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ABSTRACT	

Esteban	Adrian	Oyarzabal:	The	Role	Of	Astrocytes	In	Response	To		
Stimulation	With	The	Microbial	Endotoxin	Lipopolysaccharide	

(Under	the	direction	of	Michael	D.	Aitken)	
	

Though	the	cause	of	Parkinson’s	disease	(PD)	remains	unknown,	many	suspect	its	etiology	includes	

both	genetic	mutations	and	exposures	to	environmental	factors	(e.g.,	microbial	infections,	heavy	metals,	

pesticides,	air	pollution).	This	work	attempted	to	understand	the	immunological	roles	of	astrocytes	and	

microglia,	two	brain	cell	types	with	innate	immune	properties,	when	exposed	to	the	Gram-negative	bacterial	

endotoxin	lipopolysaccharide	(LPS)	in	a	mouse	model	of	PD.	This	study	found	the	immunoreactivity	of	

astrocytes	to	LPS	was	attributed	to	the	presence	of	microglia	in	‘enriched’	astrocyte	cultures.	Reconstituting	

microglia	back	into	a	novel	highly-enriched	astrocyte	culture	(with	<0.001%	microglia)	showed	less	than	0.5-

1%	microglia	can	account	for	the	erroneous	detection	of	proinflammatory	factors	by	LPS-treated	‘enriched’	

astrocytes.	LPS	was	found	to	activate	astrocytes	via	TNF-α	produced	by	microglia,	stimulating	cytotoxic	and	

neurotrophic	factors	release.	Nonetheless,	activated	astrocytes	protected	neurons	from	microglial-derived	

bystander	damage	in	this	neuroinflammation-induced	model	of	PD.	
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CHAPTER	1:	BACKGROUND	AND	LITERATURE	REVIEW	

“We	sit	on	the	threshold	of	important	new	advances	in	neuroscience	that	will	yield	increased	understanding	of	
how	the	brain	functions	and	of	more	effective	treatments	to	heal	brain	disorders	and	diseases.		How	the	brain	
behaves	in	health	and	disease	may	well	be	the	most	important	question	in	our	lifetime.”	

-	Dr.	Richard	D.	Broadwell	
Professor	of	Pathology	at	UMSM	

Serving	as	the	control	center	for	the	entire	body,	the	brain	is	perhaps	our	most	important	organ.		Adverse	

changes	to	the	structure	or	biochemistry	of	the	brain	can	result	in	decreased	muscle	rigidity;	loss	of	

sensation,	movement,	coordination	or	function	to	peripheral	organs	and	tissue;	cognitive	deficits	(e.g.,	IQ,	

memory);	behavioral	changes	(e.g.,	addiction;	changes	in	activity,	mood,	eating	and	sleep	patterns);	seizures;	

chronic	pain;	loss	of	consciousness;	and	death.		Although	many	adverse	changes	to	the	brain	arise	

from	genetic	polymorphisms	and	complications	during	fetal	development,	the	role	of	environmental	

exposures,	both	during	development	and	adulthood,	have	begun	to	receive	more	attention	in	the	study	of	

central	nervous	system	(CNS)	dysfunction.			

In	the	late	1970s	a	group	of	environmental	toxicologists	began	formalizing	the	study	of	CNS	toxicity	into	

today’s	mainstream	field	of	neurotoxicology.		Neurotoxicology	is	the	study	of	adverse	changes	in	the	structure	

or	function	of	the	central	and/or	peripheral	nervous	system	following	an	exposure	to	a	chemical,	physical,	or	

biological	agent.		These	exposures	may	include	nutritional	imbalance,	stress,	hypoxia,	physical	injury	(e.g.	

head	trauma,	neurosurgery),	pharmaceutical	compounds,	air	pollution,	industrial	toxicants	and	infectious	

agents	and	their	toxins.			Unlike	toxicological	effects	that	occur	in	peripheral	systems,	the	CNS	has	very	

limited	capacities	for	biotransformation	and	efflux;	anti-oxidant	generation;	resident	immune	response;	

energetic	reserves;	and	ability	to	regenerate	lost	cells—making	the	brain	susceptible	to	long-term	damage	

from	even	the	most	minor	perturbations.			

This	chapter	serves	as	a	primer	of	the	immune	system	in	the	CNS	and	the	pathological	consequences	that	

may	arise	from	neuroinflammation	derived	from	direct	and	indirect	exposures	to	the	microbial	endotoxin	

lipopolysaccharide.		The	goal	of	this	chapter	is	to	provide	sufficient	background	information	for	readers	to	

understand	the	original	research	described	in	Chapter	Two.	
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Infectious	Agents	and	CNS	Dysfunction:		A	Brief	History	

The	effects	of	environmental	agents	on	the	CNS	have	been	recognized	for	thousands	of	years,	but	the	first	

recorded	accounts	of	infectious	agents	resulting	in	neurological	complications	come	from	influenza	outbreaks	

in	Europe	during	the	12th	Century.			Similar	accounts	were	described	at	the	turn	of	the	last	century	among	

individuals	that	developed	viral	encephalopathy	[1-4].		In	1961	Poskanzer	and	Schwab	postulated	a	link	

between	patients	who	had	been	infected	with	the	Spanish	Influenza	and/or	Encephalitis	Lethargica	during	

1914-17	and	who	later	developed	Parkinson’s	disease	(PD)	[5].				Since	then,	the	association	between	viral	

infections	and	the	development	of	neurological	disorders	has	been	investigated	extensively	[6].	

The	association	between	bacterial	infections	and	the	development	of	neurological	disorders	has	only	

recently	started	to	gain	more	attention.		Beginning	in	the	late	18th	Century	with	several	cases	of	

neuromuscular	paralysis	from	the	consumption	of	tainted	blood	sausage,	Kerner	described	these	bacterial	

toxin	poisonings—now	identified	as	botulism—as	having	“[t]he	capacity	[to	interrupt]	nerve	conduction…in	

the	same	way	as…an	electrical	conductor	by	rust”	[7].	In	1933	Rich	and	McCordock	were	the	first	to	

demonstrate	that	the	bacterium	that	causes	Tuberculosis	could	infiltrate	the	subarachnoid	space	of	the	brain	

and	induce	inflammation	to	cause	neurological	morbidity	[8].		Furthermore,	several	case	reports	of	patients	

that	developed	bacterial	vaginosis	during	pregnancy	yielded	children	with	brain	damage	sparked	a	series	of	

epidemiological	studies	that	linked	bacterial	infections	during	pregnancy	with	higher	risk	of	their	offspring	

developing	certain	neurological	disorders	and	being	born	with	activated	immune	systems	[9,	10]—an	

association	that	had	already	been	made	with	maternal	viral	infections	in	1956	[11].			

The	role	of	bacterial	infections	in	neurodegenerative	disease	originated	in	1906	when	Alzheimer	

suggested	that	“microorganisms”	could	be	responsible	for	the	formation	of	senile	plaques	observed	in	the	

brain	parenchyma	and	around	blood	vessels	of	patients	with	Alzheimer’s	disease	(AD)—later	being	

compared	to	Prion-like	infectiousness	of	transmissible	spongiform	encephalopathies	(TSEs)	in	the	late	1970s.		

Alzheimer’s	theory	was	strengthened	after	several	epidemiological	studies—some	using	biological	samples	to	

confirm	past	or	present	infections	among	study	participants—found	loose	associations	between	bacterial	

infections	and	neurodegenerative	disorders	(Table	1.1).		Interestingly,	among	the	several	bacterial	strains	
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that	were	screened,	only	bacterial	species	that	have	been	established	as	causative	agents	in	human	cases	of	

bacterial	encephalitis	showed	associations.	

Table	1.1	Bacteria	associated	with	the	development	of	neurodegenerative	disorders.	

Neurodegenerative	
Disorder	

Bacteria	with	Probable	Associations	 Sources	

Amyotrophic	
lateral	sclerosis	

Borrelia	burgdorferi	(Lyme	disease),	Chlamydia	pneumoniae,	
Mycoplasma	spp.	

[12-16]	

Alzheimer’s	
disease	

Borrelia	burgdorferi,	Chlamydia	pneumoniae,	Mycoplasma	
spp.,	Helicobacter	pylori	

[17-41]	

Multiple	Sclerosis	 Borrelia	burgdorferi,	Chlamydia	pneumoniae,	Mycoplasma	
spp.	

[42-49]	

Parkinson’s	
disease	

Chlamydia	pneumoniae,	Helicobacter	pylori,	Nocardia	
asteroides,	Bordetella	pertussis	

[50-64]	

	

Bacterial	Toxins:	Understanding	the	Role	of	Lipopolysaccharides	

Beyond	direct	infection,	some	bacteria	are	capable	of	generating	non-infectious,	bioactive	toxins	that	

are	independently	capable	of	inducing	an	immune	response	without	the	presence	of	living	bacteria.		In	the	

late	19th	Century,	Pfeiffer	discovered	that	heat-inactivated	Vibrio	cholerae	could	still	induce	fever	when	

administered	to	guinea	pigs	[65].		Since	then	these	bacterial	toxins	have	been	classified	as	either	exotoxins	or	

endotoxins.	Exotoxins	are	usually	highly	toxic	secreted	proteins	generated	by	a	living	bacterium,	while	

endotoxins	are	usually	lipid	components	released	from	the	outer	membrane	of	a	dead	or	phagocytized	

bacterium.		Exotoxins	such	as	botulism	and	tetanus	have	long	been	recognized	as	direct	neurotoxins	

(pathogenic	regardless	of	the	host’s	immune	response).		On	the	other	hand,	endotoxins	are	only	pathogenic	

through	a	severe	immune	response—a	condition	known	as	endotoxemia.		Although	endotoxins	are	produced	

by	both	Gram-positive	and	Gram-negative	bacteria,	varying	greatly	among	bacterial	species	and	strains,	

human	cases	of	endotoxemia	are	primarily	derived	from	the	lipopolysaccharide	(LPS)	on	membrane	

fragments	from	Gram-negative	bacterial	infections	[66-68].		

Nearly	seven	decades	of	research	establishing	our	current	understanding	of	the	immune	system	and	

cytokine	signaling	has	enabled	us	to	understand	that	the	pathological	effects	of	LPS	are	indirect.		LPS	is	

thought	to	mediate	its	indirect	toxicity	by	initiating	a	cascade	of	host-generated	factors	such	as	

prostaglandins,	cytokines	(e.g.	IL-1,	IL-6	and	TNF	-α),	nitric	oxide,	superoxide,	vasoactive	amines,	proteases	

(e.g.	matrix	metalloproteinases)	and	products	of	the	complement	and	coagulation	cascades	that	are	
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themselves	directly	or	indirectly	cytotoxic	[69].	Animal	models	and	occupational	exposure	cases	in	humans	

have	shown	that	LPS	is	bioactive	in	vivo	and	dose-dependently	correlates	with	measures	of	immune	

activation	and	the	display	of	symptoms	such	as	inflammation,	fever,	fatigue,	headache,	leukopenia,	nausea,	

joint	and	muscle	pain,	diarrhea,	and	in	some	cases	mild	amnesia	[69,	70].		High-dose	exposures	to	LPS	are	

capable	of	triggering	sepsis	including	hemorrhaging,	disseminated	intravascular	coagulation,	shock,	multiple	

organ	failure,	and	death—all	without	a	detectable	infection	[69,	71,	72].		In	fact,	the	mortality	rate	of	patients	

with	septic	shock	ranges	from	20	to	80%	[71].			Due	to	its	clinical	relevance	in	sepsis	and	septic	shock,	as	well	

as	its	replicability	in	certain	animal	species,	LPS	has	become	the	archetypical	immunological	stimulant	for	

immunological	research.	

LPS	and	Parkinson’s	Disease	

PD	is	a	neurodegenerative	disorder	characterized	by	the	chronic	progressive	loss	of	both	the	

neurotransmitter	dopamine	and	dopaminergic	(DAnergic)	neurons	in	the	substantia	nigra	(SN)	that	

innervate	the	corpus	striatum—the	axis	responsible	for	smooth,	controlled	body	movements	[73].		Although	

the	etiology	of	PD	remains	unclear,	the	majority	of	researchers	suspect	idiopathic	PD	is	“environmentally-

driven”	and	most	likely	stems	from	a	combination	of	risk	factors	such	as	age,	genetic	predisposition,	and	

xenobiotic	exposures	[74,	75].			Beyond	containing	an	element	of	environmental	risk,	all	human	

neurodegenerative	diseases	also	share	an	age-dependent	onset,	progressive	degeneration	of	distinct	

neuronal	populations,	formation	of	abnormal	protein	aggregates	and	neurofibrillary	tangles,	regional	

increase	of	heavy	metal	accumulation	and	localized	neuroinflammation	and	oxidative	stress	in	regions	of	

degeneration.			

Among	the	various	environmental	factors	associated	with	higher	incidences	of	PD,	the	associative	

link	between	the	endotoxin	LPS	and	PD	originated	in	1998	when	a	single	intranigral	injection	of	LPS	in	rats	

was	reported	to	induce	neuroinflammation	resulting	in	a	subsequent	loss	of	dopamine	in	the	nigrostriatal	

projection	within	2	to	4	days	[76].		In	2000,	the	same	group	conducted	a	follow-up	study	establishing	that	the	
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LPS-induced	neurodegeneration	selectively	destroyed	only	DAnergic	neurons1	[77]	and	our	group	showed	

that	the	DAnergic	neurodegeneration	was	a	direct	result	of	the	neuroinflammatory	response	[78]—which	

was	further	supported	by	using	an	anti-inflammatory	drug	naloxone	to	prevent	the	inflammation-mediated	

neurodegeneration	[79].		Moreover,	a	similar	account	was	described	in	humans	in	a	2001	case	report	of	an	

occupational	exposure	to	LPS	by	a	laboratory	researcher	who	developed	Parkinsonian	Syndrome	three	weeks	

after	being	exposed	to	10	µg	of	Salmonella	minnesota	LPS	[80].		Position	Emission	Tomography	(PET)	scans	

confirmed	that	the	patient’s	motor	deficits	were	a	result	of	severe	structural	damage	to	her	substantia	nigra	

pars	compacta	(SNpc)	[80].		Several	years	later	a	2006	case	report	of	an	elderly	Nigerian	male	who	developed	

acute	Parkinsonian	Syndrome	within	days	after	having	developed	severe	sepsis	from	a	Gram-negative	

bacterial	infection	[58],	further	suggests	an	associative	link.		Although	results	from	epidemiological	studies	

identifying	infections	as	a	risk	factor	for	PD	have	primarily	found	associations	with	viral	infections	such	as	

influenza	and	herpes	simplex	virus	[6,	63],	studies	have	also	identified	an	increased	risk	for	developing	PD	

among	individuals	previously	infected	with	the	bacteria	that	causes	whooping	cough	[59,	60,	64]	or	with	

Helicobacter	pylori	[50-55,	57]—both	LPS-containing	gram-negative	bacteria.		Additionally,	the	involvement	

of	an	existing	chronic	infection	before	an	intranigral	injection	of	LPS	was	recently	shown	to	exacerbate	

DAnergic	neuronal	loss,	suggesting	heterogeneous	toxicities	with	regards	to	multiple	environmental	‘hits’	

[81,	82].	

In	2007,	our	group	pursued	the	hypothesis	that	endotoxemia—commonly	associated	with	sepsis	and	

severe	infections—could	result	in	the	neurodegeneration	of	DAnergic	neurons.		Interestingly,	unlike	the	

aforementioned	studies	and	case	reports	that	induced	acute	Parkinsonian	Syndrome,	a	single	systemic	

intraperitoneal	injection	of	LPS	(5	mg/kg)	in	mice	induced	a	delayed	and	progressive	loss	of	DAnergic	

neurons	in	the	SNpc	similar	to	that	observed	in	idiopathic	PD—whereby	DAnergic	neuronal	losses	of	~20%	

and	~50%	where	observed	at	7	and	10	months	after	LPS	treatment,	respectively	[83].		Beyond	recapitulating	

the	delayed,	progressive	degeneration	of	nigrostriatal	DAnergic	neurons	that	coincided	with	striatal	

																																																													
1	DAnergic	neurons	are	thought	to	be	inherently	more	susceptible	to	oxidative	stress	than	other	neurons	as	a	
result	of	lower	reserves	of	the	anti-oxidant	glutathione	(on	account	of	the	quinones	formed	during	DA(MDA:	
define	DA)	metabolism)	and	limited	ability	to	synthesize	neurotrophic	factors.	This	deficit	is	exacerbated	in	the	
SN	during	inflammation	due	to	its	disproportionally	high	density	of	microglia	(i.e.,	4-5	times	higher).	
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dopamine	loss	and	motor	deficits	in	rotarod	or	open	field	activities	[83,	84],	this	model	also	displays	

temporary	reversal	of	motor	deficits	in	response	to	levodopa	treatment	[84],	and	showed	a	marked	sex	

difference	in	DAnergic	neuronal	loss	[84]	that	echoes	the	sex	differences	observed	in	the	prevalence	and	

incidence	of	PD	[85-90].			Some	of	these	findings	have	been	replicated	and	confirmed	by	other	groups	and	the	

model	has	even	recently	been	implemented	in	Wistar	rats	successfully	[91].		In	addition,	this	chronic	

neuroinflammation	model	of	PD	has	been	independently	reviewed	by	several	groups	[92-95].		

Interestingly,	a	single	intraperitoneal	injection	of	LPS	administered	to	pregnant	rodent	dams	also	

resulted	in	offspring	with	sustained,	unbalanced	inflammation	(low	levels	of	pro-resolution	factors);	fewer	

DAnergic	neurons	in	the	SNpc;	reduced	levels	of	brain	dopamine;	aggregation	of	‘Lewy	body-like’	formations;	

decreased	antioxidant	levels	in	brain;	and	greater	susceptibilities	for	subsequent	environmental	‘hits’	(i.e.	

infections,	neurotoxicants,	etc.)[96-98].		This	finding	suggests	that	the	environmental	hit	associated	with	

either	the	development	or	‘priming’	of	PD	may	occur	as	early	as	fetal	development.		Furthermore,	transgenic	

mice	that	are	deficient	in	Parkin,	a	gene	whereby	functional	mutations	have	been	associated	with	early	onset	

familial	PD,	showed	a	selective	loss	of	DA	neurons	in	the	SNpc	with	fine	motor	deficits	upon	chronic,	systemic	

exposure	to	low	dose	LPS	[99].		Similar	findings	were	shown	in	transgenic	mice	overexpressing	a	mutated	

human	SNCA	gene	(A57T),	another	familial	PD	mutation	associated	with	increased	risk	of	developing	

synucleinopathy	and	PD	[100].		Although	both	gene	mutations	are	themselves	insufficient	to	cause	PD	in	

these	rodent	models,	an	environmental	‘hit’	may	be	required	to	propel	pathogenesis	of	PD.		Taken	together	

these	studies	support	a	potential	association	between	the	bacterial	endotoxin	LPS	and	the	neurodegeneration	

of	DAnergic	neurons	associated	with	PD.		

Environmental	Exposures	to	LPS	

LPS	is	ubiquitous	in	the	environment	where	it	has	been	detected	in	organic	dust	[101-103],	cigarette	

smoke	[104,	105],	environmental	pollution	[106,	107]	and	occupation	settings	[108-110]	ranging	anywhere	

from	rural	to	urban	settings	[111].		LPS	is	considered	a	persistent	toxin	because	of	its	capacity	to	withstand	

severe	environmental	conditions	such	as	desiccation,	autoclaving	and	distillation	[112].		Furthermore,	human	

exposures	are	highly	prevalent—whereby	LPS	and	LPS	containing	Gram-negative	bacteria	have	been	
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detected	in	the	normal	flora	of	the	skin,	respiratory	airway	and	lower	intestinal	tract	[113].		Interestingly,	in	

organs	that	get	continuous	exposures	to	LPS,	the	body	is	capable	of	suppressing	the	immune	system	through	

a	homeostatic	mechanism	that	results	in	an	endotoxin-tolerance	effect	[113].		For	instance,	LPS	is	considered	

to	be	a	common	component	of	normal	gut	flora—a	region	of	the	body	that	does	not	typically	experience	

chronic	inflammation—whereby	small	amounts	of	LPS	are	regularly	absorbed	into	the	hepatoportal	blood	

supply	where	it	is	rapidly	detoxified	by	the	Kupffer	cells	of	the	liver	without	major	incidence.		In	pathological	

conditions,	such	as	those	experienced	by	severe	burn	patients	with	severely	damaged	gut	mucosa	integrity,	

large	amounts	of	LPS	are	thought	to	enter	the	systemic	blood	circulation	resulting	in	a	potent	and	life-

threatening	systemic	inflammatory	response	[114,	115].	

Does	LPS	Enter	the	Brain?	

In	1885	Ehrlich	observed	that	upon	injecting	a	water	soluble	dye	into	the	peripheral	circulation,	

neither	the	brain	nor	the	spinal	cord	were	stained—implicating	the	existence	of	a	barrier	system	between	the	

CNS	and	the	systemic	circulation	[116].		This	defensive	barrier	refers	to	two	ensheathing	structures	termed	

the	blood-brain	barrier	(BBB)	and	the	blood-cerebral	spinal	fluid	barrier	(BCSFB).		The	BBB	is	comprised	of	

brain	microvascular	endothelial	cells	(BMEC;	connect	by	tight	junctions	that	restrict	paracellular	diffusion),	

pericytes,	astrocytes	and	a	basement	membrane	that	together	form	the	cerebral	capillaries	of	the	brain	[117,	

118].		In	contrast	the	BCSFB	is	composed	of	a	layer	of	modified	cuboidal	epithelial	cells	(MCEC;	connected	by	

less	restrictive	tight	junctions	that	allow	the	passage	of	blood	components	necessary	for	the	formation	of	CSF)	

that	contain	the	CSF	in	the	choroid	plexus	of	each	of	the	four	cerebral	ventricles	[117,	118].		The	term	‘barrier’	

is	actually	a	misnomer	because	although	these	enveloping	structures	can	restrict	the	entry	of	most	

environmental	factors	in	healthy	individuals,	they	also	play	a	major	role	in	the	influx	of	essential	nutrients	

and	ions	and	the	efflux	of	metabolic	waste	products,	drugs	and	other	toxicants	[119-122].	

Because	bacteria	lack	the	advanced	neuroinvasion	mechanisms	adapted	by	neurotropic	viruses	

[123],	thus	excluding	cases	of	neuronal	tube	defects	or	trauma	that	result	in	damage	to	the	integrity	of	the	

BBB,	most	bacteria	and	their	toxins	are	restricted	from	entry	into	the	CNS.			Nonetheless	bacterial	toxins	have	

been	reported	to	enter	the	CNS	from	the	peripheral	system	via	three	modes	of	entry	[124,	125].		The	first	
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mechanism	is	retrograde	axoplasmic	transport	mode	that	occurs	only	for	bacterial	exotoxins	(e.g.	tetanus	

toxin	and	botulinum	toxin),	whereby	the	neurotoxin	enters	a	peripheral	sensory-nerve	ending	or	

neuromuscular	junction	and	travels	along	the	retrograde	axoplasmic	transport	system	to	the	neuronal	soma	

in	the	CNS.		The	second	mechanism	is	paracellular	penetration,	whereby	toxins	can	infiltrate	the	CNS,	usually	

at	the	choroid	plexus	or	at	a	dysfunctional	region	of	the	BBB,	by	passing	between	the	tight	junctions	of	BMECs	

or	MCECs.		The	third	mechanism	occurs	when	bacterial	toxins	are	released	from	bacterial	infections	of	the	

CNS	(e.g.	bacterial	meningitis,	bacterial	encephalitis	and	brain	abscesses).		Although	the	incidences	are	

extremely	rare,	direct	exposure	of	bacterial	toxin	to	the	CNS	can	result	in	long-term	neurological	sequelae	or	

often	result	in	a	lethal	neuroimmune	response.					

Among	bacterial	toxins,	the	ability	of	LPS	to	enter	the	CNS	has	been	studied	extensively	[83,	126,	

127].		The	CNS	is	a	lipid-rich	system	that	is	vulnerable	to	exposures	by	small,	lipophilic	toxicants	that	can	

readily	diffuse	passively	through	BMEC	membranes.		LPS	is	hydrophobic	due	to	its	lipid	tails	and	has	a	net	

negative	charge	at	physiological	pH,	which	limits	its	ability	to	pass	through	the	BBB	easily.		Furthermore,	the	

luminal	membrane	of	BMEC	is	more	negative	charged,	thus	it	is	thermodynamically	unfavorable	for	LPS	to	

diffuse	across	into	the	CNS	due	to	mutual	repulsion	of	ions—even	through	paracellular	penetration.		In	2010,	

Banks	and	Robinson	confirmed	that	LPS	radiolabeled	with	the	isotope	125iodine	administered	peripherally	

did	not	readily	enter	the	CNS	(~0.025%	of	the	administered	dose),	even	when	observed	in	a	Multiple	

Sclerosis	model	where	the	BBB	was	severely	disrupted	[127].		Similar	findings	were	confirmed	in	

postmortem	examination	of	patients	who	died	from	complications	with	Gram-negative	sepsis	with	

encephalopathy	that	did	not	display	disseminated	cerebral	micro-abcsesses	usually	associated	with	direct	

CNS	infections	[128].		Although	sepsis-associated	encephalopathy	typically	results	in	the	breakdown	of	the	

BBB,	these	encephalopathies	are	thought	to	occur	from	systemic	inflammation	rather	than	by	directly	

infecting	bacteria	and/or	their	toxins	in	the	CNS	[129].		It	is,	therefore,	believed	that	in	the	majority	of	cases,	

peripherally	derived	LPS	does	not	directly	stimulate	the	CNS—even	in	cases	of	BBB	breakdown.	
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LPS-Induced	Neuroinflammation	

Neuroinflammation	is	a	self-defense	reaction	against	a	pathogenic	stimulus	or	injury	in	the	CNS.		

Under	normal	circumstances,	neuroinflammation	is	a	highly	regulated	process	whereby	coordinated	

networks	of	immune	cells	sequester	and	eliminate	the	source	of	the	injurious	stimulant,	restoring	

homeostasis	in	the	tissue.	In	the	CNS	this	transient	process	is	sequentially	characterized	by	coagulation,	

edema	(whereby	the	swelling	induces	pain),	hypoxia-induced	increase	in	blood	supply,	vascular	permeability	

at	the	afflicted	site	allowing	the	infiltration	of	leukocytes,	phagocytosis	of	the	injurious	stimulant,	formation	

of	granulation	tissue	(glial	scar),	and	tissue	repair	which	terminates	the	inflammation	through	the	release	of	

pro-resolution	factors;	this	process	of	overlapping	events	is	termed	an	‘acute	neuroinflammatory	response’.	If	

the	injurious	stimulant	is	persistent,	the	neuroinflammation	may	continue	unresolved,	becoming	a	‘chronic	

neuroinflammatory	response’,	which	may	result	in	more	severe	damage	than	that	caused	by	the	original	

insult	[130].		Chronic	inflammation	has	been	identified	to	be	a	hallmark	of	not	only	infectious	CNS	diseases	

but	also	of	brain	trauma,	ischemia,	and	autoimmune,	neurophsyciatric,	and	neurodegenerative	disorders	of	

the	CNS	[131,	132].			Understanding	the	distinction	between	the	neurotoxic	and	neuroprotective	effects	of	

neuroinflammation	in	non-infectious	CNS	diseases	is	a	contentious	topic	that	is	currently	being	investigated.	

LPS	can	induce	neuroinflammation	either	indirectly	through	peripheral	stimulation	or,	in	rare	cases,	

through	direct	stimulation.		When	LPS	is	administered	through	an	intraperitoneal	injection,	it	accumulates	at	

the	lining	of	the	abdominal	organs,	recruiting	neutrophils	and	inducing	inflammation-mediated	

hyperpermeability	of	tissue	membrane	allowing	the	endotoxin	translocation	into	the	bloodstream	where	it	

binds	to	plasma	components	[133]	and	accumulates	primarily		in	the	liver	and	to	a	lesser	extent	in	the	spleen,	

kidneys	and	lungs	[69].			Kupffer	cells,	the	resident	macrophages	of	the	liver	sinusoids,	represent	80%	to	90%	

of	the	total	fixed-tissue	macrophages	of	the	body	and	are	thought	to	be,	in	coordination	with	hepatocytes,	

primarily	responsible	for	80%	of	the	clearance	of	LPS	into	the	bile	and	crucial	in	LPS-mediated	

neuroinflammation	through	their	inflammatory	response	[69].		Upon	in	vitro	stimulation	with	LPS,	Kupffer	

cells	rapidly	release	pro-inflammatory	factors	such	as	TNF-α,	IL-1β,	IL-6,	IL-18	and	can	induce	the	production	

of	nitric	oxide,	prostaglandins,	and	reactive	oxygen	and	nitrogen	radicals	which	have	also	been	detected	in	

the	circulating	blood	supply	in	vivo	and	in	ex	vivo	liver	tissue	cultures	after	LPS	stimulation	[69].		TNF-α	and	
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IL-1β	generated	by	Kupffer	cells	are	believed	to	play	a	pivotal	role	in	peripherally	induced	

neuroinflammation	either	by	direct	neural	stimulation	with	cytokine	receptors	present	on	afferent	vagus	

nerve	endings	[134]	or	through	a	humoral	pathway	where	the	cytokines	travel	through	the	bloodstream	

passing	into	the	CNS	through	vesicular	transcytosis	to	activate	resident	immune	cells	of	the	CNS	[135].	

Although	it	has	been	reported	that	inflammatory	signals	transmitted	through	the	vagus	nerve	to	the	

CNS	can	induce	neuroinflammation	[134],	this	route	is	primarily	thought	to	contribute	to	pain,	fever,	and	

changes	in	corticosteroid	and	norepinephrine	levels.			This	is	verified	in	vivo	through	studies	of	

intraperitoneal	injections	of	either	IL-1β,	TNF-α,	or	LPS	in	intact	and	vagotomized	rodents	[136]	and	has	been	

implicated	in	immune	suppression	through	the	release	of	acetylcholine	from	descending	vagal	afferent	fibers	

that	bind	to	α7-	nicotinic	acetylcholine	receptors	on	Kupffer	cells—attenuating	the	release	of	TNF-α,	IL-1β,	IL-

6,	and	IL-18—in	an	LPS-induced	sepsis	model	[137].		Interestingly,	fever	is	generally	induced	within	10	

minutes	after	an	intraperitoneal	injection	of	LPS	and	TNF-α—the	first	of	the	cytokines	to	be	transcribed,	

translated	and	secreted	into	the	bloodstream—is	undetectable	until	30	minutes	after	treatment.		These	

observations	suggest	the	existence	of	either	another	inflammatory	signal	capable	of	stimulating	the	vagus	

nerve	or	of	an	LPS	receptor	in	the	afferent	nerve	endings	that	can	innervate	the	vagus	nerve.		

Due	in	part	to	the	timetable	that	inflammatory	factors	are	detected	in	the	CNS,	neuroinflammation	is	

primarily	thought	to	be	induced	through	humoral	cytokines.		Qin	et	al.	(2007)	reported	that	when	mice	were	

treated	intraperitoneally	with	LPS,	TNF-α	protein	peaked	in	the	blood	and	in	liver	and	brain	tissues	60	

minutes	after	treatment	[83].		Liver	tissue	expressed	TNF-α	mRNA	within	minutes	of	stimulation	(peaking	at	

30	minutes)	whereas	TNF-α	mRNA	was	detected	in	brain	tissue	30	minutes	after	treatment	(peaking	at	1	

hour)	[83].	To	test	whether	liver-derived	TNF-α	initiated	neuroinflammation	in	the	brain,	Qin	et	al.	

administered	LPS	intraperitoneally	into	wild-type	mice	and	mice	with	a	genetic	ablation	of	the	TNF-α	

receptors	TNF-R1	and	TNF-R2	[83].		As	expected,	LPS	was	capable	of	generating	TNF-α	mRNA	and	protein	in	

liver	tissue	in	both	mice,	but	TNF-α	mRNA	and	protein	was	detected	in	brain	tissue	only	in	wild-type	mice	

[83]—indicating	that	TNF-α	receptors	are	necessary	for	peripheral	LPS	to	result	in	the	generation	of	brain	

TNF-α	mRNA	and	protein.		This	model	was	further	validated	by	treating	both	types	of	mice	with	a	systemic	

injection	of	TNF-α	that	induced	brain	TNF-α	mRNA	and	protein	in	wild-type	mice,	but	not	in	mice	that	lacked	
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the	TNF-α	receptors	[83].		Moreover,	treatment	with	TNF-α	failed	to	induce	the	production	of	monocyte	

chemoattractant	protein-1	(MCP-1)	and	IL-1β	in	brain	tissue	of	TNF-α	receptor	knock-out	mice	[83],	

confirming	the	role	of	humoral	TNF-α	as	the	primary	factor	that	drives	neuroinflammation	in	LPS-induced	

endotoxemia.			

The	most	important	finding	of	Qin	et	al.	was	that	even	though	TNF-α	protein	in	liver	tissue	returned	

to	baseline	concentrations	9	hours	after	LPS	treatment,	it	remained	elevated	in	brain	tissue	throughout	the	10	

month	duration	of	the	study	(now	confirmed	up	to	30	months)	[83].		In	other	words,	LPS-induced	

endotoxemia	produced	an	acute	inflammatory	response	in	the	peripheral	system	that	triggered	a	chronic	

inflammatory	response	in	the	CNS.		Interestingly,	this	chronic	neuroinflammation	was	shown	to	be	directly	

responsible	for	the	selective	delayed	and	progressive	loss	of	DAnergic	neurons	in	SNpc,	similar	to	that	

observed	in	idiopathic	PD.			Block	et	al.	(2007)	theorized	that	the	neuroinflammatory	response	induced	from	

the	LPS	endotoxemia	becomes	chronic	through	a	positive	feedback	loop	wherein	the	resident	immune	cells	of	

the	brain	become	activated	by	humoral	TNF-α	to	release	inflammatory	factors	that	result	in	their	autocrine	

re-stimulation	and	paracrine	stimulation	of	other	resident	immune	cells	(amplifying	the	signal).	Some	of	

these	factors	are	also	thought	to	be	cytotoxic	and	are	thought	to	injure	DAnergic	neurons	to	release	

endogenous	stimulatory	paracrine	signals—taken	together	resulting	in	a	vicious	stimulatory	cycle	that	

produces	chronic	neuroinflammation	[138].	

	 Many	have	argued	that	concentrations	of	humoral	cytokines	that	enter	the	brain	are	insufficient	to	

generate	a	significant	acute	neuroinflammatory	response	in	the	brain—let	alone	a	chronic	inflammatory	

response.		Instead	some	have	hypothesized	that	LPS	and	released	pro-inflammatory	factors	travel	through	

the	bloodstream	and	bind	directly	to	their	receptors	that	are	expressed	on	luminal	surface	BMECs	or	MCECs	

of	either	the	choroid	plexus	or	the	circumventricular	organs,	inducing	an	inflammatory	response	in	these	

cells	resulting	in	either	a	direct	release	of	pro-inflammatory	factors	into	the	adjacent	brain	tissue	or	a	

breakdown	of	the	BBB	allowing	cytokines	as	well	as	other	serum-derived	immunoactivators	to	enter	the	

brain	parenchyma	to	activate	the	resident	immune	cells	of	the	CNS.		In	vitro	cultures	have	supported	that	both	

endothelial	and	epithelial	cells	of	the	CNS	are	capable	of	generating	an	immune	response	when	treated	with	

either	IL-1β,	TNF-α,	or	LPS	[139-141]—but	these	findings	are	not	so	clear	in	vivo	because	it	is	difficult	to	
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differentiate	the	attributable	effects	of	these	cells	from	astrocytes,	pericytes	and	microglia.		Interestingly,	

although	Sumi	et	al.	(2010)	did	not	evaluate	the	ability	of	LPS-treated	cultured	primary	rat	MBECs	to	produce	

cytokines,	they	did	find	that	the	presence	of	microglia	were	required	to	induce	permeability	in	the	MBECs	

monolayer	as	detected	in	culture	by	decreased	transendothelial	electrical	resistance	and	increased	

permeability	to	sodium-fluorescein.	Furthermore,	they	demonstrated	that	the	changes	in	MBEC	integrity	

were	due	to	microglia-induced	oxidative	damage	resulting	in	the	fragmentation	of	the	tight-junction	proteins	

zonula	occludens-1,	claudin-5,	and	occludin.	

LPS	has	been	shown	to	be	sequestered	by	circulating	factors	and	reversibly	bind	to	BMECs	in	very	

low	concentrations	[127],	but	whether	it	can	directly	stimulate	endothelial	cells	in	vitro	has	yet	to	be	

definitively	established.		Interestingly,	bi-directional	treatment	with	either	LPS	or	TNF-α	has	been	observed	

to	result	in	an	acute	breakdown	of	the	BBB	in	rodents	[142-144]	occurring	between	6	and	24	hours	after	

treatment—a	phenomenon	that	has	also	been	observed	in	patients	with	Gram-negative	bacteremia-induced	

sepsis-associated	encephalopathy	through	the	detection	of	large	serum	proteins	in	their	CSF	[145].		Taken	

together,	all	the	proposed	modes	of	action	for	LPS-induced	neuroinflammation	have	been	experimentally	

confirmed	to	be	indirect.		The	role	of	direct	LPS	stimulation	in	the	CNS	and	the	detection	mechanisms	that	are	

required	to	generate	a	neuroinflammatory	response,	they	are	addressed	in	a	later	section	(see	Detecting	LPS	

in	the	CNS).	

The	Resident	Immune	System	of	the	CNS	

The	immune	system	in	humans	is	comprised	of	both	adaptive	and	innate	immunity.		Innate	immunity	

occurs	when	innate	immune	cells,	expressing	pattern	recognition	receptors	(PRRs)	such	as	pathogen-

associated	molecular	pattern	(PAMP)	receptors,	detect	and	immediately	produce	a	response	to	stimulatory	

signals	such	as	infectious	agents.		Adaptive	immunity	is	generated	after	an	innate	immune	response,	when	

innate	immune	cells	produce	a	certain	threshold	of	‘non-self’	antigens	recognized	by	specialized	adaptive	

immune	cells	that	are	recruited	to	the	site	of	infection	and	specifically	target	and	destroy	infectious	agents—

whereby	novel	antigen-receptors	can	be	synthesized	quickly	through	gene	rearrangement	and	passed	down	

generationally	through	mitosis	resulting	in	immunological	memory.		Regardless	of	their	different	response	
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mechanisms,	innate	and	adaptive	immune	cells	all	stem	from	the	same	hematepoeitc	lineage	making	them	

difficult	to	study	in	their	non-activated	states	due	to	the	similarity	among	their	markers.		

Until	recently,	the	CNS	was	widely	regarded	as	an	‘immune-privileged’	organ	system	that	was	

isolated	by	its	‘barriers’	from	the	peripheral	immune	system,	lacked	a	draining	lymphatic	system	and	was	

populated	with	‘immunoincompetant’	resident	innate	immune	cells.			In	1991,	Hickey	et	al.	were	the	first	to	

report	that	activated	CD4	T	lymphocytes	could	cross	the	BBB	and	host	an	adaptive	immune	response	in	the	

CNS.		In	1991,	Yamada	et	al.	showed	that	cervical	lymph	nodes	are	involved	in	the	drainage	of	interstitial	fluid	

(ISF)	and	CSF	from	the	brain.		Today,	we	recognize	the	‘immunoincompetence’	of	the	resident	innate	immune	

cells	of	the	CNS	as	a	unique	adaptation	to	tightly	control	immunological	responses	to	limit	damage	to	this	

highly	sensitive	organ	system	with	limited	re-generative	abilities.	

Simplistically,	the	CNS	is	comprised	of	neurons,	endothelial	cells,	pericytes	and	glial	cells.		Glial	cells	

are	comprised	of	several	cell	types	including	astrocytes,	microglia,	oligodendrocytes	and	ependymal	cells.		It	

is	thought	that	these	cells,	along	with	pericytes	and	endothelial	cells,	form	the	resident	innate	immune	

network	of	the	CNS—due	to	their	in	vitro	ability	to	express	PAMP	receptors	and	present	surface	antigens,	two	

features	commonly	associated	with	innate	immune	cells.		Technically,	innate	immune	cells	also	possess	the	

ability	to	phagocytize	microbes	and	cellular	debris;	undergo	morphological	and	epigenetic	changes	during	

activation	(also	known	as	polarization);	produce	and	release	cytokines,	chemokines	and	other	soluble	factors	

to	recruit	additional	immune	cells	and	to	induce	complement	receptors	to	facilitate	pathogen	clearance—

which	are	functions	that	have	only	been	observed	in	vivo	in	microglia	and	astrocytes.		It	should	be	noted	that	

during	neuroinflammatory	episodes,	perivascular	macrophages,	fibroblasts	and	leukocytes	of	both	the	innate	

and	adaptive	immune	systems	are	recruited	into	the	CNS	to	assist	in	the	inflammatory	response.		In	general,	

these	cells	are	thought	to	be	recruited	after	an	initial	innate	immune	response	by	the	resident	immune	cells	to	

assist	in	the	clearance	of	the	injurious	stimulant;	thus	for	the	sake	of	this	primer,	I	will	focus	primarily	on	

microglia	and	astrocytes	as	the	resident	innate	immune	cells	of	the	CNS.	
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1. Microglia	

Microglia	are	commonly	referred	to	as	the	resident	‘macrophages’	of	the	CNS.			First	described	in	

detail	in	1919	by	Río	Hortega,	these	cells	are	thought	to	be	derived	from	yolk-sac	macrophage	precursors	and	

migrate	through	the	cephalic	mesenchyme	before	vascularization	to	the	brain	pial	surface	where	they	invade	

the	neuroepithelium	of	the	CNS	at	the	roof	of	the	4th	ventricle	[146].		Occurring	during	early	embryogenesis,	

microglial	progenitors	are	thought	to	be	recruited	by	the	early	neuronal	expression	of	the	chemotactic	signals	

MCP-1	and	macrophage	inflammatory	protein-1	(MIP-1)	[147].		Once	in	the	brain,	these	yolk-sac	macrophage	

precursors	transform	into	the	microglia	and	their	progenitor	cells,	making	up	10-15%	of	the	cells	of	the	adult	

CNS,	where	they	are	thought	to	proliferate	until	a	few	months	after	birth	and	turnover	without	any	significant	

contribution	from	bone	marrow	derived	monocytes	[148].		During	embryogenesis,	microglia	play	a	

fundamental	role	in	CNS	vascularization	[149]	as	well	as	neural	progenitor	differentiation	and	clearance,	

synaptic	pruning	and	neuroapoptotic	debris	clearance	[150,	151].		In	a	healthy	brain,	microglia	are	

ubiquitously	distributed	throughout	the	brain	where	they	remain	in	a	quiescent	state	through	constitutive	

stimulation	with	the	immunosuppressive	cytokine	TGF-β	[152,	153]	and	through	cell-to-cell	contact	with	

CD200	[154],	CX3CL1	[155]	and	polysialylated	neuronal	cell	adhesion	molecule	(PSA-NCAM;	[156])—

proteins	that	are	thought	to	degrade	over	time	with	aging	and	are	thought	to	be	associated	with	the	age-

dependent	shift	towards	more	activated	profiles	[157].	

We	now	know	that	this	‘quiescent	state’	is	a	misnomer	because	in	vivo	two-photon	imaging	of	EGFP-

expressing	microglia	in	rodents	show	that	inactivated	microglia	are	actively	surveying	cells	through	cell-to-

cell	contact	and	through	a	series	of	receptors	that	screen	the	ISF	for	endogenous	danger-associated	molecular	

patterns	(DAMPs)	and	PAMPs.		Upon	detecting	a	stimulatory	signal,	microglia	swiftly	undergo	a	hypertrophic	

morphological	change	that	increases	the	size	of	their	soma	while	retracting	their	processes	(Figure	1.1),	shift	

metabolic	priorities	and	migrate	to	the	site	of	the	distress.		Epigenetic	reprogramming	is	thought	to	mediate	

this	process,	controlling	the	up-	and	down-regulation	of	a	variety	of	genes	associated	with	this	polarization	

state—which	in	turn	modulates	the	release	of	cytokines	and	chemokines	and	the	induction	of	phagocytosis	
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and	antigen	presentation.		Interestingly,	the	response	by	microglia	after	being	activated	is	unique	to	the	

stimulant	and	is,	for	the	most	part,	dose-dependent.			

Figure	1.1	Two-photon	3D	reconstruction	of	quiescent	(left)	and	LPS-activated	(right)	microglia	in	the	SNpc	
as	imaged	in	CX3CR1-EGFP+/-	mice.	

	

The	acute	polarization	of	microglia	into	an	activated	state	is	commonly	referred	to	as	microgliosis.		

Similar	to	other	myeloid-derived	innate	immune	cells,	activated	microglia	are	primarily	responsible	for	

detecting	and	phagocytizing	stimulatory	xenobiotics/endogenous	debris	and	generating	a	variety	of	toxic	

substances	such	as	reactive	oxygen	species,	reactive	nitrogen	species,	proinflammatory	cytokines	(including	

death	signals)	and	prostaglandins	that	are	meant	to	kill	infectious	agents	but	are	also	known	to	injure	by-

standard	cells	such	as	neurons.		Once	the	injurious	stimuli	are	cleared,	microglia	release	a	series	of	pro-

resolution	factors	that	either	induce	their	de-activation	or	apoptosis—thus	resulting	in	an	acute	

neuroinflammatory	response.		Microgliosis	is	thought	to	protect	the	CNS	in	acute	neuroinflammatory	events	

that	are	associated	with	mechanical	injuries,	ischemia,	and	infections	of	the	CNS.		On	the	other	hand,	

unresolved	microglial	activation	referred	to	reactive	microgliosis	produces	chronic	neuroinflammation	

resulting	in	the	continuous	release	of	cytotoxic	factors	that	are	associated	with	progressive	

neurodegeneration	[130].			

2. Astrocytes	
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Astrocytes	are	the	most	abundant	cell	type	in	the	CNS.		First	described	over	150	years	ago,	astrocytes	

were	thought	to	strictly	play	a	role	in	the	structural	scaffolding	of	the	brain	and	providing	essential	energetic	

support	for	neurons	due	to	their	physical	interactions	in	the	neurovascular	unit.		Since	then,	researchers	have	

uncovered	that	astrocytes	have	many	more	functions	including	modulating	synaptic	transmission	through	

neurotransmitter	uptake,	transport	and	catabolism	and	by	releasing	ATP	to	inhibit	synaptic	transmission;	

regulating	ion	concentration	in	the	ICF;	providing	energetic	support	to	ischemic	neurons	through	energetic	

reserves;	maintaining	the	blood-brain	barrier	and	modulating	blood	flow	at	the	artery	and	arteriole	level;	

coordinating	neural	development,	synaptic	cleft	formation	and	axonal	myelination;	forming	glial	scars;	

regulating	long-term	potentiation	through	calcium	waves;	and	participating	in	innate	immune	functions	

[158].	

The	innate	immune	functions	of	astrocytes	are	still	relatively	controversial,	as	are	described	later	in	

this	chapter.		Unlike	microglia	that	share	the	same	mesodermic	lineage	as	‘professional’	innate	and	adaptive	

immune	cells,	astrocytes	are	derived	from	radial	glia	that	are	themselves	derived	from	neuroepithelial	cells	of	

the	ectoderm.		Regardless	of	this,	astrocytes	have	been	reported	to	share	many	similarities	to	microglia	with	

regard	to	innate	immune	functions	including	the	expression	of	cell	surface	DAMPs	and	PAMPs	receptors	

[159];	the	ability	to	shift	into	a	hypertrophied	morphology	upon	activation	(i.e.	reactive	astrogliosis)	[160];	

the	generation	of	cytokines	and	free	radicals	upon	activation	[161];	the	capacity	for	phagocytic	clearance	of	

cellular	debris	[162]	and	insoluble	fibrous	protein	aggregates	[163];	and	the	ability	to	recruit	and	activate	

leukocytes	through	the	release	of	chemokines	and	through	antigen	presentation	[164].	

Detecting	LPS	in	the	CNS	

In	the	rare	cases	that	LPS	is	capable	of	entering	the	CNS,	it	is	thought	that	both	microglia	and	

astrocytes	possess	innate	immune	receptors	to	detect	and	sequester	LPS—resulting	in	their	activation	and	a	

subsequent	neuroinflammatory	response.		It	should	be	cautioned	that	although	some	of	the	work	has	been	

confirmed	in	vivo,	most	reports	derived	their	findings	using	in	vitro	studies	with	either	primary/secondary	

cell	cultures	or	immortalized	cell	lines	derived	from	transformed	tumor	cells.		Although	cell	cultures	are	a	

necessary	tool	that	allows	researchers	to	differentiate	the	effect	of	a	treatment	on	individual	or	multiple	cell	
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types,	all	findings	from	cell-culture	studies	should	be	cautiously	interpreted	because	even	though	the	growing	

conditions	of	these	cultures	try	to	mimic	those	found	in	vivo,	it	is	nearly	impossible	to	replicate	the	dynamic	

intricacy	of	a	living	organism.	

1. Structural	Description	of	LPS	

LPSs	are	large	amphipathic	glycolipids	that	range	in	molecular	weight	from	a	few	thousand	to	over	

10,000	Daltons	and	are	essential	for	structural	and	functional	integrity	of	Gram-negative	bacteria	[165].		LPSs	

are	thought	to	represent	75%	of	the	total	outer	membrane	of	each	bacterium,	whereby	a	single	Escherichia	

coli	bacterium	is	estimated	to	contain	~3.5	x	106	monomers	of	LPS	[166].		The	structure	of	LPSs	consists	of	

three	covalently	linked	domains	(Figure	1.2):	the	variable	O-polysaccharide	extracellular	moiety,	the	inner	

and	outer	transmembrane	core	oligosaccharide	moiety	and	the	intercellular	lipid	A	moiety	[165].		LPSs	vary	

greatly	in	the	composition	of	the	O-polysaccharide	moiety	among	different	bacterial	species	and	strains,	

ranging	in	length	anywhere	from	0	to	40	repeating	units—composed	of	three	sugars	with	an	additional	sugar	

connected	to	the	first	and	third	sugar	units—resulting	in	two	subclasses	of	LPSs	[165].		One	class	of	LPSs,	

known	as	rough	LPSs,	is	derived	from	bacterial	strains	that	have	atypical	O-polysaccharide	moieties	that	are	

either	absent	or	reduced	in	length	[165].		LPSs	derived	from	bacterial	strains	with	full-length	O-

polysaccharide	moieties,	usually	ranging	from	20	to	40	repeating	units	in	length,	are	known	as	smooth	LPSs	

[165].		Interestingly,	rough	LPSs	are	more	hydrophobic	and	tend	to	be	cleared	from	the	blood	quicker	than	

smooth	LPS	[166].		Unlike	the	O-polysaccharide	moieties,	the	Lipid	A	moiety	is	a	highly-conserved	

phosphoglycolipid	that	contains	a	head	composed	of	two	phosphorylated	glucosamine	sugars	with	four	to	

seven	ester-	and	amide-linked	acetylated	fatty	acid	tails	that	have	been	shown	through	studies	using	similar	

synthetic	fragments	to	be	the	essential	component	necessary	for	the	recognition	and	subsequent	stimulation	

of	LPSs	by	the	innate	immune	system	[165].			

One	particular	method	deployed	by	macrophages	and	neutrophils	to	detoxify	phagocytized	LPSs	in	

lysozomes	are	to	release	acyloxyacyl	hydrolases	to	degrade	the	lipid	tails	of	the	Lipid	A	moiety	resulting	in	a	

deacylated	LPS	metabolite	with	decreased	biological	activity	and	in	some	cases	an	antagonistic	profile	to	LPS	

receptors	[167]	.		Kupffer	cells	are	also	capable	of	digesting	the	O-antigen	portion	of	LPSs	resulting	in	greater	
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hydrophobicity	and	improving	their	clearance	[168,	169].		The	final	method	Kupffer	cells	deploy	for	LPS	

clearance	utilizes	scavenger	receptors	and	released	alkaline	phosphatases	to	dephosphorylate	the	Lipid	A	

moiety,	resulting	in	neutralizing	its	biological	activity	and	increased	binding	to	hepatocytes	for	clearance	

[170].		Enzymatic	modifications	of	the	structure	of	LPSs	are	important	in	the	detoxification	and	clearance	of	

LPSs	from	the	body.	

	

	

	

	

Figure	1.2	The	basic	structure	of	lipopolysaccharides	and	their	domains.	

	

		Although	Lipid	A	is	the	most	conserved	domain	in	LPSs,	variable	structures	that	differ	in	the	head-group	

substituents	and	in	the	number,	distribution,	and	composition	of	the	fatty	acid	tails	have	been	detected	

among	bacterial	species.		These	atypical	LPSs	differ	from	the	archetypal	structure	found	in	Escherichia	coli	

and	Salmonella	and	have	been	shown	to	have	lower	binding	affinities	than	typical	LPS	receptors	in	LPSs	

derived	from	Helicobacter	pylori,	Porphyromonas	gingivalis	and	Francisella	tularensis;	activate	an	atypical	

signaling	pathway	with	LPSs	derived	from	Porphyromonas	gingivalis;	show	greater	levels	of	activity	in	

smooth	LPS	from	Salmonella	minnesota	and	Rhodocyclus	gelatinosus;	and	result	in	a	complete	inhibition	of	the	

typical	LPS	receptor	in	rough	LPSs	derived	from	Rhodobacter	sphaeroides	[166].		These	differences	are	

thought	to	occur	because	the	Lipid	A	structures	of	some	LPS	monomers,	usually	depending	on	the	number	of	

acyl	chains,	are	cylindrical	(tilt	angle	of	the	lipids	to	the	backbone	of	less	than	15°)	forming	micelles	whereas	

other	Lipid	A	structures	are	conical	(tilt	angles	greater	than	45°)	and	are	thought	to	form	inverted	cubic	

aggregates	[171].		The	type	of	aggregates	formed,	as	well	as	other	structural	features	(i.e.	ratio	of	

hydrophobic	/hydrophilic	regions)	among	LPSs	and	environmental	conditions	(pH,	salt	concentration,	

temperature,	presence	of	divalent	cations	and	hydration)	may	play	important	roles	in	the	kinetics	of	LPS-
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mediated	signaling	and	whether	the	LPSs	will	act	as	agonist	or	antagonist	at	the	binding	site	of	PRRs	—thus	

modulating	biological	activity.			

The	outer	membrane	component	of	most	Gram-negative	bacteria	also	contains	lipoproteins,	which	are	

themselves	activators	of	the	innate	immune	system;	thus	most	commercially	available	LPSs	has	been	shown	

to	be	contaminated	with	other	bacterial	components.		For	the	remainder	of	this	thesis,	only	LPS	studies	that	

used	ultra-purified	smooth	LPS	extracted	from	Escherichia	coli	or	Salmonella	will	be	considered	to	avoid	

additional	confounding	variables	with	regards	to	the	response	to	LPS	stimulation.			

2. Pathogen-Associated	Molecular	Pattern	(PAMP)	Receptors	

The	innate	immune	system	has	the	ability	to	recognize	both	xenobiotics	and	endogenous	DAMPs	through	

a	limited	number	of	highly	promiscuous	PRRs.		Originating	in	single	celled	organisms,	these	receptors	have	

evolved	into	multi-cellular	organisms,	where	they	are	expressed	in	a	variety	of	different	cellular	

compartments	depending	on	where	they	are	most	likely	to	detect	their	respective	stimulatory	ligands.		PAMP	

receptors	are	a	sub-class	of	PRRs	that	are	capable	of	detecting	highly	conserved	molecular	components	of	

microorganisms.		These	receptors	not	only	detect	living	microbes	and	their	toxins,	but	partake	in	their	

degradation	through	direct	phagocytosis,	lyses	via	an	oxidative	burst	or	by	tagging	them	with	complement	or	

antibodies	to	mediate	their	targeted	destruction	by	the	adaptive	immune	system	(i.e.,	opsonization).		

Although	other	bacterial	and	viral	components	are	also	recognized	by	PAMPs,	this	section	focuses	on	the	

receptors	that	are	present	in	the	CNS	and	that	have	been	identified	to	recognize	LPS.			

Over	the	past	three	decades,	researchers	have	focused	on	elucidating	how	LPS	binds	to	cells	to	generate	

an	innate	immune	response—much	of	the	work	on	LPS	stems	from	the	field	of	endotoxin-induced	septicemia	

in	the	peripheral	system	and	has	been	validated	experimentally	to	also	include	cells	of	the	CNS.		In	1986	LPS	

was	recognized	to	bind	to	both	the	β2-integrin	receptor	CD11b/CD18	and	soluble	CD14	(formerly	known	as	

MY-4	antigen)	and	later	in	1991	LPS	was	recognized	to	bind	to	class	A	scavenger	receptors;	all	of	which	were	

incapable	of	mediating	LPS-induced	cellular	activation.		In	1990,	membrane-bound	CD14	(formerly	known	as	

monocyte-specific	antigen)	was	implicated	in	LPS-induced	cellular	activation,	but	structural	analysis	of	
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membrane-bound	CD14	showed	that	the	PRR	was	tethered	on	the	cell	surface	with	a	

glycosylphosphatidylinositol	linker	and	lacked	a	necessary	transmembrane	domain	to	mediate	the	

intercellular	signaling	observed	during	LPS	stimulation.		Thus,	both	forms	of	CD14	were	hypothesized	to	be	

accessory	proteins	to	a	putative	LPS	receptor.		In	1998,	toll-like	receptor-4	(TLR-4)	was	identified	as	the	

putative	receptor	known	to	interact	with	CD14	and	LPS	to	induce	the	bulk	of	the	cellular	activation	induced	

by	LPS.		The	ability	for	LPS	to	induce	a	weak	activation	in	TLR-4	deficient	animals	suggests	that	additional	

putative	receptors	may	exist	but	have	not	yet	been	identified.	

a. Plasma	Septins	

Studies	have	shown	that	once	in	the	bloodstream	LPS	can	bind	to	erythrocytes,	mononuclear	cells,	

platelets,	neutrophils	and	plasma	macromolecules.	Plasma	macromolecules	including	albumin,	low-density	

lipoprotein	(LDL),	high-density	lipoprotein	(HDL),	LPS-binding	protein	(LBP)	and	soluble	CD14	(sCD14),	

collectively	referred	to	as	‘septins’,	strongly	associate	with	the	Lipid	A	moiety	of	LPS.	One	study	showed	that	

96%	of	all	administered	LPS	was	bound	to	septins	within	20	minutes	

of	being	introduced	into	the	bloodstream	[133].		LBP	has	been	

identified	to	not	only	play	an	important	role	in	the	functional	

neutralization	and	clearance	of	LPS	in	the	blood	[172],	but	it	has	also	

been	identified	to	enhance	the	LPS-mediated	immune	response	

signals	by	PRRs	[173].		LPS,	due	to	its	amphipathic	nature,	forms	

large	micellar	structures	in	the	aqueous	environment	of	the	blood	

where	LBP	is	thought	to	selectively	capture	LPS	monomers	(Figure	

1.3)	at	a	positively	charged	region	at	the	N-terminal	and	transfer	

them	to	lipoproteins	[174].		LPS-lipoprotein	complexes	have	been	shown	to	be	biologically	inactive	in	vitro	

[175]	and	are	thought	to	be	excreted	in	the	bile	[176]	and	thus	are	considered	a	major	route	of	LPS	clearance	

in	the	body.		The	role	of	LBP	in	inflammation	is	thought	to	be	mediated	by	the	transfer	of	LPS	to	either	sCD14	

or	membrane-bound	CD14	(mCD14)—integral	components	required	for	the	bulk	of	the	PRR-mediated	

immune	activation	that	are	described	in	detail	in	subsequent	sections.			

Figure	1.3	Schematic	of	how	LPS-
binding	protein	(LBP)	removes	an	LPS	
monomer	from	LPS	micelles.	
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Although	LPS	is	known	to	bind	to	CD14	independently	of	LBP-mediated	transfer	through	the	slow	

spontaneous	diffusion	of	LPS	monomers	from	their	aggregate	structures,	the	presence	of	LBP	has	been	shown	

to	increase	the	binding	kinetics	by	100	to	1,000-fold,	thereby	enhancing	the	sensitivity	of	immune	cells	to	LPS	

[177].		Serum	LBP	and	sCD14	are	acute-phase	proteins—whose	serum	concentrations	increase	significantly	

during	inflammation—generated	primarily	by	hepatocytes.		Two	isoforms	of	sCD14	have	been	isolated	in	the	

blood;	one	isoform	(48kDa)	is	thought	to	be	derived	from	proteolytic	cleavage	of	the	glycosylphosphatidyl	

inisotol-anchor	that	tethers	mCD14	to	extracellular	membrane,	and	the	other	isoform	(55kDa)	is	thought	to	

be	directly	secreted	by	cell	that	express	mCD14	[178]—the	characterization	of	these	isoforms	and	their	

respective	binding	kinetics	to	LPS	have	yet	to	be	investigated.			Interestingly,	although	sCD14	is	known	to	

mediate	the	activation	of	PRRs	in	mCD14-negative	cells,	sCD14	is	also	thought	to	play	a	dual-role	by	

competing	for	LPS	in	a	protective	manner	with	mCD14	and	stripping	LPS	from	ligated	PRRs—therefore	

reducing	the	capacity	LPS	to	induce	PRR-mediated	signaling.		The	mechanisms	that	govern	these	contrasting	

roles	of	sCD14	are	thought	to	be	mediated	by	differing	binding	sites	that	either	shield	or	expose	the	Lipid	A	

portion	of	LPS	(Figure	1.4).		Supraphysiological	concentrations	of	sCD14—25-fold	greater	than	the	measured	

endogenous	levels—can	attenuate	LPS-induced	release	of	TNF-α	in	vitro	and	in	vivo	and	has	even	been	shown	

to	be	protective	in	murine	models	of	lethal	endotoxemia	[179].				

	

Figure	1.4	Structure-based	pharmacophore	predictions	of	low-energy	binding	interaction	between	LPS	and	
sCD14.		Rendering	(a)	predicts	that	some	of	the	lipid	A	region	gets	buried	in	a	hydrophobic	pocket	leaving	
behind	a	few	exposed	fatty	acid	tails	that	allow	for	its	transfer	to	lipoproteins	or	LPS	receptors.		Rendering	(b)	
predicts	that	LPS	is	capable	of	binding	to	another	region	of	sCD14	that	completely	conceals	the	lipid	A	region	
preventing	its	transfer	and	signaling.	
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Studies	using	transgenic	knockout	mice	that	lack	the	ability	to	produce	LBP	have	shown	

hyporesponsiveness	to	LPS	challenge	in	vitro	[180]	but	had	no	difference	in	vivo	[181].		Whereas,	CD14	

ablated	transgenic	rodents	are	hyporesponsive	to	low-dose	LPS	challenge	[182]	and	sCD14	was	

demonstrated	to	play	a	role	in	LBP-mediated	transfer	of	LPS	to	serum	lipoproteins	[183].		Although	a	great	

deal	of	work	has	been	done	to	study	LBP	and	sCD14	in	the	blood,	their	presence	in	the	CNS	has	not	been	well	

characterized.		As	previously	described	both	the	ICF	and	CSF	are	isolated	from	the	systemic	blood	by	the	

BBB—which	serves	as	a	barrier	for	most	circulating	proteins	including	septins.		In	fact,	plasma	proteins	such	

as	fibrinogen	[184]	and	albumin	[185]	are	considered	endogenous	activators	of	the	innate	immune	system	

and	can	result	in	an	inflammatory	response	upon	entry	into	the	parenchymal	tissue	of	the	CNS.		Nevertheless,	

both	LBP	and	sCD14	have	been	identified	and	quantified	in	the	CSF	in	both	healthy	and	diseased	individuals.		

LBP	and	sCD14	were	found	to	be	present	in	low	concentration	in	the	CSF	of	healthy	individuals	and	are	

considered	to	be	biomarkers	of	BBB	breakdown	and	neuroinflammation	due	to	their	high	levels	in	the	CSF	of	

individuals	with	head	and	spine	trauma,	bacterial	meningitis,	sepsis	and	neurodegenerative	disease	[186].		

ELISAs	conducted	on	the	CSF	of	murine	sepsis	models	have	shown	that	sCD14	is	detected	in	the	CSF	starting	

24	h	after	an	intracardiac	injection	of	LPS,	peaking	around	48	h	[187].		In	situ	hybridization	detecting	

intracellular	production	of	CD14	mRNA	identified	that	microglia	and	not	astrocytes	are	capable	of	generating	

CD14	mRNA—further	supporting	previous	findings	that	microglia	express	surface	mCD14	whereas	

astrocytes	do	not	and	thus	require	sCD14	for	LPS-induced	PRR	signaling	[187].		Interestingly,	the	levels	of	

CD14	generated	by	microglia	are	negligible	compared	to	those	generated	by	infiltrating	intrathecal	

leukocytes—which	are	now	thought	to	generate	the	bulk	of	the	sCD14	detected	in	the	CSF	during	

inflammation	[187].			

Even	though	sCD14	and	mCD14	cannot	be	distinguished	by	measuring	CD14	mRNA,	another	study	

looked	at	CD14	mRNA	in	the	parenchymal	tissue	and	found	that	systemic	administration	of	LPS	in	rats	caused	

a	rapid	expression	of	CD14	mRNA	in	the	cirumventricular	organs	and	later	in	the	brain	parenchyma	[188].			

Interestingly,	pretreatment	of	mice	with	anti-TNF-α	antibody	to	neutralize	the	cytokine	TNF-α	significantly	

reduced	the	levels	of	LPS-induced	CD14	mRNA	transcription	[189].		This	study	was	further	confirmed	by	

intracerebroventricular	administration	of	recombinant	rat	TNF-α	that	stimulated	the	transcription	of	CD14	
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mRNA	as	early	as	1h	(peaking	at	6h)	after	administration.			To	date,	no	studies	have	quantified	the	amount	of	

LBP	or	sCD14	in	the	parenchymal	tissue;	thus	it	is	difficult	to	speculate	the	role	of	either	LBP	or	sCD14	as	

PRRs	in	the	brain	or	whether	they	share	the	same	functions	as	in	the	peripheral	system.	

A	lesser	studied	septin	that	is	known	to	bind	to	LPS	is	a	50kDa	protein	known	as	

bactericidal/permeability-increasing	(BPI)	protein	that	is	generated	and	stored	in	the	azurophilic	granules	of	

polymorphonuclear	leukocytes	[173].		BPI	is	thought	to	play	an	important	role	by	neutralizing	the	bioactive	

effects	of	LPS	by	binding	the	anionic	phosphate	groups	of	the	Lipid	A	moiety	to	the	cationic	structure	of	BPI	

[173].			BPI	has	a	high	affinity	for	LPS	monomers,	but	unlike	LBP,	BPI	lacks	the	ability	to	disperse	micellar	LPS	

aggregates—thus	implying	that	the	protective	effects	of	BPI	may	require	LBP	for	optimal	binding.		The	

presence	of	BPI	in	brain	tissue	or	CSF	has	not	been	reported	with	the	exception	of	one	study	that	used	a	

synthetic	form	of	BPI	known	as	recombinant	N-terminal	fragment	of	BPI	(rBPI23)	in	an	endotoxemia-induced	

model	of	meningitis	in	rabbits	[190].		Intracisternal	injection	of	meningococcal	endotoxin	resulted	in	high	

levels	of	TNF-α	and	serum	proteins	in	the	CSF—which	was	significantly	reduced	following	an	administration	

of	rBPI23	to	the	subarachnoid	cistern	[190].		Yet,	when	rBPI23	was	administered	intravenously	it	showed	no	

protection	[190].		Animals	treated	intervenously	with	rBPI23	showed	no	detectable	levels	of	rBPI23	in	the	

CSF	[190]—suggesting	that	BPI	may	not	be	capable	of	traversing	the	BBB	even	when	it	is	damaged	and	may	

not	play	a	role	in	neuroinflammation.	

b. Toll-like	Receptors	(TLR)	

The	toll-like	family	of	receptors	is	a	class	of	PRRs	first	identified	in	mammals	in	the	late	1990s.		As	of	

now	13	mammalian	receptors	have	been	identified—with	nine	of	the	receptors	being	functionally	conserved	

among	human	and	murine	species.		Capable	of	identifying	molecular	motifs	from	both	PAMPs	and	DAMPs,	the	

discovery	of	the	toll-like	receptor-4	(TLR-4)	was	awarded	the	Nobel	Prize	in	Physiology	or	Medicine	in	2011.		

In	1998,	two	independent	publications	confirmed	TLR4	as	the	putative	receptor	that	detects	LPS	and	

participates	in	intracellular	signaling	[191,	192].			Speculation	that	mCD14	most	likely	interacts	with,	at	the	

time,	a	putative	PRR	that	could	detect	LPS	originated	from	two	inbred	strains	of	mice	that	expressed	wild-

type	levels	of	mCD14	yet	were	incapable	of	generating	an	innate	immune	response	during	endotoxemia.		The	

mutations	thought	to	be	responsible	for	this	variation	were	identified	and	the	defective	genes	were	cloned,	
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confirming	that	hyporesponsiveness	to	LPS	on	C3H/HeJ	and	C57BL/10ScCr	mice	were	a	result	of	a	functional	

missense	mutation	and	a	null	mutation,	respectively,	in	the	gene	that	encodes	the	TLR-4	receptors	[193].		

Although	the	initial	hypothesis	regarding	the	LPS	PRR	was	incorrect,	today	we	know	that	CD14	plays	an	

integral	role	as	an	associated	protein	that	interacts	with	TLR-4	and	the	adapter	protein	MD-2	to	induce	LPS	

signaling	[194].			

TLR-4	is	usually	constitutively	expressed	on	the	surface	of	innate	immune	cells	where	it	is	complexed	

with	a	small	cysteine-rich	glycoprotein	called	MD-2	that	gets	bound	to	the	ectodomain	of	TLR-4	in	the	golgi	

apparatus—where	they	are	both	stored	for	easy	shuttling	to	and	from	the	cell	surface	membrane.			MD-2	has	

been	shown	to	be	capable	of	binding	directly	to	LPS	in	a	CD14-dependent	manner	to	induce	LPS	signaling	

[195].		In	vitro	and	in	vivo	studies	using	MD-2	ablated	mice	have	shown	that	MD-2	is	required	for	TLR-4-

mediated	LPS	binding	and	signaling	[194,	196].		Interestingly,	MD-2	is	also	released	in	the	serum	by	dendritic	

cells	in	a	soluble	form	(sMD-2)	which	is	also	thought	to	bind	to	LPS	and	associate	with	cells	that	express	TLR-

4	but	lack	MD-2	[197]—but	no	additional	studies	have	been	done	to	investigate	the	relevance	of	this	

phenomenon.		Endothelial	cells,	epithelial	cells,	vascular	smooth	muscle	cells,	fibroblasts	and	astrocytes	are	

thought	to	express	TLR-4	and	MD-2	but	are	devoid	of	mCD14,	suggesting	that	these	cells	only	undergo	LPS-

induced	activation	through	interaction	with	LPS	bound	to	sCD14.	

The	TLR-4	receptor	is	a	transmembrane	protein	that	has	leucine-rich	repeats	in	the	extracellular	domain	

responsible	for	ligation	with	the	assistance	of	associated	proteins	and	a	highly	conserved	Ig-like	cytoplasmic	

toll/interleukin-1	receptor	(TIR)	domain	responsible	for	downstream	intercellular	signaling	[198].		Upon	

ligation	with	LPS	the	TLR-4/MD-2/CD-14	complex	is	thought	to	undergo	dimerization	with	another	ligated	

TLR-4/MD-2/CD-14	complex	through	lipid	raft	shuttling	to	form	a	homodimer	that	undergoes	a	conformation	

change	that	triggers	the	LPS-induced	cell	signaling	transduction	at	the	TIR	domain	[198].		The	conformational	

activation	results	in	the	recruitment	of	the	adaptor	proteins	MyD88	by	PIP2	and	TIRAP,	allowing	MyD88	to	

binds	to	the	TIR	domain	of	TLR-4	receptor	[198].		Once	bound,	IRAK-4,	IRAK-1,	and	TRAF6	are	recruited	to	

the	receptor	where	IRAK-1	binds	to	the	death	domain	of	MyD88	[198].			IRAK-4	then	phosphorylates	IRAK-1	

where	it	complexes	with	TRAF6	and	dissociates	from	the	TLR-4	receptor	resulting	in	associations	with	TAK1,	

TAB1,	TAB2,	Ubc13	and	Uev1A,	which	together	activate	TAK1	to	phosphorylate	the	IKK	complex	and	MAP	
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kinases	[198].		Once	phosphorylated,	the	IKK	complex,	which	is	made	up	of	IKKα,	IKKβ,	and	NEMO/IKKγ,	

interacts	with	the	inactive	NFκB	and	IκBα	complex	to	phosphorylate	the	IκBα	inhibitor,	which	results	in	its	

ubiquitination	and	subsequent	proteasomal	degradation	[198].		Upon	IκBα	degradation	the	nuclear	receptor	

NFκB	translocates	to	the	nucleus	and	begins	transcribing	target	genes	until	IκBα	is	re-synthesized	to	re-

inhibit	NFκB—acting	as	a	negative-feedback	loop	[198].			

Phosphorylation	of	the	MAP	kinases	Jun	N-terminal	kinase	(JNK),	extracellular	signal-regulated	protein	

kinases	1	and	2	(ERK1/2)	and	P38	results	in	an	NFκB-independent	signaling	pathway	mediated	by	the	

transcription	factor	AP-1	[198].		For	instance,	JNK	activation	results	in	the	phosphorylation	of	c-Jun	and	ATF2,	

which	together	are	recruited	assembly	components	of	AP-1	that	once	formed	translocates	to	nucleus	and	

begins	transcribing	target	genes.		Together	both	NFκB	and	AP-1transcription	factors	are	responsible	for	the	

transcription	of	all	early	released	pro-inflammatory	cytokines	during	LPS-induced	TLR-4	signaling	[198].		

Interestingly,	a	MyD88-independent	pathway	has	been	identified	to	be	responsible	for	late	released	pro-

inflammatory	cytokines	that	occur	90	minutes	after	LPS	stimulation	[198].		Several	laboratories	have	

identified	that	upon	ligation	with	LPS,	TLR-4	receptors	are	internalized	to	either	the	golgi	apparatus	or	an	

early	endosome	within	60	minutes	after	stimulation	[198].			In	fact,	TLR-4	is	thought	to	be	ubiquitinated	and	

bound	to	the	endosomal	sorting	protein	Hrs	transported	into	a	clathrin-coated	early	endosome	by	Rab11a	

whereby	Dynamin	is	thought	to	mediate	the	budding-in	process	of	endocytosis	[199].		The	use	of	a	Dynamin	

antagonist	was	shown	to	block	the	endocytosis	of	TLR-4	and	showed	enhanced	My-D88-dependent	signaling	

while	completely	abolishing	MyD88-independent	signaling	[199].		These	findings,	along	with	the	kinetic	

profile	for	the	MyD88-dependent	signaling	pathway,	which	is	thought	to	terminate	well	before	the	

internalization	of	the	TLR-4	receptors,	suggest	that	the	MyD88-indenpendent	signaling	pathway	is	dependent	

on	TLR-4	internalization	[199].				

Briefly,	the	MyD88-independent	pathway	is	thought	to	occur	in	response	to	MyD88-dependent	signaling	

where	TRAM	is	thought	to	bind	to	the	TIR	domain	of	the	ligated	TLR-4	receptor	complex	and	recruit	TRIF	

once	internalized	in	the	early	endosome	[198].		The	activation	of	TRIF	leads	to	association	of	TBK1	through	

TRAF3	and	NAP1	mediating	the	phosphorylation	and	activation	of	the	transcription	factor	IRF-3	[198].		Once	

phosphorylated	IRF3	forms	a	homodimer	and	translocates	to	the	nucleus,	where	it	induces	IFN-β	and	Cxcl10	
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genes	expression	[198].		The	release	of	interferons,	which	is	unique	to	signaling	on	the	MyD88-independent	

pathway	of	TLR-4,	can	result	in	autocrine	signaling	that	activates	the	STAT1	transcription	factor	for	the	

induction	of	iNOS	and	NO	and	is	also	thought	to	promote	the	production	of	proinflammatory	cytokines	such	

as	IL-1β	and	IL-6	[198].		Beyond	having	impaired	interferon	and	IL-6	production,	TRAM-deficient	mice	also	

expressed	reduced,	delayed	NFκB	signaling	and	TNF-α	production	after	LPS	stimulation—suggesting	some	

cross	talk	between	the	My-D88-dependent	and	My-D88-independent	pathways	[200].	

Numerous	in	vivo	studies	in	rodents	and	humans	have	reported	that	microglia	express	the	TLR-4	

receptor—albeit	with	heterogeneity	in	the	level	of	expression	in	a	variety	CNS	compartments	[201]	and,	in	

one	case,	with	regards	to	the	cellular	compartment	localization	[202].			Furthermore,	in	vitro	studies	with	

enriched	microglial	cultures	or	microglioma	cell	lines	have	also	been	reported	to	express	the	TLR-4	receptor	

[203-212].		In	contrast,	the	expression	of	the	TLR-4	receptor	in	astrocytes	has	been	much	more	controversial.		

Although	several	groups	using	both	in	vitro	and	in	vivo	approaches	have	published	that	TLR-4	is	undetectable	

in	astrocytes	[205,	206,	213-216],	a	handful	of	studies	have	been	able	to	detect	constitutive	low-levels	of	TLR-

4	expression	that	increases	following	activation	[202,	217-220].		In	2005,	using	in	situ	hybridization,	

Chakravarty	and	Herkenham	demonstrated	that	TLR-4	mRNA	was	expressed	in	both	microglia	and	astrocytes	

yet	the	surface	expression	of	TLR-4	was	not	validated	[207].	

c. β2-integrin	receptors		

The	family	of	β2-integrin	receptors	is	involved	in	cell-to-cell	attachment	by	binding	and	adhering	to	

extra-cellular	matrix	(ECM)	components	on	the	outer	surface	of	cells.		β2-integrin	receptors	are	

transmembrane	glycoproteins	that	form	obligate	heterodimers	between	a	conserved	CD18	β-chain	and	

variable	CD11	α-chain.		The	variable	CD11	subunits	have	allowed	the	β2-integrin	receptors	to	be	classified	

into	three	types	of	receptors:	CD11a/CD18	(i.e.,	α1β2-integrin,	LFA-1	or	ITGAL);	CD11b/CD18	(i.e.,	α2β2-

integrin,	CR3,	MAC-1	or	ITGAM);	and	CD11c/CD18	(i.e.,	α3β2-integrin,	CR4,	p150,95	or	ITGAX).		The	CD18	

subunit	of	all	three	receptors	is	known	to	bind	to	the	phosphorylated	glucosamines	of	the	lipid	A	and	O-

antigen	domain	of	LPS	[221],	suggesting	that	CD18	may	not	only	play	a	role	in	detecting	and	sequestering	

endotoxin	but	may	also	bind	to	LPS	aggregates	that	form	micelles	and	to	living	Gram-negative	bacteria.		

Interestingly,	a	high-dose	LPS	treatment	in	serum-free	media	(i.e.	not	containing	LBP	and	thus	preventing	
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TLR-4	signaling)	was	shown	to	still	act	on	CD11b/CD18,	suggesting	that	LPS	polymers	in	micelles	are	in	fact	

capable	of	inducing	signaling	[222].		Furthermore,	the	role	of	the	β2-integrin	receptors	to	bind	to	living	

bacteria	has	been	dually	confirmed	through	the	use	of	antibodies	against	CD18,	which	prevents	monocyte	

surface	binding	of	the	Gram-negative	bacterium	Escherichia	coli	[223],	and	additionally	in	monocytes	

extracted	from	patients	with	leukocyte	adhesion	deficiency	type	I	[224]	syndrome	(CD18-deficiency),	which	

are	unable	attach	to	LPS-bound	to	erythrocytes	or	unopsonized	Gram-negative	bacteria	[225].		As	previously	

mentioned,	the	β2-integrin	receptor	CD11b/CD18	was	the	first	described	LPS	receptor	[223],	but	further	

investigation	into	the	LPS	response	of	monocytes	obtained	from	patients	with	LADI	syndrome	showed	that	

CD18	was	not	required	for	the	generation	of	the	cytokines	TNF-α	and	IL-1β,	leading	to	the	discovery	of	CD14	

and	later	TLR-4	[226].	

The	cellular	attachment	of	immune	cells	to	bacteria	is	thought	to	be	a	key	component	of	phagocytosis	

and	bacterial	clearance.		For	this	reason	the	β2-integrin	receptors	were	hypothesized	to	be	involved	in	

phagocytosis	of	live	bacteria	and	bacterial	debris,	yet	unlike	true	phagocytic	receptors	expressed	

constitutively	by	professional	phagocytes,	phagocytosis	through	β2-integrin	receptors	either	requires	

complement-opsonization	of	the	target	or	extracellular	stimulatory	signals	such	as	chemokines,	cytokines	

and	PAMPs	to	activate	Rap1,	a	Ras-family	small	GTP-binding	protein,	that	accumulates	after	polarization	to	

activate	the	phagocytic	properties	of	β2-integrin	receptors	in	macrophages	[227].			CD11b/CD18	is	known	to	

play	an	essential	role	in	the	uptake	and	catabolism	of	complement-opsonised	bacteria.		Yet	upon	examining	

the	internalization	of	Alexa488-labeled	LPS	by	microglia	under	confocal	microscopy,	our	group	found	that	

pre-treatment	with	inhibitors	of	phagocytosis	(cytochalasin	D	or	fucoidan)	showed	no	difference	in	the	

internalization	of	LPS	in	CD11b/CD18	deficient	mouse	cultures	[222]—suggesting	that	CD11b/CD18	does	not	

play	a	role	in	the	phagocytosis	of	LPS.		In	contrast,	when	cells	were	treated	with	inhibitors	of	phagocytosis	

and	broad	scavenger	receptor	antagonist,	internalization	of	LPS	was	prevented	and	clearly	demonstrated	that	

scavenger	receptors	and	not	β2-integrin	receptors	are	involved	in	the	phagocytosis	of	LPS	[222].				

Beyond	just	attaching	to	ECM	components	and	LPS,	β2-integrin	receptors	are	also	thought	to	

stimulate	signal	transduction	by	phosphorylation	of	p38,	JNK-1,	JNK-2,	ERK-1	and	ERK-2	and	inducing	the	

translocation	of	NF-κB	to	the	nucleus	[228].		The	existence	of	another	PRR	that	was	capable	of	inducing	an	
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immune	response	and	releasing	an	oxidative	burst	of	superoxide	in	TLR-4	deficient	mice	when	treated	with	

high	concentrations	of	LPS	sparked	the	research	that	led	to	the	discovery	of	β2-integrin	receptor-mediated	

signaling.		LPS-treated	monocytes	that	were	pre-treated	with	antibodies	against	CD18,	CD11b	or	CD11c	had	

partially	attenuated	activation	[229,	230]—suggesting	the	involvement	of	β2-integrin	receptors	in	mounting	

an	innate	immune	response.		Perera	et	al.	(2001)	noted	that	CD11b/CD18,	CD14	and	TLR-4	were	all	required	

to	generate	optimal	induction	of	COX-2	and	both	IL-12	p70,	whereas	the	induction	of	TNF-α	(at	low	dose	LPS)	

and	ICSBP	and	IP-10	(at	high	dose	LPS)	required	only	CD14	and	TLR4	and	are	CD11b/CD18-independent	

[228].		Our	laboratory	published	that	LPS-treated	neuron-glia	cultures	from	CD11b/CD18	deficient	mice	

showed	attenuated	TNF-α	production,	diminished	DAnergic	neuronal	loss	and	a	complete	absence	of	

extracellular	superoxide	even	at	high	doses	of	LPS	(100	to	1000ng/ml)	[222].		A	later	study	confirmed	this	

intercellular	signaling	pathway	by	measuring	a	CD11b/CD18-dependent	and	TLR-4-independent	increased	

level	of	PI3K	that	in	turn	phosphorylates	p47phox	and	PIP3	triggering	their	translocation	from	the	cytosol	to	

membrane-bound	gp91phox	to	generate	superoxide	[231].		Although	the	intercellular	signaling	capacity	of	β2-

integrin	receptors	has	been	described,	the	signaling	of	LPS	by	the	cytoplasmic	domain	of	CD18	that	leads	to	

downstream	phosphorylation	of	PI3K	and	the	MAPK	family	have	yet	to	be	fully	resolved.		Although	microglia	

are	known	to	express	all	three	β2-integrin	receptors,	they,	like	most	macrophages,	predominantly	express	

CD11b/CD18,	whereas	astrocytes	are	thought	to	lack	these	receptors.		In	fact,	the	antibody	OX-42	that	shares	

an	epitope	in	both	CD11b	and	CD11c	is	commonly	used	as	a	selective	cellular	marker	to	identify	microglia	in	

brain	tissue.		

There	are	indications	that	the	β2-integrin	receptors	can	also	associate	with	the	TLR-4	receptor	in	the	

absence	of	CD14	to	induce	a	significantly	weaker	LPS-mediated	activation—a	mechanism	thought	to	be	

unfavorable	due	to	activation	kinetics	[228,	232].			Transient	associations	between	CD14	and	CD11b/CD18	

have	also	been	reported	in	response	to	LPS	stimulation	in	neutrophils	[233].		Although	these	associations	are	

speculative,	the	observation	that	NF-κB	translocation	and	MAPK	activation	are	depressed	in	both	CD14-	and	

CD11b/CD18-deficient	mice	and	completely	abolished	in	TLR-4-deficient	mice	implicate	that	all	three	PRRs	

are	necessary	to	elicit	an	optimal	and	complete	inflammatory	response	to	LPS	[228].	
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d. Scavenger	Receptors	

Scavenger	receptors	are	membrane-bound	or	soluble	proteins	that	bind	to	modified	low-density	

lipoproteins	to	induce	endocytosis	and	phagocytosis.		Six	different	classes	of	receptors	have	been	assigned	

according	to	differences	in	their	multi-domain	structures.		Class	A	scavenger	receptors	(SR-As)	are	

constitutively	expressed	transmembrane	glycoproteins	with	three	extracellular	C-terminal	cysteine-rich	

domains	expressed	on	the	surface	of	phagocytic	cells	thought	to	be	responsible	for	binding	polyanionic	

ligands	such	as	LPS	[234].		Two	functional	alternatively	spliced	variants	of	SR-As	have	been	identified	that	

vary	in	structure	but	share	the	conserved	cysteine-rich	binding	regions:	SR-AI	and	SR-AII.			

Lipid	IVA,	a	precursor	to	Lipid	A,	and	Lipid	A	can	bind	to	SR-As	resulting	in	their	internalization	without	

inducing	cellular	polarization	or	cytokine	production	[234]—thus	SR-As	are	considered	to	be	true	phagocytic	

receptors	similar	to	mannose	and	β	glucan	receptors.		LPS	binding	by	macrophages	are	significantly	reduced	

in	SR-A	deficient	mice	compared	to	wild-type	mice	and	are	more	susceptible	to	LPS-induced	endotoxemia	

with	enhanced	pro-inflammatory	cytokine	secretion	[235]—supporting	the	hypothesis	that	internalization	of	

LPS	by	SR-As	may	function	to	protect	the	body	by	removing	LPS	that	could	otherwise	stimulate	an	innate	

immune	response.			Microglia	are	known	to	express	both	SR-AI	and	SR-AII,	whereas	astrocytes	lack	these	

receptors	[236].		As	previously	mentioned,	the	internalization	of	Alexa488-labeled	LPS	by	microglia	was	

shown	to	be	exclusively	dependent	on	SR-As	and	was	further	confirmed	to	only	occur	in	microglia—when	

compared	to	neurons	[206],	astrocytes	[205,	237]	and	oligodendrocytes	[205].	

MARCO	is	another	SR-A	transcribed	from	a	different	gene	than	SR-AI	and	SR-AII.		MARCO	contains	a	

longer	collagenous	domain	and	completely	lacks	the	α-helical	coiled	coil	domain	shared	by	SR-AI	and	SR-AII.			

Although	MARCO	still	expresses	the	conserved	cysteine-rich	binding	regions	thought	to	be	involved	in	LPS	

binding,	studies	suggest	that	MARCO	cannot	bind	to	LPS	but	rather	to	unopsonized	Gram-negative	bacteria	

such	as	Escherichia	coli	and	Neisseria	meningitides—suggesting	the	existence	of	another	unidentified	Gram-

negative	extracellular	component	involved	in	binding.		LPS	is	known	to	induce	MARCO	transcription	by	

downstream	TLR-4	signaling,	providing	a	reliable	marker	for	macrophage	polarization.		In	the	CNS,	MARCO	is	

solely	expressed	on	microglia	and	not	astrocytes	and	commonly	used	as	a	measure	of	M2	polarization	in	



 

  

30	
	

microglia—an	activation	profile	that	results	in	depressed	pro-inflammatory	factor	release	and	increased	

phagocytosis.	

A	recent	publication	suggests	that	SR-A	is	required	for	proper	LPS-mediated	TLR4	signaling	by	

macrophages	[238].	In	the	study,	macrophages	were	treated	with	fucoidan	(an	SR-A	ligand)	prior	to	LPS	and	

the	investigators	found	greater	association	between	SR-A	and	TLR-4	(as	evaluated	with	

immunoprecipitation),	enhanced	phosphorylated	IκBα,	higher	activities	of	NF-κB,	and	overall	higher	

production	of	TNF-α	and	IL-1β		[238].		These	changes	were	not	evident	in	LPS-treated	macrophages	derived	

from	TLR-4	and	SR-A-deficient	macrophages	when	fucoidan	was	present	[238]—suggesting	that	both	TLR-4	

and	SR-A	must	be	present	for	proper	induction	of	NF-κB	in	LPS	signaling.		More	work	must	be	done	to	

validate	these	findings	with	regards	to	its	role	in	mediating	a	proper	innate	immune	response	to	LPS.	

3. The	Controversy	

As	described	in	the	previous	section,	microglia	are	well	equipped	to	detect	and	engulf	LPS	by	

constitutively	expressing	surface	TLR-4,	β2-integrin	and	scavenger	receptors.		In	contrast,	astrocytes	may	

possibly	express	TLR-4,	albeit	at	much	lower	expression	levels	than	microglia	and	in	an	environment	that	

normally	does	not	contain	sCD14	required	for	their	signaling,	and	do	not	express	either	β2-integrin	or	

scavenger	receptors.			For	this	reason,	the	role	of	astrocytes	as	innate	immune	cells	of	the	CNS,	and	not	as	

accessary	cells	that	participate	during	a	neuroimmune	response,	has	been	a	topic	of	debate	in	the	field	of	

neuroimmunology.			As	described	in	Saura	(2007),	the	controversy	arises	primarily	from	published	studies	

that	relied	on	stimulating	primary	enriched	‘astrocyte’	cell	cultures	known	to	contain	contaminating	

microglial	cells	with	LPS,	confounding	their	findings	and	either	solely	or	predominantly	attributing	the	PRR-

mediated	immune	responses	to	astrocytes	[239].			

a. Primary	Astrocyte	Cultures	

The	greatest	challenge	for	determining	the	innate	immune	functions	of	astrocytes	has	been	culture-

limited.		Although	in	vivo,	ex	vivo	(e.g.	slice	cultures),	and	mixed	cell	type	in	vitro	studies	produce	more	

physiologically	relevant	data,	it	is	also	important	to	understand	the	independent	roles	of	each	cell	type	of	the	

CNS.			In	order	to	accomplish	this,	astrocytes	must	be	isolated	and	enriched	to	reduce	confounding	variables	

from	other	cell	types.		For	this	reason,	primary	astrocyte	cultures	are	widely	used	to	study	the	role	of	
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astrocytes	to	innate	immune	stimulants.		Moreover,	primary	astrocytes	are	relatively	easy	to	culture	since	

they	acclimate	to	a	wide-range	of	in	vitro	conditions,	transdifferentiation	with	high	turnover	to	produce	high	

yields,	and	generate	highly	reproducible	results.				

Although	several	protocols	exist	to	date,	the	fundamental	methods	and	maintenance	conditions	have	not	

changed	much	since	they	were	first	established	in	1972	[240].			Briefly,	primary	murine	astrocyte	cultures	are	

prepared	by	initially	generating	mixed	glial	cultures	from	either	late	stage	embryos	(embryonic	day	19-23,	

depending	if	derived	from	rat	or	mouse)	or	young	neonates	(postnatal	day	0-3),	as	this	is	when	radial	glia	

rapidly	transdifferentiate	into	the	various	sub-populations	of	astrocytes	(i.e.	astrogenesis)	that	populate	the	

CNS	[241].		Most	protocols	harvest	glial	cells	from	cortical	tissue	because	it	harbors	high	density	of	astrocytes	

and	relatively	low	density	of	microglia,	thus	resulting	in	more	purified	cultures	after	enrichment	[78].		This	

tissue	is	usually	dissociated	mechanically	or	by	enzymatic	digestion	into	a	single	cell	suspension	composed	of	

69%	astrocytes	and	radial	glia,	9%	microglia	and	9%	oligodendrocyte	precursor	cells	[242].		These	cells	are	

plated	and	grown	in	more	or	less	the	same	serum-containing	growth	medium	at	37°C	in	a	humidified	

incubator	with	5%	CO2	in	air.		Mixed	glial	cultures	are	generally	grown	until	they	become	confluent	(~	7	to	14	

days,	depending	on	the	initial	seeding	density),	usually	ending	with	a	composition	of	85%	astrocytes	and	

radial	glia,	9%	microglia	(and	fibroblasts)	and	4%	differentiated	oligodendrocytes	and	their	precursors	

(unpublished).			Astrocyte	enrichment	is	usually	achieved	shortly	after	single	cell	suspension	or	after	

confluence	using	one	of	several	techniques	presented	in	Table	1.2.	

Table	1.2	Established	astrocyte	enrichment	protocols	and	their	purities.	
Astrocyte	‘Enrichment’	Method	Details	 Purity	 Source	
Shake-off	method	 90-96%	 [243]	
Shake-off	method	with	2-4	passages	 95-98%	 [244]	
Shake-off	method	with	AraC	after	confluence	 90-98%	 [245]	
Shake-off	method	with	LME	 96-98%	 [246]	
Shake-off	method	with	AraC	and	LME	 >99%	 [247]	
Shake-off	method	with	liposomal	clodronate	 >99%	 [248]	
Vigorous	wash	method	 >99%	 [249]	
Discontinous	percoll	gradient	method	 98%	 [250]	
FAC	Sorting	 98%	 [251]	
MAC	Sorting	 95%	 [242,	252]	
Shake-off	method	with	saporin	 >99%	 [253]	
Neural	stem	cell	differentiation	 >99%	 [254]	
Genetic	Microglial	Ablation	 ~100%	 [237]	
Immunopanning	method	 >99%	 [255]	
Genetic	Conditional	Microglial	Ablation	 >99%	 [220]	
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Although	each	method	goes	to	relatively	great	lengths	to	minimize	microglial	contamination,	no	

protocol	to	date	is	capable	of	generating	pure	astrocytes	cultures.		In	part,	one	of	the	greatest	design	flaws	of	

most	protocols	is	that	they	do	not	initiate	astrocyte	enrichment	methods	until	the	astrocyte	monolayer	

reaches	confluence.		One	particular	issue	with	waiting	so	long	is	that	a	small	number	of	microglia	become	

trapped	under	this	monolayer	(Figure	1.5)	as	astrocytes	rapidly	reach	confluence,	getting	shielded	from	

shaking	and	microglial-specific	toxicants	[239],	and	are	eventually	involved	in	rapidly	repopulating	surface	

microglia	[254].			It	is	for	this	reason	that	attempting	to	evaluate	the	true	immunological	role	of	astrocytes	is	

nearly	always	confounded	and	would	require	a	completely	microglia-free	condition	to	adequately	assess.			

	
Figure	1.5	This	image	clearly	shows	that	although	the	majority	of	microglia	assemble	on	the	surface	of	the	
astrocyte	monolayer,	the	microglia	highlighted	with	black	arrows	appear	to	be	below	this	monolayer.		These	
cells	were	visualized	by	using	CX3CR1-EGFP+/-	mice.	

Another	issue	also	arises	in	the	variable	subpopulations	of	astrocytes	found	in	each	culture.		Cultured	

astrocytes	are	categorized	as	either	type-1	astrocytes	that	form	a	tight	monolayer	at	the	bed	or	as	type-2	

astrocytes	which	grow	on	the	top	of	the	monolayer.			The	commonly	used	‘shake-off	method’	selectively	

generates	a	type-1	enriched	astrocyte	culture,	which	could	unknowingly	confound	the	results	of	a	study.		For	

these	reasons,	as	well	as	the	cost	of	live	animals,	many	have	attempted	to	circumvent	this	issue	by	using	

immortal	astroglioma	cell	lines—which	bring	their	own	issues	with	their	usage	including	ethical	questions	

regarding	their	origins	[256],	differential	quiescent	and	active	profiles	[257],	and	potential	impurities	due	to	

mycoplamsic	contaminations	or	mixtures	with	other	cell	lines	[258].	

b. Detecting	‘Cytotoxic’	Pro-inflammatory	Factors	

To	assess	whether	astrocytes	respond	to	LPS,	many	studies	have	focused	on	assessing	their	ability	to	

release	inflammatory	factors	such	as	the	cytokines	and	free	radicals.		These	markers	are	not	only	chosen	due	
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to	their	unequivocal	expression	in	LPS-stimulated	‘professional’	innate	immune	cells,	such	as	microglia,	but	

also	due	to	their	cytotoxicity	and	assumed	role	in	inflammation-mediated	neurotoxicity.		For	this	reason,	I	

will	focus	on	two	heavily	studied	inflammatory	factors	thought	to	be	released	from	‘enriched	astrocytes’	after	

LPS	stimulation:		the	cytokine	TNF-α	and	the	free	radical	nitric	oxide	(•NO).	

TNF-α	is	a	pro-inflammatory	cytokine	that	was	originally	described	as	a	pyrogen	(fever	inducer)	released	

during	sepsis	and	could	induce	systemic	apoptosis.		Today,	TNF-α	is	appreciated	as	a	cytokine	that	can	not	

only	generate	and	maintain	inflammation,	but	also	regulate	it.		It	is	mainly	produced	by	‘professional’	innate	

immune	cells,	such	as	microglia,	and	to	a	lesser	extent	astrocytes,	and	is	thought	to	be	neurotoxic	by	acting	on	

neuronal	TNF	receptor	1	to	silence	NF-κB		cell	survival	signals	and	promote	TRADD-FADD	binding	to	recruit	

cysteine	protease	caspase-8,	that	at	high	concentration	acts	by	autoproteolyticly	cleaving	itself	into	caspase-3	

to	signal	cellular	apoptosis	[259].			Although	this	signal	is	relatively	weak,	compared	to	other	pro-apoptotic	

signals	such	as	Fas,	the	chronic	low-grade	production	of	TNF-α	associated	with	chronic	neuroinflammation	

may	result	in	progressive	neurodegeneration.		New	studies	suggest	that	autocrine	signaling	of	TNF-α	by	

microglia	may	up-regulate	glutaminase-stimulating	microglia	to	release	excessive	glutamate,	causing	

excitoneurotoxicity	[260].		Interestingly,	although	it	was	shown	that	TNF-α	is	insufficient	to	account	for	all	of	

the	neurotoxicity	during	inflammation,	its	combination	with	pyrogallol,	a	superoxide	generating	compound,	

was	sufficient	[261]—suggesting	that	TNF-α	is	necessary	but	not	sufficient	to	induce	inflammation-mediated	

neurotoxicity.	

Extensive	search	of	the	literature	on	the	ability	of	primary	‘enriched	astrocytes’	to	release	TNF-α	after	

LPS	stimulation	was	not	conclusive	(Table	1.3).			Although	there	is	no	doubt	that	astrocytes	possess	the	

ability	to	generate	and	release	TNF-α,	the	main	question	is	whether	astrocytes	are	capable	of	generating	TNF-

α	upon	LPS	stimulation	and	not	as	a	result	of	a	secondary	signal—such	as	paracrine	signaling	by	TNF-α	from	

microglia	that	can	act	on	TNF-α	receptors	1	and	2	located	on	astrocytes	to	induce	their	own	TNF-α	

generation.		Only	two	studies	used	in	situ	hybridization	and	verified	that	astrocytes	either	lack	the	capacity	of	

directly	synthesizing	TNF-α	mRNA	upon	LPS	stimulation	or	only	express	TNF-α	mRNA	in	a	small	subset	of	

cells,	which	may	potentially	be	a	result	of	its	proximity	to	a	microglial	contaminant.	
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Table	1.6	Studies	investigating	if	astrocytes	treated	with	LPS	generate	TNF-α.	
Type	of	Culture	 Known	

Microglial	
Presence	

Detectable	
TNF-α	after	

LPS	

Astrocyte-
Colocalization	

Source	

Primary	Rat	Cortical	Astrocytes	 +	 +	 NA	 [262]	
Primary	Rat	Cortical	Astrocytes	 (-)	 +	 NA	 [263]	
Primary	Mouse	Whole	Brain	
Astrocytes		

+	 +	 NA	 [264]	

Secondary	Rat	Cortical	Astrocytes		 (-)	 +	 NA	 [265]	
Primary	Mouse	Cortical	Astrocytes	 +	 -	 -	 [266]	
Secondary	Rat	Cortical	Astrocytes	 (-)	 +	 NA	 [267]	
Secondary	Human	Fetal	Whole	Brain	
Astrocytes		

(-)	 -	 NA	 [268]	

Primary	Rat	Cortical	Astrocytes		 +	 +	 NA	 [269]	
Secondary	Human	Fetal	and	Adult	
Whole	Brain	Astrocytes	

+	 +	 +/-	 [270]	

Primary	Rat	Cortical	Astrocytes		 +	 +	 NA	 [217]	
Primary	Mouse	Cortical	Astrocyte		 +	 +	 NA	 [218]	
Primary	Mouse	Cortical	Astrocytes		 NA	 +	 NA	 [271]	
(-):	although	these	papers	claim	to	have	no	‘detectable	microglia’,	this	author	is	not	aware	of	any	protocol	to	date	that	
generates	pure	astrocyte	cultures	completely	absent	of	microglia.		NA:	not	applicable.	

•NO	is	generated	by	activated	macrophages,	endothelial	cells,	and	hepatocytes	whereby	it	is	rapidly	

transformed	into	various	reactive	nitrogen	intermediates	or	reactive	nitrogen/oxygen	intermediates	that	are	

thought	to	have	direct	microbicidal/tumoricidal	effects.		•NO	is	also	known	to	induce	localized	vasodilation,	

vascular	damage	and	increase	leukocyte	adhesion	and	infiltration	during	inflammatory	processes.		Upon	their	

activation,	both	microglia	and	astrocytes	generate	the	soluble	enzyme	inducible	nitric	oxide	synthase	(iNOS)	

which	catalyzes	L-arginine	to	form	•NO	in	the	extracellular	milieu.		Once	secreted,	gaseous	•NO	is	quickly	

oxidized	primarily	into	nitrite	(NO2-)	at	physiological	pH,	where	it	can	remain	stable	for	several	hours—and	

thus	can	be	measured	using	Greiss	reagent	as	an	accurate	proxy	for	the	generation	of	•NO.		The	co-

administration	of	L-N(G)-nitroarginine,	a	selective	inhibitor	of	NOS,	was	capable	of	rescuing	DAnergic	

neurons	from	LPS	in	vitro	and	in	vivo—implicated	that	•NO	or	its	intermediates	are	responsible	for	

inflammation-mediated	neurodegeneration	[272,	273].		Interestingly,	our	laboratory	has	published	similar	

findings	with	regards	to	the	generation	of	the	reactive	oxygen	species	superoxide	(O2•−)	by	NAD(P)H	oxidase	

(NOX).		The	co-administration	of	selective	NOX	inhibitors	and	the	use	of	NOX2-deficient	mice	were	also	able	

to	protect	DAnergic	neurons	from	LPS	in	vitro	and	in	vivo—suggesting	that	although	O2•−	and	•NO	may	be	

themselves	cytotoxic,	their	fused	reactive	nitrogen	intermediate	products	may	significantly	contribute	to	

inflammation-mediated	neurodegeneration.		Products	such	as	peroxynitrite	(ONOO−),	nitrite(•NO2),	and	
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dinitrogen	trioxide	(N2O3)	can	peroxidize	the	lipid	bilayer	or	pass	through	anion	channels	into	a	cell	to	

peroxidize	thiols,	amino	acid	residues,	DNA	bases,	and	antioxidants,	causing	excessive	cellular	damage.	

It	is	not	surprising	that	the	literature	on	the	ability	for	astrocytes	to	synthesize	iNOS	or	release	NO2-	after	

LPS	stimulation	was,	similar	to	TNF-α,	unclear	for	primary	‘enriched	astrocyte’	cultures	(Table	4).		Among	

the	studies	that	have	examined	this	question,	only	a	select	few	took	the	additional	steps	to	validate	that	iNOS	

was	co-localized	on	astrocytes	using	either	double-immunofluorescent	staining	of	iNOS	and	GFAP	or	in	situ	

hybridization	of	iNOS	mRNA	on	GFAP-positive	immunocytochemistry	stained	astrocytes.		Even	fewer	studies	

confirmed	that	the	iNOS	was	due	to	contaminating	microglial	cells	by	labeling	microglial	markers.		To	further	

emphasize	this	point,	we	discovered	that	even	our	own	laboratory	misinterpreted	its	findings	in	a	1996	

publication	with	regards	to	this	very	issue	[274].		The	publication	acknowledges	that	LPS-treated	‘enriched	

astrocyte’	cultures	rarely	double-stained	for	iNOS	and	GFAP	during	immunocytochemistry,	but	our	group	did	

not	take	the	additional	step	to	determine	if	the	iNOS-positive,	GFAP-negative	cells	were	in	fact	microglia—

which	can,	with	near	certainty,	be	identified	as	microglia	strictly	from	their	unmistakable	morphology	[274].		

In	2010,	our	group	published	a	paper	entitled	Astrogliosis	in	CNS	pathologies:		is	there	a	role	for	Microglia?	

where	we	speculated	that	the	activation	of	astrocytes	may	be	initiated	and	sustained	by	microglial	

activation—implicating	that	astrocytes	may	not	undergo	activation	by	direct	stimulation	to	their	innate	

immune	receptor,	but	instead	serve	as	accessory	cells	that	participate	during	a	neuroimmune	response.	

Table	1.3	Studies	investigating	if	astrocytes	treated	with	LPS	generate	NO2-	or	iNOS.	
Type	of	Culture	 Known	

Microglial	
Presence	

Detectable	
NO2-/iNOS	
after	LPS	

Astrocyte-
Colocalization	

Source	

Primary	Rat	Cortical	Astrocyte		 +	 -	 NA	 [275]	
Primary	Rat	Cortical	Astrocyte	 NA	 +	 NA	 [276]	
Primary	Rat	Cortical	Astrocyte		 +	 +	 NA	 [277]	
Primary	Rat	Cortical	Astrocyte	 +	 +	 +	 [278]	
Primary	Whole	Brain	Astrocyte		 +	 +	 +/-	 [274]	
Primary	Rat	Cortical	Mixed	Glia	 +	 -	 -	 [279]	
Primary	Rat	Cortical	Astrocyte		 (-)	 -	 NA	 [279]	
Primary	Rat	Cortical	Mixed	Glia	 +	 -	 -	 [280]	
Primary	Rat	Spinal	Cord	Astrocytes	 (-)	 +	 +	 [281]	
Primary	Mouse	Cortical	Mixed	Glia	 +	 -	 -	 [216]	
Primary	Mouse	Cortical	Astrocyte	 +	 +	 NA	 [218]	
Primary	Mouse	Cortical	Astrocyte	 +	 +	 -	 [282]	
Primary	Mouse	Cortical	Mixed	Glia	 +	 -	 -	 [239]	
Primary	Rat	Cortical	Astrocyte		 +	 +	 NA	 [271]	
(-):	although	these	papers	claim	to	have	no	‘detectable	microglia’,	this	author	is	not	aware	of	any	protocol	to	date	that	
generates	pure	astrocyte	cultures	completely	absent	of	microglia.	NA:	not	applicable.	
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c. Defining	the	True	Role	of	Astrocytes	in	Neuroinflammation	

The	true	role	of	reactive	astrogliosis	during	chronic	neuroinflammation	remains	a	mystery.		Many	still	

believe	that	astrocytes,	along	with	microglia,	play	a	predominantly	harmful	role	during	chronic	

neuroinflammation,	due	to	their	ability	to	generate	and	release	inflammatory	factors	that	are	themselves	

either	neurotoxic	or	partake	in	a	dysfunctional	modulation	of	vascular	tone,	leading	to	neurovascular	

uncoupling	by	restricting	blood	flow	and	influx	of	required	metabolites	[283].		Additionally,	LPS-activated	

astrocytes	show	inhibited	abilities	to	uptake	excess	glutamate	and,	therefore,	may	indirectly	perpetuate	

glutamate	neuroexcitotoxicity.			

In	contrast,	many	have	argued	that	astrocytes	serve	a	protective	role	during	inflammation.		The	first	line	

of	evidence	supporting	this	theory	came	in	1999,	when	a	group	developed	a	conditional	astrocyte	ablation	

model	that	could	selectively	destroy	activated	astrocytes	[164].		These	mice	endured	a	forebrain	stab	injury	

and	were	shown	to	have	delayed	wound	healing,	much	greater	and	more	persistent	leukocyte	infiltration,	

sustained	leaky	BBB,	and	neuronal	degeneration	from	neuroexcitotoxicity	(attenuated	by	glutamate	receptor	

inhibition)	[164].		Additional	studies	further	supported	these	findings,	suggesting	that	activated	astrcoytes	

actively	assist	in	protecting	the	CNS	during	injury.		In	addition,	it	is	known	that	LPS-stimulated	astrocytes	are	

capable	of	generating	a	variety	of	neurotrophins	that	can	help	mitigate	their	neurotoxicity	and	promote	

neuroprotection.		

Neurotrophins	are	a	family	of	secreted	growth	factors	that	regulate	processes	such	as	neuronal	survival	

and	differentiation;	neurite	outgrowth;	synaptic	formation	and	plasticity;	and	are	acute	modulators	of	

neuronal	function	through	receptor-mediated	intercellular	signaling	[284].		In	the	healthy	CNS,	

neurotrophins	are	predominantly	produced	by	neurons	(both	intracellularly	and	secreted)	and	to	a	lesser	

extent	by	glial	cells.		This	role	is	thought	to	shift	during	pathological	events,	whereby	neurons	suppress	their	

neurotrophin	production	and	astrocytes	aid	their	survival	by	secreting	neurotrophins.		In	midbrain,	

astrocytes	are	thought	to	generate	fibroblast	growth	factor-2	(FGF-2),	cerebral	dopamine	neurotrophic	factor	

(CDNF),	brain-derived	neurotrophic	factor	(BDNF),	glial	cell	line-derived	neurotrophic	factor	(GDNF),	nerve	

growth	factor	(NGF),	and	neurotrophin-3	(NT-3)	through	their	activation,	mediated	through	monoaminergic	

neurotransmitter	and	cytokine	receptors.		
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Among	these	factors,	GDNF	and	BDNF	stand	out	as	the	factors	known	to	induce	the	most	significant	

neuroprotection	in	the	nigrostriatal	system—even	at	miniscule	doses	[285].		Upon	secretion,	GDNF	and	BDNF	

bind	to	either	GFRα1	or	TrkB	and	p75,	respectively—receptors	expressed	on	neurons	and	glial	cells.		

Although	the	neuroprotective	effects	of	GDNF	and	BDNF	are	in	part	associated	with	their	direct	interaction	

with	neurons,	recent	findings	also	show	that	they	may	indirectly	protect	neurons	by	modulating	microglial	

activation	and	suppressing	neuroinflammation	[286].	For	instance,	the	administration	of	exogenous	GDNF	to	

midbrain	organotypic	culture	inhibited	LPS-induced	microglial	activation	and	•NO	production	[287].		

Furthermore,	our	laboratory	has	shown	that	some	widely	prescribed	anticonvulsant	and	histone	deacetylase	

inhibitor	drugs	have	‘off-label’	functions	that	can	protect	dopaminergic	neurons	during	LPS-induce	

neuroinflammation	by	increasing	the	expression	of	both	GDNF	and	BDNF	in	astrocytes	and	reducing	

microglial	activation	[288].		Together	these	studies	suggest	that	upon	activation,	astrocytes	most	likely	play	a	

far	more	important	role	regulating	inflammation	and	reducing	neuronal	injury	than	partaking	in	their	

collateral	damage.
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RESEARCH	AIMS	

	

The	overall	goal	of	this	research	was	to	determine	if	astrocytes	can	independently	generate	an	innate	

immune	response	to	LPS	stimulation.		An	investigation	of	LPS	exposure	on	highly-enriched	astrocyte	cultures	

greatly	reduces	the	confounding	factors	associated	with	microglial	contamination,	allowing	for	more	accurate	

discrimination	of	the	attributable	roles	of	astrocytes	in	the	innate	immune	response.		My	thesis	research	was	

to	investigate	the	effects	of	contaminating	microglia	in	primary	astrocyte	cultures	on	the	hypothesis	that	

astrocytes	require	the	presence	of	microglia	to	produce	an	innate	immune	response	to	LPS	and	that,	

upon	activation,	generate	a	response	that	is	more	beneficial	than	hurtful.			

	

This	hypothesis	was	addressed	through	the	following	research	aims:	

	

Aim	I	 Investigate	the	innate	immune	response	to	LPS	on	highly	enriched	astrocyte	cultures	by	measuring	

their	capacity	to	release	TNF-α	and	NO2-	or	synthesize	iNOS	

Aim	II	 Investigate	the	interactive	role	of	contaminating	microglia	in	the	response	of	astrocytes	to	generate	

the	aforementioned	factors	in	response	to	LPS	stimulation	

Aim	III	 Investigate	the	neurotrophic	response	of	astrocytes	in	response	to	LPS	and	their	potential	interactive	

roles	with	microglia
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CHAPTER	2:	RESULTS	AND	DISCUSSION	

	

Note:	This	Chapter	was	prepared	in	manuscript	format	and	submitted	and	accepted	as	a	peer-reviewed	
publication	in	the	journal	Glia.	

	

Deciphering	the	Roles	of	Astrocytes	and	Microglia	in	LPS-mediated	Neuroinflammation	

	

Overview	
Contamination	of	microglia	in	primary	enriched	astroglial	cultures	is	usually	discounted,	but	

accumulating	evidence	suggests	that	even	a	small	percent	of	microglia	are	sufficient	to	misinterpret	the	

results	of	a	study.	By	developing	a	modified	highly-enriched	astroglial	culture	protocol,	we	demonstrate	that	

LPS	failed	to	induce	the	synthesis	and	release	of	TNF-α	and	iNOS/NO	in	astroglia.	Reconstituting	microglia	

back	into	highly-enriched	astroglial	cultures	show	that	as	few	as	0.5%	and	1%	microglial	contamination	can	

produce	significantly	detectable	expression	of	TNF-α	and	iNOS,	respectively,	upon	stimulation	with	LPS.	

Surprisingly,	microglial-astroglial	interactions	are	required	for	LPS	to	induce	the	expression	of	

proinflammatory	and	neurotrophic	factors	from	astroglia.		Specifically,	we	found	that	microglia-derived	

soluble	factors,	particularly	TNF-α,	play	a	pivotal	role	as	a	paracrine	signal	to	regulate	the	release	of	GDNF	by	

astroglia.	Although	astroglia	are	capable	of	releasing	both	cytotoxic	and	neurotrophic	factors,	our	findings	

show	that	astroglia	tend	to	serve	a	neuroprotective	role	during	neuroinflammation.		Taken	together,	these	

findings	suggest	that	astroglia	may	not	possess	the	ability	to	directly	recognize	innate	immune	stimuli,	but	

rather	depend	on	glial	cross-talk	to	elicit	their	role	as	a	counterbalance	over	microglial	activation	and	support	

neuronal	survival	for	a	complete	immune	response.	These	results	caution	that	even	a	minor	contamination	of	

microglia	may	account	for	the	detectable	proinflammatory	factors	in	astroglial	cultures.
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Introduction	

In	the	central	nervous	system	(CNS),	the	detection	and	subsequent	inflammatory	response	to	

perturbations	from	cellular	stress,	damage	or	death,	abnormal	protein	aggregates,	and	xenobiotic	infiltration	

are	thought	to	be	initiated	by	both	microglia	and	astroglia	[132,	159,	289-293].	Although	microglia	and	

astroglia	are	commonly	described	as	the	resident	innate	immune	cells	of	the	CNS,	only	microglia	are	

considered	“professional”	immune	cells	due	to	their	myeloid	lineage.	The	evidence	that	astroglia	play	a	key	

role	during	neuroinflammation,	adaptive	immune	cell	recruitment,	and	tissue	repair	is	inarguable;	however,	

recent	findings	question	whether	astroglia	are	cable	of	independently	detecting	a	variety	of	inflammogens	to	

stimulate	their	activation	[220].			

The	controversy,	as	addressed	in	a	review	by	Saura,	stems	from	numerous	publications	reporting	an	

inflammatory	response	in	primary	enriched	astroglia	cultures—contaminated	with	anywhere	from	0.5%	to	

10%	microglial	cells—using	the	archetypical	bacterial	inflammogen	lipopolysaccharide	(LPS)	[239,	276,	294,	

295].		The	working	theory	is	that	a	few	microglia	are	capable	of	generating	a	detectable	inflammatory	

response	that	serve	as	secondary	messengers	to	mediate	the	activation	of	astroglia,	which,	if	left	

unaddressed,	can	confound	the	conclusions	of	a	study.	This	paracrine	signaling	and,	to	a	lesser	extent,	the	

cell-to-cell	contact	between	microglia	and	astroglia	may	play	an	important	role	not	only	in	reciprocal	

activation	state	regulation	but	in	mediating	a	proper	inflammatory	response	to	a	wide-variety	of	insults	[294,	

296,	297].	Although	still	controversial,	mounting	evidence	now	suggests	that	pro-inflammatory	factors,	such	

as	TNF-α	and	nitric	oxide	radical	(NO),	once	thought	to	be	released	by	astroglia	upon	stimulation	with	LPS,	

are	now	thought	to	be	predominantly	attributed	to	microglial	contamination	and	may	serve	as	the	

aforementioned	paracrine	signals	that	activate	astroglia	[294,	298].	This	misattribution	challenges	a	potential	

misconception	that	reactive	astrogliosis	generates	high	levels	of	cytotoxic	factors,	resulting	in	their	

deleterious	role	towards	neurons	during	chronic	neuroinflammation	rather	than	a	beneficial	one	[293].		

The	main	purpose	of	this	study	was	to	accurately	discriminate	the	attributable	roles	of	astroglia	in	

the	innate	immune	response	to	LPS	and	to	further	understand	the	role	of	astrogliosis	in	neuroinflammation.		

To	reduce	the	confounding	factors	associated	with	microglial	contamination,	we	developed	a	highly-enriched	

astroglial	culture	protocol	containing	less	than	0.005%	microglial	contamination.		Here,	we	report	that	LPS	
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failed	to	induce	the	expression	of	TNF-α	and	nitrite	(NO2-)	in	highly-enriched	astroglial	cultures,	but	instead	

required	soluble	factors	from	activated	microglia	to	generate	a	weak	pro-inflammatory	response.		In	

assessing	the	role	of	microglia-mediated	astrogliosis,	we	found	that	the	neuroprotective	effect	of	glial	cell	

line-derived	neurotrophic	factor	(GDNF)	released	by	astroglia	outweigh	their	capacity	to	release	cytotoxic	

factors,	implicating	a	beneficial	role	for	astrogliosis.		Most	importantly,	we	observed	that	the	release	of	GDNF	

from	astroglia	was	dependent	on	the	paracrine	signaling	of	TNF-α	released	by	activated	microglia	suggesting	

the	importance	of	glial	cross-talk	during	LPS-induced	neuroinflammation.	

Materials	and	Methods	

Animals:	Timed-pregnant	(gestational	day	14)	female	Fisher	344	rats	were	purchased	from	Charles	River	

Laboratories	(Raleigh,	NC,	USA).	Timed-pregnant	C57BL/6J	and	B6.129S-Tnftm1Gkl/J	(TNF-α	deficient)	mice	

were	bred	by	the	animal	husbandry	staff	at	NIEHS	using	breeders	obtained	from	Jackson	Laboratories	(Ben	

Harbor,	ME,	USA).	TNF	R1/R2	knockout	mice	were	kindly	gifted	from	Dr.	Perry	Blackshear	at	the	National	

Institute	of	Environmental	Health	Sciences.	Rat	and	mouse	dams	were	housed	in	polycarbonate	cages	in	

animal	facilities	with	controlled	environment	conditions	with	a	12	h	artificial	light-dark	cycle	and	provided	

fresh	deionized	water	and	NIH	31	chow	ad	libitum.	All	animal	procedures	were	approved	by	the	Institutional	

Animal	Care	and	Use	Committee	and	conducted	in	strict	accordance	with	the	National	Institutes	of	Health	

animal	care	and	use	guidelines.	

Reagents:		Poly-D-lysine,	cytosine	β-D-arabinofuranoside	(Ara-c),	L-leucine	methyl	ester	(LME)	and	3,3´-

diaminobenzidine	and	urea-hydrogen	peroxide	tablets	were	purchased	from	Sigma-Aldrich	(St.	Louis,	MO,	

USA).	Lipopolysaccharide	(LPS;	E.	coli	strain	O111:B4)	was	purchased	from	Calbiochem	(San	Diego,	CA,	USA).	

Cell	culture	ingredients	were	obtained	from	Life	Technologies	(Grand	Island,	NY,	USA).	Suberoylanilide	

hydroxamic	acid	was	purchased	from	Cayman	Chemical	(Ann	Arbor,	MI,	USA).	Anti-GFAP	and	antibody	

diluent	were	purchased	from	DAKO	(Carpinteria,	CA,	USA).	Anti-Iba1	antibody	was	purchased	from	Wako	

Pure	Chemicals	(Richmond,	VA,	USA).	Anti-iNOS	antibody	was	purchased	from	Abcam	(Cambridge,	MA,	USA).	

TNF-α	ELISA	kit	and	Anti-GDNF	and	isotype	control	antibodies	were	purchased	from	R&D	Systems	

(Minneapolis,	MN,	USA).	Alexa	Fluor	488	goat	anti-rabbit	IgG	and	Alexa	Fluor	594	goat	anti-rabbit	IgG	were	
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purchase	from	Invitrogen	(Carlsbad,	CA,	USA).	Goat	anti-rabbit	biotinylated	secondary	antibody	was	

purchased	from	Vector	Laboratory	(Burlingame,	CA,	USA).	

Primary	cortical	mixed	glia	and	highly-enriched	astroglial	cultures:	Primary	cortical	mixed	glia	(M/G)	cultures	

were	prepared	from	rat	pup	brains	at	postnatal	day	1-3,	as	previously	described	[299].	Briefly,	the	cortices	

were	isolated,	the	meninges	and	blood	vessels	removed,	the	tissue	gently	dissociated	through	trituration	and	

the	single	cell	suspension	plated	on	either	6-well	plates	or	24-well	plates	pre-coated	in	poly-D-lysine	(20	

µg/ml)	at	1×106	cells/well	or	1×105	cells/well,	respectively.	Cells	were	maintained	in	DMEM-F12	(1:1)	media	

supplemented	with	10%	heat-inactivated	fetal	bovine	serum	(FBS),	2	mM	L-glutamine,	1	mM	sodium	

pyruvate,	100	μM	non-essential	amino	acids,	50	U/ml	penicillin,	and	50	μg/ml	streptomycin.	Media	was	

refreshed	every	3	days	until	they	were	experimentally	treated	7	days	after	seeding.	Highly-enriched	primary	

cortical	astroglial	cultures,	were	prepared	using	a	modified	protocol	[300].	Highly-enriched	astroglial	

cultures	were	derived	from	M/G	cultures	by	supplementing	1	mM	of	L-leucine	methyl	ester	(LME)	to	the	

DMEM-F12	media	72	hours	after	seeding.	Highly-enriched	astroglial	cultures	were	experimentally	treated	at	

5-7	days	after	LME	treatment.	Immunocytochemistry	revealed	M/G	cultures	contained	~15%	microglia	(Iba-

1-immunoreactive	cells),	whereas	highly-enriched	astroglia	cultures	contained	less	than	0.005%	microglia.	

Microglia-enriched	cultures:		Microglia-enriched	cultures	were	prepared	from	primary	M/G	cultures	as	

previously	described	[299].	Briefly,	M/G	cultures	were	plated	on	150	cm3	flasks	pre-coated	in	poly-D-lysine	

(20	µg/ml)	at	5	×	107	cells/flask.	Microglia-enriched	cultures	were	maintained	in	DMEM-F12	media	changed	

every	three	days	for	two	weeks.	At	two	weeks,	microglia	were	shaken	off	with	an	Incubator	Orbital	Shaker	at	

180	rpm	for	40	minutes	and	re-plated	either	on	24-well	plates	pre-coated	in	poly-D-lysine	(20	µg/ml)	at	

5×105	cells/well	for	the	collection	of	microglia	conditioned	media	or	added	to	highly-enriched	astroglia	

cultures	for	reconstitution	studies.	Immunocytochemistry	revealed	microglia-enriched	cultures	contained	

less	than	1%	contamination	of	astroglia	(GFAP-immunoreactive	cells).	

Neuron-glia	and	reconstituted	neuron-microglia	cultures:		Rat	mesencephalic	neuron-glia	cultures	were	

prepared	following	the	protocol	as	described	previously	[299].	Briefly,	midbrain	tissues	were	dissected	from	

day	14	embryos,	and	then	gently	triturated	into	single	cell	suspension.	Cells	were	then	seeded	(5	×	105	
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cells/well)	in	poly	D-lysine	(20	µg/ml)	(Sigma-Aldrich,	St.	Louis,	MO)	precoated	24-well	plates.	Forty-eight	

hours	post-seeding,	8-10	µM	of	cytosine	β-D-arabinofuranoside	was	added	to	cultures.	After	3	days,	media	

containing	Ara-c	were	removed	and	replaced	with	fresh	media.	The	neuron-enriched	cultures	were	>	98%	

pure.	Microglia	cells	were	prepared	from	the	brains	of	1-day-old	rat	pups	using	the	protocol	described	

previously	[299].	Briefly,	meninges	and	blood	vessels	were	removed,	and	brain	tissues	were	triturated	and	

seeded	(5	×	107	cells)	in	150	cm3	flasks.	Media	were	changed	every	three	days	for	two	weeks.	After	two	

weeks,	microglia	cells	were	shaken	off	from	the	confluent	cell	monolayer	and	plated	on	top	of	the	neuron-

enriched	culture	described	above	(80%	neurons	and	20%	microglia).	The	neuron-microglia	cultures	were	

treated	24	hours	after	microglia	were	added.	

	

Cell-line	cultures:		Mycoplasma-free	rat	C6	astrocytoma	cells	were	maintained	in	DMEM	supplemented	with	

10%	FBS,	50	U/ml	penicillin,	and	50	μg/ml	streptomycin.	Cells	were	split	on	T75	flasks	and	used	for	

experiments	at	passages	3–5,	where	they	were	seeded	on	24-well	plates	at	1x105	cells/well	and	treated	24	

hours	later.	

	

Immunofluorescence	and	immunocytochemical	staining:		For	immunofluorescence,	M/G	and	highly-enriched	

astroglia	cultures	were	fixed	with	3.7%	formaldehyde	in	phosphate-buffered	saline	(PBS)	for	20	minutes	and	

incubated	for	20	minutes	with	blocking	solution	(BSA	1%/Triton	X-100	0.4%/Normal	Goat	Serum	4%	in	

PBS).	Cells	were	immunostained	overnight	at	4°C	with	either	rabbit	polyclonal	antibody	against	Iba-1	(1:750)	

or	with	rabbit	polyclonal	antibody	against	GFAP	(1:1000)	diluted	in	Antibody	Diluent.	Cells	were	washed	for	

10	minutes	in	PBS	(three	times)	and	incubated	overnight	at	4°C	with	mouse	monoclonal	antibody	against	

iNOS	(1:	250).	Cells	were	washed	for	10	minutes	in	PBS	(three	times)	and	incubated	for	2	hours	with	the	

secondary	antibodies	Alexa	Fluor	488	goat	anti-rabbit	IgG	(1:750),	Alexa	Fluor	594	goat	anti-rabbit	IgG	

(1:750)	or	Alexa	Fluor	594	goat	anti-mouse	IgG	(1:750).	Cells	were	washed	for	10	minutes	in	PBS	(three	

times)	and	visualized	under	microscope	(Nikon,	model	ECLIPSE	TE3000,	Garden	City,	NY,	USA)	connected	to	

AxioCam	MRm	camera	operated	with	AxioVision	software	(Carl	Zeiss,	Thornwood,	NY,	USA).	
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For	microglial	quantification	using	immunohistochemistry,	fixed	cultures	were	treated	with	1	%	

hydrogen	peroxide	for	10	minutes,	immunostained	overnight	with	Iba-1	antibody	and	incubated	for	1	hour	

with	PBS	containing	0.3%	Triton	X-100	and	a	biotinylated	secondary	antibody	(goat	anti-rabbit	antibody,	

1:227;	Vector	Laboratory,	Burlingame,	CA).	After	washing	(three	times)	with	PBS,	the	cultures	were	

incubated	for	1	hour	with	the	Vectastain	ABC	reagents	(Vector	Laboratory,	Burlingame,	CA)	diluted	in	PBS	

containing	0.3%	Triton	X-100.	To	visualize	the	signal,	the	cultures	were	incubated	with	3,3´-

diaminobenzidine	and	urea-hydrogen	peroxide	tablets	dissolved	in	water.	Iba-1	positive	cells	were	manually	

counted	under	a	microscope	(Nikon,	model	DIAPHOT,	Garden	City,	NY,	USA)	by	at	least	two	investigators	and	

the	results	were	averaged.		

	

RNA	analysis:		Total	RNA	was	extracted	from	cultures	with	RNeasy	Minikit	(Qiagen,	Valencia,	CA)	and	reverse	

transcribed	with	an	oligo	dT	primer.	Real-time	PCR	amplification	was	performed	using	SYBR	Green	PCR	

Master	Mix	and	an	ABI	7900	HT	Sequence	Detection	System	according	to	manufacturer’s	protocols	(Applied	

Biosystems,	Foster	City,	CA,	USA).	The	primers	were	designed	using	Vector	NTI	software	(v.11,	Invitrogen,	

Carlsbad,	CA,	USA)	and	validated	for	efficacy	through	melting	curve	analyses.	Table	2.1	contains	the	primer	

sequences	used	to	amplify	the	mRNA	of	each	target	genes.			

Table	2.1	Target	genes	and	their	respective	mRNA	primer	sequences.	
Primer	 GeneBank	ID	 Sequence	(5’→3’)	
Rat	Iba-1	 	
	

NM_017196	 TTT	CTG	AGT	TGC	CCT	AAT	TGG	AG		(forward)	
GCT	GTC	ATT	AGA	AGG	TCC	TCG	G		(reverse)	

Rat	iNOS	 NM_012611	 GAG	TGA	GGA	GCA	GGT	TGA	GGA	TTA	C	(forward)	
AGG	AAA	AGA	CCG	CAC	CGA	AG	(reverse)	

Rat	TNFα	 NM_012675	 CCA	GAC	CCT	CAC	ACT	CAG	ATC	ATC	(forward)	
CCT	CCG	CTT	GGT	GGT	TTG	CT	(reverse)	

Rat	GDNF	 NM_019139	 CAG	AGG	GAA	AGG	TCG	CAG	AGG	(forward)	
TAG	CCC	AAA	CCC	AAG	TCA	GTG	(reverse)	

Rat	BDNF	 NM_012513	 CGA	TGC	CAG	TTG	CTT	TGT	CTT	C	(forward)	
AAG	TTC	GGC	TTT	GCT	CAG	TGG	(reverse)	

Mouse	GDNF	 NM_010275	 GGC	TGA	CCT	TGA	ACT	TAC	TGC	TTG	(forward)	
CCT	GTG	GAT	ACG	GTG	TGA	TTG	AT	(reverse)	

Mouse/Rat	GAPDH	
(internal	control)	

NM_008084	
NM_017008	

TTC	AAC	GGC	ACA	GTC	AAG	GC		(forward)	
GAC	TCC	ACG	ACA	TAC	TCA	GCA	CC		(reverse)	
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Amplification	conditions	were	95°C	for	10	seconds,	55°C	for	30	seconds,	and	72°C	for	30	seconds	for	40	

cycles.	All	samples	were	tested	in	triplicate	from	at	least	three	independent	experiments	and	normalized	with	

GAPDH	using	the	2-ΔΔCt	method.				

Measuring	the	release	of	Nitrite	and	TNF-α:		The	release	of	•NO	was	assessed	by	measuring	the	accumulated	

levels	of	nitrite	(NO2-)	using	50	µl/well	of	culture	supernatants	through	an	assay	performed	with	the	addition	

of	Griess	reagent,	as	described	previously	[301].	The	release	of	TNF-α	was	measured	from	culture	

supernatant	with	a	commercial	enzyme-linked	immunosorbent	assay	(ELISA)	kit	from	R&D	Systems,	in	

accordance	to	the	manufacturer’s	instructions.	Culture	supernatant	was	collected	at	3	and	24	hours	after	

treatment	for	TNF-α	and	nitrite	assays,	respectively.	Both	colorimetric	assays	were	quantified	using	a	

SPECTAmax	PLUS	384	spectrophotometer	(Molcular	Devices,	Sunnyvale,	CA,	USA).	

Functional	Assessment	of	DA	Neurons	using	[3H]-DA	Uptake	Assay:		The	ability	of	dopaminergic	neurons	to	

uptake	dopamine	has	served	as	a	good	indicator	of	the	health	and	viability	of	these	neurons—correlating	

nicely	with	immunocytochemical	counts	of	TH-immonoreactive	neurons.		Briefly,	this	functional	assessment	

(detailed	in	[301])	measures	the	rate	of	uptake	of	radiolabeled	dopamine	for	21	minutes	at	37°C.		Nonspecific	

dopamine	uptake	was	also	observed	by	competitively	inhibiting	dopamine	receptor	uptake	with	mazindol.		

Cells	were	washed	and	lysed	to	release	internalized	radiolabeled	dopamine	that	was	quantified	with	a	liquid	

scintillation	counter	(Tri-Carb	4000;	Packard,	Meriden,	CT).	Specific	dopamine	uptake	by	dopaminergic	

neurons	was	calculated	by	subtracting	the	amount	of	radioactivity	observed	in	the	presence	of	mazindol	from	

that	observed	in	the	absence	of	mazindol.	

Statistics:		Data	are	presented	as	the	mean	±	SEM.	Comparison	of	more	than	two	groups	were	performed	

using	one-way	ANOVA	followed	by	Bonferroni’s	post-hoc	multiple	comparison	test.		Comparisons	of	more	

than	two	parameters	were	performed	by	two-way	ANOVA	analysis	followed	by	Bonferroni’s	post-hoc	

multiple	comparison	test.	Data	were	analyzed	using	Prism	(v6.00,	GraphPad,	San	Diego,	CA).	P-values	less	

than	or	equal	to	0.05	were	considered	statistically	significant.	
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Results	

Highly-enriched	astroglia	cultures	were	prepared	with	L-Leu	methyl	ester	(LME)	

Traditional	methods	for	enriching	astroglia	have	attempted	to	remove	contaminating	microglia	

through	prolonged	orbital	shaking	coupled	with	multiple	generations	of	passaging	or	the	use	of	antimitotic	

drugs	and/or	selective	microglial	toxicants	resulting	in	cultures	with	1-5%	microglial	contaminations	[300,	

302,	303].	Since	as	little	as	1%	of	contaminating	microglia	have	been	shown	to	confound	the	results	of	a	study	

[304],	our	group	developed	highly-enriched	astroglial	cultures	by	initiating	LME	treatment	(0.6-1	mM)	three	

days	after	seeding—prior	to	the	formation	of	a	confluent	monolayer	in	M/G	cultures.	Upon	reaching	

confluence,	cultures	were	examined	for	contaminating	microglia.	Immunofluorescent	staining	for	the	

astroglial	marker	GFAP	and	microglial	marker	Iba-1	showed	a	significant	reduction	in	Iba-1-immunoreactive	

cells	with	increasing	concentrations	of	LME	and	the	morphology	of	astroglia	was	not	altered	after	LME	

treatment	(Figure	2.1A).	Contaminating	microglia	were	more	sensitively	quantified	by	examining	Iba-1	

mRNA	levels	of	M/G	cells	treated	with	1	mM	of	LME,	which	only	expressed	0.36	±	0.1	%	of	the	transcripts	

expressed	by	M/G	cultures	(P	<	0.001;	Figure	2.1B).	Moreover,	using	immunocytochemical	staining,	Iba-1-

immunoreactive	cells	were	directly	counted	as	a	percent	of	the	total	cells,	whereby	M/G	and	M/G	with	0.6,	

0.8,	and	1	mM	of	LME	cultures	have	13.46	±	0.98,	2.69	±	0.58,	0.08	±	0.01,	and	0.004	±	0.001%	microglia,	

respectively.	These	results	indicated	that	M/G	cultures	treated	with	1	mM	of	LME	were	nearly	entirely	absent	

of	contaminating	microglia	and	did	not	significantly	recover	their	microglial	populations	until	7	days	after	

LME	was	removed	(Figure	2.1C).		
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Figure	2.1	Assessment	of	contaminating	microglia	in	highly-enriched	astroglial	cultures.		(A)	Three	days	after	
seeding,	primary	rat	M/G	cultures	were	treated	with	various	concentrations	of	LME	(0.6	to	1	mM)	for	3-4	
days.	Cultures	underwent	immunofluorescence	staining	using	antibodies	against	GFAP	(green,	for	astroglia)	
and	Iba-1(red,	for	microglia).	Scale	bar:	50	μm.	(B)	Real-time	PCR	assay	for	Iba-1	mRNA	in	M/G	and	M/G	with	
1	mM	LME.	(C)	LME	(initially	at	1	mM)	was	removed	from	highly-enriched	astroglial	cultures	and	counted	
several	days	after	removal	to	assess	the	repopulation	of	contaminating	microglia	using	immunocytochemical	
staining	for	Iba-1-immunoreactive	cells.	Values	represent	mean	±	SEM	from	three	independent	experiments,	
with	duplicates	in	each	experiment.	***	P	<	0.0001,	Bonferroni’s	t-test	compared	to	Day	0.			

Highly-enriched	astroglial	cultures	maintained	functional	integrity	in	response	to	suberoylanilide	hydroxamic	

acid	(SAHA)	

To	insure	that	treatment	with	1	mM	LME	did	not	functionally	damage	astroglia,	we	assessed	their	

ability	to	produce	neurotrophic	factors.	Previously	we	reported	that	histone	deacetylase	(HDAC)	inhibitors	

can	up-regulate	the	expression	of	neurotrophic	factors	in	astroglia	[305-307].	Therefore,	highly-enriched	

astroglial	cultures	were	treated	with	an	HDAC	inhibitor,	suberoylanilide	hydroxamic	acid	(SAHA)	[308],	and	

the	mRNA	expressions	of	glial	cell	line-derived	neurotrophic	factor	(GDNF)	and	brain-derived	neurotrophic	

factor	(BDNF)	were	measured.	The	basal	mRNA	expression	levels	in	highly-enriched	astroglial	cultures	

showed	no	difference	when	compared	to	their	M/G	culture	counterparts.	Treatment	with	SAHA	increased	the	

expression	of	GDNF	mRNA	to	150	and	200%	and	BDNF	mRNA	to	480	and	680%,	in	M/G	and	highly-enriched	
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astroglial	cultures,	respectively,	when	compared	to	basal	M/G	expression	(Figure	2.2).	These	results	

indicated	that	astroglia	treated	with	1	mM	LME	retained	their	physiological	function.	

	

Figure	2.2	LME-treated	astroglia	express	similar	basal	expression	levels	of	neurotrophic	factors	and	retain	
the	ability	to	increase	this	expression	upon	treatment	with	the	HDAC	inhibitor	SAHA.	M/G	and	highly-
enriched	astroglial	cultures	were	treated	with	1.25	μM	of	SAHA	for	12	hours	and	assessed	for	changes	in	
mRNA	expression	levels	of	(A)	GDNF	and	(B)	BDNF.	Values	were	present	as	mean	±	SEM	from	three	
independent	experiments,	with	duplicates.	**	P	<0.01,	***	P	<	0.0001,	Bonferroni’s	t-test	compared	to	basal	
expression	levels	of	vehicle-treated	M/G	cultures.			

LPS	failed	to	elicit	the	release	of	NO	and	TNF-α	from	highly-enriched	astroglial	and	C6	cultures	

M/G	and	highly-enriched	astroglial	cultures	stimulated	with	1,	10,	100	and	1,000	ng/ml	of	LPS	

induced	a	significant	release	of	NO2-	and	TNF-α	in	M/G	cultures	but	not	highly-enriched	astroglial	cultures.	To	

corroborate	these	findings,	pure	rat	astroglioma	(C6)	cell	lines	were	treated	with	LPS	and,	like	highly-

enriched	astroglial	cultures,	failed	to	induce	a	significant	release	of	NO2-	and	TNF-α.	NO2-	and	TNF-α	were	also	

measured	in	LPS-treated	enriched	astroglial	cultures	derived	from	the	traditional	shake-off	method	[302],	

whereby	4%	Iba-1-immunoreactive	cells	generated	significantly	higher	levels	of	TNF-α	and	NO2-	(data	shown	

only	for	100	ng/ml	of	LPS	in	Figures	2.3A	and	2.3B).		

Highly-enriched	astroglial	cultures	generated	extremely	low	levels	of	NO2-	and	TNF-α,	thus	due	to	the	

detection	limitation	of	their	assays	of	∼0.5	μM	and	30	pg/ml,	respectively,	we	also	performed	qRT-PCR	to	

detect	TNF-α	and	iNOS	mRNA	at	various	time	points	after	LPS	stimulation	in	M/G,	enriched	microglia	and	

highly-enriched	astroglial	cultures.	Messenger	RNA	levels	for	TNF-α	were	significantly	increased	in	both	M/G	

and	enriched	microglia	cultures	after	LPS	treatment	(P	<	0.0001).	The	post	hoc	test	revealed	that	there	are	

significant	differences	of	TNF-α	level	in	M/G	and	enriched	microglia	cultures	compared	to	highly-enriched	

astroglial	cultures	at	3	and	6	hours	after	LPS	treatment	(M/G	culture:	3h,	P<0.0001;	6h,	P<0.001;	enriched	
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microglia	culture:	3h,	P<0.001;	6h,	P<0.05;	Figure	2.3C).	A	great	disparity	was	detected	in	iNOS	expression	of	

LPS-stimulated	enriched	microglia	and	M/G	cultures	compared	to	highly	enriched	astroglial	cultures	(P	<	

0.0001).	The	post	hoc	test	revealed	that	there	are	significant	differences	of	iNOS	level	in	M/G	and	enriched	

microglia	cultures	compared	to	highly-enriched	astroglial	cultures	at	3	and	6	hours	after	LPS	treatment	(M/G	

culture:	3h,	P<0.001;	6h,	P<0.001;	enriched	microglia	culture:	3h,	P<0.001;	6h,	P<0.001;	Figure	2.3D).	Taken	

together,	these	results	indicated	that	LPS	cannot	induce	detectable	levels	of	NO2-	and	TNF-α	from	highly-

enriched	astroglial	cultures.	

	

Figure	2.3	LPS	treatment	did	not	elicit	the	release	of	TNF-α	or	NO2-	from	highly-enriched	astroglial	and	C6	
astroglioma	cultures.	M/G,	enriched	astroglia	(shake-off	method),	highly-enriched	astroglia	(LME-treated	
method)	and	C6	astroglioma	cell	cultures	were	treated	with	100	ng/ml	of	LPS	and	the	supernatant	from	each	
was	examined	for	NO2-	(A)	and	TNF-α	(B)	at	different	time	points	after	treatment.	M/G,	enriched	microglia	
and	highly-enriched	astroglial	cultures	were	treated	with	100	ng/ml	of	LPS	for	0,	3	and	6	hours	and	pelleted	
for	mRNA	analysis.	The	levels	of	TNF-	α	and	iNOS	mRNA	in	M/G	and	highly-enriched	astroglial	cultures	were	
normalized	to	the	percentage	of	microglia	in	their	respective	cultures.	Expression	of	TNF-α	(C)	and	iNOS	(D)	
mRNAs	were	determined	for	each	culture	as	a	percent	of	the	maximum	value	of	microglia	enriched	culture.	
Data	show	mean	±	SEM	from	three	independent	experiments,	each	with	triplicates.	*	P	<	0.05,	**	P	<	0.01,	***	
P	<	0.0001,	Bonferroni’s	t-test	compared	to	highly-enriched	astroglial	cultures.	

Microglia	were	the	major	source	of	Nitrite	and	TNF-α	in	‘enriched	astroglial’	cultures	

The	degree	of	microglial	contamination	varies	greatly	among	laboratories	that	perform	primary	

astroglial	cultures	(see	supplemental	attachment	to	[239]).	Although	most	studies	appropriately	caution	the	

potential	confounding	role	of	residual	microglia	in	their	cultures,	only	one	study	to	date	reported	that	as	little	
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as	1%	contaminating	microglia	was	sufficient	to	affect	the	results	of	their	most	sensitive	assay	(qPCR)	[304].	

However,	the	number	of	microglia	required	to	confound	the	results	of	a	study	are	still	unknown.	To	address	

this	issue,	we	reconstituted	highly-enriched	astroglial	cultures	with	various	amounts	of	enriched	microglia	

ranging	from	0.5	to	20%	of	the	total	cells	of	the	cultures.	We	found	that	even	when	contaminating	microglia	

accounted	for	approximately	0.5%	of	the	total	cells,	they	produced	significantly	detectable	levels	of	TNF-α	(P	

<	0.0001)	as	compared	to	highly-enriched	astroglial	cultures	3	hours	after	LPS	stimulation	(Figure	2.4A).	

NO2-	production	24	hours	after	LPS	treatment	was	significantly	increased	in	cultures	comprised	of	

approximately	1%	contaminating	microglia	as	compared	to	highly-enriched	astroglial	cultures	(P	<	0.0001;	

Figure	2.4B).	TNF-α	and	NO2-	levels	continued	to	increase	with	respect	to	the	presence	of	microglia	in	a	cell	

number-dependent	manner	(TNF-α,	P	<	0.0001;	NO2-,	P	<	0.0001;	Figure	2.4).	These	results	demonstrate	that	

even	a	miniscule	number	of	microglia	in	highly-enriched	astroglial	cultures	can	significantly	alter	the	

outcome	of	a	study	in	according	to	the	sensitivity	of	the	assay.		

	

Figure	2.4	The	major	source	of	LPS-elicited	TNF-α	and	nitrite	in	‘enriched	astroglial’	cultures	is	attributed	to	
contaminating	microglia.	Different	amounts	of	microglia	ranging	from	0.5	to	20%	were	seeded	atop	highly-
enriched	astroglial	cultures	and	treated	with	100	ng/ml	of	LPS	24	hours	after	being	reconstituted	with	
microglia.		TNF-α	(A)	and	NO2-	(B)	were	determined	from	supernatant	collected	at	3	and	24	hours	after	LPS	
treatment,	respectively.	Data	were	represented	as	mean	±	SEM	from	three	independent	experiments,	each	
done	in	triplicate.	***	P	<	0.0001,	one-way	ANOVA	followed	by	Bonferroni’s	post	hoc	multiple	comparison	
test.			

Microglia	required	for	astroglial	production	of	proinflammatory	factors	upon	LPS	stimulation	

	 Although	our	data	shown	above	demonstrated	that	LPS	failed	to	induce	production	of	

proinflammatory	factors	in	highly-enriched	astroglia	cultures,	we	still	cannot	exclude	the	possibility	that	cell-

to-cell	interactions	between	microglia	and	astroglia	may	trigger	pro-inflammatory	gene	expressions	in	

astroglia.	We	used	immunofluorescence	staining	to	examine	the	iNOS	distribution	in	mixed	glia	and	highly-
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enriched	astroglia	cultures	after	LPS	stimulation.	The	results	showed	that	iNOS	can	be	detected	in	mixed	glia	

cultures	as	early	as	24	hours	after	LPS	stimulation,	and	all	iNOS	positive	cells	co-express	Iba-1,	a	marker	for	

microglia	(data	not	shown).	Figure	5	shows	the	iNOS	distribution	at	72	hours	after	LPS	stimulation	in	mixed	

glia	cultures;	iNOS	was	mostly	labeled	in	microglia	and	less	than	1%	of	iNOS-positive	cells	were	positive	for	

GFAP;	iNOS	was	not	detected	at	any	time	point	in	highly-enriched	astroglia	cultures.		

Microglia	released	numerous	soluble	factors,	such	as	cytokines	and	chemokines,	in	response	to	LPS	

stimulation.	To	elucidate	whether	microglia	induced	proinflammatory	gene	expressions	in	astroglia	by	these	

soluble	factors,	we	collected	microglia	conditioned	medium	[309]	from	LPS-treated	microglia-enriched	

cultures	and	added	it	to	highly-enriched	astroglial	cultures.	The	results	showed	that	MCM	could	induce	TNF-α	

and	iNOS	mRNA	expression	from	highly-enriched	astroglial	cultures	in	a	concentration	dependent	manner	

(TNF-α,	P	<	0.0001;	iNOS,	P	<	0.0001;	Figures	2.5C	and	2.5D).	These	results	further	support	that	paracrine	

signals	released	by	microglia	were	responsible	for	stimulating	the	release	of	pro-inflammatory	factors	by	

astroglia.	
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Figure	2.5	Microglia	were	required	for	the	production	of	proinflammatory	factors	by	astroglia	after	LPS	
stimulation.	M/G	or	highly-enriched	astroglial	cultures	were	treated	with	100	ng/ml	of	LPS	for	72	hours.	
Cultures	underwent	immunofluorescence	staining	using	antibodies	against	(A)	Iba-1	(green,	for	microglia),	
iNOS	(red)	and	DAPI	(blue);	or	(B)	GFAP	(green,	for	astroglia),	iNOS	(red)	and	DAPI	(blue).	Scale	bar:	50	μm.	
M/G	and	highly-enriched	astroglial	cultures	were	treated	with	vehicle,	LPS,	microglia	conditioned	medium	
[309]	which	was	collected	from	enriched	microglia	cultures	at	24	hours	after	LPS	treatment,	and	control	
conditioned	medium	(ctrl).	After	3	and	6	hours,	cultures	were	subjected	to	real-time	PCR	assay	for	(C)	TNF-α	
and	(D)	iNOS	mRNA	expressions.	Value	of	M/G	cultures-treated	with	LPS	was	set	as	100%.	Data	shows	mean	
±	SEM	from	three	independent	experiments,	each	done	in	duplicate.	***P<0.001,	**P<0.01	Bonferroni’s	t-test	
compared	to	vehicle	treated	highly-enriched	astroglial	cultures.			
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Astroglia	attenuated	LPS-mediated	dopaminergic	neurodegeneration	

	 Reactive	astrogliosis	is	observed	in	neuroinflammation	and	serves	as	a	marker	for	several	

neuropathologies	[310,	311].	But	the	roles	of	reactive	astrogliosis	are	not	fully	understood.	To	address	this	

issue,	we	treated	midbrain-derived	neuron-glia	(~50%	astroglia,	~10%	microglia,	and	~40%	neurons)	and	

neuron-microglia	cultures	(~10%	microglia	and	~90%	neuron)	with	LPS	and	assessed	the	function	of	DA	

neurons	by	measuring	their	[3H]	DA	uptake	capacity.	LPS-treated	neuron-microglia	cultures	had	significantly	

decreased	[3H]	DA	uptake	capacity	compared	to	neuron-glia	cultures	(P	=	0.012;	Figure	2.6A).		

	 Neurotrophic	factors	released	predominantly	from	astroglia,	such	as	glial-derived	neurotrophic	

factor	(GDNF),	are	known	to	promote	dopaminergic	neuronal	survival	[312].	To	confirm	whether	GDNF	

participated	in	astroglia-mediated	neuroprotection,	GDNF	neutralization	antibody	was	added	into	cultures	

before	LPS	treatment.	ANOVA	analysis	showed	that	there	was	a	significant	difference	between	groups	(P<	

0.0001),	and	post	hoc	test	revealed	that	GDNF-neutralizing	antibody	significantly	reduced	DA	uptake	capacity	

(LPS	vs.	LPS	+	GDNF	Ab,	P<0.05;	LPS	+	GDNF	Ab	vs.	LPS	+	isotype	control	Ab,	P<0.05),	whereas	the	antibody	

isotype	control	had	no	effect	(Figure	6B).	Collectively,	these	results	demonstrated	that	astroglia	play	a	

neuroprotective	role	via	the	release	of	neurotrophic	factors	under	neuroinflammatory	condition.					

	

Figure	2.6	Astroglia	are	beneficial	for	the	survival	of	DA	neurons	by	releasing	GDNF	after	LPS	stimulation	in	
neuron-glia	cultures.	(A)	Neuron-glia	and	neuron-microglia	cultures	were	treated	with	vehicle	or	15	ng/ml	of	
LPS.	After	7	days,	[3H]	DA	uptake	assay	was	utilized	to	assess	DA	neuron	function.	Data	show	mean	±	SEM	
from	four	experiments,	each	done	in	triplicate.	*P	<	0.05,	Bonferroni’s	t-test.	(B)	Neuron-glia	cultures	were	
incubated	with	20	µg/ml	anti-GDNF	or	isotype	control	antibodies	and	then	exposed	with	15	ng/ml	of	LPS.	
After	7	days,	[3H]	DA	uptake	assay	was	used	to	determine	DA	neuron	function.	Data	show	mean	±	SEM	from	
three	experiments,	each	done	in	duplicate.	*P	<	0.05,	Bonferroni’s	t-test.	
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Microglia	required	for	increased	release	of	neurotrophins	by	astroglia	after	LPS	stimulation	

	 To	further	investigate	how	GDNF	was	up-regulated	after	LPS	stimulation,	microglia	enriched,	M/G	

and	highly-enriched	astroglial	cultures	were	treated	with	LPS	to	determine	the	expression	profiles	of	GDNF	

mRNA.	The	data	show	that	LPS	failed	to	induce	GDNF	mRNA	expression	in	microglia	enriched	cultures.	

Interestingly,	although	astroglia	constitutively	express	basal	levels	of	GDNF	mRNA,	LPS	failed	to	further	

increase	this	expression.	In	contrast,	GDNF	mRNA	was	significantly	increased	in	M/G	cultures	after	LPS	

treatment,	suggesting	that	the	interaction	between	microglia	and	astroglia	is	necessary	for	the	induction	of	

GDNF	expression	(Figure	2.7A).		

Previous	data	demonstrated	that	soluble	factors	released	from	activated	microglia	in	response	to	LPS	

stimulation	could	regulate	proinflammatory	gene	expressions	in	astroglia.	Thus,	we	tested	the	involvement	of	

these	soluble	factors	in	the	up-regulation	of	GDNF	expression	in	astroglia.	The	data	show	that	GDNF	mRNA	

was	significantly	increased	in	highly-enriched	astroglial	cultures	treated	with	microglia	conditioned	medium	

[309](P	<	0.0001),	and	this	phenomenon	was	abolished	when	the	MCM	was	boiled.	The	control	conditioned	

media	[309]	from	microglia	cultures	without	LPS	stimulation	or	LPS	was	added	into	CM	before	incubating	

with	highly-enriched	astroglia	cultures	also	failed	to	induce	GDNF	mRNA	expression	(Figure	2.7B).			 		
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Figure	2.7	Soluble	factors	released	from	microglia	are	important	in	the	induction	of	GDNF	in	astroglia.	Real-
time	PCR	of	GDNF	mRNA	(A)	in	enriched	microglia,	M/G	and	highly-enriched	astroglial	cultures	were	treated	
with	15	ng/ml	of	LPS	for	0,	3	and	6	hours.	Data	are	presented	as	percent	of	maximum	value,	whereby	GDNF	
mRNA	in	3	hours	LPS-treated	M/G	cultures	was	set	as	100%.	Data	represent	mean	±	SEM	from	three	
independent	experiments,	each	done	in	duplicate.	**P<0.01,	and	***P<0.0001,	Bonferroni’s	t-test	compared	to	
0	hour	value.	(B)	Highly-enriched	astroglial	cultures	were	treated	with	vehicle,	microglia	conditioned	
medium	[309]	which	was	collected	from	enriched	microglia	cultures	at	24	hours	after	LPS	treatment,	boiled	
MCM,	control	conditioned	medium	[309],	and	CM	plus	LPS	(15	ng/ml).	After	3	hours,	cultures	were	subjected	
to	real-time	PCR	assay	for	GDNF	mRNA	expression.	Value	of	vehicle	control	cultures	was	set	as	100%.	Data	
shows	mean	±	SEM	from	three	independent	experiments,	each	done	in	duplicate.	**P<0.01,	Bonferroni’s	t-test	
compared	to	vehicle	treated	cultures.			

Microglia	stimulated	the	release	of	neurotrophic	factors	by	astroglia	through	TNF-α	

	 Among	these	soluble	factors,	TNF-α	is	one	of	the	earliest	and	most	abundant	cytokines	released	by	

microglia	after	LPS	stimulation.	To	assess	the	role	of	TNF-α	in	the	induction	of	GDNF,	we	first	compared	

GDNF	mRNA	expression	between	wild	type	and	TNF-α	knockout	(KO)	M/G	cultures	after	LPS	treatment	

(Figure	2.8).	GDNF	mRNA	was	significantly	decreased	in	TNF-α	KO	M/G	cultures	(P	<	0.05).		TNF	R1/R2	KO	

also	revealed	a	similar	phenomenon	(Figure	2.8B),	whereby	GDNF	mRNA	expression	was	significantly	

attenuated	after	LPS	treatment	(P	<	0.05).	These	results	indicated	that	TNF-α	plays	a	pivotal	role	in	the	

regulation	of	GDNF	expression	by	astroglia.		
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Figure	2.8	Microglia-released	TNF-α	is	one	of	the	key	factors	in	the	induction	of	GDNF	in	astroglia.	M/G	
cultures	were	prepared	from	wild	type	and	TNF-α	KO	pups,	the	cultures	were	treated	with	15	ng/ml	of	LPS	
for	0	and	3	hours	and	then	pelleted	for	mRNA	analysis.	Data	were	presented	as	fold	increase	of	value	
compared	to	0	hour	wild-type	cultures.	Data	show	mean	±	SEM	from	three	independent	experiments,	each	
done	in	duplicate.	**P<0.01,	Bonferroni’s	t-test	compared	to	0	hour	cultures.	

Discussion	

	 Many	studies	support	astroglia	as	active	players	in	the	detection	and	generation	of	innate	immune	

responses	in	the	brain	[159,	313,	314].	Yet	with	the	exception	of	a	few	recent	publications	utilizing	highly-

enriched	astroglial	cultures,	the	majority	of	these	studies	could	not	properly	differentiate	the	contribution	of	

microglia	in	their	enriched	astroglial	cultures	and	may	have	inadvertently	attributed	their	findings	to	

astroglia.	Using	a	highly-enriched	astroglial	culture,	we	demonstrate	here	that	astroglia	are	incapable	of	

detecting	and	undergoing	activation	upon	stimulation	with	LPS—thus,	bringing	to	question	their	role	as	

innate	immune	cells	of	the	CNS.	

Among	the	many	methods	developed	to	generate	nearly	purified	astroglial	cultures	(>99%),	

enrichment	methods	have	focused	on	either	the	application	of	chemical	or	mechanical	systems	to	selectively	

deplete	microglia	or	have	generated	cultures	from	transgenic	mice	with	microglial	deficiencies	[220,	237,	

250-255,	303].	However,	many	of	these	methods	are	costly,	require	specialized	equipment	or	transgenic	mice	

and	may	take	as	long	as	three	to	four	weeks	to	enrich.	In	addition,	some	enrichment	methods	are	applied	

after	the	astroglial	monolayer	has	been	formed	and	thus	may	physically	shield	microglia	trapped	beneath	

from	chemical	or	mechanical	removal	[239],	resulting	in	a	rapid	repopulation	of	surface	microglia	shortly	

after	enrichment	[254].	For	this	reason,	we	modified	an	established	protocol	[300]	by	treating	M/G	cultures	

with	1	mM	of	LME	for	5-6	days	prior	to	the	monolayer	formation—resulting	in	a	quick,	thrifty	method	to	
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produce	highly-enriched	astroglial	cultures	(>99.9%)	with	ordinary	cell	culture	equipment.	Furthermore,	we	

confirmed	that	the	prolonged	exposure	to	LME	had	no	effect	on	astroglial	function	and	resulted	in	very	little	

microglial	repopulation	beginning	approximately	7	days	after	LME	removal.	

Several	studies	have	concluded	that	astroglia	can	produce	and	secrete	potentially	cytotoxic	pro-

inflammatory	factors	such	as	TNF-α	and	•NO	upon	stimulation	with	LPS	[217,	218,	270,	271,	278,	281,	298,	

315].	Hence,	similar	to	microglia	[138],	the	release	of	cytotoxic	factors	by	astroglia	is	thought	to	play	a	

detrimental	role	during	chronic	neuroinflammation	[293].	Although	TNF-α	and	NO2-	were	detected	in	the	

supernatant	of	LPS-stimulated	enriched	astroglial	cultures,	only	a	few	studies	used	double-

immunofluorescent	staining	or	in	situ	hybridization	to	validate	that	TNF-α	and	iNOS	were	produced	by	

astroglia.	Interestingly,	the	expression	of	TNF-α	[266,	298]	and	iNOS	[239,	279,	280,	282,	316]	were	almost	

exclusively	co-localized	to	cells	expressing	microglial	markers		and	only	a	few	studies	noted	a	delayed,	faint	

and	heterogenous	expression	of	iNOS	in	astroglia	[278,	281].		In	consensus	with	the	majority	of	these	studies,	

we	found	that	highly-enriched	astroglial	cultures	were	incapable	of	generating	TNF-α	or	NO2-	upon	

stimulation	with	LPS.		Reconstituting	microglia	into	these	cultures	clearly	revealed	that	as	few	as	0.5%	and	

1%	microglia	were	capable	of	confounding	the	results	of	TNF-α	and	iNOS	mRNA	expression,	respectively.	

Furthermore,	the	presence	of	microglia	during	LPS	treatment	was	sufficient	to	induce	a	weak	expression	of	

both	iNOS	and	TNF-α	mRNA	in	astroglia,	which	is	most	likely	a	result	of	secondary	signaling	mediated	by	

microglial-derived	paracrine	factors	or	complex	cell-to-cell	contact	interactions.		

So	why	is	LPS	recognized,	bound	to,	and/or	sequestered	by	a	combination	of	TLR-4/MD2,	membrane	

bound	CD14,	the	β2-integrin	receptor	CD11b/CD18	and	class	A	scavenger	receptors	(SR-As)	that	are	all	

localized	almost	exclusively	on	the	surface	of	innate	immune	cells?		Not	surprisingly,	microglia	constitutively	

express	high	levels	of	these	receptors	[203,	205-207,	210-212,	317],	whereas	astroglia	lack	membrane	bound	

CD14	[220],	CD11b/CD18	[318]	and	SR-As	receptors	[317].	Yet,	the	expression	of	TLR-4	on	astroglia	remains	

controversial.	Although	several	groups	have	published	that	TLR-4	is	undetectable	on	astroglia	[205,	206,	213,	

215,	216],	one	study	was	able	to	detect	low-levels	of	TLR-4	mRNA	expression	in	astroglia	using	in	situ	

hybridization	[207].	Regardless	of	these	mixed	findings,	the	most	likely	explanation	is	that	astroglia	either	



 

  

58	
	

lack	or	insufficiently	express	membrane	levels	of	TLR-4	to	generate	a	signal	transduction	to	LPS.		The	most	

compelling	evidence	in	support	of	this	theory	is	that	biotinylated	[220]	and	FITC-labeled	LPS	[205,	237]	are	

neither	bound	nor	internalized	by	astroglia.		

In	pathological	conditions	of	the	CNS,	astroglia	activation	(reactive	astrogliosis)	is	maintained	in	

response	to	sustained	endogenous	innate	immune	stimuli	[319].		However,	the	role	of	reactive	astrogliosis	as	

supportive	or	detrimental	to	neuronal	survival	remains	to	be	defined	[310,	311].		Here,	we	demonstrate	that	

activated	astroglia	protected	DA	neurons	against	LPS-induced	neuroinflammation,	whereby	more	DA	neuron	

loss	was	observed	in	LPS-treated	neuron-microglia	cultures	compared	to	neuron-glial	cultures.	During	

inflammatory	conditions,	neurons	downregulate	their	constitutive	expression	of	neurotrophic	factors	such	as	

GDNF,	that	are	necessary	to	maintain	neurite	outgrowths	and	synapses	[320].	Under	these	conditions,	

astroglia	are	known	to	secrete	enhanced	levels	of	GDNF	[321].	To	determine	whether	astroglia	mediate	their	

DA	neuron	protection	by	compensating	for	the	reduction	in	neuronal	GDNF	by	secreting	GDNF,	we	show	that	

LPS-treated	neuron-glia	cultures	treated	with	GDNF	neutralization	antibody	exacerbated	the	loss	of	DA	

neurons.	Interestingly,	exogenous	GDNF	can	also	serve	a	dual	purpose	by	directly	acting	on	microglia	to	

suppress	their	activation	and	inhibit	•NO	generation	in	LPS-treated	midbrain	organotypic	cultures,	resulting	

in	reduced	inflammation-mediated	DA	neurodegeneration	[322].	In	addition,	GDNF	can	reduce	the	

production	of	extracellular	ROS	and	microglial	phagocytic	activity	in	Zymosan	A-stimulated	cultures	[323].		

	 Although	LPS	is	thought	to	up-regulate	the	expression	of	GDNF	in	primary	astroglial	cultures	[244,	

321,	324],	we	suspected	this	mechanism	might	be	a	misinterpretation	due	to	the	inability	of	LPS	to	activate	

highly-enriched	astroglial	cultures.	We	investigated	three	potential	scenarios	that	could	explain	this	up-

regulation	of	GDNF.	First,	contaminating	microglia	generate	the	increased	GDNF	production	detected	in	

enriched	astroglial	cultures.	Second,	LPS	can	directly	stimulate	astroglia	through	a	putative	LPS	receptor	to	

produce	GDNF.	Third,	activated	microglia	can	stimulate	astroglia	through	paracrine	signaling	to	produce	

GDNF.	We	found	that	microglia,	both	non-stimulated	and	stimulated	with	LPS,	did	not	express	GDNF	mRNA,	

whereas	highly-enriched	astroglial	cultures	constitutively	express	GDNF	mRNA	yet	showed	no	difference	in	

expression	after	LPS	stimulation.	To	our	surprise,	our	study	showed	that	astroglia	incubated	with	LPS-treated	

microglial	conditioned	medium	significantly	increased	GDNF	mRNA	expression.	This	effect	could	be	reversed	
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by	boiling	the	conditioned	medium	(i.e.,	denaturing	the	proteins),	thus	we	suspect	that	cytokines	released	by	

LPS-activated	microglia	may	trigger	astroglial	activation	and	induce	the	expression	of	GDNF.	Among	these	

factors,	TNF-α	has	previously	been	shown	to	partake	in	the	autocrine	regulation	of	GDNF	production	in	

activated	astroglia	[244,	325].	By	treating	mixed	glial	cultures	derived	from	transgenic	mice	deficient	in	

either	TNF-α	or	TNF-α	receptors	1	and	2,	we	showed	that	microglial-derived	TNF-α	is	a	key	modulator	of	

GDNF	regulation	in	astroglia.			

	 In	summary,	this	study	demonstrates	that	highly-enriched	astroglial	cultures	are	incapable	of	

detecting	LPS,	but	instead	become	activated	through	their	interactions	with	microglia	to	release	neurotrophic	

factors	to	protect	DA	neurons	and	modulate	neuroinflammation—supporting	our	glial	crosstalk	activation	

hypothesis	[326].	Although	LPS	only	rarely	penetrates	the	blood-brain	barrier	[127],	other	endogenous	

innate	immune	stimuli	released	during	stroke,	traumatic	brain	injury,	and	exposures	to	xenobiotics	could	

function	in	a	very	similar	manner	by	activating	microglia	to	release	TNF-α,	resulting	in	the	subsequent	

activation	of	astroglia	to	release	neurotrophic	factors.	The	results	derived	from	this	study	suggests	that	upon	

activation,	astroglia	most	likely	play	a	far	more	important	role	regulating	inflammation	and	reducing	

neuronal	injury	than	partaking	in	their	collateral	damage.		Above	all,	we	hope	that	this	study	may	serve	as	a	

caution	to	those	that	investigate	the	function	of	glial	cells	that	even	a	miniscule	number	of	microglia	may	

confound	the	results	of	a	study.	
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CHAPTER	3:	CONCLUSIONS	

In	the	past	decade	our	ability	to	diagnose	PD	and	other	parkinsonian	syndromes	has	improved	

greatly	with	the	use	of	brain	imaging	equipment,	yet	with	this	improvement	variable	pathologies	and	

symptoms	continue	to	be	identified—further	confounding	our	efforts	to	isolate	causative	environmental	

agents	involved	in	the	etiology	of	PD.		Among	the	many	in	vivo	and	in	vitro	models	that	exist	for	PD,	toxicant-

induced	models	(e.g.,	Reserpine,	6-OHDA,	Methamphetamine,	MPTP/MPP+,	Paraquat,	Rotenone,	Maneb,	3-

Nitrotyrosine,	Dieldrin,	Endosulfan,	Ziram)	and	transgenic	mouse	models	(e.g.,	Park1,	Park2,	Pink1,	Lrrk2,	

SCNA,	VMAT2	and	Uchl1)	mimic	acute	atypical	parkinsonianism	and	familial	parkinsonianism,	respectively.		

Together	these	forms	of	parkinsonianism	are	thought	to	represent	~15-20%	of	the	total	cases	of	PD	[327].		In	

contrast	to	these	models,	the	chronic	neuroinflammatory	model	induced	by	a	systemic	injection	of	LPS	is	the	

only	xenobiotic	exposure-based	model	that	induces	progressive	pathologies	and	motor-deficits	similar	to	

those	of	idiopathic	PD.			

Prior	to	the	development	of	the	chronic	neuroinflammatory	model	induced	by	a	systemic	injection	of	

LPS,	inflammation-induced	PD	models	were	generated	by	directly	injecting	LPS	into	the	brain	resulting	in	

acute	parkinsonianism.		The	nearly	immediate	onset	of	PD-like	motor	deficits	by	this	model	are	reminiscent	

to	the	case	reports	of	the	female	laboratory	technician	exposed	to	LPS	and	elderly	African	man	with	

septicemia	that	acquired	similar	deficits	within	three	weeks	of	exposure—suggesting	the	rare	possibility	of	a	

BBB	disruption	severe	enough	to	allow	for	direct	LPS	exposure	in	the	CNS.		The	work	conducted	in	this	thesis	

attempts	to	understand	the	CNS	response	to	this	ubiquitous	toxin.		By	isolating	astrocytes	from	microglia,	we	

were	able	to	confirm	that	astrocytes	are	incapable	of	detecting	and	subsequently	generating	an	innate	

immune	response	to	LPS.		Interestingly,	we	found	that	the	presence	of	microglia	was	required	in	order	for	

astrocytes	to	generate	any	form	of	response—further	suggesting	a	direct	link	between	microgliosis	and	

astrogliosis.		Lastly,	by	determining	that	the	bulk	of	the	cytotoxic	factors	generated	in	the	CNS	are	derived	by	
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microglia,	we	confirmed	that	astrogliosis,	as	induced	by	the	secondary	messenger	TNF-α	from	microglia,	

plays	a	neuroprotective	role	by	releasing	neurotrophins	to	protect	the	integrity	of	neural	dendritic	

outgrowths	and	synapses	and	by	modulating	microglial	activation.		Together,	the	work	in	this	thesis	helps	

better	define	astrocytes	as	accessary	cells	that	help	mediate	the	inflammatory	response	by	microglia	to	LPS.		

Furthermore,	our	findings	suggest	that	the	role	of	astrogliosis	may	be	more	beneficial	than	originally	thought.			

Beyond	having	clarified	a	potential	misconception	in	the	field	of	neuroimmunology,	the	results	of	this	

study	highlight	that	targeting	astrocytes	to	release	neurotrophins	should	be	exploited	for	therapeutic	benefits	

in	CNS	conditions	with	persistent	neuroinflammation.		Although	no	therapy	has	currently	been	developed	to	

directly	target	astrocytes	to	release	neurotrophins,	many	groups	are	using	neurotrophins	and	peptides/non-

peptide	neurotrophin	analogues	for	AD	and	PD	therapy	with	mixed,	yet	predominantly	favorable,	success.		

For	this	reasons,	under	the	guidance	of	Dr.	Jau-Shyong	Hong,	our	research	has	been	focusing	on	developing	a	

new	class	of	neuropharmaceuticals	that	can	both	inactivate	reactive	microglia	and	induce	the	release	of	

neutrophrins	to	protect	neurons.		The	hopes	of	this	new	therapeutic	strategy,	which	seems	to	be	rather	

promising	in	pilot	studies	of	our	animal	models,	is	to	slow	any	further	neurodegeneration	that	becomes	

accelerated	in	chronic	neuroinflammatory	environments.		Thus	our	goal,	by	better	understanding	the	

mechanisms	that	governs	environmentally-driven	chronic	neuroinflammation,	is	to	develop	therapies	that	

may	improve	the	lives	of	PD	patients.	
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