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Abstract

LAN LIU: Causal Inference with Interference
(Under the direction of Dr. Michael G. Hudgens)

Recently, increasing attention has focused on making causal inference when inter-

ference is possible, i.e., when the potential outcomes of one individual may be affected

by the treatment (or exposure) of other individuals. For example, in infectious diseases,

whether one individual becomes infected may depend on whether another individual

is vaccinated. In the presence of interference, treatment may have several types of ef-

fects. We consider inference about such effects when the population consists of groups

of individuals where interference is possible within groups but not between groups. In

the first part of this research, we assume a two stage randomization design where in

the first stage groups are randomized to different treatment allocation strategies and

in the second stage individuals are randomized to treatment or control conditional on

the strategy assigned to their group in the first stage. For this design, the asymptot-

ic distribution of estimators of the causal effects are derived when either the number

of individuals per group or the number of groups grows large. A simulation study is

presented showing that in various settings the corresponding asymptotic confidence in-

tervals have good coverage in finite samples and are substantially narrower than exact

confidence intervals. The methods are illustrated with two applications which consider

the indirect effects of cholera vaccination and an intervention to encourage voting. In

the second part of this research, we consider drawing inference about causal effects

in the presence of interference when two stage randomization is not possible. Inverse

probability weighted and doubly robust estimators are proposed for use in this setting.
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These estimators will be used to analyze data from an observational study on rotavirus

vaccination in Nicaragua.
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Chapter 1

Introduction and Literature Review

An important problem in epidemiological and clinical studies is how to make causal

inferences of treatments or agents; for example, does exposure to high levels of toxic

chemicals cause cancer? Does a new drug lead to a longer survival time? To assess

the causal effect, traditional literature assumes units are randomly assigned directly

to treatment or control. More often than not, the ideal randomization is violated or

unethical to implement in scientific studies. However, it is useful to describe methods

for drawing valid causal inferences in randomized setting before we consider more com-

plicated settings involving nonrandomized data. Also, in the traditional randomized

experiment, the potential outcomes that would be observed for a unit in either the

treatment or control condition are assumed not depend on the treatment assignment

of other units. Part of this condition is what Rubin (1980) refers to as the ‘stable unit

treatment value assumption’, or SUTVA for short. More recently there has been re-

search on relaxing SUTVA (see Hudgens and Halloran (2008), Tchetgen Tchetgen and

VanderWeele (2012) and VanderWeele and Tchetgen Tchetgen (2011)). In this docu-

ment we first review some classic approaches to making inferences about causal effects

using potential outcomes in randomization designed studies and then in observation-

al studies. In Chapter 2, we give the asymptotic distribution of estimators of various

causal effects in randomization studies and hence construct the Wald type of confidence



intervals (CI). These CIs are compared to existing exact CIs in simulation studies where

Wald CIs are significantly narrower while preserving good coverage. In Chapter 3, we

suggest using Hajek type estimators instead of inverse probability weighted estimators

in observational studies. Chapter 4 focuses on developing double robust estimators for

causal effects.

1.1 Motivating Examples

In the last decade a growing body of research has studied the effects of an inter-

vention when interference is at present. Hong and Raudenbush (2006) investigated

an case study of policy of retaining low-achieving children in kindergarten rather than

promoting them to first grade. Children were nested in classes and classes were nested

in schools. Interference was assumed to happen between children in the same school

but not between schools. In econometric studies, Sobel (2006) suggested the decision to

move of one household may also depend on other households in the same neighborhood.

The randomized trial described in Mvukiyehe and Samii (2011) studies the proximate

and medium-term effects of a newly designed intervention that (i) establishes village

“security committees” to enhance communication between local communities and a

peacekeeping mission and (ii) complements this security-based treatment with civic

and peace education. The communities were grouped based on location and proximity

to each other into ‘clans’. Interference may exist between communities in the same clan.

In this section, we introduce three studies that motivate the research in the following

chapters.

1.1.1 Herd Immunity Study in Bangladesh

The evaluation of killed oral cholera vaccines, which possess mild direct protection

to vaccinees, can also be judged based on indirect or herd protection when high levels
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of vaccine coverage are achieved. Ali et al. (2005) analyzed the first year of surveillance

data from a placebo-controlled trial of B subunit-killed whole-cell and killed whole-cell-

only oral cholera vaccines in children and adult women in Bangladesh. In the triple

blinded study (blinded to investigators, statisticians and patients), patients were ran-

domly assigned one of three letter-codes, which corresponded to three agents identical

in appearance.

When assessing cholera risk, the researchers grouped patients according to the baris

(patrilineally-related households living in clusters) they residing in. To define baris,

the authors made use of the Demographic Surveillance System of the region, which has

tracked all vital events of the local population since 1966. The bari level of vaccine

coverage was calculated as the number of vaccinated individuals divided by the number

of people who were eligible for participation in the tria by age and sex criteria. To

some extent, we can view the bari level as observational studies. It was assumed

that person-to-person transmission of cholera often takes place within these baris but

not across baris. Ali et al. (2005) found that the incidence of cholera tended to be

lower in unvaccinated individuals within baris with high vaccine coverage compared to

unvaccinated individuals within baris with low vaccine coverage.

1.1.2 Voting Encouragement Experiment

The study was carried out prior to the 2002 Congressional Primaries (Nickerson

(2008)). Households in Denver, CO, and Minneapolis, MN, with two registered persons

were included in the study and randomly assigned to one of the conditions: (1) receive

a Get Out the Vote (GOTV) message; (2) receive encouragement to recycle; (3) receive

no contact from the campaign. Each appeal was delivered through door-to-door visit.

Both Denver and Minneapolis are big cities with high density of two-voters households.

There were 486 households received the encouragement to vote and 470 households
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received the recycling treatment. The two key features of this study make it possible

to draw conclusion about contagion within household: only two-voter households are

considered and the treatment is administered to the first person who answers the door.

Thus, in a household received encouragement to vote, the coverage of the treatment is

exactly 50% in the household while that is 0% for either a placebo household or one

that received encouragement to recycle.

Nickerson (2008) found that both cities experienced a significant rise in the percent

of people voted in the election from the GOTV campaign. It was reported that 9.8%

more people in GOTV households voted compared to that in recycling encouragement

household among those who answered the door. The spillover effect was estimated

to be 6.0% and it is significant at the 0.1 level, that is for every 100 households that

receive the encouragement intervention, on average an additional six individuals will

vote despite never coming into direct contact with a canvasser. Thus Nickerson (2008)

concluded that interpersonal influence shapes the behaviors of people living in the same

household and the atomistic assumption was contradicted.

1.1.3 Diarrhea Vaccine Study in Nicaragua

The study was carried out in León, Nicaragua’s second largest city, with an es-

timated 2010 population of 200,000. The primary goal of the study was to evaluate

the efficacy of rotavirus vaccine in preventing and controlling the diarrhea episodes in

infants and young kids as well as to find out other characteristic factors that may help

reduce the risk of having rotavirus diarrhea.

The rotavirus vaccine was first introduced to León, Nicaragua in October 2006. In

2010, the Health and Demographic Surveillance Site-León (HDSS-León) was employed

to obtain a simple random sample of households from about 50 out of 208 randomly

selected geographical clusters of equal size (Becker-Dreps et al (2012)). Any child in
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the selected family under the age of 5 is eligible to be in the study. Rotavirus vaccine is

offered to any eligible child in the study at the age of 2, 4 and 6 months. However, due

to various reasons, the coverage of vaccine of at least one dose is about 67% after the

implementation of immunization program. Each individuals in the study were visited

by a field worker every 2 weeks for about a year (January 2010 to February 2011,

except during Christmas break). During each visit, information about the episodes

happened in the past 14 days were collected as well as other information about the

household such as the sanitation conditions, water source, or that of the mother or

the child such as maternal employment or age of the child. To better evaluate the

effectiveness of rotavirus vaccine, a historical study started in December 2000 and ended

in January 2003 in León, Nicaragua was revisited. Children in this study were viewed

as the placebo group. Becker-Dreps et al (2012) concluded that the rotavirus vaccine

has a significant indirect effect in that the rotavirus diarrhea incidence of unvaccinated

children after the introduction of the vaccine is lower than that before the introduction.

1.2 Causal Inference in Randomized Studies

1.2.1 Classic Causal Inference

As pointed out by Little and Rubin (2000), it is complicated and challenging to

define “cause” rigourously, but for empirical research, the idea of the causal effect of

an agent or treatment makes it more straightforward and practically useful to quantify

“cause.” One possible method is to define causal effects by means of potential outcomes.

The definition of causal effects using potential outcomes is often referred to as Rubin’s

Causal Model (Little and Yau (1998), Frangakis and Rubin (2004)), but the formal

notation was introduced by Neyman in the context of randomization-based inference

(Robins (1989), Rubin (1990)). This framework has been widely employed in empirical

research in various fields such as economics (Haavelmo (1944), Robins and Greenland
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(1996), Pratt and Schlaifer (1988), Tinbergen (1930)), epidemiology (Greenland and

Robins (1986), Robins (2000), Robins et al. (1992), Robins et al. (2000)), social and

behavioral sciences (Sobel (1990, 1995), Wilkinson (1999)), statistics (Rubin (2004),

Pratt and Schlaifer (1984)) and elsewhere.

The key problem for inference is that once the treatment is adopted, only one

of potential outcomes is observed, the one corresponding to the treatment actually

assigned. This feature is referred to as “counterfactual” in the causal inference literature

(Morgan and Winship (2007)). For example, if we assign vaccine to prevent the flu,

then we do not observe the outcome we would have seen if vaccine were not assigned. In

other words, the outcomes under control is missing for individuals assigned treatment

and that under treatment is missing for individuals in control group. Thus, causal

inference can be regarded as a problem of drawing inference when half of the potential

outcomes are ‘missing’. This viewpoint gave rise to a formal framework that extended

the idea beyond randomized experiments to accommodate unexpected missing data

and noncompliance (Rubin (1974, 1977, 1978)).

Following the existing literature, with a binary treatment there are two potential

outcomes for each individual, one under treatment and the other under control. The

potential outcome is well defined in this way only if two conditions are satisfied. First,

there are not multiple versions of the treatment. Second, the potential outcomes that

would be observed for a unit in either the treatment or control condition do not depend

on the overall set of treatment assignments. These two conditions together are what

Rubin (1980) refers to as the “stable unit treatment value assumption,” or SUTVA.

Manski (2012) addressed the latter assumption as “individualistic treatment response”

(ITR) and viewed it as a restriction of the form of treatment response function.

Primarily, there are three formal statistical modes of causal inference, one due to

Fisher (1932), one due to Neyman (1990) and the third arises from a Bayesian point
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of view. The Fisher’s sharp null hypothesis states that both treatments have exactly

the same outcomes, i.e., Y (1) = Y (0) for all units, where 1 stands for treatment and

0 for placebo. Under the sharp null hypothesis, there is no missing value since all the

potential outcomes can be identified from the observed outcome Y obs (note Y (0) =

Y (1) = Y obs). Furthermore, the value of any test statistic, T , such as Y (1)− Y (0),

can be computed and the P value of with can be obtained. Little and Rubin (2000)

pointed out that the Fisher’s sharp null model is too restricted and a small P value

does not necessarily imply that deviations from the null hypothesis are of importance.

However, there is still worthwhile to obtain such a P value when one claims evidence

for a treatment difference.

Neyman’s form of randomization-based inference, on the other hand, has a direct

mapping to Neyman’s (1934) classic article on randomization-based (also known as

design-based) inference in surveys. Essentially, one needs to construct an unbiased

estimator of the causal effect and an unbiased (or upwardly biased) variance estimator

for it. Central limit theorem can be applied to attain the normality of the estimator

when the sample size is large enough and hence a Wald confidence interval (CI) can

be construct to assess the region of uncertainty. More explicitly, let Ŷ (0) and Ŷ (1)

denote the sample means of the outcomes of individuals assigned to treatments 0 and

1, respectively. The average causal effect is chosen to be Y (1)− Y (0), where Y (1)

is the average outcome among the treated individuals and Y (0) is that among the

untreated. It can be shown that Ŷ (1)− Ŷ (0) is unbiased for Y (1)−Y (0) under simple

random assignment of treatments. Let n1 denote the number of units assigned the first

treatment and n2 units assigned the second treatment, thus the estimated variance is

se2 = s2
1/n1 +s2

2/n2, where s1 and s2 are the sample variances of two treatment groups.

Unless causal effects are the same across all the individuals (also called ‘additivity’),

the sample variance se2 is positively biased. The standard 95% confidence interval for
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Y (1)−Y (0) is Ŷ (1)− Ŷ (0)± 1.96se, which, in large enough samples, includes Y (1)−

Y (0) in 95% of the possible random assignments. As commented on by Little and Rubin

(2000), Neyman’s form of inference is aiming at evaluations of procedures for causal

inference rather than telling us what to do. The Bayesian approach is beyond the scope

of our discussion here. In Chapter 2, we will adopt Neyman’s form of randomization-

based inference.

1.2.2 Interference

We say ‘interference’ is present if the treatment of one individual affect the potential

outcome of another individual. Experimental and observational studies often involve

treatments with effects that ‘interfere’ across units through spillover or other forms of

dependency. Sometimes this interference is a nuisance, in which case we might design

the study to isolate units as much as possible from potential interference. This may

not always be feasible, however. Also, the spillover effects may be of intrinsic interest.

Treatments may be applied to people in an existing network, and we may wish to study

how effects transmit to peers in the network.

There are a number of research papers trying to demystify the role of interference in

various scientific areas. In infectious disease studies, the susceptibility of an individual

to the disease may depend not only on his own vaccine status, but on that of others

as well. Halloran and Struchiner (1995) defined ‘conditional direct causal effects’ to

be the averages effects of vaccination conditional on the subject’s exposure status. By

assuming ‘all exposures to infection are discrete and equivalent’, they circumvent the

interference problem and instead focus on the difference between the transmission prob-

abilities among the vaccinated and unvaccinated individuals. In economics, Angelucci

and De Giorgi (2009) employed village-level randomized experiment to demonstrate
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that the strong impact of a cash transfer program may be due to large positive spill-

overs. More specifically, the comparison between ineligible households from treated

villages to households from untreated villages reveal a positive impact on the consump-

tion of ineligible households of the policies. In such randomization study, spill-over

effect can be measured directly. Sobel (2006), however, took a different approach by

defining unit effects for any allocation of the population units to treatment groups.

Based on that, he defined average effects in a specific allocation of the units to treat-

ments. Although his method was illustrated by a “Moving to Opportunity” (MTO)

study, such techniques can be apply to other settings as well.

When interference is present, the difficulty of analyzing data in a sensible way

increases. The first and foremost problem is how to define the potential outcomes.

As mentioned, the classic interference literature assumes that each individual has two

potential outcomes. This is generally not true when the interference is at present.

Imagine there are two people in the study, the outcome of one individual cannot be

fully determined by his own treatment but also by the other’s. More generally, in a

population of size n, the number of potential outcome for each individual can be as

many as 2n if any interference is possible. Also, as stated by Rosenbaum (2007), simple

comparison such as take the difference of the treated and untreated can no longer reflect

the treatment effects since the interference makes the effect inherently more complex.

Available statistical tools are also limited. For instance, Fisher’s sharp null hypothesis

of no treatment effect implicitly assumes no interference, thus this randomization test

cannot be used to test no effect in the presence of interference.

Hudgens and Halloran (2008) defined the average potential outcome, that is, the

expected outcome of an individual given his treatment averaging over all the possible

combinations of treatment assignment of others. Thus, there are only two average

potential outcome for each individual even when individuals interfere with each other.
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Researches on the simplification on the structure of interference are carried out. For

example, the stratified interference states that the interference is possible only among

the individuals in the same group but not across. Further, Hudgens and Halloran (2008)

considered the situation where the outcome of one individual is allowed to depend on

his treatment as well as the coverage of the group he belongs to. Thus, under certain

randomization, the number of all potential outcome decreases greatly. For a study

where individuals interfere with each other, the potential outcomes can be regarded as

a function of the treatment vector of other members in the population. Manski (2012)

commented that the no interference, the partial interference and other interference

structure assumption are merely special cases of the functional form of the potential

outcomes. Another commonly used approach assumes that interference is of a simple

parametric form confined to units that are near one another in time or space. For

example, Verbitsky and Raudenbush (2004) modeled the neighbourhood crime rate in

Chicago as a function of community policing implemented in it as well as surrounding

areas. This approach is useful when applicable but is of little use when interference

may be widespread and of uncertain form. In this case, nonparametric methods that

assuming nothing at all about the structure of the interference between units makes

more sense.

When the interference exists in the population, there are more effects to investigate

before reaching the conclusion of the efficacy of a treatment or intervention. Hudgens

and Halloran (2008) defined direct, indirect, total and overall effects and proposed un-

biased estimators for them. Under the stratified interference assumption, the variance

estimator of those causal effect estimators are also developed. They were shown to be

unbiased when the additivity holds and positively biased otherwise. Tchetgen Tchetgen

and VanderWeele (2012) relaxed the stratified interference assumption when developing

variance estimators. They came up with simple yet conservative estimation of variance,
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as an unbiased estimator of an upper bound for the variance is often a useful measure of

uncertainty. McConnell et al. (2010) applied multi-level designs to a large-scale voter

mobilization experiment conducted in Chicago during a special election in 2009 us-

ing the social pressure mailings pioneered by Gerber, Green and Larimer (2008). They

found some evidence of within-household spill-overs but no evidence of spill-overs across

households. The advantage of their method is the inference is no longer restricted under

SUTVA or just interference within group not across groups. However, they adopted a

parametric way of analyzing data, which may provide misleading result if confounders

are not all taken into considerations.

1.3 Observational Studies

Unlike an ideal randomized trial, the response of individuals in different treatment

groups should not be compared directly in observational studies. This is because the

units in one treatment group may differ greatly from the units in the other treatment

group. An idea is to modify the observational study as much alike as possible into a

randomized trial. For example, if (i) the treatment selection mechanism can be predict-

ed by the measured covariates (conditional exchangeability), (ii) the probability of the

treatment allocation is positive conditional on covariates (positivity) and (iii) although

the treatment are not assigned by the investigator but correspond to certain interven-

tion (consistency), then the observational study can emulate a conditional randomized

experiment. That is to say, to endow causal inference from the observational study,

one needs to provide an observational study which can be modified into a conditional

randomized study and describe the randomization mechanism that one would like to

carry out but couldn’t. Recall that in an ideal randomization trial, the exchangeability,

positivity and consistency are all satisfied. However, in observational studies, these

three assumptions, however careful an investigator might be about and no matter how
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many covariates have been collected, can never be guaranteed by study design.

In reality, a randomization study can bear the intricateness as much as an observa-

tional study. For example, a randomized trial with possible severe adverse events may

result in censoring or non-compliance which causes selection bias. Or, some predictor

or outcome (e.g., SNPs) maybe unable to observed directly or the study is unable to

be blinded which leads to measurement error. Above all, randomization study is not

always ethnical, practical or timely to conduct. These problems all beg the need for

appropriate analytical method for observational studies.

1.3.1 Classic Methods

As mentioned, once the conditional exchangeability, positivity and consistency are

satisfied, an observational study emulates a conditional randomization study, thus the

methods of the latter could be applied. Following Rosenbaum (2002), overt bias, de-

fined as visible, recorded pretreatment differences, can be removed by post-study ad-

justments; hidden bias, defined as unobserved pretreatment differences, must be studied

by other technics such as sensitivity analysis. There are two common methods to ad-

just for the overt bias: the stratification or matching can be used to compute the

conditional causal effects in certain subsets of the population while inverse-probability

weighting (IPW) (or the equivalent ‘standardization’ method) can be used to compute

the marginal causal effects in the entire population.

Rosenbaum and Rubin (1983) suggested the use of balancing scores, that is to group

the individuals that have similar propensity scores. Although such method cannot

guarantee the units in different treatment group to be exactly the same in all covariates,

it can at least achieve balance in terms of the selection mechanism and thus make the

comparison under different treatment exposure meaningful. It has been shown both

in theory and in empirical studies that such adjustment is sufficient to eliminate the
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bias caused by the observed covariates. More generally, covariate adjustment plays an

important role in making inference in non-randomization studies especially when the

treatment selection mechanism is unknown. In observational studies with unknown

propensity score but without hidden bias, if conditional on a sufficient estimator for

the unknown parameters in the propensity model, the conditional assignment follows

a known distribution. And thus, the methods and results obtained in randomization

studies can be generalized without much difficulty in observational studies.

The IPW estimator for the mean response under treatment z can be described as

Ŷ (z) =∑
i 1(Zi = z)Yi(z)/{nPr(Zi|Li)}, where Zi is the random variable of treatment

for individual i = 1, . . . ,n, Yi(z) is the potential outcome under treatment z and Li is

the covariates determines the choice of treatment. In the survey sampling literature,

the IPW estimator is known as the Horwitz Thompson estimator. The IPW procedure

simulates what would have been observed if the covariates had not been used to decide

the treatment. Similar as in the randomization studies, there are many settings where

the no interference assumption is violated in non-experimental studies. Under ignor-

ability and positivity assumption, Tchetgen Tchetgen and VanderWeele (2012) proved

that the average potential outcome can be unbiasedly estimated by the ‘generalized

IPW estimator’ in the presence of interference. In Chapter 3, we propose the Hajek

estimator to improve the ‘generalized IPW’ estimator for observational studies when

interference is present. For the following chapters, we always assume that observational

studies of interest are free of hidden bias.

1.3.2 Doubly Robust Estimators

There are two main criticism against IPW estimator: one in terms of efficiency and

the other of robustness. Note that when the propensity score tends to 0, the estimator

is unbounded, which leads to large variance. Empirical studies have shown that, the
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IPW estimator is sensitive to the estimation of the propensity score. The doubly robust

estimator, on the other hand, is shown both theoretically and empirically to be effective

to make the correct inference in observational studies. There are two ways to adjust

for the missing outcome when the missing is beyond the control of the investigator.

One way is to model the missing mechanism while the other is to impute the missing

outcomes through covariates. The doubly robust procedure takes the both models into

account and the conclusion is valid when either of the model is right.

Previous literature has developed various doubly robust estimators (Särndal et al.

(2003), Lunceford and Davidian (2004), Bang and Robins (2005), Kang and Schafer

(2007)). For example, Cassel et al. (1976, 1977) proposed a family of “generalized

regression estimators” of population means based both on the outcome predicted and

the propensity scores. The estimator can be expressed as ŶBC−OLS(z) = ŶOLS(z) +∑
i 1(Zi = z)π̂−1

i ε̂i(z), where ŶOLS(z) is the ordinary least square estimator for the

population mean if everyone in the population assigned treatment z, π̂i = Pr(Zi = z)

and ε̂i(z) is the estimated residuals. Thus, if the study potential outcome model is true,

then E[ε̂i(z)] = 0 which leads to the second term in the ŶBC−OLS(z) formula 0 for any

π̂i. If the propensity score model is true, the the second term consistently estimates

the bias of the first term.

As commented by Tsiatis and Davidian (2007), the property of an estimator can be

fully understood by investigating the influence function. The situations where either

of the potential outcome model or the propensity score is correct can be viewed from

a semi-parametric standing where the distribution of covariates are always unspecified.

It was shown that when at most one model is misspecified, the standardized DR es-

timator is asymptotically linear in influence functions and thus achieves consistency

and asymptotically normality. However, to our knowledge all methods on DR inference

assume no interference. In Chapter 4, we are going to apply the DR procedure for
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observational studies when interference is present.

1.4 Summary and Proposed Research

In summary, assessing the causal effect of treatment with interference is an impor-

tant goal. However, interest in interference can make inference challenging even when

randomization is employed. Specifically, previous literature have develop the estimators

for different causal effects but further investigation about the asymptotic distribution

needs to be undertaken. Additionally, published approaches for analyzing data from

observational studies under various types of interference are limited.

Accordingly, we first develop methods for randomization-based causal inference with

interference. The asymptotic distribution of various causal effects: direct, indirect,

overall and total effect at both individual and group level will be derived. Moreover,

Wald type of CI will be proposed and compared to exact CI. The methods are illus-

trated with two applications which consider the effects of cholera vaccination and an

intervention to encourage voting. Second, we propose modified IPW estimators for use

in observation studies where interference may be present. The modified IPW estimators

will be shown to be asymptotically unbiased and have smaller variance compared to

the IPW estimators proposed by Tchetgen Tchetgen and VanderWeele (2012). Lastly,

we propose doubly robust estimators for use in observational studies when interference

may be present. These estimators are appealing in the sense that the estimators are

consistent when either the propensity or the potential outcome model is right. Simu-

lations are carried out to show the bias and mean square error for various estimators.

The modified IPW estimators and the doubly robust estimators are illustrated with an

application which considers the effects of rotavirus vaccination.
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Chapter 2

Large Sample Randomization Inference with Interference

2.1 Introduction

When assessing the causal effect of a treatment or exposure, it is typically assumed

that individuals (or units) do not interfere with each other (Cox 1958). This assumption

is part of the stable unit treatment value assumption (SUTVA) (Rubin 1980). Under

the no interference assumption, the potential outcomes of any individual are assumed

to be determined solely by the treatment of that individual, unaffected by the treat-

ment of other individuals under study. However, in many settings this assumption may

not hold. For example, in vaccine studies, the outcome of an individual may depend

not only on that individual’s vaccine status but also on the vaccination status of other

individuals (Halloran and Struchiner 1995). In educational studies, a student’s aca-

demic performance may depend on the retention or promotion of that student as well

as of fellow classmates (Hong and Raudenbush 2006). In econometric studies, inter-

ference may be present between households in the same neighborhood (Sobel 2006) or

other settings where individuals interact socially (Manski 2012). Interference can occur

within an individual over time, e.g., as in functional MRI studies (Luo et al. 2012), or

between units that are proximal spatially (e.g., Zigler et al. 2012). Rosenbaum (2007)

presents several other examples where interference may be present.

Increasing attention has been placed on relaxing the no interference assumption



(see Tchetgen Tchetgen and VanderWeele (2012) and references therein). Inference in

this setting is particularly interesting because a treatment may have different types

of effects, but challenging because individuals may have many potential outcomes due

to interference. One approach has been to consider settings where individuals can be

partitioned into groups such that interference is possible between individuals within

the same group but not across groups. This is sometimes called ‘partial interference’

(Sobel 2006), a terminology adopted here. In the nomenclature of Manski (2012),

partial interference is an example of a ‘constant treatment response’ where the ‘reference

groups’ are ‘treatment invariant’ and ‘symmetric’. The partial interference assumption

will be reasonable when groups are sufficiently separate socially, temporally, or spatially.

Drawing inference about treatment effects often relies on knowledge or modeling

of the mechanism by which individuals are assigned or select treatment. Assuming

partial interference, one possible assignment mechanism is a two stage randomization

design, where in the first stage groups are randomized to different treatment allocation

strategies and in the second stage individuals are randomized to treatment or control

conditional on the strategy assigned to their group in the first stage. For example,

schools might be randomized to high or low vaccine coverage, and then students in

the schools randomized to vaccine or control with vaccination probability dependen-

t on whether their school was assigned to high or low coverage (Longini et al. 1998).

Similarly, Borm et al. (2005) described a trial where general practitioners were random-

ized to two allocation strategies and then different proportions of each practitioner’s

patients were randomly assigned either a traditional or new method of care. Sinclair

et al. (2012) conducted a two stage randomization experiment to determine the direct

and indirect (or ‘spillover’) effects of social pressure mailings on voter mobilization in a

special election in 2009. In that study zip-codes were randomly assigned to one of four

allocation strategies, and then households within a zip-code were randomly assigned to
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receive mailings (postcards) conditional on the allocation strategy assigned to that zip-

code. For other examples, see Duflo and Saez (2003) and Ichino and Schündeln (2012).

This two-stage randomization design has been referred to as split-plot or pseudo-cluster

randomization.

Assuming partial interference and a two stage randomization design, Hudgens and

Halloran (2008) proposed unbiased estimators for different causal effects of treatment.

They also derived variance estimators which under certain assumptions are conservative

unless the corresponding causal effect is additive. These results can be viewed as gener-

alizations of the classic results of Splawa-Neyman (1923) to the setting of interference.

In this paper, the large sample distributions of the causal effect estimators proposed

by Hudgens and Halloran (2008) are derived for two stage randomization studies. The

outline of the remainder of this paper is as follows. In Section 2.2 we introduce no-

tation and define various causal effects. Unbiased estimators of these effects and the

corresponding variance estimators are reviewed briefly in Section 2.3.1. The asymptotic

distributions of these estimators are then derived when either the number of individ-

uals within the groups grows large (Section 2.3.2.1), or the number of groups grows

large (Section 2.3.2.2). These results can be utilized to construct Wald type confidence

intervals (CIs) or tests for the different treatment effects. In Section 2.4 a simulation

study is presented comparing Wald CIs with CIs based on Hoeffding and Chebyshev

inequalities. Section 2.5 includes two applications which consider the various effects

of a cholera vaccine and an intervention to encourage voting. Proofs of the results in

Section 2.3 and some technical details regarding the voting encouragement analysis are

given in the Appendix.
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2.2 Notation, Assumptions and Estimands

Consider a population of m groups with ni individuals in group i for i = 1, . . . ,m.

Suppose individuals can receive treatment or control, denoted by 1 or 0. Let zij denote

the treatment indicator for individual j in group i, where zij = 1 indicates treatment

and zij = 0 denotes control. Let zi(−j) denote the vector of treatment indicators for the

individuals in group i other than individual j and let zi = (zij , zi(−j)) denote the vector

of treatment indicators for all individuals in group i. Let yij(zi) = yij(zij , zi(−j)) denote

the potential outcome of individual j when individuals in group i receive treatment

zi. Randomization based inference is employed in this paper wherein the potential

outcomes are viewed as fixed (i.e., non-random) features of the population of ∑m
i=1ni

individuals. Note the notation yij(zi) encompasses the partial interference assumption

that the outcome for individual j does not depend on the treatment of individuals in

groups i′ 6= i.

Just as individuals can receive treatment or control, suppose groups can take on

different treatment allocation strategies corresponding to the proportion of individuals

within the group that receive treatment. For simplicity we consider only two allocation

strategies, denoted by α1 and α0. For instance, α1 could correspond to assigning treat-

ment to 50% of individuals in a group and α0 could correspond to assigning treatment

to 10% of individuals in a group. Let gi = s when allocation strategy for group i is αs

and let g = (g1, . . . ,gm) denote the vector of group level allocation strategies.

Assume a two-stage randomization design where in the first stage groups are as-

signed allocation strategies α1 and α0. Denote the random assignment indicator for

group i by Gi and let G= (G1, . . . ,Gm). Let l =∑m
i=1Gi denote the number of groups

assigned allocation strategy α1. Assume allocation strategies are assigned using per-

mutation randomization such that l is fixed for some integer l ∈ {1, . . . ,m− 1}, i.e.,

Pr(G= g) = 1/
(
m
l

)
for all g such that ∑m

i=1 gi = l and Pr(G= g) = 0 otherwise. In the
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second stage of randomization, individuals are randomly assigned treatment or control

conditional on Gi = gi from the first stage. Let the individual treatment assignmen-

t of individual j in group i be denoted by Zij and let Zi = (Zi1, . . . ,Zini) such that

the observed outcome for individual j is yij(Zi). Throughout, it is assumed that the

assignment of an individual to a particular treatment is equivalent to receipt of that

treatment, i.e., there is perfect compliance. Likewise, it is assumed groups are always

compliant with their assigned allocation strategy. Let kiαs =∑ni
j=1Zij denote the num-

ber of individuals in group i assigned treatment when group i is assigned allocation

strategy αs. Assume that treatment is assigned using permutation randomization such

that kiαs is fixed given Gi. Let Rnk denote the set of vectors of length n with ele-

ments 0 or 1 that sum to k, i.e., Rnk = {v ∈ {0,1}n :∑n
i=1 vi = k}. Under the two stage

randomization design described above, g ∈Rml , zi ∈Rnikiαs and zi(−j) ∈R
ni−1
kiαs−zij

.

Define the average potential outcome for individual j in group i when individual j

is assigned treatment z and group i is assigned allocation strategy α1 by

yij(z,α1) =
∑

zi(−j)∈R
ni−1
kiα1−z

yij(zij = z,zi(−j))Prα1(Zi(−j) = zi(−j) | Zij = z).

See VanderWeele and Tchetgen Tchetgen (2011) for alternative approaches to defining

average potential outcomes for an individual. Averaging over individuals, define the

group average potential outcome under group allocation α1 and individual treatment

assignment z as yi(z,α1) =∑ni
j=1 yij(z,α1)/ni. Similarly, averaging over groups, define

the population average potential outcome as y(z,α1) = ∑m
i=1 yi(z,α1)/m. Define the

marginal individual average potential outcome by yij(α1) = ∑
z∈Rnikiα1

yij(z)Prα1(Zi =

z), that is, the average potential outcome for individual j in group i when group i

is assigned α1. Similarly, define the marginal group and population average potential
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outcomes by yi(α1) =∑ni
j=1 yij(α1)/ni and y(α1) =∑m

i=1 yi(α1)/m.

Various causal effects can be defined by considering contrasts of different average

potential outcomes. For example, at the group level, a direct effect can be defined as

DEi(α1) = yi(1,α1)−yi(0,α1). That is, DEi(α1) is the difference between the average

potential outcome when group i receives allocation strategy α1 and an individual in

that group receives treatment compared to when an individual in that group receives

control. At the population level define the direct effect DE(αs) = y(1,αs)−y(0,αs) for

s= 0,1, the indirect effect IE(α1,α0) = y(0,α1)−y(0,α0), the total effect TE(α1,α0) =

y(1,α1)− y(0,α0), and the overall effect OE(α1,α0) = y(α1)− y(α0). In words, the

indirect (or spillover) effect compares the average potential outcome when an individual

receives control and their group receives allocation strategy α1 compared to when their

group receives α0. Because the individual treatment assignment is held fixed, the

indirect effect will be non-zero only if interference is present. Note that the indirect

effect can also be defined for individuals who receive treatment, i.e., in terms of ȳ(1,αs)

for s= 0,1, but for simplicity we do not consider this other indirect effect here. The total

effect equals the sum of the direct and indirect effects, while the overall effect provides a

single summary measure of the effect of allocation strategy α1 versus α0. See Tchetgen

Tchetgen and VanderWeele (2012) for further discussion about these estimands.

Assuming only partial interference, an individual in a group with ni individuals will

have 2ni potential outcomes. For groups of even moderate size the large number of

potential outcomes per individual makes inference challenging. One possible additional

assumption about the structure of interference that reduces the number of potential

outcomes considerably is:

yij(zi) = yij(z′i) for all zi, z′i ∈R
ni
kiαs

such that zij = z′ij . (2.1)

Assumption (2.1) has been referred to as ‘stratified interference’ (Hudgens and Halloran
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2008) and ‘anonymous interaction’ (Manski 2012). This assumption might be appro-

priate when the potential outcome of any individual in a group is thought to be affected

only by that individual’s treatment and the aggregate treatment assignment of others in

the same group. For example, consider a study of vaccines in children attending school

and assume no interference between schools. Assumption (2.1) implies the outcome for

an individual vaccinated child will be the same when k−1 schoolmates receive vaccine

regardless of which particular k−1 schoolmates are actually vaccinated. Under (2.1),

the number of potential outcomes reduces from 2ni to 2ni for any individual in a group

of size ni. Given permutation allocation strategy αs is assigned to group i, individual j

will have only two potential outcomes depending on whether zij = 1 or zij = 0. That is,

yij(zij , zi(−j)) = yij(zij ,αs) for all zi ∈ Rnikiαs . In the sequel, the stratified interference

assumption (2.1) is made throughout. Thus for notational simplicity yij(z,αs) will be

denoted by yij(z,αs) for z,s= 0,1.

2.3 Inference

2.3.1 Estimators

Hudgens and Halloran (2008) derived unbiased estimators for the causal estimand-

s defined in Section 2.2 above. Specifically, assuming partial interference and two

stage permutation randomization, a conditionally unbiased estimator for yi(z,αs) giv-

en Gi = s is Ŷi(z,αs) = ∑ni
j=1 yij(Zi)1(Zij = z)/∑ni

j=1 1(Zij = z) and an unbiased es-

timator for y(z,αs) is Ŷ (z,αs) =
m∑
i=1

Ŷi(z,αs)1(Gi = s)/
m∑
i=1

1(Gi = s), where 1(·) is

the usual indicator function. At the group level a conditionally unbiased estima-

tor given Gi = s of the direct effect is D̂Ei(αs) = Ŷi(1,αs)− Ŷi(0,αs), and at the

population level unbiased estimators for the direct, indirect, total, and overall ef-

fects are D̂E(αs) = Ŷ (1,αs)− Ŷ (0,αs) for s = 0,1, ÎE(α1,α0) = Ŷ (0,α1)− Ŷ (0,α0),

T̂E(α1,α0) = Ŷ (1,α1)− Ŷ (0,α0) and ÔE(α1,α0) = Ŷ (α1)− Ŷ (α0), where Ŷi(α1) =
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∑ni
j=1 yij(Zi)/ni, Ŷ (α1) = ∑m

i=1 Ŷi(α1)1(Gi = 1)/∑m
i=1 1(Gi = 1) and Ŷ (α0) is defined

analogously.

Hudgens and Halloran also proposed estimators of the variances of these estima-

tors. In particular, under (2.1) unbiased estimators for V ar{Ŷi(1,α1)|Gi = 1} and

V ar{Ŷ (1,α1)} are given by V̂ ar{Ŷi(1,α1)|Gi = 1} = (1− kiα1/ni)σ̂2
i1(α1)/kiα1 where

σ̂2
i1(α1) =∑ni

j=1{yij(Zi)−Ŷi(1,α1)}2Zij/(kiα1−1) and V̂ ar{Ŷ (1,α1)}= (1−l/m)σ̂2
g1(α1)

/l+∑m
i=1(1−kiα1/ni)σ̂2

i1(α1)Gi/(kiα1ml) where σ̂2
g1(α1) =∑m

i=1{Ŷi(1,α1)− Ŷ (1,α1)}2

Gi/(l−1). Hudgens and Halloran also proposed estimators of the variance of the various

causal effect estimators which are positively biased unless certain additivity conditions

hold. For example, if there exist constants η1, . . . ,ηm such that yij(1,αs) = yij(0,αs)+ηi

for all i= 1, . . . ,m and j = 1, . . . ,ni, then their estimator for the variance of D̂E(αs) is

unbiased; otherwise their estimator is positively biased. Similar additivity conditions

exist for the variance estimators of the other causal effect estimators.

2.3.2 Asymptotic Distributions

Below the asymptotic distributions of the causal effect estimators defined in Section

2.3.1 are derived. In Section 2.3.2.1, the setting where the numbers of individuals

per group n1, . . . ,nm grow large is considered. These results might be applicable, for

instance, when groups are defined to be all individuals in a particular geographic region.

For example, Sur et al. (2009) estimated the indirect, total, and overall effects of typhoid

vaccination in groups of people within contiguous geographic areas in India, where the

average group size was over 700. The results in Section 2.3.2.1 do not require the

number of groups to be large. On the other hand, in Section 2.3.2.2 we consider the

setting where the number of groups m grows large. These results do not require that

the number of individuals per group is large and could be applied, for instance, in

household based studies when the households (i.e., groups) are small but the number of
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households in the study is large. For example, Millar et al. (2008) studied the indirect

effect of vaccination against pneumococcal disease in over 900 households containing

on average fewer than four individuals per household.

2.3.2.1 Large Groups

Propositions 1 – 3 below show that under certain conditions the group average

potential outcome estimators, group average direct effect estimator and the marginal

group average potential outcome estimators are asymptotically Normal (i.e., Gaussian).

The notation d−→N (0,1) will be used to denote convergence in distribution to a standard

Normal random variable.

Proposition 1. Let υij = yij(z,αs) and υi. = (υi1 + · · ·+υi,ni)/ni for z,s ∈ {0,1}. If

kiαs →∞,ni−kiαs →∞ (2.2)

and

max(υij−υi.)2∑ni
j=1(υij−υi.)2 max

{
ni−kiαs
kiαs

,
kiαs

ni−kiαs

}
→ 0 as ni→∞ (2.3)

where max(υij−υi.)2 = max{(υij−υi.)2 : j = 1, . . . ,ni}, then

Ŷi(z,αs)−yi(z,αs)√
V arαs{Ŷi(z,αs)}

∣∣∣∣∣∣Gi = s
d−→N (0,1)

where V arαs{Ŷi(z,αs)}= V ar{Ŷi(z,αs)|Gi = s}.

Proposition 2. Assume (2.2) and that (2.3) holds for υij = yij(1,αs)/kiαs+yij(0,αs)/(ni−

kiαs). Then
D̂Ei(αs)−DEi(αs)√
V arαs{D̂Ei(αs)}

∣∣∣∣∣∣Gi = s
d−→N (0,1)
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where V arαs{D̂Ei(αs)}= V ar{D̂Ei(αs)|Gi = s}.

Proposition 3. Assume(2.2) and that (2.3) holds for υij = yij(1,αs)−yij(0,αs). Then

Ŷi(αs)−yi(αs)√
V arαs{Ŷi(αs)}

∣∣∣∣∣∣Gi = s
d−→N (0,1)

where V arαs{Ŷi(αs)}= V ar{Ŷi(αs)|Gi = s}.

Propositions 4.1 – 4.4 below show that, under certain conditions, the population

direct, indirect, total and overall effect estimators are asymptotically distributed as

a mixture of Normal random variables as the numbers of individuals per group grow

large, i.e., as nmin = min{n1, . . . ,nm} → ∞. Recall a random variable X follows a

finite Normal mixture distribution (McLachlan et al. 1988) if there exists a discrete

random variable U with support u1, . . . ,uh and parameter vectors µ = (µ(1), . . . ,µ(h))

and σ = (σ(1), . . . ,σ(h)) such that the density of X satisfies

fX(x) =
h∑
i=1

ω(i)f(x|µ(i),σ(i))

where ω(i) = Pr(U = ui) and f(x | µ(i),σ(i)) is the density of a Normal random variable

with mean µ(i) and standard deviation σ(i). Equivalently, (X −µ(i))/σ(i) | U = ui ∼

N (0,1) for i= 1, . . . ,h. Define a sequence of random variables {Xn} to have an asymp-

totically Normal mixture distribution if there exists a discrete random variable U with

support u1, . . . ,uh and sequences of parameter vectors {µn} and {σn} such that

Xn−µ(i)
n

σ
(i)
n

∣∣∣∣ U = ui
d−→N (0,1) as n→∞ (2.4)

for i= 1, . . . ,h, where µ(i)
n and σ(i)

n denote the ith components of µn and σn. When (2.4)

holds, for notational convenience we suppress the subscript n and write (X−µ)/σ d−→
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M(ω,h). The following proposition is stated in terms of α1; the analogous result holds

for α0.

Proposition 4.1. Assume (2.2) and that (2.3) holds for υij = yij(1,α1)/kiα1 +yij(0,α1)

/(ni−kiα1) for i = 1, . . . ,m. Assume for any simple random sample {i1, . . . , il} drawn

without replacement from {1, . . . ,m} that limV arα1{D̂Ei(α1)}/ ∑
i∈{i1,...,il}

V arα1{D̂Ei(α1)}

as nmin→∞ exists for i∈ {i1, . . . , il}. Then for m<∞, D̂E(α1) has an asymptotically

Normal mixture distribution, i.e.,

D̂E(α1)−µDE
σDE

d−→M(ω,(ml ))

as nmin→∞. The parameter vectors, each of length
(
m
l

)
, are given by ω =

(
1/
(
m
l

))
,

µDE =
(
µ

(i1,...,il)
DE

)
and σDE =

(
σ

(i1,...,il)
DE

)
, where the elements of the vectors correspond

to all possible simple random sample {i1, . . . , il} without replacement from {1, . . . ,m},

with µ(i1,...,il)
DE = ∑

i∈{i1,...,il}
DEi(α1)/l and σ(i1,...,il)

DE =
[ ∑
i∈{i1,...,il}

V arα1{D̂Ei(α1)}
]1/2

/l.

Note in Proposition 4.1 and below the dependence of the parameters µDE and σDE

on αs and nmin are suppressed for notational convenience. From a single experiment

or trial, only one element from each of the vectors µDE and σDE is identifiable from

the observed data; in particular, only the parameters µi1,...,ilDE and σi1,...,ilDE are identi-

fiable where {i1, . . . , il} = {i ∈ {1, . . . ,m} :Gi = 1}. Hence the asymptotic distribution

of D̂E(α1) as the groups grow large is not identifiable without additional assumption-

s. One special case of Proposition 4.1 occurs when the groups are homogeneous in a

certain sense as described by the following corollary.

Corollary 1. If the assumptions of Proposition 4.1 hold and there exists µ(0)
DE and σ(0)

DE

such that µ(i1,...,il)
DE = µ

(0)
DE and σ(i1,...,il)

DE = σ
(0)
DE for all simple random samples {i1, . . . , il},

then µ
(0)
DE =DE(α1), σ(0)

DE =
√
V ar{D̂E(α1)} and for m<∞,
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D̂E(α1)−DE(α1)√
V ar{D̂E(α1)}

d−→N (0,1) (2.5)

as nmin→∞.

Note that the condition µ
(i1,...,il)
DE = µ

(0)
DE and σ

(i1,...,il)
DE = σ

(0)
DE for all simple random

samples {i1, . . . , il} is equivalent to DE1(α1) = · · ·=DEm(α1) and V arα1{D̂E1(α1)}=

· · ·= V arα1{D̂Em(α1)}. In other words, if the group level direct effect estimators have

the same mean and variance, then (2.5) holds.

The next three propositions and corollaries give analogous results for the population

average indirect, total and overall effect estimators.

Proposition 4.2. Assume (2.2) and that (2.3) holds for υij = yij(0,αs), s = 0,1.

Assume for any simple random sample {i1, . . . , il} drawn without replacement from

{1, . . . ,m} that lim√
V arα1Ŷi(0,α1)/{lσ(i1,...,il)

IE } exists for i ∈ {i1, ..., il} and lim
√
V arα1Ŷi(0,α1)/{(m−

l)σ(i1,...,il)
IE } exists for i /∈ {i1, ..., il} as nmin→∞. Then for m<∞,

ÎE(α1,α0)−µIE
σIE

d−→M(ω,(ml ))

as nmin→∞. The parameter vectors, each of length
(
m
l

)
, are given by ω =

(
1/
(
m
l

))
,

µIE =
(
µ

(i1,...,il)
IE

)
, σIE =

(
σ

(i1,...,il)
IE

)
, where

µ
(i1,...,il)
IE =

∑
i∈{i1,...,il}

yi(0,α1)
l

−
∑

i/∈{i1,...,il}

yi(0,α0)
m− l
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σ
(i1,...,il)
IE =

 ∑
i∈{i1,...,il}

V arα1{Ŷi(0,α1)}
l2

+
∑

i/∈{i1,...,il}

V arα0{Ŷi(0,α0)}
(m− l)2


1
2

Corollary 2. If the assumptions of Proposition 4.2 hold and there exists µ(0)
IE and σ(0)

IE

such that µ(i1,...,il)
IE = µ

(0)
IE and σ(i1,...,il)

IE = σ
(0)
IE for all {i1, . . . , il}, then µ

(0)
IE = IE(α1,α0),

σ
(0)
IE =

√
V ar{ÎE(α1,α0)}, and for m<∞,

ÎE(α1,α0)− IE(α1,α0)√
V ar{ÎE(α1,α0)}

d−→N (0,1) (2.6)

as nmin→∞.

Proposition 4.3. Assume (2.2) and that (2.3) holds for υij = yij(z,αs), (z,s)∈{(1,1),(0,0)}.

Assume for any simple random sample {i1, . . . , il} drawn without replacement from

{1, . . . ,m} that lim
√
V arα1Ŷi(1,α1)/{lσ(i1,...,il)

TE } exists for i∈{i1, ..., il} and lim
√
V arα1Ŷi(0,α1)/

{(m− l)σ(i1,...,il)
TE } exists for i /∈ {i1, ..., il} as nmin→∞. Then for m<∞,

T̂E(α1,α0)−µTE
σTE

d−→M(ω,(ml ))

as nmin→∞. The parameter vectors, each of length
(
m
l

)
, are given by ω =

(
1/
(
m
l

))
,

µTE =
(
µ

(i1,...,il)
TE

)
, σTE =

(
σ

(i1,...,il)
TE

)
, where

µ
(i1,...,il)
TE =

∑
i∈{i1,...,il}

yi(1,α1)
l

−
∑

i/∈{i1,...,il}

yi(0,α0)
m− l
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σ
(i1,...,il)
TE =

 ∑
i∈{i1,...,il}

V arα1{Ŷi(1,α1)}
l2

+
∑

i/∈{i1,...,il}

V arα0{Ŷi(0,α0)}
(m− l)2


1
2

Corollary 3. If the assumptions of Proposition 4.3 hold and there exists µ(0)
TE and σ(0)

TE

such that µ(i1,...,il)
TE = µ

(0)
TE and σ(i1,...,il)

TE = σ
(0)
TE for all {i1, . . . , il}, then µ(0)

TE = TE(α1,α0),

σ
(0)
TE =

√
V ar{T̂E(α1,α0)} and for m<∞,

T̂E(α1,α0)−TE(α1,α0)√
V ar{T̂E(α1,α0)}

d−→N (0,1) (2.7)

as nmin→∞.

Proposition 4.4. Assume (2.2) and that (2.3) holds for υij = yij(1,αs)−yij(0,αs), s=

0,1. Assume for any simple random sample {i1, . . . , il} drawn without replacement from

{1, . . . ,m} that lim
√
V arα1Ŷi(α1)/{lσ(i1,...,il)

OE } exists for i∈{i1, ..., il} and lim
√
V arα1Ŷi(α1)/

{(m− l)σ(i1,...,il)
OE } exists for i /∈ {i1, ..., il} as nmin→∞. Then for m<∞,

ÔE(α1,α0)−µOE
σOE

d−→M(ω,(ml ))

as nmin→∞. The parameter vectors, each of length
(
m
l

)
, are given by ω =

(
1/
(
m
l

))
,

µOE =
(
µ

(i1,...,il)
OE

)
, σOE =

(
σ

(i1,...,il)
OE

)
, where

µ
(i1,...,il)
OE =

∑
i∈{i1,...,il}

yi(α1)
l
−

∑
i/∈{i1,...,il}

yi(α0)
m− l
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σ
(i1,...,il)
OE =

 ∑
i∈{i1,...,il}

V arα1{Ŷi(α1)}
l2

+
∑

i/∈{i1,...,il}

V arα0{Ŷi(α0)}
(m− l)2


1
2

Corollary 4. If the assumptions of Proposition 4.4 hold and there exists µ
(0)
OE and

σ
(0)
OE such that µ(i1,...,il)

OE = µ
(0)
OE and σ

(i1,...,il)
OE = σ

(0)
OE for all {i1, . . . , il}, then µ

(0)
OE =

OE(α1,α0), σ(0)
OE =

√
V ar{ÔE(α1,α0)} and for m<∞,

ÔE(α1,α0)−OE(α1,α0)√
V ar{ÔE(α1,α0)}

d−→N (0,1) (2.8)

as nmin→∞.

2.3.2.2 Large Number of Groups

In this section the asymptotic distributions of the causal effect estimators are derived

when the number of groups m grows large, in particular when l→∞ and m− l→∞.

These results rely on the following Lindeberg condition (Lehmann 1998, eq. A.128):

Let {Wh} be a sequence of independent random variables, each having finite expected

value µh and variance σ2
h. Define s2

t =∑t
h=1σ

2
h. If for every ε > 0

lim
t→∞

1
s2
t

t∑
h=1

E
[
(Wh−µh)21{|Wh−µh|> εst}

]
= 0, (2.9)

then ∑t
h=1(Wh−µh)/st d−→ N (0,1) as t→∞. The propositions below indicate that,

under different versions of (11), the distributions of the causal effect estimators are

approximately Normal as m grows large. These results will have applicability in studies

with large numbers of groups even if the groups are small (e.g., households). Unlike

in Section 2.3.2.1, here the mean homogeneity assumption is not needed to justify the

Normal approximation.
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Proposition 5.1. Suppose for any simple random sample {i1, . . . , il} that (2.9) holds

for the sequence {Wh} defined by Wh = D̂Eih(α1)
∣∣∣Gi1 = · · ·=Gil = 1 for h= 1, . . . , l and

there exists σ(0)
DE such that σ(i1,...,il)

DE =σ
(0)
DE. Let υ̃i =DEi(α1) and υ̃. = (υ̃1 + . . .+ υ̃m)/m.

If limm→∞σ
(0)
DE/

√
V ar{D̂E(α1)} exists and

max(υ̃i− υ̃.)2∑m
i=1(υ̃i− υ̃.)2 max

{
m− l
l

,
l

m− l

}
→ 0 as m→∞ (2.10)

where max(υ̃i− υ̃.)2 = max{(υ̃i− υ̃.)2 : i= 1, . . . ,m}, then (2.5) holds as m→∞.

Proposition 5.2. Suppose for any simple random sample {i1, . . . , il} that (2.9) holds for

the sequence {Wh} defined by Wh =
{
Ŷih(0,α1)1(Gih = 1)/l− Ŷih(0,α0)1(Gih = 0)/(m−

l)
}∣∣∣Gi1 = · · ·=Gil = 1 for h= 1, . . . , l and there exists σ(0)

IE such that σ(i1,...,il)
IE = σ

(0)
IE . If

(2.10) holds for υ̃i = yi(0,α1)/l+yi(0,α0)/(m− l) and limm→∞σ
(0)
IE/√

V ar{ÎE(α1,α0)} exists, then (2.6) holds as m→∞.

Proposition 5.3. Suppose for any simple random sample {i1, . . . , il} that (2.9) holds for

the sequence {Wh} defined by Wh =
{
Ŷih(1,α1)1(Gih = 1)/l− Ŷih(0,α0)1(Gih = 0)/(m−

l)
}∣∣∣Gi1 = · · · = Gil = 1 for h = 1, . . . , l and there exists σ(0)

TE such that σ(i1,...,il)
TE = σ

(0)
TE.

If (2.10) holds for υ̃i = yi(1,α1)/l+yi(0,α0)/(m− l) and limm→∞σ
(0)
TE/√

V ar{T̂E(α1,α0)} exists, then (2.7) holds as m→∞.

Proposition 5.4. Suppose for any simple random sample {i1, . . . , il} that (2.9) holds

for the sequence {Wh} defined by Wh =
{
Ŷih(α1)1(Gih = 1)/l− Ŷih(α0)1(Gih = 0)/(m−

l)
}∣∣∣Gi1 = · · · = Gil = 1 for h = 1, . . . , l and there exists σ(0)

OE such that σ(i1,...,il)
OE = σ

(0)
OE.

If (2.10) holds for υ̃i = yi(α1)/l+yi(α0)/(m− l) and limm→∞σ
(0)
OE/

√
V ar{ÔE(α1,α0)}

exists, then (2.8) holds as m→∞.
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2.3.3 Confidence intervals and testing

2.3.3.1 Large sample approximations

The results in the previous two sections establish the limiting distributions of the d-

ifferent effect estimators when either the number of individuals per group or the number

of groups grows large. These results can be used to construct CIs when the limiting dis-

tribution is a single Normal. For example, under the conditions stated in the Corollary

to Proposition 4.1, we have {D̂E(α1)−DE(α1)}/
√
V ar{D̂E(α1)} d−→ N (0,1). Thus,

by Slutsky’s theorem, for γ ∈ (0,1) an asymptotic 1−γ CI of DE(α1) is

D̂E(α1)± z1−γ/2

√
V̂ ar{D̂E(α1)}

where z1−γ/2 is the 1−γ/2 quantile of the standard Normal distribution and V̂ ar{D̂E(α1)}

is a consistent estimator of V ar{D̂E(α1)}.

These CIs can be used in the large sample setting to test various null hypotheses

about the different treatment effects by examining whether the CI for a particular effect

contains the corresponding null value. Equivalently, test statistics can be constructed

to directly assess the null hypothesis of interest. For example, consider testing the

null hypothesis that the group level direct effects are all zero, i.e., H0 :DE1(α1) = . . .=

DEm(α1) = 0. Under the assumption that V arα1{D̂E1(α1)}= · · ·= V arα1{D̂Em(α1)},

the statistic T = D̂E(α1)/
√
V̂ ar{D̂E(α1)} will be approximately N (0,1) under H0,

provided either nmin or l is large.

The Wald CIs are applicable when the groups are homogeneous. Certain of these

homogeneity assumptions can be tested. For instance, the assumption that the direct ef-

fects are homogeneous across groups can be tested as follows. Suppose V arα1{D̂E1(α1)}=

· · · = V arα1{D̂Em(α1)} = σ2
DE , where σ2

DE is an unknown constant and the goal is

to test H0h : DE1(α1) = · · · = DEm(α1). Let T̃ = ∑m
i=1{D̂Ei(α1)− D̂E(α1)}21(Gi =
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1)/σ̂2
DE , where σ̂2

DE is a consistent estimator for σ2
DE . Then based on Proposition 2,

T̃ ∼ χ2
l−1 under H0h as nmin→∞. Without further assumptions about the potential

outcomes, tests of mean homogeneity cannot be developed for indirect, total and overall

effects. To see this, consider the homogeneity assumptions given in the Corollary to

Proposition 4.2 that are sufficient for the indirect effect estimator to have a single Nor-

mal distribution asymptotically. The mean homogeneity assumption that there exists

µ
(0)
IE such that µ(i1,...,il)

IE = µ
(0)
IE for all simple random samples {i1, . . . , il} is equivalent to

assuming y1(0,α1)+y1(0,α0) = · · ·= ym(0,α1)+ym(0,α0). Because only one element of

each pair {yi(0,α1),yi(0,α0)} is identifiable from the observable data, this assumption

is not subject to empirical test.

In the absence of homogeneity, the observed data do provide some information about

the asymptotic distributions such that inference relying on large sample approximations

may still be possible. For instance, CIs can be constructed using Chebyshev’s inequality.

For example, for the direct effect the interval D̂E(αs)±
√
V ar{D̂E(αs)}/γ will contain

DE(αs) with at least probability 1− γ. Because the Chebyshev inequality holds for

all distributions, such CIs are expected to often be conservative, i.e., have coverage

probability greater than 1−γ. In practice V ar{D̂E(αs)} will be unknown and can be

replaced with a consistent estimator V̂ ar{D̂E(αs)} which asymptotically will still give

a 1−γ CI.

2.3.3.2 Exact method

Rather than relying on large sample approximations, Tchetgen Tchetgen and Van-

derWeele (2012) derived exact CIs for various casual effects in the setting where the

outcome is binary based on the Hoeffding inequality. In particular, they showed under

two-stage permutation randomization that for any γ ∈ (0,1), the interval D̂E(α1)±

ε∗DE(γ,α1, q,m) is a (1−γ) CI of DE(α1), where
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ε∗DE(γ,α1, q,m) =

√√√√log(2/γ)
{

4
(1
q
−1

)2
+

m∑
i=1

LDE,i(α1)2

q2m

}
/(2m)

q = Pr(Gi = 1) = l/m and LDE,i(α1) = 2
{

1−1/
(
ni
kiα1

)}
for i = 1, . . . ,m. Similarly, the

interval ÎE(α1,α0)± ε∗(γ,α1,α0, q,m) is a (1−γ) CI of IE(α1,α0), where

ε∗(γ,α1,α0, q,m) =
√√√√log(2/γ)

[
max

{ 1
q2 ,

1
(1− q)2

}
+

m∑
i=1

LIE,i(α1,α0, q)2/m
]
/(2m)

and LIE,i(α1,α0, q) = max
[{

1−1/
(
ni
kiα1

)}
/q,

{
1−1/

(
ni
kiα0

)}
/(1− q)

]
for i = 1, . . . ,m.

Likewise, exact (1−γ) CIs of TE(α1,α0) andOE(α1,α0) can be constructed by T̂E(α1,α0)

± ε∗(γ,α1,α0, q,m) and ÔE(α1,α0)± ε∗(γ,α1,α0, q,m) respectively. These CIs are ex-

act in the sense that the probability the interval contains the true parameter is at

least 1− γ for any m and n1, . . . ,nm. The exact CIs are appealing in that the only

assumptions required for the intervals to be valid are partial interference and two-stage

permutation randomization. However, in the simulation study in Section 2.4 below it

is demonstrated these CIs tend to be conservative, i.e., the exact CIs tend to be very

wide and cover the target parameter with probability greater than 1−γ. The form of

the exact CIs suggests several reasons why they are conservative. First, the widths of

the CIs are not data dependent, i.e., they do not depend on the observed outcomes

yij(Zi). Second, the widths of these CIs do not go to 0 as γ→ 1. Finally, for any given

data set and fixed γ, the widths of the CIs for the indirect, overall, and total effects

will be the same.

34



2.4 Simulations

Simulations were conducted to verify the asymptotic distributions of the causal ef-

fect estimators derived in Sections 2.3.2.1 and 2.3.2.2 as well as to evaluate the finite

sample performance of the CIs described in Section 2.3.3. Simulations were conduct-

ed under four scenarios: (i) continuous outcomes with heterogeneity between groups,

(ii) continuous outcomes, homogeneous groups, (iii) binary outcomes, heterogeneous

groups, and (iv) binary outcomes, homogeneous groups. For scenario (i), the simula-

tion study was conducted in the following steps:

Step 1: A hypothetical population with m= 4 groups and n1 = · · ·= n4 = 1000 individu-

als within each group was created as follows. For i= 1, . . . ,4 and j = 1, . . . ,1000,

bij was randomly sampled from N (0,1). Then for zij = 0,1 and gi = 0,1

the potential outcomes for individual j in group i were set to yij(zij ,αgi) =

gi+0.7zij + bij + bijzij for i= 1,2 and yij(zij ,αgi) = gi+ bij + bijzij for i= 3,4.

Step 2: Groups were assigned α1 or α0 and individuals assigned z = 1 or z = 0 using

two-stage permutation randomization with l = 2, kiα1 = 500, and kiα0 = 200.

Step 3: The various causal effect estimators defined in Section 2.3.1 were calculated

based on the observed data from Step 2. The corresponding Wald and Cheby-

shev CIs as described in Section 2.3.3.1 were also computed, using the variance

estimators proposed by Hudgens and Halloran (2008).

Step 4: Steps 2 – 3 were repeated 5000 times.

Note the model used to generate the potential outcomes in Step 1 assumes partial and

stratified interference, such that under two-stage permutation randomization each indi-

vidual has four potential outcomes. The true causal effects for the simulated population

were DE(α1) = DE(α0) = 0.35, IE(α1,α0) = 1.00, TE(α1,α0) = 1.35, OE(α1,α0) =

1.10.

For these simulation n1 = · · ·= n4 = 1000, such that the asymptotic results for large
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groups derived in Section 2.3.2.1 apply. Figure 2.1 shows the accuracy of the Normal

mixture approximation to the distribution of the direct, indirect, total and overall

effect estimators. For simplicity, here and in the sequel results for D̂E(α0) are omitted.

The histograms give the empirical distributions of the estimators based on the 5000

simulated data sets. The solid lines, created using the R package nor1mix (Mächler

2011), show the density of the Normal mixtures used to approximate the distributions

of the estimators. For the direct effect estimator the
(
m
l

)
=
(

4
2

)
= 6 conditional means of

the Normal mixture were 0.71, 0.36, 0.35, 0.35, 0.34, -0.01. Because four of these means

are nearly identical, the approximate distribution of D̂E(α1) is trimodal (Figure 2.1

upper left panel). The distributions of the total and overall effect estimators are similar.

From the model in Step 1 above the simulated groups were approximately homogeneous

with respect to the indirect effect. For instance, the indirect effect conditional means

were 1.02, 1.01, 1.00, 1.00, 0.98 and 0.98. Thus, in accordance with the Corollary to

Proposition 4.2, the distribution of ÎE(α1,α0) for large groups is approximately Normal

(Figure 2.1 upper right panel).

Additional simulations were conducted under scenario (i) for various values of m

and n1 = · · · = nm. In each case we let l = m/2, kiα1 = 0.5ni, and kiα0 = 0.2ni, with

non-integer values rounded up to the nearest integer. Table 2.1 shows the empirical

coverage and width (i.e., average length) of the Wald and Chebyshev 95% CIs. Recall

that justification of the Wald CIs for small m requires certain mean homogeneity as-

sumptions as stated in the corollaries in Section 2.3.2.1. Therefore, because of the mean

heterogeneity between groups for the direct, total, and overall effects in scenario (i),

the Wald CIs were not necessarily expected to perform well for small m. Indeed, Table

2.1 shows the Wald CIs for these effects tend to under-cover for m≤ 10. These results

demonstrate the Wald CIs may not be particularly robust to violation of the mean

homogeneity assumption when m is small. On the other hand, the Wald CIs perform
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well for m ≥ 30, corroborating the results in Section 2.3.2.2. In contrast to the other

effects, the mean homogeneity assumption does approximately hold for the indirect

effect in scenario (i), suggesting that the corresponding Wald CIs should perform well

for small m provided ni is sufficiently large. To the contrary, the results in the bottom

of Table 2.1 show the Wald CIs of the indirect effect under-cover for ni = 1000 when

m is small. Further investigation revealed this under-coverage was attributable to the

estimated variance of the indirect effect estimator; when the true variance was used to

construct the Wald CIs, the coverage was approximately 95% (results not shown). The

Chebyshev CIs tended to perform better than the Wald CIs for small m, although for

ni = 1000 and m= 4 the Chebyshev CIs also under-covered due to using the estimated

variance. For m≥ 30 the Chebyshev CIs were overly conservative, with 100% coverage

for all effects for both ni = 6 and ni = 1000.

For scenario (ii), potential outcomes were simulated as above except in Step 1 we

let yij(zij ,αgi) = gi+ bij + bijzij for j = 1, . . . ,ni, i= 1, . . . ,m. Various values of m and

n1 = · · · = nm were considered for scenario (ii) as in scenario (i). In this scenario the

groups were approximately homogeneous; for example, the direct effectsDEi(α1) for i=

1, . . . ,m were all approximately 0 and the variances of the estimators V arα1{D̂Ei(α1)}

were all approximately the same. Table 2.2 gives the empirical coverage and width

of the Wald and Chebyshev CIs for scenario (ii). Results for the indirect effect are

identical to those in Table 2.1 because the same values were generated for yij(0,α0)

and yij(0,α1) in scenarios (i) and (ii). For the other effects, coverage for the Wald

CIs tends to be slightly better in Table 2.2 compared to Table 2.1 for small m and

large ni, but under-coverage persists despite mean homogeneity; this anti-conservative

performance of the Wald CIs can again be attributed to use of the estimated variances.

Coverage of the Chebyshev CIs was approximately 0.95 or greater for all effects and all

values of ni and m considered.
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For scenario (iii), simulations were conducted as in scenario (i) with m = 4 groups

each having ni = 1000 individuals but with the first step being replaced by the following:

Step 1: Of the 4000 individuals in the population, randomly assign 480 of the individuals

to have xij = 0, 480 of the individuals to have xij = 1, and the remaining

individuals to have xij = 2. If xij = 2, the potential outcomes were set to

yij(zij ,αgi) = gizij for i= 1,2 and yij(zij ,αgi) = gi(1−zij) for i= 3,4; otherwise

yij(zij ,αgi) = xij for i= 1, . . . ,4.

For this scenario there was heterogeneity between groups for the direct, indirect and

total effects. Similar to Figure 2.1 for scenario (i), the Normal mixture distributions

provided an excellent approximation to the empirical distributions of the estimators

(not shown). Simulations were also conducted under scenario (iii) for m= 6,10,30,100.

Because the outcomes in scenario (iii) were binary, for each simulated data set the exact

CIs described in Section 2.3.3.2 were computed in addition to the Wald and Chebyshev

CIs. Empirical coverage and width of the three types of CIs are given in Table 2.3.

Coverage of the Wald and Chebyshev CIs was similar to scenario (i), which also entailed

heterogeneous effects. The exact CIs were very conservative, with 100% coverage for

all effects and all values of m considered. Compared to the Wald and Chebyshev CIs,

the exact CIs tended to be as wide or wider, especially for the overall effect where the

exact CIs were at least an order of magnitude wider than the other CIs.

For scenario (iv), simulations were repeated as in scenario (iii) but the potential

outcomes were set to yij(zij ,αgi) = gizij if xij = 2 and yij(zij ,αgi) = xij otherwise. In

this scenario the groups were approximately homogeneous. Empirical coverage and

width of the three CIs are given in Table 2.4. For m≥ 30 the Wald CIs gave the correct

coverage and were the narrowest. For small m the Chebyshev and exact CIs both

provided at least 95% coverage, but the Chebyshev CIs were substantially narrower.

The widths of the exact CIs depend only on m,l,kiα1 ,kiα0 ,ni,γ and thus are the same
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for the simulations carried out in scenario (iii) and (iv). Coverage of the exact CIs was

always 100% in scenario (iv), as in scenario (iii).

In summary, the simulation results suggest for m ≥ 30 the Wald CIs tend to yield

nominal coverage levels while being narrower than the Chebyshev and exact CIs. For

m< 30 and continuous outcomes, the simulations suggest the Chebyshev CIs may be

preferred, although for m = 10 the Wald CIs tend to be narrower while still providing

approximately correct coverage. For m< 30 and binary outcomes, only the exact CIs

tend to provide the correct coverage when the effects are heterogeneous (scenario (iii)),

whereas the Chebyshev CIs tend to provide the correct coverage and are narrower than

the exact CIs when the effects are homogeneous (scenario (iv)).

2.5 Examples

2.5.1 Cholera Vaccine Trial

The indirect effects of vaccination have important public health implications. In an

analysis of data from an individually-randomized, placebo-controlled trial of two oral

cholera vaccines in Matlab, Bangladesh, Ali et al. (2005) found a significant association

between the level of vaccine coverage (i.e., the proportion of individuals vaccinated) and

the incidence of cholera in unvaccinated individuals, suggesting an indirect effect of the

vaccines. Motivated by the results given in Ali et al., Hudgens and Halloran (2008,

Table 2) provided data from a hypothetical two-stage randomized vaccine trial wherein

the first stage l = 3 of m = 5 geographically separate groups were randomly assigned

α1 and the other two groups α0, and in the second stage 50% of individuals in groups

assigned α1 were randomly assigned vaccine and 30% of individuals in groups assigned

α0 were randomly assigned vaccine. The number of individuals in the five groups

n1, . . . ,n5 ranged from roughly 19,000 to 36,000 such that the results from Section 3.2.1

apply.
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Table 2.5 gives point estimates and Wald, Chebyshev, and exact 95% CIs for the

different vaccine effects (cases of cholera per 1000 individuals per year) based on the

data from Hudgens and Halloran (2008) (see also VanderWeele and Tchetgen Tchetgen

(2011) for an analysis of these data). To obtain the results in Table 2.5 we let yij(Zi) = 1

if individual j in group i did not develop cholera and yij(Zi) = 0 otherwise, such that

positive values of the estimates reflect beneficial effects of the vaccine. For example,

D̂E(α1) indicates 1.30 fewer cases of cholera per 1000 person-years would be expected

among vaccinated individuals compared to unvaccinated individuals when vaccine cov-

erage is 50%. Wald CIs for the α0 direct effect, the total effect, and the overall effect all

exclude zero. However, the empirical results from Section 2.4 suggest Wald CIs should

be interpreted with caution when m= 5. The test for mean homogeneity of the direct

effect based on T̃ indicates significant heterogeneity for α1 (p = 0.01) but not for α0

(p= 0.54), providing additional reason to interpret the Wald CI for DE(α1) skeptically.

The Chebyshev CI for the α0 direct effect excludes zero, suggesting the risk of cholera is

significantly lower when vaccinated compared to when not vaccinated if the group level

coverage is low. The Chebyshev CI for the total effect also excludes zero. In contrast

to the Wald and Chebyshev CIs, the exact CIs are very wide and uninformative. As

pointed out by Tchetgen Tchetgen and VanderWeele (2012), the width of exact CI is

proportional to 1/
√
m and thus is expected to be wide when m is small.

2.5.2 Voting Encouragement Experiment

Assessing the indirect effects on an intervention is important in many areas beyond

public health, including econometrics and political science. Nickerson (2008) described

an experiment where households in Denver and Minneapolis with two registered voters

were randomly assigned to one of three conditions: (i) receive encouragement to vote;

(ii) receive encouragement to recycle; or (iii) receive nothing. Households assigned to
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(i) or (ii) were contacted one week prior to the 2002 primaries by canvassers knocking

on the households’ doors. In households where the door was answered, the canvassers

provided either voting or recycling encouragement to whichever individual of voting

age answered the door and recorded the name of that individual. Whether each reg-

istered member of the household subsequently voted in the 2002 primary was then

determined by voter turnout records. Nickerson found that individuals not directly

contacted by the canvassers tended to vote more often if the individuals belonged to

households assigned to voting encouragement compared to households assigned to re-

cycling encouragement. This suggests an indirect effect of the voting encouragement

intervention, which Nickerson referred to as a ‘secondary effect.’

For the analysis here we take the m = 392 households contacted in Minneapolis

(excluding one household where apparently both voters in the household were con-

tacted by canvassers) as the finite population of interest. Of these 392 households,

201 or 51.2% were randomly assigned to voting encouragement. The randomization

process by which these households were assigned to receive encouragement to vote or

recycle was complicated (see Nickerson (2005), (2008) for details); for simplicity we

assume each household was independently assigned to receive voting encouragemen-

t with probability 0.5. In the nomenclature of Tchetgen Tchetgen and VanderWeele

(2012), this corresponds to Bernoulli randomization at the group level. By design, at

the individual level exactly one (α1) or none (α0) of the ni = 2 registered voters in

each of the households received voting encouragement. Although the experimenters

did not randomly assign one of the two individuals in the household to receive the in-

tervention, for illustrative purposes assume among households assigned to α1 that each

individual received the intervention with equal probability. Under these assumptions,

Wald and Chebyshev CIs can be computed as described in Section 2.3.3.1, with slight

modifications owing to Bernoulli randomization at the group level (see the Appendix
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for details). Here we let yij(Zi) = 1 if individual j in group i voted in the election and

yij(Zi) = 0 otherwise, such that positive values of the effects indicate increased voter

turnout due to the encouragement intervention. Point estimates as well as Wald and

Chebyshev 90% CIs for the different voting encouragement effects are given in Table

2.5 (90% CIs were computed following Nickerson (2008), who interpreted p-values of

hypothesis tests for secondary effects at the γ = 0.1 level). The exact CIs were not

computed because permutation randomization was not employed at the group level.

The Wald CIs indicate the presence of indirect, total and overall effects. Based on a

similar result in the Denver experiment, Nickerson concluded the null hypothesis of

no indirect effect was unlikely. That is, there is likely interference between individuals

within the same household. The indirect effect estimate suggests that for every 100

households that receive the encouragement intervention, on average an additional eight

individuals will vote despite never coming into direct contact with a canvasser.

2.6 Discussion

In this paper, we consider inference about treatment effects when the population

consists of groups of individuals where interference is possible within groups but not

between groups. The asymptotic distributions of effect estimators were derived when

either the number of individuals per group or the number of groups grows large. Under

certain assumptions about homogeneity across groups, the asymptotic distributions

provide justification for Wald type CIs and tests. Empirical results suggest the Wald

CIs may be preferred provided there are a large number of groups; otherwise, for a

small number of groups, the Chebyshev CIs tend to provide correct coverage while

being narrower than the exact CIs.

The asymptotic distributions were derived under several key assumptions, such as
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partial and stratified interference. The partial interference assumption may be rea-

sonable when groups are sufficiently separated in space, in time, or socially. Methods

for assessing the stratified interference assumption are needed in future research, per-

haps building upon VanderWeele et al. (2012). The results in this paper also rely on

the assumption that certain two-stage randomization designs are employed to assign

groups to allocation strategies and individuals to treatment. Further research remains

to be conducted for other randomization designs and for observational studies where

interference may be present.
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2.7 Tables and Figures

Figure 2.1: Empirical distribution of various estimators

Empirical distribution of the direct effect DE(α1), indirect effect IE(α1,α0), total effect
TE(α1,α0) and overall effect OE(α1,α0) estimators forsimulations in scenario (i) with
m= 4 groups, ni = 1000 individuals per group, and continuous outcomes. The solid line

is the density of the approximating distribution.
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Table 2.1: Comparison among different CIs, continuous outcomes

Empirical width and coverage [in brackets] of Wald (W ) and Chebyshev (C) 95% CIs
of the direct effect DE(α1), indirect effect IE(α1,α0), total effect TE(α1,α0) and

overall effect OE(α1,α0) for simulations under scenario (i) with numbers of groups m,
number of individuals per group ni, and continuous outcomes.

m
4 6 10 30 100

ni = 6 DE(α1) W 3.70[0.88] 2.67[0.91] 2.03[0.93] 1.27[0.95] 0.73[0.95]
C 8.04[1.00] 5.92[1.00] 4.54[1.00] 2.88[1.00] 1.66[1.00]

IE(α1,α0) W 1.89[0.80] 1.60[0.87] 1.26[0.91] 0.88[0.93] 0.42[0.95]
C 3.92[0.94] 3.49[0.99] 2.82[1.00] 2.01[1.00] 0.96[1.00]

TE(α1,α0) W 3.79[0.76] 2.31[0.87] 2.32[0.91] 1.40[0.94] 0.74[0.96]
C 7.57[0.93] 4.95[0.98] 5.14[1.00] 3.17[1.00] 1.69[1.00]

OE(α1,α0) W 2.54[0.77] 1.44[0.88] 1.69[0.90] 1.04[0.94] 0.51[0.94]
C 5.46[0.94] 3.21[1.00] 3.83[1.00] 2.37[1.00] 1.17[1.00]

ni = 1000 DE(α1) W 0.86[0.66] 0.65[0.90] 0.50[0.90] 0.28[0.94] 0.15[0.95]
C 1.75[0.74] 1.44[0.91] 1.12[0.99] 0.63[1.00] 0.34[1.00]

IE(α1,α0) W 0.12[0.80] 0.10[0.88] 0.11[0.91] 0.06[0.94] 0.03[0.95]
C 0.24[0.95] 0.22[0.99] 0.25[1.00] 0.14[1.00] 0.08[1.00]

TE(α1,α0) W 1.21[0.66] 0.89[0.90] 0.69[0.97] 0.38[0.98] 0.20[0.99]
C 2.35[0.69] 1.95[0.90] 1.56[0.99] 0.87[1.00] 0.46[1.00]

OE(α1,α0) W 0.68[0.66] 0.48[0.90] 0.39[0.92] 0.21[0.96] 0.11[0.97]
C 1.31[0.66] 1.06[0.90] 0.88[0.99] 0.49[1.00] 0.26[1.00]
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Table 2.2: Comparison among different CIs, continuous outcomes (iii)

Empirical width and coverage [in brackets] of Wald (W ) and Chebyshev (C) 95% CIs
of the direct effect DE(α1), indirect effect IE(α1,α0), total effect TE(α1,α0) and

overall effect OE(α1,α0) for simulations under scenario (ii) with numbers of groups
m, number of individuals per group ni, and continuous outcomes.

m
4 6 10 30 100

ni = 6 DE(α1) W 3.51[0.89] 2.72[0.92] 1.92[0.94] 1.27[0.95] 0.71[0.95]
C 7.66[1.00] 6.05[1.00] 4.32[1.00] 2.87[1.00] 1.62[1.00]

IE(α1,α0) W 1.89[0.80] 1.60[0.87] 1.26[0.91] 0.88[0.93] 0.42[0.95]
C 3.92[0.94] 3.49[0.99] 2.82[1.00] 2.01[1.00] 0.96[1.00]

TE(α1,α0) W 3.14[0.78] 2.66[0.87] 2.06[0.91] 1.44[0.95] 0.70[0.95]
C 6.30[0.94] 5.73[0.98] 4.56[1.00] 3.25[1.00] 1.58[1.00]

OE(α1,α0) W 2.01[0.84] 1.81[0.88] 1.50[0.91] 1.09[0.95] 0.48[0.94]
C 4.38[0.97] 4.05[0.99] 3.40[1.00] 2.47[1.00] 1.10[1.00]

ni = 1000 DE(α1) W 0.27[0.93] 0.22[0.93] 0.18[0.94] 0.10[0.95] 0.06[0.95]
C 0.60[1.00] 0.49[1.00] 0.40[1.00] 0.23[1.00] 0.13[1.00]

IE(α1,α0) W 0.12[0.80] 0.10[0.88] 0.11[0.91] 0.06[0.94] 0.03[0.95]
C 0.24[0.95] 0.22[0.99] 0.25[1.00] 0.14[1.00] 0.08[1.00]

TE(α1,α0) W 0.21[0.78] 0.18[0.85] 0.19[0.91] 0.11[0.94] 0.06[0.95]
C 0.41[0.93] 0.37[0.98] 0.41[1.00] 0.24[1.00] 0.13[1.00]

OE(α1,α0) W 0.11[0.82] 0.10[0.88] 0.13[0.91] 0.07[0.93] 0.04[0.95]
C 0.23[0.96] 0.22[0.99] 0.30[1.00] 0.17[1.00] 0.09[1.00]
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Table 2.3: Comparison among different CIs, binary outcomes (iii)

Empirical width and coverage [in brackets] of Wald (W ), Chebyshev (C) and exact
(E) 95% CIs of the direct effect DE(α1), indirect effect IE(α1,α0), total effect

TE(α1,α0) and overall effect OE(α1,α0) for simulations under scenario (iii) with m
groups, ni = 1000 individuals per group, and binary outcomes.

m
4 6 10 30 100

DE(α1) W 1.73[0.67] 1.33[0.90] 0.99[0.79] 0.55[0.98] 0.30[0.93]
C 3.26[0.67] 2.89[0.90] 2.25[0.99] 1.26[1.00] 0.68[1.00]
E 6.07[1.00] 4.96[1.00] 3.84[1.00] 2.22[1.00] 1.21[1.00]

IE(α1,α0) W 1.22[0.67] 0.93[0.90] 0.70[0.99] 0.39[0.98] 0.21[0.99]
C 2.31[0.67] 2.02[0.90] 1.59[0.99] 0.89[1.00] 0.48[1.00]
E 3.84[1.00] 3.14[1.00] 2.43[1.00] 1.40[1.00] 0.77[1.00]

TE(α1,α0) W 1.22[0.67] 0.96[0.90] 0.70[0.99] 0.39[0.98] 0.21[0.99]
C 2.31[0.67] 2.08[0.90] 1.59[0.99] 0.90[1.00] 0.48[1.00]
E 3.84[1.00] 3.14[1.00] 2.43[1.00] 1.40[1.00] 0.77[1.00]

OE(α1,α0) W 0.03[0.85] 0.04[0.87] 0.02[0.92] 0.01[0.95] 0.01[0.96]
C 0.06[0.98] 0.09[1.00] 0.05[1.00] 0.03[1.00] 0.02[1.00]
E 3.84[1.00] 3.14[1.00] 2.43[1.00] 1.40[1.00] 0.77[1.00]
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Table 2.4: Comparison among different CIs, binary outcomes (iv)

Empirical width and coverage [in brackets] of Wald (W ), Chebyshev (C) and exact
(E) 95% CIs of the direct effect DE(α1), indirect effect IE(α1,α0), total effect

TE(α1,α0) and overall effect OE(α1,α0) for simulations under scenario (iv) with m
groups, ni = 1000 individuals per group, and binary outcomes.

m
4 6 10 30 100

DE(α1) W 0.06[0.94] 0.04[0.96] 0.03[0.97] 0.02[0.97] 0.01[0.97]
C 0.12[1.00] 0.09[1.00] 0.08[1.00] 0.05[1.00] 0.03[1.00]
E 6.07[1.00] 4.96[1.00] 3.84[1.00] 2.22[1.00] 1.21[1.00]

IE(α1,α0) W 0.04[0.80] 0.05[0.87] 0.03[0.90] 0.02[0.94] 0.01[0.94]
C 0.08[0.95] 0.10[0.99] 0.07[1.00] 0.04[1.00] 0.02[1.00]
E 3.84[1.00] 3.14[1.00] 2.43[1.00] 1.40[1.00] 0.77[1.00]

TE(α1,α0) W 0.04[0.87] 0.04[0.88] 0.03[0.93] 0.02[0.95] 0.01[0.98]
C 0.09[0.97] 0.10[0.99] 0.06[1.00] 0.04[1.00] 0.02[1.00]
E 3.84[1.00] 3.14[1.00] 2.43[1.00] 1.40[1.00] 0.77[1.00]

OE(α1,α0) W 0.03[0.85] 0.04[0.87] 0.02[0.92] 0.01[0.95] 0.01[0.96]
C 0.06[0.98] 0.09[1.00] 0.05[1.00] 0.03[1.00] 0.02[1.00]
E 3.84[1.00] 3.14[1.00] 2.43[1.00] 1.40[1.00] 0.77[1.00]
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Table 2.5: Data application

Wald (W ), Chebyshev (C) and exact (E) 1−γ CIs of the direct effect DE(αs),
indirect effect IE(α1,α0), total effect TE(α1,α0) and overall effect OE(α1,α0) for the

cholera vaccine trial described in Section 2.5.1 and the voting encouragement
experiment discussed in Section 2.5.2

Estimate W C E
Vaccine DE(α1) 1.30 [-0.52, 3.11] [-2.84, 5.43] [-3540, 3543]

Trial DE(α0) 3.64 [2.81, 4.46] [1.75, 5.52] [-2177, 2184]
γ = 0.05 IE(α1,α0) 2.81 [-0.63, 6.25] [-5.03, 10.7] [-2145, 2150]

TE(α1,α0) 4.11 [2.50, 5.71] [0.44, 7.77] [-2143, 2151]
OE(α1,α0) 2.37 [0.03, 4.71] [-2.98, 7.72] [-2145, 2150]

Voting DE(α1) 0.04 [-2.7e-3, 0.07] [-0.04, 0.11]
Experiment IE(α1,α0) 0.08 [0.01, 0.15] [-0.06, 0.22]
γ = 0.1 TE(α1,α0) 0.12 [0.04, 0.19] [-0.03, 0.26]

OE(α1,α0) 0.09 [0.02, 0.16] [-0.05, 0.22]
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Chapter 3

On Inverse Probability Weighted Estimators with Interference

3.1 Introduction

Typically in causal inference, each individual is assumed to have two potential

outcomes, one under treatment and one in the absence of treatment. This is part of

the stable unit treatment value assumption (Rubin 1980). Manski (2013) referred to

this as “individualistic treatment response” and viewed it as a restriction of the form

of treatment response function. However, the no interference assumption may not hold

in various settings. For instance, in infectious disease studies, the vaccination status

of one individual may affect whether another individual becomes infected (Halloran

and Struchiner 1995). Nickerson (2008) described a voting encouragement study where

encouraging individuals to vote increased the likelihood another individual in the same

household would vote.

Recently methods have been developed for the setting where individuals can be

partitioned into groups such that there may be interference between individuals in the

same group but not between individuals in different groups. This is called “partial in-

terferenceąś (Sobel 2006). Assuming partial interference, Hudgens and Halloran (2008)

defined the direct, indirect (or spillover), total, and overall causal effects of an interven-

tion. For observational settings where treatment is not randomly assigned, Tchetgen



Tchetgen and VanderWeele (2012) proposed inverse probability weighted (IPW) esti-

mators of these causal effects. These IPW estimators are unbiased when the propensity

scores are known and can be viewed as a generalization of the usual IPW estimator

of the causal effect of a treatment in the absence of interference. However, in general,

IPW estimators are known to have relatively large variance. One possible remedy is

to replace the sample size with its estimate in the IPW estimators. The modified esti-

mator is known as a Hajek ratio estimator. Here, we consider the situation where any

interference structure is possible and develop Hajek type estimators for various causal

effects.

3.2 Notations, Assumptions and Estimands

Consider a population of n individuals. For individual i = 1, . . . ,n, let Zi be the

random variable of the received treatment, where Zi = 1 denotes individual i received

treatment and Zi = 0 if she received control. Define the interference set Xi for indi-

vidual i to be all other individuals such that their treatment received might affect the

outcome of individual i. Let Si = {Zj : j ∈Xi} denote the set of treatment indicators for

individuals that possible interfere with individual i. That is, the outcome of individual

i is allowed to depend not only on Zi but also on Si. For example, if the outcome of

individual 1 possibly depends on her own treatment status as well as that of individual

2 and 3, then, X1 = {2,3} and S1 = {Z2,Z3}. Let yi(zi, si) denote the potential outcome

of individual i if she received treatment zi and her interference group received si. Note

that the potential outcome notation introduced here is general enough to encompass

any possible interference structure of which the partial inference assumption is a spe-

cial case. Let Yi = yi(Zi,Si) denote the observed outcome. Let Li denote the random

vector of pre-treatment covariates of individual i. Let Z = {Z1, . . . ,Zn} denote the

random vector of treatment for the entire population and let L = {L1, . . . ,Ln} denote
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pre-treatment covariates for the entire population. Let zi, si and z be possible values

that Zi, Si, Z can take. Let ∑Si be the sum over all the elements in Si and |Si| be the

length of the vector. For example, if S1 = {Z2,Z3} then ∑S1 = Z2 +Z3 and |S1|= 2.

For ease of exposition, we use “allocation strategy αk” to denote the treatment as-

signment where each individual is independently assigned treatment with probability

αk. Let π(Si;αk) = α
∑
Si

k (1−αk)|Si|−
∑
Si denote the probability of the interference

set being assigned treatment Si. Let π(Zi;αk) = αZik (1−αk)1−Zi and π(Zi,Si;αk) =

π(Zi;αk)π(Si;αk) denote respectively the probability of individual i being assigned

treatment Zi and the probability of individual i together with their interference set be-

ing randomly assigned joint treatment (Zi,Si). Define yi(z,αk) =∑
si yi(zi = z,si)π(si;αk)

to be the average potential outcome for individual i under allocation strategy αk. Re-

turning to the example where S1 = {Z2,Z3}, the average potential outcome of individual

1 is a weighted average of outcome under different combination of treatment Z1 = z and

(Z2,Z3)∈ {(0,0),(0,1),(1,0),(1,1)}. Averaging over all the individuals in the study, de-

fine the population average potential outcome as y(z,αk) =∑n
i=1 yi(z,αk)/n. Similarly

define the marginal average potential outcome for individual i under allocation strategy

αk by yi(αk) = ∑
zi,si yi(zi, si)πi(zi, si;αk) and define the population marginal average

potential outcome as y(αk) =∑n
i=1 yi(αk)/n.

Define the direct effect of a treatment under allocation strategy αk to be DE(αk) =

g{y(1,αk),y(0,αk)} for k = 0,1, where g(·, ·) is some continuous contrast function. For

example, a commonly used contrast function is g(x1,x2) = x1−x2 and in vaccine tri-

als it is typical to use g(x1,x2) = 1− x2/x1, which can be interpreted as proportion

reduction in risk for a binary outcome. The direct effect measures the contrast of av-

erage potential outcomes on an individual when applying the treatment directly under

allocation strategy αk. Let IE(α1,α0) = g{y(0,α1),y(0,α0)} be the indirect effect and

let TE(α1,α0) = g{y(1,α1),y(0,α0)} be the total effect. The indirect effect measures
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the contrast between average potential outcomes of individuals who have the same

treatment but under different treatment allocation strategy. Note indirect can also be

defined for individuals who receives treatment z = 1, for simplicity, we do not con-

sider such indirect effect here. The total effect incorporates both direct and indirect

effects, and reflects the difference between the potential outcomes for individuals with

treatment under one allocation strategy compared to without treatment under another

allocation strategy. Finally, define OE(α1,α0) = g{y(α1),y(α0)} to be the overall ef-

fect. The overall effect may be the most relevant for policy making since it describes

the difference in outcomes under one allocation strategy relative to another strategy.

Define f(Z|L) = Pr(Z|L) to be the propensity score. We assume that conditional on

covariates L, the probability of any treatment z is non-zero, i.e., f(Z = z|L= l)> 0 for

all z and l. We also assume that conditional on covariates L, the treatment allocation

is independent of the outcome y(·), that is f(Z|L) = f(Z|L,y1(·), . . . ,yn(·)). We make

these two assumptions throughout.

3.3 IPW and Hajek-type Estimators

In this section, we first propose IPW and stablized estimators for y(z,αk) and y(αk)

under a completely general interference structure when the propensity scores are known.

The stablized estimators are generalizations of Hajek estimators in survey sampling

literature. Then we discuss their properties including unbiasedness, consistency and

asymptotic Normality. In §3.3.2, we propose estimators when the propensity scores

are unknown but correctly modeled and derive the asymptotic Normality under such

scenario. In §3.3.3, the IPW and Hajek estimators for the direct, indirect, total, and

overall effects are proposed and their the asymptotic properties are derived under both

the scenarios where the propensity scores are known or unknown.
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3.3.1 Known Propensity

Define the IPW estimator for treatment z under allocation strategy αk to be

Ŷ ipw(z,αk) = n−1
n∑
i=1

yi(Zi,Si)1(Zi = z)π(Si;αk)
f(Zi,Si|Li)

(3.1)

and define the IPW marginal estimator under allocation strategy αk to be

Ŷ ipw(αk) = n−1
n∑
i=1

yi(Zi,Si)π(Zi,Si;αk)
f(Zi,Si|Li)

(3.2)

where f(Zi,Si|Li) =
∫
f(Z|Li)dZ̃i and the integral is taken over Z̃i =Z/(Zi,Si) which is

the treatment of all individuals other than individual i and those in the interference set

of i. Tchetgen Tchetgen and VanderWeele (2012) proposed an IPW estimator when the

partial interference assumption holds. When the interference set of each individual is

assumed to be the treatment vector of individuals in the same group and if the groups

are of the same size, then the IPW estimator defined here is the same as the IPW

estimator proposed by Tchetgen Tchetgen and VanderWeele. If f(Zi,Si|Li) is known

for all i, Ŷ ipw(z,αk) is an unbiased estimator for y(z,αk) and Ŷ ipw(αk) is unbiased for

y(αk) as shown in the following Proposition.

Proposition 1. E{Ŷ ipw(z,αk)}= y(z,αk) and E{Ŷ ipw(αk)}= y(αk)

It is well known that IPW estimators have large variance (Särndal et al. 2003

chap. 5.7) and thus may lead to imprecise inferences when the sample size is small.

One possible remedy is to replace the population size with an estimator of n. The

classic Hajek estimator (Hájek 1971) when there is no interference uses the marginal

distribution f(Zi|Li) to estimate n. That is, n̂1,z =∑n
i=1 1(Zi = z)/f(Zi|Li), and it is

easy to see that E{n̂1,z} = n. In the presence of interference, E{n̂1,z} = n still holds,

thus, by replacing n with n̂1,z in (3.1) and (3.2) one can get a Hajek type of estimator
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in the presence of interference. Alternatively, notice the inverse weights in the IPW

estimators defined previously, involve the joint distribution f(Zi,Si|Li) which suggests

the use of the joint distribution in constructing the estimate for population size n. Let

n̂2,z =∑n
i=1 1(Zi = z)π(Si;αk)/f(Zi,Si|Li) and we have E{n̂2,z}= n. Define the Hajek

estimators of the population average outcome of treatment z with allocation strategy

αk to be

Ŷ hajh (z,αk) = n̂−1
h,z

n∑
i=1

yi(Zi,Si)1(Zi = z)π(Si;αk)
f(Zi,Si|Li)

(3.3)

Let n̂1 =∑n
i=1π(Zi;αk)/f(Zi|Li) and n̂2 =∑n

i=1π(Zi,Si;αk)/f(Zi,Si|Li) then E{n̂h}=

n for h = 1,2. Define the population marginal outcome with allocation strategy αk to

be

Ŷ hajh (αk) = n̂−1
h

n∑
i=1

yi(Zi,Si)π(Zi,Si;αk)
f(Zi,Si|Li)

(3.4)

for k = 0,1 and h = 1,2. Note both n̂h,z and n̂h depend on αk, but we suppress this

dependence for notational convenience. We call Ŷ haj1 (·) and Ŷ haj2 (·) “Hajek 1ąś and

“Hajek 2ąś estimator respectively.

An appealing property of Ŷ haj2 (z,αk) and Ŷ haj2 (αk) is the preservation of the bounds

of the potential outcome yi(·). Specifically, suppose there exists Ml ≤Mu such that

Ml ≤ yi(·) ≤Mu for i = 1, . . . ,n; then one can show that Ml ≤ Ŷ haj2 (z,αk) ≤Mu and

Ml ≤ Ŷ haj2 (αk)≤Mu. For example, if yi(·) is binary, then Ŷ haj2 (z,αk), Ŷ haj2 (αk)∈ [0, 1].

In contrast, this is not guaranteed for Ŷ ipw(·) or Ŷ haj1 (·).

Another property of Ŷ haj2 (z,αk) and Ŷ haj2 (αk) is that a linear transformation on the

outcome y will result in the same linear transformation on Ŷ haj2 (z,αk) and Ŷ haj2 (αk).

Let Ŷ (·;y) denote the dependence of an estimator Ŷ on the outcome y. Then for

a linear transformation L(x) = ax+ b, we have Ŷ haj2 (·;L(y)) = L(Ŷ haj2 (·;y)) for any

a,b ∈R. This property indicates that a linear transformation on the coding of y (e.g.,
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centering or scaling) results in the same linear transformation on the Hajek 2 estimator.

This relationship holds for the IPW and Hajek 1 estimator only when b = 0. One

ramification of this property will become evident when we consider the different causal

effect estimators in §3.3.3 below.

The Hajek-type of estimator is not unbiased in general. However, noting that

Ŷ hajh (z;αk) = Ŷ ipw(z;αk)n/n̂h,z, it follows from Särndal et al. (2003) p. 176 §5.6

that

|E{Ŷ hajh (z;αk)}−y(z;αk)|√
V ar{Ŷ hajh (z;αk)}

≤ n−1
√
V ar{n̂h,z}

Thus, if V ar{n̂h,z}= o(n2), then bias ratio |E{Ŷ hajh (z;αk)}−y(z;αk)|/
√
V ar{Ŷ hajh (z;αk)}

goes to 0 as n→∞. Note V ar{n̂1,z}=∑n
i,i
′=1{fi,i′ −fifi′}/{fifi′} where fi = f(Zi =

z|L) and fi,i′ = f(Zi = z,Zi′ = z|L). Thus, if conditional on covariates L, the treat-

ment allocation is independent between individuals with probability f(Zi = z|L) for

individual i then V ar{n̂1}=∑n
i=1{1−f(Zi = z|L)}=O(n) and thus is also o(n2). The

formulas of V ar{n̂2,z} and V ar{n̂2} are more complicated and involve higher order

moments of the joint treatment allocation probability.

Using Taylor linearization, one can compare the asymptotic variance for Ŷ hajh (z;αk)

and Ŷ ipw(z;αk). Define Ŷ hajh,0 (z;αk) to be the first order Taylor expansion of Ŷ hajh (z;αk) =

Ŷ ipw(z;αk)n/n̂h,z at y(a;αk) and n for Ŷ ipw(z;αk) and n̂h,z respectively, then Ŷ hajh,0 (z;αk) =

y(z;αk) + Ŷ ipw(z;αk)− y(z;αk)n̂h,z/n. Thus V ar{Ŷ hajh,0 (z;αk)} = V ar{Ŷ ipwi (z;αk)}+

y2(z;αk)V ar(n̂h,z/n)−2y(z;αk)Cov{Ŷ ipw(z;αk), n̂h,z/n}. For random variable X, de-

fine CV (X) =
√
V arX/EX to be the coefficient of variation of X. Suppose CV (n̂h,z)/

CV {Ŷ ipw(z,αk)}≤ 2Corr{n̂h,z, Ŷ ipw(z,αk)} then V ar{Ŷ hajh,0 (z;αk)}≤V ar{Ŷ ipw(z;αk)}.

In the extreme case, if CV (n̂h,z)/CV {Ŷ ipw(z,αk)} = 2Corr{n̂h,z, Ŷ ipw(z,αk)} then

V ar{Ŷ hajh,0 (z;αk)}= V ar{Ŷ ipw(z;αk)}−y2(z;αk)V ar{n̂h,z/n}.

For simplification, we make the following assumptions when we derive the asymp-

totic distribution of the IPW and Hajek estimators.
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Assumption 1. There exists a partition {Cv}mv=1 of {1, . . . ,n} such that i /∈ Xi′ for

any i ∈ Cv, i′ ∈ Cv′ and v 6= v
′ for m ∈N .

Assumption 2. Suppose f(Z1, . . . ,Zn|L) =∏m
v=1 f({Zi : i∈Cv}|L) and that f(Zi,Si|L)

is the same for all i ∈ Cv.

Assumption 1 is the partial interference assumption, i.e., the study population can

be partitioned into clusters and individuals in same cluster may interfere with each

other. Assumption 2 conjectures that the treatment selection has “cliqueąś structure,

i.e., dependence of treatment selection exists within cluster not across and interference

within clusters is symmetric in the sense that the propensity scores are the same for

individuals in the same cluster. Additionally, we assume clusters are i.i.d.. The fol-

lowing proposition shows the asymptotic Normality of Ŷ ipw(z,αk) and Ŷ hajh (z,αk), the

proofs of which are provided in the Appendix. For notational convenience, we write

Ŷ ipwi (z,αk) = yi(Zi,Si)1(Zi = z)π(Si;αk)/f(Zi,Si|Li) and we suppress the dependence

of variance for IPW and Hajek estimators on z and αk when there is no confusion. For

the rest of the paper, assume that m=O(n) and m 6= o(n).

Proposition 2. If the propensity scores are known and Assumptions 1 and 2 hold, then

as n→∞,

(a)
√
n{Ŷ ipw(z,αk)− y(z,αk)}/σipw

d−→ N(0,1), where σipw =
√

m∑
v=1

Eψ2
v/n, ψv =

ψipwv (z,αk) = ∑
i∈Cv
{Ŷ ipwi (z,αk)−yi(z,αk)};

(b)
√
n{Ŷ haj1 (z,αk)− y(z,αk)}/σhaj1

d−→ N(0,1), where σhaj1 =
√

m∑
v=1

Eψ2
v/n, ψv =

ψhaj1,v (z,αk) = ∑
i∈Cv
{Ŷ ipwi (z,αk)−yi(z,αk)π(Z;αk)/f(Zi|Li)}−{yi(z,αk)−y(z,αk)};

(c)
√
n{Ŷ haj2 (z,αk)− y(z,αk)}/σhaj2

d−→ N(0,1), where σhaj2 =
√

m∑
v=1

Eψ2
v/n, ψv =

ψhaj2,v (z,αk) = ∑
i∈Cv
{Ŷ ipwi (z,αk)−yi(z,αk)1(Zi = z)π(Si;αk)/f(Zi,Si|Li)}−{yi(z,αk)−

y(z,αk)};
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Note if y1(z,αk) = · · ·= yn(z,αk), then a consistent estimator for (σipw)2 is (σ̂ipw)2 =∑m
v=1 ψ̂

2
v/n, where ψ̂v = ∑

i∈Cv{Ŷ
ipw
i (z,αk)− Ŷ ipw(z,αk)}. Similarly, a consistent es-

timator for (σhaj1 )2 is (σ̂haj1 )2 =∑m
v=1 ψ̂

2
v/n, where ψ̂v =∑

i∈Cv{Ŷ
ipw
i (z,αk)− Ŷ haj1 (z,αk)

1(Zi = z)/f(Zi|Li)} and for (σhaj2 )2 is (σ̂haj2 )2 =∑m
v=1 ψ̂

2
v/n, where ψ̂v =∑

i∈Cv{Ŷ
ipw
i (z,αk)

− Ŷ haj2 (z,αk)1(Zi = z)π(Si;αk)/f(Zi,Si|Li)}.

3.3.2 Unknown Propensity

All of the above results assume the propensity scores f(Zi|Li) or f(Zi,Si|Li) are

known. We now generate these results when the propensity score is not known but

can be consistently estimated. The IPW and Hajek estimators are defined similarly

as in (3.1)-(3.4) except that the propensity scores f(Zi|Li) and f(Zi,Si|Li) are re-

placed by their estimates f̂(Zi|Li) and f̂(Zi,Si|Li). For simplicity, we only discuss the

case where we have partial interference. Similar results and derivations hold in the

more general situation (given in the Appendix). Routinely, one would fit a parametric

model for the propensity scores, e.g., a logistic regression with a random effect adjust-

ing for the correlation within same clusters, and thus estimate the propensity scores

by maximum likelihood. The log likelihood function l(γ,σ2
b ) = ∑m

v=1 lv(γ,σ2
b ), where

lv(γ,σ2
b ) = logf(Zi,Si|Li) for i ∈ Cv, and the maximum likelihood estimators of γ and

σ2
b are solutions to the estimating equations ∂l(γ,σ2

b )/∂γ= 0 and ∂l(γ,σ2
b )/∂σ2

b = 0. The

next proposition (under some additional regularity conditions) establishes the asymp-

totic Normality of Ŷ ipw(z,αk) and for its normalized variance we have (σipw∗ (z,αk))2 =

V ar{
√
nŶ ipw(z,αk)} ≤ (σipw(z,αk))2, which is a well known result in the absence of

interference. This relationship in variance when the propensity scores are known com-

pared to unknown but correctly modeled also holds for the Hajek 2 estimators but not

necessarily for Hajek 1 estimators.

Proposition 3. If Assumptions 1 and 2 hold, then as n→∞
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(a)
√
n{Ŷ ipw(z,αk)−y(z,αk)}/σipw∗

d−→N(0,1), where (σipw∗ )2 = (σipw)2−HipwTV −1
γ,σ2

b
Hipw,

Hipw =∑m
v=1 |Cv|EŶ ipwv (z,αk)∂lv/n and Vγ,σ2

b
=∑m

v=1E∂l
T
v ∂lv/n.

(b)
√
n{Ŷ haj1 (z,αk)−y(z,αk)}/σhaj1,∗

d−→N(0,1), where (σhaj1,∗ )2 = (σhaj1 )2 +2ATV −1
γ,σ2

b
Hhaj

1 +

Hhaj
1

T
V −1
γ,σ2

b
Hhaj

1 , where A=∑m
v=1Eψ

haj
1,v ∂l

T
v /n and Hhaj

1 =∑m
v=1E∂ψ

haj
1,v

T
/n.

(c)
√
n{Ŷ haj2 (z,αk)−y(z,αk)}/σhaj2,∗

d−→N(0,1), where (σhaj2,∗ )2 = (σhaj2 )2−Hhaj
2

T
V −1
γ,σ2

b
Hhaj

2

and Hhaj
2 =∑m

v=1Eψ
haj
2,v ∂l

T
v /n.

If y1(z,αk) = · · ·= yn(z,αk), a consistent estimator for (σipw∗ )2 is given by (σ̂ipw∗ )2 =

(σ̂ipw)2−ĤipwT V̂ −1
γ,σ2

b
Ĥipw, where Ĥipw =

m∑
v=1
|Cv|Ŷ ipwv (z,αk)∂̂lTv /n, V̂γ,σ2

b
=∑m

v=1 ∂̂l
T
v ∂̂lv/n

and ∂̂lv(γ,σ2
b ) = ∂lv(γ̂, σ̂2

b ). A consistent estimator for Hhaj
1 is Ĥhaj

1 =−∑m
v=1 |Cv|∂̂lTv

Ŷ ipwv (z,αk)/n+ Ŷ haj1 (z,αk)
∑n
i=1π(Zi;αk)∂̂ logf(Zi|Li)T /n where ∂̂ logf(Zi|Li) = ∂ log

f(Zi|Li)|f=f̂ . And a consistent estimator for Hhaj
2 is Ĥhaj

2 =−∑m
v=1 |Cv|{Ŷ ipwv (z,αk)−

Ŷ haj2 (z,αk)1(Zi = z)π(Si;αk)/f̂(Zi,Si|Li)}∂̂lv/n. Thus, one can construct a consistent

estimator for (σhaj1,∗ )2 and (σhaj2,∗ )2.

For example, the propensity score can be estimated by a mixed effects logistic

regression model:

log{ei/(1− ei)}= Liγ+ bv (3.5)

where ei = f(Zi = 1|Li, bv) for i ∈ Cv and bv i.i.d ∼N(0,σ2
b ). The variance of the IPW

and Hajek estimators and their variance estimators are given in the Appendix.

3.3.3 Causal Effect Estimators

In this section, we first give the results of IPW and Hajek causal effect estima-

tors assuming the propensity scores are known. Then their counterparts are given

when the propensity scores are unknown but correctly modeled. Define D̂Eipw(αk) =

g{Ŷ ipw(1,αk), Ŷ ipw(0,αk)} to be the IPW estimator for the direct effect. Also define
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ÎE
ipw(α1,α0) = g{Ŷ ipw(0,α1), Ŷ ipw(0,α0)}, T̂Eipw(α1,α0) = g{Ŷ ipw(1,α1), Ŷ ipw(0,α0)}

and ÔE
ipw(α1,α0) = g{Ŷ ipw(α1), Ŷ ipw(α0)} to be the indirect, total and overall effect

IPW estimators. Hajek-type causal effect estimators can be defined similarly. For ex-

ample define the Hajek-type of direct effect estimator to be D̂Ehajh (αk) = g(Ŷ hajh (1,αk),

Ŷ hajh (0,αk)). If the contrast function g(x1,x2) is linear in x1 and x2, then the IPW

causal effect estimators are all unbiased estimators for the corresponding causal effects

and both types of Hajek estimators are asymptotically unbiased.

Recall that the Hajek 2 estimators defined in §3.3.1 and §3.3.2 preserve linear trans-

formation on the outcome. Further, if the contrast function g(x1,x2) = x1−x2 and then

the absolute value of Hajek 2 causal effects estimators are invariant under location shift.

For example, for the direct effect we have D̂Ehaj2 (αk;y+ c) = D̂E
haj
2 (αk;y). Further

note that for the binary outcome y, we have D̂Ehaj2 (αk;1− y) = −D̂Ehaj2 (αk;y). The

same relationship holds for other Hajek 2 causal effect estimators. That is, for binary

outcome, the coding of the outcome will only change the sign of the causal effect estima-

tors but not the magnitude. This is not the case for IPW and the Hajek 1 causal effect

estimators; how the sign and the magnitude will change depends on the propensity

scores as well.

The results for average mean outcome estimators in §3.3.1 and §3.3.2 can be gen-

eralized to causal effect estimators. Let 5g = (∂g/∂x1,∂g/∂x2) denote the gradient of

function g. For the direct effect, we have

Proposition 4. If the propensity score is known and Assumptions 1 and 2 hold then

as n→∞

(a)
√
n{D̂E

ipw(αk)−DE(αk)}/σD,ipw
d−→N(0,1), where σD,ipw =

√
m∑
v=1

Eψ2
v/n and

ψv = ψD,ipwv (αk) =5g(ψipwv (1,αk),ψipwv (0,αk))T ;

(b)
√
n{D̂E

haj
1 (αk)−DE(αk)}/σD,haj1

d−→N(0,1), where σD,haj1 =
√

m∑
v=1

Eψ2
v/n and

ψv = ψD,haj1,v (αk) =5g(ψhaj1,v (1,αk),ψhaj1,v (0,αk))T ;
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(c)
√
n{D̂E

haj
2 (αk)−DE(αk)}/σD,haj2

d−→N(0,1), where σD,haj2 =
√

m∑
v=1

Eψ2
v/n and

ψv = ψD,haj2,v (αk) =5g(ψhaj2,v (1,αk),ψhaj2,v (0,αk))T ;

And when the propensity scores are unknown we have:

Proposition 5. If Assumptions 1 and 2 hold, then as n→∞

(a)
√
n{D̂E

ipw
v (αk)−DE(αk)}/σipw∗

d−→N(0,1), where (σD,ipw∗ )2 = (σD,ipw)2−

HD,ipwTV −1
γ,σ2

b
HD,ipw, HD,ipw =∑m

v=1Eψ
D,ipw
v (αk)∂lv/n and Vγ,σ2

b
=∑m

v=1E∂l
T
v ∂lv/n

(b)
√
n{D̂E

haj
1 (αk)−DE(αk)}/σD,haj1,∗

d−→ N(0,1), where (σD,haj1,∗ )2 = (σD,haj1 )2 +

2ATV −1
γ,σ2

b
HD,haj

1 +HD,haj
1

T
V −1
γ,σ2

b
HD,haj

1 , where A=∑m
v=1Eψ

D,haj
1,v (αk)∂lTv /n and HD,haj

1

=∑m
v=1E∂ψ

D,haj
1,v (αk)/n

(c)
√
n{D̂E

haj
2 (αk)−DE(αk)}/σD,haj2,∗

d−→ N(0,1), where (σD,haj2,∗ )2 = (σD,haj2 )2 −

HD,haj
2

T
V −1
γ,σ2

b
HD,haj

2 and HD,haj
2 =∑m

v=1Eψ
D,haj
2,v (αk)∂lv/n.

The results can be derived similarly for indirect, total and overall effects estimators.

3.4 Simulation Study

A simulation study was conducted to investigate the bias, empirical square error

(ESE) and average estimated square error (ASE) of the different estimators discussed in

§3.3. Thus, in the simulations, Ŷ ipw(z,α0), Ŷ haj1 (z,α0) and Ŷ haj2 (z,α0) were computed

with the (i) known propensity score, (ii) estimated by a correct model and (iii) estimated

by a misspecified model. Simulations were conducted for both continuous and binary

outcomes. Let dae denote the smallest integer greater than or equal to a and let bac

denote the largest integer smaller than or equal to a. The simulation study for a

continuous outcome was carried out in the following steps:

Step 1: A hypothetical population with n = 2000 individuals was created as follows.

For i = 1, . . . ,n, εi was randomly sampled from N (0,1). Then for zi = 0,1

the potential outcomes for individual i were set to yi = 5 + 3zi + 2∑si + εi,
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where si = {z4b(i−1)/4c+1, . . . , z4di/4e}\zi. For example, s1 = {z2, z3, z4}, s2 =

{z1, z3, z4}, s3 = {z1, z2, z4}, s4 = {z1, z2, z3} and |si|= 3.

Step 2: Randomly generate covariate vector (L1i, . . . ,L4i) i.i.d from N(0, I4) for i =

1, . . .n, where I4 represents the 4 by 4 identity matrix. Let X1i = exp(L1i/2),

X2i = L2i/{1 + exp(L1i/2)}+ 10, X3i = (L1iL3i/25 + 0.6)3 and X4i = (L1i +

L4i + 20)2 be transformed covariates to be used in a misspecified propensity

score model.

Step 3: Let γ = (γ0,γ1,γ2,γ3,γ4) = (0.5,−1,0.5,−0.25,−0.1) and logit{f(Zi = z|b,L)}

= γ0 +γ1L1i +γ2L2i +γ3L3i +γ4L4i + bdi/4e where bv i.i.d. follows N(0,1) for

v= 1, . . . ,500 is the random effect and di/4e denotes the smallest integer greater

than or equal to i/4. Simulate Zi for i= 1, . . . ,n from the mixed effects logistic

distribution.

Step 4: Since the propensity scores are not known, we fit the correctly specified mixed

effects logistic regression model logit{f tru(Zi = z|b,L)}= γ0 +γ1L1i+γ2L2i+

γ3L3i+γ4L4i+bdi/4e and a misspecified mixed effects logistic regression model

logit{fmis(Zi = z|b,L)}= γ0 +γ1X1i+γ2X2i+γ3X3i+γ4X4i+bdi/4e. Plugging

in the regression coefficient estimate γ̂ and numerically integrating over the

estimated distribution of random effect b, we obtain f̂(Zi = z|L) =
∫
f(Zi =

z|b,L, γ̂)φ(b, σ̂2
b )db for the two models.

Step 5: Calculate the Ŷ ipw(z,α0), Ŷ haj1 (z,α0) and Ŷ haj2 (z,α0) for z = 0,1 using (i) the

known propensity score, (ii) the estimated propensity score from a correctly

specified mixed effects model and (iii) the estimated propensity score from a

misspecified mixed effects model.

Step 6: Repeat Step 3-5 1000 times and calculate the empirical bias, variance and mean

square error (MSE) of the estimators in Step 5.
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Table 3.1 shows the simulation results for a continuous outcome. All three esti-

mators are approximately unbiased when the propensity scores are known or when

the propensity score is correctly modeled but bias if incorrectly modeled. Also note

that Ŷ haj2 (·) has substantially smaller empirical square error (ESE) than Ŷ ipw(·) and

Ŷ haj1 (·). For example, when α = 0.1, the ESE of Ŷ ipw(1,α) is 1.48 when propensity

scores are known, 1.14 when the propensity score models are correctly specified and

1.79 if the covariates are not correctly specified. The ESE of Ŷ haj1 (1,α) is similar to

that of Ŷ ipw(·) while that of Ŷ haj2 (1,α) is around 0.03. This can be explained by the

larger variance of n̂2,z compared with n̂1,z, i.e., the denominator and numerator of the

Hajek 2 vary together. Also, in this simulation study, the Ŷ haj2 (·) is more robust than

Ŷ ipw(·) and Ŷ haj1 (·) when the propensity model is misspecified.

For binary outcome, the simulations were conducted similarly as for continuous

outcome but with the first step being replaced by the following:

Step 1: Of the 2000 individuals in the population, randomly assign 400 of the individ-

uals to have yi = 0, 400 of the individuals to have yi = 1, and the remaining

individuals to have yi = 1(zi = 1)1(si = |si|) for i= 1, . . . ,n.

The simulation results in this scenario are given in Table 3.2. Similar to the continuous

outcome simulations, the ESE for Ŷ haj2 (·) is smaller ESE than Ŷ ipw(·) and Ŷ haj1 (·)

under all three scenarios.

3.5 Rotavirus Vaccine Study in Nicaragua

Rotavirous is a major health problem in Nicaragua (Espinoza 1997). A rotavirus

vaccine study was carried out in León, Nicaragua’s second largest city with an estimated

2010 population of close to 200,000. The rotavirus vaccine was first introduced in León

in October 2006. Starting October 2006, any eligible child in the study at the age of 2, 4

and 6 months were offered rotavirus vaccine. However, for various reasons, the coverage

of vaccine of at least one dose was 67% after the implementation of the immunization

63



program. In 2010, the Health and Demographic Surveillance Site-León (HDSS-León)

was employed to obtain a simple random sample of households from about 50 out of

208 randomly selected geographical clusters of equal size (Becker-Dreps et al 2013). For

the illustration purpose, we ignored the cluster sampling of households and the study

population is chosen to be 826 children from the households selected. There were 530

households in the study and any child in the selected household under the age of 5 was

eligible to participate. Each individual in the study was visited by a field worker every

two weeks for about a year (January 2010 to February 2011, except during Christmas

break). Information about the diarrhea episodes in past 14 days was recorded as well

as other information about the household such as the sanitation conditions, household

water source, maternal employment, and age of the child. Every child that participated

study is included in the analysis. There are around 300 children being the only kid

in the family. Including them will not be a problem for two reasons: First, they do

contribute to the direct effect. And second, in the IPW estimator they cancelled out

when calculating the indirect effect since the contrast function for all causal effects used

here is g(x1,x2) = x1−x2. The outcome is set to be whether a child had at least one

rotavirus diarrhea episode during the study.

We set the interference set to be children in the same household. A mixed effects

logistic regression model of the probability of choosing fully vaccination (individuals

are categorized as fully vaccinated, i.e., those who have all three doses and not fully

vaccinated, i.e., those who have less than three doses) at baseline was fitted conditional

on a subset of covariates available at baseline: child’s age (categorized into 0-11 months,

12-23 months and 24-59 months), mother’s education level, floor (dirt floor or not

dirt floor), season, household sanitation (indoor toilet, latrine or none), water (indoor

municipal water supply or not) and breastfeeding (yes or no). The likelihood ratio test

from the fitted logistic mixture model indicated that the probability of having all three
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doses of vaccine is higher among those whose mother is more educated (OR=1.96 with

p value= 0.01) or living in a house with better sanitation (OR=1.5 with p value=0.05),

the more likely a child would be vaccinated with all three doses. Table 3.3 shows the

estimates and the estimated SE of the IPW and two Hajek estimators. Results of

IPW and Hajek 1 are similar. The Hajek 2 estimates are closer to the null and as

expected have 15%-20% smaller SE than the IPW and Hajek 1 estimates. The direct

effect estimate curve and contour plots for indirect, total and overall effect estimators

are given in Figure 3.1. While the estimated direct effect declines as α increased, the

indirect, total and overall effect estimates became larger with increases in α1 for a

given level of α0. The rate of decline for the direct effect estimator is smaller as α

increases. Lines in the contour plot for the indirect effect estimates are not parallel and

are getting closer at the upper right corner, e.g., 10% of increase of vaccine coverage

at high coverage are estimated to have a stronger indirect effect compared to at low

coverage. This means that as the vaccine coverage for vaccinated children increased,

the risk of having rotavirus diarrhea among unvaccinated children decreased. The

contour plot lines are nearly vertical for the total effect estimates, indicating the vaccine

coverage does not have much effect on the risk of a vaccinated child having rotavirus

diarrhea. The Hajek 2 overall effect estimate provides a simple summary comparison

of the two strategies, indicating that, on average, 5.12 fewer cases per 100 individuals

in a household with coverage 0.8 compared with a household with coverage 0.1.
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3.6 Tables and Figures

Figure 3.1: Hajek 2 causal effect estimators for the rotavirus vaccine study
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Table 3.1: Comparison among Estimators, continuous outcome

Empirical Bias, empirical standard error (ESE) and the average estimated standard
error (ASE) of IPW and Hajek estimators for a continuous outcome with different α
when the propensity scores are known (Known f), unknown but correctly modeled

(Correct f), and unknown but incorrectly modeled (Mis f)

α
0.1 0.5 0.9

Known f Bias ESE ASE Bias ESE ASE Bias ESE ASE

Ŷ ipw(1,α) 0.035 1.48 1.46 0.004 0.68 0.68 0.029 1.57 1.57
Ŷ haj1 (1,α) 0.050 1.61 1.60 0.008 0.58 0.59 0.037 1.04 1.03
Ŷ haj2 (1,α) 0.009 0.03 0.03 0.001 0.02 0.02 0.005 0.01 0.01
Correct f Bias ESE ASE Bias ESE ASE Bias ESE ASE

Ŷ ipw(1,α) 0.036 1.14 1.06 0.151 0.34 0.30 0.442 0.67 0.60
Ŷ haj1 (1,α) 0.039 1.14 1.12 0.154 0.33 0.37 0.436 0.62 0.69
Ŷ haj2 (1,α) 0.008 0.03 0.03 0.023 0.01 0.01 0.032 0.01 0.01

Mis f Bias ESE ASE Bias ESE ASE Bias ESE ASE

Ŷ ipw(1,α) 0.566 1.79 1.25 0.154 2.53 1.45 1.574 13.74 9.28
Ŷ haj1 (1,α) 0.721 1.43 1.23 0.387 1.21 0.95 1.224 5.68 5.08
Ŷ haj2 (1,α) 0.007 0.03 0.02 0.112 0.03 0.02 0.071 0.01 0.01
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Table 3.2: Comparison among estimators, binary outcome

Empirical Bias (×10), empirical standard error (ESE) (×10) and the average
estimated standard error (ASE) (×10) of IPW and Hajek estimators for a binary

outcome with different α when the propensity scores are known (Known f), unknown
but correctly modeled (Correct f), and unknown but incorrectly modeled (Mis f)

α
0.1 0.5 0.9

Known f Bias ESE ASE Bias ESE ASE Bias ESE ASE

Ŷ ipw(1,α) 0.013 0.68 0.68 0.004 0.27 0.27 0.022 0.71 0.71
Ŷ haj1 (1,α) 0.010 0.68 0.68 0.004 0.25 0.25 0.027 0.61 0.61
Ŷ haj2 (1,α) 0.021 0.56 0.54 0.001 0.23 0.22 0.019 0.24 0.24
Correct f Bias ESE ASE Bias ESE ASE Bias ESE ASE

Ŷ ipw(1,α) 0.019 0.72 0.69 0.005 0.23 0.24 0.279 0.49 0.46
Ŷ haj1 (1,α) 0.020 0.72 0.70 0.004 0.23 0.24 0.275 0.47 0.48
Ŷ haj2 (1,α) 0.018 0.58 0.54 0.052 0.22 0.20 0.078 0.20 0.20

Mis f Bias ESE ASE Bias ESE ASE Bias ESE ASE

Ŷ ipw(1,α) 0.145 0.60 0.55 0.079 0.58 0.48 0.914 1.99 1.65
Ŷ haj1 (1,α) 0.181 0.56 0.53 0.015 0.41 0.39 0.743 1.35 1.27
Ŷ haj2 (1,α) 0.013 0.49 0.45 0.149 0.28 0.25 0.167 0.30 0.30

68



Table 3.3: Rotavirus Vaccine Study

IPW and Hajek estimates (Est) and estimated standard error (SE) per 100
individuals for the rotavirus vaccine study

α
0.2 0.4 0.6 0.8

Est SE Est SE Est SE Est SE

D̂E
ipw(α) -7.94 20.3 -6.15 15.2 -4.20 10.4 -1.85 6.82

D̂E
haj
1 (α) -8.11 20.4 -6.30 15.3 -4.33 10.6 -1.96 7.05

D̂E
haj
2 (α) -5.16 17.3 -4.37 13.0 -3.21 9.21 -1.41 6.45

ÎE
ipw(α,0.1) -1.32 2.59 -4.04 7.78 -6.88 13.0 -9.82 18.4

ÎE
haj
1 (α,0.1) -1.32 2.58 -4.06 7.77 -6.92 13.0 -9.88 18.4

ÎE
haj
2 (α,0.1) -0.42 2.43 -1.53 6.96 -2.85 11.4 -4.49 15.8

T̂E
ipw(α,0.1) -9.26 22.8 -10.2 22.6 -11.1 22.6 -11.7 22.7

T̂E
haj
1 (α,0.1) -9.43 22.9 -10.4 22.7 -11.3 22.7 -11.9 22.7

T̂E
haj
2 (α,0.1) -5.58 19.5 -5.90 19.4 -6.06 19.4 -5.90 19.5

ÔE
ipw(α,0.1) -2.00 4.30 -5.60 11.4 -8.49 16.4 -10.4 19.5

ÔE
haj
1 (α,0.1) -2.03 4.31 -5.67 11.4 -8.60 16.5 -10.5 19.5

ÔE
haj
2 (α,0.1) -0.88 3.76 -2.70 9.82 -4.24 14.1 -5.12 16.8
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Chapter 4

Doubly Robust Estimation with Interference

4.1 Introduction

In causal inference, it is typically assumed that individual’s potential outcome de-

pends only on the her own treatment assignment. This is part of the stable unit

treatment value assumption (Rubin 1980). However, this assumption does not hold in

various settings. For example, in a vaccine trial, the infection status of one individual

depends on her vaccination status as well as the vaccination of people she commonly

contact with. In econometrics, the house mobility may depends on the distribution of

voucher in the neighbourhood (Sobel 2006). Recently, the situation has been studied

where the study population can be divided into clusters and possible interference exists

only among individuals in the same cluster. This is called ‘partial interference’ (Sobel

2006) and can be viewed as a special case of ‘constant treatment response’ (Manski

2013). Assuming partial interference, Hudgens and Halloran (2008) defined the direct,

indirect (or spillover), total, and overall causal effects of an intervention and Tchet-

gen Tchetgen and VanderWeele (2012) proposed inverse probability weighted (IPW)

estimators of these causal effect for observational studies. However, the validity of

IPW estimators only holds when the propensity score is known or correctly modeled.

Moreover, IPW estimators are known to have large variance and are unstable to small

propensity scores which are quite common in a study with interference. Thus, new



methods need to be developed to improve the efficiency and stabilize IPW estimators.

In the absence of interference, doubly robust (DR) procedure are known to be ef-

fective in improving on the IPW estimators. Usually, when the missing mechanism of

outcomes are beyond the control of the investigators, there are two ways of adjusting for

potential confounders. One is to model the relationship between covariates and poten-

tial outcomes and the other is to predict the missing mechanism using the information

available. IPW estimators only use the second model while DR estimators apply both

model and is proved to be consistent when either of the two models is correct (Robins

and Rotnitzky 1995). In practice, neither the model for the propensity score nor the

counterfactual outcome model is known to investigators. Thus, the DR estimator pro-

vides 2 chances to get a right answer. However, the literature of DR procedure all make

the no interference between units assumption and hence there is a need to generalize

the DR estimator in the presence of interference.

In this paper, we develop the DR estimators for causal effects in studies assuming

partial interference. The outline of the remainder of the paper is as follows. In Section

4.2 we introduce notation and define various causal effects. The IPW and regression

estimators are defined in Section 4.3.1 and the DR estimator is derived in Section 4.3.2.

Results from a simulation study are presented in Section 4.4. The rotavirus vaccine

study is introduced in Section 4.5. Method will be illustrated in an application to this

study. Finally, we discuss some limitations and propose future research in Section 4.6.

4.2 Notations, Assumptions and Estimands

Let Y be the continuous or discrete outcome and let X denote the pre-exposure

covariates. Let A be the random variable for the treatment received and let A = 1 if

individual receives treatment and A= 0 otherwise. Suppose there are m groups in the

study with ni individuals in group i. For each individual, a copy of (Xij ,Aij ,Yij) will be
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observed for j = 1, . . . ,ni, i = 1, . . . ,m. Let Xi = (Xi1, . . . ,Xini) and Yi = (Yi1, . . . ,Yini)

be the random vector of the covariates and outcome for all individuals in group i. Let

Ai = (Ai1, . . . ,Aini) denote the random vector of treatment received for all ni individu-

als in group i and Ai(−j) = Ai\Aij be the subvector of Ai denoting the random vector

of treatment for all individuals other than the jth one. Let aij , ai(−j) and ai denote

the possible value Aij , Ai(−j) and Ai can take. Define f(Ai|Xi) = Pr(Ai|Xi) to be the

probability of treatment vector given the covariates (also known as propensity score)

and let f(Aij |Xi) = Pr(Aij |Xi) be the probability of treatment received by an individ-

ual. A special interference structure is that individuals interfere with each other within

the same group but not across groups. This is called partial interference assumption

and we make this assumption throughout. Under partial interference assumption, let

Y (ai) = Y (aij ,ai(−j)) be the potential outcome under treatment allocation ai, and thus

Y =∑
ai 1(Ai = ai)Y (ai). In a study with partial interference, the copies (Xij ,Aij ,Yij)

may be dependent but identically distributed and (Xi,Ai,Yi) are indeed independent.

We assume that conditional on covariates Li, the treatment allocation is positive, i.e.,

f(Ai = Ai|Xi) > 0 with probability 1. We also make the exchangeability assumption

that f(Ai|Li) = f(Ai|Xi,Yi(·)). This is also known as the ignorability assumption in

missing data literature. We make these two assumptions throughout.

We say the treatment assignment is ‘allocation strategy αk’ if individuals are inde-

pendently assigned treatment with probability αk. Under allocation strategy αk, the

probability of having treatment Ai in group i is π(Ai;αk) = Pr(Ai;αk) = ∏
j α

Aij
k (1−

αk)1−Aij and that of the individuals other than individual j is π(Ai(−j);αk) = Pr(Ai(−j);αk)
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= ∏
j
′ 6=j α

A
ij
′

k (1−αk)
1−A

ij
′ . Define the average potential outcome under allocation s-

trategy αk as y(a,αk) =∑
ai(−j)EY (a,ai(−j))π(ai(−j);αk) is the average potential out-

come conditional on covariates Xi when individual is assigned treatment a under alloca-

tion strategy αk. Define the average potential outcome conditional on covariates Xi un-

der allocation αk to be y(α0) =∑
aiEY (ai)π(ai;α0). Following Halloran and Struchiner

(1995) and Hudgens and Halloran (2006) , we define the direct effect of a treatment

under allocation strategy αk to be DE(αk) = y(1,αk)−y(0,αk) for k= 0,1, the indirect

effect IE(α1,α0) = y(0,α1)− y(0,α0), the total effect TE(α1,α0) = y(1,α1)− y(0,α0),

and the overall effect OE(α1,α0) = y(α1)− y(α0). In words, the direct effect is the

effect of applying treatment directly. Indirect (or spillover) effect compares the average

potential outcome when an individual receives control under different allocation strat-

egy α1 and α0. The total effect equals the sum of the direct and indirect effects, while

the overall effect provides a single summary measure of the effect of allocation strategy

α1 versus α0. See Tchetgen Tchetgen and VanderWeele (2012) for further discussion

about these estimands.

4.3 Estimators

4.3.1 IPW and Regression Estimators

One way to adjust for the confounding in observational studies is to use inverse-

weighting. Inverse probability weighting creates a pseudo-population, in which there

is no confounding thus the weighted average represent the average in a population

where the treatment is randomly assigned. Under no unmeasured confounders assump-

tion, Y (ai) is independent with Ai given f(Ai|Xi). However, the propensity score

is usually not known but estimated. For example, after fitting the regression mod-

el f(Ai|Xi) = exp(γ1 + γXiXi + γAiAi)/{1 + exp(γ1 + γXiXi + γAiAi)}, the maximum
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likelihood estimates (MLE) γ̂ = (γ̂1, γ̂Xi , γ̂Ai) for γ = (γ1,γXi ,γAi) can be calculated

and thus f̂(Ai|Xi) can be obtained. Tchetgen Tchetgen and VanderWeele (2012)

proposed group level generalized IPW estimator as Ŷ ipwi (a;αk) = n−1
i

∑ni
j=1 1(Aij =

a)Yij(Ai)π(Ai(−j);αk)/f̂(Ai|Xi) and Ŷ ipwi (αk) = n−1
i

∑ni
j=1Yij(Ai)π(Ai;α0)/f̂(Ai|Xi).

The population level IPW estimators were Ŷ ipw(a;αk) =∑m
i=1 Ŷ

ipw
i (a;αk)/m and Ŷ ipw(αk) =∑m

i=1 Ŷ
ipw
i (αk)/m. It has been showed that when the propensity score is known, the

generalized IPW estimators Ŷ ipwi (a,αk) and Ŷ ipwi (αk) are unbiased for y(a,αk) and

y(αk), k = 0,1. We assume under certain regularity conditions, there exists γ∗ such

that γ̂→ γ∗ as m→∞, that is the estimator γ̂ will converge no matter the propensity

model is correct or not. Thus, if the if the propensity score f(Ai|Xi) is unknown but cor-

rectly modeled, i.e., γ∗ = γ0 where γ0 is the true parameter then Ŷ ipw(a,αk)
p−→ y(a,αk)

and Ŷ ipw(αk)
p−→ y(αk) as m→∞.

Alternatively, one can adjust for potential confounders using a regression estimator

based on the imputed value of potential outcomes. For example, suppose the true re-

gression model for Y (Ai) is µ(Ai,Xi) = E[Y (Ai)|Ai,Xi] = β0 +βAiAi +βXiXi. Then,

the group level regression estimators are defined as Ŷ regi (a;αk) =
ni∑
j=1

∑
ai(−j)

µ̂ij(a,ai(−j),Xi)

π(ai(−j);αk)/ni and Ŷ regi (αk) =∑ni
j=1

∑
ai µ̂i(ai,Xi)π(ai;αk)/ni where µ̂ij(aij ,ai(−j),Xi)

= µ̂ij(ai,Xi) = β̂1 + β̂Aiai+ β̂XiXi and β̂ = (β̂1, β̂Ai , β̂Xi) are MLE for β = (β1,βAi ,βXi).

The population level regression estimators are defined as Ŷ reg(a;αk) =
m∑
i=1

Ŷ regi (a;αk)/m

and Ŷ reg(αk) =∑m
i=1 Ŷ

reg
i (αk)/m. We assume under certain regularity conditions, there

exist β∗ such that β̂ → β∗ as m→∞. Note that if the potential outcome model

m(ai,Xi) is consistently estimated by m̂(ai,Xi), i.e., β∗ = β0 where β0 is the true

parameter, then Ŷ reg(a,αk)
p−→ y(a,αk) and Ŷ reg(αk)

p−→ y(αk) as m→∞.

We can define various causal effect estimators based on the IPW and regression

estimators introduced in this section. For example, define D̂Eipw(αk) = Ŷ ipw(1,αk)−

Ŷ ipw(0,αk) for k = 0,1 to be the IPW estimator for direct effect, ÎEipw(α1,α0) =
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Ŷ ipw(0,α1)−Ŷ ipw(0,α0), T̂Eipw(α1,α0) = Ŷ ipw(1,α1)−Ŷ ipw(0,α0) and ÔEipw(α1,α0) =

Ŷ ipw(α1)− Ŷ ipw(α0) to be the IPW estimators for indirect, total and overall effects.

The regression causal effect estimators can be defined similarly. Note that these estima-

tors are consistent estimator for corresponding causal effects when the model required

is correctly specified.

4.3.2 Doubly Robust Estimators

In Section 4.3.1, we have shown that in an observational study with interference, the

parameter of interest y(a,αk) and y(αk) can be consistently estimated by the estimator

based on regression modeling if the regression model is correct or by the estimator based

on inverse propensity weighting if the propensity score model is correct. The doubly

robust estimators utilize both models and are consistent if either model is correct. We

propose doubly robust estimators as follows:

Ŷ DRi (a,αk) = n−1
i

ni∑
j=1

1(Aij = a){Yij(Ai)− µ̂ij(Ai,Xi)}
f̂(Ai|Xi)

π(Ai(−j);αk)

+
∑
ai(−j)

µ̂ij(a,ai(−j),Xi)π(ai(−j);αk)



Ŷ DRi (αk) = n−1
i

n∑
j=1

{
{Yij(Ai)− µ̂ij(Ai,Xi)}

f̂(Ai|Xi)
π(Ai;αk) +

∑
ai

µ̂ij(ai,Xi)π(ai;αk)
}

where f̂(Ai|Xi) and µ̂ij(ai,Xi) are parametric model built for propensity score and the

outcome. Under certain regularity conditions For the group level and Ŷ DR(a,αk) =∑m
i=1 Ŷ

DR
i (a,αk)/m and Ŷ DR(αk) = ∑m

i=1 Ŷ
DR
i (αk)/m at the population level. The

following Proposition shows that the DR estimators are indeed doubly robust.

Proposition 1. If either γ∗ = γ0 or β∗ = β0 hold, then

(a)
√
m{Ŷ DR(a,αk)−y(a,αk)}/σDR(a,αk)

d−→N(0,1) as m→∞, where (σDR(a,αk))2
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=m−1∑m
i=1ψ

2
i (y(a,αk),γ∗,β∗) and ψi(η,γ,β) =∑ni

j=1[1(Aij = a){Y (Ai)−µ(Ai,Xi|β)}

π(Ai(−j);α0)/{nif(Ai|Xi,γ)}+∑
ai(−j) µ(a,ai(−j),Xi|β)π(ai(−j);α0)]−η

(b)
√
m{Ŷ DR(αk)− y(αk)}/σDR(αk)

d−→ N(0,1) as m→∞, where (σDR(αk))2 =

m−1∑m
i=1ϕ

2
i (y(αk),γ∗,β∗) and ϕi(η,γ,β) =n−1

i

ni∑
j=1

[{Y (Ai)−µ(Ai,Xi|β)}π(Ai(−j);α0)/

f(Ai|Xi,γ) +∑
ai µ(ai,Xi|β)π(ai;α0)]−η.

The proof of Proposition 1 is given in the Appendix. It can also be concluded from

the proof that σDR(a,αk) and σDR(αk) stay the same whether γ and β are known

or estimated. To estimate the variance, note that ψi(Ŷ DR(a,αk), γ̂, β̂) = Ŷ DRi (a,αk)−

Ŷ DR(a,αk), thus, (σ̂DR(a,αk))2 =m−1∑m
i=1(Ŷ DRi (a,αk)− Ŷ DR(a,αk))2 is a consistent

estimator for (σDR(a,αk))2. Similarly, (σ̂DR(αk))2 =m−1∑m
i=1(Ŷ DRi (αk)− Ŷ DR(αk))2

estimates (σDR(αk))2 consistently.

Doubly robust causal effect estimators can be defined similarly as the IPW estima-

tors in Section 4.3.1. For example, define D̂EDR(αk) = Ŷ DR(1,αk)− Ŷ DR(0,αk) to be

the DR estimator for direct effect. And it follows from Proposition 1 that D̂EDR(αk),

ÎE
DR(α1,α0), T̂EDR(α1,α0) and ÔE

DR(α1,α0) are consistent estimators for the cor-

responding causal effects when either the propensity or the potential outcome model is

correct. Thus, these estimators are doubly robust as well.

Proposition 2. If either γ∗ = γ0 or β∗ = β0 hold, then

(a)
√
m{D̂E

DR(αk)−DE(αk)}/σDRD
d−→N(0,1) as m→∞, where (σDRD )2 =m−1∑m

i=1

{ψi(y(1,αk),γ∗,β∗)−ψi(y(0,αk),γ∗,β∗)}2

(b)
√
m{ÎE

DR(α1,α0)− IE(α1,α0)}/σDRI
d−→ N(0,1) as m→∞, where (σDRI )2 =

m−1∑m
i=1{ψi(y(0,α1),γ∗,β∗)−ψi(y(0,α0),γ∗,β∗)}2

(c)
√
m{T̂E

DR(α1,α0)−TE(α1,α0)}/σDRT
d−→N(0,1) as m→∞, where (σDRT )2 =

m−1∑m
i=1{ψi(y(1,α1),γ∗,β∗)−ψi(y(0,α0),γ∗,β∗)}2

(d)
√
m{ÔE

DR(α1,α0)−OE(α1,α0))}/σDRO
d−→N(0,1) as m→∞, where (σDRO )2 =

m−1∑m
i=1{ϕi(y(α1),γ∗,β∗)−ϕi(y(α0),γ∗,β∗)}2
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Following a similar argument as previously, a consistent estimator for (σDRD )2 is

(σ̂DRD )2 = (D̂EDRi (αk)−D̂E
DR(αk))2. Consistent variance estimator for the other three

causal effects can be construct similarly.

4.4 Simulations

Simulations were conducted to verify the unbiasedness and consistency of the IPW,

regression and DR robust estimators given in Sections 4.3.1 and 4.3.2 as well as to

compare their efficiency and robustness when the model is either correctly or mistakenly

specified. Simulations were conducted under four scenarios: (i) the propensity model is

correct but the potential outcome model is wrong, (ii) the propensity model is wrong but

the potential outcome model is correct, (iii) both the propensity model and the potential

outcome model are correct, and (iv) neither the propensity model or the potential

outcome model is correct. For scenario (i), the simulation study was conducted in the

following steps:

Step 1: Covariates (Z1ij ,Z2ij ,Z3ij ,Z4ij) were independently sampled from N(0,I4) for

j = 1, . . . ,ni, i = 1, . . . ,m, where I4 are 4 by 4 identity matrix. Let X1ij =

exp(Z1ij/2), X2ij = Z2ij/{1 + exp(Z1ij)}+ 10, X3ij = (Z1ijZ3ij/25 + 0.6)3 and

X4ij = (Z1ij +Z4ij + 20)2.

Step 2: Let logitPr(Aij = 1|Z1i, . . . ,Z4i, bi) = −Z1ij + 2Z2ij − 1.25Z3ij − 0.1Z4ij + bi

where bi i.i.d. follows N(0,1) for i = 1, . . . ,500 is the random effect. Simu-

late Aij from the mixed effect logistic distribution.

Step 3: Let µij = 2−Z1ij − 2.7Z2ij + 3Z3ij −Z4ij + 0.5Aij + 6f(Ai(−j))/ni+AijZ1ij +

8f(Ai(−j))Z2ij where f(Ai(−j)) =∑ni
j
′=1,j′ 6=jAij′/ni is proportion of treatment

received among people in the rest of group i. Randomly sample εi from N(0,1)

and let Yij = µij + εij .

Step 4: Fit the correct potential outcome model E{Yij |Z1i, . . . ,Z4i,Ai}= β1 +β1Z1ij +
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β2Z2ij+β3Z3ij+β4Z4ij+β5Aij+β6f(Ai(−j))+β7AijZ1ij+β8f(Ai(−j))Z2ij and

the mis-specified propensity model logitPr(Aij = 1|X1i, . . . ,X4i, bi) = γ1X1ij +

γ2X2ij + γ3X3ij + γ4X4ij + bi. Calculate the MLE β̂ and γ̂ and thus obtain

the estimated outcome m̂ij(ai,Xi) and propensity score f̂(Aij = 1|Xi) for

j = 1, . . . ,ni, i= 1, . . . ,m.

Step 5: Calculate the IPW, regression and DR estimators according to Section 4.3.1

and 4.3.2.

Step 6: Repeat Step 1-5 for 500 times and calculate the empirical mean and variance

of these estimators.

The simulation was carried out for ni = 4, m= 500 and α0 took the value 0.1, 0.5 and

0.9. Scenario (ii) was carried out similar as Scenario (i) except replace Step 4 with

Step 4: Fix the mis-specified potential outcome model E{Yij |X1i, . . . ,X4i,Ai} = β1 +

β1X1ij+β2X2ij+β3X3ij+β4X4ij+β5Aij+β6f(Ai(−j))+β7AijX1ij+β8f(Ai(−j))X2ij

and the correct propensity model logitPr(Aij = 1|Z1i, . . . ,Z4i, bi) = γ1Z1ij +

γ2Z2ij+γ3Z3ij+γ4Z4ij+bi. Calculate the MLE β̂ and γ̂ and thus obtain the es-

timated outcome m̂i(ai,Xi) and propensity score f̂(Aij = 1|Xi) for j = 1, . . . ,ni,

i= 1, . . . ,m.

And Scenario (iii) and (iv) were carried out using the corresponding regression model.

The simulation result is presented in Table 4.1. As expected, when the π model

is correct, the IPW, hajek and the DR estimators have small bias while when the µ

model is correct, the regression and DR estimators have small bias. Note that the DR

estimator has a smaller variance than that of the IPW estimators when the π model

is correct; the DR estimator has a smaller variance than that of both the regression

estimators when the µ model is correct. That is when one of the model is correct,

the other model in DR estimator, although mis-specified, helps increase the efficiency.

When both models are correct, the DR estimator has even smaller bias and variance.
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However, when both models are wrong, the DR estimator has as big or even bigger bias

when using the IPW and regression estimators. This is also observed by who pointed

out that ‘two wrong models are not better than one’.

4.5 Rotavirus Vaccine Study in Nicaragua

Rotavirous is a major health problem in Nicaragua (Espinoza 1997). A rotavirus

vaccine study was carried out in León, Nicaragua’s second largest city, with an esti-

mated 2010 population of close to 200,000. The rotavirus vaccine was first introduced

in León in October 2006. In 2010, the Health and Demographic Surveillance Site-León

(HDSS-León) was employed to obtain a simple random sample of households from about

50 out of 208 randomly selected geographical clusters of equal size (Becker-Dreps et al

2013). There were 530 households in the study and any child in the selected household

under the age of 5 was eligible to participate. Starting October 2006, any eligible child

in the study at the age of 2, 4 and 6 months were offered rotavirus vaccine. However,

due to various reasons, the coverage of vaccine of at least one dose was about 67%

after the implementation of immunization program. Each individual in the study was

visited by a field worker every two weeks for about a year (January 2010 to February

2011, except during Christmas break). During each visit, information about the diar-

rhea episodes in the past 14 days was recorded as well as other information about the

household such as the sanitation conditions, water source, or the mother or the child

such as maternal employment or age of the child. Every child participated study is

included in the analysis. There are around 300 children out 826 children being the only

kid in the family. Including them will not be a problem for two reasons: First, they

do contribute to the direct effect. And second, in the IPW estimator they cancelled

out when calculating the indirect effect since the contrast function for all causal effects

used here is g(x1,x2) = x1−x2. The outcome is set to be whether one child ever had

rotavirus diarrhea episode during the study.
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A logistic regression model of the probability of choosing vaccine (all three doses)

at baseline was fitted on the covariates available at baseline: child’s age (categorized

into 0-11 months, 12-23 months and 24-59 months), mother’s education level, floor

(dirt floor or not dirt floor), season, household sanitation (indoor toilet, latrine or

none), water (indoor municipal water supply or not) and breastfeeding (yes or no).

The likelihood ratio test from the fitted logistic mixture model indicated that the

probability of having all three doses of vaccine is higher among those whose mother

has a higher education level categorized age variable has p value 0.001. Also, the more

educated the mother (OR=1.96 with p value= 0.01) or those in a house with better

sanitation (OR=1.5 with p value=0.05). Then we fit a linear regression model for

outcomes. Apart from all the covariates included in the propensity score model, we

include individual vaccine status (all 3 doses) and the proportion of vaccine received

in the household. Compared with 24-59 month old children, infants are more likely

to have rotavirus diarrhea (OR=1.09 with p value 0.02). Also, rotavirus diarrhea is

more likely to happen in the dry season (OR=1.11 with p value¡0.001). Mothers with

a higher education level or those breastfeeding their children are more likely to report

diarrhea. Table 4.2 shows the estimates of IPW, regression and DR estimators.

4.6 Discussion

So far, we have proposed to extend the doubly robust estimators in the presence of

interference. The DR estimators of various causal effects were proposed and showed to

be consistent and asymptotical normally distributed. The DR estimators we proposed

use only one model for propensity score and one for potential outcome. However, it was

suggested in the absence of interference that estimators using multiple models for both

the propensity score and potential outcome are more robust than DR (Han and Wang

2013). Also, Tsiatis (2006) proposed DR estimator that achieved the semiparametric
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efficiency bound. How these results can be generated in the presence of interference is

left for future work.

4.7 Tables and Figures

Table 4.1: Bias and SE of Estimators
Empirical bias and standard error (in parentheses) of different estimators when

interference is at present, ni = 4 and m= 500

α
0.1 0.5 0.9

π tru µ mis Bias ESE ASE Bias ESE ASE Bias ESE ASE

Ŷ ipw(1,α0) 0.032 0.77 0.80 0.066 0.29 0.31 0.198 0.38 0.42
Ŷ reg(1,α0) 0.284 0.71 0.17 0.220 0.40 0.11 0.157 0.27 0.14
Ŷ DR(1,α0) 0.013 0.55 0.55 0.004 0.19 0.19 0.007 0.19 0.18
π mis µ tru Bias ESE ASE Bias ESE ASE Bias ESE ASE

Ŷ ipw(1,α0) 0.706 0.70 0.83 0.139 3.05 4.37 0.756 2.29 3.10
Ŷ reg(1,α0) 0.004 0.14 0.10 0.002 0.09 0.08 0.001 0.11 0.10
Ŷ DR(1,α0) 0.005 0.20 0.20 0.010 0.23 0.23 0.000 0.19 0.19
π tru µ tru Bias ESE ASE Bias ESE ASE Bias ESE ASE

Ŷ DR(1,α0) 0.006 0.17 0.17 0.001 0.09 0.09 0.003 0.11 0.11
π mis µ mis Bias ESE ASE Bias ESE ASE Bias ESE ASE

Ŷ DR(1,α0) 0.501 0.76 0.79 0.246 2.07 2.08 0.094 1.29 1.28
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Table 4.2: Estimators for Rotavirus Vaccine Study

IPW, regression and DR estimates (Est) and estimated standard error (SE) per 100
individuals for the rotavirus vaccine study

α1
0.2 0.4 0.6 0.8

Est SE Est SE Est SE Est SE
D̂E

ipw(α1) -6.30 10.30 -3.90 7.90 -1.60 5.80 0.80 4.30
D̂E

reg(α1) 5.30 4.70 5.30 4.70 5.30 4.70 5.30 4.70
D̂E

DR(α1) -6.10 10.10 -4.20 7.90 -2.10 5.90 0.40 4.40
ÎE

ipw(α1,0.1) -1.20 1.30 -3.50 3.90 -5.80 6.50 -8.20 9.10
ÎE

reg(α1,0.1) 2.20 2.30 6.70 6.90 11.10 11.50 15.60 16.10
ÎE

DR(α1,0.1) 1.30 1.20 3.70 3.70 6.10 6.10 8.50 8.50
T̂E

ipw(α1,0.1) -7.40 11.50 -7.40 11.50 -7.50 11.50 -7.40 11.50
T̂E

reg(α1,0.1) 7.50 5.50 12.00 8.80 16.40 12.90 20.90 17.30
T̂E

DR(α1,0.1) -4.90 11.30 -0.50 11.30 4.10 11.30 8.90 11.30
ÔE

ipw(α1,0.1) -1.70 2.10 -4.30 5.70 -6.10 8.20 -6.90 9.80
ÔE

reg(α1,0.1) 2.80 2.40 8.30 7.20 13.80 12.00 19.30 16.80
ÔE

DR(α1,0.1) 0.70 2.10 2.80 5.50 5.60 8.00 9.50 9.60
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Chapter 5

Conclusion

To summarize, assessing the causal effect in the presence of interference can be dif-

ficult in many settings. We have provided methodology to make causal inference about

treatment effects when the population consists of groups of individuals where interfer-

ence is possible within groups but not between groups. The asymptotic distributions of

effect estimators were derived when either the number of individuals per group or the

number of groups grows large. Under certain assumptions about homogeneity across

groups, the asymptotic distributions provide justification for Wald type CIs and tests.

A simulation study was presented showing that in some settings the Wald CIs have

good coverage in finite samples and are substantially narrower than exact CIs.

Additionally, we generalized the IPW estimator proposed by Tchetgen Tchetgen and

VanderWeele (2012) for general interference structure in observational studies. Specif-

ically, first we propose generalized IPW estimators that do not require the partial

interference; rather any form of interference between individuals is permitted. Second,

two stabilized IPW estimators are proposed based on the classic Hajek estimator from

survey sampling. Third, we develop the asymptotic distribution of IPW estimators and

Hajek estimators and propose consistent variance estimators assuming partial interfer-

ence. Empirical results are presented demonstrating one of the Hajek estimators can

have substantially smaller variance than the other IPW estimators.



Chapter 4 provides a way to construct doubly robust estimators for causal effects in

the presence of interference. These estimators are generalization of doubly robust esti-

mator for average treatment effect. The doubly robust estimators proposed are shown

to be consistent and asymptotically normally distributed when either the propensity

score or the potential outcome is correctly modeled. Both the Hajek estimators and

the DR estimators are illustrated using data from a recent study examining the effects

of rotavirus vaccination in Nicaragua.
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Appendix I

Proofs from Chapter 2

Proof of Propositions 1-3

Proposition 1 follows directly from Lehmann (1998) Appendix 4 Theorem 6. To

prove Proposition 2, set Sni(α1) =∑ni
j=1υij1(Zij = 1) and note the same theorem from

Lehmann (1998) implies

[Sni(α1)−Eα1{Sni(α1)}]/
√
V arα1{Sni(α1)} d−→N (0,1) (5.1)

where Eα1{Sni(α1)}= E{Sni(α1)|Gi = 1}. Next note that

D̂Ei(α1) = Ŷi(1,α1)− Ŷi(0,α1)

= 1
kiα1

ni∑
j=1

yij(1,α1)1(Zij = 1)− 1
ni−kiα1

ni∑
j=1

yij(0,α1)1(Zij = 0)

= 1
kiα1

ni∑
j=1

yij(1,α1)1(Zij = 1)− 1
ni−kiα1

ni∑
j=1

yij(0,α1){1−1(Zij = 1)}

=
ni∑
j=1

{
1
kiα1

yij(1,α1) + 1
ni−kiα1

yij(0,α1)
}

1(Zij = 1)− 1
ni−kiα1

ni∑
j=1

yij(0,α1)

implying

D̂Ei(α1)−DEi(α1) =
ni∑
j=1

{
1
kiα1

yij(1,α1) + 1
ni−kiα1

yij(0,α1)
}

1(Zij = 1)

− 1
ni−kiα1

ni∑
j=1

yij(0,α1)− 1
ni

ni∑
j=1

yij(1,α1) + 1
ni

ni∑
j=1

yij(0,α1)

=
ni∑
j=1

{
1
kiα1

yij(1,α1) + 1
ni−kiα1

yij(0,α1)
}

1(Zij = 1)

−
ni∑
j=1

{
1
kiα1

yij(1,α1) + 1
ni−kiα1

yij(0,α1)
}
kiα1

ni
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such that D̂Ei(α1)−DEi(α1) =Sni(α1)−Eα1{Sni(α1)}. Also note D̂Ei(α1) =Sni(α1)−∑ni
j=1 yij(0,α1)/(ni− kiα1), i.e., D̂Ei(α1) and Sni(α1) differ by a constant. Therefore

V arα1{D̂Ei(α1)}= V arα1{Sni(α1)}, implying

D̂Ei(α1)−DEi(α1)√
V arα1{D̂Ei(α1)}

= Sni(α1)−Eα1{Sni(α1)}√
V arα1{Sni(α1)}

which by (5.1) completes the proof of Proposition 2. Using the fact that Ŷi(αs)−

Y i(αs) = ∑ni
j=1

{
yij(1,αs)− yij(0,αs)

}{
1(Zij = 1)− kiαs/ni

}
/ni, Proposition 3 can be

proved similarly to Proposition 2.

Proof of Propositions 4.1-4.4

To prove Proposition 4.1, let {i1, . . . , il}= {i ∈ {1, . . . ,m} :Gi = 1} and let

ci = lim
√
V arα1{D̂Ei(α1)}/

√∑
i∈{i1,...,il}V arα1{D̂Ei(α1)} as nmin→∞ for i∈{i1, . . . , il}.

By assumption ci1 , . . . , cil exist. Then conditional on G1 = g1, ...,Gm = gm,

D̂E(α1)−µ(i1,...,il)
DE

σ
(i1,...,il)
DE

=

∑
i∈{i1,...,il}

[D̂Ei(α1)−Eα1{D̂Ei(α1)}]√ ∑
i∈{i1,...,il}

V arα1{D̂Ei(α1)}

=
∑

i∈{i1,...,il}

[D̂Ei(α1)−Eα1{D̂Ei(α1)}]√
V arα1{D̂Ei(α1)}

√
V arα1{D̂Ei(α1)}√ ∑

i∈{i1,...,il}
V arα1{D̂Ei(α1)}

d−→
∑

i∈{i1,...,il}
Zici ∼N (0,1)

where Zi1 , . . . ,Zil are i.i.d N (0,1) and the last line follows from Proposition 2 and that∑
i∈{i1,...,il} c

2
i = 1.
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To prove Proposition 4.2, note that

ÎE(α1,α0) = Ŷ (0,α1)− Ŷ (0,α0)

=
m∑
i=1

{
Ŷi(0,α1)

l
1(Gi = 1)− Ŷi(0,α0)

m− l
1(Gi = 0)

}

Thus conditional on
{
Gi = 1 : i ∈ {i1, . . . , il}

}
,

ÎE(α1,α0)−µ{i1,...,il}IE

σ
{i1,...,il}
IE

=
∑

i∈{i1,...,il}

Ŷi(0,α1)−yi(0,α1)
lσ
{i1,...,il}
IE

−
∑

i/∈{i1,...,il}

Ŷi(0,α0)−yi(0,α0)
(m− l)σ{i1,...,il}IE

=
∑

i∈{i1,...,il}

Ŷi(0,α1)−yi(0,α1)√
V arα1Ŷi(0,α1)

√
V arα1Ŷi(0,α1)/l2

σ
{i1,...,il}
IE

−
∑

i/∈{i1,...,il}

Ŷi(0,α0)−yi(0,α0)√
V arα1Ŷi(0,α1)

√
V arα1Ŷi(0,α1)/(m− l)2

σ
{i1,...,il}
IE

d−→
∑

i∈{i1,...,il}
Zi

√
V arα1Ŷi(0,α1)/l2

σ
{i1,...,il}
IE

−
∑

i/∈{i1,...,il}
Zi

√
V arα1Ŷi(0,α1)/(m− l)2

σ
{i1,...,il}
IE

∼ N (0,1)

where the penultimate step follows from Proposition 1. The proofs for Propositions 4.3

and 4.4 are similar.

Proof of Propositions 5.1-5.4

To prove Proposition 5.1, let µGDE =∑m
i=1DEi(α1)1(Gi = 1)/l and σ̃2

DE =V ar{µGDE}.

Note µGDE =E{D̂E(α1)|G1, . . . ,Gm} and the assumptions of Proposition 5.1 imply that

σ
(0)
DE =

√
V ar{D̂E(α1)|G1, . . . ,Gm}. Therefore, because we assume that (2.9) holds for
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the sequence Wh = D̂Eih(α1)
∣∣∣Gi1 = · · · = Gil = 1, h = 1, . . . , l for any i1 6= . . . 6= il, it

follows that {D̂E(α1)−µGDE}/σ
(0)
DE

∣∣∣Gi1 = · · · = Gil = 1 d−→ N(0,1) for any i1 6= . . . 6= il.

Because the limiting distribution is the same regardless of G1, . . . ,Gm, it follows that

{D̂E(α1)−µGDE}/σ
(0)
DE

d−→N(0,1). Note also this indicates that {D̂E(α1)−µGDE}/σ
(0)
DE

is asymptotically independent of G1, . . . ,Gm and thus asymptotically independent of

{µGDE −DE(α1)}/σ̃DE , which is a function of G1, . . . ,Gm. Next note that because

we assume DEi(α1) satisfies (2.10), Lehmann (1998) Appendix 4 Theorem 6 implies

{µGDE−DE(α1)}/σ̃DE
d−→N(0,1). Note V ar{D̂E(α1)}= σ

(0)2
DE + σ̃2

DE such that

D̂E(α1)−DE(α1)√
V ar{D̂E(α1)}

= σ
(0)
DE√

σ
(0)2
DE + σ̃2

DE

D̂E(α1)−µGDE
σ

(0)
DE

+ σ̃DE√
σ

(0)2
DE + σ̃2

DE

µGDE−DE(α1)
σ̃DE

Following Slutsky’s theorem, (2.5) is obtained. The proofs of Propositions 5.2-5.4 can

be derived along the same lines.

Details for Voting Experiment Analysis

For the voting experiment described in Section 2.5.2, we assume households were

independently assigned encouragement to vote with probability 0.5. This group-level

Bernoulli type randomization is different from the permutation randomization assumed

throughout the rest of the paper and therefore some adaptations of the various re-

sults are needed. First, it is helpful to re-express the estimators in an inverse prob-

ability weighted (IPW) form. Namely, now define Ŷ (z,αs) = ∑m
i=1 Ŷi(z,αs)1(Gi =

s)/{mPr(Gi = s)} and Ŷ (αs) =∑m
i=1 Ŷi(αs)1(Gi = s)/{mPr(Gi = s)}, where Ŷi(z,αs)

and Ŷi(αs) are defined as before. When the group-level assignment entails permutation

randomization, these IPW estimators are equivalent to those presented in Section 2.3.1.

Assuming group-level Bernoulli randomization, it is straightforward to show the IPW

estimators are unbiased. Deriving the limiting distributions of the IPW estimators is
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also straightforward because G1, . . . ,Gn are independent under group-level Bernoulli

randomization. For example, if (2.9) holds for Wh = D̂Eh(α1)1(Gh = 1)/Pr(Gh = 1),

h= 1, . . . ,m, then it follows immediately that (2.5) holds as m→∞; similarly, if (2.9)

holds for Wh = Ŷh(0,α1)1(Gh = 1)/Pr(Gh = 1)− Ŷh(0,α0)1(Gh = 0)/Pr(Gh = 0), then

it follows immediately that (2.6) holds as m→∞. Similar results can be obtained for

the total and overall effect IPW estimators. Note that no homogeneity assumptions

are required here, in contrast to when there is permutation group-level randomization.

Computing Wald and Chebyshev CIs requires estimating the variances of the dif-

ferent IPW estimators. For the direct effect one possible estimator is V̂ ar{D̂E(α1)}=∑m
i=1 D̂E

2
i (α1)1(Gi = 1)/{m2 Pr(Gi = 1)2}, which is a positively biased estimator for

V ar{D̂E(α1)} with bias ∑m
i=1DE

2
i (α1)/m2. To see this, note

V ar{D̂E(α1)} = E
[
V ar{D̂E(α1)|G1, . . . ,Gm}

]
+V ar

[
E{D̂E(α1)|G1, . . . ,Gm}

]

=
m∑
i=1

E
[
V arα1D̂Ei(α1)1(Gi = 1)

]
m2 Pr(Gi = 1)2 +

m∑
i=1

V ar
[
DEi(α1)1(Gi = 1)
mPr(Gi = 1)

]

=
m∑
i=1

V arα1D̂Ei(α1)
m2 Pr(Gi = 1) +

m∑
i=1

DE
2
i (α1){1−Pr(Gi = 1)}
m2 Pr(Gi = 1)

=
m∑
i=1

Eα1D̂E
2
i (α1)

m2 Pr(Gi = 1) −
m∑
i=1

DE
2
i (α1)
m2

= E
{ m∑
i=1

D̂E
2
i (α1)1(Gi = 1)

m2 Pr(Gi = 1)2

}
−

m∑
i=1

DE
2
i (α1)
m2

whereEα1D̂E
2
i (α1) =E{D̂E

2
i (α1)|Gi = 1}. Similarly, one can define V̂ ar{ÎE(α1,α0)}=∑m

i=1 Ŷ
2
i (0,α1)1(Gi = 1)/{m2 Pr2(Gi = 1)}+ Ŷ 2

i (0,α0)1(Gi = 0)/{m2 Pr2(Gi = 0)},

V̂ ar{T̂E(α1,α0)}=∑m
i=1 Ŷ

2
i (1,α1)1(Gi = 1)/{m2 Pr2(Gi = 1)}+ Ŷ 2

i (0,α0)1(Gi = 0)/

{m2 Pr2(Gi = 0)} and V̂ ar{ÔE(α1,α0)} = ∑m
i=1 Ŷ

2
i (α1)1(Gi = 1)/{m2 Pr2(Gi = 1)}+

Ŷ 2
i (α0)1(Gi = 0)/{m2 Pr2(Gi = 0)}, as positively biased estimators for V ar{ÎE(α1,α0)},

V ar{T̂E(α1,α0)} and V ar{ÔE(α1,α0)} with bias ∑m
i=1{yi(0,α1)−yi(0,α0)}2/m2,
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∑m
i=1{yi(1,α1)− yi(0,α0)}2/m2 and ∑m

i=1{yi(α1)− yi(α0)}2/m2 respectively. Because

these variance estimators are positively biased, Wald and Chebyshev CIs constructed

using these estimators (as in the lower part of Table 2.5) are expected in practice to be

conservative, i.e., cover with probability greater 1−γ.
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Appendix II

Proofs from Chapter 3

Proof of Proposition 1

Note

EŶ ipw(z,αk) = E
[
E{Ŷ ipw(z,αk)|Li}

]
= n−1E

n∑
i=1

∑
zi,si

yi(zi, si)1(zi = z)π(si,αk)
f(zi, si|Li)

f(zi, si|Li)

= n−1E
n∑
i=1

∑
si

yi(z,si)π(si,αk)

= y(z,αk)

The unbiasness for Ŷ ipw(αk) can be proved in the same line

Proof of Proposition 2

To prove the asymptotic Normality of Ŷ ipw(z,αk), note that this estimator is the

solution to estimating equation Gipwn (µ) = 0 where

Gipwn (µ) =
n∑
i=1

{
yi(Zi,Si)1(Zi = z)π(Si;αk)

f(Zi,Si|Li)
−µ

}

Large-sample properties for IPW estimators follow from the general framework of M-

estimation thoery (Stefanski and Boos 2002 and Lunceford and Davidian 2004). We

only sketch out some key steps here. By Taylor expansion, 0 = Gipwn (µ̂) = Gipwn (µ) +

Ġipwn (µ)(µ̂− µ) + op(1), we have
√
n(µ̂− µ) = {−Ġipwn (µ)/n}−1n−1/2Gipwn (µ) + op(1).
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Note that Ġipwn (µ)/n→E{Ġipwn (µ)/n} and that n−1/2Gipwn (µ) d−→N(0,V ar{Gipwn (µ)}/n)

as n→∞ thus
√
n(µ̂−µ)/σipw d−→N(0,1), where (σipw)2 =V ar{Gipwn (µ)}E{−Ġipwn (µ)/n}−2

/n=V ar{Gipwn (µ)}/n=E{Gipwn (µ)}2/n=∑m
v=1Eψ

2
v/n. Similarly, note that Ŷ hajh (z,αk)

is the solution of the estimating equation Ghajh,n (µ) = 0, where

Ghajh,n (µ) =
n∑
i=1

yi(Zi,Si)π(Si;αk)1(Zi = z)
f(Zi,Si|Li)

−µn̂h,z

The remainder of the proof of (b) and (c) follows along the same lines as the proof of

(a).

Proof of Proposition 3

To prove (a), let θ = (µ,γ,σ2
b )T , then θ̂ = {Ŷ ipw(z,αk), γ̂, σ̂2

b}T is the solution of the

vector equation Gipwn = 0, where Gipwn = ∑m
v=1{|Cv|(Ŷ ipwv (z,αk)−µ),∂lv}T , where for

the notation convenience we write ∂·= {∂ ·/∂γ,∂ ·/∂σ2
b}. Then

∂Ŷ ipwv (z,αk)
∂γ

= |Cv|−1 ∂

∂γ

∑
i∈Cv

yi(Zi,Si)1(Zi = z)π(Si;αk)
f(Zi,Si|Li)

= −|Cv|−1 ∑
i∈Cv

yi(Zi,Si)1(Zi = z)π(Si;αk)
f2(Zi,Si|Li)

∂f(Zi,Si|Li)
∂γ

= −|Cv|−1 ∑
i∈Cv

yi(Zi,Si)1(Zi = z)π(Si;αk)
f(Zi,Si|Li)

∂/∂γf(Zi,Si|Li)
f(Zi,Si|Li)

= −|Cv|−1 ∑
i∈Cv

yi(Zi,Si)1(Zi = z)π(Si;αk)
f(Zi,Si|Li)

∂lv
∂γ

=−Ŷ ipwv (z,αk)
∂lv
∂γ

Similarly, ∂Ŷ ipwv (z,αk)/∂σ2
b =−Ŷ ipwv (z,αk)∂lv/∂σ2

b , i.e., ∂Ŷ ipwv (z,αk) =−Ŷ ipwv (z,αk)∂lv.

Thus,
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E

{
∂Gipwn
∂θ

}
=−

m∑
v=1

 |Cv| |Cv|EŶ ipwv (z,αk)∂lv

0 E∂lTv ∂lv



=−

 n
∑m
v=1 |Cv|EŶ ipwv (z,αk)∂lv

0 ∑m
v=1E∂l

T
v ∂lv


i.e.,

{
−E∂G

ipw
n

∂θ

}−1
=


n−1 −

m∑
v=1
|Cv|EŶ ipwv (z,αk)∂lv/n{

m∑
v=1

E∂lTv ∂lv}−1

0 {
m∑
v=1

E∂lTv ∂lv}−1



Note that

E{Gipwn Gipwn
T}=

m∑
v=1

 |Cv|2E(Ŷ ipwv (z,αk)−µ)2 |Cv|E(Ŷ ipwv (z,αk)−µ)∂lv

|Cv|E(Ŷ ipwv (z,αk)−µ)∂lv E∂lTv ∂lv



=
m∑
v=1

 |Cv|2E(Ŷ ipwv (z,αk)−µ)2 |Cv|EŶ ipwv (z,αk)∂lv

|Cv|EŶ ipwv (z,αk)∂lTv E∂lTv ∂lv


Thus,

{ 1
n
E
∂Gipwn
∂θ

}−1
E{Gipwn Gipwn

T
/n}

{ 1
n
E
∂Gipwn
∂θ

}−T
=

 (σipw)2−HipwTV −1
γ,σ2

b
Hipw ∗

∗ ∗



where Hipw =∑m
v=1EŶ

ipw
v (z,αk)∂lTv /n is a vector, Vγ,σ2

b
=∑m

v=1E∂l
T
v ∂lv/n and ∗ de-

notes some number which we do not express explicitly. Thus, when the propensity scores

are unknown, we have (σipw∗ )2 = (σipw)2−HipwTV −1
γ,σ2

b
Hipw. And since Vγ,σ2

b
is positive
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definite, so does V −1
γ,σ2

b
and thus HipwTV −1

γ,σ2
b
Hipw ≥ 0, which concludes (σipw∗ )2≤ (σipw)2.

To prove (b), note that θ̂ = {Ŷ haj1 (z,αk), γ̂, σ̂2
b}T is the solution to the vector equa-

tion Ghaj1,n = 0, where Ghaj1,n = ∑m
v=1{|Cv|Ŷ ipwv (z,αk)−µ

∑
i∈Cv π(Zi;αk)/f(Zi|Li),∂lv}.

Also note that

E
∂

∂γ

{
Ŷ ipwv (z,αk)−µ

π(Zi;αk)
f(Zi|Li)

}
= −E

{
Ŷ ipwv (z,αk)

∂lv
∂γ
−µπ(Zi;αk)

∂

∂γ
logf(Zi|Li)

}

Similarly, we have ∂{Ŷ ipwv (z,αk)−µπ(Zi;αk)/f(Zi|Li)}/∂σ2
b =−{Ŷ ipwv (z,αk)∂lv/∂σ2

b−

µπ(Zi;αk)∂ logf(Zi|Li)/∂σ2
b}. Thus,

E

{
∂Ghaj1,n
∂θ

}
=−


n −

m∑
v=1

E∂ψhaj1,v

0
m∑
v=1

E∂lTv ∂lv


whereE∂ψhaj1,v =E∂{|Cv|Ŷ ipwv (z,αk)−

∑
i∈Cv µπ(Zi;αk)/f(Zi|Li)}=−E{|Cv|Ŷ ipwv (z,αk)∂lv

−∑i∈Cv ∂ logf(Zi|Li)µπ(Zi;αk)}. i.e.,

{
−E

∂Ghaj1,n
∂θ

}−1
=


n−1 m∑

v=1
E∂ψhaj1,v /n{

m∑
v=1

E∂lTv ∂lv}−1

0 {
m∑
v=1

E∂lTv ∂lv}−1


Note that

E{Ghaj1,nG
haj
1,n

T
}=

m∑
v=1

 E(ψhaj1,v )2 Eψhaj1,v ∂lv

Eψhaj1,v ∂l
T
v E∂lTv ∂lv


Thus, (σhaj1,∗ )2 = (σhaj1 )2 +2ATV −1

γ,σ2
b
Hhaj

1 +Hhaj
1

T
V −1
γ,σ2

b
Hhaj

1 , whereA=∑m
v=1Eψ

haj
1,v ∂l

T
v /n

and Hhaj
1 =∑m

v=1E∂ψ
haj
1,v

T
/n.

To prove (c), note that θ̂= {Ŷ haj2 (z,αk), γ̂, σ̂2
b}T is the solution to the vector equation
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Ghaj2,n = 0, whereGhaj2,n =∑m
v=1{|Cv|[Ŷ ipwv (z,αk)−µ1(Zi = z)π(Si;αk)/f(Zi,Si|Li)],∂lv}T .

Also note that

∂

∂γ

{
Ŷ ipwv (z,αk)−µ

1(Zi = z)π(Si;αk)
f(Zi,Si|Li)

}
= −

{
Ŷ ipwv (z,αk)−µ

1(Zi = z)π(Si;αk)
f(Zi,Si|Li)

}
∂lv
∂γ

Similar as in the proof for Proposition 3, we have (σhaj2,∗ )2 = (σhaj2 )2−Hhaj
2

T
V −1
γ,σ2

b
Hhaj

2 ,

where Hhaj
2 =∑m

v=1E{Ŷ ipwv (z,αk)−µ1(Zi = z)π(Si;αk)/f(Zi,Si|Li)}∂lv/n.

Derivations for variance of IPW and Hajek estimators and their estimators

assuming (3.5)

We derive the formula for ∂lv. Recall that lv = lv(γ,σ2
b ) = log

∫ ∏
i∈Cv e

Zi
i (1−ei)1−Ziφ(bv)dbv,

where ei = exp{Liγ+ bv}/(1 + exp{Liγ+ bv}) and φ(·) denotes the density function of

N(0,σ2
b ). we have ∂ei/∂γ = ei(1− ei)Li and that

∂lv
∂γ

= 1
f({Zi : i ∈ Cv}|Li)

∫ ∏
i∈Cv

eZii (1− ei)1−Zi{
∑
i∈Cv

Zi− ei
ei(1− ei)

∂ei
∂γ
}φ(bv)dbv

= 1
f({Zi : i ∈ Cv}|Li)

∫ ∏
i∈Cv

eZii (1− ei)1−Zi{
∑
i∈Cv

(Zi− ei)Li}φ(bv)dbv

=
∑
i∈Cv

ZiLi−
∫
f({Zi : i ∈ Cv}|Li, bv)φ(bv){

∑
i∈Cv eiLi}dbv

f({Zi : i ∈ Cv}|Li)

Note that ∂φ(bv)/∂σ2
b = σ−2

b φ(bv){b2v/σ2
b −1}/2 and thus

∂lv
∂σ2

b

=
∫
f({Zi : i ∈ Cv}|Li, bv)φ(bv)b2vdbv

2σ4
bf({Zi : i ∈ Cv}|Li)

− 1
2σ2

b
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Similarly, we have

∂ logf(Zi|Li)
∂γ

= ZiLi−
∫
f(Zi|Li, bv)φ(bv)eiLidbv

f(Zi|Li)

and that
∂ logf(Zi|Li)

∂σ2
b

=
∫
f(Zi|Li, bv)φ(bv)b2vdbv

2σ4
bf(Zi|Li)

− 1
2σ2

b

Finally, note that Ĥipw = ∑m
v=1 Ŷ

ipw
v (z,αk)∂̂l

T

v /n, V̂γ,σ2
b

= ∑m
v=1 ∂̂l

T

v ∂̂lv/n are con-

sistent estimators for Hipw, Vγ,σ2
b
, where ∂̂lv(γ,σ2

b ) = ∂lv(γ̂, σ̂2
b ).

Proof of Propositions 4-5

To prove (a) in Proposition 4, recall that D̂Ehajh (αk) = g(Ŷ hajh (1,αk), Ŷ hajh (0,αk))

and note that µ̂= {µ̂1, µ̂0}T for µ̂z = Ŷ ipw(z,αk) is the solution for estimating equation

Gipwn (µ) = {Gipwn (µ1),Gipwn (µ0)}T = 0, where Gipwn (µz) = ∑m
v=1 |Cv|(Ŷ ipwv (z,αk)−µz).

Similar as in the proof of Proposition 2, we have
√
n(µ̂−µ) = {−Ġipwn (µ)}−1√nGipwn (µ)+

op(1). The Normality of µ̂ and thus D̂Eipw(αk) = g(µ̂1, µ̂0) is obtained for continuous

function g. Further we have (σD,ipw)2 =∇gV ar{Ghajh,n (µ)}∇gT /n =
m∑
v=1

Eψ2
v/n, where

ψv = ψD,ipwv (αk) =5g(ψipwv (1,αk),ψipwv (0,αk))T . The proofs of Propositions 4(b), 4(c)

and 5 can be derived similarly.
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Appendix III

Proofs from Chapter 4

Proof of Proposition 1

To prove (a), notice that θ̂ = (Ŷ DR(a,αk), γ̂, β̂)T is the solution of estimating e-

quation Gm(θ) = (∑m
i=1ψi(η,γ,β),Sγ ,Sβ)T = 0, Sγ and Sβ are log-likelihood func-

tions from which we obtained γ̂ and β̂. By Taylor expansion, 0 = Gm(θ̂) = Gm(θ) +

Ġm(θ)(θ̂− θ) +op(1), we have
√
m(θ̂− θ) = {−Ġm(θ)/m}−1m−1/2Gm(θ) +op(1). Note

that m−1/2{Gm(θ)−EGm(θ)} d−→N(0,Σ), where Σ = limm→∞EGm(θ)GTm(θ)/m. Since

ESγ = 0 and ESβ = 0, we next show that Eψi(η,γ,β)→ 0 and thus EGm(θ)→ 0 when

either γ∗ = γ0 or β∗ = β0.
If γ̂→ γ0, then f̂(Ai|Xi)

p−→ f(Ai|Xi) and thus

E

1(A= a)Y (Ai)
f̂(Ai|Xi)

π(Ai(−j);α0)

→ y(a,α0)

Also note that

E

 ∑
ai(−j)

µ̂(ai,Xi)π(ai(−j);α0)− 1(A= a)µ̂(Ai,Xi)
f̂(Ai|Xi)

π(Ai(−j);α0)


= E

 ∑
ai(−j)

µ̂(ai,Xi)π(ai(−j);α0)

−E
1(A= a)µ̂(Ai,Xi)

f̂(Ai|Xi)
π(Ai(−j);α0)


= E

∑
a(−i)

µ̂(ai,Xi)π(ai(−j);α0)

−E
∑
ai

µ̂(a,ai(−j),Xi)
f̂(a,ai(−j)|Xi)

π(ai(−j);α0)Pr(a,ai(−j)|Xi)


→ E

∑
a(−i)

µ̂(ai,Xi)π(ai(−j);α0)

−E
 ∑
ai(−j)

µ̂(a,ai(−j),Xi)π(ai(−j);α0)

= 0

which leads to Eψi→ 0.
If β∗→ β0 then µ̂(ai,Xi)

p−→ µ(ai,Xi) and thus
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E

 ∑
ai(−j)

µ̂(a,ai(−j),Xi)π(ai(−j);α0)

→ y(a,α0)

Also note that

E

1(Aij = a){Y (Ai)− µ̂(Ai,Xi)}
f̂(Ai|Xi)

π(Ai(−j);α0)

→ 0

which also leads to Eψi→ 0. Thus, we have m−1/2Gm(θ) d−→N(0,Σ).

We next derive Ġm(θ). Note that ∂ψi/∂η =−1 and that

m−1
m∑
i=1

∂ψi
∂γ

p−→ m−1
m∑
i=1

E
∂ψi
∂γ

= 1
ni

ni∑
j=1

E

−1(Aij = a)
f(Ai|Xi)

∂µ(Ai,Xi)
∂γ

+
∑
ai(−j)

∂µ(a,ai(−j),Xi)
∂γ

π(ai(−j);α0)


= 0

Similarly,

m−1
m∑
i=1

∂ψi
∂β

p−→ m−1
m∑
i=1

E
∂ψi
∂β

= 1
ni

ni∑
j=1

E

{
1(Aij = a){Y (Ai)−µ(Ai,Xi)}

f̂(Ai|Xi)
∂ logf(Ai|Xi)

∂β
π(Ai(−j);α0)

}

= 1
ni

ni∑
j=1

E

{
1(Aij = a)E{Y (Ai)−µ(Ai,Xi)|Ai,Xi}

f̂(Ai|Xi)
∂ logf(Ai|Xi)

∂β
π(Ai(−j);α0)

}
= 0
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Thus,

Ġm(θ)/m p−→−


1 0 0

0 ∗ ∗

0 ∗ ∗


i.e.,

{Ġm(θ)/m}−1 p−→−


1 0 0

0 ∗ ∗

0 ∗ ∗


where ∗ denotes some number we do not express explicitly. Thus, we have the desired

result. The proof for (b) can be obtained in a similar fashion.
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M. Mächler. nor1mix: Normal (1-d) Mixture Models (S3 Classes and Methods), 2011.
R package version 1.1-3.

E.V. Millar, J.P. Watt, M.A. Bronsdon, J. Dallas, R. Reid, M. Santosham, and K.L.
O’Brien. Indirect effect of 7-valent pneumococcal conjugate vaccine on pneumococcal
colonization among unvaccinated household members. Clinical Infectious Diseases,
47(8):989–996, 2008.

S.L. Morgan and C. Winship. Counterfactuals and causal inference: Methods and
principles for social research. Cambridge University Press, 2007.

E. Mvukiyehe and C. Samii. Peace from the bottom up: A randomized trial with UN
peacekeepers. 2011.

J. Neyman. On the Two Different Aspects of the Representative Method: the Method
of Stratified Sampling and the Method of Purposive Selection. Journal of the Royal
Statistical Society, 97(4):558–625, 1934.

D.W. Nickerson. Scalable protocols offer efficient design for field experiments. Political
Analysis, 13(3):233–252, 2005.

D.W. Nickerson. Is voting contagious? Evidence from two field experiments. American
Political Science Review, 102(1):49–57, 2008.

J.W. Pratt and R. Schlaifer. On the nature and discovery of structure. Journal of the
American Statistical Association, 79(385):9–21, 1984.

J.W. Pratt and R. Schlaifer. On the interpretation and observation of laws. Journal of
Econometrics, 39(1-2):23–52, 1988.

J. Robins. The control of confounding by intermediate variables. Statistics in Medicine,
8(6):679–701, 1989.

102



J.M. Robins. Marginal structural models versus structural nested models as tools for
causal inference. Statistical Models in Epidemiology, the Environment and Clinical
Trials, 116:95–134, 2000.

J.M. Robins, D. Blevins, G. Ritter, and M. Wulfsohn. G-estimation of the effect
of prophylaxis therapy for pneumocystis carinii pneumonia on the survival of aids
patients. Epidemiology, 3(4):319–336, 1992.

J.M. Robins and S. Greenland. Identification of causal effects using instrumental vari-
ables: comment. Journal of the American Statistical Association, 91(434):456–458,
1996.

J.M. Robins, M.A. Hernan, and B. Brumback. Marginal structural models and causal
inference in epidemiology. Epidemiology, 11(5):550–560, 2000.

J.M. Robins and A. Rotnitzky. Semiparametric efficiency in multivariate regression
models with missing data. Journal of the American Statistical Association, 90(429):
122–129, 1995.

P.R. Rosenbaum. Covariance adjustment in randomized experiments and observational
studies. Statistical Science, 17(3):286–327, 2002.

P.R. Rosenbaum. Interference between units in randomized experiments. Journal of
the American Statistical Association, 102(477):191–200, 2007.

P.R. Rosenbaum and D.B. Rubin. The central role of the propensity score in observa-
tional studies for causal effects. Biometrika, 70(1):41–55, 1983.

D.B. Rubin. Estimating causal effects of treatments in randomized and nonrandomized
studies1. Journal of Educational Psychology, 66(5):688–701, 1974.

D.B. Rubin. Assignment to treatment group on the basis of a covariate. Journal of
Educational and Behavioral Statistics, 2(1):1–26, 1977.

D.B. Rubin. Bayesian inference for causal effects: The role of randomization. The
Annals of Statistics, 6(1):34–58, 1978.

D.B. Rubin. Comment on “Randomization analysis of experimental data: The Fisher
randomization test,” by D. Basu. Journal of the American Statistical Association, 75
(371):591–593, 1980.

D.B. Rubin. [on the application of probability theory to agricultural experiments.
essay on principles. section 9.] comment: Neyman (1923) and causal inference in
experiments and observational studies. Statistical Science, 5(4):472–480, 1990.

D.B. Rubin. Direct and indirect causal effects via potential outcomes*. Scandinavian
Journal of Statistics, 31(2):161–170, 2004.

103



C.E. Särndal, B. Swensson, and J. Wretman. Model Assisted Survey Sampling. Springer
Verlag, 2003.

B. Sinclair, M. McConnell, and D.P. Green. Detecting spillover effects: Design and
analysis of multilevel experiments. American Journal of Political Science, 56:1055–
1069, 2012.

M.E. Sobel. Effect analysis and causation in linear structural equation models. Psy-
chometrika, 55(3):495–515, 1990.

M.E. Sobel. Causal inference in the social and behavioral sciences. Handbook of statis-
tical modeling for the social and behavioral sciences, pages 1–38, 1995.

M.E. Sobel. What do randomized studies of housing mobility demonstrate?: Causal
inference in the face of interference. Journal of the American Statistical Association,
101(476):1398–1407, 2006.

J. Splawa-Neyman. On the application of probability theory to agricultural exper-
iments. Essay on principles. Section 9, 1923. Translated by Dabrowska, DM and
Speed, TP. Statistical Science, 5(4):465–472, 1990.

J. Splawa-Neyman, D. M. Dabrowska, and T. P. Speed. On the application of prob-
ability theory to agricultural experiments. essay on principles. section 9. Statistical
Science, 5(4):465–472, 1990.

L.A. Stefanski and D.D. Boos. The calculus of M-estimation. The American Statisti-
cian, 56(1):29–38, 2002.

D. Sur, R.L. Ochiai, S.K. Bhattacharya, N.K. Ganguly, M. Ali, B. Manna, S. Dutta,
A. Donner, S. Kanungo, J.K. Park, et al. A cluster-randomized effectiveness trial
of Vi typhoid vaccine in india. New England Journal of Medicine, 361(4):335–344,
2009.

E.J. Tchetgen Tchetgen and T.J. VanderWeele. On causal inference in the presence of
interference. Statistical Methods in Medical Research, 21(1):55–75, 2012.

J. Tinbergen. Determination and interpretation of supply curves: an example.
Zeitschrift fur Nationalokonomie, 1(5):669–679, 1930.

A.A Tsiatis. Semiparametric theory and missing data. Springer Science Business Media,
2006.

A.A. Tsiatis and M. Davidian. Comment: Demystifying double robustness: a compari-
son of alternative strategies for estimating a population mean from incomplete data.
Statistical science: a review journal of the Institute of Mathematical Statistics, 22(4):
569, 2007.

104



T.J. VanderWeele and E.J. Tchetgen Tchetgen. Effect partitioning under interference in
two-stage randomized vaccine trials. Statistics & Probability Letters, 81(7):861–869,
2011.

T.J. VanderWeele, J.P. Vandenbroucke, E.J. Tchetgen Tchetgen, and J.M. Robins.
A mapping between interactions and interference: Implications for vaccine trials.
Epidemiology, 23(2):285–292, 2012.

S. Vansteelandt, E. Goetghebeur, M.G. Kenward, and G. Molenberghs. Ignorance and
uncertainty regions as inferential tools in a sensitivity analysis. Statistica Sinica, 16
(3):953–979, 2006.

N. Verbitsky and S.W. Raudenbush. Causal inference in spatial setting. 2004.

L. Wilkinson. Statistical methods in psychology journals. American Psychologist, 54
(8):594–604, 1999.

C.M. Zigler, F. Dominici, and Y. Wang. Estimating causal effects of air quality regula-
tions using principal stratification for spatially correlated multivariate intermediate
outcomes. Biostatistics, 13(2):289–302, 2012.

105


