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ABSTRACT 
 

JEAN G. ORELIEN: Use Of Pseudo- 2R  For Assessing Goodness-Of-Fit and Model 
Selection in The Linear Mixed Model for Longitudinal Data 

(Under the direction of Dr. Lloyd Edwards) 

 

 In the Linear Mixed Model (LMM), several 2R  statistics have been proposed for 

assessing goodness-of-fit. However, the performance of these statistics has not been 

demonstrated. In this dissertation research, first we show that many of the 2R  statistics that 

have been proposed in the statistical literature are not appropriate to assess adequacy of the 

fixed effect terms because they are unable to detect when important covariates are missing 

from the model. A distinction is made between 2R  statistics that can be classified as 

marginal and those that can be classified as conditional. We show through simulations that 

only marginal 2R  statistics are appropriate for assessing the adequacy of the fixed effects in 

the LMM. To remedy the shortcoming of 2R  statistics that have been proposed, we introduce 

new 2R  statistics that measure the extent to which the model at hand is better than a null 

model and statistics that measure how much of the variation in the outcome is explained by 

the model at hand assuming that the model is adequate. Results from simulations show that 

our proposed 2R  statistics perform well in assessing adequacy of model fit for the fixed 

effects or selection of the fixed effects covariates. For selecting the random effects, our 

proposed 2R  statistics are able to distinguish between a model that includes a time covariate 

and one that doesn’t (such as a model with only a random intercept). However, these 
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statistics were unable to discriminate between a full and a reduced model in the random 

effects that both included a time covariate such as a full model with an intercept, linear and 

quadratic component for time and a reduced model with an intercept and linear component 

for time. We found that even when the true model of the random effects involves variables 

(polynomial components) beyond the linear term, the reduced model with an intercept and a 

linear term for time may be as good as the full model. 
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1 Literature Review 

1.1 Introduction 

Few tools are available for assessing goodness-of-fit (GOF) in the linear mixed 

model. Traditional statistics such as the likelihood ratio test (LRT), the Akaike Information 

Criterion (AIC) introduced by Akaike (1974), or the Bayesian Information Criterion (BIC) 

by Shwarz (1978) require that two models be fitted to the data. For the LRT, the two models 

must be nested. The AIC and BIC can be used when the two models are not nested, though a 

non-nested mean structure violates the assumptions used to originally derive the AIC. 

However, in comparing the values of AIC or BIC, it is not clear what magnitude of 

difference constitutes a meaningful or significant one.  

Recently, other statistics have been proposed in the statistical literature for assessing 

goodness-of-fit in linear mixed models. It is not clear which, if any, of these statistics 

performs best or what their limitations are. The purpose of this literature review is to evaluate 

tools that have been recently proposed for assessing GOF in linear mixed models. Tools that 

have been proposed for other classes of models that can be applied to linear mixed models 

are also examined. First, we focus on tools for assessing the adequacy of a given model. 

Second, we investigate tools for assessing the covariance structure of a model assuming that 

the fixed effect function is properly defined. Third, we look at tools that have been developed 

for GOF in the Generalized Linear Multivariate Model (GLMM). These tools are of interest 

because every GLMM can be expressed as a linear mixed model. 
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1.2 The general linear mixed model  

Assume the following linear mixed model (Harville 1977, Laird and Ware 1982): 

i i i i iy = X β + Z b + e          (1) 

where  {1, 2, ..., n}i ∈ is the index for the independent sampling units (ISU) and 

iy  is an 1in ×  vector of observations from the ith independent sampling unit (subject), 

iX  denotes an in p×  fixed effects design matrix for the ith subject, 

β  is a 1p×  vector of unknown, constant, fixed effect parameters, 

iΖ  denotes an in q×  random effects design matrix for the ith subject, 

ib  is a 1q×  vector of unobservable random effects for the ith subject, and 

ie  denotes an 1in ×  vector of unobservable within-subject error terms. 

It is also assumed that ib  has a multivariate normal distribution ( , )qN 0 G  independent of ie , 

which has a multivariate distribution ( , )
in iN 0 R . 

i

i

E
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

b 0
e 0

 and i

i i

V
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

b G 0
e 0 R

, 

where G  is a q q× unknown covariance matrix for the random effects and iR  is an 

i in n× unknown covariance matrix for the within-subject error terms. With these assumptions, 

we have ( )i i i i iV ′= = +Σ y Ζ GΖ R . In many applications, iR  is taken to be 2
inσ I , known as 

the conditional independence assumption for the error term (Laird and Ware 1982). 

 By stacking the vectors of responses and associated matrices, the mixed model can 

also be expressed as 

y = Xβ + Zb + e  
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where  

1 2( | | . . .| )n′ ′ ′ ′=y y y y  is 1N ×  and 
1

n

i
i

N n
=

= ∑ ; 1 2( | | . . .| )n′ ′ ′ ′=X X X X  is N p× ; 

1 2( , ,. . ., )nDiag=Ζ Ζ Ζ Ζ  is N nq× ; and 1 2( | | . . .| )n′ ′ ′ ′=b b b b  is 1nq×  and 

1 2( | | . . .| )n′ ′ ′ ′=e e e e  is 1N × .  The distributional assumptions are that ( , )nq nN∼ ⊗b 0 G I  

independent of ( , )NN∼e 0 R , 1 2( , ,. . ., )nDiag=R R R R  is N N× . Also, 

1 2( ) ( , ,..., )nV Diag= =Σ y Σ Σ Σ . 

A brief overview of approaches to parameter estimation for the model in (1) is given 

by Ware (1985). The use of maximum likelihood (ML) and restricted maximum likelihood 

(REML) approaches for linear mixed models was first discussed by Harville (1977). Laird 

and Ware (1982) proposed a Bayesian approach to estimation and the use of the EM 

algorithm for both the Bayesian approach and the ML approach. Detailed formulae for 

computing ML and REML estimates using the EM algorithm with suggestions on how to 

speed convergence are given in Laird, Lange, and Stram (1987).  

1.3 The Concordance Correlation Coefficient 

Lin (1989) proposed the concordance correlation coefficient (CCC) as a way to 

evaluate reproducibility between two sets of measurements, as in the case where there is a 

“gold standard” assay or instrumentation and the intent is to measure whether a new assay 

can reproduce the results from the gold standard assay or instrumentation. If the new assay is 

successful, then the plot of the new assay’s results versus that of the gold standard should fall 

along the 45 degree or equality line.  
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Consider n pairs of independent measurements ( ,  )i ix y  and for ,i j≠  the pairs 

  ( , )i ix y   and ( , )j jx y  are independent with ( )i xE x = μ , ( )i yE y = μ , 2( )i xV x σ= , 2( )i yV y σ= , 

and cov( , )i i xyx y = σ . The CCC is denoted by cρ where: 

( )2

2 2 2 2 2 2

2
1

( ) ( )

i j xy
c

x y x y x y x y

E x y σ
ρ

σ σ σ σ

⎡ ⎤−⎢ ⎥⎣ ⎦= − =
+ + μ − μ + + μ − μ

 and its estimate is given in the equation 

below by 

12
2 2 2

1 2

2ˆ
( )c

S
S S x y

ρ =
+ + −

  (2) 

where 
1

n

i
i

x x
=

= ∑ , 
1

n

i
i

y y
=

= ∑ , 12
1

1 ( )( )
n

i i
i

S x x y y
n =

= − −∑ , 2 2
1

1

1 ( )
n

i
i

S x x
n =

= −∑ , and  

2 2
2

1

1 ( )
n

i
i

S y y
n =

= −∑  

 
Lin (1992) showed how to estimate sample sizes for computing the CCC. A 

discussion of other methods for assessing agreement is found in Lin, Hedayat, Sinha, and 

Yang (2002). Muller and Buttner (1994) provide a discussion of the different intraclass 

correlation coefficient (ICC) statistics used to assess agreement between measurements and 

how to make an appropriate choice.  

 

1.3.1 Generalization of the CCC 
Chinchilli, Martel, Kumanyika, and Lloyd (1996) proposed a weighted concordance 

correlation coefficient for repeated measures designs. For paired observations (such as arise 

between observed and predicted values from longitudinal data), each vector of observations 

from the pairs of measurements are separately modeled with a random-coefficient growth 
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curve model. One potential problem with this approach is the fact that there may be a limited 

number of variables available to use as covariates in modeling one measurement as a 

function of the other. This approach would be impractical in the context of using the CCC as 

a goodness-of-fit statistic for linear mixed models. It is not clear how one would choose the 

covariates to model the predicted and observed values. 

Vonesh, Chinchilli, and Pu (1996) proposed that an unweighted CCC denoted cr  be 

used to assess goodness-of-fit for the generalized nonlinear mixed effect models. For these 

models, they formulate the CCC as follows: 

1

2

1 1

( )
1

ˆ ˆ ˆ ˆ( ( ) ( ( ) ( )

n

i i i i
i

c n n

i i i i i i i
i i

r
y y y y N y y

=

= =

′
= −

⎛ ⎞ ⎛ ⎞′ ′− − + − − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑

∑ ∑ i

y - y ) (y - y

y 1 ) y 1 y 1 ) y 1
 (3) 

where n is the number of independent sampling units (or subjects), iy  is the vector of 

observed values for the ith subject, i i i i=y X β + Z b is the vector of predicted values for the ith 

subject, y  is the grand average of the predicted values, y  is the grand average of the 

observed values, and N is the total number of observations. 

 The cr  measures the percent agreement between observed and predicted values. A 

value of 1 corresponds to perfect agreement, and values close to 0 correspond to a lack of fit. 

Note that in their paper, Vonesh et al. (1996) erroneously gave the range for cr  as being 

between -1 and 1. 

Barnhart and Williamson (2001) proposed using GEE to model the CCC. Their 

contribution is to adjust the estimate of the CCC through modeling with variables that are 

potential predictors. The results of their simulation showed that confidence intervals for the 

CCC can be wide for moderate samples. For making comparisons (such as comparing two 
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raters for data that involve multiple measurements), their test is liberal, resulting in higher 

rates of rejection of the null hypothesis than the stated nominal type I error rate. The 

liberality of the test could be an artifact of using a distribution free approach to derive 

estimates. When only an intercept is included in the model, the estimates from Barnhart and 

Williamson (2001) and Lin (1989) are the same. 

Remarking that the CCC is based on the squared function of distance, King and 

Chinchilli (2001) proposed a generalized CCC for both continuous and categorical data. The 

authors based their formula for the CCC on convex functions of distance. For categorical 

data, their class of estimators has similarities with the kappa and weighted kappa statistics. 

The choice of a particular distance function is akin to choosing a set of weights to estimate a 

weighted kappa. Their extended version of the CCC can be used in situations where there is 

an interest in estimating agreement for more than two raters or assays. Barnhart, Haber, and 

Song (2002) proposed an overall CCC for assessing interobserver variability when there are 

more than two observers. It turns out that the overall CCC that they proposed is equivalent to 

the generalized CCC of King and Chinchilli (2001) when the squared distance function is 

used. 

 

1.3.2 Objections to the use of the CCC 
Atkinson and Nevill (1997) object to the use of the CCC and other correlation 

methods to compare measurements. Their primary argument is that correlation methods such 

as the CCC are highly sensitive to sample heterogeneity (the fact that with a varied sample, 

larger values can be obtained) and can lead to erroneous conclusions. Nickerson (1997) 

remarked that although Lin (1989) objected to the use of intraclass correlation coefficients 
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for assessing reproducibility, the CCC is nearly identical to a subset of coefficients in that 

group. Liao and Lewis (2000) urge caution when using correlation coefficients and advocate 

the need for an improved correlation coefficient.  

1.3.3 The CCC as a goodness-of-fit statistic 
The recommendation for use of the CCC is based on the observation that predicted 

and observed values are similar to a set of measurements from two instrumentations: a gold 

standard (observed values) and another set of measurements (predicted values). However, for 

models such as generalized linear mixed models in which observations from the same subject 

are correlated, Vonesh et al. (1996) did not take into consideration the fact that the 

assumptions underlying the CCC, as outlined by Lin (1989), are not applicable. Three 

assumptions of the CCC are that (a) the two sets of measurements come from a bivariate 

normal distribution, (b) the two sets of measurements have equal variances, and (c) each pair 

of measurements for an individual observation are independent of all other pairs. While Lin 

(1989) showed that the CCC is robust to deviation from normality, the fact that observations 

from a generalized linear mixed model are correlated raises questions about the use of the 

CCC for such models. Given the issues of the underlying assumptions of the CCC being 

violated for correlated models, simulations would be desirable to ensure that the CCC is a 

suitable goodness-of-fit statistic in such models. Other issues not addressed by Vonesh et al. 

(1996) include transformations and models in the class of generalized non-linear mixed 

models, such as logistic regression, for which the observed values are not continuous.  

Zheng (2000) recommended the use of cr , 2
1R  (that he denotes the proportional 

reduction in entropy measure) and the proportional reduction in deviance measure. However, 

he did not provide any simulation or analytical results in support of this recommendation. An 
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example is given by Zheng (2000) where he analyzed data on growth measurement published 

by Pothoff and Roy (1964), with age, gender, and their interaction as potential predictors. 

The analysis of the data showed that high values of the cr  were obtained from any model that 

included age as an explanatory variable. Even when other statistically significant terms are 

removed from the model, the value of the cr  remained relatively unchanged at 0.99. The fact 

that his computations yielded high values of the cr even when important terms were removed 

was not a cause of concern. This was a demonstration to him that the cr  and the other three 

statistical measures that he proposed could discriminate between “statistical significance” 

and “practical importance” (Zheng, 2000). The possibility that there could be a problem with 

the cr  and the other statistics he proposed was not explored. This should have been a 

consideration in light of the remarks by Atkinson and Nevill (1997) that the cr , like other 

intraclass correlation measures, is sensitive to sample heterogeneity. It should be noted that if 

indeed there is an issue with the inability of cr  to discriminate when other significant 

variables are missing from the model, then the other statistics proposed by Zheng (2000) are 

likely to suffer the same deficiency. Although values for these statistics were not as high as 

the cr , when significant terms were removed, they too exhibited little change. 

 

1.4 Pseudo-R2 Measures in Generalized Linear and Nonlinear Models 

Various R2 statistics have been proposed in generalized linear models. Some of these 

statistics are specific to a subclass of models and would not be applicable to the generalized 

linear mixed model. For example, various statistics have been proposed for logistic 

regression and specific members of the exponential family such as Gamma or Poisson 
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distributions. In section 3.1, we focus on statistics that have been proposed specifically for 

generalized linear mixed models. Statistics that have been proposed for other generalized 

linear models and that can be applied to linear mixed models are discussed in section 3.2. 

 

1.4.1 Pseudo-R2 statistics for linear mixed models 
 

Besides the cr , Vonesh and Chinchilli (1997) proposed a statistic that we denote 

2
1R for assessing GOF in a generalized linear mixed model.  

2 1
1

1

( )
1

( ( )

i

i

n

i i i i
i

n

i i i i
i

R
y y

=

=

′
= −

′− −

∑

∑

y - y ) (y - y

y 1 ) y 1
       (4) 

This statistic is the counterpart to the traditional 2R  in linear models and as such 

lends itself to ease of interpretation. However, 2
1R  does not explicitly take into account the 

random components of the model and no simulation results were offered. 

Zheng (2000) proposed two other pseudo-R2 measures besides the CCC for linear 

mixed models. The first one, denoted randD  is the same statistic as 2
1R . However, it is referred 

to by Zheng (2000) as the proportional reduction in deviance. Although randD  is similar to 

2
1R , expression for it is given in (5) as it will be useful to simplify the expression for the 

other statistic proposed by Zheng (2000).   

,
1

,
1

( )
1

( )

n

i i i
i

rand n

i i i
i

d
D

d y

 
=

 
=

= −
∑

∑

y y

y 1
,       (5) 
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where  {1, 2, ..., n}i ∈ is the index for the ISU and y  is the grand average of the observed 

values. Let ( , ; )L σμ y  denote the joint log-likelihood given the predictors and random 

effects, where =μ Xβ + Zb . The numerator in equation 5, 

,
1

( , ) 2( ( ; ) ( ; ))
n

i i i i i i i
i

d L L  
=

= − ,σ − σ∑ y y y y y y  is defined as the deviance under the model at 

hand and the denominator ,
1

( , ) 2( ( ; ) ( ; ))
n

i i i i i i i
i

d y L y L  
=

= − ,σ − σ∑ y 1 1 y y y  is defined as the 

deviance under the null model. 

Another statistic proposed by Zheng (2000) is randP , the proportional reduction in 

penalized quasi-likelihood (PQL).  

1

1

( , ) /(2 ) ( ) / 2
1

( , )

n

i i i n
i

rand n

i i i
i

d
P

d y

 
=

 
=

′σ + ⊗
= −

∑

∑

-1y y b G I b

y 1
     (6) 

where 
1

( , ) /(2 ) ( ) / 2
n

i i i n
i

d  
=

′σ + ⊗∑ -1y y b G I b  is defined as the negative of the PQL, 

b  is the estimated vector of random effect parameters for all subjects, and G  is the estimated 

covariance for the random effect parameters. 

PQL measures the proportional reduction in the log-likelihood from the model at 

hand compared to a null model. It takes values between 0 and 1, with values close to 0 

indicating a lack of fit and/or large random effects and values of 1 indicating a perfect fit 

and/or a small random effect. It should be noted that PQL is an attempt similar to the 

statistics AIC (Akaike 1974) and BIC (Shwarz 1978) to account for additional covariates in 

the model with a “penalty” term. PQL, as opposed to AIC and BIC, is a pseudo-R2, with 
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values for lack of fit and perfect fit. However, with these statistics the suitability of a 

“penalty term” over others needs to be demonstrated. 

Xu (2003) proposed two statistics, in addition to the traditional 2R  ( 2
1R ) of Vonesh and 

Chinchilli (1997), for explaining the variations in a linear model: a statistic denoted 2r  that 

measures the proportion of explained variation and a statistic denoted ρ2  that measures the 

proportion of explained randomness. The statistic 2r  is derived from the fact that for the 

model in (1), the variability in the dependent variable iy that is not explained by the 

covariates (both fixed and random) is V(  V( )
ii i i nσ 2⏐ ) = =y X, b e I  and the total variance of 

iy  under a “null” model that assumes that the covariates have no effect is ( )
ii nV 2

0= σy I . The 

statistic 2r  is given by 

2 1r
2

2
0

σ
= −

σ
 and estimates 2 V(  )

1
V( )

ij

ij

y
y

Ω = −
| X, b

,  

where   {1, 2, . . ., }ij n∈  so that ijy  is the jth element of iy , 2σ  is the estimate of 2σ  for the 

model at hand, and 2
0σ  is the estimator for the residual variance of a “null” model. The null 

model could take the following form: 

0 0i i i i ibβy = 1 +1 + u         (7) 

where 0β  is an unknown fixed coefficient, 0ib  is an unknown random coefficient that has a 

normal distribution with mean 0, and iu  is the unobservable within-subject random error 

term for the model (that is, equation 7 represents a model with fixed and random effect 

intercepts). 

 The null model could also take the following form: 
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00 0i i iβy = 1 + u          (8) 

where 00β  is an unknown fixed coefficient and 0iu  is the unobservable within-subject 

random error term for the model (a model with a fixed effect intercept and no random 

intercept). 

Explained randomness was first introduced by Kent (1983).  Xu (2003) defines the 

randomness of a random variable Y as a monotonic transformation of its entropy, 

exp[ 2 ( )]I− θ , where ( ) [log ( ;I E p yθ = θ)]  is the expected log-likelihood. Under the linear 

mixed model in (1), residual randomness is defined as 

( | ) exp{ 2 [log ( )]}ij ijD y E p y= −X,b | X,b . The proportion of explained randomness is then 

given as: 

2 ( )
1

( )
ij

ij

D y
D y

ρ = − *
0

| X,b
| b

, 

where ( )ijD y *
0| b  is the expected log-likelihood of a null model [such as in (7) and (8)]. For 

the model in (1) and the null model in (7), it can be shown that an estimator of 2ρ  is: 

2 0
2 21 exp RSSRSS

N N
ρ

2

2
0 0

⎛ ⎞σ
= − −⎜ ⎟σ σ σ⎝ ⎠

       (9) 

where RSS is the residual sum of squares for the model in (1) and 0RSS  is the residual sum 

of squares under model (7). The statistic 2ρ  takes values between 0 and 1. In the absence of 

random effect terms from the model, it can be shown that 2ρ  is equal to the 2R of traditional 

linear models. 

Xu (2003) conducted a limited simulation to assess the ability of the statistics r2, 2ρ , 

and R2 to estimate the predictability of covariates in the model where predictability is defined 
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in terms of values of 2 V(  )
1

V( )
ij

ij

y
y

Ω = −
| X, b

. He conducted a simulation with 100 replicates 

for two cases: (a) 50 clusters with 5 observations per cluster and (b) 10 clusters with 25 

observations per cluster. Data were simulated for different values of the “strength” of the 

fixed and random effects terms. For each set of simulated data, values of 2Ω  could be 

computed exactly. The results of the simulations show that r2, 2ρ , and 1R 2  tend to give 

reasonable estimates of 2Ω . For large clusters, the three statistics yield almost similar results. 

With smaller clusters, 2
1and Rρ 2   tend to overestimate 2Ω . 

It should be noted that there are several limitations to the simulation results proposed 

by Xu (2003). Besides the small number of replications (100), the simulations did not address 

the ability of the statistics to discriminate overfitting or the effect of excluding significant 

covariates from the model. That is, it would be useful to ascertain how the statistics vary 

when there is overfitting (overestimation of 2Ω  would be expected) or how they vary when 

important covariates are excluded (underestimation of 2Ω  would be expected provided that 

the model does not include additional explanatory variables that exhibit a spurious 

relationship with the outcome). Another issue with the simulations is that they did not 

include sufficient variation of the fixed effect and random effect terms. Specifically, it would 

be desirable to determine how well these statistics estimate 2Ω  when (a) the fixed effects 

account for a small proportion of the variability in the outcome relative to the random effects 

and (b) the fixed effects account for a large proportion of the variability in the outcome 

relative to the random effects. 

Some of the pseudo-R2 statistics in this section attempt to quantify “explained residual 

variation” such as cr  and 2
1R  as opposed to measures of “explained risk” (e.g., 2ρ  or 2r ). 
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The difference between explained residual variation and explained risk was described by 

Korn and Simon (1991). According to these authors, “explained risk” is “a way of 

quantifying how much better predictions are when using the covariates compared to when 

not using them.” On the other hand, “explained residual variation” defined as the 

proportional decrease in residual variation incorporates the “explained risk” and GOF 

(“applicability of the model to the data”). 

1.4.2 Marginal versus conditional 
Vonesh et al (1996) and Vonesh and Chinchilli (1997) discussed the concept of 

conditional versus marginal 2R . For cr  and 2
1R , when the computations of the predicted 

values in the formula of these statistics involve the random effects ( i i i i=y X β+ Z b ), they are 

referred to by Vonesh et al (1996) and Vonesh and Chinchilli (1997) as conditional 2R . On 

the other hand, when the computation of the predicted values in the formula of these statistics 

involve only the fixed effect components ( i i=y X β ), these statistics are referred to as 

marginal 2R . While the concept of conditional versus marginal 2R  was introduced for cr  

and cr , this concept could be applied to other statistics such as cr  and 2
2R . Vonesh et al 

(1996) and Vonesh and Chinchilli (1997) noted that the marginal version of their statistics 

might be undervalued in that these statistics don’t account for the random effects. For 

assessing the combined effects of the fixed and random effects, the authors recommend that 

the conditional version of their statistics be used. In that sense, the conditional 2R  can be 

seen as an omnibus goodness-of-fit statistic. 
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1.4.3 Other approaches for GOF for generalized nonlinear models 
Various approaches have been proposed in the statistical literature on pseudo-R2 for 

generalized linear models or a subclass of generalized linear models, such as logistic, 

Poisson, and survival models. A good review of pseudo-R2 measures for logistic regression is 

given in DeMaris (2002). Similar measures for Poisson models are given in Cameron and 

Windmeijer (1996), Mittlbock and Waldhor (2000), and Heinzl and Mittlbock (2003). For 

survival models, pseudo-R2 measures were proposed by Graf and Schumacher (1995), 

Schemper and Stare (1996), Xu and O’Quigley (1999), Schemper (2000), Henderson, Jones, 

and Stare (2001), and O’Quigley and Xu (2001). For GEE models, no equivalent pseudo-R2 

was uncovered in our literature search. However, GOF tests have been proposed by Barnhart 

and Williamson (1998), Horton et al. (1999), and Pan (2001) for binary outcomes and Pan 

(2002) for any GEE model. 

Many of the approaches described in the previous section for linear mixed models 

were first proposed either for generalized linear models as a whole or for a subclass of 

generalized linear models. In particular, the equivalent of randD  for generalized linear models 

was first proposed by Cameron and Windmeijer (1996) and then by Zheng and Agresti 

(2000). Similarly, the measure of explained randomness was first proposed for survival 

models by Kent and O’Quigley (1988) and Xu and O’Quigley (1999). 

 

1.5 Adequacy of the Covariance Structure 

1.5.1 Graphical methods 
The graphical methods for selecting the covariance matrix of a linear mixed model 

that have been proposed can be divided into those that can be used as exploratory tools and 
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those that can be used as diagnostic tools. We will restrict our attention in this review to 

diagnostic tools for determining the adequacy of the covariance matrix once a model has 

been fitted. For a review of graphical exploratory analysis techniques helpful in selecting a 

parsimonious covariance structure for fitting the model in (1), the reader is referred to 

Diggle, Liang, and Zeger (1994), Dawson, Gennings, and Carter (1997), Zimmerman (2000), 

and Pourahmadi (2002). In addition to exploratory analysis consisting of plotting the 

observations of each subject versus time, Weiss and Lazaro (1992) proposed plotting the 

residuals in a similar manner. This is an “omnibus” type of goodness-of-fit similar to the 

plotting of residuals versus predicted values to ascertain the adequacy of the model and to 

detect outliers. However, Weiss and Lazaro (1992) recognized that their graphical approach 

does not address the issue of the adequacy of the covariance structure and that additional 

graphics are needed. 

Grady and Helms (1995) proposed graphical plots that can be used as model selection 

tools but also as a way to assess the adequacy of the covariance structure. The basic approach 

derived from their paper would consist of fitting a cell means model to the data with an 

unstructured covariance structure. The estimated covariance structure would then be plotted 

to ascertain which covariance structure best fits the data. The plot they suggested consists of 

plotting actual values of (covariance or correlations) as a function of lag time between 

measures.” The trend in the graph would then be suggestive of the covariance structure to use 

in the model. This approach is in essence a model selection tool similar to those cited earlier 

(Dawson et al., 1997). The approach by Grady and Helms (1995) can also be considered a 

goodness-of-fit tool, because the authors proposed that the estimated covariance matrix from 

a fitted model could be compared to the covariance structure of the cell means model by 
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looking visually at the graphical plots. The closeness of the covariance of the fitted model to 

that of the cell means model would be an indication of a good fit. 

1.5.2 Analytical methods 
Two analytical approaches were proposed by Vonesh et al. (1996) to assess the 

adequacy of the covariance structure in generalized nonlinear mixed effect models. One of 

these tools is an 2R  type statistic similar to cr  denoted the variance-covariance concordance 

correlation, ( ).r ω  This statistic measures the distance, scaled to 1, between the estimated 

covariance matrix of β  from the model at hand and the “sandwich” covariance matrix 

estimator proposed by Liang and Zeger (1986). Vonesh et al. (1996) argued that since the 

covariance of β  based on the “sandwich” estimator and the one based on the assumed 

structure of iΣ  (the covariance matrix of iy ) will converge to the same limit if the 

assumption is correct, it makes sense to compare the goodness of fit of iΣ  to V( )iy  by 

comparing how close the two estimators of the covariance of β  are to each other. The other 

tool proposed by Vonesh et al. (1996) is a pseudo-likelihood ratio test (PLRT) to determine if 

the estimated covariance matrix is significantly different from the robust covariance 

estimator. 

The statistic for ( )r ω  is given by: 

2 2

2

|| ( ) || || ||( ) 1
|| || || ||

r
p2 2ω = − =

|| + || +
ω - h (ω - h)

ω h ω
 ,      (10) 

where: 
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{ }vech= -1/2 -1/2
Rω Γ Γ Γ . Γ  is the covariance estimate of β  under the assumed covariance 

structure and RΓ  is the robust estimator of the covariance of β , ( )vech= ph I , where 

p=dim(β ). 

Vonesh and Chinchilli (1997) noticed that while ( )r ω  could be useful for detecting 

gross differences between the assumed covariance structure of iy  and its true value, “it is 

less useful to detect moderate but important suggestions.” The authors suggest that the 

pseudo-likelihood ratio test they have developed be used instead. That test statistic is given 

by: 

( ){ }ln| ln| tracen pλ = | −  | + −-1
R RΓ Γ Γ Γ       (11)  

Under the null hypothesis of Ho: var( )i i=y Σ , the test has an approximate chi-square 

distribution with ( 1) / 2p p +  degrees of freedom. It should be noted that the degrees of 

freedom are based on an asymptotic likelihood ratio test and is the difference between the 

number of parameters that would have to be estimated assuming an unstructured covariance 

structure and the number of parameters assuming a more parsimonious model. So, the 

degrees of freedom for the test would be expected to be less than ( 1) / 2p p + . Results from a 

limited simulation (only 400 replicates) of this test were provided. The simulation results 

showed that the pseudo-likelihood ratio test performs well when iy  has a multivariate normal 

distribution. The test may not be valid if iy  follows a moderately (such as a multivariate T 

distribution) to heavily skewed distribution. Besides the small number of replications for the 

simulation, the results were based on a 2 × 2 covariance structure, which may affect 

generalizibility of the results.  
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1.6 GOF in the GLMM 

In developing other GOF tools for linear mixed models, one approach is to review 

similar GOF in other classes of models. Such a review will help determine if new GOF in the 

linear mixed models can be patterned after the GOF from other classes of models. GLMM is 

one of the likeliest candidates because every GLMM can be expressed as a linear mixed 

model and because of the existence of many GOF statistics for GLMMs. 

1.6.1 Relationship between the GLMM and the linear mixed model 
Assume a GLMM: 

Y = XΞ+ E         (12) 

where: 

Y  ( )N x p   is an array of N random row matrices, { iY }, each 1 x p   and mutually 

independent, ε =Y XΞ , 

 is the N x  matrix for the dependent variables which is assumed to be known and fixedqX , 

 is the  x  matrix of regression coefficients that are unknown, unknowable and fixedq qΞ , 

( )V ′ = ⊗Y I Σ  (block-diagonal covariance matrix), and  

( )iV ′ =Y Σ .  

Note that the model in (12) can be written as a linear mixed model: 

( ) ( ) ( )
x

1 1

1 1
x) x 1

1 1 x ( )

...

...
vec

... ... ... ...
...

p

i xq xq

xq i xq
i ppq

xq xq i p pq

  1   1(   

  

⎡ ⎤
⎢ ⎥
⎢ ⎥′ =   + ⎡ ⎤⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

i

X O O
O X O

Y Ξ E

O O X

 

where iX  corresponds to the ith row of X . 
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It should be pointed out that the resulting linear mixed model has the following 

characteristics: 

• Every “subject” has the same number of observations; that is, there are no missing 

data within subjects. 

• Observations within “subjects” are correlated but the “subjects” are mutually 

independent. 

Hence, because of the limitations above, while every GLMM can be written as a linear 

mixed model, the inverse is not necessarily true. 

1.6.2 GOF statistics in the GLMM 
 A review of GOF statistics for the GLMM is provided by Cramer and Nicewander 

(1979). The authors discussed seven statistics that can be used for assessing GOF. Only 

four of the seven statistics are commonly used (refer for example to Huberty 1994 or 

Tatsuoka and Lohnes 1988). These four statistics are Roy’s largest root (RLR), Pillai-

Bartley trace (PBT), Hotelling-Lawley trace (HLT), and Wilks (W). To give expressions 

for these statistics, we first need to define the Wilks lambda criterion (Wilks, 1932) 

commonly denoted as Λ .  

Let p p×E  be the error sum of squares and cross products (SSCP) matrix, that is, 

p N N pp p × ×× ′E = (Y - Y) (Y - Y) , and let H  be the hypothesis matrix (in the context of GOF, 

this is equivalent to testing that there is no effect or no relationship between the outcomes 

and the predictor variables, so that p p×H  corresponds to the between sum of squares 

matrix). Thus, we have [ ]p p p N N p p pp× × × ×1 1×′ ′= −  H Y Y y y , where the ith element of y  is the 
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average of the elements of iY , the ith row of Y . Let T = H + E  (that is, T  is the total 

sum of squares and cross products matrix about the mean). 

 The Wilks lambda criterion is defined as 

Λ =
|Η |
|Τ |

 

PB is defined as the trace of 1−HT , RLR is the largest eigenvalue of 1−HT , and HLT 

is the trace of 1−HE . The statistic W takes different forms depending on the author. 

Cramer and Nicewander (1979) define W as 1/1 s− Λ , Huberty (1994) defines W as 1− Λ , 

and Tatsuoka and Lohnes (1988) use W = Λ. In the remainder of this document, we will 

use 1/1 sW = − Λ . 

Cramer and Nicewander (1979) show that these four statistics are functions of the 

canonical correlation. Given two set of variables Y  and X , a measure of multivariate 

association between the two sets of variables can be obtained by considering the linear 

combination of the Y  variables that has the greatest multiple correlation with the X  

variables. It can be shown that the coefficients for the X  variables that maximize the 

matrix of correlations between the two sets of variables are the right eigenvectors of a 

matrix xM  ( xM  is a function of the matrices of correlations among the X  and Y  

variables and the matrices of correlations between the two sets of variables). The 

eigenvalues of that matrix are referred to as the squared canonical correlations. For a 

more detail exposition on canonical correlations and the GLMM, the reader is referred to 

Muller (1982) or Gittens (1979). 

 The eigenvalues of 1−HT  are generalizations of squared canonical correlations 

(Muller and Peterson, 1984). Olson (1976) and Muller and Peterson (1984) showed 
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simple mathematical relationships between the eigenvalues of 1−HT , 1−HE , and 1−ET . 

That is, all four tests are functions of the canonical correlations. Muller (1982) remarked 

that with these GOF statistics, one is implicitly measuring the canonical correlations (the 

strength of the relationship). An equivalent interpretation pointed out by Cramer and 

Nicewander (1979) that may be more accessible to the lay user is that these statistics 

measure the strength of the association between the Y  and the X . 

 Using the eigenvalues of 1−HT  which are the generalized canonical correlations, the 

test statistics are given by 

2
1RLR ρ=  (i.e., largest eigenvalue or largest squared generalized canonical correlations) 

2

1

s

k
k

PB ρ
=

= ∑   

     2 2

1

/(1 )
s

k k
k

HLT ρ ρ
=

= −∑  

1/
2

1

1 (1 )
ss

k
k

W ρ
=

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∏  

where s = min( ,p q ) 

 Muller and Peterson (1984) provide a useful review of the distributions of these GOF 

statistics. All of these except RLR have an approximate F distribution. Because of its lack 

of sensitivity and poor power in most instances, most authors suggest that RLR should be 

avoided (e.g., Olson 1976, Muller 1982, and Tatsuoka and Lohnes 1988). There is no 

consensus in the statistical literature on which of the other three statistics is to be 

preferred. Olson recommended the use of PB because of its robustness and power. 

However, Schatzoff (1966) found in simulations that PB tended to perform poorly and 

gave preference to either HLT or W. Most authors agree that with a large sample, tests 
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based on the three statistics (PB, HLT, and W) are asymptotically equivalent. Given the 

lack of consensus, one may want to consider the advice offered by Tatsuoka and Lohnes 

(1988) to examine the conclusions from the four statistics and, in case they differ, to 

make the final decision based on the consequences of making a type I versus a type II 

error. 

 

1.7 Conclusion 

In this literature review, I demonstrate that there are few tools that have been 

validated for assessing goodness-of-fit for linear mixed effect models. Analytical or 

simulation results on the performance of the statistics or tests that have been proposed to 

assess goodness-of-fit have been lacking or not presented at all. There is a need to evaluate 

how well these statistics perform and to characterize any limitations or conditions under 

which they might not be recommended. If the performance of these tools is less than 

satisfactory, other tools need to be developed. In developing these tools, one may want to 

discriminate between tools that are measures of residual variation versus those that are 

measures of explained risk. The interpretation is different depending on whether the GOF 

tool measures residual variation or explained risk. It may be that a GOF tool from one class 

(measures of residual variation versus measures of explained risk) performs better than that 

from another. A possible approach to developing new tools for GOF in the linear mixed 

models is to look at similar statistics in other classes of models, such as GLMM. 
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2 Fixed Effect Variable Selection in Linear Mixed Models Using 2R  

Statistics 

 

Abstract 

In the linear mixed model (LMM), several 2R  statistics have been proposed for 

assessing the goodness-of-fit of fixed effects. However, the performance of these statistics 

has not been fully demonstrated either analytically or through simulations. We report results 

of simulations to asses the ability of these statistics to select the most parsimonious model. 

2R  statistics from a full model were compared to other models in which fixed effect 

covariates were removed. The full model was also compared to an overfitted model that 

included additional covariates not linked to the outcome. All models compared involved the 

same random effects. In this paper, we show that 2R statistics that involve the residuals are 

unable to adequately discriminate between the correct model and one from which important 

fixed-effects covariates are omitted if the computation of the predicted values for the 

residuals included the random effects (referred to as conditional 2R statistics). However, if 

the random effects are excluded from the computation of the predicted values that lead to the 

residuals, these 2R  statistics (referred to as marginal 2R statistics) are able to select the most 

parsimonious model. Other 2R  statistics that have been proposed by Xu [25] performed 

poorly in that there was little variation in the value of these statistics from a full model to a 

reduced model. 
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2.1 Introduction 

Few diagnostic tools are available for assessing the adequacy of linear mixed models 

(LMMs). Three statistics that are often used and are available in most statistical software are 

the Akaike’s information criterion (AIC), the Bayesian information criterion (BIC), and the 

likelihood ratio test (LRT). Unlike the 2R  of traditional linear regression, these statistics 

cannot be used to ascertain the extent to which the proposed model can explain variation in 

the outcome. Their use is limited to the comparison of several models fitted to the same data. 

In the case of the LRT, the models to be compared must be nested, whereas for the AIC or 

the BIC, it is not clear what constitutes a significant difference. Also, for comparing models 

with different fixed effects the use of AIC or BIC may be inappropriate when restricted 

maximum likelihood (REML) has been used for estimation (Verbeke and Molenbergh, 2000) 

[20]. Similarly, Whelham and Thompson [24] noted that the log-likelihood ratio test may not 

be valid under REML for comparing 2 models with different fixed effect terms. Hence, 

statistics similar to the 2R  of traditional linear regression are needed to answer questions 

such as (a) how much better is it to use the model at hand compared to another model, and 

(b) how much of the variation in the outcome can be explained by the model at hand or by a 

subset of the covariates.  

Kvalseth [8] proposed eight criteria for evaluating 2R  statistics: 

1. 2R  should have reasonable interpretation and utility as a GOF measure. 

2. 2R  should be independent of the units of measurement. 

3. The potential range of values should be well defined with endpoints 

corresponding to perfect and complete lack of fit. 
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4. 2R  should be sufficiently general to be applicable to any type of model, 

whether the covariates are random or nonrandom and regardless of the 

statistical properties of the model. 

5. 2R should not be confined to any specific model-fitting technique. 

6. 2R  should be such that values for different models fitted to the same data set 

are directly comparable. 

7. Relative values of 2R  ought to be generally compatible with those derived 

from other acceptable measures of fit. 

8. Positive and negative residuals should be weighted equally. 

Cameron and Windmeijer [2] proposed four more criteria: 

• 2R  does not decrease as regressors are added (without degree-of-freedom 

correction) 

• 2R  based on residual sum of squares coincides with 2R  based on explained 

sum of squares 

• There is a correspondence between 2R  and a significance test on all slope 

parameters and between changes in 2R  as regressors are added and 

significance tests 

• 2R  has an interpretation in terms of information content of the data 

Recently, several 2R  statistics having interpretation and properties similar to the 

traditional 2R  have been proposed for assessing the goodness-of-fit (GOF) of fixed effect 

covariates in the LMM. The purpose of this paper is to evaluate the performance of 2R  

statistics for the LMM in selecting the most parsimonious model. That is, we are focusing 

primarily on the ability of these statistics to discriminate between a fully specified model and 
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one from which important fixed-effects covariates are missing. We believe that a desired 

property of an 2R  is that it should decrease in value when important covariates are removed 

from the model. The decrease in value should be proportional to how much the variation in 

the outcome depends on or can be explained by the variables that have been removed. In 

comparing two models, one must take into account the fact that the LMM consists of two 

sub-models: the fixed-effect covariates and random-effect covariates. Because the impact of 

the misspecification of random-effect covariates on fixed effects is not clear, we are 

restricting this evaluation to cases where the models to be compared have the same random-

effect covariates and the same covariance structure. This is not a major limitation because in 

most cases the analyst is primarily interested in assessing the effects of the fixed-effect terms. 

We note, however, that if focus is on the covariance, greater effort must be exerted in 

achieving a good model for the covariance. To compare covariance structures, it is usually 

assumed that the mean structure has been correctly specified. Covariance model selection 

techniques that require the assumption include the LRT (Jennrich and Schluchter [6]; 

Schaalje et al. [16]; Grady and Helms [4]), information criteria (AIC and BIC), and 

predictive approaches such as PRESS [12]). As a first step to assessing the performance of 

2R  statistics, we focus our attention on fixed effects. As a result, the performance of 2R  

statistics for changing covariance structures is beyond the scope of this paper. However, we 

consider the topic as an active area of future research. 

There are many applications such as in clinical trials or epidemiological studies where 

repeated measurements are taken on a subject and the interest of the researcher is to ascertain 

the effect over time of the explanatory variables (such as treatment and individual patient 

characteristics that may impact treatment) on the outcome. 2R  statistics discussed in this 
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paper could be used to aid in selecting the most parsimonious model, particularly when an 

effect such as an interaction term may be statistically significant but in actuality does not 

contribute much in explaining variance of the outcome relative to other variables in the 

model.  

For example, Potthoff and Roy [15] presented data for an orthodontic study that 

involved 27 children, 16 boys and 11 girls. For each child, the distance (mm) from the center 

of the pituitary to the pterygomaxillary fissure was measured at ages 8, 10, 12, and 14 years 

with complete data for each child. The objectives of the study were to determine whether, on 

the average over time (age), distances are larger for boys than for girls and whether, on the 

average over time, the rate of change of the distance is similar for boys and girls (see Section 

VI). For this study, using the linear mixed model we find that the effect of the age-by-gender 

interaction is statistically significant (p < 0.03). The interpretation of a significant age-by-

gender interaction is that the rate of change of the distance with respect to age is statistically 

different between boys and girls. However, as shown in Table 5, the interaction term’s 

proportionate reduction in residual variance is practically negligible. As a result, though the 

rate of change of the distance between boys and girls is statistically different, the effect 

contributes so little to explaining the proportionate reduction in residual variance that the 

interaction effect can possibly be excluded. In this example, excluding the interaction effect 

based on 2R clearly has an impact on the results of the study.  

After defining and giving notations for the LMM in Section 2.2, we review the 

2R statistics and give formulas for them in Section 2.3. We describe data generation 

techniques for our simulation in Section 2.4. Results from our simulation are presented in 

Section 2.5. An example of the use of the statistics evaluated are given in Section 2.6. A 
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discussion of these results follows in Section 2.7. We end the paper with concluding remarks 

in Section 2.8. 

 

2.2 The Linear Mixed Model 

Assume the following linear mixed model (Harville [5]; Laird and Ware [9]): 

i i i i iy = X β + Z b + e ,         (1) 

where  {1, 2, ..., n}i ∈ is the index for the independent sampling units (ISU), 

iy  is an 1in ×  vector of observations from the ith independent sampling unit (subject), 

iX  denotes an in p×  fixed-effects design matrix for the ith subject, 

β  is a 1p×  vector of unknown, constant, fixed-effect parameters, 

iΖ  denotes an in q×  random-effects design matrix for the ith subject, 

ib  is a 1q×  vector of unobservable random effects for the ith subject, and 

ie  denotes an 1in ×  vector of unobservable within-subject error terms. 

It is also assumed that ib  has a multivariate normal distribution ( , )qN 0 G  independent of ie , 

which has a multivariate distribution ( , )
in iN 0 R . 

i

i

E
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

b 0
e 0

 and i

i i

V
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

b G 0
e 0 R

, 

where G  is a q q× unknown covariance matrix for the random effects and iR  is an 

i in n× unknown covariance matrix for the within-subject error terms for the ith subject. With 

these assumptions, for the ith subject we have ( )i i i i iV ′= = +Σ y Ζ GΖ R . In many applications, 
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iR  is taken to be 2
inσ I , known as the conditional independence assumption for the error 

term [10]. 

 By stacking the vectors of responses and associated matrices, the mixed model can 

also be expressed as 

y = Xβ + Zb + e , 

where 1 2( , , . . ., )n′ ′ ′ ′=y y y y  is 1N × , 

1

n

i
i

N n
=

= ∑ , 1 2( , ,. . ., )n′ ′ ′=X X X X  is N p× , 1 2( , ,. . ., )nDiag=Ζ Ζ Ζ Ζ  is N nq× , 

1 2( , , . . ., )n′ ′ ′ ′=b b b b  is 1nq× , and 1 2( , , . . ., )n′ ′ ′ ′=e e e e  is 1N × .  The distributional 

assumptions are that ( , )nq nN∼ ⊗b 0 G I  independent of ( , )NN∼e 0 R , 

1 2( , ,. . ., )nDiag=R R R R  is N N× . Also, 1 2( ) ( , ,..., )nV Diag= =Σ y Σ Σ Σ  is N N× . 

A brief overview of approaches to parameter estimation for the model in (1) is given by 

Ware [23]. The use of maximum likelihood (ML) and restricted maximum likelihood 

(REML) approaches for linear mixed models was first discussed by Harville [5]. Laird and 

Ware [10] proposed a Bayesian approach to estimation and the use of the expectation-

maximum (EM) algorithm for both the Bayesian approach and the ML approach. Detailed 

formulas for computing ML and REML estimates using the EM algorithm with suggestions 

on how to speed convergence are given in Laird, Lange, and Stram [9]. 
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2.3 Proposed R2 Statistics in the LMM 

Vonesh, Chinchilli, and Pu [22] proposed that an unweighted concordance correlation 

coefficient (CCC), denoted cr , be used to assess goodness-of-fit for generalized nonlinear 

mixed-effect models. For these models, they formulate the CCC as 

1

2

1 1

( )
1

ˆ ˆ ˆ ˆ( ( ) ( ( ) ( )
i i i i

n

i i i i
i

c n n

i n i n i n n
i i

r
y y y y N y y

=

= =

′
= −

⎛ ⎞ ⎛ ⎞′ ′− − + − − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑

∑ ∑ i

y - y ) (y - y

y 1 ) y 1 y 1 ) y 1
, (2) 

where n is the number of independent sampling units (or subjects), 

in  is the number of observations for subject i  

iy  is the vector of observed values for the ith subject, 

i i i i=y X β + Z b  is the vector of predicted values for the ith subject, 

y  is the grand average of the predicted values, 

y  is the grand average of the observed values, 

N is the total number of observations, and 

in1 is an ni x 1 vector of 1’s.  

It should be noted that the CCC was first introduced by Lin [11] as a way to evaluate 

reproducibility between two sets of measurements, as in the case where there is a “gold 

standard” assay or instrumentation and the intent is to measure whether a new assay can 

reproduce the results from the gold standard assay or instrumentation. If the new assay is 

successful, then the plot of the new assay’s results versus that of the gold standard should fall 

along the 45 degree or equality line. Hence, an interpretation for cr  is that it measures the 

degree of agreement between the observed and estimated values. 
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Besides the cr , Vonesh and Chinchilli [21] proposed a statistic that we denote 2
1R  for 

assessing GOF in a generalized linear mixed model. Assuming iR = 2
inσ I then  

2 1
1

1

( )
1

( ( )
i i

n

i i i i
i

n

i n i n
i

R
y y

=

=

′
= −

′− −

∑

∑

y - y ) (y - y

y 1 ) y 1
       (3) 

This statistic is the counterpart to the traditional 2R  in linear models and as such 

lends itself to ease of interpretation. However, 2
1R  does not explicitly take into account the 

random components of the model. 

In addition to the CCC and 2
1R , Zheng [26] proposed randP , the proportional reduction 

in penalized quasi-likelihood (PQL).  

1

1

1

( , ) /(2 ) ( ) / 2
1

( , ) /(2 )
i

n

i i i n
i

rand n

i i n
i

d
P

d y

 
=

 
=

′σ + ⊗
= −

σ

∑

∑

-y y b G I b

y 1
,     (4) 

Where 
1

( , ) ( )
n

i i i i i i i
i

d  
=

′= ∑y y y - y ) (y - y  is the deviance (McCullagh and Nelder [13]), 

1
( , ) /(2 ) ( ) / 2

n

i i i n
i

d  
=

′σ + ⊗∑ -1y y b G I b  is defined as the negative of the PQL, 

b  is the estimated vector of random-effect parameters for all subjects, and  

G  is the estimated covariance for the random-effect parameters. Zheng [26] also showed that 

randP  can be expressed as  

1

1

1

(1/ 2 ) ( ) ( ) / 2
1

(1/ 2 ) ( ( )
i i

n

i i i i n
i

rand n

i n i n
i

P
y y

=

=

′ ′σ + ⊗
= −

′σ − −

∑

∑

-y - y ) (y - y b G I b

y 1 ) y 1
    (5) 
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Zheng [26] interprets PQL as a measure of the proportional reduction in the log-

likelihood from the model at hand compared to a null model that consists of only a fixed-

effect intercept. It takes values between 0 and 1, with values close to 0 indicating a lack of fit 

or large random effect and a value of 1 indicating a perfect fit or small random effect. Using 

the expression in (5), PQL can be seen as an attempt similar to the statistics AIC [2] and BIC 

[17] to account for additional covariates in the model with a “penalty” term. However, the 

desirability of a penalty term over others needs to be demonstrated. 

Xu [25] proposed three statistics for explaining the variations in a linear model: two 

statistics that measure the proportion of explained variation (which we denote 2Ω  and 2
2R ) 

and another, denoted ρ2 , that measures the proportion of explained randomness. The statistic 

2Ω  as proposed by Xu [25] is given by 

2 1
2

2
0

σ
Ω = −

σ
 and is meant to estimate 2 V(  )

1
V(  under a null model)

ij

ij

y
y

Ω = −
| X, b

,  

where   {1, 2, . . ., }ij n∈  so that ijy  is the jth element of iy , 2σ  is the estimate of 2σ  for the 

model at hand, and 2
0σ  is the estimator for the residual variance of a “null” model. The null 

model could take the following form: 

0 0i ii n n i ibβy = 1 + 1 + u ,        (6) 

where 0β  is an unknown fixed parameter, 

0ib  is an unknown random coefficient that has a normal distribution with mean 0, and 

iu  is the unobservable within-subject random error term for the model (i.e., equation 6 

represents a model with fixed- and random-effect intercepts). We define 2( )
ii nV 0= σu I  and 

2
0 00( )iV b = τ . 
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 The null model could also take the following form: 

00 0ii n iβy = 1 + u ,         (7) 

where 00β  is an unknown fixed coefficient and 0iu  is the unobservable within-subject 

random-error term for the model (a model with a fixed-effect intercept and no random 

effects). 

 The second statistic suggested by Xu [25], 2
2R , is given by 

2
2

0

1 RSSR
RSS

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
,         (8) 

where RSS is the residual sum of squares for the model in (1) and 0RSS  is the residual sum 

of squares under the model in (6). 

Explained randomness was first introduced by Kent [7]. Xu [25] defines the 

randomness of a random variable Y as a monotonic transformation of its entropy, 

exp[ 2 ( )]I− θ , where ( ) [log ( ;I E p yθ = θ)]  is the expected log-likelihood. Under the linear 

mixed model in (1), residual randomness is defined as 

( | ) exp{ 2 [log ( )]}ij ijD y E p y= −X,b | X,b . The proportion of explained randomness is then 

given as 

2 ( )
1

( )
ij

ij

D y
D y

ρ = − *
0

| X,b
| b

, 

where ( )ijD y *
0| b  is the expected log-likelihood of a null model [such as in (6) and (7)]. For 

the model in (1) and the null model in (6), Xu [25] defines the estimator of 2ρ as 

2 0
2 21 exp

RSSRSS
N N

ρ
2

2
0 0

⎛ ⎞σ
= − −⎜ ⎟σ σ σ⎝ ⎠

,       (9) 
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where RSS  is the residual sum of squares for the model in (1) and 0RSS  is the residual sum 

of squares under model (6). The statistic 2ρ  takes values between 0 and 1. In the absence of 

random effect terms from the model, it can be shown that 2ρ  is equal to the 2R of traditional 

linear models. When the null model in (7) as opposed to the one in (6) is used, we will denote 

2
2,   and R2 2Ω ρ , respectively, by 

2

2 2 2
0 0 0,   and RΩ ρ , in which case 

2

2
0R  is the same as the 2

1R  of 

Vonesh and Chinchilli [21]. Throughout the remainder of this paper, we will assume null 

model (6) as opposed to null model (7). The rationale for using model (6) is that in the 

absence of any covariates in the context of the LMM, one would prefer it over model (7) to 

reduce the data. 

Xu [25] conducted a limited simulation to assess the ability of the statistics 

2

2 2 2 2 2
2 0 1 0 0,  , ,   (again same as ) and R R R2 2Ω ρ , Ω ρ  to estimate the predictability of covariates in 

the model where he defined predictability in terms of values of 

2 1
V(  under a null model)ijy

2σ
Ω = − . Xu [25] conducted a simulation with 100 replicates for 

two cases: (a) 50 clusters with 5 observations per cluster and (b) 10 clusters with 25 

observations per cluster. Data were simulated for different values of the “strength” of the 

fixed- and random-effects terms. For each set of simulated data, values of 2Ω  could be 

computed exactly. The results of the simulations show that r2, 2ρ , and 1R 2  tend to give 

reasonable estimates of 2Ω . For large clusters, the three statistics yield almost similar results. 

With smaller clusters, 2
1and Rρ 2   tend to overestimate 2Ω . 

It should be noted that there are several limitations to the simulation results proposed 

by Xu [25]. Besides the small number of replications (100), the simulations did not address 



41 

the ability of the statistics to discriminate overfitting or the effect of excluding significant 

covariates from the model. That is, it would be useful to ascertain how the statistics vary 

when there is overfitting or how they vary when important covariates are excluded.  

2.3.1 Conditional versus marginal 2R  Statistics 
Vonesh et al [22] and Vonesh and Chinchilli [21] introduced the concept of 

conditional versus marginal 2R . For cr  and 2
1R , when the computations of the predicted 

values in the formula of these statistics involve the random effects ( i i i i=y X β + Z b ), they are 

referred to by Vonesh et al [22] and Vonesh and Chinchilli [21] as conditional 2R . On the 

other hand, when the computation of the predicted values in the formula of these statistics 

involve only the fixed effect components ( i i=y X β ), these statistics are referred to as 

marginal 2R . While the concept of conditional versus marginal 2R  was introduced for cr  

and 2
1R , this concept could be applied to other statistics such as randP  and 2

2R  introduced 

respectively by Zheng [26] and Xu [25]. It can be shown that if only the fixed effects are 

used in the computations of SSR  and 0SSR  for 2
2R , the same results as the marginal 2

1R  

would be obtained. Note that Vonesh et al [22] and Vonesh and Chinchilli [21] recommend 

that the conditional version of their statistics ( cr  and 2
1R ) be used because they can account 

for the combined effects of both fixed and random effects. In that sense, the conditional 

versions of cr  and 2
1R can be viewed as overall GOF statistics that can give a measure of the 

adequacy of both the random and fixed effects. On the other hand, the marginal version 

should be seen as measuring only the effects of the fixed effects. 

 Table 2.1 summarizes the statistics that are reviewed in this paper. 
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2.4 Data Generation Techniques for Simulation Study 

 The simulation study is based on theoretical rather than actual data in order to vary 

the range of parameters to assess how each of the statistics performs under various 

conditions. We simulated a longitudinal continuous outcome with three fixed-effect terms: a 

time covariate (age) and two dichotomous variables (gender and treatment). The random-

effect covariates consisted of a random intercept term and a linear term for age. We 

generated data assuming that the covariance of the random effects was unstructured. The 

within-subject error covariance was assumed to be iR = 2
inσ I  in all simulated data sets. A 

total of three data sets were generated. The data sets differed in their values of within-subject 

correlation (we wanted the correlation within subject to be respectively around 0.1, 0.5, and 

0.8). This was accomplished by changing the values of 2σ  (12, 45, and 250, respectively). In 

all three data sets, there were 64 subjects and 6 observations per subject. We give below the 

values of other parameters used in the simulation: 

6 6 1 6 2[ , (5,  6,  7,  7.25,  7.5,  7.75) , , ]I I′=X 1 1 1 ; 6[ , (5, 6, 7, 7.25, , ) ]′=     7.5  7.75Z 1  where 61  is a 

6 1×  vector of ones, 1I  and 2I  are indicator function taking values 1 or 0. We took 

10
6

11
11

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

β , 

and 
4 1
1 1

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
G . 

Parameter values for two of the fixed effects (gender and treatment) were chosen to be 

the same so that a lack of change in the value of the GOF statistics from the removal of one 

of these variables would not be attributed to the fact that the variable being removed 

accounted for little in the variation of the outcome (compared to other variables). For the 
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covariance matrix of the random effects, parameter values were chosen so that the correlation 

between the random intercept and age would be 0.5. With these parameter values, we 

achieved values of 2Ω  between 0.14 and 0.77. 2Ω  was computed using formula from Xu 

[25] as 
2

2
2 2
age 1

1
( ) var( )age 2

σ
Ω = −

β + τ + σ
. 

  

2.5 Results of the Simulation 

Linear mixed models were fitted for each of the 10,000 samples within each of the 

three simulated data sets described in section IV. The models consisted of a full model with 

age, gender, and treatment as fixed effects, an overfitted model with 2 extraneous variables 

not related to the outcome, a reduced model with the variable for treatment removed (reduced 

model 1), and a second reduced model with both variables for gender and treatment removed 

(reduced model 2). For all models, the random-effect covariates were the same, consisting of 

an intercept and age. An unstructured covariance structure was assumed for the random 

effects (same as the simulated data). The within-subject error variance was assumed to be 

fixed and constant ( iR = 2
inσ I  for each subject). The data were generated and analyzed with 

SAS v9.1 (SAS Institute, Cary, North Carolina) using restricted maximum likelihood 

(REML) estimation. For each sample within each data set, the 2R  statistics described in 

Section 2.3 were computed. Samples in which the Hessian matrix or the covariance matrix of 

the random effects were not positive definite were removed.  

Tables 2.2 gives the mean, minimum, and maximum values obtained in each of the 

three data sets for conditional 2R  and the 2R  statistics proposed by Xu [25]. The range for 

all the statistics are between 0 and 1, although when the Hessian matrix or the covariance 
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matrix of the random effects was not positive definite, negative results (not shown) were 

obtained. Values of the statistics proposed by Xu [25] were close to values of 2Ω  as 

theorized by the author. For all the 2R  statistics, no noticeable change was observed between 

the overfitted model and the full model (a desirable property). Unfortunately, in comparing 

the full to the reduced models, no noticeable change was observed in the mean value of the 

2R  statistics. In fact, it appears that each of the 2R  statistics in Table 2.2 remained constant 

from the full to the reduced models.  

In Table 2.3, we computed marginal 2R  for each data set. No change was noticed 

between the overfitted models and the full models. Unlike the conditional 2R , there was a 

noticeable decrease in the value of the marginal 2R statistic when important covariates are 

removed from the model with the size of the decrease being larger when two variables are 

removed as opposed to one. Lower values of the statistics were obtained with higher within 

subject correlation. Hence, a low value of the statistic can be due to a misspecified model or 

high within subject correlation.  

To understand better the values in Table 2.2 (particularly why the conditional 2R  

statistics are unable to discriminate between the “true” model and a misspecified one), we 

computed intermediate results (the numerator and denominator) that formed these statistics 

(we refer to misspecification of the fixed effects here as omitting cross-sectional or baseline 

variables). We computed the average sum of squares of the residuals and average of 2σ  from 

each of the models in Table 2.2. For all three data sets, in the results (not shown) little 

difference was observed between the full, the overfitted and reduced models in the average 

sum of squares of the residuals or average values of 2σ . All the conditional 2R statistics and 
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the statistics proposed by Xu [25] take the form of Numerator1
Denominator

⎛ ⎞−⎜ ⎟
⎝ ⎠

, with the denominator 

being constant for a given data set. As we have shown that on average the numerator does not 

change when the fixed effects are misspecified, this explains why in Tables 2.2, there is little 

change from a full model to a reduced model in the values of the conditional 2R statistics and 

the 2R  statistics proposed by Xu [25]. Other results from our simulation that might be 

unexpected are worth reporting. We investigated the fixed-parameter estimates when the 

fixed effects are misspecified. Values of the fixed-parameter estimates, except for the 

intercept, appear to be robust to misspecification of the fixed effects for these simulations. 

 

2.6 Data Example 

We analyzed data on dental fissures first reported by Pothoff and Roy [15]. The data 

consist of measurements of continuous outcome (the distance in millimeters between the 

pituary and the pterygomaxillary fissure) measured at ages 8, 10, 12, and 14 on 11 boys and 

16 girls. These data have been analyzed in the context of the LMM by various authors, 

including Zheng [26] who used it to compute CCC and randP .  

The data were analyzed with PROC MIXED in the SAS System using restricted 

maximum likelihood (REML). Several nested models were fitted by removing fixed effect 

terms. The full model consisted of age, gender, and age-by-gender interactions as fixed 

effects. The random effects were an intercept term and age. Table 2.4 gives our results for 

conditional 2R  and the statistics proposed by Xu [25]. Our results for cr , 2
1R  and randP  are 

the same as those published by Zheng [26]. Note that there is little variation from one 

reduced model to the next for all of the GOF statistics in Table 2.4. In Table 2.5, we give 
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values of marginal 2R  for the data. The marginal 2R  statistics show that the model with age 

and gender is better than the model with age alone. Also, the values of the marginal 2R  

statistics are much lower (less than 0.6 for marginal cr  and less than 0.5 for marginal 2
1R  and 

randP ) compared to the conditional 2R  statistics suggesting that the fit of the model may be 

inadequate. 

  

2.7 Discussion 

These results show that the most common forms of 2R  statistics that have been 

proposed as GOF measures in the LMM do not perform adequately because they are unable 

to discriminate when important covariates are missing from the model for the examples 

considered. The simulations also explain why these statistics are not appropriate measures of 

GOF. For the conditional version of cr , it is inappropriate to use a measure of agreement 

between observed and predicted values because in the LMM these predicted values are 

robust to misspecification of the fixed-effect function (cross-sectional or baseline variables 

omitted). The robustness of the predicted values also explains why other conditional 2R  

based on them, such as 2
1 and randP R , are inappropriate. As for 2Ω  that uses estimates of 2σ  

in its numerator, we have shown that it is also inappropriate because of the robustness of 2σ  

to misspecification of the fixed-effect function. Since 2σ  is the within-subject variability—a 

population parameter that should have a fixed value—even if it were to change from one 

model to the other, this would only indicate bias in the estimate.  

We obtained satisfactory results for the marginal counterparts of 3 of the statistics 

that we have reviewed ( 2
1,   and c randr P R ) in that a) they were able to differentiate between the 
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full model and one in which important covariates were removed and b) the values of these 

statistics showed little change between the full model and an overfitted one. Hence, these 

statistics could be used in selecting the most parsimonious model for the fixed effect 

covariates. Because there was almost no difference in the values of the statistics 2
1and randP R , 

we are recommending that the analyst considers computing only one of these statistics. In 

choosing between 2
1 and randP R  our preference would be for 2

1R  because it is easier to 

compute and interpret in that it is a straightforward extension of the traditional 2R . Also, 

because the only difference between 2
1and randP R  is in a penalty term to correct for additional 

variables in the model, one may question the adequacy of that penalty term. It should also be 

pointed out that low values of the marginal statistics might be an indication that there is high 

within or between subject variability in the data. Hence, in the case where low values are 

obtained the analyst should consider comparing the values of the within subject variance, 

between subject variance or a combination of the two to the overall variance. Large within 

subject or between subject variability has serious implications for users of the data. This 

indicates that even if additional variables (related to the outcome) are included in the model, 

the values of the 2R statistics would not increase substantially. 

 

A major result of our simulation is supported by Verbeke and Fieuws [18] who found 

that estimates of 2σ  were robust to misspecification of cross-sectional or baseline fixed 

effects. This result explains why the 2R  proposed by Xu [25] do not perform adequately in 

determining the most parsimonious model (although they appear to be estimating a 

population parameter). Another result of our simulation, the fact that parameter estimate for a 

covariate is robust to misspecification of the fixed effects for well-defined models was 
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confirmed by Verbeke et al. [19] and Verbeke and Fieuws [18]. Hence, while a limitation of 

our results is that they are based on simulations, key findings of these simulations have been 

demonstrated analytically or confirmed by other independent simulations.  

 

2.8 Conclusion 

 We have shown through simulations that conditional 2R  and similar statistics 

proposed by Xu [25] are inadequate in comparing two linear mixed models with the same 

random effects but different fixed effects. The inadequacy of these 2R  statistics revealed by 

our simulations put into question their usefulness as a GOF tool for any mixed model. 

Consequently, we suggest that they should not be used in assessing GOF in the LMM. On the 

other hand, marginal 2R  statistics were useful in identifying the most parsimonious model. 

However, it is unclear that marginal 2R  statistics will be useful if the random effects are 

misspecified. Future studies should investigate the development of other 2R  statistics that 

can select the most parsimonious model. 
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Table 2.1 Summary of statistics reviewed  
Statistic Formula Author(s) 

cr  (also 
CCC) 1

2

1 1

( )
1

ˆ ˆ ˆ ˆ( ( ) ( ( ) ( )
i i i i

n

i i i i
i

c n n

i n i n i n n
i i

r
y y y y N y y

=

= =

′
= −

⎛ ⎞ ⎛ ⎞′ ′− − + − − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑

∑ ∑ i

y - y ) (y - y

y 1 ) y 1 y 1 ) y 1

(1) 

Vonesh et 
al. [22] 

2
1R  

2 1
1

1

( )
1

( ( )
i i

n

i i i i
i

n

i n i n
i

R
y y

=

=

′
= −

′− −

∑

∑

y - y ) (y - y

y 1 ) y 1
 (1) 

Vonesh and 
Chinchilli 
[21] 

randP  1

1

1

( , ) /(2 ) ( ) / 2
1

( , ) /(2 )
i

n

i i i n
i

rand n

i i n
i

d
P

d y

 
=

 
=

′σ + ⊗
= −

σ

∑

∑

-y y b G I b

y 1
 (1) 

Zheng [26] 

2Ω  2 1
2

2
0

σ
Ω = −

σ
 

Xu [25] 

2
2R  2

2
0

1 RSSR
RSS

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
 (2) 

Xu [25] 

2ρ  2 0
2 21 exp

RSSRSS
N N

ρ
2

2
0 0

⎛ ⎞σ
= − −⎜ ⎟σ σ σ⎝ ⎠

 
Xu [25] 

(1) For the conditional version of this statistic, i i i i=y X β + Z b  is used. For the marginal version, i i=y X β  is used. 

(2) RSS  is the residual sum of squares from the model at hand and 0RSS  is the residual sum of squares from the null mode in (6). 

Both RSS  and 0RSS  are computed using random effects that is 
1

( )
n

i i i i
i

RSS
=

′= ∑ y - y ) (y - y  where i i i i=y X β + Z b . Note that for the 

marginal version of this statistic (i.e., using i i=y X β ), the same value as 2
1R  marginal would be obtained.
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Table 2.2 Means and ranges for conditional 2R  and 2R  proposed by Xu [25] 
   Conditional pseudo- 2R  - 2R  proposed by Xu [25]  

Value of 
2σ  in 

simulated 
data set 

Model 
2Ω  

(for full 
model)(1) 

Mean of cr  
(minimum, 
maximum) 

Vonesh et al. 
[22](2) 

Mean of 2
1R  

(minimum, 
maximum) 

Vonesh and 
Chinchilli [21](2) 

Mean of randP
(minimum, 
maximum) 

Zheng [26](2)

Mean of 2Ω
(minimum, 
maximum)

 

Mean of 
2
2R  

(minimum, 
maximum)

(2) 
 

Mean of 
2ρ  

(minimum, 
maximum)

 

Overfitted Model: Age, 
Gender, Treatment and 2 
extraneous variables 

0.97 (0.95, 
0.98) 0.94 (0.90, 0.97) 

0.94 (0.90, 
0.96) 

0.78 (0.70, 
0.84) 

0.79 (0.71, 
0.85) 

0.79 (0.71, 
0.85) 

Full Model: Age, Treatment, 
Gender 

0.97 (0.95, 
0.98) 0.94 (0.90, 0.97) 

0.94 (0.90, 
0.96) 

0.78 (0.70, 
0.83) 

0.79 (0.71, 
0.85) 

0.79 (0.71, 
0.84) 

Reduced Model 1: Age and 
Treatment 

0.97 (0.94, 
0.98) 0.94 (0.89, 0.97) 

0.94 (0.88, 
0.97) 

0.78 (0.69, 
0.83) 

0.79 (0.70, 
0.85) 

0.79 (0.70, 
0.85) 

12 Reduced Model 2: Age 0.77 
0.97 (0.94, 
0.98) 0.94 (0.89, 0.97) 

0.94 (0.89, 
0.97) 

0.77 (0.69, 
0.83) 

0.79 (0.69, 
0.85) 

0.78 (0.69, 
0.85) 

Overfitted Model: Age, 
Gender, Treatment and 2 
extraneous variables 

0.90 (0.83, 
0.95) 0.82 (0.72, 0.90) 

0.82 (0.72, 
0.90) 

0.49 (0.35, 
0.62) 

0.51 (0.36, 
0.65) 

0.51 (0.36, 
0.64) 

Full Model: Age, Treatment, 
Gender 

0.90 (0.83, 
0.95) 0.82 (0.72, 0.90) 

0.81 (0.72, 
0.90) 

0.49 (0.36, 
0.62) 

0.51 (0.36, 
0.65) 

0.50 (0.36, 
0.64) 

Reduced Model 1: Age and 
Treatment 

0.90 (0.82, 
0.95) 0.82 (0.71, 0.90) 

0.81 (0.71, 
0.90) 

0.49 (0.35, 
0.62) 

0.51 (0.35, 
0.65) 

0.51 (0.35, 
0.65) 

45 Reduced Model 2: Age 0.47 
0.90 (0.82, 
0.95) 0.82 (0.72, 0.90) 

0.81 (0.71, 
0.90) 

0.49 (0.35, 
0.62) 

0.51 (0.37, 
0.65) 

0.51 (0.36, 
0.65) 

Overfitted Model: Age, 
Gender, Treatment and 2 
extraneous variables 

0.61 (0.41, 
0.79) 0.48 (0.29, 0.68) 

0.48 (0.29, 
0.67) 

0.17 (0.05, 
0.35) 

0.19 (0.05, 
0.39) 

0.18 (0.05, 
0.39) 

Full Model: Age, Treatment, 
Gender 

0.61 (0.41, 
0.78) 0.48 (0.29, 0.67) 

0.48 (0.29, 
0.66) 

0.17 (0.05, 
0.35) 

0.18 (0.04, 
0.39) 

0.18 (0.04, 
0.39) 

Reduced Model 1: Age and 
Treatment 

0.61 (0.42, 
0.78) 0.49 (0.30, 0.67) 

0.48 (0.30, 
0.67) 

0.17 (0.05, 
0.35) 

0.19 (0.05, 
0.41) 

0.19 (0.05, 
0.40) 

250 Reduced Model 2: Age 0.14 
0.61 (0.41, 
0.78) 0.49 (0.31, 0.68) 

0.49 (0.31, 
0.67) 

0.17 (0.05, 
0.35) 

0.20 (0.06, 
0.41) 

0.20 (0.06, 
0.40) 

(1) Computed using formula from Xu [25] 
(2)Note that for 2 2

, 1 2,  and c randr R R P  the numerator was computed using i i i i=y X β + Z b  
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Table 2.3 Means and ranges for marginal 2R  

Value of 2σ  
in simulated 

data set 
Model 

2Ω  
(for full 

model)(1) 

Mean of 
population-

based cr  
(minimum, 
maximum) 

Vonesh et al. [22] 
(2) 

Mean of 
population-
based 2

1R  
(minimum, 
maximum) 

Vonesh and 
Chinchilli [21](2) 

Mean of 
population-based 

randP  (minimum, 
maximum) 

Zheng [26] (2)  

Overfitted Model: Age, Gender, Treatment 
and 2 extraneous variables 0.72 (0.52, 0.86) 0.56 (0.32, 0.75) 0.56 (0.31, 0.75) 
Full Model: Age, Treatment, Gender 0.72 (0.52, 0.86) 0.56 (0.32, 0.75) 0.56 (0.31, 0.75) 
Reduced Model 1: Age and Treatment 0.55 (0.36, 0.74) 0.38 (0.20, 0.59) 0.38 (0.20, 0.58) 

12 Reduced Model 2: Age 0.77 0.33 (0.22, 0.50) 0.20 (0.12, 0.34) 0.19 (0.12, 0.33) 
Overfitted Model: Age, Gender, Treatment 
and 2 extraneous variables 0.64 (0.43, 0.79) 0.47 (0.26, 0.65) 0.47 (0.25, 0.65) 
Full Model: Age, Treatment, Gender 0.64 (0.43, 0.79) 0.47 (0.26, 0.65) 0.47 (0.25, 0.65) 
Reduced Model 1: Age and Treatment 0.48 (0.29, 0.67) 0.32 (0.16, 0.50) 0.31 (0.15, 0.50) 

45 Reduced Model 2: Age 0.47 0.28 (0.17, 0.42) 0.17 (0.09, 0.27) 0.16 (0.09, 0.26) 
Overfitted Model: Age, Gender, Treatment 
and 2 extraneous variables 0.39 (0.18, 0.59) 0.24 (0.10, 0.41) 0.24 (0.10, 0.41) 
Full Model: Age, Treatment, Gender 0.38 (0.18, 0.58) 0.24 (0.10, 0.41) 0.23 (0.10, 0.41) 
Reduced Model 1: Age and Treatment 0.27 (0.07, 0.48) 0.16 (0.04, 0.32) 0.16 (0.03, 0.31) 

250 Reduced Model 2: Age 0.14 0.15 (0.04, 0.30) 0.08 (0.02, 0.18) 0.08 (0.01, 0.17) 
(1)Computed using formula from Xu [25] 
(2)Note that the numerator for all 3 statistics was computed using i i=y X β  
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 Table 2.4 Conditional 2R  statistics and 2R  proposed by Xu [25] on the dental data from Pothoff and Roy [15]  
 
Fixed effect term in 
model 

cr  2
1R  randP  2Ω  2

2R  2ρ  

Age, Gender, 
Age-by-Gender Interaction 

0.91 0.85 0.83 0.65 0.68 0.68 

Age, Gender 0.92 0.86 0.83 0.65 0.70 0.69 
Age 0.92 0.86 0.65 0.65 0.70 0.69 

Intercept 0.93 0.88 0.85 0.80 0.75 0.73 

Note that for 2 2
, 1 2,  and c randr R R P  the numerator of these statistics was computed using i i i i=y X β + Z b  

Table 2.5 Marginal 2R  for dental data of Potthoff and Roy [15]  
Model cr  2

1R  randP  
Age, Gender, 
Age-by-Gender 

0.59 0.42 0.40 

Age, Gender 0.58 0.41 0.38 
Age 0.41 0.26 0.23 
Note that the numerator for all 3 statistics was computed using i i=y X β  

 



 

 

 

 

 

 

3 2R  Statistics as Measures of external and internal consistency in the 

Linear Mixed Model 

 

Abstract 

 Several 2R statistics have been proposed for linear mixed models (LMMs) to 

assess adequacy of fit. However, Orelien and Edwards [14] showed that many of these 

statistics performed poorly in that they showed little variation when important variables 

related to the outcome were missing from the model. It was shown that 2R  statistics that can 

be classified as marginal are more useful than conditional 2R  statistics in selecting fixed 

effect covariates. In this chapter, we review the theoretical framework of the different 

approaches that can be used or have been used for 2R  statistics in the LMM. Limitations of 

each of these approaches are discussed. We then propose new 2R  statistics based on 

approaches that have not been considered thus far. Two of the statistics that we propose have 

the advantage that they can be easily interpreted. One of the statistics measures what we 

denote as “external consistency” (how well the model performs compared to other competing 

models, particularly a null model) while the other measures “internal consistency” (how 

much of the variation in the outcome is explained by the model at hand, assuming that it is 

the true one). This latter statistic has a corresponding population parameter assuming that the 

model is fully specified. Simulation results show that these statistics can be used to assess the 
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goodness of the fit of a model or compare the fixed effects of alternative models. In assessing 

the ability of the statistics proposed to compare fixed effect covariates of competing models, 

the comparison is limited to models having the same random effects. 

 

3.1 Introduction 

 In the LMM, several pseudo- 2R  statistics have been proposed for assessing GOF. 

Vonesh et al. [23] proposed the concordance coefficient correlation coefficient (CCC) —

which they denote cr —to measure the percent agreement between observed and predicted 

values. Vonesh and Chinchilli [22] proposed in addition to CCC, 2
1R , which is simply 2R  of 

the traditional linear model. Zheng [26] proposed randP , which makes adjustments on 2
1R  in a 

manner similar to the Akaike Information Criteria (AIC) [1] or the Bayesian Information 

Criteria (BIC) [18]. Xu [25] proposed three statistics—which we denote respectively 

2 2
2,  and R ρΩ  —that measure the proportion of variation accounted for by the model. Most of 

these statistics ( cr , 2
1R , randP  and 2

2R ) take the form of Numerator1
Denominator

−  where the numerator 

is the sum of squares of the residuals. Vonesh et al. [23] and Vonesh and Chinchilli [22] 

differentiate between “conditional” and “population” versions of CCC and 2
1R . For 

conditional versions of these statistics the random effects are included in computing the 

predicted values as opposed to the population-based 2R  where only the fixed effect 

components are included. While Vonesh et al. [23] and Vonesh and Chinchilli [22] suggested 

that the population-based versions of the statistics could be used to assess adequacy of the 

fixed effect components, they indicated that to account for the combined effects of both fixed 

and random effects, the conditional version should be used. In that sense, the conditional 
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versions of CCC and 2
1R  can be viewed as overall GOF statistics that can give a measure of 

the adequacy of both the random and fixed effects. 

 Orelien et al. [14] showed through simulations that only the marginal versions of 

these statistics could discriminate between two models having the same random effects but in 

which important fixed effect covariates were missing from one of them. This finding puts 

into question the usefulness of conditional 2R  statistics to assess model adequacy. However, 

the use of marginal 2R  statistics is not without problem. The marginal 2R  statistics that have 

been proposed thus far and were reviewed in our first paper have two limitations—they have 

no corresponding population parameter (therefore it can be argued that it is not clear exactly 

what is being measured) and they cannot be used as omnibus GOF to assess the adequacy of 

the model. These limitations are the motivations behind new 2R  statistics that we are 

proposing.  

 While the new 2R  statistics that we are proposing in this chapter could be used in 

theory as omnibus statistics for assessing adequacy of fit or for comparing any two models 

whether or not they have the same random effect, our simulations are limited to the cases 

where the analyst is interested in assessing the adequacy of the fixed effect covariates for one 

model or comparing (e.g., for the purpose of parsimony) fixed effect covariates of models 

having the same random effects function. Often, the focus of the analyst is on the fixed effect 

covariates, not on the random effects function. Cnaan et al [2] indicated that in the LMM, the 

use of a random intercept and random slope is often sufficient. There are many instances 

such as in epidemiological studies where repeated measurements are taken on a subject and 

the interest of investigators is in assessing the effect over time of the explanatory variables 

(such as treatment and individual patient characteristics that may impact treatment) on the 
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outcome. For example, Cnaan et al. [2] presented data from a clinical trial to compare the 

efficacy of an experimental drug versus a control. The study included a total of 233 patients 

from 13 sites, and there were three doses for the experimental drug: low, medium, and high. 

The endpoint of interest was the Brief Psychiatric Rating Scale (BPRS) at baseline, 1, 2, 3, 4, 

and 6 weeks. Several competing models in the fixed effects were compared and in all the 

models that were compared, the random effect function remained the same and consisted of a 

random intercept and random linear and quadratic time variables with unstructured 

covariance structure in the random effects. The focus of this chapter is limited to the analysis 

of longitudinal data similar to that presented by Cnaan et al. [2]. The competing models 

considered in our simulations have the same random effect (an intercept and a random slope) 

but different fixed effects. 

 Another element of the GOF of a LMM which is not examined in our simulations is 

the ability of the proposed 2R  statistics to determine the adequacy of the covariance 

structure. To compare covariance structures, it is usually assumed that the mean structure has 

been correctly specified. Covariance model selection techniques that require the assumption 

include the LRT (Jennrich and Schluchter [9]; Schaalje et al. [17]; Grady and Helms [6]), 

information criteria (AIC and BIC), and predictive approaches such as PRESS [13]). Hence, 

as a first step to assessing the performance of these newly proposed 2R  statistics, in this 

chapter attention is focused on fixed effects. As a result, the performance of the 2R  statistics 

for changing covariance structures is beyond the scope of this paper. However, we consider 

the topic the object of future research. Note that although the interest lies in the fixed effect 

covariates, the analyst may be unsure about the covariance structure to use. In such a case, 

one approach could be to use graphical exploratory techniques for selecting the covariance 
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structure such as those proposed by Diggle et al. [5], Dawson et al. [4], Zimmerman [27] and 

Pourahmadi [16].  

 The paper is organized as follows: In Section 3.2, we describe notations used for the 

LMM. Section 3.3 reviews from a theoretical standpoint approaches that have been or can be 

used for developing 2R  statistics. Four new statistics based on approaches that have not been 

considered before are proposed in Section 3.4. Data generation techniques and simulation 

results showing the performance of the statistics proposed are described in Section 3.5. An 

example is provided in section 3.6. Discussions follow in Section 3.7. We end the chapter 

with concluding remarks in section 3.8. 

3.2 The Linear Mixed Model 

The model and data simulation methods are discussed in more details in our earlier 

paper. The simulation will be based on model (1) below as formulated by Harville [8] and 

Laird and Ware [11]: 

i i i i iy = X β + Z b + e          (1) 

where  {1, 2, ..., n}i ∈ is the index for the independent sampling units (ISU) and 

iy  is an 1in ×  vector of observations from the ith independent sampling unit (subject), 

iX  denotes an in p×  fixed effects design matrix for the ith subject, 

β  is a 1p×  vector of unknown, constant, fixed effect parameters, 

iΖ  denotes an in q×  random effects design matrix for the ith subject, 

ib  is a 1q×  vector of unobservable random effects for the ith subject, and 

ie  denotes an 1in ×  vector of unobservable within-subject error terms. 
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It is also assumed that ib  has a multivariate normal distribution ( , )qN 0 G  independent of ie , 

which has a multivariate distribution ( , )
in iN 0 R . 

i

i

E
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

b 0
e 0

 and i

i i

V
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

b G 0
e 0 R

, 

where G  is a q q× unknown covariance matrix for the random effects and iR  is an 

i in n× unknown covariance matrix for the within-subject error terms for the ith subject. With 

these assumptions, for the ith subject we have ( )i i i i iV ′= = +Σ y Ζ GΖ R . In many applications, 

iR  is taken to be 2
inσ I , known as the conditional independence assumption for the error 

term [11]. 

3.3 Approaches for Developing 2R  Statistics 

In this section, we look at the statistical framework for 2R  in the LMM. We show 

several categories that can be used to classify existing 2R  statistics and new ones that could 

be proposed. The advantages and disadvantages of each category are discussed.  

3.3.1 2R  based on comparing the Mahalanobis distance of the model to 
a null model 
A framework for developing 2R  statistics was outlined by Vonesh and Chinchilli [22] 

and Xu [25] whereby the Mahalanobis distance of the model is compared to the Mahalanobis 

distance of the null model. This can be represented as: 

1

2 1
distance

1

1

( )
1

( ( )

n

i i nulli i i
i

n

i nulli nulli i nulli
i

R

−

=

−

=

′
= −

′− −

∑

∑

y - y ) Σ (y - y

y y ) Σ y y
       (2) 
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Where nulliy  and nulliΣ  are respectively the predicted value for the null model and the 

covariance matrix for subject i . In the LMM, two types of null model are possible—a model 

that consists of a fixed effect and random effect intercept (3) or a model that consists of only 

a fixed effect intercept (4). The first null model can be represented as: 

0 0i ii n n i ibβy = 1 + 1 + u ,        (3) 

where 0β  is an unknown fixed parameter, 0ib  is an unknown random coefficient that has a 

normal distribution with mean 0 , and iu  is the unobservable within-subject random error 

term for the model (i.e., equation 3 represents a model with fixed and random effect 

intercepts). We define 2( )
ii nV 0= σu I  and 2

0 00( )iV b = τ . 

 The second null model can be represented as: 

00 0ii n iβy = 1 + u ,         (4) 

where 00β  is an unknown fixed coefficient and 0iu  is the unobservable within-subject 

random-error term for the model (a model with a fixed effect intercept and no random 

effects) and 2
0( )

ii nV 00= σu I . 

Both 2
1R  of Vonesh et al [23] and Vonesh and Chinchilli [22] and 2

2R  of Xu [25] fall 

in this category. For 2
1R  given by 2 1

1

1

( )
1

( ( )
i i

n

i i i i
i

n

i n i n
i

R
y y

=

=

′
= −

′− −

∑

∑

y - y ) (y - y

y 1 ) y 1
, the null model consists 

of a fixed effect intercept and no random effects (3) so that for any subject i , 
inulli ny=y 1  and 

1 1
1

1 ( (
1 i i i i

n

nulli i n n i n n
i

y y
N × ×

=

′=
− ∑Σ y - 1 ) y - 1 )  which is a constant. For 2

2R  given by 
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2
2

0

1 RSSR
RSS

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
 where RSS is the residual sum of squares for the model in (1) and 0RSS  is 

the residual sum of squares under the model in (3) does not fit into this category. However, if 

we modify it by introducing in the formula, 2
0 00 i i i i i inulli i n n n n n n

2
× × 00 ×′= = τ + σΣ Σ 1 1 I  which is the 

variance for subject i  for the null model in (3), a modified version 2
2R , 2

2(mod)R  is given by 

1
0

2 1
2(mod)

1
0 0 0

1

( )
1

( ( )

n

i i i i i
i

n

i i i i i
i

R

−

=

−

=

′
= −

′− −

∑

∑

y - y ) Σ (y - y

y y ) Σ y y
 where 0iy  is the predicted value for the null model in 

(3). Note that the 2R  of traditional linear models would also fall in this category with the null 

model consisting of an intercept and thus the predicted value for each observation in that null 

model being y  (the average of all observations). 

Orelien et al. [14] found that 2R  statistics from this category need to be further 

classified as either marginal or conditional statistics for the LMM. For conditional 

2R statistics, the computation of the predicted values includes the random effects as opposed 

to marginal 2R statistics where only the fixed effect parameter estimates are included in the 

computation of these predicted values. Results from simulations found that conditional 

2R statistics appeared to be unable to detect when important cross sectional covariates were 

missing from the model. Another limitation of 2R  based on this framework is that the 

Mahalanobis distance for the null model in the LMM is not the largest distance for 

conditional statistics. In traditional linear models, the denominator 0
1

( ( )
N

j j
j

y y y y
=

′− −∑ ) Σ  is 

the largest distance (where N  is the total number of observations and 2
0 00= σΣ ). A clear 
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advantage for these 2R  statistics is that in terms of interpretation, they can be seen as an 

extension of the 2R  of traditional linear models. 

3.3.2 2R  based on measures of agreement between observed and 
predicted values 
Vonesh et al. [23] proposed the concordance correlation coefficient (CCC) denoted cr  

which is given by  

1

2

1 1

( )
1

ˆ ˆ ˆ ˆ( ( ) ( ( ) ( )
i i i i

n

i i i i
i

c n n

i n i n i n n
i i

r
y y y y N y y

=

= =

′
= −

⎛ ⎞ ⎛ ⎞′ ′− − + − − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑

∑ ∑ i

y - y ) (y - y

y 1 ) y 1 y 1 ) y 1
, where n is the 

number of independent sampling units (or subjects), iy  is the vector of observed values for 

the ith subject, i i i i=y X β + Z b  is the vector of predicted values for the ith subject, y  is the 

grand average of the predicted values, y  is the grand average of the observed values, N is the 

total number of observations, and 
in1 is an ni x 1 vector of 1’s. CCC was first introduced by 

Lin [12] for comparing the percent agreement between a gold assay and a cheaper one. As 

such, CCC can be interpreted as measuring the percent agreement between the observed and 

predicted values. Hence, one could consider an analogous version of cr  to be the squared 

correlation coefficient between the observed and predicted in traditional linear models 

(Kvalseth [10]). For categorical data, an analogous statistic is the Kappa coefficient (Cohen 

[3]). 

One of the limitations of using measures of agreement is that it is easy to conceive 

how two models that are not necessarily a good fit but for which high values of the observed 

are associated with high predicted values and lower values of the observed are associated 

with lower predicted values can lead to artificially high values of the statistic. For cr , Orelien 
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and Edwards [14] showed that the conditional version of the statistic similar to other 

conditional statistics discussed in section 3.3.1 was unable to detect the absence of important 

cross-sectional covariates  from the model.  

 

3.3.3 2R  based on comparing the variation explained by the model at 
hand to that of a null model 
Another approach to computing 2R  is to measure the proportion of variation 

explained by the model. This can be estimated by:  

variance explained by the model
variance assuming a null model

=  

variance not explained by the model1
variance assuming a null model

−    (5) 

The variance not explained by the model, could be based a) on the component of the 

variance for an observation or b) the component of the variance for the average of all 

observations that is not explained by the model. Similarly, one could base the computation 

for the denominator in (5) accordingly on either the variance for an observation or the 

variance for the average of all observations. In this chapter, we base all computations for the 

variance explained by the model at hand or the null model on the variance of the average of 

all observations. 

 

The framework in (5) could be what Xu [25] try to follow for the statistic 2Ω  which 

he defines as 2 1
2

2
0

σ
Ω = −

σ
 where 2σ  is the estimated within-subject variance for the model 

at hand and 2
0σ  is the estimated within-subject variance for the model in (3). Orelien and 

Edwards [14] showed through simulations that problems existed with 2Ω  and that it was 
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therefore not appropriate as an 2R  statistic in the LMM. Specifically, Orelien and Edwards 

[14] showed that 2σ  is robust to misspecification of the cross-sectional covariates. But we 

will show that 2Ω  does not fit the framework of (5) in that 2σ  cannot be considered to be the 

component of the variance not explained by the model and similarly 2
0σ  cannot be 

considered to be the component of the variance not explained by the null model. 

On the other hand, the 2R  of traditional linear model fits the framework in (5). Consider the 

linear model given by: 

= β + εy X          (6) 

Where { }jy=y , 1,  2, . . ., j N=  is a 1N ×  vector of independent observations, X  is an 

N p×  matrix containing the covariates in the model, β  is the p ×1  vector of the unknown 

parameters and ε is the 1N ×  vector of the random errors with 2var( Nε ) = σε I . One can argue 

that the variation in y  not explained by the model is the estimate of the random error term 

2 2

1

1 ( -
1

N

i i
i

y y
Nε

=

σ =
− ∑ ) . Similarly the variance of an observation under null model (4), that is 

a model with only an intercept term is given by 2

1

1 ( -
1

N

i i
i

y y
N =− ∑ ) . Note that under the model 

in (4), 2

1

1 ( -
1

N

i i
i

y y
N =− ∑ )  is the largest variance estimate that can be attained under any 

model. This is important for the range to be between 0 and 1. In the LMM, it is not clear that 

the largest maximum variance is always attained under the null model (3). Theoretically, it is 

thus possible for any 2R  based on the framework discussed in this section to have a lower 

limit that is less than 0. That is, the range for 2R  in the LMM that follows the framework in 

this section is (−∞, 1) . 
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3.3.4 2R  based on computing the variation explained by the model as a 
proportion of the variation in the outcome assuming that the fitted 
model is adequate  
An approach which has not been considered either in the LMM or in the traditional 

linear model is to compute 2R  as a proportion of the variation explained by the model 

assuming that the model is adequate. One way this can be accomplished is by estimating the 

component of the variation (of the average of all observations) attributed to the variables in 

the model as a proportion of the total variance (for the average of all observations)—where 

total variance is computed assuming that the model at hand is the correct one. For example, 

in the LMM, the variance of a subject is given by ( )i i i i iV ′= = +y Σ Ζ GΖ R  where iR  is often 

taken to be 2
inσ I . It can be shown that: 

2
0

1 1
( ) ( )

1 1
i i

i i i i i i i

n n

V h

×

⎛ ⎞
⎜ ⎟′ ′= + = τ + +⎜ ⎟
⎜ ⎟
⎝ ⎠

y z Gz R z Gz R
…

 where ( )i ih ′z Gz  is the expression 

that remains after taking out 2
0τ  from i i

′z Gz . and in the case where iR = 2
i in n×σ I , we have 

2 2 2 2
0 0 0

2 2 2 2
2 2 0 0 0
0 2 2

0 0
2 2 2 2
0 0 0

1 1
( ) ( ) ( )

1 1
i i

i i

i i

i i i n n i i

n n
n n

V h h×

×
×

⎛ ⎞τ + σ τ τ
⎛ ⎞ ⎜ ⎟τ τ + σ τ⎜ ⎟ ⎜ ⎟′ ′= τ + + σ = +⎜ ⎟ ⎜ ⎟τ τ⎜ ⎟ ⎜ ⎟⎝ ⎠ τ τ τ + σ⎝ ⎠

y z Gz I z Gz
…

 

That is, in the case where iR = 2
i in n×σ I , the elements in the expression of 

1 1

1var
inn

ij
i j

y
N = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑∑  (average of all observations) that does not depend on the variables in the 

model is: 

2

1

n

i i
i

n n2 2
0

=

σ + τ∑            (7) 
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When 2
i ii n n×≠ σR I , it can be shown that the portion of 

1 1

1var
inn

ij
i j

y
N = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑∑  that is not 

explained by the model is: 

2

1 1 1

[ , ]
i in nn

i i
i j k

n j k2
0 

= = =

⎛ ⎞
τ +⎜ ⎟

⎝ ⎠
∑ ∑∑R          (8) 

In the LMM, one could also consider that regardless of the structures of iR , for the 

purpose of assessing adequacy of the cross-sectional covariates that the portion of 

1 1

1var
inn

ij
i j

y
N = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑∑  that does not depend on the variables in the model is captured only by the 

variance component for the random intercept. This is supported by findings from Verbeke 

and Fieuws [20] who demonstrated that the estimate of the within subject variance 2σ  was 

robust to misspecification of the fixed effects. Hence, we propose that 2R  be derived by 

assuming that the proportion of variation not accounted for by the model regardless of the 

structure of iR  is: 

2

1

n

i
i

n 2
0

=

τ∑           (9) 

The formulae in (7), (8) and (9) use the fact that the variance of the sum of correlated 

random variables is the sum of the elements of the covariance matrix for these random 

variables. In the appendix, we show through an example why the expression in (7) is 

appropriate. Formulae for 2R  statistics based on the framework in this section are given and 

discussed in more detail in section 3.4. A disadvantage of the 2R  that would fit the 

framework in this section is that they are not an extension of the traditional 2R  of linear 

models. Also, one could argue that these types of 2R  measure “internal consistency”, or the 
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extent to which the model indicates that it explains a lot of the variation in the outcome as 

opposed to whether it does better at explaining the variation in the outcome compared to a 

trivial model such as an intercept only. The danger could be that a model might be “internally 

consistent” indicating that it explains a substantial amount of the variation in the outcome 

and still be inadequate by not being better at explaining the outcome than a trivial model with 

greater “external consistency”. 

 

3.4 New 2R  Statistics 

Four new 2R  statistics are proposed in this section. The statistics in section 3.4.1 are 

measures of “external consistency” and are based on the framework in Section 3.3.3 

(comparing the variation explained by the model at hand to that of a null model) and the ones 

in section 3.4.2 are measures of “internal consistency” and are based on the framework in 

Section 3.3.4 (computing the variation explained by the model assuming that the model is 

adequate). All four statistics are an attempt to measure the proportion of variation explained 

by the model. 

3.4.1 New 2R  statistics based on comparing the variation explained by 
the model at hand to that of a null model 
We propose the statistic measure of external consistency ( 1MEC ) that we define as:  

1
variance of average obs. explained by the model
variance of average obs. assuming a null model

variance of average obs. not explained by the model1
variance of average obs. assuming a null model

MEC =

= −
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2
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Where 
1 1

[ , ]
i in n

i
j k

j k
= =

∑∑R  is the sum of all the elements of the matrix iR  (for subject i ) and 

0
1 1

[ , ]
i in n

i
j k

j k
= =

∑∑∑  is the sum of all the elements of the matrix 0i∑ , the covariance matrix for 

subject i  under null model (3) . Note that the numerator 2

1 1 1

[ , ]
i in nn

i i
i j k

n j k2
0 

= = =

⎛ ⎞
τ +⎜ ⎟

⎝ ⎠
∑ ∑∑R  

corresponds to the elements of the variation in the outcome not explained by the model and 

the denominator corresponds to the variation in the outcome assuming null model (3).  

The second statistic, 2MEC  is based on assuming that the variation not explained by the 

model for the purpose of assessing the adequacy of the cross-sectional covariates is given by 

2
0 τ : 

( )2

1
2

0
1 1 1

1
[ , ]
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n

i
i

n ni n

i
i j k

n
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j k

2
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=
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= = =

τ
= −
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∑ ∑∑
      (11) 

In the case, where 2
i ii n n×= σR I , we propose that: 

2

1
1 1
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n n
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2 2
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2 2
0 00

σ + τ
= −

Ν(σ + τ
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0 00
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Ν(σ + τ
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       (13) 
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The ranges of both 1 2 and MEC MEC  are between −∞  and 1, with values close to 1 

indicating a good fit and values near to or less than 0 indicating a lack of fit. One of the 

possibilities for negative values of these statistics is that for some data, the null model may 

lead to lower variance in the outcome compared to the model at hand. As we have indicated 

in Section 3.3.3, this is one of the drawbacks in working with 2R  that compare the variation 

explained by the model to that of a null model. 

3.4.2 New 2R  statistics based on computing the variation explained by 
the model as a proportion of the variation in the outcome 
assuming that the fitted model is adequate 
Based on the framework outlined in Section 3.3.4, we are proposing two new 2R  

statistics, 1MIC  and 2MIC  (measures of internal consistency), that both measure the 

proportion of variation explained by the model assuming that the model is adequate. We 

define 1MIC  as: 

1
variation of average obs not explained by the model1

variance of average obs. assuming model is true
MIC = −  

2

1 1 1
1

1 1 1
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i
i j k

n j k
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2
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= = =
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= = =

⎛ ⎞
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∑ ∑∑

∑ ∑∑

R
      (14) 

Where 2
i i i I∑ = + σZ GZ  and 

1 1

[ , ]
i in n

i
j k

j k
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⎛ ⎞
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⎝ ⎠
∑∑  is the sum of all the elements of i∑  

and 
1 1

[ , ]
i in n

i
j k

j k
= =

∑∑R  is the sum of all the elements of the matrix iR . The denominator 

corresponds to 
1 1

var
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ij
i j

y
= =

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑∑ , the variance of the sum of all the elements of { }ijy=y  with 
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 i = 1 to n  and 1,  ...,  ij n= . The numerator as shown in section 3.3.4 is part of the 

denominator and corresponds to the amount of variation not explained by the model.  In the 

case of conditional independence, i.e., 2
i ii n n×= σR I , 1MIC  is given by: 

( )2 2

1
1

1 1 1

1
[ , ]

i i

n

i i
i

n ni n

i
i j k

n n
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j k

2
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=
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= = =
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= −
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⎝ ⎠

∑

∑ ∑∑
       (15) 

Under the assumption that the variation not explained by the model for the purpose of 

assessing the adequacy of the cross-sectional covariates is given by 2
0 τ , a counterpart to 

2MEC , 2MIC  is defined as: 

2 2

1 1
2

1 1 1 1 1 1

1 1
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i i i i

n n

i i
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n n n ni n i n

i i
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= =
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τ τ
= − = −
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∑ ∑⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∑ ∑

∑ ∑∑ ∑ ∑∑
   (16) 

Note that if G  is not diagonal, negative elements on the off-diagonals of G  could lead 

to the denominator of (14), (15) or (16) being lower than the numerator. Although, the 

numerator is part of the denominator, for both 1MIC  and 2MIC  the range may not 

necessarily be between 0 and 1.  If G  is an unstructured covariance matrix with negative 

values in the off-diagonals, the numerator of these statistics may be larger than the 

denominator.  Hence, the range for 1MIC  and 2MIC  is between 0 and 1 if G  has a diagonal 

covariance structure and (−∞, 1)  if G  has an unstructured covariance matrix with negative 

values in the off-diagonals. One could consider using 
1 1 1

tr( )
i in ni n

i
i j k

=

= = =

⎛ ⎞
∑⎜ ⎟

⎝ ⎠
∑ ∑∑  in the denominator 

so that the range of the statistics is always between 0 and 1. However, we preferred not to use 
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this approach because of problems that would arise with interpretation. Also, the example 

given in section 3.7 shows that using tr( )i∑  instead of i∑  could potentially lead to 

artificially higher values of the statistic.  When tr( )i∑  is used instead of i∑ , positive values 

ranging from 0.36 t0 0.55 are obtained as opposed to the negative values.  While in general a 

finite range might be desirable for an 2R  statistic, in this case if we were to change the 

formula by using tr( )i∑  to simply achieve a finite range, we might miss the negative values 

that would indicate model inadequacy.  Table 3.1 summarizes the four statistics that are 

proposed in this chapter. 

 

3.5 Parameters for the Simulation 

We conducted a simulation to assess the performance of the proposed 2R . Details of 

these simulations were first reported in Orelien and Edwards [14]. For the simulation, using 

the IML module in SAS, we simulated six sets of data. In each of the data sets, there were 

10,000 replications, 64 subjects, and 6 observations per subject. Three of the six data sets 

assumed a diagonal covariance matrix for the random effects and the other three assumed an 

unstructured one. The data sets with the same covariance structure for the random effects 

differed in the values for 2σ  that were 12, 45, and 250. The different values of 2σ  were used 

to assess how performance of the pseudo- 2R  varied with increased within-subject error 

which translates into within-subject correlations of about 0.1, 0.5 and 0.8. The parameters 

used in the analysis were: 
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6 6 6[ , (5,  6,  7,  7.25,  7.5,  7.75) , , ]k lδ δ′=X 1 1 1 ; 6[ , (5, 6, 7, 7.25, , ) ]′=     7.5  7.75Z 1 , where 61  is a 

6 1×  vector of ones and , {0,1}k lδ δ = . We took 

10
6

11
11

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

β  and 
4 0
0 1

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
G  for the three data 

sets with diagonal covariance matrix. For the three data sets with unstructured covariance 

matrix, we used 
4 1
1 1

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
G . The population parameter for 1MIC  was computed as 

1 1

2
1 1

1
1 1

1
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n n
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2 2
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= =

τ + σ
−
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 where [1,1]2
0τ = G , [2,2]2σ = G  and 

1 1

1
1 1

[ , ]
n n

j k

j k
= =

∑∑∑  corresponds to the 

sum of the elements of the matrix 2
1 1 I+ σZ GZ . Similarly, the population parameter for 

2MIC  was computed as 
1 1

2
1

1
1 1

1
[ , ]

n n

j k

n

j k

2
0

= =

τ
−

⎛ ⎞
∑⎜ ⎟

⎝ ⎠
∑∑

. Table 3.2 summarizes the six different data sets 

that were used in the simulation. 

Using the SAS System version 8.2 (SAS Institute, Cary, NC) for each of the six data 

sets simulated, we fitted the full model, an overfitted model, and two types of reduced 

models in the fixed effect. For the overfitted model, two randomly generated variables not 

linked to the outcome were included in the model. Two reduced models were fitted by 

removing one or two of the binary variables from the fixed effects. The “true” random effect 

that was simulated was used in each model. That is, the random effects consisted of an 

intercept and age with either a diagonal covariance matrix or an unstructured covariance 

matrix. From the models fitted, we computed each of the four statistics discussed in Section 

3.4. 
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In Tables 3.3 and 3.4, we give the values of means and ranges for the proposed 2R  

statistics. Table 3.3 is for the data sets with a diagonal covariance matrix and Table 3.4 is for 

the data sets with an unstructured covariance matrix. For the statistics 1MEC  and 2MEC  

negative values are observed for high values of within-subject variance for the data sets with 

unstructured covariance matrix. Negative values are also observed for the statistics 1MIC  and 

2MIC  due to negative values in the off diagonals of the covariance structure for G . If tr( )i∑  

as opposed to i∑  is used in the computations of 1MIC  and 2MIC , values between 0 and 1 

that are closer to the population parameters are obtained (refer to Table 3.4). 1MEC  seems to 

be a better estimate for the population parameter that 1MIC  is supposed to estimate. For the 

full models and for data with diagonal covariance matrix, estimates of 1MEC  are closer to 

the population parameter of 1MIC .  

Values from the overfitted model do not appear to be different from the values from 

the full model, indicating that all the statistics are able to discriminate between a model that 

includes only variables linked to the outcome and one that includes additional variables 

exhibiting a spurious relationship with the outcome. On the other hand, values from the 

reduced models appear to be significantly lower than the full model, demonstrating that the 

statistics can be useful in choosing the most parsimonious model. The more variables that are 

removed from the full model, the larger the decrease is in the value of the statistics. These 

2R  statistics decrease when 2σ  increases, which could be an indication that they are able to 

account for the fact that less of the variability in the outcome is contributed by the variables 

in the model when 2σ  is increased. In particular, for 2 250σ = , there is little difference in the 

values for the full and other models, suggesting that all of the models are inadequate given 
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the large within-subject variability. Also, values of the statistics from the data sets with 

unstructured covariance structure are overall lower compared to the data sets with diagonal 

covariance matrix structure, which could be explained by the fact that in the data sets with 

unstructured covariance (where the correlation between observations from the same subject 

is increased), the model is less efficient. 

 

3.6 Example 

 We analyzed the data from Pothoff and Roy [15] on dental distance. These data have 

been analyzed in the context of the LMM by several authors and used as example in [26] in 

computing pseudo- 2R . We fitted several models to investigate the relationship between 

dental distance and the explanatory variables age, gender, and age-by-gender interaction in 

the fixed effects. Age and an intercept were used in the random effects with an unstructured 

covariance matrix. Values of the new 2R  statistics are given for three models in Table 3.6. 

For all three models, the values of the measures of external consistency statistics are less than 

0 suggesting that these models are not better than a null model. Values of measures of 

internal consistency variables were also negative. 

 In Figure 1, we plot the outcome as a function of age. While the figure gives an 

indication of a possible age and gender effect, there is a lot of within-subject variability and 

dental distance as a function of age appears to vary considerably from one individual to the 

next. In Table 3.6, parameter estimates and standard errors show that the magnitude of the 

effect of the fixed effect variables is small. Although the p-value for age is very small, the 

95% confidence interval for the slope is only between 0.28 and 0.68. For the age-by-gender 

interaction which is also significant, the confidence interval is between 0.04 and 0.26. In 
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contrast, Table 3.7 shows how the between-subject variability of 4.56 dwarfs all other 

variance components. Also, Table 3.8 shows that most of the variation in the outcome tends 

to be between subjects. Hence, although marginal- 2R  computed by Orelien and Edwards 

[14] seems to indicate that the model with age and gender is the most parsimonious model, 

we believe in light of the new 2R  values and an examination of the fixed parameter estimates 

and covariance parameters that an equally valid conclusion is that the effect of any of the 

covariates is small and most of the variation in the data is within and between subjects.  

 
3.7 Discussion 

Results from our simulation show that the statistics perform adequately in being able 

to detect the most parsimonious fixed effects model. When it comes to estimating the 

proportion of variation explained by the fixed effects in the model, these statistics do not 

perform as well. Because the range is not well defined in that negative values can be 

obtained, they may not be considered to be valid 2R  statistics based on the criterion 

developed by Kvalseth [10] that the range should be well defined. However, because 

negative values were associated with models with large within-subject variance or models in 

which important covariates were missing, these negative values do not call into question the 

usefulness of the statistics. 1MEC  as opposed to 1MIC  and 2MEC  as opposed to 2MIC  gave 

estimates that were closest to the population parameter for the proportion of variation 

explained by the model. We believe that this is not a simple coincidence. The denominators 

of these four statistics ( 1MEC , 2MEC , 1MIC  and 2MIC ) are all estimates of the average 

variance of an observation. When tr( )iΣ  as opposed to iΣ  is used in the formula for 1MIC  or 

2MIC  in the case where the covariance of the random effects ( G ) is unstructured, positive 
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values closer to the population parameters are obtained. Hence, substituting tr( )iΣ  for iΣ  

should be given consideration in the computation of 1MIC  or 2MIC . 

The statistics 1MEC  and 2MEC  depend on the choice of the null model. While we 

believe that null model (3) is a reasonable choice in the LMM, other choices could be 

considered by an analyst. In addition to null model (4), another choice of null model for 

1MEC  and 2MEC  is to use a model with a fixed effect intercept but with the same 

covariance structure as the model of interest. The use of such a null model for 1MEC  and 

2MEC  could potentially lead to estimates that are closer to the population parameters of 

1MIC  and 2MIC  respectively. 

Orelien and Edwards [14] showed that many of the statistics that have been proposed 

(Vonesh et al. [23], Vonesh and Chinchilli [22], Xu [25] and Zheng [26]) in the statistical 

literature for the LMM were inadequate in that they were unable to distinguish between a full 

model and one from which important covariates were missing. The statistics that we propose 

do not suffer from such deficiencies. Also, for many of the statistics that were proposed there 

is an implicit or explicit assumption of conditional independence such as the ones proposed 

by Xu [25]. In this chapter, we have proposed formulae for both the general case and the 

specific case where conditional independence can be assumed. Snijders and Bosker [19] 

proposed two statistics that were intended to measure the proportion of variation explained 

by the covariates (although the authors refer to their statistics as measuring the proportion of 

modeled variance). One of the statistics assesses the proportion of variation explained by the 

fixed effects and the other explains the proportion of variation due to random effects. While 

the definition given by Snijders and Bosker [19] for the statistic to assess the proportion of 
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variation (
var( )

1
var( )

ij ij

ij

Y X
Y
− β

− ) seems to correspond with our definition of 2MEC , we disagree 

with the estimates given by the authors. We believe that the estimates that we proposed for 

the proportion of variation are more complex and reflect the true variance of ijY . 

An analyst might be tempted to use traditional GOF statistics such as the AIC, BIC, 

AICC, or a likelihood ratio test in assessing the adequacy of the fixed effect components or 

in choosing the most parsimonious one between two models. However, the use of AIC, BIC, 

or AICC may be inappropriate when restricted maximum likelihood (REML) has been used 

in the estimation (Verbeke and Molenbergh, 2000) [21]. Similarly, Whelham and Thompson 

[14] noted that the log-likelihood ratio test may not be valid under REML. Hence, the new 

statistics that we propose could be valuable tools for an analyst in assessing model adequacy. 

Although Gurka (2006) [7] concluded that the AIC, BIC, and AICC could be used under 

REML for selecting the most parsimonious model in the fixed effects, the author failed to 

show what magnitude of difference between two models in the values of these statistics 

constitutes a meaningful difference. 

 

3.8 Conclusion 

 Based on the results of the simulations, we recommend the use of these newly 

proposed statistics as they can be useful to the analyst to ascertain whether the cross-sectional 

covariates are adequate to explain the variation in the data or to select the most parsimonious 

models among competing ones. Ideally, an adequate model will have high values of external 

and internal consistency. Based on our simulations, the measures of external consistency and 

internal consistency may not always agree except in the case where the model is fully 
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specified and the between- and within-subject random errors are relatively small. We 

recommend that the analyst compute at least one measure of external consistency and one 

measure of internal consistency. Specifically, we prefer 1MEC and 1MIC  over their 

respective counterparts. We believe that in the LMM, a better case can be made for the 

variance not accounted by the model to be the numerator of 1MEC  or 1MIC  (as opposed to 

the numerator of 2MEC  or 2MIC ). The concept of external and internal measures of 

consistency that we introduce could be extended to other classes of models beyond the LMM 

such as non-linear mixed models or any other types of hierarchical models. Future research 

needs to assess the ability of these statistics to explain adequacy of the random effects.  
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Appendix 

We give an example to demonstrate that the elements in the expression of 
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Table 3.1 Summary of the 2R  statistics proposed in this paper  
Statistic Description General Formula Formula assuming 

conditional independence 
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Table 3.2 Description of the data sets used in the simulation 
Data Set Value of 2σ  Proportion of 

variation explained 

by the cross-

sectional covariates 

(Population 

Parameter for 

1MIC ) 

Proportion of 

variation explained 

by the cross-

sectional covariates 

(Population 

parameter for 

2MIC ) 

Type of Covariance 

Matrix for the 

random effects  

1 12 0.89 0.92 

2 45 0.82 0.93 

3 250 0.50 0.96 

Diagonal, 

4 0
0 1

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
G  

4 12 0.92 0.94 

5 45 0.86 0.94 

6 250 0.56 0.96 

Unstructured, 

4 1
1 1

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
G  
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Table 3.3 Average and Interquartile range for the proposed 2R  using only replicates where Hessian matrix and covariance matrix of random 
effects are positive definite (data sets with diagonal covariance matrix for the random effects)  

2σ  Model Average 

1MEC  (Q25, 

Q75) 

Average 

2MEC  (Q25, 

Q75)  

Average 

1MIC  (Q25, 

Q75)  

Average 

2MIC  (Q25, 

Q75)  

12 

Overfitted Model: Age, Gender, 
Treatment and 2 variables not related to 

outcome 0.90 (0.87, 0.95) 
0.92 (0.89, 
0.97) 

0.79 (0.72, 
0.89) 

0.83 (0.76, 
0.93) 

12 Full Model: Age, Gender and Treatment 0.90 (0.87, 0.95) 
0.92 (0.89, 
0.97) 

0.79 (0.72, 
0.89) 

0.83 (0.76, 
0.92) 

12 Reduced Model 1: Age and Gender 0.67 (0.60, 0.75) 
0.69 (0.61, 
0.76) 

0.55 (0.45, 
0.65) 

0.58 (0.48, 
0.68) 

12 Reduced Model 2: Age 0.40 (0.31, 0.49) 
0.42 (0.33, 
0.50) 

0.40 (0.32, 
0.49) 

0.42 (0.34, 
0.50) 

45 

Overfitted Model: Age, Gender, 
Treatment and 2 variables not related to 

outcome 0.80 (0.73, 0.88) 
0.86 (0.80, 
0.94) 

0.58 (0.44, 
0.74) 

0.71 (0.58, 
0.88) 

45 Full Model: Age, Gender and Treatment 0.80 (0.73, 0.88) 
0.86 (0.80, 
0.94) 

0.58 (0.44, 
0.75) 

0.71 (0.58, 
0.88) 

45 Reduced Model 1: Age and Gender 0.62 (0.51, 0.75) 
0.69 (0.57, 
0.81) 

0.49 (0.34, 
0.66) 

0.58 (0.42, 
0.75) 

45 Reduced Model 2: Age 0.40 (0.25, 0.54) 
0.46 (0.32, 
0.61) 

0.40 (0.25, 
0.54) 

0.46 (0.32, 
0.61) 

250 

Overfitted Model: Age, Gender, 
Treatment and 2 variables not related to 

outcome 0.57 (0.49, 0.66) 
0.84 (0.76, 
0.93) 

0.29 (0.16, 
0.42) 

0.74 (0.61, 
0.88) 

250 Full Model: Age, Gender and Treatment 0.57 (0.49, 0.66) 
0.84 (0.76, 
0.93) 

0.29 (0.16, 
0.43) 

0.74 (0.62, 
0.88) 

250 Reduced Model 1: Age and Gender 0.46 (0.34, 0.60) 
0.74 (0.61, 
0.87) 

0.34 (0.18, 
0.50) 

0.67 (0.52, 
0.84) 

250 Reduced Model 2: Age 0.35 (0.18, 0.52) 
0.62 (0.46, 
0.79) 

0.35 (0.18, 
0.52) 

0.62 (0.46, 
0.79) 
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Table 3.4 Average and Interquartile range for the proposed 2R  using only replicates where Hessian matrix and covariance matrix of random 
effects are positive definite (data sets with unstructured covariance matrix for the random effects)  

2σ  Model Average 1MEC  

(Q25, Q75) 

Average 2MEC  

(Q25, Q75)  

Average 

1MIC  (Q25, 

Q75)  

Average 

2MIC  

(Q25, Q75)  

Average 

1MIC  (Q25, 

Q75) using 

tr( )iΣ  in 

the formula 

instead of 

iΣ  

12 

Overfitted Model: Age, 
Gender, Treatment and 2 

variables not related to 
outcome 0.82 (0.75, 0.91) 0.83 (0.77, 0.92) 

0.64 (0.52, 
0.82) 

0.67 (0.55, 
0.85) 

0.79 (0.72, 
0.89) 

12 
Full Model: Age, Gender and 

Treatment 0.82 (0.75, 0.91) 0.83 (0.77, 0.92) 
0.64 (0.52, 
0.82) 

0.67 (0.56, 
0.85) 

0.79 (0.72, 
0.89) 

12 
Reduced Model 1: Age and 

Gender 0.63 (0.52, 0.75) 0.64 (0.54, 0.77) 
0.51 (0.37, 
0.68) 

0.53 (0.39, 
0.70) 

0.55 (0.45, 
0.65) 

12 Reduced Model 2: Age 0.40 (0.27, 0.56) 0.42 (0.29, 0.58) 
0.40 (0.27, 
0.56) 

0.42 (0.29, 
0.58) 

0.40 (0.32, 
0.49) 

45 

Overfitted Model: Age, 
Gender, Treatment and 2 

variables not related to 
outcome 0.39 (0.18, 0.71) 0.45 (0.24, 0.76) 

-0.15 (-0.56, 
0.45) 

-0.05 (-0.46, 
0.55) 

0.58 (0.44, 
0.74) 

45 
Full Model: Age, Gender and 

Treatment 0.39 (0.18, 0.71) 0.45 (0.24, 0.76) 
-0.15 (-0.55, 
0.44) 

-0.04 (-0.45, 
0.55) 

0.58 (0.44, 
0.75) 

45 
Reduced Model 1: Age and 

Gender 0.22 (-0.04, 0.57) 0.27 (0.02, 0.62) 
-0.02 (-0.35, 
0.44) 

0.05 (-0.28, 
0.52) 

0.49 (0.34, 
0.66) 



 

 

88

2σ  Model Average 1MEC  

(Q25, Q75) 

Average 2MEC  

(Q25, Q75)  

Average 

1MIC  (Q25, 

Q75)  

Average 

2MIC  

(Q25, Q75)  

Average 

1MIC  (Q25, 

Q75) using 

tr( )iΣ  in 

the formula 

instead of 

iΣ  

45 Reduced Model 2: Age 0.02 (-0.27, 0.40) 0.07 (-0.22, 0.45) 
0.02 (-0.27, 
0.40) 

0.07 (-0.22, 
0.45) 

0.40 (0.25, 
0.54) 

250 

Overfitted Model: Age, 
Gender, Treatment and 2 

variables not related to 
outcome

-1.65 (-2.58, -
0.29) 

-1.40 (-2.33, -
0.04) 

-3.22 (-4.64, -
1.03) 

-2.83 (-4.26, -
0.63) 

0.29 (0.16, 
0.42) 

250 
Full Model: Age, Gender and 

Treatment
-1.63 (-2.56, -
0.27) 

-1.38 (-2.31, -
0.02) 

-3.19 (-4.60, -
1.01) 

-2.80 (-4.21, -
0.61) 

0.29 (0.16, 
0.43) 

250 
Reduced Model 1: Age and 

Gender
-1.72 (-2.65, -
0.33) 

-1.47 (-2.39, -
0.09) 

-2.33 (-3.45, -
0.62) 

-2.03 (-3.14, -
0.33) 

0.34 (0.18, 
0.50) 

250 Reduced Model 2: Age
-1.87 (-2.84, -
0.44) 

-1.62 (-2.59, -
0.19) 

-1.87 (-2.84, -
0.44) 

-1.62 (-2.59, -
0.19) 

0.35 (0.18, 
0.52) 
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Table 3.5 Pseudo- 2R  for dental data of Potthoff and Roy  
Model 1MEC   2MEC  1MIC   2MIC  

Age, Gender, 

AgexGender 

-0.04 0.05 -0.42 -0.3 

Age, Gender -0.55 -0.46 -1.12 -0.99 

Age -0.09 -0.003 -0.09 -0.003 
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Table 3.6 Parameter estimates for dental data of Potthoff and Roy  
Parameter Estimate Standard Error Pvalue 

Intercept 17.37 1.18 < 0.000 

Age 0.47 0.10 < 0.000 

Gender -1.03 1.54 0.5043 

AgexGender 0.30 0.13 0.0224 

 



 

91 

Table 3.7 Covariance Parameter Estimates for dental distance data (full model)  
Covariance Parameter Estimate Standard Error 

UN (1, 1) 4.56 4.67 

UN (2, 1) -0.19 0.38 

UN (2, 2) 0.024 0.03 

Residual 1.72 0.33 

 

Table 3.8 Distribution of dental distance by age and gender  
AGE Gender N  Std Dev  

Minimum 
 

Maximum 
Female 11 2.12 16.50 24.50 8 

  Male 16 2.45 17.00 27.50 
Female 11 1.90 19.00 25.00 10 

  Male 16 2.14 20.50 28.00 
Female 11 2.36 19.00 28.00 12 

  Male 16 2.65 22.50 31.00 
Female 11 2.44 19.50 28.00 14 

  Male 16 2.09 25.00 31.50 
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Figure 1 Graph of Distance versus Age 
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4 Performance of Pseudo- 2R  Statistics in Detecting Misspecification in 

the Random Effects in Linear Mixed Models 

 

Abstract 

Orelien and Edwards [17] showed through simulations that 2R  statistics that can be 

classified as marginal, that is, the random effects are excluded from the computation of the 

residuals—as opposed to conditional ones where the random effects are included in the 

computation of the residuals—are useful in assessing the adequacy of the fixed effects. In 

Chapter 3, additional 2R  statistics were introduced to assess adequacy of the fixed effect 

terms. It is obvious that marginal statistics would not be useful in assessing the random effect 

function, as the values for a marginal statistic would be the same for two models having the 

same fixed effects but a different random function. On the other hand, in addition to being 

useful in assessing the adequacy of the fixed effect components, the 2R  statistics introduced 

in Chapter 3 have the potential to be able to identify adequacy of the random effects function 

as well. In this chapter we employ simulations to investigate the ability of 1MEC  and 1MIC  

(statistics that were introduced in Chapter 3) to detect misspecification in the random effects 

when the true fixed effects model is known. These statistics—which measure respectively 

external and internal consistencies—were chosen because they performed best out of the 

statistics evaluated in Chapter 3. Our simulations are limited to longitudinal studies where the 

within-subject variance is homogeneous. The results of our simulations show that both 
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statistics are able to discriminate between models where the random effects contain a time 

variable and models that do not, such as a model with only a random intercept term. When 

comparing two competing models that contain a time variable in the random effects such as a 

reduced model with intercept and linear term for time and a full model that contains a 

quadratic term in addition to the linear term for time, the statistics in our simulations were 

unable to detect that the full model was the true one. Additional analysis seems to indicate 

that in the LMM for longitudinal data even when the true model of the random effects 

involves variables (polynomial components) beyond the linear term, the reduced model with 

an intercept and a linear term for time may be as good as the full model. 

 

4.1  Introduction 

In the LMM, misspecification of the random effects can lead to biased estimates of 

the variance of the fixed effect parameters (Heagerty and Kurland [11]). In selecting the 

random effects for a mixed model, an approach that would come under consideration is the 

likelihood ratio test (LRT). However, Stram and Lee [19] show that the LRT in this case is a 

mixture of Chi-square. Lin [15] and Hall and Praestgaard [9] suggested that score tests be 

used for testing simultaneously that all of the random effects are 0. Albert and Chib [2] 

proposed an approach for testing whether a single random effect is 0. Chen and Dunson [4] 

generalized this approach for selecting the best combination of random effects using Gibbs 

sampling. A major limitation of the method proposed by Chen and Dunson [4] is that it does 

not lend itself to practical use because of the computations involved. First, software for 

performing Gibbs sampling is not readily available. Second, depending on the data, 
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convergence may not be achieved. Finally, different values might be obtained depending on 

the sample size used by an analyst.  

Gurka [8] investigated the performance of information criteria such as the AIC [1] 

and BIC [20] in detecting misspecification of the random effects in the linear mixed model 

through simulations. There were several limitations to the simulations. The effect of the size 

of the variance of the random effects was not taken into consideration. In determining 

whether the correct model was selected, the magnitude of the difference between the 

information criteria of the models to be compared was not taken into account. Also, in the 

simulations performed by Gurka [8], the full model in the random effects consisted of an 

intercept and a linear component for time.  

In many population based studies such as clinical trials or medical studies, repeated 

observations are taken on subjects over time. In most instances, the interest in these studies is 

to determine the effect of a treatment or an intervention while accounting for the correlation 

within subjects. For example, Littell et al. [16] gives the example of a clinical trial where the 

effect of a drug on pulmonary function as measured by FEV1 (forced expiratory volume in 1 

second) is investigated. Patients in the study were assigned to 3 treatment groups and 

measurements of FEV1 were taken at 4 time intervals. Cnaan et al. [3] indicated that often in 

these types of studies the use of a random intercept and random slope is sufficient to 

characterize the random effects structure. However, there may be instances where the analyst 

may judge, based on exploratory analysis or previous experience with the data, that a more 

complex random effects structure is needed such as one that includes a quadratic term. For 

longitudinal data analysis, it may be rare to use terms beyond a quadratic component in the 

random effects. Thus, in terms of competing models for the random effects, in longitudinal 
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data analysis, the considerations are often: i) random intercept, linear effect for time and a 

quadratic effect for time (full model); ii) random intercept and linear effect for time (reduced 

model 1); and iii) a random intercept (reduced model 2).  

One approach might be to use pseudo- 2R  statistics or other tools that were proposed 

in Chapter 3 to determine the appropriate random effects structure. But although we have 

shown that the 2R  statistics discussed in chapter 3 were useful in assessing the adequacy of 

the fixed effects, their performance in determining the adequacy of the random effects 

function has not been demonstrated. The advantage of using 2R  statistics over other tools, 

such as AIC or BIC is that 2R  statistics could provide additional information such as how 

much of the variation in the outcome is explained by the inclusion or exclusion of a random 

effect. 

There is a direct connection between selection of the random effects and covariance 

structure for the random effects. For example, choosing between whether the random effects 

should be a) intercept, linear term for time and a quadratic effect for time (full model) or b) 

intercept and linear term for time could be translated as to whether the covariance structure 

for the random effects is of the form 
11 12 13

12 22 23

13 23 33

full

a a a
a a a
a a a

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

G  or 11 12

12 22
reduced

a a
a a

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
G . This is a 

different question with respect to the covariance structure of the within-subject error term 

which is often assumed to be of the form 2σ I , that is, conditioned on the random effects, the 

within-subject errors are independent (conditional independence). For assessing covariance 

of the random error term, there are several issues that need to be taken into considerations, 

such as cases where the misspecified covariance structure is nested in the true one or 

convergence issues that may be due to overparameterization. Thus, as in previous chapters, 
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the use of 2R  statistics for assessing the adequacy of the covariance structure of the error 

term is beyond the scope of our study. For assessing adequacy of the covariance structure, 

graphical exploratory techniques for selecting the covariance structure, such as those 

proposed by Diggle et al. [5], Grady and Helms [7] Dawson et al. [5], Zimmerman [26] and 

Pourahmadi [18] could be used.   

 This chapter is organized as follows: In Section 4.2, we formulate the LMM and 

notation. Formulae for the statistics that are reviewed in this chapter are given in Section 4.3. 

The generation of the simulated data and choice of parameters are discussed in Section 4.4. 

Results are presented in Section 4.5. An example is given in Section 4.6. We discuss results 

from the simulation and the example in Section 4.7. Concluding remarks in Section 4.8.  

 

4.2 The Linear Mixed Model 

The simulations are based on model (1) below as formulated by Harville [10] and 

Laird and Ware [14]: 

i i i i iy = X β + Z b + e         (1) 

where  {1, 2, ..., n}i ∈ is the index for the independent sampling units (ISU) and 

iy  is an 1in ×  vector of observations from the ith independent sampling unit (subject), 

iX  denotes an in p×  fixed effects design matrix for the ith subject, 

β  is a 1p×  vector of unknown, constant, fixed effect parameters, 

iΖ  denotes an in q×  random effects design matrix for the ith subject, 

ib  is a 1q×  vector of unobservable random effects for the ith subject, and 

ie  denotes an 1in ×  vector of unobservable within-subject error terms. 
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It is also assumed that ib  has a multivariate normal distribution ( , )qN 0 G  independent of ie , 

which has a multivariate distribution ( , )
in iN 0 R . 

i

i

E
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

b 0
e 0

 and i

i i

V
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

b G 0
e 0 R

, 

Where G  is a q q× unknown covariance matrix for the random effects and iR  is an 

i in n× unknown covariance matrix for the within-subject error terms for the ith subject. With 

these assumptions, for the ith subject we have ( )i i i i iV ′= = +Σ y Ζ GΖ R . In many applications, 

iR  is taken to be 2
inσ I , known as the conditional independence assumption for the within-

subject error term [14]. 

 

4.3 Pseudo- 2R  Statistics 

 In this chapter, we are assessing the performance of two statistics that were 

introduced in chapter 3. In that discussion, a distinction was made between marginal and 

conditional 2R  statistics. Marginal 2R  statistics are those that involve the residuals and for 

which the random effect components are excluded in the computation of these residuals. 

These marginal 2R  statistics are obviously not useful for assessing the adequacy of the 

random effect terms as their values would not change from a full to a reduced model in the 

random effects so long as the fixed effect terms are the same. As a result, for assessing the 

adequacy of the random effects, we are considering only the new statistics that were 

proposed in Chapter 3. Specifically, we focus on two of the 2R  statistics, 1MEC  and 1MIC , 

that were shown to have the best performance. Because conditional 2R  statistics proposed by 

Vonesh et al. [22], Vonesh and Chinchilli [21], Zheng [25] and Xu [24] evaluated in Chapter 
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2 did not perform well for assessing the adequacy of the fixed effects, they were excluded 

from consideration in this review. 

1MEC  is given by the formula in (2): 

2

1 1 1
1

0
1 1 1

[ , ]
1

[ , ]

i i

i i

n nn

i i
i j k

n ni n

i
i j k

n j k
MEC

j k

2
0 

= = =

=

= = =

⎛ ⎞
τ +⎜ ⎟

⎝ ⎠= −
⎛ ⎞

∑⎜ ⎟
⎝ ⎠

∑ ∑∑

∑ ∑∑

R
      (2) 

Where 
1 1

[ , ]
i in n

i
j k

j k
= =

∑∑R  is the sum of all the elements of the matrix iR  (for subject i ) and 

0
1 1

[ , ]
i in n

i
j k

j k
= =

∑∑∑  is the sum of all the elements of the matrix 0i∑ , the covariance matrix for 

subject i  under a null model given by: 

0 0i ii n n i ibβy = 1 + 1 + u ,        (3) 

where 0β  is an unknown fixed parameter, 0ib  is a random intercept for subject i , and iu  is 

the unobservable within-subject random error term for the model (i.e., the null model consists 

of fixed and random effect intercepts). We define 2( )
ii nV 0= σu I  and 2

0 00( )iV b = τ . 

 The formula for 1MIC  is given by formula (4). 

2

1 1 1
1

1 1 1

[ , ]
1

[ , ]

i i

i i

n nn

i i
i j k

n ni n

i
i j k

n j k
MIC

j k

2
0 

= = =

=

= = =

⎛ ⎞
τ +⎜ ⎟

⎝ ⎠= −
⎛ ⎞

∑⎜ ⎟
⎝ ⎠

∑ ∑∑

∑ ∑∑

R
      (4) 

where 2
i i i I∑ = + σZ GZ  and 

1 1

[ , ]
i in n

i
j k

j k
= =

⎛ ⎞
∑⎜ ⎟

⎝ ⎠
∑∑  is the sum of all the elements of i∑ .  

 If 2
i = σR I  then the expressions for 1MEC  and 1MIC , can be simplified as follows: 
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( )2 2

1
1

0
1 1 1

1
[ , ]

i i

n

i i
i

n ni n

i
i j k

n n
MEC

j k

2
0 

=
=

= = =

τ + σ
= −

⎛ ⎞
∑⎜ ⎟

⎝ ⎠

∑

∑ ∑∑
     (5) 

( )2 2

1
1

1 1 1

1
[ , ]

i i

n

i i
i

n ni n

i
i j k

n n
MIC

j k

2
0 

=
=

= = =

τ + σ
= −

⎛ ⎞
∑⎜ ⎟

⎝ ⎠

∑

∑ ∑∑
     (6) 

The range for both 1MEC  and 1MIC  is ( )−∞, 1 . For 1MIC , although the numerator is part of 

the denominator, the statistic can be negative because of negative elements in the off-

diagonal elements of iR . 

4.4  Data Generation Techniques  

Our simulations were similar to those conducted by Orelien and Edwards [17]. Using 

the IML module in SAS, we simulated 3 sets of data. In each of the data sets, there were 

10,000 replications, 64 subjects, and 6 observations per subject. The random effect for the 

three data sets consisted of an intercept, random slope and a quadratic term with an 

unstructured covariance structure. These data sets differed in the values for 2σ  that were 10, 

95, and 240. The different values of 2σ  were used to assess how performance of the pseudo-

2R  varied with increased within-subject error, which translates into within-subject 

correlations of about 0.5, 0.75 and 0.8. The parameters used in the analysis were: 

6 6 6[ , (1, 1.5, 2, 2.5, 3, 3.5) ,  (1, 2.25, 4, 6.25, 9, 12.25) , , ]k lδ δ′ ′=X 1 1 1 ; 

6[ , (5, 6, 7, 7.25, , ) ]′=     7.5  7.75Z 1 , where 61  is a 6 1×  vector of ones and , {0,1}k lδ δ = . We 
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took 

10
6

11
11

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

β  and 
4 2 1
2 1 0.5
1 0.5 1.25

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

G . The population parameter for 1MIC  was computed 

as 
1 1

2
1 1

1
1 1

1
[ , ]

n n

j k

n n

j k

2 2
0

= =

τ + σ
−

⎛ ⎞
∑⎜ ⎟

⎝ ⎠
∑∑

 where [1,1]2
0τ = G , 10,  95 and 2402σ =  and 

1 1

1
1 1

[ , ]
n n

j k

j k
= =

∑∑∑  

corresponds to the sum of the elements of the matrix 2
1 1 1 I∑ = + σZ GZ . Table 1 summarizes 

the 3 data sets that were used in the simulation. 

 

4.5 Data Analysis and Results 

Using the SAS System version 8.2 (SAS Institute, Cary, NC) for each of the 

simulated data sets, we fitted 3 different models by varying the random effect function. The 3 

models for each data set consisted of: a) a full model in the random effects with an intercept, 

variables for the linear and quadratic components of time; b) a reduced model in the random 

effects with an intercept and a variable for the linear component of time (reduced model 1); 

and c) a second reduced model in the random effects with only an intercept term (reduced 

model 2). For all models, the fixed effects remained the same. The purpose of fitting these 

models was to ascertain the ability of the 2R  statistics discussed in chapter 3 to identify 

misspecification in the random effect components.  

Results from these analyses are given in Table 2. The results show that overall the 

most desirable values are obtained for the reduced model that contains the intercept term and 

the linear term for time (reduced model 1). For the full model, for both 1MEC  and 1MIC , 

negative values are obtained. Values closest to the population parameter for 1MIC  are 
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obtained for the reduced model with intercept term and age in the random effects (reduced 

model 1). On the other hand, values for the reduced model with only the random intercept 

term (reduced model 2) were much lower than the full model. In addition to formula (6), we 

also computed 1MIC  by substituting tr( )iΣ  for iΣ  (Table 2). Positive values closer to the 

true population parameter were obtained when tr( )iΣ  is used instead iΣ . 

Because the results seem to indicate that reduced model 1 is the best one, we 

investigated this further by comparing the values and precision of the fixed effect parameters 

for the full and the reduced models. Table 3 gives average parameter estimates and standard 

errors for each of the models fit on each data set. There are no discernable differences 

between full and reduced model with respect to the values of the estimates of the fixed effect 

parameters; suggesting that estimation of the fixed effects is robust to misspecification of the 

random effects for this example. Overall, the precision of the estimates is better for the full 

model, though, the difference between the precision of the parameters for the full model and 

reduced model 1 is minimal. For the quadratic term for age, slightly better precision is 

achieved with reduced model 1. In contrast, for the reduced model that consists of only an 

intercept in the random effect (reduced model 2), there is a remarkable difference in the 

precision of the estimates compared to that of the other models (full model and reduced 

model 1). In some instances, the average standard error for the parameter estimates for 

reduced model 2 is twice as large as that of the other models. 

 To compare the performance of the 2 statistics versus traditional tools used in 

assessing GOF, we computed the proportion of times the full versus reduced model 1, the full 

model versus reduced model 2 and reduced model 1 versus reduced model 2 were identified 

as being the correct model based on AIC, BIC and LRT. For AIC and BIC, we simply 
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compared values of the statistics within pairs of models. For the LRT, we used the 95% 

percentile of a Chi-square distribution with the degrees of freedom being the difference in the 

number of parameters that would need to be estimated for the covariance of the random 

effects [19]. For example, the number of parameters to be estimated for the covariance matrix 

of the random effects in the full model is 6, based on 
11 12 13

12 22 23

13 23 33

a a a
a a a
a a a

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

G  and 3 for reduced 

model 1, based on 11 12

12 22

a a
a a

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
G . Between the full model and reduced model 1, the 

traditional statistics AIC and BIC do not appear to detect a significant difference except for 

2 10σ = . Also, for that same value of 2 10σ = , the empirical error rate for the LRT is not 

close to the level 0.05α = , which suggests that between two models in the random effects 

that include a time component, the LRT may be unable to detect a difference even if it exists. 

For comparing reduced model 2 to the full model or to reduced model 1, the appropriate 

model is selected over 90% of the time in most cases.  

 

4.6 Example: Schizophrenia Data 

 Xu [24] presented data from a clinical trial to compare the efficacy of an experimental 

drug versus a control. The study included a total of 233 patients from 13 sites, and there were 

three doses for the experimental drug: low, medium, and high. The endpoint of interest was 

the Brief Psychiatric Rating Scale (BPRS) at baseline, 1, 2, 3, 4, and 6 weeks. Another 

explanatory variable that was considered was the status of an observation at a patient’s last 

visit, which was defined to be 1 if the patient was discontinued from the study due to lack of 

therapeutic effect and 0 otherwise. These data were first analyzed by Cnaan et al [3] in the 
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context of a tutorial for the linear mixed model. Six models with fixed effects as described in 

Table 4.5  were fitted. As was done in the analysis by previous authors, we subtracted 3 

weeks (similar to centering) from the time variable prior to the analysis in order to achieve 

near orthogonality between the linear and quadratic effects. All of the fixed effects models in 

Tables 5 and 6 were first fitted with a random effect function that consisted of the following 

components: an intercept, linear effect and quadratic effect for time. Because model 6 for the 

fixed effects appears to fit the data the best based on values of 1MEC , we fitted those same 

fixed effects with a reduced random effect model that consisted of an intercept and linear 

effect for time to obtain model 7. Table 5 gives values for 1MEC  and 1MIC  for the 6 

different models in the fixed effects that were originally considered by Cnaan et al. [3]. Table 

6 gives values of the fixed effect parameter estimates for models 6 and 7.  

 According to Table 5, none of the models has good “internal consistency” in that if 

we assume that the model is correct; the variables don’t explain a significant proportion of 

the variation in the outcome. At the same time, some of these models appear to have 

“external consistency” in that they are better at explaining the variation in the data compared 

to a null model. When the reduced random effect model is used for the best combination of 

fixed effect variables (model 7 as opposed to model 6), there is a noticeable increase in the 

value of 1MEC  (i.e., external consistency is improved). Table 6 shows that based on the 

precision of the parameter estimates for the fixed effects, the reduced model in the random 

effects is as good as the full model in the random effects. 
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4.7 Discussion 

The results of our simulation show that two statistics 1MEC  and 1MIC  that were 

proposed in Chapter 3 for assessing internal and external consistency of a model perform 

satisfactorily in being able to determine misspecification of the random effects structure in 

the linear mixed model. These statistics fared best in being able to discriminate between a 

longitudinal model which include the time covariates and a reduced model that contains only 

a random intercept. In our simulations, the statistics were not able to discriminate between 

two models that both included time covariates in the random effects but differed in the 

inclusion of a quadratic term for time and a model with an intercept and linear effect for time. 

However, we have shown that it is very possible that for the LMM that the model with an 

intercept and a linear term for time (reduced model 1) in the random effects may be as good 

as the model with an intercept, linear and quadratic terms for time (full model). Hence, the 

fact that no differences were detected between the full model and the reduced random effects 

that omitted the quadratic term may not be an indication that the statistics 1MEC  and 1MIC  

are inappropriate for assessing the adequacy of the random effects. Finally, consideration 

should be given to substituting tr( )iΣ  for iΣ  in the computation of 1MIC  as doing so in our 

simulations yielded values that were closer to the population parameter (for the reduced 

model 1).  

 Our results were similar to those of Gurka [8] for the AIC and BIC for comparing a 

model with an intercept and a linear term for time and a model with only an intercept term. 

Gurka [8] showed that the AIC and BIC more than 90% of the time were able to identify the 

correct model. Heagerty and Kurland [11] found that misspecification of the random effect 

can lead to biased estimates of the variances of the parameter estimates. Like Gurka [8], the 
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simulations by Heagerty and Kurland [11] were limited to a full model in the random effects 

that included an intercept and linear term for age. These results also confirm the 

recommendation by Cnaan et al. [3] that often an intercept and a linear term for time are 

sufficient for the random effects structure. Cnaan et al. [3] gave no justifications for this 

recommendation. 

 

4.8 Conclusion 

These results confirm that the statistics 1MEC  and 1MIC  can be used to assess the 

adequacy of the random effects and have similar performance to that of other statistics such 

as AIC or BIC. Equally important is our finding that misspecification of the random effects 

can have minimal effect on the fixed parameter estimates or the precision of those estimates 

when a reduced model with intercept and slope is used even if the true model in the random 

effects includes a quadratic term. This finding suggests that in longitudinal data analysis 

involving the LMM, the choice for the random effects can be simplified to deciding whether 

the linear effect for time needs to be added to the random intercept. Once this choice is made, 

the analyst can then proceed to focus on determining the subset of fixed effect components 

that describes best the variation in the outcome. Our results are limited in the fact that we did 

not investigate the performance of the statistics when the random effects structure was 

overfitted. This would be useful in the case when the true model is comprised of only a 

random intercept and a linear term for time is added. 
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Table 4.1 Description of the data sets used in the simulation  
Data Set Value of 2σ  Proportion of variation 

explained by the cross-

sectional covariates 

(Population Parameter for 

1MEC ) 

Type of Covariance 

Matrix for the random 

effects  

1 12 0.89 

2 95 0.70 

3 240 0.52 

4 2 1
2 1 0.5
1 0.5 1.25

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

G  
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Table 4.2 Performance of the statistics 1MEC   and 1MIC   in assessing adequacy of random effects  

2σ  Model 

1MEC : Based on 
comparing to 

variance of null model 
(2)  

1MIC : Based on comparing 
to total variance  

1MIC : Based on comparing 

to total variance  using tr( )iΣ  

instead of iΣ  
 
 

10 
Full Model in the random effects:

Intercept, age and Agesq0.74 (0.65, 0.85) 0.71 (0.62, 0.83) 0.87 (0.84, 0.90) 

10 
Reduced Model 1 in the random

effects: Intercept and Age0.79 (0.75, 0.83) 0.77 (0.72, 0.82) 0.89 (0.87, 0.90) 

10 
Reduced Model 2 in the random

effects: Intercept0.08 (0.03, 0.13) -0.00 (0.00, 0.00) -0.00 (0.00, 0.00) 

95 
Full Model in the random effects:

Intercept, age and Agesq-1.01 (-1.74, -0.08) -1.18 (-1.92, -0.17) 0.85 (0.83, 0.88) 

95 
Reduced Model 1 in the random

effects: Intercept and Age0.51 (0.40, 0.67) 0.47 (0.35, 0.64) 0.77 (0.73, 0.81) 

95 
Reduced Model 2 in the random

effects: Intercept0.07 (0.02, 0.11) -0.00 (0.00, 0.00) -0.00 (0.00, 0.00) 

240 
Full Model in the random effects:

Intercept, age and Agesq-3.17 (-4.62, -1.25) -3.45 (-4.87, -1.38) 0.85 (0.83, 0.87) 

240 
Reduced Model 1 in the random

effects: Intercept and Age0.17 (-0.03, 0.45) 0.12 (-0.10, 0.42) 0.64 (0.59, 0.70) 

240 
Reduced Model 2 in the random

effects: Intercept0.06 (0.01, 0.10) -0.00 (0.00, 0.00) -0.00 (0.00, 0.00) 
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Table 4.3 Fixed effect parameter estimates and standard errors for each model fitted  

2σ  Model 

Average Values 
for Intercept 

(Average 
Standard Error)

Average Values 
for Age (Average 
Standard Error) 

Average Values 
for Age Quadratic 

(Average 
Standard Error)

Average Values 
for Treatment 

(Average 
Standard Error)

Average Values 
for Gender 
(Average 

Standard Error)

10
Full Model in the random effects: Intercept, 
age and Agesq 29.98 (1.46) 1.52 (1.27) 1.50 (0.31) 4.00 (0.88) 4.02 (0.88) 

10
Reduced Model 1 in the random effects: 
Intercept and Age 29.98 (1.50) 1.51 (1.40) 1.50 (0.27) 4.00 (0.89) 4.02 (0.89) 

10
Reduced Model 2 in the random effects: 
Intercept 29.99 (3.06) 1.51 (2.27) 1.50 (0.50) 3.98 (2.31) 4.03 (2.31) 

95
Full Model in the random effects: Intercept, 
age and Agesq 29.93 (4.19) 1.52 (3.88) 1.49 (0.86) 4.02 (1.86) 4.02 (1.86) 

95
Reduced Model 1 in the random effects: 
Intercept and Age 30.01 (4.00) 1.47 (3.67) 1.50 (0.79) 4.00 (1.88) 4.02 (1.88) 

95
Reduced Model 2 in the random effects: 
Intercept 30.02 (4.72) 1.49 (4.12) 1.50 (0.90) 3.99 (2.49) 3.98 (2.49) 

240
Full Model in the random effects: Intercept, 
age and Agesq 30.18 (6.54) 1.30 (6.14) 1.54 (1.35) 3.94 (2.48) 4.09 (2.48) 

240
Reduced Model 1 in the random effects: 
Intercept and Age 30.09 (6.19) 1.43 (5.75) 1.51 (1.25) 3.99 (2.50) 4.00 (2.50) 

240
Reduced Model 2 in the random effects: 
Intercept 30.10 (6.65) 1.43 (6.10) 1.51 (1.34) 3.99 (2.78) 3.97 (2.78) 
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Table 4.4 Using AIC, BIC and LRT for comparing the different models  

 
AIC, BIC and LRT for comparing full model 

and reduced model 1 
AIC, BIC and LRT for comparing full model 

and reduced model 2 
AIC, BIC and LRT for comparing reduced 

model 1 and reduced model 2 
2σ  AIC BIC LRT AIC BIC LRT AIC BIC LRT 

10 98% 84% 99% 100% 100% 100% 100% 100% 100%
95 29% 6% 41% 100% 100% 100% 100% 100% 100%

240 18% 3% 31% 98% 75% 100% 100% 97% 99%
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Table 4.5 Schizophrenia data: measures of external and internal consistency 

Model 
 

Fixed effects terms 1MEC  1MIC  

1 Week, 2Week  0.32 -0.24 
2 Treatment, Week, 2Week  0.34 -0.24 

3 
Treatment, Week, 2Week , 

Week Treatment×  0.34 -0.23 
4 Treatment, Week indicators 0.31 -0.27 

5 
Treatment, Week, 2Week , 

Week Site×  0.41 -0.29 

6 
Treatment, Week, 2Week , 

Status 0.54 -0.26 

7 

Treatment, Week, 2Week , 
Status (reduced model in the 

random effect) 0.64 0.01 
 
All models above included baseline BPRS and center in the fixed effects. The random 
effects consisted of an intercept term, a linear and quadratic effect of time for models 1 
through 6. For model 7, the random effects consisted of an intercept and a linear effect of 
time. 
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Table 4.6 Parameter estimates for the full and reduced model in the random effects  
 Parameter estimates for model 6 of 

Cnaan et al. (1997). The random effect 
consists of an intercept, linear and 

quadratic effects for time 

Parameter estimates for model 7 of Table 
4.5. The random effect consists of an 

intercept, linear and quadratic effects for 
time 

Parameters  Parameter estimate 
  

 Standard error of 
the parameter 

estimates 
  

Parameter estimate 
 
  

 Standard error of the 
parameter estimates 

Intercept 26.60 3.53 26.97 3.60
bprs0 0.58 0.06 0.57 0.06
site1 -8.44 3.80 -8.85 3.89
site11 -4.68 3.99 -6.44 4.09
site12 -10.35 3.60 -9.50 3.69
site15 -14.39 4.23 -14.06 4.33
site16 -9.43 3.63 -9.78 3.72
site2 -12.05 3.31 -11.69 3.39
site3 -11.99 2.97 -12.14 3.04
site4 -5.72 4.49 -6.08 4.57
site5 -15.75 4.30 -14.87 4.41
site7 -10.64 3.62 -11.06 3.70
site8 -0.45 3.24 0.23 3.32
site9 -4.14 3.38 -3.94 3.45
status -16.28 1.07 -16.10 1.11
time -2.35 0.21 -2.30 0.19
timesq 0.46 0.08 0.49 0.07
trt1 1.14 1.53 0.86 1.57
trt2 -1.01 1.49 -1.33 1.53
trt3 -0.12 1.51 -0.69 1.55
 



 

 

 

 

  

5 Conclusion and Further Research 

This dissertation research has contributed to identifying shortcomings in existing 2R  

statistics for the LMM, proposed new 2R  statistics, and has demonstrated the suitability of 

these new statistics in assessing adequacy of both fixed and random effects.  However, our 

research has left some questions on GOF for the LMM unanswered and raised additional 

ones.  In this chapter, we provide some conclusions stemming from the completion of the 3 

papers included in the dissertation and discuss opportunities for further research.  Our 

conclusions are in Section 5.1 and areas for future research are discussed in Section 5.2. 

 

5.1 Overall Conclusions 

Assumptions  

One of the first lessons that must be taken into account is that assumptions that may 

make sense in the traditional linear models may not be applicable to the LMM.  For 

example, in the traditional linear model, by adding additional covariates in a model one 

expects the variance of an observation based on the model to be reduced.  This may not 

necessarily be true in the LMM.  One of the key findings that might be unexpected is that 

the conditional residuals would be robust to misspecifications of the cross-sectional 

covariates.  As a result, care must be exercised in using assumptions from traditional linear 

models or other classes of models to develop 2R  statistics.  Based on this dissertation 
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research, it is the humble opinion of the author that extensive simulations are needed to 

ensure that a proposed 2R  is working as intended—even when appropriate theoretical 

justifications have been given for the 2R statistic.  Furthermore, because an 2R  statistic has 

been proven to be adequate for a subclass of models in the LMM, this is not a guarantee 

that the statistic will have similar performance for all other subclasses of the LMM.  This 

caveat applies to the 2R  that we have proposed as well.  Our simulations were limited to 

instances with longitudinal data and conditional independence.  As we will discuss later in 

this chapter, more simulations are needed to ensure that our results are applicable to other 

subclasses in the LMM. 

 Another area for concern in the development of 2R  statistics is that one may need to 

be careful even when anticipated results are obtained in simulations.  For example, our 

simulations confirm that the statistics proposed by Xu (2003) estimate a population 

parameter.  However, it is clear that this population parameter estimated by the statistics 

proposed by Xu (2003) is inappropriate for assessing GOF in the LMM.  

 

There is a need for more than one 2R  

A second conclusion of this dissertation research is that there is a need for more 

than one 2R  statistic in the LMM.  In paper 2 of this dissertation, we proposed two types of 

statistics that measure different aspects of a LMM: a) how well the variation of the outcome 

can be explained by a null model and b) how well the variation of the outcome is explained 

by the model at hand assuming that it is the true model.  Ideally, one would want both types 

of 2R  statistics to be high, but in the example given in paper 2, one statistic was high and 
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the other low.  Because the two types of statistics are measuring different constructs, it is 

possible for them to be discordant.   

While we have shown the need for more than one 2R  for assessing adequacy of the 

fixed effects, one can see how future research could develop 2R  statistics for assessing 

adequacy of the random effects or assessing adequacy of the covariance structure.  For 

example, Vonesh et al. (1996) have proposed an 2R  statistic for assessing the covariance of 

structure that has no relevancy for the adequacy of the fixed effects or the random effects. 

Hence, the likely scenario is that there is probably more than one 2R  statistic as we have 

proposed for assessing adequacy of the fixed effect terms, more than one 2R  statistic for 

assessing adequacy of the random effects and more than one 2R  statistic for assessing the 

adequacy of the covariance structures. 

 

Simpler Models in the Random Effects or Covariance Structures  

In most instances of the LMM, the parameters for the random effects or the 

parameters for the covariance of these random effects or the error terms are not of primary 

interest—they can be treated as nuisance parameters—that need to be accounted for so that 

unbiased estimates of the fixed effect parameters estimates can be obtained. The 

simulations in paper 3 have indicated that it is possible that simpler models in the random 

effects might be as efficient as a more complex model in the random effects. In limited 

simulations of several covariance structures performed, we had difficulty in attaining 

convergence for the most complex ones such as an unstructured covariance matrix. It is 

possible that a simpler covariance structure might still lead to unbiased estimates of the 

fixed effect parameter estimates. 
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Keeping an “eye on the prize” 

As we have stated in this dissertation, in many epidemiological studies with 

longitudinal data, the primary interests of the researchers are in estimating the fixed effect 

parameters and their variances. While 2R  statistics provide useful information, they should 

be complemented with other statistics for determining adequacy of the model. In particular, 

the analyst should review the values of the fixed effect parameter estimates and their 

confidence intervals. Small values of the fixed effect parameters (e.g., close to 0), even 

when they are significant, should be cause for concerns. Wide confidence intervals for one 

or more fixed effect parameters could also be an indication that the model might be 

inadequate. The idea is that statistical significance does not mean practical significance. 

Also, for model selection, the analyst should consider comparing the variance of the fixed 

effect parameters for choosing the appropriate model. 

 

5.2 Future Research 

Use of 2R  in other subclasses of models in the LMM and other classes of models 

While the approach that we have proposed seems to work for the types of 

simulations that we have conducted, it will be worthwhile to conduct additional simulations 

before extending these results to other subclasses of models. In particular, in our 

simulations we assumed conditional independence. Also, our study was limited to 

longitudinal data.  A typical feature of models for longitudinal data in the LMM is that the 

random effects are nested in the fixed effects. There are other models in the LMM where it 

may not make sense to include all variables that are in the random effects in the fixed 
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effects as well. For example, suppose a study is done in multiple hospitals, the analyst may 

wish to use hospital in the random effect to account for the clustering (correlation within 

hospital) without including hospital as a fixed effect. The rationale for doing so is that there 

is no inherent interest in hospital as a fixed effect. It is simply a nuisance parameter. 

Beyond the LMM, there are other classes of models such as nonlinear mixed models 

(NLM) that the 2R  statistic or approaches we have outlined in Chapter 3 could be useful. 

Some of the concepts that we introduce such as “external validation” (comparing the model 

at hand to a null model) and “internal validation” (to compute the variation explained by 

the model at hand assuming that it is adequate), especially the former, could be applicable 

to many models. Notice that for any model, a null model consisting of an intercept can 

always be achieved, including traditional linear models. 

 

Using 2R  for model selection when both fixed and random effects are misspecified 

In this dissertation, we have investigated the performance of 2R  for comparing the 

fixed effects of models having the same random effects or for comparing the random 

effects for models having the same fixed effects. Comparisons of linear mixed models 

where both the mean and random effect models are different were not considered and have 

essentially been ignored in the statistical literature.  There are four types of linear mixed 

models that differ in both the mean and random effects  1) The mean models are different 

with random effect models the same 2) The random effect models are different with mean 

models the same.  3) Both the mean and random effect models are different but nested.  4) 

Both the mean models and random effect models are different but non-nested.   
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The first type is the same as the problem that we address in chapters 2 and 3 and the 

second type is similar to the problem we addressed in chapter 4.  Situations that arise in 

types 3 and 4 are beyond the scope of this dissertation.  For type 3, one could determine 

through simulations whether it is a) best to first determine the adequacy of the reduced 

random effects model and then the fixed effects model or b) first determine the adequacy of 

the reduced fixed effect model and then the random effect model.  Tools developed in this 

dissertation could be used to come up with such determinations.  Additionally, we will 

assess the performance of the AIC and BIC in selecting such models. 

 

Using 2R  for assessing adequacy of the Covariance Structure 

Vonesh and al. (1996) proposed 2 statistics for assessing the adequacy of the 

covariance structure in the LMM.  One of these statistics, the variance-covariance 

concordance correlation coefficient measures the distance, scaled to 1, between the 

assumed covariance matrix and the robust covariance matrix (“sandwich estimator”) of 

Liang and Zeger (1986).  The other, denoted the pseudo likelihood ratio test (PLRT), is a 

formal test for detecting significant differences between the 2 covariance matrices.  Results 

from a limited simulation (400 replicates) of the PLRT were presented.  No simulation 

results on the performance of the variance-covariance concordance correlation coefficient 

were presented. 

One approach might be to simulate replicates of multivariate normal data with the 

following covariance structures: unstructured, Toeplitz, spatial, first order autoregressive, 

compound symmetry and independence.  For each of these covariance structures, one could 

compute the number of times it is rejected as being inadequate when another covariance-
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structure in the list is specified (power) and the number of times the test rejects the true 

covariance structure (type I error).  Estimates of the variance-covariance concordance 

correlation coefficient will be computed to assess its performance when the true covariance 

structure is specified or misspecified (including the equivalent of a null model for the 

covariance structure such as complete independence).  In performing these simulations, one 

needs to take into account instances when the covariance structure is misspecified but the 

misspecified covariance is nested in the true covariance. 

The test proposed by Vonesh and Chinchilli (1996) is based on the asymptotic 

distribution of a statistic that has a chi-square distribution.  Another approach in comparing 

2 matrices is to use a statistic based on a Wishart distribution.  Future research could look 

into developing and proposing other tests based on the Wishart distribution to assess the 

adequacy of the covariance structure.  The performance of any test proposed would be 

evaluated through simulations and compared to that of the PLRT.  

Another possibility that we have considered is a test based on an approximate F 

statistic. The test could be constructed as follows. Let ( )i fΣ  be the covariance matrix for the 

full model and ( )i rΣ  the covariance matrix for a reduced model in the random effects.  We 

define the sum of squares for the full model in the covariance matrix as 

1
( )

1

( )
n

i f
i

SS f −

=

′= ∑ i i(y - Xβ) Σ (y - Xβ)  and the sum of squares for the full model as 

1
( )

1
( )

n

i r
i

SS r −

=

′= ∑ i i(y - Xβ) Σ (y - Xβ) .  The approximate F test statistic could then be defined 

as 1

2

( * ) ( )
( * ) ( )ran

n r SS rF
n r SS f

=  where ( )1 ( )i fr rank= Σ  and ( )2 ( )i rr rank= Σ .  There are different 

possibilities for the rank of the test that could be investigated. One such possibility is that 
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the degrees of freedom are respectively 1 2and nr nr  in the numerator and denominator. One 

could investigate through simulations that under the null hypothesis the full model is not 

different from the reduced model and that ranF  follows an approximate F  distribution with 

degrees of freedom 1 2 and nr nr . 
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