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ABSTRACT 

BLAIRE JANELL STEINWAND: The Role of the FEI Receptor Kinases in the 
Regulation of Cell Wall Function in Arabidopsis thaliana 

(Under the direction of Joseph Kieber) 
 

 The plant cell wall is a staple in the human diet and provides the raw material 

used to manufacture paper, textiles, and more recently, biofuel as it is the most 

abundant reservoir of carbon in nature. In plants, the cell wall provides structural 

support, acts as a barrier to pathogen attack, and determines both the direction and 

the extent of cell expansion. The cell wall is a dynamic structure that functions 

throughout plant growth and development and in response to developmental and 

environmental cues. Despite the importance of the cell wall, the molecular 

components and signal transduction pathways involved in regulating its function 

remain largely unknown.  

FEI1 and FEI2 are two leucine-rich repeat receptor-like kinases (LRR-RLKs) 

that promote cell wall function in Arabidopsis thaliana. Mutations in both FEI1 and 

FEI2 disrupt cell wall synthesis and this leads to a loss of cell elongation and a short, 

swollen root phenotype. In order to determine how exactly the FEI proteins regulate 

cell wall function, we sought to identify novel components of the FEI pathway and 

have isolated suppressors of the fei1 fei2 mutant phenotype. Further 

characterization of these as well as known components of the pathway suggests the 
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FEI proteins may act in a complex with other LRR-RLKs and ACC synthase to post-

translationally regulate cell wall synthesis. 
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CHAPTER 1 

BACKGROUND AND SIGNIFICANCE 

The plant cell wall is a rigid but highly dynamic structure that provides 

mechanical support, protection against pathogen attack, and determines the direction 

and extent of cell expansion (Humphrey et al., 2007). The dynamic nature of the plant 

cell wall allows growing cells to expand while providing the mechanical strength 

required to resist the forces of turgor pressure exerted on the cell (Cosgrove, 2000). 

The properties of the cell wall are modified during growth and development as well as in 

response to a wide variety of environmental stimuli. In order to maintain the integrity of 

the wall and to adjust its properties to accommodate the changing needs of the cell, 

plants respond to perturbations to the wall and environmental cues by remodeling 

matrix polysaccharides and by regulating the cell wall biosynthetic machinery. The 

components and mechanisms underlying such a signaling system remain largely 

unknown, but emerging evidence has implicated several receptor-like kinases as 

regulators of cell wall function. 

Plant cell walls are composite structures composed primarily of cellulose and 

matrix polysaccharides such as hemicelluloses and pectins (Somerville et al., 2004). In 

addition to wall polymers, structural proteins provide a quantitatively small, but important 
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contribution to the wall. The major load-bearing components of the cell wall are the 

cellulose microfibrils which, in a longitudinally expanding cells, are deposited primarily 

inan orientation perpendicular to the axis of expansion, thus constricting radial 

expansion (Green, 1980; Taiz, 1984; Baskin, 2005). 

Consistent with a role in differential cell expansion, cellulose-deficient mutants 

and seedlings treated with inhibitors of cellulose synthesis display reduced or no growth 

anisotropy, and this is generally accompanied by cell and organ swelling (Somerville, 

2006). The oriented deposition of cellulose is guided by underlying cortical 

microtubules, and thus cortical microtubules are thought to be key determinants of 

anisotropic growth (Baskin, 2001; Paredez et al., 2006; Lucas and Shaw, 2008).  

In the primary cell wall, cellulose is synthesized at the plasma membrane by a 

hexameric protein complex called cellulose synthase (CESA). Each hexamer is 

comprised of six CESA proteins that each synthesize a β-1,4-linked glucan chain. A 

combination of expression analyses, genetic studies, and co-immunoprecipitation 

experiments have defined roles for the various CESA isoforms in Arabidopsis. CESA1, 

CESA3, and CESA6 interact with each other to form a class of rosettes that function in 

primary cell wall biosynthesis (Desprez et al., 2007). CESA2, CESA5 and CESA9 also 

likely function in primary cell wall synthesis in a manner such that they are partially 

redundant with CESA6 at different stages of growth (Desprez et al., 2007; Persson et 

al., 2007). CESA4, CESA7, and CESA8 comprise a distinct subset of rosettes that 

function in secondary cell wall biosynthesis (Taylor et al., 2000; Taylor NG, 2003). 

Single mutants in any one of the genes encoding these CESA proteins are deficient in 
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cellulose biosynthesis, which suggests that a functional cellulose synthase complex 

requires contributions from three different CESA subunits (Desnos et al., 1996; Arioli et 

al., 1998; Taylor et al., 1999; Fagard et al., 2000; Taylor et al., 2000; Cano-Delgado et 

al., 2003; Taylor, 2008).  

The same structure and composition that lends strength and rigidity to the wall 

also serves to constrain cell expansion. While cell wall loosening is essential for 

expansion, this must be balanced with polymer synthesis and wall re-strengthening to 

prevent the cell wall from rupturing. Such wall remodeling is facilitated by the activity of 

loosening and strengthening agents that modify cell wall polysaccharides. For example, 

wall loosening is accomplished through the activities of hydroxyl radicals, expansins, 

xyloglucan endoglucosylase/hydrolases, and endog-(1,4)-ß-D-glucanases, whereas the 

extensins and peroxidases function in wall rigidification (Cosgrove, 2005; Humphrey et 

al., 2007). Coordinating wall loosening with wall strengthening activities during cell 

expansion requires the ability of the cell to monitor changes in wall integrity and to 

signal back to regulate the machinery involved in the synthesis and modification of the 

cell wall components.  

Such a cell wall signaling system has been well characterized in the yeast 

Saccharomyces cerevisiae (Levin, 2005). In this system, the WSC and MID2 cell 

surface receptors function as sensors of cell wall integrity. Both WSC and MID2 contain 

an extracellular domain rich in Ser/Thr residues, a single transmembrane domain, and a 

small carboxy terminal cytoplasmic domain that interacts with the guanine exchange 

factors, ROM1 and ROM2 (Philip and Levin, 2001). Upon activation, ROM1 and ROM2 
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stimulate the small GTP binding protein Rho1, which in turn initiates a variety of 

processes, including changes in the synthesis of β-glucan, nucleation of actin filaments, 

secretory vesicle targeting, and activation of a MAP kinase cascade that leads to 

changes in gene expression related to cell wall biogenesis (Ozaki et al., 1996; Levin, 

2005).  

The hypothesis that plant cells have the ability to sense and respond to changes 

in wall integrity is supported by the observation that genetic or chemical perturbation of 

cellulose biosynthesis results in an ectopic deposition of lignin. Lignification, which 

increases the rigidity of the cell wall, normally occurs in the secondary cell walls of the 

vascular tissue and in response to pathogen attack. Ectopic lignin deposition has been 

observed in several cellulose deficient mutants (Vance, 1980), including rsw1 (root 

swelling1,) eli1 (ectopic lignification), and prc1 (procuste), which disrupt CESA1, CESA3 

and CESA6 respectively, as well as the kor (korrigan) and fei mutants (Nicol et al., 

1998; Fagard et al., 2000; Williamson et al., 2001; Cano-Delgado et al., 2003; Xu et al., 

2008). Ectopic lignin deposition also occurs in seedlings treated with the cellulose 

synthesis inhibitors 2,6-dichlorobenzonitrile (DCB) and isoxaben (IXB) (Caño-Delgado 

et al., 2003). In addition to increased lignin deposition, disruption of cellulose synthesis 

also results in other changes, including changes in gene expression, activation of 

ethylene and jasmonic acid signaling pathways, and the inhibition of cell elongation 

(Caño-Delgado et al., 2003; Duva and Beaudoin, 2009). These changes in cellular 

function indicate that the cell not only senses changes in the wall, but that there is a 

feedback system in place to maintain cell wall integrity. 
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Relatively little is known about the molecular components and signal transduction 

pathways involved in the regulation of plant cell wall function. Recent studies have 

implicated multiple receptor like kinases (RLKs) in cell wall signaling. RLKs represent a 

large (~600 in Arabidopsis), diverse family of proteins (Shiu and Bleecker, 2001) that 

physically link the cell wall to the cytoplasm, making them ideal candidates for cell wall 

sensors. RLKs are situated at the plasma membrane and contain an extracellular 

domain, a transmembrane domain, and an intracellular serine/threonine kinase domain. 

They have been implicated in various signaling pathways, including meristem function, 

brassinosteroid perception, floral abscission, ovule development and embryogenesis, 

plant defense, and overall plant morphology (Becraft, 2002). This review highlights the 

role of RLKs in cell wall function.  

The Wall Associated Kinases (WAKs) 

The wall-associated kinases (WAKs) are a set of RLKs that are tightly bound to 

the cell wall (He et al., 1996). There are five highly conserved WAK genes in 

Arabidopsis, and an additional 26 WAK-like genes that encode proteins with divergent 

extracellular domains (Verica et al., 2003). The WAK proteins consist of an extracellular 

domain, a transmembrane domain, and a cytoplasmic serine/threonine protein kinase 

domain. The extracellular domains of the WAKs are 40%-60% identical to each other 

and contain two epidermal growth factor (EGF)-like repeats. This domain binds tightly to 

pectin in a calcium-dependent fashion (Decreux and Messiaen, 2005). This association 

with pectin first occurs in an endomembrane compartment, most likely the Golgi 

(Kohorn et al., 2006). The intracellular kinase domains of the WAKs are more highly 
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conserved than their extracellular domains, which might reflect similar downstream 

targets or, alternatively, this catalytic domain may be more evolutionarily constrained. 

All five WAKs are expressed widely throughout the plant in the expanding cells of 

leaves, stems, roots, and fruits, and their expression is differentially regulated by 

environmental and developmental cues such as wounding, pathogen infection, and 

aluminum (He et al., 1998; Wagner and Kohorn, 2001; Sivaguru et al., 2003).  

WAKs are required for cell expansion during plant development. Disruption of 

WAK function using inducible expression of full length WAK2 anti-sense RNA, which 

likely disrupts multiple WAKs, compromised leaf cell expansion (Lally et al., 2001; 

Wagner and Kohorn, 2001). Consistent with these results, root cell elongation is 

impaired in wak2 loss-of-function mutants and in seedlings expressing WAK4 anti-

sense RNA (Lally et al., 2001; Kohorn et al., 2006). The growth of a wak2 loss-of-

function mutant was dependent on exogenous sugars, suggesting that the mutation 

may alter sugar metabolism (Lally et al., 2001; Kohorn et al., 2006). This idea is 

supported by the finding that wak2 mutant roots show reduced vacuolar invertase 

activity, which is critical for the generation of solutes required to maintain turgor 

pressure during cell expansion (Kohorn et al., 2006). Furthermore, both the expression 

of INV1, which encodes an invertase enzyme, and MAPK3 activity are induced in 

Arabidopsis mesophyll protoplasts treated with pectin in a WAK2-dependent manner 

(Kohorn et al., 2009). Loss-of-function mapk3 mutants, which are aphenotypic, 

enhanced the phenotypic effects of a WAK2 dominant negative transgene. Together, 

these results suggest that WAK2 and MAPK3 may be involved in a pathway that 

modulates the activity of vaculolar invertase by detecting pectin-based signals in the cell 
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wall (Kohorn et al., 2009).  

A combination of in vitro and in vivo studies have identified a WAK1 protein 

complex that includes a glycine-rich-extracellular protein (AtGRP-3) and a kinase-

associated protein phosphatase (KAPP) (Park et al., 2001). In plants, glycine-rich 

proteins are considered structural components of the cell wall (Keller, 1993), and thus, 

in addition to binding pectin, the extracellular domain of WAK1 likely also binds AtGRP-

3. The KAPP protein binds to the cytoplasmic kinase domain of multiple receptor 

kinases in a phosphorylation-dependent manner (Braun et al., 1997; Shah et al., 2002), 

and in several cases this interaction has been demonstrated to be functionally relevant. 

AtGRP-3 specifically interacts with WAK1; however, KAPP binds to the kinase domains 

of both WAK1 and WAK2, as well as to the kinase domains of other RLKs. The 

expression of WAK1 and AtGRP-3 were up-regulated by exogenously added AtGRP-3 

protein, suggesting that they are regulated by a positive feedback loop (Park et al., 

2001). Although the biological significance of the WAK1/AtGRP-3 interaction has not 

been determined, the specificity of this interaction, together with the distinct expression 

patterns of the various WAK genes suggests the possibility that the WAKs may sense 

different signals from the wall. 

The Catharanthus roseus RLK1 Like (CrRLK1L) Family  

 The Catharanthus roseus RLK1 Like family is named after its founding member, 

CrRLK1, which was identified from the plant Catharanthus roseus (Schulze-Muth, 

1996). There are 17 members of the Arabidopsis CrRLK1L subfamily of RLKs and four 

of these have been implicated in regulating cell wall function: FERONIA (FER), 
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THESEUS1 (THE1), HERCULES1 (HERK1) and HERK2 (Hematy and Hofte, 2008; 

Guo et al., 2009a; Guo et al., 2009b).  

The FER RLK was identified by its role in pollen tube function (Huck et al., 2003). 

FER-dependent signaling in the synergid cell appears to be required for pollen tube 

growth arrest and the release of sperm cells in the female gametophyte during 

fertilization (Huck et al., 2003; Escobar-Restrepo et al., 2007). In fer mutant ovules, 

pollen tubes fail to cease growth and to rupture upon reaching the micropylar entrance 

of the embryo sac; instead, they continue to grow within the embryo sac, thus failing to 

fertilize the ovule (Escobar-Restrepo et al., 2007). More recent studies have 

demonstrated that fer mutant seedlings display a pronounced decrease in hypocotyl 

elongation, petiole length, and overall shoot growth when compared to wild-type 

seedlings, suggesting that FER also regulates cell elongation in these contexts (Guo et 

al., 2009a). 

The THE1 RLK was identified as a suppressor of the hypocotyl elongation defect 

of a loss-of-function mutation in the catalytic subunit cellulose synthase 6 (cesA6prc1). 

the1 was found to also suppress the hypocotyl growth inhibition of a subset of other 

mutants altered in cell wall function, including cesA3eli1 and cesArsw1, and to suppress 

the ectopic lignin accumulation observed in these cellulose deficient mutants. However, 

surprisingly, the1 did not suppress the defect in cellulose biosynthesis of the cesA6prc1 

mutant. These results suggest that the inhibition of hypocotyl elongation and the ectopic 

lignin deposition in the cesA6prc1mutant is an active response to cell wall defects that 

requires signaling through the THE1 receptor. Consistent with this, transcriptional 
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profiling identified thirty-six genes that were altered by cesA6prc1 in a THE1-dependent 

manner. The THE1-dependent genes included two transcription factors, several 

proteins involved in protecting the cell against oxidative stress, potential pathogen 

defense proteins, and multiple genes encoding cell wall proteins (Hematy et al., 2007). 

Single loss-of-function mutations in THE1 in an otherwise wild type background 

did not result in any detectable change in plant growth and development (Hematy et al., 

2007), suggesting that THE1 function is only revealed when the cell wall is perturbed. 

However, recent studies have shown that THE1 is genetically redundant with other 

members of the CrRLK1L gene family, as combining the1 with herk1 and/or herk2 

mutations, single mutants that are also aphenotypic, resulted in strong effects on cell 

expansion, including decreased petiole length and shoot growth (Guo et al., 2009a; Guo 

et al., 2009b) similar to the effects of the fer mutation. The overall decreased growth in 

the double the1 herk1 mutants was found to be a consequence of reduced cell 

elongation, implicating these RLKs as important regulators of cell expansion within the 

cell wall.  

Interestingly, six of the 17 CrRLK1L genes are regulated by brassinosteroid, 

including THE1, HERK1, HERK2 and FER (Guo et al., 2009a; Guo et al., 2009b). 

Furthermore, the herk1 the1 mutations enhanced the dwarfed phenotype of the loss-of-

function brassinosteroid receptor mutant, bri1, and partially suppressed the excessive 

cell elongation phenotype of a gain-of-function bes1-D mutant (Guo et al., 2009a). 

Expression profiling of the the1 herk1 double mutant and the fer single mutant suggests 

these receptors regulate overlapping sets of genes. Furthermore, 16% of the genes 
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affected in these mutants are regulated by brassinosteroid. These data suggest that 

while THE1, HERK1, HERK2 and FER may act in a common pathway required for cell 

elongation, there is crosstalk between this pathway and and the pathway mediating 

brassinosteroid-regulated cell elongation. 

 The reduced cell expansion observed in the the1/herk multiple mutants at first 

seems at odds with the increased cell expansion brought about by the the1 mutation in 

the cesA6prc1 background. One simple model to resolve this apparent discrepancy 

invokes a threshold mechanism: the reduction in THE1/HERK signaling resulting from 

single the1 mutations is enough to disrupt the feedback system involved in perception of 

the altered cell wall function of the cesA6prc1 mutant, but is not drastic enough to 

substantially alter basal cell wall synthesis. In contrast, further disruption of this class of 

receptors (i.e. the the1 herk multiple mutants) decreases signaling below a threshold 

necessary for proper regulation of cell wall synthesis even in basal conditions. The cell 

must maintain a delicate and dynamic balance between wall rigidity and extensibility 

during growth, and thus perturbing this proposed feedback system to different levels 

could shift this balance with distinct outcomes. 

The Leucine-Rich Repeat RLKs (LRR-RLKs) 

 The leucine-rich repeat (LRR) RLK family represents the largest group of RLKs 

encoded by higher plant genomes. The Arabidopsis LRR-RLK family is comprised of 

216 genes distributed among 13 different subfamilies (Shiu and Bleecker, 2001). In 

animals, LRR proteins are important signaling components of many developmental and 

host defense pathways. However, unlike in plants, animal LRR proteins do not contain a 
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cytoplasmic protein kinase domain, but instead transduce signals across the plasma 

membrane by activating co-receptors, a mechanism that may be conserved in plants. 

Recently, two LRR-RLKs (FEI1 and FEI2) were demonstrated to play a role in 

the regulation of cell wall function. Although single fei1 and fei2 mutants showed no 

obvious phenotypes, double fei1 fei2 mutants displayed conditional root anisotropic 

growth and ectopic lignin deposition. These phenotypes are characteristic of cellulose 

deficiency and, indeed, fei1 fei2 mutant roots displayed a significant decrease in the 

synthesis of cellulose and possibly other cell wall polymers when grown in non-

permissive conditions, suggesting that the FEI receptors regulate the synthesis of cell 

wall components (Xu et al., 2008). The sos5 mutant, which was isolated as a mutant 

that displayed a swollen root tip in the presence of moderately high salt (Shi et al., 

2003), was found to have a similar phenotype to fei1 fei2. Genetic analysis revealed 

that SOS5 and the FEIs act through the same pathway to regulate cell wall function (Xu 

et al., 2008). SOS5 encodes a cell surface GPI-anchored protein with fasciclin-like 

domains (Shi et al., 2003), and could act as, or may be involved in, the production or 

presentation of a FEI ligand.  

Both the fei1 fei2 and sos5 mutants display swollen root phenotypes only when 

elevated levels of sucrose or salt are present in the media, which is also observed in 

several other root swelling mutants, including cesA6prc1, weak alleles of cobra (Xu et al., 

2008), and pom1 and pom2 mutants (Hauser et al., 1995). This suggests that elevated 

levels of sucrose or salt sensitize roots to perturbations in cell wall synthesis through an 

as yet unknown mechanism. It has been suggested that the sucrose-dependent 
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phenotype of cobra and several other root swelling mutants could be linked to the 

relative rate of root growth, with defects occurring only under conditions of maximal 

growth rates (Hauser et al., 1995). However, fei1 fei2 (and sos5 and weak cobra alleles) 

also display swollen roots on media containing moderately elevated levels of NaCl (Xu 

et al., 2008), a condition that decreases the rate of root growth. 

Further analysis indicated a role for 1-aminocyclopropane-1-carboxylate (ACC) 

synthase, which catalyzes the rate-limiting step in ethylene biosynthesis, in FEI function. 

Both FEI1 and FEI2 directly interact with ACS as shown by yeast two-hybrid assays and 

inhibition of ACC function using either α-aminoisobutyric acid (AIB), a structural analog 

of ACC, or aminooxy-acetic acid (AOA), which inhibits enzymes that require pyroxidal 

phosphate including ACC synthase, suppressed the root swelling phenotype of both the 

fei1 fei2 and the sos5 mutants. As AOA and AIB block ethylene biosynthesis by distinct 

mechanisms, it is unlikely that this phenotypic reversion of fei1 fei2 is due to off-target 

effects of the inhibitors. Furthermore, this is not a general effect of AIB as it did not 

revert the root swelling phenotype of the cobra mutant (Xu et al., 2008). Surprisingly, 

inhibition of ethylene perception via mutations or chemical inhibitors had no appreciable 

effect on the root phenotype of fei1 fei2 or sos5-2 mutants (Xu et al., 2008). This 

suggests that either swelling in the absence of FEI depends on a hitherto undiscovered 

pathway for ethylene perception, or that ACC itself is acting as a signaling molecule. 

Consistent with this hypothesis, recent data indicates that, in addition to acting as the 

immediate precursor to ethylene, ACC itself may also act as an essential regulator of 

plant growth and development (Tsuchisaka et al., 2009). Genetic disruption of all eight 

ACC synthase genes in Arabidopsis caused embryonic lethality, in contrast to mutations 
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that eliminate ethylene perception, such as etr1 or ein2, which have only relatively 

modest effects on plant development. The precise role of ACC in plant development in 

general and in the FEI pathway specifically, and how this potential signaling molecule is 

perceived, are important questions that need to be addressed. 

Conclusions 

While the identification of multiple RLKs that likely play a role in regulating cell 

wall function is an important begininning in our understanding of cell wall signaling, the 

field is only in its infancy and many questions remain unanswered. There are over 600 

RLKs in Arabidopsis, and it is likely that additional RLKs play a role in regulating wall 

function. To further enhance our understanding of this signaling system, it is crucial to 

identify the immediate targets of the RLKs implicated in cell wall function. One potential 

target could be the cellulose synthase enzyme itself as multiple phosphorylation sites 

have been identified, clustered primarily in the N-terminal domain, of several CESA 

proteins (Nuhse et al., 2004; Brown et al., 2005; Persson et al., 2007), and 

phosphorylation of CESA7 has been linked to its degradation via a 26S proteasome 

dependant pathway (Taylor, 2007). However, an intact kinase catalytic domain is not 

required for the function of FEI1/FEI2 (Xu et al., 2008), raising the possibility that, at 

least for this class of RLKs, the targets may not be regulated solely by phosphorylation. 

How these RLKs interact with each other and with other signaling pathways to regulate 

cell wall function is unknown. Finally, while pectin has been identified as a possible 

ligand for the WAKs, there are no clear candidate ligands for the other RLKs. The near 

future will likely reveal answers to these and other questions and perhaps an integrated 
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model describing the mechanisms by which cell walls perceive and respond to signals 

will emerge. 
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CHAPTER 2 

Alterations in Auxin Homeostasis Suppress Defects in Cell Wall Function 

OVERVIEW 

 The plant cell wall is a highly dynamic structure that changes in response to 

both environmental and developmental cues. It plays important roles throughout 

plant growth and development in determining the orientation and extent of cell 

expansion, providing structural support, and acting as a barrier to pathogens. 

Despite the importance of the cell wall, the signaling pathways regulating its function 

are not well understood. Two partially redundant leucine-rich-repeat receptor-like 

kinases (LRR-RLKs), FEI1 and FEI2, regulate cell wall function in Arabidopsis 

thaliana roots; disruption of the FEIs results in short, swollen roots as a result of 

decreased cellulose synthesis. We screened for suppressors of this swollen root 

phenotype and identified two mutations in the putative mitochondrial pyruvate 

dehydrogenase E1α homolog, IAA-Alanine Resistant 4 (IAR4). Mutations in IAR4 

were shown previously to disrupt auxin homeostasis and lead to reduced auxin 

function. We show that mutations in IAR4 suppress a subset of the fei1 fei2 

phenotypes. Consistent with the hypothesis that the suppression of fei1 fei2 by iar4 

is the result of reduced auxin function, disruption of both wei8 and tar2, which 
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decrease auxin biosynthesis, also suppresses fei1 fei2. In addition, iar4 suppresses 

the root swelling and accumulation of ectopic lignin phenotypes of other cell wall 

mutants, including cesA6prc and cobra. Further, iar4 mutants display resistance to 

the cellulose synthesis inhibitor isoxaben. These results establish a role for IAR4 in 

the regulation of cell wall function and provide evidence of crosstalk between the cell 

wall and auxin during cell expansion in the root. 

INTRODUCTION 

Cell expansion plays a critical role in plant growth and development. The 

direction and extent to which cells expand is controlled by the rigid, yet highly 

dynamic cell wall. The cell wall is a major determinant of cell size and shape and 

consequently, overall plant morphology. In roots, the architecture of the cell wall 

permits longitudinal cell elongation while restricting radial expansion, which leads to 

highly asymmetric, anisotropic growth (Baskin 2005, Green 1980, Steinwand and 

Kieber 2010, Taiz 1984). 

Plant cell walls are composed primarily of load-bearing cellulose microfibrils, 

cross-linking hemicelluloses, and pectins. Together with a relatively small number of 

structural proteins, this matrix of polysaccharides lends the wall the strength and 

rigidity that is required for structural support and plant defense, while simultaneously 

allowing cells to expand as plants grow and develop (Somerville et al. 2004). During 

cell expansion, wall polymers are actively remodeled and rearranged and their 

synthesis is altered in response to both developmental and environmental cues 

(Pilling and Höfte 2003). The ability of cell walls to maintain structural integrity and 
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function properly as changes in the architecture of the cell wall occur suggests that 

there is a sensing and feedback system in place to perceive and respond to changes 

in the wall. Despite a crucial role in the maintenance of plant cell wall function, our 

current understanding of the components and mechanisms involved in the 

perception of and response to regulatory input from the wall remains poorly 

understood.  

Several members of the receptor-like kinase (RLK) family have been 

implicated as sensors of signals from the cell wall. In Arabidopsis, the RLK family is 

comprised of approximately 600 members, several of which have been implicated in 

a variety of different signaling pathways that function throughout plant development 

(Gish and Clark 2011). Of those, members of three different sub-families have been 

implicated in regulating cell wall function. The wall-associated kinases (WAKs) are 

tightly bound to the cell wall and are required for normal cell expansion (He et al. 

1996, Lally et al. 2001, Wagner and Kohorn 2001). In addition to the WAKs, four 

members of the Catharanthus roseus RLK1-Like (CrRLK1L) subfamily 

(HERCULES1, HERCULES2, FERONIA, and THESEUS1) and two members of the 

leucine-rich repeat (LRR) subfamily (FEI1 and FEI2) have been implicated in cell 

wall signaling. Although members from each of the three RLK subfamilies are 

required for cell expansion, only THESEUS1, it’s close homologs, and the FEIs have 

been linked to cell wall synthesis (Guo et al. 2009, Hématy and Höfte 2008, Xu et al. 

2008).  
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Mutations in THESEUS1 (the1) suppress ectopic lignin deposition and restore 

hypocotyl elongation in cellulose-deficient mutants, but do not restore cellulose 

biosynthesis in the cesA6prc1 mutant (Hématy and Höfte 2008). These data suggest 

that THESEUS plays a role in sensing and actively responding to changes in the cell 

wall. Disruption of both FEI1 and FEI2 leads to a loss of anisotropic growth in rapidly 

expanding cells of the root elongation zone, but also affects cell expansion in the 

stamen filament and the hypocotyl of dark-grown seedlings. In addition, the roots of 

double fei1 fei2 mutants display ectopic lignin deposition, are hypersensitive to the 

cellulose synthesis inhibitor isoxaben, and synthesize less cellulose as compared to 

wild-type roots when seedlings are grow under non-permissive conditions of 

elevated salt or sucrose (Xu et al. 2008). Further, disruption of FEI2 leads to a 

reduction in the rays of cellulose observed in the mucilage of wild-type seeds. These 

data suggest that FEI1 and FEI2 positively regulate cell wall function by promoting 

cellulose synthesis. 

The fasciclin-like GPI-anchored extracellular protein SOS5 acts in the FEI 

pathway to regulate cell wall synthesis (Xu et al. 2008). Like fei1 fei2, sos5 mutants 

display short, swollen roots when grown under the restrictive conditions of elevated 

salt or sucrose, and this phenotype is reversed in both mutants by blocking ethylene 

biosynthesis, but not ethylene perception. Further, SOS5 also regulates the 

synthesis of cellulose during the production of seed coat mucilage (Harpaz-Saad et 

al. 2011). Introduction of sos5 into the fei1 fei2 mutant does not cause an additive 

phenotype, in contrast to other mutants affecting cellulose biosynthesis such as 

cobra. The non-additive phenotype of fei1 fei2 and sos5 mutations suggests that the 
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FEI RLKs act in a linear pathway with SOS5 to regulate cellulose synthesis (Xu et al. 

2008). Taken together with studies in the root, these data suggest an important role 

for the FEI RLKs/SOS5 pathway in positively regulating cellulose synthesis. 

In order to better understand the FEI signaling pathway, we sought to uncover 

additional components involved in regulating cell wall synthesis in the root. Here we 

describe the identification and characterization of a suppressor of the fei1 fei2 

mutant. We show that mutations in the previously characterized IAA-Alanine 

Resistant 4 (IAR4) gene, encoding a putative mitochondrial E1α pyruvate 

dehydrogenase subunit, suppress the defects in root anisotropic cell expansion 

exhibited by fei1 fei2. IAR4 was originally identified in a forward genetic screen for 

IAA conjugate-resistant mutants (LeClere et al. 2004). IAR4 was subsequently 

identified as an enhancer of tir1 auxin resistance (Quint et al. 2009). Although the 

precise role of IAR4 in the auxin biosynthesis pathway remains unclear, iar4 mutants 

display phenotypes consistent with reduced endogenous auxin, accumulate IAA-

amino acid conjugates, and are rescued by increasing endogenous IAA levels in the 

plant (LeClere et al. 2004, Quint et al. 2009). Thus, IAR4 is predicted to play an 

important role in maintaining auxin homeostasis. Here we show that reduced auxin 

function, via either iar4 single or a wei8/tar2 double mutant, suppresses growth 

isotropy of cell wall mutants, including fei1 fei2. Our results shed light on the role of 

auxin in regulating cell wall function in the Arabidopsis root.  
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RESULTS 

Isolation and characterization of shou2  

In order to identify additional elements regulating cell wall function we 

screened for suppressors of the swollen root phenotype of fei1 fei2 mutants. An M2 

population of ethyl methanesulfonate mutagenized fei1 fei2 was screened for 

suppressors of the conditional short, swollen root phenotype of fei1 fei2 seedlings. 

Eight independent suppressor lines that retested as robust fei2 fei2 suppressors 

were identified from screening approximately 200,000 M2 seedlings representing 

30,000 M1 seeds. We designated these suppressors shou mutations (the Chinese 

word for thin). These suppressors represented seven distinct loci, two of which were 

allelic and were designated shou2-1 and shou2-2. The fei1 fei2 shou2-1 and fei1 fei2 

shou2-2 lines both had significantly fewer and shorter root hairs. The F1 of a 

backcross to the parental fei1 fei2 line displayed a non-suppressed phenotype, and 

the suppressor phenotype segregated in a ratio of 3 non-suppressed: 1 suppressed 

in the F2 progeny of this backcross, consistent with shou2 acting as a single locus, 

recessive mutation. In addition to the suppression of root length (Fig. 1B), the shou2 

mutations also suppress the radial swelling (Fig. 1A) and the radial expansion of 

cells in the elongation zone (Fig. 1C) in fei1 fei2 roots. We isolated the shou2-1 

mutation by backcrossing to the wild type. This shou2-1 single mutant line displayed 

fewer and shorter root hairs, similar to the fei1 fei2 shou2-1. Intriguingly, under the 

non-permissive conditions used to assess the fei phenotype (grown on MS + 4.5% 
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sucrose), both the fei1 fei2 and shou2-1 parental seedlings displayed roots that were 

significantly shorter that their wild-type counterparts, despite the fact that the fei1 

fei2 shou2-1 triple mutants displayed nearly wild-type root elongation in the growth 

condition that was used for the suppressor screen. 

SHOU2 is allelic to IAR4 

We used a map-based positional cloning approach to isolate the SHOU2 

gene. The fei1 and fei2 mutations (isolated in the Columbia (Col) ecotype) were 

introgressed six times into the Landsberg erecta (Ler) ecotype to generate a fei1 fei2 

plant that was largely Ler except for small regions of DNA near the fei1 and fei2 

mutations (see Methods). This line was crossed to fei1 fei2 shou2 to generate a 

mapping population for shou2-1. Mapping with Col/Ler SSLPs indicated that SHOU2 

was linked to the top of chromosome 1. Analysis of 350 fei1 fei2 F2 progeny with 

additional molecular markers further delimited SHOU2 to a 47 kb interval between 

the F3I6.D and F3I6.F markers (Fig. 2A; Table 2.1). Sequencing of candidate genes 

within this region identified missense mutations in the first and seventh exon of IAR4 

(AT1G24180) of fei1 fei2 shou2-1 and fei1 fei2 shou2-2 respectively. The shou2-1 

allele contains a C→T transition in the fifth exon of the coding region of IAR4, which 

converts an arginine residue to a stop codon. The shou2-2 mutation is the result of a 

G→A transition that is predicted to change a glutamate at position 366 to a stop 

codon (Fig. 2B). To confirm that shou2 mutations correspond to AT1G24180, we 

examined the ability of an independent T-DNA insertional allele that contains a T-

DNA insertion in the first exon of IAR4 (SALK_091909) to suppress fei1 fei2. This 

shou2-3 allele was introduced into a fei1 fei2 mutant line by crossing and the 
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phenotype of the roots was examined in non-permissive conditions (Fig. 2B). Similar 

to the other alleles, shou2-3 suppressed the root swelling phenotype of fei1 fei2, 

which confirms that mutations in IAR4 correspond to shou2. To avoid confusion and 

be consistent with the prior studies, we re-named shou2-1, shou2-2, and shou2-3, to 

iar4-5, iar4-6, and iar4-7 respectively. 

A role for auxin in regulating cell wall function 

As IAR4 is involved in the maintenance of auxin homeostasis and mutations 

in IAR4 restore anisotropic growth in fei1 fei2, we hypothesized that a reduction in 

the level of endogenous IAA would also suppress the loss of growth anisotropy in 

fei1 fei2. To test this hypothesis, we examined the effect of mutations in the auxin 

biosynthetic genes WEI8 and TAR2 on the fei1 fei2 root swelling phenotype. WEI8 

and TAR2 are partially redundant genes that encode two of the five tryptophan 

aminotransferases (TAA1) essential for the major auxin biosynthesis pathway in 

plants. The level of IAA in the roots of double wei8 tar2 mutants is reduced by 50% 

relative to the wild type (Stepanova et al. 2008), suggesting WEI8 and TAR2 are 

required for auxin biosynthesis in roots. We generated a wei8 tar2 fei1 fei2 

quadruple mutant to examine whether significant reductions in endogenous auxin 

levels in the root suppressed growth isotropy in fei1 fei2. When grown under 

restrictive conditions, the swelling of the root tip was suppressed in the quadruple 

wei8 tar2 fei1 fei2 mutant (Fig. 3). The suppression of the fei1 fei2 phenotype by 

wei8 and tar2 is similar to the suppression of fei1 fei2 by iar4 and suggests that 

auxin is required for the radial cell expansion that occurs in response to decreases in 

cellulose synthesis in the absence of the FEI proteins. 
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To further explore this hypothesis, we investigated the sensitivity of the iar4-5 

mutant to the cellulose synthesis inhibitor isoxaben. Previous work has shown that 

loss of growth anisotropy is exacerbated in cell wall mutants treated with isoxaben 

(Desprez et al. 2002, Scheible et al. 2001). Consistent with these results, fei1 fei2 is 

hypersensitive to isoxaben (Xu et al. 2008). However, in contrast to fei1 fei2, both 

the triple fei1 fei2 iar4-5 and single iar4-5 are partially resistant to the effects of 

isoxaben on root swelling (Fig. 4). The suppression of aberrant cell expansion by 

iar4-5 suggests that the effect of the loss of cell wall integrity on root morphogenesis 

can be attenuated by a reduction in auxin function. 

The effect of iar4 on other fei1 fei2 phenotypes 

 We have previously shown that the FEI RLKs are required for proper 

hypocotyl cell expansion in etiolated seedlings and in anchoring pectin in seed coat 

mucilage to the seed surface (Harpaz-Saad et al. 2011). The hypocotyls of dark-

grown fei1 fei2 seedlings are significantly wider than those of the wild type (Xu et al. 

2008). In addition, mutations in FEI2 lead to disruption of seed coat mucilage 

structure (Harpaz-Saad et al. 2011). We examined whether mutations in IAR4 could 

suppress these additional fei1 fei2 phenotypes. In contrast to its role in the root, iar4 

did not suppress the increased hypocotyl width phenotype of fei1 fei2 (Fig. 5A and 

5B). In fact, the iar4-5 mutant also had slightly wider hypocotyls and this effect was 

additive with that of fei1 fei2. The additive nature of iar4-5 and fei1 fei2 on hypocotyl 

width suggests that these genes may act in parallel to regulate cell wall function. 

Unlike in the hypocotyl, mutations in iar4-5 did not affect the seed coat mucilage of 

fei1 fei2. The seed coat mucilage of the triple fei1 fei2 iar4-5 mutant resembled that 
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of fei1 fei2 indicating that mutations in IAR4 do not suppress this phenotype (Fig. 6A 

and 6B).  

 An additional role for the FEI RLKs is to act additively with COBRA (COB) in 

stamen filament elongation in the flower. COBRA encodes a GPI anchored protein 

that associates with the cell wall and is required for the oriented deposition of 

cellulose in rapidly expanding cells (Roudier et al. 2005). Like fei1 fei2, cob-1 

mutants are deficient in cellulose and as a result display a short, swollen root 

phenotype that is enhanced by elevated sucrose. Although neither the fei1 fei2 nor 

cob-1 mutants themselves display an obvious floral phenotype, a triple fei1 fei2 cob-

1 mutant has short stamen filaments and as a result is partially infertile (Xu et al. 

2008). Similar to root cells in the elongation zone, cells of the stamen filament also 

undergo primarily longitudinal expansion. Therefore, we assessed the ability of iar4-

5 to suppress the short stamen phenotype of fei1 fei2 cob-1 mutant. Analysis of a 

quadruple fei1 fei2 cob-1 iar4-5 mutant indicated that the iar4-5 allele restores 

stamen filament length and fertility in fei1 fei2 cob-1 (Fig. 5C). Thus, iar4-5 

suppresses some, but not all of the fei1 fei2 phenotypes.  

iar4 is a general suppressor of defects in cell wall synthesis 

To ascertain whether loss-of-function mutations in IAR4 suppress defects in 

cell expansion exhibited by other cell wall mutants or whether they are specific to the 

FEI pathway, we crossed iar4-5 to sos5, procuste (prc; a hypomorphic allele of 

cesa6), and a weak allele of cobra, cob-1. When grown in the presence of 4.5% 

sucrose, each of these mutants displayed a substantial reduction in root length 
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accompanied by radial expansion of cells in the root tip as a result of reduced 

cellulose biosynthesis. As expected, iar4 suppressed the defects in cell expansion 

that occur in the sos5 mutation, which acts in the FEI pathway. However, in contrast 

to the fei1 fei2 iar4 triple mutant that displayed a substantial suppression of the root 

elongation defect observed in both parental lines, the sos5 iar4 double mutant 

retains a reduced root elongation phenotype. Thus, the root of the iar4 sos5 double 

mutant is short, but not swollen and thus resembles the iar4 parental root 

phenotype. iar4-5 also suppresses the swollen root phenotypes of both the cob-1 

and prc mutants, both of which affect cellulose synthesis independent of the FEI 

pathway (Fig. 7).  

We next tested whether mutations in IAR4 could suppress the accumulation 

of ectopic lignin in these mutants. Lignin is deposited ectopically into the cell wall in 

response to decreased cellulose synthesis that occurs in cellulose deficient mutants. 

Previous studies have shown that the roots of fei1 fei2, cob-1, and prc all 

accumulate ectopic lignin (Caño-Delgado et al. 2003, Desprez, et al. 2002, Fagard 

et al. 2000, Xu et al. 2008). Interestingly, when we assessed the roots of these cell 

wall mutants in an iar4-5 background using a colorimetric stain, no ectopic lignin 

deposition was observed (Fig. 8). This result is consistent with the suppression of 

the root swelling defect in these mutants by iar4 and suggests that IAR4 is required 

for the ectopic deposition of lignin that occurs in response to decreased cellulose 

biosynthesis. Taken together, these observations suggest that iar4 is not specific to 

the FEI pathway, but rather acts as a more general suppressor of defects in 

cellulose biosynthesis. 
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DISCUSSION 

We demonstrate that reducing auxin function, either through loss-of-function 

mutations in IAR4 or in the auxin biosynthetic genes WEI8 and TAR2, suppresses 

the root swelling that occurs in the fei1 fei2 mutant. Several lines of evidence 

suggest that iar4, and by inference, auxin, acts not in the FEI pathway directly, but 

rather independently to regulate cell wall function. First, iar4 acts additively with fei1 

fei2 to increase hypocotyl width. Second, iar4 reverts the swollen root phenotype 

and suppresses the accumulation of lignin ectopically in other cellulose synthesis 

mutants such as cob-1 and prc, which act in parallel with the FEIs. Finally, the iar4 

mutation confers resistance to the cellulose synthesis inhibitor, isoxaben. The data 

support a model in which reduced auxin function acts to modulate cell wall function 

in the root in some way to counteract the effects of reduced cellulose synthesis.  

Previous studies have linked auxin to the regulation of cell wall function. The 

acid-growth hypothesis attributes auxin-induced cell expansion to the acidification of 

the cell wall and resulting increase in activity of the wall loosening enzymes 

expansins (Hager 2003). Expansins disrupt the non-covalent bonds that form 

between cellulose and hemicelluloses in the wall and thus promote cell expansion in 

hypocotyls and modulate the growth of leaves, petioles, and roots (Cosgrove et al. 

2000, Cosgrove et al. 2002, Hager 2003) Auxin Binding Protein (ABP1) may play an 

important role in this response; ABP1 activates H+ ATPases and K+ channels at the 

plasma membrane upon the perception of auxin and is required for cell elongation 

(Sauer and Kleine-Vehn 2011). In addition to expansins, other wall-loosening 
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enzymes such as xyloglucan hydrolases (XGH) and endotransglycosylases (XET), 

which cleave and re-graft a major form of hemicellulose, xyloglucan, are also 

activated upon acidification of the cell wall and in response to auxin (Lorences and 

Zarra 1987). Consistent with these findings, the mechanical extensibility of 

epidermal cells isolated from azuki bean epicotyls increases dramatically following 

incubation with XGH (Kaku et al. 2002). These are among many studies that support 

a role for auxin in increasing the extensibility of the cell wall in the shoot.  

The role of auxin in roots is less well studied. The notably shorter root of the 

auxin-insensitive, gain-of-function Aux/IAA mutant, axr3-1, coupled with the 

repression of numerous genes involved in cell wall synthesis and remodeling 

suggests a similar role for auxin in regulating cell wall function in the root to that of 

the shoot. Among the genes that are de-regulated in axr3-1 seedlings treated with 

IAA are those that encode arabinogalactan proteins (AGPs), expansins (EXP), 

extensins, proline rich proteins (PRP), xyloglucan endotransglucosylase-hydrolases 

(XTHs), and pectin methyl-esterases (PMEs) (Overvoorde et al. 2005). Although 

extensins rigidify the cell wall, a disproportionate number of genes repressed in 

axr3-1 encoded proteins that loosen the cell wall matrix and thus promote cell 

elongation (Cosgrove 2005). Similarly, mutations in the auxin influx carrier, lax3, 

prevent the induction of expansin expression in the root of Arabidopsis seedlings in 

developing lateral roots. LAX3 is required for lateral root initiation and its expression 

precedes the necessary changes in cell wall architecture that are predicted to play a 

critical role in the emergence of lateral root primordium (Swarup et al. 2008). The 

lack of wall plasticity coupled with alterations in the expression of genes that encode 
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cell wall remodeling proteins in the axr3-1 and lax3 mutants provide further evidence 

that auxin promotes wall loosening. 

The growth of seedlings in the presence of auxin has been shown to lead to 

root swelling in a manner independent of ethylene biosynthesis (Alarcon et al. 2012, 

Eliasson et al. 1989). This suggests that exogenous auxin decreases the integrity of 

the cell wall, leading to a loss of growth anisotropy. This is consistent with the 

suppression of swelling in mutants defective in cellulose biosynthesis by reduction of 

endogenous auxin that is described here. An important question is by what the 

mechanism does exogenous auxin increases root swelling in wild-type roots, and 

conversely, how does reduced endogenous auxin suppress swelling in cellulose-

deficient roots. One possibility is that auxin negatively regulates cellulose synthesis. 

The suppression of the procuste mutant by iar4 makes this somewhat unlikely as 

procuste is a null allele of CESA6. However, it is possible that reduced auxin levels 

may elevate cellulose synthesis via alternative CESA complexes as CESA6 acts 

redundantly with CESA2, CESA5, and CESA9 in some Arabidopsis tissues. This 

scenario is unlikely, at least with respect to CESA5 because mutations in IAR4 do 

not suppress the defects in seed coat mucilage production in fei1 fei2 where CESA5 

is required for cellulose biosynthesis. A somewhat more plausible model is that 

auxin modulates the rigidity of the wall not by regulating cellulose synthesis, but by 

altering other properties of the wall, such as the crosslinking of cellulose microfibrils 

or the activity of extensins or other cell wall modifying enzymes as described above. 

Intriguingly, while both iar4 and fei1 fei2 mutant roots are short in the presence of 

elevated sucrose, the triple iar4 fei1 fei2 mutant displays both a non-swollen root, as 



 35 

well as root elongation comparable to the wild type. In contrast, although mutations 

in iar4 suppress the swollen root phenotypes of the other cell wall mutants, they do 

not restore root elongation in prc, cob, or sos5. This suggests that iar4 does not 

simply restore cellulose biosynthesis in these mutants, as this would rescue both the 

swollen root and root length phenotypes. Additionally, it is conceivable the short root 

phenotype of iar4 may be partially attributed to decreased cell division in the root 

apical meristem as auxin has been shown to regulate both the activity and the size 

of the meristem in the Arabidopsis root. However, although we isolated iar4 as a 

suppressor of fei1 fei2, the short root phenotype of both fei1 fei2 and the iar4 mutant 

but not the fei1 fei2 iar4 triple mutant raises an interesting question. How does fei1 

fei2 suppress iar4? It is unlikely that it does so by suppressing any potential effects 

of iar4 on cell division rates, and thus likely does so through modulation of cell wall 

properties. 

We propose a model that combines the previously characterized role of the 

FEI receptor-like kinases in regulating cellulose synthesis with a role for auxin in 

regulating cell wall rigidification in the root (Fig 9). We have previously shown that 

ACC may act as a signal in the FEI pathway to regulate cellulose biosynthesis. The 

fei1 fei2 mutations lead to radial cell expansion in the root as a result of decreased 

cellulose synthesis, which alters wall function such that there is not sufficient force to 

constrict radial expansion. One model consistent with the data is that decreased 

auxin results in an increase in the rigidity of the cell wall, which can restrict radial cell 

expansion in cellulose-deficient mutants. In most cases this increase in rigidity would 

also cause a decrease in the overall expansion of the cells, and hence a decrease in 
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the length of the root. In the case of the fei1 fei2 iar4 line, this decreased cellulose 

coupled with the increased rigidity caused by decreased auxin is precisely balanced, 

leading to both a lack of swelling and near wild-type elongation. Auxin also increases 

the expression of multiple ACS genes (Abel et al. 1995), which may also have an 

effect on the FEI signaling pathway.  

Alternatively, auxin could be involved in the signaling cascade linking 

perception of perturbation of the cell wall to changes in cell wall synthesis. 

Interestingly, a recent study has demonstrated that the inhibition of root cell 

elongation that occurs in response to isoxaben is attenuated by mutations in the tir1-

1 auxin receptor and growth in the presence of the synthetic antagonist of TIR1, 

PEO-IAA. Furthermore, results from this study indicated that inhibitors of the 

precursor to ethylene, ACC, fully restore growth anisotropy in the presence of 

isoxaben and this effect was shown to act independent of ethylene (Tsang et al. 

2011). Consistent with this data, inhibitors of ACC, but not ethylene suppress the 

swollen root phenotype of fei1 fei2 (Xu et al. 2008). 

 The characterization of iar4 in this study as a suppressor of defects in cell 

wall synthesis provides evidence that auxin plays a key role in the regulation of 

primary cell wall function and suggests that wall extensibility may be a major 

determinant of cell expansion in the root. Whether auxin acts as a general regulator 

of cell wall function throughout development or participates in the active signaling 

processes that occur in response to perturbations in the cell wall remains an 

interesting question for future studies.  
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MATERIAL AND METHODS 

Plant Material and Growth Conditions   

 All lines used in this study are in the Columbia (Col-O) ecotype of Arabidopsis 

thaliana, except where noted.   The shou2-3 (SALK_091909) allele was obtained 

from the SALK T-DNA insertional collection (Alonso et al. 2003). The prc-1 (Fagard 

et al. 2000) and cob-1 (Schindelman et al. 2001) mutants were obtained from the 

Arabidopsis Stock Center. The wei8 and tar2-1 mutants have been previously 

described (Stepanova et al. 2008). For in vitro studies, seeds were surface sterilized, 

cold treated for 4 days at 4°C, germinated on vertical plates containing 1 x 

Murashige and Skoog (MS) salts , 0.6% phytagel (Sigma, St Louis, MO, USA) and 

either 0% or 4.5% sucrose and grown at 22°C under constant light. For the analysis 

of root elongation, seeds were germinated on 4.5% sucrose and total root elongation 

was measured after 14 days. For the hypocotyl elongation assay, seedlings were 

exposed to light for 3 hours and grown for 4 days in the dark on MS agar 

supplemented with 1% sucrose. The width of each hypocotyl was measured 1 mm 

from the hook of an etiolated seedling. For growth on soil, plants were grown either 

under constant light or long day conditions at 23°C. For growth in the presence of 
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isoxaben, seedlings were germinated and grown in the absence of sucrose for 5 

days then transferred to MS agar supplemented with 0 nM or 5 nM isoxaben for 24 

hours.  

Positional Cloning of shou2 

 The fei1 and fei2 mutations (Columbia, Col ecotype) were introgressed into 

Landsberg erecta (Ler) through back crossing with Ler six times and a line 

homozygous for fei1 and fei2 was obtained. Theoretically, after six backcrosses, 

approximately 98.4% of the genome is Ler, with the exception of regions around the 

fei1 and fei2 mutations, which remain Col. We tested 42 molecular markers across 

all 5 chromosomes and found only the molecular markers F6NI8 and TI0P12 (close 

to FEI1), and TIJ8 (close to FEI2) remained Col. All other 39 markers were 

homozygous for the Ler SNPs. A mapping population was generated by crossing 

fei1 fei2 shou2-1 (Col) to fei1 fei2 (Ler). Bulk segregant analysis was performed 

using a total of 42 markers that span the Arabidopsis genome on a pool of DNA 

obtained from 40 F2 seedlings showing suppression of the fei1fei2 phenotype. The 

mutation was initially mapped to an interval spanning markers FI2K8 (7.954Mbp) 

and FI3K9 (9.744Mbp) on chromosome 1. Fine mapping was facilitated by the root 

hair phenotype of shou2 mutants using restriction fragment length polymorphisms 

and cleaved amplified polymorphic sequence markers. The shou2-1 mutation was 

mapped to a ~47-kilobase (kb) region delimited by recombination events between 

marker F3I6-D (8.552 Mbp) and F3I6-F (8.599Mbp) of chromosome 1. Sequencing 

of 12 genes within this region identified mutations in the first and seventh exons of 

At1g24180 in fei1 fei2 shou2-1 and fei1 fei2 shou2-2 respectively. 
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Phloroglucinol Staining 

Seedlings were fixed in a solution of three parts ethanol: one part acetic acid 

for fifteen minutes and transferred to 70% ethanol for 10 minutes. Seedlings were 

then cleared in chlorohydrate:glycerol:water (8:1:2) for 5 minutes and stained for a 

total of 5 minutes in a 2% phloroglucinol-HCl solution.  

Microscopy and seed staining 

The calcofluor stain was done as described by Willats et al. (2001). Seeds 

were pre-treated with 50mM EDTA, stained for 20 min in 25 µg/ml fluorescent 

brightener 28 (Sigma), washed overnight in water and then visualized using a Zeiss 

LSM710 confocal microscope equipped with a 405 nm laser diode. Pontamine 

staining was done as described by (Anderson et al. 2010).Seeds were stained for 30 

min in 0.01% pontamine fast scarlet S4B (Sigma) following a 90 min pre-hydration, 

washed for 4 hours in water and then visualized using a Zeiss LSM710 confocal 

microscope equipped with a 561 laser. Flowers and root tips were imaged using 

bright field microscopy and hypocotyls using dark field microscopy on the compound 

Leica microscope. Cross sections of the root elongation zone were done as 

described by Xu et al. (2008).  
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TABLES 

 

Table 2.1 Markers used to map shou2-1. 
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FIGURES 

 

Figure 2.1. Isolation of the shou2 suppressor.  

(A) Phenotypes of indicated seedlings grown on MS medium containing 4.5% 
sucrose for three weeks. The bottom panels show a close-up of the root tips. Scale 
Bar = 1mm. 

(B) Quantification of total root length from (A). The mean (n-150) ± SE. 

(C) Transverse sections through the root elongation zone of wild type, fei1 fei2, fei1 
fei2 shou2-1, and fei1 fei2 shou2-2. 
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Figure 2.2 Positional cloning of shou2. 

(A) SHOU2 was mapped to a region on chromosome 1 between markers F3I6.D 
and F316.F. The name of each DNA marker is shown above and the number of 
recombinants is indicated below the line. Open reading frames located between 
markers F3I6.D and F3I6.F are shown below BACs. 

(B) Structure of SHOU2. Boxes represent exons and the predicted start and stop 
codons are indicated.. The positions and changes of the three shou alleles are 
indicated.  
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Figure 2.3 Mutations in the auxin biosynthetic genes WEI8 and TAR2 
suppress fei1 fei2.  

Phenotypes of seedlings after transfer at 4 d from MS medium containing 0% 
sucrose to medium containing 4.5% sucrose. Bar = 1 mm. 

 

 

 

 

 

 

 

 



 48 

 

 

Figure 2.4 Additional phenotypes of fei1 fei2 iar4-5. 

(A) and (B) Hypocotyls of four-day-old etiolated seedlings of the indictaed 
genotypes. (A) is an image of a representative seedling and (B) shows the average 
width (n=20) ± SE. 

(C) Floral phenotypes from the indicated genotypes. Bar = 1 cm. Plants were grown 
on soil under long day conditions for four weeks. To visualize stamen length, the 
petals and sepals were removed from each flower. Bar = 1 mm. Note that the fei1 
fei2 cob triple mutant is sterile, presumably due to the shortened stamen filaments.  
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Figure 2.5 iar4 does not suppress defects in the seed coat mucilage of fei1 
fei2. 

(A) Pontamine stain for cellulose. Bar = .2 mm. 

(B) Calcofluor stain for cellulose and other cell wall polymer. Bar = .2 mm. 
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Figure 2.6 Mutations in iar4-5 suppress other cell wall mutants. 

(A) Phenotypes of indicated seedlings grown on MS medium supplemented with 
4.5% sucrose for 20 days. Scale bar = 1.5mm. 

(B) Quantification of root elongation of seedlings in (A). 
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Figure 2.7 Mutations in IAR4 confer resistance to isoxaben.  

Root tips of indicated seedlings in response to isoxaben. Seedlings were germinated 
and grown for 5 days on MS medium with 0% sucrose and transferred to 0 nM of 5 
nM isoxaben for twenty-four hours. 
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Figure 2.8 iar4 suppresses lignin accumulation in cell wall mutants. 

Phloroglucinol stain for lignin (red) accumulation in root tips of seedlings grown on 
4.5% sucrose for 2 weeks. Bar = 1mm.  
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Figure 2.9 Model of the FEI pathway. 

Hypothetical model depicting the role of both auxin and the FEI pathway in 
regulating cell expansion. See text for additional details. 

 

 

 

 

 

 

 

 

 

 

 



 

 

CHAPTER 3 

Further Characterization of the FEI Pathway 
 

 The FEI RLKs act together with the extracellular arabinogalactan protein, 

SOS5, and ACC synthase to promote cellulose biosynthesis and regulate cell 

expansion in the Arabidopsis root. To determine how this novel signaling pathway 

regulates cell wall synthesis, we sought to further characterize known elements and 

uncover additional components of the FEI pathway. In a screen for suppression of 

the short, swollen root phenotype of fei1 fei2, we have isolated several mutants in 

which growth anisotropy is restored. Of these, we have identified and characterized 

a semi-dominant allele of one of the genes corresponding to a strong suppressor of 

fei1 fei2, shou4, and have mapped the gene corresponding to a separate, loss of 

function mutation in another suppressor, shou3, to the upper arm of chromosome 1. 

Furthermore, we have confirmed the previously identified interaction between FEI 

and ACS in planta and identified receptor-like kinases that are both co-expressed 

with FEI1 and FEI2 and that interact with ACS as prospective FEI interacting 

proteins. To address the mechanism by which the FEI RLKs regulate cellulose 

biosynthesis, we also examined the relative abundance of CESA protein, and found 

subtle differences between fei1 fei2 and wild type. Our studies expand our current 
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understanding of the FEI pathway and set the stage for future studies by defining an 

effective approach to mapping suppressors of fei1 fei2. 

INTRODUCTION  

 The cell wall is essential for plant growth and development. It plays an 

important role in providing structural support, protection against pathogen attack, 

and in determining the extent and direction to which cells can expand. Despite the 

importance of the cell wall, our understanding of the molecular mechanisms that 

regulate its synthesis and control its function remain poorly understood. The 

identification of the FEI RLKs in Arabidopsis as positive regulators of cellulose 

biosynthesis provides an opportunity to explore the signaling processes that underlie 

the biosynthesis of this polymer and as a result, how cell wall function is regulated in 

plants. 

Previous studies on FEI1 and FEI2 suggest a role for the extracellular 

arabinogalactan protein, SALT OVERLY SESITIVE 5 (SOS5), and ACC synthase in 

the FEI pathway. When grown under the non-permissive conditions such as high salt 

or sucrose, sos5 mutants resemble fei1 fei2. Triple sos5 fei1 fei2 mutants are 

phenotypically indistinguishable from their parents, indicating that sos5 likely acts in 

a linear pathway with FEI to regulate cellulose biosynthesis. In addition to SOS5, 

members of the type-2 subfamily of ACC synthase interact with both FEI1 and FEI2 

in a yeast-two-hybrid assay and this interaction may be physiologically relevant as 

inhibiting ACC suppresses a loss of growth anisotropy and restores cellulose 

biosynthesis in fei1 fei2 (Xu et al. 2008). Together, these data suggest that ACC, but 
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not ethylene, may act as a signal in the FEI/SOS5 pathway to regulate cell wall 

synthesis. The characterization of ACC synthase and SOS5 has made a significant 

contribution to our understanding of how the FEI proteins may regulate cell wall 

synthesis and has set the stage for future research.  

In the primary plant cell wall, cellulose biosynthesis requires the assembly of 

three different CESA proteins into a hexameric rosette at the plasma membrane. 

Here, CESA1 and CESA3 are required for cellulose biosynthesis. CESA2, CESA5, 

CESA6, and CESA9 also function in primary cell wall synthesis and are partially 

redundant with each other throughout different stages of growth (Desprez et al. 

2007). Of these, CESA1, CESA3, and CESA6 are highly expressed in the root and 

mutations in any one of them disrupt anisotropic cell expansion (Endler and 

Persson, 2011). As expected for genes that encode proteins that function in the 

same complex, CESA transcript levels as well as the abundance of at least CESA3 

and CESA6 protein is co-regulated (Desprez et al. 2007). In addition, CESA proteins 

are post-translationally regulated via phosphorylation, which has been shown to 

target them for degradation and alter the bidirectional mobility of the cellulose 

synthase complex (Taylor et al. 2007; Chen et al.  2010).  

Here we sought to uncover the molecular mechanism underlying FEI’s 

regulation of cellulose synthesis through the identification and characterization of 

additional components of the FEI pathway by isolating suppressors of fei1 fei2 and 

mapping the corresponding genes. In addition, we identify three different LRR-RLKs 

as potential FEI interacting proteins and further characterize known components of 



 57 

the FEI pathway by exploring the FEI-ACS interaction in planta and assess CESA 

stability in fei1 fei2.    

RESULTS 

Isolation and characterization of suppressors of the fei1 fei2 mutant   

 We screened approximately 200,000 M2 individuals from 145 different pools 

of ethyl methanesulfonate mutagenized fei1 fei2 seed for suppression of the short, 

swollen root phenotype of fei1 fei2 seedlings in the presence of high sucrose. A total 

of 67 M2 individual suppressors, designated as shou mutants (after the Chinese 

word for thin), were initially isolated and re-screened in the M3 generation. Of these, 

twenty-two fei1 fei2 suppressors did not re-test, thirty-five proved to be weak 

suppressors, and ten displayed strong suppression of the fei1 fei2 phenotype (Fig 

3.1 and Table 2.2). The weak suppressors displayed partial restoration of root 

elongation or incomplete suppression of swelling in the root tip, whereas the root tips 

of the strong suppressors elongated comparable to wild type and did not swell when 

grown on MS agar supplemented with 4.5% sucrose.  

 To determine the nature of the suppressor mutations, each suppressor was 

backcrossed to the parental fei1 fei2 line. The F1 progeny from each backcross were 

grown under the non-permissive conditions and root elongation quantified and 

compared to fei1 fei2. As a single copy of a loss of function allele would not be 

sufficient for suppression of the fei1 fei2 phenotype, this analysis allowed us to 

determine whether each of the suppressor mutations were recessive or dominant. 

Interestingly, one copy of the allele corresponding to four (80C, 88A, 97A, 120A) of 
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the eight strong fei1 fei2 suppressors was sufficient for partial suppression of growth 

isotropy (Fig 3.1). This data indicated that several of the strong suppressors 

contained semi-dominant mutations. The root length of F1 progeny of backcrosses 

with three suppressors (145A, 124B, 83A) displayed a non-suppressed phenotype, 

consistent with these alleles being loss of function, recessive mutations (Fig 3.1). 

Although it was a strong suppressor, 127A, was left out of this analysis. 

 To further characterize the fei1 fei2 suppressors, we grew them in the 

presence of various concentrations of the synthetic auxin analog, 2,4-

dichlorophenoxyacetic acid (2,4-D) but did not observe a change in sensitivity to this 

compound (Fig 3.2).  In addition, we examined whether the shou mutations could 

suppress the increased width of the hypocotyls of etiolated fei1 fei2 seedlings. We 

observed partial suppression of the hypocotyl phenotype for each of the strong 

suppressors examined (Fig 3.3). 

Bulk mapping suppressors of fei1 fei2  

 We combined a map-based cloning approach with whole genome sequencing 

to identify the gene corresponding to the strong semi-dominant suppressor 97A, 

which we renamed shou4. As described previously (see Chapter 2; Materials and 

Methods), the fei1 and fei2 mutations were introgressed into the Landsberg erecta 

(Ler) ecotype and this plant was crossed to the fei1 fei2 shou4 suppressor to 

generate a mapping population for shou4. The semi-dominant nature of the shou4 

mutation made confirmation of the fei1 fei2 shou4 phenotype in the M3 generation of 

the mapping population essential for the successful identification of homozygous 



 59 

individuals. Following an assessment of the M3 progeny, we identified a total of 

eighty-nine M2 seedlings from the mapping population as phenotypically 

homozygous for shou4.  

 Using a collection of forty-four markers that spanned the five chromosomes of 

the Arabidopsis genome and the DNA from phenotypically homozygous M2 

seedlings, we used a map-based cloning approach to roughly localize shou4 (Table 

2.3). Initially, a pool of twenty individuals was used to map the shou4 mutation. 

However, using this relatively large pool of genomic DNA, we failed to link any one 

of the forty-four markers to the suppressor mutation, suggesting we may be working 

with a larger number of false positives than expected. To address this, we 

partitioned the genomic DNA from a total of thirty individuals into five small pools 

each consisting of six individuals. Instead of one relatively large pool, we examined 

each of the small pools of genomic DNA for linkage to any one of the forty-four 

markers. Using this approach, we successfully linked shou4 to marker 10, which is 

located 29.49 Mbp down chromosome 1 (Fig 3.4). Consistent with the idea that we 

were working with a number of false positives, comparison of the genotypes across 

individuals from a pool that was heterozygous at marker 10 to those of individuals 

from a pool that was homozygous at marker 10, revealed a relatively large number 

of contaminants, or false positives, in the pool that was heterozygous. We 

genotyped each of the eighty-nine individuals originally identified as homozygous by 

phenotype and found that only forty-seven of the eighty-nine were homozygous by 

genotype. Our results indicate that there may be modifiers of the fei1 fei2 phenotype 
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in the Ler background and demonstrate that successful identification of homozygous 

fei1 fei2 suppressors relies on the genotyping of previously phenotyped individuals.  

 To confirm the localization of shou4, we examined four other markers; 

ATPase (28.5 Mbp), nga692 (28.841 Mbp), F9K20 (29.622 Mbp), and F516 (30.2 

Mbp) (Fig 3.4).  Of the forty-seven individuals examined, we found that thirty-three 

were homozygous for all five markers and fourteen were recombinant for at least 

one marker. Interestingly, a greater number of recombinants were identified for 

ATPase and nga692 suggesting shou4 is located further than 28.841 Mbp down 

chromosome 1.  

 In addition to shou4, we have used this approach to map a recessive 

suppressor, 145A, designated shou3, and obtained preliminary data that links shou3 

to marker 4 at the top of chromosome 1 (Fig 3.5).   

Whole genome sequencing of the shou4 suppressor 

 Genomic DNA from the forty-seven M2 lines homozygous for marker 10 was 

pooled and sequenced on a single lane of the Illumina platform using paired end 

sequencing. Approximately 200 million paired end reads were generated and 

mapped to the TAIR9 release of the Columbia Arabidopsis genome. We obtained 

even coverage of the genome and an average mean depth of 50-60 fold. Using the 

samtools pileup software, an unfiltered, raw file of single nucleotide polymorphisms 

was produced for further analysis. 
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 We used the web application Next Generation Mapping (NGM) to identify 

shou4. NGM initially bins and plots SNP frequencies in 250 kb intervals across the 

Arabidopisis genome. Regions lacking in SNPs correspond to non-recombinant 

blocks created by linkage to the causative mutation (Austin et al. 2011). The 

background fei1 and fei2 mutations, which were originally created by T-DNA 

insertions, localize to the upper arm of chromosome 1 and the lower arm of 

chromosome 2 respectively (Xu et al. 2008). When fei1 and fei2 were introgressed 

into the Landsberg erecta parent, they created non-recombinant blocks in the 

genome that were identified in the SNP plots created using NGM (Fig 3.6). An 

additional non-recombinant region lacking in SNPs was identified near the end of 

chromosome 1 (Fig 3.6).  We examined this non-recombinant region specifically for 

SNPs between the shou4 suppressor and the annotated reference genome. NGM 

uses a ‘discordant chastity’ (ChD) value to quantify the proportion of reads at a 

polymorphic site that differ from the reference genome (Austin et al. 2011). A ChD of 

0 is expected for all positions where a base matches the reference genome whereas 

a ChD of 1.0 is expected for all positions in which the base differs from the reference 

genome. Thus the ChD is a measure of the likelihood that a SNP corresponds to the 

causative mutation. We set the ChD to 0.8 to identify SNPs with a high likelihood that 

they corresponded to the causative mutation. We did not apply any of the program’s 

filters to include all mutations in our analysis. Consistent with results from the bulk 

segregant analysis, we identified a G/CàA/T transition 29.65 Mbp down 

chromosome 1 in a cryptic splice site of AT1G78880 (Fig 3.7).  Sanger sequencing 

of AT1G78880 in both the fei1 fei2 parent and in the fei1 fei2 shou4 suppressor 
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confirmed the presence of the G/CàA/T substitution in the splice site at the junction 

between the second intron and third exon in the suppressor, but not the fei1 fei2 

parent (Fig 3.7A). Consistent with the fact that shou4 lies within a splice site, 

comparison of the SHOU4 transcripts from the suppressor to wild type revealed 

alternative splicing of SHOU4 mRNA in the fei1 fei2 shou4 mutant (Fig 3.7B). 

Characterization of SHOU4 

SHOU4 encodes a transmembrane protein of unknown function (Benschop et 

al. 2007). The lack of literature and data on SHOU4 makes it difficult to determine 

the role of SHOU4 in the FEI pathway. However, we are in the initial stages of 

characterizing the shou4 mutation as it relates to fei1 fei2. As shown previously, 

mutations in shou4 partially suppress the hypocotyl phenotype of fei1 fei2 (Fig. 3.3). 

In addition to suppression of the hypocotyl phenotype of etiolated fei1 fei2 seedlings, 

we assessed whether shou4 suppressed the fei1 fei2 seed mucilage phenotype. In a 

developing wild type seed, transverse rays of cellulose anchor the pectin-rich 

mucilage to the seed surface (Young et al. 2008; Blake et al; 2006; Dagel et al, 

2011). In fei1 fei2, cellulose synthesis is disrupted which results in the lack of rays in 

the mutant seed (Harpaz-Saad et al. 2011). In order to determine whether shou4 

restores the formation of rays of cellulose, we stained fei1 fei2 shou4 seeds with 

calcofluor and pontamine fast scarlet (S4B) for cellulose. We observed no significant 

difference between fei1 fei2 and fei1 fei2 shou4 (Fig 3.8) indicating that shou4 

suppresses some, but not all fei1 fei2 phenotypes.   
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Further characterization of known elements in the FEI pathway 

Previous work from our lab suggests that ACC may act as a signal in the FEI 

pathway. Type-2 ACS proteins interact directly with the kinase domains of both FEI1 

and FEI2 in a yeast-two-hybrid assay (Xu et al. 2008). To confirm the FEI-ACS 

interaction in planta, we used bimolecular fluorescence complementation (BiFC). We 

tested whether FEI1 and FEI2 fluorescently tagged with the C terminal half of YFP 

(cYFP) interact with ACS5 tagged with the N terminal half of YFP (nYFP). Consistent 

with findings in vitro, we observed reconstitution of YFP in the epidermis of leaves of 

Nicotiana benthamiana transiently expressing ACS5 and either FEI1 or FEI2. Unlike 

FEI1 and FEI2, the LRR-RLK, HAESA, which controls floral organ abscission, did 

not interact with ACS suggesting that this interaction is specific to the FEI proteins 

(Fig 3.9). 

The defects in cellulose biosynthesis in fei1 fei2 suggest that cellulose 

synthase is either differentially regulated or functionally compromised in the mutant. 

Microarray data on fei1 fei2 root tips collected three days after transferred to high 

sucrose suggests that cellulose synthase is not transcriptionally down-regulated in 

fei1 fei2; however, it is possible that the decrease in cellulose biosynthesis is a result 

of a change in the post-translational regulation of cellulose synthase. To determine 

whether the defects in cellulose biosynthesis in the fei1 fei2 mutant are a 

consequence of altered levels of cellulose biosynthesis, we examined the 

abundance of CESA1, CESA3, and CESA6 in fei1 fei2 under the permissive and 

non-permissive conditions. We first examined the levels of CESA3 protein at two 

and three days after transfer to high sucrose. Approximately 48 hours after transfer 
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to high sucrose, the abundance of CESA3 increased in the root tips of wild type 

seedlings whereas it remained unaltered in fei1 fei2 (Fig 3.10). Consistent with this, 

the abundance of CESA1 and CESA6 did not change in fei1 fei2 48 hours after 

transfer to 4.5% sucrose (Fig 3.11). 

Identification of novel FEI interacting proteins 

In addition to a forward genetics approach, we have performed a co-

expression analysis to facilitate the identification of FEI interacting proteins. Often, 

genes that are expressed simultaneously encode protein products that participate in 

a shared function. Using multiple co-expression analysis programs such as Virtual 

Plant, Expression Angler, ATTED-II, Plant Gene Expression Database, and the 

Arabidopsis Co-expression Tool (ACT), we have identified several RLKs that are co-

expressed with FEI1, FEI2, and both FEI1 and FEI2. Although numerous LRR-RLKs 

were identified, we focused on those identified by at least two or more programs. 

The LRR-RLK, At1g28040, was identified as co-expressed with FEI1, At2g26730 

and At3g08680 as co-expressed with FEI2, and At5g10020 as co-expressed with 

both FEI1 and FEI2. In addition, At4g08850, named FIL1 (FEI-Interacting LRR-

RLK), was previously identified as a FEI interacting RLK by yeast 2 hybrid 

(unpublished data). FIL1, like FEI1 and FEI2, contains an intracellular kinase domain 

and several leucine-rich repeats in its extracellular domain. Interestingly using 

bimolecular fluorescence complementation (BiFC) we found that the kinase domains 

of FIL1, At2g26730, and At5g10020 all interact with ACS in vivo (Fig. 3.12). 

 



 65 

DISCUSSION 

The LRR-RLKs, FEI1 and FEI2 are required for growth anisotropy and 

promote cell wall synthesis in Arabidopsis thaliana. FEI1 and FEI2 interact with 

members of the type-2 ACC synthase (ACS) subfamily. Using a variety of different 

web-based tools, we have identified other LRR-RLKs that are co-expressed with the 

FEI-RLKs. Our results indicate that in addition to FEI1 and FEI2, two other LRR-

RLKs (At2g26730 and At5g10020) identified in the co-expression analysis and one 

identified in a yeast-2-hybrid assay (At4g08680) also interact with ACS in planta.  

What is the significance of the interactions between ACS and the LRR-RLKs 

LRR2 (At2g26730), LRR4 (At4g08680), and LRR5 (At5g10020)? One hypothesis is 

that the interaction between either FIL1 or another RLK identified in the co-

expression analysis and FEI is reminiscent of the BAK1/BRI1 interaction. Upon the 

perception of brassinosteroid, the brassinosteroid receptor and LRR-RLK, BRI1, 

hetero-oligomerizes with the LRR-RLK, BAK1, to fully activate the brassinosteroid 

signaling pathway (Chinchilla et al. 2009). The FEI proteins may also function via 

oligomerization with other LRR-RLKs. This hypothesis is supported by results from 

our lab indicating that the fei1 fei2 phenotype can be complemented with a kinase-

inactive form of either FEI1 or FEI2, suggesting that FEI may dimerize with a 

functional kinase in vivo to activate downstream signaling events (Xu et al., 2008). 

Interestingly, BAK1 has multiple functions. In addition to brassinosteroid signaling, 

BAK1 is a component of the signaling processes that underlie cell death, light 

responses, and plant immunity (Chinchilla et al. 2009). Hetero-oligomerization of the 
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FEI proteins would allow them to function as components of a diversity of signaling 

processes and might explain why a kinase-inactive form of FEI complements the fei1 

fei2 phenotype. Consistent with the finding that additional LRR-RLKs interact with 

ACS5 in vivo, although the FEI proteins themselves do not seem to phosphorylate 

ACS, oligomerization of FEI into higher order complexes would position a kinase 

active, FEI-interacting RLK to carry out such a function. Although we were unable to 

examine RLK dimerization using BiFC, a different approach such as co-

immunoprecipitation will be used in future studies to determine whether these 

proteins interact in the FEI pathway. Furthermore, we have obtained T-DNA 

knockouts corresponding to each of the RLKs used here. Although single mutants 

do not appear to have any obvious phenotypes, we are in the process of generating 

higher order mutants. Future studies will examine the physiological effect of these 

mutations. 

 How exactly do the FEI proteins regulate cellulose biosynthesis? We show 

here that the relative abundance of CESA1 and CESA3, which are required for 

cellulose biosynthesis, and CESA6, which is partially redundant with CESA2, 

CESA5, and CESA9, are more abundant in fei1 fei2 seedlings in the absence of high 

sucrose and that unlike in the wild type, their abundance does not change upon 

transfer to high sucrose, suggesting the FEI RLKs may be required for the 

localization of the CESA proteins to the plasma membrane. Cellulose synthase is 

trafficked to the plasma membrane and recycled via vesicles derived from the trans 

Golgi network (Haigler and Brown, 1986; Paredez et al. 2006).  In addition, osmotic 

stress and inhibitors of cellulose synthesis cause rapid internalization of cellulose 
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synthase into a separate, unique set of microtubule–associated intracellular 

compartments known as MASCs (Crowell et al. 2009). If FEI1 and FEI2 are required 

for the delivery of the CESA complex (CSC) to the plasma membrane, a greater 

fraction of CSCs may be confined to intracellular compartments in fei1 fei2 and this 

could account for the decrease in cellulose biosynthesis in the mutant. Our results 

provide some evidence in support of this hypothesis. Despite the decrease in 

cellulose biosynthesis in fei1 fei2, CESA protein levels do not differ significantly 

between the mutant and wild type after transfer to high sucrose. Although we have 

not yet examined the abundance of CESA2, CESA5, or CESA9, the lack of a fei1 

fei2 phenotype in the absence of high sucrose suggests that one of these proteins 

may take the place of CESA6 in the CSC in the absence of FEI1 and FEI2. If CESA 

expression is differentially regulated such that the abundance of only CESA6 

increases in response to high sucrose and this response is required for cellulose 

biosynthesis, the defects in cell elongation in fei1 fei2 would be restricted to growth 

under the non-permissive conditions.   

 FEI1 and FEI2 define a novel pathway involved in positively regulating 

cellulose biosynthesis and therefore the molecular mechanism underlying the 

regulation of cell wall function by these receptors will likely require the identification 

of additional components of the FEI pathway. The identification and characterization 

of the shou suppressors of fei1 fei2 will facilitate our understanding of how this 

pathway regulates cell wall synthesis. The suppression of fei1 fei2 and predicted 

localization of SHOU4 to the plasma membrane makes it a potential component of 

the FEI pathway; however, its exact function in this pathway remains an open 
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question. In order to elucidate the function of SHOU4 in the FEI pathway, we must 

first determine whether shou4 represents a gain of function or a dominant negative 

mutation. A gain-of-function allele of shou4 may promote cellulose synthesis in the 

absence of the FEIs. On the other hand, if shou4 is a dominant negative allele, 

SHOU4 would negatively regulate cellulose biosynthesis in an otherwise wild type 

background. In a hypothetical model in which SHOU4 acts as a negative regulator of 

cellulose biosynthesis in the FEI pathway, FEI1 and FEI2 would promote cellulose 

biosynthesis by repressing SHOU4. Here, SHOU4 would repress cell wall synthesis 

in fei1 fei2, but the loss of both FEI and SHOU4 function in fei1 fei2 shou4, would 

result in wild-type levels of cellulose biosynthesis. We will examine the effect of loss-

of-function alleles of shou4 on fei1 fei2 to determine which of these models is 

correct. Future work will also address the patterns of SHOU4 expression, SHOU4 

protein localization, and the relationship between shou4 and other cell wall mutants. 

Moreover, whether shou4 restores cellulose biosynthesis in fei1 fei2 will be 

examined to uncover the role that SHOU4 plays in the FEI pathway. 

MATERIALS AND METHODS 

Plant Materials and Growth Conditions 

 Arabidopsis thaliana plants were grown as described previously (Chapter 2; 

Materials and Methods). Unless otherwise noted, seedlings were germinated and 

grown on MS agar supplemented with 4.5% sucrose. Nicotiana benthamiana plants 

were germinated and grown on soil on a 16/8h day/night cycle for 4-6 weeks prior to 

infiltration. For the analysis of root elongation, seeds were germinated on 4.5% 
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sucrose and total root elongation was measured after 14 days. For the hypocotyl 

elongation assay, seedlings were exposed to light for 3 hours and grown for 4 days 

in the dark on MS agar supplemented with 1% sucrose. The width of each hypocotyl 

was measured 1 mm from the hook of an etiolated seedling. 

Protein extraction and western blot analysis 

 For the sample preparation, root tips were harvested after 48 hours on high 

sucrose and ground with a mortar and pestle in liquid nitrogen into a fine powder. 

Tissue was resuspended to 50 mg/mL with 2x SDS-PAGE extraction buffer, 

vortexed, and immediately boiled for 5 minutes. Following a one-minute 

centrifugation, the supernatant was removed and the pellet discarded. A total of 10 

µl of sample was loaded into an SDS-PAGE gel (10% resoling gel and 5% stacking 

gel) and run at 150V. For the western blot, the gel was transferred at 100V for 1 hour 

to 0.1 µm nitrocellulose membrane. The membrane was blocked in 5% non-fat dry 

milk in PBST for 1 hour at room temperature. The primary antibody, Anti-AtCesA 

(courtesy of Dr. Ming Tien and his student, Joseph Hill at Penn State University) was 

diluted 1:500 in 5% non-fat dry milk in PBST for 1 hour at room temperature. The 

membrane was washed for 5 minutes for a total of 5 times in 1X PBST. The 

secondary antibody, anti-rabbit conjugated to alkaline phosphatase, was diluted 

1:6,666 and incubated for 1 hour at room temperature. The membrane was washed 

as again as described and developed immediately following a 5 minute ECL 

reaction. 
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mRNA transcript analysis 

Total RNA was extracted from fei1 fei2 shou4 and wild type seedlings using a 

Qiagen RNeasy Mini Kit and treated with TURBO DNAse to remove residual, 

contaminating DNA. cDNA was synthesized from mRNA using SuperScript III 

reverse transcriptase (Invitrogen). Amplification of SHOU4 was performed using the 

oligomers AT1G78880 2.2F  

(5’-GGTCCTCTAGACTATTCTGGTTCG-3’) and AT1G78880 6R 

(5’-TAATGAAGCCGAAGTGGAGC-3’). 

Bimolecular fluorescence complementation 

 FEI1, FEI2, ACS5, (kindly provided by Shouling Xu), HAESA (kindly provided 

by Michelle Leslie and Christian Burr, University of North Carolina), N2G26730 

(ABRC), N3G08680ZE_K (ABRC), N4G08850ZE_K (ABRC), and N5G10020 

(ABRC) were cloned into the destination vectors pBAT-YN and pBAT-YC using 

Gateway technology to generate nYFP and cYFP fusions. Destination clones were 

transformed subsequently into Agrobacterium tumefaciens strain GV3101. 

Agrobacterium carrying clones of interest and the gene silencing inhibitor p19 

(courtesy of Nguyen Phan, University of North Carolina) were grown initially 

overnight at 28° in 5 ml LB medium with 50 µg/mL rifampicin, 50 µg/mL gentamycin, 

and 100 µg/mL spectinomycin. An aliquoit from the overnight growth was inoculated 

into 50mL of media containing the indicated antibiotics and 20 µM acetosyringone 

and grown overnight. Bacterial cultures were harvested by centrifugation and 
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resuspended to an OD600 0.8 in 10 mM MgCl2 with 10 mM MES and 200 µM 

Acetosyringone (3,5-dimethoxy-acetophenone; Sigma-Aldrich D134406) and 

incubated for 4-6 hours. For the transformation, 3 ml of each construct of interest 

were combined with 3ml of p19. Using a syringe, approximately 3 ml of culture were 

infiltrated into the leaves of Nicotiana benthamiana. 

Seed Staining 

The calcofluor stain was done as described by Willats et al. (2001). Seeds 

were pre-treated with 50 mM EDTA, stained for 20 min in 25 µg/ml fluorescent 

brightener 28 (Sigma), washed overnight in water and then visualized using a Zeiss 

LSM710 confocal microscope equipped with a 405 nm laser diode. Pontamine 

staining was done as described by (Anderson et al. 2010). Seeds were stained for 

30 min in 0.01% pontamine fast scarlet S4B (Sigma) following a 90 min pre-

hydration, washed for 4 hours in water and then visualized using a Zeiss LSM710 

confocal microscope equipped with a 561 laser.  

Microscopy 

 Reconstitution of the YFP signal was examined in epidermal cells 2 to 4 d 

after infiltration. Observations were done using a 40X water immersion objective on 

a Zeiss LSM710 confocal microscope. Excitation of YFP was accomplished using a 

514 nm Argon laser. Images were collected from randomly sampled leaf pieces 

isolated from infected leaves. 
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TABLES 

Weak Suppressors Strong Suppressors 
Root Length 

Restored 
Swelling 
Restored 

Root Length and Swelling 
Restored 

129A 64A 
66A 
67A 
68A 
69A 
70A 
73A 
74B 
78A 
85A 
86B 
89A 
95A 

100A 
101A 
103B 
108A 
110A 
116A 
121B 
122A 
126C 
132A 
135B 
138A 
141A 

6-2-2A 
10-1-1A 
18-1-2A 
19-4-2A 
20-1-2A 
35-1-2A 
37-1-2A 
SHOU1 

80C 
83A 
88A 
97A 
120B 
124B 
127A 
145A 

SHOU5 
SHOU2 

 

Table 2.2 Phenotypes of fei1 fei2 suppressors. 
Phenotypes of all strong and weak M3 suppressors isolated in the suppressor 
screen. SHOU4 was sequenced in those in red. 97A represents SHOU4. SHOU1, 
SHOU2, and SHOU5 were not sequenced because they were previously identified. 
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Table 2.3 Mapping primers used to clone suppressors of fei1 fei2. 

 



 76 

FIGURES 

 

Figure 3.1 Root elongation of fei1 fei2 suppressors. 

Dark grey bars indicate root lengths of WT, fei1 fei2, and shou suppressors. Light 
grey bars represent root lengths of F1 progeny obtained from a backcross between 
the shou suppressors and fei1 fei2.Error bars ±SE. 
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Figure 3.2 Total root elongation of fei1 fei2 suppressors in the presence of 
2,4D. 

Seedlings were transferred after five days to the indicated treatment and grown for 
approximately three weeks. 
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Figure 3.3 Quantification of hypocotyls widths of fei1 fei2 seedlings.  

Average widths of hypocotyls of four day old etiolated seedlings. Each suppressor 
shows partial suppression of the fei1 fei2 hypocotyl phenotype. Error bars = ± SE.
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Figure 3.4 SHOU4 maps to the bottom arm of chromosome 1. (A) Cartoon of 
chromosome 1 and each of the five markers used to localize SHOU4. (B) 
Genotyping individual F2 plants from the mapping population indicates that markers 
ATPase and F516 are linked to the shou4 mutation. With the exception of 39, 49, 
and 65, the DNA from all individuals shown was used for further analysis.  
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Figure 3.5 SHOU3 maps to the top arm of chromosome 1. 

The shou3 mutation is located approximately 9.744 Mbp down chromosome 1. Top: 
Pools 1, 3, 4, and 5 show a band specific to Col. Pool 2 is heterozygous for marker 
4. Bottom: Genotypes of individual plants from pool 2. Unlike pools 1, 3, 4, 5, pool 2 
contained several false positives suggesting that this marker is linked to shou3. 
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Figure 3.6 Whole genome sequencing of fei1 fei2 shou4.  

(A) SNP frequencies plotted as a function of chromosome position in fei1 fei2 
shou4. Deserts on chromosomes 1 and 2 correspond to non-recombinant regions.  

(B) Dischordant chastity analysis identifies a candidate SNP within the non-
recombinant region at the bottom of chromosome 1 in At1g78880 (C).  
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Figure 3.7 The shou4 mutation leads to a 45 bp or 15 amino acid in frame 
deletion. (A) shou4 is not present in the fei1 fei2 parent and leads to a 45 bp 
deletion in the third exon at a splice site with the second intron. (B) Comparison of 
the SHOU4 mRNA transcript from WT and fei1 fei2 shou4. 
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Figure 3.8 shou4 does not suppress the seed mucilage phenotype of fei1 fei2. 

Pontamine Fast Scarlet and calcofluor white stain cellulose rays in seed coat 
mucilage of seeds from the indicated genotypes. 
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Figure 3.9 FEI1 and FEI2 interact with ACS in planta.  

Reconstitution of YFP fluorescence in the epidermal cells of Nicotiana benthamiana 
expressing the indicated fusion proteins. 
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Figure 3.10 Relative abundance of CESA3. 

Total CESA3 protein exacted from WT and fei1 fei2 seedlings transferred to high 
sucrose and grown for two or three days. Note the increase in CESA3 in the root tips 
of wild type seedlings, but not fei1 fei2 two days after transfer to high sucrose. 
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Figure 3.11 Relative abundance of CESA1 and CESA6.  

Total CESA1 (A) or CESA6 (B) protein from root tips harvested from WT and fei1 
fei2 seedlings after 2 days growing on 0% or 4.5% sucrose. 
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Figure 3.12 ACS interacts with LRR-RLKs that are co-expressed or interact 
with the FEI proteins.  

Bimolecular fluorescence complementation showing reconstituted YFP fluorescence 
in Nicotiana benthamiana expressing the indicated fusion constructs.  

 

 

 

 

 

 

 

 

 



 

 

CHAPTER 4 

FUTURE DIRECTIONS 

What genes do the fei1 fei2 suppressors correspond to and what is their role 

in the FEI pathway? 

Elucidation of the molecular mechanism underlying FEIs regulation of cell wall 

synthesis will require the identification of the genes that correspond to additional 

suppressors of fei1 fei2, which in most cases will precede their characterization as it 

is difficult to follow the suppressor mutations in the absence of a molecular marker. 

We have generated mapping populations for each of the strong fei1 fei2 suppressors 

and have refined the mapping strategy to facilitate the isolation of novel components 

of the FEI pathway in future studies. Once the SHOU genes have been cloned, their 

characterization will depend largely on their identity. However, we will examine gene 

expression patterns, localize the SHOU protein, assess cellulose biosynthesis, and 

perform a genetic analysis between the suppressor and known cell wall mutants 

(prc, cob, sos5, etc) for each of the suppressors. In addition, it will be interesting to 

determine the role of the SHOU genes in an otherwise wild-type background. The 

shou mutants will be crossed back to wild type to generate a population of plants 

segregating for the fei1, fei2, and shou mutations and a plant homozygous for shou 

selected
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for. We will also determine the physiological effects of null alleles, which we will 

likely be able to obtain from the publicly available T-DNA insertional collection.  

How is cellulose synthase function altered in fei1 fei2? 

Interestingly, we have found that CESA1, CESA3, and CESA6 protein levels 

appear to be altered in fei1 fei2. Our results indicate that CESA3 protein levels 

increase in the root tips of wild type seedlings two days after transfer to high sucrose 

but remain unchanged in fei1 fei2. In addition, CESA1 and CESA6 increase in wild-

type seedlings in the presence of 4.5% sucrose but not in fei1 fei2. These data 

suggest the possibility that cellulose synthase may be mis-localized in fei1 fei2.  If 

FEI1 and FEI2 are required for the localization of the CSC, the ratio of cellulose 

synthase at the plasma membrane to that of the intracellular compartments may be 

altered in fei1 fei2. Thus future studies will examine the sub-cellular localization of 

the CSC. The movement of intracellular compartments derived from the 

endomembrane system differs from that of microtubule associated cellulose 

synthase compartments, or MASCs (Crowell et al. 2009). Thus, if the CSC is mis-

localized in fei1 fei2, the movement of the intracellular, CSC containing 

compartments in fei1 fei2 could be used to determine where exactly the CSC is 

located within the cells of the mutant. Our lab has obtained transgenic plants 

expressing both GFP-CESA3 and GFP-CESA6 from Samantha Vernhette’s lab. We 

have generated fei1 fei2 plants expressing GFP-CESA6 in order to examine the sub-

cellular localization of cellulose synthase in fei1 fei2. Together with markers 

corresponding to different compartments of the cell, these lines will allow us to 
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examine whether the sub-cellular localization of cellulose synthase is altered in fei1 

fei2.  

Phosphorylation of CESA has previously been shown to regulate the 

bidirectional mobility of cellulose synthase. Specifically, eliminating or mimicking 

phosphorylation of CESA at distinct sites alters the rate at which the CSCs 

themselves move through the plasma membrane. Further, these changes are 

correlated with changes in anisotropic cell expansion (Chen et al. 2010). If our 

results cannot be repeated and there is in fact no obvious change in the sub-cellular 

localization of CESA, an alternative model is that FEI1 and FEI2 modulate the 

phosphorylation of CESA. In order to determine whether the FEI proteins are 

required for the bidirectional mobility of cellulose synthase, fei1 fei2 plants 

expressing GFP-CESA6 could be examined for a change in the velocity of the 

CSCs. If phosphorylation of CESA does pertain to the FEI pathway, it is most likely 

via the activity of another RLK that acts in a complex with the FEIs because kinase 

activity is dispensable for FEI function (Xu et al. 2008). 

What is the significance of the ACS-FIL1/LRR4 interaction? 

In order to confirm and further explore the interaction between ACS and FIL1, 

these proteins should be co-immunoprecipitated from Arabidopsis. If FIL acts in a 

complex with FEI and ACS to regulate cellulose biosynthesis, then FIL should also 

interact with the FEI proteins. Our previous work has demonstrated that BiFC is not 

a useful technique for examining RLK interactions. Thus, in order to explore the 

possibility that FEI oligomerizes with FIL, co-immunoprecipitation may also be used 

to answer the question of whether the FEI proteins interact with the FIL proteins. To 



 91 

determine the physiological relevance of the ACS-FIL interaction, the phenotype of a 

double fil1 fil2 (a close paralog of fil1) mutant should be examined along with a fei1 

fei2 fil1 fil2 quadruple mutant. If FEI acts together with FIL to negatively regulate 

ACC, disrupting FIL function may lead to a short, swollen root phenotype as seen in 

the fei1 fei2 mutant.  

What is the nature of the FEI-ACS interaction? 

 We used BiFC to demonstrate that FEI interacts with ACS in Nicotiana 

bentamiana. This work could further be expanded to the Arabidopsis root where we 

could explore the effect of environmental and developmental signals on the FEI/ACS 

interaction. The generation of transgenic plants expressing ACS5-nYFP and FEI-

cYFP would allow us to explore the effect of high sucrose and high salt as well as 

whether the FEI-ACS interaction occurs throughout different stages of growth. Most 

importantly however, genetic disruption of ACS function is needed for strong 

evidence that ACC acts as a signal in the FEI pathway.  I have generated plants 

homozygous for fei1 fei2 acs5 acs9 and acs11 and crossed them to an acs4 acs5 

acs8 acs9 mutant. The F2 progeny from this cross are segregating for each of the 

type-2 ACS genes, fei1, and fei2. Inhibitors of ACC function revert the phenotype of 

fei1 fei2 (Xu etal., 2008). Once it has been identified, the septuple mutant will be 

examined for reversion of the fei1 fei2 phenotype as the suppression of the short, 

swollen root phenotype would provide strong evidence that ACC acts as a signal in 

the FEI pathway.  
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