent increase FoxP3+ Treg (179, 180). 

Of note, the majority of patients in these studies were refractory to other treatment 

regimes. In NOD mice, treatment with low-dose rIL-2 or with rIL-2-anti-IL-2 antibody 

complexes increased islet FoxP3+ Treg survival and frequency in pre-diabetic animals 

(153). However, increased doses of rIL-2 had significant off-target effects, resulting in 

systemic activation of NK cells, CD8+, and CD4+ T cells and accelerated onset of overt 

diabetes. Importantly, these findings underscore how critical the dose of IL-2 is for 

mediating a protective effect. Diabetes remission was also achieved in recent onset NOD 

mice treated with low dose rIL-2 alone, or in combinatorial therapy (181, 182). Despite 

the successes achieved in NOD mice, a recent study in human T1D patients showed that 

combinatorial treatment with rIL-2 and rapamycin did not significantly alter disease 

progression or remission (183). Early after treatment, a slight, but transient, increase in 

FoxP3+ Treg was seen. Nevertheless, NK cells and eosinophils were increased, and β cell 

autoimmunity exacerbated. Regardless, IL-2 based therapies for the treatment of T1D 

are still generally considered to be promising approach to manipulate β cell 

autoimmunity.  
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1.11 Clinical Scenarios for the Treatment of T1D 

Clinically, there are three main scenarios in which immunotherapy can be applied for 

the prevention and/or treatment of T1D (8, 184-188). The first, and arguably most 

important, would be the prevention of T1D onset in at-risk patients. At risk individuals 

are typically identified by the detection of β cell autoantibodies in the serum, in addition 

to altered responses upon glucose challenge (189).  

Secondly, immunotherapy can be applied to rescue residual β cell mass in recent 

onset diabetics. At the onset of clinical diabetes there is still a sufficient number of β 

cells remaining so that hyperglycemia can be reversed providing inflammation is 

effectively and rapidly suppressed (184). Furthermore, protecting residual β cell mass 

may provide a “starting pool” for strategies that promote β cell expansion (190). 

Alternatively, other cells within the pancreas, or tissues such as the liver, can be 

genetically manipulated to become insulin secreting cells, as well (190, 191).  In order to 

promote β cell differentiation or replication, however, it is essential that β cell 

autoimmunity is suppressed.  

Lastly, immunotherapy can be applied to block autoimmune recognition of islet 

grafts transplanted into diabetic recipients. As previously stated, the 5 year success rate 

for achieving insulin independence for recent transplant recipients is low, despite the 

use of potent immunosuppressive drugs (8). Immunotherapies that selectively suppress 

allogeneic and autoimmune-mediated destruction of transplanted islets would also 

avoid the severe complications associated with immunosuppression.  
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1.12 Strategies of Immunotherapy 

In order to prevent and suppress β cell autoimmunity, immunotherapies to date have 

focused on re-establishing the functional balance between pathogenic Teff and Treg. 

This has been accomplished through several strategies, including manipulation of APC 

populations, dampening of Teff and/or induction or expansion of various Treg subsets. 

Clinically, administration of non-mitogenic anti-CD3 antibodies to recent onset diabetic 

patients has been shown to maintain β cell mass (192-194). The overall effectiveness of 

this strategy, however, is short lived and systemic depletion of T cells leaves patients 

susceptible to viral infection (192-194).  

 Administration of β cell antigens and peptides to selectively manipulate 

diabetogenic T cell activity has also been investigated. Such an approach has been used 

to specifically deplete and/or induce anergy in diabetogenic Teff and/or stimulate the 

differentiation and expansion of Treg (135). By targeting β cell-specific T cells only, the 

overall effect on the immune system is minimal. Previous studies have shown that 

antigen-specific immunotherapies are highly effective at preventing diabetes in NOD 

and transgenic models of T1D (141, 195-197). This protection is mediated by the 

induction of antigen-specific Treg. Unfortunately, the efficiency of antigen-specific 

immunotherapy in the clinic has been largely disappointing (142, 143, 198). Lack of 

clinical success, in part, may be attributed to timing, as the pool of pathogenic CD4+ and 

CD8+ Teff is relatively large and multiple autoantigens are targeted at late preclinical and 

clinical stages of disease (135, 136). The latter is also problematic in terms of inducing 
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and/or expanding a Treg pool sufficient to suppress the ongoing β cell autoimmunity. To 

combat this, the focus of various immunotherapies has been the systemic 

induction/expansion of Treg, employing for instance, cytokine-based strategies (136, 

145-147). Since Treg are able to suppress in a non-antigen specific manner, 

enhancement in Treg number or function would be expected to be beneficial (136, 145, 

146, 187, 199). In T1D mouse models, treatment with rIL-4 and rIL-10 enhances Treg 

populations, and prevents diabetes (200, 201). As stated previously, low dose systemic 

administration of rIL-2 to NOD mice results in diabetes protection through selective 

enhancement of islet FoxP3+ Treg (153). While effective, cytokine-based therapy 

typically requires continuous dosing of animals, due to the short in vivo half-life of 

cytokines, and may not prove feasible for long-term treatments. Furthermore, since 

treatment is systemic the pleiotropic effects of most cytokines are likely to result in 

unwanted off-target effects.  

 

1.13 Gene Delivery via Recombinant Adeno-Associated (rAAV) Vectors 

Adeno-associated virus (AAV) is a member of the Parvoviridae family in the genus 

Dependovirus (202). Structurally, the viral shell is composed of icosahedral subunits that 

collectively reach approximately 25 nm in diameter and house a 4.7 kb single stranded 

DNA genome (203). AAV was originally discovered as a contaminant in adenovirus 

preparations and requires a helper virus for productive replication and infection (204, 

205). Recombiant (r) AAV vectors have a number of properties that are amenable for 
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gene delivery in the clinic and have been effectively used for the treatment of a broad 

range of diseases, including macular degeneration, rheumatoid arthritis, hemophilia and 

Parkinson’s disease (206-209). rAAV vectors are capable of infecting both dividing and 

non-dividing cells (210). In addition, AAV has not been directly associated with any 

human disease, and typically displays low immunogenicity (202). The safety of rAAV 

vectors has been further increased by vector modifications that prevent self-replication. 

In conjunction, AAV typically exist as non-integrating circular monomers or concatemers 

in the nucleus, with minimal risk of genomic insertion (210). 

Several capsid protein serotypes, which display a wide tissue tropism, can be 

used to package the AAV vectors (211, 212). The use of different serotype capsid 

proteins, in combination with cell- or tissue-specific promoters, permit targeted in vivo 

transgene expression. Recent advances in our understanding of viral receptors and 

capsid protein structures have resulted in the development of tissue-specific capsids. 

This has been accomplished through the utilization of both 1) random peptide libraries 

to generate capsids for previously resistant tissues (213-215), and 2) pseudotyped 

capsids developed through the swapping of established amino acids sequences for 

different serotypes (216-218). As a whole, these characteristics may lead to the 

development of capsids that promote efficient and cell-specific transduction, a primary 

target of which could be β cells. 

Advances in rAAV vector design has resulted in self-complementary or double-

stranded (ds) rAAV vectors. dsAAV vectors exhibit more robust and efficient transgene 
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expression, thereby reducing the overall dose needed in comparison to single-stranded 

(ss) rAAV vectors; the latter also minimizing the likelihood of eliciting AAV vector-

specific immunity (219-222). Lastly, recent changes in both the manufacturing and 

purification of rAAV vectors have increased the feasibility for clinical use (223).  

 

1.14 Applications of rAAV Vector-Based Immunotherapy for T1D 

Initial studies utilized rAAV vectors to block β cell autoimmunity via systemic expression 

of the transgene-encoded protein. Intramuscular (I.M.) injection of rAAV vectors 

encoding the β cell autoantigen GAD65 (224, 225) or IL-10 (226-228) prevented diabetes 

in NOD mice at both early and late pre-clinical stages of T1D. Protection was mediated 

primarily through induction and/or expansion of a protective Treg, in addition to 

suppression of proinflammatory APC. In addition, I.M. delivery of rAAV vectors encoding 

human α1-anti-trypsin (229), a serine protease inhibitor, and heme-oxygenase-1 (230), a 

stress-response enzyme, have also been shown to suppress established β cell 

autoimmunity through suppression of innate effector cells. Of note, transgene 

expression in treated NOD mice persisted for a number of weeks post-injection and was 

both dose-dependent and stable. This suggests that immune recognition of transduced 

cells was minimal and highlights one of the distinct advantages rAAV vectors have over 

other viral-based gene delivery approaches.  

 rAAV vectors can be engineered to minimize potential complications associated 

with long-term systemic expression of immunoregulatory proteins through two 



25 
 

strategies. The first involves the use of an inducible promoter, which allows for 

controlled “on/off” expression of the transgene. Recent work by our group has shown 

that a rAAV1 vector expressing IL-2 under control of a tetracycline inducible promoter 

suppressed β cell autoimmunity in NOD mice at a late pre-clinical stage (231).  Long-

term protection was induced following only a 3 week period of IL-2 expression, which 

correlated with an increased frequency of islet FoxP3+ Treg. Importantly, the level and 

duration of IL-2 expression had no systemic effects on conventional T cells or innate 

effectors, such as NK cells. Collectively, these findings show that rAAV vector mediated 

inducible transgene expression can significantly alter β cell autoimmunity, while having 

minimal effects on the rest of the immune system.  

 A second strategy to limit the systemic effects of transgene expression in vivo is 

to engineer rAAV vectors with a tissue specific promoter. For the treatment of T1D, β 

cell-specific promoters, such as the insulin promoter, have been used (232, 233). In a 

streptozotocin-induced model of T1D, treatment of BALB/c mice with dsAAV8 

expressing glucagon-like peptide-1 under control of the mouse insulin promoter (mIP) 

reversed diabetes (234). Additionally, a recent study showed that administration of a 

dsAAV vector expressing IL-4 driven by mIP resulted in a reduced diabetes incidence in 

young NOD mice (235). This protection was also shown to be at least partially due to 

increased Treg. In addition to limiting complications associated with systemic 

expression, increased local levels of the transgene product (i.e. cytokine) would be 

expected to enhance the potency of the protective effect. Indeed, I.M. injection of 
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rAAV2 vector expressing IL-4 systemically failed to prevent diabetes in NOD mice, in 

contrast to IL-4 expression targeted to β cells by dsAAV8 mIP-IL4 (226, 235). 

  While linking transgene expression specifically to the function of β cells is 

desirable, the ability of rAAV vectors to specifically transduce these cells is of paramount 

concern. As such, both serotype and route of administration have proven to be critical 

for influencing the efficiency of β cell transduction. Direct intrapancreatic injection of 

rAAV8 expressing EGFP resulted in transduction of both acinar cells and β cells (236). 

Furthermore, rAAV8 was found to be superior to other serotypes, including rAAV1, 

rAAV2 and rAAV5, through the same route of administration.  

 

1.15 Aims of the Dissertation  

IL-2 directly affects a variety of cell types, including B cells, Teff, and FoxP3+ Treg. 

Blocking the IL-2-IL-2R signaling pathway results in depletion of FoxP3+ Treg and ensuing 

autoimmunity (87). Furthermore, studies have shown that NOD mice have a defect in 

systemic IL-2 levels compared to nonautoimmune prone strains that correlates with 

reduced FoxP3+Treg and subsequent development of T1D. Despite this, how pancreatic 

levels of IL-2 impact β cell autoimmunity is poorly understood. Furthermore, although 

IL-2 therapy has the potential of being a highly effective strategy to suppress β cell 

autoimmunity, improved approaches that can be safely applied to the clinic are needed. 

To investigate the effects of pancreatic IL-2 on β cell autoimmunity, NOD and NOD.idd3 

mice were examined temporally for organ-specific FoxP3+ Treg frequencies and 
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function. We hypothesized that elevated levels of IL-2 in the pancreas of NOD.idd3 mice 

increases islet-resident FoxP3+ Treg and therefore prevents the onset of overt diabetes.  

Treatment with rIL-2 significantly increased the survival and frequency of 

systemic FoxP3+ Treg in both pre-diabetic and recent onset NOD mice (153, 181, 182). 

Due to effects on non-FoxP3+ Treg, however, disease was exacerbated in NOD mice 

receiving a high dose of rIL-2. The effects of islet derived IL-2 in comparison to non-

targeted systemic IL-2 has not been investigated. Accordingly, we engineered a rAAV8 

vector encoding a mIP-driven IL-2 transgene (AAV8mIP-IL2). Administration of AAV8mIP-

IL2 permits a direct assessment of the therapeutic effects of localized versus systemic IL-

2 in NOD mice on FoxP3+ Treg and non-FoxP3+ Treg, and the progression of β cell 

autoimmunity. We hypothesized that treatment with AAV8mIP-IL2 results in significant 

increases in islet resident FoxP3+ Treg function and fitness, resulting in protection from 

diabetes, while minimizing potential complications associated with systemic IL-2 

delivery.  

Efforts are ongoing within the field to test combinatorial immunotherapies, with 

the aim of establishing synergism between the respective strategies and inducing robust 

tolerance. Accordingly, we investigated the efficacy of AAV8mIP-IL2 combined with 

αCD4/αCD8 non-depleting monoclonal antibodies to reverse diabetes in NOD mice. We 

hypothesized that αCD4 and αCD8 antibody binding to islet resident CD4+ and CD8+ Teff, 

respectively, enhances the efficacy of AAV8mIP-IL2 to induce remission in recent onset  
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diabetic NOD mice. In summary, these studies provide insight into the role that IL-2 

plays in immunoregulation of β cell autoimmunity, in addition to the potential of 

“targeted” IL-2 expression for the prevention and treatment of T1D.  
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CHAPTER 2  

REDUCED IL-2 EXPRESSION IN NOD MICE LEADS TO A TEMPORAL INCREASE IN 
CD62LLOFOXP3+CD4+ T CELLS WITH LIMITED SUPPRESSOR ACTIVITY 

2.1 Summary 

IL-2 plays a critical role in the induction and maintenance of FoxP3-expressing regulatory 

T cells (FoxP3+ Treg). Reduced expression of IL-2 is linked to T cell-mediated 

autoimmune diseases such as type 1 diabetes (T1D), in which an imbalance between 

FoxP3+ Treg and pathogenic T effectors exists. We investigated the contribution of IL-2 

to dysregulation of FoxP3+ Treg by comparing wildtype NOD mice with animals congenic 

for a C57BL/6- derived disease-resistant Il2 allele and in which T cell secretion of IL-2 is 

increased (NOD.B6Idd3). Although NOD mice exhibited a progressive decline in the 

frequency of CD62LhiFoxP3+ Treg due to an increase in CD62LloFoxP3+ Treg, 

CD62LhiFoxP3+ Treg were maintained in the pancreatic lymph nodes and islets of 

NOD.B6Idd3 mice. Notably, the frequency of proliferating CD62LhiFoxP3+ Treg was 

elevated in the islets of NOD.B6Idd3 versus NOD mice. Increasing levels of IL-2 in vivo 

also resulted in larger numbers of CD62LhiFoxP3+ Treg in NOD mice. These results 

demonstrate that IL-2 influences the suppressor activity of the FoxP3+ Treg pool by
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regulating the balance between CD62Llo and CD62Lhi FoxP3+ Treg. In NOD mice, reduced 

IL-2 expression leads to an increase in nonsuppressive CD62LloFoxP3+ Treg, which in turn 

correlates with a pool of CD62LhiFoxP3+ Treg with limited proliferation. 
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2.2 Introduction 

The hallmark of type 1 diabetes (T1D) is the T cell-mediated destruction of the insulin-

producing β cells in the pancreatic islets (1-3). Based on studies in humans and the NOD 

mouse, a spontaneous model of T1D, the breakdown of β cell-specific tolerance is in 

part due to defective peripheral immunoregulation within the T cell compartment. 

Conventional T cells in NOD mice for instance, exhibit reduced sensitivity to the 

suppressive effects of immunoregulatory T cells (Treg) (4, 5). The loss of function and/or 

frequency of Treg has also been implicated in the differentiation and expansion of 

pathogenic type 1 effector T cells (Teff) specific for β cells (5-7). Several subsets of Treg 

with distinct phenotypes and effector functions have been identified (8) including: (i) 

type 2 Treg which predominantly secrete IL-4, (ii) Th3 cells, which primarily secrete IL-4 

and TGFβ (9), (iii) IL-10 secreting Treg (10), and (iv) natural and adaptive CD4+CD25+ T 

cells which express the transcription factor Forkhead box P3 (FoxP3-expressing 

regulatory T cells (FoxP3+ Treg)) (11).  

FoxP3+ Treg are considered to be the most potent subset of Treg, and are 

characterized by a suppressor function mediated by cell–cell contact-dependent and -

independent mechanisms (12). Humans and mice lacking functional FoxP3 protein 

develop systemic T cell-mediated autoimmunity (13-15). FoxP3+ Treg suppress T cells 

through constitutive expression of CTLA-4 and the glucocorticoid-induced TNF receptor 

(GITR) which block co-stimulatory signals needed for T cell activation (16). Additionally, 

FoxP3+ Treg elicit suppression through a bystander effect via TGFβ (12, 17), which 
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modulates the function of APC and inhibits production of IFNγ and TNFα by type 1 Teff 

(18). 

The phenotype of FoxP3+ Treg can be further defined based on CD62L 

expression. For instance, the in vitro and/or in vivo suppressor function of 

CD62LhiFoxP3+ Treg is superior compared with CD62LloFoxP3+ Treg (7, 19, 20). 

Furthermore, CD62LhiFoxP3+ Treg from the pancreatic lymph nodes (PLN) or spleen of 

NOD mice exhibit an enhanced capacity to prevent diabetes in an adoptive transfer 

model compared to CD62LloFoxP3+ Treg (19). Increased levels of TGFβ expression 

contribute to the enhanced suppressor function of CD62LhiFoxP3+ Treg versus 

CD62LloFoxP3+ Treg (7). CD62LloFoxP3+ Treg are thought to reflect an activated 

phenotype characterized by increased cycling (21-23). Importantly, our group and 

others have previously shown that the frequency of suppressive CD62LhiFoxP3+ Treg 

decline with age in NOD female mice which corresponds with the progression of β cell 

autoimmunity (7, 24). The critical events that induce and maintain the frequency of 

CD62LhiFoxP3+ Treg, however, are poorly understood. 

Recent studies have demonstrated that IL-2 plays a key role in the maintenance 

of FoxP3+ Treg homeostasis (25, 26). Mice lacking or having reduced expression of the Il2 

gene develop severe, systemic autoimmunity due to the reduction of FoxP3+ Treg (27, 

28). Furthermore, Sakaguchi and co-workers showed that diabetes is exacerbated in 

NOD mice when treated with a neutralizing antibody (Ab) specific for IL-2 at an early age 

(29). Also, IL-2 in combination with TGFβ is important for the differentiation of naive 

CD4+ T cells into adaptive FoxP3+ Treg in vitro (30, 31). 
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More than 20 chromosomal loci, termed insulin-dependent diabetes (Idd) 

regions, are associated with T1D susceptibility and resistance (32, 33). While no one 

gene is sufficient for the development of diabetes, the combined effects of susceptibility 

genes influence the progression of β cell autoimmunity (32, 33). NOD mice congenic for 

the Idd3 locus derived from diabetes resistant mouse strains exhibit a reduced incidence 

and delayed onset of T1D (34-37). Idd3 contains genes encoding immunoregulatory 

molecules including IL-2 and IL-21 (34-37). The NOD Idd3 locus has been associated with 

reduced IL-2 expression by T cells and an aberrant FoxP3+ Treg pool (37, 38). These 

findings suggest that T1D is influenced by dysregulation of IL-2 expression, which leads 

to reduced FoxP3+ Treg frequency and/ or function found in NOD mice. In the current 

study, NOD mice congenic for a resistant Idd3 interval derived from C57BL/6 mice 

(NOD.B6Idd3) were used to further define the role of IL-2 in regulating the peripheral 

FoxP3+ Treg pool. We present evidence that reduced IL-2 expression leads to temporal 

dysregulation of the ratio between suppressor-deficient CD62LloFoxP3+ Treg and 

suppressor-competent CD62LhiFoxP3+ Treg, resulting in a pool of FoxP3+ Treg insufficient 

to regulate β cell autoimmunity. 
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2.3 Materials and Methods 

Mice 

NOD/LtJ and NOD.CB17-Prkdcscid/J (NOD.scid) mice were maintained and bred under 

pathogen-free conditions in an American Association for Laboratory accredited animal 

facility. NOD.B6c3D mice, provided by Dr. Ed Leiter (The Jackson Laboratory), were 

established by introgression of an ~17 Mb region of the Idd3 interval derived from 

C57BL/6 mice (NOD.B6Idd3) for 13 backcross generations. The length of the congenic 

interval was determined by typing with MIT microsatellite markers and using the MGI 

posting data from NCBI Build 37 (Table 2.1). Mice were monitored for diabetes by 

measuring urine glucose levels. All procedures were approved by the University of North 

Carolina Animal Use and Care Committee. 

 

T cell isolation and culturing conditions 

Single cell suspensions were prepared from the thymus, PLN, and spleen, and filtered 

with a 70-μM strainer (Fisher Scientific). Peripheral blood lymphocytes (PBL) were 

obtained via submandibular puncture using lancets (Golden Rod) and red blood cells 

lysed with ACK solution. Islet infiltrating cells were isolated from purified, hand-picked 

islets. Briefly, pancreases were digested with 2.0 mg/mL collagenase P (Roche) for 20 

min at 37°C, and islets purified on a Ficoll (Sigma-Aldrich) gradient. Lymphocytes 

infiltrating the islets were harvested by dissociating the islets using an enzyme-free cell 

dissociation solution (Sigma-Aldrich).  
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Naive CD4+ T cells were isolated from splenocytes using a bead-based naive CD4 

T cell kit (Miltenyi Biotec). Briefly, total lymphocytes were incubated with a biotin-

labeled Ab cocktail that selectively enriches for CD4+ T cells but depletes CD4+CD25+ 

cells. Enriched CD4+CD25- T cells were then incubated with CD62L-conjugated micro-

beads and isolated using a magnetic column.  

For general T cell cultures, 2 x 105 cells were resuspended in complete RPMI 

1640 medium (Gibco) containing 10% heat-inactivated FBS, 100 U/mL 

penicillin/streptomycin (Gibco), and 50 μM 2-ME (Sigma-Aldrich). T cells were 

stimulated in 96-well plates coated with varying concentrations of purified anti-CD3 Ab 

(2C11, eBioscience) and soluble, functional-grade anti-CD28 Ab at 2 μg/mL (37.51, 

eBioscience). In some experiments supernatants were collected, diluted 1:3 in 1% BSA in 

PBS, and IL-2 secretion measured 24 h post stimulation. An anti-IL-2 Ab set (eBioscience) 

was used at 2 μg/mL on a high-binding ELISA plate (Costar). 

 

Flow cytometry (FACS) 

Total cells from the respective tissues were stained with a variety of fluorochrome-

conjugated monoclonal Ab including: anti-CD3 (2C11), anti-CD4 (L3T4), anti-CD8 (Ly-2), 

anti-CD25 (PC61.5), anti-CD44 (IM7), anti-CD62L (MEL14), and anti-FoxP3 (FJK.16 kit) 

(eBioscience). Fc receptors were blocked with a 1/200 dilution of rat Ig prior to staining. 

Intracellular Ki67 (B56; BD Biosciences) staining was done using cytofix/cytoperm 

reagents (BD Biosciences) according to the manufacturer’s specifications. Data were 

acquired on a Cyan flow cytometer (DakoCytomation), and analyzed using Summit 
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software (DakoCytomation). In addition, CD4+CD25+ T cells (CD62Llo or CD62Lhi) were 

sorted by a MoFlo high-speed sorter (DakoCytomation). 

Intracellular cytokine staining was performed on single cell suspensions from 

pancreatic lymph nodes (PLN) or islet-infiltrating cells as previously described (39). 

Briefly, lymphocytes were stimulated with 10 ng/mL PMA (Sigma-Aldrich) and 150 

ng/mL ionomycin (Sigma-Aldrich) in complete RPMI 1640 medium for 6 h at 37°C; 10 

μg/mL of Brefeldin A (Sigma-Aldrich) was added for the final 4 h of incubation. Cells 

were stained for surface molecules, fixed and permeabilized with cytokfix/cytoperm 

reagents (BD Biosciences), and stained for intracellular IFNγ (XMG1.2) (eBioscience).  

 

In vitro suppression assay 

Different ratios of FACS-sorted CD4+CD25+CD62LLO/HI T cells were cultured with cell-trace 

violet- (Invitrogen) labeled naive 5 x 104 CD4+ T cells, 2 μg/mL anti-CD28, and 2 μg/mL 

anti-CD3 Ab in 96-well round bottom plates (Costar) for 3 days. Proliferation was 

assessed in triplicate by FACS analysis as the total percentage of labeled CD4+Thy1.2+ 

naive cells undergoing at least one round of division.  

 

Cell adoptive transfers 

Diabetogenic NOD splenocytes (2.5 x 106) were suspended in PBS and injected i.p. into 

8-wk-old NOD.scid male mice alone or in combination with FACS-sorted CD4+CD25+ T 

cells (1 x 105) isolated from the PLN of NOD or NOD.B6Idd3 mice. Mice were monitored 

bi-weekly post transfer for diabetes. 
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Construction of and treatment with AAV encoding NOD IL-2 

Using the forward primer 5’-gaagcttcaggcatgtacagcatgcagctc-3’ that includes a HindIII 

restriction site and the reverse primer 5’-gtcgactagttattgagggcttgttgagat-3’ that contains 

an EcoRV restriction site, the Il2 gene was PCR amplified with PFU Turbo (Promega) 

from mRNA (Qiagen) of ConA- (Sigma-Aldrich) stimulated NOD lymphocytes. Amplicons 

were subcloned into the topo-TA vector (Invitrogen) and sequenced. Full-length cDNA 

encoding Il2 was subcloned into an AAV-Tet-on vector plasmid (kindly provided by Dr. 

Sihong Song) using SalI and EcoRV sites. Transgene expression was verified by measuring 

via ELISA IL-2 secretion by HEK 293 cells transfected with AAV-Tet-on-IL-2 plasmid DNA. 

AAV virus production was previously described (40). Briefly, packaged AAV 

serotype 1 (AAV1) virus was prepared by transfecting 293 cells via calcium phosphate 

with the adeno helper encoding plasmid (pXX6-80), AAV1 encoding plasmid (pXR-1), and 

the Tet-on-IL-2 constructs (described above). Nuclear fractions were harvested and virus 

purified with an iodixonal (Sigma-Aldrich) gradient. The virus- containing fractions and 

titer were determined by Southern dot blot. 

NOD female mice were vaccinated with 5 x 1010 viral particles of AAV-Tet-on-IL-2 

virus serotype 1 (AAV-Tet-IL-2) in contralateral, hind limb muscles using an insulin 

syringe. After injection, mice were fed chow containing 200 mg/kg doxycycline (BioServ) 

for 2 wks. 
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Insulitis scoring 

Pancreases were harvested and fixed with formalin for 24 h. Serial sections 90 μm apart 

were prepared and stained with H&E. More than 100 islets were scored per group. 
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2.4 Results 

2.4.1 An age-dependent decline in CD62LhiFoxP3+ Treg is detected in NOD but not 

NOD.B6Idd3 mice 

Studies have demonstrated that Idd3 in NOD mice contributes to the progression of β 

cell autoimmunity by influencing the pool of FoxP3+ Treg (37, 38). To further study the 

effect(s) of Idd3 on FoxP3+ Treg, NOD.B6Idd3 mice congenic for an ~17Mb interval 

derived from the C57BL/6 genotype were employed (Table 2.1). This line of NOD.B6Idd3 

female mice exhibited a reduced frequency of diabetes and insulitis relative to NOD 

female mice (Fig. 2.1), similar to other NOD mouse lines congenic for a resistant Idd3 

locus (37, 38, 41). Consistent with previous findings (38) naive CD4+ T cells isolated from 

the spleen of NOD.B6Idd3 mice exhibited increased IL-2 secretion upon in vitro 

stimulation relative to NOD CD4+ T cells (Fig. 2.2). To determine the influence of Idd3 on 

FoxP3+ Treg, the frequency and number of gated CD4+CD3+ T cells expressing FoxP3 and 

CD25 (Fig. 2.3A) were assessed in the thymus, spleen, PLN, and islets of age-matched 

NOD and NOD.B6Idd3 female mice via FACS. No difference in the frequency of FoxP3+ 

Treg was detected in the thymus of NOD and NOD.B6Idd3 mice suggesting that thymic 

development of FoxP3+ Treg is unaffected by IL-2 expression levels. On the other hand, 

an increased frequency and number of FoxP3+ Treg was detected in the PLN and spleen 

of older NOD.B6Idd3 mice relative to age-matched NOD mice (Fig. 2.3A–C). In addition, 

the frequency of FoxP3+ Treg was significantly increased in the islets of 10- and 16-wk-

old NOD.B6Idd3 versus NOD female mice (Fig. 2.3B). Notably, however, a greater 

number of FoxP3+ Treg were detected in the islets of older NOD mice (Fig. 2.3C) 
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reflecting increased T cell infiltration of the islets relative to age-matched NOD.B6Idd3 

mice. These data demonstrate that the frequency of FoxP3+ Treg is increased in the PLN 

and islets of NOD.B6Idd3 mice compared with NOD mice. 

We and others have shown that CD62Lhi- versus CD62Llo- expressing FoxP3+ Treg 

exhibit increased suppressor activity (7, 19). Accordingly, CD62Lhi- and CD62Llo-

expressing FoxP3+ Treg were examined temporally in age-matched NOD.B6Idd3 and 

NOD female mice. Interestingly, age-dependent differences in the frequency and 

number of CD62Lhi- and CD62Llo-expressing FoxP3+ Treg were detected in the PLN and 

islets of the respective groups of mice. NOD female mice exhibited a temporal decrease 

in the frequency of CD62LhiFoxP3+ Treg and a concomitant increase in CD62LloFoxP3+ 

Treg in PLN (Fig. 2.4B). Although the number of CD62LhiFoxP3+ Treg progressively 

increased in the PLN of NOD female mice (5.2 x 104 (4 wk) versus 9.0 x 104 (16 wk)), a 

greater increase in CD62LloFoxP3+ Treg numbers was detected (6.3 x 104 (4 wk) versus 

14.9 x 104 (16 wk)) (Fig. 2.4C). In the PLN of NOD.B6Idd3 mice, however, the frequency 

and number of CD62LhiFoxP3+ Treg showed no marked change with age, which were 

increased relative to age matched NOD females (Fig. 2.4B and C). 

A similar scenario was observed in the islets of NOD and NOD.B6Idd3 female 

mice. A temporal increase in the frequency of CD62LloFoxP3+ Treg was detected in the 

islets of NOD female mice which was due to elevated numbers relative to CD62Lhi 

FoxP3+ Treg (Fig. 2.4D and E). Despite a progressive decline, the frequency of 

CD62LhiFoxP3+ Treg in the islets of NOD.B6Idd3 female mice was elevated relative to 

age-matched NOD female mice (Fig. 2.4D and E). FACS analysis showed similar levels of 
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CD25, glucocorticoid-induced TNF receptor, and CTLA-4 surface expression between 

CD62LhiFoxP3+ Treg and CD62LloFoxP3+ Treg infiltrating the islets of either NOD or 

NOD.B6Idd3 mice (data not shown). 

 Differences in the proliferative status of CD62Lhi- versus CD62Llo-expressing 

FoxP3+ Treg could explain the distinct FoxP3+ Treg profiles seen in the islets of NOD and 

NOD.B6Idd3 mice. To investigate this possibility, proliferation of CD62Lhi 

CD4+CD25+FoxP3+ and CD62LloCD4+CD25+FoxP3+ T cells was assessed via Ki67 staining in 

the islets of 12-wk-old NOD and NOD.B6Idd3 female mice. Regardless of the genotype, 

the frequency of proliferating CD62LloCD4+CD25+FoxP3+ T cells was elevated relative to 

CD62LhiCD4+CD25+FoxP3+ T cells (Fig. 2.5B). Importantly, however, the frequency of 

proliferating CD62LhiCD4+CD25+FoxP3+ T cells (Fig. 2.5B) and the ratio of Ki67-staining 

CD62LhiCD4+CD25+FoxP3+ to CD62LloCD4+CD25+FoxP3+ T cells (Fig. 2.5C) were increased 

in the islets of NOD.B6Idd3 versus NOD female mice. Together, these results indicate 

that within the pool of FoxP3+ Treg a significant shift from CD62LhiFoxP3+ Treg to 

CD62LloFoxP3+ Treg occurs in the PLN and islets of NOD but to a lesser extent in 

NOD.B6Idd3 female mice, which correlates with a decreased proliferative status of 

CD62LhiFoxP3+ Treg in NOD and NOD.B6Idd3 mice. 

 

2.4.2 Increased numbers of CD62LhiFoxP3+ Treg enhance the suppressor activity of Treg 

from NOD.B6Idd3 versus NOD mice 

Elevated numbers of CD62LhiFoxP3+ Treg in NOD.B6Idd3 mice would be expected to 

enhance suppression of pathogenic Teff in the respective tissues. Indeed, at 16 wks of 
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age the frequency of insulitis is reduced in 16-wk-old NOD.B6Idd3 versus NOD female 

mice (Fig. 2.1B). Consistent with the latter, the ratio of CD62LhiFoxP3+ Treg versus IFNγ 

secreting CD4+ T cells in the islets and PLN was significantly increased in 16-wk-old 

NOD.B6Idd3 versus NOD female mice (Fig. 2.6A). The overall frequency of proliferating T 

cells was reduced in the islets of 16-wk-old NOD.B6Idd3 versus NOD female mice (Fig. 

2.6B). To directly assess the in vivo suppressor activity of NOD and NOD.B6Idd3 

FoxP3+Treg, co-adoptive transfer experiments were carried out. CD4+CD25+ T cells were 

prepared from PLN of 16-wk-old NOD.B6Idd3 or NOD female mice, co-injected with 

splenocytes from diabetic NOD donors into NOD.scid mice, and diabetes monitored. 

Importantly, the frequency of FoxP3-expressing cells in the pool of sorted CD4+CD25+ T 

cells was similar between NOD and NOD.B6Idd3 donors (72 ± 5% and 75 ± 3%, 

respectively; average of 3 separate experiments). As expected all NOD.scid mice 

receiving diabetogenic splenocytes alone developed diabetes (Fig. 2.6C). Similarly, the 

entire group of NOD.scid mice injected with a mixture of diabetogenic splenocytes plus 

NOD CD4+CD25+ T cells developed diabetes albeit with delayed kinetics (Fig. 2.6C). In 

contrast, NOD.scid mice receiving NOD.B6Idd3 CD4+CD25+ T cells plus diabetogenic 

splenocytes exhibited a significantly delayed onset and reduced frequency of diabetes 

relative to recipients of the cell mixture containing NOD CD4+CD25+ T cells (Fig. 2.6C). 

Therefore, CD4+CD25+ T cells from NOD.B6Idd3 mice exhibit an increased suppressor 

activity compared to NOD CD4+CD25+ T cells. 

To determine whether the protection mediated by NOD.B6Idd3 CD4+CD25+ T 

cells was due to quantitative or qualitative differences within the pool of 
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CD62LhiFoxP3+Treg, the suppressor activity of these immunoregulatory effectors was 

tested in vitro. CD62Llo- and CD62Lhi-expressing CD4+CD25+ T cells were FACS sorted 

from the PLN of 16-wk-old NOD.B6Idd3 and NOD female mice, and then cultured at 

various ratios with naive CD4+ T cells from the spleen of NOD mice. As expected, 

CD62LloCD4+CD25+ T cells from either NOD.B6Idd3 or NOD female mice were inefficient 

at suppressing proliferation of the stimulated CD4+ T cells (Fig. 2.6D). On the other hand, 

CD62LhiCD4+CD25+ T cells effectively suppressed proliferation of the responder CD4+ T 

cells. Furthermore, no significant difference in suppressor activity of NOD.B6Idd3 and 

NOD CD62LhiFoxP3+ Treg was detected (Fig. 2.6D). Therefore, the enhanced suppressor 

activity detected in the PLN of NOD.B6Idd3 mice is due to an increased number of 

CD62Lhi FoxP3+Treg, consistent with results obtained in the above co-adoptive transfer 

experiments (Fig. 2.6C). 

 

2.4.3 The frequency of CD62LhiFoxP3+ Treg is increased in vivo in NOD mice treated 

with IL-2 

Since IL-2 secretion by conventional T cells is limited in NOD mice compared with 

NOD.B6Idd3 animals (Fig. 2.2) (38), then increasing the level of ‘‘endogenous’’ IL-2 

would be expected to enhance the frequency of CD62LhiFoxP3+ Treg in vivo. To test this 

hypothesis, 10-wk-old NOD female mice were injected intramuscularly with a 

doxycycline inducible adeno-associated virus (AAV) recombinant encoding IL-2 (AAV-

Tet-IL-2). No difference was detected in the frequency of CD4+CD25+Foxp3+ T cells in 

AAV-Tet-IL-2 treated but uninduced NOD mice or animals left untreated (Fig. 2.7A and 
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B). In contrast, NOD mice treated with AAV-Tet-IL-2 and in which IL-2 transgene 

expression was induced exhibited an increased frequency of CD4+CD25+Foxp3+ in all 

tissues tested (Fig. 2.7A and B), and showed a significant increase in CD62Lhi-expressing 

CD4+CD25+Foxp3+ T cells in the PLNs (Fig. 2.7C). Furthermore, addition of IL-2 to FACS-

sorted CD62Llo-expressing CD4+CD25+ T cells upregulated expression of CD62L in vitro 

(Fig. 2.7D). These results indicate that: (i) IL-2 availability in vivo regulates the frequency 

of CD62LhiFoxP3+ Treg, and (ii) IL-2 can ‘‘convert’’ CD62LloFoxP3+ Treg into CD62LhiFoxP3+ 

Treg in vitro. 
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2.5 Discussion  

Analyses of NOD mice congenic for protective Idd3 intervals have shown that aberrant 

expression of IL-21 and IL-2 influences various aspects of β cell autoimmunity in NOD 

mice (34-38). Increased expression of IL-21 and IL-21R by T cells is associated with 

enhanced development of pathogenic Teff in NOD mice through, for instance, disruption 

of T cell homeostasis (34, 36, 42-44). IL-21 has also been reported to render 

conventional T cells resistant to the suppressor effects of FoxP3+ Treg (45, 46). In NOD 

mice the resistance of conventional T cells to Treg-mediated suppression, however, 

appears to be independent of Idd3 (47). On the other hand, decreased transcription of 

the Il2 gene in NOD mice has been linked to a reduced frequency of FoxP3+ Treg in the 

PLNs, decreased intra-islet survival, a limited suppressor function of FoxP3+Treg, in 

addition to an impaired capacity of FoxP3+ Treg to expand in the islets (24, 37, 38). 

Differences in glycosylation of IL-2 between C57BL/6 and NOD mice, however, have no 

effect on diabetes development (48). The current study provides new insight into how 

dysregulation of IL-2 adversely influences the pool of FoxP3+ Treg in NOD mice as T1D 

progresses. We show that reduced IL-2 expression in NOD mice is associated with a 

temporal shift favoring CD62Llo- versus CD62Lhi-expressing FoxP3+ Treg (Fig. 2.4) thereby 

altering the composition and diminishing the suppressor function of the overall pool of 

FoxP3+ Treg (Fig. 2.6). 

Previous work by our group (7) and others (38) demonstrated that the 

progression of β cell autoimmunity correlates with an age-dependent decrease in the 

frequency of CD62LhiFoxP3+ Treg in NOD female mice. The current study shows that this 
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decrease is due to an inverse relationship between CD62Lhi- and CD62Llo- expressing 

FoxP3+ Treg that is dependent on the level of IL-2 expression. A direct role for IL-2 in 

regulating the balance between CD62LhiFoxP3+ Treg and CD62LloFoxP3+ Treg was seen in 

vitro and in vivo. Supplementing cultures of sorted CD62LloCD4+CD25+ T cells with IL-2, 

for instance, increased the frequency of CD62LhiCD4+CD25+ T cells (Fig. 2.7D). In 

addition, an increase in the frequency of CD62LhiFoxP3+ Treg was detected in the PLN of 

NOD mice following a brief induction of AAV encoded IL-2 (Fig. 2.7C). This in vivo pulse 

of ectopic IL-2 also resulted in effective suppression of β cell autoimmunity and 

prevention of overt diabetes in treated NOD mice (49). 

The above results are consistent with IL-2 providing critical signals for the 

maintenance of the FoxP3+ Treg compartment in general (24, 25), and specifically 

CD62LhiFoxP3+ Treg. Our findings demonstrate that the temporal shift in the 

composition of FoxP3+ Treg in NOD mice correlates with the proliferative status of 

CD62Lhi- versus CD62Llo- expressing FoxP3+Treg. In the islets of NOD mice a greater than 

two-fold increase in the frequency of proliferating cells is detected in CD62Llo (45%)- 

versus CD62Lhi (17%)-expressing FoxP3+ Treg (Fig. 2.5A and B). However, the frequency 

of proliferating CD62LhiFoxP3+ Treg is increased twofold in the islets of NOD.B6Idd3 

(33%) versus NOD (17%) mice (Fig. 2.5A and B), resulting in a significantly increased ratio 

of dividing CD62LhiFoxP3+ Treg to CD62LloFoxP3+ Treg in NOD.B6Idd3 islets (Fig. 2.5C). A 

similar trend was detected in the islets of NOD mice treated with AAV-Tet-IL-2 and fed 

doxycycline (Fig. 2.S1). Increased proliferation in NOD.B6Idd3 mice would be expected 

to promote more efficient maintenance of the CD62LhiFoxP3+ Treg pool compared with 
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NOD mice. Although the frequency of proliferating CD62Llo FoxP3+ Treg was also 

increased in the islets of NOD.B6Idd3 (55%) versus NOD (45%) mice, the difference 

between the two was not as great as that seen between the respective CD62Lhi FoxP3+ 

Treg pools (Fig. 2.5A and B). This finding suggests that CD62LhiFoxP3+ Treg are more 

sensitive to changes in the level of IL-2 than CD62LloFoxP3+Treg. Elevated IL-2 expression 

by conventional T cells in NOD.B6Idd3 mice may therefore selectively increase 

proliferation (Fig. 2.5) and survival (24) of suppressor-efficient CD62LhiFoxP3+ Treg 

residing in the islets. IL-2 also has direct effects on CD62LloFoxP3+Treg. As noted above, 

IL-2 converts a significant number of sorted CD62Llo FoxP3+ Treg into CD62LhiFoxP3+ Treg 

in vitro (Fig. 2.7D), possibly reflecting downregulation of the activation status of 

CD62LloFoxP3+Treg. Indeed, IL-2 mediates both positive and negative effects on 

conventional T cells depending on the activational status of the cells (28, 50). Finally, 

APC may also influence the CD62LhiFoxP3+ Treg to CD62LloFoxP3+ Treg ratio in vivo. The 

type and activational status of professional APC can have a marked effect on FoxP3+ 

Treg induction/expansion. Groups have shown that macrophages and DCs exhibit an 

increased tolerogenic capacity in NOD.Idd3 versus NOD mice (51, 52); the mechanistic 

basis for this enhanced tolerogenic effect, however, has yet to be determined. 

Recent studies with NOD.Idd3 congenic lines have shown that NOD-derived 

FoxP3+ Treg exhibit an impaired suppressor function (37, 38). Our results demonstrate 

that the limited suppressor activity reported for NOD FoxP3+ Treg is due to an increased 

number and frequency of suppressor-deficient CD62LloFoxP3+ Treg, which ‘‘dilute out’’ 

the suppressor-competent CD62LhiFoxP3+ Treg. The limited suppressor function of 
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sorted NOD or NOD.B6Idd3 CD62LloFoxP3+ Treg was demonstrated in vitro (Fig. 2.6D), 

consistent with an earlier report (7). These results, however, differ from work published 

by Szanya et al., that demonstrated that CD62LhiCD4+CD25+ and CD62LloCD4+CD25+ T 

cells from the spleen of NOD mice differ in suppressor activity only in in vivo, but not in 

vitro, assays (19). The level of anti-CD62L Ab-binding and the gating scheme may 

account for differences in the frequency of and, in turn the in vitro suppressor activity 

of, the pool of CD62LloFoxP3+ Treg in the respective studies. In addition, Szanya et al. 

examined splenic-derived CD62LloFoxP3+ Treg, whereas in this study CD62LloFoxP3+ Treg 

were prepared from PLN; ‘‘tissue residency’’ may also influence the suppressor activity 

of these T cells and contribute to the disparity between the studies. Reduced TGFβ1 (7) 

expression relative to CD62LhiFoxP3+ Treg, however, is consistent with a diminished 

suppressor activity by CD62LloFoxP3+ Treg. In contrast to NOD mice, the increased 

frequency of CD62Lhi-FoxP3+ Treg in the PLN and islets of NOD.B6Idd3 mice efficiently 

blocks β cell autoimmunity (Fig. 2.6B and C). Supporting this model is the marked 

increase in the ratio of FoxP3+ Treg to Teff detected in the PLN and islets of NOD.B6Idd3 

mice relative to age-matched NOD female mice (Fig. 2.6A). In addition, CD4+CD25+ T 

cells from the PLN of NOD.B6Idd3 mice proved to be more effective at suppressing the 

adoptive transfer of diabetes relative to NOD CD4+CD25+ T cells (Fig. 2.6C). One caveat 

with the latter finding is that, despite similar numbers of activated Teff (e.g. FoxP3-

CD4+CD25+ T cells) in the transferred NOD and NOD.B6Idd3 CD4+CD25+ T cells, an 

increased frequency of β cell-specific pathogenic Teff may have limited the efficacy the 

NOD Treg pool. A previous study, however, showed that proliferation of transferred 
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diabetogenic CD4+ T cells was significantly reduced in the PLN of NOD.B6Idd3 versus 

NOD recipients (38), which is consistent with NOD.B6Idd3 mice having enhanced 

suppressor activity. Noteworthy is that no difference was detected in the in vitro 

suppressor activity of CD62LhiFoxP3+ Treg from NOD and NOD.B6Idd3 mice (Fig. 2.5C); in 

addition, similar in vivo suppressor activity was detected for the respective CD62Lhi 

FoxP3+ Treg as determined by co-adoptive transfer experiments (M. C. J. and R. T.; 

unpublished data). These observations argue that quantitative and not qualitative 

differences in CD62LhiFoxP3+ Treg explain the distinct suppressor activity of the FoxP3+ 

Treg pool detected in NOD and NOD.B6Idd3 mice (Fig. 2.6B). It is important to note that 

the frequency of CD62LhiFoxP3+ Treg decreased with age in the islets of NOD.B6Idd3 

albeit to a lesser extent than seen in NOD islets (Fig. 2.4D). NOD.B6Idd3 mice develop 

insulitis and diabetes but at a reduced frequency and a delayed onset compared with 

NOD mice (Fig. 2.1). Therefore, in addition to IL-2, other factors contribute to the 

homeostasis and function of CD62LhiFoxP3+ Treg. 

In summary, we demonstrate that reduced IL-2 expression impacts FoxP3+ Treg 

in NOD mice by altering the ratio of CD62Lhi to CD62Llo FoxP3+ Treg and in turn reducing 

the suppressor activity of the FoxP3+ Treg compartment. These findings provide further 

rationale for the development of IL-2- based immunotherapy as a means to manipulate 

FoxP3+ Treg for the prevention and suppression of β cell autoimmunity. 
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Figure 2.1 NOD.B6Idd3 female mice exhibit a reduced frequency of diabetes and 
insulitis compared to NOD female mice. (A) Female NOD (open square, n = 20) and 
NOD.B6Idd3 (black square, n = 19) were monitored for diabetes incidence. ***p<0.001 
(Kaplan–Meier logrank test). (B) The frequency of insulitis in the pancreas of 16-wk-old 
NOD (n = 7) and NOD.B6Idd3 (n = 6) female mice was determined via H&E staining. 
*p<0.05, ***p<0.001; NOD versus NOD.B6Idd3 for a given type of insulitis (Chi square). 
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Figure 2.2 NOD.B6Idd3 versus NOD naïve CD4+ T cells secrete more IL-2 upon 
stimulation. Naïve CD4+ T cells from the spleen of 4-wk old NOD and NOD.B6Idd3 
female mice were stimulated with varying concentrations of plate-bound anti-CD3 Ab 
and 2 μg/ml anti-CD28, and IL-2 secretion measured 24 h post-stimulation by ELISA 
using RPMI complete medium. *, p<0.05; ***, p<0.001; NOD.B6Idd3 versus NOD 
cultures for give anti-CD3 Ab concentration (2-way ANOVA, error bars indicate ±SEM).  
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Figure 2.3 NOD.B6Idd3 mice have an increased frequency of peripheral FoxP3+ Treg 
compared to age-matched NOD mice. (A) Representative FACS plots of NOD and 
NOD.B6Idd3 PLN at 16 wks of age staining for CD3+CD4+T cells (left column) used to gate 
CD25+FoxP3+ T cells (right columns) with the average percentage of the indicated 
populations shown to the right of each gate. The (B) frequency and (C) absolute number 
of CD3+CD4+CD25+FoxP3+ T cells in the thymus, spleen, PLN, and islets were measured in 
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female NOD (n = 8–15/age group) and NOD.B6Idd3 mice (n = 7–16/age group) at 4, 10, 
and 16 wks of age. The absolute number in each respective tissue was determined by 
multiplying the total number of counted cells by the percentage of T cells determined by 
FACS. *p<0.05; **p<0.01; ***p<0.001; NOD.B6Idd3 versus NOD for a given tissue (2-way 
ANOVA, data are mean + SEM).   
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Figure 2.4 A temporal shift in CD62Lhi- versus CD62Llo-expressing FoxP3+ Treg is 
detected in NOD but not NOD.B6Idd3 female mice. (A) Representative FACS-staining 
profile of CD62L expression on gated CD3+CD4+CD25+FoxP3+ T cells in the PLN of 16-wk-
old NOD and NOD.B6Idd3 mice. The (B and D) frequency and (C and E) number of 
CD62Lhi- and CD62Llo-expressing CD3+CD4+CD25+FoxP3+ T cells in the (B and C) PLN and 
(D and E) islets of 4-, 10-, and/or 16-wk-old NOD (n = 7–10/age group) and NOD.B6Idd3 
(n = 8–10/age group) female mice. *p<0.05; **p<0.01; ***p<0.001; NOD.B6Idd3 versus 
NOD for a given tissue (2-way ANOVA, data are mean + SEM). 
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Figure 2.5 Proliferation of CD62LhiFoxP3+ Treg is increased in the islets of NOD.B6Idd3 
versus NOD female mice. (A) Representative FACS plots for the gating scheme used to 
assess the frequency of islet infiltrating Ki67-staining CD62Lhi versus CD62Llo in 
CD4+CD25+FoxP3+ T cells of 12-wk-old NOD and NOD.B6Idd3 female mice. (B) Average 
percent and (C) the ratio of Ki67-staining CD62LhiCD4+CD25+FoxP3+and 
CD62LloCD4+CD25+FoxP3+ T cells from the islets of 12-wk-old NOD (n = 5) and 
NOD.B6Idd3 (n = 5) female mice. *p<0.05; **p<0.01; ***p<0.001 (2-way ANOVA, data 
are mean + SEM). 
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Figure 2.6 The FoxP3+ Treg pool in 16-wk-old NOD.B6Idd3 versus NOD female mice 
exhibits increased suppressor activity. (A) The ratio of CD62Lhi expressing 
CD3+CD4+CD25+FoxP3+ T cells to CD3+CD4+ T cells expressing intracellular IFNγ (e.g. type 
1 T effectors (Teff)) was determined in the islets and PLN of 16-wk-old NOD (n = 9 and 6, 
respectively) and NOD.B6Idd3 (n = 10 and 6, respectively) female mice via FACS. Each 
data point represents an individual mouse, horizontal bar represents the mean. 
**p<0.01; ***p<0.001; NOD.B6Idd3 versus NOD (Student’s t-test). (B) Ki67staining for T 
cell proliferation of CD3+ T cells in the islets of 16-wk-old NOD.B6Idd3 (n = 6) versus NOD 
(n = 5) female mice; ***p<0.001 (Student’s t-test). (C) CD4+CD25+ T cells sorted from 
pooled PLN of 16-wk-old NOD or NOD.B6Idd3 female mice were transferred with 
diabetogenic NOD splenocytes into NOD.scid mice (n = 5 per group) and diabetes 
monitored; as a control, diabetogenic splenocytes alone were transferred into 
NOD.scid recipients; **p<0.001, NOD.B6Idd3 versus NOD CD4+CD25+ T cells (Kaplan–
Meier logrank test). (D) The in vitro suppressor activity was compared between CD62Lhi- 
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and CD62Llo-expressing CD4+CD25+ T cells sorted from the PLN of 16-wk-old NOD and 
NOD.B6Idd3 female mice. Suppressor activity was determined by measuring via FACS 
proliferation of cell-trace violet dye-labeled CD4+CD25- responder T cells stimulated with 
anti-CD3 plus anti-CD28 Ab, and cultured with varying numbers of CD62Lhi- or CD62Llo-
expressing CD4+CD25+ T cells; data are the average percent of proliferation from 2 wells 
+ SEM. **p<0.01; *p<0.05; CD62Lhi versus CD62Llo in NOD and NOD.B6Idd3 (2-way 
ANOVA). Data are representatives of three independent experiments. 
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Figure 2.7 Increased IL-2 induces an elevated frequency of CD62LhiFoxP3+ Treg in vivo 
and in vitro. (A) A representative FACS plot of the frequency of CD3+CD4+ gated T cells 
expressing CD25 and FoxP3 in PBL prepared from NOD female mice left untreated (Untx; 
n = 5) or injected at 10 wks of age with AAV-Tet-IL-2 and given doxycycline-containing 
chow for 2 wks (induced; n = 5) or not (uninduced; n = 4) 3 wks post induction (average 
percentages per group are inlayed in the dot plots). Similarly the frequency of (B) 
CD3+CD4+CD25+FoxP3+ T cells in the spleen, popliteal lymph nodes (Pop) and PLN, and 
(C) CD62Lhi- expressing CD3+CD4+CD25+FoxP3+ T cells in the PLN were determined via 
flow cytometry in the respective groups of NOD mice. (C) Each data point represents an 
individual mouse, horizontal bars represent the mean. ***p<0.001 (2-way ANOVA, data 
are mean +/- SEM). (D) CD62L expression after culturing for 48 h sorted CD62Lhi or 
CD62Llo CD3+CD4+CD25+ T cells in the presence or absence of 20 ng/mL of IL-2. 
***p<0.001, CD62Llo (-IL-2) versus CD62Llo (+IL-2) (Student’s t-test, data are mean + 
SEM). 
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Figure 2.S1 The frequency of proliferating CD62LHIFoxP3+ Treg is increased in AAV-Tet-
IL-2 treated NOD mice fed doxycycline. (A) The frequency of islet infiltrating Ki67+ cells 
in CD62LHICD4+FoxP3+ and CD62LLOCD4+FoxP3+ T cells was determined by FACS in NOD 
female mice treated with AAV-Tet-IL-2 at 10 wks of age and fed doxycycline-containing 
(Induced; n=4) or normal chow (Uninduced; n=4) for 2 wks, after which islets were 
harvested. The bars represent the average of individual mice ± SEM. (B) The ratio of 
FoxP3+CD62LHIKi67+ (CD62L+Ki67+ Treg) to FoxP3+CD62LLOKi67+ (CD62L-Ki67+ Treg) 
for uninduced and induced animals was determined by dividing the percentage of the 
former population by the later.  
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Table 2.1 NOD.B6Idd3 interval. The microsatellite markers used to define the interval of 
the B6.Idd3 region introgressed onto the NOD background.  
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CHAPTER 3 

ADENO-ASSOCIATED VIRUS VECTOR MEDIATED β CELL SPECIFIC IL-2 EXPRESSION 
SUPPRESSES TYPE I DIABETES IN NOD MICE 

3.1 Summary 

IL-2 is a critical cytokine that regulates T cell survival, activation, and proliferation. 

Studies utilizing the NOD mouse, a model of human type 1 diabetes (T1D), have shown 

decreased survival of FoxP3-expressing immunoregulatory T cells (FoxP3+ Treg) in the 

pancreas, which has been directly linked to reduced IL-2 secretion. As such, 

administration of IL-2 offers an attractive approach to manipulate FoxP3+ Treg for the 

treatment of T1D and other T cell mediated diseases. The effectiveness of IL-2 therapy, 

however, is dependent on the dose and route of administration, length of treatment 

and local cytokine levels that can be achieved. In the current study, we show that 

treatment with a recombinant adeno-associated virus (rAAV) 8 vector expressing IL-2 

driven by the mouse insulin promoter, mIP (AAV8mIP-IL2), effectively suppresses 

ongoing β cell autoimmunity in NOD mice at a late preclinical stage of T1D. β cell specific 

expression of IL-2 resulted in increased FoxP3+ Treg within the pancreatic islets that 

corresponded with a reduced ratio of pathogenic islet effector T cells to FoxP3+ Treg. 

Notably, islet resident FoxP3+ Treg exhibited enhanced suppressor function, which 
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correlated with increased expression of both contact-dependent and secreted 

suppressor molecules. Furthermore, islet FoxP3+ Treg expressed significantly higher 

levels of anti-apoptotic markers, resulting in enhanced survival after AAV8mIP-IL2 

administration.  In contrast, FoxP3+ Treg in the draining pancreatic lymph node were 

unaffected indicating that treatment with AAV8mIP-IL2 was islet-specific.  These 

findings demonstrate that AAV8mIP-IL2 administration induces robust protection 

against T1D due to enhanced survival and function of islet FoxP3+ Treg.   
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3.2 Introduction  

Type I diabetes (T1D) is an autoimmune disease characterized by the T cell-mediated 

destruction of the insulin secreting β cells located in the pancreatic islets of Langerhans 

(1-4). The disease is characterized as a chronic inflammatory response within the islets, 

typically progressing over a number of years in patients until the remaining β cell mass is 

insufficient to maintain insulin levels needed for blood glucose regulation. Breakdown of 

self-tolerance towards β cells is mediated by both genetic and environmental factors, 

leading to dysregulation within the T cell compartment (5-7). Pathogenic CD8+ and CD4+ 

T effectors (Teff) are typically characterized by the secretion of IFNγ and TNFα, although 

IL-17 secreting Th17 cells have also been implicated in the disease process (8-12). 

Skewed differentiation of naïve T cells toward pathogenic Teff correlates with a reduced 

number and/or function of regulatory CD4+ T cells (FoxP3+ Treg), and a limited sensitivity 

to FoxP3+ Treg-mediated suppression (13-18).  As a result, current immunotherapy 

approaches for the treatment of T1D and other T cell-mediated autoimmune diseases 

have focused on the induction and/or expansion of FoxP3+ Treg to restore self-

tolerance.  

Interleukin-2 (IL-2) is a cytokine that affects a number of other cell types 

including NKT cells, B cells and dendritic cells (DCs), and acts in an autocrine fashion to 

enhance the expansion and survival of Teff (19-22). Notably, IL-2 is also necessary for 

the in vivo maintenance of thymically derived natural FoxP3+ Treg (23-27), in addition to 

contributing to the formation of adaptive FoxP3+ Treg from non-FoxP3 expressing 

precursors in the periphery (28-30). Unlike conventional T cells, FoxP3+ Treg are unable 
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to synthesize IL-2 and are therefore dependent on both Teff and DCs in vivo as sources 

for IL-2 (27, 31). The importance of FoxP3+ Treg in maintaining self-tolerance is 

highlighted by studies demonstrating that defects within the FoxP3+ Treg compartment 

result in systemic autoimmunity (32, 33). Furthermore, previous reports have shown 

that non-obese diabetic (NOD) mice, a spontaneous model of human T1D, have 

deficiencies in the number and/or function of FoxP3+ Treg, contributing to the 

progression of β cell autoimmunity (15, 18, 34). Dysregulation of FoxP3+ Treg in NOD 

mice is in part attributed to reduced IL-2 secretion by Teff (35-37). NOD.Idd3 congenic 

mice, in which protective insulin dependent diabetes loci 3 (Idd3) encoding the Il-2 gene 

from C57BL/6 mice has been introgressed, remain diabetes-free due to increased IL-2 

expression and enhanced FoxP3+ Treg in the islets (37-41). Interestingly, FoxP3+ Treg 

isolated from T1D patients exhibit reduced sensitivity to IL-2 (42).  

IL-2 has been successfully utilized for the treatment and prevention of T1D.  

Initial studies have shown that low-dose recombinant (r) IL-2, and administration of IL-2-

α-IL-2 complexes promoted islet-resident FoxP3+ Treg survival, resulting in protection 

from T1D in NOD mice (36). Furthermore, administration of low dose rIL-2 induced 

remission in recent onset diabetic NOD mice through FoxP3+ Treg dependent 

mechanisms (43, 44). Importantly, high doses of rIL-2 resulted in systemic activation of 

conventional T cells, Teff, and NKT cells in NOD mice, emphasizing the importance of 

regulating systemic IL-2 levels (36, 43). Clinically, rIL-2 therapy has been shown to 

ameliorate both graft-versus-host-disease and Hepatitis C induced vasculitis in patients 

that were refractory to other treatments (45, 46). In both studies, the beneficial effects 
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of rIL-2 treatment were attributed to enhanced systemic FoxP3+ Treg levels. On the 

other hand, a recent trial administering rIL-2 and rapamycin to recent onset T1D 

patients showed only a transient increase in FoxP3+ Treg, concomitant with an increase 

in activated NKT cells and eosinophils, and accelerated loss of insulin C peptide levels, 

suggesting exacerbated β cell autoimmunity (47). Together, these studies indicate IL-2 

therapy can be effective but improved strategies of IL-2 administration are required to 

minimize potential severe side effects.  

Accordingly, we have assessed the use of an adeno-associated virus (rAAV) 

vector to selectively target IL-2 transgene expression to β cells in vivo. rAAV vectors 

offer an attractive immunotherapeutic strategy for several reasons. rAAV vectors exhibit 

limited toxicity and exist as nonintegrating circular monomers or concatemers in the 

nucleus thereby limiting the risk of genomic insertion (48). The virus is capable of 

infecting both dividing and non-dividing cells, in addition to offering a wide range of 

tissue tropism due to the diversity of capsid proteins (49, 50). Additionally, pairing rAAV 

vectors with tissue specific promoters allows for targeted expression of the desired 

transgene (51). Coupled with the development of self-complementary or double 

stranded (ds) AAV vectors, as well as the recent advances in manufacturing and 

purification, rAAV vectors provide an approach to sustain long-term transgene 

expression while limiting virus-specific immune responses (52-56). rAAV vectors are 

being used in several clinical trials to complement various genetic disorders, such as 

hemophilia B(57), Parkinson’s (58), macular degeneration (59) and Rheumatoid arthritis 

(60). In addition, a tetracycline inducible rAAV vector IL-2 system has been shown to be 
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efficacious in altering β cell autoimmunity, suggesting the feasibility of such a targeted 

approach (61).  

In the current study, we demonstrate that vaccination with a rAAV8 vector 

expressing IL-2 driven by the mouse insulin promoter, mIP (AAV8mIP-IL2), selectively 

enhances the frequency and function of islet FoxP3+ Treg to effectively suppress β cell 

autoimmunity long-term.  
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3.3 Materials and Methods  

Mice 

NOD/LtJ, NOD.CB17-Prkdcscid/J (NOD.scid), NOD.Cα-/-, NOD.BDC (62), 

NOD.BDC.FoxP3.GFP (63), C57BL/6, and NOD.8.3 (64) mice were bred and maintained 

under specific pathogen-free conditions in an American Association for Laboratory-

accredited animal facility. All procedures were approved by the University of North 

Carolina Animal Use and Care Committee. 

 

rAAV vector engineering, packaging and vaccination  

Full length cDNA encoding murine il2 (of the NOD genotype) and enhanced green 

fluorescence protein (EGFP) were PCR amplified and subsequently subcloned into 

TOPO2.1 (Invitrogen) via the manufacturer’s recommendations. After sequencing, 

transgenes were excised and ligated into a rAAV vector mIP plasmid. IL-2 transgene 

expression was confirmed by ELISA, while EGFP transgene was confirmed by fluorescent 

microscopy, after Fugene 6 (Roche) mediated transfection of NIT-1 cells in vitro 

according to the manufacturer’s directions.   

AAV production was completed as previously described (65). Briefly, HEK 293T 

cells were transfected via polyethyleneimine (PEI) with adeno helper encoding plasmid 

(pXX6-80), AAV8 capsid encoding plasmid and the AAV8mIP-IL2/EGFP plasmids in order 

to package AAV serotype 8 (AAV8) virus. Nuclear fractions were harvested 72 hours 
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post-transfection and virus was purified with a Cesium Chloride (RPI) gradient. The virus 

containing fractions and titers were determined by Southern dot blot.  

10-12 week old NOD female mice were vaccinated with 2.5 x 1010 viral particles 

(VP) of AAV8mIP-IL2 or AAV8mIP-EGFP or 1 x 1010 VP AAV8mIP-IL2 intra-peritoneally 

(I.P.) using an insulin syringe.  

 

ELISA 

To assess in vivo systemic IL-2 levels, serum was collected and diluted 1:2 in RPMI 1640 

media containing 10% heat-inactivated FBS, 1 mM sodium pyruvate (Gibco), 2 mM 

Hepes, 100 U/ml penicillin/streptomycin (Gibco), 50 μM β mercaptoethanol (Sigma-

Aldrich) (RPMI complete medium). IL-2 was also measured in supernatants collected 

from in vitro cultured islets after in vivo transduction with AAV8mIP-IL2, AAV8mIP-EGFP 

or from responder T cells. The αIL-2 Ab set (JES6-1 and JES6-5; eBioscience) was used at 

a concentration of 2 μg/ml on a high binding ELISA plate (Costar). 

Measurements of IFNγ in supernatants were conducted using the mouse IFNγ 

ELISA set (BD optEIA) as per the manufacturer’s recommendations. Supernatants were 

diluted 1:2 in RPMI complete medium.  

 

Islet isolation 

Pancreas specimens were perfused with 2 mg/ml Collagenase P (Roche) and digested 

for 30 min at 37°C. Islets were purified via Ficoll gradient, hand-picked and counted. For 

flow cytometry analysis, lymphocytes were collected from freshly isolated islets after 
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culturing in RMPI complete medium for a minimum of 4 hours at 37°C. Cell debris were 

removed with a 70 μM nylon filter and stained.  

 

Streptozotocin treatment (STZ) 

NOD mice were treated I.P. with 200 mg/kg of STZ (Sigma) resuspended in fresh sodium 

citrate buffer (pH = 4.0). 72 hours post-STZ, animals were vaccinated I.P. with 2.5 x 1010 

VP AAV8mIP-IL2 or left untreated. Blood glucose levels and serum IL-2 were assessed 

over 10 days post-rAAV vector vaccination. NOD mice treated with 2.5 x 1010 VP 

AAV8mIP-IL2 alone served as positive controls.  

 

Flow cytometry 

Total cells from the respective tissues were stained with a variety of previously titrated 

fluorochrome-conjugated monoclonal antibodies specific for: CD3 (145-2C11), CD4 

(GK1.5), CD8 (Ly-2), CD25 (PC61.5), CD62L (MEL-14), GITR (DTA-1), ICOS (7E.17G9), 

CTLA-4 (UC10-4F10-11), HELIOS (22F6) and FoxP3 (FJK-16s). Fc receptors were blocked 

with rat α-mouse CD16/32 (2.4G2) (BD Biosciences) prior to staining. Intracellular KI67 

(B56: BD Biosciences) and BcL-2 (3F11: BD Biosciences) staining was done using the 

Fix/Perm and Perm/Wash reagents (ebioscience) according to the manufacturers 

recommendations. 

Intracellular cytokine staining was performed on single cell suspensions as 

previously described (66). Briefly, lymphocytes were stimulated with 500 ng/ml PMA 

(Sigma) and 1000 ng/ml ionomycin (Sigma) in complete RPMI complete medium for 5 
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hours at 37°C; 10 μg/ml Brefeldin A (Sigma) was added to the culture for the last 4 hours 

of incubation. Cells were then stained for surface molecules, fixed and permeabilized 

with Cytofix/Cytoperm (BD Biosciences) and stained for intracellular IFNγ (XMG1.2) or 

IL-10 (JES5-16E3).  

For phosphortylated STAT5 (pSTAT5) staining, organs were harvested and 

immediately processed in PBS containing 2% paraformaldehyde for fixation. Single cell 

suspensions were incubated on ice for 20 minutes, followed by centrifugation and re-

suspension in ice cold methanol for 30 minutes for permeabilization. Cells were then 

counted, washed twice in 1% BSA in PBS, and stained with cell surface, intracellular and 

pSTAT5 (BD Biosciences) antibodies for a minimum of 1 hour on ice.  

Data were acquired on a Cyan flow cytometer (DakoCytomation) and analyzed 

using Summit software (DakoCytomation).  

 

Diabetes monitoring and insulitis scoring  

NOD mice were monitored weekly for diabetes by urine analysis via Keto-Diastix (Bayer). 

In urine positive animals, blood glucose levels were subsequently checked for 

confirmation. NOD mice were classified as diabetic after three consecutive blood 

glucose readings over 250 mg/dL.   

For insulitis scoring, pancreases were harvested and fixed with formalin for 48 

hours at room temperature. Serial sections 100 μm apart were prepared and stained 

with Hematoxylin and Eosin (H and E). A minimum of 100 islets were scored per group. 
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In vitro assays  

Spleens were pooled from NOD.FoxP3.BDC.GFP animals treated with 2.5 x 1010 

VP AAV8mIP-IL2 or AAV8mIP-EGFP. After culturing, single cell suspensions were filtered 

and stained with antibodies for CD4 and CD3 respectively in PBS supplemented with 

2.5% BSA and 2 mM EDTA. CD4+CD3+FoxP3.GFP+ Treg were sorted on a MoFlo sorter 

(Dako Cytomation).  

For T cell responders, spleens from NOD.BDC mice were pooled. Naïve 

CD4+CD62L+ splenocytes were isolated using the CD4+CD62L+ T cell isolation kit II 

(Miltenyi Biotec) and subsequently labeled with Cell Trace Violet (Invitrogen) as per the 

manufacturer’s recommendations. Cell purity in naïve populations was >95% by flow 

cytometry.  

NOD.Cα-/- mice were utilized as antigen presenting cells (APCs). Briefly, spleens 

were harvested, processed and re-suspended at a concentration of 1.0 x 107 cells/ml in 

RPMI complete medium. sBDC peptide was added  to a final concentration of 100 ng/ml 

or 1 μg/ml. Cells were then incubated at 37°C for 2 hours, washed twice in RPMI 

complete medium and re-suspended at 4 x 106 cells/ml.  

Cells were co-cultured at a starting ratio of 1:1:1 (FoxP3+ Treg: T cell responders: 

APCs) in RPMI complete medium. 2 x 105 responder cells/well, with FoxP3+ Treg titrated 

down to a 1:8 ratio compared to T cell responders. 72 hours later, supernatants were 

obtained for IL-2 and IFNγ ELISAs as described above. Cell proliferation in the T cell 

responder population was assessed by total percentage of cells undergoing cell violet 

dilution using flow cytometry.  
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3.4 Results 

3.4.1 Targeting IL-2 expression to β cells in vivo via AAV8mIP-IL2 vaccination 

IL-2 has pleiotropic effects on the immune system and has been utilized to suppress 

autoimmunity, including T1D (36, 43, 45). Systemic administration of IL-2, however, can 

result in significant off-target effects (36, 43). In addition, the efficacy of IL-2 in a 

localized tissue environment versus systemic administration is poorly defined. With this 

in mind, we assessed the effects of islet specific IL-2 on β cell autoimmunity using the 

AAV8mIP-IL2 vector. 

To initially show that AAV8mIP-IL2 mediated transgene expression was β cell 

specific, NOD.scid mice were treated with 2.5 x1010 VP AAV8mIP-IL2, 1 x1010 VP 

AAV8mIP-IL2, or were left untreated. At 2 weeks post-AAV vector injection, islets were 

isolated from individual recipients and cultured for 96 hours. Increased IL-2 was 

detected in the supernatants in an AAV vector dose dependent manner (Fig. 3.1A). 

Furthermore, no IL-2 was detected in supernatants from single cell suspensions of liver 

or heart tissue (data not shown), which are known to be transduced in vivo by rAAV8 

vectors (67, 68).  

To assess systemic IL-2 levels after AAV8mIP-IL2 treatment, 10-12 week old NOD 

mice were vaccinated I.P. with 2.5 x 1010 VP AAV8mIP-IL2, 1 x 1010 VP AAV8mIP-IL2, 2.5 

x 1010 VP AAV8mIP-EGFP, or were left untreated. At 10 days post-treatment, IL-2 was 

detected in the serum of AAV8mIP-IL2 treated NOD mice and maintained over 24 days 

(Fig. 3.1B), while no IL-2 was detected in the serum of untreated or AAV8mIP-EGFP 

controls.  



102 
 

To further demonstrate specificity of IL-2 transgene expression, NOD mice were 

treated with STZ to induce β cell death, and 72 hours later, vaccinated with 2.5 x1010 VP 

AAV8mIP-IL2 or were left untreated. As early as 24 hours post-STZ treatment, NOD mice 

exhibited elevated blood glucose levels (data not shown). Serum IL-2 levels in STZ-

treated NOD mice vaccinated with AAV8mIP-IL2 were significantly lower than AAV8mIP-

IL2 only treated controls at day 10 and 14 post-streptozotocin treatment (Fig. 3.1C). This 

data indicates that levels of IL-2 secretion are dependent on the amount of β mass at 

the time of AAV8mIP-IL2 treatment.  

 

3.4.2 AAV8mIP-IL2 administration increases islet FoxP3+ Treg frequency and number  

To directly evaluate the effect of increased local IL-2 on islet FoxP3+ Treg, NOD mice 

were treated with AAV8mIP-IL2, AAV8mIP-EGFP or left untreated. At 4 weeks post-

treatment, the frequency (Fig. 3.2A) and number (Fig. 3.2B) of FoxP3+ Treg in the 

draining pancreatic lymph node (PLN) and islets from the respective treatment groups 

were determined. Both the frequency and number of FoxP3+ Treg in NOD mice treated 

with 2.5 x 1010 VP AAV8mIP-IL2 were significantly increased compared to untreated and 

AAV8mIP-EGFP treated controls. Furthermore, the magnitude of the effect on islet 

FoxP3+ Treg in vaccinated NOD mice directly correlated with AAV8mIP-IL2 dose. Notably, 

no significant effect on the PLN resident FoxP3+ Treg was detected after treatment (Fig. 

3.2A), suggesting that AAV8mIP-IL2 administration preferentially impacts the islets. 

  In addition to FoxP3+Treg, FoxP3-CD4+ T cells were assessed in the PLN and islets 

of AAV8mIP-IL2 treated NOD mice. There was no marked change in the frequency of 
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CD25+FoxP3-CD4+ T cells in the PLN or islets of AAV8mIP-IL2 treated NOD mice 

compared to AAV8mIP-EGFP or untreated controls 4 weeks post-treatment (Fig. 3.2C). 

On the other hand, the frequency of islet-resident CD25-FoxP3-CD4+ T cells was 

significantly reduced in AAV8mIP-IL2 treated NOD mice (Fig. 3.2D). T1D is primarily 

mediated by β cell specific IFNγ-expressing CD4+ and CD8+ Teff (8, 10, 11). No effect on 

the ratio between IFNγ+ Teff and FoxP3+ Treg was seen in the PLN, regardless of 

treatment (Fig. 3.2E). In contrast, the ratio of IFNγ+ Teff to FoxP3+ Treg in the islets was 

significantly decreased after AAV8mIP-IL2 treatment compared to untreated and 

AAV8mIP-EGFP controls.  

 

3.4.3 IL-2 receptor signaling by islet FoxP3+ Treg is increased by AAV8mIP-IL2 

administration  

IL-2 binding to the IL-2R preferentially induces the phosphorylation of signal tranducer 

and activator of transcription 5 (pSTAT5), leading to downstream signaling events (69). 

To correlate IL-2 signaling with enhanced FoxP3+ Treg frequencies, pSTAT5 levels were 

measured in CD4+FoxP3+/- populations in the PLN and islets 4 weeks post-AAV vector 

vaccination. The frequency of pSTAT5+ islet FoxP3+ Treg was increased 5- to 10-fold in 

AAV8mIP-IL2 versus control groups (Fig. 3.3A). A modest 2-fold increase in the 

frequency of pSTAT5-positive cells was detected in islet CD4+FoxP3- T cells in NOD mice 

vaccinated with 2.5 x 1010 VP AAV8mIP-IL2 (Fig. 3.3B).  Furthermore, no effect was seen 

on either FoxP3+ Treg or CD4+FoxP3- populations in the PLN (Fig. 3.3A, 3.3B). Therefore, 
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the increased frequency and number of FoxP3+ Treg in the islets of AAV8mIP-IL2-treated 

NOD mice correlates with enhanced levels of pSTAT5.  

 

3.4.4 FoxP3+ Treg survival and proliferation are increased by AAV8mIP-IL2 vaccination 

IL-2 plays a key role in the maintenance and expansion of natural FoxP3+ Treg (23-27), as 

well as in the differentiation of naïve T cells into adaptive FoxP3+ Treg from naïve 

precursors (28-30). Therefore, the composition of the expanded islet FoxP3+ Treg pool 

after AAV8mIP-IL2 administration was investigated. NOD mice were treated with 

AAV8mIP-IL2 or AAV8mIP-EGFP, and the frequency of HELIOS expressing cells within 

FoxP3+ Treg was assessed at 4 weeks post-treatment. Approximately 80% of FoxP3+ Treg 

in the PLN expressed HELIOS, whereas >94% of FoxP3+ Treg were HELIOS+ in the islets 

(Fig. 3.4A). No difference in the frequency of HELIOS expressing FoxP3+ Treg between 

AAV8mIP-IL2 and AAV8mIP-EGFP treated recipients was observed (Fig. 3.4A).  

The proliferative status of islet and PLN resident FoxP3+ Treg after AAV8mIP-IL2 

administration was analyzed by KI67 staining. As early as 5 days post-treatment, the 

frequency of KI67+FoxP3+CD25+ Treg was increased in the islets, with a significant 

increase at day 8 post-treatment (Fig. 4.4B). Interestingly, the frequency of 

KI67+FoxP3+CD25+ Treg in the islets was reduced to levels below those found in 

untreated animals by 4 weeks, despite significant increases in islet FoxP3+ Treg 

frequency and number (Fig. 3.4B). Comparatively, the frequency of KI67+FoxP3+CD25+ 

Treg in the PLN remained unchanged over time (Fig. 3.4B). To determine if AAV8mIP-IL2 

vaccination increased the survival of islet FoxP3+ Treg, expression of the anti-apoptotic 
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protein Bcl-2 was measured. Islet FoxP3+ Treg expressed significantly higher levels of 

Bcl-2 at days 5 and 8 post-treatment based on mean fluorescent intensity (MFI) (Fig. 

3.4C), which correlated with an increased frequency of Bcl-2 expressing FoxP3+ Treg (Fig. 

3.4D). In contrast, no change in Bcl-2 expression was detected in PLN FoxP3+ Treg (Fig. 

3.4C, 3.4D) or in islet CD4+IFNγ+ and CD8+IFNγ+ Teff (Fig. 3.4E), indicating that IL-2 is 

specifically affecting FoxP3+ Treg. These results demonstrate that the increased number 

and frequency of FoxP3+Treg after AAV8mIP-IL2 treatment is associated with enhanced 

survival and proliferation.  

 

3.4.5 T1D is averted at a late pre-clinical stage in NOD mice treated with AAV8mIP-IL2  

Since localized IL-2 expression increased the islet FoxP3+ Treg pool, the ability of 

AAV8mIP-IL2 immunotherapy to suppress ongoing β cell autoimmunity and prevent 

overt diabetes was examined. NOD female mice 10-12 weeks of age, and representing a 

late preclinical stage of T1D, were treated with AAV8mIP-IL2, AAV8mIP-EGFP or left 

untreated and monitored for diabetes. Both serum IL-2 (Fig. 3.5C) and the frequency of 

FoxP3+ Treg (Fig. 3.5D) in peripheral blood lymphocytes (PBL) were significantly 

enhanced at 1 week post-treatment with AAV8mIP-IL2 and were maintained in 

normoglycemic animals until the conclusion of the study. The incidence of diabetes was 

significantly reduced in NOD female mice treated with 2.5 x 1010 VP AAV8mIP-IL2 (0/9) 

or 1 x 1010 VP AAV8mIP-IL2 (2/8) compared to untreated controls (18/22) (Fig. 3.5A). 

NOD mice treated with 2.5 x 1010 VP AAV8mIP-EGFP (10/10) developed diabetes by 20 

weeks of age, indicating that diabetes protection was not attributed to a nonspecific 
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effect of AAV vector transduction of β cells (Fig. 3.5A). Consistent with diabetes 

incidence, histological analyses of pancreases from 18 week old NOD mice showed a 

significant decrease in the frequency of insulitis in AAV8mIP-IL2 treated versus age-

matched normoglycemic AAV8mIP-EGFP treated controls (Fig. 3.5B).  

After 35 weeks, the PLN and islets from NOD mice were harvested and assayed 

for the frequency of FoxP3+ Treg and IFNγ+ Teff. AAV8mIP-IL2 vaccinated NOD mice 

displayed a significantly higher frequency of FoxP3+ Treg in the islets compared to 

untreated controls, while no significant difference in the PLN was observed (Fig. 3.5E). 

Furthermore, the frequency of CD62LHI expressing islet FoxP3+ Treg was increased in 

AAV8mIP-IL2 treated NOD mice (Fig. 3.5F). Additionally, the ratio between IFNγ+ Teff to 

FoxP3+ Treg in the PLN and islets of long-term treated recipients was evaluated. 

Strikingly, the ratio of IFNγ+ Teff to FoxP3+ Treg was decreased in the islets of AAV8mIP-

IL2 treated NOD mice compared to normoglycemic untreated controls (Fig. 3.5G); The 

IFNγ+ Teff to FoxP3+ Treg ratio in the PLN was unaffected by AAV8mIP-IL2 vaccination.  

 

3.4.6 Islet FoxP3+ Treg are functionally enhanced after AAV8mIP-IL2 treatment  

In addition to quantitative changes, we assessed whether AAV8mIP-IL2 treatment also 

induced qualitative changes in islet FoxP3+ Treg. FoxP3+ Treg are known to inhibit 

through various contact dependent and independent mechanisms, including the 

expression of cell surface GITR (70), CTLA-4 (71) , and ICOS (72), as well through 

secretion of IL-10 (73), among others. At both day 5 and 8 post-treatment with 

AAV8mIP-IL2, the frequency of IL-10+FoxP3+CD25+ Treg was significantly increased in the 
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islets compared to control NOD mice (Fig. 3.6A), while no marked effect on the 

corresponding PLN populations was observed.  

ICOS expression has been previously reported to correlate with enhanced 

synthesis of IL-10 in FoxP3+ Treg (72). Therefore, the frequency of islet resident IL-

10+FoxP3+ Treg was examined in relation to ICOS expression. The frequency of ICOS+IL-

10+ Treg in the islets was higher than ICOS-IL-10+ populations in all groups analyzed (Fig. 

3.6B). Interestingly, after AAV8mIP-IL2 treatment, the frequency of both ICOS+IL-10+ and 

ICOS-IL-10+ FoxP3+ Treg was increased at both day 5 and 8, while maintaining a higher 

overall frequency of ICOS+IL-10+ in the islets. Furthermore a significant increase in the 

expression of CD25 and a trending increase in GITR and CTLA-4 expression was detected 

in islet FoxP3+ Treg of AAV8mIP-IL2 treated NOD mice (Fig. 3.6C-F). Combined these 

data would strongly indicate that increased IL-2 in the islets mediated by AAV8mIP-IL2 

treatment alters expression of FoxP3+ Treg-associated suppressor molecules.  

To determine if the above phenotype changes correlated with enhanced 

function, the suppressor activity of FoxP3+ Treg from AAV8mIP-IL2 treated NOD mice 

was assessed. For this experiment, FoxP3+ Treg were sorted from the spleens of 

AAV8mIP-IL2 or AAV8mIP-EGFP vaccinated NOD.FoxP3.BDC.GFP mice 4 weeks post-

vaccination. Isolated FoxP3+ Treg were then co-cultured in vitro with labeled naïve 

BDC2.5 responder T cells and peptide pulsed APCs for 72 hours, starting at a ratio of 

1:1:1. FoxP3+ Treg from AAV8mIP-IL2 donors showed a significantly increased 

suppressor function compared to FoxP3+ Treg isolated from AAV8mIP-EGFP donors (Fig. 

3.7A). Proliferation of responder T cells was significantly reduced at both peptide 
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concentrations tested in cultures containing FoxP3+ Treg from AAV8mIP-IL2 versus 

AAV8mIP-EGFP at 1 to 1 and 1 to 2 FoxP3+ Treg to Teff ratios. Furthmore, IFNγ (Fig. 3.7B) 

levels were similarly reduced in these cultures. Therefore, vaccination with AAV8mIP-IL2 

induces a significantly more suppressive FoxP3+ Treg pool that inhibits β cell specific Teff 

in vitro.  
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3.5 Discussion  

IL-2 is essential for the induction and maintenance of FoxP3+ Treg both in vivo and in 

vitro (23-25, 27-30). Furthermore, administration of rIL-2 has been effective in 

preventing ongoing β cell autoimmunity (36). Due to the effects of IL-2 in vivo, however, 

the efficacy of rIL-2 in inducing a protective versus proinflammatory population is highly 

dependent on the dose, half-life and localization of the treatment in vivo. Our results 

demonstrate that AAV8mIP-IL2 treatment of NOD mice suppresses ongoing β cell 

autoimmunity and prevents diabetes.  

Previous studies have shown that transgene expression driven by an AAV8mIP 

expressing vector results in reduced diabetes incidence compared to systemic 

expression of the same transgene by an AAV vector injected intramuscularly (51, 74). 

The enhanced protection afforded by AAV8mIP driven vectors is due to increased islet 

localized transgene expression. Importantly, in our studies islet (Fig. 3.1A) IL-2 levels in 

AAV8mIP-IL2 vaccinated NOD mice were increased in a vector dose-dependent manner. 

Furthermore, STZ treated NOD mice subsequently vaccinated with AAV8mIP-IL2 (Fig. 

3.1C), and failed long term treated recipients (data not shown), exhibited significantly 

reduced IL-2 levels in the serum compared to normoglycemic counterparts, showing 

that β cells are both the source of IL-2 transgene expression and survival of β cells is 

necessary to maintain IL-2 transgene expression after AAV8mIP-IL2 vaccination. Notably, 

systemic IL-2 levels in our AAV8mIP-IL2 vaccinated NOD mice (Fig. 3.1B) were 

significantly reduced compared to our previous reports, which utilized a tetracycline-

inducible system (61) and in NOD recipients receiving high-dose rIL-2 systemically (36).  
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As a result, there were no detectable off-target effects on other cell types, including NKT 

cells or B cells (data not shown). Clinically, the limiting of transgene expression locally is 

imperative for dampening the autoimmune process, while leaving the rest of the 

immune system functional. This was highlighted in recent failed clinical trials utilizing 

rIL2 and rapamycin for the treatment of recent onset human type 1 diabetic patients 

(47). In addition, transgene expression was both constant and maintained in treated 

normoglycemic NOD mice, indicating that AAV transduction did not alter survival or 

function of β cells (Fig. 3.5C). Given that at the time of diagnosis, only 10-20% of β mass 

is left, the ability to maintain that population functionally is of paramount importance 

for treatment.   

Despite increasing localized islet IL-2 levels, the ability of AAV8mIP-IL2 

vaccination to affect islet-resident lymphocyte populations was unknown. It has been 

shown that FoxP3+ Treg preferentially respond to IL-2 in the absence of antigen 

stimulation, whereas naïve CD4+ T cells and Teff require antigen stimulation in 

combination with IL-2 (75). Islet resident FoxP3+ Treg showed enhanced levels of pSTAT5 

(Fig. 3.3A), indicative of constitutive IL-2 signaling after AAV8mIP-IL2 treatment. This 

persistent IL-2R signaling resulted in an increased frequency of thymically derived 

natural FoxP3+ Treg in both short- (Fig. 3.2A) and long- (Fig. 3.5E) term treated NOD 

mice, as determined by maintenance of HELIOS+FoxP3+ Treg frequency after vaccination 

(Fig. 3.4A). This shows that IL-2 is sufficient to increase the frequency of thymically 

derived islet FoxP3+ Treg in vivo, while suggesting that ectopic expression of IL-2 alone is 

unable to induce the formation of adaptive FoxP3+ Treg. Importantly, this indicates that 
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FoxP3+ Treg in NOD mice can be induced to provide sufficient protection and are not 

permanently defective per se.   

Mechanistically, the expanded islet FoxP3+ Treg pool after AAV8mIP-IL2 

vaccination was preceded by an increased frequency of KI67+ cells (Fig. 3.4B), a 

proliferation marker, between day 5 and 8 post-AAV vaccination. This initial burst in 

proliferating islet FoxP3+ Treg was compounded by increased survival of the expanded 

FoxP3+ Treg pool, as determined by expression of the anti-apoptotic marker BcL-2 (Fig. 

3.4C, 3.4D) after AAV8mIP-IL2 vaccination. In addition to quantitative changes, 

AAV8mIP-IL2 vaccination altered the phenotype of islet FoxP3+ Treg as determined by 

increased synthesis of IL-10 (Fig. 6A), as well as increased expression of various contact-

dependent FoxP3+ Treg markers, including ICOS (Fig. 6B), CD25 (Fig. 6D), GITR (Fig. 6E) 

and CTLA-4 (Fig. 6F). Notably, the frequency of CD62LHIFoxP3+ Treg was increased in the 

islets after AAV8mIP-IL2 vaccination (Fig. 5F), which have previously been shown to be 

more protective compared to CD62LLO counterparts (39, 76-78). The complexity of these 

changes shows a robust alteration in the islet FoxP3+ Treg compartment that is 

suggestive of a functionally enriched FoxP3+ Treg pool. Along these lines, FoxP3+ Treg 

derived from AAV8mIP-IL2 vaccinated NOD mice were better at suppressing the 

expansion of BDC2.5 specific responders in vitro (Fig. 7A), that correlated with reduced 

IFNγ secretion (Fig. 7B). Collectively, this suggests that AAV8mIP-IL2 acts in multiple 

ways to alter islet FoxP3+ Treg, specifically by enhancing expansion, survival, and 

functionality.   
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In long-term studies, qualitatively and quantitatively enhanced islet FoxP3+ Treg 

reduced diabetes incidence in NOD female mice after AAV8mIP-IL2 vaccination (Fig. 5A). 

This is attributed to both reduced insulitis (Fig. 5B) and an altered Teff to FoxP3+ Treg 

ratio in the islets of both long- (Fig. 5G) and short-term (Fig. 2E) AAV8mIP-IL2 vaccinated 

recipients.  Moreover, AAV8mIP-IL2 vaccination of NOD.8.3 mice, a CD8+ T cell 

transgenic mouse model of T1D, showed no change in diabetes incidence compared to 

AAV8mIP-EGFP controls, indicating FoxP3+ Treg are required to mediated protection 

(Fig. 3.S1). Collectively, these results are consistent with a model that suggests that once 

established islet FoxP3+ Treg can block further islet infiltrates after AAV8mIP-IL2 

vaccination.  

Surprisingly, AAV8mIP-IL2 treatment did not alter FoxP3+ Treg frequency or 

function within the PLN or other lymph nodes (Fig. 3.S2). Possibly, AAV8mIP-IL2 

transgene expression in the islets may bypass the lymphatics and directly enter the 

bloodstream. This hypothesis is supported by the significantly increased frequency of 

FoxP3+ Treg in PBL (Fig. 3.5C) and detectable serum IL-2 (Fig. 3.5D) levels in long term 

AAV8mIP-IL2 recipient NOD mice. Additionally, IL-2 was not detected in supernatants of 

in vitro plated PLN cells from AAV8mIP-IL2 recipients (data not shown).  

Despite the success of AAV8mIP-IL2 to prevent the onset of T1D in late 

preclinical NOD female mice, the ability of this treatment to reverse diabetes in recent 

onset mice is unknown. Presumably, the limited β cell mass existing at the time of 

clinical onset may be insufficient to drive the necessary transgene expression required 
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to induce remission, despite a reduction in the autoimmune response. Alternatively, 

other groups work showing the conversion of different cell types within the pancreas to 

become insulin secreting cells provides an interesting avenue of investigation (79). 

Furthermore, utilizing AAV8mIP-IL2 in combinatorial treatment, particularly in the 

context of non-depleting monoclonal antibody administration or diabetogenic plasmid 

DNA vaccination, which have both been utilized successfully in prevention and 

treatment studies, is noteworthy (80-83).  

In conclusion, we have demonstrated the AAV8mIP-IL2 treatment is sufficient to 

prevent ongoing β cell autoimmunity in a fashion that correlates with AAV vector dose. 

This protection is mediated through effects on the islet FoxP3+ Treg, resulting in both 

quantitatively and qualitatively altered islet FoxP3+ Treg. Furthermore, the effect of 

AAV8mIP-IL2 was limited strictly to islet FoxP3+ Treg, significantly reducing the off-target 

effects. The research presented demonstrates that localized, viral driven transgene 

expression may prove an effective and safe immunotherapeutic strategy for the 

treatment of T1D and other T cell mediated autoimmune diseases.  
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Figure 3.1 β cell specificity of IL-2 transgene expression after AAV8mIP-IL2 
vaccination.(A) IL-2 levels in supernatants from islets isolated from NOD.scid mice 
vaccinated with AAV8mIP-IL2 2.5 x 1010 VP, AAV8mIP-IL2 1 x 1010 VP, or left untreated 
and cultured for 96 hours. ***p < 0.001 (AAV8mIP-IL2 2.5 x 1010 VP and AAV8mIP-IL2 1 x 
1010 VP versus untreated), **p < 0.01 (AAV8mIP-IL2 2.5 x 1010 VP versus AAV8mIP-IL2 1 
x 1010 VP) (one way ANOVA ± SEM). (B) IL-2 levels in serum of 10-12 week old pre-
diabetic NOD mice treated with AAV8mIP-IL2 2.5 x 1010 VP, AAV8mIP-IL2 1 x 1010 VP, 
AAV8mIP-EGFP 2.5 x 1010 VP or left untreated at day 10 and 24 post-treatment. ***p < 
0.001 (AAV8mIP-IL2 2 2.5 x 1010 VP and AAV8mIP-IL2 1 x 1010 VP versus untreated and 
AAV8mIP-EGFP 2.5 x 1010 VP), *p < 0.05 (AAV8mIP-IL2 2.5 x 1010 VP versus AAV8mIP-IL2 
1 x 1010 VP at day 24) (two way ANOVA ± SEM). (C) Serum IL-2 levels in NOD mice 
treated with streptozotocin alone, streptozotocin followed by AAV8mIP-IL2 2.5 x 1010 VP 
72 hours later, or AAV8mIP-IL2 2.5 x 1010 VP alone at day 10 and 14 post-streptozotocin. 
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***p < 0.001 (AAV8mIP-IL2 only versus AAV8mIP-IL2 and streptozotocin and 
streptozotocin only and AAV8mIP-IL2 and streptozotocin versus streptozotocin only) 
(two way ANOVA ± SEM). 
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Figure 3.2 The frequency and number of islet FoxP3+ Treg are increased after short 
term AAV8mIP-IL2 treatment. (A) Representative FACS plots and corresponding graphs 
for the frequency of CD4+FoxP3+CD25+ Treg in the PLN and islets of groups of 6-10 NOD 
mice at 4 weeks post-treatment with AAV8mIP-IL2 2.5 x 1010 VP, AAV8mIP-IL2 1 x 1010 
VP, AAV8mIP-EGFP 2.5 x 1010 VP, or untreated. ***p < 0.001 (AAV8mIP-IL2 2.5 x 1010 VP 
versus Untreated), **p < 0.01 (AAV8mIP-IL2 2.5 x 1010 VP versus AAV8mIP-EGFP 2.5 x 
1010 VP and AAV8mIP-IL2 1 x 1010 VP versus Untreated), *p < 0.05 (AAV8mIP-IL2 1 x 1010 
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VP versus AAV8mIP-EGFP 2.5 x 1010 VP) (two-way ANOVA ± SEM) (B) Number of islet 
CD4+FoxP3+CD25+ Treg recovered from on average 70-100 islets/mouse. *p < 0.05 
(AAV8mIP-IL2 2.5 x 1010 VP versus untreated and AAV8mIP-EGFP 2.5 x 1010 VP) (one-way 
ANOVA ± SEM). Frequency of (C) CD4+FoxP3-CD25+ and  (D) CD4+FoxP3-CD25- cells in the 
same short term treated NOD mice, ***p < 0.001 (AAV8mIP-IL2 2.5 x 1010 VP and 
AAV8mIP-IL2 1 x 1010 VP versus AAV8mIP-EGFP 2.5 x 1010 VP in islets), **p < 0.01 
(AAV8mIP-IL2 2.5 x 1010 VP versus untreated in islets), *p < 0.05 (AAV8mIP-IL2 1 x 1010 
VP versus untreated in islets) (two-way ANOVA ± SEM).  (E) The ratio of IFNγ+ Teff to 
FoxP3+ Treg in the PLN and islets between treatment groups. ***p < 0.001 (AAV8mIP-IL2 
2.5 x 1010 VP versus untreated and AAV8mIP-EGFP 2.5 x 1010 VP in islets), **p < 0.01 
(AAV8mIP-IL2 1 x 1010 VP versus untreated and AAV8mIP-EGFP 2.5 x 1010 VP in islets) 
(two-way ANOVA ± SEM). 
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Figure 3.3 Treatment with AAV8mIP-IL2 increases the frequency of pSTAT5+ islet 
FoxP3+ Treg. Representative FACS plots of and corresponding graphs for the frequency 
of pSTAT5+ cells within the PLN and islet (A) CD4+FoxP3+ or (B) CD4+FoxP3- T cell in 
groups of 5 NOD mice vaccinated with AAV8mIP-IL2 2.5 x 1010 VP, AAV8mIP-IL2 1 x 1010 
VP, or left untreated. Samples were analyzed 4 weeks-post AAV vector administration, 
***p < 0.001 (AAV8mIP-IL2 2.5 x 1010 VP and AAV8mIP-IL2 1 x 1010 VP versus untreated 
in islets) (two-way ANOVA ± SEM). 
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Figure 3.4 Increased expansion and survival of islet FoxP3+ Treg after AAV8mIP-IL2 
treatment. Representative FACS plots and corresponding graphs for the frequency of 
HELIOS+CD4+FoxP3+CD25+ (A) or KI67+CD4+FoxP3+CD25+ (B) cells in the PLN and islets of 
groups of 5 NOD mice vaccinated with AAV8mIP-IL2 2.5 x 1010 VP or AAV8mIP-EGFP 2.5 
x 1010 VP 4 weeks post-treatment. ***p < 0.001 (AAV8mIP-IL2 2.5 x 1010 VP at day 5 and 
day 8 versus AAV8mIP-IL2 2.5 x 1010 VP at day 28 in islets), *p < 0.05 (AAV8mIP-IL2 2.5 x 
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1010 VP at day 8 versus untreated and untreated versus AAV8mIP-IL2 2.5 x 1010 VP at day 
28 in islets) (two-way ANOVA ± SEM). Representative islet FACS plots and graphs for the 
MFI of BcL-2 (C) and frequency (D) of BcL-2+CD4+FoxP3+CD25+ Treg in the PLN and islets 
of untreated NOD mice or at day 5 and 8 post-vaccination with of AAV8mIP-IL2 2.5 x 
1010 VP. *p < 0.05 (AAV8mIP-IL2 2.5 x 1010 VP day 5 and 8 versus untreated in islets) 
(two-way ANOVA ± SEM). The MFI of BcL-2 in CD4+CD3+IFNγ+ (E) and CD8+CD3+IFNγ+ (F) 
was also assessed in the PLN and islets from groups of 4 NOD mice.  
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Figure 3.5 AAV8mIP-IL2 vaccination prevents diabetes in NOD mice at a late pre-
clinical stage of T1D by increased islet FoxP3+ Treg.  (A) 10-12 week NOD female mice 
were vaccinated with AAV8mIP-IL2 2.5 x 1010 VP (n = 9), AAV8mIP-IL2 1 x 1010 VP (n = 8), 
AAV8mIP-EGFP 2.5 x 1010 VP (n = 10), or left untreated (n = 22) and then monitored for 
overt diabetes. ***p < 0.001 (AAV8mIP-IL2 2.5 x 1010 VP and AAV8mIP-IL2 1 x 1010 VP 
versus untreated and AAV8mIP-EGFP 2.5 x 1010 VP), *p < 0.05 (untreated versus 
AAV8mIP-EGFP 2.5 x 1010 VP) (Kaplan Meier log rank test). (B) The frequency of insulitis 
was determined in groups of 5 pre-diabetic NOD mice treated at 10 weeks with 
AAV8mIP-IL2 2.5 x 1010 VP or AAV8mIP-EGFP 2.5 x 1010 VP and harvested at 18 weeks. 
*** p < 0.001 (AAV8mIP-IL2 2.5 x 1010 VP versus AAV8mIP-EGFP 2.5 x 1010 VP) (two way 
ANOVA ± SEM) (C) Serum IL-2 levels {***p < 0.001 (AAV8mIP-IL2 2.5 x 1010 VP and 
AAV8mIP-IL2 1 x 1010 VP versus untreated and AAV8mIP-EGFP 2.5 x 1010 VP) (one-way 
ANOVA ± SEM)}. (D) Frequency of CD4+FoxP3+CD25+ Treg in PBL were assessed from 
NOD mice treated in (A) up to 35 weeks of age, ***p < 0.001 (AAV8mIP-IL2 2.5 x 1010 VP 
and AAV8mIP-IL2 1 x 1010 VP versus untreated and AAV8mIP-EGFP 2.5 x 1010 VP), *p < 
0.05 (Untreated versus AAV8mIP-EGFP 2.5 x 1010 VP) (one-way ANOVA ± SEM), (E) At 35 
weeks, representative FACS plots and corresponding graphs are shown for the 
frequency of CD4+FoxP3+CD25+ Treg in the PLN and islets of NOD mice from (A). ***p < 
0.001 (AAV8mIP-IL2 2.5 x 1010 VP versus untreated in islets), *p < 0.05 (AAV8mIP-IL2 1 x 
1010 VP versus untreated in islets) (two-way ANOVA ± SEM) (F) CD4+FoxP3+CD25+ Treg 
were assessed for expression of CD62L.  ***p < 0.001 (AAV8mIP-IL2 2.5 x 1010 VP versus 
untreated in islets), **p < 0.01 (AAV8mIP-IL2 2.5 x 1010 VP versus AAV8mIP-IL2 1 x 1010 
VP in PLN), *p < 0.05  (AAV8mIP-IL2 1 x 1010 VP versus untreated in islets or AAV8mIP-
IL2 1 x 1010 VP versus untreated in PLN) (two-way ANOVA ± SEM). (G) The ratio of IFNγ+ 
Teff to FoxP3+ Treg was compared between treatment groups in PLN and islets. **p < 
0.01 (AAV8mIP-IL2 1 x 1010 VP versus untreated in islets), *p < 0.05 (AAV8mIP-IL2 2.5 x 
1010 VP versus untreated in islets) (two-way ANOVA ± SEM). 
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Figure 3.6 Qualitative changes in islet FoxP3+ Treg after AAV8mIP-IL2 treatment. (A) 
Frequency of IL-10+ cells within CD4+FoxP3+CD25+ Treg in the islets of NOD mice day 5 
and 8 post-treatment with AAV8mIP-IL2 2.5 x 1010 VP or untreated, **p < 0.01 (Day 8 
AAV8mIP-IL2 2.5 x 1010 VP versus untreated islets), *p < 0.05 (Day 5 AAV8mIP-IL2 2.5 x 
1010 VP islets versus untreated islets) (two-way ANOVA ± SEM). (B) Representative FACS 
plots and corresponding graphs for the frequency of IL-10+ICOS+/- cells within islet 
FoxP3+CD25+ Treg. *p < 0.05 (CD4+FoxP3+ CD25+ICOS+ and CD4+FoxP3+CD25+ICOS- at day 
5 and 8 versus untreated) (two-way ANOVA ± SEM).  (C-F) MFI of FoxP3, CD25, GITR and 
intracellular CTLA-4 expression on CD4+FoxP3+ Treg from untreated or NOD mice treated 
with AAV8mIP-IL2 2.5 x 1010 VP at day 5 and 8 days post-vaccination. **p < 0.01 (Day 8 
AAV8mIP-IL2 2.5 x 1010 VP versus untreated islets for MFI of CD25) (two-way ANOVA ± 
SEM).  
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Figure 3.7 FoxP3+ Treg from AAV8mIP-IL2 vaccinated mice have enhanced suppressive 
capabilities. (A) CD4+CD3+GFP+ splenocytes were isolated from the spleens of AAV8mIP-
IL2 2.5 x 1010 VP or AAV8mIP-EGFP 2.5 x 1010 VP treated NOD.FoxP3.BDC.GFP mice and 
co-cultured at various ratios with cell trace labeled NOD.BDC CD4+CD62L+ cells and 
peptide pulsed APCs for 72 hours. Conditions were done in triplicate wells. **p < 0.01 (1 
to 1 and 1 to 2 AAV8mIP-IL2 1 ug/ml and AAV8mIP-IL2 100 ng/ml versus AAV8mIP-EGFP 
1 ug/ml and AAV8mIP-EGFP 100 ng/ml) (two-way ANOVA ± SEM). (B) Supernatants were 
harvested at 72 hours and assayed via ELISA for IFNγ. ***p < 0.001 (1 to 1 and 1 to 2 
AAV8mIP-EGFP 1 ug/ml and AAV8mIP-EGFP 100 ng/ml versus AAV8mIP-IL2 1 ug/ml and 
AAV8mIP-IL2 100 ng/ml), **p < 0.01 (1 to 4 AAV8mIP-EGFP 1 ug/ml and AAV8mIP-EGFP 
100 ng/ml versus AAV8mIP-IL2 1 ug/ml and AAV8mIP-IL2 100 ng/ml) (two-way ANOVA ± 
SEM). 
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Figure 3.S1 AAV8mIP-IL2 vaccination does not prevent diabetes in CD8+ T cell 
transgenic NOD.8.3 female mice. (A) Cohorts of 5 NOD.8.3 mice were treated with 
AAV8mIP-IL2 2.5 x 1010 VP or AAV8mIP-EGFP 2.5 x 1010 VP at 8 weeks of age and 
monitored for the development of overt diabetes. (B) At 10 days post-treatment, serum 
IL-2 was detected via ELISA. ***p < 0.001 (AAV8mIP-IL2 2.5 x 1010 VP versus AAV8mIP-
EGFP 2.5 x 1010 VP) (Student t test ± SEM).   
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Figure 3.S2 AAV8mIP-IL2 vaccination has no effect on the frequency or phenotype of 

FoxP3+ Treg in the lymphatics. (A) Frequency of FoxP3+CD25+ Treg in the spleen, PLN, 

mesenteric lymph node (MLN) and brachial lymph node (BLN) in groups of 5 NOD mice 

treated with AAV8mIP-IL2 2.5 x 1010 VP or AAV8mIP-EGFP 2.5 x 1010 VP 4 weeks earlier. 

***p < 0.001 (AAV8mIP-IL2 2.5 x 1010 VP versus AAV8mIP-EGFP 2.5 x 1010 VP in spleen) 

(two-way ANOVA ± SEM). (B) FoxP3+CD25+ Treg from AAV8mIP-EGFP 2.5 x 1010 VP 

(white area) or AAV8mIP-IL2 2.5 x 1010 VP (gray area) treated NOD mice were compared 

for the expression of surface GITR, intracellular CTLA-4, and CD25 by MFI.   
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CHAPTER 4 

COMBINATORIAL IMMUNOTHERAPY FOR THE PREVENTION AND TREATMENT OF TYPE I 
DIABETES 

4.1 Summary  

Type I diabetes (T1D) is a T cell-mediated autoimmune disease characterized by the 

destruction of the insulin producing β cells located in the islets of Langerhans. 

Differentiation and expansion of pathogenic type 1 CD4+ and CD8+ T effectors (Teff) 

correlates with an aberrant FoxP3-expressing regulatory T cell (Foxp3+ Treg) pool in NOD 

mice and diabetic human patients. Previous work in our laboratory has shown that a 

short course of non-depleting αCD4 (YTS177) and αCD8 (YTS105) monoclonal antibodies 

induces rapid remission in recent onset diabetic NOD mice. Induction of diabetes 

reversal is attributed to T cell purging of the islets, and long-term maintenance of 

remission is FoxP3+ Treg-dependent. We have also found that targeting IL-2 expression 

to the islets via administration of an adeno-associated virus (AAV) vector encoding IL-2 

(AAV8mIP-IL2) prevents diabetes in NOD mice at a late preclinical stage of T1D. In this 

study we assessed whether the efficacy of YTS177 and YTS105 treatment to induce and 

maintain remission in recent onset diabetic NOD mice under suboptimal conditions is 

enhanced by AAV8mIP-IL2 vaccination. Notably, the frequency and duration of 
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remission established by YTS antibody administration was significantly increased by co-

treatment with AAV8mIP-IL2. Furthermore, YTS antibody binding had no effect on IL-2 

receptor signaling in vitro or in vivo. Collectively, these results indicate that AAV8mIP-IL2 

vaccination can be used in a combinatorial approach to enhance the efficacy of YTS 

antibody treatment, and possibly other strategies of immunotherapy.  
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4.2 Introduction 

Type I diabetes (T1D) is a T cell-mediated autoimmune disease characterized by the 

progressive infiltration and destruction of β cells (1-4). Studies in T1D patients and the 

NOD mouse have demonstrated that pathogenic β cell-specific CD4+ and CD8+ effector T 

cells (Teff) typically exhibit a type 1 phenotype characterized by the secretion of IFNγ 

and TNFα, although Th17 cells may also contribute to the diabetogenic response (5-9). 

Preferential expansion and differentiation of pathogenic β cell-specific Teff is in part 

attributed to dysregulation within the immunoregulatory Foxp3-expressing CD4+ T cell 

(Foxp3+Treg) pool (10-12). Accordingly, immunotherapies are being developed to 

reestablish the functional balance between pathogenic Teff and Foxp3+Treg in order to 

suppress ongoing β cell autoimmunity (13-20). To date, however, various 

immunotherapies tested in the clinic have at best exhibited modest efficacy over 

relatively short periods of time (21-25). Currently, there is a growing consensus within 

the field that combinatorial immunotherapies may prove to be more effective at 

suppressing β cell autoimmunity in an additive or synergistic manner.  

Our group has been studying 2 distinct approaches of immunotherapy. The first 

entails the use of adeno-associated virus (AAV) vectors to target cytokine transgene 

expression to β cells using the mouse insulin promoter (mIP).  Treatment of NOD mice at 

a late preclinical stage of T1D with an AAV8 vector encoding IL-2 (AAV8mIP-IL2) 

suppressed ongoing β cell autoimmunity and prevented the onset of diabetes (Chapter 

3). IL-2 plays a critical role in the induction and maintenance of both natural (26-29) and 

adaptive FoxP3+ Treg (30-32), and NOD mice are known to have a defect in IL-2 
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secretion, which correlates with a reduced FoxP3+ Treg pool (33-35). Indeed, we found 

that protection induced by AAV8mIP-IL2 vaccination correlated with significant 

increases in the frequency and functionality of islet resident FoxP3+ Treg. The ability of 

AAV8mIP-IL2 to induce remission in recent onset diabetic NOD mice, however, is 

unknown. In addition, we have recently demonstrated that a short course of the 

nondepleting αCD4 and αCD8 monoclonal antibodies, YTS177 and YTS105, respectively, 

efficiently induces remission in recent onset diabetic NOD mice (36). The protective 

effects of YTS antibody-mediated remission were characterized by the rapid purging of 

CD4+ and CD8+ T cells from the islets and draining pancreatic lymph nodes (PLN). 

Maintenance of YTS antibody-induced remission was also found to be FoxP3+ Treg 

dependent.  

In the current study we investigated whether a combinatorial approach 

consisting of AAV8mIP-IL2 and suboptimal YTS antibody treatment efficiently induced 

and maintained remission in recent onset NOD mice. Demonstration of enhanced 

efficacy with the combinatorial treatment may permit administration of lowered doses 

of the YTS antibodies and AAV8mIP-IL2 vector, thereby limiting off-target effects and 

unwanted complications while maintaining long-term remission.  
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4.3 Materials and Methods  

 Mice 

NOD/LtJ were bred and maintained under specific pathogen-free conditions in an 

American Association for Laboratory-accredited animal facility. All procedures were 

approved by the University of North Carolina Animal Use and Care Committee. Mice 

were monitored weekly for diabetes by urine analysis via Keto-Diastix (Bayer). In urine 

positive NOD mice, blood glucose levels were subsequently checked for confirmation. 

Mice were classified as diabetic after 3 consecutive blood glucose readings over 250 

mg/dL. 

 

Nondepleting monoclonal antibody production  

YTS105 and YTS177 hybridoma lines were cultured in Cell Line 1000 hybridoma flasks 

(Wilson Wolf) using BD animal component-free hybridoma medium (BD Falcon).  After 

culturing for 15 days, antibody was precipitated from supernatants with 45% saturated 

ammonium sulfate, desalted with PBS, sterilized by 0.22 μm filtration, and quantified via 

ELISA. Purity was then assessed by denaturing SDS-PAGE.  

 

T cell isolation and in vitro stimulation  

Total CD4+ or naïve CD4+CD62L+ fractions were isolated from NOD mice using the CD4+ T 

cell isolation kit or CD4+CD62L+ T cell isolation kit II (Miltenyi Biotec), with cell purity 

between 90-95% as confirmed by flow cytometry.  For phosphorylated STAT5 (pSTAT5) 
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analysis, bulk CD4+ T cells were cultured in RPMI 1640 medium containing 10% heat-

inactivated FBS, 1 mM sodium pyruvate (Gibco), 2 mM Hepes, 100 U/ml 

pencillin/streptomycin (Gibco), 50 μM β mercaptoethanol (Sigma-Aldrich) (RPMI 

complete medium) supplemented with 2000 or 200 pg/ml recombinant (r) IL-2 

(Peprotech) in the presence or absence of 1 μg/ml YTS177 monoclonal antibody for the 

time points indicated. For in vitro FoxP3+ Treg induction assays, naïve CD4+CD62L+ 

fractions were cultured for 72 hours in RPMI complete medium supplemented with 2 

μg/ml functional grade αCD3 (145-2C11;eBioscience) and αCD28 (37.51;eBioscience), 

TGFβ1 (Peprotech), rIL-2, and/or 0.5-5.0 μg/ml YTS177 antibody. Cells were then spun 

down, harvested and prepared for flow cytometry.  

 

Flow Cytometry (FACS) 

T cells were stained with previously titrated antibodies specific for: CD3 (145-2C11), CD4 

(GK1.5), CD8 (Ly-2), CD25 (PC61.5), and FoxP3 (FJK-16s). Fc receptors were blocked with 

rat α-mouse CD16/32 (2.4G2) (BD Biosciences) prior to staining. Intracellular cytokine 

staining was performed on single cell suspensions as previously described (37). Briefly, 

lymphocytes were stimulated with 500 ng/ml PMA (Sigma) and 1000 ng/ml ionomycin 

(Sigma) in complete RPMI complete medium for 5 hours at 37°C; 10 μg/ml Brefeldin A 

(Sigma) was added to the culture for the last 4 hours of incubation. Cells were then 

stained for surface molecules, fixed and permeabilized with Cytofix/Cytoperm (BD 

Biosciences) and stained for intracellular IFNγ (XMG1.2) 
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For pSTAT5 staining, organs were harvested and immediately processed in PBS 

containing 2% paraformaldehyde for fixation. Single cell suspensions were incubated on 

ice for 20 minutes, followed by centrifugation and re-suspension in ice-cold methanol 

for 30 minutes for permeabilization. Cells were then counted, washed twice in 1% BSA 

in PBS, and stained with cell surface, intracellular and pSTAT5 (BD Biosciences) 

antibodies for a minimum of 1 hour on ice.  Data were acquired on a Cyan flow 

cytometer (DakoCytomation) and analyzed using Summit software (DakoCytomation).  

 

rAAV vector engineering and packaging  

Full-length cDNA encoding murine IL2 (of the NOD genotype) was PCR amplified and 

subcloned into TOPO2.1 (Invitrogen) via the manufacturer’s recommendations. After 

sequencing, transgenes were excised and ligated into the rAAV vector mIP plasmid.  

rAAV vector production was completed as previously described (38). Briefly, HEK 

293T cells were transfected via polyethyleneimine (PEI) with the adeno helper encoding 

plasmid (pXX6-80), an AAV8 capsid encoding plasmid, and the double stranded mIP IL-2 

plasmid in order to package AAV serotype 8 (AAV8) vector (AAV8mIP-IL2). Nuclear 

fractions were harvested 72 hours post-transfection and vector purified with a Cesium 

Chloride (RPI) gradient. AAV vector-containing fractions and titers were determined by 

Southern dot blot. 
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ELISA 

Serum was collected and diluted 1:2 in RPMI complete medium to assess systemic 

transgene levels. The αIL-2 Ab set (JES6-1 and JES6-5; eBioscience) was used at a 

concentration of 2 μg/ml on a high binding ELISA plate (Costar). 

 

In vivo monoclonal antibody combinatorial treatment regime 

For in vivo pSTAT5 analysis, 10-12 week old pre-diabetic NOD mice were vaccinated on 

day 0 and day 2 with 600 μg of YTS177 and YTS105 I.P. or left untreated. NOD mice were 

injected with 2.5 x 1010 VP I.P. AAV8mIP-IL2 on day 2 either alone or in combination with 

antibody administration.  

In remission studies, recent onset diabetic NOD mice were treated with 600 μg 

of YTS177 and YTS105 or 1000 μg YTS177-only on day 0 and 2, and/or 2.5 x 1010 VP of 

AAV8mIP-IL2 on day 2. Blood glucose was then monitored twice weekly.  
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4.4 Results 

4.4.1 Addition of YTS177 in vitro does not inhibit the effect of exogenous IL-2 on 

FoxP3+ Treg 

IL-2 binding to the IL-2R induces pSTAT5, which is critical for the expression of various 

Foxp3+ Treg associated genes, including FoxP3 (39). Therefore, to determine if the 

addition of YTS177 in vitro altered the IL-2 mediated pSTAT5 induction in FoxP3+ Treg, 

CD4+ T cells were magnetically isolated from the spleens of NOD mice and stimulated 

with varying concentrations of rIL-2 for up to 1 hour. Treatment with rIL-2-alone 

resulted in a marked increase in the frequency of pSTAT5+ FoxP3+ Treg in a time and 

dose dependent manner (Fig 4.1A). Interestingly, the addition of YTS177 prior to rIL-2 

stimulation did not affect the frequency of pSTAT5+ FoxP3+ Treg at any time point 

analyzed (Fig 4.1A), despite antibody coating of all responding cells (data not shown). 

Additionally, although the magnitude of the response was lower, a similar trend in 

frequency was seen within the FoxP3-CD4+ responding pool (Fig. 4.1B). Collectively, 

these data indicate that YTS177 binding in vitro does not affect IL-2-mediated pSTAT5 

induction in FoxP3+ Treg or FoxP3-CD4+ T cells.  

Differentiation of adaptive Treg from naïve precursors in vitro requires both IL-2 

and TGFβ (31).  To determine if the presence of YTS177 altered adaptive Treg 

differentiation in vitro, naïve CD4+CD62L+ T cells were isolated from the spleens of NOD 

mice and cultured with TGFβ alone or both TGFβ and rIL-2. When both cytokines were 

added, the frequency of FoxP3+ Treg was similar regardless of the presence or absence 

of YTS177 (Fig. 4.1C). Surprisingly, the frequency of TGFβ-alone induced FoxP3+ Treg was 
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significantly decreased by the addition of YTS177 in a concentration dependent manner 

(Fig 4.1C). This would suggest that YTS177 inhibits adaptive FoxP3+ Treg formation in the 

absence of exogenous IL-2 in vitro, but does not block the ability of naïve precursors to 

differentiate into adaptive FoxP3+ Treg under the appropriate culture conditions.  

 

4.4.2 AAV8mIP-IL2 co-administration enhances Foxp3+Treg expansion by YTS105 and 

YTS177 treatment  

To complement the above in vitro findings, prediabetic NOD mice were treated with 

combinations of AAV8mIP-IL2, YTS177 and/or YTS105, or left untreated. Serum IL-2 

levels in AAV8mIP-IL2-only and AAV8mIP-IL2 plus YTS antibody treated NOD mice were 

similar, and as expected significantly higher than animals receiving YTS177 and YTS105-

only (Fig. 4.2A).  The frequency of FoxP3+ Treg in the spleen, PLN, and islets was 

significantly higher in AAV8mIP-IL2-only treated controls compared to other treatment 

groups (Fig. 4.2B). Comparatively, FoxP3+ Treg frequency in YTS177 and YTS105-only 

treated mice was significantly reduced compared to untreated controls, consistent with 

our previous findings (36). Of note, combination treated mice exhibited a significantly 

increased FoxP3+ Treg frequency compared to both untreated and YTS177 and YTS105-

only controls, albeit to a lesser level in comparison to AAV8mIP-IL2 only treated mice 

(Fig. 4.2B). This suggests that AAV8mIP-IL2 treatment minimizes the decrease in FoxP3+ 

Treg typically induced by YTS177 and YTS105.  
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In addition, FoxP3+ Treg and FoxP3-CD25-CD4+ T cells were analyzed for the 

induction of pSTAT5. Similar to in vitro studies, there was a significant increase in the 

frequency pSTAT5+FoxP3+ Treg in the spleens and islets of both AAV8mIP-IL2 and 

combination treated mice compared to YTS177 and YTS105-only treated and untreated 

groups (Fig. 4.2C). Furthermore, the magnitude of induction was similar in both the 

AAV8mIP-IL2 and combination treated groups (Fig. 4.2C). Interestingly, a significant 

decrease in the frequency of splenic pSTAT5+FoxP3+ Treg was also seen in the YTS177 

and YTS105 group compared to untreated controls, a trend which was also observed in 

the islets (Fig. 4.2C). This indicates that YTS177 binding in vivo alters pSTAT5 induction 

within the FoxP3+ Treg compartment in the absence of ectopic IL-2. In contrast, the 

frequency of pSTAT5+FoxP3-CD25-CD4+ T cells within the spleen, PLN and islets did not 

differ significantly among any group analyzed (Fig. 4.2D).  

 

4.4.3 AAV8mIP-IL2 treatment augments the protective effect of YTS177 and YTS105 

under suboptimal conditions in recent onset diabetic NOD mice 

Previous work by our group has shown that co-administration of YTS177 and YTS105 

induces rapid and long-term remission in recent onset diabetic NOD mice (36). 

Additionally, AAV8mIP-IL2 administration to pre-diabetic NOD mice suppresses β cell 

autoimmunity and establishes long-term protection from T1D. Therefore, the ability of 

AAV8mIP-IL2 to induce remission, either alone or in combination with YTS177 and/or 

YTS105 was investigated. In a small cohort of recent onset diabetic NOD mice, 
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treatment with AAV8mIP-IL2 alone failed to reverse diabetes (Fig. 4.3A). Additionally, 

the relative level of transgene expression was lower than that typically seen in 

prediabetic NOD mice, and waned within 2 weeks post-treatment in the majority of 

vaccinated diabetic NOD mice (data not shown). Treatment with 1000 μg of YTS177 in 

combination with AAV8mIP-IL2 also proved to be insufficient for inducing remission (Fig. 

4.3B). In a cohort of recent onset NOD mice treated with a suboptimal dose (e.g. 600 μg) 

of YTS177 and YTS105 alone, diabetes was reversed in 4/6 NOD mice but remission was 

maintained beyond 60 days in only 1/4 animals with a median of 44 days post-treatment 

(Fig. 4.3C) (A.M. and R.T., unpublished results). In contrast, treatment with the 

combination of AAV8mIP-IL2 and of YTS177 and YTS105 elicited long-term remission in 

all treated NOD mice (Fig. 4.3D). Notably, serum levels of IL-2 in all combinatorial 

treated long-term remission NOD mice were stable over the course of investigation (Fig. 

4.4A).  

To determine the mechanism of protection in long-term remission NOD mice 

receiving the combinatorial therapy, the frequency of tissue-specific FoxP3+ Treg and 

IFNγ+ Teff was determined by flow cytometry. There was a significant increase in the 

frequency of FoxP3+ Treg in the spleen of long-term remission NOD mice compared to 

normoglycemic, untreated controls (Fig. 4.4B). Unexpectedly, no difference in the 

frequency of FoxP3+ Treg was seen in either the PLN or islets. Additionally, the 

IFNγ+CD4+ and IFNγ+CD8+ Teff populations were also compared. In both the spleen and 

PLN, there was no effect on the frequency of either IFNγ+CD4+ or IFNγ+CD8+ Teff 

populations between groups. Of interest, there was a significant decrease in the 
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frequency of islet resident IFNγ+CD4+ Teff in long-term remission NOD mice, suggesting 

that the induction of long-term remission through combinatorial treatment may be 

maintained through preferential affects on islet resident IFNγ+CD4+ Teff.  
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4.5 Discussion 

We show that AAV8mIP-IL2 vaccination enhances the efficacy of suboptimal YTS177 and 

YTS105 treatment in recent onset diabetic NOD mice. Although only a small cohort of 

NOD mice was tested, remission was induced in all recipients for >100 days (Fig. 4.3D). 

Notably, levels of serum IL-2 were stable over time (Fig. 4.4A), indicating that β cell mass 

was maintained after treatment with the combinatorial therapy.  

Somewhat surprisingly, AAV8mIP-IL2 treatment alone or with YTS177-only failed 

to induce remission in recent onset diabetic NOD mice (Fig. 4.3A, B). Although IL-2 was 

detected after AAV8mIP-IL2 administration, systemic levels were notably lower than 

seen in prediabetic NOD mice treated with a similar vector dose (Data not shown). In 

addition, detectable serum IL-2 levels quickly decreased in the majority of treated 

recipients, suggesting continued destruction of residual β cell mass. Furthermore, 

treatment with suboptimal doses of YTS177 and YTS105 alone was sufficient to induce 

remission in recipient NOD mice, but the median induction time was only 44 days (Fig. 

4.3C) (A.M. and R.T., unpublished results). At clinical diagnosis, 80-90% of β cells have 

already been destroyed (40), and the surviving functional population may prove 

insufficient to synthesize the amount of IL-2 required to induce a protective islet 

resident FoxP3+ Treg pool.  

Previous work by our group has shown that a short course of YTS177 and YTS105 

was sufficient to induce remission in >80% of recent onset diabetic NOD mice (36). 

Notably, remission induction was associated with purging of islet-resident CD4+ and 
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CD8+ T cells, including FoxP3+ Treg (36). In prediabetic NOD mice treated with YTS177, 

YTS105, and AAV8mIP-IL2, the frequency of FoxP3+ Treg in various organs, including the 

islets, were maintained at a significantly higher level compared to both untreated and 

YTS177 and YTS105-only recipients (Fig. 4.2B). Since FoxP3+ Treg are thought to be 

required for the maintenance of remission after YTS administration, the increased islet 

FoxP3+ Treg pool likely enhances the efficacy of YTS177 and YTS105 administered at a 

suboptimal dose. Functionally, it is important to note that induction of pSTAT5, which 

functions downstream of the IL-2R, was not affected in vitro (Fig. 4.1A) or in vivo (Fig. 

4.2C) by YTS177 and YTS105 binding. Since pSTAT5 regulates the expression of various 

FoxP3+Treg genes, including FoxP3, maintaining the function of this pathway is 

important for FoxP3+ Treg function. Of interest, the presence of YTS177 in vitro did 

significantly decrease the induction of adaptive FoxP3+ Treg from naïve precursors, but 

only in the absence of exogenous IL-2 (Fig. 4.1C). Mechanistically, this is likely due to 

down-regulated T cell activation caused by YTS177 binding, thereby decreasing the 

available pool of autocrine/paracrine IL-2. In fact, decreased IL-2 was also seen in the 

pancreases of recent onset diabetic NOD mice treated with YTS177 and YTS105 (36). 

Since IL-2 is required for adaptive FoxP3+ Treg induction, the decreased frequency of 

FoxP3+ Treg in that assay was not surprising.  

The frequency of FoxP3+ Treg in long term remission NOD mice was not 

significantly altered, except in the spleen (Fig. 4.4B). Given the robust effects seen in the 

islets of prediabetic NOD mice treated with AAV8mIP-IL2, this result was unanticipated. 

Rather, there was a significant decrease in islet resident CD4+IFNγ+ Teff (Fig. 4.4C), which 
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mirrors the effects seen in the PLN of long-term remission NOD mice treated with 

YTS177 and YTS105-alone (36). Perhaps, the initial purging of FoxP3+ Treg from the islets 

after YTS177 and YTS105 treatment is sufficient to off-set the expansion of islet resident 

FoxP3+ Treg after vaccination with AAV8mIP-IL2, resulting in the maintenance of FoxP3+ 

Treg at a level that is equivalent to that of normoglycemic NOD mice. Since T cells are 

thought to egress from sites such as the PLN and islets after YTS treatment, this may 

explain why a significant increase in FoxP3+ Treg was only seen in the spleen after 

combinatorial therapy. Regardless, the interplay between these treatments, while 

effective, still merits further investigation. 

In summary, these results show that vaccination with AAV8mIP-IL2 enhances 

suboptimal doses of YTS antibody therapy to induce long term remission in recent onset 

NOD mice (Fig. 4.5). Importantly, our findings suggest that manipulating the islet pool of 

FoxP3+Treg via AAV8mIP-IL2 vaccination may prove to be an effective strategy to 

enhance the efficacy of other antibody- and/or antigen-specific based 

immunotherapies. 
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Figure 4.1 The effect of exogenous IL-2 is not altered by the presence of YTS177 in 
vitro. (A) The frequency of pSTAT5+CD4+FoxP3+ cells after addition of exogenous IL-2 to 
isolated CD4+ NOD splenocytes in vitro. All conditions were assayed in triplicate. 
*p<0.05; **p<0.01; 2000 pg/ml No YTS177 and with YTS177 versus 200 pg/ml No 
YTS177 and with YTS177 (2-way ANOVA, data are mean + SEM). (B) Comparative 
pSTAT5+CD4+FoxP3- populations in the same wells. *p<0.05; **p<0.01; 2000 pg/ml and 
200 pg/ml with YTS177 versus No YTS177 at time 0, 2000 pg/ml No YTS177 and with 
YTS177 versus 200 pg/ml No YTS177 and with YTS177 at 5, 10, 30 and 60 minutes (2-way 
ANOVA, data are mean + SEM).  (C) In vitro adaptive FoxP3+ Treg induction assay using 
isolated CD4+CD62L+ naïve NOD splenocytes cultured for 72 hours. *p<0.05; **p<0.01; 
Untreated versus 0.5 μg/ml YTS177 and 5 μg/ml YTS177 and 0.5 μg /ml YTS177 versus 5 
μg /ml YTS177 (2-way ANOVA, data are mean + SEM). 
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Figure 4.2 Significantly increased FoxP3+ Treg frequency and pSTAT5 signaling in 
combination treated normoglycemic recipients. (A) Serum IL-2 levels at day 7 post-
AAV8mIP-IL2 treatment measured via ELISA in mice treated with YTS177 and YTS105 
alone, AAV8mIP-IL2 alone, combination treated or left untreated (n = 4; all panels). 
***p<0.001; AAV8mIP-IL2 and combination treated versus YTS177 and YTS105 and 
untreated. (1-way ANOVA, data are mean + SEM).  (B) 2 weeks post-treatment, 
frequency of FoxP3+CD25+ Treg was determined by flow cyotmetry in the spleen, PLN 
and islets of mice from different treatment groups. *p<0.05; **p<0.01; ***p<0.001; MIP 
IL-2 versus combination, YTS177 and YTS105 and untreated, combination treated versus 
YTS177 and YTS105 and untreated, and untreated versus YTS177 and YTS105 treated (2-
way ANOVA, data are mean + SEM). In addition, the frequency of pSTAT5+ cells was 
measured in the CD4+FoxP3+CD25+ (C) and CD4+FoxP3-CD25- (D) populations within the 
same organs.  *p<0.05; **p<0.01; ***p<0.001; Spleen and islet resident 
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CD4+FoxP3+CD25+ cells in AAV8mIP-IL2 and combination treated mice versus YTS177 
and YTS105 and untreated and CD4+FoxP3+CD25+ cells in untreated versus YTS177 and 
YTS105 controls (2-way ANOVA, data are mean + SEM).  
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Figure 4.3 AAV8mIP-IL2, YTS177 and YTS105 short course combination treatment 
induces long term remission in recent onset diabetic NOD mice. Recent onset diabetic 
NOD mice were treated with AAV8mIP-IL2 alone (A) (n = 6), AAV8mIP-IL2 and 1000 μg 
YTS177 (2x) (B) (n = 3), 600 μg YTS105 (2X) and YTS177 (2X) (C) (n = 6), or AAV8mIP-IL2, 
600 μg YTS105 (2X) and YTS177 (2X) (D) (n = 4) and were monitored for remission by 
analysis of blood glucose levels >100 days.  
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Figure 4.4 Long term remission NOD mice have altered FoxP3+ Treg and CD4+IFNγ+ Teff 
frequencies. (A) Temporal measurement of serum IL-2 in long term remission mice via 
ELISA. (B)  At >100 days post-remission, the frequencies of FoxP3+CD25+ Treg (B), 
CD4+IFNγ+ Teff (C) and CD8+IFNγ+ Teff (D) were compared between long term remission 
mice and controls (n = 4; all groups). *p<0.05; **p<0.01; Splenic FoxP3+CD25+ Treg in 
combination treated versus untreated mice and islet resident CD4+IFNγ+ Teff in 
combination treated versus untreated mice (2-way ANOVA, data are mean + SEM). 
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Figure 4.5 A model of AAV8mIP-IL2 and YTS induced remission in recent onset diabetic 

NOD mice. (A) Prior to treatment, destruction of β cells is primarily mediated by a pool 

of activated β cell specific CD4+ and CD8+ Teff resulting in diabetes onset. The existing 

islet resident FoxP3+ Treg are both quantitatively and qualitatively insufficient to 

mediate protection. (B) Co-administration of sub-optimal levels of YTS105 (αCD8) and 

YTS177 (αCD4) non-depleting monoclonal antibodies results in purging of CD8+ and CD4+ 

T cells, including FoxP3+ Treg, from both the islets and PLN into the spleen. At the same 

time, localized IL-2 expression from AAV8mIP-IL2 transduced β cells results in the 

expansion of the remaining islet resident FoxP3+ Treg, maintaining FoxP3+ Treg 

frequencies to levels similar to those found in normoglycemic untreated NOD mice. 

Collectively, YTS177, YTS105 and AAV8mIP-IL2 work synergistically to maintain the 

existing β cell mass resulting in remission induction. (C) After YTS177 and YTS105 

clearance, long-term remission is preserved due to a reduction in total islet CD4+ and 

CD8+ Teff frequencies, as well as the maintenance of islet FoxP3+ Treg by consistent IL-2 

transgene expression from AAV8mIP-IL2 transduced β cells. Additionally, splenic FoxP3+ 

Treg frequencies are significantly enhanced due to the collective effects of systemic IL-2 

exposure and Teff purging induced by YTS177 and YTS105 administration.    
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CHAPTER 5 

FUTURE PERSPECTIVES 

5.1 Increased efficacy of AAV8mIP-IL2 immunotherapy for the treatment of T1D 

rAAV vectors expressing a variety of transgenes have been used successfully in the 

treatment of a multitude of diseases, including T1D (1-5). In this study, we have shown 

that administration of a rAAV vector expressing IL-2 under control of a β cell specific 

promoter, mIP (AAV8mIP-IL2), was able to prevent diabetes in NOD mice (Chapter 3). 

This protection was mediated by specific effects on islet resident FoxP3+CD25+ Treg. 

Furthermore, in remission studies, AAV8mIP-IL2 vaccination was also shown to work 

synergistically with the non-depleting αCD4 and αCD8 monoclonal antibodies, YTS177 

and YTS105.  

Mechanistically, the beneficial effects of AAV8mIP-IL2 on long term YTS treated 

NOD mice do not appear to be limited strictly to effects on FoxP3+ Treg. However, in 

prediabetic NOD mice treated with both AAV8mIP-IL2 and the YTS antibodies short 

term, the frequency of FoxP3+ Treg in the islets was significantly enhanced compared to 

YTS-only recipients. This would suggest that AAV8mIP-IL2 can specifically counteract the 

loss of FoxP3+ Treg from organs of interest, notably the islets, after YTS treatment. By 

maintaining a larger frequency of FoxP3+ Treg in the islets, the beneficial effects of YTS 
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mediated immunotherapy would be enhanced. Given that systemic IL-2 levels were 

stably maintained in long term remission animals suggests that any effects on islet 

FoxP3+ Treg would be maintained throughout the course of remission. Therefore, since 

investigations concerning islet FoxP3+ Treg in long term YTS-only treated animals is 

lacking, comparisons between combinatorial AAV8mIP-IL2 and YTS and YTS-only long 

term treated remission NOD mice merit consideration.  

The dosing of IL-2 in vivo was shown to be intrinsic to therapeutic function in 

both NOD mice and diabetic human patients. Investigations utilizing both prediabetic 

and recent onset diabetic NOD mice have shown that low dose rIL-2 therapy acts 

specifically on FoxP3+ Treg to induce protection and/or remission (6-8). Importantly, 

high dose administration resulted in significant off target effects, thereby eliminating 

any potential benefits of treatment (8). Similarly, a study utilizing rIL-2 combinatorial 

therapy in recent onset human patients showed expansion of both NK cells and 

eosinophils, thereby reducing its clinical efficacy, despite modest increases in systemic 

FoxP3+ Treg (9). This would suggest that dose is of particular importance for 

translational approaches.  

Although long term systemic transgene levels were low and stable throughout 

the lifespan of AAV8mIP-IL2 treated NOD mice, constant and increased IL-2 levels could 

potentially have long term adverse effects on the immune system. We have previously 

shown that a rAAV vector tetracycline inducible (TET-ON) system expressing IL-2 also 

successfully prevented diabetes in NOD mice, despite a short 3 week induction phase 
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(2). Both the β cell specific (mIP) and inducible (Tet-ON) rAAV vectors offer distinct 

advantages over the other. As such, the use of a dual promoter rAAV vector that is both 

β cell-specific and inducible would be attractive. Development of this vector would 

allow for localized, short term bursts of transgene to the islets, while significantly 

curtailing both the magnitude and length of systemic exposure. We recently packaged a 

rAAV8 vector expressing IL-2 under the control of both the TET-ON promoter and mIP 

(dual promoter IL-2), which was shown to secrete IL-2 transgene in vitro and increase 

the frequency of pancreas FoxP3+ Treg in vivo (M.C.J. and R.T., unpublished results). 

Many questions concerning vector dosage and route of administration, systemic versus 

localized expression of transgene, and the overall effect on diabetes incidence need to 

be investigated. However, the availability of an immunotherapy that is both targeted 

and controllable provides an interesting platform for future immunotherapy 

approaches.  

Vaccination with pDNA expressing β cell autoantigens results in the rapid 

expansion of β cell specific FoxP3+ Treg (10-12). Increases in antigen-specific FoxP3+ Treg 

can prevent diabetes in young NOD mice, but efficacy wanes upon treatment of older 

animals. Along these lines, we have shown that combinatorial therapy with AAV8mIP-

IL2 and pDNA encoding the β cell autoantigen glutamic acid decarboxylase 65 (GAD65) 

increased the frequency of GAD65 p217-specific FoxP3+ Treg in the islets of treated NOD 

mice (data not shown). The ability of this combinatorial approach to prevent the onset 

of T1D, particularly in older NOD mice, however, was not investigated. Given the success 

of AAV8mIP-IL2 therapy alone in preventing diabetes in NOD mice treated with a “high” 
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dose of vector, it would be of particular interest to investigate the efficacy of this 

strategy with suboptimal levels of AAV8mIP-IL2.  

The advent of our dual promoter system raises a novel avenue for the 

investigation of combinatorial approaches to treat T1D. Multiple β cell autoantigens 

have been identified as playing a role in the progression of T1D, many of which have 

been investigated in the context of pDNA vaccination (13-16). By staggering treatment 

of NOD mice with pDNA encoding different β cell autoantigens, and subsequently 

coupling the induction of our dual promoter IL-2 system with administration of those 

different pDNA, the expansion of various antigen-specific FoxP3+ Treg populations can 

occur. Potentially, this would establish a substantial pool of protective, β cell specific 

FoxP3+Treg specifically in the islets, that in turn would be expected to overcome some 

of the limitations associated with pDNA vaccination.  

 

5.2 Alternative transgene expression for rAAV vector based immunotherapy   

Potential treatments for T1D involve the dampening of the autoreactive Teff population 

and/or expansion of the FoxP3+ Treg pool to re-establish self tolerance. IL-2, which 

preferentially accomplishes the latter goal, is one of many molecules that has shown 

efficacy for the treatment of T1D (2, 7, 17, 18). While each molecule offers unique pros 

and cons in relation to others, a “magic bullet” has yet to be discovered. Therefore, the 

exploration for alternative approaches is continually warranted.  
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 Interleukin-35 (IL-35) is a recently identified cytokine composed of Epstein-Barr-

virus-induced gene 3 and the interleukin-12 α chain that is secreted by FoxP3+ Treg, but 

not CD4+ Teff (19, 20). The secretion of IL-35 from FoxP3+ Treg is shown to inhibit Teff 

cell proliferation in vitro (19, 21). Furthermore, IL-35, in combination with IL-10, is 

capable of inducing an “iTR35” population, which is characterized by a lack of FoxP3 

expression, but constitutive expression of IL-35 (22). This iTR35 cell type is thought to 

contribute to immune regulation and has been shown to be a stable lineage both in vitro 

and in vivo (22). IL-35 is beneficial for the treatment of various autoimmune diseases, 

including IBD and arthritis (19, 23). In addition, a recent study that linked ecoptic 

expression of IL-35 to β cells through coupling to the rat insulin promoter II showed 

substantial long term protection from T1D in NOD mice (24). This protection was 

defined by reduced Teff infiltration and proliferation into the islets, particularly by 

autoreactive IGRP-specific CD8+ T cells. Interestingly, however, proliferation of FoxP3+ 

Treg was also reduced in the islets of IL-35 expressing animals, as determined by BrdU 

incorporation (24).  

An AAV8mIP vector encoding IL-35 (AAV8mIP-IL35) would offer an alternative 

approach to IL-2 mediated treatment, since IL-35 preferentially dampens the Teff 

population, while IL-2 promotes FoxP3+ Treg. Therefore, the efficacy of AAV8mIP-IL35 

treatment in NOD mice for the prevention of T1D could address the feasibility of directly 

altering islet Teff. In addition, coupling AAV8mIP-IL35 vaccination, with either AAV8mIP-

IL2 or AAV8mIP-IL10 treatment may also produce novel results by directly influencing 

both sides of the autoreactive immune response. For IL-2, the potential dampening of 
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the islet FoxP3+ Treg pool by IL-35 could be offset by localized IL-2 expression. 

Alternatively, co-administration of IL-10 is particularly noteworthy given that IL-35 and 

IL-10 collectively induce iTR35 (22). Importantly, the ability of different rAAV vectors to 

transduce and efficiently secrete different transgenes, especially within the restricted β 

cell mass found in recent onset diabetics, would have to be investigated prior.  
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