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ABSTRACT 

XIAOMEI GU: Physiopathology of Osteoclast in Bone  
(Under the direction of Dr. Eric T. Everett) 

 

  Bone is constantly remodeled by osteoclastic bone resorption and osteoblastic bone 

formation. Abnormal remodeling can result in bone mass change; bone loss is implicated in 

a number of bone diseases, representing an increase in bone resorption relative to formation. 

Therefore, an understanding of osteoclast biology is important to demystify the 

pathogenesis of bone diseases and to develop treatment strategies. Osteoclasts are formed 

by fusion of hematopoietic monocyte/macrophage lineage cells, in which 

osteoblasts/stromal cells play a central role by producing macrophage-colony stimulating 

factor and receptor activator of nuclear factor κ B ligand. Characterization of 

osteoclastogenesis has provided new insight into our understanding of bone diseases with 

excessive bone resorption. Moreover, anti-resorptive drugs, bisphosphonates, have been 

developed to target osteoclasts and their function. Additionally, a better understanding of 

the interactions of fluoride between osteoclasts may help harness the desirable effects of 

fluoride on bone while limiting its undesirable effects.  
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CHAPTER I. BASIC BONE BIOLOGY 

 

 

1.1. Thesis Introduction 

  Regardless of etiologies, bone loss represents an increase in bone resorption by 

osteoclasts relative to bone formation by osteoblasts. Understanding osteoclast biology and 

bone resorption are essential in understanding the pathogeneses and therapies of diseases 

involving excessive bone destruction. This thesis will begin with a very brief introduction of 

basic bone biology to orient the readers’ understanding of osteoclasts in a context of normal 

bone remodeling. In the subsequent two chapters, origin, differentiation, and function of 

osteoclasts will be addressed in greater detail. To help understand osteoclast differentiation 

and its regulation, the role of osteoclast formation in periprosthetic osteolysis, 

peri-implantitis, and orthodontic tooth movement will also be discussed. In addition to the 

mechanism of bone resorption, this thesis will also explore two newly-identified functions of 

osteoclasts: mobilizing hematopoietic stem cells in bone marrow and stimulating osteoblastic 

bone formation.  

  Osteoclastic bone resorption has been implicated in a number of diseases; however, 

this thesis will primarily focus on the cellular and molecular pathogenesis of common 

metabolic bone disease, such as osteoporosis and Paget’s disease of bone. Parathyroid 

hormone (PTH) plays a central role in calcium homeostasis via its action on targeting tissues 
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such as bone cells [1, 2]. The anabolic action of PTH will be discussed in a context of 

osteoclasts being the anabolic signaling sources (Chapter III), whereas the catabolic action of 

PTH will be discussed in a context of hyperthyroidism pathogenesis. The recent 

breakthrough in understanding the pathogenesis of a genetic disorder, Cherubism, is a good 

example of how understanding osteoclast biology can advance our understanding of a disease 

process.  

  Osteoclasts are the primary therapeutic targets for conditions with excessive bone 

resorption. Bisphosphonate is a major class of anti-resorptive drug currently available. In 

the last chapter, this thesis will discuss the actions of bisphosphonates on bone with a focus 

on their induction of osteoclast apoptosis. Meanwhile, the actions of fluoride on bone cells 

will also be addressed. The anabolic action of fluoride on bone has been largely explained 

by its mitogenic effect on osteoblasts; however, this thesis will mainly focus on the effects 

of fluoride on osteoclasts. A complete picture of fluoride’s effects on the two major cell 

types in bone—osteoblasts and osteoclasts—is required for the utilization and/or 

optimization of fluoride’s potential in treating diseases with excessive bon resorption. By 

reviewing the pathophysiology of osteoclasts, this thesis will provide a powerful context to 

better understand fluoride’s effect on osteoclasts. 

 

1.2. Embryonic Development of Bone 

  The skeletal system develops from three distinct origins: 1) the paraxial mesoderm 

gives rise to the axial skeleton (vertebrae and ribs); 2) the lateral plate mesoderm gives rise to 

the appendicular skeleton (limb skeleton); and 3) the cranial neural crest, which is derived 

from the ectoderm, gives rise to the craniofacial skeleton [3].  
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  Bone development occurs through two distinct developmental processes:  

intramembranous ossification and endochondral ossification.  During intramembranous 

ossification, mesenchymal cells condense and differentiate directly into osteoblasts to lay 

down bone matrix [4]. This process occurs in several craniofacial bones and the lateral part of 

clavicles [5]. During endochondral ossification, mesenchymal cells condense and 

differentiate directly into chondroblasts to synthesize a cartilage model, which is then 

replaced by bone and bone marrow [4]. This process occurs in the long bones of the limbs, 

basal part of the skull, vertebrae, ribs, and medial part of the clavicles [5]. Therefore, the 

major difference between the two types of ossification is the presence of a cartilaginous 

precursor template during endochondral ossification.  

 

1.3. Bone Function 

  Bone tissue has the following functions: 1) it provides structural support for the 

body; 2) it protects internal organs, such as brain, spinal cord, heart, and lungs; 3) it supports 

hematopoiesis in bone marrow; 4) it is the basis of posture and locomotion by allowing the 

attachments of muscles, ligaments, and tendons; 4) it serves as a mineral reservoir and in 

particular helps regulate calcium homeostasis [6, 7]. 

 

1.4. Components of Bone 

  As in all connective tissues, the fundamental constituents of bone are cells and 

extracelluar matrix. However, unlike most of other tissues, the extracelluar matrix of bone is 

mineralized by calcium salts in form of hydroxyapatite, which provides stiffness to the 
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tissue. The organic matrix is largely composed of type I collagen (95%), and the remaining 

5% is composed of proteoglycans and numerous non-collagenous proteins [4, 8]. Three 

major cell types are present in bone tissue: osteoblasts, osteocytes, and osteoclasts [4].   

 

1.4.1. Osteoblasts 

  Osteoblasts are the cells responsible for bone formation [7]. They are derived from 

mesenchymal stem cells in bone marrow [11]. Under appropriate stimuli, these multipotent 

cells can differentiate along three principal lineages: osteoblastic, adipocytic and 

chondrocytic lineages [6, 12]. Expression of the transcription factors, runt-related 

transcription factor-2 (Runx2), is required to shift the progenitors toward the osteoblast 

lineage and away from adipocytic and chondrocytic lineages. Further differentiation of the 

preosteoblast into a mature, functional osteoblast phenotype requires the expression of 

another transcription factor, osterix (Osx). The early stage of osteoblastic differentiation is 

characterized by markers such as type I collagen and alkaline phosphatase (ALP), while the 

late stage of osteoblastic differentiation is characterized by markers, such as osteoclacin and 

mineralization of extracellular matrix [5, 6].  

  Mature and active osteoblasts synthesize most of the proteins in bone extracellular 

matrix [6, 7]. Some osteoblasts are buried in bone matrix and become osteocytes, while some 

osteoblasts become flattened cell on bone surface—bone-lining cells (inactive osteoblasts) 

[7].  

  Besides the bone-forming function, osteoblasts provide essential signals for 

osteoclast differentiation and its regulation (discussed in more detail in Chapter II) [13]. 

Moreover, recent studies have found that osteoblasts also play a central role in hematopoiesis 
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by providing many factors essential for the survival, renewal, maturation and lineage 

commitment of hematopoietic stem cells [14, 15]. 

 

1.4.2. Osteocytes 

  Osteocytes are the most abundant cells in bone (25,000/mm3 of bone [4]) and yet 

remain the least characterized [16]. They are terminally differentiated osteoblasts that have 

become entombed in bone matrix [7, 16]. Osteocytes are strain-sensitive and can transduce 

mechanical signals. Recent studies have shown that damage-induced osteocyte apoptosis 

may be involved in the recruitment of osteoclasts and initiation of new bone remodeling [16, 

17].  

 

1.4.3. Osteoclasts 

  Osteoclasts are cells that can resorb bone [18]. They are of hematopoietic origin, and 

are formed by the maturation and fusion of monocyte/macrophage lineage common 

precursors [19]. Mature osteoclasts are large, multi-nuclear cells and have morphology 

highly specialized for its bone-resorbing function [20]. After fulfilling the resorption 

function, they are likely to be removed by apoptosis [21]. The biology and physiopathology 

of osteoclasts will be discussed in more detail in the following chapters of this thesis.  
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1.5. Bone Structure: Cortical Bone and Trabecular Bone 

  Morphologically, there are two major forms of bone: cortical (compact) and 

trabecular (cancellous or spongy). In cortical bone, collagen fibrils are densely arranged to 

form concentric lamellae, with fibrils assembled in perpendicular planes in adjacent lamellae. 

Trabecular bone is composed of a porous network of thin and mineralized trabeculae with 

lamellae arranged parallel to each other [4, 8]. The percentage of cortical and cancellous bone 

varies among different sites in the skeletons system. For example, in the lumbar spine, 66% 

of the bone is cancellous bone, whereas in the midradius >95% of the bone is cortical bone 

[4].  

 

1.6. Bone Histology: Lamellar Bone and Woven Bone 

  Bone can also be classified as lamellar bone and woven bone. Lamellar bone is 

mature bone, in which the collagen fibers are arranged in a lamellar structure [9, 10]. 

Lamellar bone is mainly composed of cylindrical units called osteons or Haversian systems, 

which consist of a central canal surrounded by concentric lamellae. The central canal is called 

osteonal or Haversian canal and contains blood vessels and nerves [10]. Woven bone is 

immature bone, which is formed very rapidly during skeletagenesis or fracture healing. The 

collagen fibers in woven bone are loosely arranged in irregular arrays and woven bone is 

therefore also called nonlamellar bone. Woven bone contains more cells per unit area than 

lamellar bone [9]. 
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1.7. Bone Remodeling 

  Although it appears to be inert and static, bone tissue is metabolically active. 

Throughout life, bone is constantly broken down and rebuilt; this continuous process of bone 

resorption and bone formation is called bone remodeling [6].  

 

1.7.1. Purposes of Bone Remodeling 

  It has been generally accepted that bone remodeling serves two closely linked 

purposes. First, some remodeling can be directed towards specific sites to repair fatigue 

damage, continuously replacing fatigued bone with mechanically competent new bone. So 

bone remodeling is necessary to maintain the mechanical strength and structural integrity of 

new bone. Secondly, through continuous bone resorption and formation, bone subserves its 

metabolic functions as a storehouse of calcium and phosphorus. Therefore, bone remodeling 

plays a very important role in maintaining mineral homeostasis [22, 23].  

 

1.7.2. Cellular Processes of Bone Remodeling 

  Bone-resorbing osteoclasts and bone-forming osteoblasts work as a team to 

remodel bone. At the microscopic level, bone remodeling occurs in small areas of the cortical 

and trabecular surface, known as basic multicellular units (BMUs) [24, 25]. At each BMU, 

resorption always precedes formation. Osteoclasts remove a certain amount of bone, and 

osteoblasts subsequently deposit organic matrix and mineral to fill the previously created 

cavity [25]. Therefore, bone remodeling involves sequential activities of two distinct cell 

types in bone.  
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1.7.3. Difference between Bone Remodeling and Bone Modeling 

  During bone remodeling, bone resorption is always followed by bone formation at 

a locus, and these two processes are said to be coupled to one another [17]. In fact, it is the 

coupling of osteoclast activity to osteoblast activity that makes bone remodeling distinctive 

from bone modeling. Bone modeling refers to a process in which bone are shaped or 

reshaped by the independent activities of osteoclasts and osteoblasts [17]. Therefore, unlike 

remodeling, bone modeling at a single site involves either bone resorption or bone 

formation, but not both. Bone modeling is most pronounced during bone growth and 

development; it also occurs in adults bone in response to mechanical loads [17, 22].  

 

1.7.4. Regulation of Bone Remodeling  

   Bone remodeling process is highly regulated by numerous local factors and 

systemic hormones. These factors include bone morphogenetic protein (BMP), tumor growth 

factor β (TGFβ),  tumor necrosis factor α (TNFα),  interleukins, estrogen, prostaglandin E2 ( 

PGE2), parathyroid hormone (PTH), calcitonin, and vitamin D [25]. Among them, estrogen is 

considered the most important hormone in maintaining normal bone turnover [26]. It has a 

dual effect on bone remodeling: on one hand, it can increase bone formation; on the other 

hand, it can reduce bone resorption [25]. 

  The delicate balance between bone resorption and bone formation is essential for the 

maintenance of normal bone functions. Imbalance between the two can result in 

compromised bone renewal and change in bone mass; skeletal diseases will develop. 
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Increased bone resorption or a relative decrease in bone formation compared to bone 

resorption can lead to osteoporosis (osteoporosis will be further discussed in Chapter IV). In 

contrast, increased bone formation or a relative decrease in bone resorption compared to bone 

formation can lead to osteopetrosis [6].  

 

1.8. Chapter Summary 

  Bone is a highly specialized connective tissue. It consists of mineralized extracelluar 

matrix and three major cell types—the bone-forming osteoblast, the bone-resorbing 

osteoclast, and the osteocyte. To carry out its functions, bone undergoes constant remodeling 

throughout life. Bone remodeling is carried out by the coupled activities of osteoclasts and 

osteoblasts. The balance between bone resorption and bone formation is very important for 

normal bone function. Disruption of this balance will lead to metabolic bone diseases. 

Therefore, understanding the normal process of bone remodeling will allow us to better 

understand the pathogenesis of metabolic bone diseases. 
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CHAPTER II. OSTEOCLAST BIOLOGY: ORIGIN AND 

DIFFERENTIATION  

 

 

  Osteoclasts are the exclusive bone resorptive cells. They are large, multinucleated, 

and terminally differentiated cells formed via the fusion of their mononuclear precursors [1]. 

 

2.1. Osteoclast Origin 

  Controversy concerning the origin of osteoclasts existed until the late 1970s. The 

pioneering parabiosis experiments where the circulation of a normal rat was connected to an 

irradiated rat have demonstrated that cells able to differentiate to osteoclasts were present in 

the circulation and can be recruited to bone-resorbing sites via the blood stream [2]. This 

observation was further corroborated by studies using osteopetrotic mouse models. The 

osteopetrotic phenotype of these mice can be rescued after parabiotic union to normal mice, 

or after transplantation of bone marrow cells from normal mice [2, 3]. The cure of 

osteopetrosis by bone marrow transplantation has also been established in humans [4]. It is 

widely accepted that the osteoclast is of hematopoietic origin [2].  

  Subsequently, it has been shown that the osteoclast precursor belongs to the 

monocyte/macrophage family derived from the myeloid progenitors [2, 5-7]. Hematopoietic 
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stem cells (HSCs) generate all the blood cell types, including the lymphoid and myeloid 

lineages. The determination of HSCs to the myeloid lineage requires the expression of the 

transcription factor PU.1 [8, 9]. The myeloid lineage, also known as colony forming 

unit-granulocyte, erythrocyte, monocyte, megakaryocyte (CFU-GEMM), gives rise to 

CFU-GM (granulocyte, monocyte/macrophage), and CFU-M (monocyte/macrophage), the 

latter being the common precursors of osteoclasts and macrophages (Figure 2.1.) [3,10]. 

Interestingly, compared to the more committed CFU-M-derived cells, CFU-GM-derived 

cells have greater osteoclast differentiating potential in in vitro mouse and human studies [11, 

12]. Nevertheless, it has been generally accepted that osteoclasts are derived from CFU-M, 

the monocyte/macrophage lineage [4].  

  Even though osteoclasts can be generated in vitro from mononuclear phagocytes of 

various tissues, osteoclast precursors primarily reside in bone marrow [4, 5, 13]. The 

formation of osteoclasts only occurs in the close vicinity of bone, and multinucleated 

osteoclasts are not present in the circulation [13].   

 

2.2. Osteoclast Differentiation 

  It was first proposed in 1981 that osteoblasts were involved in osteoclast 

differentiation [2]. After almost 10 years, a co-culture system of mouse osteoblasts/stromal 

cells and hematopoietic cells for osteoclast formation (or osteoclastogenesis) established the 

concept that osteoblast/stromal cells are essentially involved in the formation of osteoclasts. 

The close contact between cells from the osteoblastic and hematopoietic lineage is necessary 

for osteoclastogenesis [2]. It is now known that stromal cells/osteoblasts are able to produce 

two essential factors for osteoclastogenesis: nuclear factor (NF)κB ligand (RANKL) and 
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macrophage colony-stimulating factor (M-CSF) [7, 10]. Signaling pathways initiated by 

these two factors lead to the expression of genes typifying osteoclasts [7, 10]. Mature 

osteoclasts are characterized by markers such as integrin αVβ3, calcitonin receptor (CTR), 

cathepsin K (CTK), metalloproteinase-9 (MMP-9), H+-ATPase, and tartrate resistant alkaline 

phosphatase (TRAP) (Figure 2.1.) [2].  

 

2.2.1. Role of M-CSF in Osteoclast Differentiation 

  M-CSF, also known as colony-stimulating factor-1 (CSF-1), was the first 

colony-stimulating factor to be purified [14]. It was formerly known as macrophage growth 

factor (MGF) or macrophage and granulocyte inducer IM (MGI-IM) [14]. M-CSF is a 

homodimeric glycoprotein synthesized constitutively by bone marrow stromal cells and 

osteoblasts [14-16]. It induces proliferation and survival of the common precursors of 

osteoclasts and macrophages. Additionally, M-CSF signaling stimulates RANK expression 

in osteoclast precursors, rendering them more responsive to RANKL [16-18]. The pivotal 

role of M-CSF in osteoclastogenesis has been confirmed by studies of osteopetrotic (op/op) 

mice. These mice harbor a null mutation in the coding region of M-CSF gene, which leads to 

the production of a truncated protein. The biologically inactive M-CSF leads to a severe 

deficiency in osteoclast formation and hence osteopetrotic phenotypes. Moreover, many of 

the effects of the op/op mutation can be rescued by the administration of soluble M-CSF to 

neonatal mice [19].  

  The biological effects of M-CSF are mediated via its sole receptor, c-fms, which is 

also referred to as CSF-1R or M-CSFR [14-16]. The transcription factor PU.1 binds to the 
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promoter region of c-fms gene and positively regulates its transcription [15]. Mice deficient 

in PU.1 exhibit an osteopetrotic phenotype similar to the op/op mice [9]. c-fms is a member 

of the class III receptor tyrosine kinase family and is encoded by the proto-oncogene c-fms  

(also known as csf1r). It is an integral plasma membrane glycoprotein, expressed primarily 

on macrophages and osteoclasts [14-16]. The functional linkage between M-CSF and c-fms 

has been established by the observation that mice lacking c-fms gene exhibit the same major 

osteopetrotic phenotypes as op/op mice [16, 18]. 

  The binding of M-CSF to c-fms results in the dimerization and the 

auto-phosphorylation of c-fms. This leads to the recruitment of c-Src kinase, which then 

phosphorylates the adaptor protein, c-Cbl. c-Cbl recruits a multiprotein complex containing 

growth-factor-receptor-bound protein 2 (Grb2) and phosphoinositide 3-kinase (PI3K), with 

the former activating extracellular-signal-regulated kinase (ERK) and the latter the 

serine/threonine kinase AKT (or protein kinase B, PKB) (Figure 2.2.) [16, 18, 20]. 

Collectively, M-CSF induces the proliferation of osteoclast precursor cells and supports their 

survival through PI3K /AKT and Grb2/ERK axis.  

 

2.2.2. Role of RANKL in Osteoclast Differentiation  

  RANKL, a type II (carboxy-terminal outside the cell) membrane protein, belongs to 

the tumor necrosis factor (TNF) superfamily [21-24]. It is also known by the following 

names: TNF-related activation-induced cytokine (TRANCE), osteoprotegerin ligand 

(OPGL), tumor necrosis factor (ligand) superfamily member 11 (Tnfsf11), and osteoclast 

differentiation factor (ODF) [24, 25]. RANKL is extensively expressed on the plasma 

membrane of osteoblasts/stromal cells [24, 25]. It has been shown to be proteolytically 
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released from the cell surface by the metalloproteasedisintegrin TNF α convertase (TACE) 

[26, 27]. In the presence of M-CSF, both membrane-bound and soluble RANKL can support 

osteoclast differentiation in vitro [25]. However, the membrane-bound may be more efficient 

than the soluble form [26]. The in vivo biological and pathological significance of soluble 

RANKL still remains unclear. The importance of RANKL in osteoclast formation has been 

collaborated by animal studies. RANKL−/− mice display complete failure of 

osteoclastogenesis and consequently develop severe osteopetrosis [24, 28].   

  The receptor for RANKL—RANK (receptor activator of NFκB)—is a type I 

membrane protein and belongs to the TNF receptor superfamily [25]. RANK is also known 

as TRANCE-R or TNFRSF11A, and is expressed as a transmembrane heterotrimer on the 

surface of osteoclasts and their precursors [24, 25]. Mice lacking rank have exactly the same 

osteopetrotic phenotype as rankl−/−mice. However, rank−/− mice have an intrinsic defect in 

osteoclasts as indicated by the fact that their phenotype can be reversed by bone marrow 

transplantation from normal mice [25, 29].  

   When RANK on osteoclasts is recognized by RANKL, it sends signals into the cells 

through adapter proteins (Figure 2.2.). Like other TNF receptor superfamily member 

proteins, the intracellular domain of RANK directly binds to TRAF6 (TNF receptor 

associated factor 6), which undergoes trimerization and then activates the NF-κB, Akt, and 

mitogen-activated protein kinases (MAPKs) pathways (Figure 2.2.) [24, 25, 30]. Meanwhile, 

RANKL induces the expression of c-Fos, which, in turn, activates the transcription factor 

complex, AP1 (activator protein 1) [31-33]. The common target gene of NF-κB and AP-1 has 

been recently shown to be NFATc1 (nuclear factor of activated T cells, cytoplasmic 1) [31, 

34, 35]. NFATc1, a member of the NFAT family of transcription factor genes, is considered 
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to be the master transcription factor for osteoclastogenesis since its induction activates the 

expression of osteoclast-specific genes [32, 33, 36]. Genetics studies have shown that 

osteopetrosis occurs in mice lacking key genes involved in RANKL signaling, such as 

TRAP6 and c-Fos [37-39].  

 

2.2.3. Costimulatory Signals for RANK 

  Since authentic osteoclasts can be generated in vitro from bone marrow cells in 

response to recombinant RANKL and M-CSF, it has been generally accepted that RANKL 

and M-CSF signaling is not only necessary but also sufficient to support osteoclastogenesis 

[40, 41]. However, recent studies have revealed a more complex picture: additional 

costimulatory signals are required to activate the transcription factor, NFATc1 [32, 33, 36, 

42].  

  Through interaction between complementarily charged amino acid residues, 

transmembrane adaptor proteins (e.g. FcRγ and DAP12) associate with immunoglobulin-like 

receptors (e.g. OSCAR, PIR-A, TREM-2, and SIRPβ1) [32, 33, 36]. Following the 

stimulation of immunoglobulin-like receptors likely by endogenous ligands from osteoclast 

precursors or stromal cells/osteoblasts and RANKL-initiated signaling, the ITAM motifs 

present in those adaptor proteins are phosphorylated. This leads to the recruitment of the Syk 

family kinase to the phosphorylated tyrosine residues [32]. Consequently, the calcium 

signaling pathway is activated through phospholipase Cγ (PLCγ), followed by induction of 

NFATc1 (Figure 2.3.) [32, 33, 36]. Moreover, DAP12−/−FcRγ−/− mice exhibit severe 

osteopetrosis due to defective osteoclast differentiation, and the retroviral transfer of normal 
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DAP12 into DAP12−/−FcRγ−/− cells can rescue osteoclast differentiation deficiency [33]. 

These data indicate that ITAM signaling is indispensable for RANKL-induced 

osteoclastogenesis. However, so far it still remains largely unknown how RANKL/RANK 

signaling synergizes with ITAM signaling.   

 

2.3. Regulation of Osteoclast Differentiation 

  Osteoclast differentiation is subject to negative and positive regulation by 

circulating hormones and locally produced cytokines [4, 43]. Major mechanisms underlying 

the regulation of osteoclast differentiation are discussed in the following sections.  

 

2.3.1. The OPG/RANKL/RANK Regulatory Axis 

  OPG (osteoprotegerin, i.e. protector of bone), also known as osteoclastogenesis 

inhibitory factor (OCIF), is a secreted protein expressed by osteoblasts/stromal cells [44-46]. 

OPG, like RANK, belongs to the TNF receptor superfamily. However, in contrast to all other 

members, OPG lacks transmembrane and cytoplasmic domains and is secreted as a soluble 

protein. OPG functions as a soluble decoy receptor to RANKL, competing with RANK for 

RANKL binding (Figure 2.4.) [41, 46, 47]. OPG is a negatively regulator of RANKL 

activity. Genetic studies have found that excessive RANKL activity, as in OPG deficient 

mice, results in early-onset osteoporosis [48, 49]. In contrast, due to a decreased net RANKL 

level, transgenic mice overexpressing OPG exhibit osteopetrosis [46].  

  Studies have shown that the balance between RANKL/RANK and OPG levels 

regulate osteoclast differentiation and bone metabolism [46, 50]. Most hormones and 

cytokines inhibit or enhance bone resorption via osteoblasts/stromal cells, regulating their 
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expression of RANKL and OPG (see reference [46] for a thorough list) [4, 43, 46, 47]. For 

example, TGF-β released from bone matrix during bone resorption has been shown to 

upregulate OPG expression, serving as a negative feedback mechanism for bone resorption 

[24, 26]. Interleukins (IL-1, 6, 11, and 17) can increase RANKL expression [24, 25, 46]. 

Some factors not only decrease OPG expression but also increase RANKL expression, such 

as parathyroid hormone (PTH), parathyroid hormone-related protein (PTHrP), and 

prostaglandin E2 (PGE2) [25, 46]. Dexamethasone and 25-dihydroxy vitamin D3 (1, 

25(OH)2D3, the active form of vitamin D3) can stimulate RANKL production and are often 

used in coculture of bone marrow cells and stromal cells to generate osteoclasts in vitro [25, 

46]. Therefore, the OPG/RANKL/RANK axis is critical for maintaining the balance between 

bone formation and resorption by providing a means for controlling osteoblast and osteoclast 

activity (Figure 2.4.).  

   

2.3.2. Other Regulatory Mechanisms 

  In addition to the OPG/RANKL/RANK regulatory system, recent studies have 

shown that other local molecules produced by osteoblasts/stromal cells and immune cells can 

enhance or inhibit osteoclast formation [51, 52]. Secreted frizzled-related protein 1 (sFRP1), 

an inhibitor of the Wnt signaling pathway, is expressed by osteoblasts/stromal cells [51], and 

directly inhibits osteoclast formation by binding to RANKL in vitro [53]. Osteoclast 

inhibitory lectin (OCIL) is a membrane-bound lectin expressed by osteoblasts, and its soluble 

form can inhibit osteoclast formation in vitro [54]. Aside from osteoblasts/stromal cells, other 

cell types are also involved in osteoclastogenesis regulation [50, 55]. In vitro studies have 

suggested that through an unknown mechanism, megakaryocytes can inhibit osteoclast 
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formation [56]. Taken together, more studies, especially in vivo ones, are necessary to further 

explore other mechanisms that regulate osteoclast differentiation.  

 

2.4. Osteoclast Fusion  

  During osteoclastogenesis, preosteoclasts fuse to form multinuclear mature 

osteoclasts. Studies comparing the gene expression of multinuclear osteoclasts and 

mononuclear macrophages have identified two molecules critically involved in cell–cell 

fusion of osteoclasts: the dendritic cell-specific transmembrane protein (DC-STAMP) [57, 

58] and the d2 isoform of vacuolar H+-ATPase V0 domain (Atp6v0d2) [59]. Mice deficient in 

either DC-STAMP or Atp6v0d2 lack multinuclear osteoclasts and develop osteopetrosis 

[57-59]. Further studies have demonstrated that the expression of DC-STAMP and Atp6v0d2 

are induced by transcription factor, NFATc1 [60, 61]. Interestingly, a recent study has 

suggested a newly-identified protein induced by RANKL, osteoclast stimulatory 

transmembrane protein (OC-STAMP), is required in the fusion process during 

osteoclastogenesis [62]. It appears that multiple factors are involved in osteoclast fusion, and 

more studies are necessary to further understand this process.  

 

2.5. Osteoclasts in Periprosthetic Osteolysis and Peri-implantitis 

  Studies have shown that osteoclasts play a key role in periprosthetic osteolysis, one 

of the major complications of orthopaedic replacement [63]. Particulate wear debris 

generated by bearing surfaces has been identified as a major contributory component in 

osteolysis [64-67]. However, the mechanism by which particles induce cellular response and 
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subsequent osteolysis is largely unclear. The primary cellular response to implants is the 

phagocytosis of foreign particles, which somehow activates macrophages to release 

numerous pro-inflammatory cytokines, including TNFα, IL-1α, IL-1β, IL-6, and PGE2 [64, 

68, 69]. These cytokines may explain, at least partially, the increased levels of RANKL and 

RANK in the interface tissue in loosening orthopaedic replacement, leading to increased 

osteoclastogenesis and bone resorption [64, 70, 71]. In addition to the RANK/RANKL 

signaling pathway, some cytokines, especially TNFα, may enhance osteoclast differentiation 

directly [70]. 

  In addition to the involvement of the macrophage-mediated foreign body immune 

response to particles, T lymphocytes may also play an important role in periprosthetic 

osteolysis [72, 73]. Immunohistochemical studies have found a large number of T cells in 

osteolytic tissues [73]. The interplay of immune system and bone has been well established. 

Activated T cells are well known to produce RANKL and thus directly support 

osteoclastogenesis [52, 74]. T cells can also produce other osteoclastogenic factors, further 

contributing to the process of the bone destruction in inflammatory conditions such as 

rheumatoid arthritis [75]. Whether T cells in osteolytic tissues can secrete other cytokines to 

influence the RANKL/RANK/OPG system remained to be defined. Collectively, excessive 

osteoclastogenesis and bone resorption caused by the imbalance of RANKL/RANK/OPG 

axis plays an important role in aseptic loosening [64, 70, 71].  

  Similarly, osteoclasts are also involved in the interface of bone and dental implants 

[76]. It has been proposed that dental implants can induce production of osteoclastogenic 

cytokines such as TNFα and IL-1β in peri-implant tissue, resulting in implant failing [76, 77]. 

Immunohistochemical studies have shown that the expression of TNFα, IL-1α, and IL-6 is 
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significantly increased in peri-implant tissue from loosened implants [77]. In order to 

develop diagnostic and treating strategies for peri-implantitis, effort has been made to 

determine the levels of several proteins associated with bone resorption in the implant 

crevicular fluid from patients with failing dental implants. These proteins include PGE2 , 

soluble RANKL, cathepsin K, and OPG [77-80]. Theses data implicate an important role of 

osteoclasts in the bone loss during peri-implantitis. Additionally, immunohistochemical 

studies have found that T cells are the most prominent cell in peri-implantitis tissue [81], 

suggesting a role of T cells in the pathogenesis of peri-implantitis. Although the involvement 

of T cells in inflammatory conditions such as rheumatoid arthritis has been established [75], 

little is known how T cells contribute to peri-implantitis. It appears that excessive bone loss 

caused by the imbalance of RANKL/RANK/OPG axis plays an important role in 

peri-implantitis; however, more research is needed to better understand the mechanism of 

osteoclast activation and bone resorption in peri-implantitis 

 

2.6. Osteoclasts in Orthodontic Tooth Movement 

  Orthodontic treatment induces bone resorption on the pressure side of a tooth and 

bone formation on the tension side. Interestingly, ankylosed teeth, which lack periodontal 

ligament (PDL), cannot be moved by orthodontic treatment. PDL cells are considered to play 

a pivotal role during orthodontic tooth movement [82]. Indeed, it has been shown that PDL 

cells express both RANKL and OPG, and can support osteoclastogenesis in vitro [82]. Under 

mechanical stress, PDL cells can produce larger amount of RANKL [83, 84]. In addition, 

during orthodontic tooth movement, RANKL level in gingival crevicular fluid is increased, 

while OPG level is decreased [85, 86]. Consistently, local OPG gene transfer to periodontal 
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tissue can decrease orthodontic tooth movement [87], while local RANKL gene transfer to 

the periodontal tissue can increase orthodontic tooth movement [88]. Meanwhile, local 

administration of OPG can inhibit orthodontic tooth movement [89]. Collectively, these data 

indicate the pivotal role of OPG/RANKL/RANK regulatory axis in PDL cells during 

orthodontic tooth movement.  

  Attempts have also been made to address the mechanism underlying the increased 

production of RANKL by PDL cells in response to orthodontic force. Intriguingly, a report 

has suggested that mechanical stress can induce cyclo-oxygenase 2 (COX-2) mRNA 

expression and PGE2 synthesis in PDL cells, which stimulate RANKL expression via an 

atuocrine mechanism [90]. This piece of evidence is in line with the hypothesis that hypoxia 

at the pressure side of PDL plays an important role in inducing bone resorption [91]. Early 

studies have shown that during tooth movement, orthodontic trauma can cause vascular 

changes and hypoxia on the pressure side of PDL, leading to increased production of PGE2 

[91]. In vitro studies have further indicated hypoxia as an important stimulator of osteoclast 

formation and bone resorption [92-94]. Moreover, recent studies have shown that under 

hypoxia conditions, PDL cells can produce larger amount of osteoclastogenic cytokines, 

including IL-6, IL-1β, TNFα, and PGE2 [95]. This is consistent with in vivo findings that 

these cytokines are elevated in gingival crevicular fluid during orthodontic tooth movement 

(reviewed in reference [96]). It is likely that these osteoclastogenic cytokines further 

contribute to the increased osteoclastogenesis by acting on the OPG/RANKL/RANK 

regulatory axis. The important role of TNFα in orthodontic tooth movement is further 

confirmed by genetics studies. Mice lacking the two receptors of both of these receptors 

TNFα (TNFR1 and TNFR1) showed reduced orthodontic tooth movement [97].  
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   Therefore, hypoxia at the pressure side of a tooth undergoing orthodontic tooth 

movement leads to bone resorption by directly or indirectly disrupting the balance of the 

OPG/RANKL/RANK axis in PDL.    

 

2.7. Chapter Summary  

  Osteoclasts are large multinucleated cells present only in bone. They are derived 

from hematopoietic cells. Their formation is a complex and multi-step process, in which 

osteoblasts/stromal cells play a central role by providing two essential factors: M-CSF and 

RANKL. M-CSF induces the proliferation and survival of osteoclast precursors from their 

hematopoietic progenitors, while RANKL stimulates these precursor cells to commit to the 

osteoclast phenotype. Interestingly, osteoblasts/stromal cells can produce an inhibitory factor 

for osteoclastogenesis, OPG, which competes with RANK for RANKL binding. Hormones 

and local factors can exert their effects on bone resorption by regulating OPG and RANKL 

expression in osteoblasts/stromal cells; therefore, the OPG/RANKL/RANK axis represents a 

major means for regulating osteoblast to osteoclast activity and maintaining the balance 

between bone formation and resorption. Osteoclast differentiation also plays an important 

role in periprosthetic osteolysis, peri-implantitis, and orthodontic tooth movement.  
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Figure 2.1. Osteoclastogenesis. Osteoclastogenesis is a multi-step process regulated by a 
sequential series of molecular event. Transcriptional factor PU.1 is critical for the 
determination of hematopoietic stem cells (HSCs) to the myeloid lineage (CFU-GEMM), 
and can also upreguate the expression of M-CSF receptor, c-fms. The binding of M-CSF to 
c-fms ensures the proliferation and survival of monocyte/macrophage lineage precursors 
(CFU-M) from CFU-GEMM. In addition, M-CSF can increase the expression of RANKL 
receptor, RANK. RANKL and RANK binding initiates signaling pathways required for 
CFU-M to assume the osteoclast phenotype.   
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Figure 2.2. M-CSF/RANKL signaling pathways. M-CSF, which is released from 
osteoblasts/stromal cells, binds to its receptor on osteoclast precursors, c-fms. This leads to 
the activation of AKT and ERK pathways through PI3K and GRB2, respectively. These 
signals ensure the survival and proliferation of osteoclast precursors. RANKL on 
osteoblasts/stromal cells recognizes its receptor on osteoclast precursors, RANK, which 
then recruits TRAF6. As a result, NF-κB, Akt, and MAPKs pathways are activated. 
Additionally, RANKL induces the expression of c-Fos, which then activates AP1. The 
common target gene of both NF-κB and AP-1 is NFATc1, whose induction activates the 
expression of osteoclast specific genes. Adapted from references 32 and 33. 
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Figure 2.3. Cooperation of RANKL and ITAM induced signals in osteoclastogenesis. 
Osteoblasts/stromal cells secrete M-CSF, which binds to its receptor on osteoclast precursor 
cells to ensure proliferation and survival of osteoclast precursor cells. Osteoblasts/stromal 
cells also express RANKL, which recognizes RANK on osteoclast precursor cells. RANK 
then binds to TRAF 6, which, in turn, activates NFATc1 through NFκB and c-Fos. In 
addition, transmembrane adapter proteins, FcRγ and DAP12, associate with 
immunoglobulin-like receptors, OSCAR, PIR-A, TREM-2 and SIRPβ1. RANKL/RANK 
signaling (red arrow) and stimulation of the immunoglobulin-like receptors possibly by 
endogenous signals from osteoblastic cells or osteoclastic cells (red arrow with question 
mark) collaboratively phosphorylate ITAM motifs present in those adaptor proteins, and 
then recruit the Syk family kinase to the phosphorylated tyrosine residues. Finally, through 
phospholipase Cγ (PLCγ), the calcium signaling pathway is activated, leading to NFATc1 
induction. Adapted from reference 33.
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Figure 2.4. RANKL-dependent regulation of osteoclast formation. M-CSF secreted by 
osteoblasts/stromal cells can drive myeloid progenitors towards osteoclast precursors. 
RANKL on osteoblasts/stromal cells binds to its receptor RANK on osteoclast precursors 
and thus initiate a signal transduction cascade, leading to osteoclast differentiation. 
Intriguingly, osteoblast/stromal cells also produce a decoy receptor for RANKL, OPG, 
which can block RANK and RANKL binding. This crosstalk mechanism is also an endpoint 
for the actions of several hormones and cytokines, such as estrogen, interleukins, 
prostaglandin E2 (PGE2), TGF-β and parathyroid hormone (PTH). Adapted from reference 
25. 
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CHAPTER III. OSTEOCLAST BIOLGOY: FUNCTION 
 

 

  Osteoclasts have a number of unique ultrastructural characteristics, including 

multiple nuclei surrounded by the full-developed Golgi apparatus, abundant mitochondria, 

and a large number of vacuoles and lysosomes [1]. Functional osteoclasts can be found both 

in trabecular and cortical bone; they are located on the surface of trabeculi in trabecular bone, 

and in the cutting edge of the forming osteons in cortical bone [2].   

 

3.1. Mechanism of Bone Resorption 

  During bone resorption, osteoclasts undergo a transient morphological change [3]. 

Absorbing osteoclasts obtain different membrane domains through cytoskeletal 

reorganization and cellular polarization (Figure 3.1) [2, 3]. The apical membrane domain 

faces the bone surface, and is called the ruffled border. The ruffled border is the main 

resorptive organelle of the cell. Away from the bone surface are the basolateral membrane 

domain and the functional secretory domain. Another important feature of osteoclasts’ zone 

of contact with bone is the sealing zone, an actin-rich area surrounding the ruffled border [3]. 

In the area of the sealing zone, the cell membrane closely interacts with bone matrix via 

integrin αvβ3, thus sealing off an isolated resorptive compartment [1-3]. 
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3.1.1. Dissolving the Mineral Phase 

  The extracellular compartment between the osteoclast and the bone surface is 

acidified by protons transported by the ATP (adenosine triphosphate)-dependent proton 

pumps known as the vacuolar H+- adenosine triphosphatase (H+-ATPase) or V-ATPase at the 

ruffled border. As shown in the reaction below, the low pH value can dissolve the strongly 

basic hydroxyapatite in solid phase, releasing calcium ions, phosphate ions, and water in 

solution [4].  

[Ca3(PO4)2]3 Ca(OH) 2  +  8H+           10Ca2+  +  6HPO4
2-  +  2H2O 

Solid hydroxyapatite                                    Solution 

Secretion of protons is accompanied by movement of chloride anions via the CLC-7 chloride 

channel at the basolateral membrane [2, 3]. Ion equilibrium in the cytoplasm is maintained by 

the following two processes: 1) the production of protons and bicarbonate ions from CO2 

hydration facilitated by carbonic anhydrase II (CA II); and 2) the exchange of bicarbonate to 

chloride through bicarbonate-chloride (HCO3/Cl) exchanger at the basolateral membrane 

(Figure 3.2.) [2, 3]. Key enzymes involved in the acidification process are very important for 

normal bone resorption. Mutations in H+ATPase, CLC-7 chloride channel or carbonic 

anhydrase II can result in osteopetrosis in mice and humans [3, 5, 6]. 

   

3.1.2. Degrading the Organic Phase 

  While the acidic milieu decalcifies bone, lysosomal enzymes are secreted from the 

ruffled border to degrade the exposed organic matrix in bone [2, 3]. The major enzymes that 

degrade type I collagen in an acid environment include cathepsin K (CTK), a cysteine 
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proteinase, matrix metalloproteinase-9 (MMP-9), and tartrate resistant alkaline phosphatase 

(TRAP) (Figure 3.2.) [2, 7-9]. Genetics studies have demonstrated that mice deficient in 

lysosomal proteases such as TRAP and cathepsin K are osteopetrotic [8, 9].  

 

3.1.3. Removing Resorption Products 

  In order to continue resorption, osteoclasts must have a mechanism to dispose the 

resorption products simultaneously with the ongoing secretion of acid and proteolytic 

enzymes [2]. Studies have demonstrated that degradation products are endocytosed into the 

cell from the ruffled border, transcytosed through the cell, and finally secreted into the 

extracellular fluid through a specific plasma membrane domain. This domain is located in the 

upper part of a resorbing and is called “functional secretory domain” (Figure 3.1.) [2]. It 

should be noted that the process of transcytosis in osteoclasts is not just a disposal process. It 

mobilizes the calcium stored in bone, and it releases growth factors such as transforming 

growth factor-beta (TGF-β ) latent in bone matrix [4].  

 

3.2. Role of Osteoclasts in Hematopoiesis  

  Besides their anatomical juxtaposition, bone and bone marrow are functionally 

associated. On one hand, bone marrow cells provide progenitors of bone remodeling cells 

and regulate their development [10, 11]. On the other hand, osteoblasts have been shown to 

play a central role in supporting hematopoiesis in bone marrow [11, 12]. Intriguingly, recent 

data have demonstrated that the bone-resorbing osteoclasts are critically involved in the 

mobilization of hematopoietic stem cells induced by stress situations such as 
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lipopolysaccharide (LPS) administration and controlled bleeding [13]. Stimulation of 

osteoclasts by RANKL, bleeding, or LPS results in elevated production of proteolytic 

enzymes, MMP-9 and CTK, which, in turn, degrade the hematopoietic stem cell niche 

components, including stromal cell-derived factor-1(SDF-1), stem cell factor (SCF), and 

osteopontin [13]. This leads to increased mobilization of HSCs into the circulation. In 

summary, these data associate osteoclasts with the regulation of hematopoiesis and host 

defense, further emphasizing the function interdependence between bone and bone marrow/ 

hematopoiesis (Figure 3.3.).  

     

3.3. Beyond Bone Resorption: Stimulating Bone Formation  

  Osteoclast activity has been traditionally considered as limited to bone resorption; 

however, accumulating evidence has suggested an alternative function of osteoclast: 

stimulating bone formation [14-16]. 

  The very nature of the bone remodeling process, i.e., the coupling between bone 

resorption and bone formation, has long been noticed. It has been hypothesized that the 

coupling mechanism is achieved by growth factors released from bone matrix during 

osteoclastic resorption [14, 15]. However, increasingly more studies have revealed a far more 

complex coupling mechanism: osteoclasts themselves, not their resorptive activity, can 

provide the anabolic signals that can couple bone resorption and bone formation [14, 16]. 
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3.3.1. Evidence from the Osteopetrosis Models  

  In osteopetrosis, bone mass is increased due to reduced bone resorption; however, 

depending on the etiology, bone formation and resorption is not always coupled. Patients 

with mutations in the chloride channel CLC-7 or the H+-ATPase display reduced bone 

resorption due to impaired acidification of the resorption lacunae. However, rather than 

decreased bone formation as expected from the decreased bone resorption, these patients 

exhibit normal or even increased bone formation. Moreover, they have increased number of 

non-resorbing osteoclasts that are otherwise normal [16]. This observation has also been 

confirmed by a recent finding that bone formation is increased in mice with deficiency in 

osteoclast fusion [17]. In contrast to patients with defective acidification process, 

osteopetrosis patients with defective cathepsin K have no apparent uncoupling of formation 

and resorption, but they have poorly remodeled bone. [16].  

  In comparison to osteoclast-rich osteopetrosis mentioned above are osteopetrotic 

models where the osteoclasts are reduced or absent (osteoclast-poor). Studies from op/op 

mice have shown that in the complete absence of osteoclasts, bone formation is impaired, 

with disorganized matrix, reduced mineralization, and a lower bone quality [16, 18]. 

Consistently, c-fos deficient mice, which lack osteoclasts, have markedly decreased serum 

osteocalcin level, suggesting reduced bone formation [16, 19, 20]. 

  Collectively, these data suggest a role of osteoclasts, even those that are not capable 

of resorbing bone, in coupling bone resorption to bone formation.  
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3.3.2. Evidence from the Anabolic Action of PTH  

  Parathyroid hormone (PTH) is a polypeptide hormone secreted by the chief cells of 

the parathyroid glands [21, 22]. PTH has a dual action on bone remodeling. Sustained 

elevations of PTH, as in hyperparathyroidism, have a net catabolic effect on bone, favoring 

bone resorption [21]. The catabolic action of PTH on bone will be discussed in detail in 

Chapter V. Interestingly, when administered in an intermittent, rather than a continuous 

mode, PTH has an anabolic action on bone [21]. 

  This has raised the question whether the resorptive action of PTH is necessary for its 

anabolic action on bone formation. As indicated by both human and animal studies, the 

anabolic effect of PTH is not solely dependent on osteoblasts; it also requires signals from 

osteoclasts linking back to osteoblasts [14, 23]. 

  The anabolic effect of PTH is significantly reduced when the subjects are 

co-administered with agents that promote osteoclast apoptosis, such as bisphosphonate or 

estrogen [14]. Mice deficient with c-fos are osteopetrotic and lack the anabolic response to 

intermittent PTH treatment [14, 23]. Compared to those from normal mice, osteoblasts from 

c-fos knockout mice showed no different response to PTH treatment in vitro. In contrast, the 

rescue of osteoclast defect in c-fos mutant mice can restore the anabolic effect of PTH, 

suggesting osteoclasts are required for the anabolic response to PTH. Moreover, in normal 

mice, the anabolic action of PTH is significantly blocked when osteoclast precursors 

recruitment is inhibited by stromal derived factor-1 (SDF-1) or osteoclast differentiation is 

inhibited by OPG [23]. Taken together, these data demonstrate that the osteoclast is the 

intermediate target for the anabolic action of PTH [23].  
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  In addition, the underlying mechanism has been further proposed: PTH can increase 

production of RANKL, which stimulate the transient activation of osteoclasts. 

RANKL-activated osteoclasts then provide signals for osteoblast maturation (Figure 3.4.) 

[14]. 

  In summary, studies from the anabolic action of PTH further emphasize the 

important role of osteoclasts in providing signals required in coupling bone resorption to 

bone formation during bone remodeling.  

 

3.3.3. Evidence from In Vitro Studies 

  In order to identify the anabolic factor(s) produced by osteoclasts, a recent study 

employed an in vitro cell culture system, where primary human osteoclasts were induced by 

recombinant RANKL and M-CSF. The results showed that even conditioned media collected 

from osteoclasts cultured on plastic can promote bone nodule formation by the murine 

osteoblastic cell line, MC3T3-E1, in a dose dependent manner [24]. Although the authors 

claimed that this was the first evidence that osteoclasts can secrete non-bone matrix derived 

factor(s) to increase bone formation, this is not exactly the case. In fact, studies have been 

performed to address the question whether osteoclasts control osteoblastic growth and 

function. Factors expressed by osteoclasts have been found to be able to regulate osteoblast 

differentiation and proliferation: hepatocyte growth factor (HGF) and myeloid protein-1 

precursor (Mim-1) as positive regulators, while platelet-derived growth factor BB (PDGF) as 

negative regulators [25]. Nevertheless, these preliminary data still remain controversial and 

more research is required to identify the factor(s) secreted by osteoclasts that can regulate 

osteoblasts.  
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3.4. Chapter Summary  

  Osteoclasts are the sole bone-absorbing cells. They decalcify bone by producing 

acid and degrade bone matrix by secreting lysosomal proteases. By resorbing bone, 

osteoclasts also play a critical role in mobilizing hematopoietic stem cells in response to 

stress situations, such as LPS treatment. Moreover, accumulating data have indicated that 

osteoclast activity is not limited to bone resorption. Osteoclasts can stimulate bone formation, 

serving as a source of anabolic signals to couple bone formation to bone resorption. The 

underlying molecular mechanism, however, still remains to be defined.  
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Figure 3.1. Plasma membrane domains present in a resorbing osteoclast. Adapted from 
reference 2.  
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Figure 3.2. Mechanism of osteoclastic bone resorption. The osteoclast adheres to bone 
surface via integrin αvβ3, and forms a special membrane facing bone: the ruffled border. 
Hydrochloric acid is secreted into the resorptive lacuna by the combined actions of a 
vacuolar H+ ATPase, its coupled Cl– channel, and a basolateral chloride–bicarbonate 
exchanger. Carbonic anhydrase II (CA II) converts CO2 and H2O into H+ and HCO3

–. The 
acidic milieu mobilizes the mineral phase of bone and thereby exposing the organic phase 
of bone for degradation by acidic proteases released from lysosomes, such as cathepsin K 
(CTK). Adapted from reference 2.  
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Figure 3.3. Osteoclasts mobilize hematopoietic stem cells into circulation. Stimulation 
of osteoclasts by RANKL or stress situations such as inflammation and injury results in 
elevated production of proteolytic enzymes, MMP-9 and CTK, which, in turn, degrade 
components of the hematopoietic stem cell niche. This leads to increased mobilization of 
the hematopoietic stem cells from bone marrow into the circulation. Adapted from 
reference 13.  
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Figure 3.4. Mechanism of the anabolic action of PTH. An anabolic stimulus, PTH, 
increase transiently RANKL production by osteoblasts, which results in the activation of 
osteoclasts. Osteoclasts then send coupling signals to stimulate osteoblast differentiation 
and bone formation. Adapted from reference 14. 
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CHAPTER IV. OSTEOCLAST PATHOLOGY: BONE LOSS 
    

  

  Bone resorption plays an important role not only in bone development and 

physiology, but also in bone pathology. The discovery of the OPG/RANKL/RANK axis as a 

major regulatory mechanism of osteoclastogenesis has revolutionized our understanding of 

normal bone biology and a number of bone diseases as well [1-3].  

 

4.1. Postmenopausal Osteoporosis 

4.1.1. Introduction 

  Osteoporosis is a heterogeneous group of metabolic bone diseases [4] and has been 

defined as “a skeletal disorder characterized by compromised bone strength predisposing a 

person to an increased risk of fracture” [5]. Although osteoporosis is characterized by low 

bone mass, the ratio of bone mineral to the organic matrix in osteoporosis normal, as opposed 

to a decreased ratio of bone mineral to the organic matrix in osteomalacia [6, 7].  

  In clinical practice, the measurement of bone mineral density (BMD) is the most 

commonly used method for osteoporosis diagnosis. BMD is most often assessed by dual 

energy x-ray absorptiometry (DXA or DEXA) [5, 8]. DXA measures both bone mineral 

content (BMC, in grams) and area (in cm2). An “areal” BMD (g/cm2) is obtained by dividing 

bone mineral content by area. This value can be converted to a T score or a Z score. A T score 
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compares a patient to a sex-matched, young, healthy population; it is calculated by 

subtracting the mean BMD of a young adult healthy population from the patient’s BMD and 

then dividing by the standard deviation (SD) of the reference population. A Z score compares 

a patient to an age-and sex-matched control population; it is calculated by subtracting the 

mean BMD of an age- and sex-matched control population from the patient’s BMD and then 

dividing by the SD of the reference population [9]. T scores are often reported in 

postmenopausal women and men of 50 years age and older, while Z scores are often reported 

in premenopausal women, men under the age of 50, and children [9]. According to the WHO 

definition, the diagnosis of osteoporosis is established when BMD is 2.5 SDs below the mean 

for normal Caucasian women (i.e. the T score is at least −2.5 SDs) [5].  

  However, it has been argued that the measurement of bone mass does not account 

for another important determinant of bone strength—bone quality [10, 11]. Bone quality is 

independently influenced by parameters including bone architecture, bone turnover, 

microdamage, and mineralization [5]. Although BMD measurement is currently the best 

diagnostic practice, alternative methods that can detect the deterioration in bone quality will 

provide significant improvement in osteoporosis prevention, diagnosis, and treatment [11]. 

  Osteoporosis can occur as a primary disorder or as a disorder secondary to a number 

of systemic diseases (e.g. hyperparathyroidism) or medications (e.g. glucocorticoids) [6]. 

Primary osteoporosis is the most common metabolic bone disorder in adults, mostly 

associated with aging. There are two clinical subtypes of age-related osteoporosis: 1) Type I 

or postmenopausal osteoporosis, which occurs in postmenopausal women; and 2) Type II or 

senile osteoporosis, which is associated with the normal aging process in both men and 

women [4, 12]. Menopause refers to the cessation of menstruation, which occurs at ~ 48-50 
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years of age for healthy women. As a result, the production of ovarian hormones including 

estrogen is reduced [6]. The pathogenesis of postmenopausal osteoporosis will be discussed 

below with a focus on the current understanding of estrogen action on osteoclastic bone 

resorption.  

   

4.1.2. Cellular Pathogenesis  

  Under normal conditions, bone undergoes constant remodeling, where resorption of 

the existing bone by osteoclasts is tightly coupled to formation of new bone by osteoblasts 

[13]. In postmenopausal osteoporosis, the rate of bone remodeling is increased, i.e. increased 

number of osteoclasts and bone resorption coupled with increased number of osteoblasts and 

bone formation. However, due to estrogen deficiency, there is an imbalance between bone 

resorption and bone formation, resulting in a decrease in total bone mass [4, 7].    

 

4.1.3. Indirect Effects of Estrogen Deficiency on Bone Resorption 

  Since the interplay between the immune system and bone has long been noticed 

[14], it is no surprise that the pathogenesis of bone loss in postmenopausal osteoporosis is 

mainly mediated by immune cells [15, 16]. Indeed, many studies have suggested that 

stimulation of bone resorption in response to estrogen deficiency is largely mediated by 

inflammatory and osteoclastogenic cytokines, such as IL-1, IL-6, TNFα, and IL-7 [7, 15, 17, 

18]. These cytokines are able to increase the production of M-CSF by osteoblasts/stromal 

cells and/or the ratio of RANKL to OPG, thereby upregulating osteoclastogenesis [7, 18].  
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  Among these cytokines, TNFα  and IL-7 have been shown to be the major ones. The 

source of TNFα  in postmenopausal osteoporosis has been identified to be T cells [16]. 

TNFα  can stimulate osteoclastogenesis by enhancing osteoblasts/stromal cells to produce 

more RANKL and M-CSF, and by priming osteoclast precursors to the stimulation of 

RANKL. Meanwhile, TNFα  can inhibit osteoblast differentiation by repressing 

transcription factor, Runx2 [15]. A lack of estrogen results in elevated levels of circulating 

cytokines, such as IL-1 and TNFα, which, in turn, stimulate osteoblasts/stromal cells to 

release more IL-7 [17]. On one hand, IL-7 decreases Runx2 activity, and hence inhibits 

osteoblast function [17, 19]. On the other hand, IL-7 stimulates the expression of M-CSF and 

RANKL and simultaneously decreases OPG expression by osteoblasts/stromal cells. 

Moreover, IL-7 targets T cells to induce RANKL production [15, 17].  

   In summary, TNFα  and IL-7 are the key mediators involved in bone lose induced 

by estrogen withdrawal.  

 

4.1.4. Direct Effects of Estrogen Deficiency on Bone Resorption 

  The physiological effects of estrogen are mediated by two nuclear hormone 

receptors: estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), with the former 

being the major one in most target tissues [7, 18]. Estrogen receptors are also expressed in 

bone cells, including bone-absorbing osteoclasts and their precursors [7, 18], which indicates 

that the effects of estrogen on bone resorption may be mediated, at least in part, directly. 

However, until recently little is known regarding the direct action of estrogen on osteoclasts 

[18].  
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  Using an osteoporosis mouse model, a recent publication has elegantly 

demonstrated that estrogen can directly induce osteoclast apoptosis [20]. To specifically 

disrupt ERα gene in mature osteoclasts, the authors inserted the Cre recombinase into the 

cathepsin K gene locus. In another word, ERα  gene is selectively deleted during 

osteoclastogenesis. Adult female, but not male, ERΔOc/ΔOc mice displayed high bone turnover 

characterized by increased osteoclast numbers, increased bone formation, but decreased 

trabecular bone mass [20]. So these mice mimic, to a certain degree, human postmenopausal 

osteoporosis. However, in ERΔOc/ΔOc mice, ovariectomy did not result in trabecular bone loss 

or increased osteoclast numbers. In addition, estrogen administration could not rescue the 

osteoporotic phenotypes of these mice. These results suggest that estrogen may directly 

target osteoclasts to exert its osteoprotective action.  

  This report further demonstrated that estrogen can upregulate Fas ligand (FasL) 

expression in osteoclasts and thus induce apoptosis of osteoclasts having wildtype ERα , but 

not those lacking ERα [20]. Since Fas is also expressed by osteoclasts, it appears that 

estrogen can upregulate FasL expression and affect osteoclast survival through an autocrine 

mechanism [21]. Collectively, these data suggested that estrogen can directly induce 

osteoclast apoptosis via its receptor ERα in osteoclasts [21]. In contrast, a more recent article 

has described a paracrine mechanism in which estrogen control osteoclast life span by 

upregulating FasL in osteoblasts, not osteoclasts [22]. Therefore, to generate a complete 

picture of the extremely complex process of postmenopausal osteoporosis, more research is 

necessary to identify the central cellular target(s) of estrogen.  
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 4.2. Paget’s Disease of Bone   

  Paget’s disease of bone (PDB), also known as osteitis deformans, is a nonmalignant, 

localized, metabolic bone disorder [23]. It is characterized by enlarged and deformed bone, 

occurring mainly in the axial skeleton [23].   

   

4.2.1. Cellular Pathogenesis  

  Histological studies have shown that the primary cellular abnormality in Paget’s 

disease of bone is the increased activity of osteoclasts [6, 23]. Compared to normal 

osteoclasts, Pagetic osteoclasts are larger and contain more nuclei, causing excessive bone 

resorption. Subsequently, more osteoblasts are recruited to the site, and bone formation is 

increased. However, new bone is formed at such a rapid rate that bone is formed in a sporadic 

and haphazard way, and woven bone rather than lamellar bone develop. Pagetic bone is 

expanded in size, structurally disorganized, and mechanically weak, leading to bone 

deformity, pathological fracture, and various other complications [23, 24]. In Paget’s disease 

of bone, increased osteoclastic bone resorption coupled to increased bone formation leads to 

accelerated and abnormal bone remodeling.  

 

4.2.2. Molecular Pathogenesis  

  Paget’s disease of bone is the second most common bone disease after osteoporosis, 

but its etiology remains largely unknown [23]. Two main theories have been proposed: viral 

and genetic. Infection of virus, such as the measles virus, the canine distemper virus, and the 

respiratory syncytial virus, may contribute to the osteoclast hyperactivity in genetically 
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susceptible individuals [23]. Although the virus theory is still controversial, genetic factors 

are certainly involved in Paget’s disease of bone. This disorder shows autodominant 

inheritance, and is called familial Paget’s disease. Ethnic difference in the prevalence also 

suggests the importance of genetic factors [25]. Several rare familial bone conditions have 

been described to share clinical features phenotypes with Paget’s disease of bone (classical 

PDB) [25]. These diseases are summarized in Table 4.1.  

  Several susceptibility loci for Paget’s disease of bone and related syndromes have 

been identified by genome-wide scans. Mutations that predispose individuals to PDB and 

related disorders have been subsequently identified in four genes, all of which are involved in 

one of the pathways essential for osteoclastogenesis — the RANKL–RANK–NFκB signaling 

pathway [25].  

  As discussed in Chapter II, the binding of RANKL produced by osteoblasts/stromal 

cells to its receptor, RANK on osteoclasts and their precursors initiates signaling pathways 

(e.g. NFκB pathway) to induce osteoclast differentiation (Figure 2.2.)[26-28]. Meanwhile, 

osteoblasts/stromal cells also produce a decoy receptor to RANKL— OPG— to negatively 

regulate RANKL induced signals (Figure 2.2.) [3, 29, 30]. The familial expansile osteolysis, 

early-onset PDB, and ESH are caused by insertion mutations in TNFRSF11A, which encodes 

RANK. Inactivating mutations in TNFRSF11B, which encodes osteoprotegerin (OPG) cause 

JPD, and polymorphisms in this gene are associated with an increased risk for PDB (Figure 

4.1.) [25]. 

  The most important cause of classical PDB is the mutations of SQSTM1 gene, which 

encodes ubiquitin-binding protein p62 (sequestosome 1) [31]. The ubiquitin-binding protein 

p62 (SQSTM1) functions as a scaffold in a range of signaling pathways including the NFκB 
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pathway [32, 33]. Studies have suggested that RANKL stimulation leads to the formation of a 

complex involving TRAF6, p62, and atypical protein kinase C (aPKC), the latter activating 

IKK (IκB kinase) and NF-kB (Figure 4.1.) [32, 34].  

  IBMPFD is caused by mutations in the gene encoding valosin-containing protein 

(VCP) [25]. VCP is a protein involved in targeting the inhibitor of NFκB (IκB) for 

proteasomal degradation. The degradation of IκB results in the release of NFκB, which then 

translocates to the nucleus to activate responsive genes. Together with other signaling 

pathways described in Chapter II, NFκB signaling eventually leads to osteoclast 

differentiation (Figure 4.3.) [35].  

  In summary, mutations or polymorphisms in genes implicated in PDB and related 

disorders are all involved in the osteoclastogenesis signaling pathway, 

RANKL–RANK–NFκB pathway.  

 

4.3. Hyperparathyroidism 

  Primary hyperparathyroidism is a hypercalcemia state resulting from excessive 

secretion of parathyroid hormone (PTH) by parathyroid glands [36].This can be caused by 

adenoma, hyperplasia, or carcinoma of the parathyroid glands [6]. Secondary 

hyperparathyroidism is an acquired disorder in which parathyroid glands secrete excessive 

PTH in response to a low extracellular calcium concentration [6].  
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4.3.1. Cellular and Molecular Pathogenesis  

  PTH is a polypeptide hormone secreted by the chief cells of the parathyroid. PTH 

has a dual action on bone remodeling. When administered in an intermittent, rather than a 

continuous mode, PTH has an anabolic action on bone [37]; the underlying mechanism has 

been discussed in detail in Chapter III. As discussed in the following sections, sustained 

elevations of PTH have a net catabolic effect on bone [37]. 

  Small fluctuations in plasma Ca2+ level is sensed by a cell surface Ca2+ receptor 

(CaR) on parathyroid gland cells. CaR belongs to the superfamily of G protein-coupled 

receptors (GPCR) [38]. Under hypocalcemic conditions, the parathyroid CaR senses the 

decreased Ca2+ level and enhances PTH secretion. PTH can mobilize Ca2+ into the 

extracellular fluid through the following mechanisms: 1) stimulation of bone resorption; 2) 

increasing renal calcium reabsorption; and 3) stimulation of renal 1α, 25-dihydroxyvitamin 

D3 [1,25(OH)2D3 ] (Figure 4.2.) [38]. Under hypercalcemic conditions, the parathyroid CaR 

senses the elevated Ca2+ level and inhibits PTH secretion, leading to suppressed calcium 

mobilization (Figure 4.2.) [38].  

  Such a feedback mechanism is disrupted in both primary hyperparathyroidism and 

secondary hyperparathyroidism. In primary hyperparathyroidism, the pathology of 

parathyroid glands themselves causes sustained elevation of plasma PTH level, which, in turn 

causes excessive bone resorption and diminished bone mineral density [36, 38, 39]. Primary 

hyperparathyroidism is the most common cause of hypercalcemia [6]. In secondary 

hyperparathyroidism, in response to a low extracellular calcium concentration, parathyroid 

glands synthesize more PTH to restore the normal plasma calcium level. However, due to a 

disorder within organs responsible for calcium or reduced availability of calcium, 
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hypocalcemia can occur. Secondary hyperparathyroidism is the most common complication 

of end stage renal diseases, and is also found in vitamin D-deficiency and Vitamin-D- 

resistant conditions [6].  

 

4.3.2. Mechanism of PTH Catabolic Effect on Bone 

  The physiological activities of PTH are mediated by its receptor, PTH1R, a G 

protein-coupled protein (GPCR) [40]. As in primary hyperparathyroidism, continuous 

increase of PTH level leads to the activation of PTH1R expressed on the plasma membrane of 

osteoblasts. The binding of PTH and its receptor initiates downstream signaling to stimulate 

RANKL expression and inhibit OPG expression by osteoblasts. The increased RANKL to 

OPG ratio results in increased osteoclastogenesis [1, 2, 41]. The responsible signal 

transduction pathway is the classic cAMP-dependent protein kinase A (PKA) pathway, in 

which Gαs subunit of PTH1R stimulates cAMP production and PKA activation; PKA 

subsequently phosphorylates transcription factors, such as Cbfa1 and cAMP-response 

element-binding protein (CREB), regulating target gene expression [2, 42]. Additionally, 

recent studies have demonstrated that PTH can increase osteoblastic production of monocyte 

chemoattractant protein-1(MCP-1), which, in turn, increases osteoclastogenesis [43]. 

  Osteoblasts have been widely shown to express PTH receptors [1, 44], while it has 

been controversial whether osteoclasts express high-affinity PTH receptors [45-47]. It is 

generally accepted that even though osteoclast may express PTH receptors, these receptors 

do not respond directly to PTH; the functional significance of the osteoclastic PTH receptors, 

if any, need to be further confirmed and elucidated [46, 47]. Therefore, PTH exerts its 

catabolic action on bone indirectly via its action on osteoblasts [1, 44].  



 61

   

4.4. Cherubism 

  Cherubism (OMIM reference number #118400) is an autosomal-dominant benign 

disorder characterized by painless symmetrical swelling of cheeks and jaws [48-50]. Dental 

abnormalities such as hypodontia are also a feature [49, 51]. With an early onset at ~2-4 years 

of age, this condition continues through childhood before regressing in adulthood [52]. 

Histologically, cherubism is characterized by fibrous connective tissue with abundant 

osteoclastic cells and inflammation cells [52]. 

 

4.4.1. Molecular Pathogenesis 

  The cherubism locus has been mapped to chromosome 4p [53, 54], and genetic 

studies have subsequently detected several point mutations in SH3BP2, which encodes the 

widely expressed scaffold protein, the SH3-domain binding protein 2 (SH3BP2) [48]. 

However, the exact pathogenesis of this disease is largely unclear.  

  A recent publication has shed new light on this condition by using a mouse model of 

cherubism. This mouse model is created by introducing the most common SH3BP2 mutation 

found in cherubism patients, P418R (a proline to arginine substitution affecting amino acid 

418), into the mouse SH3BP2 gene (P416R) [55]. Mice homozygous for this mutation 

exhibited bone resorption in the jaws associated with increased osteoclast numbers, a global 

decrease in bone mass, and systemic macrophage-infiltrated inflammation [55].  

  The following two major findings were generated from this knockin mouse model. 

First, several pieces of evidence have suggested that the primary cell type involved in 
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cherubism pathogenesis is the myeloid cell: 1) Myeloid osteoclast precursors from SH3BP2 

knockin mice showed increased osteoclastic potential in culture in response to macrophage 

colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand 

(RANKL); 2) The phenotypes can be transferred into wildtype mouse by transplantation of 

fetal liver cells from SH3BP2 knockin mice; 3) When SH3BP2 knockin mice were crossed 

with rag1−/−mice, which lack functional lymphocytes, the phenotypes were not changed; 

however, when SH3BP2 knockin mice were crossed with op/op mice, which lack myeloid 

cells, the phenotypes were eliminated [55]. Secondly, the pathogenesis of cherubism is 

dependent on TNFα [55], a potent stimulator of osteoclastogenesis [56]. SH3BP2 knockin 

mice had elevated level of serum TNFα, and myeloid cells isolated from the knockin mice 

produced an increased amount of TNF-α in response to M-CSF treatment in an ERK 

dependent manner. Moreover, when SH3BP2 knockin mice were crossed with 

TNFα-deficient mice, they did not exhibit bone loss or inflammation [55].  

  The authors have further demonstrated that P416R mutation of SH3BP2 in the 

osteoclast lineage cells causes gain of function, leading to hyperphosphorylation of Syk and 

increased Syk activity in response to RANKL [55]. Syk is a tyrosine kinase involved in the 

costimulatory signals for RANK in osteoclastogenesis (see Figure 2.3. for detail) [57]. Since 

SH3BP2 can mediate ITAM-dependent activation of calcium signaling and NFATc1 

induction in lymphocytes, it has been proposed that it may also act as an ITAM-dependent 

scaffold protein in osteoclast precursors [58]. Based on their findings, the authors have 

proposed a mechanism of Cherubism pathogenesis shown in Figure 4.3. 
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4.5. Chapter Summary  

  Despite of distinct etiologies, metabolic bone diseases, such as osteoporosis, Paget’s 

disease of bone, and hyperparathyroidism are all characterized by excessive osteoclast 

activities and bone loss [2]. Estrogen deficiency leads to increased levels of osteoclastogenic 

cytokines produced by immune cells, which stimulate osteoclastogenesis through the 

RANKL/RANK/OPG system. Moreover, recent research has shown that estrogen can also 

directly target osteoclasts, inhibiting their apoptosis. Increased osteoclastogenesis in Paget’s 

disease of bone and related syndromes is caused by mutations in genes involved in the 

RANKL–RANK–NFκB signaling pathway. In hyperparathyroidism, sustained increased of 

PTH levels results in increased bone resorption to mobilize calcium from bone. PTH binds to 

its receptor, PTH1R on osteoblasts, leading to increased production of RANKL and 

decreased production of OPG.  In addition, excessive bone resorption in the jaws is also an 

important characteristic of Cherubism, an autosomal-dominant disorder. [48]. Animal studies 

have recently shown that mutation in SH3BP2 gene, which encode a scaffold protein, results 

in increased responsiveness of osteoclast precursors to M-CSF/RANKL and increased 

production of TNFα by macrophages. TNFα further stimulate osteoclastogenesis by acting 

on osteoblasts/stromal cells. Further investigation is needed to define the extent to which the 

cherubism mouse model can recapitulate what happens in humans with cherubism.  
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Table 1. Familial bone conditions with similar clinical features as Paget’s disease of 
bone (PDB)  
 

Juvenile Paget’s Disease (JPD) 

Familial Expansile Osteolysis (FEO) and Expansile Skeletal Hyperphosphatasia (ESH) 

Early-Onset Paget’s Disease of Bone 

Inclusion-Body Myopathy, PDB and Frontotemporal Dementia (IBMPFD) 
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Figure 4.1. Mutations in components of RANK–NFκB signaling pathway cause Paget’s 
disease of bone and related disorders. The binding of RANKL produced by 
osteoblasts/stromal cells to its receptor, RANK on osteoclasts and their precursors leads to 
the formation of a complex involving TRAF6, ubiquitin-binding protein p62, and aPKC, the 
latter activating IKK (IκB kinase) to phosphorylate IκB. IκB is then targeted for 
proteasomal degradation, a process that involves valosin-containing protein (VCP). The 
degradation of IκB results in the release of NFκB that translocates to the nucleus to activate 
the responsive genes. Together with other signaling pathways described in Chapter II, 
NFκB signaling eventually leads to osteoclast differentiation. Stromal cells/osteoblasts also 
produce a decoy receptor for RANKL, osteoprotegerin (OPG), which negatively regulate 
RANK signaling. Components of the RANK−NFκB pathway that are mutated or 
polymorphic in Paget’s disease of bone and related disorders are highlighted in red: 1) 
RANK mutations can cause the familial expansile osteolysis (FED), ESH and early-onset 
PDB; 2) OPG mutations can cause juvenile PDB, and polymorphisms in this gene increases 
the risk for PDB; 3) Mutations of genes encoding p62 can cause classical PDB; 4) 
Mutations of genes encoding VCP can cause IBMPFD. Adapted from reference 25. 
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Figure 4.2. Reciprocal relationship between PTH and extracellular calcium level. PTH 
secretion is triggered by hypocalcemia, and suppressed by hypercalcemia. Hypocalcemic 
conditions: the parathyroid CaR senses the decreased Ca2+ level and enhances PTH 
secretion. PTH can mobilize Ca2+ into the extracellular fluid through the following 
mechanisms: (1) stimulation of bone resorption; (2) increasing renal calcium reabsorption; 
(3) stimulation of renal 1α, 25-dihydroxyvitamin D3 [1,25(OH)2D3 ]. Consequently, 
hypocalcemia returns to normocalcemia. In contrast, under hypercalcemic conditions, the 
parathyroid CaR senses the elevated Ca2+ level and inhibits PTH secretion, leading to 
suppressed calcium mobilization. Consequently, hypercalcemia returns to normocalcemia. 
Adapted from reference 38. 
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Figure 4.3. Proposed mechanism of cherubism pathogenesis. Mutation in SH3BP2 gene 
results in an increased response of myeloid cells to M-CSF and RANKL. In the presence of 
M-CSF, the cells differentiate into macrophages with increased production of TNFα. When 
exposed to both M-CSF and RANKL, they differentiate into osteoclasts with increased 
bone-resorbing capability. Moreover, TNFα can increase the production of M-CSF and 
RANKL by stromal cells/osteoblasts, further promoting macrophage and osteoclast 
differentiation. Therefore, macrophage/TNFα mediated inflammation and osteoclastic bone 
loss becomes the pathological characteristic of cherubism. Adapted from references 55 and 
58.  
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CHAPTER V. BONE PHARMACOLOGY: TARGETING THE OSTEOCLAST 

 

  

  For diseases associated with excessive bone resorption, osteoclasts are the primary 

therapeutic targets [1]. The bisphosphonate is currently considered a major class of 

antiresorptive drug because of its ability to induce osteoclast apoptosis [2]. Meanwhile, 

stimulators of bone formation can also be a desirable addition to antiresorptive therapy. 

However, clinical application of the most potent anabolic agent available, fluoride, still 

remains controversial [3].  

5.1. Bisphosphonates 

  Bisphosphonates are the primary drugs prescribed for the treatment of osteoporosis 

and other bone diseases associated with excessive bone resorption [2]. Bisphosphonates, 

formerly called diphosphonates, are stable analogues of naturally-occurring inorganic 

pyrophosphate (PPi) [2]. In bisphosphonates, the two phosphate groups are connected by a 

carbon atom, rather than an oxygen atom as in pyrophosphate (Figure 5.1.), which makes the 

compounds resistant to chemical and enzymatic hydrolysis [4]. 

  Like pyrophosphate, bisphosphonates have high binding affinity for bone mineral. 

Exploration of bisphosphonates as potential inhibitors of bone absorption was initiated by its 

property of inhibiting hydroxyapatite dissolution [4]. However, later studies have shown that 
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the anti-resorptive action of these compounds is mediated by cellular mechanisms rather than 

simply physicochemical mechanisms [2]. 

 

5.1.1. Bone Uptake of Bisphosphonates 

  After administration, approximately 1/3~2/3 of bisphosphonates are localized in 

bone, and the remaining are removed by urinary excretion within the first few hours.  

Intestinal absorption of bisphosphonates is very low [4]. Bisphosphonates initially localize to 

bone-forming sites and bone-resorbing sites, where a large amount of exposed mineral is 

available [2]. Much of the bisphosphonates binding to bone are rapidly buried in bone and 

become pharmacologically inactive. These bisphosphonates can be retained for a long period 

of time within bone and can also be released from bone surfaces [2, 4]. Two mechanisms of 

the release of bisphosphonates from bone surfaces have been proposed: 1) chemical 

desorption occurring when bisphosphonate concentration in the extracellular fluid is 

dropped; 2) osteoclastic bone resorption [2].  

 

5.1.2. Cellular Uptake of Bisphosphonates 

  Due to their marked binding affinity for bone rather than other tissues, 

bisphosphonates are in close contact with bone cells [2]. Using fluorescent-labeled 

bisphosphonates, researchers have localized bisphosphonates in intracellular endocytic 

vesicles [5, 6]; acidification of these vesicles appears to be necessary for the movement of 

bisphosphonates from vesicles into the cytosol [6]. Compared to non-resorbing cells such as 

osteoblasts and macrophages, osteoclasts are able to internalize a larger amount of 
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bisphosphonates because of their ability to release these compounds from hydroxyapatite 

during bone resorption [5].  

 

5.1.3. Biochemical Effects of Bisphosphonates on Osteoclasts 

  According to their modes of action, bisphosphonates can be classified into two 

major groups (Figure 5.2.). The first group is the simpler, non–nitrogen-containing 

bisphosphonates, including clodronate and etidronate; while the second group is the more 

potent, nitrogen-containing bisphosphonates, including alendronate, risedronate, and 

zoledronate [4]. 

 

5.1.3.1. Non–nitrogen-containing Bisphosphonates 

  The simple, non–nitrogen-containing bisphosphonate can be incorporated into a 

non-hydrolyzable analogue of adenosine triphosphate (ATP or Appp), AppCp, which 

contains the P-C-P moiety in place of the β, γ-phosphate groups present in ATP [4, 7]. This 

incorporation is brought about by the cyoplasmic enzyme, aminoacyl-tRNA synthetase, 

which plays an essential role in protein synthesis. This enzyme can catalyse a two-step 

reaction to form an aminoacyl-tRNA (Figure 5.3.) [4, 8]. First, in a reversible reaction, an 

amino acid condenses with ATP (Appp) to form an aminoacyl-adenylate (amino acid-AMP), 

releasing pyrophosphate (PPi) (reaction I). The amino acid-AMP then condenses with a 

molecule of tRNA to form aminoacyl-tRNA (reaction II). Since bisphosphonates (pCp) with 

short side chains resemble PPi structure, the reverse reaction of reaction I can occur with pCp 

in place of PPi, forming an analogue of ATP, AppCp [7]. The ATP analogues are 

nonhydrolysable and are accumulated intracellularly in osteoclasts, causing osteoclast 
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apoptosis, possibly by the inhibition of intracellular ATP-dependent enzymes [4]. In 

summary, non–nitrogen-containing bisphosphonates can be metabolically incorporated into 

non-hydrolysable analogues of ATP and thereby cause osteoclast apoptosis.  

  

5.1.3.2. Nitrogen-containing Bisphosphonates  

  Nitrogen-containing bisphosphonates induce osteoclast apoptosis predominantly by 

the inhibition of the mevalonate pathway. The mevalonate pathway is an important 

biosynthetic pathway responsible for the production of cholesterol and isoprenoid lipids, 

such as isopentenyl pyrophosphate (IPP), farnesyl pyrophosphate (FPP), and geranylgeranyl 

pyrophosphate (GGPP) (Figure5.4.) [8, 9]. The sequential condensation of isopentenyl 

pyrophosphate (IPP) with dimethylallyl pyrophosphate (DMAP) and geranyl pyrophosphate 

(GPP) is catalyzed by an enzyme named farnesyl pyrophosphate synthase (FPPS) (Figure 

5.4.). Nitrogen-containing bisphosphonates act as substrate analogues for GPP and compete 

with GPP for the binding of FPPS, leading to competitive inhibition of FPPS [4, 7]. 

  FPP and GGPP are substrates for the prenylation (post-translational modification) of 

small GTPases, which are important for osteoclast functions and survival [4, 10]. Therefore, 

by inhibiting FPPS, nitrogen-containing bisphosphonates can block the synthesis of FPP and 

GGPP and subsequent prenylation of small GTPase proteins, leading to osteoclast apoptosis 

[2].  

  In summary, by inhibiting farnesyl pyrophosphate synthase (FPPS) in the 

mevolonate pathway, nitrogen-containing bisphosphonates can inhibit the synthesis of 

isoprenoid compounds, which are substrates for the prenylation of GTPases. This leads to the 

disruption of GTPases functions and eventually the apoptosis of osteoclasts.   
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5.1.4. Biochemical Effects of Bisphosphonates on Osteoblasts and Osteocytes 

  Recent studies have suggested that bisphosphonates can protect osteocytes and 

osteoblasts from apoptosis [2, 11]. Bisphosphonate treatment leads to the opening of a gap 

junction protein present in osteoblasts and osteocytes—connexin 43 hemichannels [11-14]. 

Connexin 43 hemichannel opening results in the activation extracellular signal-regulated 

kinases (ERKs), promoting cell survival [11, 12]. In contrast, induction of osteoblast 

apoptosis by bisphosphonates has also been reported [15]. Moreover, investigation regarding 

the direct action of bisphosphonates on osteoblast differentiation and proliferation has 

yielded mixed results [15-18]. Therefore, to fully understand the effects of bisphosphonate on 

bone, the potential interaction of bisphosphonates with osteoblasts/osteocytes needs to be 

further determined.  

 

5.2. Fluoride                                      

  Fluorine is the 17th most abundant element in the earth's crust [19]. Fluoride can 

be found from a variety of sources and is present in the food chain consumed by humans. 

The normal food chain supports plasma levels in adults ranging from 0.5 to 2.3 μM [19]. 

Fluoride is rapidly and extensively absorbed from the gastrointestinal tract. It is removed 

from plasma by urinary excretion and bone uptake [19, 20].  

 



 77

5.2.1. In Vivo Effects on Bone 

  It has long been noticed that fluoride exerts a biphasic action on bone [21, 22]. 

There is a correlation of the severity of skeletal changes and the magnitude and duration of 

fluoride exposure. At low levels of chronic exposure, fluoride can increase bone density 

with little effect on the overall health of bone, while prolonged and heavy exposure results 

in marked skeletal changes, including periosteal bone formation, ligament calcification, and 

joint stiffness [19]. The latter is known as skeletal fluorosis, a bone and joint condition that 

can be categorized into occupational and endemic skeletal fluorosis [23].  

  This dual action of fluoride on bone has led to exploration of the therapeutic 

potential of fluoride in osteoporosis and other bone disease associated with bone loss. 

Clinical trials have consistently shown that fluoride can increase spinal bone mass in a dose 

dependent manner; however, there is disagreement as to its ability to reduce vertebral 

fracture risk [3, 19]. Morphology studies in humans and animal models have found that new 

bone formed with fluoride treatment is often histologically abnormal. Woven bone rather 

lamellar bone is formed. Generalized or focal osteomalacia is also observed, indicating a 

deficiency in mineralization [24]. It is therefore proposed that the failure of fluoride to 

reduce vertebral fracture risk may be partially caused by the abnormal structure and 

compromised strength of fluoride-treated bone [3, 24]. 

  Due to fluoride’s similar size and charge to the hydroxyl ion— the normal 

component of hydroxyapatite, fluoride can substitute the hydroxyl group to form fluorapatite 

[25]. Compared to hydroxyapatite, fluoroapatite has a greater crystallinity, larger crystal size, 

and lower solubility. Moreover, fluoride can inhibit the dissolution of pre-formed 

hydroxyapatite, likely by forming a surface layer of less soluble fluoroapatite [26]. However, 
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the biological significance of these findings is not clear. No evidence has suggested that the 

formation of fluoroapatite per se alters the mechanical property of bone [21]. Therefore, the 

defective structure of fluoride-treated bone is probably caused by the cellular action of 

fluoride, rather than to its physicochemical action.  

   

5.2.2. In Vitro Effects on Osteoblasts 

  The first in vitro evidence demonstrated that fluoride (~10μM) can increase the 

proliferation and differentiation of bone-forming cells derived from chick embryonic 

calvaria [27]. Despite some negative results reported [28-31], the direct action of fluoride on 

osteoblastic proliferation and differentiation has been largely confirmed in similar or other 

osteoblast-like cell culture system [32-35]. Studies have also showed that in vitro fluoride 

treatment at similar concentrations can stimulate the proliferation and differentiation of 

osteoprogenitors (pre-osteoblasts) [34, 36], which are more sensitive to fluoride than mature 

osteoblasts [35]. It is therefore largely accepted that fluoride can enhance osteoblastic 

proliferation and activity, but the underlying mechanism has not been completely defined 

yet.  

  It appears that fluoride can enhance the Ras-activated MAP Kinase (MAPK) 

pathway and thereby increase osteoblast proliferation. Two competing models regarding the 

underlying mechanism have been proposed [3, 37]. 1) The tyrosine phosphatase hypothesis: 

fluoride directly inhibits a tyrosine phosphatase, resulting in increased tyrosine 

phosphorylation levels of signaling molecules involved in the Ras-Raf-MEK-ERK pathway 

[37-40]. This unique fluoride-sensitive tyrosine phosphatase has been recently suggested to 

be the tartrate-resistant acid phosphatase (TRAP), which is specifically expressed by 
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osteoblasts [41, 42]. 2) The G protein (guanine nucleotide binding protein) hypothesis: 

fluoride first forms a fluoroalumino complex with aluminum—fluoroaluminate. This 

complex interacts with GDP (guanosine diphosphate) to form a GTP (guanosine 

triphosphate)-like molecule, thereby activating a G protein. This leads to the stimulation of 

an unknown tyrosine kinase, which then increases the phosphorylation levels of signaling 

molecules in Ras-Raf-MEK-ERK pathway [43-48]. 

  The development of osteoclast biology in the late 1990s has provided us a great 

opportunity to study fluoride’s effects on bone cells in a context of osteoblasts and 

osteoclasts interaction. Interestingly, it has been reported that fluoride treatment of 

osteoporosis patients with Crohn’s disease can cause increased serum level of 

osteoprotegerin (OPG), an osteoblast-derived negative regulator of osteoclastogenesis [49]. 

This result indicates the effects of fluoride on bone cells may not be limited to osteoblasts and 

bone formation. 

 

5.2.3. Effects on Osteoclasts and Bone Marrow Cells 

  Based on both in vivo and in vitro data, researchers have hypothesized that fluoride 

can promote osteoblastic bone formation independent of any coupling between bone 

resorption and formation [22, 50]. Effects of fluoride on bone formation have been 

explained solely by its stimulation of osteoblasts, so fewer attempts have been made to 

address fluoride’s effects on bone resorption or cells of the osteoclastic lineage.  

  Using isolated chick or rabbit osteoclast culture system, two groups have found 

that fluoride can inhibit osteoclastic resorption at 500-1000μM and 15 mg/l /30mg/l (i.e. 

~360μM/720μM), respectively [51, 52]. Although it is tempting to interpret this as a direct 
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action of fluoride on osteoclasts, it should be noted that in these studies cells from animal 

long bones represented a mixed cell population. In fact, it was shown that after 48 hours in 

such isolated osteoclast cultures stromal cells became the major cell population [53]. 

Therefore, inhibition of fluoride on osteoclastic resorption could be indirectly mediated by 

factors released by stimulated osteoblast or other cell types [53]. Another point that needs 

to consider is the relatively high fluoride dose used in these experiments. Millimolar (mM) 

of fluoride has long been used as a potent inhibitor of enzyme function; however, the 

optimal fluoride dose to stimulate osteoblasts in vitro is between 10-100μM [38]. Although 

the therapeutic window for serum fluoride levels has not been firmly established, the widely 

quoted range is 5 -10 micromolar (μM) [19], while other ranges were also used, such as 5-15 

μM [54], ~8μM [55], and ~12μM [56]. Therefore, it is not likely that fluoride concentrations 

used in these studies and those described below is applicable to fluoride exposure seen in 

patients who may subject to fluoride therapy.  

  Studies of fluoride’s effects on bone have also been extended to bone marrow, 

where the progenitors of bone cells reside. Studies have shown that fluoride at 100-500μM 

can upregulate the expression of granulocyte-specific markers by the HL-60 (human 

promyelocytic leukemia cells) cell line or primary mouse bone marrow cells [57, 58]. The 

authors concluded that fluoride can shift the differentiation of myeloid cell line, HL-60 or 

primary bone marrow cells along the granulocytic but not the monocytic pathway, 

suggesting that fluoride may suppress the development of osteoclasts from bone marrow 

hematopoietic progenitor cells [57, 58]. However, stimulation of one differentiation 

pathway does not necessarily lead to suppression of another. Collectively, so far there is no 
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direct evidence for an inhibitory action of fluoride on osteoclasts or their precursors in bone 

marrow.    

  However, a recent publication has described a novel stimulatory action of fluoride 

on osteoclast differentiation [59]. C57BL/6J and C3H/HeJ mice—two inbred strains of 

mice widely used in the study of bone biology—were treated with fluoride in drinking 

water for three weeks (0 ppm, 50 ppm, and 100 ppm). Anabolic effects of fluoride in 

C57BL/6J mice were observed. Surprisingly, stimulation of osteoclastic lineages cells was 

observed in C3H/HeJ mice [59]. Bone marrow cells from C3H/HeJ mice showed increased 

osteoclast potential in culture in response to soluble RANKL and M-CSF with increasing in 

vivo fluoride exposure [59]. Consistently, in situ trabecular osteoclast number, osteoclast 

hematopoietic colony forming units, and serum makers for osteoclastic bone resorption 

(PTH, RANKL, and TRAP5b) were all increased dose-dependently. Moreover, serum OPG 

was decreased [59]. To date, this is the first report of a stimulatory effect of fluoride on 

osteoclasts. The underlying mechanism needs to be further determined as it will provide us 

a new perspective on fluoride effect on bone remodeling process.  

 

5.3. Chapter Summary 

  The bisphosphonate is currently considered a major class of drug for osteoporosis 

and other diseases associated with increased bone resorption. These compounds can induce 

osteoclast apoptosis. Based on their modes of action, bisphosphonates can be classified into 

two major groups. Non–nitrogen-containing bisphosphonates induce osteoclast apoptosis by 

forming toxic non-hydrolysable analogues of ATP, while nitrogen-containing 

bisphosphonates do so by inhibiting production of substrates for the prenylation of proteins 
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that are essential for osteoclast survival. Interestingly, the effects of bisphosphonates on 

osteoblast cell lineages have also been explored but with inconsistent results.  

  Fluoride is a potent anabolic agent, but its clinical application in treatment of 

osteoporosis and other bone diseases has been controversial. Fluoride’s stimulation on 

osteoblast proliferation has been well established, but the underlying mechanism is unclear. 

Moreover, little is known about its action on another important cell type involved in bone 

remodeling—osteoclasts. A recent study has revealed a stimulatory effect of fluoride on 

osteoclastogenesis. To harness the desirable action of fluoride while limiting its undesirable 

effects, we need to further understand fluoride’s effects on bone at both cellular and 

molecular levels. 
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Figure 5.1. The structure of bisphosphonate and pyrophosphate. 
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Figure 5.2. Structures of bisphosphonates classified according to their biochemical 
modes of action. Adapted from reference 4. 
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amino acid+ATP aminoacyl-tRNA + AMPamino acid-AMP+PPiII
tRNA

IIII

amino acid+AppCp amino acidamino acid--AMP+pCpAMP+pCpIIIIII

amino acid+ATP aminoacyl-tRNA + AMPamino acid-AMP+PPiII
tRNA

IIII

amino acid+AppCp amino acidamino acid--AMP+pCpAMP+pCpIIIIII
   

            

 

Figure 5.3. Formation of AppCp-type metabolites of simple bisphosphonates. Upper 
panel: Mechanism by which aminoacyl-tRNA synthetases catalyze formation of 
AppCp-type metabolites of bisphosphonates. In a reversible reaction, an amino acid 
condenses with ATP (Appp) to form an aminoacyl-adenylate (amino acid-AMP), releasing 
pyrophosphate (PPi) (reaction I). The aminoacyl-adenylate then condenses with a molecule 
of tRNA to form aminoacyl-tRNA (reaction II). Since non–nitrogen-containing 
bisphosphonates (pCp) resemble PPi in structure, the reverse reaction of (I) can occur with 
pCp in place of PPi, forming an analogue of ATP (AppCp). Lower panel: 
Non–nitrogen-containing bisphosphonate, clodronate, substitutes the pyrophosphate group 
in ATP to form an ATP analogue. Adapted from references 4 and 7.  
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Figure 5.4. Mechanism of action of nitrogen-containing bisphosphonates on osteoclasts. 
The mevalonate pathway is a biosynthetic pathway responsible for generating cholesterol 
and isoprenoid lipids. HMG-CoA reductase catalyzes conversion of HMG-CoA to 
mevolonate. Successive phosphorylation of mevalonate with ATP leads to formation of 
isopentenyl pyrophosphate (IPP). IPP is then isomerized to dimethylallyl pyrophosphate 
(DAMPP). Condensation of IPP and DAMPP results in formation of geranyl pyrophosphate 
(GPP). GPP then condenses with IPP to form farnesyl pyrophosphate (FPP). FPP can be 
further converted to cholesterol. Meanwhile, condensation of FPP and IPP leads to 
formation of geranylgeranyl pyrophosphate (GGPP). FPP and GGPP are substrates for 
prenylation of small GTPases, which are important for osteoclast functions and survival. 
Farnesyl pyrophosphate synthase (FPPS) catalyzes sequential condensation of IPP with 
DAMAP and GPP. Nitrogen-containing bisphosphonates act as substrate analogues for GPP 
and compete with GPP for FPPS binding, leading to competitive inhibition of FPPS. 
Therefore, by inhibiting FPPS, nitrogen-containing bisphosphonates block synthesis of FPP 
and GGPP and subsequent prenylation of small GTPase proteins, leading to osteoclast 
apoptosis. Adapted from references 4 and 7.  
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