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Abstract 
Although genetic information in the cell is stored in DNA, the RNA transcripts obtained 

from DNA indicate which genes are actively transcribed. Modern high-throughput sequencing 

techniques allow accurate sequencing of short RNA fragments, which may then be aligned to a 

reference genome. These alignments can be summarized by constructing a "splice graph", in 

which nodes represent genomic coordinates and edges represent sequences that are retained 

or spliced out of observed transcripts. Each full-length transcript corresponds to a path through 

the graph. I have written software to build a splice graph from a collection of short reads 

aligned to a reference genome. This software incorporates variants observed relative to the 

reference genome as additional paths. I have also written tools to manipulate and traverse such 

graphs. An application of this graph is correction of noisy full-length RNA transcripts. Such a 

transcript may be aligned to paths through the graph in order to identify its original sequence. 

 

Background 

Genetic information in the cell is stored in the nucleus in the form of DNA. RNA 

transcription is the process by which messenger RNA is produced from this DNA. This mRNA 

may then leave the nucleus of the cell. Once outside of the nucleus, it can be translated into a 

functional protein. The set of all mRNA transcripts in a given cell is called the transcriptome. By 

analyzing the contents of the transcriptome, we can determine what genes are transcribed in a 

cell. The relative abundance of each transcript also tells us to what extent each observed gene 

is expressed. 

When a sequence of DNA is transcribed, a complementary sequence of mRNA is 

produced. This transcript then undergoes mRNA splicing. Splicing is a process by which specific 

intervals are removed from the transcript, and the retained portions of the sequence on either 

side of the interval are ligated together. The spliced out sequences are called introns, and the 

retained sequences are called exons. 

An individual gene may produce many different RNA transcripts through the process of 

alternative splicing. Sometimes an interval in a transcript that is normally an intron may actually 

be retained, or an interval that is normally an exon may be spliced out. Another common 

possibility is that a splice donor site that normally pairs with a specific splice acceptor site may 

pair with an alternative acceptor site, or vice versa. Alternative splicing occurs regularly, and 

can lead to an increased variety of proteins produced from a set of genes. 

RNA sequencing is the process of obtaining the sequence of bases that make up an RNA 

transcript. This is important information, because the sequence of an RNA molecule determines 

the structure and function of the proteins that will be produced when it is translated. There are 
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two major high-throughput sequencing technologies that we will discuss, each with different 

characteristics. Illumina manufactures a sequencer that takes a sequencing-by-synthesis 

approach. This sequencer produces short reads of up to 150 bases in length (Quail 2). These 

reads are high quality, with an error rate of less than 1% (Quail 2). Pacific Biosciences makes a 

sequencer that performs single molecule real time sequencing. This produces long reads of 

1500 bases in length on average (Quail 2). The tradeoff is that these reads are of significantly 

lower quality, with an error rate of around 13% (Quail 2). By making use of both of these 

sequencing technologies, we can make an appropriate tradeoff between read length and read 

quality. 

 The data obtained from RNA sequencing describes the sequence of individual 

transcripts. These sequences can then be aligned to a reference genome. By doing so, we can 

determine the location of each transcript in the genome. Well known algorithms for alignment 

of DNA sequences exist, but they may not be sufficient to align a spliced RNA transcript to the 

genome. A standard alignment algorithm can be used to determine a starting coordinate for 

the alignment and a sequence of matched, mismatched, inserted and deleted bases that aligns 

the two sequences with minimum edit distance. When aligning an RNA transcript in this 

fashion, spliced intervals may be penalized as massive deletions, hiding the true alignment from 

the results. To account for this, a gapped alignment algorithm such as MapSplice can be used 

(Wang). MapSplice performs the alignment in a way that takes splices into account, and can 

even detect novel splice sites. 

 

Overview of the Splice Graph 

We will propose a graph representation of a set of aligned RNA transcripts. We will refer 

to this representation as a splice graph. The splice graph builds upon the ACT-Graph proposed 

by Singh et al. by adding observed nucleotide counts at each position, a more flexible graph 

representation, and variant calling (Singh 2634). Such a graph representation can effectively 

compress a large set of aligned transcripts because overlapping sequences are condensed into a 

single edge (Singh 2635). Additionally, we describe a procedure to construct such a splice graph 

from aligned RNA sequence data. 

A splice graph is a weighted, directed, acyclic multigraph in which nodes represent 

genomic coordinates and edges represent possible connections between those coordinates. 

The most frequent edges are exon edges, which correspond to retained sequences, and splice 

edges, which correspond to intervals that are spliced out of observed transcripts. Both of these 

edge types are illustrated in Figure 1. Additional edges are included to represent insertions, 

deletions, and single nucleotide polymorphisms (SNPs). A SNP is a single observed base not 

found in the reference genome at that position. A SNP edge is illustrated in Figure 2. During the 

graph construction procedure, a variant calling procedure is used to call SNPs at each position. 

If a SNP is deemed significant by the variant calling procedure, it will be included in the graph as 
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a SNP edge. This ensures that we only include variants in the graph when we can confidently 

claim that they are true variants and not random sequencing errors. 

 
Figure 1 – A splice graph with three exons and two introns. Exon edges are represented by solid lines, splice edges are 

represented by dashed lines. 

The coverage at a specific genomic position is the number of exons that include that 

position in a gapped alignment. The weight of an exon edge is the average coverage over the 

genomic interval spanned by that edge. Such an edge is also labeled with individual nucleotide 

coverage values for each genomic position it covers. This additional detailed coverage 

information simplifies recalculation of average coverage when performing a union of splice 

graphs. The weight of a splice, insertion, deletion, or SNP edge is the number of reads that 

include the represented feature. 

 
Figure 2 – A splice graph incorporating a SNP edge, shown in blue. The weight of the SNP edge is shown, along with the letter 

signifying the variant base. 
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Edges are directed from lower to higher genomic coordinates. The low coordinate is 

always inclusive, and the high coordinate is always exclusive. For exon edges, this means that 

the retained sequence extends from the low coordinate to the position just before the high 

coordinate. For splice edges, the spliced out interval extends from the low coordinate to the 

position just before the high coordinate. SNP edges extend from the position of the SNP to the 

next coordinate. This choice of coordinates allows for parallel edges. For example, a splice may 

be observed across an interval in some reads, but other reads may indicate that the interval 

was actually retained. In this case, an exon edge and a splice edge will run in parallel for the 

duration of the interval. 

All edges are tagged with additional attributes. Both exon and SNP edges are tagged 

with an associated sequence. For an exon edge, the sequence is obtained from the 

corresponding interval in a standard reference genome. For a SNP edge, the sequence is the 

variant base associated with the edge. 

Edges are also labeled to indicate the direction of transcription. Initially during the graph 

construction, only splices have direction information, as this is inferred from the orientation of 

asymmetric canonical splice sites. Once the graph structure is complete, this direction 

information is propagated from splices to adjacent edges. This representation simplifies the 

work needed to recalculate transcription direction when performing a union of splice graphs, 

and enables simple traversal in either direction. 

Edges between the same pair of coordinates are differentiated by a multigraph key. For 

SNP edges, this multigraph key is the letter representing the variant base for that edge. For 

exon edges, the multigraph key is “exon”. For splice edges, the multigraph key is “splice”. Thus, 

all possible edges between a pair of coordinates are differentiated. 

 

Splice Graph Construction Procedure 

We can construct such a splice graph from aligned RNA sequence data. First, we must obtain 

accurate RNA short read sequence data, such as the output of an Illumina sequencer. We can 

then perform a gapped alignment of this sequence data to a reference genome with a program 

such as MapSplice in order to produce a BAM formatted set of aligned reads. The BAM format 

is a binary version of the SAM format, which is designed to store alignments of reads to 

reference sequences (Li 2078). This aligned sequence data will be the input to the graph 

construction procedure. 

The first phase of the graph construction procedure is the detection of splice intervals. 

In my software, this is implemented by the inspection of the CIGAR string for each aligned read. 

A CIGAR string provides a linear description of a pairwise alignment, and includes matches, 

mismatches, insertions, deletions and splices (Li 2078). For a given aligned read, we know the 

starting genomic coordinate of the alignment. We may then progress through the CIGAR 

alignment, incrementing the current genomic coordinate when we observe matches, 



5 
  

mismatches, and deletions in the aligned read. If we see an interval in which the reference is 

recorded as skipped, this will correspond to a splice, and we may record it as such (Li 2078). 

Additionally, the read may contain information about the observed direction of transcription, as 

inferred from any well-known asymmetric splice sites it spans. We record these splices by 

inserting them as splice edges in a new directed multigraph. If transcription direction 

information is present, the splices will be tagged with it. In the future, this step could be made 

optional if a list of splices were provided as an additional input to the graph construction 

software. Additionally, if transcription direction information is not provided by the gapped 

aligner upstream in the process, that information could be determined at this time by 

inspection for canonical splice sites. 

 Once we have a skeleton of the splice graph consisting solely of splice edges, we are 

ready to perform a pileup iteration of the aligned reads, as illustrated in Figure 3. In a pileup 

iteration we iterate over all coordinates in the genome with at least one aligned read. At each 

position we inspect all of the bases that are part of an aligned read at that position. As we 

traverse the aligned reads, we maintain state representing an unfinished exon edge. This 

working edge begins when we reach a position with nonzero coverage. There are two possible 

termination conditions for an exon edge that will cause the finished edge to be written to the 

splice graph. An edge will be terminated if coverage drops below a configurable threshold. An 

edge may also be terminated if the current genomic coordinate in the iteration is already in the 

graph as an incoming or outgoing splice site. In the latter case, we may immediately resume 

work on an exon edge if coverage is above the threshold. At each position with sufficient 

coverage, we will also perform a variant calling procedure, and insert SNP edges as necessary. 

 
Figure 3 – Incremental construction of a splice graph. In the left image, we see the initial graph consisting solely of splice edges. 
In the center we see the graph after the first exon has been flushed to the graph upon hitting a splice coordinate. On the right 

we see the final graph after a coverage drop-off flushes the second exon edge to the graph. 
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 The bases aligned to a given position may or may not agree with the reference genome. 

The problem of variant calling is to decide whether this is due to sequencing error or the 

observation of an actual variant base. We will perform this variant calling procedure at each 

position in the genome with nonzero coverage. As input to this procedure, we are given 𝑛 

nucleotides that agree with the reference at this position and 𝑘 occurrences of other 

nucleotides. If 𝑘 is 0 then we are done, because all observed nucleotides agree with the 

reference genome. 

If 𝑘 is greater than 0, we must perform a significance test. Our null hypothesis is that no 

SNP is present at this position, and all deviations from the reference are due to random chance. 

The alternative hypothesis is that there is a SNP at this position. We will assume that the 

sequencer makes errors with a constant error probability 𝑝 when reading a nucleotide. First, we 

wish to determine the probability that 𝑘 − 1 or fewer sequencing errors occurred at this 

position. This is a cumulative binomial probability, as shown in Equation 1. 

𝑃𝑆𝑁𝑃 = ∑(
𝑛

𝑖
) (1 − 𝑝)𝑛−𝑖𝑝𝑖

𝑘−1

𝑖=0

 

Equation 1 – The probability that k-1 or fewer non-reference bases are in error. This is the probability that we have observed a 
true variant, and not just random sequencing errors. 

 Using this value, we can determine the probability that no SNP is present at this position 
by taking the complement of the previous probability. This is shown in Equation 2. 

𝑃𝑒𝑟𝑟𝑜𝑟 = 1 −∑(
𝑛

𝑖
) (1 − 𝑝)𝑛−𝑖𝑝𝑖

𝑘−1

𝑖=0

 

Equation 2 – The probability that observed variants are simply due to random sequencing errors. 

 If 𝑃𝑒𝑟𝑟𝑜𝑟 is less than some significance cutoff 𝛼, we will reject the null hypothesis that 
there is no SNP present at this position. If this test leads us to call a SNP, the nucleotide we will 
report as the variant will be the non-reference base with the most occurrences at the current 
genomic position. 

After completing the pileup iteration, information about transcription direction must be 

propagated among the edges of the graph. Initially, only splice edges have direction 

information associated with them. A simple approach to this problem is to propagate 

information within weakly connected components in the graph. These components roughly 

correspond to observed genes. By iterating over all splices in a component, we can determine 

which direction or directions of transcription were observed for a given gene. That information 

can then be assigned to each edge in the component. There is potential for confusion in the 

case where two genes transcribed in opposite directions overlap briefly at one end. In the 

scheme described previously, both genes would be recorded as transcribed in both directions. 

A more sophisticated approach would be to limit the propagation of transcription 

direction information to edges between the splice initially containing that information and 

other contradictory splice edges. This procedure would limit the scope of ambiguous 
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transcription direction information as much as possible. I have implemented the simple 

approach in my splice graph software, but an implementation of the latter approach would be 

possible in the future. 

 

Applications 

 One possible application of a splice graph is long read correction. Although long reads 

can cover larger transcripts, they have a very high error rate (Quail 2). It would be desirable to 

correct these noisy sequences. Our splice graphs are built from short reads, which have a much 

lower error rate than long reads. If we could align a long read to a path through a splice graph 

built from shorts reads from the same sample, we could then read off the sequences associated 

with that path to obtain a more accurate sequence. Significant variants will also be included in 

the resulting sequence because the graph contains edges corresponding to the observed SNPs. 

 In order to make this application work, we need to be able to align a transcript to a path 

through a splice graph. First, we must find a starting point for the alignment. We can do so by 

aligning short subsequences of the long read to each exon edge in the splice graph until we find 

a near match. We can then traverse paths outward from the starting edge within a weakly 

connected component of the graph, essentially performing a breadth-first search. As we 

incorporate edges, we perform successive alignments of the transcript against the sequences of 

these new edges. If any given path exceeds a local error bound in the alignment, it may be 

discarded as an unlikely alignment. Once this procedure is completed, we will have some subset 

of paths through the graph remaining. One of these with the minimum edit distance to the 

transcript will be chosen as the correct alignment. The sequence of that path should be the 

corrected sequence of the long read, including called variants. 

 

Overview of Additional Software 

In addition to the core software to construct a splice graph, I have written tools to 

perform various operations on splice graphs. Some of these tools can be used to work with an 

existing graph. Other tools may be used to construct a new graph from an existing graph or set 

of graphs. By using tools such as this, we can sometimes build new splice graphs without having 

to consult the original alignments. We can save significant amounts of time by modifying 

existing graphs instead of constructing new ones whenever possible. 

 One simple graph operation I have implemented is the conversion of a splice graph from 

one format to another. This allows the storage representation of a graph to be changed after it 

is created. This could be used to write graphs in a compact format, but then rewrite them in a 

human-readable format if necessary. 

 I have also written a tool to compare two splice graphs. From each graph, we extract the 

set of genomic regions with nonzero coverage, and the set of intervals corresponding to splices. 

We can then use set difference operations to determine what splices and coverage regions are 
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unique to each of the input graphs. This could be used to verify a splice graph against an 

existing splice graph, or to compare splice graphs constructed from different samples. 

 Additionally, I wrote a procedure to visualize a splice graph using Graphviz. This was 

particularly useful for debugging purposes. I also used this visualization procedure to generate 

all of the splice graph illustrations in this paper. 

 In order to simplify the development of a long read alignment procedure, I implemented 

an interface for the traversal of an existing splice graph. This interface provides methods to 

traverse the graph in either direction from a given starting edge. This is made simple by the 

directedness of the graph. All edges are directed from low to high genomic coordinates. 

Therefore, to traverse the graph in the increasing direction, we follow outgoing edges, and to 

traverse it in the decreasing direction, we follow incoming edges. By providing a higher-level 

interface to the graph, we can offer different views of the data and simplify specific applications 

of the graph. 

 In order to support the merging of two existing splice graphs, I have implemented a 

splice graph union procedure. The standard definition of a graph union is to take the union of 

the set of nodes, and the union of the set of edges. This definition is not sufficient here. The 

way we have defined a splice graph requires that exon edges correspond to disjoint genomic 

intervals, and a standard graph union would be able to violate this property. In order to 

correctly perform a splice graph union, we can first combine the splice edges from each of the 

input graphs in a new graph, adding together the weights of corresponding edges. We may then 

sort exon edges from both graphs by their starting coordinate. We sequentially insert these 

edges into the graph, merging with existing edges when overlap occurs. If we hit an incoming or 

outgoing splice junction, we can split the exon edge at that coordinate. When exon edges are 

merged or split, we need to recalculate their weights. The weight of an exon edge is the 

average coverage observed over that genomic interval. We can determine the new average 

coverage without consulting the original alignment file by virtue of the fact that we’ve saved 

coverage information at each genomic coordinate as an attribute on each exon edge. Coverage 

can then be added together at overlapping positions, and average coverage may be 

recomputed. This procedure allows us to join splice graphs from multiple samples, or to break 

the work needed to construct a splice graph into smaller units for improved parallelism. 

 

Future Work 

 As mentioned above, one area for future work involves improvements to the splice 

detection stage of the graph construction procedure. If a list of splices was known in advance, 

the software could be modified to use that list instead of or in addition to performing the 

detection procedure. Another improvement would be to detect transcription direction from the 

orientation of canonical splice junctions, rather than requiring this information from the aligner 
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upstream in the process. This would enable a larger variety of gapped aligners to be used when 

generating the input for the graph construction. 

 Another area for improvement is the procedure for propagation of transcription 

direction tags from splice edges to the rest of the graph. There is currently possibility for 

ambiguity if two genes overlap slightly on opposite strands. By performing the more 

sophisticated direction propagation procedure described earlier, we can reduce the scope of 

this ambiguous information. 

 Due to limitations of the BAM format, this software is unable to handle chromosome 

fusion events or splices that are performed backwards relative to the direction of transcription. 

The BAM format uses CIGAR strings to represent the detailed alignment of each read. The linear 

nature of CIGAR strings limits splice detection to forward splices. If the format were modified to 

include a way to express reverse splices and chromosomal fusion events, those could be 

incorporated into the graph easily. Alternatively, those splices could be supplied as a separate 

input using the improvement suggested earlier. Once those complicated splices are in the 

graph, the pileup procedure will be able to function normally. 
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