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Abstract
Walking is the most basic and sustainable mode of transportation, and many jurisdictions would like to see increased walking
rates as a way of reducing congestion and emission levels and improving public health. In the United States, walking trips
account for 10.5% of all trips undertaken. To increase this rate, additional research on what makes people feel more comfor-
table while walking is needed. Research on pedestrian quality of service (QOS) has sought to quantify the performance of the
pedestrian facilities from a pedestrian’s perspective. However, the impact of pedestrian safety countermeasures on pedestrian
QOS for roadway crossings is largely unknown. The objective of this study is to discern pedestrian QOS based on physiologi-
cal measurements of pedestrians performing normal walking activities in different traffic contexts. The naturalistic walking
study described in this paper recruited 15 pedestrians and asked each to wear an instrumented wristband and GPS recorder
on all walking trips for one week. Surprisingly, the findings from the study showed no correlation between participants’ stress
levels and individual crossing locations. Instead, stress was associated with roadway conditions. Higher levels of stress were
generally associated with walking in proximity to collector and arterial streets and in areas with industrial and mixed (e.g.,
offices, retail, residential) land uses. Stress levels were tempered in lower-density residential land uses, as well as in forest,
park, and university campus environments. The outcomes from this study can inform how planners design urban environ-
ments that reduce pedestrian stress levels to promote walkability.

Walking is the most basic and sustainable mode of trans-
portation, and many jurisdictions would like to see
increased walking rates as a way of reducing congestion
and emission levels and improving public health. In the
United States, on a typical day in 2017, there were 38.9
million walking trips accounting for 10.5% of all trips
undertaken. Walking is thus the second most prevalent
mode after driving or riding in an automobile (1).
Despite this, walking has received far less attention than
the automobile with respect to guidance on planning,
designing, and operating safe, functional, and comforta-
ble facilities. Early research efforts on pedestrian quality
of service (QOS) analysis employed vehicular perfor-
mance measures such as delay and density.

More recent research efforts have sought to quantify
the operation of the pedestrian facilities from the pedes-
trian’s point of view and have been included in the recent
versions of the Highway Capacity Manual (HCM) (2, 3).
The HCM defines QOS as ‘‘a description of how well a
transportation facility or service operates from a trave-
ler’s perspective.’’ The HCM 6th ed. uses pedestrian

delay as the basis for determining the level of service
(LOS) of uncontrolled street crossings (3). The effects of
some countermeasures on LOS can be evaluated using
the HCM based on their ability to improve motorist
yielding rates to pedestrians, shorten crossing distances,
or both, which tends to reduce pedestrian delay.
However, it is not known whether the presence of safety
countermeasures improved QOS in other ways. For
example, all else being equal, does the presence of a
safety countermeasure correspond to a decrease in stress
for the pedestrian?

The objective of this study was to determine how
safety countermeasures affect the pedestrian QOS of
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roadway crossings, based on physiological measurements
of pedestrians performing normal walking activities in
varied traffic contexts. This study was part of a larger
National Cooperative Highway Research Program
(NCHRP) Project 17-87, the objective of which was the
determine the effect of specific safety countermeasures
on pedestrian satisfaction. The larger study followed a
three-pronged approach to evaluating pedestrian cross-
ing satisfaction and included the naturalistic walking
study, which is the focus of this paper.

The naturalistic walking study recruited 15 pedes-
trians in Chapel Hill, North Carolina, and asked each to
wear an instrumented wristband and GPS recorder on
all walking trips for one week. Physiological measure-
ments, including heart rate (HR) and electrodermal
activity (EDA) were collected to record indicators of
actual pedestrian stress levels, which are a proxy of
pedestrian QOS. During their normal walking trips, par-
ticipants encountered a variety of environments, from
high traffic roadways with signalized intersections to
tree-lined paths in pedestrian dominated areas. This pro-
vided a variety of contexts from which to compare pedes-
trian stress levels. This approach is novel in the study of
pedestrian satisfaction. The findings from this study
demonstrated no correlation between participants’ stress
levels and individual crossing locations. Instead, stress
was associated with roadway conditions with higher lev-
els of stress being generally associated with walking in
proximity to collector and arterial streets and in areas
with industrial and mixed (e.g., offices, retail, residential)
land uses. Stress levels were tempered in lower-density
residential land uses, as well as in forest, park, and uni-
versity campus environments.

The paper is laid out as follows. The background sec-
tion provides a summary of related work on pedestrian
QOS. The methods section is next, followed by results
and conclusions.

Background

To date, efforts to assess pedestrian QOS have differed
in the settings featured, the methods used, and the defini-
tion of ‘‘quality of service’’ employed. Means of assessing
pedestrian QOS have been met with criticism for being
too abstract, not sufficiently real, or based on pedes-
trians’ unique perspectives, and not adequately represen-
tative of the diverse locales and roadway types
encountered by pedestrians across the country (4).

Existing HCM methods for evaluating QOS have
been developed by different projects using a variety of
data collection methods. One of the earliest methods to
measure pedestrian QOS along a street, was based on a
‘‘Walk for Science’’ event held in Pensacola, FL in which
75 participants walked a 5-mi course, rating their

satisfaction with the conditions experienced along each
segment (5). NCHRP Project 03-70 conducted video labs
in four cities around the United States, in which partici-
pants rated the walking environment shown in video
clips, each of which depicted a walk along a street sec-
tion, followed by crossing a side-street at a signalized
intersection (4). The HCM 2010 incorporated a theoreti-
cal model of pedestrian delay at uncontrolled crossings
based on the average pedestrian wait time for a suitable
gap in traffic (assuming no motorist yielding) and the
potential delay reduction as a result of driver yielding
(based on field measurements or on national defaults for
different crossing treatments) (2).

As these examples illustrate, previous attempts to con-
struct a defensible, sensitive, and accurate measure of
pedestrian QOS have proven challenging. For one, mea-
suring perceptions is a difficult task to accomplish reli-
ably and validly. For example, consumer research
highlights how people’s evaluations of their experiences
transcend simple rating schemes. Instead, people tend to
draw on a complex array of cognitive appraisals and
emotions when judging their experience of something
(6). Moreover, depicting real-world walking scenarios
can be difficult, as most study participants are asked to
rate their appraisals of walking environments out of con-
text. Even when in real pedestrian contexts, participants
are often asked to act in contrived ways (e.g., acting as
though one were actually in a hurry or rating environ-
ments ‘‘objectively’’ as one is being observed), which can
elicit a host of response biases (7).

People often lack access to their physiological
responses to habitually encountered environments (8, 9).
For example, a person who crosses the same street every
day might be unaware that crossing four lanes of traffic
tends to heighten sympathetic nervous system activity—
which indicates significant distress. People’s brains often
tune out constant, unchanging stimuli, such as traffic
noise. Therefore, a promising data collection method
might be to employ biosensors to detect changes in EDA
and HR variability—physiological indicators of stress—
as people experience varied pedestrian environments.
This approach is supported by past work examining
experienced drivers’ ability to anticipate road hazards
before being consciously aware of them (9).

An emerging line of research involves the use of wear-
ables that monitor participants’ physiological states.
Much of this work has focused on monitoring clinical
patients’ cardiovascular or cognitive functioning, such as
anticipating epileptic episodes (10, 11), stroke events (12,
13), and sleep disorder patients’ position within the
sleep–wake cycle (14). Other scholars have associated
participants’ physiological states with the contagion of
arousal thought to occur in collaborative learning set-
tings (15). Closer to the present study, Chrisinger and

110 Transportation Research Record 2675(10)



King assessed individuals’ and groups’ stated and phy-
siologically reported stress reactions to their urban
neighborhoods finding that their EDA varied substan-
tially by land use and the street type and often closely
aligned with their verbal ratings of the built environment
(16). The present study builds on this emerging psycho-
physiological research by incorporating a naturalistic
study design.

Methods

This section describes the naturalistic walking study:
recruitment process, data collection equipment, pilot
test, and the analysis tool used.

Recruitment Process

Study participants were recruited through the University
of North Carolina’s (UNC’s) mass e-mail system. After
receiving an exemption through UNC’s Institutional
Review Board, Highway Safety Research Center
(HSRC) staff sent an e-mail to 6,943 UNC employees
and 2,042 students. Within two hours, 212 individuals
expressed interest in participating. The team randomly
selected and reached out to 20 study candidates from this
pool of 212 individuals. The first 15 people who
responded in the affirmative to all study criteria became
study participants. The criteria required that the partici-
pants be at least 18 years old, have daily access to an iOS
(Apple) smartphone, were willing and able to wear a bio-
sensing wristband and carry a small GPS device with
them for seven consecutive days, were willing to meet the
members of the research team on two separate occasions,
did not have any scheduled travel during the study
period, and normally walked at least four times a week
within downtown Chapel Hill, NC.

Participants were briefed on the data collection proce-
dure during the intake meetings. During this session,
participants downloaded an app to their phone used to
sync data from the wristband, and practiced the two-step
requirement on going for a walk of ensuring their GPS
device was on and synced with GPS satellites once out-
side, and making sure their wristband was synced with
the live stream app. Although smartphones have a built-
in GPS chip that provides position information, the
researchers decided not to use this for two reasons. First,
the live streaming app did not have the capability to
attach location information to data obtained from the
wristband, meaning that a second app would need to be
used at the same time to obtain location data. Second,
the researchers were concerned about the smartphone’s
battery drain associated with constant GPS use that
could lead to lost data mid-trip or participant reluctance

to record trips to preserve their phone’s battery charge
for personal use.

At the intake meetings, participants were shown how
to turn the devices on and off, how to charge them, and
how often to do so. Participants also completed a brief
intake questionnaire which collected their demographic
information and their preferred time of day for receiving
and responding to a daily ‘‘trip reconstruction question-
naire.’’ Researchers monitored participants’ use of the
equipment daily noting how all participants appeared to
make use of them each day. Over the seven-day study
period, the research team sent each participant an aver-
age of two reminders to keep their devices charged and
to sync their wristbands with their smartphones. At the
completion of the data collection period, the researchers
collected the equipment and conducted a debriefing ses-
sion with each participant to review each of their walking
trips, including trip purpose, presence of companions,
presence of distractions (e.g., listening to music), and
emotional state. Participants were compensated with
$200 VISA gift cards for successfully completing the
week-long data collection effort.

Data Collection Equipment

Physiological data were recorded using two of the
Empatica E4 wristband’s four sensors:

1. The photoplethysmography (PPG) sensor, which
estimates blood volume pulse (the relative volume
of blood), interbeat interval (the time between two
successive heartbeats), and running average HR
(in beats per minute), the last of which was in 1-s
intervals and used in this study; and

2. The electrodermal activity (EDA) sensor, which
measures skin conductance in 0.25-s intervals.
EDA was used as a proxy for stress in this study.

The two additional Empatica E4 sensors not used in this
study were an accelerometer, which measures accelera-
tion along three axes at 5-s intervals and proved too
crude for this study’s purposes, and a thermometer,
which measures skin temperature and proved overly sen-
sitive to outside ambient temperatures for use in this nat-
uralistic study.

The wristbands record data in ‘‘sessions,’’ meaning
that participants had to manually start and stop each
data collection session, corresponding to the start and
end of each walking trip. Participants were given the
option of removing the wristband between walking trips,
if desired. Data were continually transmitted via a
Bluetooth connection from the wristband to the live
streaming app running on the participant’s smartphone.
The app appended a timestamp to the data, conducted
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the HR post-processing, and uploaded the session data
when possible via the phone’s Internet connection (cellu-
lar or WiFi). Participants had to charge their wristband
at the end of each day.

Location data were collected using Spytec STI-GL300
real-time GPS trackers. These trackers are capable of
recording latitude and longitude coordinates at 5-s inter-
vals and uploading the data on a regular basis to the
GPS service vendor using a built-in cellular connection.
The devices’ battery life was such that, in most cases, no
charging was required during the data collection period.
However, the devices’ default data-recording interval is
one minute and required the GPS vendor to manually
change the recording interval to 5 s via the devices’ built-
in cellular connection.

Data Collection Procedure

Research staff tested the wristbands and GPS units in
February 2019 to understand the devices’ data output
and data processing options. These insights were then
applied in developing a web tool for processing the data,
described below. One issue that was noted was that even
though the project ordered and paid for GPS data report-
ing at 5-s intervals, the test device initially reported its
position at its default 1-min interval. It took multiple
contacts with the GPS vendor to get the device’s settings
changed to reporting at 5-s intervals. It may be that the
typical use cases for the devices (e.g., real-time tracking
of delivery vehicles, tracking potentially cheating part-
ners) do not require more than 1-min tracking intervals
and the vendor was not accustomed to dealing with
more-frequent reporting intervals, even though it was
offered as an extra-cost option.

A pilot data collection effort with five participants
took place from April 1 to 7, 2019, with data for the
remaining 10 participants collected from April 12 to 18,
2019. The project team continued to experience problems
with the GPS vendor not providing data at the desired 5-
s intervals and being slow to make the necessary updates
to the units, with the result that more than half of the
usable walking trips had location data recorded at 1-min
intervals, rather than the desired 5-s intervals.

Analysis Tool

The researchers developed a web-based tool to process
the data files for individual walking trips, match wrist-
band data to location data based on timestamps, and
visualize the data on a map. Because different people
have different skin conductance values and resting HRs,
and because their baseline values for these factors change
over the course of a walking trip, a focus of the data anal-
ysis effort was to identify and evaluate peaks in skin

conductance and HR. For example, based on the litera-
ture, a change in skin conductance of 0.05 microSiemens
(mS) or more over 0.25 s is considered a ‘‘skin conduc-
tance response’’ (i.e., peak) (12). The greater the number
of peaks per minute, the greater the stress level being
experienced. Similarly, sudden changes in HR can indi-
cate sudden events, such as being startled by a deer (as
happened during a test session) or a close call with a
vehicle.

Figure 1 provides an example visualization of a walk-
ing trip taken by one study participant. The left-side map
in the figure shows the path of this walking trip. The blue
marker on the map indicates the beginning of the trip;
the red marker at the top of the map indicates its end.
The red line shows the GPS-reported path of the walking
trip. Surrounding the red line outlining the walking trip
path are cooler (green and blue) and warmer (yellow,
orange, and red) bands indicating the participant’s EDA
and HR associated with spots and segments along the
trip. The right-side graphs in Figure 1 display the partici-
pants’ average and maximum EDA metrics over the
duration of the walking trip. As one can see from the
map and graphs, the participant’s EDA on this trip was
relatively low earlier on but elevated significantly about
two-thirds of the way into the trip. Fluctuations in the
participant’s HR were not as volatile yet demonstrated
variability over the course of the trip.

Results

Participant Characteristics

Despite the study sample being comprised of UNC staff
and students, the 15 naturalistic walking study partici-
pants closely resembled the adult population of Chapel
Hill, NC in age and sex. However, a disproportionately
high percentage of study participants graduated from col-
lege and identified as Black, whereas no study partici-
pants identified as non-White Hispanic (Table 1).

Data Preparation

After a seven-day period, participants produced linked
wristband and GPS data for a total of 21 walking trips.
Among these 21 trips, nine recorded participants’ GPS
location data at 5-s intervals; the remaining 12 trips pro-
vided GPS location information at 1-min intervals. The
team expected to receive data for about 60 walking trips
in total. However, over the course of the study, several
participants reported forgetting to start wristband ses-
sions on performing one or more walking trips.
Moreover, within three days of involvement in the study,
three participants’ GPS devices shut off because of lack
of power. Other participants did not carry their GPS
devices with them on walks. Finally, two participants
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provided linked data for several trips lasting less than
10min, often depicted as walks across UNC’s campus.
Although the research team applied a daily data moni-
toring and reminding protocol, as referenced earlier, the
team only obtained linked data for an estimated 35% of
probable walking trips. Specifically, 11 participants each
recorded one qualifying trip, two participants each
recorded two qualifying trips, and another two

participants each recorded three qualifying walking trips.
Thus, a total of 21 trips from 15 participants were
included in the final analysis, representing a total of
1,693 unique observations.

Modeling Approach

To assess participants’ stress levels while engaging in
their typical walking routines, the research team incorpo-
rated the mean and maximum measures of both EDA
and HR for each of the 1,693 time intervals in the data
set as dependent variables into the present analysis. EDA
and HR have been used as a measure of physiological
stress in related studies (16, 17). It was hypothesized that
maximum and mean EDA, and maximum and minimum
HR readings would covary substantially within trips.
Mean EDA and HR measurements were used to capture
the central tendency of participants’ physiological activ-
ity per interval. Maximum EDA and HR measures were
used to capture peak events within each time interval.

To explain variation in mean and maximum EDA
and HR, the team gathered data on four classes of inde-
pendent variables from the town of Chapel Hill’s Open
Data Streets geographic information system (18). These
variables reflected the road type (i.e., local, collector,
arterial, and off-road path) and presence of a sidewalk;
the average annual daily traffic (AADT) of the adjacent
roadway; whether participants passed by or walked
across any of the NCHRP 17-87 Project’s study sites;
and the adjacent land uses. Table 2 describes the

Table 1. Participant Demographics

Demographics

Naturalistic
walking

study (n = 15)

Chapel
Hill, NC

(n = 59,234)*

Female (%) 60 54
Median age 32 27
Race
Asian (%) 13.3 13.3
Black (%) 20 9.7
Hispanic (%) 0 6
White (%) 66.7 72.5

Education level
Some college (%) 6.7 9.4
Bachelors (%) 46.7 29.9
Post-Bachelors (%) 46.7 44.7
Mean number of years

walked in Chapel Hill (SD)
6.7 (8.1) NA

Note: SD = standard deviation; NA = not available.
*Chapel Hill, NC demographic data derived from the 2017 American

Community Survey.

Figure 1. Example visualization of a participant’s walking trip, with time- and location-bound electrodermal activity (EDA) and heart rate
(HR) readings.
Note: Avg = average; Max = maximum; Lat = latitude; Lon = longitude.
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independent variables used in this study. In the interest
of avoiding small sample bias, some land use types were
collapsed. For example, parks, forested landscapes, and
UNC’s campus were collapsed into one land use cate-
gory. Similarly, industrial and mixed land use categories
were collapsed to achieve better fitting models.

Employing multilevel mixed-effects generalized linear
models with gamma distributions using Stata version 16
software (19), all four dependent variables were regressed
onto independent variables described in Table 2. This
modeling approach was selected after considering the
dependent variables’ fitting a ratio measurement scale
and their adherence to a gamma distribution. All models
were of the form:

Yij =b0ij +b1ijX1ij + eij

where Yij represents one of four dependent variables
(i.e., mean and maximum EDA and HR) at time interval
i (with i=1, 2, . . . n intervals) occurring within trip j
(with j=1, 2, . . . 21 trips). The vector X comprises trip-
level variables from Table 2. The error term eij reflects
the residuals unaccounted for in the fixed-effects portion
of the model. The model’s intercept b0ij has a mean g0

with a variation around it among individual trips, as
depicted by the random variable u0j with E(u0j)=0 and
var.(u0j)=su0

2 written as:

b= g0 + u0j

The coefficient b1ij associated with variable Xij is
assumed to be random, where the coefficient has a mean
g1 and its variation among individual trips is described
by a random variable u1j with E(u1j)=0 and
var.(u1j)=su1

2:

b= + g1 + uij:

To assess associations among the study’s four dependent
variables (i.e., mean and maximum EDA and HR), the
research team calculated Pearson correlations (Table 3).

As seen in Table 3, participants’ maximum EDA and
HR readings were significantly, yet modestly correlated.
Participants’ HR elevated during some portions of their
walk, such as when they walked uphill, whereas their
EDA may have indicated relative relaxation. Another
factor likely involved the relative volatility of partici-
pants’ EDA, which often varied widely over the course
of a walking trip. HR on the other hand, rarely oscillated
by more than 20% throughout a walking trip.

Findings

Multilevel mixed-effects generalized linear models
revealed that participants’ mean and maximum EDA
values (i.e., levels of stress) were elevated in environ-
ments with industrial and mixed land uses (e.g., offices,
retail, residential) located along collector and arterial
roadway types. Their stress levels were relatively low in
lower-density residential land uses, as well as in forest,
park, and university campus environments (Table 4 and
Figure 1).

The participants’ mean and maximum HR were ele-
vated in land contexts with mixed and industrial uses, as
well as along collector roads. Participants’ HR was lower
when walking along paths and in environments with
lower motor vehicle traffic (\4,000 AADT). In contrast
to the expectation at the start of the study, EDA and HR
measures were not significantly associated with partici-
pants’ proximity to study sites (i.e., crossings treated with
safety countermeasures) being studied through other
NCHRP Project 17-87 research tasks (Table 4, Figures 2
and 3).

Discussion

Surrounding land uses interplayed with participants’
stress levels when walking. Participants experienced

Table 2. Independent Variables Descriptions (N = 1,693)

Study site 11.21%
Road type
Local 27.84%
Collector 18.61%
Arterial 12.12%
Path 41.44%

Sidewalk 47.56%
Average annual daily traffic (AADT)
Off-road 50.34%
\4,000 AADT 10.71%
4,000–9,200 13.94%
.9,200 25.01%

Land use
Residential 32.55%
Commercial 24.96%
Forest/park/campus 30.31%
Industrial/mixed use 12.18%

Table 3. Correlation among Participants’ Electordermal Actibity
(EDA) and Heart Rate (HR) Readings

Mean
EDA

Maximum
EDA

Mean
HR

Maximum
HR

Mean EDA 1 0.952 0.184 0.255
Maximum EDA 0.952 1 0.192 0.305
Mean HR 0.184 0.192 1 0.897
Maximum HR 0.255 0.305 0.897 1

Note: Bolded coefficients denote significant Pearson correlations

(p\0.05).

114 Transportation Research Record 2675(10)



greater levels of stress in places with mixed or industrial
land uses. This finding corroborates research indicating
that pedestrians traveling on a segment in mixed or dense
land development are more prone to crash risk (20).
Pedestrians, unlike drivers who experience landscapes in
a vehicle-mediated and thus dampened fashion, are more
exposed to the dynamics of urban environments. Larger
roadway types tend to serve more traffic than their
smaller counterparts, and thus produce higher ambient
noise and, in locations with many intersections and dri-
veways, more opportunity for stress-inducing interac-
tions (e.g., conflicts or crashes) with motor vehicles. This
environmental exposure likely explains the lack of a sig-
nificant relationship between pedestrians’ stress levels in
proximity to crossings treated or untreated with safety
countermeasures while also explaining the heightened
stress response to busier land development. The mere
proximity to potential conflicts or crashes may heighten

stress, even if the perception of a lack of safety is subcon-
scious (9).

As background noise has been shown to increase cog-
nitive load (21, 22), noisier roadways may rapidly deplete
pedestrians’ cognitive resources, which can result in
lapses of judgment and depressed mood (23). On collec-
tor and arterial roadways, motor vehicles often travel at
higher speeds, which portend louder roadway environ-
ments. To the human ear, traffic traveling at 65mph
sounds twice as loud as traffic traveling at 30mph, and
2,000 motor vehicles sound twice as loud as 200 vehicles
(24). As traffic noise is positively associated with experi-
ences of psychological stress (25), it stands to reason that
pedestrians in this study, and in similar contexts, would
indicate higher levels of physiological stress while walk-
ing along larger roadways which carry higher amounts of
motor vehicle traffic. Similar logic applies fear-inducing
interactions with drivers of motor vehicles. The greater

Table 4. Multilevel Mixed-Effects Generalized Linear Model Results for Participants’ Electrodermal Activity (EDA) and Heart Rate (HR),
with a Random Interval Fit at the Level of Participants’ Trips (n = 21)

Mean EDA Maximum EDA Mean HR Maximum HR

Coef SE Coef SE Coef SE Coef SE

Age 0.019 0.056 0.012 0.051 26.600 2.004 25.440 2.319
Gender 1.423 0.223 1.016 0.668 7.672 3.166 8.042 3.282

Race
Black NA NA NA NA NA NA NA NA
Asian 0.714 0.846 0.846 0.769 21.720 4.076 0.092 4.182
White 0.740 1.524 0.543 1.386 7.286 8.157 6.474 4.061
Study site 0.016 0.200 0.010 0.184 2.036 3.394 2.695 3.579

Road type
Local NA NA NA NA NA NA NA NA
Collector 0.123 0.124 0.352** 0.116 0.004** 2.467 0.221** 2.887
Arterial 0.120 0.147 0.485** 0.136 21.132 1.668 21.066 1.546
Path 20.079 0.113 20.113** 0.103 2.214 1.637 2.535** 1.879

Sidewalk 0.471** 0.078 0.509** 0.070 2.819 1.202 3.228 1.409
Average annual daily traffic (AADT)
Off-Road NA NA NA NA NA NA NA NA
\4,000 AADT 0.057 0.301 0.183 0.216 28.283** 4.048 210.706 3.943
4,000–9,200 0.239 0.169 0.564 0.155 22.361 2.622 23.287 3.069
.9,200 0.369 0.124 0.501 0.115 22.876 2.369 22.873 2.769

Land use
Residential NA NA NA NA NA NA NA NA
Commercial 0.208 0.105 0.281** 0.094 20.747 1.579 20.842 1.821
Forest/park/campus 20.091** 0.010 20.079** 0.097 20.964 1.358 21.099 0.571
Industrial/mixed use 1.033** 0.183 1.115** 0.160 6.264** 2.319 9.180** 2.712
constant 22.389 2.409 21.705 2.190 79.129 6.197 82.530 6.429
Trip-level random variable 0.473 0.806 0.390 0.664 24.513 24.336 20.585 21.251
Observations 1,693 na 1,693 na 1,693 na 1,693 na
Log likelihood 21,485.86 na 21965.27 na 26,482.74 na 26,706.45 na
X2(df = 17) 110.24 na 118.59 na 54.24 na 55.73 na
p 0.000 na 0.000 na 0.000 na 0.000 na

Note: SE = standard error; coef = coefficient; NA = not applicable, referent group; na = not available.
**variables with p values\0.01.
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the number of motor vehicles traveling alongside and or
turning into pedestrians’ travel trajectories, the higher
their tension and stress.

Natural environments, on the other hand, are known
to restore what is called ‘‘directed attention’’—‘‘an atten-
tional mechanism that requires effort, that can be
brought under voluntary control, and that depends on
inhibition for its operation’’ (26). For example, White
and Shah demonstrate how the human attention system
has evolved for interacting with nature and that atten-
tion is taxed by urban environments (27). They explore
how exposure to nature can restore people’s attention
and ameliorate their stress. This helps explain why parti-
cipants’ stress levels were modulated in environments with
abundant nature, such as forest paths, lower traffic, tree-
lined local streets, and on UNC’s oak tree-strewn campus.
This finding is supported by the NCHRP 17-87 project’s
intercept survey results, where participants reported
greater satisfaction with their crossing experiences in loca-
tions with less traffic, on lower-classification roadways,
and where they experienced less delay in crossing.

Another purpose of this naturalistic walking study
was to validate intercept survey and video observation
data obtained at sites with pedestrian safety countermea-
sures. As reported in post-study debriefing sessions
and verified—to the extent possible— by GPS data, a

handful of participants crossed at study crossings treated
with safety countermeasures. The statistical models used
in this analysis failed to detect significant relationships
between participants’ crossings at study sites—or cross-
ings more generally—and their stress levels. It appears
that stress was associated with simply walking on a busy
street, rather than with the act of crossing the street.

Although this pilot study represents one of the first to
examine pedestrians’ physiological states while engaging
in mundane walking activity, it maintains a few notable
limitations. For one, the loss of data from approximately
40 walking trips precluded the research team from dis-
cerning patterns of stress experience within participants.
Missing data stemmed predominantly from two sources.
First, from participants forgetting to sync their wrist-
bands with their smartphones and to keep devices
charged. Second, from recording information for exceed-
ingly short trips (i.e., most often \8min in length).
Future studies should explore the use of devices or apps
which integrate GPS and biosensing, incorporate safe-
guards for reporting participants’ locations on at least 5-
s intervals, and enrolling participants for whom walking
is a primary form of transportation.

No correlation was found between participants’ stress
levels and individual crossing locations, including those
crossings that were part of the intercept survey and video

Figure 2. Participants’ mean: (a) and maximum (b) EDA recordings while walking through various land use and roadway environments.
Note: AADT = average annual daily traffic; EDA = electrodermal activity.
*Denotes variables that maintained a statistically significant association with participants’ EDA averaged over five-s and one-minute intervals.
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observation studies. Though it is possible that higher
EDA activity indicated eustress, that is, excitement or sti-
mulation in some instances and environments, partici-
pants tended to describe negative stress when walking
along busier urban facilities during study debriefing ses-
sions and demonstrated a preference for lower traffic
environments, as revealed in their spending more than
half of their time walking on off-road paths and in resi-
dential areas (Table 2). Thus, in this study, higher EDA
activity was generally thought to indicate instances of
negative stress. Further, the team did not account for
topographic slope in our analyses, which would concei-
vably covary with participants’ heartrate and constitutes
a limitation of this study. Higher stress levels were gener-
ally associated with walking in proximity to collector and
arterial streets and in areas with industrial and mixed
(e.g., offices, retail, residential) land uses. Stress levels
were relatively low in lower-density residential land uses,
as well as in forest, park, and university campus environ-
ments. Participants’ mean and maximum HRs were ele-
vated in land contexts with mixed and industrial uses, as
well as along collector roads. Participants’ HRs were
lower when walking along paths and in environments
with lower motor vehicle traffic (\4,000 AADT). While
none of these findings are particularly surprising, they do
provide a quantitative confirmation of findings from pre-
vious qualitative studies involving pedestrian satisfaction

surveys. Nonetheless, as the preponderance of EDA
research has taken place in indoor settings, more research
is needed to identify how well EDA correlates with stress
vis-à-vis other factors in outdoor environments.

Prospective studies that employ similar methodologies
could include measures of participants’ EDA in the con-
text of larger crowds, exploring how crowding along
sidewalks, at crossings, and so forth interacts with parti-
cipants’ self-reported and physiological stress levels.
Other studies might use this methodology to explore
interactions among different pedestrian treatments, walk-
ing surface qualities, and pedestrian stress; all of which
could inform the development of infrastructures for peo-
ple of all ages and abilities. Still others could estimate the
cost effectiveness of applying physiological measures of
pedestrian stress over larger scales and in comparison
with other methods of estimating pedestrian QOS.
Finally, the current methodology could be integrated
into pedestrian safety studies, ones that explore whether
and to what extent sudden shifts in pedestrians’ EDA
anticipate hazards in the road environment, thereby
advancing pedestrian risk assessment.

Conclusions

The major contributions of this pilot study are twofold.
First, this study shows the connection between pedestrian

Figure 3. Participants mean (a) and maximum (b) heart rate values while walking through various land use and roadway environments.
Note: Note: AADT = average annual daily traffic.
*Denotes variables that maintained a statistically significant association with participants’ heart rate averaged over 5-s and one-minute intervals.
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stress and roadway conditions. Specifically, higher stress
levels were generally associated with walking in proxim-
ity to collector and arterial streets and in areas with
industrial and mixed (e.g., offices, retail, residential) land
uses. Pedestrian stress was tempered in lower-density resi-
dential land uses, as well as in forest, park, and university
campus environments. The outcomes from this study can
inform how planners design urban environments that
temper pedestrian stress to promote walkability.

Second, this study adapts a methodology used in other
fields for measuring physiological response as an addi-
tional QOS metric for evaluating the built environment.
Future studies can expand on this study by verifying the
findings of the sample study and introducing physiologi-
cal response as a performance measure to consider while
planning urban environments.
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