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ABSTRACT 
 

MEGHAN E FREE: Role of Circulating T Cells in Autoimmune Kidney Disease: 

Implications for ANCA Disease and Minimal Change Disease 
 (Under the direction of Dr. Ronald J. Falk, M.D.) 

 

This dissertation is focused on circulating T cells and the role they play in the 

immunopathogenesis of two autoimmune kidney diseases: anti-neutrophil cytoplasmic 

autoantibody (ANCA) disease and minimal change disease (MCD). Results demonstrated in the 

subsequent chapters explain known regulatory T cell defects in ANCA disease, reveal altered 

effector T cell dynamics in ANCA disease and present novel data of autoantibody/autoantigen 

interactions in minimal change disease.  

Data presented in Chapter 1 addresses the known defect of regulatory T cell suppression 

in patients with ANCA disease. The lack of T cell suppression by ANCA disease regulatory T 

cells is confirmed in our patient cohort. However, our data reveal that a splice variant of FOXP3 

lacking exon 2 is highly prevalent in ANCA disease patients and expression of exon 2-deficient 

FOXP3 correlates with a decreased suppressive function of the same regulatory T cells. Yet, the 

data in Chapter 1 also demonstrates that defective regulatory T cells are not the sole culprit of 

effector T cell non-suppression in ANCA disease patients. 

 Additional data in Chapter 1 demonstrates that ANCA disease patients have an expansion 

of a CD25
intermediate

 T cell which comprises the majority of their peripheral T cell pool. These 

CD25
int

 T cells produce pro-inflammatory cytokines, are antigen-experienced and are resistant to 

suppression by regulatory T cells from healthy individuals. As such, T cell dysfunction and 

aberrant proliferation in ANCA disease stems from both altered regulatory T cells and an 

expanded CD25
int

 population which is difficult to suppress by conventional means. 
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 Chapter 2 focuses on the discovery of anti-TCR autoantibodies found in patients with 

minimal change disease. These anti-TCR autoantibodies target a specific subset of circulating T 

cells found at a higher frequency in MCD patients compared to healthy individuals. Additionally, 

this autoantibody/autoantigen interaction induces cellular activation leading to cytokine 

production from targeted cells. We hypothesize that these interactions and downstream effects 

ultimately lead to the immunopathogenesis of MCD by causing injury to podocytes. In sum, the 

data presented herein comprise a comprehensive body of work which reveals previously unknown 

roles of circulating T cells in ANCA disease and minimal change disease. 
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PROLOGUE: CIRCULATING T CELLS IN AUTOIMMUNE  

 

DISEASE 

 
 

 The adaptive, antigen-specific immune system relies heavily on T cells with the capacity 

to adapt to the nuances of each pathogen. Healthy individuals maintain T cell homeostasis with 

regulatory T cell suppression of inappropriate effector T cell responses. In autoimmune diseases, 

there is a breakdown of this balance leading to uncontrolled autoreactive T cell responses. 

Possible T cell disturbances in autoimmune disease are any combination of the following: a lack 

or overrepresentation of certain T cell subsets, regulatory T cell dysfunction or inappropriate 

effector responses. However, autoimmune disease without a monogenetic cause cannot result 

from just one disturbance. It is more likely that multiple aberrations are interrelated in each 

autoimmune disease.  

 Autoimmune diseases affecting the kidney are numerous and include anti-glomerular 

basement membrane disease
1
, lupus nephritis

2
 and anti-neutrophil cytoplasmic autoantibody 

(ANCA) disease
3
. Additionally, there exist kidney diseases with suspected autoimmune 

involvement, though lack direct evidence, as is the case with minimal change disease (MCD) and 

primary focal segmental glomerulosclerosis (FSGS)
4
.  

 Circulating autoantibodies are found in ANCA disease and these autoantibodies are class-

switched and high affinity, indicating previous T cell help. Therefore, CD4+ T cells must play 

some role in the immunopathogenesis of ANCA disease. While even less is known about the role 

of T cells in MCD, anecdotal evidence is highly suggestive of some amount of T cell 

involvement. The function of T cells in the immunopathogenesis and disease progression in the
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context of medical intervention is crucial to achieve a better understanding of autoimmune 

disease. 

 

Effector T cell abnormalities in autoimmune disease 

 CD4+ T cells comprise a large part of an individual’s adaptive immune system. Antigen 

specificity of T cells provides tailored immunity towards any pathogen with potential for 

invasion. Additionally, CD4+ T cells can be further subdivided into different “helper” subsets, 

each with a different “preference” of pathogen and capacity for cytokine secretion. Until the mid-

2000s, immunologists had only defined two helper subsets, Th1 and Th2, which were thought to 

antagonize each other.  

 Th1 cells were directed against intracellular pathogens such as Listeria monocytogenes, 

and preferentially secreted IFN-gamma. For years, many autoimmune diseases were linked to a 

preponderance of Th1 cells or Th1-related cytokines. Both the mouse model of multiple sclerosis, 

experimental allergic encephalomyelitis, and the mouse model of insulin-dependent diabetes were 

generally accepted to result from a preponderance of Th1 cells
5,6

. However, many autoimmune 

diseases could not be categorized as Th1 or Th2-driven and presented as a mystery for years. 

 In contrast to Th1 cells, Th2 cells are critical for the clearance of extracellular pathogens, 

especially helminths and parasites. Cytokines secreted by Th2 cells, IL-4, IL-5, IL-10 and IL-13 

induce downstream effects central to immunoglobulin class-switching. While this cascade is 

important for the formation of IgE to clear parasites, IgE is also a central mediator of allergic 

responses. Furthermore, Th2 cells are incriminated in the pathogenesis and progression of 

inappropriate allergic reactions and asthma.
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 For decades, Th1 cells were thought to be the major T cell subset responsible for the 

immunopathogenesis of autoimmune diseases, however experimental research to this end has 

often returned conflicting results. The discovery of Th17 cells helped to reconcile many 

discrepancies in the literature surrounding the pathogenic effector T cell in autoimmune disease
7
. 

Th17 cells are important in the clearance of extracellular bacteria and fungi by the secretion of 

IL-17A, IL-17F and other related cytokines. Current research in most autoimmune diseases has 

now demonstrated an increased frequency of Th17 cells in patients. Th17 cells are particularly 

adept at promoting tissue inflammation and recruitment of neutrophils to sites of inflammation
8
, 

therefore, it is not surprising that Th17 cells are found in targeted organs of various autoimmune 

diseases. 

 Further investigation into Th17 cell development revealed numerous similarities between 

Th17 and regulatory T cell differentiation. Both cell subsets require the presence of TGFβ for 

differentiation
9
. This finding helped to reconcile an ongoing paradox in the inflammatory 

literature as some experiments demonstrated the pro-inflammatory nature of TGFβ
10

 while others 

demonstrated an anti-inflammatory effect
11

. The defining feature of T cell differentiation is the 

microenvironment. If TGFβ is present, a naïve T cell will essentially “default” into an induced 

Treg phenotype. However, if the pro-inflammatory cytokine(s) IL-6 (in mice) and IL-1β (in 

humans) are in the same microenvironment, the same naïve T cell would be diverted to a Th17 

phenotype
9,12,13

. 
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 Th17 and Treg cell differentiation are further linked by common transcription factor 

induction. Th17 cells are predominantly controlled by RORγt and Treg cells by FOXP3. 

Interestingly, naïve T cells in the presence of TGFβ express both RORγt and FOXP3 initially
14

. It 

is only with further downstream commitment to T cell subsets that one transcription factor 

dominates the other. If TGFβ is present in a non-inflammatory milleu, FOXP3 antagonizes the 

function of RORγt, allowing a Treg program to initiate
15

. However, when TGFβ exists with IL-6, 

IL-1β or other pro-inflammatory Th17-inducing cytokine, RORγt will antagonize FOXP3, thus 

driving towards a Th17 cell
16

. This reciprocity in Th17 and Treg development underlines the 

potential for the immune system to go awry in autoimmune disease. 

  

Regulatory T cell dysfunction in autoimmune disease 

 Autoreactive T cells occasionally escape thymic deletion and are released into the 

circulation. Despite the presence of circulating autoreactive T cells, most individuals do not 

development autoimmune disease. This is, in part, attributable to regulatory T cells and their 

ability to dampen inappropriate effector T cell responses. Tregs have been classically defined as 

CD4+ CD25
high

 and FOXP3+ with the recent addition of CD127
low 17,18

. The transcription factor 

FOXP3+ is the critical component of functional Tregs as evidenced by patients with FOXP3 

mutations, resulting in uncontrolled lymphoproliferation and numerous autoimmune diseases
19

. 

Along this line, scurfy mice with spontaneous mutations in FOXP3, demonstrate a fatal 

lymphoproliferative disease
20

. However, implementation of the scurfin transgene (analogous to 

FOXP3) into scurfy mice abrogates the massive lymphoproliferation
20

.  
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 Current research provides evidence that Tregs can suppress effector T cell proliferation 

and cytokine production through both direct and indirect means. Examples of some mechanisms 

of Treg suppression are secretion of anti-inflammatory cytokines, consumption of cytokine(s) 

needed for effector proliferation, cell surface molecule engagement and direct killing of effector 

T cells. Two anti-inflammatory cytokines produced by Tregs that are commonly focused on are 

TGFβ and IL-10. While controversial, TGFβ produced by regulatory T cells has been shown to 

regulate effector T cell proliferation
21

. IL-10 is also frequently associated with Treg suppression, 

although IL-10 produced by Tregs seems to have differential effects depending on the involved 

organ
22

. Also controversial is the consumption of IL-2 by regulatory T cells, thereby starving 

effector T cells so proliferation does not proceed
23

. This makes teleological sense as Tregs have 

high expression of CD25, the receptor for IL-2, but these findings have been disputed over the 

years
24

. Additionally proposed is the hypothesis that regulatory T cells secrete granzyme A and 

induce effector T cell death through perforin
25

.   

 The fact that there are numerous pathways of Treg suppression with conflicting literature 

reports points to a rationale that Treg mediated suppression does not stem from one pathway and 

is dependent on the type of inflammation as well as the location of inflammation. To this end, 

some type of Treg dysfunction has been demonstrated in the majority of autoimmune diseases. 

However, the mechanism(s) behind Treg dysfunction are varied and controversial. Three main 

mechanisms of impaired Treg function were proposed by Buckner
26

 as 1) diminished numbers of 

regulatory T cells, 2) inability of regulatory T cells to perform suppressive functions, and 3) 

effector T cells that are resistant to regulatory T cell suppression. 
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 The decreased frequency of peripheral Tregs can be due to diminished induction of Tregs 

or altered survival of Tregs. However, enumeration of Tregs has been controversial over the years 

and in most autoimmune diseases, there is no consensus as to if Tregs are decreased, increased or 

equal to healthy control frequencies. Additionally, recent research has proposed that regulatory T 

cells may be unstable in chronic inflammatory states and can convert into other T cell 

phenotypes
27

.  

 Dysfunctional Tregs that are unable to control effector proliferation is another common 

finding in autoimmune disease. Some studies suggest that this could be due to, in part, the 

inability of disease Tregs to secrete anti-inflammatory cytokines such as IL-10
28,29

. Treg 

suppression assays are performed in vitro which are intrinsically problematic. Recent hypotheses 

have questioned whether the defect of suppression in vitro can be solely attributable to Tregs. 

This has led to research to probe the potential of effector T cells that resist Treg suppression. 

 In some cases, Tregs from a diseased individual may be capable of suppressing 

allogeneic cells from a healthy individual, but not their own autologous effector cells. 

Suppression-resistant effector cells have been observed in mouse models of SLE, experimental 

autoimmune encephalomyelitis and type 1 diabetes
30,31,32

. Effector cell resistance may be intrinsic 

to the T cell phenotype (Th17 cells are notoriously more difficult to suppress)
33,34

, or cytokine 

secretion from effector T cells may disrupt the suppressive mechanisms of the regulatory T 

cells
35

.  
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CD4+ T cells in ANCA disease  
 

 ANCA disease can manifest with systemic small vessel vasculitis, leading to organ 

damage of highly vascular organs such as kidneys, lungs and upper respiratory tracts. These 

vasculitides can be subdivided into granulomatosis with polyangiitis (GPA) formerly Wegener’s, 

microscopic polyangiitis (MPA) and eosinophilic granulomatosis with polyangiitis (EGPA) 

formerly Churg-Strauss syndrome. The common immunologic feature of these diseases is the 

formation of ANCAs that target either myeloperoxidase (MPO) or proteinase-3 (PR3) found in 

the granules of neutrophils and monocytes. The known production of autoantibodies in anti-

neutrophil cytoplasmic autoantibody (ANCA) disease provides evidence towards T cell 

involvement in the autoimmune process
3
. Therefore, T cells in ANCA disease are likely to be 

dysregulated in some manner to permit autoantibody formation. 

 Pathogenic ANCAs cause activation of neutrophils resulting in degranulation and release 

of proteases
36

. In turn, this neutrophil activation leads to pauci-immune necrotizing crescentic 

glomerulonephritis and systemic small vessel vasculitis. Studies to incriminate a role for CD4+ T 

cells in ANCA disease have yielded results suggesting MPO or PR3 specific T cells exist in the 

periphery
37,38

 which proliferate in response to autoantigen. Other studies have also noted 

persistent activation of effector T cells in the periphery of ANCA disease patients
39,40

. Th17 cells 

are involved in a number of autoimmune diseases and are also present in increased frequencies in 

patients
41

. In corroboration with this, circulating levels of Th17-associated cytokines (IL-1β, IL-6, 

IL-23) are also increased in the serum of patients
29,42

.  
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 Of additional concern are the studies demonstrating a functional deficit of Tregs in 

patients with ANCA disease
43,44,45

. However, no functional mechanism has been demonstrated for 

this Treg dysfunction. One hypothesis which may explain the functional deficit of Tregs in 

ANCA disease is that in the face of chronic inflammation, Tregs have converted into Th17 

cells
46,47,48,49

. This phenomenon would not only diminish any suppressive function of the 

purported Tregs, but could potentiate ongoing inflammation by production of IL-17 and related 

cytokines. 

  

T cells in Minimal Change disease 

 MCD accounts for the majority of nephrotic syndrome cases in children and FSGS may 

derive from an underlying etiology as MCD. Autoimmune involvement, specifically T cells, has 

been inferred by the efficacy in treating MCD patients with corticosteroids
50

 or medications that 

alter T cells such as cyclosporine
51

 or tacrolimus
52

. The pathologic finding in MCD is podocyte 

foot process effacement wherein slit diaphragms are lost and foot processes become fused. These 

cellular changes are visible only by electron microscopy
53,54

. For decades, it has been 

hypothesized that a “permeability factor” in MCD patients induces podocyte effacement, 

although no factor has been inexplicably implicated
55

.  

 The role of T cells in MCD has perplexed investigators as T cells are rarely found in or 

around the glomerulus upon kidney biopsy in suspected MCD
56

. Therefore, the investigational 

focus has been on circulating T cells in patients with MCD. Early studies did note that CD4+ T 

cells had phenotypic markings of an “activated” phenotype in the periphery of MCD patients
57,58

. 

However, the majority of studies have focused on secreted proteins from MCD T cells and their 

potential to be injurious to podocytes. A very early study noted that a “factor” was produced from 

PBMCs from MCD patients and the “factor” induced proteinuria when injected into rats
59

. 
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The limitations from this study were 1) total PBMCs were used and it is unknown which cell type 

produced the “factor” and, 2) the “factor” was never identified. Later studies were refined and 

demonstrated a “factor” was produced by T cell hybridomas made from MCD patients
55

. While 

this study implicated T cells as the cell type producing an injurious protein, the actual protein was 

still not identified but was hypothesized to be a “lymphokine.” More recently, IL-4 and IL-13 

have been implicated as potential candidates as the glomerular permeability factor, and both of 

these cytokines are secreted by Th2 cells
60

. However, the field continues to rely on hypotheses 

and anecdotal evidence as to the true etiology of MCD.  

 

Central Hypothesis 

 In summary, T cell dysfunction is incriminated in the majority of autoimmune diseases 

and provides insight into the immunopathogenesis and progression of disease. The central 

hypothesis of this body of work is that T cells are integral to the immunopathogenesis of ANCA 

disease and MCD. In addition to the central hypothesis, this body of work incorporates two main 

sub-hypotheses, 1) ANCA disease patients have dysfunctional regulatory T cells and an expanded 

effector population resistant to Treg suppression 2) MCD patients have circulating autoantibodies 

reactive to a T cell receptor present on peripheral “thymocyte-like” cells. 

 The central hypothesis and sub-hypotheses will be addressed in the following two 

chapters. Chapter 1 details the confirmation that Tregs from ANCA patients are incapable of 

suppressing effector T cell proliferation. Studies are also presented to demonstrate a contributing 

factor of Treg dysfunction—a splice variant of FOXP3. Additionally, a population of effector 

cells that are overrepresented in ANCA patients are functionally and phenotypically 

characterized. Chapter 2 is focused on the discovery of both a novel autoantibody and autoantigen 

in MCD and an interesting subset of FSGS patients.  



 

 

Chapter 1 

 

 

 

ANCA-ASSOCIATED VASCULITIS PATIENTS HAVE DEFECTIVE 

TREG FUNCTION EXACERBATED BY PRESENCE OF A 

SUPPRESSION-RESISTANT EFFECTOR POPULATION 

 

 

 

 
 This chapter consists of material from a manuscript reprinted with permission from  

 

Arthritis and Rheumatism 2013
1
 However, the breakdown in immune tolerance that results in the  

 

induction and persistence of ANCAs is not well-understood. We hypothesized that abnormal T  

 

cell regulation is central to disease pathogenesis and demonstrate here two separate abnormalities  

 

in T cell regulation in ANCA-associated vasculitis patients. Peripheral blood samples were  

 

obtained from patients with ANCA-associated vasculitis (n=63) and healthy controls (n=19) for  

 

flow cytometric analysis of CD4+ T cell populations. Functional T cell studies were performed  

 

with FACS sorted CD4+ T cell populations stimulated with anti-CD3/28. First, we show that the  

 

Treg frequency in the peripheral blood of active disease patients is increased, but Tregs from  

 

patients with ANCA-associated vasculitis have decreased suppressive function. Tregs from active  

 

disease patients disproportionately utilize a FOXP3 isoform lacking exon 2, which may alter Treg  

 

function. Second, we identify a CD4+ T cell population with increased frequency that is resistant  

 

to Treg suppression, produces pro-inflammatory cytokines, and is antigen-experienced. ANCA- 

 

                                                      
This chapter consists of material from a manuscript reprinted with permission from Arthritis and 

Rheumatism 2013
1
  

1
Meghan E Free, Donna O Bunch, JulieAnne McGregor, Britta E Jones, Elisabeth A 

Berg, Susan L Hogan, Yichun Hu, Gloria A Preston, J. Charles Jennette, Ronald J Falk, Maureen A Su 
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associated vasculitis is associated with disruption of the suppressive Treg network and increased 

frequency of a distinct pro-inflammatory effector T cell subset which comprises the majority of 

peripheral CD4+ T cells. 

Introduction 

 T cells, an integral part of adaptive immunity, are additionally incriminated in a number 

of autoimmune diseases. The role of T cells in autoimmunity is diverse and can be attributed to 

multiple pathogenic mechanisms, including regulatory T cell (Treg) dysfunction
61

, effector 

hyperactivation
62

 and an imbalance of certain subsets
31

. Therefore, the contribution of T cells to 

the pathogenesis of a particular autoimmune disease is unlikely to stem from a single aberration.  

 CD4+ regulatory T cells (Tregs) are primary mediators of peripheral tolerance and 

express the master transcription factor FOXP3
63

. A critical role for Tregs in preventing 

autoimmunity is demonstrated by the development of fulminant autoimmunity in rare patients 

lacking Tregs due to FOXP3 mutations
19

. How quantitative changes in Treg numbers and 

function contribute to the pathogenesis of more common autoimmune diseases that do not involve 

FOXP3 mutations are less clear
61

.  

 Anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis (AAV) is an 

autoimmune disease wherein patients have pathogenic autoantibodies reacting to 

myeloperoxidase (MPO) or proteinase 3 (PR3) and exhibit necrotizing, crescentic 

glomerulonephritis and systemic vasculitis
3
. The production of isotype-switched autoantibodies in 

AAV suggests the involvement of CD4+ helper T cells in the autoimmune process
3
. Therefore, 

primary dysregulation of T cells in AAV is likely to permit autoantibody formation. Studies on 

the frequency and function of Tregs in patients with AAV have yielded conflicting results. Treg 

frequency in AAV patients has been reported to be increased
43

, or decreased
44,45

. Additionally, 

Treg function in AAV patients has been reported as normal
64

  and decreased
43,44,45

. Furthermore, 

little is known about how Treg functional deficits may negatively affect other T cell subsets in 

AAV. 



12 

 

 Although attention has focused on abnormalities intrinsic to Tregs in autoimmunity, 

recent evidence suggests that effector T cell resistance to Treg suppression may also contribute to 

the development of autoimmune disease
62

. We report herein the potential contributions of both 

Treg dysfunction and effector T cell resistance in AAV. Patient Tregs are defective in 

suppressing effector CD4+ T cells and this dysfunction is correlated with increased usage of a 

FOXP3 splice variant. Additionally, patient peripheral blood samples demonstrate an increased 

frequency of a distinct CD4+ T cell population that is resistant to functional Treg suppression and 

secretes pro-inflammatory cytokines. Taken together, these data delineate two separate and novel 

mechanisms by which dysregulation of CD4+ T cells contribute to AAV. 

Materials and Methods 

Patient cohort 

 Patients with biopsy-proven AAV enrolled in this study gave informed, written consent 

and participated according to UNC Institutional Review Board guidelines. Patient demographics 

were similar between healthy controls and AAV patients with the exception of age which was 

significantly lower in the healthy control cohort and are listed in Table 1.1. 

 Disease activity was determined by the Birmingham Vasculitis Activity Score (BVAS). 

BVAS is a clinical assessment of vasculitic activity, the most recent updated version was 

published by Mukhtyar et al
65

. In this study, patients with a BVAS of 0 were considered to be in 

remission while a BVAS >0 determined active disease. Diagnosis of microscopic polyangiitis or 

granulomatosis with polyangiitis was based on previously well established criteria
66,67

. 
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Table 1.1 Patient demographics 

 ANCA-

associated 

vasculitis  

 (Total)  

Healthy 

Control 

(Total)  

ANCA-

associated 

vasculitis 

(Functional 

studies)  

Healthy 

Control 

(Functional 

studies)  

Sex      

     Male  41.9%  47.2%  37.5%  33.3%  

     Female  58.1%  52.8%  62.5%  66.7%  

Race      

     Asian  1.6%  0.0%  0.0%  0.0%  

     African American  12.9%  10.5%  25.0%  0.0%  

     Hispanic  1.6%  0.0%  0.0%  0.0%  

     Caucasian  83.9%  84.2%  75.0%  83.3%  

     Other  0.0%  5.3%  0.0%  16.7%  

Mean Age  52.0  33.8  54.6  45.7  

     Range  13-86  20-54  24-79  26-54  

Serology      

     MPO  42.9%  NA  25.0%  NA  

     PR3  57.1%  NA  75.0%  NA  

Diagnosis      

     MPA  48.4%  NA  25%  NA  

     GPA  40.3%  NA  62.5%  NA  

     Renal limited  11.3%  NA  12.5%  NA  

Mean BVAS*  7  NA  0.5  NA  

     Range  0.5-23  NA  0-4  NA  

Mean Disease Duration (days)      

    Presentation to most recent follow-up  1957  NA  2136  NA  

     Range (days)  11-6809  NA  295-4417  NA  

 Medication use** (within 6 months prior to 

sample    date of functional study  

    

     IV cyclophosphamide  8.1%  NA  0.0%  NA  
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     Oral cyclophosphamide  3.2%  NA  0.0%  NA  

     Mycophenolate mofetil  33.9%  NA  50%  NA  

     Glucocorticoid  43.5%  NA  12.5%  NA  

     Azathioprine  17.7%  NA  12.5%  NA  

     Rituximab  41.9%  NA  37.5%  NA  

TOTAL 
*BVAS average for AAV (total) only 

includes active patients 

**Immunosuppressive medication  

62  19  8  6 
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Cell isolation and flow cytometry  

 PBMCs were washed and resuspended in HBSS, 2% FBS, 0.1% sodium azide and 

stained with: CCR6, CD45RO, CD45RA (BD Biosciences), CCR5, CCR7, CXCR3, CD25, CD4, 

CD127, CD8, CD3 (BioLegend). For FOXP3 detection, cells were fixed and permeabilized using 

a FOXP3 Staining Buffer Set (eBioscience). FOXP3 was detected by clones PCH101 

(eBioscience) and 150D (BioLegend). These two antibodies have previously been used to identify 

FOXP3 splice variants by flow cytometry
68

. We additionally confirmed the specificity of the 

antibodies by western blot (data not shown). Intracellular cytokine staining of IL-4 and -17 was 

performed after 4 hour stimulation with PMA and ionomycin while incorporating GolgiPlug (BD 

Biosciences). Cells were then permeabilized with CytoFix/CytoPerm (BD Biosciences) and 

stained with anti-IL-4 or anti-IL-17 (BioLegend). Cells were acquired on a BD LSRII and data 

was analyzed by FlowJo software (Tree Star, Inc.).  

Suppression assays  

 Demographics for patients used in functional studies are shown in Table 1. PBMCs were 

isolated from heparinized peripheral blood by Histopaque-1077 (Sigma-Aldrich) and washed 

twice in HBSS plus 2% FBS. CD4+ T cells were isolated by EasySep® Human CD4+ T Cell 

Enrichment Kit (StemCell) and subsequently stained with the following fluorochrome-labeled 

anti-human antibodies: CD4, CD25 and CD127. Cell sorting was performed on an iCyt 

Reflection (Sony). Post-sort cell population purity was routinuely >95% for Tregs and CD25
neg

 

and >85% for CD25
int

 with occasional CD25
neg

 contamination. 

 Responder T cells were labeled with 0.1 µM CFSE (Invitrogen), washed twice and 

resuspended in RPMI, 10% FBS, pen/strep, HEPES. Cells were plated in 96-well plates pre-

coated with immobilized anti-CD3 (5 ug/mL) and anti-CD28 (1 ug/mL) (BioLegend), as done 

previously
69

. Responders were plated at 50,000 cells per well and suppressors were titrated. Cells 

proliferated for 4 days before analyzing on a BD LSRII. 
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 Suppression assays using allogeneic Tregs were performed as previously described
62

, 

wherein 50,000 CFSE-labled effectors were plated in anti-CD3/28 pre-coated wells and 

proliferated for 4 days before analyzing on a BD LSRII.  

Cytokine array and ELISA 

 To detect IL-17A or IL-4 in the cell culture supernatants we utilized a Human IL-17A 

ELISA MAX™ Deluxe and Human IL-4 ELISA MAX™ Deluxe (BioLegend). Cell culture 

supernatants were analyzed for additional cytokine content using a multiplex assay, Beadlyte 

Human 22-plex (Upstate). 

Statistics 

 The Wilcoxon rank-sum test was used for analysis of two groups. Kruskal-Wallis test 

was utilized in analyses involving more than two groups. 

Results  

Tregs from AAV patients are hypofunctional  

 To clarify if and how Tregs are abnormal in AAV we characterized Treg population 

dynamics in patients with active disease, in disease remission, and healthy controls. Tregs, 

defined as CD4+, CD25
high

, CD127
low

 and FOXP3+
17,18

, were quantified as percentage of CD4+ T 

cells. We obtained remission and most proximal relapse samples from the same patient to 

determine Treg population dynamics in internally controlled samples. In patients followed 

longitudinally, active disease was associated with an increased frequency (p=0.003) of Tregs 

compared to remission (Figure 1.1A left panel). We also obtained multiple remission samples on 

these patients, allowing us to compare the remission sample having the lowest Treg frequency 

with the active sample (Figure 1.1A right panel). The lowest Treg frequency occurred 6 months 

after relapse in most cases. Consistent with our previous data, active disease was associated with 

a higher frequency of Tregs in this analysis.  

 Additionally, we compared Treg frequencies in our large cohort of patient samples to 

healthy controls as a composite. We noted significantly increased Treg frequencies (p=0.03) in 
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active disease compared to healthy controls (Figure 1.1B left panel). The Treg frequency was not 

significantly different between AAV patients in remission and healthy controls (Figure 1.1C). 

Absolute numbers of Tregs per mL of blood were calculated and were not statistically significant 

between AAV patients and healthy controls (Figure 1.1D). Additionally, there were no 

differences in Treg frequency when comparing MPO and PR3 reactive AAV patients (Figure 

1.1B right panel). As some reports have demonstrated increased Treg frequencies with increase in 

patient age
70

, we performed a linear regression analysis of Treg frequency and patient age (Figure 

1.1E). Age and frequency of Tregs were not correlated in our cohort of AAV patients. 

 We also sought to determine the functional capacity of Tregs in AAV. CD4+, CD127
low

, 

CD25
high

 Tregs and CD25
neg

 effector T cells were sorted from healthy controls and patients. Prior 

studies have demonstrated the suppressive function of CD127
low

, CD25
high

 T cells was equal, if 

not superior to a gating scheme which identified Tregs as the highest 5% of CD25+ T cells
17

. 

AAV patients used for functional studies were not exposed to cyclophosphamide in the 

preceeding six months as cyclophosphamide is known to inhibit Treg function
71

. As expected, 

healthy Tregs suppressed >50% of effector proliferation at a 1:1 ratio (Figure 1.1F, diamonds; 

1.1G left). In contrast, Tregs from AAV suppressed only 20% of effector proliferation on average 

at a 1:1 ratio (Figure 1.1F, squares; 1.1G, right). The possibility remained that AAV CD25
neg

 

effectors are resistant to suppression since syngeneic Tregs and effectors were used in this 

experiment. To explore this possibility, we mixed healthy control Tregs with AAV CD25
neg

 

effectors in an allosuppression assay (Figure 1.1F, triangles; 1.1G, middle). Healthy Tregs (n=4) 

were able to suppress >50% of AAV CD25
neg

 effector proliferation on average. Therefore, 

CD25
neg

 T cells from AAV patients are similarly susceptible to suppression by functional Tregs. 

Together, these results point to a defect in Treg functional capacity and are consistent with those 

studies demonstrating defective Treg suppressive function in AAV
43–45

. 
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Figure 1.1 

 

 

 
 

Figure 1.1. Altered Treg function in AAV. (A) Longitudinal studies of individual AAV patients 

indicated by dashed line. Active disease point compared to most proximal remission point (left 

panel). Active disease point compared to remission point with lowest Treg frequency (right panel) 
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(n=20 pairs). (B) Left: Treg frequency with CD4+ T cells in active disease versus HC. Right: 

Treg frequency in MPO and PR3 reactive AAV patients. (C) Treg frequencies in ANCA patients 

with active or remitting disease compared to healthy controls. (D) Absolute number of Tregs per 

mL of blood in patients and healthy controls. (E) Linear regression analysis of Treg frequency 

and age of AAV patients. (F) In vitro suppression by HC and patient Tregs; HC, healthy control. 

Sorted, CFSE-labeled CD25
neg

 T cells were stimulated with anti-CD3, -28. Syngeneic or 

allogeneic Tregs were added to test suppressive ability. Proliferation was assessed on day 4 in HC 

(n=4), AAV (n=6), allosuppression (n=4). (G) Representative flow cytometry plots of in vitro 

suppression assay using autologous or allogeneic Tregs with CFSE-labeled CD25
neg

 effector T 

cells; %=proliferation. Active, BVAS>0; Remission, BVAS=0. 
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Tregs from AAV patients disproportionately utilize a variant FOXP3 isoform 

 With confirmation of the functional deficit of Tregs from AAV patients we explored the 

underlying mechanism behind AAV Treg dysfunction. FOXP3 is the master transcriptional 

regulator of CD4+ Tregs and drives their suppressive regimen. FOXP3 has two isoforms in 

humans, full-length and exon 2-deficient, due to alternative splicing at the mRNA level
72

. Exon 2 

lies within a repressor domain important in binding pro-inflammatory transcription factors, such 

as RORγt and RORα, which drive Th17 induction (Figure 1.2A, top)
73,74

. Lack of this domain 

would be predicted to prevent repression of these Th17 transcription factors and promote Th17 

lineage differentiation
74

. We hypothesized that increased expression of exon 2-deficient FOXP3 

may contribute to non-suppressive function of AAV Tregs. 

 We utilized two FOXP3 antibodies recognizing two distinct domains on the FOXP3 

protein. The FOXP3 antibody clone PCH101 recognizes the N-terminus and both isoforms of 

FOXP3 are recognized by this antibody. The FOXP3 antibody clone 150D recognizes the exon 2 

portion of FOXP3 and only recognizes full-length FOXP3 containing exon 2. Western blots using 

the same FOXP3 antibodies confirmed the specificity of these antibodies for the two isoforms 

(data not shown). Additionally, these antibodies were previously used to distinguish these two 

FOXP3 isoforms by flow cytometry and have concordance with mRNA analysis of these two 

FOXP3 isoforms
68

. Consistent with these reports we found two staining patterns among Treg 

populations by flow cytometry.  In some samples, CD4+ CD127
neg

 CD25
high

 cells Tregs stained 

positively with both antibody clones and therefore predominantly express full-length FOXP3 

(Figure 1.2A, bottom left panel). In other samples, Tregs stained positively with only the N-

terminus clone and therefore predominantly express exon 2-deficient FOXP3 (Figure 1.2A, 

bottom right panel).  

 We utilized this flow cytometric approach to quantify the percentage of CD4+ T cells 

harboring the FOXP3 splice variant in healthy controls and patients during active disease and 

remission. AAV patients have an increased frequency (p=0.001) of exon 2-deficient cells 
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compared to healthy individuals (Figure 1.2B left). Strikingly, exon 2-deficient FOXP3 is 

associated with both active and remitting disease (Figure 1.2B left).  We also examined the 

frequency of cells expressing full-length FOXP3 in patients and healthy individuals. Overall, 

AAV patients tended to have a lower frequency of cells expressing full-length FOXP3 compared 

to healthy individuals (Figure 1.2B right). The increased frequency of exon 2-deficient FOXP3 is 

not solely due to the increased Treg frequency in active AAV because exon 2-deficient FOXP3 

often exceeds >90% of total FOXP3+ cells (Figure 1.2C).  

 We correlated the degree of suppression when Tregs were cultured with syngeneic 

CD25
neg

 T cells at a 1:1 ratio with the percentage of T cells utilizing exon 2-deficient FOXP3 to 

corroborate the hypothesis that exon 2-deficient isoform of FOXP3 is associated with Treg 

dysfunction. These two variables were inversely correlated (Figure 1.2D; R
2
=0.72), 

demonstrating that an increased preponderance of exon 2-deficient FOXP3 is linked to a Treg 

population with diminished suppressive ability. 
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Figure 1.2 

 
Figure 1.2. Exon 2-deficient FOXP3 splice variant predominates in AAV. (A) Top: Protein 

structure of FOXP3. Exon 2 (dashed line) encompasses part of the repressor domain; Bottom: 

Representative flow cytometry plots of CD4+ cells using an antibody recognizing exon 2 (clone 

150D) and the N-terminus (clone PCH101) of FOXP3. Dual positive cells contain full-length 

FOXP3 (solid gray box) while single positive cells contain the splice variant (hatched gray box). 

(B) Left: Percentage of exon 2-deficient FOXP3 within CD4+ T cells in active AAV patients, 

remission AAV patients and healthy controls. Right: Percentage of full-length FOXP3 within 

CD4+ T cells in active AAV patients, remission AAV patients and healthy controls. (C) Exon 2-

deficient FOXP3 as a percentage of total FOXP3 positive cells in active AAV patients, remission 

AAV patients and healthy controls. (D) Correlation of the suppressive ability of Tregs and 

expression of exon 2-deficient FOXP3 in healthy controls and AAV patients. Active, BVAS>0; 

Remission, BVAS=0. 
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Increased frequency of a distinct CD4+ CD25
intermediate

 CD127
high

 T cell population is 

associated with AAV 

 We used a recently described gating strategy
17,18

 to stratify CD3+ CD4+ T cells with 

CD127 and CD25 (Fig 1.3A, top panels) to examine effector and suppressor CD4+ T cell 

populations. T cell populations were dramatically altered between healthy controls and AAV 

patients (Figure 1.3A, compare two bottom panels). Most CD4+ T cells in healthy controls are 

CD127
high

 CD25
neg  

while the majority of patient CD4+ T cells are CD127
high

 CD25
intermediate

 

(Figure 1.3A, bottom panels). The frequency of the CD25
int 

population in AAV patients was 

significantly increased (p<0.0001) compared to healthy controls (Figure 1.3B). Both MPO and 

PR3 positive AAV patients demonstrated increased frequency of this population. The absolute 

number of CD25
neg

 T cells in the peripheral blood of AAV patients is two-fold less than healthy 

controls, while the absolute number of CD25
int

 T cells is two-fold higher in patients (Figure 

1.3C). Therefore, there is an increased frequency of CD25
int

 cells in AAV patients.  

 To determine if other autoimmune diseases have an increased frequency of this CD25
int

 

population we obtained samples from systemic lupus erythematosus (SLE), rheumatoid arthritis 

(RA), and type 1 diabetes mellitus (T1DM) patients. An increased frequency of this population 

occurred in SLE (data not shown; mean 52.1 ± 17.1%) and RA (data not shown; mean 48.3 ± 

9.5%), but not in T1DM (mean 28.2 ± 12.4%) (Figure 1.3B). Thus, a higher frequency of CD25
int

 

T cells is not a universal property of all autoimmune diseases, but is associated with a subset of 

autoimmune diseases. 

 The CD25
int

 population was not associated with AAV disease activity as there were no 

significant differences between active and remission disease states (Figure 1.3D). Therefore, it is 

unlikely that increased frequency of the CD25
int

 population is merely a disease severity marker. 

In patients followed over time, a stable CD25
int

 T cell population persists for as long as patients 

have been monitored (Figure 1.4). We also obtained samples at disease onset and the CD25
int

 

population was already increased at that time which argues against an artifact of drug therapy. 
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Figure 1.3 

 
Figure 1.3. Altered T cell dynamics in PBMCs of AAV patients. (A) Gating strategy of CD3+ 

CD4+ lymphocytes stratified by CD127 and CD25 (top panel). Representative flow cytometry 

analysis of CD3+ CD4+ T cells in HC and patients (bottom panel). (B) Cumulative frequency of 

the CD25
int

 T cell population in MPO+ AAV patients, PR3+ AAV patients, type 1 diabetes 

mellitus (T1DM), and healthy controls. (C) Absolute cell numbers per mL of peripheral blood of 

the CD25
neg

 and CD25
int

 T cell populations. (D) Cumulative frequency of the CD25
int

 population 

expansion in active AAV patients or AAV patients in remission. n.s., not significant. Active, 

BVAS>0; Remission, BVAS=0. 
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Figure 1.4 

 
Figure 1.4. Longitudinal studies of CD25

int
 T cells. The CD25

int
 T cell population was monitored 

in patients every 3 months from time of entry into study. n=32 individual patients. 
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CD25
int

 T cells are resistant to healthy control Treg suppression 

 CD25 expression is associated with both effector T cell activation and Tregs
75

. We 

therefore sought to determine whether the CD25
int

 T cell population had effector or suppressor 

functions. Three CD4+ T cell populations were sorted by flow cytometry (CD25
neg

, CD25
int

 and 

CD25
high

) as delineated in Figure 1.3A, top panels. Functional studies were performed with cells 

from healthy controls (n=4) and AAV patients (n=4).  

 Sorted CD25
int

 T cells from AAV patients and healthy controls were serially diluted and 

cultured with syngeneic effectors stimulated with anti-CD3/CD28 to test potential suppressive 

function. As mentioned previously, CD25
neg

 cells from healthy controls or AAV patients are 

equally susceptible to Treg suppression (Fig 1.1F). CFSE dilution in CD25
neg

 effectors 

determined the suppressive ability of CD25
int

 T cells. As a positive control, we sorted bonafide 

CD25
high

 CD127
neg

 Tregs from a healthy control and showed that this population suppresses 70-

80% of effector proliferation in this assay (Figure 1.5A, closed triangle). CD25
int

 T cells from 

healthy controls have moderate suppressive ability as they suppressed 40% of effector 

proliferation at a 1:1 ratio (Figure 1.5A, closed diamond). In contrast, sorted CD25
int

 T cells from 

AAV patients were unable to suppress CD25
neg

 effector proliferation (Figure 1.5A, closed 

squares). Analysis of FOXP3 expression among CD25
int 

T cells revealed that they rarely express 

FOXP3 and therefore would not be predicted to have substantial suppressive function (Figure 

1.6). However, an average of 3-4% of healthy CD25
int 

T cells did express FOXP3 compared to 

less than 1% FOXP3+ in AAV. It remains possible that an additional suppressive CD127
high

 T 

cell population, such as recently identified CD25
low 

CD127
high

 GITR+ T cells
76

, resides in the 

CD25
int

 population in healthy controls. . 

 Sorted CD25
int

 T cells were cultured with syngeneic Tregs in serial dilution to test how 

CD25
int

 T cells function as responders. CD25
int

 T cells from both healthy controls (n=6) and AAV 

patients (n=7) were anti-CD3/CD28 stimulated for 4 days. CD25
int

 cells from healthy controls 

were resistant to suppression by autologous Tregs (Figure 1.5B) when compared to CD25
neg
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effectors. Only 10% of proliferation on average was suppressed at a 1:1 ratio of Tregs to CD25
int

 

T cells, whereas at a 1:1 ratio of Tregs to CD25
neg

 effectors suppressed approximately 70% of 

proliferation on average (Figure 1.5B, right). CD25
int

 cells from healthy controls are thus resistant 

to Treg suppression. Tregs were unable to suppress CD25
int

 T cell proliferation (Figure 1.5B) 

when patient cells were tested. However, as we and others have demonstrated, patient Tregs have 

a functional deficit. Therefore the exact degree of suppression-resistance of CD25
int

 T cells could 

not be ascertained from this particular experiment.  

 We performed allo-suppression assays using functional Tregs from healthy individuals 

and effector T cells from AAV patients to differentiate between resistance of CD25
int

 T cells to 

suppression and lack of Treg function. Healthy Tregs were able to suppress 50%, on average, of 

CD25
neg

 T cells from an AAV patient as mentioned previously (Figure 1.1F). This demonstrates 

that CD25
neg

 T cells are able to be suppressed in AAV if functional Tregs are present. However, 

when healthy Tregs were added to proliferating CD25
int

 T cells from an AAV patient, less than 

20% of effector cells were suppressed on average (Figure 1.5B). These data demonstrate that 

even functional, healthy Tregs are incapable of suppressing CD25
int

 T cells in AAV. In sum, 

CD25
int

 T cells are increased in frequency in AAV and CD25
int

 T cells from both healthy controls 

and AAV patients are resistant to Treg suppression. 
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Figure 1.5 

 
Figure 1.5. CD25

int
 T cells are resistant to suppression compared to CD25

neg
 T cells. (A) Left: 

Representative flow plots of suppression assay using CD25
int

 as suppressors and CFSE-labeled 

CD25
neg

 as effectors. Right: Compiled suppression data using CD25
int

 as suppressors and CD25
neg

 

as effectors. Data from HC (n=4) and AAV (n=4). (B) Left: Representative flow plots of 

suppression assay using Tregs as suppressors and CD25
int

 as effectors; % proliferation. Right: 

Compiled suppression data using Tregs as suppressors and CD25
int

 as effectors. Data from HC 

(n=6) and AAV (n=7). Allosuppression assays (HC:AAV) were repeated with HC (n=4) and 

AAV (n=4). 
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Figure 1.6 

 
Figure 1.6. FOXP3 expression between T cell subsets. Representative FACS plots depicting 

FOXP3+ intracellular staining of CD25
neg

, CD25
int

 and regulatory T cell populations. 
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The CD25
int 

T cell population is phenotypically distinct from the CD25
neg

 population 

  We hypothesized that CD25
int

 T cells might have pathogenic effector T cell capacity 

since these cells are resistant to suppression. Thus, we investigated phenotypic differences 

between CD25
int

 and CD25
neg

 T cells. T cell cytokine profiles are a key determinant of T helper 

subsets and also indicate the immunomodulatory capacity of T cells. We used capture ELISAs to 

determine cytokine production in culture supernatants of stimulated, sorted T cell populations 

from healthy controls and patients. The CD25
int

 population produced increased amounts of IL-17 

and IL-4 compared to the CD25
neg

 population; this corroborates our hypothesis that these cells act 

predominantly as effector cells (Figure 1.7A, left). IL-4 was never detected in the supernatants of 

stimulated CD25
neg

 T cells from healthy controls or AAV patients (Figure 1.7A, left). There was 

no significant difference in IL-4 and IL-17A production between CD25
int

 T cells from healthy 

controls or patients. Following short cultures with PMA and ionomycin, we also detected 

intracellular IL-4 and IL-17 in T cells and these cytokine-producing cells localized predominantly 

to the CD25
int

 population (Figure 1.7A, right). Thus, CD25
int

 T cells are similar in cytokine 

secretion between AAV patients and healthy controls on a per cell basis. However, the absolute 

number of CD25
int

 T cells is at least two-fold higher in patients and are therefore likely to 

produce more cytokines than healthy controls.  

 T cell populations utilize different chemokine receptors which allows for specialized 

functions such as exiting blood vessels and entering inflamed sites. We compared chemokine 

receptor expression between CD25
neg

 and CD25
int

 T cells from AAV patients to gain more insight 

regarding their function. These two populations differentially expressed CCR5 and CCR6. No 

significant differences in CCR7 and CXCR3 expression were observed.  CD25
neg

 T cells 

expressed CCR5 while CD25
int

 T cells had a statistically significant higher (p<0.0001) expression 

of CCR6 (Figure 1.7B). Therefore, CD25
neg

 and CD25
int

 T cell populations have differential 

expression of chemokine receptors. 
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 Additional phenotyping of the T cell populations from AAV patients demonstrated that 

most CD25
neg

 T cells are a relatively equal split of CD45RA+ and CD45RO+ cells; indicating a 

population with a large percentage of naïve cells (Figures 1.7C and 1.7D). However, the CD25
int

 

population preferentially expressed CD45RO+ (Figures 1.7C and 1.7D). CD45RO expression 

suggests that the CD25
int

 population is enriched for activated or memory T cells.  
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Figure 1.7 

 
Figure 1.7. Phenotypic analysis of CD25

int 
T cells. (A) Left: Concentration of IL-17A and IL-4 in 

supernatants of in vitro stimulated CD25
neg

 and CD25
int

 T cells from HC (n=8) and AAV patients 

(n=9). Right: Representative plots of intracellular detection of IL-17A and IL-4 post-stimulation. 

Localization of cytokine-producing cells in CD25
neg

 or CD25
int

 T cell populations. Flow sorted T 

cell populations were stimulated with anti-CD3, -28 for 4 days. (B) Representative flow 

cytometry plots and cumulative analysis of chemokine receptor expression between AAV T cell 

subsets. (C) Gating strategy for CD45 isoform analysis of T cell subsets in AAV. (D) Compiled 

data of CD45 isoform usage between AAV patient T cell subsets (n=13).  
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Discussion 

  In conclusion, our data demonstrate two important findings: 1) Defective CD4+ Treg 

suppressive function in AAV which is associated with increased usage of a FOXP3 splice variant 

and 2) Increased frequency of a distinct effector CD4+ T cell population is associated with AAV 

patients which is resistant to Treg suppression. Both findings are critical to the understanding of 

AAV and autoimmune diseases in general by providing evidence that defects in T cell 

suppression can stem from both suppressive and responder T cell populations.  

 Whether Tregs are intrinsically defective in number and function in AAV patients has 

been controversial
43–45

. Some controversy can be attributed to the fact that other reports examine 

Treg populations in patients with only remitting disease or only with granulomatosis with 

polyangiitis (formerly Wegener’s)
43,44

. Our studies confirm that comparing Tregs across a large 

cohort of patients in relapse or remission is not straightforward. However, statistically significant 

changes in Treg populations are found when studies examine internally controlled active and 

remission samples, in concordance with Morgan et al
44

. We note that while Treg frequencies 

significantly change with disease activity, absolute numbers of Tregs are not statistically different 

from healthy controls. We can partially attribute this discrepancy to altered numbers of effector T 

cells, specifically decreased numbers of CD25
neg

 T cells in AAV (Figure 1.3C). It remains 

possible that transient lymphopenia induced during flares of disease could globally affect the T 

cell pool which may be reflected by increased frequency of Tregs. It is less likely that 

glucocorticoids could impact Treg frequencies in that 9 of 20 patients in the paired Treg studies 

had continuous or no glucocorticoid use during sampling. Additional controversy surrounds the 

markers used to identify Treg populations. We utilize a highly specific method for phenotypic 

classification of CD4+ FOXP3+ T cells based on surface markers of CD4+ CD25
high

 CD127
low

 

17,18
.  

 The use of immunosuppressives in our patient cohort is an additional confounding factor. 

However, AAV patients were routinely followed for up to two and a half years with serial sample 
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collection every three months. During this time many patients’ immunosuppressives were 

changed, yet Treg population changes only occurred with changes in disease activity and the 

CD25
int

 population remained unchanged despite medication alterations. Additionally, 41.9% of 

our patient cohort was exposed to Rituximab during sample acquisition (Table 1). While 

monoclonal anti-CD20 antibodies target the depletion of circulating B cells, there are likely to be 

unknown off-target effects of Rituximab on peripheral T cells. The effects of Rituximab on T cell 

populations in ANCA disease have not been directly examined, however studies in other diseases 

have noted reduced Th17 responses and depletion of a controversial CD20+ T cell population
77,78

. 

Despite this, our data demonstrates a robust Th17 response from CD25
int

 T cells in our cohort. 

Yet we do acknowledge that future studies should examine the effects of Rituximab treatment on 

T cell populations of ANCA disease patients. 

 Our data demonstrate that AAV Tregs have an increased frequency in active disease that 

is linked with defective function. We further demonstrate that this dysfunction is associated with 

increased usage of an exon 2-deficient FOXP3 splice variant. In fact, the majority of FOXP3+ T 

cells in AAV patients are exon 2-deficient. Healthy controls with minimal exon 2-deficient 

FOXP3 have a normal suppressive function while AAV patients lose suppressive function as 

there is an increase in the usage of exon 2-deficient FOXP3. One other study has utilized this 

method to examine FOXP3 isoforms in the peripheral blood of inflammatory bowel disease 

patients. Yet that study found no differences in isoform usage between patients and healthy 

controls
68

. Therefore, our study is the first to identify a patient population that significantly differs 

in FOXP3 isoform usage compared to healthy controls. We hypothesize that the suppressive 

regimen of Tregs is lost when exon 2 of FOXP3 is aberrantly spliced. Exon 2 of FOXP3 

comprises part of the repressor domain which sequesters other proteins, such as RORγt and 

NFAT
74,79

. We hypothesize that in the absence of exon 2, RORγt and potentially other unknown 

proteins, are not sequestered and are able to initiate pro-inflammatory cascades. In line with this 

speculation, the previously mentioned publication demonstrated cells expressing the exon 2-
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deficient FOXP3 were the main producers of IL-17 among FOXP3 expressing cells
68

. Therefore, 

exon 2-deficiency may alter FOXP3 and Treg function in AAV and increased exon 2-deficiency 

predicts a lack of suppressive ability.  

 Our identification of a distinct CD4+ effector T cell (CD25
int

) reveals additional T cell 

dysregulation in AAV patients. The increased frequency of CD25
int

 T cells, and their CD45RO 

positivity, leads us to hypothesize that this population may be a clonal expansion of autoreactive 

cells. A study by Hirota et al suggests that CCR6-expressing Th17 cells were the tissue-

infiltrating pathogenic T cell in RA
80

. Therefore, we hypothesize that CCR6-expressing, IL-17-

producing CD25
int

 T cells may be able to infiltrate sites of inflammation in AAV and contribute 

to tissue immunopathogenesis. Consistent with their resistance to Treg suppression, CD25
int

 T 

cells produce elevated levels of the pro-inflammatory cytokines IL-4 and IL-6 (Figure 1.8), which 

have been associated with resistance to Treg suppression
31,81

. CD25
int

 T cells also produce robust 

amounts of IL-17A which has been described to be elevated in AAV patients
41,42

. The data 

presented herein demonstrate that not only are Tregs implicated in immune dysregulation in 

AAV, but that a CD25
int 

effector population compounds the dysregulation through suppression 

resistance and production of pro-inflammatory cytokines. Combination of these events could 

permit the formation of ANCAs, thereby perpetuating the disease. Several patient samples were 

obtained at presentation of disease and the CD25
int

 population was already increased in 

frequency. Therefore, alterations of the CD25
int

 population precede disease presentation and must 

play a role in disease immunopathogenesis. 

 Currently, therapies aimed at augmenting Treg function are under development for 

autoimmune diseases
82

. Increased frequency of a CD4+ T cell population resistant to Treg 

suppression in AAV highlights the need to consider not only the augmentation of Treg function, 

but also the ability of effector T cells to be suppressed. Future studies are aimed at deciphering 

the inciting event(s) leading to changes of the CD25
int

 population and their role in other 

autoimmune diseases. 
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Figure 1.8 

 
Figure 1.8. Cytokine expression from CD25

neg
 and CD25

int
 T cells. Cytokine profiles of T cell 

subsets from healthy controls (open circles) and ANCA disease patients (closed diamonds). 

CD25
neg

 and CD25
int

 T cells from healthy controls and patients with ANCA disease were sorted 

and subsequently stimulated with anti-CD3/-28 for 4 days. Cell supernatants were then harvested 

and analyzed by cytokine multiplex. 
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Chapter 2 

 

 

 

DISCOVERY OF NOVEL AUTOANTIBODIES AND 

AUTOANTIGEN IN IDIOPATHIC NEPHROTIC SYNDROME 
 

 

 

 The immunopathogenesis of minimal change disease has eluded scientists and clinicians 

for years. While the hypothesis that T cells are integral to the immunopathogenesis is generally 

accepted, definitive evidence is lacking. Using a mass spectrometry/epitope excision protocol 

previously used in our lab to define autoantibody peptide reactivity in ANCA disease, we 

discovered autoantibodies in MCD patients reactive to a conserved portion of T cell receptors. 

These anti-TCR autoantibodies reacted with a specific subset of circulating T cells which 

phenotypically resembled escaped thymocytes. Additionally, these anti-TCR autoantibodies 

induced changes in targeted T cells which resembled cellular activation. This cellular activation 

was accompanied by cytokine production from the targeted T cells. Our data demonstrate the 

presence of autoantibodies present in MCD, a phenomenon not generally hypothesized to occur in 

MCD patients. Anti-TCR autoantibodies target specific T cells to induce a pro-inflammatory 

response which may ultimately lead to the pathology and disease manifestation of minimal 

change disease. 
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Introduction 

 Idiopathic nephrotic syndrome, including minimal change disease (MCD) and focal 

segmental glomerulosclerosis (FSGS), affects podocyte architecture and thus the ability of the 

glomerular filter to prevent urinary protein loss. The initial hypothesis that idiopathic nephrotic 

syndrome resulted from T-cell dysfunction was put forth in 1974 by Dr. Shalhoub 
4
. Shalhoub 

hypothesized that a clone of T cells produced a “lymphokine” that was toxic to the glomerular 

basement membrane. Subsequent studies have attempted to identify the “permeability factor” 

responsible for nephrotic syndrome. IL-8 and IL-13 have been proposed as mediators of minimal 

change disease by several studies
60,83

. One study has suggested that soluble urokinase receptor 

(suPAR) causes podocyte injury in FSGS
84

, although controversy surrounds this proposal. 

Another recent hypothesis of the etiology of MCD is that CD80 is upregulated on podocytes in 

MCD, thereby inducing architectural changes within the podocyte leading to proteinuria
85,86

. The 

upregulation of CD80 is hypothesized to be a result of cytokine release from T cells or toll-like 

receptor activation by infectious or environmental agents
86

. Some features of these combined 

hypotheses are likely to contribute to the immunopathogenesis of MCD. However, there remain a 

number of unanswered questions. 

 Traditional hypotheses of the immunopathogenesis of nephrotic syndrome often discount 

any involvement of B cells. However, the successful use of rituximab in MCD patients questions 

this paradigm
87–90

. Our group has succeeded at identifying specific peptide sequences recognized 

by anti-MPO autoantibodies in anti-neutrophil cytoplasmic autoantibody (ANCA) disease by use 

of a technique called epitope excision utilizing MALDI-TOF/TOF mass spectrometry (Roth et al, 

JCI 2013 in press). We applied this approach in MCD using total IgG from patients and protein 

lysates from total peripheral mononuclear blood cells to preliminarily identify proteins targeted 

by antibodies in MCD. Subsequent peptide ELISAs have confirmed the identification of 

autoantibodies present in the circulation of MCD. Downstream experiments utilizing affinity-
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purified anti-TCR autoantibodies enabled us to determine the targeted T cells, their phenotype 

and cellular activation induced by autoantibody/autoantigen interactions. 

Methods 

Patient Cohort/Sample Acquisition 

 Patients with biopsy-proven or clinically reviewed minimal change glomerulopathy or 

FSGS, biopsy-proven and chart reviewed patients with ANCA disease, and patients with 

idiopathic membranous enrolled in this study gave informed, written consent and participated 

according to UNC Institutional Review Board guidelines. Samples from children with peanut 

allergies were deidentified.  Consent and sample storage procedures have been previously 

documented
91

. In addition, deidentified serum specimens were obtained from patients concurrent 

with renal biopsy from UNC-Nephropathology. The institutional review board of the University 

of North Carolina at Chapel Hill waived the requirement of consent for use of these samples.  

 Minimal change glomerulopathy, focal segmental glomerulosclerosis, and membranous 

nephropathy were diagnosed by means of renal biopsy.  A subset of pediatric patients (not 

included in analyses) with clinician diagnosis of minimal change nephrotic syndrome were 

included after chart review confirmed this to be the most likely diagnosis.  All membranous 

nephropathy patients underwent chart review to identify only idiopathic etiology.   

Epitope mapping of immunoglobulin from MCD/FSGS patients against circulating 

leukocyte proteins 

 Protein A/G (Santa Cruz) purified immunoglobulin (Ig) was immobilized on CNBr-

activated Sepharose 4B (GE Healthcare) in compact reaction columns (CRC, USB Corporation) 

and incubated with human peripheral leukocyte cell lysate or thymic cell lysate. PBMCs were 

isolated from healthy donor blood using Vacutainer CPT tubes with sodium heparin (BD). 

Thymocytes from a healthy thymus were isolated by tissue mincing and straining through 70 µm 

nylon mesh (BD Falcon). Cell membranes and cytoplasm were then fractionated using a 

subcellular protein fractionation kit (Pierce). Sepharose-Ig-cell lysate complex was then 
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sequentially digested with sequencing grade TPCK-treated trypsin (Worthington) for 2h at 37C. 

TCR-peptides which remain bound to Ig after digestion were eluted with 0.1% Trifluoro acetic 

acid (ThermoScientific) and sequences were determined by mass spectrometry. Samples were 

analyzed using a 4800 Plus Matrix-Assisted Laser Desorption Ionization Time of Flight Mass 

Spectrometer (MADLI TOF/TOF MS/MS) in conjunction with ProteinPilot software (AB 

SCIEX). Samples were spotted on a stainless-steel target with α-cyano-4-32hydroxycinnamic 

acid matrix (Sigma). The instrument used has a YAG laser with λ=355nm and the potential 

difference between the source acceleration voltage and the collision cell was set at 2kV. 

Calibration was done internally with self-digested TPCK-treated trypsin (same as above). Peak 

absorbance in MS spectra are not indicative of the abundance of peptide species because of the 

differences in individual peptides’ ability to ionize. All analysis was done with ProteinPilot using 

an NCBI Mascot search. This protocol is a variation of epitope excision using MS from Roth et 

al, JCI 2013, in press. 

ELISA 

 Immunoglobulin was isolated from patient plasma or serum using Protein A/G beads 

(Santa Cruz). ELISA plates (Corning, #3590) were coated with 2-3 ug of peptide diluted in 

carbonate/bicarbonate buffer (Sigma) and incubated overnight at 4 degrees. Plates were blocked 

with Superblock-PBS (Thermo Scientific). Patient immunoglobulin (1 ug/well) was added and 

incubated for 3 hours at 37 degrees. Secondary anti-human antibody with horseradish peroxidase 

was incubated for 45 min at 37 degrees. Substrate was 1-step PNPP (Thermo Scientific) and 

absorbance was read at 405 nm at 10 minute intervals.  

Immunoprecipitations 

 Cellular protein lysate from either MCD patients or healthy thymus (as collected in MS 

protocol) was incubated with immunoprecipitating antibody (anti-myosin, pan-anti-TCR) 

overnight at 4C. Samples were then washed 6 times before elution by boiling. Eluted samples 

were run on Mini-Protean TEX Precast Gels 4-15% (BioRad) before transfer to nitrocellulose. 
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After blocking with Superblock (Thermo Scientific), immunoblotting antibodies (affinity-purified 

anti-TCR from patients) were incubated overnight at 4C. Appropriate secondary antibodies 

conjugated to alkaline phosphatase were incubated for 1 hour at room temperature before 

development with Western Blue stain (Promega). 

Purification/Labeling of anti-TCR autoantibodies 

 TCR peptides identified by mass spectrometry were synthesized and bound to a HiTrap 

NHS-activated column (GE). Sera from MCD patients were then subjected to FPLC with the 

TCR peptide column. Affinity-purified anti-TCR autoantibodies were then dialyzed over night 

prior to fluorescent labeling. All affinity-purified anti-TCR autoantibody samples were 

concentrated to 1 mg/mL using Amicon Ultra-0.5 mL Centrifugal Filters (Millipore). Samples 

were then fluorescently labeled with either Alexa Fluor 488 or Alexa Fluor 647 with Alexa Fluor 

Antibody Labeling Kits (Life Technologies) per manufacturer’s protocol. 

Cell isolation and flow cytometry  

 Peripheral blood mononuclear cells (PBMCs) were washed and resuspended in HBSS, 

2% FBS, 0.1% sodium azide, Fc blocked, and stained with the following anti-human 

fluorescently labeled antibodies: CD2, CD3, CD4, CD8, CD45, TCRαβ, TCRγδ, CD95, CD69, 

CD154 (all from BioLegend),  Myh9 (abcam), and fluorescently labeled anti-TCR autoantibodies 

from MCD patients. with minimal change disease were affinity purified for peptides found by 

mass spectrometry. Annexin V and propidium iodide staining was performed according to the 

FITC Annexin V Apoptosis Detection Kid with PI (BioLegend) manufacturer’s instructions. To 

determine kinetic annexin positivity, the Kinetic Apoptosis Kit (abcam) was followed per 

manufacturer’s instructions. For intracellular cytokine detection, PBMCs were stimulated with 

either affinity-purified anti-TCR autoantibodies or PMA/ionomycin for 4 hours with GolgiStop 

incorporated the final 3 hours. Surface staining was performed as above prior to cell fixation and 

permeabilization with CytoFix/CytoPerm (BD). Intracellular cytokines were detected by the 
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following anti-human fluorescently labeled antibodies: IL-8 and IL-13 (BioLegend). Cells were 

acquired on a BD LSRII and data was analyzed by FlowJo software (Tree Star, Inc.). 

 Images of individual cells during flow cytometry were acquired on an Amnis 

ImageStream and data analysis was performed using the Amnis Image Data Exploration and 

Analysis Software (IDEAS™). 

Results 

Identification of a target protein in peripheral blood leukocyte lysate 

 Previous studies from our group have utilized mass spectrometry approaches to 

successfully pinpoint autoantibody targets in ANCA disease. ANCA disease is an “indirect” 

autoimmune disease as the autoantibodies to not target the organ with pathological 

manifestations, in this case, the kidneys. Rather, in ANCA disease autoantibodies target an 

intermediate circulating cell, neutrophils, which spur the kidney pathology. We questioned if a 

similar phenomenon occurred in MCD. Epitope excision utilizing MALDI-TOF/TOF mass 

spectrometry was performed using IgG from MCD patients and total leukocyte cell lysate from a 

healthy control or total protein lysate from normal human thymocytes. Initial MS spectra 

identified a TCR beta peptide of interest at an observed mass of 1904.7864. The target epitope 

was identified as the sequence TVTSAQKNPTAFYFCAR at a mass peak at 1904.7864 and 

protein matched to the human T cell receptor (TCR) beta chain.   

 Follow up MS experiments also used normal human thymus cell lysate as the source of 

protein. These experiments also detected TCR peptides bound to IgG from MCD patients; 

however these peptides matched to the delta chain of the TCR with an amino acid sequence of 

LEDSAKYFCALGNPLR. Additional MS experiments were performed with several IgG samples 

from different individual MCD patients. The peptide sequences discovered by all of these 

experiments are listed in Table 2.1. 

 After several MS experiments, while the majority of amino acids within the peptide 

sequence were different from experiment to experiment, we did note a conserved amino acid 
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sequence which appeared in all MS experiments. This YXCA motif is underlined in Table 2.1. 

Further investigation into amino acid sequences of TCR beta chains revealed that the majority of 

TCR variable regions have two highly conserved cysteine residues
92

. These two cysteines should 

form a disulfide bridge, contributing to the tertiary structure of the TCR. Additionally, as no 

reducing agents are utilized in the mass spectrometry experiments, it would be expected that both 

cysteines would be detected by mass spectrometry. However, in all experiments, only one 

cysteine is detected. This prompts our hypothesis that this disulfide bridge is perturbed in patients 

with MCD, thereby allowing exposure of an otherwise cryptic epitope and downstream formation 

of anti-TCR autoantibodies. This “conformeropathy” has been noted in other autoimmune 

diseases, notably Goodpasture’s or anti-glomerular basement membrane (GBM) disease wherein 

the autoantibody target of the noncollagenous-1 domain of type IV collagen is only exposed after 

a change in the quaternary structure
93

. 
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Table 2.1 

 

Table 2.1. Peptide sequences identified by mass spectrometry/epitope excision. IgG samples 

from MCD patients incubated with various cell protein lysates were subjected to epitope exicision 

mass spectrometry experiments to determine the peptide targets of autoantibodies in MCD 

patients. Table depicts amino acid sequences of identified targeted peptides, protein match and 

initial source of input protein. Highlighted regions are conserved amino acid motifs found in all 

mass spectrometry experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Amino acid sequence Protein match Source of protein for MS 

experiment 

TVTSAQKNPTAFYFCAR TCRβ Peripheral leukocyte 

TAFYLCASS TCRβ Peripheral leukocyte 

VYFCASSEGTYKYIFGTGTRLK TCRα Mouse thymoma 

LEDSAKYFCALGNPLR TCRδ Normal human thymus 

KYFCALGNPLRLGG TCRδ Normal human thymus 

LLSDSGFYLCAWR TCRβ Peripheral lymphocyte 

YLCASVVGIPPR TCRβ Peripheral lymphocyte 

QYLCASSDSFR TCRβ Peripheral lymphocyte 
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Anti-TCR autoantibodies are present in patients with minimal change disease 

 Peptide ELISAs were performed using the portion of the T cell receptor (TCR) beta and 

delta found by mass spectrometry (peptides 1 and 4 listed in Table 2.1). IgG samples from 

patients with MCD, FSGS, idiopathic membranous, anti-neutrophil cytoplasmic autoantibody 

(ANCA) disease and healthy individuals were tested for reactivity to the TCR peptide (Figure 

2.1A). Samples from MCD and FSGS patients were inclusive of all subsets and were acquired at 

onset of disease in addition to disease remission and relapse of disease. To address the relatively 

young ages of the MCD patients, we acquired 25 IgG samples from children with peanut 

allergies. In our MCD cohort, the frequency of positivity for anti-TCR autoantibodies was 36.8%, 

with the caveat that our cohort was not prospectively collected and includes all patients from a 

wide range of ages and clinical disease courses. The combined healthy cohort with pediatric 

peanut allergies had a positivity rate of 3.77%.  

  To better address the frequency of anti-TCR autoantibodies in the MCD population, we 

acquired serum and plasma samples from Nationwide Children’s Hospital in conjunction with the 

Midwest Pediatric Nephrology Consortium. Fifty-seven samples acquired at or around onset of 

disease and fifty-six paired samples at one month after diagnosis were used in a replication study 

of our peptide ELISA. Samples from the onset of disease had a high reactivity to TCR peptides 

with a 96.5% positivity rate (Figure 2.1B). At one month post initiation of treatment, most 

patients had decreased reactivity to TCR peptides but were still positive compared to healthy 

controls (Figure 2.1B). Therefore, the presence of anti-TCR autoantibodies may be enriched 

during disease onset or relapse.  Figure 2.1A depicts all MCD patients tested on our ELISA (all 

UNC patients and onset MCD patients from the MWPNC); the positivity rate of this inclusive 

cohort was 67.8%.  

 Interestingly, while our cohort of FSGS patients was inclusive of all variants and stages 

of disease, there was a clear demarcation of FSGS patients positive for anti-TCR autoantibodies 

(Figure 2.1A). Clinical analysis of FSGS patients who had an IgG reactivity of greater than or 
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equal to an OD of 1 revealed that this subset of patients was enriched for those with a pathologic 

diagnosis of tip lesion FSGS. Additionally, clinical review noted that a number of these patients, 

despite having biopsy-proven FSGS, clinically “acted” like MCD patients. Positivity for anti-

TCR autoantibodies may better predict FSGS patients with either tip lesion pathologies or those 

who may benefit from clinical treatment similar to MCD patients. Additionally, the single 

idiopathic membranous patient with anti-TCR autoantibody positivity was clinically reviewed 

and found to have global podocyte activation on kidney biopsy; therefore, this patient may not be 

truly representative of idiopathic membranous patients and their autoantibody status. 
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Figure 2.1 

 

        
Figure 2.1 Patient IgG reactivity to TCR peptide. (A) IgG isolated from healthy controls, MCD, 

FSGS, idiopathic membranous and ANCA disease patients were used to determine reactivity to 

the TCR peptide. Dashed red lines represent one and two standard deviations above the mean of 

the healthy controls. (B) Paired onset and clinical remission anti-TCR ELISA data from patients 

in the Midwest Pediatric Nephrology group. 
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 Additionally, anti-TCR autoantibodies were affinity-purified by FPLC with a column to 

which peptides discovered by mass spectrometry were attached. Relative abundance of anti-TCR 

autoantibodies was inferred from FPLC peaks when serum from either MCD patients, FSGS 

patients or healthy controls was used during affinity-purification. Representative FPLC peaks 

demonstrate that the selected MCD and FSGS patients have anti-TCR autoantibodies (Figure 2.2 

top two panels) while the healthy control only exhibited a small amount of anti-TCR 

autoantibodies, likely representative of natural autoantibodies (Figure 2.? bottom panel). The data 

from the affinity-purification process strengthened our hypothesis that anti-TCR autoantibodies 

are enriched in the MCD population and a subset of FSGS patients. 
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Figure 2.2 

 
Figure 2.2 Antibody elution peaks from affinity-purification of anti-TCR autoantibodies by 

FPLC. Serum from MCD patient, FSGS patient or healthy control was subjected to an FPLC 

column with the TCR peptide. Peaks represent eluted affinity-purified antibodies. 
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Characterization of T cells targeted by anti-TCR autoantibodies 

 As the sequence identified by mass spectrometry matched to a portion of the TCR, we 

sought to determine if these autoantibodies recognize peripheral blood lymphocytes. Anti-TCR 

autoantibodies from patients with MCD were affinity purified and fluorescently labeled for use in 

flow cytometry. Initial experiments observed a well-defined population of small lymphocytes 

recognized by the anti-TCR autoantibody (Figure 2.3A). To control for any artifact or non-

specific binding of IgG purified from MCD patients, we also fluorescently labeled total IgG from 

MCD patients that was depleted of anti-TCR autoantibodies (Figure 2.3A middle panel). These 

antibodies had minimal background recognition of PBMCs, although they may represent 

additional autoantigenic targets not currently known.  

 With confirmation of a readily discernible population of PBMCs recognized by anti-TCR 

autoantibodies from MCD patients, we sought to further phenotype these cells. As initial mass 

spectrometry results matched the peptide to a region of a TCR, we hypothesized that cells 

recognized by these autoantibodies were likely to be T cells. On average, >50% of cells 

recognized by the anti-TCR autoantibodies expressed surface CD3 (Figure 2.3B left panel). 

Additionally, >80% of cells recognized by the anti-TCR autoantibodies were CD2+ (Figure 

2.3B), which is expressed earlier in T cell development compared to CD3 expression. In further 

characterization utilizing CD4 and CD8, very few cells were CD4 single positive, a low 

proportion (~20%) were CD8 single positive, however, the majority of cells were CD4+ CD8+ 

double positive (Figure 2.3B right panel). The distribution of CD4 and CD8 positivity of cells 

recognized by the anti-TCR autoantibodies is vastly different when compared to the normal 

frequency of CD4+, CD8+ or CD4+ CD8+ double positive cells in the periphery (Figure 2.3B far 

right). As there is a portion of anti-TCR targeted cells that are not CD3+, we were interested to 

determine if these CD3- cells were still T cells and expressed T cell receptors. Indeed, the 

majority of anti-TCR targeted cells that are CD3- are expressing a TCR when stained with a pan-

TCR antibody (Figure 2.3C). Therefore, the CD3 negativity of some cells could be due to either 
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steric hindrance of the anti-TCR autoantibody, or these cells are early in development and do not 

yet express surface CD3. Based on these phenotypic results, we hypothesize that the anti-TCR 

targeted cells represent a population of “thymocyte-like” T cells. 

 The anti-TCR autoantibody recognized, on average, 1% of PBMCs from patients with 

MCD (range 0.1-8%) which was significantly higher than healthy controls which only had an 

average of 0.25%  PBMCs recognized by the anti-TCR autoantibody (Figure 2.3D). These 

“thymocyte-like” T cells are present in the periphery of healthy individuals, albeit they constitute 

only a fraction of lymphocytes (0.1-0.5%). A much larger proportion of these cells exist in the 

periphery of patients with MCD or FSGS, occasionally constituting upwards of 8% of the total 

lymphocyte population. Glucocorticoids are not known for altering peripheral immunoglobulin 

levels, therefore the efficacious use of glucocorticoids in MCD must alter some other feature of 

the immune system. It is widely accepted that T cells and particularly thymocytes are very 

susceptible to apoptosis induced by glucocorticoids
94,95

. Therefore, disease quiescence in steroid-

responsive MCD patients may be due to apoptosis of “thymocyte-like” T cells, thereby 

decreasing the amount of autoantigen present in the circulation. To this end, with the few MCD 

patients followed longitudinally, we have documented impressive alterations in the frequency of 

“thymocyte-like” T cells with changes in disease activity. Perhaps the most impressive data is 

that from one pediatric case of MCD wherein during relapse the patient’s peripheral blood 

contained “thymocyte-like” T cells at a frequency of 7.88% of total PBMCs. Four months later, 

after glucocorticoid initiation and remission of disease, “thymocyte-like” T cells only accounted 

for 2.7% of PBMCs. It will be important to examine the frequency of  “thymocyte-like” T cells in 

a prospective cohort of MCD patients. 

 

 

 

 

 

 

 



52 

 

Figure 2.3 

 

 
 

Figure 2.3 Detection of “thymocyte-like” T cells in the periphery of MCD patients. (A) Left 

panel: unstained PBMCs; Middle panel: Alexa Fluor 647-labeled total IgG from MCD patient 

depleted of anti-TCR autoantibodies; Right panel: Alexa Fluor 647-labeled affinity purified anti-

TCR autoantibodies from MCD patient. (B) Left panel: cells recognized by affinity purified anti-

TCR autoantibodies further analyzed for CD3 and CD2 positivity. Right panel: cells recognized 
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by affinity purified anti-TCR autoantibodies further analyzed for CD4 and CD8 expression in 

comparison to total peripheral CD3+ T cells. (C) Analysis of pan-TCR positivity on cells 

recognized by anti-TCR autoantibodies. Targeted cells were sub-analyzed based on CD3 

positivity or negativity. (D) Frequency of anti-TCR autoantibody positive cells as a percentage of 

PBMCs in healthy controls and patients with MCD or FSGS.  
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 To further confirm the cellular phenotype of cells recognized by the anti-TCR 

autoantibodies, we analyzed fluorescently labeled cells on an Amnis ImageStream which captures 

images of individual cells through a flow sheath. We were able to visualize individual cells 

recognized by the anti-TCR autoantibodies and confirmed identical protein expression as was 

demonstrated by traditional flow cytometry (CD3, CD8 positivity) (Figure 2.4A). Additionally, 

through the use of the nuclear dye, Hoechst 33342, we confirmed that these cells are indeed 

nucleated cells despite their relatively small size based on forward scatter observed in flow 

cytometric analysis (Figure 2.4B). 
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Figure 2.4 

 

 
Figure 2.4. Single cell fluorescent phenotype of “thymocyte-like” T cells. (A) FACS images 

from Amnis Imagestream depicting CD3 and CD8 localization on the surface of cells targeted by 

anti-TCR autoantibodies. Right panel demonstrates merged pattern of CD3/CD8/anti-TCR 

positivity. (B) FACS images from Amnis Imagestream depicting nuclear staining (Hoechst 

33342) and pan TCR positivity of a cell targeted by the anti-TCR autoantibody. Right panel 

demonstrates merged pattern of nuclear staining/pan-TCR/anti-TCR positivity. 
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Anti-TCR autoantibodies activate target T cells 

 Upon discovery of anti-TCR autoantibodies and their binding to a specific population of 

“thymocyte-like” T cells, we hypothesized that these autoantibodies could alter the target T cells 

to become pathogenic. Initial hypotheses about activation of T cells after binding of anti-TCR 

autoantibodies were formed after visualization of “capping” of CD3/CD8/anti-TCR autoantibody, 

indicative of activation of the cells
96

. To directly test activation of cells post-autoantibody 

binding, we assessed surface expression of several activation markers, CD69, CD95 and CD154. 

CD69 is considered the earliest activation marker expressed after T cell stimulation and 

activation, and not surprisingly, CD69 expression was the highest expressed activation marker on 

T cells recognized by the anti-TCR autoantibodies (Figure 2.5A). CD95 had a bimodal expression 

within the population of cells recognized by the anti-TCR autoantibodies which also confirms 

activation of these cells. However, CD154 was only modestly expressed after anti-TCR 

autoantibody binding. 

 Prior genetic analyses identified a genetic variation of nonmuscle myosin, MyH9, as a 

risk allele within the FSGS population
97

. While MyH9 is known to localize to podocytes
98

, MyH9 

is also the dominant isoform of nonmuscle myosin II present in T cells
99,100

. MyH9 plays an 

integral role in the formation and stabilization of the immunological synapse after T cell 

activation and aides in the movement of TCR microclusters
101

. Therefore, we assessed 

intracellular expression of MyH9 in lymphocytes in general. Not surprisingly, lymphocytes had 

robust intracellular expression of MyH9 (Figure 2.5B left). However, we were interested to 

examine any potential surface expression of MyH9 on total lymphocytes and also “thymocyte-

like” T cells recognized by the anti-TCR autoantibodies. Total lymphocytes rarely expressed 

MyH9 on the surface (Figure 2.5B middle), but “thymocyte-like” T cells expressed high levels of 

surface MyH9 (Figure 2.5B right). This finding was further confirmed by captured images on the 

Amnis ImageStream where surface MyH9 demonstrated a punctate pattern and additionally 
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localized to a TCR microcluster recognized by the anti-TCR autoantibodies (Figure 2.5C 

merged). 

 

Figure 2.5 

 

 
Figure 2.5. Anti-TCR autoantibodies induce cellular activation of target cells. (A) Representative 

flow plots of experiments in which affinity-purified anti-TCR autoantibodies were added to total 

PBMCs for 30 minutes and subsequently stained for various markers of cellular activation. 

Dashed line denotes total T cells not exposed to anti-TCR autoantibodies, solid black line denotes 

total T cells post anti-TCR autoantibody exposure, and shaded red denotes cells recognized by the 

anti-TCR autoantibodies. Left panel: surface expression of CD69; Middle panel: CD95 surface 

expression; Right panel: CD154 expression. (B) Representative flow plots of MyH9 expression 

on PBMCs. Dashed line denotes cells only stained with secondary antibody, shaded red denotes 

CD95 CD154CD69A. 
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cells stained with primary anti-MyH9 and secondary PE antibody. Left panel: intracellular 

expression of MyH9 in total lymphocytes; Middle panel: surface expression of MyH9 on total 

lymphocytes; Right panel: surface expression of MyH9 on cells recognized by anti-TCR 

autoantibodies. (C) FACS images from Amnis Imagestream depicting surface expression of 

MyH9 and anti-TCR autoantibodies. Right panel demonstrates merged pattern of MyH9 and anti-

TCR autoantibodies. 
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 Our initial flow cytometry observations of “thymocyte-like” T cells revealed the cells to 

be relatively small as demonstrated by forward scatter (Figure 2.3A). Therefore, there was 

concern that the “thyomcyte-like” T cells could be apoptotic or necrotic. Annexin V staining was 

performed to delineate if cells were apoptotic. Initial observations revealed that “thymocyte-like” 

T cells bound extremely high amounts of Annexin V compared to other peripheral blood immune 

cells (Figure 2.6A). This high binding of Annexin V correlates to high exposure of 

phosphatidylserine, which occurs during cell apoptosis.  

 Subsequent experiments examined Annexin V and propidium iodide (PI) simultaneously 

to assess cell necrosis. While a large proportion of “thymocyte-like” T cells were positive for 

Annexin V, very few cells were PI positive, indicating that cells were not necrotic (Figure 2.6B). 

With confirmation that the “thymocyte-like” T cells were still viable, we questioned if the 

phosphatidylserine exposure truly meant these cells were apoptotic, or instead was yet another 

marker of cellular activation. To assess the kinetics of phosphatidylserine exposure, we utilized a 

commercial Annexin XII with polarity sensitive indicator of viability and apoptosis (pSIVA™) 

technology. This technology allows the discernment of permanent phosphatidylserine exposure 

(apoptosis) versus reversible, transient exposure (more indicative of cellular activation). The 

fluorescent signal from Annexin XII is only detected when bound to exposed phosphatidylserine. 

If the cellular membrane is flipped back to the original orientation, Annexin XII detaches and the 

fluorescent signal is lost.  

 In simultaneous experiments, “thymocyte-like” T cells were assessed for Annexin V and 

XII positivity (Figure 2.6C). Again, we demonstrated that the majority of “thymocyte-like” T 

cells are Annexin V positive, however none of the “thymocyte-like” T cells stained positively for 

the polarity-dependent Annexin XII (Figure 2.6C). This indicated that “thymocyte-like” T cells 

are “flipping” their lipid membranes, but this is a reversible phenomenon. We hypothesize that 

this phosphatidylserine exposure on “thymocyte-like” T cells is a function of cellular activation 



60 

 

by the anti-TCR autoantibodies as another group has demonstrated that TCR-mediated antigen 

recognition in CD8+ T cells induces phosphatidylserine exposure on the external membrane
102

.  

 

 

Figure 2.6 

 

  
Figure 2.6. Annexin positivity of “thymocyte-like” T cells. (A) Annexin V staining to discern 

phosphatidylserine exposure on total PBMCs. Left panel: unstained control. Right panel: pink 

cells are total PBMCs, dark blue cells are “thymocyte-like” T cells recognized by anti-TCR 

autoantibodies. (B) “Thymocyte-like” T cells analyzed for Annexin V and propidium idodide 

incorporation simultaneously. (C) Analysis of different Annexin positivity on “thymocyte-like” T 

cells. Left: flip-independent Annexin V staining. Right: flip-dependent Annexin XII staining. 
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Presence of co-immunoprecipitants with anti-TCR autoantibodies 

 Upon demonstration that MCD anti-TCR autoantibodies react to a specific subset of 

peripheral T cells and the coincidental finding of surface expression of MyH9, we hypothesized 

that these proteins could be physically linked to one another. Protein lysates from the membrane 

fraction of healthy thymocytes derived from thymus or protein from peripheral CD3+ cells of a 

MCD patient were subjected to a series of immunoprecipitations and immunoblots to determine 

protein proximity or co-involvement. 

 In one series of experiments involved immunoprecipitation with an anti-pan-TCR 

antibody and immunoblot with affinity-purifed anti-TCR autoantibodies (Figure 2.7; left panel). 

In this instance, the prominent band was revealed at ~165 kD from both healthy thymocyte and 

MCD peripheral CD3+ protein lysate. As even the highest combined molecular weight of the 

TCR is only 110 kD, there must be another protein co-immunoprecipitating. This could 

potentially represent the “masking” protein in serum which prevents use of serum on peptide 

ELISA. 

 The other set of experiments; cellular proteins were probed for immunoprecipitation with 

anti-MyH9 antibodies and subsequently immunoblotted with affinity-purified anti-TCR 

autoantibodies (Figure 2.7; right panel). Both healthy thymocyte and MCD peripheral CD3+ 

protein lysate revealed a prominent band at approximately 115 kD (Figure 2.7; right panel). The 

molecular weight of human TCRs (heterodimer) can vary between 40-55 kD per chain
103

. 

Therefore, the TCR heterodimer could run anywhere between 80-110 kD on Western blot. 

Considering the initial immunoprecipitation was targeted to Myh9, with a native molecular 

weight of 226 kD, one would expect a higher molecular weight band on Western blot. However, 

MyH9 has been reported to denature into a form with a molecular weight of only 54 kD
104

. A 

complex of MyH9 and TCR heterodimer may be represented by the ~165 kD band visualized 

from the CD3+ lysate from MCD (Figure 2.7.; right panel lane 2). 
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Figure 2.7 

 
Figure 2.7. Presence of co-immunoprecipitating proteins with anti-TCR autoantibodies. Protein 

lysate was extracted from the cellular membranes of either healthy thymus-derived thymocytes 

(lane 1) or peripheral CD3+ cells from MCD patients (lane 2). (Left) Overnight 

immunoprecipitation was performed with commercial anti-pan-TCR antibodies. Immunoblot was 

performed with affinity-purified anti-TCR autoantibodies and appropriate secondary antibody to 

IP:  anti - Pan-TCR anti - MyH9 
  

IB:  affinity - purified anti - TCR autoantibodies 
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reveal protein bands. (Right) Overnight immunoprecipitation was performed with commercial 

anti-MyH9 antibodies. Immunoblot was performed with affinity-purified anti-TCR 

autoantibodies and appropriate secondary antibody to reveal protein bands. 
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Anti-TCR autoantibodies induce cytokine production in “thymocyte-like” T cells 

 With phenotypic confirmation that anti-TCR autoantibodies induce cellular activation of 

targeted “thymocyte-like” T cells, we sought to determine if any cytokines were produced in 

response to activation by anti-TCR autoantibodies. Total CD3+ T cells from patients with MCD 

were incubated overnight with anti-TCR autoantibodies and controls. Cell-free supernatants were 

then analyzed by cytokine ELISAs. Cytokines previously suspected in the literature were 

assessed, IL-8, IL-13 and sUPAR in addition to other T cell activation cytokines, IL-2, IL-4 and 

IL-17A. CD3+ T cells from three separate MCD patients all secreted high levels of IL-8 (range 

1500-3000 pg/mL) while CD3+ T cells from a healthy individual or a healthy thymus did not 

secrete detectable levels of IL-8 in response to anti-TCR autoantibody stimulation (Figure 2.8A). 

IL-2, IL-4, IL-17A, IL-13 and sUPAR were not detected in any supernatants of stimulated cells. 

 To further confirm that IL-8 secretion was produced by T cells and specifically, 

“thymocyte-like” T cells, we also examined intracellular cytokine production by flow cytometry. 

Four hour stimulation with anti-TCR autoantibodies elicited some IL-8 production in CD3+ T 

cells (Figure 2.8B middle panel); although this was not as potent as four hour stimulation with 

PMA and ionomycin (Figure 2.8B right panel). With additional subset gating, we determined that 

the majority of IL-8 secretion in response to anti-TCR autoantibody stimulation was coming from 

“thymocyte-like” T cells (Figure 2.8C). While these studies are not inclusive of all potential 

cytokines, we can confirm that anti-TCR autoantibodies activate “thymocyte-like” T cells and 

elicit cytokine production. 
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Figure 2.8 

 

 

 
Figure 2.8. Anti-TCR autoantibodies induce cytokine production from “thymocyte-like” T cells 

in MCD patients. (A) CD3+ T cells were negatively selected for from MCD patients (n=3), 

healthy control (n=1) or healthy thymus (n=1) and were either unstimulated, stimulated with 5 ug 

of anti-TCR autoantibodies or stimulated with 5 ug of “depleted” MCD IgG per 2 million cells 

overnight. Cell-free supernatants were then used for IL-8 cytokine ELISA. (B) Intracellular 
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cytokine detection of IL-13 and IL-8. Left: unstimulated and unstained PBMCs. Middle: PBMCs 

stimulated with anti-TCR autoantibodies for 4 hours. Right: PBMCs stimulated with PMA and 

ionomycin for 4 hours. (C) Gating on “thymocyte-like” T cells targeted by anti-TCR 

autoantibodies; Right: cytokine production from “thymocyte-like” T cells post 4 hour stimulation 

with anti-TCR autoantibodies. 
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Discussion 

 Perhaps one reason the immunopathogenesis of MCD has eluded scientists and clinicians 

for years, is the emerging evidence that MCD is another example of an indirect autoimmune 

disease, akin to ANCA disease. In cases of indirect autoimmune disease, the autoantigenic target 

is not necessarily part of the organ(s) with the ultimate disease manifestation. Therefore, the 

autoantigenic target is likely to be elusive. Findings in MCD and ANCA disease now provide 

evidence that research must cast a wider net to fully understand the immunopathogenesis of 

autoimmune diseases. 

 The coincidental finding of surface expression of MyH9 on “thymocyte-like” T cells 

additionally clarifies the role of MyH9 in MCD and some variants of FSGS. MyH9 was found to 

be linked to FSGS in a GWAS study
97

, but the absolute function and impact on disease 

pathogenesis was not known. As other investigators have demonstrated the importance of MyH9 

in TCR synapse formation
101

, we now demonstrate this same MyH9, TCR coalescence also 

occurs in “thymocyte-like” T cells in response to stimulation by anti-TCR autoantibodies. Since 

we only detected very robust surface expression of MyH9 on “thymocyte-like” T cells, this may 

represent a potential biomarker for targeted cells in minimal change disease. 

 Our findings in MCD also have implications for some patients with FSGS. The 

pathological diagnosis of FSGS tends to be a “catch all” with many subsets and variants found on 

kidney biopsy. However, the etiology and pathogenesis of FSGS also remains elusive. Clinicians 

have often noted that certain variants of FSGS (some not otherwise specified and tip lesion) 

clinically “behave” more like MCD. It has long been hypothesized that MCD and FSGS may lie 

on a pathological continuum. Our data provide evidence that a subset of FSGS patients do have 

anti-TCR autoantibodies and circulating “thymocyte-like” T cells. This confirms that some FSGS 

patients may immunologically “behave” more as a MCD patient and may benefit from altered 

therapeutics. 
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 One confounder of our ELISA is the necessity to use patient IgG instead of total serum to 

demonstrate positive autoantibody titers. Our group demonstrated this same requirement of IgG 

instead of sera in patients with ANCA disease in recognition of a certain masked epitope of MPO 

(Roth et al, JCI 2013, in press). With MPO, our group demonstrated that a fragment of 

ceruloplasmin, the natural inhibitor of MPO, was present in serum and masks a crucial epitope. 

By using purified IgG, the fragment of ceruloplasmin is no longer present and autoantibody 

reactivity to a specific peptide was demonstrated. A similar phenomenon must be occurring in 

MCD as we had to use IgG to demonstrate positive reactivity to the TCR peptide. We currently 

do not know what serum protein is responsible for the blocking effect in minimal change disease. 

 One group has previously published the finding that patients with RA or SLE do have 

antibodies reactive to the lambda chains of immunoglobulin and the beta chain of a TCR, 

specifically the CDR1 and framework 3 regions of the variable region
105

. These autoantibodies 

were predominately IgM in patients with RA
105

. This is not surprising as the classically defined 

rheumatoid factor is IgM directed against the Fc portion of circulating IgG. Immunoglobulins 

have a number of similarities to the structure of TCRs. Therefore, this may represent rheumatoid 

factors that have crossreactivity to portions of the TCR. Patients with SLE had both IgM and IgG 

reactive to the CDR1 and framework 3 regions of the variable region of the TCR. It is unknown 

from these previous studies the exact peptide to which RA and SLE patients react to the TCR. 

However, the critical feature in differentiating these previous findings from our current MCD 

findings is the targeted cell and downstream effects of autoantibody/autoantigen interaction. The 

prior findings in RA and SLE determine that anti-TCR autoantibodies downmodulated target T 

cells and the autoantibody/autoantigen interaction was actually a beneficial response to dampen 

the immune response
106

. Our studies of anti-TCR autoantibodies in MCD patients have 

demonstrated the activation of targeted “thymocyte-like” T cells inducing a pro-inflammatory 

response. Therefore, not all anti-TCR autoantibodies have the same function or induce the same 

downstream effects. 
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 There are certainly limitations to the studies put forth in this chapter. One limitation is the 

narrow exploration of cytokines produced by “thymocyte-like” T cells in response to anti-TCR 

autoantibodies. For the purpose of this study, we focused on cytokines either previously 

demonstrated in the literature, hypothesized in the literature, or were cytokines often produced 

during T cell activation. Future studies are aimed to further investigate a more robust list of 

cytokines or proteins produced during this autoantibody-cell interaction and downstream effects 

on podocyte architecture. Another limitation of these studies is the age discrepancy between 

healthy controls and patient samples. Many MCD patients are under the age of 5 and acquisition 

of PBMCs and serum from “healthy” children poses as an obstacle. This was somewhat remedied 

by the inclusion of children with peanut allergies for the ELISA screen. We have acquired 

PBMCs from a few children (10 years and younger) to assess for “thymocyte-like” T cells. These 

preliminary studies suggest that the increased frequency of “thymocyte-like” T cells in MCD 

patients is not solely attributable to patients’ young age as the large population of “thymocyte-

like” T cells was not evident in healthy children. 

 We demonstrate herein that anti-TCR autoantibodies found in MCD target “thymocyte-

like” T cells, induce cellular activation and cytokine production. As a result of this cascade, we 

hypothesize that the activated “thymocyte-like” T cells secrete a protein or cytokine that is 

ultimately injurious to podocytes. IL-8 may be a contributing factor in this progression of events. 

Preliminary data using supernatants from anti-TCR autoantibody-activated T cells are suggestive 

that the “permeability factor” is released from “thymocyte-like T cells.” In vitro podocyte studies 

demonstrate architectural changes in podocytes after several hours of exposure to activated 

supernatants. Future studies are aimed to determine the critical protein responsible for podocyte 

injury and formal characterization of podocyte injury in MCD. 

 As with all protein-protein interactions, tertiary conformational structure is equally 

important as the amino acid sequence which determines reactivity. Repeated mass spectrometry, 

epitope excision experiments with MCD patients revealed a common amino acid sequence with 
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the TCR to which patient autoantibodies reacted. We found that the common amino acid motif 

YXCA appeared in the majority of peptides discovered during mass spectrometry experiments. 

Interestingly, upon examining the crystal structure of T cell receptors, the cysteine of the common 

MCD motif should be associated to another cysteine by a disulfide bridge. As no reducing agents 

are utilized during our mass spectrometry protocols, the inability to detect the associated cysteine 

initially proved to be conundrum. In further analysis of the TCR crystal structure, the presence of 

the disulfide bridge invokes a tertiary structure in which the common MCD motif is not readily 

accessible.  

 While the YXCA amino acid sequence can be found in a large percentage of T cells, 

affinity-purified anti-TCR autoantibodies only recognize a small, but distinct population of 

circulating T cells. From this finding, we hypothesize that the disulfide bridge has only been 

disrupted in “thymocyte-like” T cells and thus, the epitope is available for autoantibody 

recognition (Figure 2.9). Conformational changes in proteins eventually allowing exposure of an 

otherwise cryptic epitope has also been demonstrated with the collagen protein in Goodpasture’s 

disease
93

. We hypothesize that either through a genetic, environmental or infectious aberration, 

the disulfide bridge either does not exist or has been disrupted in the “thymocyte-like” population 

of T cells. 

 In sum, the data presented herein demonstrate that MCD and a subset of FSGS patients 

have IgG reactive to a conserved amino acid motif present in the majority of T cell receptors. 

Despite the fact that most circulating T cells contain the YXCA motif in their TCRs, affinity-

purified anti-TCR autoantibodies from MCD patients only react with a subset of T cells with 

defined characteristics. This may represent a “conformeropathy” in which a structural change 

must occur in specific TCRs to be exposed for autoantibodies to recognize the target peptide. 

Additionally, this may be the same reason why these “thymocyte-like” T cells are readily 

detectable in MCD patients, but are found at an exceedingly low frequency in healthy individuals. 

These anti-TCR autoantibodies not only bind “thymocyte-like” T cells but induce cellular 
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activation leading to cytokine production which we hypothesize causes podocyte damage as an 

end result. Changes in podocyte architecture induced by these “thymocyte-like” T cell cytokines 

likely propel the immunopathogenesis of minimal change disease. 
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Figure 2.9 

 
Figure 2.9. Hypothesis of TCR structure in MCD patients. Cartoon structure of TCR chains, left 

chain could represent TCRα or γ chains and right chain could represent the pairing TCRβ or δ 

chains. Top half represents the variable portion of the TCR with the bottom half representing the 

constant region. –SS- represents the disulfide bridges created between conserved cysteine 

residues. Yellow box represents the putative epitope of anti-TCR autoantibodies found in MCD 

patients. 
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SUMMARY 

 

 The presented body of work has focused on the role of circulating T cells in the 

immunopathogenesis of ANCA disease and nephrotic syndrome. Chapter 1 elucidates how both 

regulatory T cells and effector T cells contribute to the lack of T cell suppression exhibited by 

ANCA disease patients. The dysfunction of regulatory T cells from ANCA disease has been 

demonstrated by a number of groups over the years, yet little progress has been made to 

determine the cause of Treg dysfunction in these patients. With the discovery that Tregs from 

ANCA disease disproportionately utilize exon 2-deficient FOXP3, we can move forward to better 

understand Treg dysfunction from a molecular standpoint. However, the data presented in 

Chapter 1 suggests that Tregs cannot be the sole culprit in T cell aberrancies in ANCA disease. 

The expanded population of CD25
int

 T cells in ANCA disease, which are resistant to suppression 

by healthy control Tregs, demonstrates that effector T cells must be equally considered as a 

culprit in dysfunctional T cell suppression. 

 Chapter 2 delineates not only the role of circulating T cells in the immunopathogenesis of 

minimal change disease, but demonstrates a novel autoantibody-autoantigenic target. 

Autoantibodies to a region of the TCR are present in patients with minimal change disease. But, 

perhaps more importantly, is the discovery and characterization of cells targeted by these anti-

TCR autoantibodies. Data presented in Chapter 2 reveal that anti-TCR autoantibodies bind to a 

specific subset of T cells that are reminiscent of thymocytes and we have termed these cells 

“thymocyte-like” T cells. Importantly, these “thymocyte-like” T cells are found infrequently in 

the peripheral blood of healthy individuals, but have an increased frequency in patients with 

MCD and some patients with FSGS. Therefore, it is not only the presence of autoantibodies that 
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dictates disease immunopathogenesis, but rather the additional altered presence of the 

autoantigenic target. 

 The discovery of anti-TCR autoantibodies and targeted “thymocyte-like” T cells in MCD 

and a subset of FSGS patients alters the paradigm of autoimmunity and autoimmune disease by 

providing another example of “indirect” autoimmunity similar to ANCA disease. 

Acknowledgement of this phenomenon will enable further advances in the discovery of additional 

autoantibody-autoantigen interactions in other autoimmune diseases. 



 

EPILOGUE 

 

T CELLS IN AUTOIMMUNE KIDNEY DISEASE: 

IMMUNOPATHOGENESIS AND TREATMENT 

 

T cell alterations in ANCA disease 

 

 Diversity of the CD4+ T cell pool in healthy individuals provides an efficient mechanism 

to combat an array of potential pathogenic insults. However, this diversity is problematic in 

autoimmune disease as multiple facets of T cell immunity are altered in order to contribute to 

disease progression. This is certainly true in ANCA disease. For years, the predominant T cell 

discovery in ANCA disease was that Tregs were unable to suppress effector proliferation
43–45

. 

While this finding was reproduced by many labs with different patient cohorts, the underlying 

cause of the Treg dysfunction remained an enigma. The data presented in Chapter 1 not only 

recapitulates the dysfunction of Tregs in ANCA, but reveals a contributor to the non-suppressive 

function of those Tregs. ANCA patients disproportionately utilize a variant of FOXP3 lacking 

part of the repressor domain found in exon 2. To corroborate this finding, the ability of Tregs to 

suppress effector proliferation is inversely correlated with the frequency of exon 2-deficient 

FOXP3 cells. Treg dysfunction in ANCA disease is not likely due to only one aberration; 

however, this FOXP3 discovery is certainly a contributing factor.
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While the Treg defect in ANCA disease is of obvious concern, the CD4+ effector T cell 

population must also be taken into account. As the data in Chapter 1 demonstrate, CD25
int

 T cells 

are of additional concern as these cells are “primed” to be pro-inflammatory. The production of 

IL-4 and IL-17 in addition to CCR6 expression on these cells are evidence that CD25
int

 cells have 

the capacity to extravasate into peripheral tissues and contribute to inflammatory cascades. While 

CD25
int

 cells exist in healthy individuals and are also capable of cytokine secretion, the key factor 

is the impressive expansion of the CD25
int

 population in the periphery of not only ANCA disease 

patients, but also patients with SLE and RA. The balance of effector T cell subsets is weighed in 

favor of the pro-inflammatory subsets in ANCA disease. 

 The predominance of the CD25
int

 population in ANCA disease also contributes to the 

lack of suppression demonstrated in ANCA disease patients multiple times. Only recently has the 

hypothesis of suppression-resistant effector cells been proposed
26

. Prior to this hypothesis, any 

lack of suppression was attributed solely to some defect within the regulatory T cell population. 

Data presented in Chapter 1 demonstrate that the lack of regulation of T cell responses in ANCA 

disease stems from two aberrations: exon 2-deficient FOXP3 in regulatory T cells, and CD25
int

 T 

cells that are resistant to suppression by healthy control Tregs. In moving forward in ANCA 

disease and other autoimmune diseases, any defect in T cell regulation must be investigated from 

both a Treg and effector T cell perspective 

Insight into the immunopathogenesis of MCD 

 The immunopathogenesis of minimal change disease has largely been based on 

speculation, hypotheses and anecdotal evidence. The common belief that T cells participate in 

some role of disease induction and progression was probably best summarized by Shalhoub
4
. 

Data presented in Chapter 2 have unlocked a great deal of the mystery in MCD. The data 

demonstrate that B cells and antibodies cannot be ignored in the immunopathogenesis of minimal 

change disease and some variants of focal segmental glomerulosclerosis. 
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Our finding that autoantibodies in MCD target a population of T cells supports the long accepted 

hypothesis that T cells play a role in the disease pathogenesis. Additionally, the fact that the 

autoantibody-targeted cells are reminiscent of thymocytes is not surprising considering the 

anecdotal evidence of MCD “burning out” in some patients at the same time of thymic involution. 

If fewer aberrant thymocytes are released into the periphery, the autoantigenic target is no longer 

accessible for continuation of autoantibody-autoantigen interaction. As the targeted T cells are 

“thymocyte-like,” this may also explain why many patients respond favorably to glucocorticoids. 

It is known that thymocytes are especially sensitive to apoptosis by glucocorticoids
94,95

.  

 Additionally, while the consensus sequence of YXCA is present in the majority of 

circulating TCRs, only a subset of cells are recognized by anti-TCR autoantibodies. While the 

conformational change within the TCR is not fully understood, one hypothesis stands that either 

an environmental or infectious agent could disrupt the nature disulfide bridge at that motif. The 

hypothesis of an infectious agent causing this fits with the anecdotal evidence that a viral 

prodrome often precedes the clinical manifestation of minimal change disease.  

 The data presented in Chapter 2 also lends credence to the hypothesis of a “permeability 

factor” that causes podocyte injury, ultimately leading to proteinuria. We demonstrate that anti-

TCR autoantibodies induce IL-8 secretion from “thymocyte-like” T cells. While we cannot 

confirm that IL-8 alone induces podocyte injury, it remains possible that it is a contributing 

factor. IL-8 has already been shown to alter focal adhesion kinases and heparan-sulfate 

interactions
107,108

. Both of these are important in maintaining podocyte architecture and function.  

 

Altering the paradigm of autoimmunity and autoimmune disease 

 Historically, antibody-mediated autoimmune diseases manifest with autoantibodies that 

target the organ directly involved in the disease. Goodpasture disease or anti-glomerular 

basement membrane disease patients have autoantibodies reactive to a portion of collagen IV and 

immunoglobulin deposition in the basement membrane is visible on biopsy
109

. Similarly, patients
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with type 1 diabetes mellitus have autoantibodies targeting pancreatic islet cells
110

. However, 

autoantibodies present in ANCA disease did not follow the historical autoantibody precedent. 

Anti-neutrophil cytoplasmic autoantibodies target either MPO or PR3, cause neutrophil activation 

and degranulation, which in turn leads to damaged endothelium manifesting as vasculitis. This 

“indirect” autoimmunity involves a step-wise process utilizing an intermediary circulating cell to 

ultimately cause disease. 

 The discovery of a similar autoimmune phenomenon in MCD alters the paradigm of 

conventional autoimmunity and autoimmune disease. Minimal change disease should also be 

considered an “indirect” autoimmune disease as patients form autoantibodies which recognize a 

circulating cell (thymocyte-like T cells) which are activated and in turn produce a factor injurious 

to podocytes ultimately causing the clinical presentation of MCD. With now at least two 

autoimmune diseases whose pathogenesis relies on an indirect autoimmune cascade, the scientific 

field must consider the potential for other autoimmune diseases to be governed by “indirect” 

autoimmunity; especially those diseases for which no autoantibody has been found to date. 

  

Potential for improvement on current therapies 

 Drug therapy for ANCA disease was historically focused on non-specific 

immunosuppressants such as glucocorticoids and Azathioprine. Recently, the use of Rituximab 

has gained favor for use in ANCA disease
111

. However, the role of T cells in both disease 

progression and drug therapy are not often considered in ANCA disease. Recently recognized are 

the effects of Rituximab on T cells in other autoimmune diseases, particularly RA. Currently 

controversial is a small population of CD3+ T cells which co-express CD20 and have a pro-

inflammatory phenotype. These CD20+ T cells are depleted by Rituximab and may play a role in 

achieving disease remission
78

. To date, these CD20+ T cells have not been investigated in ANCA 

disease, but it would be interesting if these cells are also CD25
int

 and how various medication 

regimens may affect their function. Additionally, in RA is has been shown that Rituximab



 

 

decreases Th17 responses but does not affect other T cell subsets
77

. If these same findings are 

consistent in ANCA disease is unclear, but should be investigated.  

 Minimal change disease and a subset of FSGS patients can therapeutically benefit from 

the findings in Chapter 2. The current standard of care for minimal change disease is 

glucocorticoids. A large percentage of patients respond well to glucocorticoids, but there remain a 

subset of patients who eventually become steroid-resistant. These difficult to treat patients are 

usually tried on other medications such as cyclosporine. Both glucocorticoids and cyclosporine 

affect T cells and therefore affect the autoantigenic target. Historically, B cells and antibodies 

have not been thought to be part of the disease process of MCD and therefore B cell related 

therapies were not used until recent years. With the current knowledge that B cells and 

autoantibodies are indeed a part of the immunopathogenesis of MCD, Rituximab, a B cell 

depleting monoclonal antibody, could have efficacy in patients. In particular, steroid-resistant 

MCD patients could benefit the most from medications targeting the B cell arm of immunity. 

 Focal segmental glomerulosclerosis presents as a conundrum to clinicians as the 

diagnosis can be a “catch-all.” Additionally, FSGS can be further subdivided into collapsing, tip 

lesion variants, ‘not otherwise specified,’ all of which have varying etiologies and disease 

outcomes. Data presented in Chapter 2 have could help to better treat different sub-categories of 

patients with FSGS. The patient population with biopsy-proven FSGS and a positive titer of anti-

TCR autoantibodies is enriched for those patients with either tip lesion FSGS or FSGS that is 

clinically reminiscent of MCD. This presents two clinical possibilities to be addressed in the 

future, 1) could some FSGS patients be spared a kidney biopsy if they have a positive anti-TCR 

titer? and 2) those FSGS patients that clinically “act” more like MCD could have a more tailored 

medication regimen. 
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Future directions 

 The data presented in the previous chapters certainly provide groundwork for future 

studies in ANCA disease, minimal change disease and application to other autoimmune diseases. 

With the discovery of exon 2-deficient FOXP3 and its prevalent usage in ANCA disease patients, 

the actual functional implications for this FOXP3 isoform should be investigated. Prior in vitro 

studies hint at the effects of exon 2-deficiency. Studies suggest that without the full repressor 

domain, certain known (RORγt, RORα, NFAT) and unknown proteins are not sequestered
15,74,79

. 

However, these studies do not directly address the impact on Tregs in ANCA disease patients. In 

conjunction with these studies, the potential “fluctuation” between full-length and exon 2-

deficient FOXP3 over time is unknown. Can a cell in essence be “reprogrammed” to express full-

length FOXP3? A potential therapy to this effect would be the use of rapamycin. Rapamycin has 

been used in the setting of transplant to inhibit the activation of T and B cells by blocking cellular 

response to IL-2 through the mTOR pathway. Interestingly, rapamycin has an altered effect on 

regulatory T cells. Instead of inhibiting cellular proliferation (as in the case of effector cells) 

rapamycin has been shown to expand the regulatory T cell compartment
112

. A subsequent study 

demonstrated that in a heterogeneous mixture of FOXP3+ and exon 2-deficient FOXP3+ 

regulatory T cells subjected to in vitro rapamycin, only FOXP3+ regulatory T cells expanded
113

. 

Thus, it is possible that supplementation with rapamycin could improve the suppressive function 

of regulatory T cells which could be due to, in part,  not allowing exon 2-deficient FOXP3 Tregs 

to survive. 

 The impressive frequency of CD25
int

 T cells in ANCA disease combined with CD45RO 

positivity suggests that autoreactive T cells are likely represented in that population. A proposed 

experiment to test this theory is the use of MHC class II tetramers for flow cytometric staining of 

peripheral T cell populations. Until this past year, this experiment was virtually impossible as an 

investigator must know the HLA of the patient and the peptide sequence of the autoantigen to be 

loaded into the tetramer. Our research group recently discovered a predominant HLA allele 
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(DRB1*15) in our ANCA disease patient cohort
114

. While the ANCA disease field has known 

that patients have seroreactivity to MPO or PR3, the exact peptide sequences of MPO reactivity 

remained an enigma. Simultaneous, independent studies in mice and humans revealed an epitope 

of MPO for which reactive antibodies conferred pathogenicity
115

 (and Roth et al, JCI 2013, in 

press). The combined knowledge of predominant HLA and critical peptide sequences of MPO 

provide an opportunity for tetramer studies in human T cells. 

 During T cell education in the thymus, thymocytes with strongly autoreactive TCRs are 

diverted to either apoptosis or become FOXP3+ regulatory T cells
116,117

. Therefore, in the 

periphery, T cells with high affinity for self proteins are pre-programmed to act in a suppressive, 

anti-inflammatory manner. In the normal, healthy individual, this arrangement is in place to 

prevent autoimmune disease from developing. However, under stress conditions such as 

lymphopenia, infection or inflammation, Tregs have the potential to differentiate into a more 

effector-like T cell
48,49,118

. The plasticity of regulatory T cells sets up the potential to have high-

affinity autoreactive cells now functioning as a pro-inflammatory effector cell. As demonstrated 

in Chapter 1, patients with systemic autoimmune diseases exhibit an increased frequency of 

CD25
int

 T cells that are pro-inflammatory and antigen-experienced. These cells have some 

phenotypic characteristics reminiscent of regulatory T cells. Could the expanded CD25
int

 

population be a function of “de-differentiated” regulatory T cells in ANCA disease? Future 

studies could address this question by sorting CD25
int

 and Treg populations from patients and 

subsequent TCR sequencing. Fine TCR sequencing of human T cells to reveal T cell subsets has 

previously been done with success
119

. If clonality existed between the CD25
int

 and Treg 

populations, but not the CD25
neg

 population, one could postulate that CD25
int

 T cells likely came 

from a Treg precursor. 

 A coincidental finding during the initial characterization of the CD25
int

 population in 

ANCA disease was also finding an increased frequency of these T cells in SLE and RA., but not 

type 1 diabetes mellitus. We provide two hypotheses to explain this finding: 1) CD25
int
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population expansion occurs in systemic autoimmune diseases, but not organ-specific 

autoimmune diseases or 2) the expansion occurs in autoimmune diseases that exhibit cycles of 

relapse and remission but not in autoimmune diseases that have essentially “burned out.” To 

further dissect this phenomenon, studies would need to address the frequency of the CD25
int

 

population in several other autoimmune diseases, systemic versus organ-specific alongside 

diseases with different clinical courses. 

 Another incidental finding was that patients who received a kidney transplant greater than 

two years prior to sample, had no clinical suggestion of rejection and their initial kidney disease 

was not autoimmune in nature also exhibited an increased frequency of CD25
int

 T cells compared 

to healthy individuals. Vallotton et al. noted the increase of a similar T cell population in the 

periphery of kidney transplant patients
120

. These activated effector T cells were CD4+ CD25
high 

IL-7Rα
high

 (CD127
high

) and CD45RO+ which share a number of phenotypic characteristics as our 

CD25
int

 population. The most intriguing finding from the Vallotton study was serial 

measurements of the T cell populations before transplantation and 3, 6 and 12 months post-

transplant. Prior to transplantation, the activated effector T cell population was comparable 

between healthy controls and future transplant recipients. However, three months post-

transplantation, the activated effector T cell population had increased 200-300% over the 

frequency seen in healthy individuals. The combination of our data and the Vallotton data leads 

us to hypothesize that the CD25
int

 T cell population expands upon chronic exposure to auto- or 

alloantigen. 

 Another preliminary finding from our studies suggest that while the frequency of the 

CD25
int

 T cell population is equivocal between stable kidney transplant patients and those who 

are actively rejecting their graft, the function of the CD25
int

 population is vastly different. Our 

initial studies in ANCA disease revealed that CD25
int

 proliferate rapidly and at a rate that exceeds 

the proliferation of CD25
neg

 T cells. However, purified CD25
int

 T cells from stable kidney 

transplant patients did not proliferate despite four day stimulation with anti-CD3/anti-CD28. 
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Therefore, preliminary evidence suggests that despite the expansion of the CD25
int

 population, 

these T cells are anergic in a stable setting of transplant. Acquisition of CD25
int

 T cells from a 

transplant recipient with active rejection revealed that the T cell population now proliferated and 

were reminiscent of the proliferation demonstrated in ANCA disease patients. Further studies 

should endeavor to determine the “stop-gap” mechanism of CD25
int

 T cells in stable transplant 

patients. This could potentially serve as a biomarker for transplant patients who are more prone to 

rejection.  

 Our studies in MCD have unveiled a type of T cell unknown to the literature. Preliminary 

characterization of these “thymocyte-like” T cells leaves many questions unanswered and 

provokes future studies to better understand these cells. We know these cells are reminiscent of 

thymocytes by virtue of CD3+ and CD4+ CD8+ double positivity. However, it is unknown as to 

the exact stage of T cell development of the “thymocyte-like” cells. Future studies to elucidate 

their maturity and lineage would provide additional insight into the immunopathogenesis of 

MCD.  

 The presence of a circulating “permeability factor” has long been heralded as the key to 

podocyte injury in MCD. Such a factor has also remained elusive over the years. Our current data 

suggest that the anti-TCR autoantibody in MCD activates the target “thymocyte-like” T cells. We 

preliminarily know that IL-8 is produced as a result of this interaction. Future studies are directed 

to further investigate all factors produced during this interaction. Dissection of these factors will 

be needed to determine the critical factor or factors that ultimately cause podocyte damage 

leading to the manifestation of MCD. 

 The most intriguing aspect of the studies presented herein is the known production of 

autoantibodies reactive to circulating cells in two different autoimmune diseases. Historically, 

autoimmune diseases caused by antibodies are “direct” in the sense that the autoantibodies target 

the organ in which the disease manifests. Both ANCA disease and minimal change disease (and 

some FSGS) are types of “indirect” autoimmune diseases. This compels one to consider that 
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perhaps other autoimmune diseases which have no known autoantibody to date or perhaps the 

known clinical autoantibody does not correlate well disease are actually other examples of 

“indirect” autoimmunity. With this in mind, future studies should employ the epitope 

excision/mass spectrometry approach to investigate potential unknown autoantibodies in the 

circulation of other autoimmune diseases. 

  

Conclusion 

 Circulating T cells comprise a large portion of adaptive immunity with numerous subsets, 

creating a system of checks and balances of inflammation and tolerance. However, these multiple 

T cell subsets can also be a source of dysfunction in autoimmune diseases. Be it changes in 

regulatory T cells or the effector T cells themselves, numerous perturbations of the T cell arm of 

adaptive immunity must be considered when investigating the source of dysfunction in 

autoimmune diseases. Of additional interest, there is possibility of immune cells themselves being 

autoantigenic targets, as in the case of ANCA disease and minimal change disease. In future 

studies of other autoimmune diseases, this “indirect” pathway of autoimmunity must be 

recognized. 
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