
ABSTRACT

A three-dimensional model for the simulation of transient groundwater flow is devel¬
oped. The model is called REGFED for REGional flow using Finite Elements and Dif¬
ference methods. A review of groundwater flow and contaminant transport concepts and
theory reveals that three-dimensional representation of groundwater systems is essential for
realistic simulation of flow and transport. From an analysis of currently available ground-
water flow models and algorithms, it is apparent that a mixed numerical method consisting
of finite-elements and finite diff"erences is a suitable method for solving the groundwater
flow equation in three dimensions. An algorithm known as ALALS (Alternate sublayer
And Line Sweep) is selected for the basic model algorithm.

Finite elements are applied to areal components, and flnite differences are applied
to vertical components of flow. The model accomodates both conflned and unconfined
groundwater flow problems and is also capable of handling the draining and refilling of
individual elements or entire layers. Because of the model's efficient algorithm, it can
accomodate thousands of nodal unknowns with minimal computer storage and CPU time.

Quasilinear unconfined groundwater flow problems are solved using a Picard iteration
scheme. Entire confined layers are skipped in the iteration scheme in order to decrease the
CPU time required to solve the problem. The model is validated under a wide assortment of
conditions including confined flow, confined flow with partially screened wells, unconfined
flow, combined confined/unconfined flow, and flow with drained and refilled layers. A
heuristic error analysis shows that model results compare well with validation results.
Mass-balance errors for various groundwater flow problems are minimal for most cases.

The convergence speed and stability of the iteration scheme is evaluated for solu¬
tion of unconfined groundwater flow problems. A benchmark comparison using sample
groundwater flow problems was performed with the REGFED model and with the USGS
McDonald-Harbaugh model. Example applications further demonstrate the flexibility of
the model.
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1   INTRODUCTION

1.1   Background and Motivation

Approximately half the population of the U.S. depends on groundwater for its drink¬

ing water supplies. There is growing evidence that this resource, once thought to be

contaminant-free, is being contaminated by municipal, industrial, and agricultural wastes.

Researchers are thus focusing upon studying the mechanisms responsible for contaminant

transport in groundwater systems. To prevent the further deterioration of groundwater

quality, researchers are developing methodologies for monitoring, analyzing, and predict¬

ing the movement of contaminants in the subsurface. Predictive models of groundwater

contaminant transport can provide the information needed for the accurate assessment of

health risks resulting from contamination of drinking water supplies, or for the design and

evaluation of measures for renovating contaminated groundwater aquifers.

1.1.1 Relationship between Groundwater Flow and Contaminant Transport

One of the most important factors in predicting the movement of contaminants in

the subsurface is the analysis of groundwater flow systems. In the past, groundwater

flow simulation has been mainly a tool for quantifying yields of groundwater resources.

For example, the amount of water available from an aquifer to support a given population,

industrial, or agricultural base is a problem that groundwater flow researchers have studied

in detail. The increasing urgency of groundwater quality problems has changed the focus

of groundwater research by spurring the development of predictive tools in the form of

mathematical models designed to simulate the transport of contaminants in groundwater.

However, in the mathematical simulation of aquifer contamination, an accurate definition

of the flow system still is of vital importance (Frind et al., 1985). Thus, groundwater flow

1-1
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models can be developed in the context of groundwater contamination problems.

In order to understand the relationship between groundwater flow and contaminant

transport, one must examine the equations that govern the hydrodynamics of contam¬

inant transport. Determinstic and stochastic approaches for mathematically describing

contaminant transport are possible. This report focuses upon deterministic apporaches

for transport and flow, due to the relative difficulty of applying the stochastic approach to

practical contaminant transport problems.

The advective-dispersive equation is generally considered to be the equation that

governs contaminant transport (Anderson, 1979), although other researchers have proposed

different approaches (Gillham et al., 1982; Tompson, 1986). The advective-dispersive

equation considers solute flux to be the result of the average bulk movement of the fluid in

the direction of groundwater flow (advection) and a Fickian-type mixing in the displacing

fluid (dispersion) (Gillham et al., 1984). For saturated flow in heterogeneous porous media,

the general form of the advective-dispersive equation is written as

^ = V . (D . VC) - V. VC + (^)      + T{C) (1.1)^ / rxn

where

C — solute phase concentration [MjL^)

t = time (T)

V — vector of average groundwater pore velocity {L/T)

D  = hydrodynamic dispersion tensor {L'^/T)

V- = divergence operator

V = gradient operator

(W)rin = reactive term (M/L^/T)

T{C) = source or sink term {M/L^/T)

1-2
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Reactive processes such as sorption, chemical reactions, and biological degradation can

play important roles in the fate of contaminants and should also be accounted for in any

model of non-conservative groundwater contaminant transport. The focus of this report is

not on the reactive portion of Equation 1.1, but concentrates on the the hydrodynamics.

The conservative form of Equation 1.1 implies that

( / rxn

which reduces Equation 1.1 to

^ = v-(D •vc)-tr-vc + r(c) (1.3)at

Bear (1972) describes the hydrodynamic dispersion tensor as the sum of two compo¬

nents, which can be represented as

Dij = arvSij + {ai - aT)viVj/v + D* (1,4)

where

Dij = i,j term of dispersion tensor [L^ /T)

i,j = components of Cartesian coordinate system

ar — transverse dispersivity (L)

ai = longitudinal dispersivity (L)

V = average groundwater pore velocity {L/T)

D* ͣ= effective molecular diffusion coefficient [L^ /T)

Sij = Kronecker delta function [dimensionless]

— 1 for i — j
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= 0 for i 7^ j

The product of dispersivity and flow velocity is known as the mechanical disper¬

sion component. The mechanical mixing is a process introduced by averaging irregular

advective displacements taking place within the porous groundwater matrix (Fried and
Cornabous, 1971). In active groundwater flow through a granular medium, mechanical
dispersion is usually dominant over diff'usion, and so the D* term is often a relatively
small component.

By examining Equation 1.2, one can see that groundwater velocity, through the advec¬

tive term, is a crucial part of the advective- dispersive approach to modeling contaminant
transport, for a typical groundwater aquifer. In addition, Equation 1.4, which describes
the dispersion tensor, includes velocity-dependent terms.

Various mathematical solutions to the advective-dispersive equation have been pro¬
posed. These solutions have been compared to experimental results from laboratory-scale

soil columns. The solutions have been shown to provide accurate representations of conser¬

vative solute transport, under laboratory conditions (Gillham et al., 1984). Longitudinal
dispersivities have been found that range within a couple of orders of magnitudes of each

other ( 10""* to 10""^ meters). However, when the solutions of the advective-dispersive
equation are applied to fleld-scale tracer tests, longitudinal dispersivities in the range of

1 to 100 meters have been commonly reported (Gelhar et al., 1985). This variation in
dispersivity poses a difficulty in the use of predictive models of solute transport based on
the advective-dispersive equation.

The discrepancies between longitudinal dispersivities obtained from laboratory- and

field-scale experiments have led some researchers to conclude that dispersivity is a pa¬

rameter which is scale-dependent (Fried, 1975; Feaudecerf and Sauty, 1978; Sudicky and
Cherry, 1979; Pickens and Grisak, 1981). The scale dependency is generally attributed
to the eff^ect of heterogeneity of the geological media (Skibitzke et al., 1963; Fried, 1975;

1-4
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^ Bear, 1977; Schwartz, 1977; Anderson, 1979).

Heterogeneities can be found in a range of scales in the geological media. Figure 1.1
illustrates various types of heterogeneities that occur and the subsequent effect on velocity
distributions. These heterogeneities affect the velocity field, and therefore groundwater
flow, at all scales. Figure 1.1 illustrates that heterogeneities can occur from the grain-size
scale to the geologic- layering scale. The layering scale could, if necessary, be identified
and mapped by careful drilling, sampling or geophysical logging. If the smallest scale of
heterogeneities in a deterministic-type media could be identified and accounted for, then
the differences in advection or groundwater flow could be accurately simulated. However,
these heterogeneities cannot be identified by conventional methods of field testing (Freeze
and Cherry, 1979). As long as the smallest heterogeneities cannot be identified, it is
important that models of groundwater flow provide accurate simulations, using the best
available information from the scales that can be identified.

The dispersivity parameter is a result of averaging over scales larger than the smallest
scales. The average linear groundwater velocity that is used as input to the advective-
dispersive equation reduces the individual velocities in the interstitial flow paths to a
single value (Freeze and Cherry, 1979). Averaging of velocities often goes one step further
where individual velocities within layers of different hydraulic conductivities are averaged
to a single value. The result of this averaging is that the observed dispersity parameters
contain the deviations in velocities at the scale over which the flow has been averaged
(Anderson, 1984). Deterministic models of the advective-dispersive equation cissume that
hydrodynamic process occur over measurable scales. If the models included the smallest
heterogeneities, theoretically there would be no deviations in velocities over a small scale,
and therefore the dependence of prediciting hydrodynamics on dispersivities would be
reduced.

1.1.2 Importance of Modeling Flow and Transport in Three Dimensions
1-5
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The majority of contaminant transport models have been developed over two dimen¬
sions (Burnett and Frind, 1987). In these cases, important aquifer properties such as
velocity magnitudes and directions are spatially averaged over the relevant dimensions
(usually the vertical dimension). This approach dooms the prediction of contaminant
transport to failure, in all but the simplest of groundwater systems. Figure 1.2 provides
a schematic illustration of a typical three-dimensional groundwater flow and contaminant
transport problem.

Various researchers have reported that three-dimensional modeling of flow and con¬
taminant transport improves the accuracy of such simulations relative to two- or three-
dimensional simulations. Stochastic analyses performed by Freeze (1975) and Gelhar
(1976) show that there is considerably less variation about a mean hydraulic head value
for three-dimensional flow models than for two- and one-dimensional models. Increases in

these variations tend to inflate the value of dispersion and produce poor predictive ability
in contaminant transport models.

The scale eff"ects on dispersion that were discussed previously may be an artifact of
the dimensionality of the models employed to predict dispersion (Domenico and Robbins,
1984). Results of Domenico and Robbins (1984) indicate that a "scaling-up" of dispersivity
will occur when the dimensionality of a model fails to match that of a natural system.
Molz et al. (1983) conclude that the vertical distribution of hydraulic conductivity (and
the subsequent effect on mixing) is a key parameter that aff"ects overall dispersivity.

Burnett and Frind (1987) describe variations in hydrodynamic parameters in three
dimensions that influence the shape of a contaminant plume. Arnett et al. (1977) report
that three-dimensional models of contaminant movement compare better with observed
contaminant movement at the Hanford, Washington site, than for two-dimensional models.

Vertically-layered groundwater systems are often found in the field (Huyakorn et al.,
1986). Such systems occur commonly in stratigraphic sections, as a result of most depo-
sitional processes.   Diff^erences in hydraulic conductivities between layers can be several

1-7
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orders of magnitude (Sudicky, 1986). If the variations in flow caused by the differences are
not taken into account, at best only averaged contaminant concentrations can be predicted
rather than in the individual layers. The presence of a high conductivity layer may direct
the contaminants toward this layer, the effects of which may be ignored in a one- or two-
dimensional analysis. Results from Sudicky (1986) and Molz (1986) showing the vertical
distribution of hydraulic conductivities are shown in Figure 1.3. These results show that
hydraulic conductivity, and thus velocities, can vary more than an order of magnitude in
the vertical direction.

The effects of the vertical averaging of groundwater velocity distributions can be
shown through some hypothetical simulations. An analytical model of the one dimensional,
conservative form of the advective-dispersive equation (Bear, 1979) was applied to two
cases: 1) a five-layer aquifer, with each layer having a different groundwater velocity, and
a line source of contaminant, as shown in Figure 1.4; and 2) the same aquifer, but with
the velocities of the five layers averaged into a single value of velocity. The simulations
were performed at three different positions down-gradient from the contaminant source.
The value of longitudinal dispersivity for the second case was fitted to the results from the
first case at the first down-gradient position. All other parameter values were the same for
each case.

The results are shown in Figure 1.5 (note that the time axis has a log scale). These
results show that, at the first position (where the dispersivity was fitted), the vertically
averaged results resemble the non-vertically averaged resits. However, cis the simulations
move farther from the contaminant source, the vertically averaged results no longer resem¬
ble the non-vertically averaged results. Thus, the vertical variations cannot be averaged
while expecting the simulations to provide accurate results.

1.1.3 Importance of Modeling Unconfined Flow

Aquifers are generally classified as either confined (artesian) or unconfined (water
1-9
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FIGURE 1.3
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FIGURE 1.4
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table). Flow in confined aquifers is bounded above and below by impervious layers. Un-
confined aquifers are bound below by an impervious layer, but are bound above by the

top of the water table. Figure 1.6 shows a schematic representation of the two types of

aquifers. Most contamination cases can be found in unconfined aquifers, due to the lack

of a protective confining layer and thus an increased vulnerability over confined aquifers.

Shallow unconfined aquifers are particularly susceptible to pollution from contaminants

when little or no treatment is afforded by the overlying strata (Guvanasen and Volker,
1981).

However, most of the available flow models either do not accomodate unconfined flow

at all or do so unreliably. Modeling an unconfined groundwater system as a confined

system usually is inaccurate because the flow regimes may differ greatly between the two

types of systems. The presence of a free upper boundary in an unconfined aquifer can

significantly affect groundwater velocities, especially in shallower aquifers. These differ¬

ences can translate to poor estimates for the movement of groundwater contaminants, if
the wrong system is modeled.

1.3   Research Goals and Objectives

Thus, the goal of this research is to develop a versatile model that accurately and

efficiently simulates confined and unconfined groundwater flow in three dimensions.

The objectives to be met with this research are:

1) To develop a three-dimensional numerical model for simulating confined ground-
water flow.

2) To develop a three-dimensional numerical model for simulating unconfined ground-
water flow, using the confined flow model for the basic structure so that a combination
of confined and unconfined flow can be accomodated in the final model.

3) To test the accuracy of both the confined and unconfined flow portions of the final
model.

1-13
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FIGURE 1.6
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4) To apply the model to some hypothetical groundwater flow situations.

1.3   Methodology

To meet the first objective, an algorithm consisting of a numerical solution of the
groundwater flow equation is selected. This algorithm, called the ALALS algorithm (for
ALternate sublayer And Line Sweep procedure) has been described in the literature. The
complete derivation of this algorithm is performed. Next, a structured and commented
computer code that incorporates the ALALS algorithm is developed. Various modifications
of the algorithm are also included in the code, such as the ability to simulte steady-state
as well as transient problems, and a provision for calculating mass balance errors. The
result is a model for simulating confined flow.

The model developed under the first objective is then modified to include unconfined
flow. The equation describing unconfined flow is not linear, as it was the confined case.
An iterative algorithm (Picard iteration) is utilized to solve the unconfined flow equation.
Application of the iterative algorithm results in a significant increase in computaional
effort over the confined model. The computational eff^ort is reduced by modifying the
iterative algorithm to include unconfined aquifer layers only. Other problems resulting
from modeling unconfined flow, such as the draining and reflUing of aquifer layers, are
incorporated into the model. The resulting model can simulate confined and unconfined
flow separately or at the same time. The model is named REGFED for REGional flow
using Finite Element and Differences methods.

The third objective involves testing the accuracy of the unconfined and confined por¬
tions of the model. In this research, accuracy is evaluated by graphical comparisons of
model results with results from analytical solutions. In a few cases where analytical mod¬
els are not availble for comparison, the ability of the model to balance mass in and out
of the groundwater system is analyzed. The sensitivity of the model to various model
parameters, such as vertical and horizontal discretization schemes and time step sizes, is
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analyzed by graphical comparisons of model results with analytical solution results.
Hypothetical applications are simulated with the model. The example applications

include flow within a monitoring well, flow in an aquifer-confining layer system, and flow
resulting from a two-well tracer test. In addition, the performance of the model is com¬
pared to the most popular three-dimensional public domain groundwater flow model, the
McDonald-Harbaugh model. This comparison provides a way to gauge the relative effi¬
ciency of the WELFED model. The total computational time required for each model to
simulate a sample problem is compared.
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2   THEORETICAL BACKGROUND AND LITERATURE RE¬
VIEW

The determination of groundwater flow requires the evaluation of either or both of

the hydraulic head variable or the velocity variable. Hydraulic head is a measure of fluid

potential; it consists of the sum of a pressure head and an elevation head. Most groundater

flow models simulate distributions of hydraulic heads. Groundwater velocity is the velocity

variable found in the advective-dispersive equation. Velocity is proportional to the negative

of the groundwater gradient (Darcy's Law).

Generally, there are two approaches towards simulating groundwater flow velocities:

the indirect and direct method. The indirect method- the most popular- consists of sim¬

ulating hydraulic head distributions and then using Darcy's Law to approximate ground-

water velocities. The direct method uses Darcy's Law directly to simulate groundwater

velocities. This report focuses on simulating distributions of hydraulic heads.

Before discussing the approaches toward obtaining hydraulic head and velocity, the

classical theories of groundwater flow should be reviewed. By examining the theory first,
one can understand the necessary steps in each approach.

2.1   Governing Equations for Groundwater Flow

2.1.1 Theory: Darcy's Law

Groundwater flow theory begins with Darcy's Law. Darcy's Law is an empirically

derived formula that relates specific discharge to the groundwater gradient. It is usually
represented as
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, = -k|^ m
where

q = specific discharge (L/T)
K = hydraulic conductivity [L/T)
h — hydraulic head (L)

1^ = groundwater gradient [dimensionless]

Darcy's law is valid for groundwater flow in any direction in space. However, it should
be understood that the specific discharge calculated from Darcy's Law is a macroscopic
concept, which is averaged over a portion of the porous medium. The specific discharge is
clearly diff"erentiated from the velocities encountered in the actual path of the fluid particle
through a porous medium (Bear, 1979).

The average velocity, v, represents the flow that passes through only the portion of
the porous medium occupied by voids in the porous matrix. The average velocity is found
in the advective and dispersive terms of the advective-dispersive equation. It is obtained
by

tJ = - (2.2)n

where

V — average groundwater pore velocity [LfT]
n — porosity [dimtnsionltss)

2.1.2 Theory: Groundwater Flow Equation
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The continuity equation for groundwater flow is a partial differential equation that

describes the conservation of fluid mass during flow through a porous medium. The ground-

water flow equation for saturated flow in confined aquifers is generally represented as

V.(K  ͣVh) + Tih)^Ss~ (2.7)at

where

h = hydraulic head (L)

K  = hydraulic conductivity tensor [L/T)

S3 = specific storage (l/X)

r{/i) = source or sink term {1/T)

The cissumptions implied in this equation are that (1) the flow of water is laminar, (2)

the fluid is incompressible and of constant density, (3) the porous medium is rigid, and (4)

the unsaturated portion of flow can be negelected. Assumptions (1) through (3) are most

commonly applied in groundwater flow analysis. Assumption (4) involves the unsaturated

region. This region involves the two- phase flow of air and water and is found directly

above the top of the water table (see Figure 1.6). Unsaturated flow is important when

considering infiltration of fluids from above the water table. The unsaturated portion

of flow is neglected in this report, because the difficulty of modeling unsaturated flow

outweighs the practical advantages to be gained.

Equation 2.3 can be simplified further by assuming that the components of the con¬

ductivity tensor are aligned with the directions of the gradients of head. This assumption

allows for the consideration of only the diagonal components of the conductivity tensor
and reduces Equation 2.3 to
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d   (^^ dh\       d   (^^ dh\       d   /,, dh\     ^,,,      ^ dh

where

Kx,Ky, Kz — components of conductivity in the x, y, and z directions, respectively [LjT)

2.1.3 Theory: Unconfined Flow

When examining flow in unconfined aquifers, the physics governing flow change. These
changes are reflected in the groundwater flow equation. The conductivity parameters found
in Equation 2.4 are constant for confined flow. However, for unconfined flow, vertical
averaging produces the transmissivity parameter, which is a function of the saturated
thickness of the aquifer. The storage parameter found in Equation 2.4 also changes for
unconfined aquifers, to represent the saturated/unsaturated interaction of the aquifer.

In order to analyze unconfined flow with Equation 2.4, the equation is often vertically
averaged (using the Dupuit assumptions of negligible vertical gradients). The averaging
produces the new parameters of transmissivity (the vertically averaged hydraulic conduc¬
tivity) and storativity (the vertically averaged specific storage). Vertical averaging also
eliminates the terms that are a function of z. Equation 2.4 can be rewritten as

where

Tx,Ty = components of transmissivity in the x, and y directions, respectively, where
T = Kh {L^/T)

Sy = specific yield [dimensionless)
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T'{h) ~ vertically averaged source or sink term {LjT)

The resulting differential equation is more difficult to solve, because it is no longer a
linear function of h (hydraulic head).

2.2   Solutions of the Groundwater Flow Equation

Solutions to groundwater flow equations such as 2.4 or 2.5 can be solved for the
hydraulic head variable. Analytical and numerical solutions of the flow equations are
used in the analysis of groundwater flow. However, analytical solutions usually are not
sophisticated enough to handle heterogeneous aquifers of irregular shape that are most
often encountered in the field. The analysis and prediction of aquifer performance in such
situations is normally carried out by numerical simulation. However, analytical solutions
can be used for some types of aquifer evaluations and also serve as convenient benchmarks
for evaluating the accuracy of numerical models.

2.2.1 Analytical Flow Models

Simulations of hydraulic head distributions have been performed for at least 50 years.
Theis (1935) solved a radial form of the groundwater flow equation to obtain an analytical
expression for the change in hydraulic head around a pumped well in a confined aquifer.
Many other analytical solutions for various types of flow have been produced since Theis.

In the case of unconfined flow, transient groundwater flow is more difficult to sim¬
ulate. The analytical (and numerical) solutions available to analyze unconflned flow are
consequently fewer than those for confined flow. Analytical solutions proposed to simulate
unconfined flow are still under scrutiny by groundwater researchers. The problems arise
from the fact that the top boundary (also known as the free surface) of the aquifer moves
as hydraulic head changes and that the groundwater flow equation is no longer linear. To
simplify the treatment of such problems, researchers have relied on the Dupuit assumptions
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(Streltsova, 1973; Bear, 1979). These assumptions basically mean that vertical gradients
within the aquifer can be ignored. These assumptions give rise to the Boussinesq equation
for unconfined flow:

d   (,^ dh\       d  (^^ dh\        .,,,      ^ dh

Freeze and Cherry (1979) identified three approach^ to analyze unconfined flow in
pumped wells. The first recognizes that the unconfined problem involves a saturated-
unstaurated flow system in which changes in hydraulic head are accompanied by changes
in the moisture content above the water table. An analytical solution for this case was
presented by Kroszynski and Dagan (1975). However, the conclusions from this and other
studies (Taylor and Luthin, 1969; Cooley, 1971) is that hydraulic heads are not substan¬
tially affected by including the unsaturated flow component.

The second approach is to use the confined aquifer (the Theis equation) defined in
terms of specific yield instead of storativity. This method effectively relies on the Dupuit
assumptions. Jacob (1950) has shown that this approach is nearly correct as long as
drawdowns are small in comparison with saturated thickness. The third approach is based
on the concept of a delayed water-table response. Neuman (1972) presents an analytical
solution for this approach. After long times or at a long enough distance from the well,
the hydraulic head distributuon eventually mimics the Theis solution for unconfined flow.

2.2.2 Numerical Flow Models

Numerical simulations of confined and unconfined groundwater flow are also well
established. Various numerical methods are available for solving the groundwater flow
equations. These methods include finite differences, finite elements, finite element- finite
difference hybrids, and boundary integral equation methods (BIEM).

Finite difference methods have been applied to groundwater flow problems for many
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years. This method is relatively easy to apply, as long as the problem domain has bound¬
aries that are relatively regular in shape. Irregular boundaries are simulated inefficiently
with finite differences. The accuracy of results obtained from finite difference methods is
generally lower than results from finite elements, given the same number of nodes used in
the discretization. However, the computational effort required to solve a finite difference
problem is usually smaller than for finite elements, given the same level of desired accuracy
(Faust and Mercer, 1981).

With finite-elements, problems can be solved using fewer unknowns than for finite
differences, given the same degree of accuracy. Finite element methods have the advan¬
tage of being able to fit irregular boundaries without additional comptutational effort over
simpler boundaries. In addition, finite elements provide values of the dependent variable
over the entire problem domain, not just at selected nodal locations as in finite differences.
However, the computational cost of three-dimensional finite element applications is pro¬
hibitive, due to the large amount of data and operations that must be carried through the
computational procedure.

Hybrid finite element-finite difference methods combine the good points from both
methods. Irregular boundaries are usually encountered in the horizontal or areal directions,
therefore, finite elements are applied in this direction. Vertical changes in parameters such
as hydraulic conductivity often occur as changes from one parallel layer to another, which
makes for a suitable application of finite differences. By reducing the dimensionality over
which finite elements are applied, the computational cost of the applied method is reduced.

The BIEM also has the advantage of providing flexible boundaries. It is also especially
suited for unconfined flow problems. However, this method contains some serious draw¬
backs. First, current theory does not allow for the convenient solution of time dependent
problems. Second, model parameters must be constant within the domain- a substantial
disdvantage for any method where heterogeneous conditons are encountered.

Numerical simulations are commonly performed in two space dimensions, either with
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cross-sectional or areal models. There are at least two two-dimensional aquifer-simulation

programs that have been completely documented and widely applied in North America.

These programs are the Trescott-Pinder-Larson model (Trescott et al., 1976) and the
Illinois Water Survey model (Prickett and Lonnquist, 1971). Both of these models utilize
finite difference formulations to produce head distributions.

Numerical methods for simulating two-dimensional unconfined flow have also been

proposed. The problem of locating the position of the free surface is usually resolved

by approximating the free surface location and then iterating, successively solving the

complete flow problem, and relocating the approximate surface. Alternatively, if it is not

necessary to determine the position of the free surface, heads are approximated only at
fixed nodal positions (the approach taken in this research).

Neuman and Witherspoon (1971) developed what is believed to be the earliest nu¬
merical model in which vertical gradients are not assumed to be negligible. Their tran¬
sient, two-dimensional flow model is based on the finite element method^ The free surface
boundary is simulated by changing the location of the nodes at the top of the aquifer as
the hydraulic head changes.

The Boundary Integral Equation Method (BIEM) has been employed by Liggett
(1977) and Lennon et al. (1980) to resolve the free surface problem. The advantage of
using the BIEM is that the flow equations at the free surface at the boundary depends only

on boundary data and thus the free surface can be located without solving the complete

fiow problem (Liggett, 1977). However, the disadvantage of the BIEM is that hydrologic
paramters are assumed to be constant over the entire domain. In addition, most BIEM

theory has been developed for steady-state conditions only. Applications of the BIEM to
subsurface hydrology problems are found in Huyakorn and Pinder (1983).

Trescott and Larson (1977) compared the efficiency of various iteration methods for
simulating unconfined flow. Using a two- dimensional finite difference model, they found

that the Strongly Implicit Procedure (SIP) was superior to Line Succesive Overrelaxtion
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(LSOR) and the Alternating Direction Implicit procedure (ADI) for solving the nonlinear
free-surface problem. Huyakorn and Pinder (1983) offer general procedures for solving
nonlinear flow problems by iteration. These procedures include the Newton-Raphson and
Picard iteration procedures.

Complexity and high computational cost are usually the reasons for avoiding three-
dimensional analyses. Modeling transient unconfined flow in three dimensions is especially
difficult because the top boundary of the water table must be moveable and because of the
quasilinearity of the equations. However, as was discussed in Chapter 1, there are many
instances where two-dimensional approaches are not adequate.

Three-dimensional groundwater flow models can be described as either "fully" three-
dimensional, in order to distinguish them from "quasi" three-dimensional models. The
fully three-dimensional models represent all dimensions of flow equally. The quasi three-
dimensional models, however, take advantage of the fact that groundwater systems of¬
ten consist of several aquifers separated by confining or semi-confining layers. These layers
transmit water and interconnect the aquifers to various degrees. The contrast in permeabil¬
ity between the confining layers and the aquifers is usually several orders of magnitude.
The system can be simplified by assuming that vertical components of flow within the
aquifer are negligible and that the horizontal components of flow in the confining layers
are negligible. Figure 2.1 shows how the presence of a semi-confining layer can affect flow
in a layered system.

The quasi three-dimensional approach is attractive to many researchers because of
the reduced computational costs resulting from the assumptions described above. Bre-
dehoeft and Pinder (1970) used a finite difference scheme in their transient, quasi three-
dimensional flow model. Finite elements were employed by Chorley and Frind (1978) in a
transient, quasi three-dimensional model. They showed that their model required about
4al. (1982) developed a quasi three-dimensional flow model that also simulated land sub¬
sidence. The transient flow and subsidence problems were simulated with finite elements.
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FIGURE 2.1

EFFECT OF SEMI-CONFINING LAYER
ON GROUNDWATER FLOW
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Gambolati et al. (1986) also used finite elements to simulate transient, quasi three- di¬

mensional flow. Several three-dimensional numerical models have been proposed for flow

analysis.

Fully three-dimensional flow models also have been developed. Freeze (1971) was per¬

haps the first researcher to develop a fully three-dimensional model of transient ground-

water flow. He used a finite difference formulation to solve the groundwater flow equation.

The model included the unsaturated zone and could accomodate both confined and un-

confined conditions. Narasimhan and Witherspoon (1976) developed a general model for

transient, three-dimensional flow based on the integrated finite difference approach. Con¬

fined and unconfined flows were included in the formulation of the model.

Trescott (1976) developed a transient, three-dimensional, finite difference flow model

for confined aquifers. Winter (1978) derived a steady-state, three-dimensional, finite differ¬

ence model to analyze the interaction between lakes and groundwater flow. An integrated

model for flow and transport employing finite differences was developed by Reeves and

Cranwell (1981). The SWENT model, developed by Intera Environmental Consultants

(1983), simulates flow, energy and radionuclide transport. The model utilizes finite dif¬

ferences to solve the various equations. There are other models which couple flow with

transport, but they do not have the ability to check fiow results independently. (Anderson,

1979).

The USGS McDonald-Harbaugh model (McDonald and Harbaugh, 1984) is another

transient three-dimensional flow model that uses finite differences. Of all the the three-

dimensional flow models, it is the most fully documented and widely applied (International

Ground Water Modeling Center, 1987).

The finite element method is another method for solving the groundwater flow equa¬

tion. Narasimhan et al. (1978) employed three- dimensional finite elements to model

unconfined flow, but assumed that flow was horizontal at or near the free surface, and

thus could employ the Boussinesq equation (Equation II-7) at this location.  Gupta and
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Tanji (1976) used a three-dimensional finite element model in the analysis of flow in Sutter
Basin, California. This model is mainly suited for steady-state flow (Frind and Verge,
1978). Huang and Sonnenfeld (1974) used three-dimensional finite elements to analyze
the time-dependent drawdown in the vicinity of a well. Frind and Verge (1978) solved the
unsaturated-saturated form of the groundwater flow equation. The model employs finite
elements to simulate three-dimensional flow.

Gupta et al. (1984) developed the FE3DGW model, using a finite element scheme.
This transient flow model was applied to the groundwater basin beneath Long Island, New

York. Babu et al. (1982) produced a hybrid finite difference-finite element scheme for
analyzing transient, three-dimensional flow. This scheme was employed later by Huyakorn

et al. (1986). Gambolati et al. (1986) developed a three-dimensional, transient flow model.
This model has the feature of automatically generating the finite element discretization
scheme.

2.2.3 Indirect Velocity Estimation

Groundwater velocities can be estimated from simulated head distributions. Having

obtained the head field, the velocity field is determined from Darcy's Law (Equation 2.1)
by using some type of numerical differentiation. The advantage to the indirect estima¬

tion approach is that head distributions can be verified easily in the field. Heads can be

measured at the desired spatial locations, in all spatial dimensions, with relatively simple
equipment and procedures.

The numerical differentiation can be performed by using either the finite difference or

finite element method. A simple example of numerical differentiation by finite differences
is as follows.

Vz = -qx^ --K^—- (2.7)n n      Ax
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where

Ax = distance between spatial location Xi and Zi+i (L)

Ah = change in hydraulic head from Xj to Xi+i (L)

n = porosity [dimensionless]

The differentiation is followed by averaging of hydraulic conductivities over a single

finite element so that a continuous distribution of velocities is obtained. Pinder (1973),

Reeves and Duguid (1975), and Segol (1976) simulated head distributions using finite ele¬
ment flow models. These researchers used numerical differention of the head distribution

to produce velocities located at the center of each element. Pinder et al. (1981) and Abri-

ola and Pinder (1982) introduced a finite element interpolation method to obtain a head
gradient estimation in two and three dimensions. Because the interpolation function ap¬

plied was linear, this approximation is essentially the same as the numerical differentiation

of the previous work.

However, when applying the differentiation approach to heads obtained by conven¬

tional finite element methods, there is a resulting discontinuity in the velocity at nodal

points and element boundaries (Yeh, 1981). The discontinuity leads to a violation of the
conservation of mass around a single element. In areas where there are significant vari¬

ations in hydraulic conductivity, the resulting error can range from very small to several

hundred percent (Yeh, 1981). In addition, applying the approach to aquifers with low

hydraulic gradients can result in roundoff errors that produce spurious gradients (Frind et

al., 1985).

Because of the problems with the differentiation approach, some researchers have

introduced methods of estimating velocities from head distributions that somewhat over¬

come these inaccuracies. Yeh (1981) applied the finite element method to the velocity
field, after obtaining the head field with the same finite element method. The velocity

field is then continuous and the mass balance error is reduced (Yeh, 1981).  Batu (1984)
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proposed creating a "dual" discretization mesh for estimating velocities. In this method a

second discretization scheme for estimating velocities is created that is shifted away from

the discretization scheme used to estimate heads. This approach somewhat avoids the dis¬

continuity problem and satifies the conservation of mass principles to an acceptable degree

(Batu, 1984).

2.2.4 Direct Mehtods of Obtaining Velocity

The direct estimation of groundwater velocities is a relatively new approach. Direct es¬

timation of velocities avoids the mass balance and discontinuity problems described above.

However, the results obtained from a direct method are not easily verifiable in the field.

Currently, the instrumentation available for measuring velocities in groundwater relies on

sending heat pulses out through the water and measuring the time it takes for those pulses

to reach a heat sensing device. This type of instrumentation produces an unacceptable

degree of error. Tracer tests are unreliable for predicting velocities because of dispersion

effects. Examples of this approach are scarce, due to the newness of the approach and the

difficulty of field verification.

Segol et al. (1975) presented an approach where finite element theory is used to

obtain the head and velocity fields simultaneously, by carrying the derivative terms for

velocity through the finite element estimation. Zijl (1984) applied a non-porous media fluid

dynamics approach where pressure (or hydraulic head) is eliminated and a set of equations

for the vorticity and vector potentials is produced. The vector potentials are applied to

Darcy's Law, resulting in a velocity vector field. This method required fewer computer

operations and less computer storage to solve a flow problem to the same accuracy as a

hydraulic head estimator (Zijl, 1984).

A streamline and equipotential approach was taken by Frind and Matanga (1985).

Galerkin finite elements were applied to stream and potential functions. This method is

especially suited for aquifers with low gradients (Frind et al., 1985).   However, stream
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functions can only provide velocities for steady-state conditions. Zijl (1986) applied both

the stream function and a direct velocity approach. Derivation of the velocity expressions

was performed by vector analysis.

A more general approach to the problem is to employ Hermite finite elements (Van

Genuchten et al., 1977). This type of finite element provides continuity at the element

nodes for higher-order derivatives, and can provide solutions for groundwater gradients

at the nodes. However, the computational effort required to simulate a groundwater flow

problem with Hermite finite elements can be prohibitive.
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3   DEVELOPMENT OF CONFINED FLOW MODEL

3.1   Overview of Model Algorithm

The development of any model upon which engineering decisions are to be based should

be founded on a set of engineering criteria. The first step in developing the confined flow
model of this research is to select a basic algorithm for solution of the flow equations.
From the discussion in Chapter 1, several of criteria concerning the model algorithm can
be formalized. The criteria can be stated as

• The algorithm should provide accurate solutions

• The algorithm should be able to represent the true nature of the physical system,
e.g. fully three-dimensional representation

In addition to the above, there are other criteria which should be applied to any
algorithm that is to be used in a groundwater flow model:

• The algorithm should utilize state -of-the-art procedures

• The algorithm should be computationally efficient (in terms of speed and storage
requirements)

• The algorithm should be flexible, e.g.   be able to adapt to irregular boundaries,
multiple stresses, etc.

The literature review in Chapter 2 identified the various methods available for solv¬
ing the three-dimensional groundwater flow equation. These methods included finite dif¬
ferences, finite elements, finite element-finite difference hybrids, and boundary integral
equation methods (BIEM).

From the discussion in Chapter 2, it is evident that the hybrid finite element-finite
difference method is suitable for solving three-dimensional groundwater flow problems.

This hybrid method has been developed into an algorithm by Babu and Pinder (1982),
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and later refined by Huyakorn et al. (1986). The algorithm is best known by its acronym,

ALALS, for ALternate sublayer And Line Sweep. The ALALS algorithm is designed to

solve transient groundwater flow problems in three dimensions.

The algorithm employs a finite element method in the areal plane, and a finite differ¬

ence method in the vertical dimension. The algorithm is especially suited for multilayer

systems because it maintains the inherent flexibility of the finite element discretization in

the areal plane, where it is needed most.

The algorithm allows for the uncoupling of the vertical equations while the areal

equations are being solved, thus making it computationally more efficient than other fully

three-dimensional algorithms. This efficiency heis been demonstrated by Huyakorn (1986)
a model devloped from the ALALS algorithm is compared to a two-dimensional and a

three-dimensional finite element model. The ALALS model required considerably less

CPU time to simulate a sample problem than either of the two finite element models.

The derivation of the ALALS algorithm, and a discussion of additional refinements

included in the confined flow model are found in the following sections.

3.2   Derivation of Algorithm

Transient groundwater flow in a confined aquifer is described by:

,, art \       a   1^ an \       d   f ^^ dh\     „,,,      „ dh ,     ,if.^ ) + ^ ( if»^ ) + g; [K.-g-^] + m = S.^ (3.1)^r^§;) + |;(^»5r)
This equation can be solved by combining the Galerkin finite element method and the

finite difference method (Huyakorn et al. 1986). The finite difference and finite element
methods are reviewed in Appendix 1. In this case, a three-dimensional aquifer region is

divided into a number of layers, and each layer is subdivided into a number of elements, as

shown in Figure 3.1. Although triangular-shaped elements are applied here, other shapes
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or element types may also be applied by substituting the appropriate basis functions. For

some special cases of boundary or other conditions different elements may be more suitable.

The discretization is performed so that each sublayer has the same projected area

in the x-y plane. The resulting three-dimensional elements need to have planar vertical

sides, but the bases and tops do not need to be parallel to each other. The discretization

thus allows for layering that is not necessarily parallel to the x-y plane. By dividing the

three-dimensional region into sublayers, finite elements can be applied to the individual

sublayers. Thus, finite elements are applied only in the x-y plane.

The first step in the finite element procedure is to approximate (hydraulic head) by a

trial function:

h{x,y,z,t) w h{x,y,z,t) = ^Nn{x,y)hn{z,t) (3.2)

where

h = hydraulic head (L)

h = trial function for hydraulic head (L)

Na{x,y) = two-dimensional basis function in the x-y plane

/in = nodal parameter dependent on z and time (L)

Tixy — number of nodes in the x-y plane of each layer

Applying the Galerkin criterion over the x-y plane, the weighted residual approxima¬

tion of Equation 3.1 becomes

R

^^ dh\       d  I      dh\      dldh\     ^,,,     ^ dh
dx dy = 0

for i = l,...,nxj/
(3.3)
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FIGURE 3.1

THREE-DIMENSIONAL DISCRETIZATION OF AQUIFER DOMAIN
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where

N\ = two-dimensional basis function in the x-y plane

R = x-y problem domain

The cross-sectional area R. over which the integration in (3.3) is performed is assumed

to remain unchanged in the z- direction. This assumption allows for the use of a single

discretization in the x-y plane. Substitution of (3.2) into (3.3) yields

II- d_
dx

K.
dx Y^Nr^K +

dy dz \    ' dz

+T{h)-Ssi:\Y,N^h^ dx dy = Q
(3.4)

for i = l,...,nj;y

Integration by parts using Green's Theorem reduces the order of the highest deriva¬

tives. This operation gives

//(-

-~II-tA-

dNj dh dN\dh

dx dx " dy dy

z— I   dx dy +

dx dy + II- dt

11 NJ{h) dxdy+ i
dh

dxdy+ <pNi{Kn^ I  dB

for i = l,...,n

(3.5)

xy

where

S = boundary of the cross-section of Z

o- = outward normal derivative on Bdn

Kn = normal component of hydraulic conductivity on B
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A finite difference approximation is applied to the z-derivative terms of (3.5), using

a central difference, block-centered approach. The block-centered approach refers to the

location of the nodes in the finite difference approximation and is illustrated in Figure

3.2. By using a block-centered approach, discontinuities in hydraulic conductivity can be

treated by taking a harmonic mean of the conductivity divided by the layer thickness. This

approach reduces the z-derivative terms to

§-M)-lMt^'^'
n=l

dz \       ^ Az
\        n=l

N

n=l

r^       I  fen,k+l - fen.kA        y-      /^n,k-^n,k-l
Az_^Az     J V     Az-Az

where

indices k -h |,k — /rocl2,k -|-1, and k — 1 are as shown in Figure 3.2

Az terms are as shown in Figure 3.2 (L)

Kz+ = upper-weighted, harmonic-mean hydraulic conductivity [LjT)

Kz- — lower-weigh ted, harmonic-mean hydraulic conductivity {LjT)

and harmonic mean is defined as Kz — ^„'^  ,,.   where

d = total thickness [L)

d\ = thickness of individual layer (L)

K\ — hydraulic conductivity in indivdual layer [LjT)

Equation 3.6 can also be written as
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FIGURE 3.2
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X^AT,
n = l

N

EiVn
n = l

K,^

K.

^n,k+l ~ fcn,k if. ^n,k ~ ^n,k-l
A2_A2

A2+A2
hn k + 1 ^^jJff^H-     " ͣ

n=l A2;+A2      A2_A2 /ln,k (3.7)
N

+ E^"
n=l

if.
Az-A^ ^ii,k-

The next step is to approximate the temporal derivatives using finite differences. An
explicit, forward-difference approximation provides a first-order correct approximation.
Applying this approximation yields

dh      dh       d N
hl^^ - h\

dt       dt      dt -^        ^ ^     ^^       dt       ^    ^      At
n=l n=l n=l

(3.8)

where

1 — index for present time step

1 + 1 = index for next time step

At = time increment for time step [T)

The remaining derivative terms can be expressed as follows

* N N
dh      dh       d  v—v ,^ .   ,     ,      v^ ,   ,     V
dx      dx      dx

n=l n=l
dx (3.9)

- N N
dh      dh       d  \-^ ^r ,   t     ^      v^ .   /     \
^ ^ ^ n=l n=l

dN^
dy (3.10)

The terms from Equations 3.7 through 3.10 can be substituted into Equation 3.5.
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By time-lagging the z-component terms, the original set of n^j, by n^ terms are split

into Tiz subsets of equations, each of which contains rixy equations. Time-lagging the z-

component terms implies that these terms are evaluated at the old (1) time step, while

the other components are evaluated at the new (1+1) timestep. The resulting equations

can be split into two parts, the first representing a prediction of the approximate values

of head at the new (1+1) timestep, and the second representing the corrected approximate

values of head at the new (1+1) timestep. Splitting the equations in this manner allows

for computations in the x-y plane to be separated from computations for the z-direction,

thus easing the computational burden.

Instead of explicitly writing all terms of the two equations, they can be represented

in matrix form as

iKHuwr''+^ ic^vr^' - Ch}i) (3.11)

:{f(/.)}i'+^)* + {Fmi;-''^' + {KL . h)[_, - [{KU + KL) ͣ h]i + {KU ͣ h)i^.

and

[if^].wr^^'+^(wr^-{MO
={f (/.)}!'+')' + {F(/.)}i'+^)* + {KL ͣ h)it\ - [{KU + KL) . h)i+' + {KU • h)il\

(3.12)

where

index * refers to predicted solutions

and

[MJW = //(if.^S^if.^ff)  dxdy
3-9

NEATPAGEINFO:id=A93087E4-C84D-4862-8EA1-1CFA5CA893F1



[{h}('-^^) ~ {hy) = Sf N,S.^ dx dy[ST]
At

{T{h)}= ff N;T{h) dxdy
R.

{m}^^N;(Knl^) dB
{KL ͣ h)k-i - [{KU + KL) ͣ h]k + [KU ͣ h)k+i = JJ Nif, (if.g)  dx dy
The model considered in this paper utilizes linear triangular elements in the x-y plane,

as shown in Figure 3.3. The basis functions for this type of element are as follows.

^ni = ^[(2;n,yn„ - Xn,^yn^) + (yn,   " ynJ\X + (x„„  - Xn^)y\

Ki = -^[{^nr^Vni - XmVnJ + (yn„ " yni)x + (x„, - Xn^)y]

^^"^  " ^[(^'i.^''.  - ^n,yn,) + {yrti ' ynj)x + (Xn,  - Xn,)y] (3.37)
where

ni,nj,   and  Um = nodal indices on triangular element

Xi,Xj,Xm,yi,yj,   and  t/m = coordinates of triangle vertices (L)
Ae = area of triangle {L'^)

These basis functions are substituted into Equations 3.11 and 3.12 and subsequently
differentiated and integrated.

Equations 3.11 and 3.12 give the matrix form solution of the groundwater flow equation

in three dimensions. These equations can be solved for the hydraulic head distribution in

a two-step procedure.    However, there are further refinements which can simplify the
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FIGURE 3.3
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computational procedure. The first step is to lump-diagonalize the [ST] matrix, which
contains the storage terms, and the [KU], [KU+KL], and [KL] matrices, which contain the
vertical flow terms. The algorithm used to himp-diagonalize is as follows.

an = 2_^^i3 '      '^iy — ^  for i # j (3.13)
j

where

fltj = i,j element of [A] matrix

This approach greatly simplifles the computation of the two equations (3.11 and 3.12).
However, the lump-diagonalizing procedure implicitly assumes that the values of terms in

[A] do not differ signifcantly over the nodes of a single element. The set of equations in
(3.11) can be termed the predictor equations.

The flrst stage of the solution procedure amounts to a layer-by-layer solution of the

predictor equations for h^^'^^^*. After the sublayer-sweeping operation has been completed,
the second stage of the algorithm is achieved by solving Equation 3.12 for h^^'^^\ the
corrective version of the flow equation. It is apparent that there are several terms in

(3.11) that are identical to those in (3.12). There is no need to solve the entirety of both
equations. The repeated terms can be eliminated by taking the difference of (3.11) and
(3.12), thus obtaining

= {KL • h)it\ - [{KU + KL) . h][+' + {KU • h)i\\ (3-14)
-{KL ͣ h)i_, + {{KU + KL) • h)i - {KU • h)[+,

The overall coefficient matrix on the right-hand-side of Equation 3.14 can be made

tridiagonal if the matrix [ST] is lump- diagonalized and the matrices [KU], [KU+KL],
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and [KL] are lump-diagonalized. A highly efficient tridiagonal solver such as the Thomas

Algorithm can be used to solve (3.14). The second stage of the computational procedure

thus involves solving rixy subsets of equations, with each subset containing n^ equations

with ng unknowns. The resulting solutions for h^''^^' are the current hydraulic head values

at the nodes on a vertical line along the complete thickness of the aquifer domain.

The computational procedure for setting up and solving the predictor and corrector

equations is summarized in Figure 3.4. The procedure is repeated for each time step until

the maximum number of timesteps (specified by the user) is reached. No iterations within

the timestep are necessary for the confined flow case, because direct solution procedures

are used.

3.3   Application of Boundary Conditions and Source and Sink Terms

Suitable boundary conditions and source or sink terms can be applied to the ALALS

algorithm. The most commonly applied boundary conditions for groundwater flow prob¬

lems are the Neumann or Dirichlet boundary conditions. Typical boundary conditions and

sources or sinks are shown in Figure 3.5.

The Neumann boundary condition can be generalized as

du{x,y,x,t)
dn = g{x,y,z,t) (3.15)

B

where

n = outward normal vector

B = problem boundary

g = arbitrary boundary function

The specialized Neumann condition of no flow is implicitly applied in the x-y plane
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FIGURE 3.5

TYPICAL BOUNDARY CONDITIONS,
SOURCES AND SINKS FOR
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by simply placing the free edge of an element on the relevant boundary. In the z-direction,

no flow conditions are imposed by setting the relevant portion of the the vertical flow

component equal to zero (see Equation 3.11). For example, at the top layer of an aquifer
system, the condition of no flow onto the top reduces the expression for vertical flow
components from Equation 3.11 as follows.

// m£ (^^Ij I  dxdy= (KL ͣ /i)^_i - \{KU + KL) ͣ h)[ (3.16)
Fluxes into boundary elements can be applied in all three dimensions by integrating

the flux over the relevant element and applying the resultant to the nodes of the element.

The hydrologic quantity of recharge is an example of a boundary flux that may be applied

in groundwater flow. The integration is analogous to the boundary term found in Equation
3.5. Recharge can be handled as follows

11TM dx  dy = recharge (3.17)
R

where

Fr = recharge rate {L/T)

Dirichlet boundary conditions can be generalized as

UB (x, y, z, t) = f{x, y, z, t) (3.18)

where

ug = problem boundary
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/ = arbitrary boundary function

In groundwater flow, a Dirichlet boundary condition usually implies that a hydraulic

head, or set of heads, is constant over specified boundary nodes. The boundary nodes

are accomodated by operating on the global coefficient matrix to ensure that the solution
of the resultant equations satisfies the constant head conditions. The conditions may be

satisfied by forcing the boundary nodes to possess a value of one in the relevant location in
the global coefficient matrix, and forcing the remaining terms in that location to be equal

to zero. The right hand side of the equation is forced to be equal to / from Equation 3.18.

Source or sink terms are applied in a manner similar to boundary fluxes, except that

they are placed at any node throughout the three-dimensional domain. For example,

recharge is essentiallly a source term, but it is applied as a boundary flux. Withdrawal

or injection wells are examples of point sink or source terms that are quite common in

groundwater flow. These terms are applied simply by subtracting or adding the relevant

quantity from right or left hand side of the flow equations found in Equation 3.11 and 3.12,
or

±[rp(h)] = ffVpNi  dx  dy (3.19)

where

Fp = withdrawal or injection quantity (L^/T)

3.4   Matrix Solution Methods

The solution of Equation 3.13 requires a solution to the generic matrix problem
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\A]{h} = {b} (3.20)

where

[A] — sum of left-hand-side matrices (known)
{h) — the solution, or hydraulic head vector (unknown)
{6} = sum of right-hand-side vectors (known)

The Gaussian Elimination algorithm is used to solve this system of equations. After
the matrix [A] is formed, it is factored into a upper triangular matrix, which can be saved
eis long as no changes in transmissivity or storage terms occur after the first time step
(as in the confined case). A backward substitution procedure is used after the vector b is
formed, in order to solve for x. The fact that [A] is a banded matrix is taken advantage
of with the Gaussian Elimination solver, thus reducing computational time and storage
requirements. More details on the Gaussian Elimination algorithm can be found in Strang
(1986).

Solution of Equation (III-36) is similar, except that in this case, the tridiagonal nature
of the matrix [A] allows for the use of a more efficient solution algorithm. The Thomas
algorithm, a variation of Gaussian Elimination, is most suitable for this problem. A
detailed explanation of the Thomas algorithm can be found in Wang and Anderson (1982).

3.5   Other Model Features

3.5.1 Steady-State Case

Groundwater flow at steady-state is often an important case. Steady state flow can be
approxiniated by the model simply by increasing time until the change in hydraulic heads
between previous and current timesteps becomes insignificant. However, this process can
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be time-consuming or lead to innacuracies if large timesteps are used. A more appropriate
way to model steady-state flow is to set the term containing derivatives with respect to
time equivalent to zero, or

*^^1 (/,('+!) _/,')=0 (3.21)At

Only one timestep is required to solve this problem, but of course with unconfined flow,
iterations may be required before convergence is achieved. Convergence to a steady-state
solution for the unconfined case may be accelerated by using the square of the hydraulic
heads for boundary conditions and initial guesses of heads at interior nodes. Flux terms
must be multiplied by a factor of two. The square root of the resultant head distribution
provides the correct solution. The modfication of the algorithm for the steady-state case
is shown in Figure 3.6.

3,5.2 Water Balance Error

The water balance error is a measure of how well the model can balance the changes
in mass, or water in the case of groundwater flow. The concept that underlies the mass
or water balance is that mass is conserved throughout the model system. In groundwater
flow with a source or sinks term, the conservation of mass can be stated as

[ volume of water in or out from source or sink terms  ]
= [ volume of water released from aquifer storage  ]

or in mathematical terms (over an individual element)

sinks sources ^ , l   \     r rtT[J2 ^^^"/^ -    Y^    Qsources] = trS I   ^ ~^   'j j f N; dx dy (3.22)
e
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where

It — total time elapsed over simulation (T)

Thus the water balance error for an individual element is calculated as

'-'- trS {^^) JJ N-, dx dy ^'-''^
where

s^wb = water balance error {dimensionless)

hi = head at start of simulation [L)

hf = head at end of simulation [L)

The model calculates the water balance over the entire domain after the final timestep
by summing the errors from individual elements.
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4   DEVELOPMENT OF UNCONFINED FLOW MODEL

In this chapter, the development of an unconfined flow model is discussed. The uncon¬
fined flow model is based on the algorithm and model developed in the previous chapter,
which does not accomodate unconfined flow in its current state. The resulting flow model,
REGFED (for REGional flow using Finite Element and Diff^erence methods), is capable of
simulating confined and unconfined flow.

The accomodation of unconfined flow decreases the efficiency of the model (as com¬
pared to confined flow only), due to an increase in the number of operations needed to
produce a solution. The efficiency can be improved by refining the unconfined flow algo¬
rithm, however. A discussion of this refinement and other needed modifications is found
in the following sections.

4.1   Overview of Unconfined Flow Modeling

In order for the model to accomodate unconfined flow, Equations 4.11 and 4.12 must
be modified. The horizontal flow components are modified first. In the x-y plane, the pa¬
rameters of conductivity and storativity must be vertically averaged to simulate unconfined
flow. Vertical averaging yields horizontal transmissivities and storage terms consisting of
storativity or specific yield (for confined or unconfined flow, respectively). Thus the [KH]
and [ST] terms become

where
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T — transmissivity = Kb [L"^ /T)
where b = saturated thickness in aquifer layer (L)

and

[ST
At'-{h^+' - h'} = jj N;S~ dx dy (4.2)

where

S = specific yield (unconfined aquifer) or storativity (confined aquifer) [dimensionless]

The vertical flow components also can be vertically averaged. However, the quantity of
vertical transmissivity is meaningless in groundwater flow. Instead of producing a vertical
transmissivity term, vertical averaging produces a source or sink term for each layer. In
this case vertical averaging simply reduces the order of the second-order spatial derivatives.
The KL and KU terms thus become

KU' = K.^ ^'\' -^'^Az^       3

and

Kl' =^ K    ^'^ ~ ^''^^ —A._       3 '"•''

Solution of these new equations modified for unconfined flow provides values of hy¬
draulic head at fixed locations, and thus the location of the free surface is not known.

The equations that result when Equations 4.1 and 4.2 are substituted into Equations
3.11 and 3.12 are no longer linear, and thus cannot be solved directly for hydraulic heads.

4-2

NEATPAGEINFO:id=27EE7B30-55B4-4821-9C1D-AA160CBE0DBB



These equations are called quasi-linear. The quasi-linearity is a result of transmissivity

being a function of the aquifer saturated thickness. Figure 4.1 illustrates the difference

between confined and unconfined flow conditions with respect to saturated thickness. The
saturated thickness is essentially equivalent to hydraulic head.

The quasi-linear equations can be represented in matrix form as

[A]{h} = {6} (4.4)

where

[A] = sum of left-hand-side matrices (unknown)

{h} = the solution, or hydraulic head vector (unknown)

{b} = sum of right-hand-side vectors (known)

This problem can be solved by iterating over the equations within each timestep.

There are a variety of iterative methods available. These methods include Picard iteration

and Newton-Raphson iteration schemes. Both schemes require an initial estimate of the

solution at the start of a timestep, but the two schemes differ in how the new estimate is

produced. The Newton-Raphson scheme requires the additional evaluation of a derivative

term at each iteration. The Picard iteration scheme was selected for use in the algorithm
because of its ease of application.

4.2   Picard Iteration

Picard iteration is the simplest of the iteration schemes. The general algorithm for

Picard iteration can be described as follows. First, consider a set of quasilinear equations:

fi{xi,X2,...,XNj) ^ 0     for   / = 1,2,. ..,7V/ (4.5)
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FIGURE 4.1
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where

{xi,X2,. ͣ. ,xj\ij) = unknowns

A set of auxiliary functions b{xl,x2, ....,xM) is constructed next. In the case of
groundwater flow, these auxiliary functions would be the right hand side equations from
equations 3.11 and 3.12. They can be described as

[A]ij{£}j = {b}j (4.6)

The iteration is started by assuming an initial solution (xii,a;i2,...-,^iM) and this
solution is used to evaluate the left hand coefficients and the right hand side of Equation

4.6. Thus, Equation 4.6 becomes a set of linear equations which can be solved for the next
set of xj values. The solution for xj can be expressed as

{SV/' = [A]7]{brr (4.7)

where

r = iteration counter

[A]jj = elements of the inverse of matrix [yl]

Equation 4.7 provides the means for obtaining successive solutions of xj. It should

be noted that the inverse of matrix [A] is not produced by the algorithm; the inverse is
shown here to illustrate the nature of the solution. At each iterative cycle, the left hand

coefficients and the right hand side equations are updated. The iterations are performed

until satisfactory convergence is achieved. The criterion used for checking convergence is
given by
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----------------:r-nr4-i.------  < ^b 4.8)

where

Eb = prescribed residual tolerance
maxj = maximum over all nodes

The application of the Picard iteration scheme to the previously developed algorithm
is illustrated in Figure 4.2.

4.3   Skipping Confined Layers

The addition of an iterative scheme to the ALALS algorithm increases the number
of computational operations that must be performed in order to achieve a solution. The
flow diagram in Figure 4.2 indicates that the entire system of equations must be included
in reforming or updating of the coefficient matrices [KH] and [STj. The updating of the
matrices includes the factorization of [KH] + [ST], which can involve a great deal of
computational operations. However, because the ALALS algorithm uncouples the three-
dimensional system of equations into a set of x-y equations, it is not be necessary to update
the coefficient matrices for all of the x-y equations. The removal of these unnecessary
operations can be performed without affecting the accuracy of the solution.

For each node where unconfined conditions exist, there will be only one layer out of the
entire system of layers that has unconfined flow. The layers below the node will be confined,
and the layer above the node will be either nonexistent or drained. Thus, it is necessary
to update the coefficient matrices only for the layers that have unconfined flow conditions.
For example, for a typical layered system shown in Figure 4.3, only the nodes included
in the top layer would be included in the update of the coefficient matrices. Skipping
the reforming of the coefficient matrices for the confined layers would then decrease the
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number of operations by up to 20

4.4   Draining, Refilling Selected Nodes

As hydraulic head declines as a result of a withdrawal well, it can fall below the top of
a layer. If the water table drops below the top of the uppermost layer, flow at the affected
nodes changes from confined to unconfined. If the water table continues to drop, and falls
below the top of a layer below the uppermost layer, the aflFected nodes in that layer are
effectively drained. This concept is illustrated in Figure 4.5. Conversely, as the water table
rises as a result of recharge or an injection well, the drained nodes are refilled. This type of
situation is encountered often in water supply pumping operations, contaminant recovery
operations, and in natural recharge and discharge of groundwater aquifers.

The draining and refilling of nodes requires modification of the algorithm. If the
drained nodes are not accounted for, the algorithm will attempt to calculate the heads at
these nodes, resulting in an insolvable system of equations. The equations that include the
drained nodes could be removed from the system, but then refilling of the drained nodes
would be impossible. Instead of removing the equations, the coefficients of the drained
nodes can be operated upon in a way similar to that of imposing Dirichlet boundary
conditions. The relevant coefficients on the left hand side of Equations 3.11 and 3.12 are
forced to equal one or zero. On the right hand side, the coeffcients are forced to equal the
hydraulic heads from the layer immediately below

\hk]dTained = hk-l (4.9)

This procedure guarantees that the drained nodes will not influence the remaining
nodes, because as long as the heads in adjoining layers are equal, then there is no exchange
of flow between the adjoining layers. As soon as the head in the layer immediately below
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FIGURE 4.3

ILLUSTRATION OF LAYER-SKIPPING
FOR UNCONFINED FLOW
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FIGURE 4.4
LAYER-SKIPPING   MODIFICATION
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FIGURE 4.5

ILLUSTRATION OF DRAINED/REFILLED NODES
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the drained node exceeds the top of the layer immediately below, then the drained node
is refilled, and calculated with the normal procedure.

If a source or sink term exists at a drained node, then the location of the term must be

adjusted, when the drained node is removed from the system of equations. The adjustment
is accomplished by temporarily removing the stress from the drained node and replacing it
in the layer inamediately below. This adjustment ensures that the same overall magnitude
of sources or sinks remains constant, and thus conservation of mass is not violated. When

the drained node is refilled, then the source or sink is replaced at the refilled node. The
modification to the algorithm for draining and refilling of nodes is shown in Figure 4.6.

4.5   Storage Estimation

The storage terms found in the unconfined or confined version in the model can be
written as the amount of water released from aquifer storage

Qconf = S-----------------        Ni dx dy

and (3.55)

Qunconf = Sy------—--------  / / Ni dx dy
K.

where

Q = rate of change in storage of water in an element {L^/T)

In the case of a strictly confined or unconfined aquifer, these terms are suitable for

describing the rate of change in storage. However, these equations must be expanded to
allow for the simulation of a model node that can change from confined to unconfined in

one timestep (or the reverse). This situation is illustrated in Figure 4.7. During a time
step when a node changes from confined to unconfined, the storage equation becomes

4-12

NEATPAGEINFO:id=1051F4BF-91A0-4092-BCE0-8FC625BCAE63



FIGURE 4.6
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^      5^(/i'-top)+5('+i)(top-/i('+i))   /-r   ^   ^    ^ ,       ^
g = —^---------i^^------^^    V^------------^ / / A^i dx dy (4.10)

where

top = elevation of the top of an element layer (L)

5' = storage factor (specific yield or storativity) in effect at time / {dimensionless)

g(l+i) — storage factor (specific yield or storativity) in effect at time / +1 {dimensionless)
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FIGURE 4.7

ILLUSTRATION OF STORAGE TERMS FOR
UNCONFINED/CONFINED TRANSITION
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5    TESTING OF MODEL ACCURACY AND SENSITIVITY:
RESULTS AND DISCUSSION

Model testing is an evaluation of the accuracy of a model. It is one of the most
important steps in the development of a model. If a model tests favorably under a range
of conditions, then one can be confident that the model will perform well when applied to
more realistic situations. Model tests in this research consist of analyzing relatively simple
problems and graphically comparing numerical model results with results from analytical
solutions. One assumes that the exact analytical solutions used for comparison are a
surrogate for real groundwater flow.

Various flow conditions, such as confined and unconfined groundwater flow, can be
tested with exact analytical solutions. The ability of the model to handle flow in three
dimensions can also be tested. The results of such tests are reported in this chapter. In
addition to model validations, the sensitivity of the model to various parameters such as
timestep size, convergence criteria, and grid spacing is considered.

Ideally, one would like to test the model against all possible situations that may
be encountered when applying the model. But exact analytical solutions of the flow or
transport equations are available only for relatively simple applications. Mass balances,
however, can be performed under any flow conditions. Mass balances provide a convenient
way to check accuracy where analytical solutions are unavailable.

Models can be tested with methods more sophisticated than graphical comparisons.
Residual errors between the numerical model results and analytical model results can be
calculated and subsequently provide various accuracy criteria. These criteria may include
Mean Square Error (MSE) or Sums of Squares of Residuals (SSR). The calculation of
these types of criteria is left to further studies; graphical comparisons shall suffice for this
research.
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All computer runs used in this chapter were performed on an IBM Personal Computer
AT.

5.1   Confined Flow

Confined flow validations can be performed with the Theis equation (Theis, 1935).
The Theis equation is a solution that governs the transient response of an aquifer to a

pumped well. The assumptions for this solution include radially-symmetric flow towards

the well, a homogeneous and isotropic aquifer that is infinite in areal extent, and an
infinitessimal diameter for the well. A schematic illustration of these conditions is found
in Figure 5.1.

The Theis equation is represented as

s = -^W(uA (5.1)

where

5 = drawdown = initial head - new head {L)

r = radial distance from well {L)

W[uc) = well function for nonleaky aquifer (dimenstonless)

= f^—dwJ      w
u

Uc = argument of the well function {dimensionless)

4Tt

T = transmissivity {L^ /T)

S = storativity {dimensionless)

Q = pumping rate {L^/T)
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FIGURE 5.1

SINGLE PUMPED WELL, RADIALLY SYMMETRIC
HOMGENEOUS AQUIFER
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t = time (T)

The boundary conditions requiring an infinite aquifer radius is simulated with the
REGFED model by placing a constant head boundary far enough away from the well so
that no drawdown occurs at the boundary. This situation ensures that no flux through
the boundary occurs and thus the existence of the boundary has no eff"ect on the hydraulic
head distributions.

A comparison of results from the REGFED model and the Theis equation are shown
in Figure 5.2. The parameters used are also listed on the figure. Three different sets of
hydraulic conductivities were used, in order to test the sensitivity of the model. The sets
of parameters are meant to be increasingly difficult. The difficulty in modeling flow near a
well increases as the slope of the drawdown curve increases. Figure 5.2 indicates that the
model agrees quite well with the Theis equation, under all three sets of parameters.

The validity of the vertical flow components of the model can be tested against an exact
analytical solution that is a variation on the Theis equation. The Theis equation contains
the assumption that the pumped well fully penetrates the confined aquifer, as shown in
Figure 5.3. If this assumption is violated, then the well only partially penetrates the
aquifer, and vertical flow components are introduced (see Figure 5.3). An exact analytical
solution has been found for transient, confined flow under partially penetrating conditions
(Hantush, 1961). This solution is represented as

[•-w-^E-mi^K-4irT

.    fnsnd\.     ,      n^Trr. (5.2)

where

W[uc, ^^^) = well function for leaky aquifer [dimensionless]
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-^expf-t'-- -aSf )  dvJ    V ^^^ \      " 4b-V
u

W{uc) = well function for nonleaky aquifer [dimensionless]
z — vertical distance from top of aquifer (L)

Ua = summation index

This equation also contains the assumptions of a radially infinite aquifer that is homo¬

geneous and isotropic. A partially penetrating well is especially easy to simulate with the

REGFED model. Sink terms are placed only at nodes in the relevant layers; sink terms
are excluded from the other layers.

Results from the REGFED model and the analytical solution for partially penetrating

are compared in Figure 5.4. The parameters used in the comparison are listed on the figure.

The hydraulic heads at three different radial distances from the well were included, in order

to test the sensitivity of the model. Figure 5.4 indicates that model accuracy increases as

distance from the well increases. The inaccuracy near the well is due to the especially steep

vertical gradients in this area. Accuracy could be improved by using smaller timesteps,

or by making the vertical discretization finer, especially in the vicinity of the lower end of

the well screen. In this case the timestep size was one time unit out of a total of ten time
units, and the vertical discretization consisted of ten equally spaced layers.

The mass balance error for this simulation was 1.93 x 10~^%. This error is only
slightly larger than those found for fully penetrating conditions, which were on the order

of 10~''%, indicating that, although the model does not always agree with the analytical
solution, it still behaves well with respect to mass balance. The low mass balance errors

are due to the fact that changes in vertical flow components do not affect the mass balance
over the groundwater system.
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FIGURE 5.3

PARTIALLY PENETRATING WELL
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5.2   Unconfined Flow

Model simulations of unconfined flow can be validated in a number of ways. In Chapter
2, the various approaches towards simulating unconfined flow with analytical solutions were
discussed. The simplest of these approaches applies the Theis equation, using specific yield
instead of storativity in the storage term. Since this approach is closest to the approach
used in this numerical model, it is the most appropriate for validation of the REGFED
model. This approach results in

" = i^^(""^ ^'-'^
where

Uu = argument (modified for unconfined flow) of the well function {dimensionless)

4Tt

Sy = specific yield {dimensionless)

However, the above solution ignores the fact that transmissivity changes with draw¬
down of the water table. The drawdown can be adjusted for transmissivity changes by
applying the Jacob correction equation (Jacob, 1944)

s'

«c = 5c - ^ (5.4)
where

Sc = corrected drawdown (L)

So = ͣ drawdown calculated from Equation 5.3 [L]
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b = aquifer thickness (L)

The results from the REGFED model and the adjusted Theis equation are compared

in Figure 5.5. The parameters used in the comparison are also listed on the figure. Three

diff"erent hydraulic conductivities were also used for the unconfined flow validation. The

model agrees relatively well with the adjusted Theis equation. The accuracy of the model

appears to decrease with hydraulic conductivity. The mass balance errors ranged from

9.82 X 10~'^%to9.55 x 10~^% for these validations. The mass balance errors are not as

good as for confined flow, but this is to be expected, given the difficulty of simulating

unconfined flow.

A second validation of unconfined flow conditions was performed. This validation uses

an exact analytical solution of the steady- state, unconfined version of the groundwater

flow equation. This solution simulates one-dimensional, steady-state flow between Dirichlet

(constant head) boundaries, as illustrated in Figure 5.6. The solution follows as

h'ix) = (^i-^ ) + hi (5.5)
Xl

where

ho = head at up-gradient boundary (L)

hi ~ head at down-gradient boundary (L)

X = distance from up-gradient boundary {L)

xi = length of aquifer [L)

Equation IV-5 can be modified easily to account for the effects of constant recharge

over the length of the aquifer
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FIGURE 5.6

ILLUSTRATION OF ONE-DIMENSIONAL FLOW
WITH DIRICHLET BOUNDARIES
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^^w = (-^)-^«-(^l^^ f^-^'

where

Fr = recharge rate {LjT)

Simulations of the numerical model and the analytical solution (Equation 5.5) are

compared in Figure 5.7, for three different boundary conditions. The figure shows that

steady-state unconfined flow can be accurately simulated by the model. Equation 5.6

provides a convenient way to test the recharge component of the model. Figure 5.8 shows

a comparison of results from Equation 5.6 and the model for three different recharge rates.

The addition of recharge does not appear to affect the accuracy of the model.

There are two other important model simulations of unconfined flow that should be

considered. As hydraulic head declines as a result of a withdrawal well, it can fall below

the top of a layer (see Figure 3.8). If the water table drops below the top of the uppermost

layer, flow at the affected nodes changes from confined to unconfined. This transition

is difficult to model because transmissivity and storage terms can change greatly within

a single layer, for a single timestep (during the transition from confined to unconfined).

These changes in parameters create a linear system that is difficult to solve. If the water

table falls below the top of a layer below the uppermost layer, the affected nodes in that

layer are effectively drained. The transition from full nodes to drained nodes creates a

linear system that is even more difficult to solve than the confined-unconfined transition.

Chapter 4 includes a discussion of algorithm modifications for this problem.

Because appropriate analytical solutions do not exist for these two problems, the

problems were tested for mass balance errors. The relative thickness of the uppermost

layer that becomes unconfined or drained was varied. It was hypothesized that the thicker

the layer, the greater the change in transmissivity as a node switches from confined to
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unconfined or from partially saturated to completely drained (with all other parameters

held constant, including overall aquifer thickness). This assumption comes from the fact

that transmissivity is a function of saturated thickness in an unconfined aquifer.

The results of these analyses are shown in Tables 5.1 and 5.2. These tables show

that the mass balance error is much larger for the transitions (when compared to previous

examples), but improves with increasing layer thickness, which is counter to the hypothesis.

This indicates that thickness of the layers below the top may be dominating the mass

balance accuracy. The overall high mass balance errors for the transitions are due again

to steep vertical gradients.

5.3   Model Sensitivity

In the previous section, the REGFED model was subjected to variations of parameters

that dealt with various hydrologic characteristics of groundwater flow, such as conductivi¬

ties, recharge rates, etc. In this section, an analysis of the effect of varying parameters that

deal strictly with operation of the model is performed. These parameters include timestep

sizes, discretization schemes, and convergence criteria.

First, the size of individual timesteps was varied, under confined flow conditions.

Figure 5.9 shows the model results for three different timestep sizes. These results are

compared with an equivalent analytical solution, using the Theis equation. The figure

indicates that increasing timestep size decreases accuracy.

The effect of different discretization schemes can be analyzed for the areal finite-

element discretization and for the vertical finite-difference discretization. Given the same

total area, the coarseness of the finite-element discretization scheme (or the total number

of elements dividing the domain) was varied. The results for three different schemes are

shown in Figure 5.10, along with an analytical solution for comparison. These results show

that the accuracy of the model results decreases as the dicretization becomes more coarse.

Similarly, the vertical finite-difference discretization scheme was analyzed by varying
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TABLE 5,1: MASS BALANCE ERRORS FOR
CONFINED/UNCONFINED
TRANSITION

Relative  Thickness
of Uppermost Layer % Mass Balance Error

100% 0.101

50% 3.38

25% 16.8

TABLE 5.2: MASS BALANCE ERRORS FOR
PARTIALLY SATURATED/
DRAINED TRANSITION

Relative  Thickness
of Uppermost Layer % Mass Balance Error

100%
12.3

50% 25.7

25% 44.8
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the number of layers in the vertical direction, given the same overall aquifer thickness.
Again, the finer the discretization, the better the results, as shown in Figure 5.11. However,
the model does not appear to be as sensitive to vertical discretization as for horizontal
discretization, at least for these flow conditions.

The algorithm for solving unconfined flow problems is more complex than that for
confined flow, and thus more model parameters are involved. These parameters include the
convergence criteria (or maximum allowable error) and the maximum number of iterations
allowed to reach convergence. Figure 5.12 shows the results of varying the maximum
allowable error for an unconfined flow problem, with an analytical solution for comparison.
As expected, model results improve with more stringent criteria. The figure also shows
that, at least for this problem, there is a point where decreasing the maximum allowable
error no longer significantly improves the accuracy of the solution.

Similar results are found when the maximum allowable number of iterations to achieve
convergence is varied: the model is more accurate when more steps are allowed for con¬
vergence, given the same allowable error. This trend is illustrated in Figure 5.13.

The convergence properties for the model can be anlyzed by examining the magnitude
of the errors from iteration to iteration and from timestep to timestep. Three different
unconfined groundwater flow problems were considered: a single layered case, a five layer
case where all nodes begin as unconfined, and a five layer case where the all nodes begin
as confined, but some nodes eventually become unconfined. The last case tests the ability
of each scheme to perform the transition between confined and unconfined nodes.

Figures 5.14A through 5.14C illustrate the characteristics of convergence for the three
test cases. In these figures, percent residual is plotted against the number of iterations.
The residual is calculated as

percent residual —--------------X 100 (5.7)
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where

r — iteration index

The number of iterations represents the number of iterations performed to simulate

the problem over the total number of timesteps. Thus, in Figure 5.14A, which exhibits

stable convergence, iterations within a single timestep are found within a single "peak." At

the beginning of a timestep, the residual starts high because the advancement of a timestep

induces a large residual between the last iteration of the previous timestep and the first

iteration of the present timestep. The residuals gradually diminish until the maximum

allowable residual is achieved (at the bottom of a peak). The residual then increases to a
high value at the beginning of the next timestep.

The flat portions of the curve found in Figure 5.14B occur where the convergence

becomes unstable and the residuals tend to oscillate around a single value, for a certain

number of iterations. Figure 5.14C exhibits this unstable behavior for more than half

the total iterations. In additon, the residual increases sharply at about 300 iterations.

This unstable behavior reflects the difficulty in solving the linear systems posed by node
transitions.

These figures show that the model requires increasing numbers of iterations to achieve

convergence, and that the convergence is less stable as the difficulty of the problem in¬
creases. The parameters for the test cases are listed in Table 5.3.
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TABLE 5,3: PARAMETERS USED IN TEST CASES

SINGLE

LAYERED

CASE:

ALL NODES

BEGIN AS

UNCONFINED

K = 0.001 L/T

Sy  = 0.05
b = 100 L

Initial Head = 99.99 L
0 = 2.0 L3/T
t = 10 T

FIVE

LAYER CASE:

ALL NODES

IN TOP LAYER

BEGIN AS

UNCONFINED

K = 0.001 L/T

Sy  = 0.05
b= 100 L

Initial Head = 99.99 L
Q = 2.0 L3/T
t = 10 T

FIVE

LAYER CASE:

ALL NODES

BEGIN AS

CONFINED,
SOME NODES

BECOME

UNCONFINED

K = 0.001 L/T

Sy  = 0.05
S = 0.00012

b= 100 L

Initial Head = 99.99 L

Q = 2.0L3/T
t = 10 T
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6   MODEL APPLICATIONS: RESULTS AND DISCUSSIONS

This chapter describes some example applications that can be simulated with the

REGFED model. The purpose of these applications is to demonstrate the computational

efficiency of the model and to demonstrate that the model can handle groundwater flow

problems that are more complex than those found in the validations of Chapter 5. The first

two applications are related to contaminant transport problems. The third application

is an analysis of an aquifer/aquitard groundwater system. The fourth application is a

benchmark comparison with the most popular public domain three-dimensional flow model,

the McDonald-Harbaugh model. All computer runs used in this chapter were performed

on an IBM Personal Computer AT.

6.1   Two-Well Tracer Test

Studies relating to the analysis and prediction of solute transport between a recharging

and discharging well pair have received considerable attention recently (Huyakorn et al.,

1986). These studies are important from the standpoint of the design and analysis of

two-well injection-withdrawal tracer tests in groundwater aquifers. Two-well tracer tests

can provide several types of hydrodynamic data, including dispersion coefficients, velocity

profiles, and contaminant travel times. For a conservative tracer, definition of the flow

characteristics is most important. A schematic illustration of a two-well tracer test is

shown in Figure 6.1.

In this application, the effects of a second withdrawal well on the performance of a

two-well tracer test are also considered. It is hypothesized that the second withdrawal well

captures a signifcant amount of the tracer flow. The aquifer is assumed to be unconfined.

The discretization scheme for the application is shown in Figure 6.2, along with the various

parameters used in the model simulation.
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FIGURE 6.2

DISCRETIZATION SCHEME FOR
TWO-WELL TRACER TEST
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The groundwater equipotentials at a vertical position aligned with the center of the

screened portions of the tracer wells is shown in Figure 6.3. This figure demonstrates that

the withdrawal well does not capture a significant amount of the injected tracer, for the

particular parameters used here. But at later times, the influence of the second withdrawal

well could extend to the pair of tracer wells.

6.2   Flow Within a Multi-Level Monitoring Well

Researchers often need to determine vertical head gradients, changes in water quality

in the vertical section of an aquifer or changes between units of an interbedded aquifer sys¬

tem. This process requires that samples be taken at diff^erent subsurface observations. To

accomplish this objective, a multi-level monitoring system can be installed, often consisting

of a series of single boreholes containing several distinct monitoring locations (Pickens et
al., 1981). A typical multi-level monitoring well installation is shown in Figure 6.4.

Howver, these multi-level wells may provide a conduit for contaminants to travel

vertically through the aquifer, as shown in Figure 6.4. Thus, a groundwater sample taken

from a particular vertical positon within the well may actually be a mixture of groundwater

from different levels within the well. If a water quality sample from a discrete vertical

postion in the aquifer is desired, the well may have to be modified.

In this application, the effects of a nearby pumping well (50 feet away) on vertical
flow within a hypothetical monitoring well are simulated with the model. The pumping

well effects are included as constant head boundary conditions that vary with depth. The

simulated aquifer is a 200-foot deep unconfined aquifer. The monitoring well is screened

from 178 feet to 190 feet above the aquifer bottom. The hydraulic characteristics of

the monitoring well are approximated by setting extremely high hydraulic conductivities

within the well (5-6 orders of magnitude higher than the aquifer media) and by setting
the stora;tivity and specific yields equal to one. The horizontal and vertical discretization

schemes are shown in Figure 6.5, along with the various parameters used in the model
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simulation.

The monitoring well application was simulated for three diff'erent time periods. The
hydraulic heads near the centerline of the well for the three time periods are shown in
Figure 6.6. This figure demonstrates that the differences in head in the monitoring well
do not produce a significant vertical gradient, but that heads do change over time in the
monitoring well, indicating that some flow in and out of the well occurs.

6.3   Flow Within an Aquifer/Aquitard System

In Chapter II, quasi three-dimensional flow models were discussed. Quasi three-
dimensional models are suitable for simulating flow in groundwater systems where aquifers
are separated by confining or semi-confining layers. Semi-confining layers are also known
as aquitards. Such systems can be simplified by assuming that vertical components of
flow within the aquifer are negligible and that the horizontal components of flow in the
aquitard are negligible.

A schematic illustration of the simulated aquifer system is shown in Figure 2.1. As
indicated in the figure, the contrast in hydraulic conductivities between the aquifer and the
aquitard is two orders of magnitude. The aquifers are discretized into seven layers, while
the aquitard is discretized into six layers. The model was not able to approximate hori¬
zontal flow in the aquifers and vertical flow in the aquitard within a reasonable amount of
CPU time. The models inability to reproduce the problem is due to steep vertical gradients
produced by large vertical changes in hydraulic conductivity. Smaller timesteps and finer
vertical discretization may allow the model to overcome the vertical gradient problems.
However, if the quasi three-dimensional assumptions are assumed to be correct, it may be
advisable to use a quasi three-dimensional approach for this type of groundwater system.
The quasi three-dimensional approach would reduce computational costs significantly, and
should represent accurately the nature of flow in this type of groundwater system.

6-11

NEATPAGEINFO:id=BCDC9658-76FB-41E7-88A9-BD96BE8B2874



FIGURE 6.5
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6.4   Comparison with McDonald-Harbaugh Model

The three-dimensional McDonald-Harbaugh model (McDonald and Harbaugh, 1984)
represents the current state-of-the-art in public domain groundwater models. This model

can provide a convenient benchmark for the REGFED model. The groundwater flow

system chosen as a basis for comparison is a single pumped well in a confined aquifer, with

constant head boundaries. The model simulations for this system can be validated by the

Theis solution described in Chapter 5. The data sets submitted to the models contain an

equal number of nodes and layers, except that the McDonald-Harbaugh model requires an
extra row and column to simulate no-flow boundaries.

The model simulations are compared in Figure 6.7, along with the Theis simulation.

The figure shows that both models accurately simulate the response of the groundwater

system. The computational eff"ort required to simulate the system is shown for both models

in Table 6.1, along with the parmeters used in the sample problem. These results indicate

that the REGFED model requires less CPU time than the McDonald-Harbaugh model to

simulate the system, while providing better mass balance errors. The models were run on

an IBM Personal Computer AT; the CPU time does not include input or ouptut of data.
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TABLE 6.1

COMPARISON OF PERFORMANCE OF REGFED MODEL  AND

MCDONALD-HARBAUGH MODEL

MODEL

CPU

TIME

(min.)

WATER

BALANCE

ERROR

MCDONALD-

HARBAUGH
36.4 7.32x10'Vo

FEGFED 28.5 2.21 X 10" Vo

SIMULATION CONDITIONS AND PARAMETERS

-Confined Flow

- 3 equally spaced layers
- 225 nodes

- 392 elements

- K = 0.0035 UT

- b = 300 L

- S = 0.00012

- Q = 0.5 L3/T

- initial head = 350 L
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7   CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

From the model development, and the tests and applications performed with the

REGFED model, certain conclusions can be drawn. These conclusions include

• A mixed method consisting of finite-elements and finite-differences is an efficient and

accurate method for modeling groundwater flow; the ALALS algorithm is a suitable

example of such a method.

• The REGFED model compares favorably with the analytical solutions used in this

report for model testing

• Mass balance errors are minimal for the test cases, except where drained node

transitions occur.

• For situations where the model did not validate well, finer grid spacing or timestep

sizes could improve model accuracy.

• The WELFED model can efficiently simulate some example applications that are

relatively difficult, compared to the validation conditions.

• The model may not be able to accurately simulate aquifer/confining-layer conditions

without significant computational efforts and storage requirements.

• Steep vertical gradients relative to nodal spacing have a deleterious effect on model

accuracy.

7.2 Recommendations

The following recommendations can be made for improving the performance of the
REGFED model.
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• The model should be modified to include the quasi three-dimensional approach for

modeling aquifer/confining layer conditions.

• Iteration schemes other than Picard Iteration should be explored, to see if conver¬

gence for unconfined flow conditions can be made quicker or more stable. Other

schemes could include Newton-Raphson schemes or modified conjugate gradient

schemes.

• Spacing criteria for nodal and timestep spacing should be specified such that model

accuracy is optimized.

• Improvements to the confined/unconfined and drained node transitions should be
made so that mass balance errors are minimized.

• In addition to excluding entire layers with confined elements from the matrix re¬

forming process, the algorithm should be modified so that confined elements within

layers that also include unconfined elements, can be excluded from matrix reforming.

• The model should be modified to include other types of finite etem«nts that can fit

various boundary or other conditions more efficiently and accurately.

• In general, steep vertical gradients should be avoided by utilizing finer discretization

schemes or timestep sizes.

• An automatic timestep generator that minimizes water balance errors and steep

vertical gradients should be included.

• An input data preprocessor should be added to the model in order to ease the burden

of inputing data for large problems.
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8   NOTATION

C = solution concentration {M/L^) .
t = time {T) .
V = groundwater velocity [L/T) .
D   = hydrodynamic dispersion tensor [L'^ jT) .
V- = divergence operator .
V = gradient operator .
(W)rxn = reactive term [M/L^/T] .
r(C) = source or sink term {M/L^/T) .
Dij ~ i,j term of dispersion tensor [L^ /T) .
i,j — components of Cartesian coordinate system .
ay = transverse dispersivity (L) .
ajr, = longitudinal dispersivity (L) .
V = average groundwater velocity {LjT) .
D' = effective molecular diffusion coefficient [L^/T) .
q = specific discharge {L/T) .
K = hydraulic conductivity {L/T) .
h = hydraulic head {L) .
g^ — groundwater gradient {dimensionless) .
V = pore velocity {L/T) .
n = porosity {dimensionless) .
h = hydraulic head {L) .
K   = hydraulic conductivity tensor {L/T) .
Ss = specific storage {1/L) .
T{h) = source or sink term {1/T) .
Kx,Ky,Kz = components of conductivity in the x, y, and z directions, respectively {L/T) .
Tx,Ty = components of transmissivity in the x, and y directions, respectively, {L^/T) .
Sy — specific yield {dimensionless) .
T'{h) = vertically averaged source or sink term {L/T) .
Ax = distance between spatial locations in x-direction (L) .
Ah = change in hydraulic head from Xi to Xi+i {L) .
n — porosity {dim,ensionless) .
0{Ax) = remainder of the Taylor series terms, including those with powers of Ax and higher
u — trial function .
ao,ai,   and   a-j = coefficients related to element position and geometry .
Nf,Nj,   and  NL = basis functions .
Xi,Xj,Xm,yi,yj,^T^dym — coordinates of triangle vertices (L)
Ae = area of triangle (L^) .
A^^ij = basis function for node n .
N = number of nodes .
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£: = error resulting from substitution of approximated form of u .
R — problem domain .
Wi = nodal weighting functions .
Ux   and   Uy = components of outward normal vector .
B = boundary of problem domain .
e = element region .
N = number of nodes .

[G] = Global coefficient matrix .
[E] = Element coefficient matrix .
{u} = dependent variable vector .
Eii, etc. = integral terms found in Equation 3.20 for nodes in a triangular element .
Gm,i — members of the Global coefficient matrix .
{6} — vector of coefficients representing boundary conditions .
h — hydraulic head (L) .
h — trial function for hydraulic head (L) .
iVii(x,t/) = two-dimensional basis function in the x-y plane .
/in = nodal parameter dependent on z and time (L) .
x\.xy = number of nodes in the x-y plane of each layer .
Ni = two-dimensional basis function in the x-y plane .
Z = x-y problem domain .
S = boundary of the cross-section of Z .
f^ = outward normal derivative on S .
an

Kn = normal component of hydraulic conductivity on S .
k + 1/2, k — 1/2, k + 1, and k — 1 = indices as shown in Figure 3.4 .
Az terms are as shown in Figure 3.3 (L) .
Kg+ = upper-weighted, harmonic-mean hydraulic conductivity [L/T) .
Kz- = lower-weighted, harmonic-mean hydraulic conductivity [L/T) .
1 = index for present time step .
1 + 1 = index for next time step .
At = time increment for time step [T] .
* = index referring to predicted solutions .
[KH], ^, {f(/i)}, {F{h)}, [KL],   and   [KU] = matrices and vectors of integrals in Equation 3.11
ni,nj,   and  rim = nodal indices on triangular element .
Xi,Xj,Xm,yi,yj,3.ndym = coordinates of triangle vertices [L] .
Ae = area of triangle (L^) .
O'ij = hj element of [A] matrix .
n = outward normal vector .

S = problem boundary .
g = arbitrary boundary function .
Fr = recharge rate [L/T) .
UB = problem boundary .
/ = arbitrary boundary function .
Fp = withdrawal or injection quantity [L^ jT) .
[A] = sum of left-hand-side matrices .
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{x} = the solution, or hydraulic head vector .

{6} = sum of right-hand-side vectors .
T = transmissivity = Kb [L^ /T) .
where b = saturated thickness in aquifer layer [L) .
S = specific yield (unconfined aquifer) or storativity (confined aquifer) [dim,ensionless) .
(xi, a;2,..., XiVj) = unknowns .
r = iteration counter .

[A]^} = elements of the inverse of matrix \A] .
£b = prescribed residual tolerance .

m,axj = maximum over all nodes .

Q = rate of change in storage of water in an element [L^ jT) .
top = elevation of the top of an element layer [L) .
S^ — storage factor (specific yield or storativity) in effect at time / [dim,ensionless) .
5''+i = storage factor (specific yield or storativity) in effect at time / + 1 {dim,ensionless)
It = total time elapsed over simulation [T) .
^wb = water balance error {dimensionless) .
hi — head at start of simulation (L) .
/i/ = head at end of simulation [L) .
s = drawdown = initial head - new head (L) .
r = radial distance from well (L) .
W{uc) = well function for nonleaky aquifer {dim,ensionless) .
Uc = argument of the well function {dim,ensionless) .
T — transmissivity {L^ /T) .
S = storativity {dim,ensionless) .
Q — pumping rate {L^/T) .
t = time (T) .

W{uc, ^^^) — well function for leaky aquifer {dimensionless) .
W{uc) = well function for nonleaky aquifer {dim,ensionless) .
z = vertical distance from top of aquifer {L) .
ng = summation index .

Uu = argument (modified for unconfined flow) of the well function {dim.ensionless) .
Sy = specific yield {dim.ensionless) .
Sc = corrected drawdown {L) .
So = drawdown calculated from Equation 4.3 (L) .
b = aquifer thickness (L) .
ho — head at up-gradient boundary (L) .
h\ — head at down-gradient boundary (L) .
X — distance from up-gradient boundary (L) .
X\ = length of aquifer (L) .
Fr = recharge rate {L/T) .
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6   MODEL APPLICATIONS: RESULTS AND DISCUSSIONS

This chapter describes some example applications that can be simulated with the

REGFED model. The purpose of these applications is to demonstrate the computational

efficiency of the model and to demonstrate that the model can handle groundwater flow

problems that are more complex than those found in the validations of Chapter 5. The first

two applications are related to contaminant transport problems. The third application

is an analysis of an aquifer/aquitard groundwater system. The fourth application is a
benchmark comparison with the most popular public domain three-dimensional flow model,

the McDonald-Harbaugh model. All computer runs used in this chapter were performed
on an IBM Personal Computer AT.

6.1   Two-Well Tracer Test

Studies relating to the analysis and prediction of solute transport between a recharging

and discharging well pair have received considerable attention recently (Huyakorn et al.,

1986). These studies are important from the standpoint of the design and analysis of
two-well injection-withdrawal tracer tests in groundwater aquifers. Two-well tracer tests

can provide several types of hydrodynamic data, including dispersion coeflicients, velocity

profiles, and contaminant travel times. For a conservative tracer, definition of the flow

characteristics is most important. A schematic illustration of a two-well tracer test is

shown in Figure 6.1.

In this application, the effects of a second withdrawal well on the performance of a

two-well tracer test are also considered. It is hypothesized that the second withdrawal well

captures a signifcant amount of the tracer flow. The aquifer is assumed to be unconfined.

The discretization scheme for the application is shown in Figure 6.2, along with the various
parameters used in the model simulation.
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FIGURE 6.1
TWO-WELL INJECTION-
WITHDRAWAL TRACER TEST
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FIGURE 6.2

DISCRETIZATION SCHEME FOR
TWO-WELL TRACER TEST
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Q=0.03 L3/T
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FIGURE 6.4

ILLUSTRATION OF TYPICAL MULTI-LEVEL
MONITORING WELL
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•

The groundwater equipotentials at a vertical position aligned with the center of the
screened portions of the tracer wells is shown in Figure 6.3. This figure demonstrates that
the withdrawal well does not capture a significant amount of the injected tracer, for the
particular parameters used here. But at later times, the influence of the second withdrawal
well could extend to the pair of tracer wells.

6.2   Flow Within a Multi-Level Monitoring Well

Researchers often need to determine vertical head gradients, changes in water quality
in the vertical section of an aquifer or changes between units of an interbedded aquifer sys¬
tem. This process requires that samples be taken at difi"erent subsurface observations. To
accomplish this objective, a multi-level monitoring system can be installed, often consisting
of a series of single boreholes containing several distinct monitoring locations (Pickens et
al., 1981). A typical multi-level monitoring well installation is shown in Figure 6.4.

Howver, these multi-level wells may provide a conduit for contaminants to travel
vertically through the aquifer, as shown in Figure 6.4. Thus, a groundwater sample taken
from a particular vertical positon within the well may actually be a mixture of groundwater
from different levels within the well. If a water quality sample from a discrete vertical
postion in the aquifer is desired, the well may have to be modified.

In this application, the effects of a nearby pumping well (50 feet away) on vertical
flow within a hypothetical monitoring well are simulated with the model. The pumping
well effects are included as constant head boundary conditions that vary with depth. The
simulated aquifer is a 200-foot deep unconfined aquifer. The monitoring well is screened
from 178 feet to 190 feet above the aquifer bottom. The hydraulic characteristics of
the monitoring well are approximated by setting extremely high hydraulic conductivities
within the well (5-6 orders of magnitude higher than the aquifer media) and by setting
the storativity and specific yields equal to one. The horizontal and vertical discretization
schemes are shown in Figure 6.5, along with the various parameters used in the model

6-8

NEATPAGEINFO:id=9F206BFE-2852-487D-98C4-8B1B9B36BEDB



simulation.

The monitoring well application was simulated for three diff"erent time periods. The

hydraulic heads near the centerline of the well for the three time periods are shown in

Figure 6.6. This figure demonstrates that the differences in head in the monitoring well

do not produce a significant vertical gradient, but that heads do change over time in the

monitoring well, indicating that some flow in and out of the well occurs.

6.3   Flow Within an Aquifer/Aquitard System

In Chapter II, quasi three-dimensional flow models were discussed. Quasi three-

dimensional models are suitable for simulating flow in groundwater systems where aquifers

are separated by confining or semi-confining layers. Semi-confining layers are also known

as aquitards. Such systems can be simplified by assuming that vertical components of

flow within the aquifer are negligible and that the horizontal components of flow in the

aquitard are negligible.

A schematic illustration of the simulated aquifer system is shown in Figure 2.1. As

indicated in the figure, the contrast in hydraulic conductivities between the aquifer and the

aquitard is two orders of magnitude. The aquifers are discretized into seven layers, while

the aquitard is discretized into six layers. The model was not able to approximate hori¬

zontal flow in the aquifers and vertical flow in the aquitard within a reasonable amount of

CPU time. The models inability to reproduce the problem is due to steep vertical gradients

produced by large vertical changes in hydraulic conductivity. Smaller timesteps and finer

vertical discretization may allow the model to overcome the vertical gradient problems.

However, if the quasi three-dimensional assumptions are assumed to be correct, it may be

advisable to use a quasi three-dimensional approach for this type of groundwater system.

The quasi three-dimensional approach would reduce computational costs significantly, and

should represent accurately the nature of flow in this type of groundwater system.

6-11

NEATPAGEINFO:id=63CFAF3B-2CC6-4C44-8EAD-D58A39FCC408



FIGURE 6.5

DISCRETIZATION SCHEME FOR
MULTI-LEVEL MONITORING WELL
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6.4   Comparison with McDonald-Harbaugh Model

The three-dimensional McDonald-Harbaugh model (McDonald and Harbaugh, 1984)
represents the current state-of-the-art in public domain groundwater models. This model
can provide a convenient benchmark for the REGFED model. The groundwater flow
system chosen as a basis for comparison is a single pumped well in a confined aquifer, with
constant head boundaries. The model simulations for this system can be validated by the
Theis solution described in Chapter 5. The data sets submitted to the models contain an
equal number of nodes and layers, except that the McDonald-Harbaugh model requires an
extra row and column to simulate no-flow boundaries.

The model simulations are compared in Figure 6.7, along with the Theis simulation.
The figure shows that both models accurately simulate the response of the groundwater
system. The computational eff'ort required to simulate the system is shown for both models
in Table 6.1, along with the parmeters used in the sample problem. These results indicate
that the REGFED model requires less CPU time than the McDonald-Harbaugh model to
simulate the system, while providing better mass balance errors. The models were run on
an IBM Personal Computer AT; the CPU time does not include input or ouptut of data.
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TABLE 6.1

COMPARISON OF PERFORMANCE OF REGFED MODEL AND
MCDONALD-HARBAUGH MODEL

MODEL
CPU
TIME

(min.)

WATER

BALANCE
ERROR

MCDONALD-
HARBAUGH

36.4 7.32x10"'^%

REGFED 28.5 2.21 xlO'Vo

SIMULATION CONDITIONS AND PARAMETERS
-Confined Flow

- 3 equally spaced layers
- 225 nodes
- 392 elements
- K = 0.0035 UT
- b = 300 L

- S = 0.00012
- Q = 0.5 L3/T
- initial head = 350 L
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7   CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

From the model development, and the tests and applications performed with the
REGFED model, certain conclusions can be drawn. These conclusions include

• A mixed method consisting of finite-elements and finite-differences is an eflScient and
accurate method for modeling groundwater flow; the ALALS algorithm is a suitable
example of such a method.

• The REGFED model compares favorably with the analytical solutions used in this
report for model testing

• Mass balance errors are minimal for the test cases, except where drained node
transitions occur.

• For situations where the model did not validate well, finer grid spacing or timestep
sizes could improve model accuracy.

• The WELFED model can efficiently simulate some example applications that are
relatively difficult, compared to the validation conditions.

• The model may not be able to accurately simulate aquifer/confining-layer conditions
without significant computational efi'orts and storage requirements.
• Steep vertical gradients relative to nodal spacing have a deleterious effect on model
accuracy.

7.2 Recommendations

The following recommendations can be made for improving the performance of the
REGFED model. •
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• The model should be modified to include the quasi three-dimensional approach for
modeling aquifer/confining layer conditions.

• Iteration schemes other than Picard Iteration should be explored, to see if conver¬
gence for unconfined flow conditions can be made quicker or more stable. Other
schemes could include Newton-Raphson schemes or modified conjugate gradient
schemes.

• Spacing criteria for nodal and timestep spacing should be specified such that model
accuracy is optimized.

• improvements to the confined/unconfined and drained node transitions should be
made so that mass balance errors are minimized.

• In addition to excluding entire layers with confined elements •frcHn the matrix re¬
forming process, the algorithm should be modified so that confined elements within
layers that also include unconfined elements, can be excluded ftom matrix reforming.
• The model should be modified to include other types of finite elements that can fit
various boundary or other conditions more efficiently and accurately.

• In general, steep vertical gradients should be avoided by utilizing finer discretization
schemes or timestep sizes.

• An automatic timestep generator that minimizes water balance errors and steep
vertical gradients should be included.

• An input data preprocessor should be added to the model in order to ease the burden
of inputing data for large problems.
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8   NOTATION

C = solution concentration [M/L^) .
t = time (r) .
V — groundwater velocity [L/T) .
D   = hydrodynamic dispersion tensor [L^/T) .
V- ~ divergence operator .
V = gradient operator .
i^)rxn ^ reactive term {M/L^/T) .
T{C) = source or sink term {M/L^/T) .
Dij — i-,3 term of dispersion tensor [L'^/T) .
i,j — components of Cartesian coordinate system .
aT — transverse dispersivity (L) .
ai = longitudinal dispersivity (L) .
V = average groundwater velocity {L/T) .
D' = effective molecular diffusion coefficient {L^ jT) .
q = specific discharge {L/T) .
K = hydraulic conductivity {L/T) .
h = hydraulic head {L) .
-^ — groundwater gradient {dimtnsionltss) .
V — pore velocity {L/T) .
n — porosity {dimtnsionltss) .
h = hydraulic head {L) .
K   = hydraulic conductivity tensor {L/T) .
Ss = specific storage {l/L) .
T{h) = source or sink term {1/T) .
Kx,Ky,Kz = components of conductivity in the x, y, and z directions, respectively {L/T) .Tx,Ty = components of transmissivity in the x, and y directions, respectively, {L^/T) .Sy = specific yield {dimtnsionless) .
T'{h) — vertically averaged source or sink term {L/T) .
Ax = distance between spatial locations in x-direction {L) .
Ah = change in hydraulic head from Xi to x,+i {L) .
n = porosity {dimtnsionless) .
0{Ax) = remainder of the Taylor series terms, including those with powers of Ax and higheru = trial function .

ao,oi,   and  a? = coefficients related to element position and geometry .
Nf,Nj,   and  N^ = basis functions .
Xi,Xj,Xm,yi,yj,3.ndym = Coordinates of triangle vertices (L) .
Ae — area of triangle {L^) .
Na = basis function for node n .
N = number of nodes .
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E = error resulting from substitution of approximated form of u .
R. — problem domain .
Wi = nodal weighting functions .
Hx   and   Uy = components of outward normal vector .
B = boundary of problem domain .
e = element region .
N = number of nodes .
[G\ = Global coefficient matrix .
\E\ = Element coefficient matrix .
{u} = dependent variable vector .
Eii, etc. = integral terms found in Equation 3.20 for nodes in a triangular element .
Gm,i = members of the Global coefficient matrix .
{6} = vector of coefficients representing boundary conditions .
h = hydraulic head [L) .
h = trial function for hydraulic head [L] .
Nn {x, y) = two-dimensional basis function in the x-y plane .
h^ = nodal parameter dependent on z and time [L) .
Tixy = number of nodes in the x-y plane of each layer .
N\ = two-dimensional basis function in the x-y plane .
R = x-y problem domain .
B = boundary of the cross-section of Z .
f^ = outward normal derivative on B .an

Kn = normal component of hydraulic conductivity on B .
k + 1/2, k — 1/2, k + 1, and k — 1 = indices as shown in Figure 3.4 .
Az terms are as shown in Figure 3.3 [L) .
Kz+ = upper-weighted, harmonic-mean hydraulic conductivity {L/T) .
Kz- = lower-weighted, harmonic-mean hydraulic conductivity {L/T) .
1 = index for present time step .
1 + 1 = index for next time step .
At = time increment for time step {T) .
* = index referring to predicted solutions .
[KH], J^, {f(/i)}, {F{h)}, [KL],   and   [KU] = matrices and vectors of integrals in Equation 3.11ni,nj,   and  n^ = nodal indices on triangular element .
Xi,xy,a;rn5yi,yy)andym = coordinates of triangle vertices (2/) .
Ae = area of triangle {L^) .
o-ij = i-ij element of [^4] matrix .
n = outward normal vector .
B = problem boundary .
g = arbitrary boundary function .
Fr = recharge rate {L/T) .
UB = problem boundary .
/ = arbitrary boundary function .
Fp = withdrawal or injection quantity {L^/T) .
[A] = sum of left-hand-side matrices .
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{£} — the solution, or hydraulic head vector .
{6} = sum of right-hand-side vectors .
T = transmissivity = Kb (L'^/T) .
where b = saturated thickness in aquifer layer (L) .
S — specific yield (unconfined aquifer) or storativity (confined aquifer) [dimensionless] .
(xi,X2,... jXAT^) = unknowns .
r = iteration counter .

[A]jj — elements of the inverse of matrix [A] .
£b = prescribed residual tolerance .
max J — maximum over all nodes .

Q = rate of change in storage of water in an element [L^/T) .
top = elevation of the top of an element layer [L) .
S^ — storage factor (specific yield or storativity) in effect at time / [dim,ensionless) .
S^^^ — storage factor (specific yield or storativity) in effect at time / -(- 1 [dim,ensionless) .
It = total time elapsed over simulation [T) .
£wb = water balance error [dimensionless) .
hi — head at start of simulation [L)
hf = head at end of simulation [L) .
s = drawdown = initial head - new head [L) .
r = radial distance from well [L) .
W[uc) — well function for nonleaky aquifer [dim,ensionless) .
Uc = argument of the well function [dim,ensionless) .
r = transmissivity (L^/r) .
5 = storativity [dim.ensionless) .
Q = pumping rate (L^/r) .
t = time [T] .

W[uc, ^^^) — well function for leaky aquifer [dimensionless) .
W[uc) = well function for nonleaky aquifer [dimensionless) .
z = vertical distance from top of aquifer [L) .
ns = summation index .

Uu — argument (modified for unconfined flow) of the well function [dimensionless) .
Sy = specific yield [dimensionless) .
Sc = corrected drawdown [L) .
So = drawdown calculated from Equation 4.3 [L) .
b = aquifer thickness [L) .
ho — head at up-gradient boundary [L) .
hi = head at down-gradient boundary [L) .
X — distance from up-gradient boundary [L) .
Xi — length of aquifer [L) .
Fr = recharge rate [L/T) .
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APPENDIX 1:

REVIEW OF FINITE DIFFERENCE AND FINITE ELEMENT METHODS
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1   Finite Difference Method

The finite difference method is a numerical method for solving differential equations. Ap¬

plication of the method results in the discretization of a problem domain into a finite

number of predetermined points. Values of the dependent variable can be approximated

at these points.

The accuracy of finite difference approximations is a function of differential equation type,

discretization, and method used to approximate the relevant derivatives. Boundary con¬

ditions and the temporal nature of the problem (i.e. steady-state or transient conditions)

also affect the accuracy. As a simple example of a finite difference approximation, one can

examine the first-order ordinary derivative du/dx.

This derivative can be approximated by expanding the Taylor series definition of the deriva¬

tive of the function u(x) with respect to linear distance, x. Figure Al.l illustrates the

discretization of u(x). For an n+1 term Taylor series expansion about the point x = a, the

series can be written as

du

dx

u[b)-u[a)      Azd^u (Ai)"-^ d"u
Ax        ~   2! d2;2      ' ͣͣ n!       dx" (^1.1)

where

Ax = b — a, distance between spatial location 6 and a [L]

Equation III-2 can be written as sum of the following terms

du

dx

u{b) - u(a)      ^, ^   s / A-i n\
^ '       ^ ' + 0(Ax) {Al.2)Ax

where
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FIGURE A1.1

ILLUSTRATION OF FINITE DIFFERENCE

APPROXIMATION

U(X)A

U(XohAx)

U(Xo)
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0{Ax) = remainder of the Taylor series terms, including those with powers of Ax and
higher

By truncating the series to the first term on the right hand side, a first- order approx¬
imation is achieved. The forward-difference approximation takes the form of

du\        u(x + Ax) — u{x)
dx _ Ax {A1.3)

The backward-difference approximation is written as

du
dx

u{x) — u{x — Ax)
Ax (^1.4)

By subtracting the full Taylor series expansion for Equation Al.3 from the full expan¬
sion series for Equation A1.4 and solving for the first-order derivative, the central-difference
approximation results.

du

dx
u{x + Ax) — u(x — Ax)

2Ax + 0[(Ax)^ (^1.5)

The truncated form of this equation is more accurate than Equations Al.3 and Al.4,
because of the higher order terms that are eliminated in the subtraction. Only second-order
and higher terms remain, thus Equation A1.5 is a second-order approximation.

The second order derivative can be approximated by summing the full series expan¬
sions for Equations Al.3 and Al.4, and rearranging, resulting in

d^
dx^

u{x -+- Ax) - 2u{x) -+- u{x — Ax)
(Ax)2 (^1.6)
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Higher order derivatives can be obtained from similar Taylor series applications.
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2   Finite Element Method

The finite-element method is also a numerical method for approximating diff"erential

equations. The problem domain is divided into a finite number of small, interconnected

subregions (finite-elements). The dependent variable can be approximated at the nodes

that interconnect the elements or anywhere over the domain of an element.

Galerkin's finite-element method is frequently the method of choice when modeling

groundwater flow (and contaminant transport). Galerkin's method is a weighted-residual

method, which leads to similar equations as variational principles (Wang and Anderson,

1982). Variational principles imply that a physical quantity, such as energy potential, is

minimized over the problem domain. If the potential, which is analogous to hydraulic

head, is expressed in terms of its nodal values, algebraic equations result.

The weighted-residual is a measure of the degree to which the nodal values of hydraulic

heads do not satisfy the governing equation. If a particular weighted residual is forced to

vanish, the heads at the nodes can be obtained from a system of algebraic equations.

In the Galerkin finite-element method, the type of element discretization determines

the trial solutions that are employed. These trial solutions can be polynomials that are

piecewise continuous over the individual elements. Nodes are located along the boundaries

of each subdomain or in the interior of the subdomain. The basis function is obtained from

the trial function. A basis function is associated with each specific node. For example,

a linear triangular element (see Figure A1.2) has a trial function defined by a first-order

interpolating polynomial of the form

u{x,y) - ao + aix +a2y (^l-^)

where
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u = trial function

ao,ai,   and   a2 = coefficients related to element position and geometry

and the basis functions N , associated with this trial function are

i(x,y) = N^^{x,y)un, + N'{x,y)un^ + N^Jx,y)un^ {A1.8)

K,  = ^ {{Xn^ynrn  - ^n^yn^) + {Vn^ ' Vnjx + (x„„  - X„Jy]

Kj = J^ [(a:n„.yn.  - Xn,ynJ + (l/n,,,  - Vm)! + (Xn, - X^Jy]

K^  = ^ [(^n.yn,  - Xnjyni) + {Vm - ynj)x + (Xn,- - Xn,)y]

where

N!, , N^ ,   and  N?,    = basis functions

x„., x„^, Xn„, j/n., J/ny,   and yn„ = coordinates of triangle vertices (L)

Ae = area of triangle (L"^)

Basis functions such as these are substituted into Galerkin finite-element solutions.

The Galerkin finite-element method can be applied to the Laplace equation as an

example. The Laplace equation is usually expressed as
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FIGURE A1.2

LINEAR TRIANGULAR ELEMENT
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Equation Al.9 can be restated in the form of differentia] operator as

The dependent variable, u, may be approximated over the domain by introducing a
set of nodal basis functions

u(rc,y) = ^iVnUn (Al.n)
n = l

where

Nn = basis function for node n

N — number of nodes

Substituting the approximate value of u into the differential operator gives

L[u{x,y]]=s ' {A\.\2)

where

E — error resulting from substitution of approximated form of u

The objective of the weighted residual priciple implies that

W,{x,y)e   dZ^O {A1.13)
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where

R = problem domain

Wj = nodal weighting functions

The Galerkin method imposes the condition that the weighting functions are equiva¬
lent to the nodal basis functions, resulting in

11 Ni{x,y)s  dR = 0 (ALU)
R

or, restating (A1.14) in terms of the differential operator

f f Ni{x,y)L{u)   dk^O [Al.lB)
R

and replacing the differential operator with the governing equation gives

yy 7Vi(x,y)(^ + ^)   dx  rfy = 0 (A1.16)
R

Equation A1.16 represents the Galerkin approximation to the Laplace equation. The
second order derivatives in Equation A1.16 can be reduced by applying Green's formula,
which in this case is essentially integration by parts. The resulting equation is

II N^{~^ + ^] dxdydx"^      dy"^
(A1.17)f^ (du du     \   ^        [f (dudN,      dudNi\    ,   ^

R
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wnere

Ux   and   riy = components of outward normal vector

S = boundary of problem domain

The basis functions, Ni, are defined to vanish for nodes that are outside of the given

element. Applying this definition to (Al.17) results in

element.

E
1=1

1

dNi

dx

du\

^ dy
dNi

dy

where

1 = element

dxdy\ = j Ni i-j^n^ + -^^y)  ^^     (^1.18)

The derivative terms in (A1.18) can be simplified such that

elements

£-     [jl  \dx dx      dy  dy j "1—1 1

elementsͣments r-yrN     /N     ^,r T»r\ N     /N     ^,r

E   // E Ef-^^E Ef-.
dNr,

dy
dx dy

{A1A9)

Next, the dependent variable is separated from the integral terms.   The remaining

integral terms can be condensed to matrix notation to yield

elementsͣrnenia  r    i- f   /

??    [//(
du\ dNi      dux dNi

dx   dx        dy   dy
dx dy

e

= [G\{u}

(yll.20)

2-6
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where

[G] = Global coefficient matrix

[E] = Element coefficient matrix

{u} — dependent variable vector

The element coefficient matrix, E, can be thought of as a three-by-three matrix

Eit        Eij        Eirr

\E] - I   Ej^     Ejj     Ejm   I (A1.21)
^mi      ^mj      '-'mm

where

Eii, etc. = integral terms found in Equation A 1.21 for nodes in a triangular element

The members in the global coefficient matrix can be represented by the following

summation.

e

where

Gm,i = members of the Global coefficient matrix

m  and  i — row and column indices, respectively

The boundary term from Equation A 1.18 can be condensed into a vector as follows

2-7
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where

{6} = vector of coefficients representing boundary conditions

The final, condensed matrix form of the Galerkin solution to the Laplace equation is

then

\G]{u} = {b} {A1.24)

2-8
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APPENDIX 2:

FORTRAN CODE FOR REGFED
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PROGRAM NAME : UNCONF

PROGRAM PURPOSE : THREE-DIMENSIONAL, TRANSIENT, UNCONFINED
AND CONFINED GROUNDWATER FLOW SIMULATION

$DEBUG
$LARGE
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c c

c

c

c

c

c

c

c

c

c

c

c

c

c

WRITTEN BY :

c

c

c

c

c

c

c

c

c

c

c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

ALEX MAYER

WATER RESOURCES ENGINEERING PROGRAM
ENVIRONMENTAL SCIENCES AND ENGINEERING DEPARTMENT
SCHOOL OF PUBLIC HEALTH
UNIVERSITY OF NORTH CAROLINA

LATEST VERSION 10-04-87

INPUT AND OUTPUT UNIT ASSIGNMENTS

UNIT TYPE

INPUT

DESCRIPTION

SIMULATION CONTROL PARAMETERS: NUMBER OF
NODES, LAYERS, ELEMENTS; BANDWIDTH;
TIMESTEP SIZE AND NUMBER; MAXIMUM NUMBER
OF ITERATIONS AND ALLOWABLE ERROR; SWITCH FOR
READ IN HEADS AND HEAD ACCLERATION.

INPUTv^^  ^      j.i>.iruj.    INITIAL HEADS (BY LAYERS) , STRESSES (BY NODES) ,
CB CONSTANT HEAD BOUNDARIES (BY NODES, LAYERS)
C?DEBUG
$LARGE
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c

c

c

c

c

c

c

c

c

c

c

c

c

c

PROGRAM NAME : UNCONF

PROGRAM PURPOSE THREE-DIMENSIONAL, TRANSIENT, UNCONFINED
AND CONFINED GROUNDWATER FLOW SIMULATION

WRITTEN BY ALEX MAYER

WATER RESOURCES ENGINEERING PROGRAM
ENVIRONMENTAL SCIENCES AND ENGINEERING DEPARTMENT
SCHOOL OF PUBLIC HEALTH
UNIVERSITY OF NORTH CAROLINA

LATEST VERSION 10-04-87

C

C

C

C

C

C

C

C

C

C

C
c

c

c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c

c

c
c

c

c

c

c
c

c

c

INPUT AND OUTPUT UNIT ASSIGNMENTS

UNIT   TYPE DESCRIPTION

INPUT SIMULATION CONTROL PARAMETERS: NUMBER OF

NODES, LAYERS, ELEMENTS; BANDWIDTH;
TIMESTEP SIZE AND NUMBER; MAXIMUM NUMBER
OF ITERATIONS AND ALLOWABLE ERROR; SWITCH FOR
READ IN HEADS AND HEAD ACCLERATION.

C

C

c
C

c

c

c

c

c

c

c
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c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

INITIAL HEADS (BY LAYERS), STRESSES
CONSTANT HEAD BOUNDARIES

(BY NODES),

INPUT

INPUT

INPUT

OUTPUT

OUTPUT

OUTPUT

INPUT

INITIAL HEADS (BY NODES,
COORDINATES (BY NODES)

(BY NODES, LAYERS)

LAYERS), NODAL X-Y

INPUT    INITIAL HEADS (BY LAYERS), STRESSES (BY NODES).  C
C

C
c

c

c

c

c

c

c

c

c

c

c

c
c

c

c

c

c

c

c

c

c

10      OUTPUT   ERROR STATUS: TIMESTEP NUMBER; ITERATION C
C

c

c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

C^P  VARIABLE LISTING: MAIN PROGRAM C
c^^ c
C     NAME    TYPE       DESCRIPTION C

ELEMENT PROPERTIES: TOP; BOTTOM; HYDRAULIC
CONDUCTIVITIES IN X,Y,Z DIRECTIONS; STORATIVITY.

ELEMENT PROPERTIES: SPECIFIC YIELD, RECHARGE

WRITE SUBROUTINE (ECHO OF READ SUBROUTINE);
PROGRESS OF PROGRAM (TIMESTEP NUMBER,
ITERATION NUMBER, ETC.)

SUMMARY OF INPUT DATA, WATER BALANCE ERROR;
NUMBER OF ITERATIONS PERFORMED; LARGEST ERROR
ENCOUNTERED; FINAL HEAD RESULTS

STATUS OF NODES (UNCONFINED,CONFINED, ETC.);
VARIOUS TEMPORARY OUTPUTS TO CHECK PROGRAM

ELEMENT NODE ASSIGNMENTS

ERROR STATUS: TIMESTEP NUMBER; ITERATION
NUMBER, MAXIMUM ERROR SIZE, LAYER AND NODE
WHERE MAXIMUM ERROR OCCURED

c EXMAX REAL*8

c IT INTEGER*2

c ITERTT INTEGER*2

c

c ITER INTEGER*2

c IZ INTEGER*2
c MXITER INTEGER*2

c NDRY INTEGER*2

c

c NCONT INTEGER*2

c

c

c NLAY INTEGER*2

c NLAYl INTEGER*2

c NLSTRT INTEGER*2

c NRAD INTEGER*2

c

c

c

NSS INTEGER*2

NSTART INTEGER*2

c NTIMST INTEGER*2

c ^^ NXON INTEGER*2

c^
c

MAXIMUM ERROR ENCOUNTERED BETWEEN ITERATIONS
TIMESTEP LOOP COUNTER

COUNTER FOR TOTAL NUMBER OF ITERATIONS
PERFORMED IN A RUN
ITERATION LOOP COUNTER

LAYER LOOP COUNTER

MAXIMUM ALLOWABLE ITERATIONS

FLAG FOR PRESENCE OF DRY NODE (IF GREATER
THAN ZERO, DRY NODE PRESENT)
FLAG FOR CONTINUATION OF ITERATION

LOOP (IF 1, CONTINUE ITERATING, ELSE GO
NEXT TIMESTEP)
NUMBER OF LAYERS

NUMBER OF LAYERS PLUS ONE

LAYER NUMBER WHERE LAYER IS UNCONFINED

TO

C

C

C

e

c

c

c

C

C

C

c

c

c

c

c

SWITCH FOR RADIAL OUTPUT (IF 1, RADIAL OUTPUT)C
SWITCH FOR STEADY STATE CASE (IF 1, STEADY
STATE)
BEGINNING LAYER NUMBER FOR LAYER LOOP
TOTAL NUMBER OF TIMESTEPS

SWITCH FOR ESTIMATING STORAGE FOR WATER

BALANCE (ENSURES THAT STORAGE WILL BE
CALCULATED FOR WATER BALANCE) IF 1, CALCULATE

C

C

C

C

C

C

c

c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c c
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C MAIN  PROGRAM C
C C
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 KH,KV,NODCOR
DIMENSION Q(51,20),N0DFLG(51,20,2),HEAD(51,20,3),
1N0DC0R(51,2),ELMPRP(51,8,20),NEM(51,4),KH(51,10,20),ST(51,20,3),
2RHS(51,20),RECHGN(51,20),KV(51,20,3,2),CORLHA(20),CORLHB(20),
3CORLHC(20),CORRHS(20),RHS2(51,20),TOP(51,20),QDRY(51,20),
4ERR(51,20),NELFLG(51,20)
COMMON Q,NODFLG,HEAD,NODCOR,ELMPRP,NEM,KH,ST,RHS,KV,
IRECHGN,NNODE,NELEM,NLAY,NBAND,DELTIM,NTIMST,NECHO,IT,IZ,INCOR,
2 CORLHA,CORLHB,CORLHC,CORRHS,MXITER,ERRALL,ITER,RHS 2,TOP,NLSTRT,
3QDRY,NDRY,NACCL,NSS,NRAD,NELFLG
CALL READ

IF (NECHO.EQ.l) THEN
CALL WRITE

ENDIF

C.....CALL DATA PROCESSING SUBROUTINES

CALL BANDNO

CALL TOPZ
CALL RECHG

C.....CALL DATA SUMMARY SUBROUTINE
CALL WRITFL

C.....INITIALIZE TOTAL ITERATION COUNTER
ITERTT=0

C.....INITIALIZE MAXIMUM ERROR FOR RUN

EMXMAX=0.D0

C.....BEGIN TIME LOOP

DO 60 IT=1,NTIMST
WRITE (6,1000) IT,NTIMST

C..........INITIALIZE ITERATION LOOP

ITER=0

C..........BEGIN ITERATION LOOP, START ITERATION COUNTER
21      ITER=ITER+1

C..........START TOTAL ITERATION COUNTER
ITERTT=ITERTT+1

WRITE (6,1003) ITER,MXITER
C..........CHECK STATUS OF HEADS

CALL CHKHED(2)
C..........EXCHANGE NEW HEADS FOR OLD HEADS

CALL EXCHNG

C..........CHECK STATUS OF HEADS

CALL CHKHED(3)
C..........IF NECESSARY, CHANGE STRESSES TO ACCOUNT FOR DRY NODES

IF (NDRY.GT.O) THEN
CALL QRDRY

ENDIF

C..........BEGIN Z LAYER LOOP FOR PREDICTOR EQUATIONS:
C..........PERFORMANCE OF LOOP DEPENDS ON TIMESTEP, ITERATION,
C..........CONFINED OR UNCONFINED STATUS .

C..........SET NLAYl
NLAY1=NLAY+1

C..........FIRST TIMESTEP, FIRST ITERATION, CONFINED OR UNCONFINED
IF ( (IT.EQ.l) .AND. (ITER.EQ.l) ) THEN

DO 20 IZ=1,NLAY
CALL FORMKH

CALL FORMST(O)
CALL LHSPRD

CALL LHSDIR
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C....................IF NECESSARY, ACCOUNT FOR DRY NODES
IF (NDRY.GT.O) THEN

CALL LHSDRY

ENDIF

CALL FACTOR

'20 CALL F0RMKV(1,1)
C..........FIRST TIMESTEP, SECOND OR MORE ITERATIONS, UNCONFINED

ELSEIF ( (IT.EQ.l) .AND. (ITER.GT.l) ) THEN
C...............EXECUTE LOOP ONLY FOR UNCONFINED LAYERS

NSTART=NLSTRT

DO 25 IZ=NSTART,NLAY
CALL FORMKH

CALL FORMST(O)
CALL LHSPRD

CALL LHSDIR

C....................IF NECESSARY, ACCOUNT FOR DRY NODES
IF (NDRY.GT.O) THEN

CALL LHSDRY

ENDIF

CALL FACTOR »

25 CALL FORMKV(l,l)
C..........SECOND OR MORE TIMESTEPS, FIRST ITERATION, UNCONFINED

ELSEIF ( (IT.GT.l) .AND. (ITER.EQ.l) .AND.
1 (NLSTRT.LT.NLAYl) ) THEN

DO 30 IZ=1,NLAY
CALL FORMKH

CALL FORMST(O)
CALL LHSPRD

CALL LHSDIR

C^..................IF NECESSARY, ACCOUNT FOR DRY NODES
V IF (NDRY.GT.O) THEN

CALL LHSDRY

ENDIF

CALL FACTOR

30 CALL F0RMKV(1,1)
C..........SECOND OR MORE TIMESTEPS, SECOND OR MORE ITERATIONS,
C..........UNCONFINED

ELSEIF ( (IT.GT.l) .AND. (ITER.GT.l) ) THEN
C...............EXECUTE LOOP ONLY FOR UNCONFINED LAYERS

NSTART=NLSTRT

DO 35 IZ=1,NLAY
CALL FORMKH

CALL FORMST(O)
CALL LHSPRD

CALL LHSDIR

C....................IF NECESSARY, ACCOUNT FOR DRY NODES
IF (NDRY.GT.O) THEN

CALL LHSDRY

ENDIF

CALL FACTOR

35 CALL F0RMKV(1,1)
ENDIF

C..........BEGIN Z LAYER LOOP FOR REMAINING PREDICTOR EQUATIONS
DO 50 IZ=1,NLAY

CALL RHSPRD

CALL RHSDIR

C...............IF NECESSARY, ACCOUNT FOR DRY NODES
IF (NDRY.GT.O) THEN

CALL RHSDRY

ENDIF

NEATPAGEINFO:id=2F92AA22-9332-4D9C-B16B-55E23B0F579D

NEATPAGEINFO:id=E09950EB-C0EC-4D8B-84D9-F28BFA733C77



CALL SOLVE

C WRITE (6,1001) IZ,NLAY
50     CONTINUE

C.........CHECK FOR STEADY STATE CASE

^k IF (NSS.NE.l) THENC^.......CALCULATE KV FOR CORRECTOR LOOP
DO 53 IZ=1,NLAY

53 CALL FORMKV(3,2)
C.........BEGIN CORRECTOR LOOP FOR NODES

DO 55 INCOR=l,NNODE
CALL LHSCOR

C..............IF NECESSARY, ACCOUNT FOR DRY NODES ON LEFT-HAND SIDE
IF (NDRY.GT.O) THEN

CALL LCORDR
ENDIF

CALL RHSCOR

C..............IF NECESSARY, ACCOUNT FOR DRY NODES ON RIGHT-HAND SIDE
IF (NDRY.GT.O) THEN

CALL RCORDR
ENDIF

CALL THMALG

C WRITE (6,1002) INCOR,NNODE
55     CONTINUE

ENDIF

C......... CHECK CONVERGENCE

CALL CONVER(NCONT)
IF (NCONT.EQ.l) THEN

GO TO 21
ENDIF

g^O   CONTINUE
diP. . . WATER BALANCE

CALL WATBAL

C.....WRITE TOTAL NUMBER OF ITERATIONS
WRITE (7,1011) ITERTT
WRITE (7,1012)

C.....OUTPUT

IF (NRAD.EQ.l) THEN
C..........WRITE OUT HEADS IN "R",HEAD,Z FORMAT

CALL OUTRAD
ELSE

C..........WRITE OUT HEADS IN X,Y,HEAD,Z FORMAT
C..........BEGIN Z LAYER LOOP

DO 70 IZ=1,NLAY
70      CALL OUTCOL

ENDIF

' TIMESTEP=',I4,' OF',14)
' LAYER=',I4,' OF',14)
' N0DE=',I4,' OF',14)
' ITERATI0N=',I4,' OF',14,' MAX')
' ITER=',I4)
' TOTAL NUMBER OF ITERATIONS PERFORMED = ',16)
' ')

1000 FORMAT

1001 FORMAT

1002 FORMAT
1003 FORMAT
1008 FORMAT
1011 FORMAT
1012 FORMAT

STOP

END

^j^CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C VARIABLE LISTING: SUBROUTINE READ C
C C
C NAME    TYPE       DESCRIPTION C
c ----  ------  ------------------------------- c
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c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

ELMPRP  REAL*8

ELMPRP  REAL*8

DELTIM  REAL*8     TIME STEP SIZE [T] C
ELMPRP  REAL*8     TOP OF ELEMENT (ELEMENTS,1,LAYERS); [L] C
ELMPRP  REAL*8     BOTTOM OF ELEMENT (ELEMENTS,2,LAYERS); [L] C
ELMPRP  REAL*8     HYDRAULIC CONDUCTIVITY IN X DIRECTION C

(ELEMENTS,3,LAYERS)7 [L/T] C
HYDRAULIC CONDUCTIVITY IN Y DIRECTION C
(ELEMENTS,4,LAYERS); [L/T] C
HYDRAULIC CONDUCTIVITY IN Z DIRECTION C
(ELEMENTS,5,LAYERS); [L/T] C

ELMPRP  REAL*8     STORATIVITY (ELEMENTS,6,LAYERS); [D] C
ELMPRP  REAL*8     SPECIFIC YIELD (ELEMENTS,7,LAYERS); [L/T] C
ELMPRP  REAL*8     RECHARGE (ELEMENTS,8,LAYERS); [L2/T] C
ERRALL REAL*8 ALLOWABLE ERROR BETWEEN TIMESTEPS [D] C
HEAD    REAL*8     HEADS FROM OLD TIMESTEP (NODES,LAYERS,1); [L] C
HEAD    REAL*8     HEADS FROM NEW ITERATION (NODES,LAYERS,2); [L]C
HEAD    REAL*8     HEADS FROM OLD ITERATION (NODES,LAYERS,3); [L]C
IE      INTEGER*2  LOOP COUNTER FOR ELEMENTS C
IN INTEGER*2 LOOP COUNTER FOR NODES C
IP      INTEGER*2  LOOP COUNTER FOR INDEX IN ELEMENT PROPERTIES, C

NODAL COORDINATES, NODE ASSIGNMENTS C
IZ      INTEGER*2  LOOP COUNTER FOR LAYERS C
MXITER  INTEGER*2  MAXIMUM ALLOWABLE ITERATIONS C
NACCL   INTEGER*2  SWITCH FOR ACCELERATING HEADS BETWEEN C

TIMESTEPS (IF 1, ACCELERATE HEADS) C
NECHO   INTEGER*2  SWITCH FOR ECHOING OUT READ IN DATA C

(IF 1, ECHO) C
NELEM INTEGER*2 TOTAL NUMBER OF ELEMENTS C
NEM     INTEGER*2  NODES ASSIGNED TO ELEMENT (ELEMENTS,(I,J,K))  C
NLAY    INTEGER*2  NUMBER OF LAYERS C
NNODE   INTEGER*2  TOTAL NUMBER OF NODES C
NODCOR  REAL*8     X COORDINATES OF NODES (NODES,1); [L] C
NODCOR REAL*8 Y COORDINATES OF NODES (NODES,2); [L] C
NODFLG INTEGER*2 NODAL FLAG FOR CONSTANT HEAD (NODES,LAYERS,1) C
NODFLG  INTEGER*2  NODAL FLAG FOR HEAD STATUS (NODES,LAYERS,2)   C

SEE SUBROUTINE CHKHED FOR EXPLANATION OF C
FLAG NUMBERS C
SWITCH FOR RADIAL OUTPUT (IF 1, RADIAL OUTPUT)C
SWITCH FOR STEADY STATE CASE
STATE)
TOTAL NUMBER OF TIMESTEPS

NODAL STRESS (NODES,LAYERS);

NRAD

NSS

NTIMST

Q

INTEGER*2
INTEGER*2

INTEGER*2
REAL*8

(IF 1, STEADY

[L3/T]

C

C

c

c

c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c

c

c
c

c

SUBROUTINE READ DESCRIPTION:
READS IN ALL RELEVANT INPUT DATA.  SEE MAIN PROGRAM
FOR UNIT ASSIGNMENTS FOR THIS SUBROUTINE

C

C

C

C

C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c C
C SUBROUTINE READ C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE READ

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 KH,KV,NODCOR
DIMENSION Q(51,20),NODFLG(51,20,2),HEAD(51,20,3),
1N0DC0R(51,2),ELMPRP(51,8,20),NEM(51,4),KH(51,10,20),ST(51,20,3),
2RHS(51,20),RECHGN(51,20),KV(51,20,3,2),CORLHA(20),CORLHB(20),
3CORLHC(20),CORRHS(20),RHS2(51,20),TOP(51,20),QDRY(51,20),
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4NELFLG(51,20)
COMMON Q,NODFLG,HEAD,NODCOR,ELMPRP,NEM,KH,ST,RHS,KV,
IRECHGN,NNODE,NELEM,NLAY,NBAND,DELTIM,NTIMST,NECHO,IT,IZ,INCOR,
2 CORLHA,CORLHB,CORLHC,CORRHS,MXITER,ERRALL,ITER,RHS 2,TOP,NLSTRT,
3QDRY,NDRY,NACCL,NSS,NRAD,NELFLG
READ (1,1000) NNODE,NELEM,NLAY
READ (1,1001) DELTIM,NTIMST,NECHO,NACCL,NSS,NRAD
READ (1,1002) ERRALL,MXITER
DO 200 IN=1,NNODE

200 READ (2,1004) ( Q(IN,IZ), IZ=1,NLAY )
DO 300 IN=1,NNODE

300 READ (2,1005) ( NODFLG(IN,IZ,1), IZ=1,NLAY )
DO 400 IN=1,NNODE

400 READ (3,1006) ( HEAD(IN,IZ,2), IZ=1,NLAY )
DO 500 IN=1,NNODE

500 READ (3,1007) ( NODCOR(IN,IP), IP=1,2 )
DO 550 IZ=1,NLAY

DO 550 IE=1,NELEM
550 READ (4,1008) ( ELMPRP(IE,IP,IZ), IP=1,6 )

DO 600 IZ=1,NLAY
DO 600 IE=1,NELEM

600 READ (5,1009) ( ELMPRP(IE,IP,IZ), IP=7,8 )
DO 700 IE=1,NELEM

700 READ (9,1010) ( NEM(IE,IP), IP=1,3 )
314)
FIO.4,514)
E12.5,I4)
(7F10.4))
(1514))
(7F10.4))
(7F10.4))
(6E12.5))
(2E12.5))
(414))

1000 FORMAT
1001 FORMAT
1002 FORMAT

1004 FORMAT
1005 FORMAT

•06 FORMAT

67 FORMAT
1008 FORMAT
1009 FORMAT
1010 FORMAT

RETURN
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c c
C     VARIABLE LISTING: SUBROUTINE WRITE C
C C
C     NAME    TYPE       DESCRIPTION C

TIME STEP SIZE [T] C
TOP OF ELEMENT (ELEMENTS,1,LAYERS); [L] C
BOTTOM OF ELEMENT (ELEMENTS,2,LAYERS); [L] C
HYDRAULIC CONDUCTIVITY IN X DIRECTION C
(ELEMENTS,3,LAYERS); [L/T] C
HYDRAULIC CONDUCTIVITY IN Y DIRECTION C
(ELEMENTS,4,LAYERS); [L/T] C
HYDRAULIC CONDUCTIVITY IN Z DIRECTION C
(ELEMENTS,5,LAYERS)7 [L/T] C
STORATIVITY (ELEMENTS,6,LAYERS); [D] C
SPECIFIC YIELD (ELEMENTS,7,LAYERS); [L/T] C
RECHARGE (ELEMENTS,8,LAYERS); [L2/T] C
ALLOWABLE ERROR BETWEEN TIMESTEPS [D] C
HEADS FROM OLD TIMESTEP (NODES,LAYERS,1); [L] C
HEADS FROM NEW ITERATION (NODES,LAYERS,2); [L]C
HEADS FROM OLD ITERATION (NODES,LAYERS,3); [L]C
LOOP COUNTER FOR ELEMENTS C
LOOP COUNTER FOR NODES C

c DELTIM REAL*8
c ELMPRP REAL*8
c ELMPRP REAL*8
c

c

c

c

c

c

c

ELMPRP REAL*8

ELMPRP REAL*8

ELMPRP REAL*8

ELMPRP REAL*8
c ELMPRP REAL*8
c ELMPRP REAL*8

?•
ERRALL REAL*8
HEAD REAL*8
HEAD REAL*8

c HEAD REAL*8
c IE INTEGER*2
c IN INTEGER*2
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c IP INTEGER*2
c

c IZ INTEGER*2
c MXITER INTEGER*2

c

NACCL INTEGER*2

NECHO INTEGER*2
c

c NET.EM INTEGER*2
c NEM INTEGER*2
c NLAY INTEGER*2
c NNODE INTEGER*2
c NODCOR REAL*8
c NODCOR REAL*8
c NODFLG INTEGER*2
c

c

c

NODFLG INTEGER*2

c NRAD INTEGER*2
c NSS INTEGER*2
c

c NTIMST INTEGER*2
c Q REAL*8
c

LOOP COUNTER FOR INDEX IN ELEMENT PROPERTIES, C
NODAL COORDINATES, NODE ASSIGNMENTS C
LOOP COUNTER FOR LAYERS C
MAXIMUM ALLOWABLE ITERATIONS C
SWITCH FOR ACCELERATING HEADS BETWEEN C
TIMESTEPS (IF 1, ACCELERATE HEADS) C
SWITCH FOR ECHOING OUT READ IN DATA C
(IF 1, ECHO) C
TOTAL NUMBER OF ELEMENTS C
NODES ASSIGNED TO ELEMENT (ELEMENTS,(I,J,K)) C
NUMBER OF LAYERS C
TOTAL NUMBER OF NODES C
X COORDINATES OF NODES (NODES,!); [L] C
Y COORDINATES OF NODES (NODES,2); [L] C
NODAL FLAG FOR CONSTANT HEAD (NODES,LAYERS,1) C
NODAL FLAG FOR HEAD STATUS (NODES,LAYERS,2) C
SEE SUBROUTINE CHKHED FOR EXPLANATION OF C
FLAG NUMBERS C
SWITCH FOR RADIAL OUTPUT (IF 1, RADIAL OUTPUT)C
SWITCH FOR STEADY STATE CASE (IF 1, STEADY C
STATE) C
TOTAL NUMBER OF TIMESTEPS C
NODAL STRESS (NODES,LAYERS); [L3/T] C

C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C  SUBROUTINE WRITE DESCRIPTION: C
C  ECHOS OUT ALL DATA READ IN FROM SUBROUTINE READ. C
C C
C^CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C SUBROUTINE WRITE C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE WRITE

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 KH,KV,NODCOR
DIMENSION Q(51,20),N0DFLG(51,20,2),HEAD(51,20,3),
1N0DC0R(51,2),ELMPRP(51,8,20),NEM(51,4),KH(51,10,20),ST(51,20,3),
2RHS(51,20),RECHGN(51,20),KV(51,20,3,2),CORLHA(20),CORLHB(20),
3CORLHC(20),CORRHS(20),RHS2(51,20),TOP(51,20),QDRY(51,20),
4NELFLG(51,20)
COMMON Q,NODFLG,HEAD,NODCOR,ELMPRP,NEM,KH,ST,RHS,KV,
IRECHGN,NNODE,NELEM,NLAY,NBAND,DELTIM,NTIMST,NECHO,IT,IZ,INCOR,
2C0RLHA,CORLHB,CORLHC,CORRHS,MXITER,ERRALL,ITER,RHS2,TOP,NLSTRT,
3QDRY,NDRY,NACCL,NSS,NRAD,NELFLG
WRITE (6,1000) NNODE,NELEM,NLAY
WRITE (6,1001) DELTIM,NTIMST,NECHO,NACCL,NSS,NRAD
WRITE (6,1002) ERRALL,MXITER
DO 200 IN=1,NNODE

200 WRITE (6,1004) ( Q(IN,IZ), IZ=1,NLAY )
DO 300 IN=1,NNODE

300 WRITE (6,1005) ( NODFLG(IN,IZ,1), IZ=1,NLAY )
DO 400 IN=1,NNODE

^00 WRITE (6,1006) ( HEAD(IN, IZ, 2) , IZ=1,NLAY )
^P  DO 500 IN=1, NNODE
^00 WRITE (6,1007) ( NODCOR (IN, IP) , IP=1,2 )

DO 550 IZ=1,NLAY
DO 550 IE=1,NELEM

550 WRITE (6,1008) ( ELMPRP(IE,IP,IZ), IP=1,6 )
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DO 600 IZ=1,NLAY
DO 600 IE=1,NELEM

600 WRITE (6,1009) ( ELMPRP(IE,IP,IZ), IP=7,8 )
DO   700   IE=1,NELEM

100  WRITE   (6,1010)    (   NEM(IE,IP),   IP=1,3   )
(314)
(FIO.4,514)
(E12.5,I4)
((7F10.4))
((1514))
((7F10.4))
((7F10.4))
((6E12.5))
((2E12.5))
((414))

100 FORMAT
1001 FORMAT
1002 FORMAT
1004 FORMAT
1005 FORMAT
1006 FORMAT
1007 FORMAT
1008 FORMAT
1009 FORMAT
1010 FORMAT

RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c c
C     VARIABLE LISTING: SUBROUTINE BANDNO C
C C
C    NAME    TYPE       DESCRIPTION C
C

C

C

C

C

C

D

DMAX

I

IE

IP

REAL*8
REAL*8

NUMBER OF NODES BETWEEN ANY TWO NODES (3)
..„„^ w MAXIMUM NUMBER OF NODES BETWEEN ANY TWO NODES
INTEGER*2 NODE LOOP COUNTER (FOR EACH ELEMENT)
INTEGER*2 ELEMENT LOOP COUNTER
INTEGER*2 COUNTER FOR NEXT NODE ON ELEMENT

C     NBAND   INTEGER*2 BANDWIDTH C
(^  NEM     INTEGER*2 NODES ASSIGNED TO ELEMENT (ELEMENTS, (I, J,K) )  C
w
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C  SUBROUTINE BANDNO DESCRIPTION: C
C CALCULATES BANDWIDTH OF NODAL DISCRETIZATION BY LOOKING AT MAXIMUM C
C  DISTANCE (IN TERMS OF NODES) BEWTEEN ANY TWO NODES C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c C
C SUBROUTINE BANDNO C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE BANDNO

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 KH,KV,NODCOR

),ST(51,20,3),

C
C

C

C

C
C

c

c

D(I)=0
DO 100 IE=1,NELEM

DO 100 1=1,3
IF (I.LE. THEN
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IP=I+1

ELSE

IP=1

ENDIF

D(I)=ABS(NEM(IE,I)-NEM(IE,IP) )
IF (D(I).GT.DMAX) THEN

DMAX=D(I)
ENDIF

100 CONTINUE

NBAND=(2*DMAX)+1
RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c c
C     VARIABLE LISTING: SUBROUTINE TOPZ     . C
C c

c ELMPRP REAL*8
c INT INTEGER*2
c lET INTEGER*2
c IZT INTEGER*2
c NELEM INTEGER*2
c NEM INTEGER*2
c NLAY INTEGER*2
c NODE INTEGER*2
c TOP REAL*8
c

C     NAME    TYPE       DESCRIPTION C
C     ------  ---------  --------------------------------------------  C

TOP OF ELEMENT (ELEMENTS,1,LAYERS); [L] C
NODE LOOP COUNTER (FOR EACH ELEMENT) C
ELEMENT LOOP COUNTER C
LAYER LOOP COUNTER C
TOTAL NUMBER OF ELEMENTS C
NODES ASSIGNED TO ELEMENT (ELEMENTS,(I,J,K)) C
NUMBER OF LAYERS C
NODE NUMBER ON ELEMENT (3) C
TOP OF NODE (NODES,LAYERS) [L] C

C

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

( ͣSubroutine topz description: c
c assigns tops of layers to nodes by transferring tops of layers    c
c data from elements. data saved in "top" array. c
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c c
C SUBROUTINE TOPZ C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE TOPZ

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 KH,KV,NODCOR
DIMENSION Q(51,20),N0DFLG(51,20,2),HEAD(51,20,3),
1N0DC0R(51,2),ELMPRP(51,8,20),NEM(51,4),KH(51,10,20),ST(51,20,3),
2RHS(51,20),RECHGN(51,20),KV(51,20,3,2),CORLHA(20),CORLHB(20),
3CORLHC(20),CORRHS(20),RHS2(51,20),TOP(51,20),QDRY(51,20),
4NODE(3),NELFLG(51,20)
COMMON Q,NODFLG,HEAD,NODCOR,ELMPRP,NEM,KH,ST,RHS,KV,
IRECHGN,NNODE,NELEM,NLAY,NBAND,DELTIM,NTIMST,NECHO,IT,IZ,INCOR,
2 CORLHA,CORLHB,CORLHC,CORRHS,MXITER,ERRALL,ITER,RHS 2,TOP,NLSTRT,
3QDRY,NDRY,NACCL,NSS,NRAD,NELFLG

C.....ASSIGN ELEMENT LAYER TOPS TO NODE LAYER TOPS
DO 50 IZT=1,NLAY

DO 50 IET=1,NELEM
DO 50 INT=1,3

N0DE(1)=NEM(IET,1)
NODE(2)=NEM(IET,2)
NODE(3)=NEM(IET,3)

50 TOP(NODE(INT) , IZT) =EIiMPRP(IET, 1, IZT)
RETURN
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END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c c
C     VARIABLE LISTING: SUBROUTINE RECHG C

C^   NAME    TYPE       DESCRIPTION C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

AE

ELMPRP

IE

IIZ

IN

IZT

NELEM

NEM

NLAY

NNODE

NLAY

NODCOR

NODCOR

NODE

REAL*8 AREA OF TRIANGULAR ELEMENT [L2]
REAL*8 RECHARGE (ELEMENTS,8,LAYERS); [L2/T]
INTEGER*2 ELEMENT LOOP COUNTER
INTEGER*2 LAYER LOOP COUNTER
INTEGER*2 NODE LOOP COUNTERINTEGER*2 NODE LOOP COUNTER
INTEGER*2 LAYER LOOP COUNTER
INTEGER*2 TOTAL NUMBER OF ELEMENTS

INTEGER*2 NODES ASSIGNED TO ELEMENT (ELEMENTS,(I,J,K))
INTEGER*2 NUMBER OF LAYERS

INTEGER*2 LAYER LOOP COUNTER
INTEGER*2 NODE LOOP COUNTER
INTEGER*2 LAYER LOOP COUNTER
INTEGER*2 TOTAL NUMBER OF ELE___
INTEGER*2 NODES ASSIGNED TO ELE^
INTEGER*2 NUMBER OF LAYERS
INTEGER*2 TOTAL NUMBER OF NODES
INTEGER*2 NUMBER OF LAYERS

REAL*8 X COORDINATES OF NODES (NODES,1); [L]
REAL*8 Y COORDINATES OF NODES (NODES,2); [L]
INTEGER*2 NODE NUMBER ON ELEMENT (3)
REAL*8 RECHARGE AS A NODAL QUANTITY (NODES,LAYERS)

[L3/T]

C

c
c

c

c

c

c

c

c

c

c

c
c

c

c

c

c

C            RECHGN  REAL*8     RECHARGE AS A NODAL QUANTITY (NODES,LAYERS) C
C                         [L3/T] C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C  SUBROUTINE RECHG DESCRIPTION: C
C  ASSIGNS RECHRGE TO NODES BY INTEGRATING RECHARGE OVER EACH ELEMENT. C
^     CHANGES RECHARGE FROM [L/T] TO [L3/T]. ASSIGNS RECHARGE TO ^

"RECHGN" ARRAY.

C

C

C

C

C

C
C

C

C

C

THIS SUBROUTINE COMPUTES RECHARGE
JRGE IS A NEGATIVE QUANTITY WHEN IT
S STIRROTTTTNF

***NOTE THAT SUCH

C ***THAT RECHARGE IS A NEGATIVE QUANTITY WHEN IT                  C
C ***LEAVES THIS SUBROUTINE                                         C
c C
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c c
C SUBROUTINE RECHG                                           C
C C

C C
C SUBROUTINE RECHG C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE RECHG

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 KH,KV,NODCOR
IMPLICIT REAL*8 (A-:
REAL*8 KH,KV,NODCOR
DIMENSION
INODCOR

3C0RLHC

N0DE(3),NELFLG(51,20)
COMMON Q,NODFLG,HEAD,NODCOR,ELMPRP,NEM,KH,ST,RHS,KV,
RECHGN,NNODE,NELEM,NLAY,NBAND,DELTIM,NTIMST,NECHO,IT,IZ,INCOR,
CORLHA,CORLHB,CORLHC,CORRHS,MXITER,ERRALL,ITER,RHS2,TOP,NLSTRT,
QDRY,NDRY,NACCL,NSS,NRAD,NELFLG3QDRY
DO 50 IN=1,NNODE

DO 50 IIZ=1,NLAYDO 50 IIZ=1,NLA
^50 RECHGN(IN,IIZ)=0.D00

DO 100 IE=1,NELEM
CALCULATE AREA (

AE=0.5*((NODCOR
1       -NODCOR (NEM (:

(NODCOR(NEM+ 1
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3 -N0DC0R(NEM(IE,1),1)*N0DC0R(NEM(IE,3),2))
4 +(NODCOR(NEM(IE,2),1)*N0DC0R(NEM(IE,3),2)
5 -N0DC0R(NEM(IE,3),1)*N0DC0R(NEM(IE,2),2)))

DO 100 IN=1,3
N0DE(1)=NEM(IE,1)
NODE(2)=NEM(IE,2)
NODE(3)=NEM(IE,3)

100 RECHGN(NODE(IN),NLAY)=RECHGN(NODE(IN),NLAY)+
1 (ELMPRP(IE,8,NLAY)*AE/3)
RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c c
C     VARIABLE LISTING: SUBROUTINE WRITFL C
c c
C     NAME    TYPE       DESCRIPTION C
C

C

C

C

C

C

C

C

C

C

C

C

^

DELTIM
ELMPRP
ELMPRP

REAL*8
REAL*8

REAL*8

ELMPRP  REAL*8

ELMPRP  REAL*8

ELMPRP

ELMPRP

ELMPRP
ERRALL

HEAD
IE

IN

IZ

MXITER
NACCL

NELEM

NLAY

NNODE
NSS

NTIMST

Q
QTOT

REAL*8

REAL*8

REAL*8
REAL*8

REAL*8

INTEGER*2

INTEGER*2
INTEGER*2
INTEGER*2

INTEGER*2

INTEGER*2

INTEGER*2

INTEGER*2

INTEGER*2

INTEGER*2

REAL*8
REAL*8

TIME STEP SIZE [T] C
TOP OF ELEMENT (ELEMENTS,1,LAYERS); [L] C
HYDRAULIC CONDUCTIVITY IN X DIRECTION C
(ELEMENTS,3,LAYERS); [L/T] C
HYDRAULIC CONDUCTIVITY IN Y DIRECTION C
(ELEMENTS,4,LAYERS); [L/T] C
HYDRAULIC CONDUCTIVITY IN Z DIRECTION C
(ELEMENTS,5,LAYERS); [L/T] C
STORATIVITY (ELEMENTS,6,LAYERS); [D] C
SPECIFIC YIELD (ELEMENTS,7,LAYERS); [L/T] C
RECHARGE (ELEMENTS,8,LAYERS); [L2/T] C
ALLOWABLE ERROR BETWEEN TIMESTEPS [D] C
HEADS FROM NEW ITERATION (NODES,LAYERS,2); [L]C
LOOP COUNTER FOR ELEMENTS C
LOOP COUNTER FOR NODES C
LOOP COUNTER FOR LAYERS C
MAXIMUM ALLOWABLE ITERATIONS C
SWITCH FOR ACCELERATING HEADS BETWEEN C
TIMESTEPS (IF 1, ACCELERATE HEADS) C
TOTAL NUMBER OF ELEMENTS C
NUMBER OF LAYERS C
TOTAL NUMBER OF NODES C
SWITCH FOR STEADY STATE CASE (IF 1, STEADY    C
STATE) C
TOTAL NUMBER OF TIMESTEPS C
NODAL STRESS (NODES,LAYERS); [L3/T] C
TOTAL STRESS  [L3/T] C

C

c

c

c

c

c

c

c

c

c

c

c

c

c

c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c

c

c

c

c

c

SUBROUTINE WRITFL DESCRIPTION:
WRITES OUT A SUMMARY OF INPUT DATA TO HEAD OUTPUT FILE.
APPROPRIATE ONLY FOR HOMOGENEOUS DATA SET BECAUSE SUBROUTINE ONLY
LOOKS AT FIRST DATA ITEM FOR EACH PARAMTER.

C

c

C

c

c

c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c c
C^ SUBROUTINE WRITFL CIP
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE WRITFL

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 KH,KV,NODCOR
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DIMENSION Q(51,20),N0DFLG(51,20,2),HEAD(51,20,3),
1N0DC0R(51,2),ELMPRP(51,8,20),NEM(51,4),KH(51,10,20),ST(51,20,3),
2RHS(51,20),RECHGN(51,20),KV(51,20,3,2),CORLHA(20),CORLHB(20),
3CORLHC(20),CORRHS(20),RHS2(51,20),TOP(51,20),QDRY(51,20),
4NELFLG(51,20)
COMMON Q,NODFLG,HEAD,NODCOR,ELMPRP,NEM,KH,ST,RHS,KV,
IRECHGN,NNODE,NELEM,NLAY,NBAND,DELTIM,NTIMST,NECHO,IT,IZ,INCOR,
2CORLHA,CORLHB,CORLHC,CORRHS,MXITER,ERRALL,ITER,RHS2,TOP,NLSTRT,
3QDRY,NDRY,NACCL,NSS,NRAD,NELFLG
WRITE-(7,997)
WRITE (7,998)
WRITE (7,1000) NNODE
WRITE (7,1001) NLAY
WRITE (7,1002)
WRITE (7,1003)
WRITE (7,1004)
WRITE (7,1005)

NELEM

NBAND

DELTIM

NTIMST

WRITE (7,1006) ERRALL
WRITE (7,1007) MXITER
DO 2 00 IN=1,NNODE
DO 200 IZ=1,NLAY

200 QTOT=QTOT+Q(IN,IZ)
WRITE (7,1008) QTOT
WRITE (7,1009) HEAD(1,1,2)
WRITE (7,1010) ELMPRP(1,3,1)
WRITE (7,1011) ELMPRP(1,4,1)
WRITE (7,1012) ELMPRP(1,5,1)
WRITE (7,1013) ELMPRP(1,6,1)
WRITE (7,1014) ELMPRP(1,7,1)
WRITE (7,1015) ELMPRP(1,8,1)
DO 300 IZ=1,NLAY

300 WRITE (7,1016) IZ,ELMPRP(1,1,IZ)
WRITE (7,999)
IF (NACCL.EQ.O) THEN

WRITE (7,1017)
ELSE IF (NACCL.EQ.l) THEN

WRITE (7,1018)
ENDIF

WRITE (7,999)
IF (NSS.EQ.O) THEN

WRITE (7,1021)
ELSE IF (NSS.EQ.l) THEN

WRITE (7,1022)
ENDIF

999)
1019)
1020)
INPUT DATA')

(7

WRITE (7
WRITE (7
WRITE

997 FORMAT
998 FORMAT
999 FORMAT
1000 FORMAT
1001 FORMAT
1002 FORMAT

1003 FORMAT

^04 FORMAT
^bs FORMAT
1006 FORMAT

1007 FORMAT
1008 FORMAT

1009 FORMAT

')
NUMBER OF NODES = ',14)
NUMBER OF LAYERS = ',14)
NUMBER OF ELEMENTS= ',14)
BANDWIDTH = ',14)
DELTA TIME = ',F10.4)
NUMBER OF TIMESTEPS = ',14)
MAXIMUM ALLOWABLE ERROR = ',E12.5)
MAXIMUM NUMBER OF ITERATIONS = ',14)
TOTAL STRESS = ',F10.4)
INITIAL HEAD = ',F10.4)
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DIRECTION = ',E12.5)
DIRECTION = ',E12,5)
DIRECTION = ',E12.5)

HYDRAULIC CONDUCTIVITY IN X
HYDRAULIC CONDUCTIVITY IN Y
HYDRAULIC CONDUCTIVITY IN Z
SPECIFIC STORAGE = ',E12.5)
SPECIFIC YIELD = ',E12.5)
RECHARGE = ',E12.5)
TOP OF LAYER ',14,' = ',E12.5)
ACCELERATION OF HEAD ESTIMATES IS ---OFF---')
ACCELERATION OF HEAD ESTIMATES IS ---ON---')
OUTPUT DATA')

TRANSIENT CASE')
STEADY STATE CASE')

1010 FORMAT
1011 FORMAT
1012 FORMAT

«13 FORMAT

14 FORMAT
15 FORMAT

1016 FORMAT
1017 FORMAT
1018 FORMAT

1019 FORMAT
1020 FORMAT
1021 FORMAT
1022 FORMAT

RETURN
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c

c

c

c

c

c

c

c

c

c

c

c

c

VARIABLE LISTING: SUBROUTINE EXCHNG

NAME TYPE DESCRIPTION

C

C

C

C

HEAD

HEAD

HEAD

IN
IPT

IT

ITER

IZ

NACCL

NLAY

NLAYl

NLSTRT

NLSTRl
NNODE

REAL*8

REAL*8

REAL*8

INTEGER*2

INTEGER*2
INTEGER*2

INTEGER*2

INTEGER*2
INTEGER*2

INTEGER*2

INTEGER*2
INTEGER*2

INTEGER*2

INTEGER*2

HEADS FROM OLD TIMESTEP (NODES,LAYERS,1); [L] C
HEADS FROM NEW ITERATION (NODES,LAYERS,2); [L]C
HEADS FROM OLD ITERATION (NODES,LAYERS,3); [L]C
LOOP COUNTER FOR NODES C
LOOP COUNTER FOR INDEX IN HEADS C
TIMESTEP LOOP COUNTER C
ITERATION LOOP COUNTER C
LOOP COUNTER FOR LAYERS 0
SWITCH FOR ACCELERATING HEADS BETWEEN C
TIMESTEPS (IF 1, ACCELERATE HEADS) *C
NUMBER OF LAYERS C
NUMBER OF LAYERS PLUS ONE C
LAYER NUMBER WHERE LAYER IS UNCONFINED C
LAYER NUMBER WHERE LAYER IS CONFINED C
TOTAL NUMBER OF NODES C

C

C

C

C

c

c

c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c

c

c

c

c

c

c

c

SUBROUTINE EXCHNG DESCRIPTION:

EXCHANGES HEADS FROM OLD ITERATION TO NEW ITERATION OR FROM OLD
TIMESTEP TO NEW TIMESTEP.  ACCELERATES HEAD ESTIMATES FOR FIRST
ITERATION IN A TIMESTEP IF FLAG "NACCL" = 1.  HEAD ACCELERATOR
IS A FIRST-ORDER APPROXIMATION OF DH/DT.  ONLY UNCONFINED HEADS
ARE ACCELERATED.

C

C

c

c

c

c

c

c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c c
C SUBROUTINE EXCHNG C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE EXCHNG

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 KH,KV,N0DC0R
DIMENSION Q(51,20),N0DFLG(51,20,2),HEAD(51,20,3),

1N0DC0R(51,2),ELMPRP(51,8,20),NEM(51,4),KH(51,10,20),ST(51,20,3),
2RHS(51,20),RECHGN(51,20),KV(51,20,3,2),CORLHA(20),CORLHB(20),
3CORLHC(20),CORRHS(20),RHS2(51,20),TOP(51,20),QDRY(51,20),
4NELFLG(51,20)
COMMON Q,NODFLG,HEAD,NODCOR,ELMPRP,NEM,KH,ST,RHS,KV,
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IRECHGN,NNODE,NELEM,NLAY,NBAND,DELTIM,NTIMST,NECHO,IT,IZ,INCOR,
2CORLHA,CORLHB,CORLHC,CORRHS,MXITER,ERRALL,ITER,RHS2,TOP,NLSTRT,
3QDRY,NDRY,NACCL,NSS,NRAD,NELFLG

<^^...FIRST TWO TIME STEPS (UNCONFINED OR CONFINED)A   IF ( (IT.LE.2) .OR. (NACCL.EQ.O) ) THEN
^        DO 10 IZ=1,NLAY

DO 10 IN=1,NNODE
HEAD(IN,IZ,3)=HEAD(IN,IZ,2)
IF (ITER.EQ.l) THEN

HEAD(IN,IZ,1)=HEAD(IN,IZ,2)
ENDIF

10      CONTINUE

C.....TIME STEPS GREATER THAN TWO
ELSE IF ( (IT.GT.2) .AND. (NACCL.EQ.l) ) THEN

C..........COMPUTE NUMBER OF LAYERS PLUS ONE
NLAY1=NLAY+1

C..........EXCHANGE AND ACCELERATE HEADS ONLY IF FIRST
C..........ITERATION IN A TIMESTEP AND ONLY IF UNCONFINED HEADS EXIST

IF ( (ITER.EQ.l) .AND. (NLSTRT.LT.NLAY1) ) THEN
C...............UNCONFINED LAYERS

DO 30 IZ=NLSTRT,NLAY
DO 30 IN=1,NNODE

HEAD(IN,IZ,1)=(2*HEAD(IN,IZ,2))-HEAD(IN,IZ,1)
HEAD(IN,IZ,3)=HEAD(IN,IZ,1)

30 WRITE (8,1000) IT,IZ,IN,( HEAD(IN,IZ,IPT), IPT=1,3 )
C...............CONFINED LAYERS

NLSTR1=NLSTRT-1

DO 35 IZ=1,NLSTR1
DO 35 IN=1,NNODE

^ HEAD(IN,IZ,1)=HEAD(IN,IZ,2)^^35 HEAD(IN,IZ,3)=HEAD(IN,IZ,2)
C..........EXCHANGE HEADS IF GREATER THAN FIRST ITERATION IN A
C..........TIMESTEP AND ONLY IF UNCONFINED HEADS EXIST

ELSE IF ( (ITER.GT.l) .AND. (NLSTRT.NE.NLAYl) ) THEN
DO 40 IZ=1,NLAY

DO 40 IN=1,NNODE
40 HEAD(IN,IZ,3)=HEAD(IN,IZ,2)

C..........EXCHANGE HEADS ONLY IF FIRST ITERATION IN A
C..........TIMESTEP AND ONLY IF ALL HEADS CONFINED

ELSE IF ( (ITER.EQ.l) .AND. (NLSTRT.EQ.NLAYl) ) THEN
DO 50 IZ=1,NLAY

DO 50 IN=1,NNODE
HEAD(IN,IZ,1)=HEAD(IN,IZ,2)

50 HEAD(IN,IZ,3)=HEAD(IN,IZ,2)
ENDIF

ENDIF

1000 FORMAT (314,(3F10.4))
RETURN
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c c
C     VARIABLE LISTING: SUBROUTINE CHKHED C
C C
C     NAME    TYPE       DESCRIPTION C

^9 ELMPRP REAL*8 TOP OF ELEMENT (ELEMENTS, 1, LAYERS) ; [L]        C
C ELMPRP REAL*8 BOTTOM OF ELEMENT (ELEMENTS,2,LAYERS); [L]    C
C HEAD REAL*8 HEADS FROM OLD TIMESTEP (NODES,LAYERS,1); [L] C
C HEAD REAL*8 HEADS FROM NEW ITERATION (NODES,LAYERS,2); [L]C
C HEAD REAL*8 HEADS FROM OLD ITERATION (NODES,LAYERS,3); [L]C
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p
c

c

c

c

c

c

c

c

c

c

c

c

c

c

INCK

INO

IPCK
ITER

IZCK

IZO

NACCL

NDRY

NLAY

NLSTRT

NNODE

NODFLG

NS

INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2

INTEGER*2

INTEGER*2
INTEGER*2

INTEGER*2

INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2

INTEGER*2

LOOP COUNTER FOR NODES C
LOOP COUNTER FOR NODES C
INDEX FOR HEADS (***PASSED***) C
ITERATION LOOP COUNTER C
LOOP COUNTER FOR LAYERS C
LOOP COUNTER FOR LAYERS C
SWITCH FOR ACCELERATING HEADS BETWEEN C
TIMESTEPS (IF 1, ACCELERATE HEADS) C
FLAG FOR PRESENCE OF DRY NODE (IF GREATER C
THAN ZERO, DRY NODE PRESENT) C
NUMBER OF LAYERS C
LAYER NUMBER WHERE LAYER IS UNCONFINED C
TOTAL NUMBER OF NODES C
NODAL FLAG FOR HEAD STATUS (NODES,LAYERS,2) C
SEE SUBROUTINE CHKHED FOR EXPLANATION OF C
FLAG NUMBERS C
COUNTER FOR UNCONFINED OR DRY NODES (IF C
GREATER THAN 1, IMPLIES UNCONF. OR DRY C
NODES PRESENT IN LAYER C

C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

c

c

c

c

c

c

c

SUBROUTINE CHKHED DESCRIPTION:

CHECKS STATUS OF HEADS AND ASSIGNS INDEX NUMBER ACCORDING TO
STATUS:

OLD CONFINED — NODFLG(NODES,LAYERS,1)
NEW CONFINED — NODFLG(NODES,LAYERS,2)
NEW UNCONFINED — NODFLG(NODES,LAYERS,3)
OLD UNCONFINED — NODFLG(NODES,LAYERS,4)
COMPLETELY UNSATURATED — NODFLG(NODES,LAYERS,5)

ASSIGNS VALUE OF DRY NODE FLAG:
NO DRY NODES PRESENT IN SYSTEM —
DRY NODES PRESENT IN SYSTEM — 1

FINDS LAYER WHERE UNCONFINED HEADS EXIST AND ASSIGNS THAT LAYER
NUMBER TO VARIABLE "NLSTRT".

C

C

c
c

c
c
c

c
c

c

c
c

c

c
C

c

c

c

c

c

c

c

c

c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c c
C SUBROUTINE CHKHED C
C G
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE CHKHED(IPCK)
IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 KH,KV,NODCOR
DIMENSION Q(51,20),N0DFLG(51,20,2),HEAD(51,20,3),
1N0DC0R(51,2),ELMPRP(51,8,20),NEM(51,4),KH(51,10,20),ST(51,20,3),
2RHS(51,20),RECHGN(51,20),KV(51,20,3,2),CORLHA(20),CORLHB(20),
3CORLHC(20),CORRHS(20),RHS2(51,20),TOP(51,20),QDRY(51,20),
4NODE(3),NELFLG(51,20)
COMMON Q,NODFLG,HEAD,NODCOR,ELMPRP,NEM,KH,ST,RHS,KV,
IRECHGN,NNODE,NELEM,NLAY,NBAND,DELTIM,NTIMST,NSWTCH,IT,IZ,INCOR,
2 CORLHA,CORLHB,CORLHC,CORRHS,MXITER,ERRALL,ITER,RHS2,TOP,NLSTRT,

^ 3QDRY,NDRY,NACCL,NSS,NRAD,NELFLGC^i . . INITIALIZE DRY NODE FLAG
NDRY=0

C.....CHECK CONDITION OF HEADS AND ASSIGN CODE
NLSTRT=NLAY+1

DO 150 IZCK=1,NLAY

NEATPAGEINFO:id=4916C53D-38B3-4467-883D-4B076E572229



NS=0

DO 100 IECK=1,NELEM
C.........IDENTIFY NODE NUMBER ON TRIANGULAR ELEMENT

NODE(1)=NEM(lECK,1)
NODE(2)=NEM(lECK,2)
NODE(3)=NEM(lECK,3)
HSUM = O.DOO

DO  50 INCK =1,3
HSUM = HSUM+HEAD(NODE(INCK),IZCK,IPCK)

50      CONTINUE

HEAR = HSUM/3.DO0
C...............COMPLETELY SATURATED (OLD-LAST TIME STEP)

IF ((HBAR.GE.ELMPRP(IECK,1,IZCK))
1 .AND. (NELFLG(IECK,IZCK).LE.2)) THEN

NELFLG(IECK,IZCK)=1
C...............COMPLETELY SATURATED (NEW-THIS TIME STEP)

ELSEIF ((HBAR.GE.ELMPRP(IECK,1,IZCK))
1 .AND. (NELFLG(IECK,IZCK).GT.2)) THEN

NELFLG(IECK,IZCK)=2
IF ( (IT.EQ.l) .AND. (ITER.EQ.l) ) THEN

NELFLG(IECK,IZCK)=1
ENDIF

C...............PARTIALLY SATURATED (NEW-THIS TIME STEP)
ELSEIF ((HBAR.LT.ELMPRP(IECK,1,IZCK))

1 .AND.

2 (HBAR.GT.ELMPRP(IECK,2,IZCK))
3 .AND.

4 (NELFLG(IECK,IZCK).LE.2)) THEN
NELFLG(lECK,IZCK)=3
IF ( (IT.EQ.l) .AND. (ITER.EQ.l) ) THEN

NELFLG(lECK,IZCK)=4
ENDIF

C...............PARTIALLY SATURATED (OLD-LAST TIME STEP)
ELSEIF ((HBAR.LT.ELMPRP(IECK,1,IZCK))

1 .AND.

2 (HBAR.GT.ELMPRP(IECK,2,IZCK))
3 .AND.

4 (NELFLG(IECK,IZCK).GE.3)) THEN
NELFLG(lECK,IZCK)=4

C...............COMPLETELY UNSATURATED

ELSEIF (HBAR.LE.ELMPRP(IECK,2,IZCK))
1 THEN

NELFLG(lECK,IZCK)=5
NDRY=NDRY+1

ENDIF

C...............CHECK FOR UNCONFINED HEADS
IF ( (NELFLG(IECK,IZCK).GE.2) .AND.

1 (NELFLG(lECK,IZCK).LE.5) ) THEN
NS=NS+1

ENDIF
100      CONTINUE

IF (NS.GE.l) THEN
NLSTRT=NLSTRT-1

ENDIF

^kpO CONTINUE
oV  WRITE (8,1001) ITER
C     DO 200 IN0=1,NN0DE
C 200 WRITE (8,1000) ( NELFLG(INO,IZO), IZO=l,NLAy )
1000 FORMAT (1514)
1001 FORMAT (' ITERATI0N=',I4)
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RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
Pr C

VARIABLE LISTING: SUBROUTINE QRDRY C
c

C     NAME    TYPE       DESCRIPTION C
C     ------  ---------  --------------------------------------------  C
C     IN      INTEGER*2  LOOP COUNTER FOR NODES C
C     IZ      INTEGER*2  LOOP COUNTER FOR LAYERS C
C     IZM     INTEGER*2  LOOP COUNTER FOR LAYERS, MINUS 1  (IZ-1)      C
C     NLAY    INTEGER*2  NUMBER OF LAYERS C
C     NNODE   INTEGER*2  TOTAL NUMBER OF NODES C
C     NODFLG  INTEGER*2  NODAL FLAG FOR HEAD STATUS (NODES,LAYERS,2)   C
C SEE SUBROUTINE CHKHED FOR EXPLANATION OF      C
C FLAG NUMBERS C
C     Q       REAL*8     NODAL STRESS (NODES,LAYERS); [L3/T] C
C     QDRY    REAL*8     NODAL STRESS ADJUSTED FOR DRY LAYERS C
C (NODES,LAYERS); [L3/T] C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C  SUBROUTINE QRDRY DESCRIPTION:   - C
C  REASSIGNS NODAL STRESSES Q TO QRDRY IF UNSATURATED LAYERS EXIST.    C
C  IF LAYER IZ IS UNSATURATED, ASSIGN Q TO LAYER IZ-1. C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C SUBROUTINE QRDRY C

»C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
SUBROUTINE QRDRY
IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 KH,KV,NODCOR
DIMENSION Q(51,20),N0DFLG(51,20,2),HEAD(51,20,3),
1N0DC0R(51,2),ELMPRP(51,8,20),NEM(51,4),KH(51,10,20),ST(51,20,3),
2RHS(51,20),RECHGN(51,20),KV(51,20,3,2),CORLHA(20),CORLHB(20),
3CORLHC(20),CORRHS(20),RHS2(51,20),TOP(51,20),QDRY(51,20),
4NODE(3),NELFLG(51,20)
COMMON Q,NODFLG,HEAD,NODCOR,ELMPRP,NEM,KH,ST,RHS,KV,
IRECHGN,NNODE,NELEM,NLAY,NBAND,DELTIM,NTIMST,NSWTCH,IT,IZ,INCOR,
2 CORLHA,CORLHB,CORLHC,CORRHS,MXITER,ERRALL,ITER,RHS 2,TOP,NLSTRT,
3QDRY,NDRY,NACCL,NSS,NRAD,NELFLG

C.....INITIALIZE QDRY
DO 50 IN=1,NNODE

DO 50 IZ=1,NLAY
50 QDRY(IN,IZ)=O.DOO

C.....MOVE STRESSES FROM DRY LAYERS TO LOWER LAYERS
DO 100 IE=1,NELEM

DO 100 IN3=1,3
C.........IDENTIFY NODE NUMBER ON TRIANGULAR ELEMENT

N0DE(1)=NEM(IE,1)
NODE(2)=NEM(IE,2)
NODE(3)=NEM(IE,3)
DO 90 IZ=NLAY,2,-1

IZM=IZ-1

IF (NELFLG(IE,IZ).EQ.5) THEN
QDRY(NODE(IN3),IZM)=Q(NODE(IN3),IZ)+QDRY(NODE(IN3),IZ)
QDRY(NODE(IN3),IZ)=O.DOO

ELSE
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QDRY(N0DE(IN3),IZ)=Q(NODE(IN3),IZ)+QDRY(NODE(IN3),IZ)
ENDIF

C WRITE (8,1000) IT,IZ,QDRY(N0DE(IN3),IZ)
^90      CONTINUE
H        QDRY(N0DE(IN3),1)=Q(NODE(IN3),1)
^00 CONTINUE
ClOOO FORMAT (' TIMESTEP=',14,' LAYER',14,' QDRY=',FIO.4)

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c c
C     VARIABLE LISTING: SUBROUTINE FORMKH C
C C
C     NAME    TYPE       DESCRIPTION C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

c

c

c

c

c

c

c

c

c

c

c

c

c

AE

ELMPRP

ELMPRP

ELMPRP

REAL*8

REAL*8

REAL*8
REAL*8

ELMPRP  REAL*8

SX

SY

TRANSX

TRANSY

REAL*8

REAL*8

REAL*8

REAL*8

AREA OF TRIANGULAR ELEMENT [L2] C
TOP OF ELEMENT (ELEMENTS,1,LAYERS); [L] C
BOTTOM OF ELEMENT (ELEMENTS,2,LAYERS); [L] C
HYDRAULIC CONDUCTIVITY IN X DIRECTION C
(ELEMENTS,3,LAYERS); [L/T] C
HYDRAULIC CONDUCTIVITY IN Y DIRECTION C
(ELEMENTS,4,LAYERS)7 [L/T] C
HEADS FROM OLD ITERATION (NODES,LAYERS,3); [L]C
LOOP COUNTER FOR BANDWIDTH C
LOOP COUNTER FOR ELEMENTS
LOOP COUNTER FOR NODES
LOOP COUNTER FOR LAYERS

INDEX FOR BANDED COLUMN POSITION IN MATRIX KH
HORIZONTAL FLOW TERMS (NODES,BANDED INDEX,
LAYERS); [L2/T]
BANDWIDTH

TOTAL NUMBER OF ELEMENTS

NODES ASSIGNED TO ELEMENT (ELEMENTS,(I,J,K))
NUMBER OF LAYERS
TOTAL NUMBER OF NODES

X COORDINATES OF NODES (NODES,!); [L]
Y COORDINATES OF NODES (NODES,2); [L]
NODAL POSITION ON ELEMENT (3)
NODAL FLAG FOR HEAD STATUS (NODES,LAYERS,2)
SEE SUBROUTINE CHKHED FOR EXPLANATION OF
FLAG NUMBERS

SECOND X DERIVATIVE OF BASIS FUNCTION; [L3/T]
Y DERIVATIVE OF BASIS FUNCTION; [L3/T]

DIRECTION; [L2/T]
DIRECTION; [L2/T]

HEAD REAL*8
IB INTEGER*2

IE INTEGER*2 LOOP COUNTER FOR ELEMENTS C
IN INTEGER*2 LOOP COUNTER FOR NODES C
IZ INTEGER*2 LOOP COUNTER FOR LAYERS C
J INTEGER*2 INDEX FOR BANDED COLUMN POSITION IN MATRIX KH C
KH REAL*8 HORIZONTAL FLOW TERMS (NODES,BANDED INDEX,    C

NBAND   INTEGER*2  BANDWIDTH'    ' C
NELEM   INTEGER*2  TOTAL NUMBER OF ELEMENTS C
NEM     INTEGER*2  NODES ASSIGNED TO ELEMENT (ELEMENTS,(I,J,K))  C
NLAY    INTEGER*2  NUMBER OF LAYERS C
NNODE   INTEGER*2  TOTAL NUMBER OF NODES C
NODCOR  REAL*8     X COORDINATES OF NODES (NODES,!); [L] C
NODCOR  REAL*8     Y COORDINATES OF NODES (NODES,2); [L] C
NODE    REAL*8     NODAL POSITION ON ELEMENT (3) C
NODFLG  INTEGER*2  NODAL FLAG FOR HEAD STATUS (NODES,LAYERS.2)   C

C

C

C

C

C

C

c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

SECOND

TRANSMISSIVITY IN X
TRANSMISSIVITY IN Y

C

C

C

C

c

c

SUBROUTINE FORMKH DESCRIPTION:

FORMS MATRIX OF HORIZONTAL FLOW COMPONENTS (KH). INTEGRATES OVER
ELEMENTS AND ASSIGNS TO MATRIX KH IN BANDED FORM. TRANSMISSIVITY
CALCULATIONS BASED ON STATUS OF HEADS (CONFINED, UNCONFINED, ETC.)

C

C

C

C

C

C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

d^ SUBROUTINE FORMKH C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE FORMKH

IMPLICIT REAL*8 (A-H,0-Z)
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REAL*8 KH,KV,NODCOR
DIMENSION Q(51,20),NODFLG(51,20,2),HEAD(51,20,3),
1N0DC0R(51,2),ELMPRP(51,8,20),NEM(51,4),KH(51,10,20),ST(51,20,3),
2RHS(51,20),RECHGN(51,20),KV(51,20,3,2),CORLHA(20),CORLHB(20),
3CORLHC{20),CORRHS(20),RHS2(51,20),TOP(51,20),QDRY(51,20),
4SX(3),SY(3),N0DE(3),NELFLG(51,20)
COMMON Q,NODFLG,HEAD,NODCOR,ELMPRP,NEM,KH,ST,RHS,KV,
IRECHGN,NNODE,NELEM,NLAY,NBAND,DELTIM,NTIMST,NSWTCH,IT,IZ,INCOR,
2CORLHA,CORLHB,CORLHC,CORRHS,MXITER,ERRALL,ITER,RHS2,TOP,NLSTRT,
3QDRY,NDRY,NACCL,NSS,NRAD,NELFLG

C.....INITIALIZE [KH]
DO 20 IN=1,NNODE
DO 20 IB=1,NBAND

20 KH(IN,IB,IZ)=0.0
C.....BEGIN ELEMENT LOOP

DO 40 IE=1,NELEM
C.........CALCULATE AREA OF TRIANGULAR ELEMENT

AE=0.5*((NODCOR(NEM(IE,1),1)*NODCOR(NEM(IE,2),2)
1 -NODCOR(NEM(IE,2),1)*NODCOR(NEM(IE,1),2))
2 +(N0DC0R(NEM(IE,3),1)*N0DC0R(NEM(IE,1),2)
3 -N0DC0R(NEM(IE,1),1)*N0DC0R(NEM(IE,3),2))
4 +(N0DC0R(NEM(IE,2),1)*N0DC0R(NEM(IE,3),2)
5 -N0DC0R(NEM(IE,3),1)*N0DC0R(NEM(IE,2),2)))

C.........FORM SPATIAL DERIVATIVES OF INTERPOLATION FUNCTIONS
SX(1)=0.5*(NODCOR(NEM(IE,2),2)-NODCOR(NEM(IE,3),2))/AE
SX(2)=0.5*(NODCOR(NEM(IE,3),2)-NODCOR(NEM(IE,1),2))/AE
SX(3)=0.5*(NODCOR(NEM(IE,1),2)-NODCOR(NEM(IE,2),2))/AE
SY(1)=0.5*(NODCOR(NEM(IE,3),1)-NODCOR(NEM(IE,2),1))/AE
SY(2)=0.5*(NODCOR(NEM(IE,1),l)-NODCOR(NEM(IE,3),1))/AE

^       SY(3)=0.5*(NODCOR(NEM(IE,2),1)-N0DC0R(NEM(IE,1),1))/AE&m.......IDENTIFY NODE NUMBER ON TRIANGULAR ELEMENT
N0DE(1)=NEM(IE,1)
NODE(2)=NEM(IE,2)
NODE(3)=NEM(IE,3)

C.............CALCULATE TRANSMISSIVITIES, DEPENDING ON HEAD CONDITION

HSUM = O.DOO

DO 100 IN = 1,3
HSUM = HSUM+HEAD(NODE(IN),IZ,3)

100      CONTINUE

HEAR = HSUM/3.DO0
IF(HBAR.GT.ELMPRP(IE,1,IZ)) THEN

TOPAQ = ELMPRP(IE,1,IZ)
ELSE

TOPAQ = HEAR
ENDIF

IF(TOPAQ.GT.ELMPRP(IE,2,IZ)) THEN
TRANSX = (TOPAQ-ELMPRP(IE,2,IZ))*ELMPRP(IE,3,IZ)
TRANSY = (TOPAQ-ELMPRP(IE,2,IZ))*ELMPRP(IE,4,IZ)

ELSE

TRANSX = l.D-10
TRANSY = l.D-10

ENDIF

(^^.......BEGIN NODE LOOP FOR EACH ELEMENT
W      DO 40 IN=1,3
C.............CALCULATE [KH]
C.............NODE I

J=NEM(IE,l)+((NBAND+l)/2-N0DE(IN))
KH(NODE(IN),J,IZ)=KH(NODE(IN),J,IZ)+(AE*

NEATPAGEINFO:id=B6662F25-E37D-4A49-9342-543D3E05440F



1 ((TRANSX*SX(1)*SX(IN))
2 +(TRANSY*SY(1)*SY(IN))))

C.............NODE J

J=NEM(IE,2)+((NBAND+l)/2-NODE(IN))
KH(NODE(IN),J,IZ)=KH(NODE(IN),J,IZ)+(AE*

1 ((TRANSX*SX(2)*SX(IN))
2 +(TRANSY*SY(2)*SY(IN))))

C.............NODE K

J=NEM(IE,3)+((NBAND+l)/2-NODE(IN))
KH(NODE(IN),J,IZ)=KH(NODE(IN),J,IZ)+(AE*

1 ((TRANSX*SX(3)*SX(IN))
2 +(TRANSY*SY(3)*SY(IN))))

C WRITE (8,1000) NODE(IN),IT,ITER,TRANSX,KH(NODE(IN),J,IZ)
40 CONTINUE

RETURN

END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c

c

c

c

c

c

c

c

VARIABLE LISTING: SUBROUTINE FORMST

NAME TYPE DESCRIPTION

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

c

C

C

c

c

C

AE      REAL*8     AREA OF TRIANGULAR ELEMENT [LZ]
CNST    REAL*8     CONSTANT RESULTING FROM INTEGRATION OF

STORAGE TERMS, FUNCTION OF KRONECKER DELTA
FUNCTION (3,3) ; [D]

ELMPRP  REAL*8     STORATIVITY (ELEMENTS,6,LAYERS); [D]
ELMPRP  REAL*8     SPECIFIC YIELD (ELEMENTS,7,LAYERS); [L/T]
IE      INTEGER*2  LOOP COUNTER FOR ELEMENTS
IN      INTEGER*2  LOOP COUNTER FOR NODES
IPN     INTEGER*2  INDEX FOR TYPE OF STORAGE TERM
IT      INTEGER*2  LOOP COUNTER FOR TIME
IZ      INTEGER*2  LOOP COUNTER FOR LAYERS
I       INTEGER*2  INDEX FOR CNST MATRIX
J       INTEGER*2  INDEX FOR CNST MATRIX
NELEM   INTEGER*2  TOTAL NUMBER OF ELEMENTS
NEM     INTEGER*2  NODES ASSIGNED TO ELEMENT
NLAY    INTEGER*2  NUMBER OF LAYERS
NNODE   INTEGER*2  TOTAL NUMBER OF NODES

NODCOR  REAL*8     X COORDINATES OF NODES (NODES,1)
NODCOR  REAL*8     Y COORDINATES OF NODES (NODES,2)
NODE    REAL*8     NODAL POSITION ON ELEMENT (3)
NODFLG  INTEGER*2  NODAL FLAG FOR HEAD STATUS (NODES,LAYERS,2)

SEE SUBROUTINE CHKHED FOR EXPLANATION OF
FLAG NUMBERS

NSS     INTEGER*2  SWITCH FOR STEADY STATE CASE (IF 1, STEADY
STATE)

NTIMST  INTEGER*2  TOTAL NUMBER OF TIMESTEPS
NXON    INTEGER*2  SWITCH FOR ESTIMATING STORAGE FOR WATER

BALANCE (ENSURES THAT STORAGES WILL BE
CALCULATED FOR WATER BALANCE) IF 1, CALCULATE

ST      REAL*8     STORAGE TERMS TO BE APPLIED TO NEW HEADS
(NODES,LAYERS,1); [L2]

ST      REAL*8     STORAGE TERMS TO BE APPLIED TO TOPS OF NODES
(NODES,LAYERS,2); [L2]

ST      REAL*8     STORAGE TERMS TO BE APPLIED TO OLD HEADS
(NODES,LAYERS,3); [L2]

STONEW  REAL*8     STORAGE COEFFICIENT TO BE APPLIED TO NEW
HEADS, [D]

STOOLD  REAL*8     STORAGE COEFFICIENT TO BE APPLIED TO OLD

(ELEMENTS,(I,J,K))

[L]
[L]

C

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c
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C                          HEADS, [D] C
C     STOTOP  REAL*8     STORAGE COEFFICIENT TO BE APPLIED TO TOPS OF C
C                        NODES, [D] C
C__   SX      REAL*8     SECOND X DERIVATIVE OF BASIS FUNCTION; [L3/T] C
^m       SY      REAL*8     SECOND Y DERIVATIVE OF BASIS FUNCTION; [L3/T] C^^ C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C  SUBROUTINE FORMST DESCRIPTION: C
C  FORMS MATRIX OF STORAGE COMPONENTS (ST).  INTEGRATES OVER ELEMENTS C
C  ELEMENTS AND LUMP DIAGONALIZES ST.  STORAGE CALCULATIONS BASED ON C
C  STATUS OF HEADS (CONFINED, UNCONFINED, ETC.).  THREE DIFFERENT C
C  STORAGE TERMS ARE CALCULATED: C
C       STORAGE TERMS APPLIED TO NEW HEADS — (NODES,LAYERS,1) C
C       STORAGE TERMS APPLIED TO TOPS OF NODES — (NODES,LAYERS,2) C
C       STORAGE TERMS APPLIED TO OLD HEADS — (NODES,LAYERS,3) C
C C

C  THREE TERMS ARE NECESSARY TO ACCOUNT FOR TIMESTEPS WHERE HEAD       C
C  STATUS CHANGES FROM CONFINED TO UNCONFINED OR VICE VERSA. C
C C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c c
C SUBROUTINE FORMST C
C c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

SUBROUTINE FORMST(NXON)
IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 KH,KV,NODCOR
DIMENSION Q(51,20),NODFLG(51,20,2),HEAD(51,20,3),
1N0DC0R(51,2),ELMPRP(51,8,20),NEM(51,4),KH(51,10,20),ST(51,20,3),
2RHS(51,20),RECHGN(51,20),KV(51,20,3,2),CORLHA(20),CORLHB(20),
3CORLHC(20),CORRHS(20),RHS2(51,20),TOP(51,20),QDRY(51,20),
4SX(3),SY(3),N0DE(3),CNST(3,3),NELFLG(51,20)
COMMON Q,NODFLG,HEAD,NODCOR,ELMPRP,NEM,KH,ST,RHS,KV,
IRECHGN,NNODE,NELEM,NLAY,NBAND,DELTIM,NTIMST,NSWTCH,IT,IZ,INCOR,
2 CORLHA,CORLHB,CORLHC,CORRHS,MXITER,ERRALL,ITER,RHS 2,TOP,NLSTRT,
3QDRY,NDRY,NACCL,NSS,NRAD,NELFLG

C.....INITIALIZE [ ST ]
DO 20 IN=1,NNODE
DO 20 IPN=1,3

20 ST(IN,IZ,IPN)=0.0
C.....CHECK FOR STEADY STATE CASE

IF ( (NSS.EQ.O) .OR. (NXON.EQ.l) ) THEN
C.....BEGIN ELEMENT LOOP

DO 40 IE=1,NELEM
C.........CALCULATE AREA OF TRIANGULAR ELEMENT

AE=0.5*((NODCOR(NEM(IE,1),1)*NODCOR(NEM(IE,2),2)
1 -N0DC0R(NEM(IE,2),1)*N0DC0R(NEM(IE,1),2))
2 +(N0DC0R(NEM(IE,3),1)*N0DC0R(NEM(IE,1),2)
3 -NODCOR(NEM(IE,1),1)*N0DC0R(NEM(IE,3),2))
4 +(N0DC0R(NEM(IE,2),1)*N0DC0R(NEM(IE,3),2)
5 -NODCOR(NEM(IE,3),1)*NODCOR(NEM(IE,2),2)))

C.........IDENTIFY NODE NUMBER ON TRIANGULAR ELEMENT
N0DE(1)=NEM(IE,1)
NODE(2)=NEM(IE,2)
NODE(3)=NEM(IE,3)

.....SET DELTA FUNCTION (TIMES SIX)
DO 30 1=1,3

DO 30 J=l,3
IF (I.EQ.J) THEN
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CNST(I,J)=6.D00
ELSE

CNST(I,J)=12.D00
ENDIF

^3 0     CONTINUE
CT:.......BEGIN NODE LOOP FOR EACH ELEMENT

DO 40 IN=1,3
C.............CALCULATE [ST] AS A LUMPED DIAGONALIZED MATRIX
C.............CALCULATE STORAGE TERMS BASED ON HEAD CONDITION

IF (NELFLG(IE,IZ).EQ.l) THEN
STONEW=ELMPRP(IE,6,IZ)
STOTOP=0.D00

STOOLD=ELMPRP(IE,6,IZ)
ELSE IF (NELFLG(IE,IZ).EQ.2) THEN
STONEW=ELMPRP(IE,6,IZ)
STOTOP=ELMPRP(IE,6,IZ)-ELMPRP(IE,7,IZ)
STOOLD=ELMPRP(IE,7,IZ)
ELSE IF (NELFLG(IE,IZ).EQ.3) THEN
STONEW=ELMPRP(IE,7,IZ)
STOTOP=ELMPRP(IE,7,IZ)-ELMPRP(IE,6,IZ)
STOOLD=ELMPRP(IE,6,IZ)
ELSE IF (NELFLG(IE,IZ).EQ.4) THEN
STONEW=ELMPRP(IE,7,IZ)
STOTOP=0.D00

STOOLD=ELMPRP(IE,7,IZ)
ELSE IF (NELFLG(IE,IZ).EQ.5) THEN
STONEW=1.0E-10
STOTOP=0.D00

STOOLD=1.0E-10
ENDIF

DO 40 IC=1,3
ST(NODE(IN),IZ,1)=ST(N0DE(IN),IZ,1)

1 +(STONEW*AE/CNST(IC,IN) )
ST(NODE(IN),IZ,2)=ST(N0DE(IN),IZ,2)

1 +(STOTOP*AE/CNST(IC,IN))
ST(NODE(IN),IZ,3)=ST(N0DE(IN),IZ,3)

1             +(STOOLD*AE/CNST(IC,IN) )
40 CONTINUE

ENDIF

RETURN
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C     VARIABLE LISTING: SUBROUTINE LHSPRD C
C C
C     NAME    TYPE       DESCRIPTION C
C     ------  ---------  --------------------------------------------  C
C     IN      INTEGER*2  LOOP COUNTER FOR NODES C
C     IZ      INTEGER*2  LOOP COUNTER FOR LAYERS C
C     KH      REAL*8     HORIZONTAL FLOW TERMS (NODES,BANDED INDEX, C
C                       LAYERS); [L2/T] C
C    MID     INTEGER*2  INDEX FOR BANDED COLUMN MIDPOINT IN MATRIX KH C
C     NBAND   INTEGER*2  BANDWIDTH C
C     NNODE   INTEGER*2  TOTAL NUMBER OF NODES C

ST      REAL*8     STORAGE TERMS TO BE APPLIED TO NEW HEADS C
(NODES,LAYERS,1); [L2] C

C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C  SUBROUTINE LHSPRD DESCRIPTION: C
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C  FORMS LEFT HAND SIDE MATRIX FOR PREDICTOR EQUATIONS.  ADDS ST       C
C  MATRIX TO KH MATRIX, LEAVING A NEW KH MATRIX. C
C C
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

C^ SUBROUTINE LHSPRD C
c c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

SUBROUTINE LHSPRD

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 KH,KV,NODCOR
DIMENSION Q(51,20),N0DFLG(51,20,2),HEAD(51,20,3),
1N0DC0R(51,2),ELMPRP(51,8,20),NEM(51,4),KH(51,10,20),ST(51,20,3),
2RHS(51,20),RECHGN(51,20),KV(51,20,3,2),CORLHA(20),CORLHB(20),
3CORLHC(20),CORRHS(20),RHS2(51,20),TOP(51,20),QDRY(51,20),
4NELFLG(51,20)
COMMON Q,NODFLG,HEAD,NODCOR,ELMPRP,NEM,KH,ST,RHS,KV,
IRECHGN,NNODE,NELEM,NLAY,NBAND,DELTIM,NTIMST,NSWTCH,IT,IZ,INCOR,
2 CORLHA,CORLHB,CORLHC,CORRHS,MXITER,ERRALL,ITER,RHS 2,TOP,NLSTRT,
3QDRY,NDRY,NACCL,NSS,NRAD,NELFLG

C.....BEGIN NODE LOOP

DO 40 IN=1,NNODE
MID=(NBAND+l)/2
KH(IN,MID,IZ)=KH(IN,MID,IZ)+(ST(IN,IZ,1)/DELTIM)

40 CONTINUE
RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c c

VARIABLE LISTING: SUBROUTINE LHSDIR C
c

C     NAME    TYPE       DESCRIPTION C
C     ------  ---------  --------------------------------------------  C
C IB INTEGER*2 LOOP COUNTER FOR BANDWIDTH C
C IN INTEGER*2 LOOP COUNTER FOR NODES C
C IZ INTEGER*2 LOOP COUNTER FOR LAYERS C
C KH REAL*8 HORIZONTAL FLOW TERMS (NODES,BANDED INDEX, C
C LAYERS); [L2/T] C
C MID INTEGER*2 INDEX FOR BANDED COLUMN MIDPOINT IN MATRIX KH C
C NBAND INTEGER*2 BANDWIDTH C
C NNODE INTEGER*2 TOTAL NUMBER OF NODES C
C NODFLG INTEGER*2 NODAL FLAG FOR BOUNDARY CONDITION: IF 1, C
C CONSTANT HEAD BOUNDARY (NODES,LAYERS,1) C
C C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c c
C SUBROUTINE LHSDIR DESCRIPTION: C
C INCORPORATES CONSTANT HEAD BOUNDARIES INTO KH MATRIX. AT NODES C
C WHERE CONSTANT HEADS ARE SPECIFIED, ROW IN KH IS ASSIGNED ALL C
C O'S, EXCEPT AT NODE LOCATION, WHERE A 1 IS ASSIGNED. C
c c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c c
C SUBROUTINE LHSDIR C
^^ Cd^Rcccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

SUBROUTINE LHSDIR

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 KH,KV,NODCOR
DIMENSION Q(51,20),N0DFLG(51,20,2),HEAD(51,20,3),
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1N0DC0R(51,2),ELMPRP(51,8,20),NEM(51,4),KH(51,10,20),ST(51,20,3),
2RHS(51,20),RECHGN(51,20),KV(51,20,3,2),CORLHA(20),CORLHB(20),
3CORLHC(20),CORRHS(20),RHS2(51,20),TOP(51,20),QDRY(51,20),
4NELFLG(51,20)
COMMON Q,NODFLG,HEAD,NODCOR,ELMPRP,NEM,KH,ST,RHS,KV,
IRECHGN,NNODE,NELEM,NLAY,NBAND,DELTIM,NTIMST,NSWTCH,IT,IZ,INCOR,
2C0RLHA,CORLHB,CORLHC,CORRHS,MXITER,ERRALL,ITER,RHS2,TOP,NLSTRT,
3 QDRY,NDRY,NACCL,NSS,NRAD,NELFLG
DO 40 IN=1,NNODE

IF ( N0DFLG(IN,IZ,1).EQ.l ) THEN
DO 20 IB=1,NBAND

20 KH(IN,IB,IZ)=0.D00
MID=(NBAND+l)/2
KH(IN,MID,IZ)=1.D00

ENDIF

40 CONTINUE
RETURN

END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c c
C     VARIABLE LISTING: SUBROUTINE LHSDRY C
C C

C NAME TYPE DESCRIPTION C
C ------ --------- -------------------------------------------- C
C IB INTEGER*2 LOOP COUNTER FOR BANDWIDTH C
C IN INTEGER*2 LOOP COUNTER FOR NODES C
C IZ INTEGER*2 LOOP COUNTER FOR LAYERS C
C KH REAL*8 HORIZONTAL FLOW TERMS (NODES,BANDED INDEX, C
C LAYERS); [L2/T] C

MID INTEGER*2 INDEX FOR BANDED COLUMN MIDPOINT IN MATRIX KH C
NBAND INTEGER*2 BANDWIDTH C

C NNODE INTEGER*2 TOTAL NUMBER OF NODES C
C NODFLG INTEGER*2 NODAL FLAG FOR HEAD STATUS (NODES,LAYERS,2) C
C SEE SUBROUTINE CHKHED FOR EXPLANATION OF C
C FLAG NUMBERS C
C C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C c
C  SUBROUTINE LHSDRY DESCRIPTION: C
C  INCORPORATES DRY NODES INTO KH MATRIX. AT NODES C
C  WHERE NODES ARE DRY, ROW IN KH IS ASSIGNED ALL C
C  O'S, EXCEPT AT NODE LOCATION, WHERE A 1 IS ASSIGNED. C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C c
C SUBROUTINE LHSDRY C
C C
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

SUBROUTINE LHSDRY

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 KH,KV,NODCOR
DIMENSION 0(51,20),NODFLG(51,20,2),HEAD(51,20,3),
1N0DC0R(51,2),ELMPRP(51,8,20),NEM(51,4),KH(51,10,20),ST(51,20,3),
2RHS(51,20),RECHGN(51,20),KV(51,20,3,2),CORLHA(20),CORLHB(20),
3CORLHC(20),CORRHS(20),RHS2(51,20),TOP(51,20),QDRY(51,20),
4NODE(3),NELFLG(51,20)
COMMON Q,NODFLG,HEAD,NODCOR,ELMPRP,NEM,KH,ST,RHS,KV,
IRECHGN,NNODE,NELEM,NLAY,NBAND,DELTIM,NTIMST,NSWTCH,IT,IZ,INCOR,
2CORLHA,CORLHB,CORLHC,CORRHS,MXITER,ERRALL,ITER,RHS2,TOP,NLSTRT,
3QDRY,NDRY,NACCL,NSS,NRAD,NELFLG
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DO 40 IE=1,NELEM
DO 40 IN3=1,3

C.........IDENTIFY NODE NUMBER ON TRIANGULAR ELEMENT
NODE(l)=NEM(IE,l)
NODE(2)=NEM(IE,2)
NODE(3)=NEM(IE,3)
IF ( NELFLG(IE,IZ).EQ.5 ) THEN

DO 20 IB=1,NBAND
20 KH(N0DE(IN3),IB,IZ)=O.DOO

MID=(NBAND+l)/2
KH(N0DE(IN3),MID,IZ)=1.D00

ENDIF

40 CONTINUE
RETURN

END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c

c

c

c

VARIABLE LISTING: SUBROUTINE FACTOR

NAME TYPE DESCRIPTION

C

C

C

C

I       INTEGER*2  LOOP COUNTER FOR COLUMNS C
IZ      INTEGER*2  LOOP COUNTER FOR LAYERS C
J       INTEGER*2  LOOP COUNTER FOR ROWS C
KH      REAL*8     HORIZONTAL FLOW TERMS (NODES,BANDED INDEX,    C

LAYERS); [L2/T] C
MID     INTEGER*2  INDEX FOR BANDED COLUMN MIDPOINT IN MATRIX KH C
NBAND   INTEGER*2  BANDWIDTH C
NDIAG   INTEGER*2  COLUMN INDEX C
NDO     INTEGER*2  ROW INDEX C
NEQN    INTEGER*2  ROW INDEX C
NHIGH   INTEGER*2  COLUMN INDEX C
NITER   INTEGER*2  COLUMN INDEX C
NLOW    INTEGER*2  COLUMN INDEX C
NMAX    INTEGER*2  COLUMN INDEX C
NNODE   INTEGER*2  TOTAL NUMBER OF NODES C

C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

c

c

c

c

c

c

c

c

c

c

c

c
c

c

c

c

c

c
c

SUBROUTINE FACTOR DESCRIPTION:
FACTORS KH MATRIX INTO A LOWER DECOMPOOSED MATRIX FOR USE IN A
GAUSS ELIMINATION SOLUTION ALGORITHM.  FULL KH MATRIX IS NOT SAVED.

C

C

C

C

C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C c
C SUBROUTINE FACTOR C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE FACTOR

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 KH,KV,NODCOR
DIMENSION Q(51,20),N0DFLG(51,20,2),HEAD(51,20,3),
1N0DC0R(51,2),ELMPRP(51,8,20),NEM(51,4),KH(51,10,20),ST(51,20,3),
2RHS(51,20),RECHGN(51,20),KV(51,20,3,2),CORLHA(20),CORLHB(20),
3CORLHC(20),CORRHS(20),RHS2(51,20),TOP(51,20),QDRY(51,20),
4NELFLG(51,20)
COMMON Q,NODFLG,HEAD,NODCOR,ELMPRP,NEM,KH,ST,RHS,KV,
IRECHGN,NNODE,NELEM,NLAY,NBAND,DELTIM,NTIMST,NSWTCH,IT,IZ,INCOR,
2 CORLHA,CORLHB,CORLHC,CORRHS,MXITER,ERRALL,ITER,RHS 2,TOP,NLSTRT,
3QDRY,NDRY,NACCL,NSS,NRAD,NELFLG
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NDIAG = NBAND/2 + 1
NMAX = NBAND - NDIAG
NDO = NNODE - 1

DO 10 I = l,NDO
NITER = NMAX

IF( NNODE - I .LT. NITER ) NITER = NNODE - I
DO 10 J = 1,NITER
NEQN = I + J
KH(NEQN,NDIAG - J,IZ)=-KH(NEQN,NDIAG - J,IZ)/
1KH(I,NDIAG,IZ)
NLOW = NDIAG - J + 1
NHIGH = NLOW + NITER - 1
DO 10 K = NLOW,NHIGH

10 KH(NEQN,K,IZ)=KH(NEQN,K,IZ)+KH(NEQN,NDIAG-J,IZ)
1*KH(I,NDIAG+1-NLOW+K,IZ)
RETURN

END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c c
C     VARIABLE LISTING: SUBROUTINE FORMKV C
C C
C     NAME    TYPE       DESCRIPTION C

AREA OF TRIANGULAR ELEMENT [L2] C
CONSTANT RESULTING FROM INTEGRATION OF C
STORAGE TERMS, FUNCTION OF KRONECKER DELTA C
FUNCTION (3,3); [D] C
CENTRAL DIFFERENCE AROUND LAYER IZ; [L] C
(SATURATED THICKNESS) C
CENTRAL DIFFERENCE AROUND LAYER IZ-1; [L] C
(SATURATED THICKNESS) C
CENTRAL DIFFERENCE AROUND LAYER IZ+1; [L] C
(SATURATED THICKNESS) C
SATURATED THICKNESS IN LAYER IZ-1; [L] C
SATURATED THICKNESS IN LAYER IZ+1; [L] C
SATURATED THICKNESS IN LAYER IZ; [L] C
TOP OF ELEMENT (ELEMENTS,1,LAYERS); [L] C
BOTTOM OF ELEMENT (ELEMENTS,2,LAYERS); [L] C
HYDRAULIC CONDUCTIVITY IN X DIRECTION C
(ELEMENTS,5,LAYERS); [L/T] C
HEADS FROM OLD TIMESTEP (NODES,LAYERS,1); [L] C
HEADS FROM NEW ITERATION (NODES,LAYERS,2); [L]C
INDEX FOR CNST MATRIX C
INDEX FOR KU, KU+KL, OR KL C
LOOP COUNTER FOR ELEMENTS C
LOOP COUNTER FOR NODES C
INDEX FOR PREDICTOR (=1) OR CORRECTOR (=2) C
SET OF EQUATIONS C
INDEX FOR HEADS C
LOOP COUNTER FOR LAYERS C
LOOP COUNTER FOR LAYERS (IZ-1) C
LOOP COUNTER FOR LAYERS (IZ+1) C
INDEX FOR CNST MATRIX C
UPPER SET OF VERTICAL FLOW TERMS FOR USE IN C
PREDICTOR EQUATIONS (NODES,LAYERS,1,1); [L2/T]C
UPPER SET OF VERTICAL FLOW TERMS FOR USE IN C
CORRECTOR EQUATIONS (NODES,LAYERS,1,2); [L2/T]C
UPPER+LOWER SET OF VERTICAL FLOW TERMS FOR C
USE IN PREDICTOR EQUATIONS (NODES,LAYERS,2,1);C
[L2/T] C

C AE REAL*8
c CNST REAL*8
c

c

c DELZ REAL*8
c

m
c

DELZM REAL*8

DELZP REAL*8
c

c DELZMT REAL*8
c DELZPT REAL*8
c DELZT REAL*8
c ELMPRP REAL*8
c ELMPRP REAL*8
c ELMPRP REAL*8
c

c HEAD REAL*8
c HEAD REAL*8
c I INTEGER*2
c IP INTEGER*2
c IE INTEGER*2
c IN INTEGER*2
c IXF INTEGER*2
c

c IXH INTEGER*2
c IZ INTEGER*2
c IZM INTEGER*2
c IZP INTEGER*2
c J INTEGER*2
c KV REAL*8

m KV REAL*8
c

c KV REAL*8
c

c
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p
c

c

c

c

c

c

c

c
c

c

c

c

c

c

c

c

c

c

c

KV

KV

KV

NBAND

NELEM

NEM

NLAY

NNODE

NODCOR

NODCOR
NODE

NODFLG

REAL*8

REAL*8

REAL*8

INTEGER*2

INTEGER*2
INTEGER*2
INTEGER*2

INTEGER*2
REAL*8
REAL*8
REAL*8

INTEGER*2

SX

SY

TRANSZM REAL*8

REAL*8

REAL*8

TRANSZP REAL*8

UPPER+LOWER SET OF VERTICAL FLOW TERMS FOR C
USE IN CORRECTOR EQUATIONS (NODES,LAYERS,2,2);C
[L2/T] C
LOWER SET OF VERTICAL FLOW TERMS FOR USE IN C
PREDICTOR EQUATIONS (NODES,LAYERS,3,1); [L2/T]C
LOWER SET OF VERTICAL FLOW TERMS FOR USE IN C
CORRECTOR EQUATIONS (NODES,LAYERS,3,2); [L2/T]C
BANDWIDTH C
TOTAL NUMBER OF ELEMENTS C
NODES ASSIGNED TO ELEMENT (ELEMENTS,(I,J,K)) C
NUMBER OF LAYERS C
TOTAL NUMBER OF NODES C
X COORDINATES OF NODES (NODES,!); [L] C
Y COORDINATES OF NODES (NODES,2); [L] C
NODAL POSITION ON ELEMENT (3) C
NODAL FLAG FOR HEAD STATUS (NODES,LAYERS,2) C
SEE SUBROUTINE CHKHED FOR EXPLANATION OF C
FLAG NUMBERS C
SECOND X DERIVATIVE OF BASIS FUNCTION; [L3/T] C
SECOND Y DERIVATIVE OF BASIS FUNCTION; [L3/T] C
UPPER HARMONIC AVERAGE OF TRANSMISSIVITY C
IN Z DIRECTION; [L2/T] C
LOWER HARMONIC AVERAGE OF TRANSMISSIVITY C
IN Z DIRECTION; [L2/T] C

C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c

c

c

(Wa
c

c

c

c

c

c

c

c
c

c

c

c
c

c

SUBROUTINE FORMKV DESCRIPTION:
CALCULATES VERTICAL FLOW COMPONENTS. ESTIMATES TRANSMISSIVITIES
CCORDING TO HEAD STATUS, USING A BLOCK-CENTERED FINITE DIFFERENCE
'APPROXIMATION.  TRANSMISSIVITY ESTIMATES ALSO BASED ON POSITON
OF LAYER.  FLOW COMPONENTS CALCULATED BY INTEGRATING OVER ELEMENTS
ELEMENTS.  THREE DIFFERENT VERTICAL FLOW COMPONENTS ARE CALCULATED:

UPPER SET OF VERTICAL FLOW TERMS (NODES,LAYERS,1,IXF)
UPPER+LOWER SET OF VERTICAL FLOW TERMS (NODES,LAYERS,2,IXF)
LOWER SET OF VERTICAL FLOW TERMS  (NODES,LAYERS,3,IXF)

INDEX IXF = 1

INDEX IXF = 2
~ KV FOR PREDICTOR EQUATIONS
— KV FOR PREDICTOR EQUATIONS

INDEX IXH ALLOWS FOR DIFFERENT SET OF HEADS TO BE USED IN
SUBROUTINE:

— HEADS FROM OLD TIMESTEP
— HEADS FROM NEW ITERATION

INDEX IXH = 1
INDEX IXH = 3

C

C

C

C

C

C

C

C

C

C

C

C

c

c

c

c

c

c

c

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c c
C SUBROUTINE FORMKV C
c c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

SUBROUTINE FORMKV(IXH,IXF)
IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 KH,KV,NODCOR
DIMENSION Q(51,20),N0DFLG(51,20,2),HEAD(51,20,3),
1N0DC0R(51,2),ELMPRP(51,8,20),NEM(51,4),KH(51,10,20),ST(51,20,3),
2RHS(51,20),RECHGN(51,20),KV(51,20,3,2),CORLHA(20),CORLHB(20),
3CORLHC(20),CORRHS(20),RHS2(51,20),TOP(51,20),QDRY(51,20),
4NODE(3),CNST(3,3),NELFLG(51,20)
COMMON Q,NODFLG,HEAD,NODCOR,ELMPRP,NEM,KH,ST,RHS,KV,
IRECHGN,NNODE,NELEM,NLAY,NBAND,DELTIM,NTIMST,NSWTCH,IT,IZ,INCOR,
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2 CORLHA,CORLHB,CORLHC,CORRHS,MXITER,ERRALL,ITER,RHS 2,TOP,NLSTRT,
3QDRY,NDRY,NACCL,NSS,NRAD,NELFLG
..INITIALIZE [KV]
DO 20 IN=1,NN0DE

DO 20 IP=1,3
20 KV(IN,IZ,IP,IXF)=0.0

C.....CHECK FOR SINGLE LAYER
IF (NLAY.NE.l) THEN

C..........BEGIN ELEMENT LOOP
DO 40 IE=1,NELEM

C.........CALCULATE AREA OF TRIANGULAR ELEMENT
AE=0.5*((NODCOR(NEM(IE,1),1)*NODCOR(NEM(IE,2),2)

1 -N0DC0R(NEM(IE,2),1)*N0DC0R(NEM(IE,1),2))
2 +(N0DC0R(NEM(IE,3),1)*N0DC0R(NEM(IE,1),2)
3 -NODCOR(NEM(IE,l),1)*NODCOR(NEM(IE,3),2))
4 +(N0DC0R(NEM(IE,2),1)*NODCOR(NEM(IE,3),2)
5 -NODCOR(NEM(IE,3),1)*NODCOR(NEM(IE,2),2)))

C.........IDENTIFY NODE NUMBER ON TRIANGULAR ELEMENT
N0DE(1)=NEM(IE,1)
NODE(2)=NEM(IE,2)
NODE(3)=NEM(IE,3)

C.........

C.........CALCULATE TRANSMISSIVITIES AND DELTA Z'S IN
C.........Z-DIRECTION USING BLOCK-CENTERED APPROACH,
C.........ACCOUNTING FOR BOUNDARY CONDITIONS IN Z-DIRECTION,
C.........AND ACCOUNTING FOR SATURATED AND UNSATURATED
C.........CONDITIONS
C.........

C.........BOTTOM LAYER

IF (IZ.EQ.l) THEN
IZP=IZ+1
IZM=IZ

C.........AVERAGE HEADS OVER EACH ELEMENT
HSUM = O.DOO

DO 100 IN=1,3
HSUMP = HSUMP+HEAD(NODE(IN),IZP,IXH)
HSUM = HSUM+HEAD(NODE(IN),IZ,IXH)
HSUMM = HSUMM+HEAD(NODE(IN),IZM,IXH)

100     CONTINUE

HBARP = HSUMP/3.DO0
HBAR = HSUM/3.D00
HBARM = HSUMM/3.D00

C.........CHECK SATURATED/UNSATURATED CONDITION
IF (HBAR.GT.ELMPRP(IE,1,IZ)) THEN

DELZP=(ELMPRP(IE,l,IZP)-ELMPRP(IE,2,IZ))/2
DELZ=ELMPRP(IE,1,IZ)-ELMPRP(IE,2,IZ)
DELZM=DELZ

ELSEIF ( (HBAR.LT.ELMPRP(IE,1,IZ)) .AND.
1 (HBAR.GT.ELMPRP(IE,2,IZ)) ) THEN

DELZP=1.0E-08

DELZ=HBAR-ELMPRP(IE,2,IZ)
DELZM=DELZ

ELSEIF (HBAR.LT.ELMPRP(IE,2,IZ)) THEN
DELZP=(ELMPRP(IE,l,IZP)-ELMPRP(IE,2,IZ))/2
DELZ=ELMPRP(IE,1,IZ)-ELMPRP(IE,2,IZ)
DELZM=DELZ

ENDIF

C.........CALCULATE CONDUCTIVITIES

HCONZP=((DELZ/2)+(DELZP/2))/
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w

1 ((DELZ/2/(ELMPRP(IE,5,IZ)))
2 +(DELZP/2/(ELMPRP(IE,5,IZP))))

HCONZM=0.0

,TOP LAYER

ELSEIF (IZ.EQ.NLAY) THEN
IZP=IZ

IZM=IZ-1

C.........AVERAGE HEADS OVER EACH ELEMENT
HSUM = O.DOO

DO 200 IN=1,3
HSUMP = HSUMP+HEAD(NODE(IN),IZP,IXH)
HSUM = HSUM+HEAD(NODE(IN),IZ,IXH)
HSUMM = HSUMM+HEAD(NODE(IN),IZM,IXH)

2 00     CONTINUE

HBARP = HSUMP/3.DO0
HEAR = HSUM/3.D00
HBARM = HSUMM/3.DO0

C.........CHECK SATURATED/UNSATURATED CONDITION
IF (HBAR.GT.ELMPRP(IE,1,IZ)) THEN

DELZ=ELMPRP(IE,1,IZ)-ELMPRP(IE,2,IZ)
DELZP=DELZ

DELZM=(ELMPRP(IE,1,IZ)-ELMPRP(IE,2,IZM))/2
ELSEIF ( (HEAR.LT.ELMPRP(IE,1,IZ)) .AND.

1 (HEAR.GT.ELMPRP(IE,2,IZ)) ) THEN
DELZ=HEAR-ELMPRP(IE,2,IZ)
DELZP=DELZ

DELZM=(HEAR-ELMPRP(IE,2,IZM))/2
ELSEIF (HEAR.LT.ELMPRP(IE,2,IZ)) THEN

DELZ=ELMPRP(IE,1,IZ)-ELMPRP(IE,2,IZ)
DELZP=DELZ

DELZM=(ELMPRP(IE,1,IZ)-ELMPRP(IE,2,IZM))/2
ENDIF

C.........CALCULATE CONDUCTIVITIES
HCONZP=0.0

HCONZM=((DELZ/2)+(DELZM/2))/
1 ((DELZ/2/(ELMPRP(IE,5,IZ)))
2 +(DELZM/2/(ELMPRP(IE,5,IZM))))

ELSE

C.........

C.........OTHER LAYERS
C.........

IZP=IZ+1

IZM=IZ-1

C.........AVERAGE HEADS OVER EACH ELEMENT
HSUM = O.DOO

DO 300 IN=1,3
HSUMP = HSUMP+HEAD(NODE(IN),IZP,IXH)
HSUM = HSUM+HEAD(NODE(IN),IZ,IXH)
HSUMM = HSUMM+HEAD(NODE(IN),IZM,IXH)

300     CONTINUE

HBARP = HSUMP/3.D00
HEAR = HSUM/3.D00
a      HBARM = HSUMM/3.DO0

.......CHECK SATURATED/UNSATURATED CONDITION
IF (HBAR.GT.ELMPRP(IE,1,IZ)) THEN

DELZP=(ELMPRP(IE,1,IZP)-ELMPRP(IE,2,IZ))/2
DELZ=ELMPRP(IE,1,IZ)-ELMPRP(IE,2,IZ)
DELZM=(ELMPRP(IE,1,IZ)-ELMPRP(IE,2,IZM))/2
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ELSEIF ( (HBAR.LT.ELMPRP(IE,1,IZ)) .AND.
1 (HBAR.GT.ELMPRP(IE,2,IZ)) ) THEN

DELZP=1.0E-08

DELZ=HBAR-ELMPRP(IE,2,IZ)
DELZM=(HBAR-ELMPRP(IE,2,IZM))/2

ELSEIF (HBAR.LT.ELMPRP(IE,2,IZ)) THEN
DELZP=(ELMPRP(IE,l,IZP)-ELMPRP(IE,2,IZ))/2
DELZ=ELMPRP(IE,1,IZ)-ELMPRP{IE,2,IZ)
DELZM=(ELMPRP(IE,l,IZ)-ELMPRP(IE,2,IZM))/2

ENDIF

C.........CALCULATE CONDUCTIVITIES
HCONZP=((DELZ/2)+(DELZP/2))/

1 ((DELZ/2/(ELMPRP(IE,5,IZ)))
2 +(DELZP/2/(ELMPRP{IE,5,IZP))))

HCONZM=((DELZ/2)+(DELZM/2))/
1 ((DELZ/2/(ELMPRP(IE,5,IZ)))
2 +(DELZM/2/(ELMPRP(IE,5,IZM))))

ENDIF

C.........BEGIN NODE LOOP FOR EACH ELEMENT
DO 40 IN=1,3

C.............CALCULATE [KU] , [KU] + [KL] , [KL] AS LUMPED DIAGONALIZED
C.............MATRICES

DO 40 IC=1,3
C.............—KU—

KV(NODE(IN),IZ,1,IXF)=KV(N0DE(IN),IZ,1,IXF)
1 +((HCONZP/(DELZ))*AE/3.D00)

C.............—KU+KL—

KV(NODE(IN),IZ,2,IXF)=KV(N0DE(IN),IZ,2,IXF)
1 +((HCONZP/(DELZ))*AE/3.D00)
•2 +((HCONZM/(DELZ))*AE/3.D00)

...........—KL—

40 KV(NODE(IN),IZ,3,IXF)=KV(N0DE(IN),IZ,3,IXF)
1 +((HCONZM/(DELZ))*AE/3.D00)
ENDIF

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C c
C  SUBROUTINE RHSPRD DESCRIPTION: C
C FORMS RIGHT HAND SIDE MATRIX FOR PREDICTOR EQUATIONS. FIRST C
C MULTIPLIES KV TIMES APPROPRIATE HEADS TO FORM RHS2 MATRIX. THIS C
C MATRIX IS CALCULATED SEPARATELY BECAUSE IT WILL BE USED AGAIN IN C
C CORRECTOR EQUATIONS. SECOND, MULTIPLIES ST TIMES APPROPRIATE C
C HEADS AND ADDS NODAL STRESSES (PUMPING AND RECHARGE). IF DRY C
C  NODES ARE PRESENT, USE QDRY INSTEAD OF Q. C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c c
C VARIABLE LISTING: SUBROUTINE RHSPRD C
C C
C NAME    TYPE       DESCRIPTION C
C -----  --------  -------------------------------------- c
C HEAD REAL*8 HEADS FROM OLD TIMESTEP (NODES,LAYERS,1); [L] C
C IN INTEGER*2 LOOP COUNTER FOR NODES C
C||^ IZ INTEGER*2 LOOP COUNTER FOR LAYERS Cd|P IZM INTEGER*2 LOOP COUNTER FOR LAYERS (IZ-1)                C
C IZP INTEGER*2 LOOP COUNTER FOR LAYERS (IZ+1)                 C
C NDRY INTEGER*2 FLAG INDICATING DRY NODES PRESENT C
C NLAY INTEGER*2 NUMBER OF LAYERS C
C NNODE INTEGER*2 TOTAL NUMBER OF NODES C
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c NODFLG INTEGER*2
c

c

^
NZM INTEGER*2

p NZP INTEGER*2
c

c Q REAL*8
c QDRY REAL*8
c

c RHS REAL*8
c

c RHS2 REAL*8
c

c ST REAL*8
c

c ST REAL*8
c

c

NODAL FLAG FOR HEAD STATUS (NODES,LAYERS,2) C
SEE SUBROUTINE CHKHED FOR EXPLANATION OF C
FLAG NUMBERS C
CONSTANTS FOR ZEROING OUT TERMS IN RHS2 IF C
NECESSARY C
CONSTANTS FOR ZEROING OUT TERMS IN RHS2 IF C
NECESSARY C
NODAL STRESS (NODES,LAYERS); [L3/T] C
NODAL STRESS ADJUSTED FOR DRY LAYERS C
(NODES,LAYERS); [L3/T] C
RIGHT HAND SIDE FOR PREDICTOR EQUATIONS       C
(NODES,LAYERS); [L3/T] C
VERTICAL FLOW*HEAD TERMS ON RIGHT HAND SIDE;  C
(NODES,LAYERS); [L3/T] C
STORAGE TERMS TO BE APPLIED TO TOPS OF NODES  C
(NODES,LAYERS,2); [L2] C
STORAGE TERMS TO BE APPLIED TO OLD HEADS      C
(N0DES,LAYERS,3); [L2] C

C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C SUBROUTINE RHSPRD C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE RHSPRD

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 KH,KV,NODCOR
DIMENSION Q(51,20),N0DFLG(51,20,2),HEAD(51,20,3),
1N0DC0R(51,2),ELMPRP(51,8,20),NEM(51,4),KH(51,10,20),ST(51,20,3),
2RHS(51,20),RECHGN(51,20),KV(51,20,3,2),CORLHA(20),CORLHB(20),
3CORLHC(20),CORRHS(20),RHS2(51,20),TOP(51,20),QDRY(51,20),
4NODE(3),NELFLG(51,20)
COMMON Q,NODFLG,HEAD,NODCOR,ELMPRP,NEM,KH,ST,RHS,KV,
IRECHGN,NNODE,NELEM,NLAY,NBAND,DELTIM,NTIMST,NSWTCH,IT,IZ,INCOR,
2 CORLHA,CORLHB,CORLHC,CORRHS,MXITER,ERRALL,ITER,RHS 2,TOP,NLSTRT,
3QDRY,NDRY,NACCL,NSS,NRAD,NELFLG

C.....CHECK FOR LAYER POSITION
C.....TOP LAYER

IF (IZ.EQ.NLAY) THEN
IZM=IZ-1
IZP=IZ

NZM=1

NZP=0

C.....BOTTOM LAYER

ELSEIF (IZ.EQ.l) THEN
IZM=IZ

IZP=IZ+1
NZM=0

NZP=1

C.....LAYERS OTHER THAN TOP OR BOTTOM
ELSE

IZM=IZ-1
IZP=IZ+1
NZM=1

NZP=1
ENDIF

C.....CALCULATE RIGHT HAND SIDE FOR PREDCITOR EQUATIONS
DO 40 IN=1,NNODE

C..........SINGLE LAYER

IF (NLAY.EQ.l) THEN
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RHS2(IN,IZ)=0.0
C..........OTHER THAN SINGLE LAYER

ELSE

RHS2(IN,IZ)=(NZP*KV(IN,IZ,1,1)*HEAD(IN,IZP,1))
1 -(KV(IN,IZ,2,1)*HEAD(IN,IZ,1))
2 +(NZM*KV(IN,IZ,3,1)*HEAD(IN,IZM,1))

ENDIF

C..........CHECK FOR DRY NODES
IF (NDRY.GT.O) THEN

RHS(IN,IZ)=((ST(IN,IZ,3)/DELTIM)*HEAD(IN,IZ,1))
1 +((ST(IN,IZ,2)/DELTIM)*T0P(IN,IZ))
2 +RHS2(IN,IZ)+QDRY(IN,IZ)

ELSEIF (NDRY.EQ.O) THEN
RHS(IN,IZ)=((ST(IN,IZ,3)/DELTIM)*HEAD(IN,IZ,1))

1 +((ST(IN,IZ,2)/DELTIM)*TOP(IN,IZ))
2 +RHS2(IN,IZ)+Q(IN,IZ)-RECHGN(IN,IZ)

ENDIF

40 CONTINUE
RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c C
C     VARIABLE LISTING: SUBROUTINE RHSDIR C
C c

C     NAME TYPE DESCRIPTION C
C     ------ --------- -------------------------------------------- C
C     HEAD REAL*8 HEADS FROM OLD TIMESTEP (NODES,LAYERS,1); [L] C
C     IN INTEGER*2 LOOP COUNTER FOR NODES C
C     IZ INTEGER*2 LOOP COUNTER FOR LAYERS C

IZM INTEGER*2 LOOP COUNTER FOR LAYERS (IZ-1) C
NNODE INTEGER*2 TOTAL NUMBER OF NODES C

C     NODFLG INTEGER*2 NODAL FLAG FOR HEAD STATUS (NODES,LAYERS,2) C
C SEE SUBROUTINE CHKHED FOR EXPLANATION OF C
C FLAG NUMBERS C
C     RHS REAL*8 RIGHT HAND SIDE FOR PREDICTOR EQUATIONS C
C (NODES,LAYERS); [L3/T] C
C C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C c

C SUBROUTINE RHSDIR DESCRIPTION: C
C INCORPORATES CONSTANT HEAD BOUNDARIES INTO RHS VECTOR. AT NODES C
C WHERE CONSTANT HEADS ARE SPECIFIED, SET RHS EQUAL TO HEADS FROM C
C OLD TIMESTEP. C
C C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c c
C SUBROUTINE RHSDIR C
c c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE RHSDIR

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 KH,KV,N0DC0R
DIMENSION Q(51,20),N0DFLG(51,20,2),HEAD(51,20,3),
1N0DC0R(51,2),ELMPRP(51,8,20),NEM(51,4),KH(51,10,20),ST(51,20,3),
2RHS(51,20),RECHGN(51,20),KV(51,20,3,2),CORLHA(20),CORLHB(20),
3CORLHC(20),CORRHS(20),RHS2(51,20),TOP(51,20),QDRY(51,20),
4NELFLG(51,20)
COMMON Q,NODFLG,HEAD,NODCOR,ELMPRP,NEM,KH,ST,RHS,KV,
IRECHGN,NNODE,NELEM,NLAY,NBAND,DELTIM,NTIMST,NSWTCH,IT,IZ,INCOR,
2C0RLHA,CORLHB,CORLHC,CORRHS,MXITER,ERRALL,ITER,RHS2,TOP,NLSTRT,
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3QDRY,NDRY,NACCL,NSS,NRAD,NELFLG
DO 20 IN=1,NN0DE

IF ( N0DFLG(IN,IZ,1).EQ.l ) THEN
RHS(IN,IZ)=HEAD(IN,IZ,1)

ENDIF
20 CONTINUE

RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c c
C     VARIABLE LISTING: SUBROUTINE RHSDRY C
c c
C     NAME    TYPE       DESCRIPTION C

c HEAD REAL*8
c IN INTEGER*2
c IZ INTEGER*2
c NNODE INTEGER*2
c NODFLG INTEGER*2
c

c

c RHS REAL*8
c

c

HEADS FROM OLD ITERATION (NODES,LAYERS,3);
LOOP COUNTER FOR NODES
LOOP COUNTER FOR LAYERS
TOTAL NUMBER OF NODES

NODAL FLAG FOR HEAD STATUS (NODES,LAYERS,2)
SEE SUBROUTINE CHKHED FOR EXPLANATION OF
FLAG NUMBERS

RIGHT HAND SIDE FOR PREDICTOR EQUATIONS
(NODES,LAYERS); [L3/T]

[L]C
C

c
c

C
c

c

c

c

c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c c
C  SUBROUTINE RHSDRY DESCRIPTION: C
C  INCORPORATES DRY NODES INTO RHS VECTOR AT NODES C
C  WHERE DRY NODES ARE SPECIFIED, SET RHS EQUAL TO HEADS FROM          C
I^OLD TIMESTEP AND LAYER BELOW. C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c c
C SUBROUTINE RHSDRY C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE RHSDRY

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 KH,KV,NODCOR
DIMENSION Q(51,20),N0DFLG(51,20,2),HEAD(51,20,3),
1N0DC0R(51,2),ELMPRP(51,8,20),NEM(51,4),KH(51,10,20),ST(51,20,3),
2RHS(51,20),RECHGN(51,20),KV(51,20,3,2),CORLHA(20),CORLHB(20),
3CORLHC(20),CORRHS(20),RHS2(51,20),TOP(51,20),QDRY(51,20),
4NODE(3),NELFLG(51,20)
COMMON Q,NODFLG,HEAD,NODCOR,ELMPRP,NEM,KH,ST,RHS,KV,
IRECHGN,NNODE,NELEM,NLAY,NBAND,DELTIM,NTIMST,NSWTCH,IT,IZ,INCOR,
2 CORLHA,CORLHB,CORLHC,CORRHS,MXITER,ERRALL,ITER,RHS2,TOP,NLSTRT,
3QDRY,NDRY,NACCL,NSS,NRAD,NELFLG
DO 20 IE=1,NELEM

(N0DFLG(IE,IZ,2).EQ.5) ) THEN

(N0DFLG(IE,IZ,2).EQ.5) ) THEN

IF ( (IZ.EQ.l) .AND.
WRITE (6,1000)

ENDIF

IF ( (IZ.GT.l) .AND.
IZM=IZ-1

DO 10 IN3=1,3
............IDENTIFY NODE NUMBER ON TRIANGULAR ELEMENT

N0DE(1)=NEM(IE,1)
NODE(2)=NEM(IE,2)
NODE(3)=NEM(IE,3)
RHS(NODE(IN3),IZ)=HEAD(N0DE(IN3),IZM,1)
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10 CONTINUE
ENDIF

20 CONTINUE

JJ)00   FORMAT ('   BOTTOM NODE IN AQUIFER GOES DRY')
^fe   RETURN^^   END
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c c
C     VARIABLE LISTING: SUBROUTINE SOLVE C
C C
C     NAME    TYPE       DESCRIPTION C

C HEAD REAL*8

C I INTEGER*2
c IZ INTEGER*2

C J INTEGER*2
C
C

C

KH REAL*8

NBAND INTEGER*2
C NDIAG INTEGER*2
C NEQN INTEGER*2
C NITER INTEGER*2
C NMAX INTEGER*2
C NNODE INTEGER*2
c NODE INTEGER*2
C RHS REAL*8
C

C

HEADS FROM NEW TIMESTEP (NODES,LAYERS,2);
LOOP COUNTER FOR COLUMNS
LOOP COUNTER FOR LAYERS

LOOP COUNTER FOR ROWS

HORIZONTAL FLOW TERMS (NODES,BANDED INDEX,
LAYERS); [L2/T]
BANDWIDTH
COLUMN INDEX

ROW INDEX
COLUMN INDEX
COLUMN INDEX

TOTAL NUMBER OF NODES
ROW INDEX

RIGHT HAND SIDE FOR PREDICTOR EQUATIONS
(NODES,LAYERS); [L3/T]

[L] C
C

C

c

c

c

c

c

c

c

c

c

c

c

c

c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c

^SUBROUTINE SOLVE DESCRIPTION: C
C  SOLVES FOR HEADS FROM PREDICTOR EQUATIONS USING BACKWARD C
C  SUBSTITUTION (GAUSS ELIMINATION).  USES BANDED FORM OF MATRIX.      C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c c
C SUBROUTINE SOLVE C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE SOLVE

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 KH,KV,NODCOR
DIMENSION Q(51,20),N0DFLG(51,20,2),HEAD(51,20,3),
1N0DC0R(51,2),ELMPRP(51,8,20),NEM(51,4),KH(51,10,20),ST(51,20,3),
2RHS(51,20),RECHGN(51,20),KV(51,20,3,2),CORLHA(20),CORLHB(20),
3CORLHC(20),CORRHS(20),RHS2(51,20),TOP(51,20),QDRY(51,20),
4NELFLG(51,20)
COMMON Q,NODFLG,HEAD,NODCOR,ELMPRP,NEM,KH,ST,RHS,KV,
IRECHGN,NNODE,NELEM,NLAY,NBAND,DELTIM,NTIMST,NSWTCH,IT,IZ,INCOR,
2 CORLHA,CORLHB,CORLHC,CORRHS,MXITER,ERRALL,ITER,RHS 2,TOP,NLSTRT,
3QDRY,NDRY,NACCL,NSS,NRAD,NELFLG
NDIAG = NBAND/2 + 1
NMAX=NBAND-NDIAG

NODE = NNODE - 1
DO 10 I = 1,N0DE
NITER=NMAX

IF(NITER.GT. NNODE - I) NITER = NNODE - I
DO 10 J = 1,NITER

10 RHS(H-J,IZ) = RHS(I+J,IZ) + KH(I+J,NDIAG-J,IZ)*RHS(I,IZ)
HEAD(NN0DE,IZ,2) = RHS(NNODE,IZ)/KH(NNODE,NDIAG,IZ)
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N0DE=NN0DE-1

DO 20 J = NODE,1,-1
NITER=NMAX

IF(NITER.GT.NNODE-J) NITER=NNODE-J
DO 30 K=l,NITER

'30 RHS(J,IZ)=RHS(J,IZ)-HEAD(J+K,IZ,2)*KH(J,NDIAG+K,IZ)
20 HEAD(J,IZ,2)=RHS(J,IZ)/KH(J,NDIAG,IZ)

RETURN

END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c c
C     VARIABLE LISTING: SUBROUTINE LHSCOR C
C C
C     NAME    TYPE       DESCRIPTION C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

CORLHA  REAL*8

CORLHB  REAL*8

CORLHC  REAL*8

INCOR

IZCOR

KV

KV

INTEGER*2

INTEGER*2
REAL*8

REAL*8

COLUMN A OF LEFT HAND SIDE OF CORRECTOR       C
(LAYERS); [L2/T] C
COLUMN B OF LEFT HAND SIDE OF CORRECTOR       C
(LAYERS); [L2/T3 C
COLUMN C OF LEFT HAND SIDE OF CORRECTOR       C
(LAYERS); [L2/T] C
LOOP COUNTER FOR NODES C
LOOP COUNTER FOR LAYERS C
UPPER SET OF VERTICAL FLOW TERMS FOR USE IN   C
CORRECTOR EQUATIONS (NODES,LAYERS,1,2); [L2/T]C
UPPER+LOWER SET OF VERTICAL FLOW TERMS FOR C
USE IN CORRECTOR EQUATIONS (NODES,LAYERS,2,2);C
[L2/T] C

KV      REAL*8     LOWER SET OF VERTICAL FLOW TERMS FOR USE IN   C
CORRECTOR EQUATIONS (NODES,LAYERS,3,2); [L2/T]C

NLAY    INTEGER*2  NUMBER OF LAYERS C
C     ST      REAL*8     STORAGE TERMS TO BE APPLIED TO OLD HEADS      C
C (NODES,LAYERS,3); [L2] C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c

c

c

c

c

SUBROUTINE LHSCOR DESCRIPTION:

CALCULATES LEFT HAND SIDE VECTORS FOR CORRECTOR EQUATIONS.
APPROPRIATE KV OR KV PLUS ST TO THREE VECTORS.

ASSIGNS

C

c

c

c

c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c c
C SUBROUTINE LHSCOR C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE LHSCOR

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 KH,KV,NODCOR
DIMENSION Q(51,20),N0DFLG(51,20,2),HEAD(51,20,3),
1N0DC0R(51,2),ELMPRP(51,8,20),NEM(51,4),KH(51,10,20),ST(51,20,3),
2RHS(51,20),RECHGN(51,20),KV(51,20,3,2),CORLHA(20),CORLHB(20),
3CORLHC(20),CORRHS(20),RHS2(51,20),TOP(51,20),QDRY(51,20),
4NELFLG(51,20)
COMMON Q,NODFLG,HEAD,NODCOR,ELMPRP,NEM,KH,ST,RHS,KV,
IRECHGN,NNODE,NELEM,NLAY,NBAND,DELTIM,NTIMST,NSWTCH,IT,IZ,INCOR,
2 CORLHA,CORLHB,CORLHC,CORRHS,MXITER,ERRALL,ITER,RHS 2,TOP,NLSTRT,
3QDRY,NDRY,NACCL,NSS,NRAD,NELFLG
FORM LEFT HAND SIDE MATRIX OF CORRECTOR
DO 50 IZCOR=l,NLAY

CORLHC(IZCOR)=-KV(INCOR,IZCOR,1,2)
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CORLHB(IZCOR)=KV(INCOR,IZCOR,2,2)+(ST(INCOR,IZCOR,1)/DELTIM)
50 CORLHA(IZCOR)=-KV(INCOR,IZCOR,3,2)

RETURN

END

;cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

C     VARIABLE LISTING: SUBROUTINE LCORDR C
C C
C     NAME    TYPE       DESCRIPTION C

P''

C

c

c

c

c

c

c

c

c

c

c

c

c

CORLHA  REAL*8

CORLHB  REAL*8

CORLHC  REAL*8

INCOR

IZCOR

NODFLG

NLAY

INTEGER*2
INTEGER*2
INTEGER*2

INTEGER*2

COLUMN A OF LEFT HAND SIDE OF CORRECTOR       C
(LAYERS); [L2/T] C
COLUMN B OF LEFT HAND SIDE OF CORRECTOR       C
(LAYERS); [L2/T] C
COLUMN C OF LEFT HAND SIDE OF CORRECTOR       C
(LAYERS); [L2/T] C
LOOP COUNTER FOR NODES C
LOOP COUNTER FOR LAYERS C
NODAL FLAG FOR HEAD STATUS (NODES,LAYERS,2)   C
SEE SUBROUTINE CHKHED FOR EXPLANATION OF C
FLAG NUMBERS C
NUMBER OF LAYERS C

C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

c

c

c

c

SUBROUTINE LCORDR DESCRIPTION:
INCORPORATES DRY NODES INTO CORRECTOR VECTORS. AT NODES
WHERE DRY NODES ARE SPECIFIED, SET CORLHA, CORLHC EQUAL TO 0,
CORLHB EQUAL TO 1.

C

c

c

c
C
c

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c c
C SUBROUTINE LCORDR C
c c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

SUBROUTINE LCORDR

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 KH,KV,NODCOR
DIMENSION Q(51,20),N0DFLG(51,20,2),HEAD(51,20,3),
1N0DC0R(51,2),ELMPRP(51,8,20),NEM(51,4),KH(51,10,20),ST(51,20,3),
2RHS(51,20),RECHGN(51,20),KV(51,20,3,2),CORLHA(20),CORLHB(20),
3CORLHC(20),CORRHS(20),RHS2(51,20),TOP(51,20),QDRY(51,20),
4NODE(3),NELFLG(51,20)
COMMON Q,NODFLG,HEAD,NODCOR,ELMPRP,NEM,KH,ST,RHS,KV,
IRECHGN,NNODE,NELEM,NLAY,NBAND,DELTIM,NTIMST,NSWTCH,IT,IZ,INCOR,
2 CORLHA,CORLHB,CORLHC,CORRHS,MXITER,ERRALL,ITER,RHS 2,TOP,NLSTRT,
3QDRY,NDRY,NACCL,NSS,NRAD,NELFLG
DO 50 IZC0R=1,NLAY

DO 25 IE=1,NELEM
DO 25 IN3=1,3

C.....................IDENTIFY NODE NUMBER ON TRIANGULAR ELEMENT
N0DE(1)=NEM(IE,1)
NODE(2)=NEM(IE,2)
NODE(3)=NEM(IE,3)
IF (NODE(IN3).EQ.INCOR) THEN

IF (NELFLG(IE,IZCOR).EQ.5) THEN
CORLHC(IZCOR)=0.DOO
CORLHB(IZCOR)=1.DOO
CORLHA(IZCOR)=0.D00

ENDIF
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25

50

^X
C

C

C

C

ENDIF
CONTINUE

CONTINUE

RETURN

END

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c

c

c

c

VARIABLE LISTING: SUBROUTINE RHSCOR

NAME TYPE DESCRIPTION

C

C

C

C

C
C

C

C

C

C

C

CORRHS

HEAD

INCOR

IZCOR

NLAY

ST

ST

TOP

REAL*8
REAL*8

INTEGER*2
INTEGER*2

INTEGER*2
REAL*8

REAL*8

REAL*8

RIGHT HAND SIDE OF CORRECTOR (LAYERS); [L3/T]
HEADS FROM NEW TIMESTEP (NODES,LAYERS,2); [L]
LOOP COUNTER FOR NODES
LOOP COUNTER FOR LAYERS
NUMBER OF LAYERS
STORAGE TERMS TO

(NODES,LAYERS,2)i
STORAGE TERMS TO

(NODES,LAYERS,3)l

BE APPLIED

[L2]
BE APPLIED

[L2]

TO TOPS OF NODES

TO NEW HEADS

TOP OF NODES (NODES,LAYERS); [L]

C

C

C

C

C

C

C

C

C

C
c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c

c

c

c

c

c

SUBROUTINE RHSCOR DESCRIPTION:

FORMS RIGHT HAND SIDE MATRIX FOR CORRECTOR EQUATIONS.
MULTIPLIES ST TIMES APPROPRIATE HEADS TO FORM AND ADDS
VECTOR.

RHS2

C

c

c

c

c

c

tCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

C SUBROUTINE  RHSCOR C
C c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

SUBROUTINE RHSCOR

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 KH,KV,NODCOR
DIMENSION Q(51,20),N0DFLG(51,20,2),HEAD(51,20,3),
1N0DC0R(51,2),ELMPRP(51,8,20),NEM(51,4),KH(51,10,20),ST(51,20,3),
2RHS(51,20),RECHGN(51,20),KV(51,20,3,2),CORLHA(20),CORLHB(20),
3CORLHC(20),CORRHS(20),RHS2(51,20),TOP(51,20),QDRY(51,20),
4NELFLG(51,20)
COMMON Q,NODFLG,HEAD,NODCOR,ELMPRP,NEM,KH,ST,RHS,KV,
IRECHGN,NNODE,NELEM,NLAY,NBAND,DELTIM,NTIMST,NSWTCH,IT,IZ,INCOR,
2 CORLHA,CORLHB,CORLHC,CORRHS,MXITER,ERRALL,ITER,RHS 2,TOP,NLSTRT,
3QDRY,NDRY,NACCL,NSS,NRAD,NELFLG

C     BEGIN LAYER LOOP

DO 40 IZCOR=l,NLAY
CORRHS(IZCOR)=((ST(INCOR,IZCOR,3)/DELTIM)*HEAD(INCOR,IZCOR,2))
1 +((ST(INCOR,IZCOR,2)/DELTIM)*TOP(INCOR,IZCOR))
2 -RHS2(INCOR,IZCOR)

40 CONTINUE

RETURN

END

PCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

VARIABLE LISTING: SUBROUTINE RCORDR
W
c

c

C

c

NAME TYPE DESCRIPTION

C

c

c

c
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C CORRHS REAL*8 RIGHT HAND SIDE OF CORRECTOR (LAYERS); [L3/T] C
C HEAD REAL*8 HEADS FROM OLD ITERATION (NODES,LAYERS,3); [L]C
C INCOR INTEGER*2 LOOP COUNTER FOR NODES C
C^ IZCOR INTEGER*2 LOOP COUNTER FOR LAYERS C
^^ IZMCOR INTEGER*2 LOOP COUNTER FOR LAYERS (IZCOR-1) C^^ NODFLG INTEGER*2 NODAL FLAG FOR HEAD STATUS (NODES,LAYERS,2) C
C SEE SUBROUTINE CHKHED FOR EXPLANATION OF C
C FLAG NUMBERS C
C NLAY INTEGER*2 NUMBER OF LAYERS C
C C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C c
C  SUBROUTINE RCORDR DESCRIPTION: C
C  INCORPORATES DRY NODES INTO RCORDR VECTOR.  AT NODES C
C  WHERE DRY NODES ARE SPECIFIED, SET RHS EQUAL TO HEADS FROM C
C OLD TIMESTEP AND LAYER BELOW. C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C c
C SUBROUTINE RCORDR C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE RCORDR

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 KH,KV,NODCOR
DIMENSION Q(51,20),N0DFLG(51,20,2),HEAD(51,20,3),
1N0DC0R(51,2),ELMPRP(51,8,20),NEM(51,4),KH(51,10,20),ST(51,20,3),
2RHS(51,20),RECHGN(51,20),KV(51,20,3,2),CORLHA(20),CORLHB(20),
3CORLHC(20),CORRHS(20),RHS2(51,20),TOP(51,20),QDRY(51,20),
4NODE(3),NELFLG(51,20)
COMMON Q,NODFLG,HEAD,NODCOR,ELMPRP,NEM,KH,ST,RHS,KV,
IRECHGN,NNODE,NELEM,NLAY,NBAND,DELTIM,NTIMST,NSWTCH,IT,IZ,INCOR,
2 CORLHA,CORLHB,CORLHC,CORRHS,MXITER,ERRALL,ITER,RHS 2,TOP,NLSTRT,
3QDRY,NDRY,NACCL,NSS,NRAD,NELFLG
DO 50 IZC0R=1,NLAY

DO 50 IE=1,NELEM
IF ( (IZCOR.EQ.l) .AND.

1 (NELFLG(IE,IZCOR).EQ.5) ) THEN
WRITE (6,1000)

ENDIF

IF ( (IZCOR.GT.l) .AND.
1 (NELFLG(IE,IZCOR).EQ.5) ) THEN

C..................... IDENTIFY NODE NUMBER ON TRIANGULAR ELEMENT
DO 25 IN3=1,3

N0DE(1)=NEM(IE,1)
NODE(2)=NEM(IE,2)
NODE(3)=NEM(IE,3)
IF (NODE(IN3).EQ.INCOR) THEN

IZMC0R=IZC0R-1

CORRHS(IZCOR)=HEAD(NODE(IN3),IZMCOR,1)
ENDIF

25 CONTINUE
ENDIF

50 CONTINUE

JApO FORMAT (' BOTTOM NODE IN AQUIFER GOES DRY')^P  RETURN
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c c
C     VARIABLE LISTING: SUBROUTINE OUTRAD C
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c

c NAME TYPE DESCRIPTION
e
c

ii
HEAD

INN

IN2

IZ

NLAY
NNODE

NN0DE2

NODCOR

REAL*8
INTEGER*2
INTEGER*2
INTEGER*2

INTEGER*2
INTEGER*2
INTEGER*2
REAL*8

HEADS FROM NEW ITERATION (NODES,LAYERS,2)
LOOP COUNTER FOR NODES
LOOP COUNTER FOR EVERY OTHER NODE
LOOP COUNTER FOR LAYERS
NUMBER OF LAYERS
TOTAL NUMBER OF NODES
HALF THE TOTAL NUMBER OF NODES
Y COORDINATES OF NODES (NODES,2); [L]

C

C

C

C

C

C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

[L]C
C

C

c

c
C

c
C

c

c

c

c

c

c

SUBROUTINE OUTRAD DESCRIPTION:

OUTPUTS FINAL HEADS IN RADIAL FORMAT, LAYER BY LAYER.
ONLY FOR PIE SHAPED INPUT DATA SET.

APPROPRIATE

C

C

C

C
C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C SUBROUTINE OUTRAD C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE OUTRAD

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 KH,KV,NODCOR
DIMENSION Q(51,20),N0DFLG(51,20,2),HEAD(51,20,3),
1N0DC0R(51,2),ELMPRP(51,8,20),NEM(51,4),KH(51,10,20),ST(51,20,3),
2RHS(51,20),RECHGN(51,20),KV(51,20,3,2),CORLHA(20),CORLHB(20),
3CORLHC(20),CORRHS(20),RHS2(51,20),TOP(51,20),QDRY(51,20),
4NELFLG(51,20)
COMMON Q,NODFLG,HEAD,NODCOR,ELMPRP,NEM,KH,ST,RHS,KV,

IRECHGN,NNODE,NELEM,NLAY,NBAND,DELTIM,NTIMST,NSWTCH,IT,IZ,INCOR,
2 CORLHA,CORLHB,CORLHC,CORRHS,MXITER,ERRALL,ITER,RHS 2,TOP,NLSTRT,
3QDRY,NDRY,NACCL,NSS,NRAD,NELFLG
WRITE (7,1000) (IZ,IZ=1,NLAY)
NNODE2=NNODE/2
DO 20 INN=1,NN0DE2
IN2=((INN-1)*2)+1

20 WRITE (7,1001) NODCOR(IN2,2)
1000 FORMAT (' ',(7110))
1001 FORMAT (F10.4,(7F10.4))

RETURN
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c c
C     VARIABLE LISTING: SUBROUTINE OUTCOL C
C C
C     NAME    TYPE       DESCRIPTION C

( HEAD(IN2,IZ,2), IZ=1,NLAY)

C HEAD REAL*8
c IN INTEGER*2
c IZ INTEGER*2
c NLAY INTEGER*2

m
NNODE INTEGER*2
NODCOR REAL*8

c NODCOR REAL*8
c

HEADS FROM NEW ITERATION (NODES,LAYERS,2);
LOOP COUNTER FOR NODES
LOOP COUNTER FOR LAYERS
NUMBER OF LAYERS

TOTAL NUMBER OF NODES

X COORDINATES OF NODES (NODES,1)
Y COORDINATES OF NODES (NODES,2)

[L]C
C

c
c

c

c

c
C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c c

[L]
[L]
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C SUBROUTINE OUTCOL DESCRIPTION:
C OUTPUTS FINAL HEADS IN NODE BY NODE, LAYER BY LAYER FORMAT.
C APPROPRIATE FOR ALL DATA SETS.
q.

C
C
c

c

Pccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c

C SUBROUTINE OUTCOL C
c c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

SUBROUTINE OUTCOL

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 KH,KV,NODCOR
DIMENSION Q(51,20),N0DFLG(51,20,2),HEAD(51,20,3),
1N0DC0R(51,2),ELMPRP(51,8,20),NEM(51,4),KH(51,10,20),ST(51,20,3),
2RHS(51,20),RECHGN(51,20),KV(51,20,3,2),CORLHA(20),CORLHB(20),
3CORLHC(20),CORRHS(20),RHS2(51,20),TOP(51,20),QDRY(51,20),
4NELFLG(51,20)
COMMON Q,NODFLG,HEAD,NODCOR,ELMPRP,NEM,KH,ST,RHS,KV,
IRECHGN,NNODE,NELEM,NLAY,NBAND,DELTIM,NTIMST,NSWTCH,IT,IZ,INCOR,
2 CORLHA,CORLHB,CORLHC,CORRHS,MXITER,ERRALL,ITER,RHS2,TOP,NLSTRT,
3QDRY,NDRY,NACCL,NSS,NRAD,NELFLG
WRITE (7,1000) IZ,NLAY
DO 20 IN=1,NNODE

20 WRITE (7,1001) ( NODCOR(IN,IP), IP=1,2 ),HEAD(IN,IZ,2)
1000 FORMAT (' LAYER=',I4,' OF',14)
1001 FORMAT (3F10.4)

RETURN

END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c

VARIABLE LISTING: SUBROUTINE THMALG C
C C
C     NAME    TYPE       DESCRIPTION C

COLUMN A OF LEFT HAND SIDE OF CORRECTOR       C
(LAYERS); [L3/T] C
COLUMN B OF LEFT HAND SIDE OF CORRECTOR       C
(LAYERS); [L3/T] C
TEMPORARY COLUMN VECTOR C
COLUMN C OF LEFT HAND SIDE OF CORRECTOR       C
(LAYERS); [L3/T] C
TEMPORARY COLUMN VECTOR C
HEADS FROM NEW ITERATION (NODES,LAYERS,2); [L]C
LOOP COUNTER FOR NODES C
LOOP COUNTER FOR LAYERS C
NUMBER OF LAYERS C
TOTAL NUMBER OF NODES C
RIGHT HAND SIDE OF CORRECTOR (LAYERS); [L3/T] C

C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C AA REAL*8
C

C BB REAL*8
c

c BETA REAL*8
c CC REAL*8
c

c GAMMA REAL*8
c HEAD REAL*8
c INCOR INTEGER*2
c I INTEGER*2
c NLAY INTEGER*2
c NNODE INTEGER*2
c RR REAL*8
c

C

C SUBROUTINE THMALG DESCRIPTION:

C SOLVES FOR HEADS FROM CORRECTOR EQUATIONS USING THOMAS ALGORTITHM.
C APPROPRIATE FOR BANDED MATRIX WITH ONLY THREE COLUMNS (OR VECTORS)

C

C

C

C

C

d^DCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C SUBROUTINE THMALG C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
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- 1) /
- D)

BETA(I - 1)
/ BETA(I)

2RHS(
3QDRY(51,20J,NELFLG(51,20)
COMMON Q,NODFLG,HEAD,NODCOR,ELMPRP,NEM,K
IRECHGN,NNODE,NELEM,NLAY,NBAND,DELTIM,NTI
2AA,BB,CC,RR,MXITER,ERRALL,ITER,RHS2,TOP,
3 QDRY,NDRY,NACCL,NSS,NRAD,NELFLG
BETA(l) = BB(1)
GAMMA(l) = RR(1) / BETA(l)
DO 10 I = 2, NLAY

BETA(I) = BB(I) - AA(I) * CC(I
10 GAMMA(I) = (RR(I) - AA(I)*GAMMA(I

HEAD(INC0R,NLAY,2) = GAMMA(NLAY)
Nl = NLAY - 1

DO 20 J = 1, Nl
I = NLAY - J

20 HEAD(INC0R,I,2)=GAMMA(I)-CC(I)*HEAD(INC0R,I + 1,2)/BETA(I)
1000 FORMAT (4E12.6)

RETURN
END

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c c
C     VARIABLE LISTING: SUBROUTINE CONVER C

NAME    TYPE       DESCRIPTION C

ERRALL

ERRALL

ERRMAX

EMXMAX

HEAD

HEAD

INE

IT

ITER

IZE

INEMAX

IZEMAX

MXITER
NCONT

NLAY

NLAYl
NLSTRT

NNODE

NTIMST

REAL*8

REAL*8

REAL*8
REAL*8

REAL*8
REAL*8

INTEGER*2
INTEGER*2
INTEGER*2

INTEGER*2
INTEGER*2

INTEGER*2

INTEGER*2
INTEGER*2

INTEGER*2
INTEGER*2
INTEGER*2

INTEGER*2
INTEGER*2

ERROR BETWEEN TIMESTEPS [D]
ALLOWABLE ERROR BETWEEN TIMESTEPS [D]
MAXIMUM ERROR BETWEEN ITERATIONS [D]
MAXIMUM ERROR FOR ENTIRE RUN [D]
HEADS FROM NEW ITERATION
HEADS FROM OLD ITERATION
LOOP COUNTER FOR NODES

COUNTER FOR TIME
COUNTER FOR ITERATIONS
COUNTER FOR LAYERS
INDEX FOR LOCATION OF ERRMAX
INDEX FOR LOCATION OF ERRMAX

(NODES,LAYERS,2)
(NODES,LAYERS,3)

C

C

C

C

C

C

C

C

C

C

C

C

C

C

c

c

c

c

c

c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c c

LOOP
LOOP

LOOP

NODE

LAYER

MAXIMUM ALLOWABLE ITERATIONS

FLAG FOR CONTINUING ITERATIONS (=1 CONTINUE)
NUMBER OF LAYERS

NUMBER OF LAYERS PLUS ONE (NLAY+1)
LAYER NUMBER OF UNCONFINED LAYER
TOTAL NUMBER OF NODES
TOTAL NUMBER OF TIMESTEPS

C

c
c

c

[L]C
[L]C

C

c
c

c

c

c
c

c

c

c

c

c

c
c

^^UBROUTINE CONVER DESCRIPTION:
diP:HECKS FOR CONVERGENCE OF HEAD SOLUTION BY FINDING MAXIMUM ERROR
C  BETWEEEN HEADS FROM NEW ITERATION AND HEADS FROM OLD ITERATION.
C  ERROR IS CALCULATED AS ABSOLUTE VALUE OF RELATIVE ERROR.
C  ERROR IS COMPARED TO MAXIMUM ALLOWABLE ERROR AND NUMBER OF
C  ITERATIONS IS COMPARED TO MAXIMUM ALLOWABLE ITERATIONS.  IF

C

C

C

C

c
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C  CONVERGENCE IS REACHED BEFORE MAXIMUM ALLOWABLE ITERATIONS, C
C  "NCONT" FLAG IS 0, AND MAIN PROGRAM IS ALLOWED TO GO TO NEXT C
C  TIMESTEP.  OTHERWISE, "NCONT" FLAG IS SET TO 1 AND ITERATIONS C
^^CONTINUE.  IF ERROR IS TOO LARGE AT MAXIMUM ALLOWABLE ITERATIONS, C
^KSEND ERROR MESSAGE AND PROCEED TO NEXT TIMESTEP. C^^ALSO, KEEPS TRACK OF POSITION (NODE,LAYER) OF MAXIMUM ERROR FROM C
C  ANY TIMESTEP.  MAXIMUM ERRROR AND POSTION ARE OUTPUT TO UNIT 10. C
C  MAXIMUM ERROR OVER ALL TIMESTEPS IS ALSO IDENTIFIED AND SENT TO C
C  UNIT 7. C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C            SUBROUTINE CONVER C
c c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

SUBROUTINE CONVER(NCONT)
IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 KH,KV,NODCOR
DIMENSION Q(51,20),N0DFLG(51,20,2),HEAD(51,20,3),
1N0DC0R(51,2),ELMPRP(51,8,20),NEM(51,4),KH(51,10,20),ST(51,20,3),
2RHS(51,20),RECHGN(51,20),KV(51,20,3,2),CORLHA(20),CORLHB(20),
3CORLHC(20),CORRHS(20),RHS2(51,20),TOP(51,20),QDRY(51,20),
4NELFLG(51,20)
COMMON Q,NODFLG,HEAD,NODCOR,ELMPRP,NEM,KH,ST,RHS,KV,
IRECHGN,NNODE,NELEM,NLAY,NBAND,DELTIM,NTIMST,NSWTCH,IT,IZ,INCOR,
2 CORLHA,CORLHB,CORLHC,CORRHS,MXITER,ERRALL,ITER,RHS 2,TOP,NLSTRT,
3QDRY,NDRY,NACCL,NSS,NRAD,NELFLG

C.....INITIALIZE NCONT
NCONT=0

..FIND GREATEST ERROR
ERRMAX=0.DO

C.....SET NLAY+1=NLAY1
NLAY1=NLAY+1

DO 100 INE=1,NNODE
DO 100 IZE=1,NLAY

ERR=DABS(HEAD(INE,IZE,2)-HEAD(INE,IZE,3))
1 /HEAD(INE,IZE,3)

IF (ERR.GT.ERRMAX) THEN
ERRMAX=ERR
INEMAX=INE
IZEMAX=IZE

ENDIF

IF (ERR.GT.EMXMAX) THEN
EMXMAX=ERR

ENDIF

100 CONTINUE

C.....WRITE OUT ERROR (DIFFERENCE BETWEEN OLD AND NEW)
WRITE (10,1007) IT,ITER,ERRMAX,INEMAX,IZEMAX

C.....CHECK FOR CONVERGENCE OR ALL CONFINED
C.....AND CONTINUE ITERATION OR GO TO NEXT TIME STEP

IF ( (ITER.LT.MXITER) .AND. (ERRMAX.GT.ERRALL)
LAND. (NLSTRT. NE. NLAY 1) ) THEN

NC0NT=1

ELSE IF (ITER.EQ.MXITER) THEN
WRITE (6,1004)

ELSE IF ( (ITER.LT.MXITER) .AND. (ERRMAX.LT.ERRALL)
LAND. (NLSTRT. NE.NLAYl) ) THEN

WRITE (6,1005) ITER
ELSE IF (NLSTRT.EQ.NLAYl) THEN

WRITE (6,1009)
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ENDIF

C.....WRITE LARGEST ERROR ENCOUNTERED
IF (IT.EQ.NTMSTP) THEN
WRITE (7,1013) EMXMAX
WRITE (7,1012)
ENDIF

1004 FORMAT (' FAILED TO MEET CONVERGENCE CRITERIA WITHIN MAXIMUM
1 ALLOWABLE ITERATIONS')

1005 FORMAT (' SUCCEEDED IN MEETING CONVERGENCE CRITERIA WITHIN'
1,14,' ITERATIONS')

1007 FORMAT (' ',14,14,E12.6,14,14)
1009 FORMAT (' ALL LAYERS CONFINED, NO ITERATIONS NECESSARY')
1012 FORMAT (' ')
1013 FORMAT (' LARGEST ERROR ENCOUNTERED BETWEEN STEPS = ',E12.6)

RETURN
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C     VARIABLE LISTING: SUBROUTINE WATBAL C
C C
C     NAME    TYPE       DESCRIPTION C

C

C

C

C

C

C

C

BALLHS  REAL*8

BALRHS  REAL*8

C

C

C

C

C

C

C

C

C

C

C
C

C

DELTIM
ERRBAL
HEAD
HEAD

IN

IZ

MXITER
NLAY

NNODE

NTIMST
ST

ST

REAL*8
REAL*8

REAL*8

REAL*8

INTEGER*2
INTEGER*2

INTEGER*2
INTEGER*2

INTEGER*2

INTEGER*2
REAL*8

REAL*8

REAL*8

REAL*8

LEFT HAND SIDE OF BALANCE EQUATION: STRESSES C
[L3/T] C
RIGHT HAND SIDE OF BALANCE EQUATION: CHANGES C
IN WATER LEVEL [L3/T] C
TIME STEP SIZE [T] C
ERROR IN WATER BALANCE [D] C
HEADS FROM OLD TIMESTEP (NODES,LAYERS,1); [L] C
HEADS FROM NEW ITERATION (NODES,LAYERS,2); [L]C
LOOP COUNTER FOR NODES
LOOP COUNTER FOR LAYERS
MAXIMUM ALLOWABLE ITERATIONS
NUMBER OF LAYERS

TOTAL NUMBER OF NODES
TOTAL NUMBER OF TIMESTEPS

STORAGE TERMS TO BE APPLIED TO NEW HEADS
(NODES,LAYERS,1); [L2]
STORAGE TERMS TO BE APPLIED TO TOPS OF NODES
(NODES,LAYERS,2); [L2]
STORAGE TERMS TO BE APPLIED TO OLD HEADS
(NODES,LAYERS,3); [L2]
TOP OF NODE (NODES,LAYERS); [L]

C

C

C
C

C

C

C

c

c

c

ST      REAL*8     STORAGE TERMS TO BE APPLIED TO OLD HEADS      C
C

TOP     REAL*8     TOP OF NODE (NODES,LAYERS); fLI C
C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c c
C  SUBROUTINE WATBAL DESCRIPTION: C
C  PERFORMS WATER BALANCE OVER ENTIRE DOMAIN.  CALCULATES WATER OUT C
C  BY SUBTRACTING FINAL HEADS FROM INITIAL HEADS AND INTEGRATING C
C  OVER EACH ELEMENT.  IN ORDER TO GET INITIAL HEADS INPUT DATA C
C  FILE IS REWOUND AND THESE HEADS ARE CHECKED FOR STATUS (CONFINED, C
C  UNCONFINED, ETC.).  FINAL HEADS ARE ALSO CHECKED FOR STATUS, AND C
C  STORAGE TERMS ARE CALCULATED ON STATUS OF HEADS. WATER OUT IS C
C  COMPARED TO WATER OUT AS A RESULT OF NODAL STRESSES.  ERROR IN C
C^WATER BALANCE IS THEN CALCULATED AS DIFFERENCE BETWEEN WATER OUTS. Cd^ERROR IS CALCULATED AS ABSOLUTE VALUE OF RELATIVE DIFFERENCE. C
C  WATER BALANCE ERROR IS OUTPUT TO UNITS 20 AND 7. C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c c
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C SUBROUTINE  WATBAL C
C C
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

SUBROUTINE WATBAL

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 KH,KV,NODCOR
DIMENSION Q(51,20),N0DFLG(51,20,2),HEAD(51,20,3),
1N0DC0R(51,2),ELMPRP(51,8,20),NEM(51,4),KH(51,10,20),ST(51,20,3),
2RHS(51,20),RECHGN(51,20),KV(51,20,3,2),CORLHA(20),CORLHB(20),
3CORIiHC(20) ,CORRHS(20) ,RHS2(51,20) ,TOP(51,20) ,QDRY(51,20) ,
4NELFLG(51,20)
COMMON Q,NODFLG,HEAD,NODCOR,ELMPRP,NEM,KH,ST,RHS,KV,
IRECHGN,NNODE,NELEM,NLAY,NBAND,DELTIM,NTIMST,NSWTCH,IT,IZ,INCOR,
2 CORLHA,CORLHB,CORLHC,CORRHS,MXITER,ERRALL,ITER,RHS 2,TOP,NLSTRT,
3QDRY,NDRY,NACCL,NSS,NRAD,NELFLG

C.....READ BACK IN INITIAL HEADS

REWIND (3)
DO 80 IN=1,NNODE

80 READ (3,1010) ( HEAD(IN,IZ,1), IZ=1,NLAY )
C.....CHECK CONDITION OF OLD HEADS

CALL CHKHED(l)
C.....CHECK CONDITION OF NEW HEADS WITH INITIAL HEADS AS REFERENCE

CALL CHKHED(2)
DO 100 IZ=1,NLAY

100 CALL FORMST(l)
DO 40 IZ=1,NLAY

DO 40 IN=1,NNODE
BALRHS=BALRHS+(-(ST(IN,IZ,3)*HEAD(IN,IZ,1))

1 -(ST(IN,IZ,2)*T0P(IN,IZ))
2 +(ST(IN,IZ,1)*HEAD(IN,IZ,2)) )

'40 BALLHS=BALLHS+(Q(IN,IZ)*NTIMST*DELTIM)
ERRBAL=DABS((BALRHS-BALLHS)/BALRHS)
WRITE (6,1000) ERRBAL
WRITE (7,1000) ERRBAL
WRITE (7,1001)

1000 FORMAT (' RELATIVE ERROR IN WATER BALANCE=',E12.5)
1001 FORMAT (' ')
1010 FORMAT ((7F10.4))

RETURN

END
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c c
C        PROGRAM FOR STEADY-STATE, ONE-DIMENSIONAL FLOW IN AN C
C UNCONFINED AQUIFER WITH TWO DIRICHLET BOUNDARIES (WITH C
^^      OR WITHOUT RECHARGE) C
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

IMPLICIT REAL*8 (A-H,0-Z)
C.....READ IN DATA

READ (1,1000) IXMAX,XDEL
READ (1,1001) HEAD0,HEAD1,X1
READ (1,1002) RECHGE,CONDX

C.....ECHO OUT DATA

WRITE (3,1000) IXMAX,XDEL
WRITE (3,1001) HEADO,HEADl,XI
WRITE (3,1002) RECHGE,CONDX

C.....BEGIN X LOOP

DO 100 IX=1,IXMAX
X=XDEL*(IX-1)

C.........CALCULATE HEADS

HEADSQ=((RECHGE/CONDX)*(X**2) )
1 + ( ( (((HEAD1**2)-(HEAD0**2))/Xl)
2 - (RECHGE*X1/C0NDX) ) *X )
3 + (HEAD0**2)

HEAD=HEADSQ**0.5D0
C.........WRITE HEADS,X

100     WRITE (6,1003) X,HEAD
1000 FORMAT (I4,F10.4)
1001 FORMAT (3F10.4)

•02 FORMAT (2E12.6)
03 FORMAT (2F10.4)

STOP

END
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$LARGE
$DEBUG
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

m PROGRAM FOR ANALYTIC SOLUTION FOR

CC .      FLOW IN CONFINED AQUIFERS, INFINITE RADIUS
CC — THEIS EQUATION
CC OR FLOW IN UNCONFINED AQUIFERS WHERE DRAWDOWN
CC IS SMALL COMPARED TO AQUIFER THICKNESS
CC — THEIS EQUATION WITH SPECIFIC YIELD;
CC JACOB DRAWDOWN CORRECTION
CC

CC ...............................................
CC

CC 0=UNCONFINED
CC 1=C0NFINED

CC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 KH

COMMON NRMAX,B,RDEL,KH,S,Q,IR,TIME,NCONF,HINIT
CALL READ

CALL WRITE

C     IF ( NCONF.EQ.O ) THEN
C WRITE (3,1002)
C     ELSE IF ( NCONF.EQ.l ) THEN
C WRITE (3,1003)
C^  ENDIF
(^P  BEGIN R (RADIAL) LOOP

DO 100 IR=1,NRMAX
WRITE (2,1000) IR,NRMAX
R=IR*RDEL

C.....CALCULATE WELL FUNCTION ARGUMENT

Ul=((R**2)*S)/(4*(KH*B)*TIME)
C.....CALCULATE W (U)

CALL WELLFN (U1,WEL1)
PI = 3.141592653589793238462643D0

C.....CALCULATE DRAWDOWN AND CORRECT FOR UNCONFINED AQUIFER
C.....WITH JACOB CORRECTION

SDWN=(Q/(4*PI*KH*B))*WEL1
IF ( NCONF.EQ.O ) THEN

DRWDWN=B*(l-((1-(2*SDWN/B))**0.5D0))
ELSE IF ( NCONF.EQ.l ) THEN

DRWDWN=SDWN

ENDIF

C.....CALCULATE HEAD

HEAD=HINIT-DRWDWN

100 WRITE (3,1001) R,HEAD
1001 FORMAT (2F10.4)
1000 FORMAT (' IR STEP',14,' OF',14)
1002 FORMAT (' UNCONFINED AQUIFER')
1003 FORMAT (' CONFINED AQUIFER')

STOP
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c ,
C SUBROUTINE READ
C
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE READ

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 KH

COMMON NRMAX,B,RDEL,KH,S,Q,IR,TIME,NCONF,HINIT
READ (1,1001) B,RDEL,NRMAX,NCONF
READ (1,1002) KH,S,Q,TIME
READ (1,1003) HINIT

1001 FORMAT (2F10.4,2I4)
1002 FORMAT (4E12.6)
1003 FORMAT (F10.4)

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

C SUBROUTINE WRITE
C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE WRITE

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 KH

COMMON NRMAX,B,RDEL,KH,S,Q,IR,TIME,NCONF,HINIT
WRITE (2,1001) B,RDEL,NRMAX,NCONF
WRITE (2,1002) KH,S,Q,TIME
WRITE (2,1003) HINIT

1001 FORMAT (2F10.4,2I4)
1002 FORMAT (4E12.6)
1003 FORMAT (F10.4)

RETURN

^  END
(i^CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c

C SUBROUTINE WELLFN
C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE WELLFN (U,WFNANS)
IMPLICIT REAL*8 (A-H,0-Z)
IF (U.GT.50.00D0) THEN

U=50.00D0

ENDIF

IF (U.LT.l.OODO) THEN
C SOLVE WELL FUNCTION WHEN U < 1

WFNANS=-LOG(U)-.57721566D0+.99999193D0*U-.24991055D0*U**2
1 +5.519968E-02*U**3-9.76004E-03*U**4+1.07857E-03*U**5
ELSE

C SOLVE WELL FUNCTION WHEN U > 1

WN=U**4+8.5733287401D0*U**3+18.059016973D0*U**2
1 +8.6347608925D0*U+.2677737343D0

WD=U**4+9.5733223454D0*U**3+25.6329561486D0*U**2
1 +21.0996530827D0*U+3.9584969228D0

WFNANS=WN/(WD*U*EXP(U))
ENDIF

RETURN

END
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$DEBUG
$LARGE
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

m PROGRAM FOR ANALYTIC SOLUTION FOR

CC PARTIALLY SCREENED WELLS
CC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 L,KV,KH
COMMON N1MAX,NRMAX,NZMAX,L,D,B,RDEL,ZDEL,KV,KH,
ISTOR,Q,H,TIME,HINIT,ERRALL
CALL READ

CALL WRITE

C.....BEGIN R (RADIAL) LOOP
DO 100 IR=1,NRMAX

WRITE (2,1000) IR,NRMAX
R=IR*RDEL

C..........BEGIN Z (VERTICAL) LOOP
DO 100 IZ=1,NZMAX

WRITE (2,1001) IZ,NZMAX
Z=IZ*ZDEL

C...............CALCULATE WELL FUNCTION ARGUMENT

Ul=((R**2)*STOR)/(4*(KH*B)*TIME)
WRITE (3,1002) Ul
CALL WELLFN (U1,WEL1)
WRITE (3,1002) Ul

^^ CALL StJMMAT(R,Z,Ul,WEL3,NlMAX,L,D,B, ERRALL)
^00      CALL DRAWDN(WEL1,WEL3,R,Z,H,Q,KH,B,HINIT)
C     CALL OUTPUT(H,NRMAX,NZMAX,RDEL,ZDEL)
1000 FORMAT (' IR STEP',14,' OF',14)
1001 FORMAT (' IZ STEP',14,' OF',14)
1002 FORMAT (' U1=',E12.6)

STOP

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c  ͣ .  .
C SUBROUTINE READ
C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
SUBROUTINE READ

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 L,KV,KH
COMMON N1MAX,NRMAX,NZMAX,L,D,B,RDEL,ZDEL,KV,KH,
ISTOR,Q,H,TIME,HINIT,ERRALL
READ (1,1000) N1MAX,NRMAX,NZMAX
READ (1,1001) L,D,B,RDEL,ZDEL
READ (1,1002) KV,KH,STOR,Q,TIME
READ (1,1003) ERRALL,HINIT

1000 FORMAT (314)
1001 FORMAT (5F10.4)
1002 FORMAT (6E12.6)
^03 FORMAT (E12 . 6, FIO. 4)
^P  RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c

C SUBROUTINE WRITE
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c

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE WRITE

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 L,KV,KH
COMMON N1MAX,NRMAX,NZMAX,L,D,B,RDEL,ZDEL,KV,KH,
1ST0R,Q,H,TIME,HINIT,ERRALL
WRITE (2,1000) N1MAX,NRMAX,NZMAX
WRITE (2,1001) L,D,B,RDEL,ZDEL
WRITE (2,1002) KV,KH,STOR,Q,TIME
WRITE (2,1003) ERRALL,HINIT

1000 FORMAT (314)
1001 FORMAT (5F10.4)
1002 FORMAT (6E12.6)
1003 FORMAT (E12.6,FIO.4)

RETURN

END

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c

C SUBROUTINE WELLFN
C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
SUBROUTINE WELLFN (U,WFNANS)
IMPLICIT REAL*8 (A-H,0-Z)

WRITE (3,1002) U
1002 FORMAT (' U=',E12.6)

IF (U.GT.50.00D0) THEN
U=50.00D0

ENDIF

•IF (U.LT.l.OODO) THEN
SOLVE WELL FUNCTION WHEN U < 1

WFNANS=-LOG(U)-.57721566D0+.99999193D0*U-.24991055D0*U**2
1 +5.519968E-02*U**3-9.76004E-03*U**4+1.07857E-03*U**5
ELSE

C SOLVE WELL FUNCTION WHEN U > 1

WN=U**4+8.5733287401D0*U**3+18.059016973D0*U**2
1 +8.6347608925D0*U+.2677737343D0

WD=U**4+9.5733223454D0*U**3+25.6329561486D0*U**2
1 +21.0996530827D0*U+3.9584969228D0

WFNANS=WN/(WD*U*EXP(U))
ENDIF

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c

C SUBROUTINE LKWF
C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
SUBROUTINE LKWF(II,U,BETA,LKWFT)
IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 LKWFT,LKWF1,LKWF2,LKWF3
DIMENSION Zl(256),W1(256),Z2(256),W2(256),Z3(256),W3(256)
LKWFT=0.DO
LKWF1=0.D0

LKWF2=0.DO

LKWF3=0.D0

ULIMl=l.D-05

ULIM2=1.D-01

ULIM3=l.D+20

IF (U.LE.ULIMl) THEN
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IF (Il.EQ.l) THEN
CALL DGAUSS(U,ULIM1,Z1,W1,256)
ENDIF

DO 100 Ml=l,256
LKWF1=LKWF1+W1(M1)*{(1/Z1(M1))*EXP(-Z1(Ml)

1 -(BETA**2/(4*Z1(M1)))))
100      CONTINUE

IF (Il.EQ.l) THEN
CALL DGAUSS(ULIM1,ULIM2,Z2,W2,256)
ENDIF

DO 200 M2=l,256
LKWF2=LKWF2+W2(M2)*((1/Z2(M2))*EXP(-Z2(M2)

1 -(BETA**2/(4*Z2(M2)))))
2 00      CONTINUE

IF (Il.EQ.l) THEN
CALL DGAUSS(ULIM2,ULIM3,Z3,W3,256)
ENDIF

DO 300 M3=l,256
LKWF3=LKWF3+W3(M3)*((1/Z3(M3))*EXP(-Z3(M3)

1 -(BETA**2/(4*Z3(M3)))))
300      CONTINUE

LKWFT=LKWF1+LKWF2+LKWF3

ELSEIF ( (U.LE.ULIM2) .AND. (U.GT.ULIMl) ) THEN
IF (Il.EQ.l) THEN
CALL DGAUSS(U,ULIM2,Z2,W2,256)
ENDIF

DO 400 M2=l,256
LKWF2=LKWF2+W2(M2)*((1/Z2(M2))*EXP(-Z2(M2)

1 -(BETA**2/(4*Z2(M2)))))
#00      CONTINUE

IF (Il.EQ.l) THEN
CALL DGAUSS(ULIM2,ULIM3,Z3,W3,256)
ENDIF

DO 500 M3=l,256
LKWF3=LKWF3+W3(M3)*((1/Z3(M3))*EXP(-Z3(M3)

1 -(BETA**2/(4*Z3(M3)))))
500      CONTINUE

LKWFT=LKWF2+LKWF3

ELSEIF (U.GT.ULIM2) THEN
IF (Il.EQ.l) THEN
CALL DGAUSS(U,ULIM3,Z3,W3,256)
ENDIF

DO 600 M3=l,256
LKWF3=LKWF3+W3(M3)*((1/Z3(M3))*EXP(-Z3(M3)

1 -(BETA**2/(4*Z3(M3)))))
600      CONTINUE

LKWFT=LKWF3 *
ENDIF

RETURN
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c

C SUBROUTINE SUMMAT
c

cc^cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

^P  SUBROUTINE SUMMAT(R,Z,U1,WEL3,N1MAX,L,D,B,ERRALL)
IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 L,KV,KH ^
PI = 3.141592653589793238462643D0
11=0
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c.

c.

• AND.

.BEGIN SUMMATION LOOP

.INITIALIZE WEL3
WEL3=0.D0

50 11=11+1

XI1=FL0AT(I1)
XI1=DBLE(XI1)
WRITE (2,1002) I1,N1MAX,XI1

......CALCULATE LEAKY WELL FUNCTION ARGUMENT
U2=XI1*PI*R/B
CALL LKWF(I1,U1,U2,WEL2)
WRITE (3,1003) U1,U2,WEL2
XSIN=DSIN(XI1*PI*L/B)-DSIN(XI1*PI*D/B)
XCOS=DCOS(XI1*PI*Z/B)
WRITE (3,1001) Z
WEL3IN = (l.D0/XIl)*XCOS*XSIN*WEL2
WEL3=WEL3+(((2*B)/(PI*(L-D)))*WEL3IN)
WRITE (3,1000) WEL3IN,WEL3
ARGMIN=1.D-15

•CHECK FOR CONVERGENCE OF SUMMATION

WEL3ER=ABS(WEL3IN/WEL3)
IF ((WEL3ER.GT.ERRALL) .AND. (Il.LT.NlMAX)
1    (DABS(WEL3IN).GT.ARGMIN) ) THEN

GO TO 50

ELSEIF ((WEL3ER.GT.ERRALL) .AND. (Il.EQ.NlMAX)
WRITE (2,1004)

ELSEIF  ( (WEL3ER.lt.ERRALL) .AND.
WRITE (2,1005)

ELSEIF ( (DABS(WEL3IN).LT.ARGMIN)
WRITE (2,1006)

ENDIF

WEL3IN, WEL3 = ',2E12.6)
Z =',F10.4)
II STEP',14,' OF',I4,F10.4)
Ul, U2, WEL2, = ',3E12.6)
SUMMATION FAILED TO CONVERGE')
SUMMATION CONVERGES')
ARGUMENT TOO SMALL FOR LEAKY WELL FN')

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

C SUBROUTINE DRAWDN
C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
SUBROUTINE DRAWDN(WELl,WEL3,R,Z,H,Q,KH,B,HINIT)
IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 L,KV,KH
PI = 3.141592653589793238462643D0

H = HINIT-((Q/(4*PI*(KH*B)))*(WEL1+WEL3))
WRITE (6,1000) R,Z,H

1000 FORMAT (2F10.4,E12.6)
RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

) THEN

(Il.LT.NlMAX) ) THEN

AND. (Il.LT.NlMAX) ) THEN

poo FORMAT

1001 FORMAT

1002 FORMAT

1003 FORMAT
1004 FORMAT
1005 FORMAT

1006 FORMAT

SUBROUTINE OUTPUT

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
SUBROUTINE OUTPUT(H,NRMAX,NZMAX,RDEL,ZDEL)
IMPLICIT REAL*8 (A-H,0-Z)
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REAL*8 L,KV,KH
DO 100 IZ0=1,NZMAX

Z=IZO*ZDEL

WRITE (6,1001) Z
DO 100 IRO=l,NRMAX

R=IRO*RDEL

100 WRITE (6,1000) R,H(IRO,IZO)
1000 FORMAT (FIO.4,E12.6)
1001 FORMAT (12X,F10.4)

RETURN

END
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. ''UKUff*iWlpni    ^"^^^    ^""^        *        ".....'' i"

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c c
C PROGRAM FOR STEADY-STATE, ONE-DIMENSIONAL FLOW IN AN C
(2 UNCONFINED AQUIFER WITH TWO DIRICHLET BOUNDARIES (WITH C
.^pii. OR WITHOUT RECHARGE) C^^ C
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

IMPLICIT REAL*8 (A-H,0-Z)
C.....READ IN DATA

READ (1,1000) IXMAX,XDEL
READ (1,1001) HEAD0,HEAD1,X1
READ (1,1002) RECHGE,CONDX

C.....ECHO OUT DATA

WRITE (3,1000) IXMAX,XDEL
WRITE (3,1001) HEAD0,HEAD1,X1
WRITE (3,1002) RECHGE,CONDX

C.....BEGIN X LOOP

DO 100 IX=1,IXMAX
X=XDEL*(IX-1)

C.........CALCULATE HEADS

HEADSQ=((RECHGE/CONDX)*(X**2))
1 + ( ( (((HEAD1**2)-(HEAD0**2))/Xl)
2 - (RECHGE*X1/C0NDX) ) *X )
3 + (HEAD0**2)

HEAD=HEADSQ**0.5D0
C.........WRITE HEADS,X

100     WRITE (6,1003) X,HEAD
1000 FORMAT (I4,F10.4)
1001 FORMAT (3F10.4)
102 FORMAT (2E12.6)
F03 FORMAT (2F10.4)

STOP

END

•^
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