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ABSTRACT

Kyle Patrick Slinker: Trumpet Initial Data for Highly Boosted Black Holes and High Energy Binaries
(Under the direction of Charles R. Evans)

Initial data for a single boosted black hole is constructed that analytically contains no initial transient

(junk) gravitational radiation and is adapted to the moving punctures gauge conditions. The properties of

this data are investigated in detail. It is found to be generally superior to canonical Bowen-York data and,

when implemented numerically in simulations, yields orders of magnitude less junk gravitational radiation

content and more accurate black hole velocities. This allows for modeling of black holes that are boosted

faster than previously possible. An approximate superposition of the data is used to demonstrate how

a binary black hole system can be constructed to retain the advantages found for the single black hole.

Extensions to black holes with spin are considered.
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CHAPTER 1: Introduction

Historically, tests of general relativity have taken place in our solar system and were generally only able to

probe the weak field limit. This has changed with the recent rapid progress in the field of gravitational wave

astronomy. In the past two years, this new field has given us novel tests of general relativity, not possible

within our own solar system. As instrument sensitivities are increased, it promises to provide more stringent

tests in the future. In order to properly understand observations, comparisons with theory must be made.

Accurate methods exist for simulating highly relativistic systems, but there is the non-trivial issue of how

to initialize simulations. This project provides improved methods for computing initial data. This Chapter

gives an overview of tests of general relativity, simulation methods, and what this project has accomplished.

Section 1.1: Testing General Relativity Through Gravitational Wave Astronomy

One of the most famous tests of general relativity which has been carried out in the solar system is

the perihelion advance of Mercury: the measured value (42.98± 0.04)
′′
/century [43] is in remarkably good

agreement with the value calculated from theory 42.98′′/century [43]. The Cassini-Huygens spacecraft was

able to perform measurements of the Shapiro time delay during its flight to Saturn and measured the

parameterized post-Newtonian parameter γ; if general relativity is correct it is expected that γ = 1. The

measured value γ − 1 = (2.1± 2.3) × 10−5 [55] is consistent with zero, indicating that no deviation from

general relativity was detected. Violations of the weak equivalence principle have been constrained to be at

most a few parts in 1013 by Eötvös-type experiments [54]. These are only a few of many tests. None of these

findings have contradicted general relativity, but they have only tested it in the weak field limit.

Observations of the Hulse-Taylor pulsar have probed general relativity in an environment with a stronger

gravitational field. This pulsar is one of two neutron stars forming a binary system [31]. The observed

time rate of change of the orbital period of this binary system (−2.396± 0.005) × 10−12 is once again

remarkably close to the predicted value (−2.402531± 0.000014)× 10−12 [55].1 This is generally seen as the

first observational evidence for the existence of gravitational waves, but the measurement was made through

electromagnetic observations and is therefore somewhat indirect.

1Using 31 557 600 s = 1 year, these values correspond to (75.6± 0.2) µs/year (observed) and (75.8181± 0.0004) µs/year (pre-
dicted).
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It is only with the recent detections by the advanced Laser Interferometer Gravitational-Wave Obser-

vatory (LIGO) that we have obtained our first direct measurements of gravitational waves. The first four

detected events – dubbed GW150914 [6], GW151226 [11], GW170104 [12], and GW170814 [8] – were each

generated by the co-orbital motion and merger of a pair of black holes. The fifth detection – GW170817

[9] – was of a signal from the merger of two neutron stars. But the existence of gravitational waves is not

the only strong field test of general relativity that gravitational wave astronomy can provide. The mass

of the graviton was constrained to be less than 1.2 × 10−22 eV (corresponding to a Compton wavelength

of over a lightyear) [7] by the dispersion of gravitational waves detected from GW150914. Additionally,

GW150914 allowed for constraints on deviations from general relativity, even if some of these constraints are

not particularly strong [7].

To be able to connect the raw data of the detection to a physical model of the emitting system we

must have a well developed understanding of general relativity [10]. General relativity is non-linear, which

makes it difficult to work with mathematically. Perturbative methods exist to handle its non-linearities

iteratively, including black hole perturbation theory and post-Newtonian expansions [35, 42, 22]. These

methods require restrictive physical properties, such as a small ratio between the masses of the orbiting

objects or low velocities; the signals detected by LIGO came from systems which do not possess these

properties. Therefore, for these systems, perturbative processes break down and Einstein’s equations must be

solved ‘all at once.’ To distinguish it from perturbative methods, this ‘all at once’ method is called numerical

relativity [20, 13]. Although all of these methods inform one another, are important, and ultimately must all

be understood to get the fullest picture of general relativity, numerical relativity is currently our only tool

to model the inspiral, merger, and remnant of compact binaries that are being observed.

Section 1.2: Numerical Relativity

One downside of numerical relativity as compared with other methods is the relative difficultly in con-

structing initial data for a simulation. Consider briefly a simulation of electromagnetic fields. Two of

Maxwell’s equations (Coulomb’s law and ~∇ · ~B = 0) constrain the possible configurations of the electric and

magnetic fields, and these constraints must be satisfied at any time. When starting a simulation, data must

be given for the electric and magnetic fields which satisfies these constraints. This may require solving a

Poisson equation for the initial electric potential, for example. Similarly, Einstein’s equations do not allow for

arbitrary configurations of the gravitational field, and it is non-trivial to pose initial data which is properly

constrained.

One of the most widely used codes for numerical relativity is the Einstein Toolkit [32]. The current state-
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of-the-art initial data in use with the Einstein Toolkit is based on the Bowen-York formalism [23, 57]. This

formalism makes mathematical assumptions in order to greatly simplify the constraint equations, allowing

valid initial data to be computed more easily. This data solves the constraint equations, which is required for

a mathematically valid solution to Einstein’s equations. It does not, however, accurately model the intended

physical system. As we will see, initial data computed this way contains non-physical ‘junk radiation’

which initially distorts the space near the black holes and is released as gravitational waves at the start of

the simulation. This junk signal robs the black holes of energy, momentum, and angular momentum and

contaminates the physically relevant gravitational wave signal.

In order to distinguish the junk signal from the physical gravitational wave signal which appears later,

the black holes must be started farther apart (increasing the duration of the simulation) and the boundary

of the simulation domain must be farther out (to reduce the impact of reflected waves on the simulation).

Both allowances drive up the computational cost of a simulation, but this is not the only problem with junk

radiation. Areas of parameter space are precluded as the energy and angular momentum carried away by junk

radiation limits the range of spins and momenta of black holes that can be simulated. Because astrophysical

black holes are expected to have large spins, this limitation on spins is more than just a pedantic concern

[33].

Clearly, it would be advantageous to have an alternate method for constructing initial data. However,

the method by which the black hole singularity is handled numerically plays a large role in how initial

data can be constructed. One method for handling singularities is the so-called ‘excision’ method. In this

method, the interior of the black holes – where large gradients and infinite values are present – are removed

from the simulation domain. This creates the need to specify interior boundary conditions and remove a

roughly ellipsoidal region from a cubical lattice; but information cannot leave a black hole in classical general

relativity so there is no need to simulate its interior. This method has been found to be amenable to using a

Lorentz-like coordinate transformation to boost a black hole written in Kerr-Schild coordinates to generate

initial data [34], as well as initial data modifications to reduce junk radiation content [49, 50].

The Einstein Toolkit does not use excision, instead it uses the ‘moving punctures’ method. Moving

punctures is the name given to a specific set of choices for the spacetime coordinates.2 Like excision, a

moving punctures coordinate system has the effect of removing a black hole’s singularity from the simulation

domain. However, unlike excision, moving punctures does not remove any points from the simulation grid.

Instead, the coordinates are engineered so that they only cover a portion of the spacetime manifold away

from the black hole singularities; this coordinate patch corresponds to the simulation domain. This can be

2Recall that the gauge freedom of general relativity allows us to choose any coordinate system.
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accomplished using a so called ‘trumpet slicing,’ a specific topology where the spatial slices reach a limit a

finite distance away from any singularities. The moving punctures gauge is not the only coordinate system

that gives trumpet slicing, but it is an example of trumpet slicing which is well suited to numerical work.

It has been shown that, over the course of a simulation, the moving punctures gauge conditions drive

Bowen-York initial data away from its initial (non-trumpet) slicing to trumpet slicing [30]. Trumpet slicing

has been explored for non-moving, non-rotating [25] and non-moving, rotating black holes [26] in a gauge

other than moving punctures, and also for a non-moving, non-rotating black hole in the moving punctures

gauge [30]. Recent attempts to decrease junk radiation content of initial data within the moving punctures

scheme have focused on relaxing one of the Bowen-York assumptions without using trumpet slicing [46].

Section 1.3: Project Goals

We have discussed the importance of strong field tests of general relativity, the importance of numerical

relativity to these tests, and the importance of well constructed initial data to numerical relativity. The goal

of this project has been to improve the Einstein Toolkit by improving the tools available for construction of

initial data, utilizing the specific trumpet slicing that is the steady state of the moving punctures gauge.

At its core, this work has combined the ideas of trumpets in moving punctures gauge and a Lorentz

boosted Schwarzschild black hole. By creating a series of coordinate changes, we transform a black hole

written in a common coordinate system to a black hole with both non-zero coordinate velocity and trumpet

slicing adapted to the moving punctures gauge.

To understand the big picture better, return momentarily to the electromagnetic simulation considered

above. Suppose we have initial data for the vector potential which we know gives electric and magnetic fields

which satisfy Maxwell’s two constraint equations, but that this initial data is not well suited to our numerical

methods. We might then apply a gauge transformation to this vector potential to obtain different initial

data which models the same physical situation (i.e., the electric and magnetic fields are unchanged). The

result is guaranteed to satisfy the constraint equations, and this known without explicitly solving them. This

is analogous to what we propose here: we start with Schwarzschild spacetime in the familiar Schwarzschild

coordinates (a simple, known solution to the constraints that is not well suited for simulation) and apply a

series of coordinate (gauge) transformations to get it in a form that may look more complex, but represents

the same physical situation.

The idea for this project can be stated simply, but the detailed properties of the resulting coordinate

system are complicated to understand. Having applied a series of coordinate transformations to Schwarzschild

spacetime, the result is still a Schwarzschild black hole, even if its Killing symmetries are no longer as
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apparent. A large part of this project has been concerned with the interpretation of the properties of the

resulting coordinate system.

Section 1.4: Outline of the Remainder of the Thesis

Chapters 2 through 4 give overviews of various required aspects of simulating black holes. With that

foundation laid, we then discuss novel methods for constructing initial data and the results of this project,

found in Chapters 5 and 6. Throughout this work, we use units where G = 1 = c,3 the spacetime metric

signature is (−,+,+,+), and sign conventions are those of Misner, Thorne, and Wheeler [35].

Chapter 2 discusses a number of formalisms needed to carry out numerical relativity simulations. There

we make explicit the formulation of Einstein’s equations as a Cauchy initial value problem and explore the

options for solving for initial data, including the Bowen-York method.

Chapter 3 gives an overview of how a number of physical properties of spacetimes are extracted from

simulations. Among these properties are the energy, momentum, and angular momentum contained in a

spacetime, the gravitational wave content of the spacetime, and black hole horizon properties.

Chapter 4 gives a very brief overview of relevant numerical methods and how the Einstein Toolkit im-

plements them.

Chapter 5 describes our new method for constructing initial data. We compare results from this data

to those found using Bowen-York data. We find that it is well adapted to the moving punctures gauge

conditions and contains orders of magnitude less junk gravitational waves than the Bowen-York data. We

also carry out analysis to gain a thorough understanding of the properties of the new coordinate system we

have created.

Chapter 6 examines preliminary results of a binary composed of boosted-trumpet black holes. The initial

data for this binary system is constructed by a simple superposition of the data for a single black hole.

Finally, Chapter 7 summarizes our findings.

3So 1 M� ≈ 1.5 km ≈ 4.9 µs.
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CHAPTER 2: Decomposing Spacetimes and Einstein’s Equations

In order to be dealt with numerically, Einstein’s equations must be separated into space and time parts.

This breaks their inherently covariant nature but does allow for a formulation in terms of a Cauchy problem,

which is more amenable to numerical evolution. We describe a formalism for decomposing spacetime and

Einstein’s equations in this Chapter.

In the first section of this Chapter, we will foliate the spacetime manifold M by dividing it into a

collection of three-dimensional spacelike surfaces Σ. Each Σ can be interpreted as representing the universe

at an instant in time, and collectively the Σ cover the portion ofM in which we are interested. We will then

compute curvature quantities for the spatial slices and relate them to the curvature quantities describing

M. These quantities will allow us to decompose Einstein’s equations via temporal and spatial projections.

Finally, we will specialize to a specific basis to bring out a time derivative, culminating in the Arnowitt,

Deser, and Misner (ADM) equations [20, 28, 56]. In investigating the nature of the ADM equations, we will

see the consequences of general relativity’s coordinate freedom and how it can be used to improve numerical

stability.

The second section carries the decomposition one step further, foliating a spatial slice into a collection

of surfaces which are topologically spherical. This allows us to define the idea of trumpet slicing. The final

section outlines a conformal decomposition which is useful in numerically solving the constraint equations

obtained in section 2.1 in order to give initial data in practice.

Section 2.1: ADM Formalism for Foliation and 3+1 Decomposition of Spacetime

Before investigating the exact nature of the decomposition, we look to see generally how it must come

about. Consider the twice contracted Bianchi identity

∇bGab = 0, (2.1)

and Einstein’s equations with indices raised

Gab = 8πT ab. (2.2)
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Separating the Bianchi identity into the timelike derivative and spatial derivatives, we find

∇0G
a0 = −∇iGai. (2.3)

Because Gab is a curvature quantity which is constructed from derivatives of the metric, including second

derivatives, ∇iGai contains at most second time derivatives of gab . Therefore, ∇0G
a0 contains at most second

time derivatives and so Ga0 contains at most first time derivatives. Thus, four of Einstein’s equations,

Ga0 = 8πT a0, (2.4)

relate the metric and its first time derivatives, and are therefore constraint equations which must be satisfied

initially and at all subsequent times. The evolution equations are the remaining six Einstein’s equations,

Gij = 8πT ij , (2.5)

which govern the evolution of the spacetime. The system may appear under specified as there are only

six evolution equations for the ten metric components. However, there are four degrees of gauge freedom

corresponding to coordinate changes; specifying four equations in order to fix the coordinate system brings

the total number of equations back up to ten. Given these considerations, it is perhaps not surprising that

we will find that doing at least one temporal projection gives us a constraint while two spatial projections

will give us evolution equations.

Analytically, if the constraint equations are satisfied initially, they will continue to be satisfied. We see

this because

∇b
(
Gab − 8πT ab

)
= 0 (2.6)

which means

∇0

(
Ga0 − 8πT a0

)
= −∇i

(
Gai − 8πT ai

)
. (2.7)

If, on some slice, data is given which satisfies Einstein’s equations, the RHS of (2.7) will be zero. The LHS

then tells us that the value of the constraint violation will not change away from the initial slice. This

means that if the constraints are satisfied at one time then, analytically, they must be satisfied at all times.

Compare this with Maxwell’s equations, where ~∇× ~E = −∂ ~B/∂t requires that ~∇ · ~B = 0 remain true if it

is satisfied initially.

The foliation ofM consists of a collection of spacelike surfaces which are level sets of a function t̃ :M→ R.

This function can loosely be interpreted as a time associated with each slice of the foliation. We can create
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a normal vector to the surfaces by working with the gradient of t̃. To this end, define a one-form as the

exterior derivative of t̃

ωa ≡
(
dt̃
)
a
. (2.8)

Note that, in general, ωa is timelike and will have a variable norm

gabωaωb = −α−2. (2.9)

This defines the ‘lapse’ function α. With this we can create another timelike one form which is unit normalized

Ωa ≡ αωa (2.10)

so that

gabΩaΩb = −1. (2.11)

The unit normal vector is then

na ≡ −gabΩb, (2.12)

it is also timelike

nana = −1, (2.13)

where the sign in (2.12) is chosen so that na points in the future direction (increasing t̃) when the lapse is

positive

na∇at̃ = naωa = α−1. (2.14)

There are many timelike vector fields ta which satisfy the normalization ωat
a = 1 relative to the foliation.

One possible choice for ta is αna, but we are free to add a vector βa (called the ‘shift’ vector) which satisfies

naβ
a = 0 but is otherwise arbitrary, and still maintain the normalization

ωa (αna + βa) = 1. (2.15)

Spatial coordinates are dragged from time slice to time slice in the direction ta. In this way, the decomposition

ta = αna + βa (2.16)

shows that the lapse function α and the shift vector βa encode the development of the coordinate system.
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We will find these two quantities very important moving forward, where their interpretation will be more

fully explored. Equations governing the evolution of α and βa will determine the coordinate system and,

as mentioned above, complement the six evolution equations coming from Einstein’s equations to give ten

equations needed to specify the dynamics of the ten independent pieces of the spacetime metric gab .

Contracting a vector with −nanb gives its projection in a timelike direction, so −nanb can be thought

of as a temporal projection operator. If V a is a vector such that V ana = 0 then V 0 is not algebraically

independent from V i and the vector V a has three degrees of freedom, effectively containing no timelike

information. The same idea holds for tensors of all ranks and index structures. In general, a tensor is said

to be ‘spatial’ when all of its contractions with na (or na) give zero. When dealing with spatial tensors, we

are free to disregard any timelike components; as we have seen, they are not independent and – if needed –

we can recover them by contracting with na, setting the result equal to zero, and solving algebraically. We

will make liberal use of this in the future and for simplicity’s sake often only consider the spatial indices. A

spatial projection operator can also be constructed from na

Pab ≡ δab + nanb. (2.17)

Consider an arbitrary (in particular, not necessarily spatial) covector Ca acted on by Pab and nb

nbPabCa = nb (δab + nanb)Ca = (na − na)Ca = 0. (2.18)

As can be seen, this result is independent of Ca and thus demonstrates how PabCa is spatial by virtue of the

construction of Pab . When every index of a tensor has been projected into Σ by Pab , the tensor is guaranteed

to be spatial.

By projecting the spacetime metric gab into Σ, we obtain a ‘spatial metric’

γab ≡ PcaPdbgcd = gab + nanb (2.19)

which makes Σ a Riemannian manifold in its own right. The spatial metric is positive definite and can be

used to raise and lower indices of spatial tensors. The covariant derivative Da in Σ arises naturally from the

geometric structure of M: first the spacetime covariant derivative ∇a is taken and then every index of the

result is projected into Σ. With this definition, Da can be shown to be compatible with γab

Daγbc ≡ PdaPebPfc∇dγef = PdaPebPfc
(
ne∇dnf + nf∇dne

)
= 0. (2.20)
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Thus, we know it must also be possible to find connection coefficients for Da

Γijk ≡
1

2
γil
(
γlk,j + γjl,k − γjk,l

)
, (2.21)

and covariant derivatives in Σ can be computed without reference to the geometric structure of M. All the

other usual intrinsic curvature quantities can be similarly defined in Σ; in particular, the curvature of Σ

is described by a three-dimensional Riemann tensor Rijkl, a Ricci tensor Rij , and a Ricci scalar R (when

we need to refer to curvature quantities of the four-dimensional spacetime we will indicate them with a

(4); e.g., R
(4) a

bcd). The three dimensional tensors in Σ transform as expected under changes of the spatial

coordinates, but not under coordinate changes involving time. Expressions involving spatial tensors are

therefore covariant in a restricted sense. These last two points serve to reemphasize that Σ is a Riemannian

manifold with a geometric structure independent from that of M.

So far, all curvature quantities have been defined completely in terms of the intrinsic geometry of Σ.

In order to make connections between Rijkl and R
(4) a

bcd, we will need a notion of how Σ curves in and is

embedded within M. We make this connection by examining how the spatial metric changes as you move

from Σ to a neighboring spatial slice in the foliation. Specifically, this is accomplished by Lie dragging γab

along the normal vector na. The extrinsic curvature is defined by

Kab ≡ −
1

2
Ln̂γab = −1

2
(nc∇cγab + γcb∇anc + γac∇bnc). (2.22)

Because na is timelike, this definition captures the (rough) idea that the extrinsic curvature measures the

time rate of change of the spatial metric. It can be shown from this definition that

Kij = −Pai Pbj∇(anb), (2.23)

from which it is apparent that Kij is symmetric and spatial.

The symmetries R
(4)

abcd = − R
(4)

bacd and R
(4)

abcd = − R
(4)

abdc mean that projecting the Riemann tensor

three or more times onto nb gives zero identically (e.g., nanbnc R
(4)

abcd = −nanbnc R
(4)

bacd necessitates that

nanbnc R
(4)

abcd = 0). Thus, we consider four spatial projections of R
(4)

abcd (Gauss’s equation), three spatial

and one temporal projection of R
(4)

abcd (Codazzi’s equation), and two spatial and two temporal projections

of R
(4)

abcd (Ricci’s equation). After some calculation (the details of which are omitted), we find

Pai PbjPckPdl R
(4)

abcd = Rijkl +KikKjl −KilKjk (Gauss) (2.24)
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PbiPajPcknd R
(4)

abcd = DiKjk −DjKik (Codazzi) (2.25)

Pdi Pbjncna R
(4)

abcd = Ln̂Kij + α−1DiDjα+KkiK
k
j (Ricci). (2.26)

Contracting Gauss’s equation twice and Codazzi’s equation once gives

γacPdiPbj R
(4)

abcd = Rij +KKij −K k
i Kjk (2.27)

γacγbd R
(4)

abcd = R+K2 −KijKij (2.28)

Pbindγac R
(4)

abcd = DiK −DjK
j
i , (2.29)

where the mean curvature is defined as K = Tr(K) = K i
i .

Define projections of the stress-energy tensor

ρ ≡ nanbTab , Si ≡ −Pai nbTab , Sij ≡ Pai PbjTab , and S ≡ γijSij . (2.30)

Also compute projections of the Einstein tensor

2nanbGab = γacγbd R
(4)

abcd and Pai nbGab = γacPbind R
(4)

abcd. (2.31)

Einstein’s equations and Gauss’s equation contracted twice (2.28) give the Hamiltonian (or energy) constraint

16πρ = 16πnanbTab = 2nanbGab = γacγbd R
(4)

abcd = R+K2 −KijK
ij . (2.32)

Einstein’s equations and Codazzi’s equation contracted once (2.29) give the momentum constraint

8πSi = −8πPai nbTab = −Pai nbGab = −γacPbind R
(4)

abcd = DjK
j
i −DiK. (2.33)

The constraints do not involve time derivatives, instead they relate the variables γij , Kij , and their spatial

derivatives at all times (again, recall the case of Maxwell’s equations where ~∇ · ~B = 0). Noting that both

these equations derive from one or more temporal projections of Einstein’s tensor it makes sense that they

are constraint equations, given the discussion of the Bianchi identity at the beginning of the section.

We now derive the equations governing evolution. We expect our spatial objects γij and Kij to evolve

along the vector ta which we found to be a general vector pointing out of Σ. We will therefore want to
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calculate L
t̂
γij and L

t̂
Kij . The first evolution equation is

L
t̂
γij = αLn̂γij + L

β̂
γij = −2αKij +Diβj +Djβi . (2.34)

The second involves Ricci’s equation

L
t̂
Kij = α

(
PdiPbjnanc R

(4)
abcd − α

−1DiDjα−KkiK
k
j

)
+ L

β̂
Kij . (2.35)

But Gauss’s equation (2.27) and the trace-reverse of Einstein’s equations give

PdiPbjnanc R
(4)

abcd = γacPdi Pbj R
(4)

abcd − Pai Pbj R
(4)

ab

= Rij +KKij −K k
i Kjk − Pai Pbj (8πTab − 4πTgab)

= Rij +KKij −K k
i Kjk − 8πSij + 4πγij (S − ρ) , (2.36)

so that

L
t̂
Kij = α

(
Rij +KKij − 2K k

i Kjk − 8πSij + 4πγij (S − ρ)
)
−DiDjα

+ βkDkKij +KikDjβ
k +KkjDiβ

k. (2.37)

This second evolution equation came from two spatial projections of Einstein’s equations, again reflecting

the discussion at the beginning of the section on the Bianchi identity. Notice that the six second-order

evolution equations have now been recast as twelve first-order evolution equations. The first evolution

equation essentially came from the definition of the extrinsic curvature in terms of the Lie derivative of the

spatial metric, which we saw before makes the extrinsic curvature something like a time derivative of the

spatial metric. This reduction of order in the evolution equations is therefore analogous to reduction of order

in the simple system

d2

dt2
x(t) = a(t) ⇒


d

dt
x(t) = v(t)

d

dt
v(t) = a(t)

(2.38)

with γij playing the part of the coordinate x(t) and Kij the part of the velocity v(t).

In order to treat these equations numerically, a basis must be chosen. We pick a basis where three of the
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basis vectors lie in a spatial slice. Therefore, these three basis vectors (ei)
a

satisfy

ωa(ei)
a

= 0. (2.39)

We will also want this basis to be unchanged between slices

L
t̂
(ei)

a
= 0. (2.40)

If both of these desired properties are to hold, we must have

0 = L
t̂
(ωa(ei)

a
) = (ei)

aL
t̂
ωa + ωaLt̂(ei)

a
= (ei)

aL
t̂
ωa (2.41)

which can only be true in general if L
t̂
ωa = 0, but we see that this is the case

L
t̂
ω = L

t̂
dt̃ = d

(
L
t̂
t̃
)

= d
(
ta∇at̃

)
= d (taωa) = d

(
(αna + βa)

(
−α−1na

))
= d (1 + 0) = 0. (2.42)

To complete our basis, we take (e0)
a

= ta. With the definitions of the other three basis vectors, we know

ta = (1, 0, 0, 0) in this basis. Note that

L
t̂
Tab = tcTab,c + Tac t

c
,b + Tcb t

c
,a = ∂tTab . (2.43)

It can be shown that the same holds for more general tensors, so L
t̂

the Lie derivative along ta is just a

partial derivative with respect to time t in this basis.

In this basis, the following matrix representations for a number of quantities can be found

ta =



1

0

0

0


na = α−1

 1

−βi

 βa =

 0

βi



na = (−α, 0, 0, 0) γab =

 0 0

0 γij

 γab =

 βiβi βi

βj γij

 , (2.44)

where βi ≡ γijβ
j and γij (the inverse spatial metric) is the 3 × 3 matrix inverse of γij . This gives matrix
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representations for gab and gab

gab =

 βiβi βi

βj γij

−
 α2 0

0 0

 =

 βiβi − α2 βi

βj γij

 (2.45)

and

gab =

 0 0

0 γij

− α−2

 1 −βi

−βj βiβj

 =

 −α−2 α−2βi

α−2βj γij − α−2βiβj

 . (2.46)

The line element is

ds2 =
(
−α2 + βiβi

)
dt2 + 2βidx

idt+ γijdx
idxj

= −α2dt2 + γij
(
dxi + βidt

) (
dxj + βjdt

)
. (2.47)

These forms of the line element illustrate again the interpretation of α and βi as determining the coordinate

system (or more specifically, the evolution of the coordinate system in moving from Σ to a nearby spatial

slice). It is helpful to think of the lapse as specifying the rate at which time is passing between slices and

the shift as describing how the spatial coordinates move from one slice to the next. Between two slices

separated by a coordinate time dt, the proper time of an observer moving along the normal na increases by

an amount αdt and the spatial coordinates shift by an amount βidt. This is shown in Fig. 2.1. Also note

that α2 = −g/γ.

A few words are in order about the final form of the ADM equations we use. We will now specialize to

the case of vacuum where Tab = 0 (with the exception of parts of §3.1 and §3.2). We also define H and

Mi as shorthands for the Hamiltonian and momentum constraint equations, respectively. These quantities

are analytically zero, but are useful to refer to none the less, especially as diagnostics of numerical results.

Reproduced together for easy reference, we have our final form for the ADM equations

0 = H ≡ R+K2 −KijK
ij (2.48a)

0 = Mi ≡ DjK
j
i −DiK (2.48b)

∂tγij = −2αKij +Diβj +Djβi (2.48c)

∂tKij = α
(
Rij +KKij − 2K k

i Kjk

)
−DiDjα+ βkDkKij +KikDjβ

k +KkjDiβ
k. (2.48d)

It is worth noting that these derivations can be done from a completely field-theoretic approach starting

with the Einstein-Hilbert action (and, in fact, this is how Arnowitt, Deser, and Misner originally derived

14



Σ(t1)

Σ(t2)

xa0(t1)

α∆tna

xa0(t2)

∆tβa

γij (t1),Kij (t1)

γij (t2),Kij (t2)

Figure 2.1: The foliation of spacetime. Shown are two moments in time, Σ(t1) and Σ(t2), in the foliation,
each with its own γij and Kij . The relationship between a point xa0 in the two members of the foliation in

terms of α and βi also is shown. Analytically, there are an infinite number of such slices; numerically, the
code computes quantities at the two times t1 and t2 separated by some small ∆t.

their formalism [17]). A more geometric approach was taken here (and in e.g., [20, 13, 57]) because it gives

helpful insight into how data is evolved from one spatial slice to the next during a simulation. However,

the original approach does highlight two important features, reinforcing results obtained here. The first

feature is that the extrinsic curvature is related to πij , the generalized momenta conjugate to γij . Thus, the

reduction in order we saw earlier comes naturally from a Hamiltonian mechanics approach. Secondly, α and

βi arise as Lagrange multipliers, multiplying H and Mi , respectively. This further emphasizes that they are

freely specifiable.

2.1.1: Gauge Choice

Now, contract the evolution equation for the spatial metric (2.48c) using Jacobi’s formula

∂t ln γ = −2αK + 2Diβ
i. (2.49)

Assume for now that we have chosen a gauge where βi = 0. Near the black hole, where α ≈ 0 (i.e., proper

time passes more slowly near the singularity), this tells us that

∂tγ ≈ 0. (2.50)
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This is a desirable property because – if γ does not change near the black hole – then volumes will be

preserved and a coordinate singularity is avoided. If the volume were to become too small, freely falling

observers would “crash” into each other. Therefore, we can demand the lapse satisfy the equation

∂tα = −2αK (2.51)

to drive the term 2αK toward zero and achieve this. Integrating (2.51) gives

α = 1 + ln γ. (2.52)

Hence, the condition (2.51) is called ‘1+log’ slicing [20].

A common choice for fixing one of the four coordinate choices is a slight modification of (2.51) where an

advection term is added (
∂tα− βi∂i

)
= −2αK (2.53)

(which is also commonly called 1+log slicing). The common choice for fixing the other three is the ‘Γ-driver’

condition

(
∂t − βj∂j

)
βi =

3

4
Bi (2.54a)(

∂t − βj∂j
)
Bi =

(
∂t − βj∂j

)
Γ̃i − ηBi, (2.54b)

where η is a constant and the notation Γ̃i will be explained in §2.3 [20]. Seeing as these are differential gauge

conditions, there is an additional freedom where initial α, βi, and ∂tβ
i must be specified. Of course, the

somewhat simplistic conclusions reached in the previous paragraph were obtained using (2.51) and βi = 0

instead of the actual gauge we will use given by (2.53) and (2.54). However, choosing (2.53) and (2.54)

as gauge conditions in numerical relativity has been found to yield very stable evolutions, reflecting the

qualitative features described above.

Section 2.2: Trumpet Spatial Slice Topology

In motivating our analysis in Chapter 5, it will important to understand the topology of Σ and how it

slices M. We will seek a type of topology which is referred to as ‘trumpet slicing.’ The features of trumpet

slices are well laid out in [25, 26] where simple analytic trumpet conditions are used to investigate some

of their important properties. Before investigating trumpets in a rigorous way, we look at their general
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properties by considering a fairly simple example.

Consider the Schwarzschild line element written in Schwarzschild coordinates1

ds2 = −fdt′2 + f−1dR2 +R2dΩ2, (2.55)

where f ≡ 1−2M/R and dΩ2 ≡ dθ2 +sin2 θdφ2. Now make a coordinate change by adding a height function

h(R) to the time coordinate

t′ = t
′ − h(R). (2.56)

In the new coordinate system

ds2 = −f (dt′ + h′(R)dR)
2

+ f−1dR2 +R2dΩ2. (2.57)

For our purposes, h(R) is generally chosen so that it diverges at some r0 > 0 to get trumpet slicing.

Embedding diagrams for spatial slices in these two coordinate systems are shown in Fig. 2.2. Firstly,

imagining rotating the curves in Fig. 2.2b around the t
′
-axis gives some indication of why the word “trumpet”

was chosen. Secondly, note that the curves in Fig. 2.2b do not intersect the singularity at R = 0. This will

prove to be one of the most important features of trumpet slicing. It is a natural way to “hide the singularity

from the computer.” It is shown very nicely in [30] that the 1+log and Γ-driver gauge choices drive spatial

slices to trumpet slicing (see especially their Fig. 15), yielding insight into why this gauge choice is so

numerically stable.

For completeness, corresponding Penrose diagrams are shown in Fig. 2.3, in which the same properties

can also be seen. In summary, trumpet slicing involves the following:

1. The trumpet slice must limit on a sphere with non-zero area (viewed on an embedding diagram with

one spatial dimension suppressed, it limits on a circle with non-zero circumference).

2. The trumpet does not intersect the singularity.

There exists a 2+1 decomposition [26] where Σ is foliated into level sets of a radial function r(θ, φ). A

member of this foliation S is a Riemannian manifold with metric qAB and is diffeomorphic to a 2-sphere.

There is also a “lapse” σ =
√
γ/q relating radial movement off of S to the radial normal vector si = (σ, 0, 0)

and a “shift” vector ωA. The relationship between the spatial metric γij and the spherical metric qAB is

1The overbars and primes are a notation we will find helpful in Chapter 5.
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t
′

R

(a)

t
′

R

(b)

Figure 2.2: Embedding diagrams for the Schwarzschild spacetime. Showing level sets of t
′

in the t
′
R-plane

on the left and level sets of t′ in the t
′
R-plane on the right (with solid lines). The singularity at R = 0 is

shown with a zigzag line and the horizon at R = 2M is shown with a dashed line. The limiting radius of the
trumpet slices R = r0 is shown by the dotted line in the right figure. The flat slices (on the left) intersect
the singularity after entering the horizon; in contrast, the trumpet slices (on the right) enter the horizon but
limit on r0 (the dotted line) instead of intersecting the singularity. Note that these are schematic diagrams
only and were drawn without using a practical a height function h(R).

i0i0

i+ i+

i− i−

(a)

i0i0

i+ i+

i− i−

(b)

Figure 2.3: Penrose diagrams for the Schwarzschild spacetime. Showing surfaces of constant t
′

on the left
and surfaces of constant t′ on the right (solid lines). The singularity at R = 0 is shown with a zigzag line
and the horizon at R = 2M is shown with a dashed line. The limiting radius of the trumpet slices R = r0 is
shown by the dotted line in the right figure (these are the same conventions used in Fig. 2.2). The flat slices
(on the left) either enter the parallel universe or intersect the singularity; in contrast, the trumpet slices (on
the right) enter the horizon and terminate on i+ without crossing r0 (the dotted line). Note that these are
schematic diagrams only and were drawn without using a practical height function h(R).
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qab = γab − sasb

γij =

 ωAω
A + σ2 ωA

ωB qAB

 . (2.58)

The spatial line element is

dl2 = σ2dR2 + qAB
(
dθA + ωAdR

) (
dθB + ωBdR

)
. (2.59)

Note though that there is an important difference in sign which stems from difference in signatures of gab and

γij (i.e., M is pseudo-Riemannian and Σ is Riemannian).2 Just as spatial objects effectively contained no

independent temporal component, angular objects contain no independent radial component; we will again

be somewhat relaxed in which set of indices we use when discussing them.

This decomposition is used by [26] to give rigor to the desired properties listed above; for a trumpet with

limiting radius r0 these are:

1. A spherical surface S which is a level set with R = r0 has a positive area (where AS =

∫
√
qdθdφ).

This can be assured by q > 0 at r0.

2. A spherical surface S which is a level set with R = r0 must be an infinite distance from the singularity.

Given that radial distance is measured by dl = σdr, σ must diverge at r0.

We will see in Chapter 5 that at R = r0 for our choice of trumpet σ diverges while q remains finite, thus

reinforcing that we really will have found trumpet slicing.

Section 2.3: Conformal Transformations

This section first considers why and how we carry out conformal transformations. We then give an

overview of how a conformal transformation is used to construct the initial data which has been used by

almost all finite difference based numerical relativity simulations.

The four constraint equations (2.48a) and (2.48b) must be solved to obtain initial data for γij and Kij . Of

course, four equations are not enough to determine the twelve independent components of these two tensors.

Apparently, we are free to choose eight of the twelve components and the other four are then determined by

the constraints. But which four should we single out to solve for? One answer, to try to keep the various

2There is also the additional complication that we typically consider γij in Cartesian-like coordinates and qAB in spherical
coordinates, so there is a coordinate transformation we have swept under the rug above.
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components on equitable footing, is doing a conformal transformation

γij = ψ4γ̃ij . (2.60)

We call γ̃ij the ‘conformal (spatial) metric.’ In general, a tilde signals that a quantity is conformally related;

for example, Γ̃i in (2.54) is the contraction of connection coefficients computed from the conformal metric

Γ̃i = γ̃jkΓ̃ijk = γ̃jk
1

2
γ̃il
(
γ̃lk,j + γ̃jl,k − γ̃jk,l

)
. (2.61)

Such a transformation preserves angles, but that is not what motivates us to do it. If we pick the γ̃ij then

solve for ψ we have not had to single out any components over the others. In order to not introduce an

extra degree of freedom, we demand that γ̃ = 1 (and, as a consequence, γ1/3 = ψ4). The five algebraically

independent components of γ̃ij along with ψ together equal the six independent components of γij .

Decomposition of the extrinsic curvature is done so that we are able to pick three of the six components.

First, the trace is removed

Aij ≡ Kij −
1

3
γijK, (2.62)

then a conformal rescaling is carried out on the trace-free part of the extrinsic curvature

Aij = ψ−2Ãij . (2.63)

Finally, this is broken into transverse and longitudinal parts

Ãij = ÃijTT + ÃijL . (2.64)

The longitudinal part comes from the gradient of a potential vector

ÃijL =
(
L̃W

)ij
≡ D̃iW j + D̃jW i − 2

3
γ̃ijD̃kW

k. (2.65)

The vector potential accounts for three of the five degrees of freedom of Ãij , meaning the remaining part,

ÃijTT , must have two degrees of freedom. We can remove these three degrees of freedom from Ãij using a

divergence condition

D̃iÃ
ij
TT = 0. (2.66)

Table 2.1 summarizes the distribution of the twelve total degrees of freedom of the initial data.
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Variable Degrees of Freedom Variable Degrees of Freedom
γij 6 γ̃ij 5

ψ 1
Kij 6 K 1

W i 3

ÃijTT 2
Total 12 Total 12

Table 2.1: Table summarizing the information content of the the pieces of conformal transverse-traceless
decomposition.

Plugging these definitions into the constraint equations yields

0 = 8D̃2ψ − R̃ψ − 2

3
K2ψ5 + ÃijÃ

ijψ−7 (2.67a)

0 =
(

∆̃LW
)i
− 2

3
ψ6γ̃ijD̃jK, (2.67b)

where the vector Laplacian is defined by

(
∆̃LW

)i
≡ D̃2W i +

1

3
D̃iD̃jW

j + R̃ijW
j . (2.68)

The Hamiltonian constraint then becomes an equation for ψ and the momentum constraint is an equation

for W i (though they are coupled). Freely specifiable parameters are γ̃ij , K, and ÃijTT . The decomposition

outlined above is called the ‘conformal transverse-traceless’ decomposition (described in e.g., [57]).

If we choose K = 0 and γ̃ij = δij , these equations will simplify immensely. Choosing K = 0 – referred to

as ‘maximal slicing’ – removes the dependence of W i on ψ. Choosing γ̃ij = δij – referred to as ‘conformal

flatness’ – reduces all covariant derivatives to partial derivatives. The ‘Bowen-York formalism’ constructs

maximally sliced, conformally flat initial data. This decomposition forms the basis for the canonical method

of posing initial data for black hole simulations in the Einstein Toolkit. The equations become

0 = ∆ψ +
1

8
ÃijÃ

ijψ−7 (2.69a)

0 = ∆W i +
1

3
∂i∂jW

j , (2.69b)

where ∆ ≡ ∂2
x + ∂2

y + ∂2
z is the flat space Laplacian. Notably, the momentum constraint is now not only

decoupled from the Hamiltonian constraint, it is also linear in W i. Solutions include

W i =
1

r2
εijkljJk (2.70)
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and

W i = − 1

4r

(
7P i + liljP

j
)
, (2.71)

where r2 = x2 + y2 + z2 and li = li = xi/r and Ji and P i are constant vectors. There is only one equation

(2.69a) left to solve, though it is non-linear and must be solved numerically. Initial data constructed by

substituting (2.70) into (2.69a) yields a black hole with spin Ji . Initial data constructed with (2.71) yields

a black hole with momentum P i.

One of the most powerful features of this formalism is that the linearity of (2.69b) allows us to add

multiple solutions for W i to get a black hole with both spin and momentum. Or, offsetting the origins,

we can get multiple black holes. In practice, when solving for the divergent ψ it is common to “put the

divergences in by hand” near the black holes and solve for a correction factor u which is regular. In particular,

for two black holes with mass parameters M1 and M2 and singularities at ~r1 and ~r2,

ψ = 1 +
M1

2 |~r − ~r1|
+

M2

2 |~r − ~r2|
+ u. (2.72)

These second and third terms are referred to as the ‘punctures’ associated with each of the black holes.

Thus, in the Bowen-York initial data formalism, dealing with the non-linearities of general relativity

comes down to solving the single non-linear elliptic equation (2.69a). The choices made for Bowen-York

initial data were mathematically motivated. It yields data which satisfies Einstein’s equations, but is not

quite the physical situation one might hope for. Bowen-York black holes are initially distorted and at the

beginning of a simulation transient gravitational radiation is released that is referred to as ‘junk radiation.’

The junk radiation not only may overlap and confuse the eventual physically realistic gravitational wave

signal, but can also perturb the mass, momentum, and angular momentum of the black holes (e.g., the

masses of the black holes in (2.72) shortly after the beginning of the simulation will not be M1 and M2).

Other, more general approaches are being explored more fully (e.g., [34, 46], among others). Some choice

is made for the free parts of the initial data for one black hole. Multiple copies of the data for a single black

hole are then added together and the constraint equations are solved; e.g., as in (2.72), the constraint is

solved for the correction u, but with a different choice for the singular part of ψ. The choices in recent work

are more physically motivated, but this comes at the expense of having to solve more complicated versions

of (2.67).
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2.3.1: BSSN Equations: Conformal Rescaling of the Evolution Equations

It turns out to also be advantageous to make use of the conformal decomposition for the purposes of

evolution. This results in the BSSN equations, named for Baumgarte, Shapiro, Shibata, and Nakamura

[20, 32]. The BSSN of the evolution equations is strongly hyperbolic whereas the combination of (2.48c)

and (2.48d) is not. This yields much better stability. Part of how strong hyperbolicity is achieved is by

promoting the quantities

Γ̃i ≡ γ̃jkΓ̃ijk (2.73)

to independent (albeit constrained by their definition (2.73)) variables. Additionally, to ease numerical

difficulties near the location of the black hole singularity, an alternative conformal factor is often evolved

instead of ψ

e4φ = ψ4. (2.74)

The standard form for the BSSN equations (without sources) is3 [32]

∂0φ = −1

6
αK +

1

6
∂iβ

i (2.75a)

∂0 γ̃ij = −2αÃij + γ̃ik∂jβ
k + γ̃jk∂iβ

k − 2

3
γ̃ij∂kβ

k (2.75b)

∂0K = −γ̃ij
[
D̃jD̃iα+ 2 (∂iφ)

(
∂jα

)]
+ α

(
ÃijÃ

ij +
1

3
K

)
(2.75c)

∂0Ãij = e−4φ
[
αR̃ij + αRφij − D̃jD̃iα− 2 (∂iφ)

(
∂jα

)]TF

+ α
(
KÃij − 2ÃilÃ

l
j

)
+ Ãik∂jβ

k + Ãjk∂iβ
k − 2

3
Ãij∂kβ

k (2.75d)

∂0 Γ̃i = −2Ãij∂jα+ 2α

(
Γ̃ijkÃ

kj − 2

3
γ̃ij∂jK + 6Ãij∂jφ

)
− Γ̃j∂jβ

i +
2

3
Γ̃i∂jβ

j +
1

3
γ̃il∂j∂lβ

j + γ̃jl∂j∂lβ
i, (2.75e)

where

R̃ij = γ̃lm
(
−1

2
∂l∂m γ̃ij + 2Γ̃kl(iΓ̃j)km + Γ̃kimΓ̃klj

)
+
(
γ̃k(i∂j) + Γ̃(ij)k

)
Γ̃k, (2.76)

Rφij = −2
(
D̃iD̃jφ+ γ̃ij γ̃

lmD̃lD̃mφ
)

+ 4
[(
D̃iφ

)(
D̃jφ

)
− γ̃ij γ̃lm

(
D̃lφ

)(
D̃mφ

)]
, (2.77)

∂0 ≡ ∂t − βm∂m , and the subscript TF indicates the trace-free part of a tensor (e.g., RTF
ij = Rij − 1

3γijR).

In summary, the system (2.53), (2.54), and (2.75) is evolved subject to the constraints (2.67) and (2.73).

3The BSSN formalism uses Aij = ψ4Ãij instead of (2.63), so a tilde on Aij means something slightly different in (2.75).
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CHAPTER 3: Measuring Properties of Black Holes and Spacetimes

In this Chapter, we will investigate energy and gravitational waves in flat spacetime in order to construct

diagnostics that are applicable to our simulations. First, we develop the ADM measures of mass, momentum,

and angular momentum [17, 20, 13]. In the next section, we consider a notion of horizon that is applicable

in simulations and how it can be connected to properties of the black hole. The third section establishes

properties of the Weyl scalars so that in the fourth and final section we are able to link quantities measurable

in simulations with gravitational wave content.

Throughout this Chapter, we will consider metrics which are perturbations of the Minkowski metric ηab

gab = ηab + h
(1)

ab + h
(2)

ab +O
(
h3
)
, (3.1)

where h
(1)

ab and h
(2)

ab are first- and second-order corrections, respectively.1 Note that there will be two

types of second-order terms in the perturbation expansions we consider

h
(1)

ab h
(1)

cd = O
(
h2
)

(3.2a)

h
(2)

ab = O
(
h2
)
. (3.2b)

We will also need a ‘null tetrad.’ This is an orthonormal basis at all events in a spacetime with all four

basis vectors being null (i.e., have zero norm). The usual choice for a null tetrad is adapted to spherical

coordinates. The first two vectors of the null tetrad,

ka =
1√
2

(
t̂a + r̂a

)
and la =

1√
2

(
t̂a − r̂a

)
, (3.3)

correspond to the radially outgoing and ingoing null directions, where t̂a, r̂a, θ̂a, and φ̂a are the orthonor-

mal basis vectors of the spherical coordinate system. With these two basis vectors chosen, it may not be

immediately clear how it is possible to identify other null directions. However, the complex vectors

ma =
1√
2

(
θ̂a + ıφ̂a

)
and ma =

1√
2

(
θ̂a − ıφ̂a

)
, (3.4)

1Do not confuse the expansion order prefixes (1) and (2) with the spacetime dimension prefix (4) (e.g., R
(4)

abcd); this should
not be an issue as we will never go beyond second-order when expanding the metric.
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where the bar denotes complex conjugation, allow us to complete the null tetrad. Notice that laka = −1

and mama = 1 with all other possible inner products of the null tetrad basis vectors equaling zero.

Section 3.1: ADM Mass, Momentum, and Angular Momentum

In this section, we look at how the constraint equations give notions of mass, momentum, and angular

momentum contained within a spatial slice. A concrete example of their use is then presented to provide

insight into some of the properties of the ADM quantities relevant to their application in numerical settings.

A local definition of energy is a notoriously difficult thing to develop in general relativity [13, 40]. The

problem is that Tab does not take into account the energy of the gravitational field itself. However, the

constraint equations (2.32) and (2.33) relate the energy and momentum densities of matter within a spacetime

to the configuration of the gravitational field

16πρ = H = R+K2 −KijK
ij (3.5a)

8πSi = Mi = DjK
j
i −DiK. (3.5b)

Focusing on the Hamiltonian constraint in the regime where the gravitational field is weak, the total

energy in some volume of space is approximated by the integral of the energy density. Let us see how we can

make a “measurement” of the energy in a gravitational field far from any gravitational sources. The total

energy of matter contained in a volume V is

∫
V

ρ
√
γdV =

1

16π

∫
V

H
√
γdV. (3.6)

Assuming gravity is weak within V we do an expansion of H, dropping terms of order O
(
h2
)
, the relevant

pieces of which are

R = h
(1) ij

,ij − δ
ij h

(1) k
k,ij (3.7)

Kij =
1

2

(
h

(1)
i0,j + h

(1)
j0,i − h

(1)
ij,0

)
. (3.8)

We recognize that parts of the Hamiltonian constraint are quadratic in the extrinsic curvature and therefore

quadratic in the metric perturbation and therefore can be ignored at first order. Additionally, with the Ricci

scalar already first order in the metric perturbation, all perturbations to the volume element can be dropped
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∫
V

ρ
√
γdV =

1

16π

∫
V

(
h

(1) ij
,ij − δ

ij h
(1) k

k,ij +O
(
h2
))
dV (3.9a)

=
1

16π

∫
V

(
h

(1) ij
,i − δ

ij h
(1) k

k,i +O
(
h2
))
,j
dV, (3.9b)

where we have recognized that the integrand is a total divergence. Gauss’s Law allows us to convert this

volume integral into a surface integral

∫
V

ρ
√
γdV =

1

16π

∫
∂V

(
h

(1) ij
,i − δ

ij h
(1) k

k,i +O
(
h2
))
dsj . (3.10)

Performing this surface integral far from any gravitational sources is how we “measure” the energy

contained within the surface. In particular, if we push the surface all the way to infinite radius, we can find

the total mass-energy on Σ. If the next correction after h
(1)

ij falls off faster than r−1, then the neglected

second-order terms will tend to zero faster than the area element of the integral grows, and the formula will

become exact, independent of the perturbation order

MADM =
1

16π

∫
∂Σ

(
δik h

(1)
kj,i − h

(1) i
i,j

)
dsj . (3.11)

The same arguments hold and we can define the total momentum content of Σ by integrating Mi

P iADM =
1

8π

∫
∂Σ

(
Ki

j − δijK
)
dsj . (3.12)

There is of course also an angular momentum measure

J iADM =
1

8π

∫
∂Σ

εijkxj (Kkl − δklK) dsl. (3.13)

These quantities are referred to as the ADM mass, momentum, and angular momentum due to their connec-

tion with the ADM decomposition. Again, although we have taken a geometric approach to understanding

them here, they are also derivable from a field-theoretic approach [40]. Though we started with an assump-

tion of an almost flat spacetime, the final forms in terms of surface integrals only require that the spacetime

be asymptotically flat (i.e., flat in the region where we evaluate the surface integral). The black hole space-

times we will be simulating are asymptotically flat, and so we can make use of the ADM mass and linear

momentum estimates.

To see an example of how this works, consider the Schwarzschild spacetime written in Kerr-Schild coor-
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dinates

gab = ηab +
2M

r
lalb, (3.14)

where la = la = (1, x/r, y/r, z/r) and r2 = x2 + y2 + z2. The metric perturbation is

h
(1)

ij =
2M

r3
xixj . (3.15)

With dsj = ljr2dΩ2 =
xj

r r
2 sin θdθdφ = rxj sin θdθdφ,

MADM =
1

16π

∫
∂Σ

(
4M

r3
xj

)
rxj sin θdθdφ = lim

r→∞

M

4π

∫
S(r)

sin θdθdφ = lim
r→∞

M = M. (3.16)

For us, it is important to stop and consider the result obtained before doing the limit when carrying

out these calculations. As stated above, under certain conditions on h
(1)

ij , the final limit does not depend

the perturbation theory order of the integrand. In simulations though, we will need to know not only the

limiting value but also how this limiting value is approached. We will not be able to simulate all the way

to spatial infinity, the only place where the ADM measures are valid. So instead, we compute the surface

integrals at a number of radii in the finite simulation domain and compare with the asymptotic behavior of

the analytic expression before the limit is taken to approximate the value of the “numerical limit.”

It may initially seem bizarre that a non-zero answer was obtained for a vacuum spacetime (ρ = 0) which

satisfies the constraint equations (H = 0). How can (3.9a), an integral over zero, be non-zero? The answer

lies in how we handled Gauss’s Law in obtaining (3.10). In the Kerr-Schild example above, a spatial slice of

the Schwarzschild spacetime is topologically R3 \{0}. The singularity is not actually a point on the manifold

and there is a boundary which we neglected. The integral of H over this inner boundary is −M and the

total integral is indeed zero. However, the example above should motivate the utility in computing only one

of the boundary terms. We will return to this at the end of §3.2.

Section 3.2: Black Hole Horizons and Quasi-Local Measures

In this section we consider horizons. We will discuss why event horizons are troublesome in numerical

simulations then define an ‘apparent horizon,’ which is more compatible with simulations. Finally, we will

link measurements made on the horizon with properties of the black hole.

An event horizon is a global property of a spacetime. An outgoing photon on the event horizon will never

reach null infinity. It is possible to use this property to attempt to locate an event horizon in a simulation.

By launching photons radially outward from many spatial locations at many times, and tracking which make
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it to the spatial boundary of the simulation, an approximate sense of the location of the event horizon can

be found. If one accepts these limitations of measuring event horizons numerically, null geodesics can be

integrated throughout the simulation and the event horizon can be found in post-processing. Even so, this

leaves much to be desired. For instance, having knowledge of horizons during the simulation gives diagnostics

about the masses of the black holes, signals merger and the formation of a single large black hole, and –

when a horizon cannot be found – an indication that instabilities are developing.

There are, however, other types of horizons, which can be found during numerical simulations. Apparent

horizons only require information on one spatial slice (in other words, at one instant). A ‘trapped surface’

is a surface S in Σ on which the expansion of outgoing null geodesics is non-positive. Drawing on the 2+1

decomposition outlined near (2.59), the expansion can be expressed mathematically as

Θ ≡ qab∇aub, (3.17)

where ub ≡ 1√
2

(nb + sb) is an outgoing null vector (though it is unequal to kb if S is not a level set of the

radial coordinate) and qab = gab + nanb − sasb (compare (2.19)). An apparent horizon is the outermost

trapped surface of a region and is the limiting case where Θ = 0 [27, 48, 20]. See Fig. 3.1. As an example,

null rays near a Schwarzscild black hole in Schwarzschild coordinates have an expansion given by

Θ =

√
2

r

√
1− 2M

r
; (3.18)

so there is an apparent horizon when r = 2M . Because the black hole is static, the event horizon and

apparent horizon coincide.

Consider now the collection of apparent horizons at all times H so that S = Σ ∩ H. This is a three

dimensional surface. It is shown in [27] that H must be a null surface if no matter or radiation is crossing

it and spacelike otherwise. In the first case it is called a ‘nonexpanding horizon’ and in the latter it is

called a ‘dynamical horizon.’ Generally in simulations, there is gravitational radiation and horizons will be

dynamical. In this case at least, all the tools developed for analyzing spacelike surfaces in §3.1 are applicable.

We can therefore get a quasi-local measure of a black hole’s mass, momentum, and angular momentum by

doing integrals over the apparent horizon. This has the advantage that it is sensitive to an individual black

hole’s properties, whereas the ADM measurements carried out at infinity measure the content of the entire

universe, including all black holes and radiation. It is also shown in [27] that the extrinsic curvature of H

and normal of S within H, etc. showing up in the integral over S can be replaced with the corresponding

quantities from Σ. This means that H does not have to be found during a simulation, and the quasi-local
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S

H

Σ

na

sa

ua

Figure 3.1: Horizon geometry. This shows the spatial slice Σ, the collection of horizons at all times H, and
their intersection S = Σ ∩H. It also shows na, the normal to Σ; sa, the normal to S within Σ; and ua, the
outgoing null vector constructed from na and sa and used in (3.17).

measures on the apparent horizon can be found using data on Σ.

There is one difference however: for the ADM quantities we computed in §3.1 φ̂A is a Killing vector in

the surface ∂Σ on which the integrals are done, but will not generally be a Killing vector on the apparent

horizon S. This modifies the formula for angular momentum slightly; the magnitude is given by

JS =
1

8π

∫
S
Kij ξ

idsj , (3.19)

where ξi is the Killing vector field on S (satisfying L~ξqij = 0). Compare this with the magnitude of the

ADM angular momentum

JφADM =
1

8π

∫
∂Σ

(
Kij − δijK

)
φ̂idsj =

1

8π

∫
∂Σ

Kij φ̂
idsj (3.20)

(where the second term drops out because the azimuthal and radial unit vectors are orthogonal).

It is a standard result that

MS =
1

RS

√
R4
S + 4J2

S , (3.21)
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where

RS =

√
AS
4π

and AS =

∫
S
ds =

∫
S

√
qdΩ2. (3.22)

This formula is the same as the equation for the irreducible mass of a Kerr black hole, but can be shown to

hold in the more general case we require for analyzing our simulations [18].

The similarities between the ADM measures and quasi-local measures are not coincidence; recall the

last paragraph of §3.1. For our binary black hole simulations, the quasi-local masses of the two black

holes correspond to doing the integral (3.10) over the two apparent horizons as boundaries of the universe.

Again, these quasi-local measures can be found using field theory and are related to boundary terms in the

Hamiltonian. The sum of the quasi-local masses of the black holes will come close to equaling the ADM mass

computed at infinity; the difference being due to the gravitational wave content of the slice. In this case, the

volume integral over all of Σ exterior to the apparent horizons really is non-zero. When the horizons extend

to timelike infinity, this difference can be used to measure the amount of gravitational radiation escaping to

future null infinity. We will see how an effective energy density for gravitational radiation comes about in

§3.4.

Section 3.3: Newman-Penrose Formalism and the Weyl Scalars

We turn attention now to the Newman-Penrose formalism [38, 39], in particular on what it has to say

about the Weyl scalars. After discussing spin-weight, we will look at how the Weyl scalars relate to metric

perturbations which is useful for the discussion of gravitational waves in §3.4.

The Weyl scalars are five complex scalars obtained from various projections of the Weyl tensor, which is

C
(4)

abcd ≡ R
(4)

abcd −
1

2

(
gac R

(4)
bd − gad R

(4)
bc − gbc R

(4)
ad + gbd R(4)

ac

)
+

1

6
(gacgbd − gadgbc) R(4) (3.23)

in four dimensions. One important thing to notice about the construction of this tensor is that it is the

Riemann tensor with combinations of the Ricci tensor and Ricci scalar removed. In fact, because the Ricci

tensor is the trace of the Riemann tensor, the Weyl tensor is the trace-free part of the Riemann tensor.

In four dimensions, the Riemann tensor’s symmetries reduce the number of its algebraically independent

components to twenty; this information content is divided evenly between the Ricci and Weyl tensors, each

of which have ten independent components. For vacuum spacetimes – where Einsten’s equations require

the Ricci tensor to vanish – there will turn out to be at most ten non-zero independent components in the

Riemann tensor which all correspond to information contained in the Weyl tensor. We will see how we

can extract information about gravitational waves in our simulations from the Weyl tensor. The Newman-
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Penrose formalism is based around projections of C
(4)

abcd onto a null tetrad. The Weyl scalars are defined

by

ψ0 ≡ − C
(4)

abcdk
ambkcmd (3.24a)

ψ1 ≡ − C
(4)

abcdk
albkcmd (3.24b)

ψ2 ≡ −
1

2
C

(4)
abcd

(
kalbkcld − kalbmcmd

)
(3.24c)

ψ3 ≡ C
(4)

abcdk
alblcmd (3.24d)

ψ4 ≡ − C
(4)

abcd l
amblcmd, (3.24e)

each of which is complex.

We now introduce the concept of ‘spin-weighted’ functions [29, 13]. There turns out to be some am-

biguity in how ma and ma are defined. The necessary properties of orthonormality still hold under any

transformation of the form

ma 7→ eıηma and ma 7→ e−ıηma. (3.25)

If some function f transforms as

f 7→ eısηf (3.26)

under (3.25), f is said to have spin-weight s. As an example, spherical harmonics have spin-weight zero.

However, [29] define differential operators ð and ð which raise and lower (respectively) the spin weight of

whatever they are acting on; for f with spin-weight s

ðf = − sins θ

(
∂

∂θ
+ ı csc θ

∂

∂φ

)
sin−s θf (3.27a)

ðf = − sin−s θ

(
∂

∂θ
− ı csc θ

∂

∂φ

)
sins θf. (3.27b)

To re-enforce that these are raising and lowering operators, note that

(
ðð− ðð

)
f = 2sf. (3.28)

From the definitions of the Weyl scalars given above, we can count ma and ma to see that (3.25) sends

ψ0 7→ e2ıηψ0 (3.29a)

ψ1 7→ eıηψ1 (3.29b)
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ψ2 7→ ψ2 (3.29c)

ψ3 7→ e−ıηψ3 (3.29d)

ψ4 7→ e−2ıηψ4. (3.29e)

In particular, we are often interested in ψ4, which has spin weight −2. Spherical harmonics with spin-

weight s are defined by

Ys lm ≡



√
(l−s)!
(l+s)!ð

sYlm 0 ≤ s ≤ l√
(l+s)!
(l−s)!

(
−ð
)s
Ylm −l ≤ s ≤ 0

undefined |s| > l

. (3.30)

For each s, the Ys lm form a complete orthonormal basis for functions on the sphere. Numerical simulations

often decompose ψ4 into spherical harmonic amplitudes, and typically this is done using Y−2 lm

ψl,m4 (t, r) =

∫
Y ∗−2 l,mψ4(t, r, θ, φ)dΩ2. (3.31)

This decomposition is usually done on some small number of fixed radii as a function of simulation time.

This spherical harmonic decomposition has the additional advantage of naturally reflecting the fact that

conservation of mass and momentum require that gravitational radiation has no monopole ψ0,m
4 or dipole

ψ1,m
4 parts. Often, the ψ2,2

4 mode dominates. However, when we consider one black hole the ψ2,0
4 dominates,

reflecting the cylindrical symmetry of the problem.

Expanding the Riemann tensor to first-order relative to the flat background,

R
(4)

abcd =
1

2

(
h

(1)
ad,bc − h

(1)
ac,bd − h

(1)
bd,ac + h

(1)
bc,ad

)
+O

(
h2
)

(3.32)

and recognizing that for vacuum spacetimes R
(4)

abcd = C
(4)

abcd , we see that

ψ4 = −1

2

(
h

(1)
ad,bc − h

(1)
ac,bd − h

(1)
bd,ac + h

(1)
bc,ad

)
lamblcmd +O

(
h2
)
. (3.33)

In the case of an outgoing radial wave2

h
(1)

ab = h+ (t− r) e+
ab + h× (t− r) e×ab (3.34a)

e+
ab = δaθδbθ − δaφδbφ (3.34b)

2The mathematics of gravitational waves and the notation will be covered more in §3.4.
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e×ab = δaθδbφ + δaφδbθ . (3.34c)

With (3.34), (3.33) can be reduced to3

ψ4 = ḧ+ − ıḧ×, (3.35)

i.e. ψ4 gives the second time-derivative of the strain. The real and imaginary parts give the two polarizations

of the wave.

Section 3.4: Gravitational Wave Content

We begin this section by considering the wave equation for metric perturbations. Next, we expand the

Ricci tensor to obtain an effective stress-energy tensor for gravitational waves. Finally, we use this stress-

energy tensor to compute the luminosity of gravitational radiation. In this section we will be considering

only spacetime quantities and so will drop the prefix (4) to avoid possible confusion with order prefixes (in

this section only).

To linear order and in Lorentz gauge, the metric perturbation satisfies the wave equation

�hab = −16πTab , (3.36)

where we have introduced the ‘trace reversed’ metric perturbation hab ≡ h
(1)

ab −
1
2 h

(1) c
cηab . In vacuum,

this is the homogeneous wave equation. Being a differential gauge condition, Lorentz gauge is a class of

coordinate conditions that requires an additional restriction. One such restriction brings the gauge into the

transverse-traceless form (when in vacuum), admitting a solution with a traveling wave in the z direction

hTTab = h+ (t− z) e+
ab + h× (t− z) e×ab =



0 0 0 0

0 h+ (t− z) h× (t− z) 0

0 h× (t− z) −h+ (t− z) 0

0 0 0 0


. (3.37)

Now consider the expansion of the Ricci tensor [35, 13]

Rab = R
(1)

ab + R
(2)

ab +O
(
h3
)

(3.38a)

R
(1)

ab = F
(1)

ab

(
h(1)
)

(3.38b)

3Overdots represent time derivatives in (3.35). Also note that although (3.35) is typically written without O
(
h2

)
, it is first-order

in the metric perturbation.
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R
(2)

ab = F
(1)

ab

(
h(2)
)

+ F
(2)

ab

(
h(1)
)

(3.38c)

F
(1)

ab (h) ≡ 1

2

(
−hcc,ab − h c

ab,c + h c
ca,b + h c

cb,a

)
(3.38d)

F
(2)

ab (h) ≡ 1

4
hcd,ah

cd
,b +

1

2
hcd
(
hcd,ab + hab,cd − hac,bd − hbc,ad

)
+

1

2
h c,d
b

(
hac,d − had,c

)
+

1

2

(
hcd,d −

1

2
h d,c
d

)(
hab,c − hca,b − hcb,a

)
. (3.38e)

Because we are considering a vacuum spacetime, the Ricci tensor must be zero order-by-order. Importantly,

rearranging and trace-reversing4 the second-order part (3.38c) can be written as

F
(1)

ab

(
h(2)
)
− 1

2
ηabη

cd F
(1)

cd

(
h(2)
)

= − F
(2)

ab

(
h(1)
)

+
1

2
ηabη

cd F
(2)

cd

(
h(1)
)
. (3.39)

The LHS side of (3.39) looks like the Einstein tensor constructed from h
(2)

ab, so we define the RHS to be

an effective second-order stress-energy tensor

tGW
ab ≡ −

1

8π

[
F

(2)
ab

(
h(1)
)
− 1

2
ηabη

cd F
(2)

ab

(
h(1)
)]
. (3.40)

Because energy in the gravitational field cannot be localized in general relativity, we must do a short-wave

averaging procedure [35] where we integrate over several wavelengths of the gravitational wave (denoted by

brackets 〈 〉). Using this averaging

TGW
ab =

1

32π

〈
h

(1) TT
cd,a h

(1) cd
TT,b

〉
=

1

16π

〈
h+
,ah

+
,b + h×,ah

×
,b

〉
. (3.41)

This same analysis can be carried out in the case where instead of expanding around Minkowski spacetime,

we are expanding around some other background metric. The computations are more complicated in this

case, but the results are quite similar. The total stress-energy tensor for the spacetime is the sum of the

matter stress-energy tensor and an effective stress-energy tensor of the gravitational field (which is quadratic

in the first-order perturbations)

Rab −
1

2
gabR = 8π

(
Tab + TGW

ab

)
. (3.42)

At the end of §3.2 we saw that, in a vacuum spacetime, the difference between the ADM mass of the

spacetime computed at infinitely large radius and the quasi-local measures of mass computed on the black

hole horizons should be non-zero only in the case of an energy density linked to gravitational waves. Equation

(3.42) shows that the ADM mass includes energy from the gravitational waves through TGW
ab . Additionally,

4To trace-reverse a spacetime quantity subtract half its trace times the metric.
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in §3.3 we claimed that there would be a link between the Weyl scalars and gravitational waves; equations

(3.35) and (3.41) demonstrate this.

The luminosity of gravitational waves comes from integrating TGW
ab

LGW = −dE
dt

=
1

16π

∫
∂Σ

〈
ḣ2

+ + ḣ2
×

〉
ds (3.43a)

=
1

16π

∫
∂Σ

∣∣∣∣∫ t

−∞
ψ4 (t′) dt′

∣∣∣∣2 ds (3.43b)

= lim
r→∞

r2

16π

∑
l,m

∣∣∣∣∫ t

−∞
ψl,m4 (t′) dt′

∣∣∣∣2 . (3.43c)

As before, we carry out the surface integral at infinity because the derivation of TGW
ab assumed the weak

field limit. In practice, (3.43c) is difficult to compute during post-processing. The limit to large or infinite

radii must be done by extrapolating data from finite radii. There is also the additional complication that

the extrapolation is best done as a function of retarded time tret = t− r, since the spherical harmonic modes

are computed at different radii. The biggest problem though is the time integral: strictly speaking, it must

be done from an infinite time in the past. Since ψl,m4 is small before the simulation starts, this tends to not

be a large problem. The accumulation of low-frequency unphysical modes is a bigger issue. These modes

can be suppressed by ‘fixed-frequency integration’ [45]. Note that

ḣl,m(t) =

∫ t

ψl,m4 (t′) dt′ = F−1

[
ψ̃l,m4 (ω)

−ıω

]
, (3.44)

where F−1 is the inverse Fourier transform5 and ψ̃l,m4 is the Fourier transform of ψl,m4 . Fixed-frequency

integration chooses some limiting frequency ω0 and takes

ḣl,m(t) = F−1

[
ψ̃l,m4 (ω)

−ı max(ω, ω0)

]
. (3.45)

This makes the denominator inside the inverse Fourier transform larger for ω < ω0 and therefore limits

these modes’ contributions to the final result. While this does work, it requires two Fourier transforms and

is therefore computationally expensive. An integration constant must also be found. Because of all these

difficulties, it is common to just consider ψl,m4 instead of the energy or luminosity when comparing simulation

results.

Fig. 3.2 shows an example of what plots of the Weyl scalar look like. The data comes from a simulation

that was initialized with Bowen-York data. From the plot, we are able two important things:

5Equation (3.44) is a basic property of the Fourier transform.
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1. Because these curves correspond to different radii and the gravitational radiation moves at the speed

of light, we expect the radiation curves to peak at different times. The first peak visible in all curves

happens at tret ≈ 0.

2. The junk radiation peak is weaker than the initial physical signal, but only by about a factor of two.

This demonstrates how it can be difficult to separate the junk radiation from the physically realistic

signal.
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Figure 3.2: Plot of r|ψ2,2
4 | as a function of simulation time at five different radii between 33M and 47M

(with labels along the right side of the plot). Note the peaks in junk radiation at approximately t = r (or
tret = 0) before the larger peak corresponding to a physical signal. Note also that the amplitudes of the junk
radiation peaks are approximately equal, indicating that this wave does indeed fall off approximately as 1/r.
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CHAPTER 4: Numerical Methods and the Einstein Toolkit

In this Chapter we give a very brief overview of some of the numerical methods we use and discuss how

the Einstein Toolkit implements them [32]. The Einstein Toolkit is built on Cactus, a general scientific

modeling framework. One of the main strengths of Cactus is its modularity; in the Cactus vernacular,

modules are called ‘thorns’ which contrast with the ‘flesh,’ the main body of Cactus which provides high level

infrastructure (including controlling scheduling of subroutines, communication among thorns, and allocation

of storage for variables, among other things). Thorns can be written in Fortran, C, or C++, and their names

are traditionally written in monospaced font (e.g., QuasiLocalMeasures, TwoPunctures, ML BSSN).

The Einstein Toolkit consists of Cactus along with a collection of thorns which utilize Cactus to solve

Einstein’s equations, magnetohydrodynamic equations (although, for this project we do not make use of

this), and carry out analysis relevant for astrophysics. In the sections to follow, we will briefly cover many of

the most important thorns used in our simulations, along with the numerical methods they employ. However,

a typical application of the Einstein Toolkit uses many more thorns than we will be able to discuss here (a

typical simulation utilizes roughly fifty thorns). Some of the more important thorns, which are not covered

in more detail below, include:

1. ADMBase to initialize variables containing ADM data and coordinate their communication among

thorns,

2. CarpetIOHDF5 to write output files,

3. CoordBase to set up the grid,

4. LoopControl to handle loops over grids and mesh refinement levels,

5. TerminationTrigger to terminate simulations given certain conditions (e.g., after a certain amount

of wallclock time) and output data in such a way that the simulation can be resumed,

6. NaNChecker to monitor variables for NaNs and warn the user or terminate the simulation,

7. and SystemStatistics to keep the user updated on things such as memory usage.

Thorns also exist for BLAS, PETSc, FFTW, etc., or at compile time the Einstein Toolkit can be told to use a

copy already built on the system.
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Section 4.1: Finite Differencing

Arguably the most important numerical technique – at the heart of how the Einstein Toolkit operates

– is ‘finite differencing.’ A finite difference is a way to approximate derivatives of a function, the values of

which are only known at the points of some discrete grid [15]. The basic idea can be seen from the following

example. Imagine some function f(x) which is known at the grid points x0 −∆x, x0, and x0 + ∆x. If the

grid spacing ∆x is small, we can Taylor expand to find

f(x0 −∆x) = f(x0)− f ′(x0)∆x+
1

2
f ′′(x0)∆x2 − 1

6
f ′′′(x0)∆x3 +O(∆x4) (4.1a)

f(x0 + ∆x) = f(x0) + f ′(x0)∆x+
1

2
f ′′(x0)∆x2 +

1

6
f ′′′(x0)∆x3 +O(∆x4). (4.1b)

Given this, we have the standard (second-order accurate) finite difference schemes for first and second

derivatives

f(x0 + ∆x)− f(x0 −∆x)

2∆x
= f ′(x0) +

1

6
f ′′′(x0)∆x2 +O(∆x3) (4.2a)

f(x0 + ∆x)− 2f(x0) + f(x0 −∆x)

∆x2
= f ′′(x0) +O(∆x2). (4.2b)

These are two of the simplest (and most common) examples of finite difference ‘stencils’ or ‘molecules;’ which

are really just collections of coefficients for nearby grid points which, when multiplied by the function values

and summed, give an approximation of a certain derivative to a certain order. See Fig. 4.1a and Fig. 4.1f for

alternative representations of (4.2). Many stencils are possible, and the Einstein Toolkit uses eighth-order

accurate stencils for most spatial derivatives in its simulations (Fig. 4.1i). When stencils oriented in different

coordinate directions are combined, a stencil for e.g., the Laplacian can be obtained (Fig. 4.1g); when a

stencil is not centered around the point x0, it can be used for x0 on the boundary of the domain (e.g., Figs.

4.1c through 4.1e). More examples are shown in Fig. 4.1.

Section 4.2: Resolving Features Efficiently: Mesh Refinement, Carpet, and PunctureTracker

When a problem exhibits multiple length scales (e.g., the size of a black hole, the size of an orbit, and

the size of the wave zone) the resolution of the grid is dictated by the finest scale. There is no inherent

downside to using a uniform grid in such problems other than the computational costs, where memory and

CPU requirements build prohibitively fast for three-dimensional simulations.

‘Mesh refinement’ is a method where higher resolution is added only where it is needed. This gives the

benefits of high resolution with a (hopefully) smaller increase in computational cost. It is not always obvious
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(i) Second derivative, eighth order.

Figure 4.1: Graphical representation of finite differences for approximating various derivatives at a point
x = x0. The circles correspond to grid points and the numbers inside are the coefficients by which the
function being differenced should be multiplied at each grid point before being summed. This should give
some indication why the terms “stencil” and “molecule” are often used. It should also give some indication
of the variety of possible stencils in terms of size, accuracy order, derivative, centered vs off-centered, and in
different dimensions.
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that mesh refinement will provide computational savings as there is an overhead associated with managing

the mesh refinement, because it can be extremely complicated to implement. If the locations of small length

scales do not change throughout the simulation, ‘static mesh refinement’ can be used. However, for our

simulations the mesh refinement must track the black holes, meaning ‘adaptive mesh refinement’ is required:

the resolution of a region changes with the changing length scales it contains. If it is not known a priori

where small scales will be throughout a simulation, complex algorithms which monitor gradients of grid

variables can be used.

While we do not know exactly which areas of our simulation will have small length scales, we do know that

small length scales will be confined to regions around the black hole(s). The Einstein Toolkit takes advantage

of this fact to adopt a form of adaptive mesh refinement that has a lower computational cost overhead, where

the adaptations are driven by the movement of the black hole(s). Mesh refinement is facilitated by the thorn

Carpet (first described in [47]). It is capable of handling many resolutions simultaneously. Box-in-box

refinement is used: i.e., the refined regions are always rectangular boxes and a region of a given resolution is

completely contained within a region of lower resolution. Our grids are set up so that the entire domain is

covered by the coarsest grid, with nested, concentric boxes around the black hole(s). Each box has twice the

resolution (half the grid spacing) as the next coarsest box. As many as eleven refinement levels (or twelve

different resolutions) have been used [36].

PunctureTracker monitors the locations of the black holes; specifically, their punctures. It does this by

monitoring the shift vector. Recall the interpretation of the shift as the motion of the spatial coordinates

in going from one spatial slice to the next. If from the black hole’s viewpoint the coordinates move in one

direction (given by the shift vector), from the coordinate system’s viewpoint the black hole’s puncture must

have moved (an equal distance) in the opposite direction

viBH(t) = −βi
(
t, xiBH(t)

)
. (4.3)

The former view is a passive description of the transformation and the latter is an active description.

Integrating (4.3),

xiBH(t) = xiBH(t0)−
∫ t

t0

βi
(
t′, xiBH(t′)

)
dt′. (4.4)

Numerically, the location of the puncture at a time tn+1 is found by interpolating to find the value of the

shift at the location of the puncture at time tn. This shift value (times the time step) is then subtracted

from the previous location of the puncture

xiBH(tn+1) = xiBH(tn)− βi
(
tn+1, x

i
BH(tn)

)
∆t. (4.5)
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The thorn must therefore be given the correct location of the puncture(s) at the beginning of the simulation.

Equation (4.5) is a first-order approximation to the integral in (4.4)1 and is done at every time step.

With PunctureTracker constantly updating the location of punctures throughout the simulation, the

Einstein Toolkit knows where resolution is most needed. At user-defined intervals CarpetRegrid2 is able

to use the puncture locations in order to restructure the areas of higher resolution, to reflect the changing

locations where resolution is needed most. This is a somewhat limited form of adaptive mesh refinement;

only recently have numerical relativists made use of the fully adaptive mesh refinement which monitors

gradients [24].

Section 4.3: Evolution, Method of Lines, ML BSSN, and MoL

Consider the example of a one dimensional wave equation with a propagation speed2 cw

1

c2w

∂2u

∂2t
=
∂2u

∂2x
. (4.6)

One possible way to solve this equation by finite differencing is to use a scheme where we center second order

stencils around xi and tn (Fig. 4.1f or (4.2b)). Using the notation uni = u (tn, xi),

1

c2w

un−1
i − 2uni + un+1

i

∆t2
=
uni−1 − 2uni + uni+1

∆x2
. (4.7)

Or, solving for un+1
i , we can find the updated value of u at the next time step

un+1
i = 2uni − un−1

i + c2w
∆t2

∆x2

(
uni−1 − 2uni + uni+1

)
. (4.8)

To examine the stability of the scheme (4.7) assume a solution of the form

uni = Aneık∆xi. (4.9)

1Specifically, (4.5) can be thought of as a finite difference stencil corresponding to the integral. Alternatively, it can be found
from algebraic manipulations of the finite difference stencil for the velocity in (4.3). This is like the midpoint rule, but using
the shift at time tn+1 instead of interpolated halfway between tn and tn+1 causes it to be a lower order approximation.

2We refer to cw as the speed of light, though we do not mean this literally. It is simply helpful to have a common language
with which to refer to the speed of propagation of the signal, whatever the physical interpretation of that signal is.
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In order for this solution to not grow without bound, we require |A| ≤ 1. Plugging (4.9) into (4.7), we find

A = 2−A−1 + c2w
∆t2

∆x2
(2 cos k∆x− 2) (4.10)

so that |A| ≤ 1 for all wave numbers k if and only if

cw ≤
∆x

∆t
. (4.11)

This says that the time step ∆t cannot be so large that information moving at the speed of light cw is able

to travel more than one grid point away ∆x during that time step; i.e., a grid point cannot be “aware” of

information outside its light cone.

There are many such evolution schemes we could employ, based on the accuracy we want, the number

of time levels we are able to store, etc. However, not all possible combinations will yield stable evolution,

so one should be careful when choosing a scheme [15, 44]. Some schemes are stable, but with stronger or

weaker conditions than (4.11), some are unconditionally stable, and some are unconditionally unstable.

xi−2 xi−1 xi xi+1 xi+2
tn−1

tn

tn+1

tn+2

x

t

∆x

∆t

Figure 4.2: A representation of the method of lines in the tx-plane.

As an alternative to (4.7), we can apply a finite difference to only the spatial derivative. Using the

notation ui(t) = u(t, xi),

1

c2w

∂2ui(t)

∂2t
=
ui−1(t)− 2ui(t) + ui+1(t)

∆x2
. (4.12)

This yields a coupled set of ordinary differential equations for the ui(t), which are solved using techniques

other than finite differencing. This strategy is called the ‘method of lines.’ We integrate along lines at each
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grid point; see Fig. 4.2.

The thorns McLachlan and MoL use method of lines with fourth-order Runge-Kutta to do the time

evolution in our simulations [3]. There are many versions of McLachlan which evolve different evolution

equations corresponding to different decompositions of Einstein’s equations (e.g., [14]). We use ML BSSN to

evolve (2.53), (2.54), and (2.75), though with the slight modification of using W mentioned just under (2.74)

as the conformal factor instead of φ. Numerical dissipation can be used, but constraint damping is not

(as it is in the Z4 formulation of the evolution equations [14]) [32]. Since constraint damping is not used,

monitoring any growth in the magnitude of the constraint violations H and M i can be used as a diagnostic

of numerical fidelity throughout a simulation.

Section 4.4: Thorns and Methods for Initial Data

4.4.1: Bowen-York Initial Data and TwoPunctures

Solutions to (2.69a) with Ãij given by linear combinations of (2.70) and (2.71) yield Bowen-York initial

data. The thorn TwoPunctures finds a solution for the conformal factor in order to construct this data [16].

TwoPunctures uses a specially adapted bipolar coordinate system where the two coordinate singularities of

the coordinate system are coincident with the locations of the black hole punctures. This coordinate system

has the advantage of only requiring us solve in one continuous domain. Additionally, TwoPunctures solves

only for the regular part of the conformal factor ψ. The ansatz (2.72) is made and (2.69a) is treated an

equation for the regular part of the field, u. In effect, the divergences have been “put in by hand.”

TwoPunctures uses a spectral method instead of finite differencing. The spectral method finds the

coefficients for an expansion of the solution in terms of basis functions instead of solving for values of the

solution directly on the discrete grid used for evolution. The spectral expansion in this case is a Fourier

expansion in the azimuthal direction and a Chebyshev expansion in each of the other two spatial coordinates.

The spectral method is efficient and converges exponentially with increasing number of basis functions. Once

the spectral solution is known, it is interpolated back onto the usual spatial grid; this interpolation has

recently been made significantly more efficient [41].

4.4.2: Successive Over-Relaxation and CT MultiLevel

Consider the matrix problem

A~x = ~b, (4.13)
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where A is an N × N matrix. We can always decompose A into its lower triangular, diagonal, and upper

triangular parts

A = L + D + U. (4.14)

Substituting (4.13) in (4.14), multiplying both sides by ω,3 and rearranging terms gives us

[ωL + D] ~x = − [ωU + (ω − 1) D] ~x+ ω~b. (4.15)

At this point, (4.15) is the same as (4.13): we have made no approximations. In successive over-relaxation,

(4.15) is solved iteratively by saying the updated LHS (iteration n+ 1) must equal the RHS evaluated with

the previous iterate (iteration n) [44]

[ωL + D] ~xn+1 = − [ωU + (ω − 1) D] ~xn + ω~b, (4.16)

or rearranged

~xn+1 = ~xn + ωD−1
[
~b− (U + D) ~xn − L~xn+1

]
. (4.17)

Writing (4.17) out in components,

xn+1
i = xni +

ω

Aii

bi −∑
j≥i

Aijx
n
j −

∑
j<i

Aijx
n+1
j

 i, j ∈ {1, 2, . . . , N} (no sum on i). (4.18)

Careful consideration of (4.18) shows that if we apply it repeatedly – each time increasing i by one – the

two sums on the RHS taken together are just (A~x)i with the most current values of ~x being used, be they

xn+1
i or xni .

Writing the finite difference stencil (e.g., an equation like (4.8)) in matrix form (4.13), we can then apply

successive over-relaxation to obtain a numerical solution to a differential equation. In this case, increasing i

as mentioned above “sweeps” the finite difference stencil over the grid, updating the values of the solution

at each point based on its neighbors (again, using updated values where possible).

CT MultiLevel is an initial data thorn that implements successive over-relaxation to solve elliptic dif-

ferential equations [21]. It was designed with cosmological applications in mind and is able to handle the

additional complications arising with periodic boundary conditions (e.g., re-normalizing the DC mode). But

it was written in a very general way and may prove useful in superposing our initial data.

3This ω is unrelated to the one-form from Chapter 2. For successive over-relaxation 1 < ω < 2, which determines by how much
the solution is “overshot” at each iteration.
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Section 4.5: Thorns for Analysis

4.5.1: Finding and Storing Apparent Horizons: AHFinderDirect and SphericalSurface

AHFinderDirect finds the apparent horizons in a simulation [51, 52]. It does this by solving for the

outermost surface where the expansion of outgoing light rays (3.17) is equal to zero. Once the location

of a horizon has been found, it is stored in a data structure provided by the SphericalSurface thorn.

SphericalSurface allows for the storage and communication of information about surfaces within the

simulation that are topologically spheres. The information is stored as r (θ, φ) on all points on the spherical

grid as well as an origin and other meta-data.

4.5.2: QuasiLocalMeasures, WeylScal4, and Multipole

QuasiLocalMeasures computes integrals such as (3.11), (3.12), (3.13), (3.19), and (3.22), among other

measures of black hole properties [27]. It uses information stored by AHFinderDirect in SphericalSurface

to carry out the integrals on horizons and other surfaces defined by the user stored by SphericalSurface

for integrals over spheres at large radii.

WeylScal4 does the projections (3.24) throughout the entire simulation domain [19]. The real and

imaginary parts of all five Weyl scalars are, in principal, available at all grid points. However, usually only

the multipole moments are considered. Multipole does the integrals such as (3.31), though it is able to find

spherical harmonic coefficients of any variable using any spin-weight [4]. In practice, only the Weyl scalars

are decomposed in this manner.
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CHAPTER 5: Building a Single Boosted Trumpet Black Hole

Having set the stage with the theoretical background given in the previous three Chapters, we are now

in a position to understand how we can construct black hole initial data which avoids some of the downsides

of data produced using the Bowen-York formalism. In particular, we are able to construct initial data which

satisfies the constraint equations without resorting to the mathematically simplifying assumptions which

lead to junk radiation. We call this new initial data ‘boosted-trumpet’ data, as it utilizes a Lorentz boost

and a trumpet slicing which is closely adapted to the moving punctures gauge. We describe the theory

behind boosted-trumpet initial data and practical considerations for constructing it in section 5.1. In section

5.2, we outline how our simulations are set up and the development of relevant diagnostic tools. In section

5.3 we look at the properties of the coordinate system at large radius and utilize data from simulations to

compare boosted-trumpet initial data with canonical Bowen-York initial data. We make summary remarks

about our coordinate system in section 5.4. Considerations validating our initial data code can be found in

section 5.5. This Chapter is closely adapted from an article in preparation for submission to Phys. Rev. D.

Section 5.1: Trumpet Coordinates for a Boosted Black Hole

In this section we lay out our analytic approach to constructing a coordinate system with trumpet

time slices which are adapted to the moving punctures gauge for a boosted black hole. To set the stage

for that result, we first briefly review the understanding of trumpet slicing for a static (unboosted) black

hole developed previously by Hannam et al. [30] (and refer the reader to that paper for more thorough

derivations). We begin with ingoing Eddington-Finkelstein coordinates, inc contrast to [30] who started

with Schwarzschild coordinates; these two coordinate systems are related by a height function, which will

give the difference between the height function we obtain and that obtained in [30]. The relevant results are

given here in our notation, which differs slightly from the original paper.

5.1.1: Review of Trumpet Slicing of a Static Black Hole

The line element for Schwarzschild spacetime in Kerr-Schild coordinates (t
′
, x′, y′, and z′) is given by

ds2 =

[
η
a′b

′ +
2M

R
la′ lb′

]
dxa

′
dxb

′
, (5.1)
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where la′ ≡ (R, x′, y′, z′) /R and R is the Schwarzschild areal radius coordinate. The bars and primes

here distinguish the Kerr-Schild coordinate system from other coordinate systems we will encounter later.

In particular, a bar denotes a coordinate system which does not have the trumpet slicing adapted to the

moving punctures gauge and the prime denotes a coordinate system in which a Lorentz boost has not been

applied. Our final desired coordinate system will have neither bars nor primes.

Kerr-Schild coordinates have nice properties under a Lorentz boost [34], which we will find desirable in

the next section, and we would therefore like to use it as the starting point for our construction. In order to

carry out the analysis to determine the height-function, we need a spherical-like coordinate system though,

so we change to ingoing Eddington-Finkelstein coordinates

ds2 = −fdt′2 +
4M

R
dt
′
dR+

(
1 +

2M

R

)
dR2 +R2dΩ2, (5.2)

where f ≡ 1− 2M/R.

We transform Kerr-Schild coordinates to a coordinate system with a new time coordinate t′ related to t
′

by

t′ = t
′ − h(R), (5.3)

where h(R) is a to-be-determined function. Recall that un-barred coordinates are associated with a coordi-

nate system in which the time slices have trumpet topology that is determined by the steady state of the

moving punctures gauge conditions. After transforming to the new coordinate system the line element (5.2)

becomes

ds2 = −fdt′2 − 2

[
f
dh

dR
− 2M

R

]
dt′dR+

[
1 +

2M

R
+

4M

R

dh

dR
− f

(
dh

dR

)2
]
dR2 +R2dΩ2. (5.4)

We will suppress the arguments of h(R). Note that the components of the metric depend on dh/dR but not

h itself; we will not need to compute h in order to determine our new metric.

The 1+log slicing condition (
∂t − βi∂i

)
α = −nαK, (5.5)

when applied to the metric (5.4) gives an ODE which is satisfied by the lapse

dα

dR
= − n(3M − 2R+ 2Rα2)

R(R− 2M + nRα−Rα2)
. (5.6)

This equation assumes ∂tα = 0 (we are looking for the steady state solution) and the height function has
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been eliminated in favor of α. The solution to (5.6) is

α2 = 1− 2M

R
+
C(n)2e2α/n

R4
, (5.7a)

where the integration constant is given by

C(n)2 =
[3n+

√
4 + 9n2]3

128n3
e−2αC/nM4 (5.7b)

and the critical value of the lapse is

α2
C =

√
4 + 9n2 − 3n√
4 + 9n2 + 3n

(5.7c)

at the critical radius

RC =
3n+

√
4 + 9n2

4n
M. (5.7d)

Note that αC and RC are critical values in the sense that at these values both the numerator and denominator

of the RHS of (5.6) go to zero, providing a finite value for dα
dR and a smooth solution through the critical

point. We will now specialize to the standard 1+log gauge condition with n = 2.

We do not expect the lapse we compute from (5.6) to be equal to the lapse in our boosted-trumpet

coordinate system. This discrepancy comes from the fact that we are applying a boost, so the analysis which

would lead to the boosted analogue of (5.6) would be different. Nonetheless, we will use the height function

we ultimately derive from the lapse of the unboosted black hole to create our boosted black hole. General

relativity allows use to use any coordinate change we would like (including any height function we would

like) so this is not an invalid thing to do. We will, however, further justify this choice in considering Fig. 5.14

and Fig. 5.15.

By computing the lapse associated with (5.4), we can solve for the derivative of the height function

dh

dR
=

2Mα−R
√
α2 − f

αfR
(5.8)

(recall we do not need to know h itself). Note that this is one quantity which is different than that obtained

by [30] as a result of starting with a different metric (as mentioned previously, the difference in the height

functions of the two analyses accounts for the fact that a height function can be used to change from

Schwarzschild coordinates to ingoing Eddington-Finkelstein coordinates). The expressions for components

of the shift, spatial metric, and extrinsic curvature in terms of α and R end up being equal to those obtained

by [30].

We apply a second coordinate transformation from the areal radial coordinate R to the a new quasi-
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isotropic radial coordinate r′ of the form R = R(r′). We require that this coordinate transformation makes

the spatial line element conformally flat, giving

dR

dr′
=
αR

r′
. (5.9)

Integral Solutions

Instead of using integral expressions for r′(α) as in [30], we solve the coupled system of ODEs (5.6)

and (5.9) as functions of r′. Our boundary conditions are r′ → R and α → 1 as r′ → ∞. Using r′ as an

integration variable and starting integration at a finite value makes it impossible to choose a starting value.

We will see how the initial value for r′ can be fixed with an overall multiplicative factor determined by

the boundary conditions after integration has been carried out. Rewriting (5.9), integrating by parts, and

making the appropriate choice for the integration constant, we obtain

r′ = R1/α exp

[∫ α

αC

lnR(α̃)

α̃2
dα̃− C0

]
. (5.10)

If this is going to exhibit our desired behavior at large r′ (i.e., r′ ≈ R), we see that

C0 =

∫ 1

αC

lnR(α̃)

α̃2
dα̃ (5.11)

or, if we define k by requiring

dk

dr′
≡ lnR

α2

dα

dR

dR

dr′
, (5.12)

we get

C0 =

∫ ∞
r′C

lnR(r′)

α(r′)2

dα

dR
(r′)

dR

dr′
(r′)dr′ =

∫ ∞
r′C

dk

dr′
dr′ = lim

r′→∞
k(r′)− k(r′C). (5.13)

We also define r̃ in such a way that we can rewrite (5.10)

r̃ ≡ r′eC0 = R1/α exp

∫ α

αC

lnR(α̃)

α̃2
dα̃. (5.14)

By simultaneously integrating to find k (and therefore C0), we can fix the value of r′ after integration and

use r̃ as our independent variable during numerical integration. Note that we can choose any r̃ 6= 0 for the

initial value.

In order to deal with the critical point, we start integration of the ODE at r̃C and integrate twice: once

toward large r̃ and then again toward zero. We apply L’Hôpital’s rule to (5.6) to find the derivative dα
dR

∣∣
RC
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at the critical point

dα

dR

∣∣∣∣
RC

[
2(1− αC)R2

C

]
= −RC +M − 6RCαC +RCα

2
C +

[
8R2

C(α2
C − 1)(αC − 1)

+ [M +RC(α2
C − 6αC − 1)]2

]1/2
. (5.15)

The final form of the system we integrate is

dR

dr̃
=
αR

r̃
(5.16a)

dα

dr̃
= −αR

r̃

2(3M − 2R+ 2Rα2)

R(R− 2M + 2Rα−Rα2)
(5.16b)

dk

dr̃
= − lnR

α2

αR

r̃

2(3M − 2R+ 2Rα2)

R(R− 2M + 2Rα−Rα2)
, (5.16c)

with initial conditions R(r̃c) = Rc, α(r̃c) = αc, and k(r̃c) = 0, where r̃c = R
1/αc
c and we use (5.15) to avoid

0
0 . We then can compute r′ = r̃e−C0 from C0 = lim

r̃→∞
k (r̃).

We solve (5.16) numerically in Mathematica then output a lookup table of values for R, dR/dr′, d2R/dr′2,

d3R/dr′3, dh/dR, d2h/dR2, d3h/dR3 for a number of values of r′. We space the entries in this lookup table

evenly in ln r′, so that resolution is highest when interpolating near the puncture. Note dR/dr′, dh/dR, etc.,

computed from R and α, could be computed in the C code. However, we find trouble with near-cancellation

errors and therefore do these computations in Mathematica with better than double precision. This list of

lookup table values is input to our C code.

Series Solutions

At large r′, we know that α→ 1 and R → r′ are two of our boundary conditions. This allows us to say

that α = 1 + u, where u is some small correction. We plug this ansatz into (5.7a) and, keeping to order

O (M/R), we find u = −M/R. We then take

α ≈ α1 + u = 1− M

R
+ u, (5.17)

plug in, keep to order O
(
M2/R2

)
in (5.7a), and iterate. We find

α(R) = 1− M

R
− M2

2R2
− M3

2R3
+
N − 160

256

M4

R4
− 7M5

8R5
+
N − 672

512

M6

R6
+

5N − 3168

1536

M7

R7

+
N2 + 768N − 439296

131072

M8

R8
− 15N2 − 21056N + 10982400

1966080

M9

R9
+O

(
M10

R10

)
, (5.18)
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where

N ≡
(

3 +
√

10
)3

e4−
√

10 = C(2)2 128e

M4
≈ 541. (5.19)

Using a similar procedure with (5.9) and starting with R ≈ r′ + u, we find

R(r′)

M
=

r′

M
+ 1 +

M

4r′
− N

1024

M3

r′3
+

3N

1280

M4

r′4
− 15N

4096

M5

r′5
+

251N

53760

M6

r′6
− 5N2 + 11008N

2097152

M7

r′7

+
77N2 + 27912N

5160960

M8

r′8
− 98361N2 + 9855232N

1887436800

M9

r′9
+O

(
M10

r′10

)
. (5.20)

Together, (5.18) and (5.20) give

α(R(r′)) = 1− M

r′
+
M2

2r′2
− M3

4r′3
+
N + 32

256

M4

r′4
− 17N + 64

1024

M5

r′5
+

207N + 160

5120

M6

r′6
− 4549N + 960

61440

M7

r′7

+
315N2 + 1556992N + 107520

13762560

M8

r′8
− 13573N2 + 11167872N + 286720

73400320

M9

r′9
+O

(
M10

r′10

)
. (5.21)

From (5.8) we also find

dh

dR
(R) =

2M

R
−
√

2N − 64

16

M2

R2
− 5
√

2N − 256

32

M3

R3
− 47

√
2N − 2048

128

M4

R4
− 635

√
2N − 24576

768

M5

R5

+
3
√

2N3 − 44644
√

2N + 1572864

24576

M6

R6
+

135
√

2N3 − 965236
√

2N + 31457280

245760

M7

R7
+O

(
M8

R8

)
(5.22)

and

dh

dR
(R(r′)) =

2M

r′
−
√

2N − 32

16

M2

r′2
−
√

2N − 48

32

M3

r′3
− 7
√

2N − 128

128

M4

r′4
+

3N − 34
√

2N + 960

1536

M5

r′5

− 24N + 925
√

2N − 11520

30720

M6

r′6
+

9
√

2N3 + 1392N − 5032
√

2N + 107520

491520

M7

r′7
+O

(
M8

r′8

)
.

(5.23)

When substituting (5.18), (5.20), and (5.21), one can verify that

R′ − αR

r′
= O

(
M10

r′10

)
(5.24)

α(R)2 − 1 +
2M

R
− C(2)2eα(R)

R4
= O

(
M10

R10

)
(5.25)

α(R(r′))2 − 1 +
2M

R(r′)
− C(2)2eα(R(r′))

R(r′)4
= O

(
M10

r′10

)
. (5.26)
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Figure 5.1: Relative error of R and α comparing the lookup table values (computed with numerical integra-
tion) with the asymptotic expansions.

We will use these expansions in order to examine the asymptotic properties of the boosted-trumpet coordinate

system.

Because we have found so many terms in the preceding series, we find agreement between our numerically

integrated and series solutions of at the level of a part in 1013 or better for all r′ > 50M for both α and R

(see Fig. 5.1). This gives us confidence in our solutions, both numerical and series. It also means that the

expansion is accurate, even surprisingly far from r′ =∞ (the point around which the expansion was done).

When using the series to compute asymptotic properties of the coordinate system (i.e., the Weyl scalars and

ADM measures) at r ≈ 100M , we can have some confidence that the expressions are trustworthy.

Finally, we point out that, in this section, α was the lapse of the static spacetime and was thought of

more as a sort of auxiliary variable which is helpful when computing dh/dR and R. Moving forward, we will

use α to mean the lapse of our boosted-trumpet spacetime, and not this auxiliary variable.

5.1.2: Adapting Trumpet Slicing to Moving Punctures Gauge: Boosted Black Hole

As mentioned at the beginning of the previous section and in [34], Kerr-Schild coordinates have nice

properties under Lorentz boosts. We therefore begin construction of boosted-trumpet coordinates by Lorentz

boosting Kerr-Schild coordinates using a standard Lorentz boost along the z-direction

t = γ(t
′
+ vz′) x = x′

y = y′ z = γ(z′ + vt
′
). (5.27)
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We use a prime to distinguish a coordinate system in which the black hole is not Lorentz boosted. If we

apply this coordinate change to (5.1), we see that it is form-invariant under the boost:

ds2 =

[
η
ab

+
2M

R
lalb

]
dxadxb, (5.28)

where now

la = Λ b
′

a l
b
′ =

(
γ − vγ2

R

(
z − vt

)
,
x

R
,
y

R
,−vγ +

γ2

R

(
z − vt

))
, (5.29)

and R2 = x2 + y2 + γ2
(
z − vt

)2
.

We would then like to apply a coordinate transformation analogous to (5.3). However, after the Lorentz

boost, the singularity no longer stays at the origin of the coordinate system. Because the height function

divergence is centered around the singularity the trumpet throats will also be centered around different z

values for different t values. Consequently, if we apply the height function directly after the Lorentz boost,

the spatial slices will intersect and not form a proper foliation, as shown in Fig. 5.2g. To get around this

problem, we apply a Galilean boost in the opposite direction to the Lorentz boost. This shifts the spatial

coordinates along with the black hole, keeping the singularity at the origin, while retaining the change in

the shape of the time slicing associated with the Lorentz boost. We use the following relationships to make

this coordinate change

T = t X = x

Y = y Z = z − vt. (5.30)

The capital letters denote a coordinate system in which both the (forward) Lorentz boost and backward

Galilean boost have been applied.

It is now possible to apply analogues of the coordinate transformations discussed in §5.1.1. We apply the

height function with the coordinate transformation

t = T − h(R(ρ)), (5.31)

while making no changes to the spatial coordinates. Note that the previous coordinate transformation made

R2 = X
2

+ Y
2

+ γ2Z
2

time-independent. In addition to seeing that the puncture does not move through

the coordinate system, consider that skipping the previous coordinate transformation would leave us with

the equation

t = t− h
(√

x2 + y2 + γ2
(
z − vt

)2)
, (5.32)
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t
′

(a) Kerr-Schild

x

t

(b) Boosted Kerr-Schild

X

T

(c) Lorentz Boost with reverse
Galilean boost

X

t

(d) Trumpet time slicing

X

t

(e) Trumpet slicing and radial
rescaling

x

t

(f) Final boosted-trumpet coordi-
nate system

(g) If the reverse Galilean boost is not applied before
the trumpet time slicing the spatial slices intersect.

Figure 5.2: Surfaces of constant t
′

and x′ in various coordinate systems. The zig-zag line shows the black
hole’s worldline. Fig. 5.2g shows why the height function cannot be applied immediately after the Lorentz
boost (shown in Fig. 5.2b); the spatial slices intersect, as the divergence is centered at the location of the
black hole. In contrast, if we apply a Galilean boost in the opposite direction (shown in Fig. 5.2c) the
location of the puncture does not move so that the slices do not intersect when applying the height function
(shown in Fig. 5.2d). Note the singularity is no longer covered by the coordinates after the radial rescaling
is done (shown in Fig. 5.2e).
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which leads to t(t) being multivalued. This is another way in which to see the importance of the reverse

Galilean boost.

We next obtain a set of re-scaled coordinates X, Y , and Z by applying the radial scaling

X = Xρ/R(ρ)

Y = Y ρ/R(ρ) (5.33)

Z = Zρ/R(ρ)

(with no change to the time coordinate), where the quasi-isotropic radius is

ρ2 = X2 + Y 2 + γ2Z2. (5.34)

Because there is no ρ such that R(ρ) = 0, this rescaling removes the singularity from the coordinate patch

(and therefore simulation domain).

Finally, we set the puncture moving through the coordinate system again by reversing the Galilean boost,

but doing so on the scaled X, Y , Z coordinates

x = X y = Y z = Z + vt. (5.35)

This gives ρ2 = x2 + y2 + γ2(z − vt)2 and explains the choice (5.34).

Summary

The sequence of coordinate changes is summarized in Table 5.1. By combining (5.27), (5.30), (5.31),

(5.33), and (5.35), the relationship between the Kerr-Schild and the final boosted-trumpet coordinate system

is given by

t
′

= γ−1[t+ h(R(ρ))]− γv(z − vt)R(ρ)/ρ (5.36a)

x′ = xR(ρ)/ρ (5.36b)

y′ = yR(ρ)/ρ (5.36c)

z′ = γ(z − vt)R(ρ)/ρ, (5.36d)

where h(R(ρ)) is given by (5.16b) and (5.8), R(ρ) is given by (5.16a), and ρ is given by (5.34). This

relationship allows us to go between the first and final coordinate systems without needing to reference the
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Sequence of Coordinate Changes

{t′, x′, y′, z′} Kerr-Schild

↓ t = γ(t
′
+ vz) z = γ(z′ + vt)

{t, x, y, z} Lorentz boosted Kerr-Schild
↓ Z = z − vt T = t

{T ,X, Y , Z} Lorentz boosted Kerr-Schild
with backward Galilean boost

↓ t = T − h(R(ρ))
{t,X, Y , Z} Lorentz boosted Kerr-Schild with

backward Galilean boost
and trumpet slicing

↓ Xi = X
i
ρ/R(ρ)

{t,X, Y, Z} Lorentz boosted Kerr-Schild with
backward Galilean boost, trumpet
slicing, and quasi-isotropic radius

↓ z = Z + vt
{t, x, y, z} Lorentz boosted Kerr-Schild with

trumpet slicing and quasi-isotropic radius

Table 5.1: Sequence of coordinate changes described in the text. The relationship between each system is
given to the right of the ↓.

intermediate systems (e.g., the bar and un-primed system, or the systems with capitals). Given (5.36), we

can compute the relationships between the coordinate differentials and plug them into (5.1) to find the line

element in terms of our new coordinates. We obtain

ds2 = −fdt′
2

+
[
dx2 + dy2 + γ2(dz − vdt)2

] R2

ρ2
+

(
dR

dρ
− R

ρ

)(
dR

dρ
+
R

ρ

)(
ρ,adx

a
)2

(5.37a)

+
4M

R

dR

dρ

(
ρ,adx

a
) [
dt
′
+

1

2

dR

dρ

(
ρ,bdx

b
)]
,

where the Kerr-Schild coordinate differential dt
′

is related to the boosted-trumpet coordinate differentials

by

dt
′

=
dt

γ
+

1

γ

dh

dR

dR

dρ

(
ρ,adx

a
)
− γv(dz − vdt)R

ρ
− γv(z − vt)

ρ

(
dR

dρ
− R

ρ

)(
ρ,adx

a
)
, (5.37b)

and taking the derivative of (5.34) gives

ρ,adx
a =

1

ρ

[
xdx+ ydy + γ2(z − vt)(dz − vdt)

]
. (5.37c)

Equations (5.37) describe Schwarzschild spacetime in a boosted-trumpet coordinate system.

We will refer to a ‘boosted-trumpet black hole’ to mean a spacetime (or simulation) which took its initial

data from this line element. and refer to a ‘Bowen-York black hole’ to mean a simulation which was initialized

with Bowen-York initial data.
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Section 5.2: Setup for Numerical Simulations

Our simulations were done using the Somerville release of the Einstein Toolkit [1]. In addition to an initial

data thorn we created, we made use of a number of preexisting thorns. These include (a modified) McLachlan

[3] for evolution; AHFinderDirect [51, 52] to identify apparent horizons; (a modified) QuasiLocalMeasures

[27] to measure ADM mass and momenta and apparent horizon properties; WeylScal4 [19] to compute the

Weyl curvature quantities I and J and, with Multipole [4], generate spherical harmonic amplitudes of

gravitational waveforms; and TwoPunctures [16] to generate the canonical Bowen-York initial data against

which we assess our work. In this section, we describe how we set up our simulations and relevant additions

and modifications we have made to some of the code. Post-processing of data was carried out with the help

of the SimulationTools package for Mathematica [5].

5.2.1: Review of Initial Data Scheme Implementation in Code

With our metric and the numerical solutions in hand, we now turn to implementation of our initial data.

We read off from our line element (5.37) the metric components gab in Mathematica. We then computed

gab,c and gab,cd symbolically. The expressions for the components and their derivatives were written into a

a C header file by Mathematica.

Because we have analytic expressions for our initial data (except for the numerical solutions for dh/dR

and R(ρ)) our code essentially consists of a simple loop over the grid points. For every point, our code finds

ρ from the location on the grid ~x, time t (typically zero), and v. The code then interpolates to find R(ρ),

dR(ρ)/dρ, d2R(ρ)/dρ2, d3R(ρ)/dρ3, dh(R(ρ))/dR, d2h(R(ρ))/dR2, and d3h(R(ρ))/dR using cubic spline

interpolation from GSL [2]. We have lookup table values for higher derivatives and second derivatives of the

metric in anticipation of needing them to compute the constraint violations when we eventually superpose

the data and re-solve the constraint equations.

These lookup table values are plugged into the aforementioned expressions for gab , gab,c , and gab,cd . These

are then used to compute the determinants γ and g, the inverse spatial metric γij , and

α =
√
−g/γ (5.38a)

βi = g0jγ
ij (5.38b)

βi,t = g0j,tγ
ij + g0jγ

ij
,t (5.38c)

Kij =
1

2α

[
−gij,0 + g0j,i + g0i,j − βl

(
glj,i + gil,j − gij,l

)]
(5.38d)

(with the product rule applied to find time derivatives of the above). Our C code is implemented as a thorn
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in the Einstein Toolkit.

5.2.2: Modifying the Computation of ADM Mass and Momentum for Moving Black Holes

Two of the diagnostics with which we characterize our initial data are the ADM mass and momentum.

They are only exactly defined in the limit of an integral over a surface at infinity. As we are not able to

simulate all the way to infinity, we want to verify analytically that our data not only have the correct limit,

but also have the same limiting behavior as found by QuasiLocalMeasures [27] in our simulations. There

are a number of expressions – all of which have the same limit, but different asymptotic expansions.

We find that we are unable to analytically compute the expression used by QuasiLocalMeasures for our

initial data. However, we did find expressions which we were able to work with both analytically as well as

implement in a modified version of QuasiLocalMeasures. We use the expressions

MADM(r) =
1

16π

∮
S2(r)

[
δijhkj,i − ∂k

(
δijhij

)] xk
r
r2dΩ2 (5.39)

(compare (3.11)) and

PADM
i(r) =

1

8π

∮
S2(r)

δki
[

1

2

(
hk0,j + hj0,k − hjk,t

)
− δkj

(
hl0,l −

1

2
hll,t

)]
xj

r
r2dΩ2, (5.40)

(compare (3.12)) where MADM = limr→∞MADM(r), PADM
i = limr→∞ PADM

i(r), r2 = x2+y2+z2, and xi =

(x, y, z). Additionally, the difference used by QuasiLocalMeasures, hab ≡ gab − ηab , is not a perturbation

but the exact difference. This will not change the asymptotic values, but it will affect the expansions.

Note that, although the ADM quantities are only defined in the r → ∞ limit, we will refer to the

expressions we obtain before the limit as if they were the ADM quantities for ease of discussion. Plug-

ging the boosted-trumpet metric (5.37) with the expansions from §5.1.1 into (5.39) and (5.40) and having

Mathematica perform series expansions and integrals, we obtain

MADM(r) = γM +
v
[
v2 (14− 32γ) + 32γ − 21

]
+
[
96− 59γ − 32v4γ + v2 (84γ − 64)

]
sin−1 v

32v

M2

r

+

[√
N
(
2v2 − 3

)
(γ − 1)

12
√

2γ
−
γ
(
4v4 + 25v2 − 45

)
60

]
M3

r2

+
1

4096v

[
N

6v3 − 9v +
(
4v2 − 7

)
γ sin−1 v

γ2

+
√
N

16
√

2 (γ − 1)
[
3v
(
2v4 − 5v2 + 3

)
γ +

(
7− 4v2

)
sin−1 v

]
γ

+ 16
[
v
(
4v2

(
v2 − 5

)
+ 19

)
+
(
13− 10v2

)
γ sin−1 v

] ]M4

r3
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−
γ2N

(
64v6 − 455v4 + 910v2 − 735

)
+ 560

√
2N
(
4v4 − 15v2 + 15

)
(γ − 1)

107520γ

M5

r4

+O
(
M6

r5

)
, (5.41)

PADM
z(r) = γvM +

v
[
15 + 32v4 (1− 2γ)− 32γ + 6v2 (16γ − 9)

]
+
[
32 +

(
8v4 − 15

)
γ
]

sin−1 v

32v2

M2

r

−
γv
[
44v2 − 80 + 4v4 + 5

√
2N
(
2− 3v2 + v4

)
(γ − 1)

]
120

M3

r2

+
1

12288v2

[
v

[
− 3N

(
−1 + v2

(
3− 2v2

)2)− 48
√

2N
(
1− 8v2 + 4v4

) (
γ−1 − 1 + v2

)
+ 16

(
−15 + 8v2

(
4− 2v2 + v4

)) ]
− 3

[
− 80 + 224v2 − 192v4

+N
(
1 + v2 − 2v4

)
− 16

√
2N
(
1 + v2 − 2v4

)
(γ − 1)

]
γ sin−1 v

]
M4

r3

+
3N
(
105− 112v2 + 51v4 − 8v6

)
γ2 − 280

√
2N
(
10− 9v2 + 3v4

)
(γ − 1) + 448

(
5− 6v2 + v4

)
γ2

53760γ/v

M5

r4

+O
(
M6

r5

)
, (5.42)

It is apparent that both (5.41) and (5.42) asymptotically approach the values expected for a boosted black

hole of mass M . Comparing with the numerical results gives a powerful test of our initial data (see §5.5.1).

In our simulations, we measure MADM(r) and P zADM(r) at at least four radii. We can then extrapolate

to infinity by fitting to an asymptotic expansion with a few negative powers of r; the constant term gives a

rough estimate for the value at infinity.

5.2.3: Interpreting Weyl Scalars for Moving, Off-Center Black Hole

We use the WeylScal4 and Multipole thorns to compute I, J , and spherical harmonic modes of ψ4 in

our simulations. The fourth Weyl scalar

ψ4 ≡ Cabcdnambncmd, (5.43)

where na is the radially ingoing null vector and ma is the typical complex angular null vector, is tetrad

dependent. It is only a scalar in the sense of a coordinate transformation which is applied to both the Weyl

tensor and the tetrad basis vectors. On the other hand, the Weyl curvature invariants

I =
1

16
C cd
ab

(
C ab
cd − ı C∗ ab

cd

)
= 3ψ2

2 − 4ψ1ψ3 + ψ4ψ0 (5.44)
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and

J =
1

96
C cd
ab C ef

cd

(
C ab
ef − C∗ ab

ef

)
= −ψ3

2 + ψ0ψ4ψ2 + 2ψ1ψ3ψ2 − ψ4ψ
2
1 − ψ0ψ

2
3 , (5.45)

where the dual is

C∗ cd
ab ≡ 1

2
ε ef
ab C cd

ef , (5.46)

are true (tetrad independent) scalars [19, 37].

Because the boosted-trumpet coordinates describe a Schwarzschild spacetime, we can use scalars to

compute the Schwarzschild areal radius R at every grid point. In Schwarzschild coordinates,

I =
3M2

R6
and J =

M3

R9
. (5.47)

Thus, at every point in our spacetime

R =

(
3M2

I

)1/6

=

(
M3

J

)1/9

. (5.48)

This cannot be done with the Bowen-York simulations, because the initial data there does not represent

Schwarzschild spacetime, so (5.47) do not apply.

We must be careful in how we apply this in our numerical simulations though. The gauge conditions

we use in a simulation (see §5.2.5) are not actually compatible with (5.37), so a simulated spacetime is not

Schwarzschild spacetime. On the initial time slice, because of the initial data we specified for the differential

gauge conditions, the numerical data exactly matches the analytic data on one time slice of Schwarzschild

spacetime. At t = 0 in a simulation, I and J can be computed using only the initial data which we have

specified and its spatial derivatives [19]. For the first time slice only then, we can compute R and interpret

it as the areal radius coordinate in a Schwarzschild spacetime.

5.2.4: Using Apparent Horizon Circumferences as Measures of Horizon Distortion

We use QuasiLocalMeasures to compute the circumference of the apparent horizon in the xy-, xz-, and

yz-planes

Cxy =

∫ 2π

0

dφ
√
qφφ (θ = π/2, φ) (5.49a)

Cxz = 2

∫ π

0

dθ
√
qθθ (θ, φ = 0) (5.49b)

Cyz = 2

∫ π

0

dθ
√
qθθ (θ, φ = π/2), (5.49c)
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where qAB is the 2-metric on the apparent horizon

qAB =
∂xi

∂θA
∂xj

∂θB
γij (5.50)

and A,B ∈ {θ, φ}. We did not alter this part of QuasiLocalMeasures. Finding the circumferences (of our

Schwarzschild black hole) in the usual Schwarzchild coordinates tells us that these circumferences should

all be equal. Our coordinates are not Schwarzschild coordinates, so there may be some discrepancy in the

circumferences we compute.

Additionally, we know that the lapse and shift we set initially do not correspond with the steady state

lapse and shift our gauge conditions will settle to (because h and R which go into the calculation of α(t = 0M)

and βi(t = 0M) were computed for the unboosted black hole). It is therefore possible that we may have

created a black hole that is somewhat distorted. Since we are boosting along the z-axis, we expect that

differences might manifest as Cxz 6= Cxy or Cyz 6= Cxy.

5.2.5: Simulation Gauge Conditions

Advection in the 1+log slicing condition for the lapse

(∂t − βi∂i)α = −2αK, (5.51)

was necessary for the analysis leading to (5.6). If the advection term were not present, the assumption that

the lapse settles down to a steady state would lead to 0 = −2αK; see Fig. 5.14. In order to compare our

data with some of the results in [30] in Appendix 5.5, we switched this advection term off and on to produce

Fig. 5.14 and Fig. 5.15. For all other simulations advection in the lapse gauge condition was turned on.

We also use the “shifting shift” hyperbolic Γ-driver condition for the shift vector

(∂t − βj∂j )βi =
3

4
Bi (5.52a)

(∂t − βj∂j )Bi = (∂t − βj∂j )Γ̃i − ηBi. (5.52b)

While not as strictly necessary as advection was for the lapse condition, we do find that the long term

stability of our simulations is much improved with advection turned on (i.e., the βi∂i terms present) in the

Γ-driver equations. To produce Fig. 5.14 and Fig. 5.15, the “shiftless shift” Γ-driver with no advection was

used. For all other simulations advection in the shift gauge condition was turned on. In all simulations we

chose one of the following cases for η: Mη = 0, Mη = 1, or Mη = 2.
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5.2.6: Bowen-York Initial Data as a Control

In order to see if the boosted-trumpet initial data we have constructed is an improvement over the Bowen-

York data, we use TwoPunctures to generate a comparison. However, we were unable to get TwoPunctures

to give initial data with only one black hole. To get around this, we utilized a basic configuration with a

1M black hole near the origin and a 10−4M black hole very far (2 000M) from the origin. We sought to

compare our boosted-trumpet black hole with a single control Bowen-York black hole, and this approach to

initialization is intended to provide this control as well as is possible. Other than the initial data thorns

used, simulations for comparing the two types of initial data are otherwise identical.

5.2.7: Grid Set Up

We next describe the standard set up for simulations, which varies between simulations due to changing

parameters such as resolution.

We use five levels of refinement at the black hole puncture; this is on top of the the coarsest adaptive mesh

refinement (AMR) level, which covers the entire simulation domain. We use ∆x = 0.8M and ∆t = 0.36M

on the coarsest level. On the next finest level, we halve both so that the CFL parameter is the same. Each

subsequent level is halved again, keeping the CFL parameter the same on all levels. The “radii” (half-length)

of the AMR cubes are {0.9, 1.8, 3.6, 7.2, 14.4}M (not including ghost zones).

For a single boosted black hole, we utilize the symmetry to reduce the size of the domain which must be

simulated. The extent of the physical boundaries of the simulation domain is [0M, 112M ] along the x- and

y-axes and [−112M, 224M ] along the z-axis, with reflection symmetry applied in the x- and y-directions.

When computing ADM quantities and spherical harmonic modes of Weyl scalars, we integrate over

between four and ten spherical surfaces centered around the black hole’s original location. These spheres

have coordinate radii between 33M and 100M and are evenly spaced in 1/r.

Section 5.3: Resulting Properties of Boosted-Trumpet Coordinates and Improvements Com-
pared to Bowen-York Initial Data

5.3.1: Qualitative Description of Boosted-Trumpet Data Initially and After Evolution

Because we motivated the construction of our coordinate system by adapting it to the moving punctures

gauge conditions, we expect our initial data to be much closer to the steady state of the differential gauge

conditions. Fig. 5.3 shows that this expectation holds true. We compare a boosted-trumpet black hole with

a Bowen-York black hole at early time and after some evolution. These figures show various quantities in

62



-2

-1

0

1

2

0 1 2

z
(M

)

(Mη = 0)
Boosted
-Trumpet

-2

-1

0

1

2

0 1 2

z
(M

)

(Mη = 0)
Boosted
-Trumpet

-2

-1

0

1

2

0 1 2

z
(M

)

(Mη = 0)
Boosted
-Trumpet

-2

-1

0

1

2

0 1 2

z
(M

)

(Mη = 0)
Boosted
-Trumpet

-2

-1

0

1

2

0 1 2

z
(M

)

(Mη = 0)
Boosted
-Trumpet

-2

-1

0

1

2

0 1 2

z
(M

)

(Mη = 0)
Boosted
-Trumpet

-2

-1

0

1

2

0 1 2

z
(M

)

(Mη = 0)
Boosted
-Trumpet

97

98

99

100

101

0 1 2

z
(M

)

x (M)

97

98

99

100

101

0 1 2

z
(M

)

x (M)

97

98

99

100

101

0 1 2

z
(M

)

x (M)

97

98

99

100

101

0 1 2

z
(M

)

x (M)

97

98

99

100

101

0 1 2

z
(M

)

x (M)

97

98

99

100

101

0 1 2

z
(M

)

x (M)

97

98

99

100

101

0 1 2

z
(M

)

x (M)

-2

-1

0

1

2

0 1 2

E
ar
ly

T
im

e
(t

=
0M

)

Bowen
-York

-2

-1

0

1

2

0 1 2

E
ar
ly

T
im

e
(t

=
0M

)

Bowen
-York

-2

-1

0

1

2

0 1 2

E
ar
ly

T
im

e
(t

=
0M

)

Bowen
-York

-2

-1

0

1

2

0 1 2

E
ar
ly

T
im

e
(t

=
0M

)

Bowen
-York

-2

-1

0

1

2

0 1 2

E
ar
ly

T
im

e
(t

=
0M

)

Bowen
-York

-2

-1

0

1

2

0 1 2

E
ar
ly

T
im

e
(t

=
0M

)

Bowen
-York

0 1 2

95

96

97

98

99

L
at
e
T
im

e
(t

=
19
8M

)

x (M)

0 1 2

95

96

97

98

99

L
at
e
T
im

e
(t

=
19
8M

)

x (M)

0 1 2

95

96

97

98

99

L
at
e
T
im

e
(t

=
19
8M

)

x (M)

0 1 2

95

96

97

98

99

L
at
e
T
im

e
(t

=
19
8M

)

x (M)

0 1 2

95

96

97

98

99

L
at
e
T
im

e
(t

=
19
8M

)

x (M)

0 1 2

95

96

97

98

99

L
at
e
T
im

e
(t

=
19
8M

)

x (M)

0 1 2

95

96

97

98

99

L
at
e
T
im

e
(t

=
19
8M

)

x (M)

0.6

0.7

0.6

0.7

0.6

0.7

0.6

0.7

0.6

0.7

0.6

0.7

0.6

0.7

0.6

0.7

0.6

0.7

0.6

0.7

0.6

0.7

0.6

0.7

0.6

0.7

0.7

0.8

0.7

0.8

0.7

0.8

0.7

0.8

0.7

0.8

0.7

0.8

0.7

0.8

0.6

0.7

0.6

0.7

Figure 5.3: Equatorial slices showing lapse, shift, puncture location, apparent horizon, and AMR boundaries.
Top images show the initial time slice and bottom images are at late time (t = 198M). Left images are for
boosted-trumpet data and right images are for Bowen-York data. On the initial time slice for Bowen-York
βi = 0. In all cases, two of the lapse contours are labeled, other contours are evenly spaced in lapse value.
All four slices have equal scales except that the two late time images are at different locations (because the
Bowen-York black hole had a lower average speed than the boosted-trumpet black hole, see Fig. 5.7). In
both cases, the black holes have v = 1/2 in the positive z direction.
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the equatorial plane. Arrows show shift vectors (βy = 0 in the y = 0M plane), contours show level sets of

the lapse, blue shaded regions show the trapped region with the outermost surface (apparent horizon) shown

with a heavier line, the red dots show puncture location, and red boxes show AMR boundaries. In both

simulations, the black hole is boosted in the positive z-direction, which is up in these plots.

Note that the features of the two types of black holes look qualitatively different at early time and similar

at late time. In particular, at t ≈ 0M the apparent horizon of the boosted-trumpet initial data is Lorentz

contracted along the direction of motion, compared to the apparent horizon for the Bowen-York initial data

which looks more circular. Additionally, the shift vectors at early time are different (specifically, βi is initially

zero for the Bowen-York initial data). The shift vectors at late time in the boosted-trumpet simulation look

similar to the shift vectors at early time in the same simulation, meaning that the boosted-trumpet black

hole has not had to undergo as drastic of a realignment of the coordinate system as the Bowen-York black

hole does. These observations indicate that the boosted-trumpet and Bowen-York black holes reach the

same steady state of the gauge conditions but that the boosted-trumpet black hole starts out “closer” to

this steady state.

5.3.2: Understanding Boosted Trumpet Gravitational Wave Due to Tetrad Offset and Discretization

We can use the expansions from §5.1.1 to obtain asymptotic expansions for the Weyl scalars by plugging

(5.37) into (5.43) and doing the spherical harmonic projection. We start with a Graham-Schmidt process

as outlined in (5.6) and (5.7) in [19] to find a spatial triad that is orthonormal with respect to the spatial

metric derived from (5.37) and adapted to a spherical coordinate system.

Because of the computational complexity of finding the Weyl tensor from (5.37), we set v = 1/2 from the

onset of the calculation. Through a brute force Mathematica computation, we find one spherical harmonic

mode of ψ4

ψl=2,m=0
4 (v = 1/2) = −

√
5π

2

M

4r3
(27 ln 3− 28)−

√
5π

2

M

24r4

[ (
225
√

3− 142π
)
M + 12 (27 ln 3− 28) t

]
−
√

5π

2

M

1512r5

[
4
(

4493− 960
√

3
)
M2 + 126

(
130π − 261

√
3
)
Mt+ 378 (27 ln 3− 28) t2

]
+O

(
M (M + t)

3

r6

)
. (5.53)

Note that, because of the cylindrical symmetry, the l = 2, m = 2 mode is not dominant and we focus on the

l = 2, m = 0 mode.

We see that ψ4 6= 0. At first glance this is unexpected for Schwarzschild spacetime, which (5.37) covers.

In usual Schwarzschild coordinates, ψ2 is the only non-zero Weyl scalar. However, the Weyl scalars are

64



only scalars in the sense of coordinate changes; they are still tetrad dependent. Utilizing the Gram-Schmidt

orthonormalization procedure of [19] in different coordinate systems will yield different tetrads which are

not related by a coordinate transformation. The five Weyl scalars computed using these two tetrads are

therefore not related by a coordinate transformation either.

Furthermore, the tetrad used to do the projection is adapted to a spherical coordinate system that is

centered around the origin, whereas a single boosted black hole moves away from the origin. When the

centers of the tetrad and black hole are not aligned, the Weyl scalars (other than ψ2) are no longer zero

because of the contributions from different multipole orders. This problem does not exist in the case of

binaries, where the center of mass of the two black holes stays near the origin. We will see that a single

Bowen-York black hole suffers the same problem.

Another way to think about this is imagining two tetrads, one centered at the origin and one centered

around the black hole. Each of the elements of the first tetrad will have projections onto multiple ele-

ments of the second tetrad. The Weyl scalars computed using the second tetrad can be computed as linear

combinations of the the Weyl scalars computed using the first tetrad, given the sixteen tetrad projections.

In particular, because the Weyl scalars computed with the second tetrad remain fixed with respect to the

black hole and are therefore time independent, the Weyl scalars computed in the first tetrad must change

throughout the simulation as well.

Physically, when the black hole gets near the radius at which a mode of ψ4 is extracted (i.e., t ≈ r/v),

we expect the standard asymptotic interpretation of ψ4 to break down. When the puncture crosses the

extraction surface the expansion of the spacetime in multipoles makes little sense. We can see from (5.53)

that, in this case, every term in the expansion becomes O
(
M/r3

)
and the series will diverge.

In Fig. 5.4 we compare the analytic calculation (5.53) with a waveform from a simulation. We see that

there is a smoothly varying, non-zero ψ4. These plots show that the asymptotic expansion approaches the

smooth trend in the numerical waveform as we add more orders. There are two main reasons for which the

analytic and numerical results do not exactly align.

First, the analytic calculation is an expansion in large radius so we are committing an error by evaluating

(5.53) at a finite radius. Looking at the form of the sub-leading terms in (5.53) shows one way in which

this particularly breaks down: recall the understanding of the situation when t ≈ r/v. Considering that this

black hole is moving at v = 1/2, it makes sense that when t ≈ 2r and the black hole has crossed the surface

on which ψ4 is extracted and our interpretation of the expansion (5.53) is no longer valid. This is especially

apparent in Fig. 5.4a, where the nature of the numerical waveform changes drastically around t ≈ 66M .

Secondly, recall that we found h and R assuming an unboosted black hole. So we know that the lapse

associated with (5.37) will not be exactly equal to the steady state solution of the 1+log slicing condition of
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Figure 5.4: Comparison of analytic and numerical computations of gravitational waves. The left (right)
subfigure show the l = 2, m = 0 mode of ψ4 evaluated at a coordinate radius of 33M (100M). The black
line is a numerical result from a simulation. The gray lines show approximations given by (5.53) to various
orders. We can see the approximation (5.53) breaking down near t ≈ 66M (t ≈ 200M), as discussed in in
the text.

the simulation. In addition to the series truncation error, we are also committing an error because we have

not done our analytic calculation in the same gauge as our simulation (indeed, the analytic and numerical

calculations were not even done in the same spacetime, as was discussed in the last paragraph of §5.2.3).

This effect will be smaller at larger radius where the lapse approaches unity and at earlier times where the

numerical spacetime is in some sense closer to Schwarzschild.

Fig. 5.5 shows the l = 2, m = 0 mode of ψ4 extracted at a coordinate radius of 100M for three simulations

with varying resolution. We see that the slowly varying background offset of ψ4 due to mixing with ψ2 is

already accurately converged and does not depend noticeably on resolution. The higher frequency signal

imposed on top of the slow growth is, however, resolution dependent. This reinforces our understanding that

the slow growth as due to the offset of the tetrad. It also indicates that the high-frequency part – evidence

of a junk gravitational wave – is due primarily to discretization error and whatever small gravitational wave

content our nearly-Schwarzschild spacetime has.

5.3.3: Reduced Junk Gravitational Wave

Fig. 5.6a shows the l = 2, m = 0 mode of the gravitational wave ψ4 as a function of time, extracted

at a radius of 33M for both a boosted-trumpet black hole and a Bowen-York black hole. Fig. 5.6b shows

the same for an extraction radius of 100M . We see that the Weyl scalar has much smaller amplitude for
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Figure 5.5: Resolution dependence of the l = 2, m = 0 mode of ψ4 extracted from three simulations at
coordinate radius r = 100M .

the boosted-trumpet black hole (by two or three orders of magnitude), especially when considering that the

largest part of the signal in the boosted-trumpet case – the slow background growth – is indeed shared by

the Bowen-York black hole.

5.3.4: Increased Accuracy of Black Hole Speed

Fig. 5.7 shows the speed of black holes as determined by the shift at the puncture. We can see a number

of things from this plot. First, we see that the boosted-trumpet black hole’s speed is more consistent with

the anticipated final steady-state speed than is that of the Bowen-York black hole because the initial shift

is non-zero. The Bowen-York black hole starts with a non-zero ADM momentum but has zero coordinate

velocity (due to the initially zero shift). Secondly, it is evident that the η parameter in the Γ-driver condition

plays a large role in the initial speed. Comparing the solid lines to the dashed lines, we see that the black

hole reaches the anticipated speed much more quickly when Mη = 0.

We have seen that the coordinate speeds of the boosted-trumpet black holes are initially more consistent

with their momenta than are the speeds of the Bowen-York black holes. In addition, we find that boosted-

trumpet black holes have a faster maximum speed than Bowen-York black holes. Sperhake, et. al. measure

the speed of fast-moving Bowen-York black holes in terms of their Lorentz factors as computed from the

momentum and irreducible mass [50]

γ =

√
1 +

(
PADM

Mirr

)2

. (5.54)
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Figure 5.6: Dominant mode of the Weyl scalar ψ4 extracted at coordinate radii 33M and 100M . Note that
the Weyl scalar computed in the Bowen-York simulations does indeed have the same background growth.
This simulation uses Mη = 1.
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Figure 5.7: Speed of black holes computed from shift norm as a function of simulation time. These black
holes have v = 0.5. Dashed lines correspond to simulations with Mη = 1 and solid lines to simulations with
Mη = 0. Black lines are boosted-trumpet black holes, blue lines are boosted-trumpet black holes except
with zero initial shift, and the red line is a Bowen-York black hole.
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Figure 5.8: Speed of black holes with v = 0.85 as measured by shift and Lorentz factor (5.54) from v =√
1− 1/γ2. These values are not accurate at late time because of the difficulty in extrapolating the ADM

momentum when the black holes get closer to the extraction surfaces.

Instead of the Bowen-York momentum parameter, we substitute the (analytically equivalent for Bowen-York

initial data [20]) ADM momentum because this is measurable in the simulation for both kinds of black holes.

From Fig. 5.8, we see that the speed as measured from the Lorentz factor is more accurate for both

boosted-trumpet and Bowen-York black holes, especially at early time. However, we find this measure

unreliable – especially at later times – for two main reasons. First, the ADM momentum includes momentum

of the gravitational wave as well as that of the black hole. Thus, the speed inferred from the ADM momentum

will be too large when gravitational radiation is present. Second, the ADM momentum is difficult to compute

and the extrapolation to infinite radius is suspect when the black hole and gravitational waves get near the

surfaces on which the ADM integral is computed. As such, when [50] discuss a Bowen-York black hole with

γ ≈ 3, we suspect that the coordinate velocity is less than 0.94 ≈
√

1− 1/32. Speed (as determined by shift)

as functions of time for various boosted-trumpet black holes are shown in Fig. 5.9.

5.3.5: Comparison of Apparent Horizons

In this final subsection, we consider a number of properties of the apparent horizons of the black holes

in our simulations.

We can see a couple things from Fig. 5.10. First, the apparent horizon matches well the expectation that

it lies near the event horizon at R = 2M . Second, the areal radius appears to have a limit near 1.3M at the

location of the puncture (z = 0M). This is close to the trumpet radius R(0M) = 1.3124M expected for a

black hole with v = 0 found in setting α = 0 in (5.7a).
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Figure 5.9: The speed of a boosted-trumpet black hole for a number of specified speeds.
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Figure 5.10: Areal radius as computed from J and (5.47) along the z-axis at time t = 0M for boosted-
trumpet black holes with v = 0.5 and v = 0.9. The blue vertical lines show the extent of the apparent
horizon for the two black holes. The gray dashed line shows R = 2M , the location of the event horizon.
Note that the finite difference used to compute derivatives when finding J will be inaccurate when applied
across the puncture, so there are a few data points near the black hole which are invalid. We find visually
indistinguishable results when computing R from I. How J is computed in simulations is discussed in §5.2.3.
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the two polar circumferences we could have computed here (i.e., we show Cxz but not Cyz); the analogous
plot comparing Cyz and Cxy is indistinguishable by eye from this one. Note that the boosted-trumpet data
has less distortion than the Bowen-York data both at early times and late times.

We see from Fig. 5.11 that the boosted-trumpet black hole starts out with no distortion. It is also

apparent that the maximum distortion of the boosted-trumpet black hole is smaller than the maximum

distortion of the Bowen-York black hole. The Bowen-York black hole is expected to be initially distorted

due to the assumption of conformal flatness.

Additionally, we see evidence of quasi-normal ringing in the initially excited Bowen-York black hole.

Fig. 5.11 shows a damped oscillation in the aspect ratio of the horizon. The circumferences Cxz and Cyz

agree within a part in about 107, so we are confident that this effect is not a numerical artifact. Because the

ratio oscillates above and below unity we can see that the horizon is oscillating between being oblate and

prolate.

Section 5.4: Summary Remarks About Boosted-Trumpet Black Holes

We have seen that it is possible to apply a Lorentz boost to the trumpet representation of a black hole

which is adapted to the steady state of the moving punctures gauge conditions. Simulations initialized with

initial data in the boosted-trumpet coordinate system are closer to the intended physical configuration than

analogous simulations initialized with canonical Bowen-York initial data, as evidenced by more accurate

coordinate speed and lower junk radiation content.

With the initial data for one black hole in hand, it should be possible to superpose this data in a manner

described in [34]. Ideally, this will yield binary black hole initial data with lower initial junk radiation
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Figure 5.12: Relative error of simulated values of MADM and P zADM.

content. This approach should in turn allow for more accurate waveform extraction and smaller simulation

domains.

We also see some of the effects the η parameter in the Γ-driver condition can have on a simulation. The

coordinate speed is much more accurate when Mη = 0. We also found that the coordinate shape of the

apparent horizon is very η dependent; when Mη = 0 the horizon appears to maintain its shape (see Fig. 5.3)

but when Mη = 1 the horizon becomes stretched in the direction of motion. This happens for both the

boosted-trumpet and Bowen-York black holes.

Section 5.5: Code Validation

5.5.1: ADM Quantities

Fig. 5.12 shows the relative error of the numerically extrapolated values compared with the analytic

values for boosted-trumpet black holes with various velocities. Fig. 5.13 shows MADM(r) vs P zADM(r) for

two extraction radii and the extrapolated value alongside the analytic curve. Together, these figures give us

confidence in our modifications to QuasiLocalMeasures, our construction of the boosted-trumpet spacetime,

and the physical interpretation of the boosted-trumpet spacetime.

5.5.2: Stationary Solution

We set v = 0 to do consistency checks with [30]. We find that, to double precision, there is no difference

in the initial data we compute using an unboosted metric and the data we compute using the boosted metric
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Figure 5.13: ADM mass-energy as a function of ADM momentum up to vmax = 0.95. The blue curve shows
the analytic values expected from (5.41) and (5.42), black dots show the numerical values extrapolated
to infinity, and red diamonds and gray squares show the numerical values calculated at 100M and 33M ,
respectively. The values computed at 33M are much less accurate than the extrapolated values, but the
values computed at 100M (which are mostly hidden by the extrapolated data points) are also less accurate
than the extrapolated values.

but with v = 0. We find an initial apparent horizon radius of r = 0.830404M , in agreement with [30]. We

also recreate Fig. 21 and Fig. 22 of [30] in our Fig. 5.14 and Fig. 5.15, respectively.

In addition to providing nice proof of concept, these figures demonstrate why we are confident in using

the lapse of the unboosted black hole to determine our height function: both show how the data is robust

with respect to changing gauge conditions. In both cases, when the gauge is changed the values jump but

then undergo damped oscillation around their new value. Thus, if we are starting off with a height function

determined by a slightly different gauge than we are using, we expect the discrepancy to relax away quickly

after the simulation has begun.

5.5.3: Constraint Violation

Fig. 5.16 shows the violation of the constraints along the z-axis at time t = 0M . It is apparent that over

most of the simulation domain the boosted-trumpet initial data has much smaller Hamiltonian constraint

violation (as much as eight orders of magnitude) and slightly smaller z-momentum constraint violation than

the Bowen-York data.

We point out that part of the power of the Bowen-York formalism is that the momentum constraint

is satisfied by construction. However, our data satisfies both constraints by construction. It is therefore

sensible that the momentum constraint violations are more comparable whereas we have improved much
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Figure 5.16: Violation of the Hamiltonian constraint H along the z-axis on the initial time step for boosted-
trumpet (black) and Bowen-York (red) initial data. These black holes have v = 0.5 in the positive z direction.

more significantly the Hamiltonian constraint violation. The Hamiltonian constraint violation of the Bowen-

York data is not only due to the finite differencing in computing H, but also the accuracy with which

TwoPunctures was able to solve the constraint equation. When superposing boosted-trumpet data and

re-solving the constraint equations, we expect the superposed boosted-trumpet data would have similar

violation of the constraint.

Fig. 5.17 shows the resolution dependence of the violation of the Hamiltonian constraint H. Analytically,

it should be zero, so any deviation should be due solely to the finite differencing used to calculate the Weyl

tensor. The black curve has the standard grid spacing ∆x = 0.8M on the coarsest level, the red and blue

curves have grid spacings of 2
3∆x and 4

9∆x, respectively. With fourth order finite differencing, we expect the

constraint violation to drop by a factor of (2/3)
4

when increasing the resolution by a factor of 3/2. The figure

also shows the constraint violation with this expected rescaling applied. This shows that finite differencing is

indeed responsible for the constraint violations we have observed in the boosted-trumpet initial data. Note

also that the boundaries of the AMR regions are visible. The discontinuities are caused by the change in

grid spacing by a factor of two between the levels. We find similar results for the violation of the momentum

constraint.
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Figure 5.17: Top: Resolution dependence of the Hamiltonian constraint H and momentum constraint Mz

along the z-axis on the initial time step for boosted-trumpet initial data. The black curve has grid spacing
∆x = 0.8M on the coarsest level, the red and blue curves have grid spacings of 2

3∆x and 4
9∆x, respectively.

These black holes have v = 0.5 in the positive z direction. In the inset, the AMR boundaries are shown on
the left side by gray lines; AMR boundaries on the right side are not marked, but are at the same distances
and should be visible as discontinuities in the curves. Bottom: Same except that the constraint violations
from the medium and high resolution simulations have been multiplied by (3/2)

4
and (9/4)

4
, respectively.
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CHAPTER 6: Superposing Initial Data

In section 6.1 we outline a scheme to approximately superpose initial data. This scheme produces data

that violates the constraint equations, but we will see that we can reduce the violation to a level which

is small enough that simulations can still be run. In section 6.2 we examine a binary inspiral which uses

this approximate superposition scheme; we see that the junk radiation from a boosted-trumpet binary is

smaller than that from a Bowen-York binary. We also discuss some of the limitations of the approximately

superposed boosted-trumpet data.

Section 6.1: Recipe for Approximate (Constraint-Violating) Superposition

We perform a superposition of two copies of our initial data, using a scheme similar to that laid out in

[46]. In particular, we superpose our data using

ψ = 1 + f1

(
ψ(1) − 1

)
+ f2

(
ψ(2) − 1

)
(6.1a)

γ̃ij = δij + f1

(
γ̃

(1)
ij − δij

)
+ f2

(
γ̃

(2)
ij − δij

)
(6.1b)

K = f1K
(1) + f2K

(2) (6.1c)

Ãij = f1Ã
(1)
ij + f2Ã

(2)
ij (6.1d)

α = 1 + f1

(
α(1) − 1

)
+ f2

(
α(2) − 1

)
(6.1e)

βi = f1β
i
(1) + f2β

i
(2) (6.1f)

∂tβ
i = f1∂tβ

i
(1) + f2∂tβ

i
(2), (6.1g)

where γ̃
(1)
ij is the conformal spatial metric associated with the first black hole, etc. and

f1 (~r) = 1− e−(|~r−~r2|/ω1)4 (6.2a)

f2 (~r) = 1− e−(|~r−~r1|/ω2)4 (6.2b)

are functions which attenuate the contribution of the data from one black hole near the other black hole.

Note that these definitions ensure that the superposed quantities have the same asymptotic properties as

the original data for a single black hole. Fig. 6.1 is a flowchart which shows how the superposed data are
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computed from the data for two individual boosted-trumpet black holes.
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Figure 6.1: Flowchart showing how superposed initial data is computed. The spacetime quantities are
decomposed into the ADM quantities and then the conformal quantities. Then these conformal quantities
are superposed according to (6.1) and finally the physical ADM quantities are reconstructed.

Because general relativity is a non-linear theory, the superposition of two solutions given above is not a

solution. In order to find an exact solution to the constraint equations, the superposition would need to be

corrected through the addition of terms such as

ψ = 1 + f1

(
ψ(1) − 1

)
+ f2

(
ψ(2) − 1

)
+ u (6.3a)

Ãij = f1Ã
(1)
ij + f2Ã

(2)
ij +

(
L̃b
)
ij
. (6.3b)

These definitions would then need to be plugged into the constraint equations in order to solve for the

corrections u and bi. In practice, these corrections are small, especially if the black holes are initially widely

separated so that the mutual field seen by each black hole is weak. Fig. 6.2 shows how increasing the
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Figure 6.2: The violation of the constraint equations for two black holes superposed along the z-axis. Multiple
simulations with varying separations between the black holes are show, all at the initial time. Note that as
the black holes get further apart, the violation gets smaller.
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Figure 6.3: Violation of the Hamiltonian constraint with two black holes superposed along the z-axis,
comparing Bowen-York initial data to boosted-trumpet initial data. Even without re-solving the constraint
equations, the boosted-trumpet initial data violates the Hamiltonian constraint only by a couple orders of
magnitude more than the Bowen-York data. The violation of the momentum constraint is comparatively
much larger because Bowen-York data satisfies the momentum constraint by construction; the violation is
therefore only due to the finite differencing used to compute the derivatives in the constraint equation (the
AMR boundaries are visible where the resolution changes).
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black hole separation decreases the constraint violation. Fig. 6.3 shows that, even for a relatively modest

separation, the violations are only a couple orders of magnitude worse than the Bowen-York data (which

satisfies the momentum constraint by construction and satisfies the Hamiltonian constraint by solving (2.69a)

with (2.72)).

Section 6.2: Preliminary Results for a Boosted-Trumpet Binary

Using the scheme outlined in the previous section, we are able to evolve a binary system formed from two

boosted-trumpet black holes. This simulation does not, strictly speaking, provide a solution to Einstein’s

equation because the constraints are violated (by the superposition, not just by approximate methods for

computing derivatives). Nonetheless, we see many interesting results from this simulation; indeed, modern

initial data for neutron star simulations does not satisfy the constraint equations [53]. It is important to note

that initial conditions for this simulation are symmetric under a π-rotation about the y-axis. In particular,

the black holes have equal mass, are initially placed at x = ±20.0125M (and y = z = 0M), and have initial

velocities vz = ±0.1 (and vx = vy = 0).

Equatorial snapshots are shown at four times in Fig. 6.6 (using the same conventions as Fig. 5.3). The

paths of the punctures are shown throughout the entire simulation in Fig. 6.8. One of the most notable

features of this binary simulation is the breaking of the symmetry of the trajectories of the punctures near

the end of the simulation. This deviation is visible in the latest (t = 1348M) time slice in Fig. 6.6. It is

also visible in Fig. 6.8, especially in the inset which shows the paths with a π-rotation applied to one of the

trajectories; it is clear that the curves remain visually symmetric for much of the simulation then suddenly

diverge.

No conclusion has been reached to explain this deviation. The constraint equations are violated, so errors

may accumulate until instabilities are apparent. However, the violations of the constraints are symmetric,

so it is not clear how this alone can lead to asymmetric behavior. Additionally, this does not appear to be

a problem with Bowen-York initial data (see Figs. 6.7 and 6.9). Experimentation suggested that using the

RotatingSymmetry180 thorn could prevent such asymmetries from forming, but this was far from conclusive

and leaves much to be desired as a solution.

Given that initially symmetric initial data (both boosted-trumpet and Bowen-York) leads to asymmetries,

it would seem that the evolution model is one major factor. It is possible that roundoff errors in the

construction of the boosted-trumpet data cause the initial data to be asymmetric at the level of machine

precision and these asymmetries grow during evolution. The method of superposition does not treat the two

black holes completely symmetrically on a numerical level: for one black hole, the initial data (e.g., βi(2) or
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γ
(2)
ij ) undergoes a rotation whereas the other (e.g., βi(1) or γ

(1)
ij ) does not. On the other hand, the spectral

methods used by TwoPunctures in the construction of Bowen-York data should give initial data which is

more symmetric, even at a numerical level.

Fig. 6.4 shows that the Bowen-York initial data is indeed more symmetric than the boosted-trumpet

initial data and that there is a growing asymmetry throughout the evolution, though it is not visually

apparent from Fig. 6.9. This figure further reinforces the idea that the asymmetry issue may not be tied to

the type of initial data: both binaries reach a comparable level of asymmetry near t ≈ 20− 50M and both

binaries grow more and more asymmetric throughout evolution.
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Figure 6.4: The growth in the asymmetry of the puncture trajectories for both boosted-trumpet and Bowen-
York black hole binaries. Since it should be symmetric about the y-axis, the sum of the puncture locations
should be zero ~x1 + ~x2 = 0. Given that this is a semi-log plot, it appears that the asymmetry in both
binaries is growing approximately exponentially (though, the asymmetry in boosted-trumpet binary may be
super-exponential).

Fig. 6.5 shows the gravitational wave (the l = 2, m = 2 mode of ψ4) at a radius of 100M for simulations

which used both kinds of initial data. The l = 2, m = 0 mode is not dominant as it was in the previous

Chapter, where we were considering a cylindrically symmetric single boosted black holes. For both kinds of

data, the background growth from the offset of the tetrad from the origin of the black hole is no longer an

issue, as we anticipated in §5.3.2.

The small oscillations at t ≈ 100M show that there is some junk radiation in both binaries. Even with

constraint-violating data, the junk radiation content of the boosted-trumpet data is smaller than that of the

Bowen-York data (by approximately a factor of two here, as compared with the approximately two orders of

magnitude we saw for the single black holes in the previous Chapter). The boosted-trumpet data shows a

large pulse starting at t ≈ 1300M coming from the strong interaction near merger. The pulses near t ≈ 500M
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boosted-trumpet and Bowen-York black holes. Grey lines correspond to the times shown in Fig. 6.6 and
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and t ≈ 1300M in the Bowen-York signal come from the close (non-merger) interactions.

82



-10

-5

0

5

10

z
(M

)
t
=

0M

-10

-5

0

5

10

z
(M

)
t
=

0M

-10

-5

0

5

10

z
(M

)
t
=

0M

-10

-5

0

5

10

z
(M

)
t
=

0M

-10

-5

0

5

10

z
(M

)
t
=

0M

-10

-5

0

5

10

z
(M

)
t
=

0M

-10

-5

0

5

10

z
(M

)
t
=

0M

-10

-5

0

5

10

z
(M

)
t
=

0M

-10

-5

0

5

10

z
(M

)
t
=

0M

-10

-5

0

5

10

z
(M

)
t
=

0M

-10

-5

0

5

10

z
(M

)
t
=

0M

-10

-5

0

5

10

z
(M

)
t
=

0M

-10

-5

0

5

10

z
(M

)
t
=

0M

-10

-5

0

5

10

z
(M

)
t
=

0M

-10

-5

0

5

10

z
(M

)
t
=

0M

-10

-5

0

5

10

z
(M

)
t
=

0M

-10

-5

0

5

10

z
(M

)
t
=

0M

-10

-5

0

5

10

z
(M

)
t
=

44
9M

-10

-5

0

5

10

z
(M

)
t
=

44
9M

-10

-5

0

5

10

z
(M

)
t
=

44
9M

-10

-5

0

5

10

z
(M

)
t
=

44
9M

-10

-5

0

5

10

z
(M

)
t
=

44
9M

-10

-5

0

5

10

z
(M

)
t
=

44
9M

-10

-5

0

5

10

z
(M

)
t
=

44
9M

-10

-5

0

5

10

z
(M

)
t
=

44
9M

-10

-5

0

5

10

z
(M

)
t
=

44
9M

-10

-5

0

5

10

z
(M

)
t
=

44
9M

-10

-5

0

5

10

z
(M

)
t
=

44
9M

-10

-5

0

5

10

z
(M

)
t
=

44
9M

-10

-5

0

5

10

z
(M

)
t
=

44
9M

-10

-5

0

5

10

z
(M

)
t
=

44
9M

-10

-5

0

5

10

z
(M

)
t
=

44
9M

-10

-5

0

5

10

z
(M

)
t
=

44
9M

-10

-5

0

5

10

z
(M

)
t
=

44
9M

-10

-5

0

5

10

z
(M

)
t
=

44
9M

-10

-5

0

5

10

z
(M

)
t
=

44
9M

-15

-10

-5

0

5

10

15

z
(M

)
t
=

899M

-15

-10

-5

0

5

10

15

z
(M

)
t
=

899M

-15

-10

-5

0

5

10

15

z
(M

)
t
=

899M

-15

-10

-5

0

5

10

15

z
(M

)
t
=

899M

-15

-10

-5

0

5

10

15

z
(M

)
t
=

899M

-15

-10

-5

0

5

10

15

z
(M

)
t
=

899M

-15

-10

-5

0

5

10

15

z
(M

)
t
=

899M

-15

-10

-5

0

5

10

15

z
(M

)
t
=

899M

-15

-10

-5

0

5

10

15

z
(M

)
t
=

899M

-15

-10

-5

0

5

10

15

z
(M

)
t
=

899M

-15

-10

-5

0

5

10

15

z
(M

)
t
=

899M

-15

-10

-5

0

5

10

15

z
(M

)
t
=

899M

-15

-10

-5

0

5

10

15

z
(M

)
t
=

899M

-15

-10

-5

0

5

10

15

z
(M

)
t
=

899M

-15

-10

-5

0

5

10

15

z
(M

)
t
=

899M

-15

-10

-5

0

5

10

15

z
(M

)
t
=

899M

-15

-10

-5

0

5

10

15

z
(M

)
t
=

899M

-15

-10

-5

0

5

10

15

z
(M

)
t
=

899M

-15

-10

-5

0

5

10

15

z
(M

)
t
=

899M

-10

-5

0

5

10

-30 -20 -10 0 10 20 30

z
(M

)
t
=

1348M

x (M)

-10

-5

0

5

10

-30 -20 -10 0 10 20 30

z
(M

)
t
=

1348M

x (M)

-10

-5

0

5

10

-30 -20 -10 0 10 20 30

z
(M

)
t
=

1348M

x (M)

-10

-5

0

5

10

-30 -20 -10 0 10 20 30

z
(M

)
t
=

1348M

x (M)

-10

-5

0

5

10

-30 -20 -10 0 10 20 30

z
(M

)
t
=

1348M

x (M)

-10

-5

0

5

10

-30 -20 -10 0 10 20 30

z
(M

)
t
=

1348M

x (M)

-10

-5

0

5

10

-30 -20 -10 0 10 20 30

z
(M

)
t
=

1348M

x (M)

-10

-5

0

5

10

-30 -20 -10 0 10 20 30

z
(M

)
t
=

1348M

x (M)

-10

-5

0

5

10

-30 -20 -10 0 10 20 30

z
(M

)
t
=

1348M

x (M)

-10

-5

0

5

10

-30 -20 -10 0 10 20 30

z
(M

)
t
=

1348M

x (M)

-10

-5

0

5

10

-30 -20 -10 0 10 20 30

z
(M

)
t
=

1348M

x (M)

-10

-5

0

5

10

-30 -20 -10 0 10 20 30

z
(M

)
t
=

1348M

x (M)

-10

-5

0

5

10

-30 -20 -10 0 10 20 30

z
(M

)
t
=

1348M

x (M)

-10

-5

0

5

10

-30 -20 -10 0 10 20 30

z
(M

)
t
=

1348M

x (M)

-10

-5

0

5

10

-30 -20 -10 0 10 20 30

z
(M

)
t
=

1348M

x (M)

-10

-5

0

5

10

-30 -20 -10 0 10 20 30

z
(M

)
t
=

1348M

x (M)

-10

-5

0

5

10

-30 -20 -10 0 10 20 30

z
(M

)
t
=

1348M

x (M)

-10

-5

0

5

10

-30 -20 -10 0 10 20 30

z
(M

)
t
=

1348M

x (M)

0.8

0.9

0.8

0.9

0.8

0.9

0.8

0.9

0.8

0.9

0.8

0.9

0.8

0.9

0.8

0.9

0.8

0.9

0.8

0.9

0.8

0.9

0.8

0.9

0.8

0.9

0.8

0.9

0.8

0.9

0.8

0.9

0.8

0.9

0.8

0.9

0.8

0.9 0.9

0.8

0.9 0.9

0.8

0.9 0.9

Figure 6.6: Equatorial slices showing evenly spaced level sets of the lapse (with labels), shift vectors, puncture
locations, puncture trajectories (between snapshots), apparent horizons, and AMR boundaries at four times
throughout evolution. The asymmetry in the trajectories is apparent in the last frame.
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Figure 6.7: Same as Fig. 6.6 except with Bowen-York initial data.
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Figure 6.8: The trajectories of the punctures in the binary simulation. Initial data was symmetric under a
rotation of π about the y-axis. The trajectories do not retain this symmetry though. This is particularly
evident in the inset, where one trajectory has been rotated so that the two trajectories initially line up.
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Figure 6.9: Same as Fig. 6.8 except with Bowen-York initial data. In the inset, the π-rotated trajectory
is visually coincident with the other trajectory (though, see Fig. 6.4 for evidence that there is a growing
asymmetry even in the Bowen-York black hole trajectories).
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CHAPTER 7: Conclusions

We discuss in section 7.1 future directions that Boosted-Trumpet initial data can take before making

concluding remarks in section 7.2.

Section 7.1: The Future of Boosted-Trumpet Initial Data

We consider three important extensions for boosted-trumpet initial data: superposed data in §7.1.1,

velocities in arbitrary directions in §7.1.2, and spinning black holes in §7.1.3. The ideas are discussed to

the extent they have been developed so far in this project and considerations which are anticipated to be

important for further development are laid out.

7.1.1: Boosted-Trumpet Binaries

We have already talked some about using boosted-trumpet initial data to construct binary systems in

section 6.2. We saw there that a rough superposition without re-solving the constraint equations did allow

for a simulation, though it was not without its problems. We also outlined in that section a recipe which

uses this rough superposition as a starting point for a solution which does satisfy the constraint equations.

Numerical solvers for elliptic partial differential equations (such as the CT Multilevel thorn [21] or a modified

TwoPuncture such as in [46]) can be used to find solutions to the fully general (elliptic) constraint equations.

7.1.2: Black Hole With Trumpet Slicing Boosted in an Arbitrary Direction

The data presented in Chapter 5 only allows for a black hole which has been boosted in the z-direction.

For a single black hole, this is not such a big deal as the symmetry allows us to call whatever axis we like

(i.e., the boost axis) the z-direction. However, as soon as we have two black holes, this symmetry is broken

and we need to be able to control the direction of boost. This point was somewhat swept under the rug in

Chapter 6, where the rotation matrix

R (~v = −vẑ) =


1 0 0

0 −1 0

0 0 −1

 (7.1)

87



was applied to the initial data for one of the black holes before the superposition.

We want the black hole to have a velocity vector ~v = (vx, vy, vz). The transformation matrix is a series

of rotations

R (θv, φv) =


cosφv − sinφv 0

sinφv cosφv 0

0 0 1




cos θv 0 sin θv

0 1 0

− sin θv 0 cos θv




cosφv − sinφv 0

sinφv cosφv 0

0 0 1


−1

, (7.2)

where cos θv = vz/v, tanφv = vy/vx, and v2 = v2
x + v2

y + v2
z < 1 (note θv and φv have nothing to do with

the spherical coordinates; they describe the direction of the velocity vector). Together,

R (~v) =


v2y+v2xvz/v

v2x+v2y

vxvy(vz/v−1)
v2x+v2y

vx/v

vxvy(vz/v−1)
v2x+v2y

v2x+v2yvz/v

v2x+v2y
vy/v

−vx/v −vy/v vz/v

 , (7.3)

when θv ∈ (0, π). Note R−1 = RT, as expected for a rotation matrix, and it rotates the vector (0, 0, v) to

(vx, vy, vz).
1 This means that (7.3) can be used to rotate βi, ∂tβ

i, γij , and Kij for the black hole boosted

along the z-axis to get data for a boosted-trumpet black hole which is boosted in any direction. It is important

to note that – while not covariant in the sense of spacetime coordinate transformations – the decomposed

data is covariant under spatial coordinate transformations. Thus, the rotation matrix implements a spatial

coordinate transformation and the initial data quantities then transform according to

α [t, ~x] = α
[
t,R−1 · (~x− ~x0)

]
(7.4a)

βi [t, ~x] = (R)
i
kβ

k
[
t,R−1 · (~x− ~x0)

]
(7.4b)

γij [t, ~x] =
(
R−1

)k
i

(
R−1

)l
j
γkl
[
t,R−1 · (~x− ~x0)

]
(7.4c)

Kij [t, ~x] =
(
R−1

)k
i

(
R−1

)l
j
Kkl

[
t,R−1 · (~x− ~x0)

]
(7.4d)

∂tβ
i [t, ~x] = (R)

i
k∂tβ

k
[
t,R−1 · (~x− ~x0)

]
, (7.4e)

where ~x0 is the location of the puncture. See Fig. 7.1 for the set-up.

1The matrix (7.1) is the specific case where vz = −v, vx = 0, and vy → 0 (a limit is required to avoid dividing by zero).
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x̂

ẑ

R−1 · ~x0

R−1 · ~v ∝ ẑ

R−1 · ~x

R−1 · (~x− ~x0)

~x0

~v

~x

(~x− ~x0)

θv

θv

Figure 7.1: Figure showing relevant vectors for rotation of initial data via a spatial coordinate transformation
(in the φv = 0 plane for visual simplicity).

7.1.3: Boosted-Trumpet Black Holes with Spin

Because we started our series of coordinate transformations with Kerr-Schild coordinates, obtaining a

boosted-trumpet black hole with spin may be a simple matter of applying (5.36) to Kerr spacetime in Kerr-

Schild coordinates. However, there are a few points which need to be considered to make sure that this will

work.

First, the spin axis of the Kerr black hole breaks the spherical symmetry which made it possible to

boost in an arbitrary direction. Rotations must therefore be applied to make sure the spin axis and boost

direction both point in the direction desired. This is likely just a matter of applying a rotation before making

the coordinate change (5.36) to get the correct angle between the spin and velocity. A rotation after the

coordinate change (as discussed in the previous sub-section) would then place the spin and velocity in their

final directions.

Second, it must be verified that the trumpet slicing used in (5.36) covers the desired parts of the Kerr

spacetime. The spatial slices must penetrate the outer horizon but not intersect the ring singularity; given

that simulations with spinning black holes have been done in the moving punctures gauge it should be

possible, but it is not a priori obvious where the trumpet’s radius will be within the black hole. Numerical

Penrose diagrams such as those constructed in [30] and an analysis based on the 2+1 decomposition [26]

could both be helpful. For example, in [26] they use the 2+1 decomposition to verify that their trumpet

slicing limits on a radius between the outer and inner horizons. Fig. 7.2 shows schematically what two such

trumpet slicings might look like on a Penrose diagram for Kerr spacetime. Whereas overcoming the issue of
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aligning the spin axis will likely be straightforward if tedious, this is potentially a more fundamental problem

which could prevent extending these methods to spinning black holes.

(a) (b)

Figure 7.2: Penrose diagrams for the Kerr spacetime with two trumpet slicings. The zigzag line shows r = 0
(which is not singular off of the equatorial plane) and the inner and outer horizons at r = r± are shown with
dashed lines. On the left the limiting radius of the trumpet slices r− < r < r+ is shown by the dotted line
and on the right the limiting radius of the trumpet is r−.

Section 7.2: Summary Remarks

After providing some theoretical and practical background, we have demonstrated a novel method for

constructing initial data for single boosted black holes. We begin with Schwarzschild spacetime written in

Kerr-Schild coordinates and apply a series of coordinate transformations. These transformations include

1. a Lorentz boost,

2. trumpet slicing,

3. a radial rescaling to remove the singularity from the coordinate patch (and therefore numerical simu-

lation domain), and

4. a pair of Galilean boosts which ensure that the trumpet slicing and Lorentz boost are compatible.
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Analytically, this data contains no junk radiation. Our analysis showed that – when this data is im-

plemented in a simulation – discretization and gauge condition mis-match lead to non-zero junk radiation,

though it is several orders of magnitude smaller than the junk radiation in Bowen-York initial data. This

analysis relied on developing a thorough understanding of how to physically interpret the Weyl scalars when

the black hole puncture is not near the origin of the tetrad. We saw that both types of initial data exhibit

a growth of a background trend in ψ4 which does not represent a physical gravitational wave and agrees

well with our calculated prediction from the offset. The boosted-trumpet data also yields more immediately

consistent black hole speeds than Bowen-York does.

We built initial data for a binary black hole system by superposing two copies of the boosted-trumpet

initial data for a single black hole; this data approximately satisfies the constraint equations. We saw that the

numerical asymmetries present in the initial data grew to the point where the black holes’ trajectories were

qualitatively different. We saw a similar growth in asymmetry for the Bowen-York black hole, indicating that

attempting to evolve a perfectly symmetric binary may be difficult due to chaos in the non-linear evolution

equations.

Finally, we looked at how boosted-trumpet initial data can be expanded into new areas. Using the

approximate binary data could provide a helpful starting point for re-solving the constraint equations to

obtain initial data which retains the benefits we found for a single boosted-trumpet black hole over a Bowen-

York black hole while also satisfying the constraints. The application of rotation matricies to boost the

black holes in any direction and using Kerr spacetime to obtain spinning boosted-trumpet black holes were

discussed.
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