
	

DEVELOPMENT AND PERFORMANCE EVALUATION OF AN INNOVATIVE ANTI-
BIOFOULING REVERSE OSMOSIS MEMBRANE FOR WATER PURIFICATION 

APPLICATIONS 
 
 
 
 
 

Ariel Jasmine Atkinson 
 
 
 
 
 

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in 
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department 

of Environmental Sciences and Engineering in the Gillings School of Global Public Health. 
 
 
 
 
 

Chapel Hill 
2016 

 
 
 

 
Approved by: 

Orlando Coronell 

Maria José Farré 

Avram Gold 

Jill Stewart 

Howard Weinberg 

Zhenfa Zhang



	 ii	

© 2017 
Ariel Jasmine Atkinson 

ALL RIGHTS RESERVED



	 iii	

ABSTRACT 

Ariel Jasmine Atkinson: DEVELOPMENT AND PERFORMANCE EVALUATION OF AN 
INNOVATIVE ANTI-BIOFOULING REVERSE OSMOSIS MEMBRANE FOR WATER 

PURIFICATION APPLICATIONS 
(Under the direction of Orlando Coronell) 

Biofouling is a main operational problem plaguing membrane use in the water 

purification industry. Biofouling limits water productivity, water quality, membrane life, and 

increases operational costs. Therefore, developing an effective, widely applicable technology to 

control biofouling would facilitate membrane implementation and enable efficient use of 

membrane technology. 

 Accordingly, the overall goal of this dissertation was to develop and evaluate the 

performance of a novel anti-biofouling reverse osmosis (RO) membrane(s) with 2-

aminoimidazoles (2-AIs) incorporated as the active compound. 2-AIs are non-biocidal, bioactive 

compounds that actively disrupt biofilm formation mechanisms. 2-AIs are unique because they 

are one of the only compound classes that actively disrupts biofilm formation across different 

bacteria phyla, classes, and orders.  

To achieve the overall goal, the following specific objectives were met:  

(1) to develop an anti-biofouling water purification membrane(s) through 2-AI 

incorporation into active layers of commercially available RO membranes,  

(2) to develop an anti-biofouling water purification membrane(s) through 2-AI 

incorporation into active layers of RO membranes during active layer casting,
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(3) to characterize 2-AI membrane(s) performance in terms of biofouling inhibition, 

water productivity, and contaminant removal. 

Experimental results led to the following conclusions:  

(i) 2-AI membranes significantly inhibited Pseudomonas aeruginosa biofilms by 39-

96% (p=0.002-0.12) due to the presence of 2-AI and not changes in membrane 

physico-chemical properties. 

(ii) Compared to (2-AI lacking) control membranes, 2-AI incorporation decreased 

initial membrane water permeability by 0-44% and salt rejection by -0.4-4.3 

percentage points, without efforts to optimize these parameters. 

(iii) Incorporating 2-AI into active layers of commercial RO membranes by activating 

carboxylic acid groups with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

produced a more effective membrane than incorporating 2-AI during active layer 

casting. 

(iv) Under operationally realistic conditions (e.g., using cross-flow and real waters), 

biofilm formation was significantly inhibited (98%, p<0.001) by 2-AI membranes; 

and when biofilm formation was a fouling mechanism, 2-AI membranes had higher 

water permeability (10-11%) and organics rejection (11-12 percentage points) than 

(2-AI-lacking) control membranes. 

Overall, this work constitutes the proof-of-concept for 2-AI membranes and 2-AI 

incorporation represents a promising, novel enhancement for biofouling prevention and control. 

Based on these results, further 2-AI membrane optimization and performance testing is 

warranted.



	 v	

ACKNOWLEDGEMENTS 

 I have so many people to thank for their help and providing encouragement 

throughout my PhD and dissertation research. Though this is the culmination of my graduate 

career, I am excited to see how my professional relationships will evolve and carry forward. I 

look forward to seeing all these friendly faces many more times and the continued fellowship 

and comradery. There are many more to thank than I can list here, but I am thinking of all of you 

as I write. 

I would like to start by expressing appreciation of my committee. I am very grateful to 

my advisor, Dr. Orlando Coronell, for his wonderful guidance, commitment, and support. I know 

that my future work will be greatly colored by his exceptional teaching and advising style. I am 

so thankful to have started my graduate career under the advisement of Dr. Howard S. Weinberg. 

I have learned so much from him and value his continued advice, enthusiasm, and kindness. I 

would like to thank Dr. Zhenfa Zhang and Dr. Avram Gold for their invaluable expertise and 

countless hours of help with organic chemistry and synthesis. Dr. Jill Stewart, thank you so much 

for your research advice and always providing a smile. I am deeply grateful to Dr. Maria José 

Farré for her commitment, caring, and endless support. Thank you, MJ, for opening up your lab 

to me and providing me such a valuable experience in Oz. I have so enjoyed learning, exploring, 

and growing amongst and with my committee: many thanks.



	 vi	

I am appreciative of the opportunity that I had to visit and work at the University of 

Queensland. Thank you to the EAPSI folks, many friends, and researchers that made my 

Australian adventure so valuable and fun. Thank you particularly to Katrin Doederer and Bonnie 

Lyon for providing endless fun and invaluable support and help. Thank you to the many 

researchers and facilities that have contributed their time, expertise, and instrumentation. Special 

thanks to Dr. Carrie Donley and Dr. Amar Kumbhar of Chapel Hill Analytical and 

Nanofabrication Laboratory (CHANL), Dr. Thomas Clegg and Triangle Universities Nuclear 

Laboratory (TUNL) for their help with RBS analyses, Leonard Collins and the UNC Biomarker 

Mass Spectrometry Center for running LC-MS samples, UNC Energy Frontier Research Center 

(EFRC), and the Miller research group for use of contact angle equipment. Thank you also to 

Hydranautics for donation of membranes used in my work. Thank you to those in the department 

that have always been a tremendous support and provided many smiles including, Rebecca 

Gunn, Robin Whitley, Jack Whaley, and Wake Harper. 

A tremendous thank you to those at Agile Sciences, Inc. for allowing me to use their 2-

aminoimidazole technology and apply it to water treatment membranes. I would like to thank 

them for discussing my ideas and assisting me in any way they could. I would also like to 

express appreciation to Agile for allowing me to work in their lab for several months, where I 

learned the fundamentals and performed a good amount of organic synthesis from Dr. David 

Jung and biological methods from Dr. Angie Pollard and Dr. Daina Zeng. I also appreciate 

Gabby Brautman, Raul Doyle, and Brian Kang for aiding me with whatever I asked.  

I would like to acknowledge the sources of my research, travel, and personal funding 

throughout my PhD including the UNC Biology Department, WRRI, NSF-EAPSI, UNC GPSF, 

American Chemical Society’s (ACS) Emerging Leaders Award, ACS-ENVR conference travel 



	vii	

grant, National Science Foundation (NSF) Grant Opportunities for Academic Liaison with 

Industry (GOALI) and Chemical, Bioengineering, Environmental, and Transport Systems 

(CBET) program under Award#1264690, the National Water Research Institute (NWRI) and 

American Membrane Technology Association (AMTA) Fellowship for Membrane Technology, 

and The UNC Graduate School Dissertation Completion Fellowship. 

All past and present members of Coronell and Weinberg labs particularly Mikayla 

Armstrong, Bonnie Lyon, Jingbo Wang, Kasia Grzebyk, Panitan Jutaporn, Yi Liu, John Eskew, 

Breanne Holmes, Kirsten Studer, Alma Berciragic, Kathleen McDermott, Alex Gorzalski, and 

Ryan Kingsbury for invaluable assistance, endless laughs, and teaching me the meaning of 

teamwork. I appreciate your friendship and support both in and out of the lab. The time we have 

spent together is irreplaceable and I look forward to seeing how we each evolve in our lives and 

careers.  

Last, but definitely not least, to my family and friends: Thank you for your support and 

love. There is no way I could accomplish what I have without you! A special thank you to 

Mikayla and Matt Armstrong for being there to both whip me into shape and provide distractions 

in these last few months. Thank you so much for the positivity. I have had so much fun and will 

miss being so close in distance to you! Thank you to those who have always inspired and 

fostered my scientific interests including my mom and dad, and my undergraduate advisor Dr. 

Carol Babyak. Gratitude goes out to all my family and friends for giving me confidence and 

encouraging me to pursue my dreams and future aspirations, no matter how crazy they may seem 

at times. Though some say that I’m a dreamer (see introduction of my departmental seminar), 

thank you to the Cubbies+fans, for showing me that I’m not the only one. And showing me that 

there was light in 2016 and with hard work and perseverance you can overcome (even a 108-year 



	viii	

losing streak). Thank you to Louie for the long walks, cuddles, and kisses. Most of all there is 

one who has really been through the thick and the thin of my graduate career and my life thus 

far. There are absolutely no words to describe how much love and support that I have received 

from my husband, Brandon Fiedor. You make me feel so special, so loved, as if I can accomplish 

whatever I set my heart and mind to, that I can actually do good in this world. I can only hope to 

give back in some way for all that I have received. Much love! 



	 ix	

TABLE OF CONTENTS 

LIST OF TABLES ....................................................................................................................... xiv 

LIST OF FIGURES ....................................................................................................................... xv 

LIST OF ABBREVIATIONS .................................................................................................... xviii 

LIST OF SYMBOLS .................................................................................................................... xx 

CHAPTER 1: INTRODUCTION ................................................................................................... 1 

1.1. Background and Motivations ....................................................................................... 1 

1.1.1. Broader motivations .................................................................................... 1 

1.1.2. General membrane background .................................................................. 3 

1.1.3. Fouling ........................................................................................................ 7 

1.1.4. Biofouling .................................................................................................... 7 

1.1.5. Biofouling control ....................................................................................... 8 

1.1.6. Anti-biofouling membranes ........................................................................ 9 

1.1.7. Biofilm disruption ..................................................................................... 10 

1.1.8. Summary of motivation ............................................................................. 10 

1.2. Objectives ................................................................................................................... 11 

1.2.1. Overall Goal .............................................................................................. 11 

1.2.2. Specific Objectives .................................................................................... 11 

1.3. Dissertation Organization ........................................................................................... 12 
 

REFERENCES .................................................................................................................. 14 



	 x	

CHAPTER 2: DEVELOPMENT OF ANTI-BIOFILM MEMBRANES  
THROUGH THE INCORPORATION OF 2-AMINOIMIDAZOLE  
INTO COMMERCIAL RO/NF MEMBRANES .......................................................................... 20 
 

2.1.Introduction ................................................................................................................. 20 
 
2.2. Materials and Methods ............................................................................................... 23 
 

2.2.1. Reagents and membranes ............................................................................ 23 
 
2.2.2. Synthesis of 2-aminoimidazole (2-AI) compounds .................................... 23 
 
2.2.3. Model reaction for incorporation of 2-AIs 
into membrane active layers .................................................................................. 24 
 
2.2.4. 2-AI benzoyl conjugates .............................................................................. 25 
 
2.2.5. Crystal violet biofilm inhibition assay ........................................................ 25 
 
2.2.6. Incorporation of 2-AI-para into commercial membranes ........................... 25 
 
2.2.7. 4-bromoaniline incorporation ...................................................................... 27 
 
2.2.8. Filtration of water with bromoaniline-modified membranes ...................... 27 
 
2.2.9. Membrane cleaning ..................................................................................... 27 
 
2.2.10. Attenuated total reflectance- 
Fourier transform infrared spectroscopy (ATR-FTIR) ......................................... 28 
 
2.2.11. Silver ion probing of membrane samples .................................................. 28 
 
2.2.12. RBS ........................................................................................................... 28 
 
2.2.13. Contact Angle ............................................................................................ 29 

 
2.2.14. Zeta potential via streaming current .......................................................... 29 
 
2.2.15. AFM .......................................................................................................... 30 
 
2.2.16. Membrane performance tests .................................................................... 30 
 
2.2.17. Statistical significance testing ................................................................... 32 
 

2.3. Results and Discussion.. ............................................................................................. 32 
 



	xi	

2.3.1. Model reaction for incorporation of a 2-AI  
into a commercial polyamide membrane .............................................................. 32 
 
2.3.2. Verification of 2-AI incorporation in the  
polyamide active layers of RO/NF membranes .................................................... 38 
 
2.3.3. Evaluation of the concentration and stability of  
4-bromoaniline incorporated in membranes as  
a surrogate for 2-AIs ............................................................................................. 40 

 
2.3.4. Performance of 2-AI-modified membranes ................................................ 46 
 
2.3.5. Changes in membrane charge, hydrophobicity,  
and roughness as a result of 2-AI incorporation and  
their potential contribution to biofilm inhibition ................................................... 49 

 
2.4. Conclusions .................................................................................................................. 53 
 
2.5. Acknowledgements ...................................................................................................... 55 

 
REFERENCES ................................................................................................................... 56 
 

 
CHAPTER 3: DEVELOPMENT OF ANTI-BIOFOULING  
RO/NF MEMBRANES THROUGH INCORPORATION OF  
2-AMINOIMIDAZOLE INTO THE ACTIVE LAYER  
DURING POLYAMIDE CASTING ............................................................................................ 61 
 

3.1. Introduction .................................................................................................................. 61 
 
3.2. Materials and Methods ................................................................................................ 65 

 
3.2.1. Reagents and membranes ............................................................................ 65 

 
3.2.2. Incorporation of 2-AI-para into  
active layers during polyamide casting ................................................................. 66 
 
3.2.3. Incorporation of 2-AI surrogate  
compound (4-iodoaniline) into active  
layers during polyamide casting ............................................................................ 67 
 
3.2.4. Cleaning procedures and use of  
iodoaniline membranes for water purification ...................................................... 68 
 
3.2.5. Chemical characterization of membrane samples ....................................... 68 
 



	xii	

3.2.6. Physical characterization of membrane samples ......................................... 70 
 
3.2.7. Membrane performance tests ...................................................................... 71 
 
3.2.8. Statistical significance testing ..................................................................... 73 

 
3.3. Results and Discussion ................................................................................................ 73 

 
3.3.1. Verification of polyamide active layer  
formation in 2-AI membranes ............................................................................... 73 
 
3.3.2. Verification of 2-AI incorporation into 
polyamide active layer of 2-AI membranes .......................................................... 74 
 
3.3.3. Evaluation of concentration and stability  
of 4-iodoaniline incorporated in membranes  
as a surrogate for 2-AIs ......................................................................................... 76 
 
3.3.4. Performance of 2-AI membranes ................................................................ 80 
 
3.3.5. Membrane charge, hydrophobicity, and  
roughness in 2-AI membranes and their  
potential contribution to biofilm inhibition ........................................................... 85 

 
3.4. Conclusions .................................................................................................................. 88 
 
3.5. Acknowledgements ...................................................................................................... 89 
 
REFERENCES ................................................................................................................... 91 

 
CHAPTER 4: CHARACTERIZATION OF PERFORMANCE  
OF NOVEL 2-AMINOIMIDAZOLE ANTI-BIOFOULING  
MEMBRANES UNDER OPERATIONALLY REALISTIC CONDITIONS .............................. 96 
 

4.1. Introduction .................................................................................................................. 96 
 
4.2. Materials and Methods ................................................................................................ 99 

 
4.2.1. Reagents, control membranes, and 2-AI membranes .................................. 99 
 
4.2.2. Cross-flow Apparatus ................................................................................ 100 
 
4.2.3. Feed solutions ............................................................................................ 101 
 
4.2.4. Fouling experiments and cleaning of membrane system .......................... 104 



	xiii	

4.2.5 Scanning electron microscopy (SEM) ........................................................ 105 

4.2.6. Attenuated total reflectance-Fourier  
transform infrared (ATR-FTIR) .......................................................................... 105 
 
4.2.7. Dissolved (non-purgeable) organic carbon (DOC) ................................... 106 

4.2.8. EPS extraction and characterization of  
polysaccharide and protein content ..................................................................... 106 
 
4.2.9. PA14 enumeration in feed solutions and membrane samples ................... 107 

4.2.10. Water permeability and solute rejection .................................................. 108 

4.2.11. Statistical significance testing ................................................................. 108 

4.3. Results and Discussion ............................................................................................. 109 

4.3.1. Characterization of membrane foulant  
layers in control and 2-AI membranes ................................................................ 109 
 
4.3.2. Membrane performance under fouling conditions. ................................... 118 

4.3.3. Connections between fouling mechanisms and performance ................... 124 

4.4. Conclusions .............................................................................................................. 124 

4.5. Acknowledgements .................................................................................................. 125 

REFERENCES ................................................................................................................ 127 

CHAPTER 5: CONCLUSIONS .................................................................................................. 131 

CHAPTER 6: FUTURE WORK ................................................................................................. 135 

APPENDIX 1: SUPPORTING INFORMATION FOR CHAPTER 2 ....................................... 138 

APPENDIX 2: SUPPORTING INFORMATION FOR CHAPTER 3 ....................................... 172 

APPENDIX 3: SUPPORTING INFORMATION FOR CHAPTER 4 ....................................... 181 



	xiv	

LIST OF TABLES 

Table 2.1. The three 2-AI compounds and surrogate  
compound (4-bromoaniline) considered for  
incorporation into commercial membranes ................................................................................... 24 
 
Table 2.2. Benzoic acid conjugates of 2-AI-para,  
m/z [M+H]+,by ESI-MS and relative yield calculated  
from peak areas of LC/ESI-MS trace. ........................................................................................... 33 
 
Table 2.3. Characteristics of unmodified commercial control 
and 2-AI-modified membranes ..................................................................................................... 44 
 
Table 2.4. Bromoaniline (BA) concentrations and associated  
percent loss in NF270 membranes after chemical cleaning  
and/or use for filtering ultrapure water for 6 hours ....................................................................... 46 
 
Table 3.1. The 2-AI compound and the 2-AI surrogate compound 
 (iodoaniline) incorporated into polyamide thin-film composite membranes ............................... 66 
 
Table 3.2. Contents of monomers in solutions used to fabricate  
control and 2-AI polyamide active layers ..................................................................................... 67 
 
Table 3.3. Contents of iodoaniline (IA) in solutions used to fabricate IA membranes. ................ 77 
 
Table 3.4. Characteristics of control and 2-AI membranes. .......................................................... 82 
 
Table 4.1. Description of feed solutions used in cross-flow fouling experiments. ..................... 103 
 
Table 4.2. Distinctive FTIR peaks of fouled membranes (Column 1). ....................................... 113 
  



	xv	

LIST OF FIGURES 

Figure 1.1. Structure of a thin-film composite (TFC) water purification  
membrane shown operated under a cross-flow regime ................................................................... 4 
 
Figure 1.2. Representative schematic of the formation reaction of 
the polyamide active layer ............................................................................................................... 6 
 
Figure 1.3. Stages of biofilm formation on a membrane surface .................................................... 8 
 
Figure 2.1. Mechanism of 2-AI incorporation into  
polyamide membrane matrix ......................................................................................................... 26 
 
Figure 2.2. PA14 biofilm inhibition by 2-AI-benzoyl  
conjugates (at 7.8 µM- 0.5 mM) and corresponding IC50 values ................................................ 35 
 
Figure 2.3. Chemical structures of unconjugated 2-AI-para (top),  
5-(4-nitrophenyl) 2-AI (2nd row),  
5-(4-nitrophenyl)-1-benzoyl 2-AI conjugate (3rd row),  
and di-benzoyl-2-AI conjugate (bottom). ...................................................................................... 37 
 
Figure 2.4. FTIR spectra of ESPA 3 membrane (blue line) and  
ESPA 3 modified by 2-AI-para (red line) ..................................................................................... 39 
 
Figure 2.5. Volume-averaged concentration of Ag+ in polyamide  
active layers of commercial unmodified control (blue bars) and  
2-AI-modified membranes (red bars) after exposure to Ag+  
probing solution at pH=10.5. ........................................................................................................ 40 
 
Figure 2.6. Concentration of bromoaniline incorporated into 
(a) polyamide active layer and (b) polysulfone support layer  
of an XLE membrane .................................................................................................................... 42 
 
Figure 2.7. Volume-averaged concentrations of bromoaniline  
(BA) incorporated into the polyamide active layers of four  
modified commercial membranes. ................................................................................................ 43 
 
Figure 2.8. Concentration of bromoaniline in the active layer  
of the bromoaniline-modified XLE membrane after  
filtration of ultrapure water ........................................................................................................... 45 
 
Figure 2.9. Biomass areal density of PA14 biofilm on the  
surface of unmodified control (blue bars) and corresponding 
2-AI-modified membranes (red bars) ............................................................................................ 48 
 
 



	xvi	

Figure 2.10. Zeta potential, measured by streaming current,  
of unmodified control (blue square) and 2-AI-modified  
membranes (red diamond) as a function of pH. ............................................................................ 50 
 
Figure 2.11. Contact angle of unmodified control (blue bars)  
and corresponding 2-AI-modified membranes (red bars) as  
measured by the captive bubble contact angle method. ................................................................ 51 
 
Figure 2.12. Root-mean-squared (RMS) roughness of unmodified  
control membranes (blue bars) and corresponding  
2-AI-modified membranes (red bars) ............................................................................................ 53 
 
Figure 3.1. Average concentration of silver ion (Ag+) measured by  
RBS in the polyamide active layers of control and 2-AI  
membranes after being exposed to Ag+ probing solution at pH=10.5 ......................................... 75 
 
Figure 3.2. Concentration of iodoaniline (IA) incorporated into the  
polyamide  active layer of membranes, as measured by RBS, using  
IA incorporation solutions with varying concentrations as defined in Table 3.3 ......................... 78 
 
Figure 3.3. Concentration of iodoaniline (IA) incorporated into  
the polyamide active layer of four commercial membranes ......................................................... 79 
 
Figure 3.4. Concentration of iodoaniline (IA) in IA-membranes  
after membrane storage, membrane cleaning, and water filtration tests ....................................... 80 
 
Figure 3.5. Areal Biomass of PA14 biofilm (as biomass per membrane area)  
on the surface of the control and 2-AI membranes ...................................................................... .83 
 
Figure 3.6. Comparison of regressed zeta potential in the pH  
range of 3-10 for the control and 2-AI membranes ....................................................................... 86 
 
Figure 3.7. Contact angle for the control and 2-AI membranes as  
measured by the captive bubble method ....................................................................................... 87 
 
Figure 3.8. Root-mean-squared (RMS) roughness of control  
membranes and 2-AI membranes .................................................................................................. 88 
 
Figure 4.1. The 2-AI molecule (5-(4-aminophenyl)-1H-imidazol-2-amine,  
or 2-AI-para for short) incorporated into commercial  
membranes to produce 2-AI membranes .................................................................................... 100 
 
 
 
 
 



	xvii	

Figure 4.2. A custom-built laboratory-scale cross-flow system,  
equipped with four flat-sheet membrane cells (7.65 cm x 4.65 cm  
effective membrane area each) in series, electronic pressure transducers, 
a flow indicator, sampling ports, a recirculating chiller for temperature 
control, pH electrode and meter, and metering valves to control flow and pressure .................. 101 
 
Figure 4.3. Representative surface SEM images of fouled 
control and fouled 2-AI membranes at 1000x (rows 1 and 3)  
and 10000x (rows 2 and 4) magnifications ................................................................................. 110 
 
Figure 4.4. ATR-FTIR spectra of unfouled control membranes  
(blue solid line), fouled control membranes (green dotted line),  
and fouled 2-AI membranes (red dashed line) fouled by using  
organic-only, biofouling-only, cell-deposition-only, and  
organic&biofouling feed solutions. ............................................................................................. 112 
 
Figure 4.5. Areal mass density of polysachharide (PS, dark blue bars)  
and protein (PN, purple striped bars) on the surface of fouled control  
and fouled 2-AI membranes that were fouled using biofouling-only feed solution ................... 116 
 
Figure 4.6. Areal density of organic content on the surface of  
fouled control and fouled 2-AI membranes ................................................................................ 117 
 
Figure 4.7. Areal mass of biofilm (log-scale) on fouled control  
and fouled 2-AI membranes. ....................................................................................................... 118 
 
Figure 4.8. Normalized water permeabilities (At/A0) over  
75 hours of filtration under each fouling condition for control  
membranes (green squares) and 2-AI membranes (red diamonds) ............................................. 120 
 
Figure 4.9. Water permeabilies over 75 hours of filtration under  
each fouling condition for control membranes (green squares)  
and 2-AI membranes (red diamonds) .......................................................................................... 122 
 
Figure 4.10. Rejection of dissolved organic carbon in feed solutions 
by control membranes (solid green) and 2-AI membranes  
(red striped) after 75 hours of filtration ....................................................................................... 123 

  



	xviii	

LIST OF ABBREVIATIONS 

1HNMR  Proton nuclear magnetic resonance 

2-AI  2-aminoimidazole 

2-AI-butyl  5-(4-aminobutyl)-1H-imidazol-2-amine 

2-AI-meta   5-(3-aminophenyl)-1H-imidazol-2-amine 

2-AI-nitro  5-(4-nitrophenyl-1H-imidazol-2-amine 

2-AI-nitro-benzoyl (2-amino-5-(4-nitrophenyl)-1H-imidazol-1-yl)(phenyl)methanone 

2-AI-para  5-(4-aminophenyl)-1H-imidazol-2-amine 

AFM  Atomic force microscopy 

ATR-FTIR  Attenuated reflectance-fourier transform infrared spectroscopy 

BA  4-bromoaniline 

CFU  colony forming units 

dibenzoyl-2-AI-para N-(40(2-amino-1-benzoyl-1H-imidazol-5-yl)phenyl)benzamide 

DO  dissolved oxygen 

DOC  dissolved organic carbon 

EDC  ethyl-3-(3-dimethylaminopropyl)carbodiimide 

EPS  Extracellular polymeric substances 

HSL  Homoserine Lactones 

IA  4-iodoaniline 

IC50  Half maximal inhibitory concentration 

LC-MS  Liquid chromatography-mass spectrometry 

MPD  m-phenylenediamine 

NF  Nanofiltration 



	xix	

PA  polyamide 

PA14  Pseudomonas aeruginosa strain 14 

RBS  Rutherford backscattering spectrometry 

RMS  root-mean-square 

RO  reverse osmosis 

SEM  scanning electron microscopy 

TFC  thin-film composites 

TMC  trimesoyl chloride 

XPS  X-ray photoelectron spectroscopy 

  



	xx	

LIST OF SYMBOLS 

%𝐼𝑛ℎ  biofilm inhibition 

%R  contaminant rejection 

A  water permeability coefficient 

At/A0  normalized water permeability 

Cf  conductivity of feed 

Cp  conductivity of permeate 

H0  null hypothesis 

H1  alternative hypothesis 

Jw  water flux 

pKa  acid disassociation constant 

𝑥!!"  sample mean of 2-AI membrane sample 

𝑥!"#  sample mean of control membrane sample 



	
1	

CHAPTER 1: INTRODUCTION 

1.1. Background and Motivation 

1.1.1. Broader motivations 

The complexity of addressing water scarcity and providing safe drinking water to the 

global population is exacerbated by global climate change, increasing water demand, and 

increasing contamination of traditional source waters. These challenges establish a vital need to 

evaluate alternatives to traditional drinking water sources and treatment. Though fresh water 

supply can be further stretched through increased efficiency in use, this option is not enough to 

meet current and future needs. Desalination and water reuse are becoming a crucial part of the 

water equation and represent some of the most prominent options that exist to manage the fresh 

water scarcity problems around the world.1–6 

Frequently, drinking water treatment plants use feed waters that are compromised by 

upstream wastewater effluent inputs, industrial effluent, agricultural runoff, and/or non-point 

sources of pollution that already make unplanned wastewater reuse an important component of 

drinking water production.5,6 Although planned potable reuse is seldom used in the U.S., other 

countries and areas of the world with already extensive water scarcity issues such as the Middle 

East and Australia, have for many years widely utilized advanced water treatment plants to 

produce high quality recycled water for supplementing drinking water supplies without 

impacting human health.5,7,8 Desalination of sea and brackish waters have been used for decades 

and continue to expand rapidly in many countries such as the U.S., Spain, Israel, and Japan.8–11 



	
2	

Accordingly, planned potable reuse of highly treated wastewaters and desalination of 

brackish and/or seawaters has great potential to meet future water needs.5,12  

In most modern water reuse and desalination plants, reverse-osmosis (RO) and/or 

nanofiltration (NF) membrane treatment is the most critical step for removing contaminants 

(including salts) from source waters in one step and without the use of chemicals. Though less 

costly than other desalination technologies, membrane treatment can be expensive, due mainly to 

energy consumption and fouling control expenses. Energy use can account for up to 50% of total 

water production costs in desalination plants.13,14 The high-energy consumption is due to the 

hydraulic pressure required to operate RO/NF membranes, which can be greatly exacerbated by 

fouling. To decrease energy costs, plants generally try to keep fouling at a minimum, which may 

result in decreased energy expenses but fouling control measures are themselves an added cost. 

For example, Water Factory 21 (former water reuse plant using RO in California) spent an 

estimated 30% of the total operating costs to control biofouling alone.15 Decreasing the fouling 

potential of membranes could lead to significant savings from decreased energy costs, decreased 

cleaning/control costs, and extended membrane lifespans. Given that fouling can also lead to 

increased passage of contaminants into the permeate, decreasing fouling would not only lower 

costs but also potentially improve the quality of the product water.16–23  

RO/NF membrane treatment can be a powerful tool for improving water security 

worldwide, but the costs associated with fouling are a major hindrance for efficient use and more 

widespread implementation of water reuse and desalination. These facts serve as the broader 

motivations for this dissertation. The remainder of the background section explains the more 

field specific motivations and additional information to give context to the dissertation topic. 
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1.1.2. General membrane background 

RO/NF membranes, typically used for water purification, are thin-film composites (TFCs), 

consisting of 3 polymeric layers as depicted in Figure 1.1. Contaminants in the feed water are 

rejected by the top polyamide layer of the membrane, also known as the “active layer”. The 

mechanisms of contaminant rejection are a combination of size exclusion, electrostatic repulsion, 

and the relatively low diffusivity/partitioning of contaminants through the membrane compared 

to water.24  

As depicted in Figure 1.1., the cross-flow regime is used in full-scale applications, where 

two streams are generated from the single feed stream. One stream is the purified product water 

referred to as the “permeate”, and the second stream known as the “concentrate” (or brine) is the 

feed water that did not permeate the membrane.  Since the membranes reject contaminants, the 

concentrate (brine) stream contains a higher concentration of contaminants than the feed stream. 

The permeate typically goes on to further treatment before distribution to end users, whether that 

be a rare additional pass through membrane treatment to further remove contaminants or the final 

step(s) in the treatment train to polish water quality (e.g., remineralization, disinfection, 

advanced oxidation). The concentrate can pass through another stage(s) of membrane treatment, 

to get a higher water recovery from the feed waters, and/or is used in an energy recovery device. 

Eventually the concentrate becomes the waste stream. 
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Figure 1.1. Structure of a thin-film composite (TFC) water purification membrane shown operated under a cross-flow regime. A TFC 
consists of three layers: (1) a top active layer made of polyamide, (2) an intermediate polysulfone support, and (3) a bottom layer 
made of polyester fabric. The general structure for each polymer is also shown below its label. For cross-flow configuration the feed 
enters a membrane module and flows parallel to the surface of the membrane, a portion of the water diffuses through the membrane 
and is called “permeate”, the water that does not permeate the membrane and exits the module is called “concentrate”.
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The active layer is usually a polyamide based polymer. A representative polyamide 

formation reaction is shown in Figure 1.2. The polyamide is formed through interfacial 

polymerization where two monomer solutions, e.g., trimesoyl chloride (TMC) and m-

phenylendiamine (MPD), cross-link through the formation of amide bonds. Typically, the active 

layer fabrication is done by first soaking a polysulfone support in an aqueous MPD solution, and 

then exposing the support+MPD to a TMC-organic solvent solution to form polyamide at the 

interface between the two solutions. After polymerization, the polyamide is exposed to water, 

hydrolyzing the acid chlorides to form carboxylic acids. As seen in Figure 1.2., the active layer 

contains terminal functional groups, mostly carboxylic acids (≈0.2-0.7 M) and some primary 

amines (≈ 0.01-0.08 M).25 These functional groups ionize at particular pH conditions, with amine 

groups protonating at acidic conditions (pKa ≈ 4), and carboxylic acid groups deprotonating at 

alkaline conditions (typically having two pKa’s at around 5 and 9).25  

The active layer fabrication process and surface chemistry are important factors to take into 

account when attempting to control/prevent fouling as well as when modifying the active layer to 

provide the membrane surface with anti-fouling properties.26–30 
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Figure 1.2. Representative schematic of the formation reaction of the polyamide active layer.  The diamine, m-phenylenediamine, can 
be replaced with piperazine to produce a polypiperazineamide active layer. Approximate pKa’s shown are for the terminal carboxylic 
acid and amine groups in the polyamide matrix.25
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1.1.3. Fouling 

As mentioned in Section 1.1, membrane fouling is a major problem in both water reuse 

and desalination of sea and brackish waters, as it leads to lower final water quality as well as 

increased costs in the form of energy, cleaning, and premature membrane degradation.16–23 There 

are four types of fouling that occur in membrane systems: organic, inorganic, colloidal, and 

biofouling. Only biofouling cannot be resolved by the pre-treatment of feed waters; even if 

99.99% of microbes are removed, significant biofouling can still occur.15,31 Biofouling is present 

in most, if not all, membrane treatment plants and it is frequently irreversible, meaning that 

cleaning will not fully recover the membranes to their original efficiency.32–36 Out of the four 

major types of fouling, biofouling is the most complex and challenging to manage. 

1.1.4. Biofouling 

Biofouling is the accumulation of a biofilm on a membrane surface.The biofilms on 

membrane surfaces consist of a matrix of bacteria and associated substances known as 

extracellular polymeric substances (EPS).18,22,37,38Biofilm formation is thought to consist of 2-4 

stages, as shown in Figure 1.3.,where the first stage is usually described as the initial adhesion of 

microorganisms, though this may be preceded by the conditioning of the surface(e.g., 

accumulation of organic substances that increase attachment of microbes).15,33,39–41This initial 

attachment is critical because if adhesion of bacteria can be avoided, biofouling may be 

prevented altogether.If adhesion of bacteria can be significantly reduced,but not fully eliminated, 

biofouling may still occur, though likely lessened and/or slowed.After the adhesion of bacteria, 

cells grow, multiply and produce EPS, and more bacteria and even particulates adhere to the 

surface. 15,33,39–41The last phase of biofilm development is when the growth and detachment of 

bacteria and/or matrix reach equilibrium,and is commonly called the plateau phase. 15,33,39–41 
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Figure 1.3. Stages of biofilm formation on a membrane surface. Blue arrows represent the 
direction of water flow. (a) Initial attachment: bacteria sense/adjust to their environment, 
communicate via chemical signaling, and attach to membrane surface. (b) Biofilm formation: 
bacteria excrete extracellular polymeric substances (EPS), grow, reproduce and form a complex 
matrix known as a biofilm. (c) Plateau phase: growth and detachment of bacteria and/or matrix 
reach equilibrium, with detachment occurring due to shear forces. 

 
RO/NF membrane surfaces present a suitable environment for bacterial attachment and 

biofilm growth because feed waters are generally non-sterile, bacteria are actively transported 

towards the membrane (with the water), and nutrients are constantly supplied with continuous 

flow of fresh feed water.18,31,42 There are several physico-chemical properties that can vary 

between membranes and have been identified as impacting biofouling. Increased hydrophobicity, 

increased roughness, and decreased surface charge have been linked to increased fouling 

potential;26–28,32,43,44 however, the surface may be conditioned by other types of fouling changing 

the physical properties of the membrane surface.35 Hydrodynamics (e.g., shear forces) and the 

bacteria characteristics (e.g., flagellar motility) can also influence fouling.42,45,46 

1.1.5. Biofouling control 

The most widely employed biofouling control methods in membrane treatment are the 

application of biocides and regular membrane cleaning. For example, feed waters are typically 

pre-disinfected with chloramines or free chlorine to inactivate or kill the microorganisms that 

could foul the membrane.15,31,36,38,39 If free chlorine is used, sodium bisulfite is used to quench the 
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residual disinfectant before the membrane step because TFC membranes are sensitive to chlorine 

and can be significantly degraded even at low free chlorine concentrations (i.e., <0.1 mg.L-1).12,47–

51 Biocides are generally unsuccessful because even with very high log reductions/inactivation of 

bacteria, only a few bacterial cells are needed to start a biofilm and biofilm formation may also 

be a protective response of bacteria.15,31,38 Along with its limited efficacy, there are additional 

downsides to pre-disinfection including membrane degradation, the formation of potentially 

harmful by-products (i.e., disinfection by-products), and that membrane cleaning is still needed 

to keep biofouling under control.15,31,36,38,39,52 Usually the biofouling control approach is specific to 

the treatment plant, with most plants using a combination of control methods. Along with 

disinfection, other strategies used may include nutrient limitation, physical removal of microbes, 

and frequent membrane cleaning. Currently, there is no widely applied control 

strategy/combination of strategies that is efficacious and cost-effective.15,31,36,38,39,52,53 

1.1.6. Anti-biofouling membranes 

There has been an effort to alter the membrane surfaces to combat biofouling. Most 

studies in the literature attempt to either incorporate biocides into the membrane or alter the 

physical properties of the membrane surface to make it less amenable to attachment.44,53–57 The 

biocide incorporation approach is meant to inactivate or kill bacteria but not to necessarily 

prevent attachment. This approach has been relatively unsuccessful and in some cases the anti-

microbials in membranes have promoted biofouling.53,58 The physical approaches have aimed at 

increasing the hydrophilicity of or constructing nano-patterns on the membrane surface.44,53,55 

These alterations are meant to minimize bacterial attachment, but unfortunately these physical 

approaches have also been unsuccessful because once bacteria is on the surface, the physical 

alterations do not actively prevent excretion of EPS or biofilm formation itself. A solution that 
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prevents both attachment and EPS excretion/biofilm formation would be ideal, but as far as the 

author is aware no such approach has been used successfully in membrane treatment as of yet. 

1.1.7. Biofilm disruption 

 In the biofilm literature, there has been a new approach to disrupt biofilm 

formation on non-membrane materials through the use of bioactive, but non-biocidal molecules. 

One of the most promising classes of molecules discussed is 2-aminoimidazoles (2-AIs), which 

are proposed to interfere with two-component regulatory systems through binding to response 

regulator proteins.59–61 The two component-regulatory systems are responsible for bacteria 

sensing and responding to environmental changes; and disruptions of these systems could inhibit 

bacteria from sensing/reacting to chemical signals from other bacteria, changing from planktonic 

to sessile state, producing pilli, and excreting EPS.59–64 

2-AIs have not been previously incorporated into water treatment membranes, but have 

been used successfully in other applications and present a promising alternative for application to 

membrane biofouling prevention. 2-AIs have some advantages, making them an ideal candidate 

for use in water treatment membranes. The proposed system disrupted by 2-AIs is conserved in 

many different types of bacteria and so 2-AIs are widely effective at inhibiting biofilm 

formation. 62,63,65–67 2-AIs are one of the only molecule classes that maintain anti-biofilm activity 

across different classes, orders, and phyla of bacteria.60 The anti-biofilm activity of 2-AIs has 

also been preserved when incorporated into polymers and is stable under pH and temperature 

ranges that are relevant to membrane treatment.61  

1.1.8. Summary of motivation 

  Biofouling is one of the main operational problems in the use of water 

purification membranes. This issue limits water productivity, treated water quality, and 
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membrane life, and increases energy and other operational (e.g., membrane cleaning) costs. 

Accordingly, there is a need for an effective, widely applicable technology for controlling 

biofouling on water purification membranes. 

1.2. Objectives 

1.2.1. Overall goal 

The overall goal of this dissertation is to develop and evaluate the performance of a novel 

anti-biofouling reverse osmosis (RO) membrane(s) with 2-AI(s) incorporated as the active 

compound.  

1.2.2. Specific objectives 

To achieve this overall research goal, the dissertation meets the following specific 

objectives: 

(1) to synthesize and evaluate 2-AI molecules in terms of their capacity to be 

incorporated into polyamide active layers and their capability to inhibit biofilm 

(2) to develop an anti-biofouling water purification membrane(s) through 2-AI 

incorporation into active layers of commercially available RO membranes,  

(3) to develop an anti-biofouling water purification membrane(s) through 2-AI 

incorporation into active layers of RO membranes during polyamide casting, 

(4) to characterize 2-AI membrane(s) performance in terms of biofouling inhibition, 

water productivity, and contaminant removal. 
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1.3. Dissertation Organization 

 This dissertation is organized into six chapters and three appendices. Chapter 1 

introduces background concepts and explains the motivations for the dissertation, setting the 

framework for the subsequent chapters. Chapters 2-4 describe the research performed to address 

the overall and specific objectives of the dissertation. Chapters 2-4 are independently 

comprehensive with introductions, materials and methods, results and discussions, conclusions, 

acknowledgements, and reference sections. The subjects of Chapters 2-4 are described briefly: 

• Chapter 2: This chapter addresses specific objective 1 and 2, and partly addresses 

specific objective 4. Novel anti-biofouling water purification membranes are 

developed through the incorporation of 2-AI molecules into the active layer of 

commercial RO/NF membranes. The process of choosing which 2-AI to 

incorporate into the membrane active layers, as well as the extent and the stability 

of 2-AI incorporation are reported. The impact of 2-AI incorporation on the 

physico-chemical properties, water permeability, and salt rejection of the 

membranes are discussed. The extent of biofilm inhibition by 2-AI membranes in 

comparison to (2-AI lacking) control membranes is quantified.   

• Chapter 3: This chapter addresses specific objective 3 and partly addresses 

specific objective 4. Novel anti-biofouling water purification membranes are 

developed through the incorporation of 2-AI molecules during membrane active 

layer casting. The extent and stability of 2-AI incorporation are reported. The 

impact of 2-AI incorporation on the physico-chemical properties, water 

permeability, and salt rejection of the membranes are discussed. The extent of 
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biofilm inhibition by 2-AI membranes in comparison to (2-AI lacking) control 

membranes is quantified.   

• Chapter 4: This chapter addresses specific objective 4. The application of novel 2-

AI membranes under operationally realistic conditions is described. 2-AI 

membranes and (2-AI lacking) control membranes are fouled by combinations of 

organic matter accumulation, bacterial cell deposition, and biofilm formation, 

while operated in cross-flow mode over 75 hours. The characteristics of foulant 

layers on the 2-AI and control membranes are analyzed and the performance of 

the membranes reported. The differences in water permeability and contaminant 

rejection between 2-AI and control membranes were related to differences in 

fouling observed.  

Chapter 5 integrates the results from Chapters 2-4 and provides the overall conclusions of the 

dissertation work. Chapter 6 describes how the work in this dissertation can be carried forward 

and what questions remain to be answered. The appendices following Chapter 6 include 

supporting materials that are referenced in the text of Chapters 2-4. 
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CHAPTER 2: DEVELOPMENT OF ANTI-BIOFILM MEMBRANES THROUGH THE 
INCORPORATION OF 2-AMINOIMIDAZOLE INTO COMMERCIAL RO/NF 

MEMBRANES 

2. 1. Introduction 

Reverse osmosis (RO) and nanofiltration (NF) membrane treatment can be a powerful 

tool for improving water security worldwide, but the costs associated with membrane fouling are 

a major hindrance for efficient use and more widespread implementation of water reuse and 

desalination.  Membrane fouling consists of the accumulation of particles, dissolved substances, 

and/or bacteria on the surface of the membrane, which results in membrane performance 

deterioration, including decreased water permeability and contaminant removal. Decreasing the 

fouling potential of membranes could lead to significant savings from decreased energy costs, 

fouling control and membrane cleaning, and extended membrane lifespan.1–5 Given that fouling 

can lead to decreased contaminant removal, lessening fouling would not only lower costs but 

also potentially improve the quality of the product water.6–8 

 

Four types of fouling occur in membrane systems: organic, inorganic, colloidal, and 

biofouling. All but biofouling can be dealt with by pretreatment of the feed waters; however, 

even after 4-log removal of microbes, significant biofouling can occur.3,9–11 Biofouling is 

ubiquitous in membrane treatment plants and is frequently irreversible and consequently, 

cleaning will not fully restore membrane efficiency. Biofouling consists of the formation of a 

biofilm on the membrane surface, and is thought to progress in several stages. The first stage is 

usually described as the initial adhesion of microorganisms, though this may be preceded by the
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conditioning of the surface (e.g. adhesion of organic substances that increase attachment of 

microbes).3,10–14 The initial attachment is critical because if adhesion can be avoided then 

biofouling may be prevented altogether. After adhesion, microbes grow, multiply, and excrete 

extracellular polymeric substances (EPS), forming what is defined as a biofilm, comprised of 

cells and EPS. The bacteria within the biofilm can communicate with and attract other bacteria 

(quorum sensing) from the external environment. The biofilm will continue to grow through 

continued accumulation of EPS, adherence/recruitment of additional microbes and particulates 

from the feed water, and reproduction within the biofilm.3,11–13 The majority of biofilm consists 

of EPS, up to 90% by volume; therefore, preventing EPS excretion could be a highly effective 

strategy to control biofouling.3,11,15 

 

While application of biocides and membrane cleaning are commonly used to remove and 

prevent biofilm, there is no current widely applied control strategy or combination of strategies 

that is efficacious and cost-effective for preventing or controlling biofouling on RO/NF 

membranes. To this end, there has been an effort by researchers to alter the membrane active 

layer to combat biofouling,4,16–25 since contact is initially established on the polyamide active 

layer and properties of the active layer have a significant impact on fouling.26–29	  Most 

membrane modification studies either incorporate biocides into the membrane active layer or 

alter the surface physical properties to make the membrane less amenable to attachment. 

Incorporation of biocides is intended to inactivate or kill bacteria rather than prevent attachment. 

This approach has had limited efficacy in inhibiting biofouling and in some cases has promoted 

biofouling.4,30 Approaches to altering surface physical properties include nanopatterning and 

decreasing surface hydrophobicity because roughness, hydrophobicity, and decreased surface 
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charge have been linked to increased biofouling potential.4,16,17,27–29 The efficacy of modifying 

physical properties of membranes has been limited, most likely because once bacteria attach to a 

surface, the physical modifications do not actively prevent excretion of EPS or biofilm 

formation. Thus, a more promising approach to biofouling control would be to prevent both 

bacterial attachment and EPS excretion/biofilm formation without activating a protective 

response by the bacteria. 

 

Another approach to control biofilm is disruption of biofilm formation by bioactive but 

non-biocidal chemicals. One of the most effective compound classes examined in the literature 

has been 2-aminoimidazoles (2-AIs),31–33  which inhibit bacterial attachment to surfaces and 

biofilm formation.  2-AIs have been reported to act both as film dispersants and inhibitors, which 

are thought to broadly target response regulator proteins in two-component bacterial regulatory 

systems that control biofilm development, cell attachment, pilli production, and cell 

morphology.31–37 The disrupted signaling networks and response regulator proteins that are the 

proposed targets are present in all bacteria, and 2-AIs have been one of the only non-biocidal 

class of molecule thus far to be shown as effective at preventing biofilm formation and 

dispersing existing biofilms across different classes, orders, and phyla of bacteria.32,34 

Additionally, 2-AIs anti-biofilm activity is preserved upon incorporation into polymers.33 Non-

biocidal 2-AIs have been successfully used in medical 38,39 and agricultural 40 applications, and 

are promising candidates for membrane biofouling prevention and control.  

 

Accordingly, we sought to evaluate incorporation of 2-AIs into commercially available 

RO/NF membranes as anti-biofouling agents. Our specific objectives were: (1) to demonstrate 
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that 2-AIs are amenable to incorporation by covalent bonding to the membrane active layer and, 

once bonded, maintain anti-biofouling properties;  (2) to prioritize a specific 2-AI based on 

ability to inhibit biofilms and to incorporate this 2-AI into four commercial membranes using 

carbodiimide induced grafting; (3) to characterize the extent and stability of 2-AI incorporated 

into the membranes; (4) to characterize the changes in the physico-chemical properties of the 

membranes due to incorporation of 2-AI; and (5) to evaluate the performance of 2-AI-modified 

membranes compared to unmodified commercial membranes in terms of biofilm inhibition, 

water productivity, and salt rejection. 

2.2. Materials and Methods 

2.2.1. Reagents and membranes 

All reagents were ACS reagent grade or better, purchased from commercial sources, and 

used without further purification unless otherwise noted. House-prepared ultrapure water (≥17.9 

MΩ.cm) was used for all aqueous solutions unless otherwise noted. Commercial membranes 

were obtained from Hydranautics, Oceanside, CA (ESPA3 and SWC4+) and The Dow Chemical 

Company, Midland, MI (XLE and NF270) as flat sheets. The ESPA3, SWC4+, and XLE 

membranes have MPD-based polyamide active layers.41 The NF270 membrane has a piperazine-

based polyamide active layer.41  

2.2.2. Synthesis of 2-aminoimidazole (2-AI) compounds 

The 2-AI derivatives and benzoyl conjugates were synthesized in-house. Structures and 

purities were confirmed by proton nuclear magnetic resonance (1H NMR). Synthetic procedures 

and 1H NMR data are presented in detail in the Supporting Information.
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2.2.3. Model reaction for incorporation of 2-AIs into membrane active layers 

Benzoic acid was used as a polyamide surrogate and 2-AI-para (Table 1) as a 

representative 2-AI to be appended to the membrane matrix. Benzoic acid and 2-AI were mixed 

in water (pH>8) in a 1:1 ratio. N-methylmorpholine (2 eq) was added as an organic base, 

followed by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (2 eq, EDC) and 

hydroxybenzotriazole (1 eq) as catalyst. The solution was stirred overnight (~18 hours). Products 

were extracted with chloroform, dried, and solvent was evaporated under vacuum. The reaction 

mixture was analyzed by LC/ESI-MS. 

Table 2.1. The three 2-AI compounds and surrogate (4-bromoaniline) considered for 
incorporation into commercial membranes. 
 

IUPAC Name Molecule 
Abbreviation Structure 

5-(4-
aminophenyl)-
1H-imidazol-2-

amine 

2-AI-para 

 

5-(3-
aminophenyl)-
1H-imidazol-2-

amine 

2-AI-meta 

 

5-(4-
aminobutyl)-1H-

imidazol-2-
amine 

2-AI-butyl 

 

4-bromoaniline bromoaniline 

 

N

H
NH2N

NH2

N

H
NH2N

NH2

N

H
NH2N

NH2

Br NH2
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2.2.4. 2-AI benzoyl conjugates 

The benzoyl conjugates of the 2-AIs in Table 1 were synthesized in house for biofilm 

inhibition assays (procedure given in Supporting Information). 

2.2.5. Crystal violet biofilm inhibition assay 

A PA14 crystal violet biofilm inhibition assay described elsewhere42 was used to quantify 

the ability of 2-AI-benzoyl compounds to inhibit PA14 biofilm formation. In brief, for each 2-AI 

compound, the assay was repeated 2 or 3 times on separate days with a range of concentrations 

and 8 replicates per concentration. A PA14 optical density at 600 nm (OD600) of 0.05 was used 

and incubation was 6 hours at 37° C. 

2.2.6. Incorporation of 2-AI-para into commercial membranes  

To incorporate 2-AI-para into the commercial membranes a procedure (see Figure 2.1.) 

was used where carboxylic acid groups of the polyamide matrix were activated so that the 2-AI 

could attach at that site. A solution of 2-AI-para (1.6 mmol), EDC (1.0 mmol), N-

methylmorpholine (1.5 mmol), and hydroxybenzotriazole (1.0 mmol) in ultrapure water that was 

then adjusted to pH>8 with sodium hydroxide and stirred vigorously for 20 minutes, and the 

commercial membrane (425 cm2) was then immersed. The solution was stirred gently overnight 

(~18 hours), avoiding contact of the stir bar with the membrane. The membrane was removed 

from the solution, rinsed thoroughly with ultrapure water and then stored in ultrapure water until 

used.
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Figure 2.1. Mechanism of 2-AI incorporation into polyamide membrane matrix. The 
deprotonated carboxylic acid groups (pH>8) of the MPD-based polyamide (or 
polypiperazinamide for NF270) membrane are activated by coupling with EDC (Top) to form a 
urethane intermediate (Middle); which is displaced by the 2-AI to generate an amide linkage 
(Bottom). The linkage can be formed at a primary amino group (as shown) or an imidazole 
nitrogen. HoBt=hydroxybenzotriazole, NMM=n-methylmorpholine, EDC=1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide, 2-AI-para=5-(4-aminophenyl)-1H-imidazol-2-amine.
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2.2.7. 4-bromoaniline incorporation 

4-Bromoaniline was incorporated into the commercial membranes by the procedure 

described above (Section 2.2.6). 

2.2.8. Filtration of water with bromoaniline-modified membranes 

Bromoaniline-modified XLE and NF270 membrane samples were placed in a dead-end 

stirred cell (HP4750, Sterlitech, Kent, WA) filled with ultrapure water. The cell was stirred at 

350 rpm and placed under 200 psi of pressure for up to 100 hours. When necessary, pressure was 

released and the cell refilled with solution. The bromoaniline-modified membranes before and 

after filtration were analyzed by RBS and bromine concentration quantified and compared to 

assess stability of incorporation. 

2.2.9. Membrane cleaning  

Bromoaniline-modified NF270 membranes were subjected to cleaning procedures using 

either citric acid solution(2%, pH=2.2)  or ethylenediaminetetraacetic acid/sodium 

tripolyphosphate  solution (0.8%/2%, pH=10.2). Samples were immersed in cleaning solution 

and shaken for 1 hour, then washed with ultrapure water three times. Membranes that were 

evaluated in both cleaning and filtration tests, were first subjected to the filtration tests. The 

bromoaniline-modified membranes before and after cleaning were analyzed by RBS and 

bromine concentration quantified and compared to assess stability of incorporation. 
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2.2.10. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) 

ATR-FTIR analyses were performed at a resolution of 2 cm-1 over a 400-3997 cm-1 range 

with a Bruker Alpha spectrometer (Bruker Optics, Billerica, MA) using an IR source at a 45° 

incident angle and an Alpha-P ATR accessory that analyzed a sample area of 3.1 mm2. Samples 

were air-dried for > 48 hours prior to analysis. A minimum of three replicate samples were 

analyzed for each sample type and 24 scans were performed per replicate sample. The spectra are 

reported as an average of replicates.  

2.2.11. Silver ion probing of membrane samples 

The process of active layer probing with Ag+ is described in detail elsewhere.43–45 In 

brief, membrane samples were immersed in dilute silver nitrate solution at pH=10.545 and  the 

volume-averaged content of silver in active layer was quantified using RBS43,46. Duplicate or 

triplicate samples were prepared for each type of membrane. 

2.2.12. RBS  

RBS analyses were performed with a tandem Van de Graaff accelerator and a semi-

automatic target system, as described elsewhere.46 A 2-MeV He2+ beam was used with incident, 

exit, and scattering angles of 22.5°, 42.5°, and 160°, respectively, the fluence of He2+ beam 

maintained below 1014 He2+/cm2 to prevent membrane damage.47,48 The analysis area of each 

sample was approximately 12.5 cm2. SIMNRA 6.06v49 was used to simulate RBS spectra from 

experimental data to determine elemental composition. Results are reported as an average and 

standard error of duplicate or triplicate samples. 
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2.2.13. Contact angle 

The captive bubble method was applied as described in the literature.50 Briefly, the 

membrane samples were attached to a non-treated crystal grade polystyrene support and 

immersed surface side down in ultrapure water as shown in Supporting Information. A 10 µL air 

bubble was placed on the surface and an image is recorded within 15 seconds of bubble 

attachment with a high-resolution camera. For each membrane type, 4-8 replicate images in 

different areas of the membrane surface were collected and analyzed. The contact angle was 

calculated by multiple methods (manual angle, ellipse, and circle best fits) with ImageJ 1.47v 

software (NIH provided public domain Java image processing software)51 with Contact Angle 

Plugin.52 Manual angle on left, manual angle on right, and ellipse best fits yielded contact angles 

within 0.3°; the circle method yielded contact angles 5° larger . We report the contact angles 

obtained with the ellipse best fit as this method appeared in the images to give the closest fit. 

Results are reported as an average and standard error of 4-8 replicate samples. 

2.2.14. Zeta potential via streaming current 

The membrane charge of control and 2-AI-modified membranes were analyzed with the 

streaming current method described elsewhere53 using a SurPASS Electrokinetic Analyzer with 

an adjustable gap cell. The analyzer uses two membrane samples, each with an area of 2.0 cm2, 

for analysis. The channel height of the gap cell was adjusted to ~100 µm and a solution of 1.0 

mM potassium chloride was used as the electrolyte solution. Streaming current was measured 

four times at each pH, initially from pH=6 to pH=11, and then with fresh solution from pH=8 to 

pH=4, adjusting pH with potassium hydroxide and hydrochloric acid. Measurements were 

repeated on separate days with different membrane samples. The zeta potentials were calculated 
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using the Helmholtz-Smoluchowski equation. Results reported correspond to the average zeta 

potential calculated from four measurements at each pH. 

2.2.15. AFM 

Control and 2-AI-modified membrane samples were air dried for >48 hours prior to 

analysis. An Asylum Research MFP-3D AFM (Santa Barbara, CA) loaded with BudgetSensors 

Tap300AI tips (Sofia, Bulgaria) was operated in tapping mode to scan an area of 10×10 µm2 on 

each membrane sample. Root-mean-square (RMS) roughness was calculated for each sample 

from the surface topography profile collected.54 Results are reported as the average and standard 

error of triplicate samples. 

2.2.16. Membrane performance tests 

2.2.16.1. Biofilm formation inhibition 

Membrane samples were dried for >24 hours prior to analysis. Each sample was then 

mounted in a frame between two aluminum plates (mirrored finish inside) positioned so that the 

active layer was in a window (1.0×1.5 cm2) in the top plate. The membrane surfaces were 

exposed to 300 µL of PA14 solution (OD600=0.05) and incubated at room temperature for 24 

hours. Following incubation, the membrane samples were removed from the frames, and rinsed 

thoroughly with ultrapure water to remove unattached bacteria and solution to quantify bacteria 

in biofilm. The membrane samples were each placed into 2.0 mL of LB broth, vortexed for 30 

seconds, and then sonicated for 30 seconds. Vortexing and sonicating were repeated twice more. 

Samples were vortexed a final time immediately before collecting 150 µL of the solution, for a 

total of three sonication and four vortexing cycles. The collected solution was diluted 10-fold 
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serially and 9 × 5 µL of each dilution was spotted onto LB-agar plates, which were incubated at 

37°C overnight. For each dilution, colonies were counted and the areal density of colony forming 

units (CFUs), reported as CFU.cm-2. The areal densities of CFUs of 2-AI-modified membranes 

and corresponding control membranes were compared to calculate the percent inhibition (%𝑖𝑛ℎ) 

by the formula  

%!"! = 1−  !!!"
!!"#

× 100%,    (1) 

where 𝑥!!" and 𝑥!"# correspond to the mean of the areal density of CFUs for the 2-AI-modified 

membrane samples and commercial control samples, respectively. This analysis was repeated 

twice for each set of membranes on separate days, and each day 4-12 replicate samples for each 

type of membrane studied were tested. We report the average areal density of CFUs as an 

average ± standard error, percent inhibition, and p-value for each day separately. 

2.2.16.2. Water productivity and salt rejection 

Tests solutions consisted of 500 mg.L-1 sodium chloride in ultrapure water with pH 

adjusted to and maintained at 8.0 with sodium hydroxide for all the membranes except NF270. 

For the latter, the test solution was 500 mg.L-1 magnesium sulfate in ultrapure water at pH=8.0. 

Tests were performed using a bench scale cross-flow system with four flat-sheet cells in series. 

The system was operated at 22.0° C, with 15 cm3.s-1 cross-flow velocity, and an applied trans-

membrane pressure of 13.8 bar for 70-91 hours until water flux and salt rejection were stable. 

The water permeability coefficients (A, m.s-1.bar-1) were calculated according to the formula 

𝐴 = !!
!".! !"# × !.!!"#$ !! 

     (2) 



	
32	

where Jw (m3.s-1) is the water flux. The percent salt rejection (%R) values were calculated as  

%𝑅 = 1−  !!
!!

× 100%     (3) 

where Cp (µS.cm-2) and Cf (µS.cm-2) correspond to the conductivity of the permeate and the feed, 

respectively. 

2.2.17. Statistical significance testing 

Statistical significance testing was performed when appropriate to compare the 

performance and physico-chemical properties of control membranes and 2-AI-modified 

membranes. In general, a two-tail unpaired two-sample t-test assuming unequal variances was 

used. The null hypothesis (H0) was that the mean of the control membrane was equal to the mean 

of the 2-AI-modified membrane (µctl=µ2-AI); the alternative hypothesis (H1) was that the means 

were not equal (µctl≠µ2-AI). A one-tailed test was used when comparing the biofilm results of the 

commercial control and 2-AI-modified membranes to evaluate whether the biofilm areal density 

of CFUs was significantly higher for control membranes than 2-AI-modified membranes 

(H0: µctl=µ2-AI and H1: µctl>µ2-AI). Differences were considered to be significant for p<0.15. 

2.3. Results and Discussion 

2.3.1. Model reaction for incorporation of a 2-ai into a commercial polyamide membrane  

2.3.1.1. Regiochemistry of attachment in a model reaction 

Because structural integrity of the 2-AI moiety is critical to antifouling activity31,32 the 

regiochemistry of EDC-mediated coupling was investigated by a model reaction under 
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conditions applicable to the target membranes. 2-AI attached to a 4-aminophenyl linker (2-AI-

para; Table 2.1.) was selected as the 2-AI component and benzoic acid as a surrogate for the 

polyamide membrane matrix. Three major products were isolated and characterized by LC-

ESI/MS and 1H NMR (Table 2.2.).  Two products with parent ions at m/z 279 (M+H+) were 

assigned as coupling at the linker amino group and the endocyclic nitrogen of the imidazole ring. 

Coupling at the endocyclic imidazole nitrogen rather than the 2-amino substituent of imidazole is 

based on observations that the imidazole endocyclic nitrogen is the preferred site for acylation of 

2-AIs. 55,56 The predominant product (Table 2.2.) had a parent ion at m/z 383 (M+H+), 

corresponding to a di-benzoylated product substituted at the amino group of the phenyl and an 

endocyclic imidazole nitrogen. 

Table 2.2. Benzoic acid conjugates of 2-AI-para, m/z [M+H]+,by ESI-MS and relative yield 
calculated from peak areas of LC/ESI-MS trace. 
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The model coupling reaction in bulk solution supported EDC-mediated coupling as the 

method for modification of the polyamide matrix, which has a high concentration of carboxylate 

groups 43,45. Identification of the monobenzoylated product coupled through the 4-aminophenyl 

linker also indicates that the unmodified 2-AI head will be present in the modified membrane. 

Steric constraints posed by the membrane matrix makes bis-coupling, which was the 

predominant reaction in the model experiment, unlikely. 

2.3.1.2. Inhibition of biofilm formation by 2-AI-benzoyl conjugates 

The structures of the three 2-AIs that were evaluated for incorporation into commercial 

membranes are given in Table 2.1.. To prioritize 2-AIs for incorporation into membranes, the 

purified 2-AI-mono benzoyl conjugates of the 2-AIs in Table 2.1., where the 2-AIs are coupled 

to benzoyl at the amino group of the phenyl, were tested for inhibition of biofilm formation by 

Pseudomonas aeruginosa (PA14) and the results were evaluated using the calculated half-

maximal inhibitory concentrations (IC50). The 2-AIs were assayed as mono benzoyl conjugates, 

with benzoyl coupled at the amino group of phenyl, to simulate attachment to the polyamide 

membrane matrix and to determine whether the matrix might influence activity. The 2-AI-para-

mono benzoyl conjugate was most effective at inhibiting biofilm formation (IC50=162 µM), 

followed by the 2-AI-meta-mono benzoyl conjugate (IC50=256 µM), and 2-AI-butyl-mono 

benzoyl conjugate (IC50=420 µM) (Figure 2.2.) and on this basis 2-AI-para was selected for 

incorporation into the commercial membranes. It should be noted that all 2-AI benzoyl 

conjugates inhibited biofilm at micro-molar concentrations and any of the 2-AIs in Table 2.1. 

could be effective if incorporated into the membranes. 
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Figure 2.2. PA14 biofilm inhibition by 2-AI-mono benzoyl conjugates (at 7.8 µM- 0.5 mM) and 
corresponding IC50 values. Each point corresponds to 3 bioassays performed on separate days, 
with 8 replicates at each concentration on each day. Error bars indicate standard error. The 
corresponding best-fit logarithmic correlations are shown for each conjugate. IC50 values were 
calculated using the best-fit logarithmic correlations. 
 
 

To verify the influence of the regiochemistry of conjugation on biofilm inhibition, we 

evaluated the unconjugated 2-AI-para and the 2-AI-benzoyl conjugates at the target linker amino 

group, the endocylic imidazole nitrogen, and bis-conjugate at these positions. Conjugation of 2-

AI-para through the amino group of the phenyl linker enhanced biofilm inhibition, decreasing the 

IC50 from 215 µM to162 µM. 2-AI-para conjugated at an endocylic imidazole nitrogen could not 

be synthesized in pure form. The corresponding 5-(4-nitrophenyl) 2-AI, and 5-(4-nitrophenyl)-1-

benzoyl 2-AI (Figure 2.3.), were compared instead to assess the effect of endocyclic substitution 
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(4-nitrophenyl)) having an IC50 of 1.2 mM compared to 215 µM for the unconjugated 2-AI-para. 

The effect of conjugation at an endocyclic imidazole nitrogen can nevertheless be assessed 

through comparison of the activity of the two nitro compounds towards biofilm inhibition. While 

the unconjugated 5-(4-nitrophenyl) 2-AI inhibited PA14 biofilm formation with an IC50 of 1.2 

mM, the 5-(4-nitrophenyl)-1-benzoyl 2AI, with coupling at the endocyclic imidazole nitrogen, 

showed no activity over a 16 µM-2 mM range. This result is consistent with reports that any 

modification of the 2-AI ring eliminates anti-biofouling activity.31,32 In accord with this result, 

di-benzoyl-2-AI conjugate (Figure 2.3.) was also inactive over the 16 µM-2 mM range.  The 

results of the model coupling reaction and biofilm inhibition tests indicate that anti-biofouling 

activity requires coupling of 2-AI to the polyamide membrane through the amino group of the 

phenyl linker, and this coupling pathway is expected to be present in the 2-AI-modified 

membrane.
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5-(4-aminophenyl)-1H-imidazol-2-amine 

 
Figure 2.3. Chemical structures of unconjugated 2-AI-para (top), 5-(4-nitrophenyl) 2-AI (2nd 
row), 5-(4-nitrophenyl)-1-benzoyl 2-AI conjugate (3rd row), and di-benzoyl-2-AI conjugate 
(bottom).  
 
 

While coupling of 2-AI-para to RO/NF membranes exclusively through the amino group 

of the phenyl linker could be achieved by protection of the endocyclic site, the requirement for 

deprotection following incorporation did not appear to be justified by the preliminary nature of 

this investigation, since the bioactive coupling product was likely to be present at a concentration 
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higher than the IC50 (162 µM) necessary for significant biofilm inhibition. The target 

concentration requires 0.5% or less of the carboxylate groups in the polyamide active layer to be 

modified by conjugation at the amino group of the 2-AI-para linker. Hence, membrane 

incorporation experiments were pursued using unconjugated 2-AI-para.  

2.3.2. Verification of 2-AI incorporation in the polyamide active layers of RO/NF 

membranes  

Differences in chemical bonding between 2-AI-modified membranes and corresponding 

control membranes were characterized by comparison of FTIR signatures for evidence of 

coupled product (Figure 2.4.). The FTIR spectra of the unmodified membranes were consistent 

with previously published literature.41 FTIR spectra of 2-AI-modified membranes showed 

increases in absorbance at the N—H frequencies 1650 cm-1 and 3400 cm-1 relative to the spectra 

of the corresponding control membranes, consistent with the increased concentration of N—H 

bonds expected in the 2-AI-modified structure.7,57 Statistically significant increases (p<0.05) at 

1650 cm-1 were observed for the 2-AI-ESPA3 (82%), 2-AI-SWC4+ (9%) and 2-AI-NF270 

(15%) membranes, while a substantial though not statistically significant increase (p=0.11) was 

observed for the 2-AI-XLE (9%) membrane. At 3400 cm-1 a statistically significant increase 

(p<0.05) in absorbance was observed for the 2-AI-ESPA3 membrane (165%), while the 

remaining 2-AI-modified membranes showed substantial though not statistically significant 

increases (21%, 13% and 22% for 2-AI-SWC4+, 2-AI-NF270 and 2-AI-XLE membranes, 

respectively). Overall, we conclude that the FTIR comparison supports 2-AI incorporation into 

polyamide active layers.  
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Figure 2.4. FTIR spectra of unmodified ESPA3 membrane (blue line) and ESPA3 modified by 
2-AI-para (red line). Increase/presence of peaks at 1650 cm-1 and 3400 cm-1 are ascribed to C=N 
bond stretching and N-H bond stretching in the 2-AI structure respectively. Each spectrum 
reported corresponds to the average of triplicate sample measurements. 
 
 

Additional support for 2-AI incorporation was obtained by probing the active layers of 2-

AI-modified and unmodified control membranes for absorbance of Ag+ at pH=10.5 using 

Rutherford backscattering spectrometry (RBS) to analyze for differences in Ag+ concentration. 

The Ag+ cation pairs with the anionic carboxylate groups in the polyamide active layers. 

Additionally Ag+ may complex with amines, but in unmodified membranes this contributes 

negligibly to Ag+ concentration (~0.015 M maximum); however, upon the incorporation of 2-AI, 

the amine concentration increases substantially and is expected to contribute to the Ag+ 

concentration.58,59 Figure 2.5. shows that in all cases the volume-averaged concentration of Ag+, 

was higher in 2-AI-modified membranes than control membranes. Since 2-AI incorporation 

occurs by coupling at the carboxylate groups, the concentration of anionic groups for ion pairing 

with Ag+ decreases in the active layer. Therefore, the observed increase in Ag+ concentration in 
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2-AI-modified membranes can be attributed to an increase in amine content and provides further 

evidence of the presence of 2-AI in the active layer. 

 
Figure 2.5. Volume-averaged concentration of Ag+ in polyamide active layers of commercial 
unmodified control (blue bars) and 2-AI-modified membranes (red bars) after exposure to Ag+ 
probing solution at pH=10.5. Results for the control membranes represent the concentration of 
carboxylic acid groups (R-COO-). Each bar represents the average of two samples and error bars 
indicate the range.  
 

2.3.3. Evaluation of the concentration and stability of 4-bromoaniline incorporated in 

membranes as a surrogate for 2-AIs 

4-Bromoaniline (bromoaniline; Table 2.1.) was incorporated into membranes as a 

surrogate for 2-AIs to estimate 2-AI concentration and stability in active layers by RBS. 

 

0.000 

0.200 

0.400 

0.600 

0.800 

1.000 

1.200 

ESPA3 SWC4+ XLE NF270 

[A
g+

] i
n 

A
ct

iv
e 

L
ay

er
 / 

M
 

Membrane 



	

	
41	

2.3.3.1. Impact of procedural variables on concentration of bromoaniline incorporated into 

membranes 

An XLE membrane was exposed by total immersion or at the surface only, to the 

bromoaniline incorporation solution and the volume-averaged concentration of bromoaniline 

incorporated into the membrane active layer measured by RBS. The method of contact did not 

have a substantial impact on the concentration of bromoaniline incorporated into the polyamide 

active layer and therefore total immersion of membranes was adopted as the most convenient 

procedure for incorporation of bromoaniline into commercial membranes. 

An XLE membrane was treated to varying concentrations (normalized by membrane 

area) of bromoaniline. At the lowest tested membrane-area normalized bromoaniline 

concentration (1.01 x 10-3 Mm-2) incorporation was more than three orders of magnitude higher 

(0.28 M) than the IC50 of 2-AI-para (162 µM) (Figure 2.6a.). Incorporation plateaued at 

approximately 0.76 M with a bromoaniline concentration of 4.3 x 10-2 Mm-2. Further 

bromoaniline incorporation tests were performed with a membrane-area normalized 

concentration of 4.3 x 10-2 Mm-2, which yielded the highest level of bromoaniline incorporation.  

At this concentration, the bromoaniline content of the polysulfone support layer of the XLE 

membrane was 0.08 M (Figure 2.6b.)  Preparation of modified membranes using the same 

procedure and membrane-area normalized concentrations of 2-AI/bromoaniline allows direct 

comparison of membrane properties. 
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(			)	(			)	
 

Figure 2.6. Concentration of bromoaniline incorporated into (a) polyamide active layer and (b) 
polysulfone support layer of an XLE membrane. The bromoaniline concentration in solution has 
been normalized by membrane area (425 cm2) (x-axes). Each point corresponds to 4 replicate 
measurements with error bars representing the standard error. 

 

2.3.3.2. Bromoaniline concentration incorporated into different polyamide RO/NF membranes 

 Bromoaniline was incorporated into four different commercial membranes resulting in 

the active layer volume-averaged bromoaniline concentrations shown in Figure 2.7.. Estimates 

of 2-AI incorporation based on these results are given in Table 2.3.. The volume-averaged 

concentrations of carboxylate groups in unmodified membranes, estimated by Ag+ probing 

(Table 2.3., Figure 2.5.), tracked with the volume-averaged concentrations of bromoaniline 

incorporated, supporting the assumption that carboxylate groups have been modified by the 

coupling with bromoaniline. The apparent bromoaniline content in excess of the estimated 

carboxylate groups (Table 2.3.) is likely explained by bromoaniline that is trapped or adsorbed 

in the matrix as suggested by the stability experiments described below.  
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Figure 2.7. Volume-averaged concentrations of bromoaniline (BA) incorporated into the 
polyamide active layers of four modified commercial membranes. Each bar represents 2-4 
replicate measurements and error bars indicate standard error.
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Table 2.3. Characteristics of unmodified commercial control and 2-AI-modified membranes. Uncertainties indicate standard error. 
The significance of the difference in means between 2-AI and control membranes are indicated in the key.   

Membrane 
PA14 

Biofilm 
inhibitiond) 

Estimated 
[2-AI]e) 

/M 

[R-COO-]f) 
/M 

 

Contact 
Angle          

/degrees 

RMS 
roughness 

/nm 

Water 
permeability g) 
/x10-6 ms-1bar-

1 

Salt 
rejectiong) 

ESPA 3   0.66±0.02 26±2 77±2 1.69±0.01  98.7±0.1%  
ESPA3 

+2-AI-para 
92%a); 
71%b) 1.08±0.01  23±2c) 97±5a) 1.27±0.01a) 98.8% 0.1%c) 

SWC4+   0.22±0.003 25±1 94±14 0.72±0.008  98.4±0.2%  
SWC4+ 

+2-AI-para 
96%b); 
83%b) 0.83±0.08  26±1c) 114±16c) 0.62±0.01a) 97.8±0.1%a) 

XLE   0.15±0.01 23±5 91±4 2.72±0.02  97.5±0.1%  
XLE 

+2-AI-para 
86%b); 
70%b) 0.76±0.01  20±1c) 79±7c) 2.74±0.02c) 97.2±0.1%c) 

NF270   0.03±0.01 17±1 18±7 4.81±0.1  
 91.2±0.8%  

NF270 
+2-AI-para 

76%b); 
61%a) 0.44±0.01  19±2c) 26±13c) 4.81±0.07c) 91.3±1.1%c) 

a) p-value<0.05. b) p-value<0.15. c) p-value≥0.15. d) each value corresponds to biofilm inhibition measured on one day. e) measured 
[bromoaniline] by RBS in bromoaniline-modified membranes. f) Measured as [Ag+] with RBS of Ag+-probed control membranes. g) 

Values obtained using 500 ppm sodium chloride solution for all membranes except for the NF270 and NF270+2-AI-para membranes 
for which 500 ppm magnesium sulfate was used instead.
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2.3.3.3. Stability of incorporated bromoaniline 

 To approximate operational losses of 2-AI, bromoaniline-modified XLE membranes were 

used to filter ultrapure water in a dead-end cell for up to 100 hours. Figure 2.8. shows the 

volume-averaged bromoaniline concentration in the active layer, measured after filtration for 

different periods of time. After a significant loss within the first ~48 hours of filtration, the 

bromoaniline content plateaus at approximately 0.15 M, which is the concentration of 

carboxylate groups, estimated by Ag+ probing of the unmodified XLE membrane (Table 2.3.). 

As discussed above, the curve in Figure 2.8. can be explained by leaching of unreacted 

bromoaniline absorbed or trapped in the membrane matrix. Though this represents an ~80% loss, 

the concentration of bromoaniline is still three orders of magnitude higher than the IC50 of the 2-

AI-para-mono benzoyl conjugate (162 µM; Figure 2.2.).  

 
Figure 2.8. Concentration of bromoaniline in the active layer of the bromoaniline-modified XLE 
membrane after filtration of ultrapure water. Each point corresponds to the average of duplicate 
measurements with error bars representing the two measured values. 
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 Bromoaniline-modified NF270 membranes were subjected to a combination of common 

chemical cleaning practices and used for filtration of ultrapure water over 6 hours to approximate 

the loss of 2-AI. Loss of  bromoaniline was low after cleaning with basic (EDTA/STPP) and/or 

acidic (citric acid) solutions (Table 2.4.). The greatest loss of bromoaniline (71%) was observed 

during filtration of ultrapure water, and was similar to loss of bromoaniline from XLE-modified 

membranes (~80%) after filtration of ultrapure water. Chemical cleaning after filtration did not 

lead to further losses. As in the case of the bromoaniline-modified XLE membranes, the 

concentration of residual bromoaniline following use for filtration (0.11 M) remained orders of 

magnitude higher in the bromoaniline-modified NF270 than the IC50 of the 2-AI-para-mono 

benzoyl conjugate. 

Table 2.4. Bromoaniline (BA) concentrations and associated percent loss in bromoaniline-
modified NF270 membranes after chemical cleaning and/or use for filtering ultrapure water for 6 
hours. 

 
Average [BA] in 
Active Layer/M 

%BA 
Lost 

No treatment 0.43 - 
Citric Acid 0.31 30% 

EDTA 0.39 11% 
6 hours use for water filtration 0.12 71% 

6 hours use  for water filtration + 
Citric Acid 0.12 71% 

6 hours use for water filtration + 
EDTA 0.11 74% 

 

2.3.4. Performance of 2-AI-modified membranes  

2.3.4.1. Biofilm inhibition by 2-AI-modified membranes 

To evaluate inhibition of biofouling by 2-AI-modified membranes, the surfaces of the 

control and 2-AI-modified membranes were exposed to Pseudomonas aeruginosa (PA14) in 
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nutrient broth solutions under static conditions, and the biofilm mass that formed on the 

membranes was measured. Under full-scale operation, hydrodynamic forces and turbulence from 

water flowing across the surface of the membrane limit the growth of biofilms. 29,60 By contrast, 

in this test growth occurred in the presence of excess nutrient supply and was uninhibited by 

hydrodynamic forces, conditions highly favorable for biofilm development. For each type of 

membrane, the tests were performed at least twice on separate days.   

Growth of PA14 biofilm was inhibited 61-96% (p=0.01-0.12) on 2-AI-modified 

membranes compared to the corresponding unmodified controls, in order of effectiveness, 

SWC4+ > ESPA3 > XLE > NF270 (Table 2.3., Figure 2.9.). The results suggest large 

reductions in the frequency of membrane cleaning and higher performance over an extended 

period may be possible under real-world operating conditions. Previous investigations of anti-

biofouling membranes have not reported  the statistical significance of biofilm inhibition, and 

most measure effectiveness in terms of inactivated or non-viable bacteria on membrane surfaces 

or in solution, reduction of polysaccharides, or increase in water flux; 16–19,21,22,24, which are 

indirect measurements of biofilm formation. In contrast, the results reported here directly 

demonstrate that 2-AI-modified membranes significantly disrupt biofilm formation and growth. 
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Figure 2.9. Biomass areal density of PA14 biofilm on the surface of unmodified control (blue 
bars) and corresponding 2-AI-modified membranes (red bars). Bars represent the average areal 
density of 4-10 replicates. Error bars indicate standard error. The data shown correspond to data 
from one day with 92%, 83%, 86%, and 76% biofilm inhibition by ESPA3+2-AI-para (p=0.01), 
SWC4+2-AI-para (p=0.07), XLE+2-AI-para (p=0.07), and NF270+2-AI-para (p=0.06) 
membranes, respectively.  
 

2.3.4.2. Changes in salt rejection and water productivity due to 2-AI incorporation 

Table 2.3. summarizes results for the water productivity and salt rejection by control and 

corresponding 2-AI-modified membranes. XLE, NF270, and ESPA3 modified membranes show 

no statistical difference (p>0.05) in salt rejection. A significant decrease (p<0.05) of the salt 

rejection by only 0.6% for  SWC4+ modified by 2-AI would in most cases be operationally 

inconsequential. Thus, we conclude that incorporation of 2-AI in the membranes inhibited 

biofilm formation without substantially affecting salt rejection. 

Table 2.3. shows no statistical difference in water permeability between control and 2-

AI-modified XLE and NF270 membranes. However, statistically significant decreases (p<0.05) 
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in water permeability were observed for 2-AI-modified ESPA3 (13%) and SWC4+ (25%). 

ESPA3 and SWC4+ membranes had the highest levels of 2-AI incorporation (Table 2.3.) which 

may account for the reduction in water permeability. It should be noted that in this preliminary 

study we made no systematic effort to maximize water permeability or salt rejection in 2-AI-

modified membranes, although long-term benefits in water permeability from reduced biofouling 

could compensate for lower initial water permeabilities. 

2.3.5. Changes in membrane charge, hydrophobicity, and roughness as a result of 2-AI 

incorporation and their potential contribution to biofilm inhibition 

2.3.5.1. Charge 

Increased negative charge on the membrane surface has been established as an important 

factor in controlling biofouling potential.27,29 We evaluated membrane surface charge by 

streaming current analysis. Although physical changes to the membrane active layer may have 

resulted from 2-AI coupling to carboxylate groups of the polyamide, the streaming current 

results in Figure 2.10. show no substantial change in zeta potential between the control and       

2-AI-modified membranes over the pH range (6-9) typical of full-scale operations. Therefore, we 

conclude that changes in membrane charge did not play a role in the observed reduction in 

biofouling potential.
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Figure 2.10. Zeta potential, measured by streaming current, of unmodified control (blue square) and 2-AI-modified membranes (red 
diamond) as a function of pH. (a) ESPA3, (b) SWC4+, (c) XLE, (d) NF270. Each point corresponds to quadruplicate measurements 
and each curve consists of data from two separate measurements on different days with different sets of membrane samples. 
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2.3.5.2. Hydrophobicity  

Surfaces with increased hydrophobicity generally have higher biofouling potential,27,29 

and to determine whether changes in hydrophobicity may have influenced the activity of 2-AI-

modified membranes, the hydrophobicity of modified and control membranes was assessed by 

contact angle measurements using a captive bubble method. The results for control and 2-AI-

modified membranes are summarized in Figure 2.11. Hydrophobicities measured for unmodified 

controls were consistent with published results,50,57 with statistically similar hydrophobicities 

(20-26º) for MPD-based polyamide membranes (XLE, ESPA3, SWC4+) and somewhat greater 

hydrophilicity (17-19º) for the piperazine-based polyamide membrane (NF270). Figure 2.11. 

shows that modification of the membranes caused no significant changes in hydrophobicity 

(p>0.15) and consequently the biofilm inhibition properties observed in 2-AI-modified 

membranes are not attributable to changes in hydrophobicity. 

 
Figure 2.11. Contact angle of unmodified control (blue bars) and corresponding 2-AI-modified 
membranes (red bars) as measured by the captive bubble contact angle method. Each bar 
represents 4 replicate measurements. Error bars indicate standard error. 
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2.3.5.3. Surface roughness 

Increased potential for biofouling has been correlated with increased surface roughness of 

membrane surfaces.27–29 Possible influence of changes in membrane surface roughness resulting 

from 2-AI modification was analyzed by Atomic Force Microscopy (AFM). Results for the 

controls (Table 2.3., Figure 2.12.) are in accord with published values,57 with similar 

measurements obtained for the MPD-based polyamide membranes (ESPA3, SWC4+, XLE) (77-

114 nm; p>0.15), and a smoother surface measured for the piperazine-based polyamide 

membrane (NF270) (18-26 nm; p<0.05). Modification by 2-AI incorporation resulted in no 

statistically significant changes in surface roughness for SWC4+, XLE, and NF270 membranes, 

ruling out any effects on biofilm inhibition.  A statistically significant increase in roughness was 

observed for the 2-AI-modified ESPA3 membrane (p=0.05); however, since the 2-AI 

modification of ESPA3 had a net effect of strong reduction in biofilm formation (up to 92%, 

Table 2.3.) the anti-biofouling properties of 2-AI clearly compensate for the change in surface 

roughness. 
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Figure 2.12. Root-mean-squared (RMS) roughness of unmodified control membranes (blue bars) 
and corresponding 2-AI-modified membranes (red bars). Each bar corresponds to the average of 
triplicate samples. Error bars indicate standard error. The roughness of ESPA3 and ESPA3+2-AI 
are significantly different. 
 
 

Measurements of membrane charge, hydrophobicity and roughness rule out the 

possibilities that modification by 2-AI caused changes in physico-chemical properties known to 

affect biofouling potential. The observed reduction in biofouling by 2-AI-modified membranes 

can therefore be attributed to the established anti-biofouling properties 2-AI-para in the 

polyamide active layer. 

 

2.4. Conclusions 

 We developed new anti-biofouling membranes through the incorporation of a 2-AI into 

commercial RO and NF membranes with polyamide active layers. The method of 2-AI 
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and the physico-chemical changes due to 2-AI incorporation were evaluated. Our experimental 

results support the following main conclusions: 

• PA14 biofilm was significantly inhibited (61-96%) by 2-AI-modified membranes.  

• Partial loss of a 2-AI surrogate compound was observed after extended use for water 

filtration but is likely a result of leaching of non-covalently bonded compound. 

Nevertheless, residual concentrations are orders of magnitude higher than required for 

effective biofilm inhibition.  

• The observed biofilm inhibition properties of 2-AI-modified membranes were 

attributable to the presence of 2-AI molecules in the active layer, not to changes in 

membrane physico-chemical properties (charge, hydrophobicity, and roughness).  

• In general, salt rejection of 2-AI-modified membranes was equivalent to that of controls. 

• While two (XLE, NF270) of the four membranes had no substantial change in water 

permeability after 2-AI incorporation, the other two (ESPA3, SWC4+) showed a 

moderate decrease in water permeability (13% and 25%, respectively); however, the 

fabrication procedure of 2-AI-modified membranes was not optimized to maximize water 

productivity, and long-term benefits in water permeability due to reduced biofouling 

could potentially compensate for lower initial water permeabilities.  

 Overall, these findings demonstrate that anti-biofouling membranes, with water 

permeability and salt rejection properties comparable to those of state-of-the-art RO/NF 

membranes, and biofilm inhibition properties superior to others reported in the literature, can be 

fabricated by 2-AI incorporation into the polyamide active layers of commercial RO/NF 

membranes. 
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CHAPTER 3: DEVELOPMENT OF ANTI-BIOFOULING RO/NF MEMBRANES 1	
THROUGH INCORPORATION OF 2-AMINOIMIDAZOLE INTO THE ACTIVE 2	

LAYER DURING POLYAMIDE CASTING 3	
 4	
3.1. Introduction 5	

Nanofiltration (NF) and reverse osmosis (RO) membranes are increasingly common 6	

desalination technologies used in the production of drinking water and ultrapure water for 7	

manufacturing (e.g. semiconductors, pharmaceuticals, food and beverage). However, the fouling 8	

of membrane surfaces is a widespread problem leading to decreased productivity, higher energy 9	

use, higher costs (e.g. cleaning time and supplies, decreased membrane life), and lower quality 10	

water or products. 1,2 3–5 Given these negative impacts, developing effective and efficient methods 11	

to decreasing fouling of membranes is critical. 12	

There are a few different types of fouling that occur during RO/NF use, but biofouling is 13	

one of the most frequently occurring and difficult to control. 2,6–9 Significant biofouling occurs 14	

even if high levels of microbes are removed from the feed water (e.g. 4-log removal) and the 15	

productivity of the membranes is generally not recoverable due to irreversibility of biofouling. 16	

Biofouling during membrane treatment starts with planktonic microbes, from the feed solution, 17	

attaching to the surface. 1,7,10,11 If bacteria were kept in planktonic state and attachment were 18	

effectively prevented, then biofouling could be limited significantly or eliminated altogether. 19	

After the bacteria are fixed on the membrane, a biofilm is formed through bacterial growth, 20	

reproduction, and particularly excretion of extracellular polymeric substances (EPS). Biofouling 21	
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consists mostly of EPS (up to 90% by volume), and thus EPS is a critical concern when 22	

considering and developing biofouling control strategies.1,7,12 23	

Biofouling control strategies that are currently in use or in development aim to either 24	

decrease attachment or inactivate/kill bacteria upon attachment. These strategies include physical 25	

removal of bacteria and/or nutrients (e.g. green sand filtration, low-pressure membranes), 26	

biocidal methods (e.g. disinfection, biocidal membranes), and membrane property alteration (e.g. 27	

nanopatterned membrane surfaces, hydrophilic membranes). 13 14–25 While disinfection of feed 28	

waters prior to the membranes in combination with chemical cleaning is the most commonly 29	

used strategy, there is no widely applicable, cost-effective, and efficacious biofouling control 30	

method at this time. In some cases biofouling control strategies have actually promoted 31	

biofouling. 14,26  32	

An ideal approach to control biofouling would actively prevent or eliminate attachment 33	

of bacteria, excretion of EPS, and not trigger a protective response. To this end some researchers 34	

have been working on incorporating bioactive, non-biocidal molecules that actively disrupt 35	

biofilm formation into different materials. One of the most discussed anti-biofilm compound 36	

classes in the general biofilm literature is 2-aminoimidazoles (2-AIs).27–29 The chemical structure 37	

of the 2-AI used in this chapter, 5-(4-aminophenyl)-1H-imidazol-2-amine, is shown in Table 38	

3.1. It is proposed that 2-AIs interfere with bacteria’s two-component regulatory systems through 39	

bonding to response regulator proteins. These systems are used by bacteria for sensing and 40	

responding to their environment, including control over bacteria remaining in planktonic state or 41	

changing to a sessile state, producing pilli, excreting EPS, and formation and maintenance of 42	

biofilms. 2-AIs are the only non-biocidal compound class that is effective at preventing biofilm 43	

formation and growth, and dispersing existing biofilms formed by bacteria across classes, orders, 44	
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and phyla. 28,30–34 2-AIs have successfully been used in medicine35,36 and agriculture37 and are 45	

stable under pH and temperatures that are relevant to membrane processes.  46	

In Chapter 2, the incorporation of a 2-AI into the active layer of commercially available 47	

RO/NF membranes using a carbodiimide-induced grafting technique was reported on. These 48	

modified membranes significantly (61-96%) inhibited Pseudomonas aeruginosa biofilms. 49	

Although this method produced membranes that were effective, there may be more effective and 50	

efficient ways to incorporate 2-AIs without having to add additional chemicals (aside from the 2- 51	

AI) and that takes advantage of current manufacturing processes. 52	

The chemical process of RO/NF membrane manufacturing is described in Scheme 3.1. 53	

The active layer of RO and NF membranes, usually polyamide based, is typically cast on a flat 54	

sheet polysulfone ultrafiltration membrane as a support. The polyamide (PA) is formed through 55	

interfacial polymerization, where two monomer solutions, e.g. m-phenylenediamine (MPD) in 56	

water and trimesoyl chloride (TMC) in an organic solvent, cross-link through the formation of 57	

amide bonds. A portion of the terminal functional groups of the monomers remain unreacted, e.g. 58	

amine groups from MPD (0.01-0.1 M) and acid-chloride groups from TMC (0.2-0.7 M).38 The 59	

acid-chloride groups remain reactive until exposed to water, when they hydrolyze into carboxylic 60	

acids. There are three potential approaches to incorporate 2-AIs into the polyamide during this 61	

manufacturing process, without having to add more chemicals aside from 2-AI. The first two 62	

consist of adding the 2-AI to either (a) the MPD monomer solution or (b) the TMC monomer 63	

solution. It is expected that with approach (a) the 2-AI would act similarly to the MPD and bond 64	

to TMC via amide bonds during the interfacial polymerization. With approach (b) the 2-AI could 65	

potentially react with a portion of the TMC molecules in solution prior to polymerization with 66	

MPD. The third approach would be to (c) expose the membrane surface to an organic solution of 67	
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2-AI, after polyamide formation but prior to hydrolysis of the acid-chloride groups. In approach 68	

(c) the 2-AI would react with the free acid-chloride groups and bond to the membrane matrix 69	

also through amide bonds. 70	

 71	
Scheme 3.1. Chemical processes that take place during the manufacturing of RO/NF water 72	
purification membranes. The active layer typically consists of fully aromatic polyamide (shown here), 73	
and is formed by interfacial polymerization on a polysulfone support. Post-polymerization, the active 74	
layer is contacted with water and the acid-chlorides are hydrolyzed to carboxylic acids. MPD=m- 75	
phenylene diamine, TMC=trimesoyl chloride, PA=polyamide. 76	
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Accordingly, the overall goal of this chapter was to prepare and evaluate anti-biofouling 77	

2-AI membranes where 2-AI is incorporated during the polyamide active layer casting without 78	

addition of other chemicals. In order to achieve this overall research goal we sought to achieve 79	

four objectives: (1) incorporate 2-AI during polyamide active layer casting using approaches (a)- 80	

(c) described above, (2) quantify the extent and stability of incorporation of 2-AI into the 81	

membranes, (3) characterize the changes in membrane physico-chemical properties due to the 82	

incorporation of 2-AI, and (4) evaluate the performance of 2-AI membranes in terms of biofilm 83	

inhibition, water productivity, and salt rejection as compared to a control membrane that has not 84	

had 2-AI incorporated.  85	

3.2. Materials and Methods 86	

3.2.1. Reagents and membranes 87	

All reagents were of ACS reagent grade or better and were used without further 88	

purification unless otherwise stated. The 2-AI that was used throughout experiments is 5-(4- 89	

aminophenyl)-1H-imidazol-2-amine (2-AI-para) (see Table 3.1.), and was synthesized in-house 90	

following our procedure in Appendix 1 and discussed in Chapter 1. 2-AI-para was chosen as the 91	

representative 2-AI because of its low half maximal inhibitory concentration (IC50) of 162 µM 92	

and its demonstrated ability to inhibit biofilm on membranes, as shown in Chapter 1. 93	
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Table 3.1. The 2-AI compound and the 2-AI surrogate compound (iodoaniline) incorporated into polyamide 94	
thin-film composite membranes. 95	
 96	

IUPAC Name Molecule 
Abbreviation Structure 

5-(4-aminophenyl)-
1H-imidazol-2-

amine 
2-AI-para 

 

4-iodoaniline IA 

 

 97	

3.2.2. Incorporation of 2-AI-para into active layers during polyamide casting 98	

To incorporate 2-AI-para during polyamide active layer casting, 2-AI-para was either 99	

added to one of the monomer solutions or the membrane was exposed to a 2-AI-para solution 100	

prior to exposing the polyamide to water (hydrolyzing the acid chlorides).. Five monomer 101	

solutions were prepared and used for the casting of polyamide active layers on a polysulfone 102	

support to produce four different polyamide membranes, according to Table 3.2. Polysulfone 103	

supports (PS20 ultrafiltration membrane, Nanostone Water, Inc., Oceanside, CA) were cut into 104	

309 cm2 coupons, and then sprayed with ethanol until the surface was fully covered in ethanol. 105	

The supports were rinsed and soaked in ultrapure water for a minimum of 24 hours before being 106	

used to produce membranes. The soaked support was taped to a glass plate. After being out of 107	

solution for 12 minutes, the support was placed support side down in MPD-only or 2-AI-MPD 108	

for 2 minutes. Then the support was squeegeed, top to bottom and side to side, and placed into a 109	

vertical container holding either TMC-only or 2-AI-TMC for 1 minute. The membrane was then 110	

either placed active layer side up in 2-AI-soak for 5 minutes or rinsed with 100 mL of hexane. 111	

N

H
NH2N

NH2

I NH2
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The membrane was then left out of solution for 1 minute in a position with the active layer 112	

perpendicular to the bench. The tape was then removed, and the membrane was taken off the 113	

glass plate to be rinsed and stored in ultrapure water at 4°C.  114	

Table 3.2. Contents of monomers in solutions used to fabricate control and 2-AI polyamide active layers. 115	
 116	

Monomer  
Solution 

MPD 
added 
(mM) 

TMC 
added 
(mM) 

2-AI-para 
added 
(mM) 

Solvent Membrane 
produced 

MPD-only 0.39   Water 
Control, 

2-AI-TMC-PA, 
2-AI-soak-PA 

2-AI-MPD 0.39  7.5 Water 2-AI-MPD-PA 

TMC-only  4.4  Isopar G 
Control, 

2-AI-MPD-PA, 
2-AI-soak-PA 

2-AI-TMC  4.4 0.85 Isopar G 2-AI-TMC-PA 

2-AI-soak   1.6 Hexane 2-AI-soak-PA 
 117	

3.2.3 Incorporation of 2-AI surrogate compound (4-iodoaniline) into active layers during 118	

polyamide casting 119	

2-AI-para is not easily distinguished from the polyamide matrices when using currently 120	

available chemical surface analyses. Therefore, to estimate the quantity of 2-AI-para that is 121	

incorporated, the location of incorporation, and the stability of incorporation, a surrogate 122	

compound was used. The surrogate compound, 4-iodoaniline (IA), is of similar size and structure 123	

to 2-AI-para, but has an iodine atom that is absent in membranes and is easily detected with X- 124	

ray photoelectron spectroscopy (XPS) and Rutherford backscattering spectrometry (RBS). IA 125	

was used in place of 2-AI in the incorporation process (see Section 3.2.2) to produce IA-MPD- 126	
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PA, IA-TMC-PA, and IA-soak-PA membranes (instead of 2-AI-MPD-PA, 2-AI-TMC-PA and 2- 127	

AI-soak-PA membranes, respectively). 128	

3.2.4 Cleaning procedures and use of iodoaniline membranes for water purification 129	

In order to evaluate the stability of incorporation, IA content in membranes was measured 130	

after IA membranes were used to filter ultrapure water, exposed to common cleaning procedures, 131	

and/or stored in ultrapure water. The IA membranes were stored in ultrapure water for 24 hours,  132	

then they were subjected to cleaning or were used to filter water. Cleaning tests were performed 133	

by immersing samples either in citric acid (2%, pH=2.2) solution and/or 134	

ehtylenediaminetetracetic acid/sodium tripolyphosphate (0.8%/2%, pH=10.2) solution for 1 hour 135	

while being shaken. The samples were then rinsed with ultrapure water three times. Water 136	

filtration tests were performed in a dead-end cell (HP4750, Sterlitech, Kent, WA) that was filled 137	

with ultrapure water, and stirred at 350 RPM under 200 psi of applied pressure for 6 hours. IA 138	

membranes that were stored for 2 months were stored at room temperature in ultrapure water. 139	

The membrane samples were air-dried for >48 hours after being cleaned, used to filter water, or 140	

stored prior to further analysis.  141	

3.2.5. Chemical characterization of membrane samples 142	

3.2.5.1. ATR-FTIR 143	

ATR-FTIR analyses were used to characterize the chemical signatures of control and 2- 144	

AI-membranes. Analyses were performed with a Bruker Alpha spectrometer (Bruker Optics, 145	

Billerica, MA) using an IR source with a 45° incident angle and an Alpha-P ATR accessory. The 146	

spectra were collected with a resolution of 2 cm-1 over the 400-3997 cm-1 wavenumber range with 147	
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a sample analysis area of 3.1 mm2 analyzed. Prior to analysis, samples were air-dried for > 48 148	

hours. Three or four replicates were analyzed for each sample type and 24 scans were taken per 149	

replicate sample. Spectra reported correspond to the average spectra of the 3-4 replicates. 150	

3.2.5.2. Silver ion probing 151	

Control and 2-AI membrane samples were probed with silver ions (Ag+) to evaluate 152	

whether there was an increase in amine groups and/or changes in free carboxylic acid groups in 153	

their active layers. The volume-averaged and near-surface (≈ top 7 nm) concentrations of silver 154	

in the active layers were measured using Ruthereford backscattering spectrometry (RBS) and X- 155	

ray photoelectron spectroscopy (XPS) analyses, respectively. 39 The Ag+ ion procedure was 156	

previously described in the literature and Chapter 2.40,41 Results reported correspond to the 157	

average and concentration range of triplicate samples. 158	

3.2.5.3. RBS 159	

The volume-averaged elemental composition of polyamide active layers and polysulfone 160	

layers were obtained using RBS. A tandem Van de Graaff accelerator was used to produce a 2- 161	

MeV He2+ analysis beam which irradiated samples with incident, exit, and scattering angles of 162	

22.5°, 42.5°, and 160° respectively, and a He fluence lower than 1014 He2+/cm2 to prevent sample 163	

damage.41,42ref Samples with analysis area of approximately 12.5 cm2 were mounted onto a semi- 164	

automatic target system41 under vacuum in the scattering chamber. Experimental data was used 165	

to simulate RBS spectra and determine elemental composition using SIMNRA 6.06v43. For each 166	

type of membrane sample tested, triplicate or quadruplicate samples were analyzed and results 167	

discussed correspond to the average concentrations and standard errors. 168	
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3.2.5.4. XPS 169	

The elemental composition in the near-surface region (≈ top 7 nm) of IA-membrane 170	

samples were obtained using XPS. A Kratos Axis Ultra DLD system was used with a 171	

monochromatic Al Kα X-ray source (1486.6 eV) operated at 150 W, 90° take-off angle, and a 172	

beam analysis area of 300 x 700 µm2. High-resolution scans (0.1 eV) for IA-membranes were 173	

collected for carbon (C 1s), oxygen (O 1s), nitrogen (N 1s), and iodine (I 3d). Results discussed 174	

correspond to the average and concentration range of duplicate samples. 175	

3.2.6. Physical characterization of membrane samples 176	

3.2.6.1. Contact Angle 177	

The hydrophobicity of control and 2-AI membranes was quantified using captive bubble 178	

contact angle analysis, which is described in detail elsewhere44 and in Chapter 2. The contact 179	

angle was calculated from digital images using several best fits methods with ImageJ 1.47v 180	

software (NIH provided public domain Java image processing software)45 with the Contact 181	

Angle Plugin.46 For each membrane, 19 unique replicate images in different areas of the surface 182	

were collected and analyzed. The results reported correspond to the averages and standard errors. 183	

3.2.6.2. Zeta potential via streaming current 184	

The surface charge of control and 2-AI membranes was evaluated using a SurPASS 185	

Electrokinetic Analyzer using the streaming current method described in the literature.47 Two 186	

membrane samples of 2.0 cm2 each were placed in the adjustable gap cell with ≈100 µm gap 187	

height for analysis. A solution of 1.0 mM potassium chloride was used as the electrolyte 188	
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solution. Streaming current was measured twice per sample type at pH=6 to pH=10, then with 189	

fresh solution from pH=8 to pH=3, with the pH adjusted using potassium hydroxide and 190	

hydrochloric acid, respectively. The Helmholtz-Smoluchowski equation was used to calculate 191	

zeta potential values. 192	

3.2.6.3. AFM 193	

The surface roughness of control and 2-AI membranes was measured using an Asylum 194	

Research MFP-3D AFM (Santa Barbara, CA), equipped with BudgetSensors Tap300AI tips 195	

(Sofia, Bulgaria) and operated in tapping mode. Prior to analysis membrane samples were air- 196	

dried for >48 hours. For each membrane type, three unique 10×10 µm2 regions were scanned. 197	

Each surface topography profile collected was used to calculate root-mean-square (RMS) 198	

roughness Results reported correspond to the average and standard error of triplicate sample 199	

measurements. 200	

3.2.7. Membrane performance tests 201	

3.2.7.1 Biofilm inhibition 202	

A static colony counting method was used to measure biofilm formation on membrane 203	

samples, as described in detail in Chapter 2. The biomass, measured as colony forming units 204	

(CFUs), of biofilms on membrane samples were measured and normalized by the membrane area 205	

to give the areal density of CFUs on the membranes, reported as CFU.cm-2. The areal densities of 206	

CFUs on control and 2-AI membranes were used to determine biofilm inhibition on 2-AI 207	

membrane samples. P. aeruginosa was chosen as the model bacteria to perform biofilm 208	

inhibition tests because they are ubiquitous in the environment, have been found in foulant at 209	
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membrane treatment plants, and are known to aggressively form biofilms.11,48 The sample mean 210	

of the areal density of colony forming units (CFU) for control (𝑥!"#, CFU.cm-2) samples and 2- 211	

AI (𝑥!!" CFU.cm-2) membrane samples were used to calculate biofilm inhibition (%Inh ) as  212	

%𝐼𝑛ℎ = 1−  !!!"
!!"#

× 100% .    (1) 213	

For each membrane type, biofilm inhibition tests were performed on a minimum of two 214	

separate days, with a minimum of six to twelve replicate samples analyzed each day. Results for 215	

average areal CFU density, biofilm inhibition, and p-values are reported separately for each day. 216	

3.2.7.2. Water permeability and salt rejection 217	

The water permeability and salt rejection of each membrane was evaluated using a bench 218	

scale cross-flow system operated at an applied pressure of 13.8 bar, 22.0° C, and 13.5 cm.s-1 219	

cross flow velocity. The membranes were first compacted with ultrapure water at pH=8.0 for 24 220	

hours. Then the feed was switched to 500 mg.L-1 sodium chloride dissolved in ultrapure water at 221	

pH=8.0. The feed was recirculated for 75 hours, with water permeability and salt rejection 222	

samples were taken at 15, 30, 40, 55, 65, and 75 hours. The water permeability coefficient (A, 223	

m.s-1.bar-1) was calculated as 224	

𝐴 = !!
!".! !"# × !.!!"#$ !! 

  ,     (2) 225	

where Jw (m3.s-1) represents the water flux. The salt rejection (%R) of each membrane sample 226	

was calculated as  227	

%𝑅 = 1−  !!
!!

× 100% ,    (3) 228	
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where Cp and Cf correspond to the conductivity of the permeate and feed waters, respectively. 229	

Each membrane type was run in two separate cross-flow tests (i.e. duplicate tests). The water 230	

permeability and salt rejection were reported as the average at each time point in the two separate 231	

tests.    232	

3.2.8. Statistical significance testing 233	

The performance and physico-chemical properties of control and 2-AI membranes were 234	

compared using statistical significance testing. Unless otherwise specified, two-tailed, unpaired, 235	

two-sample t-tests assuming unequal variance were performed. The null hypothesis (H0) for 236	

these tests was that the mean of the control and 2-AI membrane were equal (µctl = µ2-AI) and the 237	

alternative hypothesis (H1) was that the means were unequal (µctl ≠ µ2-AI). Throughout the results 238	

and discussion section p<0.05 (i.e. 95% confidence) is considered to indicate a statistically 239	

significant difference.  240	

3.3. Results and Discussion 241	

3.3.1. Verification of formation of polyamide active layer in 2-AI membranes 242	

To verify the formation of the polyamide active layer in 2-AI membranes, FTIR and RBS 243	

were used to compare chemical bonds and elemental compositions, respectively, between the 2- 244	

AI and control membranes. The FTIR spectra of 2-AI and control membranes were consistent 245	

with those reported for other fully aromatic polyamide RO/NF membranes in the literature49 (see 246	

Appendix 2). No significant differences in FTIR signature were observed when comparing the 2- 247	

AI membranes to control membranes. The RBS spectra of 2-AI and control membranes were 248	

also similar to those of other fully aromatic polyamide membranes in the literature39,40 and no 249	
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significant changes due to 2-AI incorporation were observed. Therefore, FTIR and RBS results 250	

confirmed the successful casting of polyamide active layers in 2-AI membranes.  251	

3.3.2. Verification of 2-AI incorporation into polyamide active layers in 2-AI membranes 252	

As indicated in Section 3.1, it was not possible to distinguish untreated samples of 2-AI 253	

and control membranes using FTIR or RBS analyses. This is because 2-AI-para does not contain 254	

chemical bonds or elements absent in polyamide. Therefore, we followed two different 255	

approaches to verify 2-AI incorporation into the polyamide active layers. First, we probed active 256	

layers with silver ion (Ag+) and evaluated via RBS measurement whether silver concentration in 257	

active layers differed between 2-AI and control membranes. Second, we used an iodine- 258	

containing surrogate molecule (4-iodoaniline) instead of 2-AI-para and evaluated via RBS 259	

detection of iodine whether 4-iodoaniline was incorporated into the active layers. In the 260	

remainder of this section we describe the first approach. The second approach is described in 261	

Section 3.3.3.1. 262	

Silver ions associate with negatively charged functionalities (i.e. free carboxylic acid 263	

groups), and can also potentially complex with functional groups (i.e. amines).50,51 Figure 3.1. 264	

shows that the Ag+ concentrations in the polyamide of 2-AI membranes were significantly 265	

different from those in the polyamide of the control membrane. The Ag+ concentration was 266	

highest in the 2-AI-Soak-PA membrane followed by 2-AI-MPD-PA, 2-AI-TMC-PA and control 267	

membranes. These results suggest increased concentration of free carboxylic acid groups or 268	

amines in the 2-AI membranes compared to in the control membranes.  269	
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 270	
Figure 3.1. Average concentration of silver ion (Ag+) measured by RBS in the polyamide active layers of 271	
control and 2-AI membranes after being exposed to Ag+ probing solution at pH=10.5. Each bar 272	
corresponds to the average of triplicate samples, and error bars represent standard error. 273	
 274	

There are two potential explanations for the higher silver content in 2-AI membranes. 275	

First, 2-AI-para is characterized by amine groups at both ends of the molecule (see Table 3.1.), 276	

and therefore it is reasonable to expect that incorporation of 2-AI-para into the 2-AI membranes 277	

would result in increased Ag+ concentration due to complexation. Second, increased silver 278	

concentration in Ag+-probed 2-AI membranes could be the result of a higher concentration of 279	

free carboxylic acid groups in their active layers. A higher concentration of carboxylic groups, 280	

however, could result in changes in performance (e.g. increased water permeability and 281	

decreased salt rejection) and increased negative charge as measured by alternate methods.52 282	

Given that performance and surface charge results (see Sections 3.3.4. and 3.3.5.1.) show that 283	

performance and charge did not substantially differ between 2-AI and control membranes, we 284	

conclude that the observed higher Ag+ concentration in 2-AI membranes, compared to in control 285	

membranes, is due to complexation of silver with amine moieties in the 2-AI-para, thus 286	

providing indirect evidence of 2-AI incorporation into the 2-AI membranes. 287	
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3.3.3. Evaluation of concentration and stability of 4-iodoaniline incorporated in membranes 288	

as a surrogate for 2-AIs 289	

3.3.3.1. Verification of 4-iodoanline incorporation into polyamide active layers  290	

We chose 4-iodoaniline (IA) as a surrogate for 2-AI because of their similar structure and 291	

size (see Table 3.1.). IA was incorporated into membranes in the same manner as 2-AI-para, 292	

adding it in the MPD, TMC or soak solutions instead, as described for 2-AI-para in Section 3.2.2 293	

and 3.3.2. IA contains an iodine, which is not normally present in the polyamide active layer, and 294	

thus IA was quantified via measurement of iodine by RBS. The concentration of IA was used to 295	

approximate 2-AI concentration and stability. Results show an iodine signal in the RBS spectra 296	

of IA membranes (see Appendix 2), while it was absent in the controls, confirming incorporation 297	

of IA into the active layer and by extension indicating that 2-AI was also incorporated in the 298	

active layers of 2-AI membranes. 299	

3.3.3.2. Impact of procedural variables on concentration of 4-iodoaniline in active layers 300	

We evaluated the potential effect of compound concentration in the monomer/soak 301	

solutions on the concentration of compound incorporated into the membranes. To do this, the IA 302	

concentration in each of three solutions used for casting (MPD, TMC, and soak) was varied 303	

according to the “low”, “medium” and “high” IA concentrations in monomer/soak solutions 304	

listed in Table 3.3. For each polyamide active layer casting, one of the three IA solutions was 305	

used in place of the regular (IA-lacking) monomer/soak solution. Results for the volume- 306	

averaged concentration of IA in active layers measured by RBS are presented in Figure 3.2. The 307	

results show that the concentration of IA incorporated into the polyamide active layers was 308	

independent of the concentration of IA present in the monomer/soak solutions. Therefore, in 309	
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subsequent experiments, the “low” concentrations were used to incorporate IA into IA- 310	

membranes and 2-AI-para into 2-AI-membranes. The IA concentrations measured in the 311	

polyamide made with the “low” concentration IA solutions were used as estimates of the 312	

concentration of 2-AI-para incorporated in 2-AI membranes and are indicated as such in Table 313	

3.4. 314	

Table 3.3. Contents of iodoaniline (IA) in solutions used to fabricate IA membranes. 315	
 IA solution concentrations 

 Low 
(mM) 

Medium 
(mM) 

High 
(mM) 

IA-soak 1.5 3.3 13 
IA-MPD 7.5 13 74 
IA-TMC 0.85 1.7 3.1 

 316	

The results in Figure 3.2. also show that the IA concentration incorporated into the 317	

polyamide active layer was statistically dependent on the method of incorporation. Adding IA to 318	

a post-PA-formation soak produced membranes with the highest concentration of IA 319	

incorporated. Less IA was observed in the polyamide of membranes produced by adding IA to 320	

the MPD solution, and the least IA was observed in polyamide of membranes produced by 321	

adding IA to the TMC solution. However, despite the incorporation approach, the IA 322	

concentrations in the active layer (0.16-0.95 M) were orders of magnitude higher than the 323	

concentration of 2-AI-para required for biofilm inhibition (IC50=162 µM as shown in Chapter 2). 324	

This suggests that all the 2-AI-membranes in this study would inhibit biofilm (as demonstrated 325	

experimentally in Section 3.3.4.1). 326	

 327	
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	  328	
Figure 3.2. Concentration of iodoaniline (IA) incorporated into the polyamide active layer of membranes, 329	
as measured by RBS, using IA incorporation solutions with varying concentrations as defined in Table 330	
3.3. Each bar corresponds to the average of 2-4 replicate samples, and error bars represent standard error.  331	
 332	

The near-surface concentration of IA in the membranes was also analyzed using XPS, 333	

and the corresponding results are compared in Figure 3.3. to volume-averaged results measured 334	

by RBS. The results show that just as for volume-averaged concentrations, the near-surface IA 335	

concentrations were greater when IA was added to the IA-soak solution, than when it was added 336	

to the MPD solution or TMC solution. While the near-surface concentration of IA in the IA- 337	

Soak-PA membrane was twice as high as the volume-averaged concentration, the near-surface 338	

concentration in the IA-MPD-PA and IA-TMC-PA membranes was not significantly different 339	

from the volume-averaged concentration. This is consistent with the fact that when IA is added 340	

to the IA-soak solution, the IA is contacting mostly the surface of the membrane, needing to 341	

diffuse inside it to reach the bulk region. However, when IA is added to the MPD or TMC 342	

solutions, it is present throughout the entire reaction zone during the polyamide formation and is 343	

therefore more likely to be present throughout the bulk of the active layer rather than 344	

concentrated at the surface.  345	
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 346	
Figure 3.3. Concentration of iodoaniline (IA) incorporated into the polyamide active layer of four 347	
commercial membranes. RBS and XPS indicate volume-averaged and near-surface concentrations, 348	
respectively. Each bar corresponds to the average of 2-4 replicate samples, and error bars represent 349	
standard error. 350	

RBS results also indicated that the IA concentration in the polyamide active layer (0.16-0.95 M) 351	

was 6 to 37 times higher than in the polysulfone support layer (0.026 ± 0.002 M). This indicates 352	

that 2-AI will mainly incorporate into the polyamide active layer. Also, the method of IA 353	

incorporation did not significantly affect the concentration of IA in the polysulfone layer.  354	

3.3.3.3. Stability of incorporated iodoaniline  355	

Figure 3.4. shows the concentration of IA as measured by RBS for each membrane after 356	

water filtration, various membrane cleaning procedures, and storage in pure water. The IA-Soak- 357	

PA membrane did not lose any IA after filtration, cleaning, or storage. This indicates that the 358	

incorporation approach, a post-PA-formation soak, produces a stable incorporation with the 359	

compound strongly bonded to the polyamide. Significant loss of IA occurred from the IA-MPD- 360	

PA membrane after being subjected to cleanings, storage, and use to purify water. Using the IA- 361	

MPD-PA membrane to purify water yielded the greatest IA loss, 62%, after which the IA 362	
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concentration was 0.30 M. There was no significant loss of IA during use of the IA-TMC-PA 363	

membrane to purify water for 6 hours, but 43-52% of IA was lost during cleaning and 2 months 364	

of storage. Although, there was loss of compound in the IA-MPD-PA and IA-TMC-PA 365	

membranes, the concentrations of compound remaining (>0.1 M) remained orders of magnitude 366	

above those required for biofilm inhibition (162 µM, as shown in Chapter 2). The IA lost likely 367	

consisted of IA that was sorbed to the membrane matrix rather than chemically bonded. 368	

 369	

 370	
Figure 3.4. Concentration of iodoaniline (IA) in IA-membranes after membrane storage, membrane 371	
cleaning, and water filtration tests. Each bar corresponds to the average of 2-3 replicate samples, and error 372	
bars represent standard deviation. 373	

3.3.4. Performance of 2-AI membranes 374	

3.3.4.1. Biofilm inhibition by 2-AI membranes 375	

The main performance parameters that are used to select and compare water purification 376	

membranes include their selectivity (i.e. contaminant rejection) and water productivity (i.e. water 377	

permeability). In order for 2-AI membranes to be commercially viable, they would need to have 378	
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equal or better performance than the control membrane, while having a lower biofouling 379	

potential (i.e. they would need to inhibit biofouling). To evaluate whether the 2-AI membranes 380	

inhibit biofouling, the surface of the control and 2-AI membranes were exposed to Pseudomonas 381	

aureginosa (PA14) in nutrient broth solutions under static conditions, and the biomass of the 382	

biofilm that formed on the membranes was measured. Under normal operation, hydrodynamic 383	

forces from water flowing across the surface of the membrane and turbulence, limits the growth 384	

of biofilms.53,54 In these tests biofilms are allowed to grow essentially uninhibited due to an 385	

ample nutrient supply and lack of turbulence and hydrodynamic forces. These test conditions 386	

represent what could be considered a worst-case scenario.  387	

Table 3.4. and Figure 3.5. summarize biofouling results. All the 2-AI membranes 388	

significantly inhibited PA14 biofilm (p=0.002-0.04) with 39%-92% less biomass growth on the 389	

2-AI membranes than on the control membrane. The percent inhibitions obtained with the 2-AI- 390	

Soak polyamide membranes were much higher than those for other anti-biofouling membranes in 391	

the literature.15–17,19,21,22,24 The percent inhibitions observed in Table 3.4. and Figure 3.5, even 392	

those on the lower end, could potentially translate to a large reduction in the frequency of 393	

membrane cleaning needed and better membrane performance over time. 394	
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 395	
Table 3.4. Characteristics of control and 2-AI membranes. Uncertainty indicates standard error. The statistical significance of the difference in 396	
means between 2-AI and control membranes are indicated in the key.  397	

 398	

Membrane 
PA14 

Biofilm 
inhibitiona,f 

[2-AI] in 
active layer c 

(M) 

Water 
permeabilitye 

(x10-6 m.s-1.bar-1) 
 

Salt 
Rejectione 

 

[Ag+]d  
(M) 

 

Contact 
Angle 

(degrees) 

RMS 
Roughness 

(nm) 

Control 
(2-AI lacking) 

_ _ 0.594±0.012 98.6±0.2% 0.20±0.002 20±1 48±3 

2-AI-Soak-PA 92%g, 88%h 0.93±0.04 0.333±0.015a 94.3±0.3% a 1.58±0.33 a 18±1 a 100±14 b 

2-AI-MPD-PA 58%g, 39%h 0.80±0.21 0.436±0.021 a 97.4±0.4% a 0.62±0.02 a 17±1 a 42±4 b 

2-AI-TMC-PA 62%g, 57%h 0.16±0.09 0.396±0.016 a 96.2±0.4% a 0.66±0.32 a 17±1 a 52±3 b 

a p-value<0.05. b p-value≥0.15. c Estimated via RBS measurements of iodoaniline in iodoaniline-membranes. d Measured as [Ag+] in Ag+-probed 399	
membranes using RBS. e Obtained using 500 ppm sodium chloride as feed solution. f Samples tested during Day 1 were different from those tested 400	
during Day 2. g Average of results during testing Day 1. hAverage of results during testing Day 2. 401	
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Figure 3.5. Areal Biomass of PA14 biofilm (as biomass per membrane area) on the surface of the control  
and 2-AI membranes. Each bar corresponds to the average of 6-12 replicates, and error bars represent 
standard error. The data shown corresponds to 92%, 58%, and 57% inhibition for the 2-AI-Soak-PA, 2-
AI-MPD-PA, and 2-AI-TMC-PA membranes, respectively. All 2-AI membranes had biomass values 
statistically significantly lower (p-values ≤ 0.01) than control membranes. 
 

As mentioned above, 2-AI-Soak-PA membranes inhibited biofilm the best, with an 

average of 90% inhibition, which is consistent with them having the highest concentration of 2-

AI-para incorporated both in the near-surface and bulk active layer regions. The 2-AI-MPD-PA 

and 2-AI-TMC-PA membranes inhibited biofilm formation at 49% and 60% on average, 

respectively. The lower inhibition by the 2-AI-MPD-PA and 2-AI-TMC-PA membranes may be 

due to either having less 2-AI-para incorporated than the 2-AI-Soak-PA membrane or having 2-

AI-para incorporated in the ‘wrong’ orientation. In Chapter 2 we found that if 2-AI-para is 

coupled through the amino group of the phenyl linker, it will inhibit biofilm formation, but if it is 

coupled at the endocyclic imidazole nitrogen (whether or not it is bonded at the other site), it will 

not. Only a small fraction of 2-AI-para needs to couple through the amino group of the phenyl 

linker for biofilm to be significantly inhibited, as discussed in Chapter 2. Given that the 

concentration needed to inhibit biofilm (IC50=162 µM) is orders of magnitude lower than the 
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estimated 2-AI-para concentration in the 2-AI-MPD-PA and 2-AI-TMC-PA membranes, we 

conclude that the concentration of 2-AI-para in the active layer was not in itself the factor 

leading to lower biofouling inhibition in these two membranes, as compared to in the 2-AI-Soak-

PA membrane. Rather, we speculate that the cause for lower biofouling inhibition in the 2-AI-

MPD-PA and 2-AI-TMC-PA membranes is limited 2-AI-para coupling through the amino group 

of the phenyl linker. 

3.3.4.2. Water permeability and salt rejection 

Table 3.4. summarizes water permeability and salt rejection results for the 2-AI and 

control membranes. Results show that water permeability and salt rejection were 26-46% and 1-4 

percentage points lower respectively for 2-AI membranes than for the control membrane 

(0.594x10-6m.s-1.bar-1 and 98.6%). The 2-AI-Soak-PA membrane had the lowest water 

permeability (0.333 x10-6m.s-1.bar-1) and salt rejection (94.3%), followed by the 2-AI-TMC-PA 

membrane with a better performance (0.396x10-6m.s-1.bar-1  and 96.2%), and the 2-AI-MPD-PA 

membrane with the best performance (0.436x10-6m.s-1.bar-1 and 97.4%) of the 2-AI membranes. 

Even though the 2-AI membranes had statistically lower salt rejections than the control 

membrane, it is important to note that this study constitutes a proof-of-concept study where no 

systematic attempt was made to maximize water permeability and salt rejection in 2-AI 

membranes. The 2-AI incorporation process and polyamide casting could potentially be 

optimized in order to minimize or eliminate differences in permeability between the 2-AI and 

control membranes. Further, while the water permeability of the 2-AI membranes was lower, the 

2-AI membranes biofouled substantially less than the control membranes and therefore could 

potentially exhibit higher water permeability over the long-term and with real waters. Thus, on 

the basis of the substantial biofouling inhibition exhibited by the 2-AI membranes, the limited 
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decrease observed in water permeability and salt rejection, and the compatibility of the 2-AI 

incorporation method with current membrane casting practices, the results presented in this study 

support 2-AI incorporation into polyamide active layers as a promising avenue to enhance 

current RO/NF membranes.  

3.3.5. Membrane charge, hydrophobicity, and roughness in 2-AI membranes and their 

potential contribution to biofilm inhibition 

3.3.5.1. Charge 

We compared the active layer charge, hydrophobicity (Section 3.5.2) and roughness 

(Section 3.5.3) of control and 2-AI membranes to understand the cause of biofilm inhibition by 

the 2-AI membranes. These physico-chemical properties are known to affect membrane fouling 

potential, including biofouling.55,53  Figure 3.6 shows zeta potential results in the pH=3-10 range 

for the control and 2-AI membranes. The results for the control, 2-AI-MPD-PA, and 2-AI-TMC-

PA membranes are not statistically different. The results for the 2-AI-Soak-PA membrane is 

significantly different from the results for the control membrane. The zeta potentials are less 

negative for the 2-AI-Soak-PA membrane than for the control membrane and the isoelectric 

point is also at a higher pH (pH=3.7 and 3.4) for the 2-AI-Soak-PA and control membranes, 

respectively). The less negative surface charge of the 2-AI-Soak-PA membrane would indicate 

higher biofouling potential;55,53 however, as discussed in 3.3.4.1., the 2-AI-Soak-PA membrane 

inhibited biofouling by 90% on average. Thus, the significant biofilm inhibition by this 

membrane is not attributable to changes in surface charge. 
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Figure 3.6. Comparison of regressed zeta potential in the pH range of 3-10 for the control and 2-AI 
membranes. Zeta potentials were calculated using the Helmholtz-Smoluchowski equation. The 
regressions were made using a minimum of 185 streaming current measurements and at maximum 285 
streaming current measurements for each membrane type. Measurements were collected for two samples 
of each membrane type on two separate days and at least four measurements were performed at each pH.  
 

3.3.5.2. Hydrophobicity 

Table 3.4. and Figure 3.7. summarize contact angle measurements for the control and 2-

AI membranes. The results show that the contact angles of 2-AI membranes (17-18°) were 

statistically significantly lower (p<0.05) than the contact angle of the control membrane (20°). 

This indicates that 2-AI membranes were more hydrophilic than control membranes. Although 

higher hydrophilicity is generally correlated with lower biofouling potential,53,55  the differences 

between the contact angles of 2-AI and control membranes were relatively small (2-3°), and 

therefore unlikely to contribute significantly to the substantial biofouling inhibition (49-90%) 

exhibited by the 2-AI membranes.  
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Figure 3.7. Contact angle for the control and 2-AI membranes as measured by the captive bubble method. 
Each bar corresponds to the average of 19 replicate measurements, and error bars represent standard error. 

3.3.5.3. Roughness 

Table 3.4. and Figure 3.8. present the roughness results for the control and 2-AI 

membranes. The results show that there were no statistically significant differences in roughness 

between the control and 2-AI membranes. However, we note that even though with a two-tailed 

t-test and at the chosen confidence level (95%), there is no statistical difference, the 2-AI-Soak-

PA membrane was notably rougher than the other membranes, and when compared to the control 

membrane gives a p-value of 0.06. Even though a rougher surface would generally indicate 

higher biofouling potential,53,55,56 as discussed in Section 3.3.4.1. the 2-AI-Soak-PA membrane 

inhibited biofouling by 90% on average. Thus, the significant biofilm inhibition by this 

membrane is not attributable to changes in surface roughness. 
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Figure 3.8. Root-mean-squared (RMS) roughness of control membranes and 2-AI membranes. Each bar 
corresponds to the average of measurements on triplicate samples, and error bars represent standard error. 
 

On the basis of the above results for membrane charge, hydrophobicity, and roughness, 

the observed reduction in biofouling potential of 2-AI membranes compared to the control 

membrane is not attributable to differences in the physico-chemical properties of polyamide 

active layers. Thus, we conclude that the observed biofouling inhibition is a direct result of the 

presence and action of 2-AI-para in the polyamide membranes. 

3.4. Conclusions 

 We assessed novel anti-biofouling 2-AI membranes that were prepared through the 

incorporation of 2-AI-para during the polyamide active layer casting process. The 2-AI 

incorporation approach, the stability of 2-AI incorporation, the physico-chemical changes due to 

2-AI incorporation, and the performance of 2-AI membranes were evaluated. Our experimental 

results support the following main conclusions: 

• PA14 biofilm was significantly (p=0.002-0.04) inhibited by 2-AI membranes, 39-92%. 2-

AI-Soak-PA membranes inhibited biofilm the best at 90% on average. 
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• 2-AI incorporation in membrane active layers (0.16-0.95 M) was orders of magnitude 

higher than required for biofilm inhibition.  

• The extent of loss of 2-AI surrogate compound was dependent upon the incorporation 

approach used and was in the -5-62% range. However, in all cases, the concentration of 

the compound remained orders of magnitude higher than what was required for 

significant biofilm inhibition to occur.  

• Physico-chemical changes (i.e. charge, hydrophobicity, and roughness) in 2-AI 

membranes likely did not contribute significantly to biofilm inhibition. Thus, the 

observed biofouling inhibition in 2-AI membranes is attributed to the presence and action 

of 2-AI-para. 

• Water productivity was 26-44% lower and salt rejection was 1.2-4.3 percentage points 

lower for 2-AI membranes than for the control membrane; however, the casting 

procedure of 2-AI membranes was not optimized to maximize water productivity and salt 

rejection.  

These findings serve as a proof-of-concept of (i) the biofouling inhibition properties of 2-AI 

membranes, and (ii) the feasibility of readily incorporating 2-AI into polyamide active layers 

during the common commercial membrane manufacturing process. These 2-AI membranes 

represent a promising, novel enhancement for biofouling prevention and control. Further 2-AI 

membrane optimization and performance testing, as well as a techno-economic analysis, are 

needed to evaluate the overall potential benefits of 2-AI incorporation into active layers. 
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CHAPTER 4: CHARACTERIZATION OF PERFORMANCE OF NOVEL 2-
AMINOIMIDAZOLE ANTI-BIOFOULING MEMBRANES UNDER OPERATIONALLY 

REALISTIC CONDITIONS 
 
4.1. Introduction 

Nanofiltration (NF) and reverse osmosis (RO) membranes are commonly used to purify a 

variety of waters that are difficult to treat (e.g., brackish water, seawater, wastewater effluent, 

industrial wastewaters). One of the biggest, most widespread challenges in the application of 

high-pressure water purification membranes is the accumulation or growth of substances on their 

surfaces, otherwise known as fouling. Fouling increases operational costs and negatively impacts 

membrane performance. For example, fouling increases the frequency of membrane cleaning and 

membrane replacement, including the need for chemicals and down time associated with these 

procedures, and decreases membrane water productivity and the quality of purified water. 1–5 

A variety of substances from the feed water can foul membranes, including precipitated 

inorganics (scaling), organic matter (organic fouling), colloids (colloidal fouling), and bacterial 

biofilms (biofouling). Among these four types of fouling, biofouling is the most difficult one to 

prevent and control.2,6–9 

 Biofouling occurs initially when planktonic microbes in the feed solution, sensing 

a suitable surface in their environment, attach to the membrane.1,7,10,11 These sessile bacteria 

grow, reproduce, and excrete extracellular polymeric substances (EPS) to form a biofilm. Most 

biofouling control strategies aim to kill, inactivate, or remove bacteria prior to attachment with 

technologies such as micro-/ultrafiltration and feed water disinfection (e.g., chlorination, 

chloramination).12–24 Other unconventional approaches seek to prevent the attachment of bacteria,
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or to kill/inactivate bacteria upon attachment through modifying the membrane surface with 

nanopatterns, incorporating biocides, or by making the surface more hydrophilic.13–15,25–27 In 

many cases, these various control methods are unsuccessful, have limited impact on fouling, or 

even promote biofouling. A major limitation of these methods is that they do not target the EPS 

(which constitute up to 90% of biofilms by volume1,7,9) or the process of biofilm formation and 

growth by the bacteria. An ideal biofouling control strategy would actively prevent both bacterial 

attachment and biofilm formation and growth, including bacterial excretion of EPS.  

 In Chapters 2 and 3, we describe such a control technology, where a 2-

aminoimidazole (2-AI) is incorporated into the polyamide active layer of polyamide RO/NF 

membranes. These “2-AI membranes” inhibited biofilms significantly (p=0.001-0.12) and 

substantially (by up to 96% compared to corresponding control 2-AI lacking membranes). The 2-

AI is a bioactive, but non-biocidal compound, that blocks a wide range of bacteria from sensing 

and responding to their environment by disrupting the bacteria’s two-component regulatory 

system.28–30 By disrupting this system, the bacteria stay in a planktonic state, do not attach to 

surfaces, do not excrete EPS, and thus do not form biofilms.29,31–35 2-AIs are the only known non-

biocidal class of compounds that are effective at preventing and dispersing biofilms of bacteria 

across different phyla, classes, and orders.29,31–35  

 The results in Chapters 2 and 3 show that 2-AI membranes performed the best 

when 2-AI was incorporated after polyamide casting as opposed to during polyamide casting. 

This conclusion was reached on the basis of the observation that 2-AI membranes with 2-AI 

incorporated after polyamide casting achieved the highest levels of biofilm inhibition while 

maintaining salt rejection and sacrificing the least water permeability. More specifically, 

commercial polyamide RO/NF membranes to which 2-AI was incorporated in our laboratory 
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significantly (p=0.01-0.12) inhibited Pseudomonas aeruginosa biofilms by 61-96%, when tested 

with pure bacterial solutions (i.e., no other types of foulants present) with ample nutrient supply 

under static conditions (i.e., uninhibited by hydrodynamic forces). These levels of biofilm 

inhibition are higher than those for anti-biofilm membranes reported in the literature.14–16,18,20,21,23 

Also, in half of the membranes tested (2 out of 4), pure water permeability did not significantly 

change upon 2-AI incorporation; in the other half, pure water permeability decreased (13-25%) 

due to 2-AI incorporation. Given that the potential decrease in water permeability in full-scale 

operation is greater for the control (2-AI lacking) membrane than for the 2-AI membrane, 

because the 2-AI membranes inhibit biofouling, lower pure water permeabilities for some of the 

2-AI membranes would not necessarily translate into lower water permeabilities in full-scale 

operations. Further, it is important to note that no efforts have been made to optimize 2-AI 

membranes for maximum water permeability, and therefore it is possible that the 2-AI 

incorporation method could be tailored to minimize or eliminate observed water permeability 

reductions.  

 In order to evaluate anti-biofouling membranes for further development and 

whether they can be feasibly used commercially, they should be tested under operationally 

realistic conditions, including using cross-flow filtration configuration and real waters that 

contain multiple foulants, or multiple waters containing different foulants. Not only is it 

important to test these membranes under realistic conditions for proof-of-concept, but it is also 

important to understand the fouling mechanisms on the anti-biofouling membranes, including 

whether 2-AI incorporation alters organic matter accumulation, bacterial deposition, and biofilm 

formation. A more complex, systematic understanding of fouling will enable the anti-biofouling 

technology to be optimized, as well as appropriately and widely applied. 
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 Accordingly, the overall goal of this chapter was to evaluate the differences in 

overall performance (i.e., fouling, water permeability, salt rejection), and the mechanisms at play 

in those differences, between 2-AI membranes and corresponding (2-AI lacking) control 

membranes. In order to achieve this overall research goal we sought to meet the following 

specific objectives: (1) to evaluate water permeability and salt rejection changes in 2-AI and 

control membranes due to biofilm formation, bacterial cell deposition, and organic matter 

accumulation; (2) to quantify and characterize the foulants on 2-AI and control membranes; and 

(3) to relate the differences in fouling to differences in performance between 2-AI and control 

membranes. 

4.2. Materials and Methods 

4.2.1. Reagents, control membranes, and 2-AI membranes 

 Unless otherwise noted, all reagents were purchased from commercial sources, 

were of ACS reagent grade or better, and were used without further purification. The chemical 

structure of the 2-AI molecule (i.e., 5-(4-aminophenyl)-1H-imidazol-2-amine, or 2-AI-para for 

short) that was incorporated into commercial membranes to produce 2-AI membranes is shown 

in Figure 4.1. 2-AI-para was synthesized in-house and purity confirmed as described in Chapter 

1 and Appendix 1. ESPA3 commercial membranes (Hydranautics, Oceanside, CA) were used as 

the membranes into which 2-AI-para was incorporated. ESPA3 membranes were selected for 

modification because the ESPA3 with 2-AI incorporated was shown in Chapter 2 to inhibit 

biofilm to a high degree (71%,92%) while having a moderate difference in water permeability 

and no difference in salt rejection compared to the corresponding control (2-AI lacking) 

membranes. The 2-AI membranes were prepared as described in Chapter 2. Briefly, ESPA3 

membranes were exposed to a basic (pH=9) aqueous solution of 2-AI-para (1.6 mmol), 1-ethyl-
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3-(3-dimethylaminopropyl)carbodiimide (1.0 mmol), N-methylmorpholine (1.5 mmol), and 

hydroxybenzotriazole (1.0 mmol) overnight (≈18 hours), and then rinsed with ultrapure water. 

The membranes were prepared immediately prior to use for each experiment. 

 
Figure 4.1. The 2-AI molecule (5-(4-aminophenyl)-1H-imidazol-2-amine, or 2-AI-para for 
short) incorporated into commercial membranes to produce 2-AI membranes. 

4.2.2. Cross-flow Apparatus 

 A custom-built laboratory-scale flat sheet membrane cross-flow system, shown in 

Figure 4.2, with four membrane cells (7.65 cm x 4.65 cm effective membrane area each) in 

series was used for fouling experiments. The equipment, manufacturers, and 2016 costs for the 

system are given in the Appendix 3. The pH, temperature, and dissolved oxygen (DO) of the feed 

water were monitored throughout experiments. The pH was monitored with a pH electrode 

connected to a pH meter, the original pH of feed waters was 6.97-7.86, there was no adjustment 

to the feed pH during the fouling experiments but the pH was steady with less than 0.3 units of 

pH change over the full 75 hour experiments (typically increasing). The temperature was kept 

constant at 22.0° C using a recirculating chiller. The DO was measured using a handheld water 

quality meter with DO probe (YSI, Yellow Springs, OH), and DO concentration was between 6.2 

and 7.0 mg.L-1 in the feed during all runs. The pressures before each cell, at the pump, and at the 

flow meter on the concentrate line were measured using pressure transducers. The pressure 

(13.8±0.3 bar) and cross-flow velocity (14 cm.s-1) were regulated by pump speed and adjusting 

the metering valve on the concentrate line. Permeate samples were collected at the permeate 

sampling ports and feed samples were taken directly from the feed reservoir. The permeate flow 

N

H
NH2N

NH2
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rate was calculated at least once per day by measuring the weight of permeate collected per unit 

of time.  

 
Figure 4.2. A custom-built laboratory-scale cross-flow system, equipped with four flat-sheet 
membrane cells (7.65 cm x 4.65 cm effective membrane area each) in series, electronic pressure 
transducers, a flow indicator, sampling ports, a recirculating chiller for temperature control, pH 
electrode and meter, and metering valves to control flow and pressure. The membrane cells are 
numbered 1 through 4. PD = pulsation dampener, PT = pressure transducer, FI = flow indicator, 
S = sampling port. Figure prepared and provided by Mikayla D. Armstrong. 

 

4.2.3. Feed solutions 

 Table 4.1. describes the different feed solutions that were used in the cross-flow 

fouling experiments. The contents of solutions were modeled after a Herzberg and Elimelech 

biofouling study.36 The natural water used was a raw drinking water source, University Lake, 

collected at the OWASA Jones Ferry Drinking Water Treatment Plant in Carrboro, NC (USA) in 
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September 2016 and stored at 4° C for a maximum of one month prior to use. The non-purgeable 

dissolved organic carbon concentration (DOC) of the natural water was 7.2 mg.L-1 and the UV 

254 absorbance was 0.23 cm-1. The water was filtered using a 1.2 µm G4 glass fiber filter (Fisher 

Scientific, Hampton, NH, USA), followed by a 0.45 µm hydrophilic mixed cellulose ester filter 

(EMD Millipore, Billerica, MA). Ultrapure water (≥17.9 MΩ.cm) was prepared in house and had 

no detectable DOC. In all solutions, Lennox LB broth (1.0 mL.L-1) and potassium phosphate 

(0.45 mM) were added to provide nutrients and stabilize the pH, respectively. Sodium azide (2 

mM) was added to some of the feed solutions to inhibit bacterial growth. In the biofouling-only 

and cell-deposition-only feeds, there was relatively low background conductivity (<10 µS), so 

the following combination of monovalent and divalent salts36 were added to achieve conductivity 

similar to the natural water (≈330 µS): 2.6 mM NaCl, 0.55 mM NaHCO3. 0.4 mM MgSO4, and 

0.6 mM NH4Cl. 
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Table 4.1. Description of feed solutions used in cross-flow fouling experiments. 

Feed solutiona 
Fouling 

mechanisms 
expected 

Feed Solution contents 

Organic-only 
Organic 
matter 

deposition 

Natural water, nutrients (LB broth), buffer 
(potassium phosphate)-autoclaved 

Growth inhibitor (sodium azide) 

Biofouling-only 
Biofilm 

formation+ 
cell deposition 

Ultrapure water, nutrients (LB broth), 
PA14b (107 cells.ml-1), salts, buffer 

(potassium phosphate) 

Cell-deposition-
only 

Cell 
deposition 

Ultrapure water, nutrients (LB broth), 
PA14b (109 cells.ml-1), salts, buffer 
(potassium phosphate)-autoclaved 

Growth inhibitor (sodium azide) 

Organic&biofouling 

Organic 
matter 

deposition + 
cell deposition 

+ biofilm 
formation 

Natural water, nutrients (LB broth), buffer 
(potassium phosphate)--autoclaved 

PA14b (107 cells.ml-1) 

a Feed solutions have been labeled for the targeted type of fouling. 
b PA14= Pseudomonas aeruginosa strain 14 

 Feed solutions were autoclaved at 121° C for 60 minutes on a liquid sterilization 

cycle to prevent undesired bacterial growth. Feed waters were always autoclaved before adding 

the sodium azide and when applicable, before adding the bacteria. 

 The bacteria that was used to biofoul the membranes was Pseudomonas 

aeruginosa strain 14 (PA14) because P. aeruginosa are ubiquitous in the environment, have been 

found in foulant on membranes at treatment plants, and known to aggressively form biofilms.11,37 

PA14 was cultured overnight in LB broth to exponential growth phase. The overnight culture 

was then washed by centrifuging the cultures at 3670 rpm for 10 minutes, decanting the broth, 
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and then vortexing the pellet in a small volume (e.g., 15 mL) of the appropriate feed solution. 

This sequence (centrifugation, decanting and vortexing in new feed solution) was performed 

twice more before the concentration of PA14 solution was measured as optical density at 600 

nm. The PA14 solution was diluted in the feed water to achieve the target concentration as 

indicated in Table 4.1., assuming OD600=0.012-0.013=107 cells.ml-1 and OD600=0.7=108 cells.ml-

1. 

4.2.4. Fouling experiments and cleaning of membrane system 

 The cross-flow system was cleaned before and after every experiment to disinfect 

and remove trace contaminants as described elsewhere.36 The following cleaning solutions were 

circulated through the system in sequence for the indicated times: 0.5% sodium hypochlorite for 

2 hours, ultrapure water for 15 minutes twice, 5 mM ethylenediaminetetraacetic acid, 2 mM 

sodium dodecylbenzenesulfonate, ultrapure water for 15 minutes three times, 70% ethanol for 1 

hour, and ultrapure water three times. 

 After cleaning, four fresh membranes were placed in the cells with feed and 

permeate spacers, with control membranes in cells 1 and 3 and 2-AI membranes in cells 2 and 4. 

The membranes were compacted with ultrapure water at pH=8 and 13.8 bar for 24 hours, 

ensuring the pure water permeability was stable (<2% change per hour). The ultrapure water was 

then replaced with the appropriate feed solution, as listed in Table 4.1. Fouling experiments 

were conducted at constant pressure (13.8 bar) and cross-flow velocity (14 cm.s-1) for 75 hours 

total. Feed and permeate samples were collected at 0, 15, 30, 40, 55, 65, and 75 hours for 

analyses of water permeability and contaminant rejection, as described in subsequent sections. At 

75 hours of filtration, the pressure was slowly decreased to prevent quick changes in pressure 

that could have altered the foulant layer. The membranes were carefully taken out of the cells, 
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very lightly rinsed with ultrapure water to remove loose bacteria and residual feed, and analyzed 

for foulant physico-chemical and biological characteristics as described below. 

4.2.5 Scanning electron microscopy (SEM) 

 SEM images of membrane surfaces were obtained to capture visually the foulant 

layers of 2-AI and control membranes. Both fouled and unfouled membrane samples of each 2-

AI and control membranes were imaged. Membrane samples were air dried for >48 hours prior 

to SEM analysis and the samples were coated with 2–5 nm of a Au/Pd alloy to prevent charging. 

SEM imaging was performed using a Helios Nanolab 600 dual beam system (FEI, Hillsboro, 

OR), and accelerating voltage and current of 2.0 kV and 0.34 nA, respectively.  

4.2.6. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) 

 ATR-FTIR analysis was used to characterize the chemical signatures and relative 

thickness of foulant layers on control and 2-AI-membranes. All samples were gently rinsed with 

ultrapure water, and then air-dried for > 48 hours prior to analysis. Four replicate samples were 

analyzed for each sample type and 24 scans were taken per replicate. The spectra reported are the 

average of the replicates. Analyses were performed on a sample area of 3.1 mm2 over the 400-

3997 cm-1 wavenumber range with 2 cm-1 resolution. Analyses were performed using a Bruker 

Alpha spectrometer (Bruker Optics, Billerica, MA), equipped with an IR source with a 45° 

incident angle and an Alpha-P ATR accessory. 

 To compare the relative thickness of foulant layers on different membranes, we 

used an approach similar to that described by Hausman and Escobar38. The IR wave is not able to 

penetrate fouled membranes as deeply as unfouled membranes due to wave attenuation at the 

foulant layer. Thus, the relative thicknesses of foulant layers in fouled samples can be assessed 

based on the attenuation of the intensities of the FTIR peaks associated with the membrane 
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materials (polyamide and polysulfone). The intensities of the foulant-associated peaks can also 

be compared among different membrane samples, where higher peak intensities suggest a greater 

concentration of the associated bond or molecules.  

4.2.7. Dissolved (non-purgeable) organic carbon (DOC) 

 Permeate and feed samples for DOC analysis were collected at 75 hours of 

membrane treatment time during cross-flow experiments. Fouled membrane samples (2 cm2) and 

virgin membrane samples (as blanks) were submerged in ultrapure water (5 mL) immediately 

after the cross-flow experiment, and the resulting solutions with the membrane still immersed in 

it were alternately vortexed for 30 seconds and sonicated for 1 minute for a total of three cycles. 

After the vortexing/sonicating cycles the membrane surface appeared to be free of organic 

matter. The solution was then analyzed for DOC. Calibration standards were prepared with 

potassium hydrogen phthalate diluted in ultrapure water. All DOC samples and standards were 

prepared by filtration through 0.45 µm hydrophilic mixed cellulose ester filter, diluting to the 

appropriate concentration range (1-10 mg.L-1), and then adjusting the pH to <2.5 with 

hydrochloric acid. The samples were analyzed on a Shimadzu TOC-V CPH analyzer equipped 

with an ASI-V autosampler.  

4.2.8. EPS extraction and characterization of polysaccharide and protein content 

 Immediately following cross-flow experiments, fouled membrane samples (4 cm2) 

were added to 20 mL of 0.1 M NaCl and shaken for 45 minutes at 4° C. The EPS was then 

extracted as described by Liu and Fang,39 by adding formaldehyde and sodium hydroxide to the 

solution with the membrane still immersed in it, followed by centrifugation, then the solution 

was filtered through a 0.22 μm nylon filter, and which was then dialyzed against ultrapure water 
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using a 3.5 kDa membrane (Spectra/Por). EPS extracts for unfouled membranes were used as 

controls and were prepared in the same manner as the EPS extracts for fouled membranes.  

 The polysaccharide content in EPS extract samples was quantified as described by 

Dubois et. al.,40 using phenol and sulfuric acid, followed by measuring the absorbance at 492 nm 

against alginic acid standards prepared in ultrapure water. The protein content was quantified as 

described by Bradford 41 using Coomassie protein assay reagent, standards prepared with bovine 

serum albumin in ultrapure water, and absorbance measurements at 595 nm. 

4.2.9. PA14 enumeration in feed solutions and membrane samples 

 Feed water samples were collected at least twice (at 0 and at 75 hours) for 

bacterial enumeration during every cross-flow experiment. After the cross-flow run, fouled 

membrane samples (2 cm2) were rinsed with ultrapure water to remove loose bacteria, and the 

membrane samples were added to 2.0 mL LB broth. These LB solutions with membranes were 

alternatingly vortexed for 30 seconds and sonicated for 30 seconds for three cycles. After the 

vortex-sonication cycles membranes were taken out of membrane bacterial extract solutions.  

 The bacteria were enumerated in feed water samples and membrane bacterial 

extract solutions by a colony count method where vortexed solutions were serially diluted (nine 

10x dilutions) and spotted (5 µL) onto LB-agar plates, which were incubated at 37° C overnight. 

The formed colonies were counted and the areal density of biomass (CFU.cm-2) was calculated. 

The areal density of biomass was used as the quantitative descriptor of areal mass of biofilm on 

fouled membranes. No colonies were detected in the feed, nor on the membranes during the 

sterile runs (with organic-only and cell-deposition-only feed solutions, see Table 4.1.). 
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4.2.10. Water permeability and solute rejection 

 Water permeability is the amount of water that is produced by a membrane 

normalized by unit time, pressure, and membrane area. The water flux (𝐽!, m3.s-1) of each 

membrane sample tested in fouling experiments was measured at 0, 15, 30, 40, 55, 65, and 75 

hours. The measured 𝐽! was used to obtain the membrane water permeability (𝐴, m.s-1.bar-1) as 

𝐴 = !!
!".! !"# × !.!!"#$ !! 

 .    (1) 

When evaluating decline in performance due to fouling, normalized water permeability (𝐴!/𝐴!) 

was reported and was calculated as the water permeability at time t (𝐴!) divided by the initial 

water permeability (𝐴!). 

 The salt rejection (%𝑅!) of membrane samples (collected at 0, 15, 30, 40, 55, 65, 

and 75 hours) tested in fouling experiments was also obtained. %𝑅! was calculated as 

%𝑅! = 1−  !!
!!

× 100%   ,    (2) 

where 𝐶! and 𝐶! correspond to the conductivities of the permeate water and feed water, 

respectively. Additionally, TOC was measured in permeate and feed water samples collected 

after 75 hours of fouling. The corresponding TOC concentrations were used in Equation 2 

(instead of conductivity values) to calculate the rejection of organics (%𝑅!"#). 

4.2.11. Statistical significance testing 

When appropriate, statistical significance testing was used to compare the performance 

(i.e., water permeability, solute rejection, and fouling) of control and 2-AI-membranes. Unless 

otherwise stated, a one-tail unpaired two-sample t-test assuming unequal variances was used. 

The null hypothesis (H0) was that the mean of the control membrane was equal to the mean of 
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the 2-AI membrane (µctl=µ2-AI), and the alternative hypothesis (H1) was that one of the means was 

greater than the other (µctl>µ2-AI or µctl<µ2-AI). The calculated p-values are reported throughout the 

results and discussion section and p<0.05 is considered significant. When p-values were close to 

being significant (e.g., 0.05<p≤0.15), results are discussed further in the results and discussion. 

4.3. Results and Discussion 

4.3.1. Characterization of membrane foulant layers in control and 2-AI membranes 

4.3.1.1. Visual Appearance 

 Figure 4.3. shows representative SEM images of control and 2-AI membranes 

after being fouled with the various feed solutions, listed in Table 4.1., for 75 hours. Fouling the 

membranes with the organic-only feed solution produced a dense, but smooth fouling layer on 

both control and 2-AI membranes, with no distinctive differences between the two membrane 

types. The fouling mechanism that appeared to occur was organic matter accumulation. The 

cracking in the organic fouling layers was due to the sample drying process.  

When the biofouling-only feed solution was used to foul the membranes, both control and 2-AI 

membranes were covered in what appeared to be a biofilm (the expected fouling mechanism), 

with distinctive rod shapes associated with the bacteria (PA14). The only visual difference 

between control and 2-AI membranes was a slightly higher areal density of bacteria on the 

control membrane.  

When the membranes were fouled with the cell-deposition-only feed solution, there was 

not a clear cohesive fouling layer as with the biofouling-only feed solution, but rather patchy 

accumulations of dark rod shapes from bacteria on top of the membrane. The images clearly 

show (particularly at 1000x magnification) that the membrane fouling mechanism was cell 

deposition, with more cell deposition on the control membrane than on the 2-AI membrane.  
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Figure 4.3. Representative surface SEM images of fouled control and fouled 2-AI membranes at 1000x (rows 1 and 3) and 10000x 
(rows 2 and 4) magnifications. The scale bars on the 1000x and 10000x images are 50 µm and 5 µm, respectively.  
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 Finally, when the membranes were fouled using the organic&biofouling feed 

solution, the fouling layers appeared visually different than when fouled with the other feed 

solutions. The control membrane was fully covered by the foulant layer, whereas the 2-AI 

membrane had some areas of clean membrane. On the control membrane, a number of bacteria 

were embedded in a foulant layer that looked rougher than the foulant layer of membranes fouled 

with the biofouling-only or organic-only feed solutions. The 2-AI membrane had fewer bacteria 

overall with the bacteria appearing to be on top of the areas covered by the foulant layer rather 

than embedded in it. The fouling mechanisms also appeared to be different between control and 

2-AI membranes with mature biofilms forming on the control membrane and biofilms dominated 

by cell deposition forming on the 2-AI membrane.  

To summarize, upon visual inspection, the 2-AI membrane appeared to foul less under all 

experimental conditions that involved biofilm formation and/or cell deposition. 

4.3.1.2. Chemical Signature  

  ATR-FTIR was used to evaluate differences in chemical signatures of fouled 

membranes. Figure 4.4. presents the spectra of unfouled control, fouled control, and fouled 2-AI 

membranes, and Table 4.2. summarizes specific molecule types (e.g., polysaccharides, proteins, 

polysulfone) associated with the absorbance peaks observed in the FTIR spectra.  For each of the 

absorbance peaks, Table 4.2 also indicates the fouling conditions (i.e., feed solutions) at which 

we observed significantly higher or lower absorbance for the spectra of the 2-AI membrane as 

compared to for the spectra of the fouled control membrane. 
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Figure 4.4. ATR-FTIR spectra of unfouled control membranes (blue solid line), fouled control 
membranes (green dotted line), and fouled 2-AI membranes (red dashed line) fouled by using 
organic-only, biofouling-only, cell-deposition-only, and organic&biofouling feed solutions. Each 
spectrum corresponds to the average of eight replicate measurements obtained on different 
locations of the surface of duplicate membrane samples. Peak assignments are listed in Table 
4.2. 

  

Figure 4.4 shows that there were no statistical differences between the fouled control and fouled 

2-AI membranes in the absorbance associated with polysulfone for all feed solutions. This 

indicates that there was no significant difference in the thickness of the foulant layers on the 

control and 2-AI membranes.   
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Table 4.2. Distinctive FTIR peaks of fouled membranes (Column 1). The table specifies the molecules (Column 2) and the bonds 
(Column 3) associated with each FTIR peak. The table also specifies the fouling conditions under which the absorbance of each 
distinctive FTIR peak on the 2-AI membranes was significantly (p<0.05) higher (Column 4) or lower (Column 5) than that in the 
control membranes. 
Wavenumber 

(cm-1) 
Associated 
molecule(s) 

Specific Bond Assignments 2-AI membrane 
absorbance is 

significantly higher with 

2-AI membrane 
absorbance is significantly 

lower with 
3300 Proteins/ 

Polysaccharides42 
O-H stretching 

 
 Biofouling-only 

3080 Aromatics42 Aromatic C-H stretching  Biofouling-only 

3000-2900 Aliphatics42 Aliphatic C-H stretching  Biofouling-only 
1735 Polysaccharides38 C=O stretch of esters  Cell-deposition-only 

1700-1500 Amide I Proteins38,43,44 
 
 

C=O stretch amide I protein 
(1635 cm-1) 38 

Organic&biofouling Biofouling-only, 
Cell-deposition-only 

1575-1500 
 
 
 
 

Amide II 
Proteins 38,43,44 

N-H bending/deformation, C-N stretching, 
symmetric stretching of COO- 

(1563 cm-1) 38,44 
NOH bend of amide II (1535 cm-1) 38 

Organic&biofouling Biofouling-only, 
Cell-deposition-only 

1488 Polysulfone42,43 Aromatic in-plane ring stretching42,43   

1450 Lipopolysaccharides38 C-H bending of CH2  Biofouling-only, 
Cell-deposition-only 

1400 Polysaccharides38 Aliphatic C-H deformation, C-O stretching/O-H 
deformation of phenol 

 Biofouling-only, 
Cell-deposition-only 

1200-900 Polysaccharides38,43,44 C-O  (1078cm-1)38,44 
C-O/C-O-C stretch 

(1054 cm-1) 
C-O stretch (970 cm-1)43 

 Biofouling-only, 
Organic-only 

1180-1145 Polysulfone42 Symmetric SO2 stretching   
800-550 Aromatics38  Organic-only,  

Organic&biofouling 
Biofouling-only 
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 When the organic-only feed solution was used to foul the membranes, the control 

membrane had significantly higher polysaccharide fouling (1200-900 cm-1) than the 2-AI 

membrane, but aromatics (800-550 cm-1) on the 2-AI membrane were statistically higher than on 

the control membrane. Since there was no evidence that biofouling occurred on the control 

membrane when the organic-only feed solution was used (i.e. no bacteria detected in the feed 

water), the polysaccharide associated with 1200-900 cm-1 wavenumbers must be microbially 

derived organic matter. These differences indicate that when the only mechanism of fouling is 

organic matter accumulation, the 2-AI membrane slightly alters the composition of the fouling 

layers, likely due to increased affinity of the membrane surface for specific types of organics 

(such as polysaccharides). 

  The fouled control membranes had significantly higher protein, polysaccharide, 

aromatic (3080 cm-1), and aliphatic fouling than the 2-AI membranes when they were fouled 

using the biofouling-only or cell-deposition-only feed solutions. Proteins and polysaccharides are 

associated with biofilm formation and bacterial cell deposition fouling mechanisms.43,45–47 

Therefore, the results indicate that biofilm formation and cell deposition were lower in the 2-AI 

membranes compared to in control membranes. 

 When the organic&biofouling feed solution was used to foul the membranes, 

there was no significant difference between fouled control and fouled 2-AI membranes in the 

absorbance peaks associated with polysaccharides, but there was significantly more protein on 

the 2-AI membranes. Proteins (PN) and polysaccharides (PS) are the main components of EPS, 

and the ratio of polysaccharide to protein (PS/PN) is related to biofilm strength, where the higher 

the PS/PN ratio the more adherent and cohesive the biofilm is.43,46 Our FTIR results show that 
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when the organic&biofouling feed solution was used to foul the membranes, the PS/PN ratio was 

lower for 2-AI membranes than for the control membranes. Thus, when all fouling mechanisms 

occurred, the biofilm on the 2-AI membrane was weaker than the biofilm on the control 

membranes.    

 EPS was extracted from biofouled membranes (i.e., membranes fouled with the 

biofouling-only feed solution) and the areal mass density of proteins and polysaccharides was 

obtained and reported in Figure 4.5.. The average polysaccharide areal mass density was higher 

on the fouled control membranes (50±5 µg.cm-2) than on the fouled 2-AI membranes (34±10 

µg.cm-2), whereas the protein areal mass densities were not significantly different (24±7 µg.cm-2 

vs 21±4 µg.cm-2). Therefore, the PS/PN ratio was higher for fouled control membranes (2.2±0.4) 

than for fouled 2-AI membranes (1.6±0.1), indicating that the biofilm was weaker on the 2-AI 

membranes. 
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Figure 4.5. Areal mass density of polysachharide (PS, dark blue bars) and protein (PN, purple 
striped bars) on the surface of fouled control and fouled 2-AI membranes that were fouled using 
biofouling-only feed solution. The bars represent the average of duplicate membrane samples 
from different cells. Error bars indicate the difference between the duplicate samples. 

 

 Overall, the FTIR and EPS results suggest that there was less severe biofouling on 

2-AI membranes than on control membranes, and that the biofilms on 2-AI membranes were less 

adherent and cohesive than on the 2-AI membranes. 

4.3.1.3. Areal Mass of Foulant Layers and Biofilms 

 Bulk measurements of foulant layers, as opposed to measurement of specific 

chemical species, include the total areal mass (as carbon) of foulant layer and areal mass of 

biofilm. Figure 4.6 shows the total areal density of organic content in foulant layer (mg-C.cm-2) 

on control and 2-AI membranes after fouling with the four feed solutions. When organic-only 

and cell-deposition-only feed solutions were used to foul the membranes, there were no 

significant differences between the areal density of organic content in foulant layer on the control 

and 2-AI membranes. By contrast, areal density of organic content in foulant layer on the 2-AI 
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membranes was significantly lower than on the control membranes when the biofouling-only 

(p=0.02, 35% decrease) and organic&biofouling (p=0.01, 54% decrease) feed solutions were 

used to foul the membranes. These results indicate that when biofilm formation is a mechanism 

of fouling, the 2-AI membranes significantly decreased the areal density of organic content of 

foulant layer.  

 

 
Figure 4.6. Areal density of organic content on the surface of fouled control and fouled 2-AI 
membranes. Labels on the x-axis correspond to the feed solutions listed in Table 4.1. There were 
insignificant differences in DOCareal of foulant between control and 2-AI membranes when fouled 
with organic-only and cell-deposition-only feed solutions. The areal density of organic content 
was statistically significantly higher in control membranes than in 2-AI membranes when fouled 
with biofouling-only (p=0.02) and organic&biofouling (p=0.01) feed solutions, with areal 
density of organic content  35% and 54% lower, respectively, in 2-AI membranes. The bars 
represent the average of 4-6 replicate measurements from duplicate membrane samples (2-3 
replicate measurements per sample). Error bars indicate standard error. 

 Figure 4.7 shows the areal mass of biofilm (CFU.cm-2) on control and 2-AI 

membranes after fouling with the four feed solutions. Compared to the control membranes, the 2-

AI membranes inhibited biofilms by 95% (p=0.10) when biofouling-only was the feed solution 
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used to foul the membranes. Additionally, the 2-AI membranes inhibited biofilms by 98% 

(p<0.001) when the organic&biofouling feed solution was used to foul the membrane.  

 
Figure 4.7. Areal mass of biofilm (log-scale) on fouled control and fouled 2-AI membranes. No 
colony counts were observed for membrane samples fouled with the organic-only and cell-
deposition-only feed solutions. Compared to the control membranes, the 2-AI membranes 
inhibited biofilms by 95% and 98% when the biofouling-only feed solution and 
organic+biofouling feed solution, respectively, were used to foul the membranes. The bars 
represent the average areal mass of biofilm for 6-11 replicate measurements from duplicate 
membrane samples (3-6 measurements per sample). Error bars indicate standard error. 

	
 Overall, the results for total areal mass of foulant layer and areal mass of biofilm 

indicate that there substantially less severe biofilm formation on 2-AI membranes than on control 

membranes, and that 2-AI membranes decreased total fouling by inhibiting biofilm formation. 

4.3.2. Membrane performance under fouling conditions 

 Figure 4.8. shows the change in water permeability of the control and 2-AI 

membranes over 75 hours of filtration under each fouling condition. The water permeability of 

all membranes dropped over time as fouling took place. Under all fouling conditions the water 

permeability of the control membranes decreased by 30-40% within 75 hours. The decrease in 

water permeability of the 2-AI membranes after 75 hours of operation differed by fouling type. 
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When the organic-only feed solution was used to foul the membranes, the water permeability of 

the 2-AI membranes dropped the most (29% on average) out of the four fouling conditions, and 

this drop was insignificantly different from that for the control membrane (34% on average). 

When the other feed solutions (i.e., biofouling-only, cell-deposition-only, and 

organic&biofouling) were used to foul the membranes, the water permeability for the 2-AI 

membranes decreased significantly (p<0.05) less over 75 hours than for the control membranes. 

More specifically, for tests with the biofouling-only, cell-deposition-only, and 

organic&biofouling feed solutions, water permeability in 2-AI membranes and control 

membranes decreased by 18 v 34%, 22 v 31and 21 v 35%, respectively, after 75 hours of 

filtration.
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Figure 4.8. Normalized water permeabilities (At/A0) over 75 hours of filtration under each 
fouling condition for control membranes (green squares) and 2-AI membranes (red diamonds). 
Each data point represents the average normalized water permeability from duplicate membrane 
samples. Error bars indicate the difference between the normalized water permeabilities for the 
duplicate membrane samples.  
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permeabilities of 2-AI membranes were moderately lower than those of the controls, 11% lower 

on average. However, after 75 hours of fouling with the organic-only feed solution, the water 

permeability of 2-AI membranes and control membranes were not significantly different, with 

the 2-AI membranes having a 1% higher water permeability on average. Also, after 75 hours of 

fouling with the biofouling-only and organic&biofouling feed solutions, the water permeabilities 

of 2-AI membranes were higher, by 11% and 10% on average, respectively. The only case in 

which the water permeabilities of the 2-AI membranes were lower than that of the control 

membranes after 75 hours, was when the membranes were fouled with the cell-deposition-only 

feed solution, where the 2-AI membranes had a 6% lower water permeability than the control 

membranes. We note that even though the initial water permeability of 2-AI membranes was 

moderately lower than that of control membranes, no effort was made to optimize water 

permeability in 2-AI membranes, and therefore the 2-AI membrane fabrication procedure could 

be potentially optimize to minimize or eliminate water permeability differences between 2-AI 

and control membranes.  
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Figure 4.9. Water permeabilies over 75 hours of filtration under each fouling condition for 
control membranes (green squares) and 2-AI membranes (red diamonds). Each data point 
represents the average water permeability from duplicate membrane samples. Error bars indicate 
the difference between the water permeabilities for the duplicate membrane samples. 

                                                                       
 During all fouling experiments, the salt rejection, as shown in Appendix 3, by the 

membranes increased slightly throughout the 75 hours of operation, and was in the 80-99% 

range, depending on the experiment. Furthermore, the salt rejection was not significantly 

different (p>0.05) between the control and 2-AI membranes in any of the fouling experiments 

 Figure 4.10. shows the rejection of dissolved organic carbon (DOC) by the 
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organic-only feed solution was used to foul the membranes, there was no substantial difference 

in DOC rejection (1%) between the control and 2-AI membranes. By contrast, when the 

membranes were fouled using the biofouling-only, cell-deposition-only and organic&biofouling 

feed solutions, the DOC rejection by the 2-AI membranes was substantially higher (11% and 

p=0.07, 10% and p=0.01, and 12% and p=0.003, respectively) than by the control membranes. 

Therefore, overall, the fouled 2-AI membranes rejected DOC better than the fouled control 

membranes. 

 
Figure 4.10. Rejection of dissolved organic carbon in feed solutions by control membranes 
(solid green) and 2-AI membranes (red striped) after 75 hours of filtration. Labels on the x-axis 
correspond to the feed solutions listed in Table 4.1. The bars are the average rejections calculated 
for duplicate membrane samples, where duplicate and single measurements were obtained for 
permeate and feed solutions, respectively, for each membrane sample (duplicates per membrane 
sample). Error bars indicate the difference between the averages for the duplicate membrane 
samples.   
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substantial difference in salt rejection between 2-AI and control membranes, and 2-AI 

membranes exhibited substantially higher DOC rejection compared to control membranes.  

4.3.3. Connections between fouling mechanisms and performance 

 On the basis of the results obtained for all fouling runs and analyses of all fouled 

membranes, there did not appear to be substantial differences in fouling between the 2-AI 

membranes and (2-AI-lacking) control membranes when the fouling mechanisms were organic 

matter accumulation or cell deposition; however, biofilm formation was significantly inhibited 

by 2-AI membranes, whether or not fouling was also occurring by other mechanisms. The ability 

of 2-AI membranes to inhibit biofilms under multiple fouling conditions is an important finding, 

as other membrane modification approaches used to provide membranes with anti-biofouling 

properties have not been effective when other fouling mechanisms occur.  

 Decreased biofilm formation on 2-AI membranes translated into significantly 

lower changes in water permeability over time under fouling conditions where biofilm formation 

was a fouling mechanism. The 2-AI membranes outperformed the control (2-AI-lacking) 

membranes, as fouled 2-AI membranes had significantly higher water permeability and rejection 

of organics when the biofouling-only and organic&biofouling feed solutions were used to foul 

the membranes. Salt rejection was not significantly different between the control and 2-AI 

membranes and was unaffected by fouling.  

 

4.4. Conclusions 

 We evaluated the performance of 2-AI membranes in comparison to 2-AI lacking control 

membranes under operationally realistic conditions. Our experimental results support the 

following main conclusions: 
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(i) Biofilm formation was significantly inhibited (98%, p<0.001) by 2-AI membranes 

under operationally realistic conditions 

(ii) 2-AI membranes had highest impact on performance when biofilm formation was a 

fouling mechanism, with water permeability (10-11%) and organics rejection (11-

12 percentage points) being higher than (2-AI-lacking) control membranes. 

(iii) 2-AI incorporation did not affect fouling by organic matter or bacterial cell 

deposition. 

 Thus, the results presented constitute the proof-of-concept for 2-AI membranes as 

RO membranes with comparable water permeability and solute rejection to commercial RO 

membranes, but significantly lower susceptibility to biofouling. Further performance testing and 

optimization of polyamide casting or 2-AI incorporation into polyamide to maximize water 

permeability and solute rejection is warranted.  
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CHAPTER 5: CONCLUSIONS 

The goal of this dissertation was to develop and evaluate the performance of a novel anti-

biofouling reverse osmosis (RO) and nanofiltration (NF) membrane(s) with 2-AI(s) incorporated 

as the active compound. To achieve this goal, the research specifically aimed to: 

(i) synthesize and evaluate 2-AI molecules in terms of their capacity to be incorporated 

into polyamide active layers and their capability to inhibit biofilm, 

(ii) develop an anti-biofouling water purification membrane(s) through 2-AI 

incorporation into active layers of commercially available RO membranes,   

(iii) develop an anti-biofouling water purification membrane(s) through 2-AI 

incorporation into active layers of in-house RO membranes during polyamide casting, 

(iv) characterize 2-AI membrane(s) performance in terms of biofouling inhibition, water 

productivity, and contaminant removal. 

Three 2-AIs were synthesized, and their capacity to be incorporated into polyamide was 

assessed using model reactions. The ability of the 2-AI conjugates, produced from the model 

reactions, to inhibit biofilms was quantified. The 2-AI most effective at inhibiting biofilm was 

then incorporated into four commercially available reverse osmosis (RO) and nanofiltration (NF) 

membranes using carbodiimide induced grafting. The 2-AI was also incorporated during active 

layer casting into membranes fabricated in-house using three different approaches. The extent 

and stability of the 2-AI incorporated into the membranes, and the physico-chemical changes due
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to 2-AI incorporation were characterized. The water permeabilities and salt rejections of the 2-AI 

membranes and corresponding (2-AI lacking) controls were measured in a flat-sheet cross-flow 

membrane system using salt solutions made with ultrapure water. The biofilm inhibition by 2-AI 

membranes was quantified using a static bioassay that used nutrient solutions with Pseudomonas 

aeruginosa (PA14). The performance and fouling of one set of 2-AI membranes (prepared using 

the carbodiimide grafting) and the corresponding (2-AI lacking) control membranes were then 

tested under operationally realistic conditions. The membranes were systematically fouled with 

various feed waters to elicit fouling due to a combination of mechanisms. The foulants on the 

membranes were quantified and characterized using several techniques. The performance of the 

membranes during operation was also evaluated. The differences in fouling on the 2-AI and 

control membranes was then related to differences in performance. The major outcomes of this 

dissertation research are: 

• On 2-AI compound capacity to be incorporated in polyamide and inhibit biofilm: 

1. The three 2-AIs tested had the capacity to be incorporated into the polyamide 

active layers of membranes and the capability to inhibit Pseudomonas aeruginosa 

biofilms at relevant concentrations (IC50s=162-420 µM). 

• For 2-AI membranes with 2-AI incorporated using carbodiimide grafting: 

2. 2-AI membranes significantly inhibited Pseudomonas aeruginosa biofilms by 61-

96%, due to the presence of 2-AI, not membrane physico-chemical changes. 

3. Partial loss of the 2-AI surrogate compound was observed when the membranes 

were used to filter water, but concentrations of the compound remained orders of 

magnitude higher than required for biofilm inhibition.  



	

	 133	

4. In general, salt rejection of 2-AI membranes was equivalent to that of control (2-

AI lacking) membranes. 

5. 2-AI incorporation did not substantially change the water permeability of two 

(XLE, NF270) of the four membranes. Compared to (2-AI lacking) controls the 

other two (ESPA3, SWC4+) 2-AI membranes had a slightly lower water 

permeability (13% and 25%, respectively). Note that no attempt was made to 

optimize 2-AI membranes to maximize water permeability and salt rejection. 

Long-term benefits in water permeability due to reduced biofouling could also 

potentially compensate for lower initial water permeabilities.  

• For membranes with 2-AI incorporated during active layer casting: 

6. 2-AI membranes significantly inhibited Pseudomonas aeruginosa biofilms by 39-

92%, due to presence of 2-AI, not membrane physico-chemical changes. 2-AI 

membranes, prepared using a soak after polyamide casting, inhibited biofilm the 

best, at 90% on average. 

7. Partial loss of the 2-AI surrogate compound was observed in select membranes 

and was dependent upon the incorporation approach used; however, in all cases, 

the concentration of the compound remained orders of magnitude higher than 

what was required for significant biofilm inhibition to occur.  

8. Compared to (2-AI lacking) control membranes, 2-AI membranes had decreased 

water permeability by 26-44% and salt rejection by 1.2-4.3 percentage points. 

Note that no attempt was made to optimize 2-AI membranes to maximize water 

permeability and salt rejection. Long-term benefits in water permeability due to 
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reduced biofouling could also potentially compensate for lower initial water 

permeabilities.  

• Under operationally realistic conditions: 

9. 2-AI membranes significantly inhibited biofilm formation (98%). 

10. 2-AI membranes had higher water permeability (10-11%) and higher organics 

rejection (11-12 percentage points) than (2-AI-lacking) control membranes when 

biofilm formation was a fouling mechanism. 

11. 2-AI incorporation did not affect fouling by organic matter or bacterial cell 

deposition. 

Overall, this dissertation demonstrated proof-of-concept for 2-AI membranes and shows 

that 2-AI membranes are superior to other anti-biofouling membranes in the literature, 2-AI 

membranes can be a powerful tool to facilitate more efficient use and widespread 

implementation of water reuse and desalination. Based on these results, further 2-AI membrane 

optimization and performance testing is warranted.
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CHAPTER 6: FUTURE WORK 

 2-aminoimidazole (2-AI) anti-biofouling membranes for water purification 

applications were developed and evaluated to the proof-of-concept stage. Questions were 

generated through this research, and questions remain to be answered before this technology can 

be implemented for industry purposes, including: 

1. What technique(s) can be used or developed to directly measure the concentration of 2-

AIs in the membrane? Throughout the dissertation, a surrogate compound was used to 

estimate the 2-AI concentration in the membranes. The chemical properties of the 2-AIs 

are similar to those of the polyamide active layer, thus the 2-AI and membrane matrix 

could not be distinguished using the available analytical techniques. 

2. Are 2-AI membranes effective at inhibiting biofouling in spiral wound configuration? 

Are 2-AI membranes effective over long-term use? Are 2-AI membranes effective at 

inhibiting biofilms of other bacteria and mixed cultures? Are 2-AI membranes effective 

with many different types of waters? Are 2-AI membranes effective in combination with 

other treatments (e.g. disinfection)? Though membrane performance was evaluated under 

some operationally realistic conditions, many conditions that are common or that vary in 

treatment plants were not assessed. There are numerous factors that could be present in 

full-scale use that may exacerbate or enhance biofouling, but were not investigated in this 

dissertation.  

3. Are there factors or conditions that could lead to the loss of anti-biofouling properties 

over time? Various factors could potentially contribute to the loss of some anti-
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biofouling properties over time (e.g. loss of 2-AI with use/cleaning, transformation of 2-

AI from reactions with constituents in feed waters). 

4. How can the 2-AI membranes be optimized for maximum biofilm inhibition, water 

permeability, contaminant rejection, and stability? There were only three 2-AIs that were 

considered for incorporation, but there are countless other 2-AIs that could potentially be 

used that may result in higher and consistent biofilm inhibition. The procedures for 

incorporating 2-AIs and casting the membranes could also be altered for further 

optimization. In addition, there are other potential methods for 2-AI incorporation (e.g. 

embedding 2-AI-nanomaterials in active layer), or additional places (e.g. feed spacers) in 

which to incorporate 2-AIs, that may prove successful at improving efficacy. 

5. Are 2-AI membranes safe to use for drinking water production or other purposes? 

Although the concentration of 2-AIs in the purified water (permeate) will likely be very 

low (i.e. undetectable), further testing to ensure the safety of 2-AI membranes should be 

performed. Toxicity tests with select 2-AIs have been performed using cellular and model 

organism systems, and results have shown that the specific compounds that were tested 

were non-toxic.1 However, the specific 2-AI(s) that are incorporated into the anti-

biofouling membranes should be evaluated with toxicity tests that are relevant to drinking 

water. 

  



	

	 137	

REFERENCES 

(1)  Stowe, S. D.; Tucker, A. T.; Thompson, R.; Piper, A.; Richards, J. J.; Rogers, S. A.; 
Mathies, L. D.; Melander, C.; Cavanagh, J. Evaluation of the Toxicity of 2-
Aminoimidazole Antibiofilm Agents Using Both Cellular and Model Organism Systems. 
Drug Chem. Toxicol. 2012, 35 (3), 310–315. 



	

	 138	

APPENDIX 1: SUPPORTING INFORMATION FOR CHAPTER 2 

A1.1. Methods 

A1.1.1. 1H NMR 

1H NMR spectra were acquired on a Varian 400 or Varian Gem2300 spectrometer.  

A1.1.2. LC/ESI-MS 

LC/ESI-MS data were acquired at the UNC Biomarker Mass Spectrometry facility using 

an Agilent Technologies series 1200 HPLC and 6520 Accurate-Mass Quadrupole Time-of-Flight 

mass spectrometer in the positive ionization mode. Operating parameters were: capillary voltage 

of 4000 V, nebulizing gas pressure 35 psi, drying gas temperature 300 ˚C, drying gas flow 11 

L/min, and fragmentor voltage 175 V.  The mass spectrometer was operated in high-resolution, 

low-mass mode and was set to scan from 100 m/z to 1700 m/z at a rate of 1 scan/s.  Reference 

masses used for real-time mass axis adjustment were purine (121.050873 m/z) and HP-0921 

(922.009798 m/z). 

A1.2. Syntheses 

A1.2.1. Synthesis of 2-AI-para 

 

Scheme A1.1. 

The procedure was adapted from Verma, et. al. 1 Aniline (50 mmol) was dissolved in 

50% HCl (30 mL), chilled to -10˚ C . A solution of cold sodium nitrite (64 mmol) in water (23 

mL) was dropped into the aniline solution over 30 min while stirring at -10˚ C. Water (10 mL), 

urea (0.12 g), and ice (10 g) were added to produce a clear brown solution of diazonium chloride. 
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The diazonium chloride solution at -10˚ C was slowly added to a solution of imidazole (51 

mmol) in 10% NaHCO3 (23 mL) chilled to -10˚ C in a salt bath. The solution was stirred for 30 

min at <-5˚ C, then allowed to stand for 90 min. The resulting orange-brown powder was washed 

with water and dried under vacuum to yield 6.4 mmol I (13%). 1H NMR (400 MHz, CDCl3): δ 

7.9 (m, 2H, Ar-H), 7.5 (m, 3H, Ar-H), 7.2 (s, 1H, imidazole CH); LC/ESI-MS m/z: 345 [2M+H+].  

 
Figure A1.1. Raw 1H NMR spectrum of compound I.
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Scheme A1.2. 

Solid I was dissolved in EtOH (11 mL) and brought to a boil. A warm solution of tin(II) 

chloride (13 mmol) in concentrated HCl (6 mL) was added and the solution was refluxed for 1.5 

h at 110˚ C, and filtered to obtain a white powder, which was recrystallized from 20:80 

EtOH/H2O to yield 2.8 mmol 2-AI-para (II)  (44%). 1H NMR (400 MHz, D2O): δ 7.6 (d, 2H, 

Ar-H), 7.5 (d, 2H, Ar-H), 7.1 (s, 1H, imidazole CH); LC/ESI-MS m/z: 175 [M+H+].
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Figure A1.2. Raw 1H NMR spectrum of 2-AI-para (compound II). 
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Figure A1.3. Raw 1H NMR spectrum of 2-AI-para (compound II). 
 

A1.2.2.  5-(4-nitrophenyl) 2-AI  
 

 
 
Scheme A1.3. 

1-Hexamethylenetetramine-4'-nitroacetophenone bromide (10 mmol) was suspended in 

EtOH, excess concentrated HCl (5 mL) added and the solution was stirred overnight. The white 

precipitate was collected, washed with EtOH and dried under vacuum. The solid  (7.4 mmol) was 

suspended in water (adjusted with acetic acid to pH<4) and cyanamide (53 mmol) was added. 
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The solution was refluxed at 120˚ C for 1 h, then stirred at room temperature overnight. On 

adjusting to pH>8 with NaOH, a dark red solid precipitated and was collected by filtration and 

dried under vacuum. The solid was recrystallized in 40:60 EtOH/H2O, dissolved in MeOH and 

purified on a silica column eluted with 1:9 7N methanolic ammonia/DCM, yielding 3.4 mmol 5-

(4-nitrophenyl) 2-AI (III) as a dark red solid (34%). 1H NMR (400 MHz, MeOH-d4,): δ 8.4 (d, 

2H, Ar-H-3/5), 7.9 (d, 2H, Ar-H-2/6), 7.6 (s, 2H, NH2), 7.3 (s, 1H, imidazole CH).  

 
Figure A1.4. Raw 1H NMR spectrum of 5-(4-nitrophenyl) 2-AI (compound III). 
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Figure A1.5. Raw 1H NMR spectrum of 5-(4-nitrophenyl) 2-AI (compound III). 
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Figure A1.6. Raw 1H NMR spectrum of 5-(4-nitrophenyl) 2-AI (compound III). 
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Figure A1.7. Raw 1H NMR spectrum of 5-(4-nitrophenyl) 2-AI (compound III). 
 

A1.2.3. 5-(4-nitrophenyl)-1-benzoyl 2-AI conjugate 

 

Scheme A1.4. 

III (0.64 mmol) was dissolved in DCM, and triethylamine (2.5 mmol), benzoyl chloride 

(1.3 mmol) added and the solution stirred overnight. The reaction was quenched with sodium 

bicarbonate, separated and the organic extract dried over Na2SO4. Following evaporation of the 

N
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solvent, the product was purified on a silica column eluted with 50:50 EtOAc/hexane. Material 

collected as an orange solid was triturated with DCM and MeOH, then dried under vacuum to 

give 0.17 mmol 5-(4-nitrophenyl)-1-benzoyl 2-AI conjugate (IV) (27%).1H NMR (400 MHz, 

DMSO-d6,): δ 8.2 (d, 2H, Ar-H-3/5), 8.0 (d, 2H, Ar-H-2/6), 7.8 (d, 2H, benzoyl Ar-H-2/6); 7.7 

(t, 1H, imidazole CH); 7.6 (q, 3H, benzoyl Ar-H-2/6); 7.1 (s, 2H, NH2). 

 

 
Figure A1.8. Raw 1H NMR spectrum of 5-(4-nitrophenyl)-1-benzoyl 2-AI conjugate (compound 
IV). 
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A1.2.4. 2-AI-para-mono-benzoyl conjugate for bioassay 

    

 

Scheme A1.5. 

The t-butyl-2-amino-4-(4-aminophenyl)-1H-imidazole-1-carboxylate (0.2 mmol) was 

dissolved in DCM. Then 4 equivalents of triethylamine and 1.5 equivalents of benzoyl chloride 

were added and the solution was stirred vigorously overnight. The reaction was quenched with 

sodium bicarbonate, then the organics were extracted, collected, and dried over Na2SO4. Excess 

TFA was then added and the solution stirred for 30 minutes until the reaction came to completion. 

The solvent was evaporated with rotary evaporator, diethyl ether was added and evaporated 4 

times to give light pink solids, which were triturated with DCM and dried over vacuum to give 

0.15 mmol 2-AI-para-mono-benzoyl conjugate (V) (75%). 1H NMR (300 MHz, DMSO-d6): δ 

12.9 (s, 1H, imidazole NH), 12.2 (s, 1H, imidazole NH), 10.4 (s, 1H, benzoyl NH), 8.0 (d, 2H, 

Ar-H-3/5), 7.9 (d, 2H, Ar-H-2/6), 7.6 (m, 6H, imidazole CH, benzoyl Ar-H); 7.3 (s, 2H, NH2). 
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Figure A1.9. Raw 1H NMR spectrum of 2-AI-para-mono-benzoyl conjugate (compound V).
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Figure A1.10. Raw 1H NMR spectrum of 2-AI-para-mono-benzoyl conjugate (compound V). 
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A1.2.5. Dibenzoyl 2-AI-para conjugate for bioassay 
 
 

 
 
Scheme A1.6. 

III was dissolved in THF under an H2 atmosphere, ~20 mg Pd/C was added to the 

solution stirred overnight under H2. The Pd/C catalyst was filtered off and solvent evaporated on 

a rotary evaporator. The residue was dissolved in DCM, 1 equivalent of benzoyl chloride added 

and the solution stirred overnight. The reaction was quenched with sodium bicarbonate, and the 

organic layer collected and dried over Na2SO4. Following evaporation of solvent, the solid was 

triturated with DCM and dried under vacuum to give 2-AI-para-di-benzoyl conjugate (VI). 

1H NMR (300 MHz, DMSO-d6,): δ 10.2 (s, 1H, benzoyl NH), 8.0 (d, 2H, Ar-H-3/5), 7.8 (d, 2H, 

Ar-H-2/6), 7.7 (m, 5H, benzoyl Ar-H), 7.6 (m, 5H, benzoyl Ar-H), 7.2 (s, 1H, imidazole CH), 

7.0 (s, 2H, NH2). 
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Figure A1.11. Raw 1H NMR spectrum of dibenzoyl 2-AI-para conjugate (compound VI). 
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Figure A1.12. Raw 1H NMR spectrum of dibenzoyl 2-AI-para conjugate (compound VI). 
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A1.2.6. 2-AI-meta-benzoyl conjugate for bioassay 

 

 

Scheme A1.7. 

The starting material (1.0 mmol) was dissolved in DCM, benzoyl chloride (1.1 mmol) and 

triethylamine (10.2 mmol) added, and the solution stirred for 3 h. Following removal of solvent 

on a rotary evaporator, the residue was dissolved in EtOAc and saturated aqueous sodium 

bicarbonate solution added. The solution was stirred for 15 min, the organic layer separated and 

dried over Na2SO4. Evaporation of solvent gave a quantitative yield of VII as a light yellow 

powder. 1H NMR (400 MHz, DMSO-d6,): δ 10.2 (s, 1H, benzoyl NH), 8.1 (s, 1H, Ar-H-2), 8.0 

(m, 2H, Ar-H-4/6), 7.6 (m, 4H, benzoyl Ar-H); 7.5 (m, 1H, Ar-H-5), 7.3 (m, 1H, imidazole CH); 

6.6 (s, 2H, NH2); 1.6 (s, 9H, t-Bu). 
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Figure A1.13. Raw 1H NMR spectrum of compound VII. 
 

 
Scheme A1.8. 

VII (1.0 mmol) was dissolved in DCM, excess TFA was added and the solution stirred 

overnight. The solvent was removed under reduced pressure. The residue was dissolved in DCM 

and evaporated to dryness, repeating 3 times.  The resulting solid triturated with DCM and dried 

under vacuum to give 0.70 mmol 2-AI-meta-benzoyl conjugate (VIII) as a fine off-white powder 

(70%). 1H NMR (400 MHz, DMSO-d6,): δ 12.8 (br s, 1H, imidazole NH), 12.2 (br, s, 1H, 
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imidazole NH), 10.4 (s, 1H, benzoyl NH), 8.1 (s, 1H, Ar-H-2), 8.0 (m, 2H, Ar-H-4/6), 7.5 (m, 

6H, benzoyl Ar-H); 7.4 (m, 1H, Ar-H-5), 7.3 (s, 1H, imidazole CH). 

 
Figure A1.14. Raw 1H NMR spectrum of 2-AI-meta-benzoyl conjugate (compound VIII). 
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A1.2.7. 2-AI-butyl-benzoyl conjugate for bioassay 

 
 

Scheme A1.9. 

The starting alcohol (2.7 mmol) was dissolved in DCM, then 1.1 equivalent of Dess-

Martin reagent was added and solution stirred for 10 min. The solution was loaded onto a silica 

column prepared in hexanes, and eluted with 40:60 EtOAc/hexane. Fractions containing the 

product were combined, concentrated and diluted with DCM. Excess TFA was added and the 

solution was stirred 20 min until Boc removal was completed as verified by TLC. The solvent 

was removed under reduced pressure and the residue dissolved in MeOH. Cyanamide was added 

(23.8 mmol), pH adjusted to 9 with NaOH, and the solution refluxed for 2 h. Following 

evaporation of solvent, the residue was partitioned between EtOAc and water. The organic layer 

was separated, dried over Na2SO4, and evaporated to dryness. The residue was dissolved in THF, 

(Boc)2O (27.6 mmol) and 4-dimethylaminopyridine (7.3 mmol) added, and the solution stirred 

for 4 da. Et2O and water were added and organic layer separated and evaporated to dryness. The 

residue was loaded onto a silica column prepared in hexane and eluted with 35:65 EtOAc/hexane. 

The fractions containing product were combined, evaporated to dryness, then the residue was 

dissolved in EtOAc. Pd/C (~20 mg) was added under an H2 atmosphere and the solution stirred 

overnight. The Pd/C was filtered off and the solvent evaporated. The residue was dissolved in 
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DCM loaded onto a silica column prepared in DCM and eluted with 1:4 7 N methanolic 

ammonia/DCM. Fractions containing product were combined, and evaporation of solvent yielded 

a solid. The solid was dissolved in DCM and purified by prepative TLC developed with a mobile 

phase of 1:9 7 N methanolic ammonia/DCM. The product-containing bands were collected and 

extracted with 1:3 7 N methanolic ammonia/DCM, and the extract evaporated to dryness 

yielding 0.02 mmol IX. The residue was dissolved in DCM, benzoyl chloride (0.03 mmol) and 

triethylamine (0.2 mmol) added and the solution stirred overnight. The reaction was quenched 

with saturated aqueous sodium bicarbonate solution and extracted with DCM. The organic layer 

was separated, dried over Na2SO4 and evaporated to dryness. The residue was dissolved in DCM 

and purified by preparative TLC developed with EtOAc. The band containing product was 

collected and extracted with EtOAc and the extract evaporated to dryness to give X. 1H NMR 

(300 MHz, DMSO-d6,): δ 7.8 (d, 2H, Ar-H-2/6), 7.4 (m, 3H, Ar-H-3/4/5), 7.1 (s, 1H, imidazole 

CH), 6.5 (br s, 1H, benzoyl NH), 3.5 (m, 2H, CH2), 2.6 (t, 2H, CH2), 1.7 (m, 13H, 2x CH2), 1.4 (s, 

18H, 2x t-Bu). 
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Figure A1.15. Raw 1H NMR spectrum of compound X. 
 

 
 
Scheme A1.10. 

X was dissolved in DCM, an excess of TFA was added, the solution stirred for 30 min 

and the solvent evaporated. The residue was dissolved in DCM and concentrated to dryness, then 

redissolved in DCM and concentrated to dryness once more. The residue was dissolved in Et2O 

and concentrated to dryness, then redissolved in Et2O and concentrated to dryness once more. 

The residue was dissolved 1:9 7 N methanolic ammonia/DCM and loaded onto preparative TLC 

plate developed with a mobile phase of 1:3  7 N methanolic ammonia/DCM. The product was 
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extracted with 1:4 7 N methanolic ammonia/DCM, the solvent evaporated and the residue 

dissolved in Et2O/THF and evaporated to dryness once more. The residue was dissolved in Et2O, 

filtered, and the filtrate was concentrated to give 0.02 mmol 2-AI-butyl-benzoyl conjugate (XI) 

(0.1%). 1H NMR (300 MHz, DMSO-d6): δ 8.5(s, 1H, benzoyl NH), 7.8 (d, 2H, Ar-H-2/6), 7.4 

(m, 3H, Ar-H-3/4/5), 6.2 (s, 1H, imidazole CH), 5.2 (br s, 1H, imidazole NH), 3.3 (m, 4H, 

2xCH2), 1.5 (m, 4H, 2xCH2). 

 

  
Figure A1.16. Raw 1H NMR spectrum of 2-AI-butyl-benzoyl conjugate (compound XI). 
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A1.3. Supporting Figures 

 

Figure A1.17. A representative captive bubble image and corresponding circular, ellipse, and 2-
sided manual angle best-fits for contact angle measurement.   
 

 
Figure A1.18. Raw LC/ESI-MS chromatogram of model reaction from Section 2.2.3 and 2.3.1.1. 
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Figure A1.19. Raw LC/ESI-MS mass spectra of model reaction from 2.2.3 and 2.3.1.1. 
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Figure A1.20. Example  RBS spectrum silver probed membrane. RBS spectrum of an ESPA3 membrane that’s been probed with 
silver. The red diamonds are the raw data and the blue line is the fitted simulated data. 
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Figure A1.21. Example RBS spectrum of bromoaniline membrane. RBS spectrum of an ESPA3+BA membrane that’s been probed 
with silver. The red diamonds are the raw data and the blue line is the fitted simulated data.
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Figure A1.22. Example 3-D contour surface roughness plots collected with AFM, ESPA3 (top) 

and ESPA3+2-AI (bottom). 
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Figure A1.23. Water permeability of ESPA3 and ESPA3+2-AI membranes operated in cross-
flow with 500 ppm sodium chloride feed solution as described in Section 2.2.15.2. A and B 
denote experimental duplicates. 
 

  
Figure A1.24. Salt rejection by ESPA3 and ESPA3+2-AI membranes operated in cross-flow 
with 500 ppm sodium chloride feed solution as described in Section 2.2.15.2. A and B denote 
experimental duplicates. 
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Figure A1.25. Water permeability of SWC4+  and SWC4+2-AI membranes operated in cross-
flow with 500 ppm sodium chloride feed solution as described in Section 2.2.15.2. A and B 
denote experimental duplicates. 
 

 
Figure A1.26. Salt rejection by SWC4+ and SWC4+ 2-AI membranes operated in cross-flow 
with 500 ppm sodium chloride feed solution as described in Section 2.2.15.2. A and B denote 
experimental duplicates. 
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Figure A1.27. Water permeability of XLE and XLE +2-AI membranes operated in cross-flow 
with 500 ppm sodium chloride feed solution as described in Section 2.2.15.2. A and B denote 
experimental duplicates. 
 

  
Figure A1.28. Salt rejection by XLE and XLE+2-AI membranes operated in cross-flow with 500 
ppm sodium chloride feed solution as described in Section 2.2.15.2. A and B denote 
experimental duplicates. 
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Figure A1.29. Water permeability of NF270 NF270+2-AI membranes operated in cross-flow 
with 500 ppm magnesium sulfate feed solution as described in Section 2.2.15.2. A and B denote 
experimental duplicates. 
 

 
Figure A1.30. Salt rejection by NF270 and NF270+2-AI membranes operated in cross-flow with 
500 ppm magnesium sulfate feed solution as described in Section 2.2.15.2. A and B denote 
experimental duplicates.
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Table A1.1.  Comparison of submersion versus subjecting only the top of the membranes 
to incorporation solutions. The concentrations of bromoaniline and iodoaniline that was 
incorporated into XLE membranes that were exposed to either bromoaniline 
incorporation solution or iodoaniline incorporation solution. Duplicate samples of each 
sample type were analyzed using RBS. 
 

Bromoaniline incorporation Iodoaniline incorporation 
 

Average Concentration 
of Bromoaniline (M) 

Difference in 
Duplicates (M) 

Average Concentration of 
Iodoaniline (M) 

Difference in 
Duplicates (M) 

Submerged 0.59 <0.01 0.39 <0.01 

Top Only 0.65 <0.01 0.38 0.02 
 %Difference 

10% 
 

2% 
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APPENDIX 2: SUPPORTING INFORMATION FOR CHAPTER 3 
 
 

 
Figure A2.1. FTIR spectra of the control and 2-AI membranes. For each membrane, the spectrum shown corresponds to the average 
of three replicates, each of which was obtained through 24 scans of the sample analysis area. 
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Figure A2.2. Example spectrum of silver probed membrane. RBS spectrum of a control membrane that’s been probed with silver. The 
red diamonds are the raw data and the blue line is the fitted simulated data. 
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Figure A2.3 Example spectrum of iodoaniline membrane. RBS spectrum of an IA-soak membrane. The red diamonds are the raw data 
and the blue line is the fitted simulated data
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Figure A2.4. Raw XPS data of IA-membranes that have been probed with silver. Triplicate 
sample analyses are presented. REG=control membranes, 2-AI=IA-soak membranes, MPD= IA-
MPD membranes, TMC=IA-TMC membranes. 
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Figure A2.5.Water permeability of control and 2-AI membranes over 75 hours of operation in 
cross-flow with 500 ppm sodium chloride feed solution as described in Section 3.2.7.2. A and B 
denote duplicates, different coupons operated in separate runs. 
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Figure	A2.6.Salt	rejection	of	control	and	2-AI	membranes	over	75	hours	of	operation	in	
cross-flow	with	500	ppm	sodium	chloride	feed	solution	as	described	in	Section	3.2.7.2.	A	
and	B	denote	duplicates,	different	coupons	operated	in	separate	runs. 
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Figure A2.7. Raw data of zeta potential as a function of pH for control and 2-AI membranes, the 
data that was used to produce regressions shown in Figure 3.6. 
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APPENDIX 3: SUPPORTING INFORMATION FOR CHAPTER 4 

 
Figure A3.1. Salt rejection of control and 2-AI membranes over 75 hours of operation in cross-
flow with  
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Table A3.1. Materials used to build the custom laboratory-scale reverse osmosis cross-flow 
system, prices from 2015. Provided by Mikayla D. Armstrong. 
Material Manufacturer Price 
Diaphragm pump Hydra-Cell $5400 
Pulsation dampener Cat pumps $770 
Motor Baldor $440 
Motor adapter kit Baldor $200 
Gear reducer Baldor $300 
Motor Controller Dart $250 
Glass carboy with spigot Greatglas $500 
Carboy modification Prism Research Glass $240 
Compression fitting, straight adapter for 3/4 in. tube OD 
x 3/4 in. female pipe 

McMaster Carr $80 

Thermoflex recirculating chiller Fisher-Scientific $4420 
alpha-190 pH controller Eutech Instruments $370 
pH electrode  Accumet $240 
pH electrode extension cable Cole-Parmer $50 
Stainless steel corrugated hose – 316SS Swagelok $450 
316/316L SS seamless tubing 3/8 in. OD 0.035 wall Swagelok $120 
Tee 3/8 in. compression x 3/8 in. compression x 1/2 in. 
FNPT 

Swagelok $70 

Reducing adapter 3/4 “ FNPT x ½ in. MNPT Swagelok $30 
Pressure transducers  Omega $3420 
90° elbows 3/8 in. x 3/8 in. compression Swagelok $60 
Union tee 3/8 in. x 3/8 in. x 3/8 in. compression Swagelok $30 
Metering valves 3/8 in. x 3/8 in compression Swagelok $420 
3-way ball valve 3/8 in. x 3/8 in. x 3/8 in. compression Swagelok $50 
Union tees 3/8 in. x 3/8 in. x 1/4 in. FNPT Swagelok $180 
Connectors 3/8 in. compression x 1/4 in. MNPT Swagelok $60 
Pressurized membrane cells UNC Design Center $5600 
Pipe plug 1/8 in. MNPT Swagelok $30 
Pipe plug 1/4 in. MNPT Swagelok $60 
Connectors 1/8 in. MNPT x 1/8 in. compression Swagelok $30 
316/316L SS seamless tubing 1/8 in. OD 0.028 wall Swagelok $120 
3-way ball valves 1/8 in. x 1/8 in. x 1/8 in. compression Swagelok $360 
Connector 3/8 in. compression x 1/2 in. MNPT Swagelok $10 
Flow indicator King $710 
Shelving unit Safco $160 

Total $25520 
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