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ABSTRACT

The United States Environmental Protection Agency is
currently in the process of adding or lowering the maximum
contaminant levels of many organic compounds, including
trihalomethanes (THMs).  As a result, many water treatment
facilities are expected to consider the use of processes
such as ozone oxidation and granular activated carbon (GAC)
adsorption.  Since these processes are quite expensive,
accurate design of these systems for the removal of humic
substances, the precursors of THMs, is essential.

This work examined the effects of bench scale

coagulation, ozonation, and biodegradation processes on the
adsorption of aquatic humic substances obtained from a swamp
lake in southeastern Virginia.  The equilibrium adsorption
behavior was described by dividing each humic mixture into
several fictive components and ideal adsorbed solution
theory (lAST) was then used to find the Freundlich

parameters and initial concentration of each component.
lAST was found to provide adequate descriptions of humic
substance adsorption, even though many assumptions in the
model were not considered to be valid for humic solutions.

This multicomponent adsorption model was used to show that
compositional changes were responsible for increased
adsorbability upon coagulation and for decreased
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adsorbability upon ozonation and biostabilization.
Unfortunately, systematic changes in the lAST parameters
were not found to occur with increasing ozone dose, thereby
implying that accurate prediction and design of combined
ozone and GAC systems may be difficult.  However, a
normalized adsorption isotherm showed some promise in this
regard although the technique may not be applicable to
kinetic systems.

External mass transfer characteristics of humic

solutions were examined with a mini-column adsorber.  The

free liquid diffusion coefficient was found to increase upon
coagulation while no significant changes were observed after
ozonation and biostabilization.  Internal mass transfer

characteristics were examined with a pore and surface
diffusion model.  The overall mass transfer rate was found
to increase after coagulation and after ozonation and
biostabilization.  However, tests with three different ozone
doses showed no change in mass transfer rates with ozone
dose.  In addition, the techniques used in this work were
not found to be capable of describing the mechanism of hximic
substance diffusion.
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CHAPTER 1

INTRODUCTION

Research in the area of humic substances has steadily
increased since their implication in the formation of
trihalomethanes (THMs) during chlorination in drinking water
treatment (Rook, 1974).  After a subsequent investigation
found THMs to be prevalent in treated waters on a nationwide
basis (Symons, et al., 1975), the United States Congress
enacted legislation that amended the Safe Drinking Water Act
to include a maximum contaminant level (MCL) for THMs at
0.10 mg/1 (Code of Federal Regulations, 1986a).  Presently,
the United States Environmental Protection Agency (EPA) is
reviewing the addition of many organic contaminants to the
regulatory listing and plans to consider lowering the THM
standard in 1990 (Cook and Schnare, 1986).

These current and proposed regulations require the
removal of THMs and THM precursors in order to reduce human
health risks. Granular activated carbon (GAC) adsorbers are
considered to be very effective in removing many synthetic
organic chemicals and, as noted in the Code of Federal
Regulations (1986b), are suitable for the removal of THM
precursors.  Therefore, the addition of MCLs to regulate
more organic contaminants and the potential lowering of the
THM standard implies an increased demand for the use of GAC
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adsorbers.  The lower THM standard will also result in

increased demand for alternatives to chlorine oxidation,

such as ozone, and for the improvement of the coagulation
process to better remove the humic precursors of THMs.  The
understanding of how the coagulation and ozonation processes
affect the adsorption of humic substances is required since
these processes typically precede GAC adsorbers in water
treatment systems.  In addition, the large cost of processes
such as ozonation and GAC adsorption requires the ability to
optimally design the combination of processes such as
ozonation and GAC adsorption for humic substance removal.

OBJECTIVES

This research was aimed at examining the effects of
alum coagulation and the subsequent treatments of ozonation
and biodegradation on the adsorption behavior of aquatic
humic materials.  In addition, current modeling methods were
tested to determine their applicability to humic substance
adsorption in bench scale systems and to search for a
quantitative relationship between the amount of ozone
applied and humic substance adsorbability.
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CHAPTER 2

BACKGROUND

HUMIC SUBSTANCES

Humic substances are widely prevalent in natural
aquatic systems and may represent up to 8 0% of the dissolved
organic materials present in lake waters.  These materials
primarily represent biodegradation products of dead plant
matter such as leaves, and bark leachates such as lignins.
These products are generally formed in soils and
subsequently reach aquatic systems by runoff or groundwater
movement.  In their review of humic substances in lake

waters, Steinberg and Muenster (1985) also add that aquatic
humic substances are formed by the degradation of dead algal
and bacterial matter and, as a result, are more aliphatic in
nature than soil humic materials.

Although little is known about the structure of humic
materials, significant progress has been made in
understanding the role of humic substances in the aquatic
environment.  Prakash and MacGregor (1983) note that humic
materials play a significant role in global carbon cycles
and are considered to benefit aquatic biological systems by
stimulating processes associated with cellular metabolism.
In addition, dissolved humics are known to bind with heavy
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metals and pesticides (Carter and Suffet, 1982) , thereby-
reducing short term toxicity.

Progress has also been made in understanding the
molecular nature of humic materials.  A review of several
lake waters by Steinberg and Muenster (1985) reveals that
aguatic humic substances have elemental compositions (by
weight) in the range of 43-55% carbon, 35-50% oxygen, 3-6%
hydrogen, and small amounts of nitrogen, phosphorous,
sulfur, chlorine, and ash components.  Oxidation studies
have further indicated the presence of highly substituted
aromatic rings interconnected by short aliphatic chains and
have also indicated the presence of fused aromatic and other
cyclic components (Liao, et al., 1982).  Potentiometric
titrations by Narkis and Rebhun (1977) with two commercial
humic acids and a peat fulvic acid indicated the presence of
carboxylic and phenolic functional groups.  Several authors
have proposed humic structures (Christman and Ghassemi,
1966; Dragunov, 1961) even though they exist in a multitude
of different species within any given system.  Thus, the
best representation (shown in Figure 2-1) appears to be the
one presented by Trussell and Umphres (1978) where humic
substances are represented as an "amorphous mass of
polyhetero condensate with certain functional groups
protruding from its surface."

The physical nature of humic molecules is also becoming
better understood. Molecular weight distributions obtained
from ultrafiltration and gel permeation chromatography (GPC)
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FIGURE 2-1: A MODEL HUMIC COMPOUND (AFTER TRUSSELL AND UMPHRES, 1978)
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reveal a wide range of molecular sizes from molecular

weights < 1000 to > 50,000 (Lienhard and Sontheimer, 1979;

Summers, 1986; Anderson, et al., 1986; Flogstad and

Odegaard, 1985).  In addition, Ghosh and Schnitzer (1980)

modeled soil humic molecules in a manner similar to the way

that polymers are modeled.  Therefore, a solution of humic

substances should be considered as a mixture of weak

polyelectrolytes covering a wide range of molecular sizes.

HUMIC SUBSTANCES AND HUMAN HEALTH

Humic substances have received a great deal of

attention since Rook (1974) first linked them with the

formation of chloroform and other trihalomethanes (THMs)

upon chlorination at the water treatment plant in Rotterdam,

the Netherlands.  Several studies subsequently found THMs in

finished waters throughout the state of North Carolina

(Singer, et al.. 1981) and throughout the United States

(Symons, et al.. 1975).  Shortly after Rook's discovery,

several researchers found chloroform to be carcinogenic to

mice and rats, the results of which suggested that a maximum

of 252 out of 300,000 annual cancer deaths could be

attributed to the drinking of chlorinated waters (Tardiff,

1977).  In addition, epidemiological studies by Cragle,

et al. (1985), and by Cantor, et al. (1985), found

statistically significant relationships between the drinking

of chlorinated waters and cancer of the colon and bladder.
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respectively, for several age groups and several areas of

the country.

Other health concerns noted for humic materials are the

formation of chlorination byproducts other than the THMs

(Norwood, et al.. 1981; Johnson and Randtke, 1983) and the

ability of humic substances to complex with metals and

pesticides (as reviewed by Prakash and MacGregor, 1983).

The health implications of these matters are largely

unknown, a troubling problem since Fleischacker and Randtke

(1983) pointed out that THMs represent a small fraction of

the chlorinated byproducts in drinking waters.

The information provided about THMs in the mid 1970's

quickly received strong legislative attention.  The Safe

Drinking Water Act (SDWA), originally passed in 1974, was

amended to include a maximum contaminant level (MCL) of

0.10 mg/1 for total THMs (Code of Federal Regulations,

1986a).  Currently, the United States Environmental

Protection Agency (USEPA) is in the process of phasing in

new MCLs for many organic contaminants and plans to revise

the THM standard to a lower level in 1990 (Cook and Schnare,

1986).

The Code of Federal Regulations (1986b) also lists a

set of "generally available methods" that may be used to

meet the THM standard.  Water suppliers are further required

to use higher cost approaches if the generally available

methods are found to be unsuccessful.  Among the methods

listed for handling the THM problem are the uses of
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coagulation prior to chlorination, ozonation, and activated

carbon adsorption to remove THM precursors.  As a result of

the expected lowering of the THM standard, many facilities

are expected to make use of these options.

ACTIVATED CARBON ADSORPTION OF HDMIC SUBSTANCES

Activated Carbon

The understanding of humic substance adsorption onto

activated carbon requires the knowledge of both adsorbent

and adsorbate properties.  For this research, the adsorbates

were aquatic humic materials, the properties of which were

discussed above, while the adsorbent was activated carbon,

the characteristics of which will be described from reviews

provided by Smisek and Cerny (197 0) and by Mattson and Mark

(1971).

Activated carbons are produced from sources such as

coke, carbonized shells, and crushed charcoal by subjecting

them to an activating gas such as steam.  The resulting

material is generally considered to be comprised of

microcrystallites of trigonally bonded carbon in

turbostratic layers.  The turbostratic structure is subtly

different from the lattice structure of graphite in that the

layers are not linked together.

The microcrystallites are interconnected by

tetragonally bonded carbon crosslinks and are randomly
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oriented within a given particle, thereby creating the

openings known as pores.  The porous nature of a given

carbon is determined by the source material and the

activation process.  All activated carbons contain a wide

variety of pore diameters which, as noted by Summers (1986),
have been categorized into three size ranges known as

micropores (rp < 1 nm), mesopores (1 nm < rp < 25 nm), and
macropores (rp > 25 nm).  The distributions of pore volume
and surface area with respect to these pore sizes are

important characteristics of an activated carbon.  The

micropores typically contain a range of 50 - 80 % of the

total surface area of a carbon particle while as much as 98%

of the total surface area can be found in pores with rp < 10
nm.

The microcrystallites are also subject to forming

surface functional groups as a result of reactions with the

activating gas.  The nature of the groupings depends on both

the activating gas and the activation process itself.  For

instance, activation at high temperatures with carbon

dioxide (CO2) yields basic surface oxides while activation
at low temperatures with oxygen (O2) produces acidic surface
oxides.

Therefore, when considering the adsorption of humic

materials, one must consider the physical and chemical

interactions between the activated carbon and the adsorbing
molecules.  The pore structure of an activated carbon can

effectively exclude large molecules from adsorbing -at
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interior adsorption sites while interactions between humic

functional groups and surface functional groups can also

hinder or favor the adsorption process.  These physical and

chemical interactions are notably apparent in the literature
of humic substance adsorption.

Adsorption of Humic Substances

Humic substance adsorption has been shown to be

strongly influenced by the distribution of carbon pore

sizes.  In experiments with nine different activated

carbons. Lee, et al. (1981), showed that those carbons

having the largest pore sizes adsorbed the most humic

material.  Weber, et al. (1983), made the same observation
with three different carbons.  These results were taken as

evidence that humic substances may be physically excluded

from many adsorption sites by pore constrictions smaller
than many humic molecules.

Further evidence of this nature of humic substance

adsorption was also provided by Lee, et al. (1981), when

they separated a humic solution into various molecular

weight fractions and found better adsorbability for smaller
molecules than for larger molecules.  In addition, their

work showed a strong correlation between the adsorption

capacity of the < 1000 MW fraction and the volume in pores
with radii < 70 A while the adsorption capacity of the
> 50,000 MW fraction correlated well with the volume in

10
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pores with radii < 400 A.  Preferential adsorption of lower

MW fractions has also been observed by McCreary and Snoeyink

(1980) and Summers (1986).

Interestingly, polymer scientists have found adsorption

capacities to increase with molecular size (Fleer and

Lyklema, 1983) although these results were observed with

nonporous adsorbents.  Similarly, adsorption capacities for
humic materials were observed to increase with molecular

weight for adsorption on kaolin clay (Manos and Tsai, 1980)

as well as on a synthetic resin (Mantoura and Riley, 1975).

Summers (1986) hypothesized that the adsorption of humics,

being similar to the adsorption of polymers, should also

indicate increased capacities for larger molecules on

activated carbon when pore size limitations are accounted

for.  By combining estimated humic molecule radii from the

work of Cornel, et al. (1986b), with pore surface area

distributions from his own work. Summers was able to present

isotherms showing little effect of molecular size on humic

adsorbability.  Thus, the molecular size dependence of

adsorption observed with the activated carbon work noted

earlier was shown to be due to the exclusion effect.

Ionic strength and pH conditions have been observed to

have a profound influence on humic substance adsorption

(Weber, et al.. 1983; McCreary and Snoeyink, 1980).  Changes

in these conditions can alter adsorbability by altering

charge densities on the GAC surface and around humic

functional groups.  In the most complete study to date on

11
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the subject, Randtke and Jepsen (1982) observed

significantly increased adsorbability with the addition of
monovalent cations (K"*", Na"*") and an even more pronounced
increase in adsorbability with the addition of divalent
cations (Ca^"*", Mg^"^) .  The study also found increased
adsorption capacities with decreasing pH and found anion
concentrations to have no effect on adsorption capacities.

These results were attributed to three possible

mechanisms: (1) cation-adsorbate interactions in solution

(such as the shielding and neutralization of humic

functional groups); (2) cation-adsorbate interactions in the

adsorbed phase (similar to those of the solution phase

although a negative surface charge would create a greater
concentration of cations in the adsorbed phase thereby

enhancing the effects); and (3) interactions between cations
and the surface that could reduce electrostatic repulsions
between the surface and humic molecule or form surface-

cation-adsorbate complexes.

However, Summers (1986) found that the GAC used in the

above study was positively charged at pH values below 10.0
and observed the same effects.  Therefore, any adsorption

mechanism depending on attraction between cations and a

negatively charged surface must be ruled out.  As a result

of his findings, Summers concluded that the enhanced

adsorption caused by cations must be due to cation-adsorbate
interactions in the solution phase.

12
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The enhanced adsorbability caused by cations may be

explained by considering that humic molecules behave

similarly to polymeric molecules.  Polymer science indicates

that the most thermodynamically stable form of an uncharged

macromolecule is that of the random coil (Atkins, 1982).

When the macromolecule contains negatively charged

substituents, as humic molecules do, electrostatic

repulsions force the configuration to become more linear.

When the concentration of cations such as sodium is

increased, electrostatic repulsions are reduced due to the

accumulation of cations around the negatively charged

functional groups.  Therefore, the macromolecule is allowed

to adjust to a more coiled and compact nature that allows

increased penetration into the microporous structure of the

activated carbon.

Observations of this phenomenon were made by Ghosh and

Schnitzer (1980) who used surface pressure and viscosity

measurements to imply decreased molecular size with

increased ionic strength and decreasing pH.  Figure 2-2

shows their proposed configurations and shows that the

configuration of humic molecules is more linear under

natural conditions.  Similar observations were made by

Cornel, et al. (1986b), when studying the effects of ionic

strength and pH on the film diffusivities of humic

substances.  As expected, their results show increased

diffusion rates with increased ionic strength and decreased

13
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FULVIC ACID                                                 1
ELECTROLYTE CONC'N (M) pH

0.001 0.005 0.010 0.050 0.100 2.0 3.5 6.5 9.5

LOW

CONCN -NA^ ^ ^ ^ f» ^Vj
r::^
- 3::^

HIGH

CONC'N ^ 1^ ^ ^ ^ W' « 47

HUMIC ACID

ELECTROLYTE CONC'N (M) pH

0.001 0.005 0.010 0.050 0.100 6.5 8.0 9.5

LOW

CONC'N -N/S. ^ ^ ^ » - -^—1 ^
HIGH

CONC'N ^ 1^ ^ 4r ^ # ^ (^

FIGURE 2-2: EFFECT OF IONIC STRENGTH AND pH ON HUMIC STRUCTURE
(AFTER GHOSH AND SCHNITZER, 1980)

•
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pH.  These considerations show, once again, the importance

of pore size in relation to molecular size.

Effects of Coagulation on Humic Substance Adsorption

Several studies have been performed to understand the

effect of alum coagulation on humics adsorption.  Semmens,

et al. (1986), found improved GAC filter performance with

coagulation and attributed this result to lower influent

concentrations and the removal of larger organics during

coagulation.  In addition, coagulation was found to increase

adsorption capacity in isotherm studies by Randtke and

Jepsen (1981) and Lee, et al. (1981).  However, Jodellah

(1985) found inconsistent results with various humic

solutions and concluded that the effect of alum coagulation

on humic adsorption was system specific.

Several reasons may be considered for the general

improvement in adsorbability observed with coagulation.

Randtke and Jepsen (1981) proposed that better adsorbing

aluminum-humic complexes were responsible.  However, Lee,

et al. (1981), and Weber, et al. (1983), observed decreased

adsorbability when alum was added to an aluminum

concentration similar to that remaining after coagulation.

The results obtained by Jodellah (1985) showed that

alteration of the molecular size distribution by alum

coagulation, not the simple addition of aluminum ions, was

the most likely explanation for the observed results.  Alum

15
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concentrations that caused complete destabilization and

sedimentation revealed a compositional change towards

domination by smaller molecules.  However, in cases where

complete destabilization did not take place, the

distribution of sizes was dominated by larger molecules

formed by aggregation.  Therefore, as long as alum

coagulation causes complete destabilization, improvement

should be observed for humic substance adsorption.

Effects of Ozonation on Humic Substance Adsorption

Ozonation followed by activated carbon has received a

considerable amount of attention because of the ability of

ozone to break down organics into readily biodegradable

substances and because of the ability of activated carbon

filters to support biological growth.  Thus, the activated

carbon process becomes capable of removing organics by

adsorption or by biodegradation, thereby increasing the

length of time that a carbon filter can be run until all of

the adsorption sites are exhausted.

Humic substance removals with ozone and GAC has

produced mixed results.  Zabel (1985), in reviewing British

treatment plants, determined that ozonation provided little

benefit for the GAC process, even after conventional

treatment.  Glaze, et al. (1981), found that GAC columns

receiving waters pretreated with ozone were outperformed by

GAC columns receiving non-ozonated waters in terms of

16
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removing THM precursor material.  This group also found that

the GAC filters receiving ozonated water provided better

removals than those not receiving ozonated water after the

filters had reached exhaustion. Maloney, et al. (1985),

found that pre-ozonation increased DOC removal in GAC beds

although the same group (Neukrug, et al.. 1984) determined

that the extra removals were not always cost effective.

While bench scale work with adsorption isotherms

generally indicate reduced adsorption capacities after

ozonation of humic substances (Hubele, 1984; Chen, et al.,

1987; Glaze, et al.. 1986), there have been exceptions.

Benedek, et al. (1980) , and Somiya, et al. (1986) revealed

insignificant changes in adsorbability while Kaastrup (1985)

found significant increases in adsorbability.  These

apparently contradictory results are explained by the fact

that ozonation reduces the average molecular size of a

mixture (indicating increased adsorbability) and also

creates highly polar end products (indicating decreased

adsorbability due to increased hydrophilicity).  The

combination of these two effects may be different for

different sources of humic material.

The increased biodegradability of humic substances

after ozonation has been documented by Stephenson, et al.

(1979), Yamada, et al. (1986), and DeWaters (1987).  Hubele

(1984) observed that the isotherm of an ozonated humic

mixture shifted towards increased adsorbability after the
mixture was biostabilized.  This result would tend to
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indicate the biodegradation of the highly polar species

produced by ozonation.

Summary

The removal of humic substances by activated carbon has

been shown to be a function of system conditions.  The

process is limited both physically (i.e., by size exclusion

from pores) and chemically (i.e., humic functional group

interactions between the solvent and the adsorbent surface),

although at this stage the physical limitations seem to

apply much more heavily when considering humic substance

adsorption.  In any event, one must obtain a thorough

knowledge of system conditions before characterizing the

adsorption of humic material.

MODELING HUMIC SUBSTANCE ADSORPTION

As demand increases for the use of activated carbon

filters due to tighter control of THMs and other

disinfection byproducts, the need for accurate predictive

models to aid in design also increases.  Modeling of humic

substance adsorption has been somewhat limited. It is often

applied to carbon columns with fairly sophisticated kinetic

approaches although, for lack of better knowledge, humic

solutions have been considered as single solutes.  Examples
of this approach are the analyses of batch and column rate
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data with the homogeneous surface diffusion model (HSDM),
developed by Crittenden and Weber (1978), that used the
Freundlich equation to describe the isotherms of humic
materials (Lee, et al., 1983; Kaastrup, 1985; Jodellah,
1985; Summers, 1986).

However, isotherm results have shown that humic

solutions are multicomponent in nature (Weber, et al.^ 1983)
and attempts have been made to model humic mixtures as such.
Multicomponent equilibrium models, such as the ideal
adsorbed solution theory (lAST, Radke and Prausnitz, 1972)
and the simplified version of lAST known as the simplified
competitive adsorption model (SCAM, DiGiano, et al.. 1978)
were shown to describe humic substance adsorption after
dividing the humic mixture into a set of three fictitious
components (Frick and Sontheimer, 1983).  This approach has
been extended to kinetic simulations by Crittenden, et al.
(1987b), who used lAST to describe a synthetic mixture as a
set of hypothetical components and then incorporated the
multicomponent equilibrium condition into a pore and surface
diffusion model to describe subsequent column performance.
Fettig and Sontheimer (1987) used SCAM to describe humic
mixtures as three pseudo-components and obtained surface
diffusion coefficients from batch rate data and a

multicomponent surface diffusion model.  In addition to
providing better descriptions of isotherm data, other
advantages to modeling humic solutions as multicomponent
systems may become apparent when attempts are made to model
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competitive adsorption between humic materials and toxic

pollutants.
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CHAPTER 3

EXPERIMENTAL PROCEDURES

PREPARATION OF HUMIC SOLUTIONS

Raw water was obtained from Lake Drummond, Virginia, on

January 27, 1986.  This lake, part of the Great Dismal Swamp

in southeastern Virginia, is highly colored, low in pH and

alkalinity, and serves as one of the water sources for the

city of Chesapeake, Virginia.  Werdehoff (1986) found that

raw water from Lake Drummond had an elemental composition

(by weight) of 55.7% carbon, 4.3% hydrogen, 31.6% oxygen,

0.9% nitrogen, 1.5% ash, 6% dry loss.  In addition, a study

by Liao, et al. (1982), identified many products of

potassium permanganate (KMnO^) oxidation and hydrolysis of
Lake Drummond humic and fulvic acids in order to postulate

functional group characteristics.  Of the identified

oxidation products, benzenecarboxylic acids were found to be

most abundant, followed by aliphatic dibasic acids,

furancarboxylic acids, aliphatic monobasic acids,

(carboxyphenyl)glyoxylic acids, and aliphatic tribasic

acids.  These groups were also identified as hydrolysis

products although the order of abundance changed to

aliphatic dibasic acids, benzenecarboxylic acids, aliphatic

monobasic acids, aliphatic tribasic acids, furancarboxylic
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acids, and (carboxyphenyl)glyoxylic acids.  These results
led to the hypothesis that the humic material in Lake

Drummond consists of single ring aromatic structures having
three to six alkyl, carboxylic, ketone, or hydroxyl
substituent groups; short aliphatic carbon chains connecting
these structures; and polycyclic ring structures.

After being returned to Chapel Hill, the raw water was
filtered through 1.0 jum honeycomb filters to remove leaves
and sediment prior to further treatment.  This pre-filtered
water was then stored in a cool, dark storage area for
future use.

Experiments using this water were conducted over the
course of two separate time periods.  The first set of
experiments was conducted from February through April of
1986 and will be referred to as the 1986 data set.  The

second set of observations was made from April through July
of 1987 and will be referred to as the 1987 data set.  The

results of these two data sets will be shown individually
due to possible changes in the composition of the pre-
filtered raw water between February, 1986, and April, 1987.

For both sets of data, alum coagulation was the first

stage of treatment.  Jar tests were performed to find the
optimal alum dose for coagulation at a pH of 6.5, the
coagulation pH reportedly used by the city of Chesapeake in
their water treatment plant.  The results, shown in
Figure 3-1 as percent UV-254 absorbance removed as a

function of alum dose, revealed a sharp increase in removal
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at alum doses in the vicinity of 200-210 mg/1 as

AI2(304)3'18 H2O.  This type of removal has been previously
observed for humic and fulvic acids (Randtke and Jepsen,

1981; Babcock and Singer, 1979; Narkis and Rebhun, 1977) and

may be a result of stoichiometric reactions between the

hydrolysis product of alum and the carboxylic acid

functional groups on the humic molecules.

As a result of the jar tests, coagulation was performed

at a pH of 6.5 and an alum dose of 200-210 mg/1 for both

data sets.  The coagulation procedure involved pH adjustment

of 3 liter samples of the pre-filtered water from 4.3 to 6.5

by the addition of 2.4 x 10" M sodium carbonate (Na2C03)
followed by simultaneous addition of a 3 g/1 alum solution

and the Na2C03 solution.  The addition step was performed at
high mixing intensity and was immediately followed by

flocculation for forty minutes at 3 0 revolutions per minute.

The flocculated samples were allowed to settle overnight and

were then vacuum filtered with 0.45 jum membrane filters.

For both experimental runs, the filtrate solutions were

combined in a 5 gal glass carboy and stored in a

refrigerator for the prevention of biodegradation.

The coagulation stage was followed by treatment with

ozone (O3) and biodegradation.  Batch ozonation was used for
the 1986 data set, wherein the coagulated sample (buffered

with NaH2P04 and Na2HP04 to give a pH of 7.0) was combined
with an egual volume of distilled, deionized (DDI) water

(buffered with NaH2P04 to give a pH of 4.5) that had been
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m ozonated to a concentration of 25 mg O3/I.  The ozonated
sample was then placed in the reservoir of a recycle batch

reactor (Figure 3-2), the column of which was previously

seeded with return activated sludge from the Chapel Hill

Wastewater Treatment Plant.  The solution was recycled until

no further reduction in TOC was observed (the condition for

biostabilization) and was then stored in a refrigerator.

The solutions from the 1987 data set were ozonated with

a semi-batch operation where ozone was bubbled through the

coagulated solution.  The ozonation system, depicted in

Figure 3-3, utilized two circuits for the determination of

apparent ozone dose (ADD).  The actual ozonation procedure
was as follows:

1. The ozone generator was turned on with ozone
carried directly to the vent.  The generator
was allowed to run for at least 15 minutes in
order to reach stabilization.

2. All four gas washing bottles were filled with
500 ml of 40 g/1 potassium iodide (KI).

3. The flow of ozone was directed to the
secondary circuit for a specified time period
(2-3 minutes) and allowed to react with the KI
solutions.

4. The ozone flow was switched to the primary
circuit to allow reaction with the coagulated
solution.  Unreacted ozone flowed from the
reactor to the gas washing bottles to react
with the KI solutions.  This step was also
carried out at a specified time period,
depending on the desired ozone dose.

5. During Step 4, the gas washing bottles from
the secondary circuit were emptied, rinsed,
refilled with KI solution, and placed back on
the circuit.
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6. After the specified time period of Step 4, the
ozone was redirected to the secondary circuit
for the same time period as Step 3.

7. The gas flow was switched to vent and the
ozone generator was turned off.  The oxygen
tank was then shut off and the nitrogen tank
was opened.  Nitrogen was allowed to pass
through the system for at least 15 minutes to
purge any residual ozone out of the system.

8. The nitrogen was then allowed to pass through
the primary circuit for 2 hours to strip
unreacted ozone from the solution.

During Steps 7 and 8, the lodometric Method (Standard

Methods, 1975) was used to determine the amount of ozone

reacted in the secondary circuit before and after ozone

contact with the primary circuit.  The ozone generation

rates were calculated from the amount of ozone reacted by

the following equation:

re = ([03JKI • V^i) / t (3-1)

where Tq  is the ozone generation rate, [03]j^j is the amount

of ozone reacted in the KI solution, Vj^j is the volume of

the KI solution, and t is the time period for which the

ozone was passed through the KI solution.

After purging the primary circuit with nitrogen, the

same method was used to determine the amount of ozone

reacted with the KI solutions in the exhaust stream.  Thus,

the ozone exhaust rate was calculated as follows:

^E = ([033kI • ^Ki) / t (3-2)
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where r^ is the rate of ozone delivery through the exhaust

from the reactor.  The amount of ozone depleted in the

reactor was then calculated from

[03]r = [(r^avg " ^e) * t] / V^ (3-3)

where [03]j^ is the amount of ozone reacted in the humic

solution, r^ ^^^ is the average of the generation rates
calculated before and after ozonation of the humic solution,

and Vj^ is the volume of the humic solution in the reactor.

The AOD was calculated by dividing [03]j^ by the TOC of the

coagulated humic mixture prior to ozonation.

Using the above procedure, three batches of the

coagulated solution were ozonated at three separate ozone

dosages by varying the time of ozonation.  After ozonation,

the samples were biostabilized the same way as those of the

1986 data set with the exception that the bacterial seed was

obtained from the effluent of a laboratory GAC column using

ozonated humics as the adsorbate (DeWaters, 1987).

Prior to refrigeration and subsequent testing, all of

the above samples received 6.5 mM of Na"*" from the addition

of phosphate buffer (575.5 mg/1 NaH2P04 and 118.3 mg/1

Na2HP04) and the samples from the 1987 data set received

5 mg/1 of sodium azide (NaN3).  The buffer was added to

maintain a pH of 6.5 during the testing while the NaN3 was

added to inhibit biological growth in experiments performed

on samples that were ozonated and not biostabilized.  Tests
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showed that this dose of NaN3 was not enough to prevent
bacterial removal over 7 days in these samples. Thus,

adsorption results will not be reported for ozonated and

non-biostabilized humic mixtures.  However, NaN3 was added
to the other solutions from the 1987 data set to maintain

consistency as the ozonated and non-biodegraded solutions

were intended for comparisons with the rest of the solutions

from that data set.

ANALYSIS OF HUMIC SOLUTIONS

All of the solutions described above were characterized

by total organic carbon (TOC) content, a useful measure of

the concentration of unknown organic mixtures.  Samples from

the 1986 data set were analyzed with a Beckman Model 915-B

TOC Analyzer.  The Beckman analyzer uses high temperature

catalysis for combustion of organics to carbon dioxide (CO2)
and measures total carbon (TC) with an infrared (IR)

detector.  Potassium hydrogen phthalate (KHP) was used to

set up a linear calibration between the IR readout and TC.

The manufacturer's specifications stated that the process

resulted in a maximum error of ± 2% of full scale due to the

linear assumption.  In addition, the manufacturer reported a

maximum error of repeatability of ± 2% of the full scale for

TC > 5.0 mg/1 and ± 4% of the full scale for TC < 5.0 mg/1.

When using this instrument, all samples were brought to a pH

of 2 with concentrated sulfuric acid (H2SO4) and purged with
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nitrogen to remove inorganic carbon (IC) prior to analysis.

This procedure would also remove volatile organic carbon

(VOC) implying that the TOC referred to in this report is

non-purgeable organic carbon.

The samples from the 1987 data set were analyzed with

O. I. Corporation's Model 7 00 TOC Analyzer.  Samples

introduced into the 01 700 were automatically acidified with

5% phosphoric acid, purged to remove IC (as well as VOC),

and analyzed to measure IC.  After the purging step, sodium

persulfate (100 g/1 Na2S20g) was introduced to the sample in
a 100°C reactor to oxidize the organics to CO2.  The CO2 was
subsequently purged to an IR detector and measured against a

a linear KHP calibration to yield TOC (actually non-

purgeable organic carbon).  The specifications for this

instrument indicate a ± 2% of full scale error as a result

of the linear assumption and a ± 2% of full scale error of

repeatability for sample concentrations greater than

0.002 mg/1.

Measurements made on all of the samples yielded the

results posted in Table 3-1 and provide several insights.

The results for both pre-filtered samples indicate that Lake

Drummond is extremely high in organic content.  In addition,

the results indicate a loss of 8% TOC in the pre-filtered

sample between early February, 1986, and early April, 1987.

Some flocculation and sedimentation was observed to have

occurred in the pre-filtered waters over the fourteen month

storage period.  Biodegradation could conceivably account
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#

TABLE 3-1

TOC Concentrations of the Humic Mixtures Tested

Humic Mixture

(mg O3/I)

1986 1987

TOC

(mg/1)

1986 1987

Pre-Filtered

Coagulated

Ozone Dose #1 + Biostabilization

Ozone Dose #2 + Biostabilization

Ozone Dose #3 + Biostabilization

0.0 0.0 43.8 40.3

0.0 0.0 21.7 16.3

12.5 13.2 7.00 13.3

------- 39.6 ------- 10.5

_—_-. 89.3 .^—_ 6.92
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m

for some of the loss as well, although it is unknown as to
whether this phenomenon actually took place.

The coagulation results showed a 50.5% TOC reduction in
the 1986 data set and a 59.6% TOC reduction in the 1987 data
set, even though both experiments utilized the same range of
alum doses.  The steepness of the curve for UV absorbance (a
surrogate for TOC) versus alum dose in Figure 3-1 shows that
it is extremely difficult to repeat the same TOC removal by
coagulation in the alum dose region used.  In addition, the
TOCs for the coagulated mixtures allows the calculation of
the AODs for each of the ozonation and biostabilization
stages.  The resulting AODs are posted in Table 3-2.  For
the ozonation performed in the 1986 data set, AOD was
calculated based on the assumption that all of the ozone in
the DDI water reacted with the TOC of the coagulated
mixture.  In addition, since equal volumes of the two
solutions were combined, the initial TOC was 10.85 mg/1 just
prior to ozonation.

Table 3-3 lists the values of TOC obtained immediately
after ozonation as well as the percent of coagulated TOC
removed due to the ozonation steps and due to the combined
ozonation and biostabilization steps.  The results indicate
that 33% - 40% of the TOC removed by ozonation and
biostabilization was removed by the ozonation step in the
1987 data set while only 4% of the TOC removed by ozonation
and biostabilization was removed by the ozonation step in
the 1986 data set.  This result indicates that the organics

34

NEATPAGEINFO:id=225194A2-84A1-446C-B86E-387BFB6A6F7E



TABLE 3-2

Apparent ozone Doses (AODs) for the ͫarlous Osonatioa Stops

Humic Mixture

(mg O3/I)

1986

AOD

(mg 03/mg TOC)

1987 1986 1987

Ozone Dose #1

Ozone Dose #2

Ozone Dose #3

12.5 13.2

39.6

89.3

1.15 0.81

2.43

5.48

NEATPAGEINFO:id=961FAEDF-FB5A-4BCF-9312-BD0C1C553A7F



TABLE 3-3

TOC Removals Due to Ozonation and the Combined Treatments of Ozonation and
Biostabilization

TOC   TOC After O3 and     % TOC % TOC
AOD  Data  After Oo  biostabilization  Removed   Removed by O3 &

(mg 03/mg TOC)   Set    (mg/1) (mg/1)    by O3  --•-----•--•-^Biostabilization

1.15 1986 10.7

0.81 1987 15.3

2.43 1987 13.9

5.48 1987 12.9

7.00 1.4

13.3 6.1

10.5 14.7

6.92 20.9

35.5

18.4

35.6

57.5
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in the 1987 data set were much more readily oxidized by

ozone to CO2 as compared with organics in the 1986 data set.
This observation may also be indicative of the removal of

volatile ozonation products prior to TOC measurement in the

solutions of the 1987 data set.  These differences may be a

result of buffer conditions since the phosphate buffer used

in the 1986 data set may reduce the amount of radical OH*
reactions taking place due to the lower pH.  Thus, the

ozonation step in the 198 6 data set may have been more

selective than the ozonation step in the 1987 data set.  Any

additional differences in starting materials are noted in
Table 3-4.

Based on literature reports of a linear relationship

between ultraviolet absorbance at a wavelength of 254 nm

(UV-254) and TOC (Edzwald, et al.^ 1985; Singer, et al.,

1981), the possibility of using UV-254 as a surrogate for

TOC was investigated for the 1986 data set.  UV-254 was

determined with a Varian Cary 219 Spectrophotometer and the

results are posted in Table 3-5 along with comparisons

between the percent removal of UV-254 and the percent

removal of TOC for a given treatment stage.  In addition,

correlations between TOC and UV-254 are depicted in Figure
3-4 and are shown to be guite linear.  However, the results

posted in Table 3-5 and Figure 3-4 show that coagulation, as
well as the combined treatments of ozonation and

biostabilization, removed more UV-254 than TOC.  These

results imply that both treatment steps preferentially
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TABLE 3-4

Characteristics of the Coagulated Humic Solutions Prior to and
During Ozonation

1986        1987

TOC After Coagulation

% TOC Removed During Coagulation

Buffer During Ozonation

Ozone Contact Method

10.9 16.3

50.5 59.6

phosphate none

batch semi-batch
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TABLE 3-5

UV-254 Values for the 1986 Humic Solutions and Comparisons Between UV-254
Removals and TOC Removals

Humic Mixture
UV-254

% UV-254
Removed from

Previous Stage

% TOC
Removed from

Previous Stage

Pre-Filtered 144.6

Coagulated 47.8

Ozonated & Biostabilized    10.4

66.9

78.2

50.5

35.5
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remove humic molecules that absorb ultraviolet light at a

wavelength of 254 nm.  Semmens and Field (1980) noted this

result for coagulation and several investigators have made

the same observation for ozonation (Sierka and Amy, 1985;

Somiya, et al.. 1986; Stephenson, et al.. 1979).  Decreases

in UV-254 indicate the removal or oxidation of carbon-carbon

double bonds and chromophoric groups such a -OH and -NH2
(Anderson, et al.. 1986) and, therefore, the results suggest

that the chemical composition of humic mixtures are

significantly changed by these treatments in comparison with

organic content.  Based on these results, one can conclude

that the correlation between UV-254 and TOC is system

specific and should be judiciously applied.

DETERMINATION OF EQUILIBRIUM ADSORPTION BEHAVIOR

Adsorption isotherms were determined for all humic

solutions by using the bottle point method.  This method can

be carried out by using two different approaches.  The first

involves the addition of varying adsorbent doses to bottles

containing a known volume and constant initial concentration

of the solution of interest while the second consists of the

addition of varying concentrations of the solution of

interest to bottles containing a known and constant mass of

adsorbent.  The former approach is termed as the "constant

Cq approach" while the latter is known as the "constant dose
approach."  For solutions containing only one adsorbate.
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both approaches would yield the same isotherm.  However, due
to the heterogeneous nature of humic solutions, each

approach yields a different result. In addition, the

constant Cq approach yields isotherms that are dependent on
the initial concentration, Cq, and the constant dose
approach yields isotherms that are dependent on the

adsorbent dose, D (Weber, et al.. 1983).  These divergent
results are caused by competitive adsorption among the

different humic species.  However, any multicomponent
equilibrium model can account for these dependencies and, as

a result, the constant Cq approach was used for all isotherm
studies.  Another drawback to the bottle point method, as

discussed by Wang (1986), is the possibility of

overpredicting equilibria observed in adsorption columns.
This was considered to be a result of the fact that the

bottle point method approaches equilibrium from high to low

concentration while columns approach equilibrium from low to
high concentration.

In order to achieve sufficiently fast equilibration,

powdered activated carbon (PAC) was used in the isotherm
experiments.  The PAC was prepared from Calgon F-400

granular activated carbon (GAC) by washing with DDI water in

a Soxhlet Extractor, drying at 110°C, grinding to a 200/325
U.S. mesh size, and storing in bottles in an air-tight

dessicator.  This procedure, described by Randtke and

Snoeyink (1983), was used to ensure that a representative

sample of the "as received" GAC was used.  Summers (1986)

42

NEATPAGEINFO:id=FF6EAB0E-19FE-4848-87D7-B83B504209AC



showed that this carbon is positively charged below a pH of

10.0 and has a relatively small total surface area.  In this

manner, a batch of PAC was prepared for the 1986 data set

and another batch was prepared for the 1987 data set.

The test solution was transferred in 100 ml aliquots to

a total of 13 to 2 0 bottles containing a range of PAC doses

from 5 mg/1 to 4000 mg/1.  The bottles, including a control

bottle containing no PAC, were then placed on a tumbling

apparatus for a period of 7 to 10 days at a temperature of

23°C.  This equilibration time was determined to be adequate

after tests showed little change in adsorption of humic

material after 7 days based on measurements of UV-254.  At

the end of the equilibration period, the bottles were

filtered with 0.45 um  membrane filters to remove PAC and the

TOC of each sample was then measured.  Table 3-6 provides a

summary of this procedure to elucidate any differences

between the 1986 and 1987 data sets.

DETERMINATION OF ADSORPTION RATE BEHAVIOR

Mini-Column Studies

The external mass transfer characteristics were

determined through the use of a short, fixed-bed reactor

known as a mini-column.  A theoretical treatment of how the

mini-column works is given in Chapter 4 as this section will

be devoted to procedure only.  Figure 3-5 shows a schematic
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TABLE 3-6

Methodology Differences Between the 1986
and 1987 Isotherm Studies

1986        1987

PH

[Na"^] from Phosphate Buffer (mM)

Sodium Azide (mg/1)

# of Observations (Bottles)

Range of PAC Dosages (mg/1)

Equilibration Time (days)

Temperature (°C)

TOC Analyzer

6.5 6.5

6.5 6.5

0.0 5.0

12 - 13 20

5 - 4000 5 - 4000

7-10 7

23 ± 2 23 ± 3

Beckman 01 Corp.
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of the mini-column setup which was constructed on the basis

of work done by Cornel, et al. (1986b), and Roberts, et al.

(1985).  The reactor, made of lucite, had an internal

diameter of 2 cm and two stainless steel screens, separated

by 5 cm, between which the bed was placed.

A single batch of 18/2 0 mesh GAC was prepared from "as

received" F-400 GAC in the same manner as the isotherm PAC

batches were prepared.  Just prior to testing, a certain

amount of GAC was weighed, placed in DDI water, brought to

boiling, and immediately cooled to fill the pores with the

DDI water.

In the meantime, the column was filled with DDI water

and a GAC support material was placed in the column's cone

of expansion.  This support material was 3 mm glass beads

for the 1986 data set and was changed to 18/20 mesh crushed

glass tubing for the 1987 data set to better approximate the

hydrodynamics of the carbon bed.  The prepared GAC was then

immersed in the column to form a layer over the glass

support.  This step was followed by the addition of glass

beads or crushed glass to fill the column volume.  The

column was then sealed and the effluent tube was filled to

capacity with DDI water.

A constant head reservoir was filled with the solution

to be tested and 250 ml of solution were allowed to pass

through the tubing and sent to waste just prior to the mini-

column.  Since the tubing was estimated to hold a volume of

46

NEATPAGEINFO:id=F4E2B1D2-01B6-4E6C-93B7-05F0B13276E7



80 ml, this step was considered necessary in order to
provide undiluted solution through the entire tube.

A stopcock was opened at a time previously determined
to be zero such that the test solution would begin to flow

through the column.  The flow meter was immediately checked
to confirm a steady flow rate of 25 ml/min and, at a time of
30 seconds, sampling was begun such that samples were taken
over the course of one minute each.  A sample was considered
to be taken at the midpoint of the time range covered by the

sample (i.e., the sample taken from t = 30 seconds to t = 90
seconds was considered to be taken at 60 seconds).  This

procedure was halted after 10.5 minutes of run time and was
immediately followed by verification of flow rate with a
graduated cylinder.  The temperature was recorded and the
TOC of each sample was subsequently measured to yield

average concentrations over the time range of each sample.

Batch Rate Studies

Internal diffusion rates of humic substances were

determined in completely mixed batch reactors.  Once again,
the theory of determining internal diffusion rates will be
discussed in Chapter 4, leaving this discussion to
procedures only.

The batch rate tests employed an impeller constructed
of polyvinylchloride (PVC) to provide the mixing.  This
impeller was designed from a similar device in use at the
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labs of the Engler-Bunte Institute at the University of
Karlsruhe, Federal Republic of Germany (Fettig, 1986).  A
GAC trap was located at the point of flow input to the
impeller as shown in Figure 3-6.  This method of GAC contact
with the aqueous solution prevents break-up of carbon
particles as is commonly observed in conventional batch
stirring systems.  In addition, the device provides a
consistent hydrodynamic regime that should eliminate
variability in external mass transfer limitations.  The trap
consisted of two stainless steel screens (to keep the GAC

from entering the entire solution) and an outer wall made of
PVC that was capable of being attached to the impeller.  The
tests utilized the same batch of GAC that was used in the

mini-column and the GAC was prepared in the same manner
(i.e., weighed, boiled in DDI water, and cooled to fill the
pores).  Twelve hours prior to testing, 3 liters of solution
were transferred to a 4 liter glass beaker and the impeller,
containing no GAC, was placed in the solution and attached

to a motor which was immediately started.  This step was run
to examine the possibility of humic substance adsorption to
PVC.  After 11.5 hours, a 40 ml sample was taken from the

beaker and analyzed for TOC.  Comparisons between this value

of TOC and the initial TOC showed, in all cases, adsorption
on PVC as negligible.  The GAC was prepared in the next half
hour, transferred to the GAC trap one minute before start¬

up, and the trap was then attached to the impeller.  The
impeller was immersed in the test solution and attached to
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the motor which was immediately started.  Samples were taken

at exponential intervals (i.e., short time intervals between

samples at the beginning of the run and long time intervals

near the end of the run) over a period of 190-225 hours and

were immediately analyzed for TOC.  This sampling method

allowed a more accurate measurement of the larger change in

concentration with time at the beginning of the test.
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CHAPTER 4

PROCEDURES FOR MODELING THE ADSORPTION OF UNKNOWN MIXTURES

ADSORPTION EQUILIBRIA

Ideal Adsorbed Solution Theory

Due to the heterogeneous nature of humic substance

mixtures, the model to be used must be able to describe

humic adsorption equilibria based on multicomponent

adsorption theories.  Frick and Sontheimer (1983) showed

that such a description is possible by using ideal adsorbed

solution theory (lAST) to model the adsorption isotherms of

unknown mixtures when the mixtures were treated as a set of

three pseudo-components (PCs).  The lAST model performs a

non-linear curve fitting routine to minimize deviations

between observed and calculated results by systematically

adjusting the appropriate adsorption parameters.  The

mathematical technique of this process will be shown below.

Conceptually, this process reduces the complexity of humic

solutions such that each PC may be considered as

representative of a group of actual components having

similar adsorbabilities.  While an appealing approach, the

limitations of extending lAST to model humic substance

adsorption must also be understood.
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m lAST was first developed by Myers and Prausnitz (1965)
to describe and predict the adsorption of gaseous mixtures
on a thermodynamically consistent basis.  Radke and
Prausnitz (1972) then extended lAST to multisolute

adsorption from dilute liquid solutions.  As with any

equilibrium process, a favorable change in free energy must

accompany the adsorption of solutes from the bulk liquid
phase to the adsorbed phase.  This thermodynamic concept was
incorporated with the following assumptions: (1) the solid
phase is inert and has an identical specific surface area
for all adsorbates, (2) the bulk liquid phase is a dilute
solution obeying Henry's Law, and (3) the adsorbed phase is
solvent free and forms an ideal solution obeying Raoult's
Law when solutes adsorb simultaneously at constant
temperature and spreading pressure.

Spreading pressure is defined as the change in

interfacial tension between the solid and adsorbed phases

resulting from the addition of solutes to a pure solvent
system.  Therefore, a constant spreading pressure implies
that the interfacial tension must also be constant.  Since

the adsorbed phase is considered to be two dimensional, the

interfacial tension is analogous to the three dimensional
pressure of the ideal gas law.  The assumption that the
adsorbed phase is solvent free (see assumption 3 above)

implies that the spreading pressure is equal to the
interfacial tension and, therefore, spreading pressure is
also analogous to three dimensional pressure.
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The above assumptions lead to the following equation:

l/qi =Ji(Zi/q°i) (4-1)

Equation 4-1 relates the total amount of solute adsorbed,

qip, to the loadings, q'^, that would occur if each of the N

solutes were to adsorb singly from dilute solution at the

same temperature and spreading pressure as the mixture.  The

mixture and single solute systems must be considered at the

same temperature and spreading pressure since these two

intensive variables set the equilibrium state of each

solute.  The total surface loading is defined as the sum of

the individual solute loadings in the adsorbed phase mixture

as follows:

N

Thus, qj^ is the adsorbed phase concentration of solute i

when solute i is adsorbed from the bulk liquid phase.  The

surface mole fraction, z^,  used in Equation 4-1 is defined
as:

^i ^ ^i/^T ^°^ i = 1 to N. (4-3)
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The assumptions made to arrive at Equation 4-1 seem
somewhat reasonable for the bulk liquid phase.  However, PAC
and GAC are not inert materials as they contain many surface
functional groups that are capable of reacting with solute
functional groups (Mattson and Mark, 1971; Smisek and Cerny,
1970).  In addition, the pore structure of activated carbons

can effectively exclude larger solutes from interior
adsorption sites (as evidenced by Lee, et al.. 1981) thereby
implying that an identical specific surface area is not
available for all solutes.

For the adsorbed phase assumptions, a solute follows

Raoult's Law only as Zj^ approaches 1, especially if the
solute is significantly different from others in solution.

Since, in this case, the adsorbing mixture is a natural
humic solution containing a multitude of solutes, it would
appear unlikely that any component would approach a mole
fraction of unity in the adsorbed phase.  Thus, humic

solutions are highly unlikely to follow the assumption of an

ideal adsorbed phase.  In addition, some of the PAC or GAC

functional groups could conceivably attract water (the
solvent) into the adsorbed phase via such mechanisms as

hydrogen bonding.  Despite these drawbacks, lAST will be
shown to work reasonably well for humic solutions adsorbing
onto activated carbon.

At equilibrium, the chemical potential of the bulk

liquid phase must equal the chemical potential of the
adsorbed phase.  As a result, the lic[uid phase concentration
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of a given solute in the mixture can be determined from the

liquid phase concentration of that solute when it adsorbs

without competition at the same temperature and spreading

pressure as the mixture.  The equation is given by

^i " ^i^°i ^°^ i = 1 to N (4-4)

where C^ is the liquid phase concentration of solute i in

the mixture when the liquid and adsorbed phases are at

equilibrium.  C°j^ is the liquid phase concentration of

solute i in a single solute system at equilibrium and Zj^ is

as defined in Equation 4-3.  Equations 4-1 and 4-4 are the

key results of lAST since both assume the formation of an

ideal adsorbed phase at constant temperature and spreading

pressure.

Equations 4-1 and 4-4 require that the single solute

parameters, C°j^ and q'-^/ be evaluated at the same spreading

pressure as the mixture.  Therefore, in order to use the

appropriate C°j^ and q°j^ for a given solute, the following

condition must be satisfied:

n^ = n"^ for i= 1 to N. (4-5)

This expression simply equates the spreading pressure of the

mixture, TTrp, with the spreading pressure of each solute in a

single solute system, tt°^.     The values of 7r°j^ are obtained

from single solute isotherms as
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cu

7r°j^ = (RT/A) (q°i / C°i) dC""i

for i = 1 to N (4-6)

where R is the ideal gas constant, T is the temperature of

the adsorption process, and A is the area of the solution -

solid interface.  As pointed out by Radke and Prausnitz

(1972), n°j^  is evaluated from data and, therefore, the
single solute adsorption model used to describe the data

does not need to be theoretical.  However, the integration

does require data down to C°j^ = 0 implying that one needs
single solute data from a surface loading of zero to a

surface loading of q°j^ in order for the integration to
accurately calculate ir°j^.     As shown by Kidnay and Myers
(1966), the error in calculating jt'^ is reduced by
transforming the integrating variable from C°j^ to q'-j^:

^;i
Tr\ =   (RT/A) [d(ln Ci) / d(ln q°i)] dq°i

for i = 1 to N (4-7)

Most lAST applications, particularly those reported by

Crittenden and co-workers, are for solutes of known

molecular weight such that molar concentrations are easily

expressed.  In the case of this work, the Freundlich
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equation was used to describe the single solute behavior of

the PCs on a TOC basis. The Freundlich expression is given

by

*3°i,T0C " ^i,TOC • (^°i,TOc)   ^
for i = 1 to N (4-8)

where q°j^ rpQc ^^^ *-°i TOC ^^® ^^® adsorbed and liquid phase
TOC concentrations of solute i and Kj^ ,j,qq  and 1/nj^ are the
Freundlich parameters of solute i.  Kjl rpQc represents the
adsorption capacity of the adsorbent for solute i while 1/n^
represents the adsorption intensity of solute i.

Since Equation 4-8 is based on TOC concentrations

(usually expressed in mg/1) further manipulation is required

before the Freundlich isotherm can be incorporated into

lAST, which was derived with molar concentrations.  This

manipulation has not been reported in the literature.  The

TOC concentrations are related to molar concentrations by

C°i,TOC = (C°i) . (y^) . (MWc)
for i = 1 to N (4-9)

where y^ is the number of carbon atoms in a mole of solute i
and MWq is the atomic weight of carbon.  Substituting
Equation 4-9 into Equation 4-8 yields
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t

<3°i = Ki,TOC  [(yi)   •   (MWc)](i/"i-^)[C°i]Vni
for i = 1 to N (4-10)

which becomes, upon linearization and solving for ln(C° j^) ,

In C°i = ni(ln q'^) + n^ElnCy^ • MW^ / Ki^-roc)]
- ln(yj^ • WJq)

for i = 1 to N        (4-11)

The derivative of Equation 4-11 is

d(ln C°i) / d(ln q'i) = n^
for i = 1 to N        (4-12)

and can be substituted into Equation 4-7 to yield, upon

integration

7r°i = (RT/A) (n^) (q°i)    for i = 1 to N        (4-13)

Substitution of Equation 4-13 into Equation 4-5 and the

assumption that A applies to all solutes identically results

in the expression

TTqiA/RT = nj^«q°j^
for i =  1 to N. (4-14)
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lAST can be used to calculate the concentration of any

component in a mixture by combining Equations 4-1, 4-2, 4-3,

4-4, 4-9, 4-10, and 4-14 in the order shown in Appendix A.

As a result, the following function is obtained:

.  . N
C .   .  . _i,TOC = t(^i,TOC / ^i) /jSi'^j^TOC / yj)]

•   Jji{nj    .   qj^TOC /  yj)   /   ("i   •   Ki^TOC /  yi)]"i
for  i  =  1  to N (4-15)

Therefore, when the Freundlich isotherm is substituted into

lAST, the resulting expression shows that the equilibrium

TOC concentration of solute i in the liquid phase depends on

the number of carbons per mole, the Freundlich parameters K

and n, and the equilibrium TOC concentration in the adsorbed

phase of each PC that is present in the mixture.

Each PC must also satisfy the mass balance given by

^i,TOC "^ ^^oi,TOC ~ ^i,TOc) * (V / M)
for i = 1 to N        (4-16)

where C^^ rpQQ is the concentration of solute i prior to
adsorption, M is the mass of carbon added to the system, and

V is the volume of the humic solution.  Combining Equations

4-15 and 4-16 results in
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•* Coi,TOC - [qi,TOC • (M/V)]

- t(qi,TOC / Vi) /jilgj,TOC / Yj)]

Jj||nj • qj^TOC / Yj) / ("i ' ^i^TOC / Yi)]"! = 0
for i = 1 to N (4-17)

Thus, Equation 4-17 represents a set of N equations that

must be satisfied for a given isotherm bottle.  A nonlinear

search routine would be performed, based on this equation,

to find the values of C^j^ TOC' ^i'   "i' ^""^ ^i TOC ^°^  each

PC.  This routine would be similar to that given by

Crittenden, et al. (1985), but now includes a search for the

proper values of y^^, the variable introduced because of the

use of TOC to describe PCs.

Several interesting notes can be made about

Equation 4-17.  Firstly, for the case where the system is

modeled as a single PC (i.e., N = 1), Equation 4-17 reduces

to the Freundlich equation as should be expected.  Secondly,

for systems modeled with two adsorbing PCs (i.e., N = 2),

Equation 4-17 reduces, for PC 1, to

Col,TOC - [^1,T0C • (M/V)]

~ {5l,T0C / [5l,T0C + (Yi / y2)(g2,TOc)H

•   Hqi,TOC +   (Yl / Y2)(n2 / ni)(q2^TOc)3  / Ki^TOC>"i
=   0

for i = 1 to N (4-18)
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A similar equation exists for PC 2 and Equation 4-18 implies
that the ratios yi:y2 ^^i*^ '^1*^2 ^^^  important in determining
the adsorption behavior of the mixture.  Finally, if one
assumes that each PC contains the same number of carbon

atoms, then

Yl = Y2 = ͣͣ• = Yi = ••• = Vn (4-19)

and Equation 4-17 reduces to

Coi,TOC  -   C<3i,T0C   •    (M/V)]   -   [qi,TOC /  fi5j,T0c)]
N

•   jii"j    •   ^J,T0C)   /   ("i   *   Ki,Toc)]   i  =  0
for i =  1 to N (4-20)

This expression is identical to the objective function
derived and used by Crittenden, et al. (1985), to describe
the multicomponent adsorption of three synthetic mixtures
and a contaminated groundwater on two activated carbons.
Equation 4-20 was used in this work to describe the
equilibrium adsorption behavior of the humic solutions noted
in Chapter 3.  Therefore, the simplifying assumption has
been made that all PCs contain the same number of carbon

atoms (y).  In reality, humic mixtures have widely ranging y
values, however, the question remains as to what level of
detail can be included in modeling where supporting data are
lacking.  A sensitivity analysis was performed to determine

61

NEATPAGEINFO:id=7831994D-F764-439C-A641-E68914E0B29B



whether Equation 4-17, which includes y as a parameter, was
better suited to modeling the adsorption equilibria of humic
solutions.  The results of this analysis are given below.
From this point on, all concentrations will refer to TOC
and, therefore, the TOC subscripts will be dropped for
simplicity.

Fitting Isotherm Data

Equation 4-20 was used as the basis for a nonlinear
routine that searched for the values of the free parameters
(Kj^, 1/nj^, and Cqj^) such that the differences between the
isotherm data and the calculated isotherm were minimized.

Each data point of the mixture isotherm was calculated from
the mass balance equation

q^ = (Cqt - Ct) • (V/M) (4-21)

where qrp and dp are the equilibrium TOC concentrations of
the mixtures in the adsorbed and liquid phases,

respectively, and Cq^,  is the initial TOC concentration of
the bulk solution.  As noted for Equation 4-17, the N
expressions given by Equation 4-20 must all be satisfied for
any given isotherm bottle.  This set of equations may be
solved with a Newton-Raphson approach as shown by

Crittenden, et al. (1985) , as long as the values of n^^, Kj^,
and Cq^  are known for each solute.  However, these
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parameters were the unknowns in this study and, therefore,

became free parameters in a search routine designed to

minimize a squared, weighted difference expression between

experimentally observed and theoretically calculated TOC

concentrations in the mixture.

The following equation is the objective function to be

minimized:

SSR =.|i(CTi,obs - CTi,calc) / ^cil^ (4-22)

where Crpj^ Qj^g and Crpj^ calc ^^® ^^® observed and calculated
TOC concentrations, respectively, in isotherm bottle i at

equilibrium, a^j^  is the standard deviation of replicate
measurements of Cipj^ obs' ^  ^^ ^^® total number of bottles
(observations) used in the experiment, and SSR is the

residual sum of squares.  Gpj^ ^j^g is equivalent to the Crp
variable of Equation 4-21 while the value of a^j^  should be
calculated, not only from repeated measurements of Cr^j^ obs'
but also from repeated experiments at the same values of

Cqxj,,  M, and V.  Since repeated experiments were not
performed, all a^j^  values were set equal to the analytical
error noted in Appendix B.

A method was employed to determine the maximum number

of statistically valid PCs for each solution isotherm

modeled.  The procedure was begun by fitting a given

isotherm with N = 1 (i.e., one adsorbing PC) and then

calculating the corresponding value of SSR.  The next two

63

NEATPAGEINFO:id=FB24E2CD-96AD-40F2-B92D-FD77A82F5B00



•* steps fitted the same isotherm with N = 2 and N = 3, the
SSRs of which were also calculated.  After these fits were

obtained, the residual root mean square error (RMSE) for
each fit was calculated from

RMSE = [SSR / (m - p)]°-^ (4-23)

where p is the number of free parameters.  For the model
used in this study,

p = 3N - 1 (4-24)

One should note from Equation 4-23 that the RMSE can

actually increase due to the addition of a PC and any
additional PC that resulted in an increased RMSE was not

used.  In addition, any additional PC that did not yield a
sufficient decrease in RMSE was also avoided.  The

determination of what constituted a sufficient decrease was

somewhat arbitrary in nature and involved considerations of
accuracy and computation time.

Equation 4-23 also indicates the possibility that

increasing the number of observations can improve values of
RMSE.  Results from the 1986 data set had shown that none of

the mixtures could be modeled with more than two adsorbing

PCs and, therefore, the number of observations was increased

for the 1987 data set.  The 1987 data set provided, in

general, smaller RMSEs although the use of three adsorbing
PCs remained unjustifiable.
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As shown by Weber, et al. (1983), humic mixtures may be
comprised of a non-adsorbing fraction and, therefore, the
model must be able to account for this fraction.  Once the

number of adsorbing PCs was determined, sensitivity analyses

were performed to note the impact of the addition of a non-
adsorbing PC on the isotherm fit.  All of the fits exhibited

a dependency of SSR on the concentration of the non-

adsorbing PC (Cjj) and, in all cases, some value of C^^
provided a minimum in SSR.  Thus, for any given mixture, the

Cj^ that provided the smallest value of SSR was used in
subsequent modeling.  In addition, this value of Cj^ was
checked with one, two, and three adsorbing PCs to ensure
that the value of N determined above was still appropriate.

Example of the Procedure for Fitting Isotherms

An example is provided here to elucidate the approach
used to fit isotherm data.  The isotherm data set chosen for

this example was obtained from the mixture in the 1987 data

set that received an AOD of 5.48 mg 03/mg TOC and
biostablization.  As noted above, the first step was to find
the appropriate number of adsorbing PCs by using RMSE as the
indicator.  Table 4-1 shows the values of RMSE obtained by a

fit to the data for each value of N and Figure 4-1 shows the

description achieved for each case. As Figure 4-1 shows,
the three models fit the data reasonably well but predict

adsorption at lower solute concentrations where the data

65

NEATPAGEINFO:id=0E96A417-665A-44A9-B80B-4047FB6455B8



%

TABLE 4-1

Root Mean Square Errors for Ozonated (AOD a 5.48) and
BiosteQjilized Humics from the 1987 Data Set

Number of

Adsorbing
PCs (N)      RMSE

1 0.1249

2 0.0981

3 0.1561
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show that no further adsorption occurs.  Table 4-1 shows
that the RMSE was increased by the addition of the third PC
and, therefore, the fit where N = 2 (i.e., two adsorbing
PCs) is the best one in this case.

The isotherm data was then fit with the free parameters
of two adsorbing PCs (Cq-j^, Cq2, K^, K2, Vr^i/ 1/^2) and with
varying values of Cj^, a fixed parameter.  The resulting
dependence of SSR on C^^ is shown in Figure 4-2 which
indicates that the lowest value of SSR (i.e., the best fit)

is obtained by setting Cj^ equal to 0.22 mg TOC/1.
Figure 4-3 depicts the fit obtained by using a non-adsorbing
PC in the model and compares it with the fit obtained
without the non-adsorbing PC.  As one can easily see, the
model's description of the data is greatly enhanced when a
non-adsorbing PC is included.

In order to determine that the number of adsorbing PCs
was still appropriate, the data were fit with varying values
of N at the value of Cj^ determined by the above procedure.
For the isotherm data analyzed in this example. Figure 4-4
shows the resulting fits while Table 4-2 shows the resulting
RMSEs.  These results confirm that the isotherm data is best

fit with N = 2 and Cj^ = 0.22 mg TOC/1.  This method was
employed for all isotherms and, in all cases but one, the
maximum justifiable number of adsorbing PCs was two.  Every

mixture was also modeled with an appropriate value of Cj^ and
the modeling results will be included for discussion in
Chapter 5.
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TABLE 4-2

Root Mean Square Errors for Ozonated (AOD = 5.48} and
Biostabilized Humics from the 1987 Data Set when

^n,TOC = °-22 mg TOC/1

Number of

Adsorbing
PCs (N)       RMSE

1 0.1217

2 0.0440

3 0.1595
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^(^P       Checking the Assumption of Equal Carbon Content

As noted earlier. Equation 4-19 expresses the

assumption that each PC in a given mixture contains the same

number of carbon atoms.  A sensitivity analysis was

performed to determine whether the quality of fit would

dramatically improve with the addition of yj^ variables to

the lAST model.  Since all of the mixtures in the 1987 data

set were capable of being described by two adsorbing PCs,

the two equations given by Equation 4-18 were used in the

model with y-^ and ^2  ^^ fixed parameters. In other words,

the ratio Yi''-^2  ^^^ fixed for a given modeling run and the

resulting value of SSR was recorded.

Table 4-3 lists the values of SSR obtained for each

mixture at yi:y2 ratios of 100:1, 10:1, 5:1, 2:1, 1:1, 1:2,

1:5, 1:10, and 1:100.  The value of SSR achieved for the 1:1

ratio was compared with each of the other SSR values and, as

Table 4-3 shows, none of the ratios provided more than a 7%

reduction in SSR when compared with the SSR obtained from

the 1:1 ratio.  Thus, the assumption that each PC contains

the same number of carbon atoms appears to be appropriate

enough for modeling humic substance adsorption.

Making Predictions with the lAST Model

#
The lAST model should be able to predict mixture

isotherms at any concentration based on the results obtained
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TABLE 4-3

Values Obtained for the Residual Stun of Squares (SSR) at
Varying Ratios of yi:y2 for the 1987 Data Set

Y^'Y2

Humic Mixture 100:1  10:1   5:1   2:1   1:1   1:2   1:5  1:10  1:100

Pre-Filtered ----   6.36   6.44   8.81   6.83   7.58   7.11   7.75   13.1
Coagulated 5.09   4.06   2.97   2.46   2.46   27.1   3.00   25.1   4.99
Ozonated £f  Biostabilized

AOD = 0.81 mg 03/ing TOC
AOD  = 2.43   mg  03/ing  TOC
AOD = 5.48  mg 03/mg TOC

1.24 1.26 1.28 1.29 1.18 1.27 1.35 1.26 1.24

0.99 0.74 0.76 0.78 0.65 0.73 0.72 0.74 24.6

1.46 1.11 1.04 1.06 1.09 1.15 1.25 1.11 1.46
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from the best fit of a single mixture isotherm.  The

prediction procedure is very straightforward since one can

assume that any mixture, upon concentration or dilution,

will not change in composition.  In other words, the only

best fit parameters that change upon dilution or

concentration are the C^j^ and Cj^ values and these change

according to percent composition, a known variable.  For

example, solute i is known to be a certain fraction of the

total mixture by finding Xj^ = C^^ / Cq,j,  for the isotherm

that provided the fitted data.  Then, for any change in CQrp,

Cqj^ is appropriately adjusted by multiplying Xj^ by the new

Cqq,.  Therefore, when one provides the Kj^, 1/nj^, and the

properly adjusted C^^  values for each PC as input to the

model, a prediction of the new mixture isotherm is achieved.

This procedure is very important as it can be used to show

how a certain treatment changes the adsorbability of a

mixture.  For example, a given treatment step may change a

solution's compositon as well as its initial concentration.

Therefore, if one can predict the isotherm of the new

solution at the same initial concentration of the original

solution, then one can determine how extensively the

treatment changed the adsorbability of the original mixture

through compositional changes.

The ability of lAST to predict changes in humic

solution concentration was tested for the 1986 and 1987 data

sets with their respective coagulated mixtures.  In both

cases, the original coagulated solution was diluted at a 1:2
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#

ratio and lAST was used to predict the isotherm of the

original solution from parameters obtained by the best fit

of the isotherm of the diluted solution.

The results of these tests are shown in Figures 4-5 and

4-6. Both figures show that the lAST equilibrium model is

capable of making reasonable predictions of the effect of

initial concentration. However, the model tends to slightly

overpredict the adsorbability of the original solution in

the region where the weakly adsorbed components are being

adsorbed (i.e., in the region of higher carbon doses and

lower equilibrium TOC concentrations). After the 1986 data

set was evaluated, the reason for this was thought to be due

to the lack of enough data and the number of observations

was increased for the 1987 data set. Since the same result

was obtained in the 1987 data set, one may conclude that the

adsorption of humic mixtures onto activated carbon tends to

violate some of the assumptions made in developing the

model. This deviation in the weakly adsorbing region was,

for the purposes of this work, not considered large enough

to warrant the use of a different modeling approach.

ADSORPTION KINETICS

Introduction

Prior to reaching the equilibrium state, all solutions

must undergo some kinetic process that involves the transfer
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of solute molecules from the bulk liquid phase to the

adsorbed phase.  The kinetics of adsorption onto activated

carbon involves the consideration of many complex mechanisms

and the purpose of this section is to describe the

assumptions and modeling approaches used to determine mass

transport properties.

External Mass Transport

Although there are many differences between batch and

column adsorption processes, both have the characteristic

that water is flowing past GAC particles in a relative

sense.  For batch systems, this flow is most likely to be

turbulent in nature, thereby creating a well mixed bulk

solution phase.  For column systems, a well defined solute

concentration that is independent of column radius can be

assumed at any given axial distance in a column.  Due to the

relatively stationary aspect of the GAC particles, a thin

film of solution is created around each GAC granule such

that flow in the film is laminar in nature.  As illustrated

by Figure 4-7, the solute concentration near the GAC surface

is lower than the solute concentration in the bulk liquid

phase, thereby creating a driving force for solute transport

to the particle.  The diffusion of solute molecules across

this laminar film is called "film diffusion" or "external

mass transport", the latter term indicating that the solute

transfer is being conducted outside of the GAC particle.
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Mass transfer rates in the laminar flow layer are
generally considered to be linear as given by

Wrp = Kl * A (C^rr - C^s) (4-25)

where Nrj,  is the mass flux of total organic carbon, A is the
external surface area of the GAC particle, K^ is the
external mass transfer coefficient, and C^rp and C^g are the
TOC concentrations of the bulk liquid phase and the GAC
surface, respectively, at a given time t.  As shown by
Cornel, et al. (1986a), the following equation is derived

when the assumptions of ideal plug flow and dC^ip / dt = 0 at
small t are made:

Cet / <^0T = exp [-(Mc • Kl • a) / Q ] (4-26)

Equation 4-26 may be used on experimental data to determine
the value of K-^.  Cgrp and Cqij were the experimentally
determined effluent and influent TOC concentrations and M^
was the known mass of GAC placed in the column (see Chapter
3).  The external specific surface area, a, was determined
to be 7.27 m^/kg by counting the number of granules (n) in a
known mass of GAC (M), calculating the average particle
diameter (d) from the sieve sizes used to screen the GAC,
and substituting these quantities into

a = (TT • n • d^) / M (4-27)
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Equation 4-27 assumes that the GAC particles have a
spherical shape.  However, the dependence of mass transfer
characteristics on particle shape can be accounted for by
rewriting Ecjuation 4-26 as

Kl = - [Q / (Mc • a^ff)]

• In [Get / Cot] (4-28)
where a^^^ is the effective specific surface area given by

^eff = S • a (4-29)

S is the particle shape factor and approaches the value of 1
for spherical particles.

The value of S can be estimated by running an adsorbate
with a known diffusivity through the column.  For both the
1986 and 1987 data sets, paranitrophenol (PNP) was used to

determine the particle shape of the GAC.  The free liquid
diffusivity of PNP was determined from the correlation of

Wilke and Chang (1955) and the expected value of K-^  was then
determined from the Gnielinski correlation.  This

correlation, reviewed by Roberts, et al. (1985), is given by
the following equation:

Sh = [2 + (Shia^2 + shtuj,b2)0.5j
• [1 + 1.5 • (1 - e)] (4-30)
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where e is the porosity of the GAC bed.  The Sherwood number
(Sh) is a dimensionless quantity given by

Sh = Kx • d / Dj (4-31)

where Dj^ is the free liquid diffusivity. The value of Sh-j^^j^,
represents the contribution of mass transport in the laminar
film and is given by

Sh^ajn = 0.644 • Re^/^ • Sc^/"^ (4-31)

while the value of Sh^j^j-j^ represents the mass transport in
the turbulent flow region and is given by

^^turb "^ [0.037 • Re
0.8

So]

/ [1 + 2.443 • Re-0.1 (Sc2/3 - 1)] (4-32)

Equations 4-31 and 4-32 indicate that Sh is a function of

the Reynolds number (Re) and the Schmidt number (Sc), each
of which is given by the following two equations:

Re = u • d / V
(4-33)

Sc = V /  Dt
(4-34)

The value of u represents the interstitial velocity and the
value of V represents the kinematic viscosity of water.
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The value of K-^ predicted by this correlation for PNP

was compared with the value of K^ calculated by Equation 426

from experimental results.  Algebraic manipulations can show

that S is obtained from the ratio of the experimental K^ to

the predicted Kj^ and, for the 1986 and 1987 data sets, a

value of S = 1.54 was obtained for the GAC particles.  Thus,

a value of 11.2 m^/kg was used for a^^^ in Equation 4-28.
The value of S obtained in this work compares favorably with

those reviewed by Roberts, et al. (1985).

The intent of examining external mass transport with

the mini-column technique was to use calculated K-^ values to

obtain the "average" Dj^ values for any given humic mixture.

Any number of mass transfer correlations can be used for

this purpose.  Roberts, et al. (1985), showed that the

Gnielinski correlation was best suited for the purposes of

the mini-column since they found it to be the only

correlation tested where the Reynold's number did not

influence the particle shape factor.  In addition,

Crittenden, et al. (1987a), concluded that the Gnielinski

correlation was also the most accurate of four correlations

tested. Therefore, the values of D^ presented in Chapter 6
were determined from the Gnielinski correlation and

represent an overall free liquid diffusivity for the mixture

since attempts were not made to determine the Dj^ values of
the individual PCs.

84

NEATPAGEINFO:id=9131824E-9EF6-44E8-ACFD-E87A31DC9181



The Pore-Surface Diffusion Model

Figure 4-7 also indicates the mechanisms by which

internal mass transport takes place.  For instance, a solute

molecule can adsorb to the external surface of the GAC

particle and diffuse through the adsorbed phase into the GAC

pore structure.  This phenomenon is known as "surface

diffusion" since mass transport is along the surface of the

GAC pores.  In addition, a solute molecule can diffuse

through the liquid phase of the pores before adsorbing to

the internal surface.  This process is known as "pore

diffusion" and is considered to be related to the film

diffusion process.

The competitive adsorption rate model, combining both

internal diffusion mechanisms, is known as the pore-surface

diffusion model (PSDM).  This model, as described by

Friedman (1984), assumes the following: (1) the pore and

surface diffusion mechanisms are individually accounted for,

(2) no solute-solute interactions occur in the adsorbed

phase, (3) linear resistance to mass transfer exists at the

external surface of the GAC, and (4) local equilibrium

between the adsorbed and liquid phases can be described with

the lAST multicomponent model.  Thus, the PSDM requires the

input of lAST parameters obtained for a given solution from

an isotherm test and the free liquid diffusivity obtained

from a mini-column rate test in addition to the data

obtained from the batch rate test.
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The process to be modeled is competitive adsorption
onto GAC particles controlled by simultaneous pore and
surface diffusion in a batch reactor.  A TOC mass balance

for each PC around the reactor gives:

[dCgi / dt] = - [3 . M / (e^ • V • r3)]
R

d{ [qpi + (ca • ^pi / ^*^°)3 • ^^ • <^^> / ^^
0

for i = 1 to N        (4-35)

where ej^ is the fraction of reactor volume occupied by the
bulk liquid phase, e^ is the GAC porosity, rho is the
apparent density of the GAC, M is the mass of GAC in the
reactor, V is the total volume of the reactor (including GAC
volume), and R is the mean radial distance from the center

of a GAC particle to its external surface.  In addition, Cgj^
is the concentration of solute i in the bulk liquid phase
and is a function of time only while Cpj^ and qp^, the
concentrations of solute i in the pore liquid phase and the
adsorbed phase respectively, are functions of both time and
radial distance.  The following conditions are utilized at
t = 0 in conjunction with Equation 4-35:

^Bi = ^Oi f°^ i = 1 to N (4-3 6)

^Pi = ^Pi "= ° f°^ i = 1 to N (4-37)
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A mass balance about a radial element inside the GAC

particle yields

(1 / r2) . d[r2 . Dsi(dqpi / dr) + r2(Dpi • e^ / rho)
. (dCpi / dr)] / dr = (dqpi / dt)

+ (e^ / rho) • (dCpi / dt)

for i = 1 to N        (4-38)

where Dpj^ is the pore diffusion coefficient and Djg^^ is the

surface diffusion coefficient.  Equation 4-38 is restricted

by the following boundary conditions:

9

[qpi + (Ca • Cpi / rho)] • r^ • dr) / dt

= (Kl • r2 / rho) • [Cbi - Cpi]
for r = R and for i = 1 to N        (4-39)

d[qpi + (e^ • Cpi / rho)] / dr = 0

for r = 0 and for i = 1 to N        (4-40)

Equation 4-39 states that the mass flux of solute i through

the laminar film at the external surface must be equal to

the mass flux of solute i into the GAC particle.  In

addition, Equation 4-40 requires that the concentration

gradient of solute i be equal to zero at the center of the

GAC particle.
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The above six equations are combined with the

competitive equilibrium condition (Equation 4-20) to yield a

set of 7N equations that are simultaneously solved by using

orthogonal collocation.  This method sets up a set of

optimally placed points along the particle's radial axis

(i.e., many points near r = R where the concentration

gradient is large and few points near r = 0 where the

concentration gradient is small) and then solves the 7N

simultaneous equations at each of these points after given

time intervals.  Each simulation was performed with a set of

14 collocation points after tests with 3, 4, 7, and 10

collocation points showed that 14 points gave only slightly

different results than 10 points.

Determination of Internal Diffusion Parameters

As noted earlier, the modeling procedure involved the

input of lAST equilibrium parameters and the external mass

transfer coefficient.  Since conditions in the batch system

were different from those of the mini-column system, the

values of Kp were also expected to be different.  The values

of Kp used for the batch rate tests were determined from D^

and the Gnielinski correlation (Equations 4-30 to 4-34)

after Fettig (1986) determined the velocity through the

impeller as approximately 100 m/hr.  This velocity was not

necessarily critical since the internal diffusion resistance

was believed to be rate limiting and Kp, therefore, was not
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expected to influence the results of internal diffusion
modeling to a great degree.  In addition to these inputs,
the model required the input of GAC particle radius,
apparent density, porosity, and dose.

As with the determination of Dj^, the two internal
diffusion coefficients were assumed to describe the kinetic

behavior of each humic molecule in solution.  Thus, the same
Dp and Dg values were used for each PC in the competitive
rate model.  In this sense, they represent average values
for a given humic mixture.  The procedure involved the use
of the PSDM to generate the total TOC concentration as a
function of time for given values of Dp and Dg.  These
diffusion coefficients were then varied until the PSDM

prediction gave a close match to the experimental data.
This procedure was performed by fixing one of the diffusion
parameters and systematicallly adjusting the other until the
smallest residual sum of squares (i.e., the smallest
difference between the predicted and observed TOC values)
was achieved.

Unfortunately, the procedure did not involve the use of
a regression technique, thereby implying that the smallest
sum of squares does not necessarily indicate that the Dp and
Dg combination achieved is the best one.  For example,
fixing Dp at one value and adjusting Dg until the best
prediction is obtained does not necessarily provide a better
combination of the diffusion coefficients than fixing Dp at
a different value.  In order to achieve unique combinations.
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each mixture was examined with the homogeneous pore

diffusion model (PDM) and the homogeneous surface diffusion

model (SDM).  These two models represent the opposite

extremes of the PSDM since both assume only one transport

mechanism.  The PDM was determined by essentially setting Dg

equal to zero (Dg was actually set to 1 x 10~^° cm^/sec) and
varying Dp until the smallest residual was reached.

Similarly, the SDM was determined by essentially setting Dp

equal to zero (Dp was also set to 1 x 10""^° cm^/sec) and
varying Dg.

Fettig and Sontheimer (1987) noted a procedure that

allows for the determination of a unique combination of Dg
and Dp for a given mixture.  The procedure relies on
additional information to characterize humic solutions: the

adsorption isotherm (as measured by the bottle point method)

for the solution remaining at the end of a given rate test.

The PSDM can predict the concentration of each PC remaining

at the end of a rate test, however, these predicted

concentrations are dependent on the relative magnitudes of

Dg and Dp.  Therefore, the equilibrium behavior of the
solution remaining at the end of a rate test is also

dependent on the relative magnitudes of Dg and Dp since the
equilibrium state is dependent on the initial concentrations

of each PC.  Combinations of Dg and Dp were used such that
the predicted concentration of each PC at the end of a rate

test was input into the lAST equilibrium model as an initial

concentration to provide a prediction of the isotherm
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describing the residual mixture.  The combination that
provided the best prediction of the new isotherm (i.e., the
smallest sum of squares) was considered to be the best and
the results provided by this technique are subsequently
termed the heterogeneous diffusion model, HDM.

SUMMARY

The flow chart depicted by Figure 4-8 provides a good
summary of how the data were collected and modeled.

Equilibrium data were collected for each solution and

described by the lAST multicomponent model such that each
solution was divided into a set of three PCs (two adsorbing
and one non-adsorbing).  In addition, the average value of

Djj was determined for each solution with the mini-column
rate test and its accompanying model.  These parameters were
combined and input into a PSDM algorithm to simulate batch
kinetic data and subsequently determine the PDM and SDM of

each solution.  In addition, the values of Dg and Dp were
varied to find the best prediction of the equilibrium
behavior of the mixture remaining at the end of a batch rate
test.  The resulting combination was considered the HDM of
the humic mixture prior to the rate test.
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CHAPTER 5

EQUILIBRIUM RESULTS

EFFECT OF LONG TERM STORAGE

As noted in Chapter 3, the pre-filtered humic mixture
was stored in a cool dark place for a period of 14 months
between the 1986 and 1987 data sets.  The differences noted

in TOC between the two studies would tend to indicate

changes in the mixture's adsorbability and, as shown in
Figure 5-1, this was indeed the case.  The pre-filtered
solution in April of 1987 was adsorbed to a significantly
greater extent than the original pre-filtered solution.
Possible explanations for this result can be categorized in
two ways, the first of which is "changes due to differences
in experimental technique" and the second of which is
"changes due to differences in solution composition."

There were two differences in experimental

methodologies used for the two isotherms.  First, a longer
equilibration time (10 versus 7 days) was used for the
isotherm of the 1986 data set than was used for the isotherm

of the 1987 data set.  This fact can not explain the

observed result since a longer equilibration time would
indicate better adsorbability for the pre-filtered solution
of the 1986 data set (unless the rate of adsorption for the
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solution from the 1987 data set was significantly faster

than that of the solution from the 1986 data set).  The

second difference in technique was the use of 5 mg/1 NaN3
for biological inhibition in the 1987 data set, whereas none

was used in the 1986 data set.  Therefore, the 1987 pre-

filtered mixture contained an additional 7.7 x 10 ^ M Na

and could be adsorbed better as a result of the increased

ionic strength.  However, both solutions received the same

amount of phosphate buffer to give [Na ] = 6.5 x 10  M

prior to adsorption and, as shown by Randtke and Jepsen

(1982), the addition of such a relatively small

concentration of Na"*" to the 1987 mixture would barely
account for any increase in adsorptive capacity.  Thus,

neither difference in experimental methodology is thought to

explain the differences between the adsorption isotherms

presented in Figure 5-1.

Since the differences in methodology did not offer an

explanation for the observed changes, the improved

adsorbability is probably due to changes in solution

composition over the 14 month storage period.  Changes in

the solution's chemical (i.e., concentrations of functional

groups) and physical (i.e., the molecular weight

distribution) nature may account for the observed increase.

As noted in Chapter 3, some sedimentation was observed to

have taken place when the pre-filtered solution was

retrieved from storage in April of 1987.  The mechanism for

the observed sedimentation is unknown, however, the
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possibility exists that the larger humic macromolecules were

removed from solution.  This would be consistent with

observations by Lee, et al. (1981), and Summers (1986) that

smaller molecular size fractions are better adsorbed due to

the physical limitations of PAC pore sizes on larger

molecular size fractions.  An increase in adsorption

capacity would also be observed due to an overall decrease

in hydrophilicity of the humic mixture, a phenomenon that

could be the result of biodegradation or the continued

condensation of humic molecules.  Condensation would produce

higher molecular weight, less polar molecules and is a

possible explanation for the greater removal of TOC by ozone

in the solutions from the 1987 data set.  Although the

reason for the observed increase is unknown. Figure 5-1

clearly shows that the 198 6 and 1987 data sets must be

considered separately.

EFFECT OF ALUM COAGULATION

Figures 5-2 and 5-3 present the isotherm data obtained

for the 1986 and 1987 data sets, respectively.  In both

cases, the isotherm data show improvement in adsorption

capacity upon coagulation.  However, the data do not

indicate whether the improvement was due to compositional

changes or to the difference in initial TOC concentration.

In order to find the appropriate explanation for the

observed increase in adsorbability upon coagulation, all
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four isotherms were fit with the lAST model (according to
the procedures noted earlier in Chapter 4) to determine the
pseudo-component (PC) properties (K, 1/n, Cq) of each
solution.  Once these properties were determined, the lAST
model was used to predict the position of a coagulated humic
isotherm if the coagulated solution was to have the same
initial concentration as the pre-filtered solutions.  The
procedure used to perform these predictions was also
described earlier in Chapter 4 and the ability of the lAST
model to make such predictions was demonstrated in Figures
4-5 and 4-6.

The results of these predictions are plotted as dashed
lines in Figures 5-2 and 5-3 and may be compared to the
solid lines, which depict the best fits for the pre-filtered
isotherms.  This approach allows two mixtures to be compared
for adsorbability without the interference of effects caused
by differences in initial TOC concentration.  The fact that
the dashed and solid lines do not coincide proves that the

changes induced in PC properties (i.e., Kj^, 1/n^,   and Cqj^)
by coagulation affect the shape of the adsorption isotherm,
even when the total TOC of the two mixtures is made

identical.  Coagulation improves adsorbability by changing
the composition of the uncoagulated solution and by
decreasing the initial concentration of the uncoagulated
solution.

Randtke and Jepsen (1981), after observing the same
result, considered that the improvement was either due to
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removal of weakly adsorbed species, changes in ionic

strength as a result of added aluminum ions, or complexation

between aluminum species and humic species creating species

that are adsorbed better.  The authors eventually concluded

that the improvement was most likely a result of the

complexation reactions.  However, results from their own

work, as well as from the work of Weber, et al. (1983), and

Lee (1980), have shown that alum doses not resulting in

coagulation tend to either decrease or produce no change in

the adsorbability of humic solutions, thereby implying that

the complexes may be less adsorbable.

Gel permeation chromatography (GPC) was used by

Jodellah (1985) to examine the molecular weight distribution

(MWD) of a coitimercial humic acid (CHA) before and after alum

coagulation.  The results show aggregation of humic

molecules upon coagulation to shift the MWD to larger

molecular sizes at 53% TOC removal and complete removal of

the larger molecular sizes at 80% TOC removal.  The author

also notes that the alum dose resulting in 53% removal was

not enough to induce precipitation.  In addition, the author

found decreased adsorption capacity for a CHA solution

subjected to 50% TOC removal by alum coagulation.  These

results indicate that alum coagulation preferentially

removes higher molecular weight materials as long as

sedimentation takes place.  Thus, the change in adsorption

capacity is influenced by the ability of the alum

coagulation process to change the solution's MWD.
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In addition to changing the physical size

characteristics of a humic solution, alum coagulation may

also bring about change in the overall chemical

characteristics as well.  As noted in Chapter 3, the results

of jar tests indicated a stoichiometric relationship between

the humic carboxylic acid groups and the aluminum hydrolysis

product.  Therefore, the preferential removal of carboxylic

humic macromolecules is conceivable.  A study by

van Breemen, et al. (1979), showed that iron coagulation of

a fulvic acid to 60% TOC removal resulted in the removal of

96% of the carboxylic groups originally present.  Since the

carboxylic acid groups would tend to be hydrophilic, the

solution remaining after alum coagulation could conceivably

be more hydrophobic in nature than the original solution.

The extent to which such a change would improve

adsorption is not known.  However, the explanation of an

overall decrease in molecular size is certainly adequate to

explain the results observed in this work.  In addition,

coagulation appeared to improve adsorbability to a greater

extent in the 1987 data set than in the 1986 data set.  This

result may be due to the higher TOC removal and, hence,

higher removals of larger molecules in the coagulation stage

from the 1987 data set although caution is advised in

arriving at such a conclusion since the original solutions
were not alike.
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EFFECT OF OZONATION AND BIOSTABILIZATION

The isotherm data collected for the mixtures that were

coagulated, ozonated, and biostabilized are presented in

Figures 5-4 to 5-7 and, in each case, are compared with

isotherm data for the mixtures that were coagulated only.

As was done in comparing the adsorbability of humic mixtures

before and after coagulation (see Figures 5-2 and 5-3), the

lAST model was used to predict the effects of a change in

initial concentration on the isotherm positions of the

mixtures that were coagulated, ozonated, and biostabilized.

This was accomplished by fitting each isotherm to obtain the
Freundlich constants and initial concentration of each PC in

a given coagulated, ozonated, and biostabilized mixture.
The total TOC concentration of that mixture was increased to

match that of the appropriate coagulated mixture and a new

TOC isotherm was then predicted.  These predictions are

shown as dashed lines in Figures 5-4 to 5-7 and should be

compared with the solid lines that represent the best fit

isotherms for the coagulated mixtures.
The dashed line is below the solid line in each of the

four figures, thereby showing that adsorbability was

decreased by the combined treatments of ozonation and

biostabilization.  The fact that the dashed and solid lines

represent the same initial TOC concentration implies that

some of the decrease in adsorbability is due to

compositional changes upon these treatments.
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HUMIC ISOTHERM  FROM  THE   1987  DATA  SET.  THE  DOTTED  LINE  SHOWS THE lAST  PREDICTION
OF THE OZONATED AND BIOSTABILIZED  ISOTHERM  AT THE  SAME  INITIAL CONCENTRATION AS
THE  COAGULATED  ISOTHERM.
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The difference in adsorbability upon ozonation and
biostabilization is least obvious in Figure 5-4 (which shows
results from the 1986 data set), where similar
adsorbabilities were noted in the regions dominated by
strongly adsorbing species and non-adsorbing species.  The
region dominated by strongly adsorbing species is that part
of the isotherm where observations were made from bottles
having very small PAC doses such that only the strongly
adsorbing species will be adsorbed.  The region dominated by
non-adsorbing species is that part of the isotherm where PAC
doses are very large, thereby implying that all of the
adsorbing species will find adsorption sites.

In order to note any dependence of adsorbability on
apparent ozone dose (AOD), the predictions of the isotherms
for the coagulated, ozonated, and biostabilized mixtures
presented in Figures 5-5 to 5-7 were superimposed onto
Figure 5-8 along with the best fit representation of the
isotherm for the coagulated mixture.  The results show a
general decrease in adsorptive capacity with increased AOD,
except in the region dominated by a non-adsorbing PC where
an increase in AOD yields smaller fractions of the non-
adsorbing PC.

The literature does not show entirely consistent
results for the effect of ozonation on the adsorbability of
humics.  Sontheimer, et al. (1985) presented isotherms from
Hubele (1984) that show a decrease in adsorbability upon
ozonation and a subsequent increase in adsorbability, back
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to that of the original mixture, upon biostabilization.

Different results were obtained by Benedek, et al. (1980),

who showed a slight increase in adsorbability with an ozone

dose of 0.44 mg 03/mg TOC and a slight decrease in

adsorbability with an ozone dose of 2.62 mg 03/mg TOC.  The
authors concluded that ozonation did not change the isotherm

of the original solution to a statistically significant

extent.  However, like Hubele, they found that these

ozonated solutions yielded the same isotherm as the original

solution after biostabilization.  Chen, et al. (1987), noted

decreased adsorbability at various pH values onto two

activated carbons for a groundwater fulvic acid subjected to

an ozone dose of 3.1 mg 03/mg TOC.  Glaze, et al. (1986),
also presented isotherms that show a decrease in adsorption

capacity for alum coagulated humics from Cross Lake, LA,

upon receiving an ozone dose of 0.83 mg 03/mg TOC.  On the
other hand, Kaastrup (1985) saw a significant increase in

the adsorbability of Norwegian humic substances after

ozonation at 1 mg 03/mg TOC.  Finally, Somiya, et al.
(1986), presented a series of humic acid isotherms at a wide

range of 10 different ozone doses and found fairly

inconsistent changes in adsorbability.

There are several ways in which the results of this

work and the results of others may be explained.  First,

being a very reactive oxidant, ozone would be expected to

produce solutions comprised of a higher percentage of

smaller molecules.  Using ultrafiltration, Anderson, et al.
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(1986), Showed this to be the case and found that higher
ozone doses produced larger fractions of smaller molecules.
The same results were observed by Kaastrup (1985), Chen,
et al. (1987), Flogstad and Odegaard (1985), and Lienhard
and Sontheimer (1979).  Therefore, ozone would be expected
to increase the adsorbability of those macromolecules that
would otherwise be excluded due to pore size limitations.

Ozonation is also believed to increase the polarity of
humic mixtures as evidenced by increased adsorption on polar
adsorbents such as activated alumina (Chen, et al.. 1987)
and calcium carbonate (Lienhard and Sontheimer, 1979).  A
literature review by Bailey (1972) shows many reaction
mechanisms between organics and ozone known at that time and
indicates the production of many polar functional groups.
Hoigne and Bader (1979) also indicate the formation of such
functional groups upon ozonation.  These results would lead
to the decrease of humic substance adsorbability due to the
resulting increase in hydrophilicity.  Therefore, the extent
of physical and chemical changes upon ozonation must be
considered together in order to anticipate changes in
adsorbability.  Thus, one would expect waters having a high
concentration of extremely large molecular materials (such
as those studied by Kaastrup) to adsorb better after
ozonation while other waters (such as those studied by Chen,
et al.) would see decreased adsorbability.

Another indication of the change in solution
composition upon ozonation is the increase in the
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biodegradability of humic solutions as noted by Stephenson,
et al. (1980), Yamada, et al. (1986), and Glaze, et al.

(1981).  The results of this work and those of Stephenson,
et al.. indicate that biological uptake of TOC increases

with AOD, thereby implying that the extent of compositional
changes upon ozonation is dependent on the AOD applied.  In
any case, the increased adsorbability observed upon

biostabilization in Hubele's work, as well as in the work of

Benedek, et al.. may be due to the biological degradation of
the highly polar molecules formed by ozonation.  In regard
to the results of this work, the isotherm observed after

ozonation and biostabilization in the 1986 data set (Figure

5-4) was much closer to that of the coagulated mixture than
the isotherms of the ozonated and biostabilized mixtures in

the 1987 data set. As shown in Table 3-3, the percent

removal of TOC after both ozonation and biodegradation in

the 1986 data set was greater than that for a similar ozone

dose in the 1987 data set.  In addition, the decrease due to
ozonation alone was much smaller for the solution in the

1986 data set than it was for those of the 1987 data set.

These results indicate that more biodegradable components
may have been created by the ozonation procedure of the 1986
data set.  This latter observation may explain why the
positions of the isotherms in the 1987 data set did not

return all the way back to the position of the coagulated
isotherm.
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EFFECT OF TREATMENT ON lAST PARAMETERS

The values obtained for the Freundlich constants and
initial concentrations of each PC from the best fit to each
solution isotherm are presented in Table 5-1 to show how the
various treatment steps affected them.  The pre-filtered
mixture from the 1986 data set was modeled with only one
adsorbing PC while the pre-filtered mixture from the 1987
data set was modeled with two adsorbing PCs.  However, just
over 90% of each mixture's initial TOC was attributable to
one adsorbing PC, a fairly homogeneous mixture in so far as
adsorbability is concerned.  The adsorbability of the major
adsorbing PC in the 1987 data set, as measured by its
Freundlich constants, was much stronger than that of the
adsorbing PC in the 1986 data set.  This suggests that the
aging process increased the adsorbability of the pre-
filtered solution.

The results from the 1986 data set clearly reveal
improvement upon coagulation because the Freundlich
constants for the two adsorbing PCs of the coagulated
mixture change to reflect being more strongly adsorbing than
the one adsorbing PC of the pre-filtered mixture; moreover,
the percent composition of the non-adsorbing component
decreased.  The Freundlich constants obtained from the 1987
data set, however, do not show such a clear trend.  Instead,
the major PC of the coagulated mixture has a lower
adsorbability than the major PC of the pre-filtered mixture.
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#

TABLE 5-1

lAST Equilibrium Model Results

Pseudo-Component 1 Pseudo-Component 2

Non-

Adsorbing
Pseudo-

Component

Humic Mixture K 1/n %C
OT K 1/n %C

OT %COT

1986 Data Set
Pre-Filtered^
Coagulated
Ozonated & Biostabilized

AOD = 1.15 mg 03/mg TOC
1987 Data Set
Pre-Filtered
Coagulated
Ozonated & Biostabilized

AOD = 0.81 mg 03/mg TOC
AOD = 2.43 mg 03/mg TOC
AOD = 5.48 mg 03/mg TOC

25 0.36 92 --- ----- — 8
31 0.27 84 127 0.20 12 4

23 0.17 71 87 0.14 25 4

51 0.21 91 14 0.05 7 2
41 0.47 79 454 0.98 20 1

49 0.48 74 12 0.16 21 5
48 0.54 63 14 0.14 33 4
20 0.42 70 52 0.22 27 3

A second pseudo-component was found to be statistically insignificant for the pre-filteredmixture from the 1986 data set.
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Meanwhile, the minor PC of the coagulated mixture shows
Freundlich constants that imply increased adsorbability and,
moreover, its increase in percent composition implies a
greater contribution to the overall adsorbability of the
coagulated mixture than the minor PC of the pre-filtered
mixture.  Therefore, the Freundlich constants and initial
concentrations of the PCs are not always easy to interpret.
The combined treatment of ozonation and biostabilization

also yields parameter changes that are difficult to
interpret.  Therefore, the graphical representations of the
data and model predictions in presented in Figures 5-2 to
5-8 are preferable for studying the effects of any treatment
process on adsorption.

THE NORMALIZED ADSORPTION ISOTHERM

The work of Summers (1986) has provided some insight
into the polyelectrolytic nature of humic substance

adsorption.  The author points out that the effects of
initial concentration (as shown in Figures 4-5 and 4-6 of
this work) are the result of the heterodisperse nature of
humic solutions.  A heterodisperse solution would contain
molecules having a wide range of sizes while a monodisperse
solution would be comprised of molecules having the same
sizes.  Therefore, the concept of heterodispersity is
entirely physical in nature.  Polymer chemists have observed
that the adsorption of a given polymer is dependent on the
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ratio of adsorbent surface area to solution volume as a
result of their heterodisperse nature (Fleer and Lyklema,
1983).  In effect, the dependency of adsorption on this
ratio can be accounted for by constructing a Freundlich
isotherm plot for which the equilibrium liquid phase
concentration is normalized by the PAC dose (Summers, 1986).

Figures 5-9 and 5-10 show the application of the
nomalized adsorption isotherm to the results obtained during
the 1987 data set.  These figures indicate that the
procedure does exceedingly well at eliminating the effects
of initial concentration presented earlier in Figures 4-5
and 4-6 for the coagulated mixture isotherms.  Summers shows
similar results for a commercial humic acid at ten different
initial concentrations ranging from 2.2 mg TOC/1 to
141 mg TOC/1, a soil fulvic acid at five different initial
concentrations ranging from 3.21 mg TOC/1 to 17.4 mg TOC/1,
an aquatic humic acid at three different initial
concentrations ranging from 3.18 mg TOC/1 to 9.62 mg TOC/1,
and an aquatic fulvic acid at three different initial
concentrations ranging from 2.90 mg TOC/1 to 9.05 mg TOC/1.

The linearity observed by Summers, however, was
restricted in this study to the region of the isotherm where
normalized liquid phase concentrations exceeded
1 mg TOC/g PAC.  Equilibrium concentrations below this value
were indicative of the region where the influence of non-
adsorbing species became significant.  Summers did not
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acknowledge the existence of a non-adsorbing component in
any of his mixtures.

Figures 5-9 and 5-10 provide a clear qualitative
display of how various treatments affect the adsorbability
of humic solutions through compositional changes.

Coagulation is shown to increase adsorbabaility in most
regions (Figure 5-9) while the additional treatment with
ozonation and biostabilization is shown to decrease

adsorbability, the extent of which depends on the AOD.
The effects of treatment on adsorbability can be

quantified using the normalized adsorption isotherm:

q^ = K^ • (Crp / D)^/"t
for (Crp/D) > 1 mg TOC/g PAC (5-1)

where D is the PAC dose and is equilivalent to the ratio of
mass of adsorbent added to volume of solution present.  The
deviation from linearity at (Cp/D) < 1 mg TOC/g PAC may be
caused by non-adsorbing species and restricts the use of

this approach.  The resulting values of Kp and l/n,j, are
posted in Table 5-2 and represent average properties of the
mixture.

The K,j, values presented in Table 5-2 indicate a
decrease in adsorptive capacity for each treatment stage.
However, this result is somewhat misleading because Krp is
calculated only at the normalized concentration of 1 mg
TOC/g PAC.  In addition, Figure 5-9 shows that the overall
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#

TABLE 5-2

Results from the Normalized Freundlich Equation

Humic Mixture^ K      1/n

Pre-Filtered
Coagulated
Ozonated & Biostabilized

AOD = 0.81 mg 03/mg TOC
AOD = 2.43 mg 03/mg TOC
AOD = 5.48 mg 03/mg TOC

^All mixtures in this table are from the 1987 data
set.

33 0.15
26 0.34

21 0.29
18 0.27
13 0.23
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adsorbability is improved upon coagulation.  The Freundlich
exponent, 1/n, indicates an increase in adsorptive intensity
upon coagulation and a subsequent decrease with increasing
AOD.  The effect of AOD on K,p and 1/nip are graphically
depicted in Figures 5-11 and 5-12, respectively.  Although
these results can only be interpreted as empirical, they
show an approximate linear relationship with AOD above an
AOD of 0.81 mg 03/mg TOC.

120

NEATPAGEINFO:id=D7EFA6FE-AAA2-4476-AA63-B1C8E1200470



•

1—I—1—I—I—I—I—I—r
2 3

APPARENT OZONE DOSE (mg  03/mg TOC)

FIGURE  5-11; THE  EFFECT OF APPARENT OZONE  DOSE  ON  THE VALUE OF THE  NORMALIZED  FREUNDLICH
CONSTANT.  THE  DECREASE  IN  ADSORPTIOfJ  CAPAClPi' AS  GIVEN  B\  K  APPEARS TO  BE  LINEAR
WITH  AOD ARER  THE AOD  EXCEEDS  0.81   mg  03/mg  TOC.

NEATPAGEINFO:id=E017A96D-CEB3-4D23-A71E-DEAB6DF56469



#

0.4

2
UJ

I 0.3
X

O
_l
Q

UJ
a:

Q
LlJ 0.2
M

<

O

0.1 n-------1-------1-------1-------1-------1-------1-------1      I-------1-------1-------1-------r
3 4

APPARENT OZONE  DOSE (mg  03/mg TOC)

FIGURE  5-12: THE  EFFECT  OF APPARENT OZONE  DOSE  ON  THE VALUE  OF THE  NORMALIZED   FREUNDLICH
EXPONENT.  THE  DECREASE  IN  ADSORPTION   INTENSITY AS  GIVEN  Bi   l/n  APPEARS TO  BE
LINEAR WITH  AOD  WHEN  THE AOD  EXCEEDS  C.81   mq   03/mg  TOC.

NEATPAGEINFO:id=113C24C5-3EA3-4BEB-892B-388D214B0C77



CHAPTER 6

KINETIC RESULTS

EXTERNAL DIFFUSION

The mini-column technique used by Cornel, et al,

(1986b), was used in this work to find the effects, if any,

of coagulation, ozonation, and biostabilization on the film

diffusion coefficients of aquatic humic materials.  The

experimental procedures and modeling methods for this

technique were presented in Chapters 3 and 4, respectively.

Figure 6-1 shows a plot of results from a mini-column

test performed on the humic solution from the 1987 data set

that received coagulation, ozonation at an AOD of

2.43 rag 03/mg TOC, and biostabilization.  The values of C/Cq
presented in this figure were corrected by time dependent

dilution factors that were obtained by running a solute of

known Cq through the column (this is why a large value of

C/Cq appears for t < r).  A constant value of C/Cq was

expected for the short time span of the test; however, there

was a general upward trend in C/Cq for this particular
mixture.  As Cornel, et al. (1986a), point out, however,

such a result is to be expected from solutions that have

slow internal diffusion rates.  That is, the experiment was

designed to make external diffusion the rate limiting step
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but this may not have occurred if internal diffusion was too

slow.  Because of their large molecular weights, humic

solutions will have very low internal diffusion coefficients

and, therefore, the result observed in Figure 6-1 was not

surprising.  The question to be answered is which C/Cq value

to use as input to Equation 4-28.  The problem is solved by

using the concentration ratio at t = t, the mean residence

time of the reactor.  The value of t indicates the point of

initial breakthrough in an ideal plug flow system.  Linear

regression was performed on the experimental data in the

range of 5 min < t < 10 min to find the intercept with T = r

and, therefore, the appropriate C/Cq ratio.  This ratio was

substituted into Equation 4-28 to obtain the value of K-j^

which was substituted into the Gnielinski correlation

(Equations 4-30 to 4-34) to obtain the value of D^.

The values of Dj^ obtained from both data sets are

presented in Table 6-1 and several interesting comparisons

can be made.  Firstly, the value of Dj^ increased noticeably

after the 14 month storage period and tends to indicate a

general decrease in molecular size.  This result is

consistent with the observed sedimentation if larger humic

molecules were preferentially removed but is not consistent

if larger humic molecules were formed by condensation.

Secondly, coagulation increased the value of D-^ in both data

sets, a result that was expected due to the expected

decrease in overall molecular sizes.  Finally, the ozonation

and biostabilization treatments did not increase Djj as was
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TABLE 6-1

Mini-Column Rate Test Results

Dt

Humic Mixture (x 10^ cm^/sec)

1986 Data Set

Pre-Filtered 1.1
Coagulated 2.0
Ozonated & Biostabilized

AOD  =   1.15  mg  03/ing  TOC 2.0
1987 Data Set

Pre-Filtered 1.9
Coagulated 2.6
Ozonated & Biostabilized

AOD = 0.81 mg 03/ing TOC 2.5
AOD = 2.43 mg Oj/mg TOC 3.0
AOD = 5.48 mg 03/mg TOC 2.3
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expected due to the production of smaller molecules.  This

result may imply that the smaller molecules were

biologically removed.

The order of magnitude of Dj^ agrees with that obtained
by Cornel, et al. (1986b), in similar mini-column

experiments.  The literature contains several studies that

examine the effects of treatment on external mass transport.

Unfortunately, none of these authors converted their Kp
values to Dj^ values that could be subsequently compared with
those of this work and with those of other experiments.

Lee, et al. (1981), present film transfer coefficients, as

determined from batch experiments, that show a general

decrease in K^ upon coagulation of a peat fulvic acid.
Later, Jodellah (1985) showed that K-^ values (obtained from
batch tests) of two commercial humic acids and one river

water increased after coagulation.  An increase in K^ could
be accounted for if aggregated floe particles were removed

by sedimentation while decreased values of K-^ could result
if these particles remained in suspension.  Kaastrup (1985)

showed an increase in K^ of humic mixtures from 2 x 10"'^
cm/sec to 9 X 10"^ cm/sec at an AOD of 1 mg Oj/mg TOC.
Cleavage of humic molecules is likely to explain a higher

K-^/ especially considering the fact that the molecular
weight distribution before ozonation showed these humic

substances to be very large.

The literature data and the results of this work do not

give a clear picture of how treatment processes affect the
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external mass transfer characteristics of humic solutions.

In this work, coagulation increased external diffusion

rates, probably because the large floe particles formed by

coagulation were removed by sedimentation.  A decreased rate

of external diffusion could occur, however, if these

particles were to remain stable.  In addition, ozonation and

biostabilization did not alter the external diffusion rate.

Obviously, further work is required to examine the effects

of various treatment processes on film diffusion rates.

INTERNAL DIFFUSION

The data obtained from the batch rate experiments are

shown in Figures 6-2 and 6-3 for all of the solutions

tested.  Results from tests of the pre-filtered solution

from the 1986 data set were not included because of an

eleven month delay in running the test which, in light of

the effects on adsorption properties noted with long term

storage, would make data interpretation impossible.  The

other two solutions from this data set were tested

immediately following their respective isotherm tests and,

therefore, the results of these two tests are reported

herein.  The decrease in normalized TOC was plotted against

the square root of time so that the data points at the start

of the experiments were spread out and data points near the

end of the experiments were condensed.  TOC was normalized

to show the approach to the final equilibrium position as
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calculated by the lAST equilibrium model (i.e., the value of
zero should be approached as the system approaches

equilibrium).  Having thus normalized for differences in
equilibrium position for each of the mixtures, it is
possible to compare the rate of approach for different
sample treatments.

The results of Figure 6-3 show a significant increase
in internal adsorption rates after coagulation and an
additional significant increase after ozonation and
biostabilization.  Interestingly, the rate did not increase
with the ozone dose.

Homogeneous Diffusion Model Results (PDM and SDM)

The pore diffusion model (PDM) and the surface

diffusion model (SDM) yield the values of Dp and Dg,
respectively, and these are shown in Table 6-2.  In the 1987

data set. Dp was seen to increase to more than twice its
original value upon coagulation while the value of Dg
decreased.  This contradictory result may actually be

consistent with the observed increase in adsorbability upon
coagulation since the surface diffusion mechanism must

account for adsorption prior to diffusion.  For instance,

the coagulated mixture would have a much larger driving
force for diffusion in the adsorbed phase than the pre-
filtered mixture would.  This must happen because the more
strongly adsorbing mixture would put a higher concentration
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TABLE 6-2

Homogeneous Diffusion Model Results

Dp Ifrom PDM) Do ffrom SDM)Humic Mixture                (x 10' cm^/sec) (x lO-*--^ cm^/sec)

1986 Data Set

Coagulated                          4.0 6.8
Ozonated & Biostabilized

AOD = 1.15 mg Og/mg TOC 6.3 20.0

1987 Data Set

Pre-Filtered 3.2 3.8
Coagulated 6.9 2.8
Ozonated & Biostabilized

AOD = 0.81 mg 03/mg TOC 13.0 13.0
AOD = 2.43 mg 03/mg TOC 15.0 16.0
AOD = 5.48 mg 03/mg TOC 13.0 -- -18.0
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of solute in the adsorbed phase at the external surface of

the GAC particle than the more poorly adsorbing mixture.

Thus, the concentration gradient is higher for the more

strongly adsorbing mixture and, as a result, the mass flux

in the adsorbed phase should also be higher.  Because the

value of Dg was obtained from mass flux data, this value
must be related to the ratio of mass flux to concentration

gradient.  Therefore, even though Figure 6-3 shows an

increased mass flux upon coagulation, the value of Dg could
be smaller if the increased mass flux was not sufficient to

overcome the increased concentration gradient.

Ozonation and biostabilization produced significant

increases in Dp and Dg for both data sets.  This result was
not surprising as ozonation reduces overall molecular size.

However, these values were quite similar for the various

AODs examined in the 1987 data set.  This may be an

indication that molecules smaller than a certain size were

biologically removed.

The order of magnitude in the SDM results is equivalent

to those obtained in several studies which also examined the

rate of humic diffusion with a surface diffusion model.

LeS/ et al. (1981), showed a slight increase in Dg after
coagulation of a peat fulvic acid, while Jodellah (1985)

found an increase in Dg for one commercial humic acid, a

decrease in Dg for another, and no change for a river water
upon coagulation.  In addition, Kaastrup found no change in

Dg with an AOD of 1 mg 03/mg TOC.  All of these authors
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assumed that a single solute Freundlich isothesrm could

describe their data whereas two adsorbing PCs and a

competitive adsorption approach were used in this work.

Taken together, the results of all these rate studies are

inconsistent and indicate that further work is required,

just as was found for the external mass transfer studies.

Summers (1986) has produced the only report thus far

that gives results of PDM analysis for humic solutions.

Values of Dp for fractionated and unfractionated commercial

humic acid are quite similar to those of this work.  Not

surprisingly, the smaller molecular size fractions were

observed to have higher values of Dp which also agrees with

this work wherein each treatment stage was expected to

reduce the overall size of humic solutions.

The Heterogeneous Diffusion Model (HDM)

The HDM approach, as detailed in Chapter 4, is more

involved than either the PDM or SDM approaches and should be

understood before proceeding with this section. As noted in

that chapter, the results from the IAST equilibrium model

and the HDM kinetic model should predict the equilibrium

behavior of a humic solution remaining at the end of a batch

rate test.  In order to apply this technique, collection of

TOC isotherm data was necessary for each humic solution that

remained after a batch rate test.  Figures 6-4 through 6-10

present the isotherm data collected for each solution before

134

NEATPAGEINFO:id=896458B6-9819-4148-9A7E-7E058D38EF82



# #

a.

o
o
I-

£

<
q:
h-

UJ
o

o
o

u

<
X
CL

o
u
CD

o
CO
Q
<

q;

3
a

10

10 -

1----1—I-   I   M  I 1----1    I    I   M I 1-----1    I    I   ll-l

D

o°°o

D

D
D

ADSORBATE:  COAGULATED  HUMICS  (1936)

D  DATA:  BEFORE  BATCH  RATE TEST
Cot   =   10.9  mg TOC/I

ͣ  DATA: AFTER  BATCH  RATE TEST
Cot  = "^-^^ rng toc/i

—  PREDICTION: AFTER  BATCH RATE TEST
Cot   =   "^-2^  mg  TOC/I

I   I I T 1—I—r—r n--------------\--------r
1 10

EQUILIBRIUM  LIQUID  PHASE  CONCENTRATION   (mg  TOC/l)

1—I   I I IT    r

10 10

FIGURE  6-4: PREDICTION   OF THE  ISOTHERM   FOR  COAGULATED   HUMICS  REMAINING AFTER A  1986  BATCH
RATE TEST.  THE  PREDICTION  WAS  MADE  BY  USING  FREUNDLICH   PARAMETERS  OBTAINED  FROM
THE  ORIGINAL  MIXTURE  (OPEN   SQUARES) AND  BY  USING  PERCENT CONCENTRATIONS  FOR THE
RESIDUAL  MIXTURE AS  PREDICTED   B>  THE  HETEROGENEOUS  DIFFUSION  MODEL  (HDM).

NEATPAGEINFO:id=5728D187-52A7-4EA5-B0E9-027228C5CAAA



f

Q.

O
O

2
O

10 '^

& 10'-<
cc

LJ
o
z
o
o

u

<
X
a.

a 10 d
CD
ce
O
CO
Q
<

o
LJ

1    r 1---------1-------\------1—I—1—r

ADSORBATE:  OZONATED  (AOD   =   1.15)
AND  BIOSTABILIZED  HUMIC5  (1986)

A  DATA:   BEFORE  BATCH   RATE TEST
Cot   =  7,00  mg TOC/I

A  DATA:  AFTER  BATCH  RATE TEST
Cot   =   3.42  mg TOC/I

-------- PREDICTION: AFTER  BATCH RATE TEST
Cot   =   3,42  mg  TOC/I

1-----r T—\—I—r-r

10 10

EQUILIBRIUM  LIQUID  PHASE CONCENTRATION  (mg TOC/I)

FIGURE  6-5: PREDICTION   OF THE   ISOTHERM   FOR   OZONATED   (AOD   =   1.15)  AND  BIOSTABILIZED  HUMICS
REMAINING AFTER A   1986  BATCH  RATE TEST. THE PREDICTION WAS  MADE  BY USING
FREUNDLICH   PARAMETERS OBTAINED  FOR THE  ORIGINAL  MIXTURE  (OPEN  TRIANGLES)  AND
FROM   PERCENT CONCENTRATIONS  OF THE  RESIDUAL  MIXTURE AS  PREDICTED BY THE  HDM.

NEATPAGEINFO:id=881890E7-12E8-44B3-95BB-A6DEEABF2495



f

CD

o
o

E

<
on

Ixl
o
2
o
o

LJ
to
<
X
Q.

O
U
m
ct:
o
tn
Q
<

ce
00

3
a
UJ

10-^^

10'-

10 -

1 -

10

1--------1------1-----1—\—r-TT -I--------1------1-----1—I—I—r

cP

ADSORBATE:  COAGULATED  HUMICS  (1987)

D  DATA:  BEFORE BATCH   RATE TEST
CoT   =  8.16  mg TOC/I

ͣ  DATA:  AFTER  BATCH   RATE TEST
Cot   =   3.18  mq  TOC/I

--------  PREDICTION: AFTER  BATCH  RATE TEST
CoT   =  3.18 mg TOC/I

T —I—r—i—]-------------------------------1------------------1—
1

EQUILIBRIUM LIQUID  PHASE CONCENTRATION  (mg TOC/l)

1------r T—r

10 10

FIGURE 6-"'r PREDICTION  OF THE  ISOTHERM  FOR  COAGULATED   HUMICS  REMAINING AFTER A  1987  BATCH
RATE TEST.  THE  PREDICTION  WAS  MADE  BY  USING  FREUNDLICH  PARAMCTERS  OBTAINED  FROM
THE ORIGINAL  MIXTURE  (OPEN  SQUARES) AND  BY  USING  PERCENT CONCENTRATIONS  FOR THE
RESIDUAL  MIXTURE AS  PREDICTED  B>   THE  HCTEROGENE0U3  DIFFUSION  MODEL (HDM).

NEATPAGEINFO:id=391C0827-2BA9-4F53-A481-6BFFF870433F



# •

Oi
\
o
o

en

E

z
UJ
o

O
o

us
tn
<

a.

Q
U
CD
oc
o
CO
Q
<

3

CD
_l

a

10^-

10'-

10 -

1 -

10

1—I I I » I T----1    I    I   I   I I T------1—I    I   I  I  M

.-^
«

/,

•V

*

*

ADSORBATE: OZONATED  (AOD  = 0.81)
AND  BIOSTABILIZED  HUMICS  (1987)

ft  DATA:  BEFORE BATCH   RATE TEST
Cot   =   13.3 mg TOC/I

�  DATA:  AFTER   BATCH  RATE TEST
Cot   =  2.96  mg TOC/I

--------  PREDICTION:  AFTER  BATCH  RATE TEST
Cot   =  2.96 mg TOC/I

T---------------1------------1--------1------i—I    I   I   I  I-----------
1 10

EQUILIBRIUM  LIQUID  PHASE CONCENTRATION  (mg TOC/l)

1—I—I 'I I II      I    I   I   I  I I

10 10

FIGURE 6-8: PREDICTION  OF THE ISOTHERM  FOR  OZONATED  (AOD  =  0.31)  AND  BIOSTABILIZED  HUMICS
REMAINING  AFTER A  1987  BATCH   RATE  TEST.  THE  PREDICTION  WAS  MADE  BY  USING
FREUNDLICH   PARAMETERS  OBTAINED  FOR  THE ORIGINAL  MIXTURE  (OPEN  CROSSES) AND
FROM  PERCENT CONCENTRATIONS  OF THE  RESIDUAL  MIXTURE AS.  PREDICTED  BY THE  HDM.

NEATPAGEINFO:id=C54815ED-C0F1-4242-BDD7-BEAE57E7DF3F



• •

<
a.

o
o
t-

cn

E

5
a:
h-
Z
U
o
z
o
u

UJ

X
Q.

Q
UJ
CD
OH
O

Q
<

a:
QQ

_j

a

10'-^

10^-

10 -

1  -

10

1—I—I  I I I I T------1—I—I   I I » I 1------1—I   t   I  I H

.«<^

/-;•

ADSORBATE:  OZONATED  (AOD  =  2.43)
AND  BIOSTABILIZED  HUMICS (1987)

DATA:   BEFORE  BATCH  RATE TEST
CoT   =   10.5  mg TOC/I

DATA:  AFTER  BATCH  RATE TEST
Cot   =   2.62  mg  TOC/I

PREDICTION: AFTER  BATCH  RATE TEST
Cot   =  2.62  mg TOC/I

1-----1—I    I   I   I  I ͣ" ͣͣ----------1---------1------1-----1—I    I   I   I  I---------------1---------1------1—T—III   1
1 10 10*

EQUILIBRIUM LIQUID  PHASE CONCENTRATION  (mg TOC/l)
10

FIGURE  6-9:   PREDICTION  OF THE  ISOTHERM   FOR  OZONATED  (AOD  =   2.43)  AND  BIOSTABILIZED  HUMICS
REMAINING  AFTER A  1987  BATCH  RATE  TEST.  THE  PREDICTION  WAS  MADE  BY  USING
FREUNDLICH  PAR.AMETERS  OBTAINED  FOR THE  ORIGINAL  MIXTURE (OPEN  DIAMONDS') AND
FROM   PERCENT CONCENTRATIONS  OF THE  RESIDUAL  MIXTURE AS  PREDICTED  BY THE  HDM.

NEATPAGEINFO:id=2F390A4E-FD5C-48F6-9C01-73174B866E6F



10 - -q T--------1------1—I—I—r—r T------1------1-----i—I—I—rq
a.

an

o
o

E

o
I—

o

o
o

LlI
CO

Q.

O
UJ
ca
a:
o
CO
Q
<

3

99
_J

a
LiJ

10 -

1  -

10

^^
A   A

ADSORBATE: OZONATED (AOD =  5.48)
AND BIOSTABILIZED  HUMICS (1987)

A  DATA:  BEFORE BATCH  RATE TEST
Cot   =  6.92  mq TOC/I

A  DATA:  AFTER  BATCH   RATE TEST
Cot   =   ͣ'•74  mq TOC/I

--------  PREDICTION: AFTER  BATCH  RATE TEST
Cot   =   1 "74  mg TOC/I

1------r 1—I—rI    I   r

10

EQUILIBRIUM  LIQUID  PHASE CONCENTRATION  (mg TOC/l)
10

FIGURE  6-10: PREDICTION   OF THE  ISOTHERM  FOR  OZONATED  (AOD  =   5.48)  AND  BIOSTABILIZED  HUMICS
REMAINING  AFTER A  1987  BATCH  RATE  TEST.  THE PREDICTION WAS  MADE  BY USING
FREUNDLICH   PARAMETERS  OBTAINED  FOR  THE ORIGINAL  MIXTURE  (OPEN  TRIANGLES)  AND
FROM   PERCENT CONCENTRATIONS  OF THE  RESIDUAL  MIXTURE AS  PREDICTED  BY THE  HDM.

NEATPAGEINFO:id=ED7E0AAF-18CF-4EAC-BA72-08F84BE5DB53



and after batch rate testing in addition to the predictions

obtained from the HDM and lAST models.  Table 6-3 shows the

HDM predictions for the PC composition of each solution at

the end of a rate test and compares them with the PC

compositions determined by the lAST model prior to a rate

test.  The results show the preferential removal of the more

strongly adsorbed PC in each case, as should be expected.

The values of Dp and Dg that made the predictions shown
in Figures 6-4 to 6-10 are posted in Table 6-4.  A

comparison was made between the Dg and Dp values obtained by

the HDM and the Dg and Dp values obtained by the homogeneous
models in order to examine the mechanism for diffusion as

set forth by this technique.  In several cases, the HDM

reproduced the results of the PDM and, in one case, the HDM

reproduced the results of the SDM.  Therefore, the modeling

procedures indicated a pore diffusion mechanism for both

solutions from the 1986 data set, the pre-filtered solution

from the 1987 data set, and the ozonated (AOD =

0.81 mg 03/mg TOC) and biostabilized solution from the 1987
data set.  A surface diffusion mechanism was indicated by

the HDM for the ozonated (AOD = 2.43 mg 03/mg TOC) and
biostabilized solution from the 1987 data set while a

combination of the two mechanisms was proposed for the

remaining solutions.
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TABLE 6-3

Compositions of Humic Mixtures Before and After Batch Rate Testing

Humic Mixture

Non-Adsorbing
Pseudo- Pseudo- Pseudo-

Component 1 Component 2 Component

Before After Before After Before After
Batch Batch Batch Batch Batch Batch
Rate Rate Rate Rate Rate Rate
Test Test Test Test Test Test

84 92 12 0 4 8

71 87 25 5 4 8

91 87 7 8 2 5
79 92 20 4 1 4

74 45 21 29 5 26
63 39 33 43 4 18
70 84 27 0 3 16

1986 Data Set

Coagulated
Ozonated & Biostabilized

AOD = 1.15 mg 03/mg TOC
1987 Data Set

Pre-Filtered
Coagulated
Ozonated & Biostabilized

AOD = 0.81 mg 03/mg TOC
AOD = 2.43 mg 03/mg TOC
AOD = 5.48 mg 03/mg TOC
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TABLE 6-4

Heterogeneous Diffusion Model Results

Dp DoHumic Mixture (x 10^ cm^/sec)      (x lO^-*- cm^/sec)

1986 Data Set

Coagulated 4.0
Ozonated & Biostabilized

AOD = 1.15 mg 03/mg TOC 6.3
1987 Data Set

Pre-Filtered 3.2
Coagulated 4.3
Ozonated & Biostabilized

AOD = 0.81 mg 03/mg TOC 13.0
AOD = 2.43 mg 03/mg TOC 0.00
AOD = 5.48 mg 03/mg TOC 4.1

0. 22

0. 00

0. 10

0. 65

0. 02

16..0

13 .0
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comparing the Results of the PDM, SDM, and HDM

Figures 6-11 and 6-12 provide evidence that caution
should be advised when interpreting model predictions for
mass transfer mechanisms.  Figure 6-11 shows the best
simulations obtained for the batch rate data of the

coagulated solution from the 1987 data set by each of the
three modeling approaches.  A comparison of Tables 6-2 and
6-4 shows that each approach yielded a different set of
diffusion coefficients for this mixture, however. Figure 6-
11 indicates that all three modeling approaches describe the
rate data quite adequately.

As noted earlier, the HDM was obtained from the

combination of Dp and Dg that provided the best prediction
of the residual mixture isotherm.  Therefore, each of the
models was tested for its ability to predict this isotherm
and the results of the tests are depicted in Figure 6-12.
Figure 6-12 clearly shows that all three diffusion models
provide very good predictions of the isotherm for the
coagulated mixture remaining after a batch rate test.  Thus,
comparing the HDM results with the PDM and SDM results was
not an adequate method for determining the mode of internal
mass transport.  In addition, these figures show that rate
data can be sufficiently described by either one of the
diffusion models.  Summers (1986) arrived at the same
conclusion when comparing the PDM and the SDM for
descriptions of humic rate data.
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Summers also points out, in regard to polyelectrolyte
adsorption theory, that the early stages of internal
diffusion are probably dominated by a pore diffusion
mechanism since multisite attachment of humic macromolecules

to the carbon surface would provide a large obstacle to
transport in the adsorbed phase.  Once the available sites
were filled, further diffusion would only be able to occur
upon rearrangement of adsorbed humic molecules, thereby
implying that a slow surface diffusion mechanism would
dominate the latter stages of internal diffusion.  In
addition, the physical exclusion of humic macromolecules
from interior portions of the activated carbon particle may
imply that a two domain diffusion model would be better
suited to humic substance adsorption.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

The effects of alum coagulation and the subsequent

treatments of ozonation and biodegradation on the

equilibrium adsorption behavior of aquatic humic materials

were studied through the use of a multicomponent adsorption

model - the ideal adsorbed solution theory (lAST).

Meanwhile the effects of these treatment processes on the

kinetic adsorption behavior of aquatic humic materials were

assessed through the use of a pore-surface diffusion model

(PSDM) that incorporated the lAST equilibrium conditions.

The lAST model seems appropriate for interpreting

laboratory adsorption data to examine the effects of

coagulation, ozonation, and biostabilization.  The modeling

approach consisted of the description of complex humic

solutions as a set of two or three pseudo-components (PCs),

each of which represented a group of species having similar

adsorbabilities.  A simplification was made that each of the

adsorbing PCs contained the same number of carbon atoms.

Such an assumption is extremely tenuous for complex humic

mixtures having a large variety of molecular sizes; however,

results showed the assumption to be adequate for the
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purposes of this work.  lAST was also sufficiently capable

of predicting the effects of changing the initial

concentration of two coagulated humic solutions.  This

result allowed the analysis of treatment effects without the

interference of initial concentration effects.

The significant results from treatment analysis

indicated increased adsorbability after coagulation,

decreased adsorbability after the combined treatments of

ozonation and biostabilization, and increased adsorbability

with long term storage.  Coagulation was thought to improve

humic substance adsorbability by preferentially removing

large humic molecules that were physically constrained from

adsorbing into the microporous structure of activated

carbon.  Decreased adsorbability upon ozonation and

biostabilization was considered to be a result of the more

polar and, therefore, more hydrophilic nature of the humic

mixture after these treatments.  The adsorbability of the

humic material used in this study was also observed to

decrease with increasing ozone dose, probably due to the

production of a higher concentration of highly polar and

non-biodegradable components.  The increased adsorbability

observed after long term storage was believed to be a result

of natural aging mechanisms (such as molecular condensation)

that altered the composition of the solution to increased

hydrophobicity.

The nonnalized adsorption isotherm presented in Chapter

5 provides a much easier method for describing the
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equilibrium adsorption behavior of complex heterogeneous

mixtures such as humic solutions.  The results observed

through the use of this isotherm showed the same effects of

coagulation, ozonation, and biodegradation as the lAST

modeling did.  In addition, this isotherm showed that the

decreases in the Freundlich parameters K and 1/n were linear

above an apparent ozone dose of 0.81 mg Oj/mg TOC.  However,
this isotherm may be limited in its usefulness since it may

not be able to describe competitive adsorption phenomena

between humic substances and trace organic pollutants.  This

approach needs to be extended in some manner to include a

description of a non-adsorbing pseudo-component and the

applicability of this isotherm in kinetic modeling needs to

be assessed (i.e., the adsorbent dose at an infinitesimally

small location can not be determined when an assumption

about local equilibrium needs to be made).

Kinetic testing showed increases in the free liquid

diffusion coefficient (Dj^) upon coagulation but no

significant changes in Dj^ were found after ozonation and
biostabilization.  Internal mass transport was found to

increase after coagulation as well as after ozonation and

biostabilization.  Ozone dose was not observed to be a

factor in either external or internal diffusion

characteristics.  Each treatment process was expected to

increase external and internal mass transfer rates because

of their ability to reduce the average molecular size of a
given humic solution.
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The heterogeneous diffusion model (HDM), in combination
with the lAST equilibrium model, was found to provide
excellent predictions of the equilibrium behavior of a humic
solution remaining at the end of a batch rate test.
Comparisons between the results of the HDM and the
homogeneous diffusion models (i.e., the pore diffusion model
and the surface diffusion model) allowed the assessment of a
transport mechanism for a given solution.  However, all
three kinetic models were shown to provide equal levels of
accuracy in describing rate behavior and predicting the
equilibrium behavior of the solution remaining after a rate
test.  Therefore, the actual transport mechanism could not
be assessed by using the HDM approach.

While the modeling approaches used in this work are not
new, they have not been previously used to examine the
changes created in humic substance adsorption by various
treatment processes.  The modeling procedure used to
describe both equilibrium and kinetics (Figure 4-8) requires
the collection of three different types of experimental data
- a bottle point isotherm, a mini-column initial sorption
rate, and a batch sorption rate - and the application of
several fairly sophisticated computer software packages.  A
good understanding of the underlying theories is essential
for interpretation of these results. After some experience
with the use of these techniques, the flow chart presented
in Figure 4-8 can be completed in a time span of three weeks
for an individual mixture.  The amount of time expended on a
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study such as this is also influenced by the amount of
available equipment (i.e., a study of a large number of
mixtures with little equipment may become prohibitively time
consuming) and by the upkeep of laboratory analyzers.

The ultimate goal, of course, is to apply such modeling
to the design of GAC adsorbers for water treatment so that

the breakthrough of humic substances and competing trace
organic pollutants can be better predicted.  The approach
taken in this research can be valuable if changes in TOC
adsorbability upon coagulation, ozonation, and

biodegradation are predictable.  The results thus far do not
suggest a simple way to predict such changes.  Thus, the
complexity of the overall modeling approach will prevent its
application to practical design work until more experience
can suggest some empirical way to adjust adsorption
parameters with pre-treatment.  Another important potential
of such modeling is the improved ability to describe
competitive adsorption between humic materials and trace
organic pollutants.  If the consideration of humic mixtures
as several pseudo-components improves the description of
this competition, then there will be greater justification
for the use of this modeling approach in practice.

RECOMMENDATIONS

The applicability of the lAST model to humic substance
adsorption needs to be examined more thoroughly.  One
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possible manner in which such an examination might be

carried out is to separate various humic solutions into

several molecular size fractions.  The equilibrium

adsorption behavior of each fraction could be described with

a single solute model such as the Freundlich equation.  Each

fraction, therefore, would be treated as a PC and the

Freundlich parameters of each fraction could be used to

predict the overall adsorption of the entire solution.  This

approach would also allow the assignment of diffusion

coefficients that represent individual components rather

than an entire mixture.

In addition, the lAST model needs to be examined for

its ability to describe and predict the competitive

interactions between humic molecules and trace organic

pollutants.  For the lAST model to be used in any practical

application requires the accurate prediction of these

interactions because high performance is needed to justify

the use of such a complex approach.  If lAST is found to be

inappropriate, then further work is needed to find simpler

approaches to describing competitive adsorption phenomena.

Further work is also required for the examination of

the treatment processes used in this work and their effect

on humic substance adsorption.  The effects of coagualtion

need to be tested further to elucidate those coagulation

conditions (such as alum dose) that best improve humic

substance adsorbability.  Similar work needs to be performed

for the ozonation process.  In addition, future kinetic
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studies need to report values of D^ rather than K^ in order

to make valid comparisons between different experiments.
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APPENDIX A

ALGEBRAIC MANIPULATIONS USED TO DERIVE THE lAST MODEL

As noted in Chapter 4, the equilibrium liquid phase

concentration of a given solute i (Cj^ TOC^ ^^^ ^® described
as a function of the equilibrium adsorbed phase

concentrations for all components present in the mixture of

interest. In order to achieve this description, several

algebraic manipulations are required to combine Equations

4-1, 4-2, 4-3, 4-4, 4-9, 4-10, and 4-14. These manipulations

are presented below and, for the sake of convenience, the

equations just noted are also presented as follows:

l/qrp =.||Zi / q°i) (4-1)

qi ^iii'Ji) (4-2)

^i ~ qi/^T ^°^ i = 1 to N (4-3)

^i  ^  ^i*^°i ^°^  i  =   1  to N (4-4)

C°i,TOC =   (C''i)-(yi)-(MWc)
for i = 1 to N (4-9)
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for i = 1 to N        (4-10)

n^^-q'-j^ = n]^«q°j^ for k = 2 to N        (4-14)

Now that the appropriate equations have been listed,

the manipulation begins by substituting Equation 4-14 into
Equation 4-1 to give

l/q^ = (,n^'Z;^)/(n^'q\)   = (nj^-Zj^)/(n^-q'i)
for i = 1 to N and k = 2 to N (A-1)

By substituting Equation 4-3 into Equation A-1, the
following is obtained upon rearrangement:

N

"i**3°i ~'5-('^i **3i) ^°^ 1 = 1 to N (A-2)

The value of q°j^ is given by the Freundlich equation and,
therefore. Equation 4-10 is used in Equation A-2 to yield,
upon rearrangement,

c°i = {1 / (yi • MWc)}

. ^||nj . qj) / [(n^ • Kjl^tOc) / (yi * MW^) ] }"i
for i = 1 to N (A-3)
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By substitution of Equation 4-4 into the above equation, one

obtains

Ci = {Zi / (Yi . MWc)}

• ^|{nj . qj) / [(ni . Ki^^oc) / (Yi * MW^) ] }'^i
for i = 1 to N (A-4)

The mole fraction of solute i in the adsorbed phase is

removed by substitution of Equation 4-3 to yield

Ci =   (qi / (qT • Yi • MW^)}

. ^I^nj . qj) / [(ni . Ki^^oc) / (^i * MW^)]}"i
for i = 1 to N (A-5)

Equation 4-2 is then used to replace qip in the above

expression to give

Ci = (qi / (Yi • MWc -jijj)}
N

• jS^nj . qj) / [(n^ • Ki^^oc) / (^i * MW^)]}"i
for i = 1 to N (A-6)
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Finally, by converting each molar concentration to a TOC

concentration (see Equation 4-9), the desired result is
obtained:

Ci,TOC  =   nqi,TOC  /  Vi)   /jiiqj,TOC  /  Yj)>

.   ^||nj   .   qj,TOC /  Yj)   /   (^i   '   H,TOC /  Yi) 3 >''i
for i = 1 to N (A-7)

One should note that Equations A-7 and 4-15 are identical

and, therefore, the algebraic manipulations are complete.
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APPENDIX B

ERROR ANALYSIS OF ISOTHERM DATA

Adsorbed phase concentrations were calculated from the
mass balance expression given by Equation 4-21, which is
shown here for the sake of convenience:

^T,TOC  =   (CoT,TOC - Ct,TOc) ' (^M) (4-21)

Obviously, q,j, v^qq  depends on several variables that are
obtained by methods subject to human and analytical errors.

Therefore, the value of q,p rpQQ is also subject to the errors
made in measuring these variables.  The standard error of

qrp rpQQ may be found from the following equation:

Oq^  = {(dq/dCoT^TOC>^ ' ^C0^> + {(dq/dCp^^Oc)^ * °C^^
+ {(dq/dV)2 . a^^}   +   {(dq/dM)2 . a^^} (B-1)

Equation B-1 shows that confidence in the calculated value

of qrp rpoc depends on the accuracy of measuring Cgrp toc
Cij. ijiQc ^'   ^"^ ^•

Expressions can be obtained for the partial derivatives

noted in Equation B-1 from Equation 4-21 and are as follows:

(dq/dCoT,TOc) = V/M (B-2)
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(dq/dC^^TOc) = - (VM) (B-3)

(dq/dV) = (CoT,TOC " Ct,TOc) / ^ ^^~^^

(dq/dM) = - (CoT,TOC - Ct,TOc) * (V/M^) (B-5)

By combining Equations B-1 to B-5, one obtains the following
expression for the error propagated by the calculation of
*3t,T0C'

aq2  =   (V/M)2   .   (a^Q^  +  ^^c^)
2 2

+   {(CoT,TOC   ~   ^T,T0C)   /  M)      •   CTy

+   HCoT,TOC  -  Ct,TOc)    •    (V/m2)}2   .   a^^ (B-6)

Analysis of Equation B-6 shows that the error

propagated into the calculation of qrp ^qq  also depends on
the magnitude of the variables.  The magnitude of a„

increases as V/M increases, as (Cq^, rpQc ~ ^^t TOC^ increases,
and as M decreases.  Thus, the value of a„  may be expected
to be large at either end of an isotherm plot and an example

plot is shown in Figure B-1, complete with error bars

showing the ranges of a„  and Oq.     This figure shows the
isotherm obtained for the 1987 mixture that received an AOD

of 2.43 mg 03/mg TOC and indicates that the value of o„
depends strongly on the value of M.  This dependence is not

surprising since the value of M covers a range of four

^i^B       orders of magnitude while the value of (Cqcji rpQ^ - Crp •j'qq)
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remains relatively constant.  In addition, this dependence
implies that very small carbon doses (M/V < 100 mg PAC/1)
should be performed in larger bottles to reduce the value of
a„ at those doses.

In order to calculate the value of a„,  values are
required for Oqq,   Oq,   a^,   and o^.     Each isotherm bottle was
filled with 100 ml of solution from a 100 ml pipet that was
specified to have a maximum error of a^ = 0.10 ml.  In
addition, weighing the PAC was considered to be associated
with a maximum error of o-^ =  1.00 mg.  Finally, the values
of Oqq  and Oq  were computed from the following expression:

where Og  is the standard error of several TOC measurements
on a given sample, a^ is the error associated with the
assumption of a linear standard curve, and o^  is the error
associated with the ability of the TOC analyzer to replicate
the results from day to day operation.  One should note that
Oj^  and a-p^  were obtained from manufacturer's specifications
and that a^ differs from CTg in that Cq  only accounts for
error between samples measured on the same calibration curve
while Cj^  attempts to account for the error associated with
the ability to repeat the calibration conditions from day to
day.  The values of Oq  given by Equation B-7 are equivalent
to the values of Oqj^  noted in Equation 4-22 and are also
plotted on Figure B-1.
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