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Abstract 

Amanda Gates Wright:  Close Homolog of L1 (CHL1) Mediates Guidance of 
Thalamocortical Axons Through Extracellular and Intracellular Interactions 

(Under the direction of Patricia F. Maness, PhD) 
 
 

Close Homolog of L1 (CHL1), an L1 cell adhesion molecule expressed on 

thalamocortical and corticofugal axons, is identified as a regulator of   

thalamocortical axon guidance via extracellular interactions with Neuropilin1 (Npn1) 

and integrins and intracellular interactions with the actin cytoskeleton.  CHL1 

deletion in mice disrupted the topographic projection of somatosensory thalamic 

axons, causing them to inappropriately target the visual cortex.  This shift was first 

observed in the ventral telencephalon (VTe), an intermediate target with graded 

Sema3A expression, where axons from the ventral basal complex (VB) of the dorsal 

thalamus were shifted caudally.  Caudal thalamic axons were also dependent upon 

CHL1 for preferential guidance through high Sema3A territories.  A similar pattern of 

aberrant guidance was observed in Npn1Sema-/- mutant embryos, in which axons are 

nonresponsive to Sema3A.  CHL1 associated with Npn1 through a sequence in the 

extracellular domain of CHL1, which was required for Sema3A-induced growth cone 

collapse.  Deletion of both L1 and CHL1 further disrupted thalamocortical 

topography, resulting in aberrant targeting of somatosensory and motor thalamic 

axons to the visual cortex.  For the first time, these results demonstrate a role for 

Sema3A, Npn1, and CHL1 in regulating the topography of thalamocortical axons in
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the VTe.  CHL1 linkage to the cytoskeleton through ezrin, radixin, and moesin (ERM) 

proteins and ankyrin is critical for axon growth and guidance and cell migration.  

CHL1 associated with ERM proteins through a conserved sequence in the 

intracellular domain of CHL1, important for cell migration, neurite outgrowth and 

branching, and for Sema3A-mediated growth cone collapse.  The cytoskeletal 

adaptor protein, ankyrin, was also recruited to the plasma membrane though a 

sequence in the CHL1 cytoplasmic domain containing a conserved tyrosine residue 

(Phe-Ile-Gly-Ala-Try), which was required for promoting integrin-dependent 

migration.  CHL1 potentiated cell migration to extracellular matrix proteins by 

functionally interacting with β1 integrins, mediated by c-Src, phosphatidylinositol 3-

kinase, and ERK MAP (mitogen-activated protein) kinase.  

In summary, a novel role for CHL1 has been demonstrated in mediating the 

cellular responses of Sema3A and Npn1, important for thalamic axon guidance.  In 

addition, the mechanism by which CHL1 associates with Npn1 and couples to the 

actin cytoskeleton has been defined.   
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Chapter 1 

 

Introduction



1.1 Summary 
 

During development of the nervous system, sophisticated mechanisms 

control the connectivity between the thalamus and the cerebral cortex, the most 

highly organized information processing center in the brain.  The cerebral cortex is 

divided into different areas, the functions of which are determined by sensory inputs 

from the thalamus.  Most thalamic nuclei project axons to distinct cortical areas in a 

topographic manner organized along both rostrocaudal and mediolateral axes.  

Rostral cortical areas receive input from rostromedial thalamic nuclei, and caudal 

cortical regions are targeted by caudolateral thalamic nuclei (Figure 1.1).  Despite 

decades of research, the mechanisms that control the precise connections between 

the thalamus and the cerebral cortex are only partly understood.  Along with several 

other guidance molecules, new roles are emerging for L1 neural cell adhesion 

molecules (L1-CAMs) as regulators of axon guidance.  Close Homolog of L1 

(CHL1), a member of the L1-CAM family, was examined in Chapter 2 for a novel, 

functional role in the development of thalamocortical axon topography controlled by 

interaction of the CHL1 extracellular region with Neuropilin1, a Semaphorin3A 

receptor.  A potential cooperation between L1 and CHL1 in controlling 

thalamocortical topography by mediating axon responses to EphA/ephrinA guidance 

cues was investigated in Chapter 3.  Chapters 4 and 5 describe associations of the 

intracellular domain of CHL1 with ERM (ezrin, radixin, moesin) proteins and ankyrin, 

which couple to the actin cytoskeleton.  Taken together these results demonstrate, 

for the first time, a requirement for CHL1 in establishing contacts necessary for axon 

growth, guidance, and targeting.  
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1.2 Establishment of Thalamocortical Connections 

Timing and Early Patterning of Thalamic Axon Outgrowth 

 Proper topographic mapping of thalamic axons to distinct targets in the 

neocortex requires a series of guidance decisions at both subcortical (diencephalic-

telencephalic boundary) and cortical (pallial-subpallial boundary) levels.  Developing 

thalamic axons initially project ventrally from the dorsal thalamus, turn dorsolaterally 

to enter the internal capsule (IC) of the ventral telencephalon (VTe), an intermediate 

target, and eventually target specific neocortical areas (Figure 1.1 A).  Similarly, 

neurons from cortical layer VI extend axons that travel through the IC to specific 

targets in the thalamus (Lopez-Bendito and Molnar, 2003).  The molecular 

determinants regulating these events, and developmental mechanisms underlying 

the complex topography of thalamocortical projections, remains unclear.  

Transcription factors with graded expression in the thalamus (Neurogenin2 (Seibt et 

al., 2003) and Gbx2 (Hevner et al., 2002)) are important determinants of early 

thalamocortical topography, contributing to guidance decisions at the diencephalic-

telencephalic boundary.  Neurogenin2 (Ngn2), which is expressed in a high-rostral to 

low-caudal gradient in the dorsal thalamus, specifies the projection of rostral 

thalamic axons to frontal cortical areas by mediating the responsiveness of axons to 

cues within the VTe (Seibt et al., 2003).  Mice deficient in Gbx2, a homeobox gene 

expressed at early stages in the dorsal thalamus, display defects in both 

thalamocortical and corticothalamic development (Hevner et al., 2002).  Thalamic 

axons are reduced in number and do not enter the cortex, while cortical axons 

(which do not express Gbx2) suspend growth in the IC, or misproject to the cerebral 
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peduncle, without entering the thalamus.  This finding suggests that thalamocortical 

and corticothalamic axons might depend on each other for axon guidance (Hevner et 

al., 2002).  While cues within the dorsal thalamus are sufficient to initiate the 

topography of thalamocortical projections, there is evidence that cues within the 

cortex also play a role in patterning the specificity of thalamic axons (Zhou et al., 

1999; Mallamaci et al., 2000; Bishop et al., 2002; Shimogori and Grove, 2005).   

Thalamocortical Topography and Cortical Arealization 

Although thalamic axons reach the neocortex around E16 in the mouse, only 

lower cortical layers are formed at this time and the cortical plate is not yet 

permissive to axonal growth.  In fact, the target cells of most thalamic axons (layer 

IV) are not in place until after birth (Lund and Mustari, 1977).  For this reason, 

thalamic fibers remain in the intermediate zone and subplate until E17 before 

invading the cortical plate.  This waiting period has been shown to be critical in the 

topographic targeting of thalamocortical axons (Ghosh and Shatz, 1992).  While 

thalamic axons accumulate in the subplate, they engage in activity-dependent 

interactions through side branch formation that leads to their realignment and proper 

targeting (Catalano and Shatz, 1998).  Thus, the initial phase of target selection by 

thalamocortical axons may depend on dynamic interactions of growing thalamic 

axons within the subplate. 

Significant cortical invasion of thalamic axons commences just before birth 

(E18-E19 in the mouse), when axons detach from the subplate and grow into the 

cortical plate.  Axons make a dorsal turn from their path in the intermediate zone, 

and the vast majority of fibers grow radially into the cortex (Agmon et al., 1993).  The 
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initial topography established during early thalamic axon outgrowth is continued 

during invasion of the cortex, with individual thalamic nuclei targeting specific cortical 

regions (inter-areal topography).  Axons from the rostrally located ventroanterior 

(VA) or ventrolateral (VL) nuclei project to the motor cortex; axons from the 

ventrobasal complex (VB) project to the somatosensory cortex; and axons from the 

lateral geniculate nucleus (LGN), located in the caudal thalamus, target the visual 

cortex (Caviness and Frost, 1980; Dufour et al., 2003; Lopez-Bendito and Molnar, 

2003) (Figure 1.1 B).  Within each neocortical area, a second level of organization is 

established where thalamocortical projections form a physical map of the sensory 

information (intra-areal topography).  Intra-areal topography emerges later in 

development and is refined during the first postnatal week by activity dependent and 

independent mechanisms (Antonini and Stryker, 1993; Feldheim et al., 1998; Lopez-

Bendito and Molnar, 2003). 

Recent experiments have shown that the neocortex is regionalized early in 

development, prior to invasion of thalamocortical axons (Nakagawa et al., 1999).  

Cues such as Emx2, COUP-TFI, and Fibroblast Growth Factor 8 (Fgf8), with distinct 

expression patterns in the cortex, have been implicated in the positioning of cortical 

areas (Zhou et al., 1999; Bishop et al., 2000; Fukuchi-Shimogori and Grove, 2001; 

Zhou et al., 2001), targeting of limbic thalamic axons (Mann et al., 1998; Uziel et al., 

2002), and intra-areal topography of thalamocortical axons (Vanderhaeghen et al., 

2000).  Therefore, it is plausible that such cues could also control inter-areal 

topographic mapping and targeting of thalamocortical axons.  This idea is supported 

by the analysis of Emx2 and COUP-TFI mutant mice, where the entire neocortex is 
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shifted caudally and thalamocortical axons demonstrate a corresponding caudal shift 

in the targeting of cortical areas (Zhou et al., 1999; Bishop et al., 2000; Mallamaci et 

al., 2000).  Furthermore, thalamic axons respond to shifts in cortical boundaries due 

to ectopic Fgf8 expression resulting in altered thalamocortical targeting (Shimogori 

and Grove, 2005). 

An alternative mechanism to explain thalamocortical topography was 

proposed by Molnar and colleagues (Molnar and Blakemore, 1991; Molnar et al., 

1998; Lopez-Bendito and Molnar, 2003), suggesting that thalamic axons may be 

instructed to target specific cortical areas by interacting with apposing cortical axons 

originating from that area.  This idea, the “handshake hypothesis,” is supported by 

the finding that thalamic axons and axons from the subplate and the telencephalon 

meet in the lateral region of the IC at E15 in the rat and grow in close contact 

through the VTe, (Lopez-Bendito and Molnar, 2003).  Though this theory remains 

controversial, it is supported by several mutant mouse models.   For example, 

analysis of corticothalamic and thalamocortical connections in mice with mutations in 

transcription factors, Tbr1 (expressed in the cortex), Gbx2 (expressed in dorsal 

thalamus), and Pax6 (expressed in both), demonstrate that the reciprocal 

connections may not form independently.  Defects in corticothalamic or 

thalamocortical pathfinding lead to guidance errors in the reciprocal population of 

axons in all mutants (Hevner et al., 2002).  One interpretation of these results is that 

fasciculation between thalamic and cortical axons is required for the establishment 

of connections between the thalamus and neocortex.   
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On the other hand, in vitro experiments using cortical and thalamic rat 

explants reveal that axon fasciculation does not occur between cortical and thalamic 

axons.  Regional specificity for axonal connections was examined in vitro by co-

culturing slices of visual cortex with explants from LGN.  Cortical and thalamic fibers 

do not form heterotypic fascicles, and in most cases growth cones retract when 

approaching axons of the opposite type (Bagnard et al., 2001).  Conversely, 

homotypic axon fasciculation is prominent. Thalamic growth cones extend along the 

surface of other thalamic axons and cortical growth cones form fascicles with other 

cortical axons.  These results suggest that cortical and thalamic fibers may express 

different collapse factors that prevent them from directly interacting.  

Although the cortex is clearly a source of cues important for instructive 

guidance of thalamocortical axons, mechanisms controlling topographic guidance 

and area-specific targeting within the neocortex are unclear.  There is a growing 

body of evidence which suggests that molecular events outside the neocortex are 

responsible for the initial sorting and guidance of thalamocortical axons (Metin and 

Godement, 1996; Tuttle et al., 1999; Braisted et al., 2000; Garel et al., 2002; Dufour 

et al., 2003; Seibt et al., 2003).  The VTe has emerged as a key intermediate target 

for thalamic axon sorting to cortical areas along the rostrocaudal axis (Dufour et al., 

2003; Seibt et al., 2003; Lopez-Bendito et al., 2006; Bonnin et al., 2007); however, 

the guidance cues within this region and mechanisms controlling this level of 

organization are just beginning to be revealed.    
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1.3 The Ventral Telencephalon: An Intermediate Target in the Topographic 

Mapping of Thalamocortical Axons 

As thalamic axons leave the thalamus, they turn dorsolaterally at the 

diencephalic-telencephalic border and enter the IC of the VTe by E13 in the mouse.  

The VTe constitutes the region below the DTe extending to the lateral ventricle, 

including the medial, lateral, and caudal ganglionic eminences, as well as more 

ventral structures, the caudate putamen, globus pallidus, and amygdala.  

Chemoattractant signals within the VTe, along with a chemorepellent signal in the 

hypothalamus, are responsible for the dorsolateral turn of thalamic axons into the IC 

(Metin and Godement, 1996; Braisted et al., 1999; Braisted et al., 2000).  At the 

thalamic eminence, the border between the thalamus and VTe, thalamocortical 

fibers form distinct fascicles which open up in a fan-shaped fashion in the IC (Garel 

et al., 2002; Dufour et al., 2003).  Spatial positioning of thalamic axons within the 

VTe determines the rostrocaudal level of neocortex that the axons will subsequently 

target.  Support for a role of the VTe in thalamocortical axon sorting is three-fold.  

First, contact-mediated interactions between thalamic axons and ventral 

telencephalic neurons play a role in thalamocortical axon guidance.  Second, 

regionalization of the VTe due to expression of regulatory genes affects proper 

guidance of thalamic axons through the intermediate target.  Lastly, attractive and 

repulsive guidance cues expressed within the VTe influence thalamic axon growth. 

Contact-Mediated Interactions 

There is clear evidence that transient axonal projections from cell groups 

within the VTe guide the early outgrowth of thalamocortical axons through the IC 

8



(Metin and Godement, 1996; Molnar et al., 1998).  Mash1, a basic helix-loop-helix 

transcription factor, is expressed in the lateral, medial, and caudal ganglionic 

eminences of the VTe.  A subset of ventral telencephalic cells and their projections 

are absent in Mash1 knockout mice.  As a result, thalamocortical pathfinding is 

misrouted and fewer axons project out of the thalamus.   Those that do fail to enter 

the VTe or innervate the cortex, despite normal cortical regionalization and proper 

corticothalamic axon development (Tuttle et al., 1999).  Mice deficient in Pax6 

demonstrate misrouted ventral telencephalic axons at the diencephalic-telencephalic 

border, causing a subset of thalamocortical axons to be misguided in a similar 

manner (Stoykova and Gruss, 1994; Hevner et al., 2002; Jones et al., 2002).  Both 

instances suggest that thalamic axons require interaction with projections from 

ventral telencephalic cells for guidance through the VTe.  A recent study further 

supports this hypothesis by demonstrating a role for the tangentially migrating cells 

of the VTe (Lopez-Bendito et al., 2006).  Specifically, the early migration of 

neuregulin1 (Nrg1)-expressing GABAergic cells from the lateral ganglionic eminence 

forms a permissive corridor for thalamic axon navigation through the VTe.  In the 

absence of corridor cells, thalamic axons fail to enter the telencephalon, suggesting 

that interaction of thalamic axons with this cellular group is essential for the 

development of topographic thalamocortical projections.  The molecular basis for 

this guidance mechanism depends upon two different isoforms of the Nrg1 gene and 

their receptor, ErbB4, which is expressed by thalamic neurons at the time they begin 

extending axons toward the telencephalon (Lopez-Bendito et al., 2006).  However, 
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topography persists in Nrg1 and ErbB4 mutant embryos, suggesting the necessity 

for other mechanisms to control thalamocortical axon guidance through the VTe.  

Regionalization of the VTe and Effects on Thalamic Axon Guidance  

Several transcription factors, including Ebf1 and Dlx1/2, are expressed in the 

VTe, and are important initial determinants of thalamocortical sorting at this site.  

Ebf1 encodes a helix-loop-helix transcription factor that is expressed in the VTe, the 

cortical marginal zone, and the dorsal thalamus (Garel et al., 1999).  Targeted 

inactivation of Ebf1 results in alteration of the molecular identity of cells within the 

VTe, resulting in the expression of an abnormal combination of genes in the 

intermediate target.  This mutant phenotype leads to defects in the size and 

properties of the VTe (Garel et al., 1999), without disrupting regionalization of the 

dorsal thalamus or the neocortex (Garel et al., 2002).   Consequently, thalamic 

axons from the LGN display an altered trajectory within the VTe of Ebf1 mutant 

mice.  These axons fail to turn dorsolaterally within the intermediate target, and 

instead misproject toward the amygdala.  Axons from the VB complex are shifted to 

more caudal regions of the IC and subsequently invade more caudal territories of the 

neocortex (Garel et al., 2002).   

Dlx1 and Dlx2 encode homeodomain transcription factors that control 

differentiation of GABAergic neurons (Anderson et al., 1997), which constitutes the 

large majority of ventral telencephalic cells.  Dlx1/2 is expressed in the VTe and the 

ventral thalamus, but not the dorsal thalamus (Garel et al., 2002).  Inactivation of 

Dlx1/2 also disrupts ventral telencephalic development, demonstrated by expansion 

of the subventricular zone due to abnormal localization of cells within the lateral 
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ganglionic eminence of the VTe (Anderson et al., 1997).  This defect leads to 

disorganization of axons within the IC.  In Dlx1/2 mutant embryos, thalamic axons 

from the LGN are misrouted in the VTe and fail to reach the cortex.  The topography 

of the remaining axons (including those from the VB nucleus) is shifted caudally in 

the IC and the neocortex, similar to the defects observed in Ebf1 mutant mice (Garel 

et al., 2002).  These results suggest that topography of thalamocortical axons is 

regulated non-autonomously by the spatial positioning and molecular identity of cells 

within the VTe, which is governed by the expression of regulatory genes located in 

this region.  Transcription factors may also have a role in controlling thalamocortical 

topography in a cell-autonomous manner by specifying axon responsiveness to 

guidance cues, such as ephrins, netrin1, and semaphorins. 

Guidance Cues in the Thalamocortical Pathway 

 Recent studies have demonstrated that the VTe contains cues that regulate 

the topographic patterning of thalamocortical projections (Dufour et al., 2003; Seibt 

et al., 2003; Bonnin et al., 2007) by eliciting attractive and repulsive responses from 

thalamic axons to direct their outgrowth to appropriate cortical regions.  Several 

molecules that control the pathfinding of thalamocortical axons within the 

intermediate target have been identified.  

Ephrins and Eph Receptors.  Ephrins are a widely studied family of axon 

guidance ligands with receptors known as Eph receptor tyrosine kinases.  Members 

of the EphA-receptor and ephrinA gene families play key roles in retinal axon 

guidance to the superior colliculus and the LGN in the thalamus (reviewed in 

Flanagan, 2006).  EphrinA2, A3, and A5 triple knockout mice display severe defects 
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in visual area map formation (Cang et al., 2005).  The primary visual cortex is shifted 

medially, rotated, and compressed and the internal organization is degraded.  Intra-

areal topographic projections within the visual cortex are also disrupted due to loss 

of the three ephrin ligands (Cang et al., 2005).  Furthermore, complementary 

gradients of ephrinA5 in the somatosensory cortex (high medial, low lateral) and 

EphA4 in the VB nucleus of the thalamus (high lateral, low medial) direct the intra-

areal topographic mapping of thalamic afferents within the primary somatosensory 

cortex (S1).  Loss of ephrinA5 disrupts the formation of the barrel field in S1 

(Vanderhaeghen et al., 2000).  EphrinA/EphA gradients also regulate the precision 

and reciprocity of thalamocortical and corticothalamic projections between 

neocortical areas (inter-areal topography) (Vanderhaeghen et al., 2000; Dufour et 

al., 2003; Torii and Levitt, 2005).  Analysis of ephrinA5/EphA4 double mutant mice 

reveals that gradients of ephrinA5 within the VTe and EphA4 on thalamic axons are 

important for early axon sorting within the intermediate target (Dufour et al., 2003).  

In mice lacking the receptor-ligand pair, some axons from the ventrolateral thalamic 

nucleus, which normally project to the rostrally located motor cortex, are shifted 

posteriorly to target the more caudal somatosensory cortex.  This shift in 

thalamocortical topography is first detected in the VTe, suggesting that ephrinAs and 

EphAs control the pathfinding of rostral thalamic axons within this region (Dufour et 

al., 2003).  Nevertheless, somatosensory and visual thalamic axons maintain 

topography in ephrinA5/EphA4 double knock out mice, indicating a role for other 

axon guidance cues in mediating the topographic guidance of thalamocortical axons 

in the VTe.  Chapter 3 further defines the mechanism for ephrinA5 in controlling 
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thalamic axon guidance, suggesting cooperation with adhesion molecules, L1 and 

CHL1. 

Netrin1.  Netrin1 is a bifunctional molecule triggering attraction or repulsion of 

growing axons, depending on the nature of the molecular interactions encountered 

(Burgess et al., 2006).  Netrin1 is expressed in medial dorsal thalamic nuclei, and in 

a high rostral to low caudal gradient in the VTe, during the time of thalamocortical 

navigation through the IC (Metin and Godement, 1996; Braisted et al., 2000; Bonnin 

et al., 2007).  One factor that determines the response of axons to netrin1 is the 

composition of netrin receptors available on the surface of growth cones.  Deleted in 

colorectal cancer (DCC) and a DCC paralog, neogenin, are responsible for the 

attractant effects of netrin1 and are expressed by thalamic axons.  Chemorepulsion 

by netrin1 is dependent upon expression of an UNC5 homolog (UNC5A-D) and, in 

some instances, co-expression of DCC (Stein et al., 2001).  Analysis of netrin1 

knockout mice reveals that thalamic axons are disorganized within the VTe and are 

restricted to dorsomedial areas.  Although fewer thalamic axons reach the cortex in 

netrin1 mutant mice, those that do display normal area-specific targeting.  These 

results suggest that netrin1 is an axon guidance cue within the VTe, but it most likely 

works in combination with other guidance molecules to control thalamocortical 

pathfinding.  Recent studies have shown that serotonin (5-HT) modulates the 

response of thalamocortical axons to netrin1 (Bonnin et al., 2007).  In vitro, axons 

from the posterior dorsal thalamus grow toward a source of netrin1 while anterior 

dorsal thalamic axons grow away from netrin1.  Activation of 5-HT receptors 

switches the response of posterior thalamic axons to netrin1 from attraction to 
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repulsion by decreasing intracellular cAMP levels.  Electroporation experiments 

further demonstrate a role for 5-HT in thalamocortical axon sorting within the IC.  

Overexpression of serotonin receptors in the dorsal thalamus elicits a repulsive 

response of axons that are normally attracted to netrin1, causing them to follow a 

more dorsally restricted path in the IC.  In addition, this change in receptor 

expression results in decreased intracellular levels of cAMP.  On the other hand, 

reducing expression of the same two receptors, which likely leads to increased 

cAMP levels, causes thalamic axons to spread into more ventrolateral regions of the 

IC due to attractive responses to netrin1 (Bonnin et al., 2007).  Thus, sorting of 

thalamocortical axons within the VTe is, in part, dependent upon axonal responses 

to netrin1, which are modulated by serotonergic signaling to control cAMP levels. 

Semaphorins and Neuropilins.  Another important family of guidance 

molecules is the semaphorins, which include transmembrane and secreted proteins, 

and their receptors, neuropilin1/2 (Raper, 2000).  Semaphorins have been shown to 

control many aspects of axonal development, including growth cone collapse, axon 

repulsion, inhibition of terminal arbor formation, suppression of branching, and 

homotypic fasciculation (Yazdani and Terman, 2006).  Studies have demonstrated 

that semaphorins can act as both repulsive and attractive guidance cues.  In vitro 

assays reveal that Semaphorin3A (Sema3A) has repulsive effects on cortical axons 

and prevents branching (Bagnard et al., 1998; Bagnard et al., 2001; Dent et al., 

2004).  However, Semaphorin3C (Sema3C) attracts cortical axons when 

encountered in an increasing gradient.  Growth cones are very sensitive to the 

direction of semaphorin gradients and respond strongly to increasing concentrations, 
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but are unaffected when they encounter decreasing or uniform concentrations 

(Bagnard et al., 2000).  In situ hybridization experiments demonstrate that Sema3A 

and Sema3C are expressed in the cortex and receptors for Sema3A/3C 

(Neuropilin1/2) are expressed on cortical axons during early embryonic stages 

(Bagnard et al., 1998).  Sema3A mRNA is predominantly detected in the cortical 

ventricular and subventricular zones, while Sema3C is restricted to the 

subventricular zone.   Attractant signals, in combination with repulsive molecules, 

may be required to direct early corticofugal axon outgrowth.  In particular, cortical 

efferent axons may be attracted to the deep intermediate zone by the gradient of 

Sema3C until they encounter the repulsive Sema3A, which prevents them from 

entering the subventricular and ventricular zones (Bagnard et al., 1998).   

Sema3A also has chemoattractive roles in the developing cortex.  Dendrites 

of pyramidal neurons are attracted toward the pial surface by a diffusible source of 

Sema3A near the marginal zone, while axons are repelled toward the white matter 

(Polleux et al., 2000).  The differential response of axons and dendrites to Sema3A 

is mediated by preferential localization of soluble guanylate cyclase (SGC) to the 

apical dendrite.  The chemoattractive effect of Sema3A toward apical dendrites is 

dependent upon SGC signaling through the downstream effector, cGMP-dependent 

protein kinase (PKG), as treatment with a PKG specific inhibitor blocked the oriented 

growth of dendrites toward the pial surface (Polleux et al., 2000).     

Recent tracing experiments have implicated Semaphorin6A in thalamic axon 

guidance (Leighton et al., 2001).  Caudal thalamic axons of Sema6A knockout mice 

fail to enter the IC and instead project downwards toward the amygdala (Leighton et 
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al., 2001).  Moreover, sema3A, which is expressed in the IC during times of axonal 

growth (Skaliora et al., 1998; Tamamaki et al., 2003), is involved in maintaining 

homotypic segregation via growth cone collapse and axon retraction (Bagnard et al., 

2001); however, its role in thalamocortical guidance is unclear.  The cell adhesion 

molecule L1 has been implicated in Sema3A signaling.  L1 and Npn1 interaction 

through their extracellular domains to mediate axonal responses to Sema3A, 

important for normal pyramidal decussation of corticospinal tract axons (Castellani et 

al., 2000).  Sema3A is secreted from the ventral spinal cord, repelling pyramidal tract 

fibers and forcing them to enter the contralateral dorsal spinal column.  L1-deficient 

cortical axons lose their responsiveness to Sema3A resulting in altered pyramidal 

decussation.  Upon binding of Sema3A to Npn1, L1 and Npn1 are co-internalized, 

leading to growth cone collapse and axon retraction (Castellani et al., 2004).  

Soluble L1 binding to Npn1 in trans switches Sema3A-induced repulsion to attraction 

and leads to activation of the nitric oxide (NO) synthase/cGMP pathway (Castellani 

et al., 2002).  The studies presented in Chapter 2 investigate a role for Sema3A and 

Npn1 in controlling guidance of thalamic axons in the VTe in cooperation with CHL1.   

Taken together, these studies provide compelling evidence that the VTe is a 

key environment for complex intermolecular interactions needed to sort 

thalamocortical axons to discrete neocortical areas along the rostrocaudal axis.  It is 

vitally important to identify and understand the molecular mechanisms underlying the 

topographic guidance and targeting of thalamocortical axons in the VTe enabling 

their projection to distinct neocortical regions.  The molecular interactions of 

Sema3A and ephrinA5 are shown here, for the first time, to cooperate with CHL1.  
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These interactions are necessary for topographic guidance and targeting of 

thalamocortical axons. 

 

1.4 L1 Neural Cell Adhesion Molecules 

 L1 neural cell adhesion molecules (L1-CAMs) are immunoglobulin-class 

recognition molecules that promote axon growth and neuronal migration in the 

developing nervous system (Maness, 2007).  The vertebrate L1 family consists of 

four structurally related transmembrane proteins:  L1, Close Homolog of L1 (CHL1), 

NrCAM, and neurofascin.  The importance of L1-CAMs is exemplified by 

abnormalities observed in mutant mice and humans deficient in these molecules.  L1 

mutations are present in X-linked mental retardation (Kenwrick et al., 2000), and the 

human homolog of CHL1, CALL, is implicated in a syndrome associated with low IQ 

and developmental delays (Frints et al., 2003).  Polymorphisms in the NrCAM gene 

have recently been linked to autism, and those in CHL1 and L1 have been 

associated with schizophrenia in some populations (Kurumaji et al., 2001; Sakurai et 

al., 2002; Bonora et al., 2005).  The extracellular regions of L1-CAMs interact 

homophilically or heterophilically with multiple partners to activate intracellular 

signaling pathways important for neuronal migration and survival, synaptic plasticity, 

and axon growth and fasciculation. 

Close Homolog of L1 (CHL1)  

The newest member of the L1 family, CHL1, is a transmembrane protein 

comprised of six immunoglobulin (Ig)-like domains and five fibronectin type III 

domains, followed by a conserved cytoplasmic region of approximately 110 residues 
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(Figure 1.2).  The amino acid sequence of CHL1 is approximately 60% homologous 

with L1 in the extracellular region and approximately 40% in the cytoplasmic domain 

(Holm et al., 1996).  CHL1 is a strong promoter of neurite outgrowth (Hillenbrand et 

al., 1999), dendrite projection (Demyanenko et al., 2004), and controls axon 

guidance (Montag-Sallaz et al., 2002).  The laminar positioning of deep layer 

pyramidal neurons and neuronal process orientation within posterior cortical regions 

(somatosensory and visual cortex) is regulated by CHL1 (Demyanenko et al., 2004). 

CHL1 exhibits graded cortical area-specific expression in embryonic cortical neurons 

in a high caudal to low rostral gradient from E14 until birth (Hillenbrand et al., 1999; 

Liu et al., 2000; Demyanenko et al., 2004).  The early differential expression of 

CHL1 is established prior to thalamocortical axon invasion, and is most prominently 

expressed in the lower half of the intermediate zone, the location of corticofugal 

axons from the subplate.  Because CHL1 is also expressed in the thalamus during 

axonal projection to the VTe (Liu et al., 2000), we reasoned that CHL1 might 

participate in axon guidance at the intermediate target, perhaps in conjunction with 

other ventral telencephalic cues.  The hypothesis that CHL1 controls the topographic 

guidance of different subsets of thalamocortical axons will be investigated in 

Chapters 2 and 3.  

L1-CAMs in Axon Pathfinding and Fasciculation 

 The prototypical CAM, L1, mediates axon guidance in different regions of the 

nervous system.  Topographic mapping of retinal ganglion cell (RGC) axons to 

targets in the superior colliculus (SC) is dependent upon L1 (Demyanenko and 

Maness, 2003).  Temporal axons of L1 mutant mice fail to arborize in appropriate 
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anterior-medial sites, and instead overshoot their targets to form termination zones 

in the posterior-lateral SC.  The topographic mapping of RGC axons, along both 

anteroposterior and mediolateral axes of the SC, is dependent upon complementary 

gradients of ephrin ligands and Eph receptors (Feldheim et al., 1998; Feldheim et 

al., 2000; Wilkinson, 2001).  Thus, L1 and Eph repellent guidance receptors may 

work together to regulate formation of the retinotopic map.   

In thalamocortical mapping, L1 regulates fasciculation of thalamocortical 

axons, but a clear-cut role in topographic mapping remains to be determined.  In 

mice lacking L1, thalamocortical axons are hyperfasciculated and a subset of caudal 

thalamic axons are misrouted in the VTe, making a sharp posterior turn toward the 

ventricular wall instead of projecting to the cortex (Ohyama et al., 2004; Wiencken-

Barger et al., 2004).  Loss of L1 also disrupts thalamic growth cone morphology 

within the subplate.  In this region, mutant growth cones are longer and more 

complex than normal, suggesting that L1 may alter the cell adhesion machinery of 

migrating growth cones (Wiencken-Barger et al., 2004).  The distribution of L1-minus 

thalamocortical axons within the cortex is more diffuse compared to wild type.  

Instead of following a confined path through the subplate, thalamic axons of L1-

mutant mice spread to enter the intermediate zone and the subventricular zone 

(Ohyama et al., 2004).  Despite these defects, area-specific targeting of 

thalamocortical axons was reported to occur normally in L1 mutant mice (Wiencken-

Barger et al., 2004).   

Corticothalamic axons are also hyperfasciculated in the IC of L1 mutant mice 

(Ohyama et al., 2004).  In contrast to thalamocortical axons, corticothalamic axons 
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are significantly reduced and fail to reach their targets in the dorsal thalamus.  Thus, 

L1 could function in the thalamocortical pathway by binding heterophically to the 

substrate to maintain segregation between axonal bundles within the IC.  Abnormal 

fasciculation of thalamocortical axons due to loss of L1 may directly or indirectly 

influence fasciculation and pathfinding of corticothalamic axons.   

NrCAM is expressed on developing fiber tracts and engages in multiple 

interactions regulating neurite outgrowth and fasciculation (Grumet, 1997; Fitzli et 

al., 2000).  During anterior commissure (AC) development, deletion of NrCAM 

induces defasciculation and aberrant guidance of AC fibers (Falk et al., 2005).  

Interestingly, the molecular basis for this mechanism requires two secreted 

semaphorins (Sema3B and Sema3F) and their receptor, Neuropilin2 (Npn2).  

NrCAM associates with Npn2 to mediate the attractive and repulsive responses of 

Sema3B and Sema3F, which are required for proper AC axon development (Falk et 

al., 2005).  NrCAM also regulates midline guidance of retinal axons (Williams et al., 

2006) and spinal commissural axons (Zou et al., 2000).    

  CHL1 also functions in axon guidance, as its deletion in mice alters the 

trajectories of hippocampal mossy fibers and olfactory axons (Montag-Sallaz et al., 

2002).  In CHL1-deficient mice, mossy fibers inappropriately invade the CA3 

pyramidal cell layer of the hippocampus.  Also, the mossy fiber synaptic bouton 

lamination pattern is altered in CHL1 mutant mice, with terminals distributed 

throughout the CA3 pyramidal cell body layer, as well as in the suprapyramidal and 

infrapyramidal bundles.  In wild type mice, olfactory neurons terminate exclusively in 

the olfactory bulb glomeruli with one axon contacting one glomerulus.  In the 
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olfactory bulb of CHL1-deficient mice, axons instead project to multiple glomeruli, or 

pass through the glomerular layer and terminate in the external plexiform layer 

(Montag-Sallaz et al., 2002).  This thesis investigates a requirement for CHL1 in 

controlling the topographic mapping of thalamocortical axons and the mechanisms 

underlying the establishment of this topography. 

Intracellular and Extracellular Interactions of L1-CAMs  

L1 is coupled to the actin cytoskeleton by reversibly binding to the spectrin 

adaptor protein, ankyrin, via a conserved sequence (FIGQY) in the cytoplasmic 

domain.  Evidence supports the view that ankyrin binding to L1-CAMs stabilizes cell 

or axonal contacts.  For example, interactions between ankyrin and neurofascin are 

necessary for the formation and stabilization of GABAergic basket cell synapses with 

the axon initial segment (AIS) of Purkinje cells (Ango et al., 2004).  CHL1 is the only 

family member with an altered sequence in the presumed ankyrin-binding domain 

(FIGAY; Figure 1.2).  Thus, it was unclear whether CHL1 can interact with the 

cytoskeleton through ankyrin binding.  The ability of CHL1 to bind ankyrin and a role 

for this potential interaction in neural development is addressed in Chapter 5.  

L1 has also been shown to engage the cytoskeleton though the interaction 

with ERM (ezrin-radixin-moesin) proteins.  Two different motifs in the L1 intracellular 

domain mediate direct binding to ERM proteins:  (1) a membrane-proximal sequence 

SKGGKY (Cheng et al., 2005) and (2) YRSLE motif, which is not present in CHL1, 

but is conserved in NrCAM and neurofascin (Kayyem et al., 1992; Volkmer et al., 

1992; Dickson et al., 2002; Cheng et al., 2005).  Due to structural differences in the 

cytoplasmic domain of CHL1, it is not known whether CHL1 can link to the 
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cytoskeleton through ERM protein binding.  CHL1 has the potential to interact with 

ERM proteins though a conserved membrane-proximal sequence, RGGKYSV in the 

CHL1 intracellular domain (Figure 1.2).  By coupling to the actin cytoskeleton 

through ERM protein binding, CHL1 may contribute to adhesive functions necessary 

for neurite outgrowth, branching, and axon guidance.  The capability of CHL1 to 

interact with ERM proteins and the cellular and neuronal consequences of this 

interaction are addressed in Chapter 4.  

CHL1 Interactions with Integrins  

We showed that CHL1 functionally interacts with β1 integrins to potentiate cell 

migration (Buhusi et al., 2003).   The sixth Ig domain of CHL1 contains a potential 

integrin binding site, Asp-Gly-Glu-Ala (DGEA; Figure 1.2), which mediates integrin-

collagen interactions in platelets (Staatz et al., 1991).  A physical association 

between CHL1 and β1 integrins was established by antibody-induced co-capping 

experiments.  The molecular basis for the involvement of CHL1 in integrin-mediated 

cellular migration is addressed in Chapter 5.   

Recent evidence indicates that Semaphorins can also interact with integrins 

to regulate cell adhesion and migration.  Sema7A, which promotes axon growth from 

olfactory bulb neurons, contains an RGD sequence and can associate with β1 

integrins.  Mutation of the integrin binding motif or treatment with integrin binding 

RGD peptides blocks Sema7A-mediated axon growth, supporting a direct role for 

integrins (Pasterkamp et al., 2003).  Although class 3 Semaphorins have no RGD 

sequence, Sema3A inhibits the adhesion of endothelial cells to the extracellular 

matrix and slows their directional motility by antagonizing integrin activity (Serini et 
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al., 2003).  In addition, dominant-negative forms of neuropilin1 and plexinA1, a co-

receptor for Sema3A, enhance attachment and migration of endothelial cells via a 

mechanism involving α5β1 and αvβ1 integrins.  Thus, Sema3A can regulate integrin 

activation through signals from its receptors, neuropilin1 and plexinA1.  A molecular 

connection between Sema3A and integrins to regulate axonal development or 

cellular migration in the nervous system is unclear; however, CHL1 may provide a 

scaffold to facilitate integrin-dependent signaling.     

 

1.5 Goals of Thesis 

Here I have addressed the following research topics to provide insight into 

understanding the molecular interactions of CHL1 to control axon growth and 

guidance: 

(1) The role of CHL1 in regulating the topographic guidance and targeting of 

thalamocortical axons to posterior neocortical areas; 

(2) A specific interaction between CHL1 and the Sema3A receptor, 

Neuropilin1, in mediating responses of thalamic axons to ventral telencephalic 

cues; 

(3) Cooperation between L1 and CHL1 to control thalamocortical targeting by 

mediating axonal responses to ephrinA5/EphA4 repellent guidance cues;  

(3) Linkage of CHL1 to the cytoskeleton through ERM proteins and the 

cellular and molecular consequences of this interaction, specifically on growth 

cone collapse due to Sema3A; 
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(4)  The association of CHL1 with β1 integrins and ankyrin and the neuronal 

responses controlled by these interactions. 
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Figure 1.1:   Embryonic and Adult Thalamocortical Topography 

(A) Scheme depicting a coronal section of embryonic mouse brain (E14) illustrating 

the pathway taken by thalamocortical axons (red line).  Thalamic axons grow 

ventrally out of the dorsal thalamus (DT) into the ventral thalamus (VT).  They turn 

dorsolaterally at the diencephalic-telencephalic border to enter the ventral 

telencephalon (VTe) and finally target the neocortex (NCx).  

(B) Scheme illustrating a horizontal section of the adult mouse brain thalamocortical 

projection patterns.  Axons from the rostrally located ventroanterior (VA) or 

ventrolateral (VL) nuclei project to the motor cortex.  The ventral basal (VB) complex 

projects to the primary somatosensory (S1) cortex.  Axons from the lateral 

geniculate nucleus (LGN), located in the caudal dorsal thalamus, project to the 

primary visual cortex (V1).   
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Figure 1.2:  Structure and Interactions of CHL1 

Structure of Close Homolog of L1 (CHL1) indicating the position of extracellular and 

intracellular binding sites.  A potential integrin binding site is located in the sixth Ig 

domain (Ig6) (DGEA).  A potential Npn1 binding site is located in Ig1 (FASNRL), 

linking CHL1 to Sema3A.  A binding site for ezrin, radixin, moesin (ERM) proteins, 

RGGKYSV, is located in a membrane proximal region of the cytoplasmic tail.  ERM 

proteins interact directly with F-actin.  The ankyrin binding domain, FIGAY, is also 

located in the cytoplasmic tail.  Ankyrin has two binding sites for cell adhesion 

molecules, and therefore may form linear arrays of dimeric complexes on the cell 

membrane.  The complex is further immobilized by binding the spectrin tetramer, 

which associates with the actin cytoskeleton.   
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Chapter 2 

 

Close Homolog of L1 (CHL1) and Neuropilin1 Mediate Guidance of Thalamocortical 

Axons at the Ventral Telencephalon  
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Modifications have been made for the purpose of this dissertation 



 

This was a collaborative effort.  I performed most experiments with the exception of 

the following:  Whole mount preparations were performed by Ashton Powell and Dr. 

Franck Polleux and Figure 12 was modified from an original image from Ashton 

Powell for the purposes of this dissertation; In situ hybridizations were performed by 

the UNC Confocal and Hybridization Core Facility; Cytochrome oxidase and Nissl 

staining, as well as segregation experiments were preformed by Lilian Enriquez-

Baretto.
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2.1 Abstract 

We report a cooperation between the neural adhesion molecule, Close 

Homolog of L1 (CHL1) and the semaphorin3A (Sema3A) receptor, neuropilin1 

(Npn1), important for the establishment of topography of area-specific 

thalamocortical projections. CHL1 deletion in mice selectively disrupted the 

topographic projection of somatosensory thalamic axons, causing them to shift 

caudally in the ventral telencephalon (VTe), an intermediate target with graded 

Sema3A expression, and ultimately target the visual cortex.  CHL1 was also 

required for caudal thalamic axon guidance in the VTe.  A similar pattern of aberrant 

guidance was observed in Npn1Sema-/- mutants, in which axons are nonresponsive to 

Sema3A.  CHL1 co-localized with Npn1 on thalamic axons, and associated with 

Npn1 through a sequence in the CHL1 Ig1 domain that was required for Sema3A-

induced growth cone collapse.  Soluble CHL1, acting as an additional binding 

partner for CHL1-Npn1 complexes, silenced the Sema3A-induced collapse 

response, supporting a model whereby CHL1 on corticofugal axons directs caudal 

thalamic axon growth through the VTe.   These results identify a novel function for 

CHL1 in thalamic axon responsiveness to ventral telencephalic as well as cortical 

cues, and demonstrate a role for CHL1 and Npn1 in establishment of proper 

topography of thalamocortical projections. 

 

2.2 Introduction 

L1 neural cell adhesion molecules (L1-CAMs) are immunoglobulin-class 

recognition proteins that promote axon growth and migration in developing neurons 
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(Maness, 2007). The mammalian L1 family consists of L1, Close Homolog of L1 

(CHL1), NrCAM, and neurofascin, whose importance in development of cortical 

connectivity is underscored by association of their mutation with neuropsychiatric 

disorders, such as mental retardation, schizophrenia, and autism (Kurumaji et al., 

2001; Sakurai et al., 2002; Frints et al., 2003; Bonora et al., 2005). CHL1 is unique 

among L1-CAMs in exhibiting cortical area-specific expression in a high caudal to 

low rostral gradient (Hillenbrand et al., 1999; Liu et al., 2000; Demyanenko et al., 

2004). In posterior cortical areas (primary somatosensory and visual cortex), CHL1 

is required for correct laminar positioning and dendritic projection of pyramidal 

neurons (Buhusi et al., 2003; Demyanenko et al., 2004). CHL1 is also expressed in 

subpopulations of developing neurons in the dorsal thalamus, hippocampus, and 

olfactory tract (Liu et al., 2000; Montag-Sallaz et al., 2002). Molecules such as CHL1 

with graded or restricted expression patterns are candidates for axon guidance 

determinants regulating topographic projections to targets in the central nervous 

system. 

Proper topographic mapping of thalamic axons to area-specific targets in the 

neocortex requires a series of guidance decisions at both cortical and subcortical 

levels. Thalamocortical mapping is initially specified by transcription factors and 

morphogens exhibiting graded expression in the thalamus (neurogenin-2 (Seibt et 

al., 2003), Gbx2 (Hevner et al., 2002)) and dorsal telencephalon (DTe) 

(FGF8(Shimogori and Grove, 2005), Emx2 (Hamasaki et al., 2004), CoupTFI (Liu et 

al., 2000)). The ventral telencephalon (VTe) has emerged as a key intermediate 

target where thalamic axons are sorted to cortical areas along the rostrocaudal axis 
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(Dufour et al., 2003). Transcription factors Dlx1/2, Ebf1, and Mash1 in the VTe are 

important primary determinants of thalamocortical axon targeting (Tuttle et al., 1999; 

Garel et al., 2002), and may direct the expression of axon guidance molecules. 

During initial stages of projection (Embryonic day 13 (E13)-E14 in mouse), thalamic 

axons are attracted to the VTe by neuregulin1 (Lopez-Bendito et al., 2006), where 

rostral thalamic axons are sorted toward the motor cortex based on complementary 

gradients of ephrinA ligands and EphA receptors (Dufour et al., 2003).  

At E15-16, thalamic axons reach the cortical subplate and wait (Ghosh et al., 

1990) until other cortical cues, such as neurotrophin-3 (Ma et al., 2002), induce 

axons to invade the cortex.  EphrinA/EphA gradients influence the precise targeting 

of thalamocortical axons within adjacent cortical areas (Cang et al., 2005; Torii and 

Levitt, 2005), and the initially diffuse projection of axons within each cortical area is 

further refined to layer IV by activity-dependent and independent mechanisms (Katz 

and Crowley, 2002).   

 Although ephrinA/EphA gradients influence sorting of rostral thalamic axons 

in the VTe (Dufour et al., 2003), guidance molecules that direct the targeting of 

somatosensory and visual axons to more posterior neocortical areas remain to be 

elucidated.  CHL1 might participate in topographic guidance of these axons at the 

VTe, as it is expressed in the embryonic thalamus and posterior neocortex during 

thalamocortical projection (Liu et al., 2000; Demyanenko et al., 2004). Moreover, its 

close structural relative, L1, has a guidance function in topographic mapping of 

retinal axons to the superior colliculus (Demyanenko and Maness, 2003). The 

secreted semaphorin, Sema3A, is also a candidate thalamocortical axon guidance 
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cue, as it is expressed along the pathway of projecting thalamocortical axons 

(Skaliora et al., 1998; Tamamaki et al., 2003), and induces collapse of thalamic 

growth cones to promote homotypic axon interaction in vitro (Bagnard et al., 2001).  

A link between CHL1 and the Sema3A receptor, neuropilin1 (Npn1), is plausible, 

based on the association of L1 and NrCAM with neuropilins, important for 

development of the corticospinal tract and anterior commissure, respectively 

(Castellani et al., 2000; Falk et al., 2005). 

The juxtaposition of corticothalamic and thalamocortical axons in the VTe is 

also important for thalamocortical development, according to the "handshake 

hypothesis," which states that thalamic axons are instructed en route to the cortex by 

following the path established by closely apposed cortical efferents (McConnell et 

al., 1989; Molnar et al., 1998).  This theory is supported by studies of mice with 

mutations in transcription factor genes expressed in the cortex (Tbr1), the thalamus 

(Gbx2), or both (Pax6) (Storykova 1998; Hevner; Jones 2002), in which thalamic and 

cortical connections are aberrant and do not reach their final targets.  An outstanding 

question is to what degree molecular determinants with graded expression on 

cortical axons instruct the patterning of thalamocortical projections.   

Here I investigated whether CHL1 participates in topographic mapping of 

thalamocortical projections to posterior cortical areas by mediating axon guidance at 

the VTe. Axon tracing in postnatal CHL1-minus mice (P5) showed that loss of CHL1 

caused a contingent of somatosensory thalamic axons to misproject to the visual 

cortex. Guidance of thalamic axons in CHL1-minus embryos (E15.5) was selectively 

impaired along the rostrocaudal axis of the VTe, with ventrobasal (VB) and caudal, 
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but not rostral, axons displaying aberrant topography.  Axonal tracing in Npn1Sema-/- 

mice, which express a mutant form of Npn1 that is incapable of Sema3A binding (Gu 

et al., 2003), showed that Sema3A-nonresponsive thalamic axons misprojected 

similarly to CHL1-minus axons within the VTe.  Furthermore, CHL1 colocalized with 

the Sema3A receptor (Npn1) during the thalamocortical projection, associated with 

Npn1 through a sequence in the CHL1 IgI domain, and was required for Sema3A-

induced collapse of thalamic growth cones. Thus, the studies presented here reveal 

a novel cooperation between CHL1 and Npn1, important for the establishment of the 

topography of thalamocortical projections. 

 

2.3 Results   

CHL1 is Expressed in the Thalamocortical Pathway  

Expression of CHL1 was analyzed in mouse embryos at E14.5, during 

projection of thalamic axons across the VTe, and at E16.5, when thalamic axons 

have reached the DTe (Seibt et al., 2003) by immunofluorescence staining.  At 

E14.5, CHL1 immunoreactivity was robust within the dorsal thalamus (DT) and 

internal capsule (IC) of the VTe, as well as in the cortical intermediate zone (IZ), 

cortical plate (CP) and marginal zone (MZ) as shown in a coronal section midway 

along the rostrocaudal axis (Fig 2.1A).  A similar pattern of CHL1 expression was 

observed at E16.5 in the DT, IC, and neocortex (Fig 2.1B,C).  No staining was 

observed with nonimmune IgG (Fig 2.1C). In situ hybridization showed expression of 

CHL1 mRNA within the DT at E14.5.  Examination of serial horizontal sections 

through the DT indicated that CHL1 was expressed in a high ventral to low dorsal 
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gradient, corresponding to the approximate location of VB axons (Altman, 1995) (Fig 

2.1D).  CHL1 transcripts were also evident in the CP and IZ, most likely 

corresponding to migrating neurons, but not in the lateral or medial ganglionic 

eminence (LGE,MGE) (Fig 2.1E).  To better define the localization of CHL1 protein 

to thalamocortical and/or corticofugal axons, explants from the DT were isolated 

from transgenic mouse embryos (E14.5) expressing enhanced green fluorescent 

protein (EGFP) from the chicken β-actin promoter (Okabe et al., 1997), and co-

cultured with a wholemount of isochronic telencephalic vesicle from unlabeled 

embryos (Dufour et al., 2003; Seibt et al., 2003). CHL1 immunofluorescence was 

evident on EGFP-expressing thalamic axons, where it localized to growth cones and 

axon shafts (Fig 2.1F,G). CHL1 staining was also apparent on non-EGFP- 

expressing axons derived from the telencephalon (red fibers, Fig 2.1F). These 

results indicated that CHL1 was localized on both embryonic thalamocortical and 

corticofugal axons during thalamocortical projection.  

 

CHL1 is Required for Topographic Mapping of Thalamocortical Projections to the 

Somatosensory Cortex 

Retrograde axon tracing of thalamocortical projections was carried out in wild 

type (WT) and homozygous CHL1 mutant mice at postnatal day 5 (P5), when 

thalamocortical targeting is established (Agmon et al., 1995). WT and CHL1-minus 

littermates were dually injected with DiI into the primary visual cortex (V1) and DiA 

into the primary somatosensory cortex (S1) (Fig 2.2A). The accuracy of all injections 

was monitored for correct rostral-caudal and dorsal-ventral positioning by 
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epifluorescence microscopy.  In vivo, DiI is almost exclusively taken up by thalamic 

axons and transported retrogradely via active transport, labeling cell bodies in the 

thalamus (see Fig 2.2E, inset).  In all WT mice, DiI injection (red) into V1 

retrogradely labeled the lateral geniculate nucleus (LGN) of the dorsal thalamus, and 

DiA injection (green) into S1 retrogradely labeled the ventro-posterolateral (VPL) and 

ventro-posteromedial (VPM) nuclei of the ventrobasal complex (VB) (Fig 2.2B,C,G).  

In CHL1-minus mice, injection of DiI into V1 resulted in unexpected labeling (red) of 

neuronal cell bodies in VB nuclei, in addition to expected labeling of the LGN (Fig 

2.2D,E). Injection of DiA into S1 resulted in appropriate labeling of the VPL and VPM 

nuclei in all CHL1 mutants. Mistargeting of VB axons to the visual cortex was almost 

fully penetrant (16 of 18 mutant hemispheres), whereas none of the 13 WT 

hemispheres analyzed displayed these defects. Chi-square analysis showed that 

this defect was significant for CHL1-mutants (Χ2
0.005=13.72).  

Previous studies have shown that for proper cortical targeting, thalamic axons 

must encounter appropriate subplate and cortical plate layers, within which axons 

interact with positional cues necessary for proper guidance and targeting (Ghosh 

and Shatz, 1993; Shimogori and Grove, 2005).  CHL1 is expressed in subplate 

neurons (Liu et al., 2000), however CHL1 deficiency did not affect the generation or 

laminar positioning of these cells, as determined either by staining for Tbr1, a marker 

of subplate/layer VI neurons at P0 (not shown) or by BrdU labeling of these cells at 

E11.5 followed by analysis at P0 (Demyanenko et al., 2004).  Mistargeting of 

somatosensory thalamic axons in CHL1-minus mice did not obviously affect the 

number or positioning of barrels in the somatosensory cortex seen by Nissl (Fig 
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2.2J,K) or cytochrome oxidase staining (Fig 2.2L,M), although subtle alterations in 

barrel positioning may not have been detected.   

To determine if thalamic axons projected aberrantly to the primary motor 

cortex (M1), DiI was injected into the M1 area of WT and CHL1-minus littermates at 

P5. In all WT (n=8) and CHL1-minus (n=6) mice, DiI (red) injections resulted in 

appropriate labeling of the ventrolateral nucleus, a motor thalamic nucleus (Fig 

2.2F,H). This result indicated that motor thalamic axons were not dependent upon 

CHL1 for correct topographic mapping to M1, and that axons from non-motor 

thalamic nuclei do not target the motor cortex. 

In summary, axon tracing experiments revealed that a contingent of thalamic 

axons from VB nuclei projected inappropriately to targets in the visual cortex in 

CHL1-minus mice, whereas motor and visual thalamic axons targeted correct 

cortical areas (Fig 2.2I).  

 

CHL1 is Required for Guidance of Thalamic Axons within the Telencephalon  

  To determine whether CHL1 influences guidance of thalamic axons in the 

VTe, anterograde axon tracing was carried out in WT and CHL1-minus embryos at 

E15.5, when thalamic axons have migrated across the VTe and reached the DTe.  

At this stage axons from the rostral dorsal thalamus (DTR) preferentially grow 

through the rostral domain of the VTe, while caudal dorsal thalamic axons grow 

through caudal territories (Seibt et al., 2003).  DiI was injected into the rostral third 

and DiA into the caudal third of the DT, and thalamic axon projections were analyzed 

(Fig 2.3A).  DTR axons of CHL1 mutants projected normally across the VTe and 
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were visible at the same level within WT and CHL1-minus embryos (Fig 2.3B,C).  

Analysis of DTR axons throughout the rostrocaudal extent of the VTe confirmed a 

similar distribution for WT and CHL1 mutant populations (Fig 2.3D), and 

approximately equal mean distances from the rostral-most axon in the VTe to the 

thalamic eminence (Fig 2.3E).   

In contrast, axons from the caudal dorsal thalamus (DTC) of CHL1-minus 

embryos were shifted rostrally within the VTe.  For example, DTR (red) and DTC 

(green) axons were visible within the same section of WT VTe (Fig 2.3F), whereas 

only DTR axons were visible in the CHL1 mutant VTe at the same level (Fig 2.3G).  

At a more rostral level, both DTR (red) and DTC (green) axons were visible in CHL1 

mutant VTe (Fig 2.3H).  Analysis of the distribution of labeled DTC axons in the VTe 

confirmed that axons were shifted rostrally (Fig 2.3I) and that the mean distance 

from the caudal-most axon to the thalamic eminence was lower in CHL1 mutants 

compared to WT (Fig 2.3J).  These results support a role for CHL1 in guidance of 

caudal thalamic axons through the intermediate target.    

To determine if CHL1 was required for guidance of somatosensory axons, DiI 

was injected deep in the central third of the DT of WT and CHL1-minus littermates 

(E15.5) (Fig 2.4A).  Axons from the VB nuclei of CHL1-minus embryos were shifted 

caudally within the VTe.  No labeled axons were visible in WT VTe in sections 

approximately 400 µm caudal to the thalamic eminence (Fig 2.4B), whereas DiI 

labeled fibers were consistently observed in the VTe of CHL1-minus mice at an 

equivalent level (Fig 2.4C).  DiI labeled fibers from the VB were observed in more 

rostral levels of the WT VTe (Fig 2.4D).  Analysis of the distribution of labeled VB 
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axons in the VTe confirmed that CHL1-minus axons were shifted caudally (Fig 2.4E) 

and that the mean distance of the caudal-most axon from the thalamic eminence 

was significantly greater in CHL1 mutants compared to WT (Fig 2.4F).  These 

results point to a requirement for CHL1 for proper guidance of medial thalamic axons 

in the IC.  Thus, guidance of caudal and medial, but not rostral, thalamic axons 

through the IC of the VTe are dependent upon CHL1. 

To investigate the fate of VB axons that were misguided in the VTe, the 

localization of these axons within the DTe was examined.  Axons from the VB nuclei 

of CHL1-minus embryos were also shifted caudally within the DTe.  In sections 

approximately 800 µm caudal to the thalamic eminence, no labeled axons were 

visible in WT DTe (Fig 2.4G).  However, DiI labeled fibers were observed in the DTe 

of CHL1-minus mice at an equivalent level (Fig 2.4H).  Analysis of the distribution of 

labeled VB axons in the DTe confirmed a caudal shift of CHL1-minus axons (Fig 

2.4I).  These results suggest that a subset of the caudally shifted somatosensory 

axons in the VTe project to more posterior areas of the DTe.   

In vitro studies have indicated a role for Sema3A in homotypic fasciculation of 

thalamic and cortical axons that may be important for maintaining their segregation 

during projection to the neocortex (Bagnard et al., 2001).  To determine if CHL1 was 

required for fasciculation within the VTe, DiI was injected into the cortex and DiA into 

the DT of WT and CHL1-minus embryos (E16.5).  No defects in fasciculation or 

segregation of thalamic and cortical axons within the VTe were observed (Fig 2.5).  

Segregation within the cortex could not be visualized due to intense labeling of DiI.  
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CHL1 Colocalizes with the Sema3A Receptor Neuropilin-1   

To investigate whether CHL1 participates in thalamic axon responses to 

Sema3A, co-expression of CHL1 and Npn1 was investigated by 

immunofluorescence staining during thalamocortical outgrowth (E14.5), cortical 

targeting (E16.5), and after the establishment of thalamocortical projections (P5). At 

both embryonic stages, Npn1 was expressed in the DT and VTe and colocalized 

extensively with CHL1 on fibers (Fig 2.6A,B,D).  Coronal sections through ventral 

regions of the dorsal thalamus, where CHL1 is prominently expressed, are shown 

here.  In the E14.5 cortex, Npn1 was present in the IZ and CP, and colocalized with 

CHL1 on axons within the IZ (Fig 2.6C). At E16.5, thalamocortical axons enter the 

neocortex and travel within the upper IZ, segregated from corticothalamic axons in 

the lower IZ(Bagnard et al., 1998).  At this stage, Npn1 and CHL1 colocalized in both 

the upper and lower IZ, suggesting that they may reside on both axonal subsets (Fig 

2.6E). Npn1 exhibited a non-graded pattern of expression at both stages along the 

rostrocaudal cortical axis.  Npn1 also co-localized with CHL1-positive fibers in the 

DT at P5 (Fig 2.6F), specifically in the VB complex (Fig 2.6F’) suggesting that the 

receptor for Sema3A may play a role in guiding these axons to their final targets.  

In situ hybridization for Sema3A transcripts at E14.5 showed robust 

expression within the VTe but not in the DT. Throughout serial horizontal sections, a 

high-caudal to low-rostral gradient of Sema3A expression was observed in the 

intermediate zone of the ganglionic eminence within the VTe (Fig 2.6G,H).  The 

control sense probe did not generate signals above background levels (data not 

shown). The gradient of Sema3A expression was quantified by measuring pixel 

50



 

densities along the rostrocaudal axis of the VTe and normalizing these values to 

background levels.  The average pixel density in the caudal VTe was significantly 

greater than in rostral regions and the data fit a linear regression (Fig 2.6I).  Thus, 

Sema3A forms a spatial gradient (high caudal to low rostral) of gene expression in 

the VTe at E14.5.  Sema3A mRNA was also seen in the VZ and to a lesser extent in 

the CP of the neocortex at E14.5 (Fig 2.6J), in accord with previous studies 

(Bagnard et al., 1998; Skaliora et al., 1998; Tamamaki et al., 2003).  

 

Npn1 Binding to Sema3A is Required for Guidance of Thalamic Axons within the 

Ventral Telencephalon  

To establish a role for Npn1 and Sema3A in thalamocortical axon guidance in 

vivo, thalamic axons were traced in Npn1Sema-/- mutant mice at E16.5.  Npn1Sema-/- 

mice express normal levels of Npn1 protein and retain VEGF-Npn1 signaling, but 

Sema-Npn1 signaling is abolished and neurons are completely unresponsive to 

Sema3A (Gu et al., 2003).  Because Npn1 null mice die midway though gestation 

(~E10.5-E12.5) (Kitsukawa et al., 1997; Kawasaki et al., 1999), Npn1Sema-/- mice 

were chosen to study the role of Npn1-Sema signaling on thalamocortical axon 

guidance.  DiI was injected into the rostral third (DTR) and DiA into the caudal third 

(DTC) of the dorsal thalamus of WT and Npn1Sema-/- littermates and thalamic axon 

distribution was analyzed (Fig 2.7A).  DTR axons from Npn1Sema-/- mutants projected 

normally across the VTe and were visible at the same level as observed in WT (Fig 

2.7B,C).  Analysis of the distribution of DTR axons across the rostrocaudal extent of 

the VTe revealed a similar pattern for WT and Npn1Sema-/- mutant populations (Fig 
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2.7D), and approximately equal mean distances from the rostral-most axon in the 

VTe to the thalamic eminence (Fig 2.7E). 

In contrast, caudal thalamic axons were shifted rostrally within the VTe.  For 

example,  both DTR (red) and DTC (green) axons were observed in a section of WT 

VTe 500 µm caudal to the thalamic eminence (Fig 2.7F), whereas only DTR axons 

were visible in the Npn1Sema-/- mutant at an equivalent level (Fig 2.7G).  However, at 

a more rostral level, where only DTR (red) axons were visible in WT VTe (Fig 2.7H), 

both DTR (red) and DTC (green) axons were visible in the Npn1Sema-/- VTe (Fig 2.7I).  

Analysis of DTC axons throughout the VTe confirmed that these axons were shifted 

rostrally and the mean distance from the caudal-most axon to the thalamic eminence 

was significantly less in Npn1Sema-/- mutants compared to WT (Fig 2.7J,K).  Thus, 

while DTR axons migrated normally across the Npn1Sema-/- VTe, DTC axons were 

altered in the VTe of Npn1Sema-/- mutant mice, supporting a role for Npn1 in the 

guidance of this population of thalamic axons. 

 To further explore the role of Npn1 in thalamocortical axon guidance, axons 

originating from VB nuclei of Npn1Sema-/- mutants were analyzed in the intermediate 

target.  Somatosensory thalamic axons were shifted caudally in the VTe.  In these 

experiments, DiI was injected deep into the central third of the DT of WT and 

Npn1Sema-/- littermates (Fig 2.8A).  In sections approximately 400 µm caudal to the 

thalamic eminence, no labeled axons were visible in WT VTe (Fig 2.8B), whereas DiI 

labeled fibers were consistently observed in the VTe of Npn1Sema-/- mice at an 

equivalent level (Fig 2.8C).  DiI labeled fibers from VB nuclei were observed at more 

rostral levels of the WT VTe (Fig 2.8D).  Analysis of the distribution of labeled VB 
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axons in the VTe confirmed that somatosensory axons from Npn1Sema-/- embryos 

were shifted caudally (Fig 2.8E) and that the mean distance from the caudal-most 

axon to the thalamic eminence was significantly greater in Npn1Sema-/- mutants 

compared to WT (Fig 2.8F).  Therefore, axons from the VB complex are dependent 

upon Npn1 and its ability to bind Sema3A for guidance through the intermediate 

target.  Furthermore, the aberrant guidance of somatosensory and caudal thalamic 

axons in Npn1Sema-/- mutants phenocopied the shifts observed in CHL1-minus mice, 

providing in vivo evidence that CHL1 and Npn1 may cooperate to control the 

topographic mapping of subpopulations of thalamocortical axons. 

 

CHL1 Associates with the Semaphorin3A Receptor Neuropilin1 

I next investigated whether CHL1 could form a complex with Npn1 by 

antibody-induced co-capping within the plasma membrane.  CHL1 and Npn1 were 

transiently expressed in COS-7 cells, and then Npn1 was clustered on the cell 

surface by cross-linking with anti-Npn1 antibody. After fixation, Npn1 caps were 

detected on the cell surface by labeling with FITC-secondary antibodies, and co-

capping of CHL1 was observed by indirect immunofluorescence with anti-CHL1 and 

TRITC-secondary antibodies (Fig 2.9A).  Co-capping of CHL1 and Npn1 was 

observed on 82% of CHL1-expressing cells.  In reverse co-capping experiments, 

CHL1 clustering induced co-capping of Npn1 in 75% of cells (Fig 2.9B).  Cells 

treated with non-immune rabbit IgG did not induce capping of Npn1 or clustering of 

CHL1 (Fig 2.9C).  These results suggest that CHL1 interacts in cis with Npn1, either 

directly or indirectly.    
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 L1 associates with Npn1 through a sequence (FASNKL) in the first L1 Ig 

domain, within which a missense mutation (L120V) disrupts L1-Npn1, but not L1-L1 

binding (Castellani et al., 2002).  This conservative mutation within the FG loop of L1 

results in a change in the size and shape of a surface hydrophobic residue (L120) 

(Bateman et al., 1996).  Furthermore, the mutation of L120V in human L1 resulted in 

severe L1 mental retardation syndrome with hydrocephalus, indicating its functional 

importance (De Angelis et al., 1999).  Because the sequence is conserved in the Ig1 

domain of CHL1 (FASNRL), we investigated whether the equivalent mutation 

(L115V) would prevent CHL1 interaction with Npn1 in COS-7 cells.  Very little co-

capping was observed (17% of cells) between Npn1 and the CHL1L115V mutant 

protein, shown by the uniform distribution of CHL1L115V mutant protein in the plasma 

membrane (Fig 2.9D). These results suggest that the conserved sequence, 

FASNRL, in Ig1 of CHL1 is necessary for Npn1 association.  

 The association between CHL1 and Npn1 was further explored by co-

immunoprecipitation experiments.  CHL1 or CHL1L115V were transiently co-

transfected with myc-tagged Npn1 in COS-7 cells.  After 2 days, cell lysates were 

immunoprecipitated with mouse anti-myc antibody (Gift from Dr. Henrick Dohlman).  

Precipitates were evaluated by gel electrophoresis, and the presence of CHL1 was 

analyzed by immunoblotting with anti-CHL1 goat polyclonal antibody.  CHL1 protein, 

expressed as a doublet of 180 and 165 kiloDaltons (kDa), was detected in the 

immunoprecipitates of cells transfected with CHL1wt and Npn1, supporting the 

interaction between the two proteins (Fig 2.9E).  The two isoforms of CHL1 (185 and 

165 kDa) most likely correspond to two glycosylation variants (Hillenbrand et al., 
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1999).  An additional explanation for the two isoforms involves protein processing 

within the cell.  The higher molecular weight isoform could be non-processed, 

intracellular CHL1 (containing the signal peptide) while the lower molecular weight 

isoform is processed CHL1 on the cell surface.  Consistent with this observation, 

only the lower molecular weight isoform is detected in crude membrane fractions 

from mouse embryos under physiological buffer conditions (Hillenbrand et al., 1999).  

The association between CHL1 and Npn1 was shown to be dependent upon the 

critical leucine residue in the Ig1 extracellular domain of CHL1, as CHL1L115V was 

not immunoprecipitated with Npn1 (Fig 2.9E).  CHL1 also co-immunoprecipitated 

with Npn1 in whole brain extracts from E16.5 WT embryos (Fig 2.9E).  Western blots 

for Npn1 demonstrated the specificity of the immunoprecipitation, with protein 

present at 130 kDa (Fig 2.9E).      

 

CHL1 is Required for Sema3A-Induced Growth Cone Collapse of Thalamic Axons   

To investigate whether CHL1 is required for growth cone collapse of thalamic 

axons in response to Sema3A, genetic rescue experiments were performed in which 

cultures of dissociated thalamic neurons from CHL1-minus embryos (E14.5) were 

transfected with plasmids encoding CHL1wt, mutant CHL1L115V, defective in Npn1 

binding, or empty vector, together with a GFP expression plasmid. After 3 days, cells 

were treated with Sema3A protein fused to alkaline phosphatase (Sema3A-AP) or 

control Fc protein fused to alkaline phosphatase (Fc-AP). Cellular actin was stained 

with phalloidin and GFP-expressing cells were scored for growth cone collapse by 

phalloidin fluorescence. Co-transfection was efficient, as the percentage of GFP-
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positive neurons expressing CHL1 or CHL1L115V was 84% and 81%, respectively.  

CHL1-minus neurons transfected with vector alone showed a small but significant 

growth cone collapse response to Sema3A-AP compared to Fc-AP control (Fig 

2.10A,B,G).  The percent of collapsed growth cones in CHL1-minus cultures did not 

change when Fc-AP was added (not shown). In CHL1-minus thalamic neurons 

transfected with CHL1wt cDNA, the growth cone collapse response to Sema3A-AP 

significantly increased over control Fc-AP (Fig 2.10C,D,G).  Strikingly, transfection of 

CHL1-minus neurons with the CHL1L115V-expressing plasmid did not increase the 

growth cone collapse response to Sema3A (Fig 2.10E,F). The smaller Sema3A 

collapse response that remained in CHL1-minus and CHL1L115V -expressing cultures 

compared to treatment with Fc-AP (Fig 2.10G) was not significantly different in 

CHL1-minus and mutant-expressing neurons, and might represent an L1/Npn1-

dependent mechanism.  

L1 interaction with Npn1 mediates Sema3A-induced growth cone collapse in 

neonatal cortical and sensory neurons (Castellani et al., 2002), and L1 acting in 

trans as a ligand for L1-Npn1 complexes converts Sema3A-mediated repulsion to 

attraction (Castellani et al., 2000).  To test whether soluble CHL1 was capable of 

modifying the response of thalamic axons to Sema3A, recombinant CHL1 protein 

was added to cultures of dissociated thalamic neurons 15 min prior to addition of 

Sema3A-AP.  While CHL1 protein had little effect on neurons expressing no CHL1 

or mutant CHL1L115V, soluble CHL1 significantly decreased the percent of CHL1wt-

expressing growth cones that collapsed in response to Sema3A-AP (Fig 2.10G), 
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suggesting that CHL1 as a ligand could reverse, or silence, much of the collapse 

response to Sema3A.   

In explant cultures containing nondissociated neurons from embryonic 

thalamus (E14.5), Sema3A-AP similarly induced robust growth cone collapse of 

thalamic axons from WT embryos, but was much less effective at collapsing CHL1-

minus thalamic axons (Fig 2.10H). 

These results indicate that CHL1 is responsible for a majority of the Sema3A-

induced growth cone collapse in embryonic thalamic axons at this stage, and that a 

single point mutation within the Npn1 binding site in CHL1 Ig1 domain is critical for 

rescuing the response in CHL1-minus thalamic neurons.  In addition, CHL1 acting as 

a ligand for CHL1-Npn1 complexes can silence Sema3A-induced collapse. These 

data support a mechanism in which CHL1 associates with Npn1 through the CHL1 

Ig1 domain to form a receptor complex for Sema3A, important for growth cone 

collapse of thalamic axons that could regulate guidance in the VTe.   

 

2.4 Discussion        

Here we identify CHL1 as a new molecular determinant of thalamocortical 

axon projection to specific neocortical areas, acting within an intermediate target, the 

VTe. CHL1 deletion disrupted the final thalamocortical map by causing a contingent 

of axons from somatosensory thalamic nuclei to incorrectly target the visual cortex. 

CHL1 colocalized Npn1 on thalamic axons, and axonal tracing demonstrated that 

thalamic axons from VB nuclei of CHL1-minus and Sema3A-nonresponsive 

Npn1Sema-/- mutants misprojected caudally within the VTe, consistent with loss of 
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repellent axon guidance to the high-caudal to low-rostral Sema3A gradient (Fig 

2.11).  This mechanism is supported by genetic rescue experiments in CHL1-minus 

thalamic neurons, which demonstrated that a single point mutation (L115V) in the 

CHL1 Ig1 domain was critical for both Sema3A-induced growth cone collapse and 

association of CHL1 with Npn1.  In addition, caudal thalamic axons were shifted 

rostrally in the VTe of CHL1-minus and Npn1Sema-/- mutant embryos, consistent with 

impaired permissive axon guidance through high Sema3A caudal territories of the 

VTe, possibly due to loss of CHL1-Npn1 signaling (Fig 2.11).  Our results reveal a 

novel cooperation between CHL1 and Npn1 for axon guidance responsible for 

topographic sorting of specific thalamocortical projections at the VTe in response to 

Sema3A.  

 The aberrant caudal shift of VB axons in the VTe of CHL1-minus and 

Npn1Sema-/- mice is consistent with a cooperative function for CHL1 and Npn1 in 

mediating axon repulsion from the descending caudal gradient of Sema3A in the 

VTe.  The caudal shift of VB thalamic axons in the CHL1-minus telencephalon 

culminates in misrouting of these axons to the posterior visual cortex.  A number of 

mutant axons misguided in the telencephalon may be lost during later stages of 

development, prior to barrel formation, as a substantial portion of VB axons correctly 

targeted the somatosensory cortex.  This could potentially account for the relatively 

normal barrel field in CHL1-minus mice.  Mice deficient in Sema3A (Ulupinar et al., 

1999) and PlexinA4, a Npn1 co-receptor (Suto et al., 2005), display relatively normal 

barrels as well.  CHL1 probably does not factor in the tangential migration of cells 

that form a permissive corridor for thalamocortical axon navigation into the 
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telencephalon (Lopez-Bendito et al., 2006), as CHL1 transcripts were not detected in 

the ganglionic eminence. The ability of CHL1 to promote Sema3A-induced growth 

cone collapse in thalamic neurons mediated by an identified Npn1 binding site in the 

CHL Ig1 domain supports the interpretation that VB thalamic axons are repelled from 

the increasing Sema3A gradient along the rostrocaudal axis of the VTe.  

The high ventral to low dorsal gradient of CHL1 in the dorsal thalamus is 

consistent with preferential expression of CHL1 in somatosensory nuclei.  In 

addition, plexinA4, a component of the Sema3A signaling complex, is preferentially 

expressed in the VPM/VPL nuclei (Suto et al., 2005). These expression patterns 

may explain the differential response of posterior thalamic axons due to loss of 

CHL1/Npn1 signaling.     

 Since CHL1 is expressed on corticofugal axons in a high caudal to low rostral 

gradient (Demyanenko 2004; Liu 2000), some aspects of thalamocortical misrouting 

might be secondary due to cell non-autonomous functions of CHL1 on caudal 

corticothalamic axons.  The rostral shift of caudal axons is also observed in 

Npn1Sema-/- embryos, consistent with cooperation between CHL1 and Npn1 to control 

navigation of caudal thalamic axons through the VTe.  CHL1 on caudal corticofugal 

axon subpopulations within the VTe could act as a binding ligand for CHL1-Npn1 

complexes on caudal thalamic axons, abrogating growth cone collapse to Sema3A, 

as shown in growth cone collapse assays.  This silencing may enable caudal 

thalamic axons to migrate preferentially within caudal territories of the VTe en route 

to the cortex.  In the absence of CHL1 or Npn1-Sema3A signaling, an unidentified 

repellent guidance mechanism may predominate, resulting in the rostral shift of 

59



 

caudal thalamic axons.  Netrin1 has recently been implicated in guidance of 

thalamocortical axons through the VTe.   A recent study demonstrated that activation 

of serotonin (5-HT) converts netrin1-mediated attraction of caudal thalamic axons to 

repulsion (Bonnin et al., 2007), which could provide a possible mechanism for the 

rostral shift of caudal thalamic axons observed in CHL1 and Npn1Sema-/- mutant mice.  

Thus, CHL1/Npn1 complexes may cooperate with netrin1 responses to control 

topographic mapping of caudal thalamocortical axons, although the molecular basis 

for such an interaction remains unclear. 

Co-capping and co-immunoprecipitation studies demonstrated that CHL1 and 

Npn1 constitutively associate through a critical leucine residue within a motif 

(FASNRL115) in the CHL1 Ig1 domain. This motif is homologous to the Npn1 binding 

site of L1 (FASNKL), which is required for Sema3A-induced growth cone collapse in 

neonatal cortical and sensory neurons (Castellani et al., 2000). The residual 

Sema3A-dependent growth cone collapse, observed in CHL1-minus or CHL1L115V-

expressing thalamic neurons, is likely due to Npn1 signaling through L1, which is 

also expressed on developing thalamic axons (Fukuda et al., 1997). Despite their 

similar roles in mediating Sema3A-induced growth cone collapse, genetic deletion of 

CHL1 or L1 causes different thalamocortical phenotypes in vivo. Thalamocortical 

axons in L1-minus mice are hyperfasciculated but normally target the motor, 

somatosensory, and visual cortex (Ohyama et al., 2004; Wiencken-Barger et al., 

2004), whereas thalamocortical axons of CHL1-minus mice are not altered in 

fasciculation at the VTe or cortex but do show misrouting of somatosensory 

projections. Differential expression of CHL1 and L1 in thalamic neuron 
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subpopulations, or interaction with different homophilic and heterophilic partners 

along the thalamocortical pathway, might account for these differences. It is also 

possible that L1 might functionally compensate for loss of CHL1 in certain 

subpopulations of thalamic neurons.  

 EphrinA5 is an important axon guidance cue identified previously to influence 

thalamocortical axon sorting at the VTe (Dufour et al., 2003). The high caudal 

gradient of ephrinA5 in the VTe preferentially regulates sorting of rostral thalamic 

axons, ensuring targeting to the motor cortex. We demonstrate that CHL1 and Npn1 

mediate sorting of caudal and VB, but not rostral thalamic axons. The rostrocaudal 

expression levels of Sema3A, ephrinA5, and their receptors may render CHL1/Npn1 

the predominant guidance system for sorting of posterior thalamic axons at the VTe. 

Differential expression of plexinAs (Yaron et al., 2005), MICALs (Pasterkamp et al., 

2006), or RanBPM (Togashi et al., 2006), which bind Npn1, might also influence 

CHL1 interaction with Npn1 and downstream signaling. 

 Semaphorins and Npns are regulators of repulsive axon guidance through the 

nervous system, where they are important for pathfinding and fasciculation of 

olfactory, spinal and cranial axons, and other major tracts (Kitsukawa et al., 1997; 

Giger et al., 2000; Cloutier et al., 2002; Gu et al., 2003) Our study extends the role of 

Sema3A and Npn1 to the thalamocortical pathway, one of the main topographic 

projections in the brain. The results further reveal a prominent new role for CHL1 as 

a coreceptor for Npn1, mediating axon guidance to Sema3A in the VTe, vital for 

establishment of the topography of specific thalamocortical projections.  
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2.5 Methods 

Mice 

  CHL1 heterozygous mutant mice on a C57Bl/6 background (Montag-Sallaz 

et al., 2002) were intercrossed to obtain CHL1 homozygous null mutants and WT 

littermates.  Embryonic day 0.5 was defined as the plug date and postnatal day 0 

(P0) as day of birth. Animal care and treatment were in accordance with guidelines 

provided by the UNC Institutional Animal Care and Use Committee (IACUC).  

Immunostaining and Histology 

CHL1 rabbit polyclonal antibody 12146 was raised against recombinant CHL1 

fused to the Fc portion of human IgG, and affinity purified, as described (Chen et al., 

1999).  The antibody was specific for CHL1, shown by Western blotting in the mouse 

forebrain from E13-P15 and adult (Hillenbrand et al., 1999).  In addition, 

commercially available CHL1 antibody was used (R&D systems, 1:200) with similar 

results.  Other antibodies used were rabbit polyclonal anti-green fluorescent protein 

(GFP) (Molecular Probes; 1:1000) and rabbit polyclonal anti-Npn1 (Gift from Dr. 

David Ginty or Calbiochem; 1:70).  Whole mounts were permeabilized at 4oC 

overnight using 5% normal goat serum, 3% bovine serum albumin, and 0.3% Triton 

X-100 in 0.1 M PBS.  The sections were then incubated in primary antibody at room 

temperature during the day and at 4oC overnight.  After 24 hours of washing with 0.1 

M PBS, the sections were incubated all day at room temperature and overnight at 

4oC in FITC or TRITC-conjugated secondary antibodies.  For histology experiments, 

WT and CHL1-minus littermates were anesthetized and perfused and brains were 
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processed for cytochrome oxidase (Boyd and Matsubara, 1996) or Nissl 

(Demyanenko et al., 1999).   

In Situ Hybridization  

cDNA encoding the extracellular region of mouse CHL1 was subcloned into 

psBluescript KS(-) and sense and antisense probes were generated by restriction 

digest  (amino acids 1-1083 from Accession Number NM_007697), as previously 

described (Villegas and Tufro, 2002).    Brains from WT embryos (E14.5) were 

immersion fixed in 4% PFA overnight and cryoprotected in sucrose prior to 

sectioning (horizontally or sagittally). In situ hybridization was performed as 

described using DIG-labeled probes (Colbert et al., 1995). 

In vivo Axon Tracing 

Retrograde axon tracing was performed by focal injection of 1,1',dioctadecyl-

3,3,3'3'-tetramethylindocarbocyanine perchlorate (DiI) and 4-4-dihexadecyl 

aminostyryl N-methyl-pyridinium iodide (DiA) (Molecular Probes) solutions (5% in 

ethanol) in two distinct cortical areas of living mice anesthetized by hypothermia.  

Injections were made with capillary micropipettes connected to a Picospritzer II.  

Mice were sacrificed two days later and fixed by transcardial perfusion.  Forebrains 

were vibratome sectioned in the coronal plane (100 µm). Injection sites were 

monitored microscopically, and only those injections restricted to the neocortex 

without entering the white matter were further analyzed.  The exact locations and 

positions of the injection sites and the position of thalamic nuclei were identified 

using bisbenzimide nuclear staining and comparison to atlas coordinates. 
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For anterograde tracing, WT, CHL1-minus, and Npn1Sema-/- embryonic brains 

were fixed in 4% PFA overnight at 4oC.  Following hemidissection, DiA or DiI crystals 

were inserted into the dorsal thalamus. After diffusion for 2-4 weeks at room 

temperature, the brains were coronally vibratome sectioned (100 µm).  Sections 

were mounted in gel mount containing anti-fading agents (Biomedia) and imaged 

using epifluorescence microscopy.  The size and position of the crystals with respect 

to the thalamic eminence reference point were verified microscopically.  Acceptable 

injections were within 300 µm of the thalamic eminence (for rostral or caudal 

labeling) or 100 μm (for VB labeling). 

 Co-capping Assay 

COS-7 cells were co-transfected with pCos-BMN-Npn1 and pcDNA3-CHL1 or 

pcDNA3-CHL1L115V mutant.  The cells were then dissociated with 5mM EDTA in 

Hank’s Balanced Salt Solution (HBSS), washed with 10% fetal bovine serum in 

DMEM, and resuspended in ice cold DMEM.  To cap surface Npn1, the cells (30,000 

cells/100 µl) were incubated with anti-Npn1 rabbit polyclonal antibody (40 µg/ml) at 

4oC for 20 min.  To cap surface CHL1, cells were incubated with anti-CHL1 goat 

polyclonal antibody (40 µg/ml).  The cells were washed in ice cold DMEM, 

resuspended in DMEM containing 10 µg/ml of mouse anti-rabbit IgG to cluster Npn1 

or mouse anti-goat IgG to cluster CHL1, and incubated for 20 min on ice.  After 

washing with ice cold DMEM, cells were resuspended in 10% fetal bovine serum in 

DMEM and plated onto fibronectin coated MatTek dishes (MatTek Corp).  Cells were 

incubated for 1 hr at 37oC and then fixed with 4% PFA for 15 min.  After washing, 

cells were blocked in 10% donkey serum for 1 hr at room temperature.  To label 
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CHL1, the cells were incubated with anti-CHL1 antibody (20 µg/ml in blocking buffer) 

for 2 hr at room temperature and washed with PBS.  To label Npn1, cells were 

incubated with anti-Npn1 (20 µg/ml).  Npn1 and CHL1 were detected by incubating 

the cells with FITC- and TRITC-conjugated secondary antibodies (diluted 1:100 in 

blocking buffer) for 1 hr at room temperature.  Finally, the cells were washed, 

mounted in Vectashield, and imaged using an Olympus FV500 laser confocal 

microscope. 

Co-immunoprecipitation 

COS-7 cells were co-transfected with CHL1 or CHL1L115V and myc-tagged 

Npn1 using Lipofectamine 2000.  After 2 days, cells were lysed on ice with 

immunoprecipitation buffer (20mM Tris HCl, 150mM NaCl, 5mM Na+EDTA, 2mM 

Na+EGTA, 10mM sodium fluoride, 1mM sodium pervanadate, 1mM  

phenlymethylsulfonyl fluoride, 1% Triton X-100) including protease inhibitors.  Whole 

brains were isolated from E16.5 WT embryos and lysed in complete RIPA buffer 

(20mM Tris HCl, 0.15M NaCl, 5mM Na+EDTA, 1mM Na+EGTA, 1% NP-40, 1% Na-

deoxycholate, 0.1% SDS, 0.2mM sodium orthovadandate, 10mM sodium fluoride) 

including protease inhibitors.  The lysates were incubated for 10 min at 4oC and 

clarified by centrifugation for 10 min.  After preclearing with mouse or rabbit IgG for 

30 min at 4oC, samples were immunoprecipitated with mouse anti-myc (10 µg) or 

rabbit anit-Npn1 (1µg/ml, Chemicon) antibodies for 1 hour at 4oC.  The beads were 

then washed and the precipitates were analyzed by immunoblotting with anti-CHL1 

goat polyclonal antibody (1:1000) and an HRP-conjugated bovine anti-goat IgG 

antibody using enhanced chemiluminescent detection (Pierce). 
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Growth Cone Collapse Assay 

 CHL1-minus thalamic embryonic (E14.5) neurons were obtained by isolating 

the thalamus and dissociating the cells in 3 ml of ice-cold HBSS.  Cells were further 

dissociated by trituration with a 10 ml pipette, followed by a wide bore Pasteur 

pipette, and immediately co-transfected with pMax-GFP and pcDNA3-CHL1wt, 

pcDNA3-CHL1L115V, or empty pcDNA by electroporation using an Amaxa 

Nucleofector Device and Mouse Neuron Nucleofector Kit (Amaxa Corp).  Briefly, 5 x 

106 cells were resuspended in transfection buffer and program O-05 was used to 

electroporate the DNA into the cells.  Cells were allowed to recover in RPMI medium 

(Gibco) for 5 minutes, and then plated on fibronectin-coated MatTek dishes in 10% 

fetal bovine serum and DMEM.  The day after plating, the media was changed to 

Neurobasal media containing B27 supplement and glutamate (25uM) to select for 

neurons.  After 48 hours of incubation, cells were treated with either FC-AP or 

Sema3A-AP fusion proteins (30 nM) for 30 min.  In some experiments, cells were 

treated with 3 µg/ml of recombinant extracellular CHL1 (R&D Systems) protein for 15 

minutes prior to the addition of Sema3A-AP or FC-AP.  FC-AP and Sema3A-AP 

were prepared by transfecting HEK293T cells using Lipofectamine 2000.  After two 

days, media was collected and the concentration was determined as described in 

(Flanagan and Leder, 1990), with slight modifications.  Cells were then fixed with 4% 

PFA and permeabilized with 0.2% TritonX-100 for 5 min.  After washing, cells were 

treated with rhodamine-conjugated phalloidin (Molecular Probes; 1:40) for 30 min at 

room temperature to visualize actin within the growth cone.  Only cells expressing 
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GFP were included in the analysis.  Cells were mounted in Vectashield, and growth 

cone morphology was observed using confocal microscopy. 

  For explant studies, WT and CHL1-minus embryonic (E14.5) brains were 

vibratome sectioned (300 µm) and thalamic regions were obtained by 

microdissection in ice cold HBSS.  Explants were plated on fibronectin-coated Mat-

Tek dishes using a plasma clot (20 µl bovine thrombin with 20 µl chicken plasma; 

Sigma) to ensure adherence of the explant.  The explants were cultured and growth 

cone morphology was analyzed as described above.     
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Figure 2.1:  CHL1 is Expressed in the Developing Thalamocortical Pathway   

A. Immunofluorescence staining for CHL1 in a mid-coronal section (to best observe 

the entire thalamocortical pathway) of WT brain during projection of thalamic axons 

to the neocortex at E14.5, visualized by confocal microscopy.  CHL1 protein is 

evident within the dorsal thalamus (DT), internal capsule (IC), intermediate zone (IZ), 

marginal zone (MZ), and cortical plate (CP).  No staining was observed with 

nonimmuge IgG.  

 

B.  Immunofluorescence staining for CHL1 in a mid-coronal section of E16.5 WT 

brain visualized by confocal microscopy.  CHL1 protein is prominent in the DT and 

IC, and is also present in the hippocampus (HC). 

 

C.  CHL1 localization in the caudal cortex of E16.5 WT brain visualized by confocal 

microscopy.  CHL1 is most prominent in the IZ and MZ, and to a lesser extent in the 

CP.  No staining was observed with nonimmune IgG. 

 

D-E. (D) In situ hybridization for CHL1 mRNA in WT embryos (E14.5) in serial 

horizontal sections (to best observe the dorsal thalamus).  CHL1 was expressed in a 

low dorsal to high ventral gradient throughout the dorsal thalamus.  (E) CHL1 

transcripts were also evident in the pretectal area and the cortical IZ and CP, but not 

the lateral or medial ganglionic eminence (LGE, MGE). 
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F-G. EGFP-labeled WT thalamic explants were co-cultured with unlabeled WT 

telencephalic whole mounts (E14.5) and immunostained for CHL1 (red) and GFP 

(green).  (F), Thalamocortical axons (green) show localization with CHL1 (yellow in 

merge).  Corticofugal axons also show CHL1 localization (red in merge). Scale 

bar=100 µm  (G), Single TC axon expressing CHL1 shown by localization of EGFP 

(green) with CHL1 (red) along the axon shaft and within the growth cone (yellow in 

merge). Scale bar=50 µm 
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Figure 2.2:  Projection of Somatosensory Thalamic Axons is Caudally Shifted 

to the Visual Cortex in CHL1-Minus Mice 

A. Scheme illustrating location of injections of DiI (visual cortex) and DiA 

(somatosensory cortex) of P5 mice.  Appropriate location and position of injections 

were confirmed using fluorescent microscopy.   

 

B-C. Retrograde labeling of thalamocortical axons of WT mice (B, n=13, scale 

bar=100 µm; C, scale bar=50 µm).  Expected projection patterns of DiI labeling (red) 

in the LGN and DiA labeling (green) in the VB (VPM and VPL) are shown.   

 

D-E.  Retrograde labeling of thalamocortical axons in CHL1-minus mice (D, n=18, 

scale bar=100 µm; E, scale bar=50 µm).  Appropriate DiA labeling (green) in the 

VPL and VPM was evident. Expected DiI labeling (red) in the LGN, as well as 

unexpected labeling of the VPL and VPM was observed.  INSET:  High 

magnification image of cell bodies in the dorsal thalamus retrogradely labeled by DiI.  

 

F.  Retrograde labeling of thalamocortical axons of WT mice (n=8) injected with DiI 

in the motor cortex at P5.  DiI labeling (red) is present only in the appropriate 

location of the ventrolateral nucleus.  Scale bar=100 µm. 

 

G. Scheme illustrating the thalamocortical projection pathway of WT mice.  Normal 

TC axons from the LGN project to the visual cortex; axons from the VB complex 
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project to the somatosensory cortex; and axons from the VA/VL project to the motor 

cortex.   

 

H. Retrograde labeling with DiI injected in the motor cortex of CHL1-minus mice 

(n=6) at P5.  DiI labeling (red) is present only in the ventrolateral nucleus.  Scale 

bar=100 µm.  

 

I.  Scheme illustrating the altered thalamocortical topography in CHL1-minus mice.  

TC axons from the LGN project appropriately to the visual cortex, while axons from 

the VB complex project appropriately to the SS cortex and inappropriately to the 

primary visual cortex (dashed red line).  Axons from the VA/VL project appropriately 

to the motor cortex  

 

J-K.  Nissl staining of WT and CHL1-minus adult mice demonstrate the positioning 

of barrels in layer IV of S1.  No differences were observed.   

 

L-M.  Cytochrome oxidase staining of WT and CHL1-minus littermates at P5 to 

observe the barrels in layer IV of S1.  Number and positioning of barrels was not 

affected by loss of CHL1.   

 

LGN-lateral geniculate nucleus, VB-ventral basal complex, VA-ventroanterior 

nucleus, VL-ventrolateral nucleus, VPL-ventroposterior lateral nucleus, VPM-

ventroposterior medial nucleus 
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Figure 2.3:  CHL1 is Required for Guidance of Caudal Thalamic Axons in the 

Ventral Telencephalon at E15.5 

A.  Scheme illustrating placement of DiI crystal in rostral dorsal thalamus and DiA 

crystal in caudal dorsal thalamus of mouse embryos.  Line indicates level of sections 

at 400 µm rostral of the thalamic eminence  

 

B-C.  Anterograde tracing of (B) WT (n=9) and (C) CHL1-minus (n=8) embryos with 

only rostral (red) axons present in the VTe.  Seven of eight mutant hemispheres 

displayed normal topography.  Scale bar=50 µm 

 

D. Quantification of the rostrocaudal distribution of rostral thalamic axons within the 

VTe of WT and CHL1-minus embryos.  The reference point (0) corresponds to the 

first section of the thalamic eminence, where axons leave the diencephalon and 

enter the VTe.  The normalized frequency of labeled hemispheres (expressed as a 

proportion of total number of hemispheres examined) where rostral axons were 

found was plotted versus the normalized section number along the rostrocaudal axis 

for both WT (blue curve) and CHL1-minus (red curve) mice.  There is no difference 

in the distributions.   

 

E.  Quantification of the distance from the rostral-most rostral thalamic axons to the 

thalamic eminence in WT (1.2 ± 0.14 mm) and CHL1-minus embryos (1.17 ± 0.18 

mm).  The y-axis represents the mean distance measured between the first section 
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where rostral axons are visible and the thalamic eminence. (Mann-Whitney, two-

tailed, M=58.5, α=0.05). 

 

Scheme illustrating the placement of DiI and DiA crystals in the rostral and caudal 

dorsal thalamus of embryos at E15.5.  Line indicates levels of sections at 100 µm 

caudal to the thalamic eminence (F,G) and 300 µm rostral of the thalamic eminence 

(H). 

 

F-H.  Images of the VTe from coronal sections located 100 µm caudal to the 

thalamic eminence show the presence of both rostral (red) and caudal (green) 

thalamic axons in WT (F) compared to CHL1-minus (G) where only rostral thalamic 

axons were present.  (H) At 300 µm rostral of the thalamic eminence in the CHL1-

minus VTe both rostral (red) and caudal (green) thalamic axons were present, 

indicating a rostral shift of the caudal axons (5 of 8 mutant hemispheres displayed 

aberrant topography).  Scale bar=50 µm   

 

I. Quantification of the rostrocaudal distribution of caudal thalamic axons within the 

VTe of WT (n=8) and CHL1-minus (n=8) embryos (E15.5).  Normalized frequency of 

labeled hemispheres was plotted, as described above, for WT (blue) and CHL1-

minus (red) mice.  A rostral shift of caudal axons is indicated.   

 

J. Quantification of the rostral shift of caudal thalamic axons of CHL1-minus 

embryos (0.31 ± 0.07 mm) compared to WT (0.75 ± 0.15 mm).  The y-axis 
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represents the mean distance measured between the thalamic eminence (0 

reference point) and the last section where caudal axons are visible. Asterisk 

indicates significant difference (Mann-Whitney, two-tailed, M=50.5, α=0.1).  Error 

bars represent standard error to the mean. 
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Figure 2.4:  CHL1 is Required for Guidance of Ventral Basal Thalamic Axons in 

the Telencephalon at E15.5 

A.  Scheme illustrating placement of DiI crystal in the central third of the dorsal 

thalamus of mouse embryos.  Lines indicate level of sections at 400 µm caudal of 

the thalamic eminence (B,C) and 500 µm rostral to the same reference point (D). 

 

B-D.  Images of the VTe located 400 µm caudal to the thalamic eminence show no 

labeled axons in WT (B) compared to CHL1-minus (C) where DiI-labeled thalamic 

axons were present.  (D) At 500 µm rostral of the thalamic eminence in WT VTe 

rostral (red) thalamic axons were present.  10 of 12 mutant hemispheres displayed 

aberrant topography.   

 

E. Quantification of the rostrocaudal distribution of VB thalamic axons within the VTe 

of WT (n=8) and CHL1-minus (n=12) embryos.  The reference point (0) represents 

the first section of the thalamic eminence, and normalized frequency of labeled 

hemispheres was plotted as described above for both WT (blue) and CHL1-minus 

(red) mice.  A caudal shift of VB axons within CHL1-minus VTe is evident.  

 

F. Quantification of the caudal shift of VB thalamic axons of CHL1-minus embryos 

(0.49 ± 0.08 mm) compared to WT (0.150 ± 0.05 mm).  The y-axis represents the 

mean distance measured between the thalamic eminence (0 reference point) and 

the last section where VB axons are visible. Asterisk indicates significant difference 
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(Mann-Whitney, two-tailed, M=50.5, α=0.1).  Error bars represent standard error to 

the mean. 

 

G-H.  Images of the DTe located 800 µm caudal to the thalamic eminence show no 

labeled axons in WT (G) compared to CHL1-minus (H) where DiI-labeled thalamic 

axons were present.  10 of 12 mutant hemispheres displayed aberrant topography.   

 

I. Quantification of the rostrocaudal distribution of VB thalamic axons within the DTe 

of WT (n=9) and CHL1-minus (n=12) embryos.  The reference point (0) represents 

the first section of the thalamic eminence, and normalized frequency of labeled 

hemispheres was plotted as described above for both WT (blue) and CHL1-minus 

(red) mice.  A caudal shift of VB axons within CHL1-minus DTe is evident.  Asterisks 

indicate significance between WT and CHL1-minus at individual points (p-

value<0.05; F-test).  
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Figure 2.5:  Segregation and Fasciculation of Thalamic and Cortical Axons 

Within the Ventral Telencephalon  is Not Altered in CHL1-minus Embryos 

(E16.5) 

A, D.  DiA was injected in the dorsal thalamus of WT (A) and CHL1-minus (D) 

embryos at E16.5.  There was no difference in overall fasciculation of thalamic 

axons due to loss of CHL1.   

 

B, E.  In the same embryos (E16.5), DiI was injected in the cortex to label 

corticofugal axons.  Loss of CHL1 did not affect the overall fasciculation of cortical 

axons in the VTe.  

 

C, F.  Merged images of thalamic and cortical axons from WT (C) and CHL1-minus 

(F) embryos at the VTe indicate that CHL1 loss did not alter segregation between 

the two axonal populations. 
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Figure 2.6:  Expression of CHL1, Neuropilin1, and Sema3A in the Embryonic 

Dorsal Thalamus and Telencephalon 

A-C.  Immunofluorescence staining for Npn1 (green) and CHL1 (red) in coronal 

sections of WT brain at E14.5 through the DT (A), the VTe (B), and the cortex (Cx) 

(C).  CHL1 colocalized with Npn1 in fibers of the upper intermediate zone (IZ) (C) 

and in axons of the DT and VTe, consistent with the location of thalamocortical 

fibers.  Scale bar= 20 µm (B); 100 µm (A, C).   

 

D-E.  Npn1 (green) and CHL1 (red) colocalization was observed by 

immunofluorescence staining at E16.5 in coronal sections through the DT (D) and 

Cx (E).  Fibers in the DT and the upper and lower IZ express both CHL1 and Npn1.  

The location of these fibers is consistent with the positioning of thalamocortical and 

corticofugal axons.  Scale bar=20 µm (D); 100 µm (E) 

 

F-F’.  Immunofluorescence staining for Npn1 (green) and CHL1 (red) in coronal 

sections at P5 though the DT.  The merged image shows colocalization of Npn1 and 

CHL1 within the DT.  (F’)  High magnification of fibers within the VB complex of the 

DT, indicating colocalization of Npn1 and CHL1.   

 

G-H.  In situ hybridization for Sema3A mRNA in WT embryos at E14.5 in horizontal 

sections.  Sema3A mRNA was evident within the IZ of the ganglionic eminence (GE) 

in a high-caudal to low-rostral gradient.  No expression was observed in the DT (G).  

Scale bar=50 µm (G); 20 µm (H) 

90



 

I. Pixel densities were measured along the rostrocaudal axis of the VTe from serial 

sections of three embryos using ImageJ Software and normalized to background 

levels.  These data fit a linear regression with an R2 value equal to 0.78. 

 

J.  In situ hybridization for Sema3A in a sagittal section through the neocortex.  

Sema3A transcripts were robustly expressed in the ventricular zone and marginal  

zone with little in the IZ.  Scale bar=100 µm  
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Figure 2.7:  Neuropilin1 Binding to Sema3A is Required for Guidance of 

Caudal Thalamic Axons Within the Ventral Telencephalon 

A.  Scheme illustrating placement of DiI crystal in rostral dorsal thalamus and DiA 

crystal in the caudal dorsal thalamus of mouse embryos at E16.5.  Line indicates 

level of sections at 600 µm rostral of the thalamic eminence. 

 

B-C.  Images of the VTe located 600 µm rostral to the thalamic eminence show the 

presence of rostral axons only in WT (B) and Npn1Sema-/- (C).  Scale bar=50 µm   

 

D. Quantification of the rostrocaudal distribution of rostral thalamic axons within the 

VTe of WT and Npn1Sema-/- embryos.  The reference point (0) corresponds to the first 

section of the thalamic eminence, where axons leave the diencephalon and enter 

the VTe.  The normalized frequency of labeled hemispheres (expressed as a 

proportion of total number of hemispheres examined) where rostral axons were 

found was plotted versus the normalized section number along the rostrocaudal axis 

for both WT (blue) and Npn1Sema-/- (red) mice.  There are no significant differences in 

the distribution. 

 

E. Quantification of the distance from the rostral-most rostral thalamic axons to the 

thalamic eminence in WT (0.82 ± 0.08 mm) compared to Npn1Sema-/- (0.78 ± 0.05 

mm).  The y-axis represents the mean distance measured between the thalamic 

eminence (0 reference point) and the last section where rostral axons are visible.  

Error bars represent standard error to the mean. 
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Scheme illustrating placement of DiI crystal in rostral dorsal thalamus and DiA 

crystal in caudal dorsal thalamus of mouse embryos at E15.5.  Lines indicate level of 

sections at 500 µm caudal of the thalamic eminence (F,G) and 900 µm rostral to the 

same reference point (H,I). 

 

F-I.  Images of the VTe from coronal sections located 500 µm caudal to the thalamic 

eminence show the presence of both rostral (red) and caudal (green) thalamic axons 

in WT (F) compared to Npn1Sema-/- (G) where only rostral thalamic axons were 

present.  At 900 µm rostral of the thalamic eminence in the WT VTe (H) only rostral 

(red) thalamic axons were present.  However at an equivalent level in Npn1Sema-/- (I), 

both rostral (red) and caudal (green) axons were visible, indicating a rostral shift of 

the caudal axons (5 of 5 mutant hemispheres displayed aberrant topography).  Scale 

bar=50 µm   

 

J. Quantification of the rostrocaudal distribution of caudal thalamic axons within the 

VTe of WT (n=5) and Npn1Sema-/- (n=5) embryos (E15.5).  The reference point (0) 

represents the first section of the thalamic eminence and normalized frequency of 

labeled hemispheres was plotted as described above for both WT (blue) and 

Npn1Sema-/- (red) mice.  A rostral shift of caudal axons within the Npn1Sema-/- VTe is 

evident.  

 

K. Quantification of the rostral shift of caudal thalamic axons of Npn1Sema-/- embryos 

(0.46 ± 0.06 mm) compared to WT (1.2 ± 0.1 mm).  The y-axis represents the mean 
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distance measured between the thalamic eminence (0 reference point) and the last 

section where caudal axons are visible. Asterisk indicates significant difference 

(Mann-Whitney, two-tailed, M=50.5, α=0.1).  Error bars represent standard error to 

the mean. 
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Figure 2.8:  Neuropilin1-Sema Interactions are Required for Guidance of 

Ventral Basal Thalamic Axons 

A.  Scheme illustrating placement of DiI crystal in the central third of the dorsal 

thalamus of mouse embryos.  Lines indicate level of sections at 400 µm caudal of 

the thalamic eminence (B,C) and 700 µm rostral to the same reference point (D). 

 

B-D.  Images of the VTe located 400 µm caudal to the thalamic eminence show no 

labeled axons in WT (B) compared to Npn1Sema-/- (C) where DiI-labeled thalamic 

axons were present.  (D) At 700 µm rostral of the thalamic eminence in WT VTe, 

rostral (red) thalamic axons were present.  4 of 5 mutant hemispheres displayed 

aberrant topography.  Scale bar=50 µm   

 

E. Quantification of the rostrocaudal distribution of VB thalamic axons within the VTe 

of WT (n=10) and Npn1Sema-/- (n=5) embryos.  The reference point (0) represents the 

thalamic eminence, and normalized frequency of labeled hemispheres was plotted 

as described above for both WT (blue) and Npn1Sema-/- (red) mice.  A caudal shift of 

VB axons within Npn1Sema-/- VTe is evident.  

 

F. Quantification of the caudal shift of VB thalamic axons of Npn1Sema-/- embryos 

(0.65 ± 0.06 mm) compared to WT (0.17 ± 0.04 mm).  The y-axis represents the 

mean distance measured between the thalamic eminence and the last section where 

VB axons are visible. Asterisk indicates significant difference (Mann-Whitney, two-

tailed, M=50.5, α=0.1).  Error bars represent standard error to the mean. 
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Figure 2.9:  Neuropilin1 and CHL1 Form a Stable Complex 

A.   Npn1 capping (green) was induced by cross-linking with Npn1 antibody and 

detected with a FITC-labeled secondary antibody.  CHL1wt protein (red) labeled with 

CHL1 antibody and a TRITC-labeled secondary antibody was recruited to Npn1 

caps.  Merged images show co-localization of CHL1 and Npn1 (yellow).  Co-capping 

was observed in 82% of cells expressing both CHL1wt and Npn1.  The last panel 

illustrates the differential interference contrast (DIC) of each cell. 

 

B.  In reverse experiments, CHL1wt (green) was clustered on the cell membrane 

with CHL1-polyclonal antibody and detected with a FITC-labeled secondary 

antibody.  Npn1 (red) was recruited to the CHL1wt cap shown in the merged image 

by colocalization of the two proteins (yellow).  Co-capping was observed in 75% of 

cells expressing CHL1wt and Npn1. 

  

C. Non-immune rabbit IgG did not induce capping of Npn1 (green), nor was CHL1wt 

protein (red) clustered in response to non-immune rabbit IgG.  No colocalization was 

observed in the merged image.   

 

D. Npn1 capping (green) was induced as described above.  CHL1L115V mutant 

protein (red), detected by CHL1 polyclonal antibody and TRITC-labeled secondary 

antibody, was not recruited to Npn1 caps, indicated by little co-localization in the 

merge image.  Instead, CHL1L115V was evenly distributed around the plasma 

membrane.  Co-capping was detected in only 17% of cells expressing both 
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CHL1L115V and Npn1, significantly reduced from CHl1wt-expressing cells (p-

value>0.05). 

 

E.  COS7 cells were transiently transfected with CHL1wt or CHL1L115V and myc-

tagged Npn1.  Lysates were immunoprecipitated with anti-myc antibody, and 

proteins were analyzed using gel electrophoresis.  The presence of CHL1 was 

detected using anti-CHL1 goat polyclonal antibody.  In cells transfected with CHL1wt 

and Npn1, a doublet was detected at 185 and 165 kDa, corresponding to CHL1.  No 

band was detected in lysates from cells transfected with Npn1 and the mutant form 

of CHL1.  Lysates from E16.5 WT whole brain extract were immunoprecipitated with 

anti-Npn1 antibody (Calbiochem) and the presence of CHL1 was detected as 

described above.  WT E16.5 lysates were used as positive control for CHL1.  

Western blots for Npn1 demonstrated the specificity of the immunoprecipitation, with 

protein present at 130 kDa, corresponding to Npn1.   
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Figure 2.10:  CHL1 is Required for the Growth Cone Collapsing Effects of 

Sema3A in Cultures of Thalamic Neurons (E14.5) 

 

A,C,E. Growth cones of dissociated thalamic neurons from CHL1-minus embryos 

(E14.5) transfected with empty vector (A), CHL1wt (C), or CHL1L115V mutant (E) 

were not collapsed in response to FC-AP fusion protein.  Non-collapsed growth 

cones are indicated with white arrows.  

 

B, D, F. Sema3A had little effect on the growth cones of neurons expressing no 

CHL1 (B) and or the mutant form, CHL1L115V (F) and most growth cones are not 

collapsed (white arrows).  However, growth cones of CHL1-minus thalamic neurons 

transfected with CHL1wt (D) were collapsed upon treatment with 30nM Sema3A-AP 

fusion protein (white arrows).   

 

G.  Quantification of percent growth cones collapsed from thalamic neurons in 

response to Sema3A.  Sema3A significantly increased the percentage of collapsed 

CHL1wt-expressing growth cones compared to Fc-AP (asterisk indicates 

significance, p=0.005).  While Sema3A had a significantly reduced effect on growth 

cones expressing no CHL1 or CHL1L115V, Sema3A did significantly increase growth 

cone collapse compared to control (asterisk indicates significance; CHL1-/- p=0.035; 

CHL1L115V p=0.04).  Soluble CHL1 silenced the growth cone collapse induced by 

Sema3A in CHL1wt-expressing cells (~50% reduction in collapse), but had no effect 

on growth cones expressing no CHL1 or CHL1L115V.   
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H.  Sema3A significantly increased the percentage of collapsed growth cones in WT 

explants isolated from the caudal half of the dorsal thalamus (n=57 growth cones).  

Sema3A had only marginal effects on growth cone collapse of CHL1-minus caudal 

explants (n=48); however it did significantly increase growth cone collapse 

compared to control.  No differences were observed in the percentage of collapsed 

growth cones treated with control FC-AP.  Asterisk indicates significance at two-

tailed T-test (p<0.05).     
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Figure 2.11:  CHL1 and Neuropilin1 Mediate Guidance of Thalamocortical 

Axons at the Ventral Telencephalon  

Model for mapping and final targeting of thalamocortical axons in WT and CHL1-/- 

mice.  WT and CHL1-minus axons from the motor thalamic nuclei (VA/VL) project to 

the motor cortex (blue lines).  WT axons from the ventral basal complex (VB) project 

to the somatosensory cortex (solid red line).  Deletion of CHL1 causes a contingent 

of these axons to shift caudally in the VTe due to lack of repulsion by the high 

concentration of Sema3A in this region.  These misguided axons inappropriately 

target the visual cortex (red dashed line, red arrow).  WT Axons from the lateral 

geniculate nucleus (LGN) target the visual cortex (green lines).  Loss of CHL1 

causes a subset of these axons to shift rostrally in the VTe due to impaired CHL1-

Npn1 signaling; however, these axons do not reach the cortex (green dashed line, 

green arrow).   
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Chapter 3 

 

L1 and Close Homolog of L1 (CHL1) Regulate Area-Specific Targeting 

of Thalamocortical Axons Through Interaction with EphA-EphrinA 

Guidance Cues 

 

 



3.1 Abstract 

Eph receptors and ephrin ligands regulate guidance of several major axonal 

pathways within the nervous system, including retinocollicular maps and 

thalamocortical topography, via repellent guidance mediated by growth cone 

collapse.  Here, I demonstrate a requirement for CHL1 in ephrinA5-mediated growth 

cone collapse of thalamic axons.  L1 was shown to interact with EphA4, an ephrinA5 

receptor, through co-immunoprecipitation studies.  In addition, deletion of L1 and 

CHL1 in mice severely disrupted thalamocortical targeting, with motor and 

somatosensory thalamic axons misprojecting to the visual cortex.  These results 

suggest that L1 and CHL1 may work in concert to specify thalamocortical targeting 

by mediating repellent responses to EphA-ephrinA guidance cues. 

 

3.2 Introduction 

Ephrin ligands and their receptors, Eph tyrosine kinases, are important axon 

guidance cues during neuronal development.  Ephrin ligands are divided into two 

subclasses: (1) EphrinAs, which are linked to the membrane through a 

glycosylphosphatidyl inositol (GPI) anchor, and (2) EphrinBs, which are 

transmembrane proteins.  Eph-receptors are characterized by sequence similarity 

and ligand affinity.  While there are some exceptions (notably EphA4), EphA 

receptors typically bind ephrinA ligands and EphB receptors bind ephrinB ligands 

(Wilkinson, 2001; Knoll and Drescher, 2002).  Because Eph receptors and ephrins 

are both membrane bound, activation and signaling of Ephs and ephrins requires 

cell-cell interactions.  Eph receptors autophosphorylate upon binding to their ligands 
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(forward signaling) and subsequently activate downstream signaling cascades, 

modulating the actin cytoskeleton through activation of guanine nucleotide exchange 

factors (GEFs), such as Ephexin, Vav2, and Tiam1 (Shamah et al., 2001; Noren and 

Pasquale, 2004; Tanaka et al., 2004; Cowan et al., 2005; Hunter et al., 2006).  In 

addition to GEFs, Eph receptors associate with p120-RasGAP (Dail et al., 2006), an 

interaction that is important for growth cone collapse and axon repulsion.  An 

interesting feature of the ephrin system is that signaling can also occur via the 

ligands (reverse signaling), typically leading to attractive responses of ephrins. 

Studies have shown that forward and reverse modes of Eph-ephrin signaling are 

critical for axon guidance in the retinocollicular projection (Feldheim et al., 1998; 

Birgbauer et al., 2000; Mann et al., 2002; Hansen et al., 2004), anterior commissure 

development (Henkemeyer et al., 1996; Kullander et al., 2001; Cowan et al., 2004), 

the vomeronasal tract (Knoll et al., 2001), and thalamocortical mapping 

(Vanderhaeghen et al., 2000; Mann et al., 2002; Dufour et al., 2003). 

In the retinocollicular system, topographic connections between retinal 

ganglion cell (RGC) axons and their targets in the superior colliculus (SC) depend 

upon complementary gradients of ephrinA ligands and EphA receptors, including 

ephrinA2 and ephrinA5 (Frisen et al., 1998; Brown et al., 2000; Feldheim et al., 

2000).  Topographic mapping of RGC axons to the SC is also dependent upon 

expression of the cell adhesion molecule, L1 (Demyanenko and Maness, 2003).  

Defects observed in retinocollicular targeting in L1 mutant mice suggest an altered 

responsiveness of RGC axons to ephrin gradients in the SC.  Thus, L1 and Eph 

guidance receptors may work together to regulate formation of the retinotopic map. 
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The ephrin family of axon guidance molecules is also important for 

development of thalamocortical mapping.  Analysis of knockout mice reveals that 

interactions between ephrinA5 and EphA4 are required for the topographic mapping 

of thalamic axons to the primary motor cortex (Dufour et al., 2003).  Ephrins have 

also been implicated in the cortical targeting of limbic thalamic axons (Gao et al., 

1998; Mann et al., 2002; Uziel et al., 2002), intra-areal topographic mapping within 

somatosensory (Vanderhaeghen et al., 2000; Dufour et al., 2003) and visual (Cang 

et al., 2005) cortical areas, and reciprocal corticothalamic axon guidance (Torii and 

Levitt, 2005).  

Recently, the importance of L1 family molecules, L1 and Close Homolog of L1 

(CHL1), in regulating thalamocortical mapping has been described.  L1 is essential 

for maintaining segregation between thalamic and cortical axons en route to the 

cortex, while CHL1 is critical for targeting of VB thalamic axons to the 

somatosensory cortex (Ohyama et al., 2004; Wiencken-Barger et al., 2004) (Chapter 

2).  Here, we expanded the roles of L1 and CHL1 to include mapping to motor 

thalamic axons.  Analysis of CHL1-/-/L1-/y double mutant mice reveals severe defects 

in the topographic targeting of thalamocortical axons, with axons from motor and 

somatosensory thalamic nuclei misprojecting to visual cortical areas.  CHL1 was 

required for ephrinA5-induced growth cone collapse, and L1 directly interacted with 

EphA4.  Thus, these results suggest compensatory roles for L1 and CHL1 in 

specifying cortical targeting, possibly through interactions with EphA/ephrinA 

repellent guidance cues.         
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3.3 Results 

CHL1 and L1 Cooperate to Regulate Thalamocortical Axon Targeting 

 Mice deficient in CHL1 and L1 displayed severe defects in overall 

development and were 55-60% smaller than CHL1-minus mice (Fig 3.1A).  The 

contribution of L1 and CHL1 to thalamocortical axon targeting was analyzed by 

retrograde axon tracing of CHL1-/-/L1-/y double mutant mice at postnatal day 5.  DiI 

was injected into the visual cortex, and thalamocortical axon targeting was examined 

(Fig 3.1B).  In all cases, appropriate labeling of cell bodies in the lateral geniculate 

nucleus (LGN) was apparent in CHL1-/-/L1-/y double mutant mice (Fig 3.1C).  

However, inappropriate labeling of VB nuclei (somatosensory), as well as motor 

thalamic nuclei (ventroanterior (VA) and ventrolateral (VL)), was also observed (Fig 

3.1C,D,G).  Mistargeting of somatosensory and motor thalamic axons was fully 

penetrant (7 of 7 hemispheres displayed aberrant topography), whereas all of the 13 

WT hemispheres analyzed displayed expected topography (Fig 3.1F).  Chi-square 

analysis demonstrated these defects were significant for CHL1-/-/L1-/y mutants 

(X2=20.30).  To isolate the contribution of L1 to thalamocortical axon topography, 

retrograde tracings were performed in L1-minus mice.  Injections of DiI into the 

visual cortex of L1-minus mice revealed expected labeling in the LGN only (Fig 

3.1E,H).  Previous studies demonstrated that somatosensory thalamic axons 

projected aberrantly to the visual cortex in CHL1-minus mice, but motor thalamic 

axon targeting was normal (Chapter 2, Fig 3.1I).  In summary, targeting of motor 

thalamic axons is dependent upon compensatory contributions of CHL1 and L1.  
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Based on complementary gradients of ephrinA5/EphA4 guidance cues, it is possible 

that CHL1 and L1 mediate responses of ephrinA5 in thalamocortical mapping.   

 

CHL1 is Required for EphrinA5-Induced Growth Cone Collapse 

 To investigate whether CHL1 is required for growth cone collapse of thalamic 

axons in response to ephrinA5 during axon guidance, WT and CHL1-minus thalamic 

explants were cultured for 3 days in vitro followed by treatment with 30 nM ephrinA5 

protein fused to alkaline phosphatase (ephrinA5-AP), or control Fc protein fused to 

alkaline phosphatase (Fc-AP). Cellular actin was stained with phalloidin and axons 

were scored for growth cone collapse.  EphrinA5-AP induced robust growth cone 

collapse of thalamic axons from WT embryos (Fig 3.2B,E) compared to control (Fig 

3.2A,E).  However, ephrinA5-AP was much less effective at collapsing CHL1-minus 

thalamic axons (Fig 3.2C,D,E).  The growth cone collapse response to Fc-AP was 

not different from untreated explants (not shown), and the response due to Fc-AP 

treatment was not different in WT and CHL1-minus cultures.  Thus, CHL1 was 

required for ephrinA5-induced growth cone collapse of thalamic axons.   

 

L1 Forms a Stable Complex with EphA4 

The role of CHL1 and L1 in mediating responses to ephrinA5 was further 

explored by co-immunoprecipitation experiments with EphA4, an ephrinA5 receptor.  

CHL1 or L1 were transiently co-transfected with EphA4 in HEK293 cells.  After 2 

days, cell lysates were immunoprecipitated with mouse anti-EphA4 antibody.  

Precipitates were evaluated by gel electrophoresis, and the presence of CHL1 or L1 
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was analyzed by immunoblotting with anti-CHL1 goat polyclonal antibody or anti-L1 

mouse monoclonal antibody.  L1 protein was detected at a molecular weight of 

approximately 250 kiloDaltons (kDa) in the immunoprecipitates of cells transfected 

with L1 and EphA4, supporting a constitutive interaction between the two proteins 

(Fig 3.3).  An association between CHL1 and EphA4 was not detected by these 

methods.  However, this interaction could be transient or require stimulation with 

ephrinA5 or other signaling molecules, such as integrins. 

 

 

3.4 Discussion 

Here, we identify a cooperative role for CHL1 and L1 in mediating guidance of 

motor thalamic axons.  Analysis of CHL1-/-/L1-/y double mutant mice showed that 

deletion of CHL1 and L1 severely disrupted the final thalamocortical map, causing a 

contingent of motor and somatosensory thalamic axons to inappropriately target the 

visual cortex.  CHL1 was required for ephrinA5-mediated growth cone collapse of 

thalamic axons, and L1interacted with EphA4 to form a stable complex.  Thus, CHL1 

and L1 may mediate ephrinA5-induced repulsion of motor thalamic axons from 

posterior cortical areas.   

Gradients of EphA receptors (EphA4, EphA7) in the dorsal thalamus and 

ephrinA5 in the VTe are critical for targeting of thalamic axons to the primary motor 

cortex (Dufour et al., 2003).  The requirement for CHL1 in ephrinA5-induced growth 

cone collapse of thalamic axons and the association of L1 with EphA4 supports the 

interpretation that CHL1and L1 may functionally cooperate with EphA4/ephrinA5 
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complexes to prevent motor thalamic axons from entering posterior cortical regions.  

The lack of aberrant motor thalamic axon targeting in CHL1-minus or L1-minus mice 

supports a compensatory role for these L1 family adhesion molecules.  

EphrinA5/EphA4 signaling may not be entirely compromised by loss of either CHL1 

of L1, whereas loss of both adhesion molecules might completely interrupt the 

receptor complex, leading to defective growth cone collapse.   

The aberrant caudal shift of somatosensory thalamic axons in CHL1-/-/L1-/y 

double mutant mice is consistent with previous results from CHL1-minus single 

mutant mice reported in Chapter 2.  This mistargeting is the result of impaired CHL1-

Npn1 interaction that mediates axon repulsion from the descending caudal gradient 

of Sema3A in the VTe.  A corresponding shift was not observed in L1-minus mutant 

mice, suggesting that L1 is most likely not involved in the final targeting of VB axons 

to the primary somatosensory cortex (S1). 

Despite the role shown here for CHL1 in mediating ephrinA5-induced growth 

cone collapse, the molecular mechanisms controlling this functional response are 

unclear, as direct interaction between CHL1 and EphA4 receptor was not detected.  

L1 did associate with EphA4, therefore a CHL1/L1/EphA4 receptor complex is 

conceivable.  As L1 and CHL1 both functionally interact with β1 integrins (Buhusi et 

al., 2003; Panicker et al., 2006), an intriguing hypothesis involves regulation of 

growth cone dynamics through crosstalk with integrins.  Activation of EphA receptors 

induces a conformational change of integrins to an inactive state, leading to reduced 

cell adhesion, axonal retraction, and growth cone collapse (Miao et al., 2000).  Thus, 
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it will be interesting to further explore the interactions of CHL1/L1/EphA4 complexes 

with β1 integrins to regulate ephrinA5-mediated growth cone collapse. 

 Taken together, these results demonstrate that CHL1 and L1 may act 

cooperatively to regulate motor thalamic axon topography by mediating ephrinA5-

induced growth cone collapse.  

 

3.5 Methods 

Growth Cone Collapse Assay 

WT and CHL1-minus embryonic (E14.5) brains were vibratome sectioned 

(300 µm) and thalamic regions were obtained by microdissection in ice cold HBSS.  

Explants were plated on fibronectin-coated inserts using a plasma clot (20 µl bovine 

thrombin with 20 µl chicken plasma; Sigma) to ensure adherence of the explant.  

The day after plating, the media was changed to Neurobasal media containing B27 

supplement and glutamate (25µM) to select for neurons.  After 48 hours of 

incubation, cells were treated with either Fc-AP or EphrinA5-AP fusion proteins (30 

nM) for 30 min.  Fc-AP and EphrinA5-AP were prepared by transfecting HEK293T 

cells using Lipofectamine 2000, as described in Chapter 2.  Explants were then fixed 

with 4% paraformaldehyde (PFA) and permeabilized with 0.2% TritonX-100 for 5 

min.  After washing, explants were treated with rhodamine-conjugated phalloidin 

(Molecular Probes; 1:40) for 30 min at room temperature to visualize actin within the 

growth cone.  Explants were mounted in Vectashield and growth cone morphology 

was observed using confocal microscopy. 
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Co-immunoprecipitation 

 HEK293 cells were co-transfected with CHL1 or L1 and EphA4 using 

Lipofectamine 2000.  Cells were lysed and proteins immunoprecipitated, as 

described in Chapter 2.  Lysates were treated with mouse anti-EphA4 antibody (10 

µg, Chemicon) for 1 hour at 4oC.  The beads were then washed and the precipitates 

were analyzed by immunoblotting with anti-CHL1 goat polyclonal antibody (1:1000) 

or anti-L1 mouse monoclonal antibody (Abcam, 1:200) and chemiuminescent 

detection. 

In vivo Axon Tracing 

Retrograde axon tracing was performed by focal injection of 1,1',di-octadecyl-

3,3,3'3'-tetramethylindocarbocyanine perchlorate (DiI) (Molecular Probes) solution 

(5% in ethanol) into the visual cortex of living mice anesthetized by hypothermia, as 

described in Chapter 2.   
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Figure 3.1:  CHL1 and L1 Cooperate to Regulate Thalamocortical Axon 
Targeting 
 

A.  CHL1-/-/L1-/y double mutant mice display several development defects, including 

overall reduction in size.  Double mutant mice are approximately half the size of 

CHL1-minus single mutants. 

 

B. Scheme illustrating location of injection of DiI into the visual cortex of P5 mice.  

Appropriate location and position of injections were confirmed using fluorescent 

microscopy. 

 

C-D. Retrograde labeling of thalamocortical axons of CHL1-/-/L1-/y double mutant 

mice (n=7).  Projection patterns of appropriate DiI labeling (red) in the LGN (C) and 

inappropriate labeling of the VB complex and VA/VL nuclei (D) are shown. 

 

E.  Retrograde labeling from the visual cortex of L1-minus mutant mice.  Expected 

labeling of the LGN is observed (n=3). 

 

F.  Scheme illustrating expected projection patterns of WT thalamocortical axons.  

LGN axons project to the visual cortex, VB axons project to the somatosensory 

cortex, and VA/VL axons project to the motor cortex.  

 

G.  Scheme illustrating the altered thalamocortical topography in CHL1-/-/L1-/y double 

mutant mice.  TC axons from the LGN project appropriately to the visual cortex, 
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while axons from the VB complex and VA/VL nuclei misproject to the primary visual 

cortex.   

 

H-I.  Scheme illustrating the normal projection of LGN axons to the primary visual 

cortex of L1 mutant mice (H).  Scheme illustrating the altered thalamocortical 

topography in CHL1-minus mice (I).  TC axons from the LGN project appropriately to 

the visual cortex, while axons from the VB complex project both to the SS cortex and 

inappropriately to the primary visual cortex.  Axons from the VA/VL project 

appropriately to the motor cortex 
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Figure 3.2:  CHL1 is Required for EphrinA5-Induced Growth Cone Collapse 

A,B.  Growth cones from WT thalamic explants were not collapsed in response to 

Fc-AP (n=67).  However, ephrinA5 significantly increased the percentage of 

collapsed growth cones compared to control (n=83). 

 

C,D.  EphrinA5 had no significant effect on growth cone collapse of CHL1-minus 

thalamic explants (n=102) compared to Fc-AP control (n=84 growth cones).  

Representative non-collapsed growth cones are shown.   

 

E.  Quantification of percent growth cones collapsed from thalamic neurons in 

response to EphrinA5.  While ephrinA5 had no effect on growth cone collapse of 

CHL1-minus explants, the percentage of collapsed growth cones from WT explants 

was significantly increased following treatment with ephrinA5, compared to control 

(asterisk indicates significance, t-test, p=0.005).  
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Figure 3.3:  L1 and EphA4 Form a Stable Complex 
 

HEK293 cells were transiently transfected with CHL1 or L1 and EphA4.  Lysates 

were immunoprecipitated with mouse anti-EphA4 antibody and proteins were 

analyzed using gel electrophesis.  The presence of L1 was detected using anti-L1 

mouse monoclonal antibody and an HRP-conjugated donkey anti-mouse secondary 

antibody.  In cells transfected with L1 and EphA4, protein was detected at 250 kDa, 

corresponding to L1.  CHL1 was detected using anti-CHL1 goat polyclonal and HRP-

conjugated bovine anti-goat antibodies.  No band was detected in lysates from cells 

transfected with CHL1 and EphA5.  Western blots of E14.5 cortical extracts were 

used as a positive control for the detection of L1.   
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Chapter 4 

 

Interaction of Close Homolog of L1 (CHL1) with ERM Proteins Promotes Neurite 

Elaboration and Sema3A-induced Growth Cone Collapse 

 

Manuscript submitted to Journal of Neurochemistry 

Monika C. Schlatter, Mona Buhusi, Amanda G. Wright, and Patricia F. Maness 



 

This was a collaborative effort.  I performed growth cone collapse assays to 

demonstrate the requirement for CHL1-ERM protein interactions in Sema3A-induced 

growth cone collapse. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

129



 

4.1 Abstract 

Close Homolog of L1 (CHL1) is a member of the L1 family of cell adhesion 

molecules that functions in axon guidance and cortical neuron positioning during 

development, and mutations of which are associated with neuropsychiatric 

disorders. Here it is shown that the cytoplasmic domain of CHL1 interacts with ezrin, 

a member of the ezrin-radixin-moesin (ERM) family of F-actin binding proteins, at the 

membrane-proximal RGGKYSV sequence. This interaction is demonstrated to 

promote outgrowth and branching of mouse embryonic cortical neurons, haptotactic 

cell migration, and cellular adhesion to fibronectin. Moreover, CHL1/ERM interaction 

mediates growth cone collapse of cortical embryonic neurons induced by Sema3A. 

These findings reveal important functions for the interaction between CHL1 and 

ERM proteins in fundamental processes relevant to axon guidance in neuronal 

development. 

4.2 Introduction 
 

CHL1 is a transmembrane adhesion receptor of the L1 family of cell adhesion 

molecules (L1-CAMs).  L1 family members, including CHL1, L1, Nr-CAM and 

neurofascin, are widely expressed in the developing nervous system, where they 

modulate diverse aspects of axonal guidance and cell migration (Maness and 

Schachner, 2007).  

Studies in CHL1 knock-out mice indicate a vital role for CHL1 in the 

development of neuronal connectivity. CHL1 null mutants display defects in axon 

guidance of hippocampal and olfactory neurons (Montag-Sallaz et al., 2002), and 

130



 

behavioral deficits consistent with altered cortical connectivity (Montag-Sallaz et al., 

2003; Pratte et al., 2003; Frints et al., 2003). In the developing neocortex loss of 

CHL1 delays radial migration of cortical neurons, resulting in laminar displacement, 

and misorientation of apical dendrites (Demyanenko et al., 2004). This effect might 

be due to an altered response to Sema3A, since apical dendrites of cortical neurons 

are attracted to the pial surface by a Sema3A gradient (Polleux et al., 2000). Indeed, 

CHL1 mediates Sema3A-induced collapse of thalamic and cortical growth cones 

important for thalamocortical axon guidance (Wright et al., submitted). The critical 

role of CHL1 in human neural development is underscored by the association of 

mutations in the human ortholog of CHL1 with mental retardation (Frints et al., 2003) 

and schizophrenia (Chen et al., 2005; Sakurai et al., 2002). 

CHL1 consists of six (Ig)-like domains followed by five fibronectin type III 

repeats, a short transmembrane sequence, and a cytoplasmic domain that is highly 

conserved among L1 family members (Holm et al., 1996). CHL1 interacts with β1 

integrins through a sequence in the Ig6 domain (DGEA) that is important for 

potentiating cell migration to extracellular matrix proteins (Buhusi et al., 2003). CHL1 

associates with the subcortical actin cytoskeleton through a conserved motif in the 

cytoplasmic domain (S1181FIGAY) (Buhusi et al., 2003), which binds the spectrin 

adaptor protein ankyrin (Bennett et al., 1985). Ankyrin-mediated cytoskeletal linkage 

is necessary for CHL1 (Buhusi et al., 2003), as well as L1 (Thelen et al., 2002), to 

potentiate haptotactic cell migration toward extracellular matrix proteins in an 

integrin-dependent mechanism.  
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 L1 also engages the cytoskeleton by interaction with ERM (ezrin-radixin-

moesin) proteins (Cheng et al., 2005; Dickson et al., 2002). ERM proteins bind to 

diverse cell adhesion molecules, including L1, ICAMs, VCAMs, L-Selectin, and 

CD44, through their N-terminal FERM (Band 4.1, ERM) domain, while their C-

terminal domain interacts with filamentous (F)-actin (Barreiro et al., 2002; Bretscher 

et al., 2002; Hamada et al., 2003; Ramesh et al., 2004). ERM proteins are subject to 

regulation by intracellular signaling at the plasma membrane. They are activated for 

actin binding by binding phosphatidylinositol bis phosphate (PIP2) and by 

phosphorylation on a conserved threonine residue catalyzed by PKCα, PKCθ, or 

Rho kinase (Barret et al., 2000, Fievert et al., 2004; Ramesh et al., 2004). ERM 

protein binding to the L1 cytoplasmic domain occurs at two different motifs (Figure 

4.1): the membrane-proximal SKGGKY1151 sequence (Cheng et al., 2005) and the 

Y1176RSLE motif, which is specific to the neuronal L1 isoform (Cheng et al., 2005; 

Dickson et al., 2002). Mutation of Y1151 or Y1176 or deletion of RSLE leads to loss of 

ezrin binding, indicating that both sequences are essential for proper L1/ezrin 

interaction (Cheng et al., 2005; Dickson et al., 2002).  In cerebellar neuron cultures, 

L1/ERM binding promotes neurite outgrowth and branching on an L1 substrate 

(Cheng et al., 2005), suggesting that their linkage enhances axonal growth and 

complexity. Moreover, L1 and phosphorylated ezrin were found to co-distribute in 

vivo in the intermediate zone of the developing rat cortex (Mintz et al., 2003), 

indicating that interaction of ERM proteins with cell adhesion molecules may provide 

flexible adhesions necessary during early axon outgrowth. 
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By coupling to the actin cytoskeleton through ERM proteins, CHL1 could 

provide such dynamic adhesive functions necessary for neurite outgrowth, migration, 

and Sema3A responses. However, due to structural differences in the cytoplasmic 

domains of CHL1 and L1, it is not known if CHL1 is capable of binding ERM 

proteins. CHL1 lacks a motif similar to YRSLE, but contains a membrane-proximal 

RGGKYSV sequence homologous to the KGGKYSV sequence in L1 (Figure 4.1). 

The consequences of such an interaction might be different for CHL1, because 

CHL1 and L1 have dissimilar cortical functions and expression patterns, bind distinct 

integrin subclasses at different Ig domains, and are associated with clinically variant 

human retardation syndromes (Maness and Schachner, 2007).  

In this study, we sought to determine whether CHL1 was capable of ERM 

protein binding, and if so to elucidate the cellular and neuronal consequences of this 

interaction in cortical neurons. We found that ezrin-GFP is recruited to the cell 

membrane by expression of CHL1, and that this recruitment is mediated by the 

membrane-proximal RGGKYSV sequence of the CHL1 cytoplasmic domain. The 

CHL1/ERM protein interaction is required for CHL1-stimulated neurite outgrowth and 

branching of embryonic cortical neurons, haptotactic cell migration, and adhesion to 

fibronectin. Moreover, we show that Sema3A induces growth cone collapse and 

reduces neuronal outgrowth via CHL1/ERM interactions. We therefore provide the 

first evidence of an interaction between ERM proteins and CHL1, and show that 

ERM proteins are required for cellular functions of CHL1 in fundamental processes, 

such as neurite outgrowth and growth cone collapse relevant for axon guidance. 
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4.3 Results 

A Membrane-Proximal Sequence in the CHL1 Cytoplasmic Domain is Required for 

Ezrin Recruitment 

To investigate whether the CHL1 cytoplasmic domain was able to interact 

with ERM proteins, we evaluated the ability of CHL1 to recruit C-terminal GFP-

tagged ezrin to CHL1 in the plasma membrane using a modified cytofluorescence 

assay, which has been used to demonstrate recruitment of ankyrin to the 

cytoplasmic domains of CHL1 and L1 (Buhusi et al., 2003; Needham et al., 2001). 

Co-transfection of HEK293 cells, which have some endogenous ERM protein 

expression (Figure 4.2 and 4.3, insert) but do not express L1 family members, with 

plasmids encoding ezrin-GFP and CHL1wt or L1wt ensures similar expression levels 

of the proteins. Moreover, endogenous ERM proteins in untransfected HEK293 cells 

are already partially recruited to the cell membrane (Figure 4.2, insert, panERM), 

hindering the visualization of membrane recruitment events.  

Recruitment of cytosolic ezrin-GFP to the plasma membrane of transfected 

HEK293 cells was detected by confocal microscopy. In cells transfected with empty 

vector, ezrin-GFP was abundant throughout the cytosol and absent from the nucleus 

(Figure 4.2B). Some fluorescence at the plasma membrane may represent binding 

to PIP2 or other endogenous receptors (Barret et al., 2000). In cells expressing 

CHL1wt, ezrin-GFP became prominently recruited to the cell membrane, where 

CHL1 was localized (Figure 4.2F). Expression of L1wt similarly induced recruitment 

of ezrin-GFP to the plasma membrane (Figure 4.2N). These results indicate that 

CHL1 is able to recruit ezrin to the cell membrane. However, CHL1/ezrin interactions 
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may be transient or of low affinity as co-immunoprecipitation experiments of CHL1 

with ezrin-GFP did not reveal positive results (data not shown).  

To localize sites of activated ezrin, immunofluorescence staining was carried 

out with an antibody recognizing the phosphorylated Thr567 residue in ezrin, as well 

as Thr564 and Thr558 in radixin and moesin, respectively. In cells transfected with 

empty vector together with ezrin-GFP, phospho-ERM staining was evident at the 

membrane in a dispersed, punctate distribution, with no staining in the cytoplasm 

(Figure 4.2C), similar to untransfected cells (Figure 4.2, insert, pERM). However, 

phospho-ERM immunoreactivity became more prominent and uniformly distributed 

within the plasma membrane in cells expressing ezrin-GFP together with either 

CHL1wt or L1wt (Figure 4.2G,O). Merged images showed the correspondence of 

ezrin-GFP and phospho-ERM immunofluorescence with CHL1wt or L1wt at the 

plasma membrane (Figure 4.2H,P). These findings suggested that ezrin became 

phosphorylated on Thr567 when recruited to the cytoplasmic domain of CHL1wt or 

L1wt at the plasma membrane.  

 To determine if ERM protein interact with the CHL1 cytoplasmic domain at 

the juxtamembrane RGGKYSV sequence, we mutated 3 residues within this 

sequence (R1108, Y1112, V1114) to alanine (CHL1AAA) (Figure 4.1). When HEK293 

cells were transfected with the CHL1AAA
 mutant together with ezrin-GFP, more ezrin-

GFP could be found in the cytosol compared to cells expressing CHL1wt (Figure 

4.2J). Residual ezrin-GFP at the membrane of CHL1AAA-expressing cells may have 

represented interaction with endogenous receptors, as seen in cells transfected with 

the empty vector (Figure 4.2B) or in untransfected cells (Figure 4.2, insert, 
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panERM). In accord with the cytosolic re-distribution of ezrin-GFP in cells expressing 

CHL1AAA, only low levels of phosphorylated ERM proteins were detected in these 

cells (Figure 4.2K).  

 Taken together, these experiments showed that CHL1 was able to recruit 

ezrin to the cell membrane where it was phosphorylated on Thr567, and that the 

membrane-proximal RGGKYSV sequence in the CHL1 cytoplasmic domain was 

mediating the interaction with ezrin.   

 

Interactions of CHL1 and L1 with ERM Proteins Regulate Cellular Adhesion and 

Migration 

ERM protein binding to cell surface molecules provides a link between the 

extracellular matrix and the cytoskeleton necessary for cell adhesion and migration. 

We therefore addressed whether deletion of ERM protein interaction with CHL1 

altered its ability to promote cell adhesion to fibronectin. For these experiments we 

turned to rat B35 neuroblastoma cells, a homogeneous CNS-derived cell line, which 

exhibits higher adhesion rates than HEK293 cells after 1 hr of incubation (data not 

shown) and in which intracellular signaling and cell migration induced by CHL1 and 

L1 have been extensively characterized (Otey et al., 2003; Thelen et al., 2002).  B35 

neuroblastoma cells, which express endogenous ezrin (Figure 4.3, insert), were co-

transfected with CHL1wt, CHL1AAA, L1wt, or pcDNA3 as control, together with a 

plasmid encoding GFP.  24 h after transfection, cells were assayed for the ability to 

adhere to fibronectin-coated dishes within 1 hr, after which the wells were rinsed to 

remove non-adherent cells and the number of adherent GFP-expressing cells was 
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scored. Expression of CHL1wt enhanced cell adhesion to fibronectin by 70% 

(p<0.001) compared to control B35 cells (Figure 4.3). In contrast, cells expressing 

CHL1AAA mutant protein showed no significant increase in cell adhesion compared to 

control B35 cells. L1wt expression also significantly stimulated cell adhesion 

compared to control B35 cells. These results indicated that cell adhesion to 

fibronectin, stimulated by CHL1, is dependent on interaction with ERM proteins. 

To support the finding that altered CHL1/ERM protein interaction is 

responsible for the observed defects, adhesion of B35 cells co-transfected with 

plasmids encoding CHL1wt and ezrin-GFP or a GFP-tagged dominant negative 

ezrin mutant (ezrin DN with the mutation T567A, Gautreau et al., 2000) was 

analyzed. This mutant form of ezrin is not able to be phosphorylated and thus, 

although associated with the membrane, cannot link to F-actin (Gautreau et al., 

2000). Expression of ezrin DN significantly reduced adhesion of CHL1-expressing 

B35 cells compared to ezrin wt expressing cells. This indicates that deleted linkage 

of CHL1 to the cytoskeleton by ERM proteins is responsible for the adhesion defects 

seen in the CHL1AAA mutant. 

 To investigate the requirement of the CHL1/ERM interaction in potentiating 

migration of HEK293 cells toward extracellular matrix proteins, in vitro assays of 

haptotactic migration were performed. HEK293 cells, which endogenously express 

ERM proteins (Figure 4.2 and 4.3, insert), were transiently transfected with pcDNA3 

plasmids encoding CHL1wt, CHL1AAA, L1wt, and differences in cell migration of 

transfected cells compared to non-transfected cells on fibronectin were monitored 

after incubation for 3 h. This assay reflects dynamic adhesive interactions of the cell 

137



 

to fibronectin mediated by β1-integrins and the actin cytoskeleton (Buhusi et al., 

2003; Panicker et al., 2006).  

Nontransfected HEK293 cells displayed reduced random migration toward 

bovine serum albumin when compared with migration toward fibronectin (Figure 4.4). 

Expression of CHL1wt strongly potentiated haptotactic migration of cells to 

fibronectin, relative to basal migration of HEK293 cells. In contrast, CHL1AAA was 

less effective in stimulating cellular migration towards fibronectin. Nonetheless, 

migration of CHL1AAA expressing cells was significantly greater than basal migration 

of HEK293 cells, indicating that additional factors, such as ankyrin binding (Buhusi et 

al., 2003), may contribute to migration. Similarly to CHL1wt, expression of L1wt 

strongly enhanced migration of HEK293 cells toward fibronectin. To exclude that 

mutation of the CHL1 cytoplasmic domain alters CHL1/β1 integrin interaction leading 

to defects in β1 integrin mediated migration, co-capping assays (Buhusi et al., 2003) 

and internalization experiments (Panicker et al., 2006) were performed in transfected 

HEK293 cells. No difference of CHL1wt and CHL1AAA in co-localization with β1 

integrins on the cell surface or in the levels of co-endocytosis with β1 integrins could 

be observed (data not shown). Thus, ERM protein binding to the CHL1 cytoplasmic 

domain is important for potentiating integrin-mediated haptotactic migration of 

HEK293 cells.  
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Regulation of Neurite Outgrowth and Branching by Intracellular Interaction of ERM 

Proteins to CHL1 

To investigate the role of CHL1/ERM protein interaction in a neuronal context, 

we analyzed its effect on promoting outgrowth and branching of cortical neuronal 

processes on a fibronectin substrate. For this study, embryonic cortical neurons 

(E14.5) from CHL1-minus mice were co-transfected by electroporation with CHL1wt, 

CHL1AAA, or empty vector, together with a plasmid encoding GFP, and were then 

cultured on fibronectin-coated dishes for 3 days. Evaluation of cell surface 

expression of CHL1wt and CHL1AAA proteins 72 h after transfection showed that 

mutation of the ERM binding sequence did not affect CHL1 expression levels or 

localization to the plasma membrane (fluorescence pixel density of CHL1AAA surface 

staining was 104% of CHL1wt staining, p=0.7). Expression of ERM proteins in 

cortical neurons was confirmed by immunostaining with a panERM antibody and 

was found throughout the growth cone, the axon and the soma in CHL1wt and 

CHL1AAA neurons (Figure 4.5A). To compare neuronal process outgrowth in GFP-

labeled neurons, we measured two parameters: the length of the longest neurite and 

total neurite length. Branching of neuronal processes was compared by quantifying 

the total branching number, the number of primary neurites extending from the 

soma, and the number of secondary neurites extending from other neurites.   

Expression of CHL1wt in CHL1-minus neurons significantly stimulated neurite 

outgrowth of embryonic cortical neurons (Figure 4.5B,C). Neurites from CHL1wt 

transfected neurons (n=88) showed an increase of 37 ± 8% (p<0.001) in the average 

length of the longest neurite, and 53 ± 9% (p<0.001) in the average total neurite 
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length compared to CHL1-minus neurons (n=78, length of longest neurite 65 µm, 

total neurite length 140 µm). CHL1 also significantly promoted process branching of 

cortical neurons (Figure 4.5B,D). CHL1wt-expressing neurons displayed an increase 

in branching number of 33 ± 7%  (p<0.001) compared to CHL1-minus neurons 

(branching number 3.5). This increase in branching can be mainly attributed to the 

enhanced formation of secondary neurites (71 ± 16%, p<0.001) and to a minor 

extent to primary neurite elaboration (15 ± 5%, p<0.02).  Whereas expression of 

CHL1wt increased total neurite length and branching compared to CHL1-minus 

neurons, neurons expressing CHL1AAA mutant (n=75) showed no significant 

differences in any parameter of neurite outgrowth or branching compared to CHL1-

minus neurons (Figure 4.5B,C,D).  These results showed that expression of CHL1 

promoted neurite outgrowth and branch formation of cortical embryonic neurons on 

fibronectin, and that intracellular interaction of CHL1 with ERM proteins was 

important for CHL1-dependent neurite outgrowth and branching. 

 

CHL1 Interaction with ERM Proteins is Required for Semaphorin 3A-Induced Growth 

Cone Collapse 

Sema3A induces growth cone collapse by dynamic remodeling of actin 

filaments and endocytosis (Fan et al., 1993; Fournier et al., 2000; Jurney et al., 

2002).  To evaluate if ERM protein interaction with CHL1 mediates growth cone 

collapse induced by Sema3A, embryonic cortical neurons from CHL1-minus mice 

were transfected with CHL1wt, CHL1AAA, or empty vector, together with a plasmid 

encoding GFP protein. Neurons were treated with 30 nM Sema3A-Fc fusion protein 
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or control Fc protein for 30 min, and the percentage of collapsed growth cones in 

each condition was determined by confocal microscopy (Figure 4.6).  

Addition of Sema3A-AP to CHL1wt expressing neurons resulted in a striking 

increase in growth cone collapse compared to treatment with control Fc-AP. In 

contrast, addition of Sema3A-AP to CHL1-minus neurons only slightly enhanced the 

percentage of collapsed growth cones compared to control Fc-AP, as we have 

recently described (Wright et al., submitted).  Similarly, when the CHL1AAA mutant 

was expressed in CHL1-minus neurons Sema3A exhibited only a small growth cone 

collapse response. It seems likely that the small effects of Sema3A on growth cone 

collapse of CHL1-minus and CHL1AAA neurons are mediated by L1 (Castellani et al., 

2000), which is expressed at lower levels than CHL1 on embryonic cortical neurons. 

These results suggest that the CHL1/ERM protein interaction is required for 

Sema3A-induced growth cone collapse in embryonic cortical neurons. 

In addition to induction of growth cone collapse, Sema3A is known to inhibit 

neurite outgrowth and branching in diverse neuronal systems (Bagnard et al., 1998; 

Bagri et al., 2003; Chaudhry et al., 2006; Dent et al., 2004; Niclou et al., 2003; 

Togashi et al., 2006). To determine whether CHL1 expression and CHL1/ERM 

protein interaction also contributed to the reduction of neurite outgrowth and 

branching induced by Sema3A, CHL1-minus embryonic cortical neurons (E14.5) 

were transfected with CHL1wt, CHL1AAA, or empty vector, respectively, together with 

a plasmid encoding GFP protein. After 24 h in culture, neurons were treated with 30 

nM Sema3A-AP or Fc-AP protein for 48 h, and analysis of neurite outgrowth and 

branching was performed as described above. Expression of CHL1wt promoted 
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neurite outgrowth and branching of CHL1-minus cortical neurons (Figure 7; 100% 

values for CHL1-minus: length of longest neurite 45 µm, total neurite length 90 µm, 

branching number 2.7). Importantly, addition of Sema3A to CHL1wt expressing 

neurons prevented the stimulatory effect of CHL1wt on neurite outgrowth and 

branching. CHL1-minus neurons treated with Sema3A showed a slight tendency for 

lower neurite outgrowth, but this effect was found to be not significant (Figure 4.7).  

These results demonstrated that the inhibitory effect of Sema3A on cortical neurite 

outgrowth and branching is dependent on CHL1 expression.  

We then compared neurite process elaboration of CHL1AAA transfected 

neurons stimulated with Sema3A to Fc control treated neurons. Expression of 

CHL1AAA did not substantially rescue Sema3A response in CHL1-minus cortical 

neurons (Figure 4.7). Although there was a slight trend in Sema3A treated CHL1AAA
 

neurons to reduced neurite outgrowth and branching compared to Fc treated 

neurons, this was only significant for the average longest neurite length (P<0.05) but 

not for any other examined parameter. Similar to the results obtained in the growth 

cone collapse assay, these smaller effects of Sema3A on CHL1-minus and CHL1AAA 

neurite outgrowth may be mediated by L1 (Chaudhry et al., 2006). These results 

suggested that Sema3A-induced inhibition of neurite outgrowth and branching of 

embryonic cortical neurons requires both CHL1 expression and intracellular 

interaction of CHL1 with ERM proteins.  

Taken together, our results demonstrated important roles for CHL1 

expression and CHL1/ERM interaction in cell adhesion, migration, neurite outgrowth 

and branching and in Sema3A-induced growth cone collapse. These findings 
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support a vital role for CHL1 and ERM proteins in neuronal process elaboration and 

axon guidance during embryonic cortical development. 

 

4.4 Discussion  

Here we show that interaction of the cytoskeletal linker proteins ezrin-radixin-

moesin (ERM) with the cytoplasmic domain of CHL1 is important for CHL1-mediated 

neuronal functions. We have identified an intracellular membrane-proximal 

sequence in CHL1 as an interaction site for ERM proteins, and demonstrated that 

CHL1/ERM protein interaction is required for CHL1-stimulated neurite outgrowth and 

branching of embryonic cortical neurons, cell migration and adhesion. We also 

showed that Sema3A-induced growth cone collapse and inhibition of neurite 

outgrowth depend on CHL1/ERM interaction. These findings demonstrate that 

interaction of ERM proteins with CHL1 is required for diverse neuronal functions of 

CHL1.   

 CHL1 was found to be capable of recruiting ezrin to the plasma membrane 

by interaction of ezrin with the CHL1 cytoplasmic domain through three amino acids 

of the membrane-proximal RGGKYSV sequence (R1108, Y1112 and V1114). This 

sequence corresponds to a consensus ERM-binding motif, RxxTYxVxxA, which 

mediates interaction of ERM proteins with cell adhesion molecules such as ICAM, 

VCAM, and CD44 (Hamada et al., 2003), and a highly homologous sequence, 

KGGKYSV, in L1 mediates ERM protein binding to its cytoplasmic domain (Cheng et 

al., 2005). Mutation of the CHL1/ERM interaction motif involves Y1112 in CHL1, a 

potential phosphorylation site, and could therefore alter intracellular signaling. 
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Intracellular mutation of CHL1 could further alter interaction with other cytosolic 

binding partners, but experiments with L1 have shown that ankyrin binding is not 

impaired by membrane-proximal mutations (Cheng et al., 2005). A second binding 

site for ERM proteins in L1 is the YRSLE sequence (Cheng et al., 2005; Dickson et 

al., 2002), which is lacking in CHL1. Because mutation of the membrane proximal 

RGGKYSV sequence in the CHL1 intracellular domain did not completely inhibit 

ezrin recruitment to the cell membrane, there may be an additional unidentified 

sequence in CHL1 that promotes ERM protein association. While CHL1 effectively 

recruited ezrin-GFP to the cell membrane, no co-immunoprecipitation of CHL1 with 

ezrin-GFP from transfected HEK293 cells could be observed (data not shown). 

Similarly, binding of ezrin to both L1 and neurofascin was demonstrated in yeast 

two-hybrid assays but not by direct co-immunoprecitation (Cheng et al., 2005, 

Dickson et al., 2002, Gunn-Moore et al., 2006), indicating that interactions of L1 

family cell adhesion molecules and ERM protein family members may be transient or 

of low affinity. 

Expression of CHL1 markedly enhanced outgrowth and branching of 

embryonic cortical neurons on fibronectin.  A stimulating effect of CHL1 on neurite 

outgrowth was demonstrated previously using substrate-coated CHL1 (Hillenbrand 

et al., 1999) or soluble CHL1 protein (Hillenbrand et al., 1999, Naus et al., 2004), 

acting in trans with an unidentified heterophilic receptor on neurons. Our studies 

instead indicate that neuronal CHL1 promotes neurite outgrowth in response to 

fibronectin as a substrate. This response may be due to a cooperative interaction of 

CHL1 in the plasma membrane with β1 integrins, in agreement with the ability of 
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CHL1 to functionally interact with β1 integrins for haptotactic cell migration (Buhusi et 

al., 2003). We further showed that ERM protein interaction with the CHL1 

cytoplasmic domain promotes outgrowth and branching of embryonic cortical 

neurons on a fibronectin substrate as mutation of the ERM interaction site in CHL1 

decreased neurite outgrowth and branching to basal levels of CHL1-minus neurons. 

This was not due to altered interaction in cis with β1 integrins as co-capping and co-

internalization of CHL1AAA
 and β1 integrins were found to be normal (data not 

shown). Cerebellar neurons cultured on an L1 substrate also exhibited decreased 

neurite outgrowth and branching when ERM protein binding sites in L1 were mutated 

(Cheng et al., 2005), indicating that interaction with the cytoskeletal linker proteins 

ERM may play a general role in neural process formation promoted by L1 family 

adhesion molecules.  

Our finding that ERM protein interaction with CHL1 is important for neurite 

outgrowth and branching is also in accord with studies showing that suppression of 

radixin and moesin in hippocampal neurons inhibits neurite outgrowth and 

dramatically alters growth cone morphology (Paglini et al., 1998). Moreover, a 

coordinated activation of radixin in the growth cone was implicated in branching of 

dorsal root ganglion neurons (Castelo et al., 1999). The defects in neurite outgrowth 

and branching seen in CHL1AAA neurons are likely to result from the reduced ability 

of CHL1 to recruit ERM proteins to the growth cone membrane, thereby altering 

growth cone functions that depend on actin dynamics.  Alternatively, as ERM 

proteins bind directly to F-actin (Ramesh et al., 2004) and, beside interaction with 

CHL1, associate with β1 integrins in growth cones (Wu et al., 1996), a CHL1/β1/ERM 
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protein complex could connect the plasma membrane to the underlying 

cytoskeleton, establishing a regulated, dynamic link that mediates adhesive force 

necessary for neurite outgrowth and branching, as well as migration and growth 

cone collapse. Involvement of ERM proteins in cell adhesion and migration has been 

demonstrated in several different cellular systems (Elliott et al., 2005; Li et al., 2007; 

Rossy et al., 2007; Takeuchi et al., 1994). We show here that deletion of ERM 

protein binding to CHL1 significantly altered adhesive properties to the extracellular 

matrix protein fibronectin and inhibited integrin-dependent haptotactic migration. 

Inhibition of cell adhesion was due to defective linkage of CHL1 to the cytoskeleton 

as demonstrated by adhesion assays with a dominant-negative mutant of ezrin, 

which is unable to link to F-actin (Gautreau et al., 2000). Therefore, a CHL1/β1/ERM 

protein complex connecting the extracellular matrix and the cytoskeleton may be 

necessary to establish an adhesive complex or to modulate integrin function in an 

inside-out manner. 

We further demonstrated that Sema3A abolished the stimulating effects of 

CHL1 expression on outgrowth and branching of embryonic cortical neurons, but 

had no effect on neurons lacking CHL1 or expressing the ERM-binding deficient 

mutant CHL1AAA. Embryonic neurons of the cortex (Bagnard et al., 1998; Dent et al., 

2004), the hippocampus (Bagri et al., 2003) and dorsal root ganglia (DRG) 

(Chaudhry et al., 2006; Niclou et al., 2003; Togashi et al., 2006) react to Sema3A 

with decreased neurite outgrowth and/or branching.  We show here that these 

neuronal responses in embryonic cortical neurons can be mediated through 

CHL1/ERM protein interaction. We recently demonstrated that CHL1 mediates 
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Sema3-induced growth cone collapse in cultures of embryonic cortical or thalamic 

neurons through its ability to bind the Sema3A receptor neuropilin-1 (Wright et al., 

submitted). In this regard CHL1 resembles L1, which binds neuropilin-1 and 

mediates Sema3A-induced growth cone collapse in postnatal cortical explants 

(Castellani et al., 2000, 2004). It seems likely that both CHL1 and L1 can act as a 

receptor for Sema3A-induced functions at different developmental stages in 

accordance with their different expression patterns during cortical development 

(Mintz et al., 2003, Demyanenko et al., 2004). 

We now extend these findings to show that a CHL1 mutant lacking ERM 

protein interaction capability does not support Sema3A-induced growth cone 

collapse in cortical neurons. Modulation of neurite outgrowth and branching by 

Sema3A is thought to have a different underlying mechanism from Sema3A-induced 

growth cone collapse (Dent et al., 2004). However, we show that both processes 

require CHL1 expression and CHL1 interaction with ERM proteins. It is noteworthy 

that Sema3A triggers growth cone membrane endocytosis during collapse, which, 

like neurite outgrowth and branching, involves actin rearrangements (Fournier et al., 

2000), and could require dynamic ERM protein binding to actin filaments. 

A limitation of our studies is that the function of CHL1/ERM protein interaction 

has not been demonstrated in the developing cerebral cortex in vivo. For example, 

CHL1/ERM protein interactions may direct apical dendrites of cortical pyramidal cells 

to the pial surface (Demyanenko et al., 2004), which has been shown to involve 

attraction toward Sema3A in the upper cortical layers (Polleux et al., 2000). 

CHL1/ERM protein interaction might also promote radial migration of neuronal 
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precursors (Demyanenko et al., 2004), as ERM proteins are expressed in the 

intermediate zone at the time when these cells migrate to form the distinct layers of 

the cortex (Mintz et al., 2003). In addition, CHL1/ERM protein-mediated growth cone 

collapse to Sema3A may be required for proper axon guidance in olfactory and 

hippocampal pathways, which is impaired in CHL1-minus mice (Montag-Sallaz et al., 

2002).   Analysis of mice deleted for ERM protein expression could give insights into 

the function of the CHL1/ERM protein complex in neuronal development, but is 

hindered by the high redundancy of the three members of the family, which may 

mask a phenotype in vivo (Bretscher et al., 2002). 

Taken together our results suggest that ERM protein interaction with the 

CHL1 cytoplasmic domain represents a crucial component in the link between the 

extracellular matrix and the cytoskeleton, which in cooperation with β1 integrins, is 

necessary for neurite outgrowth and branching, as well as growth cone collapse in 

response to Sema3A. 

 

4.5 Methods 

Plasmids, Antibodies and Fusion Proteins 

The following cDNAs in pcDNA3 (Stratagene, La Jolla, CA) were used: wild type 

mouse CHL1 (NM_007697; Holm et al., 1996; Buhusi et al., 2003), a CHL1 mutant 

(CHL1AAA) in which the membrane-proximal RGGKYSV sequence was mutated to 

AGGKASA, and a wild type human L1 (from J. Hemperly, BD Technologies, 

Research Triangle Park, NC). The CHL1AAA mutation was introduced in the 

sequence corresponding to the CHL1 cytoplasmic domain subcloned in pBlueScript 
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through a 3-step site-directed mutagenesis (QuikChange Site-Directed Mutagenesis, 

Stratagene), using the following primer pairs: A_Mut_F 5’-

GGTGGAAAGTATTCAGCAAAAGAAAAGGAAGATTACACCCC -3’ and A_Mut_R 

5’- GGGGTGTAATCTTCCTTTTCTTTTGCTGAATACTTTCCACC -3’ for the V to A 

mutation, ASA_Mut_F 5’- 

GAGGAACAGAGGTGGAAAGGCTTCAGCAAAAGAAAAGGAAG -3’ and 

ASA_Mut_R 5’- CTTCCTTTTCTTTTGCTGAAGCCTTTCCACCTCTGTTCCTC -3’ 

for the YSV to ASA mutation and AGGKASA_FP 5’- 

CTTTGTGAAGAGGAACGCAGGTGGAAAGGCTTCAGC -3’ and AGGKASA_RP 5’- 

GCTGAAGCCTTTCCACCTGCGTTCCTCTTCACAAAG -3’ for the final RGGKASA 

to AGGKASA step. After the triple mutation was confirmed through sequencing, the 

mutated CHL1 cytoplasmic domain was transferred (by digestion with Eco47III and 

XhoI followed by ligation) to the pcDNA3 CHL1 plasmid to replace the wild-type 

sequence. 

A plasmid encoding mouse ezrin fused to green fluorescent protein (Ezrin-

GFP) was generated by cloning ezrin (IMAGE: 6826190; ATCC, Manassas, VA) into 

the pEGFP-N1 vector (Clontech, Mountain View, CA). Briefly, the ezrin coding 

sequence was amplified using the following primers: Ezrin-FP 5’-

TTGCTAGCCAAGAGCCCAAGCCAATCAAC-3’ and Ezrin-nostop-RP 5’- 

TTAAGCTTTCCTCCTCCCATGGCCTCGAACTCGTC-3’, the PCR product and 

pEGFP-N1 were digested with NheI and HindIII and then ligated. The T567A 

mutation in Ezrin-GFP was generated through site-directed mutagenesis using the 

following primers: EzrinA-FP 5’-
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GCAGGGACAAGTATAAGCCGCTGCGCCAAATCAGGCAGG-3’ and  

EzrinA-RP 5’-CCTGCCTGATTTGGCGCAGCGCCTTATACTTGTCCCTGC-3’. The 

mutation was confirmed through DNA sequencing. 

Goat anti-mouse CHL1 antibody was obtained from R&D Systems 

(Minneapolis, MN). Mouse anti-human L1 monoclonal antibody UJ127 was from 

Abcam Inc. (Cambridge, MA). Anti-L1 polyclonal rabbit antibody 6096 was a 

generous gift of John Hemperly (BD Technologies). Rabbit anti-phospho-ERM 

polyclonal antibody from Chemicon (Temecula, CA) recognizes phosphorylated 

threonine 567(ezrin), 564 (radixin), 558(moesin). Mouse IgM monoclonal antibody to 

members of the ERM family (panERM, clone 13H9) was a generous gift from F. 

Solomon (Massachusetts Institute of Technology, Cambridge, MA). Mouse anti-ezrin 

monoclonal antibody for Western blotting was from Chemicon. All secondary 

antibodies were from Jackson ImmunoResearch Laboratories Inc (West Grove, PA). 

All cell culture media and supplements were from Gibco (Carlsbad, CA). 

To prepare Sema3A-AP and Fc-AP fusion proteins, HEK293T cells were 

transfected with alkaline phosphatase (AP)-tagged Sema3A or AP-tagged mouse Fc 

encoding cDNA using LipofectAMINE 2000 (Invitrogen) according to the 

manufacturers’ protocol. Two days after transfection, media was collected and the 

concentration of Sema3A-AP or Fc-AP was determined using the colorimetric assay 

described in (Flanagan and Leder 1990) with the modification that media were mixed 

with lysis buffer (10 mM Tris pH 8, 1% Triton X-100) instead of heating.  
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Cell Culture and Transfection 

HEK293 and rat B35 neuroblastoma cell cultures were maintained in 

Dulbecco’s modified Eagle’s medium (DMEM) with 10% heat-inactivated fetal bovine 

serum (FBS). For transient protein expression, cultures at 80-90% confluence in 60-

mm dishes were transfected with pcDNA3 plasmids (4-5 µg) using LipofectAMINE 

2000 in OptiMEM for 18- 24h at 37°C. 

To generate primary cortical neurons, pregnant CHL1-minus homozygous 

mutant mice on a C57Bl/6 background (E14.5) (Montag-Sallaz et al., 2002) were 

anesthetized, embryos removed, and their cortices were dissociated in complete 

Hanks’ balanced saline solution (HBSS) by trituration. Cells were then co-

transfected with pMax-GFP and pcDNA3-CHL1wt, pcDNA3-CHL1AAA or empty 

pcDNA3 by electroporation using an Amaxa Nucleofector Device with a Mouse 

Neuron Nucleofector Kit (Amaxa, Gaithersburg, MD).  Briefly, 5 x 106 cells in 

transfection buffer were electroporated with plasmid cDNA and allowed to recover in 

RPMI medium. After 5 min, cells in DMEM/10% FBS were plated on MatTek dishes 

coated with poly-D-lysine/fibronectin (Sigma, 5µg/ml). One day after plating, the 

medium was changed to Neurobasal medium containing B27 supplement and 

glutamate (25μM). Animal care and treatment were in accordance with guidelines 

provided by the UNC Institutional Animal Care and Use Committee (IACUC). 

Analysis of ERM protein expression and of CHL1 cell surface expression 

For analysis of ERM protein expression in B35 and HEK293 cell lines, cells 

were lysed in RIPA buffer (20 mM Tris pH 7.0, 0.15 M NaCl, 5 mM EDTA, 1 mM 

EGTA, 1% NP-40, 1% Na-deoxycholate, 0.1% SDS, 0.2 mM sodium 
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orthovadandate, 10 mM sodium fluoride) including protease inhibitors (Sigma), and 

30 µg cell lysate was examined by gel electrophoresis followed by immunoblotting 

with an anti-ezrin antibody and an HRP-conjugated goat- anti mouse IgG antibody 

using the enhanced chemiluminescence kit from Pierce. 

For analysis of neuronal ERM protein expression, transfected neurons on 

fibronectin-coated MatTek dishes were fixed after 72 h in culture with 4% 

paraformaldehyde in 0.1M phosphate buffer, pH 7.4, (PFA) for 15 min. For ERM 

protein staining, neurons were blocked with 10% donkey serum in phosphate-

buffered saline (PBS) for 60 min at room temperature (RT) followed by 

permeabilization with 0.05% Triton X-100 in 10% donkey serum/PBS for 30 min at 

RT. Neurons were then incubated with mouse anti-panERM antibody (1:50) for 60 

min at RT, followed by washes with PBS and incubation with Cy5-conjugated 

donkey anti-mouse antibody (1:100) for 45 min at RT. After additional washes with 

PBS and mounting in Gel/Mount (Biomeda, Foster City, CA), neurons were analyzed 

using an Olympus FV500 laser confocal microscope at the Microscopy Service 

Laboratory (Dept. of Pathology, University of North Carolina). 

For CHL1 cell surface staining, unpermeabilized neurons were incubated with 

goat anti-CHL1 (1:200) and TRITC-conjugated donkey anti-goat (1:100) antibodies 

as described for ERM protein staining. Images were acquired using an Olympus FV 

500 laser confocal microscope (60x objective) with a constant exposure time 

representing unsaturated conditions. Approximately 25 neurons were analyzed per 

experiment and condition as described in (Cheng et al., 2005).  At three different 

locations along the longest neurite, pixel density was determined using ImageJ 
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software, and the average pixel density for each neuron was calculated. Values 

were then averaged, and CHL1AAA cell surface expression was expressed as 

percent of CHL1wt expression. 

Cytofluorescence Assay for CHL1/ ERM protein recruitment 

Recruitment of soluble ERM proteins to the cytoplasmic domains of CHL1 

and L1 at the plasma membrane was analyzed in a cytofluorescence assay similar 

to that described for ankyrin recruitment to CHL1 (Buhusi et al., 2003). Briefly, 

HEK293 cells on PDL-coated MatTek dishes were co-transfected with ezrin-GFP 

(mouse ezrin in pEGFP-N1) and pcDNA3 plasmids encoding CHL1wt, CHL1AAA or 

L1wt or the empty vector as control (ratio 1:10) using LipofectAMINE 2000. After 24 

h, cells were fixed with 4% PFA for 15 min, washed, and incubated in 10% donkey 

serum in PBS including 0.2% Triton X-100 for 30 min. To visualize CHL1, L1 or 

phosphorylated ERM proteins (pERM), cells were incubated for 4 h at RT with goat 

anti-CHL1 antibody (5 µg/ml in blocking buffer), mouse anti-L1 antibody UJ127 (5 

µg/ml), and rabbit anti-pERM antibody (5 ug/ml). Cells were washed and incubated 

for 2 h with TRITC-conjugated donkey anti-goat IgG (for CHL1), TRITC-conjugated 

donkey anti-mouse IgG (for L1) and Cy5-conjugated donkey anti-rabbit IgG (for 

pERM), each diluted 1:100 10% donkey serum in PBS. Cells were washed and 

mounted in Vectashield (Vector Laboratories, Burlingame, CA). 

GFP/immunofluorescence images were recorded on an Olympus FV500 laser 

confocal microscope using the appropriate filters.  
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Haptotactic Migration Assay 

Haptotactic migration of HEK293 cells transiently expressing CHL1, L1 or 

mutant proteins was assayed as previously described (Buhusi et al., 2003), using 

modified Boyden chambers with 8-µm pore filters (Transwells 3422, Corning Inc., 

Corning, NY). The bottom side of the filters was coated with fibronectin (5 µg/ml) or 

2% bovine serum albumin (BSA, Sigma) in PBS at 4°C overnight and blocked with 

2% BSA. Cells were detached with 5 mM EDTA in HBSS and plated at 20,000 

cells/filter in serum-free DMEM. Cells were allowed to migrate for 3-4 h at 37°C and 

5% CO2 before fixation with 4% PFA, followed by incubation in blocking solution 

(10% goat serum, 0.2% fish skin gelatin, PBS) for either 1 h at RT or overnight at 

4°C. 

To visualize migrated cells, cells from the upper or lower sides of filters were 

removed, and cells on the opposite side were stained by indirect 

immunofluorescence with polyclonal CHL1 antibody (20 µg/ml) (Buhusi et al., 2003) 

or L1 polyclonal antibody 6096 (20 µg/ml) in blocking solution for 4 h at RT, followed 

by FITC-conjugated donkey anti-rabbit secondary antibody diluted 1:75 to 1:100 in 

blocking solution. Cells were counterstained with 10 µM bis-benzimide (Hoechst 

33258, Molecular Probes, Eugene, OR). The filters were mounted with Vectashield 

on glass slides, and the cells were scored on both top and bottom surfaces of filters 

under epifluorescence illumination. Counting of cells and analysis of migration data 

was performed as described (Buhusi et al., 2003). 
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Cell Adhesion Assay 

24-well plates were incubated with 100 µl of nitrocellulose solution (1 cm2 in 100 ml 

MeOH) for 30 min at RT. Dried wells were washed with water and immediately 

incubated with 5 µg/ml fibronectin in PBS for 1 h at 37°C or at 4°C overnight. Wells 

were blocked with 1% BSA in PBS for 1 hr at 37°C. B35 rat neuroblastoma cells 

were co-transfected with cDNA encoding CHL1wt, L1wt, CHL1AAA mutant protein or 

the empty vector (control) and pMAX-GFP cDNA or cDNA encoding CHL1wt and 

ezrin-GFP or ezrin(T567A)-GFP respectively. Cells were detached with 5mM EDTA 

in HBSS and washed once in serum-free DMEM. 25,000 cells/well were incubated in 

DMEM, 10% FBS for 1 h at 37°C. Non-adherent cells were removed by two washes 

with PBS, and adherent cells were fixed with 4% PFA for 20 min. GFP-labeled cells 

were scored in 10 randomly selected fields per well under epifluorescence 

illumination using a 40x objective of a Zeiss Axiovert 200 microscope. Samples were 

performed in duplicates and the experiment was repeated three times. Percentage 

of adherent cells per field was standardized to the number of adherent control cells 

for each experiment. Values obtained from independent experiments were 

averaged, standard errors were determined, and statistical significance was 

examined using the t-test (p<0.05). 

Neurite Outgrowth and Branching Analysis 

Dissociated embryonic cortical neurons were transfected with the respective 

plasmids by electroporation and incubated for 24 h with DMEM/10% FBS. Then 

medium was changed to Neurobasal/B27/glutamate (25uM), supplemented with 

either Fc-AP or Sema3A-AP fusion proteins (30 nM). After 48 h of incubation, cells 
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were fixed with 4% PFA and mounted in Gel/Mount (Biomeda, Foster City, CA). 

Images of GFP expressing neurons were captured on a Zeiss Axiovert 200 inverted 

microscope using an Axiocam MRc5 digital camera, and image analysis was 

performed using NIH Image J. The analysis of neurite outgrowth and branching was 

performed as described (Cheng et al., 2005; Hinkle et al., 2006). In cortical neuronal 

cultures maintained in Neurobasal medium about 97% of the neurons are cortical 

neurons and only neurons of highly similar type were analyzed. Neurites at least 10 

µm in length and not in contact with any other neuron were measured. Total neurite 

length was defined as the sum of the lengths of all neuritic branches from a single 

neuron. The longest single neurite was the longest neurite length elaborated from 

the soma. Branching number represented the sum of all branch points from a single 

neuron, including primary neurites (extending directly from the soma) and secondary 

neurites (extending form a neurite). Between 30 and 90 neurons were analyzed per 

condition in each experiment, and each condition was assayed at least twice. The 

values from one experiment were normalized to the mean of CHL1-minus neurons in 

the same experiment. Mean values were compared using the Student’s t test to 

evaluate significant differences (p< 0.05 or 0.01). 

Growth Cone Collapse Assay 

Dissociated embryonic cortical neurons transfected with the indicated 

plasmids were incubated for 24 h with DMEM/10% FBS and then changed to 

Neurobasal/B27 supplement/glutamate (25uM). Cells were then treated with either 

Fc-AP or Sema3A-AP fusion proteins (30 nM) for 30 minutes to induce growth cone 

collapse.  Cells were fixed with 4% PFA and permeabilized with 0.2% TritonX-100 
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for 5 min.  After washing, cells were treated with rhodamine-conjugated phalloidin 

(Molecular Probes; 1:40) for 30 min at RT to visualize actin within the growth cone.  

Cells were mounted in Gel/Mount and GFP positive neurons were scored for growth 

cone collapse using confocal microscopy. Growth cones were considered collapsed 

if no filopodial or lamellipodial protrusions were observed, and results were reported 

as percentage of collapsed growth cones. Three independent experiments were 

performed, and between 150 and 250 growth cones were scored per condition. 

Results were reported as percentage of GFP-positive cells with collapsed growth 

cones using the means of three experiments +/- standard error of the mean (SEM).  

Statistical significance was determined using the one-tailed t-test (p<0.05). 

Comparison of CHL1-minus neurons treated with Fc protein with non-treated cells 

revealed that Fc protein did not have any effect on growth cone morphology (data 

not shown). 
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Figure 4.1:  Schematic Representation of CHL1 and L1 Cytoplasmic Domains  

CHL1wt: Structure of the cytoplasmic domain of wild-type CHL1. The membrane-

proximal RGGKYSV sequence shares homology with the KGGKYSV sequence in 

L1. CHL1 lacks the RSLE sequence of L1 exon 27. CHL1/ankyrin interaction is 

mediated by FIGAY (Buhusi et al., 2003). 

 

L1wt: Structure of the L1 cytoplasmic domain and its association with cytoskeletal 

linker proteins. The membrane-proximal KGGKYSV sequence is a binding site for 

ERM proteins, and Y1151 is crucial for this association (Cheng et al., 2005). The 

YRSLE sequence in exon 27 is a second interaction site for ERM proteins (Cheng et 

al., 2005; Dickson et al., 2002).  Y1229 within the FIGQY sequence is essential for 

ankyrin binding (Garver et al., 1997). 

 

CHL1AAA: CHL1 construct where 3 amino acid residues (R1108, Y1112, V1114) 

were mutated to alanine. 
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Figure 4.2:  CHL1 Recruits Ezrin to the Cell Membrane Through the Membrane-

Proximal RGGKYSV Sequence 

HEK293 cells were co-transfected with GFP-tagged ezrin and the following 

expression plasmids: (B-D) pcDNA3, (E-H) CHL1wt, (I-L) CHL1AAA, and (M-P) L1wt. 

After transfection (24 hr), cells were fixed and immunolabelled with antibodies 

against CHL1 or L1 (L1CAMs) and antibodies directed against activated, 

phosphorylated ERM proteins (phospho-ERM). Recruitment of ezrin-GFP to the cell 

membrane (B,F,J,N), CHL1/L1 expression (E,I,M) and Thr 567/564/558 

phosphorylation of ERM proteins (C,G,K,O) was analyzed by confocal microscopy. 

Merged images are shown as an overlay in panels D,H,L, and P.  

Insert shows endogenous expression of ERM proteins in untransfected HEK293 

cells detected by immunolabeling with an antibody against all three ERM family 

members (panERM) or against phosphorylated ERM proteins (pERM). 
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Figure 4.3:  Intracellular Interaction with ERM Proteins is Essential for CHL1- 

Mediated Adhesion to Fibronectin 

Top:   B35 neuroblastoma cells were co-transfected with expression pcDNA3 

plasmids encoding CHL1wt, CHL1AAA, or L1wt together with a GFP expression 

plasmid.  

 

Bottom: B35 cells were co-transfected with pcDNA3 plasmids encoding CHL1wt 

and ezrin-GFP (ezrin wt) or ezrin(T567A)-GFP (ezrin DN) respectively. Cells were 

allowed to adhere to fibronectin-coated wells of 24-well plates for 1 h at 37°C, 

washed to remove non-adherent cells and fixed. Number of adherent cells was 

determined by counting GFP-labeled cells in 10 randomly selected fields per well. 

Samples were performed in duplicate, and the experiment was repeated three times. 

Percentage of adherent cells per field were standardized to number of adherent 

control cells for each experiment. Values represent means of percentage adherent 

cells per field of all experiments. **, statistically significant differences in means 

compared with control cells using the t-test (* p<0.01). 

Insert shows Western blot analysis of ezrin expression in cell lysates from B35 and 

HEK293 cells. 
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Figure 4.4:  CHL1/ERM Interaction is Essential for Potentiated Haptotactic 

Migration of HEK293 Cells  

Cell migration of transiently transfected HEK293 cells was analyzed using Transwell 

chambers coated with fibronectin (FN) or BSA as a control after 3 h of incubation. 

Samples were assayed in triplicate, and the experiments were repeated at least 

twice with similar results. Statistically significant differences in means of 

nontransfected cells on BSA, or transfected cells expressing CHL1wt, CHL1AAA or 

L1wt on fibronectin versus nontransfected cells on fibronectin were examined using 

the t test (*, p < 0.05). 
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Figure 4.5:  CHL1-Stimulated Neurite Outgrowth and Branching is Dependent 

on Intracellular ERM Protein Binding 

CHL1-minus embryonic cortical neurons (E14.5) were co-transfected with plasmids 

encoding GFP and pcDNA3 (CHL1-minus), CHL1wt or CHL1AAA. After 72 h 

incubation on a fibronectin substrate, cultures were fixed and GFP-expressing 

neurons were analyzed.  

 

A.  Expression of CHL1 and ERM proteins in CHL1-minus embryonic cortical 

neurons transfected with CHL1wt or CHL1AAA cDNA after 72 h in culture. 

Permeabilized neurons were stained with anti-CHL1 antibody/TRITC-conjugated 

secondary antibody and anti-panERM antibody/Cy5-conjugated secondary antibody, 

pseudocolored green. 

 

B.  Representative DIC images of CHL1-minus embryonic cortical neurons 

transfected with pcDNA3 (CHL1-), CHL1wt and CHL1AAA
 after 72 h in culture. CHL1-

minus neurons exhibited short neurites and few branches. Expression of CHL1wt   in 

CHL1-minus neurons enhanced neurite outgrowth and branching, while transfection 

with CHL1AAA did not change morphology of CHL1-minus neurons. 

 

C.  Quantification of neurite outgrowth by comparison of longest neurite length and 

total neurite length. Values were normalized to the mean value of CHL1-minus 

neurons (65 µm for longest neurite length and 140 µm for total neurite length). 
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D.  Analysis of neurite branching. Branching number represented the total number of 

branching points exhibited by a neuron. Primary neurites represented the number of 

branches that extended from the soma. Secondary neurites represented the number 

of branches that extended from primary neurites. Values were normalized to the 

mean values of CHL1-minus neurons (Branching number, 3.5; Primary neurites, 2.4; 

Secondary neurites, 1.1) 

 

For C and D, three independent assays were performed, and shown is a typical 

experiment with CHL1-minus neurons (n=78) and CHL1-minus neurons transfected 

with CHL1wt (n=88) or CHL1AAA (n=75). Statistically significant differences in means 

were compared with CHL1minus neurons using the t-test: * (p<0.05), ** (p<0.01).  
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Figure 4.6:  The ERM Binding Domain of CHL1 is Required for Sema3A-

Induced Growth Cone Collapse in Embryonic Cortical Neurons 

Dissociated cortical neurons from CHL1-minus embryos (E14.5) were transfected 

with CHL1wt (a, b), empty vector (CHL1-minus, c, d), or CHL1AAA (e, f) plasmids.  

After 72 hours, cells were treated with 30nM Fc-AP or Sema3A-AP fusion proteins 

for 30 minutes.  The cultures were fixed and stained with phalloidin to visualize 

growth cone morphology. The numbers of analyzed growth cones (n) are indicated. 

 

A.  Representative examples of growth cones from CHL1-minus, CHL1wt and 

CHL1AAA neurons. Growth cones expressing CHL1wt (a), empty vector (CHL1-

minus, c), or CHL1AAA (e) were not collapsed in response to Fc-AP fusion protein.  b) 

Upon treatment with 30nM Sema3A-AP fusion protein, growth cones of CHL1wt 

expressing neurons were collapsed. Growth cones of CHL1-minus cortical neurons 

transfected with empty vector (CHL1-minus, d) or CHL1AAA
 mutant (f) did not 

collapse in response to Sema3A-AP fusion protein. 

 

B.  Quantitation of percent growth cones collapsed in response to Fc-AP or 

Sema3A-AP protein treatment. Sema3A significantly (*, p<0.05) increased the 

percentage of collapsed CHL1wt-expressing growth cones compared to Fc-AP. A 

small, but significant, response to Sema3A remained in CHl1-minus and CHL1AAA 

neurons compared to Fc-AP control.   
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Figure 4.7:  Semaphorin3A Inhibits CHL1wt-Mediated Neurite Outgrowth and 

Branching 

CHL1-minus embryonic cortical neurons (E14.5) were co-transfected with a plasmid 

encoding GFP and pcDNA3 (CHL1-minus), CHL1wt or CHL1AAA and plated on 

fibronectin. After 24 h, cells were treated with 30 nM Sema3A-AP or Fc-AP for 48 h. 

Cultures were fixed and GFP-expressing neurons were analyzed. In each 

experiment, the mean values for neurite outgrowth and branching were normalized 

to the mean value of CHL1-minus neurons. The averages of two independent 

experiments +/- SEM are shown. 100% values for control CHL1-minus neurons 

represent 45 µm for longest neurite length, 90 µm for total neurite length and 2.7 for 

branching number. Numbers of neurons analyzed were for CHL1-minus (Fc), 118; 

CHL1-minus (Sema3A), 89; for CHL1wt (Fc), 190; CHL1wt (Sema3A), 131; for 

CHL1AAA (Fc), 174; CHL1AAA
 (Sema3A),124. Statistically significant differences in 

means were compared with CHL1-minus or Fc-treated neurons using the t-test, * 

(p<0.05), ** (p<0.01). 
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Chapter 5 

 

Close Homolog of L1 is an Enhancer of Integrin-Mediated Cell Migration 

 

Reprinted with Permission from The American Society for Biochemistry and 

Molecular Biology, Inc.  

Buhusi, M., Midkiff, B.R., Gates, A.M., Richter, M., Schachner, M., and Maness, P.F. 

(2003).  Close Homolog of L1 (CHL1) is an enhancer of integrin-mediated cell 

migration.  Journal of Biological Chemistry.  278, 25024-25031. 

 



 

This was a collaborative effort.  I performed the haptotactic migration assays to 

demonstrate the signaling intermediates involved in CHL1 enhanced migration and 

generated figure 5.4. 
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5.1 Abstract 

Close homolog of L1 (CHL1) is a member of the L1 family of cell adhesion 

molecules expressed by subpopulations of neurons and glia in the central and 

peripheral nervous system. It promotes neurite outgrowth and neuronal survival in 

vitro. This study describes a novel function for CHL1 in potentiating integrin-

dependent cell migration toward extracellular matrix proteins. Expression of CHL1 in 

HEK293 cells stimulated their haptotactic migration toward collagen I, fibronectin, 

laminin, and vitronectin substrates in Transwell assays. CHL1-potentiated cell 

migration to collagen I was dependent on α1β1 and α2β1 integrins, as shown with 

function blocking antibodies. Potentiated migration relied on the early integrin 

signaling intermediates, c-Src, phosphatidylinositol 3-kinase, and MAP kinase. 

Enhancement of migration was disrupted by mutation of a potential integrin 

interaction motif Asp-Gly-Glu-Ala (DGEA) in the sixth immunoglobulin domain of 

CHL1, suggesting that CHL1 functionally interacts with β1 integrins through this 

domain. CHL1 was shown to associate with β1 integrins on the cell surface by 

antibody-induced co-capping. Through a cytoplasmic domain sequence, containing a 

conserved tyrosine residue (Phe-Ile-Gly-Ala-Tyr), CHL1 recruited the actin 

cytoskeletal adapter protein ankyrin to the plasma membrane, and this sequence 

was necessary for promoting integrin-dependent migration to extracellular matrix 

proteins. These results support a role for CHL1 in integrin-dependent cell migration 

that may be physiologically important in regulating cell migration in nerve 

regeneration and cortical development. 
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5.2 Introduction 

In vertebrates, the L1 family of cell adhesion molecules (CAMs) is comprised 

of four members: L1/NgCAM, close homolog of L1 (CHL1), neurofascin, and NrCAM, 

all serving multiple functions in the development and function of the nervous system. 

L1, the prototype of this family of transmembrane glycoproteins, has been shown to 

participate in cell migration, axon fasciculation, and guidance, as well as 

synaptogenesis and adult synaptic plasticity (Schmid and Maness, 2001). The 

importance of L1 function in human brain development is revealed by the association 

of mutations in the L1 gene with a syndromic form of mental retardation, the L1 

syndrome, formerly named CRASH (corpus callosum agenesis, mental retardation, 

adducted thumbs, spasticity, and hydrocephalus) (Rosenthal et al., 1992; Fransen et 

al., 1997; Kenwrick et al., 2000). L1 knockout mice display nervous system 

anomalies similar to those seen in human patients, although there appear to be 

additional genetic modifiers of the disease (Dahme et al., 1997; Demyanenko et al., 

1999; Demyanenko et al., 2001).  

L1 family members share a structural plan consisting of an extracellular region 

comprised of six Ig-like domains, four or five fibronectin type III domains, a single 

transmembrane segment, and a short, conserved cytoplasmic region (Brummendorf 

and Lemmon, 2001). The extracellular portion of these proteins is highly glycosylated 

and allows them to participate in both homophilic and heterophilic interactions with a 

variety of ligands, including other members of the Ig superfamily. The cytoplasmic 

domain of L1 family members interacts with components of the actin cytoskeleton 

(Dickson et al., 2002), protein kinases (Wong et al., 1996b; Wong et al., 1996a; 
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Kamiguchi and Lemmon, 1997), and complexes associated with endocytosis and 

protein trafficking in a lipid raft-associated manner (Kamiguchi et al., 1998; Nakai 

and Kamiguchi, 2002). An important binding partner is ankyrin, a protein that binds to 

the subcortical actin/spectrin cytoskeleton (Davis and Bennett, 1994; Bennett and 

Chen, 2001). The interaction of L1 with ankyrin occurs through a conserved FIGQY 

sequence (Phe-Ile-Gly-Gln-Tyr) within the cytoplasmic domain and is proposed to 

stabilize axonal membranes and/or intercellular connections (Bennett and Baines, 

2001). This idea is supported by the finding that in mice lacking ankyrin B, the axons 

eventually degenerate (Scotland et al., 1998), although initial axon outgrowth and L1 

targeting are relatively normal.  

CHL1 is a newly identified member of the L1 family that is expressed in 

subpopulations of developing neurons in the central and peripheral nervous systems 

and that persists at low levels in the mature brain in areas of high plasticity 

(Hillenbrand et al., 1999; Liu et al., 2000). CHL1 is also expressed by Schwann cells, 

astrocytes, and oligodendrocyte precursors (Holm et al., 1996) and is strikingly up-

regulated in Schwann cells and sensory neurons upon nerve crush injury (Zhang et 

al., 2000). The CALL gene, the human ortholog of the CHL1 gene (Wei et al., 1998), 

is closely linked to the 3p– syndrome characterized by mental retardation (Angeloni 

et al., 1999). The human CHL1 gene is mutated in a patient with mental retardation 

(Frints et al., 2003). An increased risk for schizophrenia associated with a missense 

polymorphism has also been reported (Sakurai et al., 2002). A recent study (Montag-

Sallaz et al., 2002) showed that CHL1-deficient mice display misguided axons within 

the hippocampus and olfactory tract and anomalies in behavior. These findings 
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emphasize the importance of CHL1 in the nervous system, although its specific 

functions are yet unknown.  

CHL1 shares the basic structural plan of L1 family members (Holm et al., 

1996) and has strong neurite outgrowth promoting capacity (Hillenbrand et al., 

1999). The sequence of CHL1 reveals ~60% amino acid identity with L1 in the 

extracellular region and ~40% identity in the cytoplasmic domain. Yet in contrast to 

L1, CHL1 has not been shown to self-associate, nor does it bind heterophilically to 

L1 (Hillenbrand et al., 1999). The extracellular segment of CHL1 contains a potential 

integrin-binding motif Arg-Gly-Asp (RGD) in the second Ig-like domain, where it may 

be masked by the predicted horseshoe conformation of the molecule (Freigang et 

al., 2000; Kunz et al., 2002), rather than within the sixth Ig-like domain as in L1. 

However, the sixth Ig domain of CHL1 contains another potential integrin interaction 

motif Asp-Gly-Glu-Ala (DGEA), which has been reported to mediate integrin-collagen 

interactions in platelets (Staatz et al., 1991). Finally, CHL1 is the only L1 family 

member with an altered sequence (FIGAY) in the presumed ankyrin-binding domain, 

and it lacks the RSLE motif, which is characteristic of other family members and is 

involved in endocytosis.  

The structural resemblance and the differences between CHL1 and the other 

members of the L1 family of CAMs suggest that this molecule might have both 

similar and distinctive functions within cells. Recently it was shown that L1 promotes 

integrin-mediated haptotactic migration of cultured cells toward extracellular matrix 

proteins (Ruppert et al., 1995; Ebeling et al., 1996; Montgomery et al., 1996; 

Felding-Habermann et al., 1997; Mechtersheimer et al., 2001; Thelen et al., 2002). 
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Because of potential integrin interaction motifs in CHL1, it was speculated that CHL1 

may have a role in integrin-mediated cell migration. Here it is shown that CHL1 

promotes haptotactic cell migration toward extracellular matrix proteins, but this 

function differs from L1 in regard to preference of extracellular matrix substrate and 

integrin partners. These differences are related to the structural differences between 

CHL1 and L1 and may be important for differentially regulating cell migration during 

nerve regeneration and neuronal migration during development.  

 

5.3 Results 

CHL1 Potentiates Haptotactic Cell Migration to Extracellular Matrix Proteins Through 

β1 Integrins  

Extracellular matrix proteins are important in mediating cell migration and 

neuronal process growth in the developing nervous system (Sobeih and Corfas, 

2002) and are implicated in nerve response to injury (Frostick et al., 1998; Previtali et 

al., 2001). The ability of CHL1 to promote haptotactic migration toward extracellular 

matrix proteins was studied in Transwell assays in which cells were allowed to 

migrate from top to bottom chambers through filters coated on the underside with 

purified matrix molecules (Thelen et al., 2002). The human embryonic kidney cell 

line, HEK293, was used for these studies, because it expresses defined integrin 

subunits including α1, α2, α3, α5, αv, and β1, which can serve as extracellular matrix 

protein receptors (Bodary and McLean, 1990; Simon et al., 1997), and because it 

does not express detectable levels of cell adhesion molecules of the L1 family 
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(Needham et al., 2001). HEK293 cells were transfected for transient expression with 

pcDNA3 plasmids encoding CHL1 or L1, and haptotactic migration was assayed 

toward purified matrix proteins. Nontransfected HEK293 cells displayed greater 

migration toward collagen type I, fibronectin, and laminin compared with random 

migration toward bovine serum albumin but did not migrate significantly toward 

vitronectin (Fig 5.1). Expression of CHL1 significantly enhanced haptotactic 

migration toward each of these substrates, as well as to vitronectin (Fig 5.1). In 

contrast to CHL1, L1 was clearly not capable of enhancing HEK293 cell migration to 

collagen I, similar to previous findings in rat B35 neuroblastoma cells (Thelen et al., 

2002), although L1 was as effective as CHL1 at potentiating cell migration to 

fibronectin (Fig 5.1). These results showed that CHL1 can promote haptotactic cell 

migration toward a range of ECM substrates and suggested that CHL1 might 

functionally interact with integrins. 

To determine whether integrins were involved in CHL1-mediated migration, 

haptotactic migration of HEK293 cells toward collagen I was further evaluated in the 

presence of function-blocking integrin antibodies. Collagen I was chosen as a 

substrate, because collagen I, in addition to collagens III and IV, increases at the site 

of nerve injury and promotes Schwann cell migration (Previtali et al., 2001), and 

CHL1 is up-regulated in Schwann cells during peripheral nerve regeneration 

(Hillenbrand et al., 1999; Zhang et al., 2000). Treatment of cells with function-

blocking β1 integrin antibodies (Ni and Wilkins, 1998) strongly inhibited CHL1-

mediated HEK293 cell migration toward collagen I, as well as CHL1-independent 

migration of HEK293 cells (Fig 5.2). Residual migration of CHL1-HEK293 cells in the 
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presence of anti-β1 integrin antibodies was low but significantly elevated over that of 

HEK293 cells (p < 0.05), suggesting that CHL1 might function to a small extent 

through a non-β1 containing collagen receptor. Because the principal collagen I 

receptors are known to be α1β1 and α2β1 integrins (van der Flier and Sonnenberg, 

2001), function-blocking antibodies against α1
 and α2 integrins were evaluated next 

for effects on migration. Antibodies against either α1 or α2 integrin strongly inhibited 

CHL1-mediated migration toward collagen I, whereas α1 and α2
 integrin antibodies 

added together were as effective asβ1 integrin antibodies (Fig 5.2). The α1 and α2 

integrin antibodies were not as effective as β1 integrin antibodies in inhibiting the 

basal migration of HEK293 cells, thus it is likely that these cells use α1β1 and α2β1 

integrins in addition to an unidentified β1 integrin heterodimer for migration to 

collagen. In summary, these results indicated that CHL1 potentiated the migration of 

HEK293 cells toward collagen I primarily through α1β1 and α2β1 integrins.  

 

The DGEA Motif in the CHL1 Ig6 Domain Is Required for Potentiating Migration to 

Collagen I 

The mouse CHL1 and human CALL proteins contain a conserved Asp-Gly-

Glu-Ala (DGEA) motif in the Ig6 domain of their extracellular regions (Holm et al., 

1996; Wei et al., 1998). Interestingly, the DGEA motif is also present in collagen I, 

where it serves as a recognition site for α2β1 integrin in platelets (Staatz et al., 1991). 

Mutation of the DGEA sequence in the CHL1 Ig6 domain to Ala-Gly-Glu-Val (AGEV) 

effectively inhibited CHL1-potentiated migration of HEK293 cells toward collagen I, 

reducing migration to nearly the level of CHL1-nonexpressing HEK293 cells (Fig 
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5.3). In the Ig6 domain of L1, an Arg-Gly-Asp (RGD) sequence is required for 

potentiating migration to fibronectin (Thelen et al., 2002). The Ig2 domain of CHL1 

contains an Arg-Gly-Asp (RGD) motif (Holm et al., 1996), and a corresponding 

sequence (Lys-Gly-Asp) in the human CALL protein is closely conserved, though 

nonidentical (Wei et al., 1998). This motif might interact with integrins, because RGD 

is a known adhesion motif that is present in collagen I, fibronectin, and vitronectin, 

and it is recognized by at least eight integrins (Ruoslahti, 1996). However, mutation 

of the RGD in the CHL1 Ig2 domain to Lys-Gly-Glu (KGE) did not perturb CHL1-

potentiated migration to collagen (Fig 5.3). These results illustrated the importance of 

the DGEA sequence in the CHL1 Ig6 domain in mediating haptotactic migration 

toward collagen I through α1/α2 β1 integrins.  

 

CHL1 Enhances Migration through c-Src, PI 3-Kinase, and MAP Kinase 

The nonreceptor tyrosine kinase c-Src, PI 3-kinase, and MAP kinase are key 

signaling intermediates down-stream of cell adhesion molecules such as L1 (Schmid 

et al., 2000; Juliano, 2002). There is evidence that PI 3-kinase also has a role in 

integrin receptor recycling (Ng et al., 1999), whereas MAP kinase has well 

characterized functions in regulating cell migration through regulating new protein 

synthesis that may be required for synthesis of receptors (Kolch, 2000; Li et al., 

2003). It is not known whether CHL1 stimulates signaling pathways, such as those 

utilized by L1 in potentiating haptotactic migration through integrins. To determine 

whether Src was required for haptotactic cell migration to collagen I, HEK293 cells 

and CHL1-HEK293 cells were treated with PP2, a pyrazolopyrimidine inhibitor of Src 
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family tyrosine kinases. PP2, but not its inactive analog, PP3, is a selective inhibitor 

of Src family catalytic activity (Hanke et al., 1996). PP2 was a potent inhibitor of 

CHL1-dependent migration of HEK293 cells to collagen I, whereas PP3 had no effect 

(Fig 5.4). PP2 also reduced basal migration of nonexpressing HEK293 cells, 

whereas PP3 did not. To assess the involvement of PI 3-kinase, HEK293 cells and 

CHL1-HEK293 cells were treated with the PI 3-kinase inhibitor LY294002. LY294002 

partially inhibited CHL1-dependent migration of HEK293 cells to collagen, indicating 

that PI 3-kinase also participated in the CHL1 response (Fig 5.4), but it had no effect 

on basal migration. To assess the role of MAP kinase in haptotactic migration, the 

cells were treated with an inhibitor (U0126) of the dual specificity kinase MEK, which 

normally phosphorylates and activates MAP kinase. The MEK inhibitor selectively 

suppressed migration of CHL1-expressing cells, indicating that MAP kinase was 

required for the ability of CHL1 to potentiate haptotactic migration through 1/ 2 1 

integrins to collagen I (Fig 5.4). Thus, CHL1 appeared to promote integrin-mediated 

haptotactic migration to collagen I through the signaling intermediates Src and MAP 

kinase and, to a lesser extent, through PI 3-kinase.  

 

CHL1 Co-caps with β1 Integrins on the Cell Surface 

Because these results showed that CHL1 promoted cell migration toward 

collagen mediated by integrins, we investigated whether CHL1 and β1 integrins were 

laterally associated within the plasma membrane on the same cell by co-capping 

experiments (Wong et al., 2000). Monoclonal antibody MAB2000 specific for β1 

integrins was used to cross-link β1 integrins on the surface of CHL1-expressing 
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HEK293 cells. Formation of integrin caps was observed as a cluster of fluorescent 

spots on the cell surface (Fig 5.5A). CHL1 expression was detected on the same 

cells by indirect immunofluorescence staining with CHL1 polyclonal antibodies (Fig 

5.5B). The overlay image showed CHL1 co-localization within the integrin cap (Fig 

5.5C), suggesting that these proteins were associated either directly or indirectly in 

cis within the plasma membrane. CHL1 immunofluorescence staining did not co-

localize with all of the β1 integrin staining, consistent with the interpretation that 

CHL1 interacted with a subset of β1 integrins, most likely only the α1β1 and α2β1 

subclasses. Integrin caps were formed under these conditions on the majority of 

cells, and CHL1 co-localized with the integrin caps on all CHL1-expressing cells. In 

control assays, nonimmune mouse IgG did not induce integrin capping or CHL1 

clustering. Interestingly, mutation of the DGEA sequence in the Ig6 domain of CHL1 

to AGEV did not perturb its ability to co-cap with β1 integrins (data not shown), thus 

indicating that the DGEA motif was neither necessary nor sufficient for the 

association between CHL1 and β1 integrins on the cell surface.  

 

The FIGAY Motif in the CHL1 Cytoplasmic Domain Is Required for Ankyrin 

Recruitment and Potentiating Migration 

L1 family members are coupled to the actin cytoskeleton in part through 

interaction of the intracellular cytoskeletal adapter protein ankyrin with the sequence 

Phe-Ile-Gly-Gln-Tyr (FIGQY), which is conserved in the cytoplasmic domains of L1, 

NrCAM, NgCAM, and neurofascin (Davis and Bennett, 1994; Garver et al., 1997) as 

well as in the single L1 homolog LAD-1 in Caenorhabditis elegans (Chen et al., 
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2001) and Drosophila neuroglian (Hortsch et al., 1998; Hortsch, 2000). Although the 

structure of CHL1 reveals conservation of most of the functional domains found in 

other L1 family members (Holm et al., 1996), the cytoplasmic domain of CHL1 bears 

a nonconservative amino acid substitution in the putative ankyrin interaction motif, 

resulting in the sequence Phe-Ile-Gly-Ala-Tyr (FIGAY). To examine whether CHL1 

was able to bind ankyrin, a cellular ankyrin recruitment assay was carried out as 

described (Zhang and Bennett, 1998; Needham et al., 2001) using transfected 

HEK293 cells transiently expressing CHL1 and an ankyrin G fusion protein tagged 

with green fluorescent protein (ankyrin-GFP). In this assay, the interaction of ankyrin-

GFP with CHL1 was detected indirectly through the recruitment of the ankyrin-GFP 

fluorescent protein from the cytosol to the cell membrane visualized by confocal 

microscopy. When HEK293 cells were transfected with the ankyrin-GFP plasmid in 

the absence of CHL1, the fluorescent ankyrin-GFP fusion protein remained cytosolic 

and was not recruited to the plasma membrane (Fig 5.6A, B), possibly as a result of 

saturation of binding sites by endogenous ankyrin (Zhang and Bennett, 1998). In 

contrast, when HEK293 cells were co-transfected with plasmids expressing ankyrin-

GFP and CHL1, ankyrin-GFP was redistributed to the plasma membrane, where 

CHL1 was localized (Fig 5.6C-E). The cells shown in panels C–H of (Fig 5.6) were 

more sparsely plated than those in panels A and B and were not in contact with other 

cells throughout most of their cell surfaces. The recruitment of ankyrin to the plasma 

membrane of HEK293 cells by CHL1 appeared to be independent of cell-cell 

adhesion, thus differing from L1, which binds ankyrin in a cell contact-dependent 

manner in Drosophila S2 cells (Hortsch et al., 1998). This may be due to differences 
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in the levels of CHL1 expression or phosphorylation state or to the unique structural 

features of CHL1. These results showed that CHL1, like the other members of the L1 

family, was able to bind ankyrin. No proteins cross-reacting with the anti-mouse 

CHL1 antibody were detected in this human cell line by Western blot or indirect 

immunofluorescence analysis (data not shown).  

Mutation of the tyrosine residue within the FIGQY motif of the cytoplasmic 

domain of L1 family members disrupts their ability to recruit ankyrin (Garver et al., 

1997; Needham et al., 2001). Mutation of tyrosine 1229 in L1 to histidine occurs in 

some patients with the L1 mental retardation syndrome (Fransen et al., 1995) and 

may contribute to the pathogenic mechanism of the disease because of its inability to 

bind ankyrin (Needham et al., 2001). The tyrosine residue contained within the 

FIGQY motif of L1 and other family members appears to have a regulatory capability 

because it undergoes reversible phosphorylation by an unidentified kinase that 

modulates binding to ankyrin and the microtubule-associated protein doublecortin 

(Kizhatil et al., 2002). To investigate whether the corresponding residue Tyr1186 in the 

FIGAY sequence of the CHL1 cytoplasmic domain was essential for ankyrin binding, 

this residue was mutated to alanine, and the resulting CHL1 mutant was evaluated 

for the ability to recruit ankyrin in the cytofluorescence assay. When co-expressed 

with ankyrin-GFP, the mutant FIGAA failed to recruit fluorescent ankyrin-GFP to the 

plasma membrane (Fig 6.5F-H). The CHL1 FIGAA mutant was expressed at a level 

similar to that of the wild type CHL1 protein and was normally inserted in the 

plasmalemma of HEK293 cells (Fig 5.6H).  
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To determine whether ankyrin binding by CHL1 and, in particular, the Tyr1186 

residue within the FIGAY sequence were important for haptotactic migration to 

extracellular matrix substrates, wild type CHL1 and the FIGAA mutant were 

compared for their ability to promote migration of HEK293 cells to collagen I. When 

the CHL1 FIGAY sequence was mutated to FIGAA, CHL1-potentiated migration was 

reduced to the level of HEK293 cells not expressing CHL1 (Fig 5.3). Mutation of the 

CHL1 FIGAY motif to FIGAA did not affect co-capping with β1 integrins (not shown). 

These results suggested that CHL1-potentiated cell migration to extracellular matrix 

proteins may be mediated by physical linkage of its cytoplasmic domain to the actin 

cytoskeleton through its interaction with ankyrin and that the Tyr1186 residue was 

crucial for this interaction.  

 

5.4 Discussion 

This study describes a novel function for CHL1 in potentiating integrin-

dependent cell migration toward extracellular matrix proteins. CHL1-potentiated 

migration of HEK293 cells to collagen I was dependent on α1β1 or α2β1 integrins and 

was mediated by early integrin signaling intermediates c-Src, PI 3-kinase, and MAP 

kinase. Co-capping studies demonstrated that CHL1 and β1 integrins were capable 

of associating on the cell surface, and a DGEA motif in the Ig6 domain was required 

for enhancing migration. Through a key tyrosine residue in the FIGAY sequence 

within the CHL1 cytoplasmic domain, CHL1 was able to recruit ankyrin, an adapter 

for the spectrin-actin cortical skeleton, suggesting that this capacity was necessary 

for the promotion of integrin-dependent migration.  
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Our results describing the functional interaction of CHL1 with β1 integrins are 

consistent with a model in which CHL1 associates with β1 integrins in cis on the 

plasma membrane to promote cell migration on extracellular matrix substrates (Fig 

5.7). A direct or indirect association between CHL1 and β1 integrins is supported by 

their ability to co-cap on the cell surface upon antibody-induced cross-linking. A 

potential integrin interaction motif, the DGEA sequence in the Ig6 domain of CHL1, 

was necessary for potentiating migration to collagen I, but it was not essential for co-

capping of CHL1 and β1 integrin. Other determinants within the CHL1 protein thus 

may be more important in the association with β1 integrin, although DGEA or 

conformational elements of the Ig6 domain may contribute to the interaction. L1 

(Felsenfeld et al., 1994; Schmidt et al., 1996; Yip et al., 1998; Silletti et al., 2000; 

Mechtersheimer et al., 2001; Thelen et al., 2002) and NrCAM (Treubert and 

Brummendorf, 1998) also cooperate functionally with β1 integrins, although a 

physical association has only been reported for L1 (Silletti et al., 2000). Like CHL1, 

the Ig6 domain in L1 is important for enhancing migration, but in the case of L1, an 

intrinsic RGD sequence in this domain is the critical motif in promoting migration on 

fibronectin (Thelen et al., 2002). Although CHL1 contains an RGD domain located in 

the second Ig domain (Holm et al., 1996), our experiments showed that the mutation 

of this sequence did not affect the ability of CHL1 to potentiate migration through 

α1β1 or α2β1 integrins.  

CHL1 and L1 are closely related structurally, but they have different effects in 

regulating haptotactic migration toward extracellular matrix proteins. CHL1 promoted 

migration of HEK293 cells toward collagen I through the collagen receptors α1β1 and 
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α2β1 integrins, but L1 did not promote migration to collagen I. Although both cell 

adhesion molecules stimulated migration to fibronectin, L1-potentiated migration is 

strongly inhibited by function blocking antibodies against the fibronectin receptor, 

α5β1 integrin (Thelen et al., 2002), whereas CHL1-potentiated migration to 

fibronectin was not affected substantially by these antibodies.  It is not known 

whether CHL1 promotes migration toward other matrix substrates such as 

fibronectin, laminin, or vitronectin through interactions with other integrin subtypes or 

alternatively through integrin cross-talk (Simon et al., 1997; Blystone et al., 1999; 

Disatnik and Rando, 1999). An interesting possibility is that different L1 family 

members may interact with distinct or overlapping subclasses of integrins to 

potentiate haptotactic migration on diverse extracellular matrix substrates.  

CHL1-potentiated migration of HEK293 cells to extracellular matrix proteins 

depended on c-Src, PI 3-kinase, and MAP kinase.   These kinases are components 

of an early integrin signaling pathway that elicits membrane ruffling and lamellipodia 

formation and enhances cell migration (Clark et al., 1998; Meng and Lowell, 1998; 

Miranti et al., 1998). Because L1-potentiated migration also relies on these 

intermediates (Thelen et al., 2002), they may be sites for integration of signaling by 

L1 cell adhesion molecules and integrins. Although we do not know whether CHL1 

can directly activate these kinases, their catalytic function was necessary for 

enhancing migration. c-Src may act in this capacity through its ability to down-

regulate RhoA GTPase, which has been shown to be necessary for integrin-

mediated cell migration (Arthur et al., 2000). Targets of MAP kinase involved in 

CHL1-stimulated cell migration have not been identified, but a possible candidate is 
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myosin light chain kinase, which is required for FG carcinoma cell motility on 

collagen (Klemke et al., 1997). CHL1-stimulated migration also relied in part on the 

activity of PI 3-kinase, an enzyme that could contribute to cell motility through its 

ability to influence integrin endocytosis and recycling  (Siddhanta et al., 1998; Ng et 

al., 1999).  

The process of cell migration requires dynamic regulation of cell adhesion 

through coupling of adhesion receptors with the cytoskeleton (Lauffenburger and 

Horwitz, 1996; Long and Lemmon, 2000). The motif FIGQY in the cytoplasmic 

domain of all L1 family members, except CHL1, is part of the binding site for ankyrin, 

a multivalent adapter of the spectrin/actin cortical skeleton (Bennett and Baines, 

2001). Although CHL1 possesses a cytoplasmic motif, FIGAY, with a 

nonconservative substitution, our experiments show that CHL1 recruited ankyrin to 

the cell membrane and that this motif was essential for potentiated cell migration. 

This result suggested that ankyrin binding may play a role in the mechanism of cell 

migration, although other functions of the CHL1 cytoplasmic domain might be 

perturbed by this mutation, accounting for the abrogation of migration. In any case, 

ankyrin-binding domains of L1 family members do not have an absolute requirement 

in regard to sequence specificity. Several studies have shown that the association of 

L1 family members with ankyrin is regulated by tyrosine phosphorylation of the 

FIGQY sequence (Garver et al., 1997; Jenkins et al., 2001) and that mutations of the 

conserved tyrosine perturb the ankyrin-binding function (Zhang and Bennett, 1998; 

Needham et al., 2001). It is not known whether the tyrosine within the FIGAY 

sequence of CHL1 is phosphorylated, but its importance is evident from the 
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perturbation of both ankyrin recruitment and enhancement of haptotactic cell 

migration toward extracellular matrix proteins when it is mutated to an alanine 

residue. CHL1 binding to the spectrin-actin skeleton may increase the adhesion 

between the leading edge of the cell and substrate, which could promote cell 

migration (Lauffenburger and Horwitz, 1996). Finally, it did not appear that CHL1 

required cell-cell contact for ankyrin binding. Although CHL1 is not known to engage 

in homophilic binding, interaction with the extracellular matrix substrate through cis 

integrin association could provide necessary contact that may regulate ankyrin 

recruitment.  

Taken together these results are consistent with a model (Fig 5.7) in which 

CHL1 interacts in cis with α1β1 and α2β1 integrins on the cell surface to promote 

intracellular signaling through c-Src, PI 3-kinase, and MAP kinase, which stimulate 

cell migration on extracellular matrix proteins such as collagen I. The CHL1 Ig6 

domain may transiently interact with a binding site on β1 integrins to stimulate cell 

signaling, but it is not sufficient for the interaction. Linkage of CHL1 to the actin 

cytoskeleton through ankyrin binding to the FIGAY sequence is also an important 

determinant of cell motility and may help stabilize adhesive contacts with the 

extracellular matrix substrate.  

The capacity of CHL1 to potentiate haptotactic migration toward extracellular 

matrix proteins through integrins in these in vitro studies may reflect a physiological 

role for CHL1 in integrin-dependent cell migration during nerve regeneration. CHL1 

may regulate the migration of Schwann cells at sites of nerve injury, because it is 

strongly up-regulated in Schwann cells during regeneration (Zhang et al., 2000). 
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Schwann cell migration on regenerating nerves is supported by collagens I, III, IV, 

and fibronectin, which, along with α1β1 integrin, increase at the injury site (Lefcort et 

al., 1992; Siironen et al., 1992; Previtali et al., 2001). CHL1 expression is also up-

regulated in dorsal root ganglion and thalamic neurons upon injury (Chaisuksunt et 

al., 2000; Zhang et al., 2000) and is a strong promoter of neurite growth (Hillenbrand 

et al., 1999), suggesting that it may function analogously to promote axon growth on 

extracellular matrix substrates. The ability of CHL1 to promote cell migration toward 

extracellular matrix proteins may also play a role in radial glia-guided migration of 

cortical neurons in the developing neocortex, where integrin receptors and their 

ligands are distributed (Schmid and Anton, 2003) and CHL1 is prominently 

expressed (Liu et al., 2000).  

 

5.5 Methods 

Plasmids and Reagents 

The following cDNAs were subcloned into pcDNA3 (Stratagene, La Jolla, CA): 

wild type mouse CHL1, a CHL1 mutant in which the RGD sequence in the Ig2 

domain was mutated to KGE, a CHL1 mutant in which the DGEA sequence in the 

Ig6 domain was mutated to AGEV, a CHL1 mutant in which the cytoplasmic 

sequence FIGAY was mutated to FIGAA, and human wild type L1 (+RSLE) (from J. 

Hemperly, BD Technologies, Research Triangle Park, NC). A plasmid encoding 

ankyrin G fused to green fluorescent protein (ankyrin-GFP) was provided by Vann 

Bennett (Duke University, Durham, NC). A rabbit polyclonal antibody was made 

against mouse CHL1-Fc (Holm et al., 1996). Mouse monoclonal antibody Neuro4 
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against an extracellular epitope of human L1 was a gift of J. Hemperly. The following 

antibodies were obtained from Chemicon (Temecula, CA): anti-human β1 integrin 

monoclonal antibody 2253Z (clone 6s6), an activating monoclonal antibody 

MAB2000 (clone HB1.1) against human β1 integrin, anti-human α1 integrin 

monoclonal antibody 1973Z (clone FB12), and anti-human α2 integrin monoclonal 

antibody 1950Z (clone P1E6). Nonimmune mouse IgG was from Jackson 

ImmunoResearch Laboratories (West Grove, PA). Human vitronectin, human 

fibronectin, and murine laminin were from Invitrogen and Peninsula Laboratories 

(San Carlos, CA). BD Biosciences (Palo Alto, CA) provided type I collagen from rat 

tail. MEK inhibitor U0126 (Promega, Madison, WI), Src inhibitor PP2 and inactive 

analog PP3, and PI 3-kinase inhibitor Ly294002 (CalBiochem, San Diego, CA) were 

dissolved in Me2SO. 

Cell Culture and Haptotactic Migration Assay 

HEK293 cell cultures were maintained in Dulbecco's modified Eagle's medium 

(DMEM) (Mediatech Cellgro), 4.5 mg/ml glucose, 10% heat-inactivated fetal bovine 

serum, 50 µg/ml gentamicin, and 250 µg/ml kanamycin. Cultures at 80–90% 

confluence in 60-mm dishes were transfected for transient expression of CHL1 or L1 

pcDNA3 plasmids (5 µg) using LipofectAMINE 2000 (Invitrogen) in Opti-MEM I 

(Invitrogen). After 18–24 h at 37°C, the transfected cells were used for haptotactic 

migration or ankyrin recruitment assays.  

Haptotactic migration of HEK293 cells transiently expressing CHL1 or L1 was 

assayed as previously reported (Thelen et al., 2002), using modified Boyden 

chambers with 8-µm pore filters (Transwells 3422, Corning/Costar, Acton, MA) in 
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serum-free medium (DMEM, 0.4 mM MnCl2, 50 µg/ml gentamicin, 250 µg/ml 

kanamycin). In the absence of Mn2+, CHL1 potentiated haptotactic migration of 

HEK293 cells toward collagen I (1.9-fold) to nearly the same extent as in the 

presence of Mn2+ (2.3-fold). The bottom sides of the filters were precoated with 

extracellular matrix proteins (500 µl of 20 µg/ml) or 2% bovine serum albumin in PBS 

at 4°C overnight and blocked in 2% bovine serum albumin. The cells were detached 

with 5 mM Na-EDTA in Hanks' balanced saline solution (HBSS) and plated at 20,000 

cells/Transwell. In some experiments, the cells were preincubated in serum-free 

medium with anti-integrin antibodies (1–4 µg/ml) for 15–30 min at 4°C prior to 

plating. The cells were allowed to migrate for 3–8h at 37°C in a CO2
 incubator. After 

migration cultures were fixed in 4% paraformaldehyde, rinsed in PBS, and then 

treated with blocking solution (10% goat serum, 0.2% fish skin gelatin, PBS) for 

either 1 h at room temperature or overnight at 4°C.  

To score migration, cells from the upper or lower sides of filters were 

removed, and cells on the opposite side were stained by indirect 

immunofluorescence with purified CHL1 polyclonal antibodies (20 µg/ml) or L1 

monoclonal antibody Neuro4 (5 µg/ml) in blocking solution for 4 h at room 

temperature, followed by fluorescein isothiocyanate-conjugated secondary 

antibodies (Jackson ImmunoResearch Laboratories) diluted 1:75 to 1:100 in blocking 

solution. The cells were counterstained with 10 µM bis-benzimide (Hoechst 33258; 

Molecular Probes, Eugene, OR). The filters were mounted with Vectashield (Vector 

Laboratories, Burlingame, CA) on glass slides, and the cells were scored on both top 

and bottom surfaces of filters under epifluorescence illumination. For each filter, at 
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least 150 cells were scored from six or more randomly selected fields using a 20x 

objective. To obtain the total number of cells on each side of a filter, the mean 

number of cells/field was determined and multiplied by a factor based on the number 

and size of fields and a filter diameter of 6.5 mm. The percentage of CHL1-

immunoreactive cells that transmigrated was calculated as the ratio of CHL1-positive 

cells on the bottom of filters to total (top and bottom) CHL1-positive cells. The 

percentage of CHL1-negative bis-benzimide-positive cells that transmigrated was 

determined similarly. The percentage of cells transmigrated was converted to the 

total number of cells migrated per Transwell by multiplying the percentage by the 

number of cells plated. The experiments were performed in duplicate or triplicate, 

and the results of each condition were averaged. The means and standard errors 

were determined for each condition. Significant differences between experimental 

groups were evaluated by Student's t test (p < 0.05, one-tailed). Transfection 

efficiency of HEK293 cells was determined as the number of fluorescein 

isothiocyanate-labeled cells (transfected) divided by the number of bis-benzimide-

labeled cells (transfected plus nontransfected) and was 50–70%. There was no 

deleterious effect of integrin antibodies or inhibitors on cell adhesion, which was 

evaluated by counting the total number of cells recovered after each assay. Similarly, 

inhibitors used at concentrations indicated in the signaling experiments (PP2, PP3, 

Ly294002, and U0126) did not affect the viability or cell recovery.  

Co-capping Experiments 

HEK293 cells transfected with the pcDNA3-CHL1 plasmid were dissociated in 

5 mM EDTA in HBSS, washed with 10% fetal bovine serum in DMEM, and 
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resuspended in DMEM. The cells (30,000 cells/100 µl) were incubated with anti-

integrin β1 mouse monoclonal antibody MAB2000 (20 µg/ml) at 4°C for 20 min. The 

cells were washed with ice-cold HBSS, resuspended in DMEM containing 5 µg/ml 

goat anti-mouse IgG (Fc fragment-specific), and incubated for 20 min at 4°C. After 

washing in ice-cold HBSS, the cells were resuspended in 10% fetal bovine serum in 

DMEM, plated onto collagen-coated MatTek plates (MatTek Corp., Ashland, MA), 

and incubated for 1h at 37°C to allow integrins to cluster. The cells were then fixed in 

4% paraformaldehyde in PBS for 15 min, washed, and blocked with 10% donkey 

serum in PBS for 1 h at room temperature. To label CHL1, the cells were incubated 

with CHL1 rabbit polyclonal antibody (20 µg/ml in blocking buffer) for 2 h at room 

temperature, washed with PBS, and then incubated for 1 h at room temperature with 

fluorescein isothiocyanate-conjugated donkey anti-rabbit IgG and TRITC-conjugated 

donkey anti-goat IgG diluted 1:100 in blocking buffer. Finally, the cells were rinsed, 

mounted in Vectashield, and examined using an Olympus FV500 laser confocal 

microscope at the Microscopy Service Laboratory (Dr. Robert Bagnell, Department 

of Pathology, University of North Carolina-Chapel Hill) using appropriate filter sets. 

Assay for Ankyrin Recruitment 

Ankyrin recruitment to CHL1 in the plasma membrane was assayed as 

previously described for L1 (Needham et al., 2001) with the following modifications. 

HEK293 cells on poly-D-lysine-coated MatTek dishes were transfected with plasmid 

pEGFP-N1 expressing a fusion protein between ankyrin G and green fluorescent 

protein (ankyrin-GFP) (0.05 µg) with or without co-transfection of pcDNA3-CHL1 (0.1 

µg) using LipofectAMINE 2000. After 24 h, the cells were fixed with 4% 
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paraformaldehyde in 0.1M phosphate buffer, pH 7.4, for 15 min, washed, and 

incubated with blocking buffer (10% normal goat serum in PBS) for 30 min. To label 

CHL1 on the cell surface, the cells were incubated for 4 h at room temperature with 

rabbit polyclonal antibody against CHL1 (20 µg/ml in blocking buffer), then washed, 

and incubated for 2 h with TRITC-conjugated goat anti-rabbit IgG diluted 1:200 in 

blocking buffer. The cells were washed and mounted in Vectashield. 

GFP/immunofluorescence images were recorded on an Olympus FV500 laser 

confocal microscope. The ankyrin-GFP fluorescence was recorded using the 488-nm 

excitation line of the laser, whereas the TRITC-labeled CHL1 was examined using 

the 543-nm excitation line of the laser and the appropriate band pass filters. Each 

experiment was repeated four times.  
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Figure 5.1:  CHL1 Potentiates Haptotactic Migration of HEK293 Cells to 

Extracellular Matrix Proteins 

Haptotactic cell migration toward extracellular matrix proteins or random migration 

toward bovine serum albumin was measured in HEK293 cells transiently expressing 

CHL1, L1, or expressing no L1 family adhesion molecule for 8 h. The samples were 

assayed in triplicate, and the experiments were repeated at least twice with similar 

results. *, statistically significant differences in means of transfected (expressing 

CHL1 or L1) versus nontransfected cells using the t test (p < 0.05). 
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Figure 5.2:  CHL1 Potentiates Migration of HEK293 Cells Through β1 Integrins 

Haptotactic migration of CHL1-expressing or nonexpressing HEK293 cells was 

measured for 3 h toward collagen I. Cells migrating toward collagen I were 

pretreated with nonimmune mouse IgG (Control; 30 µg/ml), integrin 1 antibody 

(Anti-β1; 30 µg/ml), integrin α1 antibody (Anti-α1; 15 µg/ml), integrin α2 antibody (Anti-

α2; 15 µg/ml), or both antibodies (Anti-α1 + Anti-α2; 30 µg/ml). The samples were 

assayed in triplicate, and the experiments were repeated at least twice with similar 

results. *, statistically significant differences in means of treated versus control 

samples using the t test (p < 0.05). BSA, bovine serum albumin. 
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Figure 5.3:  CHL1 Mutations in Extracellular Ig6 (DGEA) and Cytoplasmic 

(FIGAY) Domains Suppress CHL1-Potentiated Migration to Collagen 

HEK293 cells transiently expressing wild type CHL1, CHL1 with mutations DGEA 

AGEV, RGD KGE, FIGAY FIGAA, or no CHL1 were assayed for haptotactic 

migration to collagen I for 3 h. Each sample was assayed in triplicate, and the 

experiments were repeated at least twice with similar results. *, statistically 

significant differences in means compared with CHL1 wild type (WT) using the t test 

(p < 0.05). 
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Figure 5.4:  c-Src, PI3 Kinase, and MAP Kinase are Required for CHL1-

Potentiated Migration of HEK293 Cells 

Migration of CHL1-expressing or nonexpressing HEK293 cells was measured 

toward collagen I for 3 h. Cells migration was conducted in the presence of 0.05% 

dimethyl sulfoxide (DMSO, control), Src family inhibitor PP2 (5 µM), PP3 (5 µM), an 

inactive analog of PP2, PI 3-kinase inhibitor LY294002 (25 µM), or MEK inhibitor 

U0126 (15 µM). Each sample was assayed in triplicate, and the experiments were 

repeated at least twice with similar results. *, statistically significant differences in 

means of treated and untreated (control) cells using the t test (p < 0.05). 
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Figure 5.5:  β1 Integrin and CHL1 Co-cap on the Surface of CHL1-Expressing 

HEK293 Cells 

A.  β1 integrin capping (red) was induced by cross-linking with β1 integrin monoclonal 

antibody MAB2000 and was detected with a TRITC-labeled secondary antibody.  

 

B.  CHL1 protein (green) labeled with CHL1 polyclonal antibodies and fluorescein 

isothiocyanate-labeled secondary antibody was recruited to the integrin cap.  

 

C.  Partial co-localization of β1 integrin and CHL1 was indicated by the yellow color 

in the overlay image. 
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Figure 5.6:  CHL1 is Able to Recruit Ankyrin to the Cell Membrane Through the 

FIGAY Sequence 

HEK293 cells were transfected with the ankyrin-GFP expression plasmid alone (A 

and B) or together with a second plasmid expressing wild type CHL1 (C–E) or 

FIGAA mutant CHL1 (F–H).  

A.  Differential interference contrast image of HEK293 cells transfected with the 

ankyrin-GFP construct alone.  

 

B.  HEK293 cells shown in A expressed ankyrin-GFP with a diffuse cytoplasmic 

localization.  

 

C.  Differential interference contrast image of cells co-transfected with the wild type 

CHL1 and ankyrin-GFP constructs.  

 

D.  Ankyrin-GFP was recruited to the membrane of cells expressing wild type CHL1, 

shown in C.  

 

E.   CHL1 was localized on the cell membranes, as shown by immunofluorescence 

of cells in C using CHL1 antibodies and TRITC-conjugated secondary antibody.  

 

F.  Differential interference contrast image of cells co-transfected with the CHL1 

FIGAA mutant and ankyrin-GFP constructs.  
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G. Ankyrin-GFP was not recruited to the membrane of cells expressing the mutant 

CHL1, shown in F, and assumes the same diffuse cytoplasmic localization as in cells 

not expressing CHL1 (B).  

 

H. The FIGAA mutant was normally inserted in the plasma membrane. 
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Figure 5.7:  Hypothetical Model of the Molecular Interactions Involved in CHL1-

Potentiated Migration Through β1 Integrins 

CHL1 interacts with α1/α2β1 integrins in cis on the cell surface and promotes 

intracellular signaling through c-Src, PI 3-kinase, and MAP kinase, which stimulates 

cell migration on extracellular matrix (ECM) proteins such as collagen I. The CHL1 

Ig6 domain, including the DGEA motif, may transiently interact with a binding site on 

β1 integrins to stimulate cell signaling, but it is not sufficient for the interaction. 

Linkage of CHL1 to the actin cytoskeleton through ankyrin binding to the FIGAY 

sequence is necessary for enhanced cell motility and may stabilize adhesive 

contacts with the substrate. 
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Chapter 6 

 

Discussion 



6.1 CHL1-Neuropilin1 Interaction as a Regulator of Thalamocortical Axon 

Guidance 

This work demonstrates the functional importance of Close Homolog of L1 

(CHL1) in thalamocortical axon guidance to the somatosensory cortex. CHL1 is 

expressed on thalamocortical and corticofugal axons, and regulates thalamocortical 

axon guidance via extracellular interactions with Npn1 and integrins and intracellular 

interactions with the actin cytoskeleton.  Loss of CHL1 in mice disrupted area-

specific targeting of somatosensory thalamic axons, causing them to inappropriately 

project to the visual cortex.  This shift was first observed in the VTe, where axons 

from the somatosensory thalamus were shifted caudally.  CHL1 was also required 

for preferential guidance of caudal thalamic axons through high Sema3A territories.  

A similar pattern of aberrant guidance was observed in Npn1Sema-/- mutant embryos, 

in which axons are nonresponsive to Sema3A, supporting a functional cooperation 

between CHL1, Npn1, and Sema3A in controlling thalamic axon topography.  CHL1 

formed a stable complex with Npn1 through a sequence in the extracellular Ig1 

domain, which was required for Sema3A-induced growth cone collapse.  CHL1 

interaction with the cytoskeleton, through the adaptor proteins ezrin, radixin, and 

moesin (ERM) and ankyrin, was also critical for axon growth and guidance and cell 

migration.  Association of CHL1 with ERM proteins, through a conserved RGGKYSV 

sequence in the membrane-proximal domain of CHL1, was important for cell 

migration, neurite outgrowth and branching, and for Sema3A-mediated growth cone 

collapse.  Similarly, ankyrin interacted with the CHL1 cytoplasmic domain through a 

conserved sequence (Phe-Ile-Gly-Ala-Tyr), which was required for promoting 
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integrin-dependent migration.  CHL1 also functionally interacted with β1 integrins, 

leading to activation of a signaling cascade of c-Src, phosphatidylinositol 3-kinase, 

and ERK MAP kinase, which potentiated migration to extracellular matrix proteins.  

Taken together, these results identify CHL1 as a new molecular determinant of 

thalamocortical axon topography, acting in cooperation with Npn1 and cytoskeletal 

linker proteins to regulate guidance of thalamocortical axons in the VTe and proper 

targeting to the somatosensory cortex.  

 

6.2 Sema3A-Neuropilin1 Interactions in Thalamocortical Axon Development  

Studies have shown that diverse semaphorins, including Sema3A, display 

transient and regionally-selective patterns of expression throughout embryonic 

development, corresponding to distinct periods of radial invasion, axon growth, and 

synaptic targeting (Skaliora et al., 1998). Such patterns of semaphorin expression 

may control thalamic axon growth through intermediate targets and invasion of 

distinct cortical areas.  Thalamocortical axons emerge from the thalamus at E14 and 

begin growing through the ganglionic eminence of the VTe, avoiding the 

neuroepithelium (Skaliora et al., 1998).  Expression of Sema4B, 5A, and 5B in the 

neuroepithelium of the VTe is consistent with the interpretation that axon repulsion 

by these molecules forces fibers to grow laterally through the ganglionic eminence.  I 

demonstrate here that Sema3A is also expressed in the VTe in a high caudal to low 

rostral gradient (Chapter 2).  The caudal shift of ventral basal (VB) thalamic axons in 

the telencephalon of CHL1-minus and Npn1Sema-/- mice is consistent with impaired 

Sema3A repellent guidance.  The ability of CHL1 to promote Sema3A-induced 

230



growth cone collapse in thalamic neurons via association with Npn1 supports the 

interpretation that VB thalamic axons are repelled from the caudally increasing 

Sema3A gradient along the rostrocaudal axis of the VTe.  Moreover, interactions 

between CHL1 and ERM proteins are necessary for Sema3A-induced growth cone 

collapse.  Depolymerization of actin filaments, attenuated microtubule dynamics and 

decreased ability to polymerize new F-actin are all consequences of Sema3A-

mediated growth cone collapse.  Thus, as ERM proteins bind directly to F-actin, a 

CHL1/ERM/Npn1 complex may connect the plasma membrane to the underlying 

cytoskeleton to provide the necessary contacts to mediate Sema3A-induced growth 

cone collapse. 

Although it is not entirely clear how caudal thalamic axons navigate through 

the high Sema3A territory, one possibility is that the repellent activity of Sema3A is 

overcome by permissive factors that allow growth.  For example, axons of ventral 

telencephalic or cortical neurons are also present in the VTe during this time and 

have been shown to be important in the pathfinding of thalamic axons (Metin and 

Godement, 1996; Molnar et al., 1998).  These axonal projections could provide the 

necessary contacts to make an otherwise hostile environment a permissive one for a 

subset of thalamic axons.  Consistent with this interpretation, soluble CHL1 reduced 

the Sema3A growth cone collapse response of thalamic axons.  In support of such a 

model, trans binding of L1 to L1-Npn1 complexes converts Sema3A-mediated 

repulsion to attraction (Castellani et al., 2004).    Therefore, CHL1 on corticofugal 

axons might act as a binding ligand for CHL1-Npn1 complexes on caudal thalamic 
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axons, abrogating growth cone collapse and mediating the preferential growth of 

these axons through posterior territories of the VTe.   

Npn1 binds Sema3A, 3C, and, to a lesser extent, Sema3B, 3D, and 3E 

(Nakamura et al., 2000), thus future thalamocortical mapping and expression studies 

in Sema3A null mutant mice will be needed to ascertain whether Sema3A is the only 

ligand responsible for sorting of thalamic axons in the VTe. Limited axon tracing 

studies in one strain of Sema3A knockout mice (C57Bl/6) showed that some 

thalamic axon terminals reached layer IV of the somatosensory cortex, but 

topographic guidance and mistargeting to other cortical areas were not studied 

(Catalano et al., 1998).  My preliminary tracings of Sema3A knockout embryos (n=3) 

revealed a slight caudal shift of VB axons in the VTe (Wright, unpublished), 

suggesting that Sema3A is, in part, responsible for guidance of this subset of 

thalamic axons.  However, more work is needed to fully evaluate the contribution of 

Sema3A and other class 3 semaphorins to thalamocortical axon guidance.  

Semaphorins also play an important role in thalamocortical innervation and 

axonal branching within the cortex.  During thalamic axon guidance to the cortex, the 

ventricular zone and cortical plate express high levels of Sema3A, 4A, 5A, and 5B, 

while expression in the intermediate zone is very low (Skaliora et al., 1998).  Thus, 

semaphorins could delineate the territories permissive for axon growth in the 

intermediate zone en route to the DTe.  Sema3A disappears from the cortical plate 

between E17-E19 in the rat, coincident with the onset of radial invasion.  Expression 

of Sema4A and 4B is also downregulated in the cortical plate around the same time.  

As the layers of the cortex develop, Sema3A and 5A may direct the formation of 
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terminal arbors of thalamocortical axons in layer IV.  At early postnatal ages, 

Sema3A and 5A are expressed in the cortex but confined to deep layers (V-VI).  

Layer IV is the first layer encountered by thalamic axons that lacks semaphorin 

expression, thus it could be permissive for axon arborization and synaptic terminal 

formation.  Furthermore, later expression of Sema3A in upper cortical layers (II-III) 

supports an additional role for Sema3A in inhibiting cortical branching and synapse 

formation of thalamocortical axons in these regions, forcing them to arborize in layer 

IV.  Several studies have demonstrated that Sema3A is involved in reducing axon 

branching of cortical (Bagnard et al., 1998; Dent et al., 2004) and hippocampal 

(Bagri et al., 2003) neurons through actin cytoskeletal rearrangements.  It is shown 

here that suppression of cortical axon branching, due to Sema3A, is dependent 

upon CHL1-ERM protein interactions. Therefore, it is likely that CHL1 linkage to the 

actin cytoskeleton through ERM proteins is essential to regulate the organization 

and dynamics of the cytoskeleton involved in branching of thalamic axons in the 

neocortex.  

 

6.3 CHL1 in Corticofugal Axon Development  

Since CHL1 is expressed on corticofugal axons, some aspects of 

thalamocortical misrouting in CHL1-minus mice might be secondary to 

corticothalamic misprojections, based on the handshake hypothesis (Molnar et al., 

1998).  This idea postulates that corticofugal axons act as reciprocal guides for 

thalamocortical axons in the VTe.  Subplate axons pioneer the pathway of layer VI 

pyramidal cell axons from the cortex to the thalamus (McConnell et al., 1989) and 
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are important in patterning thalamocortical connections (Ghosh and Shatz, 1993). 

CHL1 is expressed by subplate neurons (Liu et al., 2000), but deletion of CHL1 does 

not appear to affect their generation or laminar positioning (Demyanenko et al., 

2004).  Corticofugal axons were evident in CHL1-minus mice at E16.5, as observed 

in segregation experiments (Chapter 2).  However, corticothalamic trajectories of 

layer VI pyramidal cell axons have not been mapped in CHL1-minus mice, and 

potential misprojection of these axons might influence thalamocortical guidance.  

 A possible role for CHL1 on corticofugal axons was suggested by the rostral 

shift of caudal thalamic axons in the VTe.  For example, CHL1 on caudal corticofugal 

axons could act as a binding ligand for CHL1-Npn1 complexes on caudal thalamic 

axons, contributing to thalamic axon guidance by abrogating growth cone collapse to 

Sema3A.  This silencing may enable caudal thalamic axons to migrate preferentially 

within caudal territories of the VTe en route to the cortex.  It will be very exciting to 

further investigate the requirement of corticothalamic axons on thalamocortical 

development through the use of cortex-specific CHL1 knockout mice.   

 

6.4 Redundant Functions of CHL1 and L1 in Thalamocortical Development 

Overlapping expression patterns and interactions of L1 and CHL1 within the 

nervous system raise the intriguing possibility of compensatory functions for these 

L1 family molecules.  We have demonstrated a requirement for CHL1 in Sema3A-

induced growth cone collapse, which was important for topographic mapping of 

somatosensory thalamic axons.  L1 has been shown to mediate growth cone 

collapse of postnatal cortical and dorsal root ganglion (DRG) axons in response to 
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Sema3A (Castellani et al., 2000).  While CHL1 and L1 may have similar roles in 

mediating Sema3A-induced growth cone collapse, differential expression on axonal 

subtypes at various stages, or interaction with different homophilic and heterophilic 

binding partners, may account for distinct effects of each molecule.  At embryonic 

stages, thalamocortical axons in L1-minus mice are hyperfasciculated, but normally 

target the motor, somatosensory, and visual cortex (Ohyama et al., 2004; Wiencken-

Barger et al., 2004).  Loss of CHL1 does not alter fasciculation, but somatosensory 

thalamocortical axons are misrouted to the visual cortex, and caudal thalamic axons 

display guidance errors in the VTe.  Thus, L1 and CHL1 may mediate different 

responses of thalamic axons to Sema3A at this stage in development.  For example, 

L1 may be more important in maintaining heterophilic interactions with the substrate 

to preserve segregation between thalamic and cortical axons, while CHL1 is 

responsible for collapse of somatosensory thalamic axons in response to the 

gradient of Sema3A in the caudal VTe, critical for axon sorting in the intermediate 

target.   

Compensatory functions for L1 and CHL1 in regulating motor thalamic axon 

guidance were identified by our analysis of CHL1-/-/L1-/y double mutant mice, where 

motor axons are shifted posteriorly to target the visual cortex.  Because thalamic 

axon guidance to the motor cortex was unaffected in both CHL1-minus and L1-

minus mice, the phenotype of CHL1-/-/L1-/y double mutant mice suggests that CHL1 

and L1 may compensate for each other in subpopulations of thalamic neurons that 

target the primary motor cortex.  A plausible explanation for the guidance errors in 

these mice is an impairment in the repellent response to EphA4/ephrinA5 guidance 
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cues.  This response prevents motor axons from entering posterior territories via 

growth cone collapse (Dufour et al., 2003).  Loss of either CHL1 or L1 might not fully 

disrupt EphA4/ephrinA5 signaling, whereas loss of both adhesion molecules might 

interrupt the receptor complex, leading to defective growth cone collapse.   

 

 

6.5 Repulsive Axon Guidance:  Economic Molecular Mechanisms 

One of the major challenges in developmental neurobiology is understanding 

the molecular mechanisms that control axon guidance and allow the formation of 

topographic maps.  This study investigated the interaction of CHL1 with two 

important families of repellent axon guidance cues in thalamocortical development, 

the semaphorins and ephrins.  Interestingly, these same guidance cues are 

conserved in the formation of other topographic maps.  Because the human brain 

contains about 100 billion neurons (Williams and Herrup, 1988) and the human 

genome consists of only 20,000-25,000 protein-encoding genes (Pennisi, 2003), it is 

necessary for organisms to reuse the same molecules to control the development of 

many different axonal pathways.  This economic use of genes requires complex 

intermolecular interactions underlying sophisticated molecular mechanisms that 

control the formation of topographic maps.   

 Semaphorins and neuropilins are regulators of repulsive axon guidance, 

which are important for pathfinding and fasciculation of olfactory axons, the 

corticospinal tract, entorhinohippocampal projections, and other major tracts 

(Kitsukawa et al., 1997; Giger et al., 2000; Cloutier et al., 2002; Gu et al., 2003).    
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Preferential expression of Sema3A in the ventral olfactory bulb repels Npn1-positive 

axons, preventing them from entering ventral regions and instead projecting to 

lateral and medial targets (Henion and Schwarting, 2007).  The repulsive role of 

Sema3A in development of the corticospinal tract has been well documented 

(Castellani et al., 2000; Gu et al., 2003).  A diffusible source of Sema3A in the 

ventral spinal cord participates in repulsion of L1/Npn1-positive cortical axons, 

mediating midline crossing to the dorsal columns to form the pyramidal decussation 

(Castellani et al., 2000).  A repulsive guidance mechanism is also prominent in the 

development of entorhinohippocampal projections, whereby Sema3A acts through 

Npn1 to restrict axonal projections of entorhinohippocampal neurons to their targets 

in the stratum lacunosum-moleculare in the ipsilateral hippocampus (Pozas et al., 

2001). 

This study extends the repulsive role of Sema3A and Npn1 to the 

thalamocortical pathway.  Development of VB thalamic axons relies upon repellent 

guidance mechanisms of Sema3A and Npn1, mediated by CHL1, for topographic 

mapping to the somatosensory cortex.  Axons from the caudal dorsal thalamus must 

overcome Sema3A-induced repulsion, possibly via CHL1 interactions with CHL1-

Npn1 complexes, to navigate through caudal territories of the VTe.  Thus, regulation 

of axonal responses to Sema3A by CHL1-Npn1 interactions is important for the 

topographic mapping of thalamocortical axons. 

Ephrin/Eph cues also regulate guidance of many major axonal tracts within 

the central nervous system, including formation of the corticospinal tract and 

retinocollicular maps (Feldheim et al., 1998; Flanagan and Vanderhaeghen, 1998; 

237



Kullander et al., 2001; Wilkinson, 2001; Dufour et al., 2003; Cang et al., 2005; Torii 

and Levitt, 2005).  EphA4/ephrinB3 forward signaling is required for proper 

development of the corticospinal tract.  EphA4 is endogenously expressed in 

corticospinal tract fibers, which respond to ephrinB3 stimulation with growth cone 

collapse to prevent inappropriate midline crossing of corticospinal tract axons 

(Dottori et al., 1998; Kullander et al., 2001).  Ephrin/Eph guidance systems are also 

involved in retinocollicular mapping (reviewed in Brown et al., 2000).  EphrinA/EphA 

guidance cues mediate repulsive responses important for correct mapping of retinal 

axons to the anterior-posterior axis of the superior colliculus, and to the dorsal LGN 

of the thalamus.  Inter- and intra-areal thalamocortical topography (Vanderhaeghen 

et al., 2000; Dufour et al., 2003; Cang et al., 2005), as well as reciprocal 

corticothalamic projections (Torii and Levitt, 2005), also depend upon repulsive axon 

guidance mediated by ephrinA/EphA guidance cues. 

Here, I demonstrated a posterior shift of motor thalamic axons to the visual 

cortex in CHL1-/-/L1-/y double mutant mice.  Inter-areal guidance of thalamic axons to 

the motor cortex is dependent upon repellent activity of ephrinA5/EphA4 (Dufour et 

al., 2003); therefore, it is possible that CHL1 and L1 may functionally cooperate with 

ephrinA5/EphA4 complexes to prevent motor thalamic axons from entering posterior 

cortical regions via growth cone collapse. 

Taken together, the work presented here highlights the importance of L1 

family members as vital elements in repulsive guidance mechanisms that control 

thalamocortical topography.   
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6.6 Conclusions 

 Normal brain function is dependent upon elaborate axon guidance 

mechanisms and the formation of precise topographic connections.  Thalamocortical 

axons carry sensory and motor information to the cortex via a sophisticated process 

of axon guidance through various decision points. Much progress has been made in 

the past decade to identify the molecules that control this complex pathfinding.  

However, a complete understanding of guidance cues involved in this system and 

the molecular mechanisms controlling topographic mapping and targeting remain 

elusive.  Here, a novel role for CHL1 has been demonstrated in mediating the 

cellular responses of Sema3A and Npn1.  Compensatory roles for CHL1 and L1 

have been demonstrated in mediating repellent responses to EphA4/ephrinA5.  In 

addition, the mechanism by which CHL1 couples to the actin cytoskeleton and the 

functional consequences of these associations have been defined.  These results, 

for the first time, illustrate the importance of CHL1 as a thalamic axon guidance 

molecule, important for topographic mapping of thalamocortical axons through its 

intracellular association with the actin cytoskeleton and extracellular interactions with 

Npn1 and integrins. 
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