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Abstract

PAUL G. GIRESI: Chromatin profiles of human cells in health and disease
using FAIRE

(Under the direction of Jason D. Lieb)

Breast cancer is a heterogenous disease comprised of molecularly distinct subtypes

with diverse clinical outcomes. Understanding the molecular composition of each sub-

type will aid in the effective diagnosis and treatment of breast cancer. The composition

and activity of subtype-selective regulatory pathways operate, in part, through binding

of proteins at distinct sites throughout the genome, often referred to as regulatory ele-

ments, to govern levels of gene expression. One of the characteristics of these binding

events is the displacement of nucleosomes. Here we have developed a technique called

FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements), which is capable of

the genome-wide identification of active regulatory elements in human cells based on

the nucleosome-depleted nature of these sites.

Using FAIRE we have identified the genome-wide set of active regulatory elements

in the luminal and basal-like tumor subtypes. Here most of the active regulatory

elements were distinct to each subtype. Many of these unique sites also reflected the

activity of the regulatory mechanisms present in a given subtype. For example, in the

hormone-responsive luminal cells we detected strong FAIRE signals at estrogen-receptor

alpha binding sites, whereas the signals are diminished or absent in the hormone non-

responsive basal-like cells. These subtype-selective regulatory elements tended to be

clustered around the set of expressed genes in the respective subtype, regardless of

whether the gene was differentially expressed between the subtypes. The subtype-

selective regulatory elements were also enriched with sequence motifs for DNA-binding
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proteins, which included factors known to be active in the respective subtypes.

We also used FAIRE to investigate the set of active regulatory elements associated

with the transformation of a mammary epithelial cell line to a cancerous phenotype.

Here transformation occurred through the differential expression of members of tran-

scription factors families, which recycled the set of existing regulatory elements to effect

global changes in gene expression.

Together, these findings indicate that FAIRE will be a powerful tool for discovery

of the molecular characteristics underlying cancer and that FAIRE holds promise as a

clinical diagnostic tool.
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Chapter 1

Introduction

Cancer is a neoplastic disease characterized by alterations of the molecular components

within normal cells that disrupts the regulation of cell division and apoptosis leading

to abnormal tissue growth and the formation of a tumor. The molecular events that

lead to cancer are typically accumulated over time and result in changes to both cellu-

lar morphology and growth characteristics. Early on these changes are reversible and

characterized by increases in the overall number of cells resulting from an external stim-

ulus, termed hyperplasia. Dysplasia occurs as the irreversible alteration of cells, which

is characterized by the loss of cell structure and disorganization of cells within tissues.

The final and most severe stage is an invasive malignancy, where the cancerous cells

are no longer confined to the originating tissue and can form tumors in distant tissues.

There are several biological hallmarks common amongst cells in the development of ma-

lignant tumors, including sustaining proliferative signals, evading growth suppressors,

resisting apoptosis, loss of senescence, inducing angiogenesis and activating invasion

and metastases [59, 60].

Acquisition of these hallmarks in the progression of tumorigenesis often requires

alteration of both tumor suppressors and oncogenes [57, 87]. Oncogenes encode proteins

involved in the regulation of proliferation and can be classified into six broad categories:



transcription factors, chromatin remodelers, growth factors, growth factor receptors,

signal transducers and regulators of apoptosis [33]. Typically, alterations to oncogenes

results in them becoming inappropriately expressed at high levels or altered to possess

new functions. While tumor suppressor genes, which play a role in inhibiting cellular

proliferation and promoting apoptosis, are often disabled during tumorigenesis [166].

There are a variety of mechanisms by which tumor suppressors limit proliferation and

promote apoptosis, which range from transducing extracellular signals to regulating

gene expression through DNA binding.

The function of oncogenes and tumor suppressors can be transformed through both

genetic and epigenetic alterations [57, 87]. Genetic alterations includes changes to the

nucleotide composition and/or rearrangement of the genome. Mutations of individual

nucleotides can operate at many different levels to alter gene function, including changes

to the genomic sequence involved in the regulation of the gene to non-synonomous mu-

tations in the coding regions effecting the production and function of the resultant

protein [33]. Nucleotide composition can also be altered through large-scale amplifica-

tion or deletion of genomic segments, resulting in the overproduction or elimination of

genes altogether. Genomic rearrangements entail fusion of separate chromosomal seg-

ments, which can produce either novel regulatory mechanisms or gene fusions. While

epigenetic alterations involve multiple processes, including noncoding RNAs, covalent

modifications of chromatin, chromatin remodeling and DNA methylation [9, 44, 77].

Together the set of alterations that result in cancer redefine the molecular identity of

normal cells. Identification of the molecular components associated with the formation,

progression and clinical behavior of cancer has been the focus of research for several

decades [13, 117, 135]. Advances in technology, including DNA microarrays and high-

throughput sequencing, have provided researchers with the capacity to identify and

investigate these components genome-wide. These technologies have been employed
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to measure cellular abundance of RNAs [121, 153], estimate genomic copy number

variations [3], characterize genotypic variation [34, 43], determine DNA methylation

profiles [27, 95] and map the genome-wide binding of proteins [25]. The information

obtained from these technologies has provide valuable insights into the diagnosis and

treatment of cancers. However our understanding of the molecular underpinnings of

cancer is still incomplete.

Here we examine for the first time the genome-wide regulatory status of chromatin in

breast cancer and determine the extent to which we can observe both known and novel

regulatory activity. We have used a technique termed FAIRE (Formaldehyde-Assisted

Isolation of Regulatory Elements) to identify the genome-wide set of active regulatory

elements. The work presented in this dissertation first describes the development and

characterization of FAIRE for human cell culture and tissues. The data derived by

FAIRE also necessitate the development of novel analysis tools. We then performed

FAIRE throughout a timecourse of transformation of mammary epithelial cells to a

cancerous phenotype, which included creation of cancer stem cells. Finally we identified

the set of active regulatory elements from tumors capable of distinguishing the luminal

and basal-like breast cancer subtypes using FAIRE.

1.1 Breast cancer

One in every eight women will be diagnosed with breast cancer over the course of their

lifetime. Among women, breast cancer is the leading diagnosed cancer (Figure 1.1A)

and the second leading cause of cancer-related deaths (Figure 1.1B) [159]. Effective

diagnosis and treatment is complicated by the heterogeneous nature of the disease.

Breast cancer can arise from several different cell types throughout the mammary ep-

ithelial hierarchy [163]. Additionally, genetic instability can give rise to clonal variation

during the growth and progression of each tumor [11]. Therefore a positive prognosis
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is dependent on the accurate diagnosis and effective treatment of the specific cellular

composition of each tumor.

A B

Figure 1.1: Cancer-related diagnoses (A) and mortality (B) rates among women (1999-
2007) were obtained the CDC (Centers for Disease Control and Prevention) website

1.1.1 Pathophysiology of breast cancer subtypes

The normal breast is composed of a series of branching ducts radiating from the nipple

which terminate in lobules (Figure 1.2A). The lobules are the sites of milk-production,

which is then carried to the nipple through the ducts. The stroma is composed of fatty

and connective tissues, blood vessels and lymphatic vessels. The majority of breast

cancer arises from cells in the terminal ductal lobular unit (TDLU, Figure 1.2B). The

TDLU is composed of an inner luminal epithelial and basal myoepithelial cell layers

(Figure 1.2C). The myoepithelial cell layer is contains a heterogeneous mix of cells

adjacent to the basement membrane. These cells have a similar morphology to smooth

muscle cells, including possessing contractile function, but exhibit features of epithelial

cells [152]. While the inner cell layer is composed of luminal epithelial cells, which are

polarized glandular cells. At present it is thought that all breast cancer is derived from

cells involved in the formation of the inner luminal epithelial cell layer. However there

is still not a consensus for the precise cell type of origin for some forms of breast cancer

[163].
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A B

C

Figure 1.2: The images in this figure were obtained from a review of the mammary
hierarchy and breast cancer [163] (A) The breast is composed of a branching network
of ducts that terminate at the lobules. The loubules are the site of milk production,
which are delivered to the nipple through the ducts. (B) The majority of breast cancer
originates within the terminal ductal lobular untis (TDLU). (C) The ducts and lobules
are composed of the luminal epithelial and myoepithelial layers.

To date six different subtypes of breast cancer have been identified and are dis-

tinguished based on the presence/absence of the estrogen and progesterone hormone

receptors and overexpression of the HER2 amplicon [121, 123, 153]. Each of these

subtypes are thought to be derived from cell at various stages of commitment in the

formation of the mammary gland (Figure 1.3). The luminal subtypes are the most
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common form of breast cancer (60%) and are characterized by the presence of the es-

trogen and progesterone receptor and are further divided in to an A and B group based

on being either HER2 negative or positive, respectively. Luminal tumors are thought

to originated from the terminally differentiated cells of the inner luminal epithelial cell

hierarchy and in the case of luminal A has the best patient outcomes. The basal-like

subtype is the next most common type of breast cancer (∼20%) and is characterized as

negative for both the estrogen and progesterone hormone receptors and HER2. These

are thought to originate from a luminal progenitor cell and typically give rise to aggres-

sive tumors that have high rates of metastasis and recurrence [127, 132]. The HER2

subtype is relatively rare (∼12%) and is HER2 positive, but is negative for both hor-

mone receptors. More recently the claudin-low subtype has been identified [123] and

is characterized by the absence of luminal differentiation markers and enrichment of

epithelial-to-mesenchymal transition markers, immune response genes and cancer stem

cell-like features. The remaining set of tumors that do not fit these criteria are classified

as normal-like.

Although all breast cancer are treated by surgically removing the tumor, the speci-

ficity and efficacy of secondary (adjuvant) therapies are critical to long term survival.

The luminal subtypes are often treated with hormone therapies, such as Tamoxifen,

which interferes with the activity of estrogen receptor. While the HER2 subtype is

treated with a monoclonal antibody against the receptor (Trastuzumab) along with

chemotherapy. However for the basal-like subtype treatment typically entails some

combination of radiation and chemotherapy, since no targetable markers have been

identified. Even for the subtypes where targeted treatments exist the ability to pre-

dict response to treatments, risk of reoccurrence and long term survival is not complete

[119, 136]. Therefore the better we understand the molecular characteristic that predict

clinical outcomes the more effectively breast cancer can be treated.
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Figure 1.3: The image in this figure were obtained from a review of the mammary
hierarchy and breast cancer [163]. The mammary epithelial hierarchy originates from
a single stem cell that gives rise to the cells of the myoepithelial and luminal epithelial
cell layers. Each of the subtypes has been related back to a cell type in this hierarchy
based on similarity of gene expression profiles.

1.1.2 Molecular characterization of breast cancer subtypes

Several different approaches have been applied to better understand the molecular com-

position of breast cancer subtypes and its relationship to clinical outcomes, including

identification of markers using immunohistochemistry [13, 80, 117], alteration in DNA

methylation [27], aberrant microRNAs [72, 84], recurrent genomic copy number vari-

ations [160] and gene expression signatures [12]. Immunohistochemistry detects the

presence and abundance of proteins in tissue samples and has long been used for the

identification of markers capable distinguishing clinical behaviors, including the ap-

plication of tissue microarrays for high-throughput screening of potential candidates

[13, 112, 117, 135]. Copy number variations are typically identified using comparative
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genomic hybridization (CGH) on DNA microarrays in which the genomic content of the

tumor is compared against a diploid or matched normal counterpart. Hundreds of re-

gions containing amplifications and deletions of oncogenes and tumor suppressors have

been identified in breast tumors to date [26, 80, 91, 156]. While analysis of gene expres-

sion data from DNA microarrays has identified differences in the abundance of mRNAs

that can be used to classify samples based on subtype [121, 153]. Gene expression can

also be compared between tumors and matched normal samples to identify the genetic

pathways altered in cancer and possibly serve to identify targets for treatment. To-

gether this information provides a comprehensive picture regarding the transcriptional

output, proteomic content and epigenetic state of breast cancer. However, several ques-

tions remain unanswered. Such as, which of the transcriptional regulatory proteins that

have been identified as differentially expressed are actually functionally active? What

are the genomic sites are bound by regulatory factors? What is the set of regulatory

proteins governing the expression of each gene?

1.2 Nucleosome depletion is a hallmark of active

regulatory elements

Cellular identity is established through the coordination of DNA-templated processes

to utilize the information encoded in the genome. Coordination of these events is

accomplished through interactions between regulatory proteins, enzymes, and DNA. In

eukaryotes, these interactions are controlled largely through the regulation of chromatin

composition . The most basic organizational unit of chromatin is the nucleosome, which

is composed of DNA and an octamer of histone proteins. Given the central role of

nucleosome formation in regulating genome function, many mechanisms have evolved

to control nucleosome stability at loci across the genome. These include regulation
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of nucleosome deposition following DNA replication [55], the activity of nucleosome-

remodeling complexes like SWI/SNF and RSC [107], binding of regulatory proteins

to DNA [110], transcriptional initiation and elongation by RNA polymerase II [140],

incorporation of histone variants, post-translational modification of histones [161] and

inherent properties of DNA sequence [144]. Access to the DNA template therefore

requires the loss or destabilization nucleosomes at the cognate binding sites of regulatory

proteins (Figure 1.4).

RNA Polyermase

Figure 1.4: In the top panel, DNA is packaged into nucleosomes (dark blue spheres)
preventing the DNA-binding protein (light blue sphere) from accessing its cognate
binding site (red box). In the bottom panel, nucleosome loss is an indicator of regulatory
activity. This is the case at both transcription start sites and at distal regulatory
elements.

One may define nucleosome stability broadly to refer to the population of intact

nucleosome-DNA complexes at a given locus, relative to the population of those in an
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unfolded or disrupted state. This definition encompasses histone-histone, histone-DNA,

and nucleosome-nucleosome interactions. Nucleosome stability is regulated through the

concerted actions of both intrinsic and extrinsic mechanisms (Figure 1.5). Intrinsic

mechanisms are those that affect the stability of the nucleosome itself. While extrinsic

mechanisms consist of external factors that act upon the nucleosome.

Intrinsic mechanisms include variation in the flexibility of DNA sequences, incorpo-

ration of histone variants and post-translational modification of histones (Figure 1.5A).

The inherent flexibility of a given DNA sequence can either promote or disfavor nucle-

osome formation [143]. Sequences containing AT dinucleotides at ∼10 bp periodicity

appear to favor nucleosome occupancy. Whereas stretches of polyA appear to dis-

favor nucleosome occupancy. Incorporation of histone variants can alter nucleosome

stability by altering the structural properties of the histone octamer [79]. While post-

translational modification of histones, such as acetylation can reduce the energetic cost

of removing a nucleosome.

Extrinsic mechanisms include the activity of nucleosome remodeling complexes, as-

sembly and progression of proteins involved in DNA metabolism and binding of regu-

latory factors. Nucleosome remodeling complex facility the ATP-dependent movement

or displacement nucleosomes to assist DNA-binding proteins in gaining access to their

cognate sites [107]. The enzymes involved in DNA metabolism, such as transcription

and replication, are recruited to their initiation sites by the stepwise assembly of pro-

teins complex. The sites of assembly and initiation may also facilitate nucleosome

clearance. Nucleosome ”breathing” is the periodic unwrapping of DNA from the nu-

cleosome, which allow regulatory proteins to bind DNA and lock in a disrupted state.

While the progression DNA-templated processes, such as transcriptional elongation,

must disrupt the histone octamer to gain access to DNA.
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Figure 1.5: Processes involved in modulating nucleosome stability can be divided into
intrinsic and extrinsic mechanisms. (A) Intrinsic mechanisms affect the stability of
the nucleosome itself. (i) The inherent flexibility of a given DNA fragment can either
promote (green dots) or disfavor the formation of a nucleosome. (ii) Incorporation of
histone variants alters the interactions between histones, possibly stabilizing or desta-
bilizing nucleosomes for specific tasks. (iii) Some post-translational modifications like
histone acetylation reduce the energetic cost of removing a nucleosome. (B) Extrin-
sic mechanisms involve proteins that act upon nucleosomes to alter their stability. (i)
Nucleosome remodeling complexes can move or displace nucleosomes. (ii) Assembly or
initiation of the transcriptional machinery and binding of regulatory proteins can facil-
itate nucleosome clearance at promoters. (iii) Transcriptional elongation promotes the
removal of nucleosomes. (C) Nucleosome occupancy versus positioning. A schematic
representation of hypothesized nucleosome positioning via local energy minima. The
concept of ”occupancy” can be thought of as positioning at a larger scale.
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In any given cell type the composition and activity of regulatory pathways coor-

dinate these mechanisms to establish an overall chromatin structure, which includes

the set of open chromatin sites or active regulatory elements. Genome-wide maps of

active regulatory elements allow for a better understanding of how the availability of

sequence-based regulatory elements are coordinated with the regulation of factors that

utilize them in a given cellular environment.

1.3 Detection of nucleosome-depleted regions of genome

Sites of nucleosome loss or destabilization have traditionally been detected by virtue of

their increased sensitivity to digestion by nucleases (Figure 1.6), which include deoxyri-

bonuclease (DNase I) and micrococcal nuclease (MNase). DNase I is an endonuclease

that cleaves the phosphodiester linkages in the DNA backbone. Initial studies noticed

that the 5′ ends of heat shock genes in Drosophila became hypersensitive to cleavage

upon activation [82, 108, 169, 168]. MNase is an endo-exonuclease that preferentially

digest the linker DNA in the intervening regions between nucleosomes [81] and allows

nucleosome positions to mapped. Originally detection of the cleavage pattern for both

nucleases was carried out at an individual locus using Southern blots. However both

have since been adapted for genome-wide detection of chromatin structure [32, 138, 172]

using either DNA microarrays or high-throughput sequencing.

1.3.1 A novel method for detection of nucleosome-depletion

FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements) is a simple pro-

cedure for the genome-wide isolation of nucleosome-depleted DNA from chromatin

[51, 68, 113]. To perform FAIRE, chromatin is crosslinked with formaldehyde, sheared

12



Figure 1.6: Nucleosomes assembled onto DNA are displayed as blue spheres and nucle-
ases are shown as scissors. Upon loss or destabilization of nucleosomes nucleases are
able to cleave DNA (red scissors). Traditionally nuclease sensitivity was probed at an
individual locus using Southern blots to compare the cleavage patterns.

by sonication, and phenol-chloroform extracted. The crosslinking profile is likely dom-

inated by nucleosomes, which are by far the most abundant protein-DNA interaction

throughout the genome and are much more efficiently crosslinked [21, 122, 150]. There-

fore, active regulatory elements preferentially segregate to the aqueous phase due to

these DNA fragments being less efficiently crosslinked to proteins. The genomic regions

preferentially segregated into the aqueous phase are then mapped back to the genome

by either hybridization to tiling microarrays or are read directly using next-generation

DNA sequencing.

This difference in crosslinking efficiency is likely due in part to the short crosslinking

distance of formaldehyde. Formaldehyde is a small molecule (HCHO) and crosslinks are

only formed between proteins and DNA in direct contact. There are approximately 10

to 15 histone-DNA interactions within a nucleosome that serve as potential crosslinking
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Figure 1.7: During a standard phenol/chloroform extraction proteins are sequestered to
the interface due their hydrophilic and hydrophobic characteristics. While hydrophilic
DNA remains in the aqueous phase (right panel). However, when DNA fragments are
crosslinked to proteins they are also sequestered to the interface (left panel).

sites [103]. However, for most DNA-binding proteins there are far fewer potential

crosslinking sites. The average binding sites are 5 to 15 bp [24], with only a few of

the bases close enough to the protein contacts to be crosslinked [46]. In addition,

formaldehyde requires a ǫ-amino group such as occurs on lysine, to form a crosslink

[21, 150]. Approximately 10% of the amino-acid composition of histones are lysine, a

much higher proportion than a typical protein. Due to both of these factors nucleosomes

are much more readily crosslinkable to DNA, and are likely to dominate the crosslinking

profile (Figure 1.8).
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Figure 1.8: Crosslinking between histones and DNA (or between histones) likely dom-
inate the chromatin crosslinking profile. (A) Here are a representative set of features
from eukaryotic chromatin, including nucleosomes (blue spheres), a DNA-binding pro-
tein (light blue oval), and DNA (black line). Crosslinking with formaldehyde (red X)
for most genomics applications only captures a portion of the potential interactions.
Given that histone-DNA interactions constitute the majority of crosslinkable interac-
tions in the genome, in a population of cells (ten rows) all of these interactions are
likely to be captured. Whereas only a small proportion of the interactions between
other DNA-binding proteins and DNA is actually captured by formaldehyde crosslink-
ing. (B) The plot represents the expected FAIRE signal, which is inversely correlated
with the occurrence of crosslinkable protein-DNA interactions.
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Chapter 2

Methodology

The following section describes the steps for performing FAIRE in human tissues

and cell culture that I developed during my graduate studies and were used throughout

the subsequent chapters.

2.1 Performing FAIRE

To perform FAIRE, chromatin is crosslinked with formaldehyde, sheared by sonication,

and phenol-chloroform extracted Figure 1.7.The following provides a general frame-

work for performing FAIRE, which specifically emphasizes performing FAIRE on cells

grown in culture. Modifications to the FAIRE protocol for tissue samples are noted in

Section 2.1.7.

2.1.1 Formaldehyde crosslinking

For cells grown in culture, add 37% formaldehyde directly to the growth media to a

final concentration of 1% and incubate at room temperature on an orbital shaker at 80

rpm for 5 minutes. To quench the fixation, add 2.5 M glycine to a final concentration of

125 mM and incubate for 5 min at room temperature while continuing to shake. Cells

grown in suspension should be collected by centrifugation at 700 x g for 5 min at 4oC.



For adherent cells, first remove the media containing formaldehyde and glycine, add

ice-cold PBS to cover the cell layer, scrape, and transfer the cells to a conical tube. For

both adherent cells and cells in suspension, wash two more times with ice-cold PBS to

ensure all residual media is removed.

2.1.2 Cell lysis

Resuspend cells in 1 ml of lysis buffer (2% Triton X-100, 1% SDS, 100 mM NaCl, 10 mM

Tris-Cl pH 8.0, 1 mM EDTA) per 107 (or 0.4g) of cells. Transfer 1 ml of lysis solution

to 2 ml screw-capped tube with rubber seal and add 1 ml of 500 µM glass beads. Cell

disruption is performed in a mini bead-beater (Mini-BeadBeater-8, BioSpec Inc.) set to

homogenize for five 1-minute sessions with 2-minute incubations on ice between sessions

(see the alternative protocol if a Beadbeater is not available). To recover the lysate,

puncture the bottom of the 2 ml tube with a 25G syringe and drain into 15 ml tube

on ice. Once the lysate has drained, add an additional 500 µl lysis buffer to clear any

remaining sample from the beads. Filtered air can be used to push the liquid through

the hole in the bottom of the tube. Proceed directly to sonication.

2.1.3 Cell lysis (alternative)

If a bead-beater is not available, the following procedure is suitable for human or

similar cell types, but not yeast [93]. This procedure often requires additional rounds

of sonication. Add 10 ml of Lysis Buffer 1 (50 mM HEPES-KOH, pH 7.5, 140 mM NaCl,

1 mM EDTA, 10% glycerol, 0.5% NP-40, 0.25% Triton X-100) per 108 cells and rock

at 4oC for 10 minutes. Spin at 1,300 x g for 5 minutes at 4oC and remove supernatant.

Add 10 ml of Lysis Buffer 2 (10 mM Tris-HCl, pH 8.0, 200 mM NaCl, 1 mM EDTA, 0.5

mM EGTA) per 108 cells and rock at room temperature for 10 minutes. Spin at 1,300

x g for 5 minutes at 4oC and remove supernatant, at this point the pellet should appear
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white and fluffy. Add 3.5 ml of Lysis Buffer 3 (10 mM Tris-HCl, pH 8.0, 100 mM NaCl,

1 mM EDTA, 0.5 mM EGTA, 0.1% Na-Deoxycholate, 0.5% N-lauroylsarcosine) per 108

cells. Proceed directly to sonication.

2.1.4 Sonication

Transfer the lysate to 1.5 ml tubes in 300 µl aliquots and sonicate for 15 minutes using

a Bioruptor UCD-200 (Diagenode) set to pulse on high for 30 seconds followed by 30

seconds of rest. The water bath should be maintained at a constant temperature of

4oC using a recirculator. Alternatively lysate can be transferred to 15 ml conical tubes

for use with a microtip sonicator (Branson Sonifier 450) set at 15% amplitude for five

sessions of sixty pulses (1 second on/1 second off), incubating the sample on ice for two

minutes between sessions. Clear the lysate of cellular debris by spinning at 15,000 x g

for 5 minutes at 4oC, transfer supernatant to a new tube. Run an aliquot, equivalent to

100 ng total genomic DNA, on a 1% agarose gel to ensure fragment sizes range between

100-1000 bp.

2.1.5 Phenol/Chloroform extraction

Add an equal volume of phenol/chloroform (Sigma #P3803 phenol, chloroform, and

isoamyl alcohol 25:24:1 saturated with 10mM Tris, pH 8.0, 1 mM EDTA) to the lysate,

vortex well, spin at 12,000 x g for 5 minutes, and transfer the aqueous fraction to a

fresh 1.5 ml tube. If there is very little aqueous phase due to an exceptionally large

interface, remove aqueous phase, add 500 µl TE to old interface, vortex, and spin again.

To ensure all protein has been removed, perform an additional extraction by adding

an equal volume of phenol/chloroform to the isolated aqueous fraction. Finally, add

an equal volume of chloroform (Fluka BioChemika 25666, chloroform, isoamyl alcohol

24:1) to the aqueous fraction, spin, and transfer aqueous phase to a new tube.
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2.1.6 DNA precipitation

Add 3M sodium acetate (pH 5.2) to a final concentration of 0.3 M, and add 1 µl of

20 mg/ml glycogen. Mix by inverting. Add two volumes of 95% ethanol mix by in-

verting and incubate at -20oC overnight. Although overnight incubations are routinely

performed, incubation as short as one hour should be sufficient. Pellet the precipitate

by spinning at 15,000 x g for 30 minutes at 4oC, wash the pellet with 500 µl ice cold

70% ethanol, spin at 15,000 x g for 5 minutes at room temperature, remove the super-

natant, and dry pellet in a speed-vac. Resuspend the dried pellet in 50 µl of 10 mM

Tris-HCl pH 7.5. Add 1 µl of 10 mg/ml RNase A and incubate for 1 hour at 37oC.

Earlier versions of the protocol included a step that incubates DNA from crosslinked

samples at 65oC overnight to ensure that any DNA-DNA crosslinks do not interfere

with downstream enzymatic steps. However, we have found that skipping this step

results in no detectable difference in the efficiency of downstream enzymatic reactions.

Clean up the sample using either a spin column capable of recovering small DNA

fragments (75-200 bp) or perform an additional phenol/chloroform extraction and

ethanol precipitation. We have found that this is necessary to achieve accurate spec-

trophotometric measurements of our samples for subsequent reactions. Depending on

the number of cells used for FAIRE and the final concentration, it may be possible to

see the size distribution of FAIRE DNA fragments on a 1% agarose gel, which typi-

cally ranges between 75-200 bp. However, gel verification is not necessary and is often

omitted.

2.1.7 Modifications for tissue samples

The following modifications for performing FAIRE in tissues include steps to prepare

the tissue sample for crosslinking, disassociating the cells, and cell lysis. These mod-

ifications have been successfully used on tissue samples as small as 20 mg. Other
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considerations for working with tissue samples include whether it is fresh or frozen,

and how fibrous the tissue is. For fresh soft tissues, such as brain, simply mince the

tissue into small pieces using a scalpel, transfer to a dounce with 1 ml of PBS containing

37% formaldehyde at a final concentration of 1%, and incubate for 5 minutes at room

temperature (22-25oC) with swirling. Add 2.5 M glycine to a final concentration of

125 mM glycine and incubate for an additional 5 minutes. Disassociate the cells with

a dounce homogenizer, wash two times with ice cold PBS, and proceed with cell lysis

and all remaining steps for FAIRE as described above.

For previously frozen tissues or fresh fibrous tissues, samples should be disassociated

in a tissue pulverizer, precooled in a liquid nitrogen bath. Tissue should then be

resuspended in 1.5 ml room temperature PBS per 10 mg of tissue and transferred to

15 ml conical tissue grinder (VWR #47732-446). Formaldehyde should be added to

a final concentration of 1% and incubated 5-10 minutes. Following quenching with

125 mM glycine and washing with ice cold PBS, pelleted tissue samples should be

frozen by submerging 15 ml tube in liquid nitrogen bath. Tissue samples should be

ground to roughly the consistency of sand. For most tissue types you can proceed with

the protocol described above, but for especially tough tissue types use larger 2.8 mm

ceramic or metal beads (Precellys CK28 or MK28) and perform additional cycles in

the mini bead-beater for an efficient lysis before sonication.

2.1.8 Optimization of the FAIRE procedure

The two critical steps in FAIRE that should be optimized when first starting out or

working with a new tissue or cell type are crosslinking time and sonication. A 5 minute

incubation time has been sufficient for all cell types tested so far, however tissue often

require longer incubations. If ChIP has been performed in the tissue type it is best to

consider this the maximum incubation time and typically shorter incubation times are
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optimal. For sonication, the exact parameters will vary based on the actual machine

used. However, factors that will effect sonication efficiency include density of cells in

solution, total volume of solution to be sonicated and the power setting. Sonication

conditions should be optimized to deliver the proper size range of DNA fragments (100-

1000 bp) with the fewest number of cycles while avoid using power settings that are

so high that they excessively heat the sample or cause foaming. Optimized conditions

based on the recommended equipment are provided above.

2.2 Detection of FAIRE DNA

2.2.1 Quantitative PCR

Quantitative PCR (qPCR) is used both as a method for detecting open chromatin

sites and as a means to validate sites identified using either DNA microarray or high-

throughput sequencing data. There are several considerations when designing qPCR

experiments, including selection of an appropriate set of reference regions, exact primer

localization, and methods for quantitation of the results. It is important to select an

appropriate set of reference regions since these will be used to calculate relative en-

richment for all other sites tested. This can be difficult due to the limited knowledge

of gold standard sites of closed chromatin available for most species. Even for cells in

which sites of closed chromatin have been mapped, these may be limited to a specific

growth condition. Therefore we often use a tiling approach Figure 2.1 for detection

of open chromatin sites using qPCR. Here, primer pairs are designed such that the

products are either overlapping or closely spaced across the genomic regions being in-

terrogated. The reference regions are those primer sets flanking the regions isolated

by FAIRE. This strategy is also useful for validating results from microarray and se-

quencing data, which requires a set of positive and negative sites to determine both
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sensitivity and specificity. Primer design is also critical for obtaining accurate results

from qPCR, since primer pairs spanning or near the edges of open chromatin sites may

be able to only detect a subset of the DNA fragments isolated in the aqueous phase.

Optimally, primer pairs should be designed to amplify 60-100 bp products within the

central portion of the identified regions. We typically calculate the relative enrichment

for each amplicon using the comparative cT method [99]. Here, a ratio is calculated

using the signal from the FAIRE sample relative to the signal from DNA prepared from

an uncrosslinked sample. All ratios are then normalized to the amplicon with the lowest

ratio, which is typically from the reference regions. Relative quantitation is used in part

because FAIRE enriches for mitochondrial DNA, and since the mitochondrial content

can vary considerably between cells it is difficult to get an accurate measurement of

the proportion of genomic DNA enriched in each of the FAIRE samples.

 

qPCR

*

*
*

*

Figure 2.1: For qPCR, a series of primers, depicted as convergent arrows, are designed
to span a genomic region of interest. Sites of open chromatin are highlighted in blue,
with qPCR results depicted above. Amplicons that span or are near the boundaries
of open chromatin often result in lower relative enrichment due to shearing of DNA
fragments, as shown by asterisks.
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2.2.2 DNA microarrays

High quality FAIRE data has been obtained from several microarray platforms, includ-

ing Agilent, NimbleGen (Roche), and PCR-based arrays. Any microarray platform will

suffice, but there are several factors to consider, such as the type of probe, the genomic

regions covered, and the resolution [23]. One of the most important for FAIRE is se-

lecting a microarray design with sufficient resolution. For oligonucleotide (50-75 bp)

tiling microarrays, probe-to-probe spacing should not exceed 100 bp if possible. Doing

so reduces the number of probes per FAIRE site to just one or two.

For dual-channel microarray platforms, DNA derived from uncrosslinked cells (right

side of Figure 1.7), processed in parallel to the crosslinked cells, is hybridized as the

reference or input sample. If it is not possible to obtain uncrosslinked cells, which is

often the case when cells are limited or with tissues, crosslinks from a portion of the

sample can be reversed and used as a reference. Remove an aliquot from the cleared

lysate following sonication. Reverse crosslinks by incubating at 65oC overnight, and

perform a phenol/chloroform extraction, ethanol precipitation, and RNase A treatment.

Typically, we amplify the DNA using ligation-mediated (LM) PCR [133]. The DNA

fragments are made blunt using T4 DNA polymerase, asymmetric linkers (5′GCGGT

GACCCGGGAGATCTGAATTC′3 and 5′GAATTCAGATC′3) are ligated to the blunt

ends using T4 DNA ligase, and then amplified by PCR with a primer complementary to

the linker. To avoid potential jackpot effects introduced during PCR, two amplification

reactions are carried out in parallel for each sample, so 2 amplifications for FAIRE

DNA and 2 amplifications for input DNA sample. Sample labeling and hybridization

procedures follow the manufacturers recommended protocols

For tiling microarrays, raw data extraction is specific to the particular platform

selected and entails image acquisition and feature quantitation. Data can be expressed
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as a raw intensity for single-channel platforms or as a log2 ratio for dual-channel plat-

forms. For data preprocessing, we typically normalize each dataset by calculating the

z-score for each log2 ratio. The z-score is calculated by subtracting the mean log2 ratio

and dividing by the standard deviation, which centers every dataset on the mean and

standardizes the variance. In this way, every dataset has a mean of 0 and standard

deviation of 1. This methodology is only applicable to dual channel platforms, although

alternative strategies are available for single channel platforms [15, 76].

Identification of regions enriched by FAIRE can be accomplished using most ex-

isting peak-finding algorithms used for ChIP-chip experiments [49, 74, 86, 174]. For

microarray data we typically use ChIPOTle [22], which uses a sliding window to identify

statistically significant signals that comprise a peak. The significance of each region is

determined by reflecting the negative portion of the data about zero, and then assuming

a Gaussian distribution to estimate the null distribution.

The three main user-adjustable parameters in ChIPOTle are window size, step

size, and threshold. Briefly we have found the following parameters to be optimal for

analyzing FAIRE data from oligonucleotide tiling microarrays. For microarrays with

probes spaced every 38 bp we use a window size of 300 bp. Whereas for probe spacing

of every 60 to 100 bp we use a 500 bp window size. The larger window size is necessary

to ensure a sufficient number of probes are included in each window. We use a step

size that is the average probe spacing, which is measured as the start of one probe to

the start of the next. We often try a range of thresholds and look at how the overlap

changes between replicates and genomic features.
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2.2.3 High-throughput sequencing

Each of the high-throughput sequencing platforms utilizes a different sample prepara-

tion procedure. We are most familiar with library preparation of FAIRE DNA for the Il-

lumina Genome Analyzer II (GAII). We use 100 to 200 ng of DNA for starting material.

This procedure involves blunting the ends of the DNA fragments (Epicentre #ER0720),

adding an A overhang (Epicentre #KL06041K), and ligating double-stranded adapters

containing a T-overhang to the DNA fragments (Illumina #1000521). Illumina adapters

should be diluted for samples less than 500 ng. Adapters should be diluted 1:10 with

ddH2O. For 500 ng use only 1 µl of undiluted adapters. Ligated samples are then ampli-

fied using PfuUltraII (Stratagene #600670) and primers complimentary to the adapters

(Illumina #1000537 and 1000538). To avoid potential jackpot effects introduced dur-

ing PCR, two amplification reactions are carried out in parallel, so 2 amplifications

for FAIRE DNA. Amplified products are loaded into a 2% agarose gel using sample

loading buffer (50 mM Tris pH 8.0, 40 mM EDTA, 40% w/v sucrose) and run at 120V

for 1 hour. The brightest portion of the smear is excised, which typically corresponds

to 150 bp (+/- 75 bp). If using a UV tray for the gel excision step, exposure should be

limited to avoid crosslinking DNA products (alternatively a transillumination tray can

be used). If using the Qiagen gel extraction kit for recovery of the DNA fragments, the

incubation in QG buffer should be carried out at room temperature, not 55oC as per the

manufacturers recommendation, since this induces a GC-bias. Subsequent sequencing

of samples is carried out per the manufacturer’s procedures.

Raw data acquisition for the GAII entails image acquisition and base calling. Ap-

proximately 25 million mapped 36 bp reads are typically required for robust detection

of FAIRE peaks in a mammalian sample. Several algorithms are available for mapping

the reads back to the genome, each utilizing different computational and alignment
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strategies [90, 97, 148, 96]. Typically we use Bowtie [90], which incorporates informa-

tion about read quality into the alignment. Since only the first 36 bp from either end of

each 100 bp double-stranded DNA molecule is sequenced, we computationally extend

each aligned read to produce 100 bp extended reads. For visualization, we count the

number of extended reads overlapping every basepair in the genome, which we call a

single basepair overlap count (SBPC). The baseoverlap count data for each basepair

can be loaded into genome browsers, such as the UCSC genome browser [65].

chr19: 59335000 59340000 59345000 59350000 59355000 59360000 59365000 59370000 59375000 59380000 59385000
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Figure 2.2: Here the exact same FAIRE DNA from lymphoblastoid cells were hybridized
to a high density tiling DNA microarray (red) and sequenced using the Illumina GAII
high-throughput sequencing technology. In general, sites identified by microarrays are
highly concordant with those found by sequenceing. For comparison DNase-seq (blue)
[19] and histone H3 lysine3 mono-, di- and tri-methylation ChIP-seq (purple) [7] from
CD4 cells is shown as an indicator of active chromatin in a comparable cell type.
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Chapter 3

Flexible and robust detection of

enriched regions from DNA-seq

experiments using ZINBA

The development of ZINBA was carried out in collaboration with Naim Rashid, a

graduate student in Biostatistics at UNC. Naim was the main architect of the statis-

tical components of the algorithm, including the development and implementation of

the mixture regression model, model selection and peak refinement procedures. While

I provided insights into the biological and computational challenges of data analysis,

performed evaluation and feedback in the development of the algorithm and imple-

mented many aspects of the data handling components. This included development of

the local background estimate, as described below. The subsequent sections describe

the principles of the algorithm and the performance of ZINBA, which is a portion of

the work that has recently been accepted for publication [129].



3.1 Introduction

Next generation sequencing (NGS) technologies are now routinely utilized for genome-

wide detection of DNA fragments isolated by a diverse set of assays interrogating ge-

nomic processes [118]. We refer to these collectively as DNA-seq experiments, which

include Chromatin Immunoprecipitation (ChIP-seq), DNase hypersensitive site map-

ping (DNase-seq) [19], and Formaldehyde-Assisted Isolation of Regulatory Elements

(FAIRE-seq) [50], among others. Currently there are several algorithms available for

the identification of genomic regions enriched by a given experiment [120]. Although

each is well suited for the analysis of a particular intended data type, the underlying

assumptions are not always suitable for the multitude of possible enrichment patterns

found in DNA-seq datasets Figure 3.1. In particular, none of the existing algorithms

performed adequately for the analysis FAIRE-seq data, which was due in part to the

complex nature of the background signal and the relatively low signal-to-noise.
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Figure 3.1: A 100 kb region of chromosome 2 at the ATF2 gene locus illustrating the
diversity of enrichment patterns found in DNA-seq data. The y-axis represents the
number of aligned reads overlapping a given basepair. The genes are represented by
arrows showing the direction of transcription.
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To this end, we developed ZINBA (Zero Inflated Negative Binomial Algorithm)

for the robust detection of enrichment across a multitude of enrichment patterns in a

variety of ChIP-seq and related DNA-seq experiments. ZINBA is capable of calling both

broad and narrow modes of enrichment across a range of signal-to-noise ratios, with

performance comparable to the existing set of algorithms specific to each data type.

In addition, ZINBA models and accounts for factors that co-vary with background or

experimental signal, such as G/C-content, and identifies enrichment in genomes with

complex local copy number variations (CNV). Therefore ZINBA not only provides an

interpretable analysis of FAIRE-seq data, but also serves as a unified framework for the

analysis of a multitude of data types.

3.2 Overview of ZINBA

ZINBA implements a mixture regression approach, which probabilistically classifies ge-

nomic regions into three general components: background, enriched, and an artificial

zero count. The regression framework allows each of the components to be modeled

separately using a set of covariates, which leads to better characterization of each

component and subsequent classification outcomes. In addition, the mixture-modeling

approach affords ZINBA the flexibility to determine the set of genomic regions com-

prising background without relying on any prior assumptions of the proportion of the

genome that is enriched.

ZINBA consists of three steps: data preprocessing, determination of significantly en-

riched regions, and an optional boundary refinement for more narrow sites Figure 3.2.

The first step involves tabulating the number of reads falling into contiguous non-

overlapping windows tiled across each chromosome and scoring corresponding covariate

information. Covariates can consist of any quantity that may co-vary with signal in a
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given region, including, for example, G/C-content, a smoothed average of local back-

ground, read counts for an input control sample, and the proportion of mappable [137]

bases which we define as the mappability score. Additional sets of contiguous windows

with offset starting positions can be tabulated as an option for increased resolution.

Each set of offset windows is analyzed independently in the next step.

Coordinates of enriched 

windows

Refined Peak boundaries

in BED format 

Step 2 Step 3

Data

Preprocessing

Repeated on each chromosome individually, run in parallel

Step 1

Classification By

Mixture Regression

Peak Boundary 

Refinement

Apply user model, or

BIC-suggested model

Enriched windows merged

read overlap profiles calculated

Coordinates of enriched 

windows

Mapped reads, 

raw covariate sources

Tabulate window reads, 

score window covariates

Window-level data

for classification 

Window-level data

for classification 

Figure 3.2: ZINBA is comprised of three steps that can each operate as an independent
module. In Step 1, the set of aligned reads from the experiment along with a set of
covariate measures are collated for each contiguous non-overlapping window spanning
the genome. In Step 2, the component-specific model formulations of covariates are
employed by the mixture regression framework to compute the posterior probability of
each window belonging to either the zero-inflated, background or enrichment compo-
nents. The component-specific model formulations of covariates can be generated using
an automated model selection procedure or specified by the user. In Step 3, the set of
windows exceeding the user-specified probability threshold (default 0.95) are merged
to form broad regions of enrichment and a shape detection algorithm is employed on
the read overlap representation of the data to refine the boundary estimates of distinct
punctate peaks

In the second step, a novel mixture regression model is used to probabilistically

classify each window into one of three components: background, enriched, or zero-

inflated. Where enrichment refers to genomic segments captured specifically as the

result of the biological experiment under consideration and background includes those
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DNA sequences appearing due to noise from experimental and/or computational pro-

cedures. Zero-inflated regions are those genomic locations at which we might expect

genomic DNA sequence from either the background or enrichment signal components,

but which are not represented in the data. Zero-inflation typically occurs due to a lack

of sequencing depth and is common in many NGS datasets. ZINBA utilizes an iterative

approach [37] to determine for each window the relative likelihood of belonging to each

component, in addition to estimating the relationship between average signal in each

component and a set of covariates.

In the third step, all overlapping or adjacent windows classified as enriched are

merged. For the detection of broader elements, especially helpful for histone modifi-

cations demarcating broad genomic regions (such as H3K36me3), an additional broad

setting is available that merges enriched windows within a fixed distance An optional

shape-detection algorithm may then be applied to identify sharp enrichment signals

within broader enriched regions.

3.3 Data representation and calculation of covari-

ates

The vast majority of algorithms for the analysis of DNA-seq data derive a null distribu-

tion by fitting a statistical distribution to a subset of the data deemed as background

and then impose a ”hard” cutoff to identify the enriched genomic segments. The ef-

fectiveness of this strategy relies on the extent to which the background data conforms

to the assumptions regarding the estimation of the null distribution. This approach

can also suffer diminished sensitivity and specificity as the signal at enriched sites ap-

proaches the background. The principle of the mixture model approach is not to derive

a ”hard” cutoff for distinguishing the two populations, but instead attempts to make
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an informed decision about group membership using additional criteria. The benefit

to sensitivity and specificity is most evident when the background and enriched signal

is similar. The mixture model approach was particularly advantageous for the analysis

of FAIRE-seq data due to the signal at enriched sites being less distinct from back-

ground and the violations of the assumptions regarding background used with other

algorithms.

The following is a description of the set of additional criteria used for distinguishing

background and enriched genomic regions, which are referred to as covariates.

3.3.1 Experimental and input DNA-seq data

Raw NGS data is comprised of millions of relatively short (25-75 bp) reads aligned

to a reference genome sequence. A sequence read often does not represent the entire

DNA fragment recovered with a given assay, but instead only a portion of the ends

of each fragment. Therefore the set of aligned reads for each DNA fragment results

in two distributions in the genome that correspond to the ends of fragment. The av-

erage distance between these distribution approximates the actual fragment length of

the original fragment. The fragment length can often be approximated based on the

fragment sizes generated during the preparation of material for sequencing, however

it can also be computed using the cross-correlation coefficient [83]. ZINBA extends

each aligned read in the 3′ direction by this approximate fragment length and records

the position of the central base. For FAIRE-seq data we extend the aligned reads by

100 bp, which is approximately the length of the DNA fragments recovered following

phenol/chloroform extraction and following sample preparation for sequencing. The

genome-wide set of positions for DNA fragments are summarized by counting the num-

ber falling within a set of contiguous non-overlapping windows, which were typically 300

to 500 bp in length. To avoid bisecting potentially significant regions, sets of contiguous
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non-overlapping windows were also tabulated using offset starting positions.

3.3.2 GC-content

GC-content was selected because there is likely sequence composition dependent dif-

ferences in the biological activity of factors studied with DNA-seq experiments, which

can aid in the determining whether a DNA fragment belongs to the enriched or back-

ground regions. For each of the contiguous non-overlapping windows from above the

G/C-content is calculated as the proportion of G and C bases in a given window.

3.3.3 Mappability

The mappability score is calculated as the proportion of all bases within a window that

met the criteria for uniqueness imposed during alignment of the raw reads. Typically

raw reads will only be aligned to positions that are unique throughout the genome.

However, in some instances a more relaxed criteria may be used, such as with the

FAIRE-seq data, raw reads could be aligned to a position that occurred four or less

times throughout the genome. ZINBA implements the mappability software provided

by PeakSeq [137] to calculate for each base pair the number of times a given k-mer

(36 bp) starting at that base occurs throughout the genome. If a base pair receives a

score of 1 then only one occurrence of the given k-mer exists throughout the genome

and would be a mappable position under the absolute uniqueness criteria. Whereas if

a base pair received a score of 5 then it would not be considered mappable for either

the uniqueness or relaxed criteria described above. Before the mappability scores are

summarized into the windows, those bases that meet the specified criteria are assigned

a score of 1, while those that do not are assigned a score of 0. Finally, since the central

position of each extended read is used for window assignment, the mappability data is

shifted in the same way, where for each base the score of 0 or 1 is shifted both +/- one
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half the average fragment length. As a result, each base in the genome has a score of

0, 1 or 2 depending on whether neither, one or both of the up- and downstream base

pairs were mappable, respectively. The sum of mappability scores are tabulated and

divided by two times the window size to derive the proportion of mappable bases in

the window.

3.3.4 Local background

The local background estimate aims to roughly approximate large-scale fluctuations in

background signal resulting from local variations in genomic copy number. It is calcu-

lated using a sliding window approach where, by default, 100 kb windows are stepped

every 2.5 kb across each chromosome. The size of these large windows were selected to

be sufficiently large to prevent sites of enrichment from influencing the estimate, but

small enough to preserve enough resolution to capture local fluctuation in background

signal. The number of reads per mappable base pair is calculated for each window.

Windows that span the boundaries of CNVs are problematic, resulting in artificially

inflated and deflated estimate of local background. Therefore an additional step is

employed to identify these boundaries as change points, remove windows straddling

these boundaries and calculate scores for new windows immediately adjacent to the

boundaries. For each ZINBA window, which is considerably smaller than 100kb, the

local background estimate is computed as the average of all overlapping 100kb windows,

multiplied by the length of the ZINBA window.
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3.4 Relationship between covariates and component

signal can vary between experiments

The mixture regression framework implemented by ZINBA requires the user to specify

the relationship between covariates and the set of components. Since the relevant co-

variates are not always known a priori ZINBA employs the BIC [141] to select the best

formulation of covariates for each component. BIC balances model fit and model com-

plexity and has long been employed as a statistical assessment of model performance.

Covariates with weak relationships with the mean signal in a component will have little

effect on classification and contributes to model complexity. The BIC criterion helps

to remove such covariates to balance model fit and model size.

Evaluation of the relationships between the set of component-specific covariates se-

lected using the automated model selection procedure for the RNA Pol II ChIP-seq

and FAIRE-seq datasets shown in Figure 3.1 [42, 134], revealed covariates vary both

between components and assays. As shown in Figure 3.3, the mappability score and

input/local background were positively related with signal in the background compo-

nent for both the RNA Pol II ChIP-seq and FAIRE-seq datasets, which is consistent

with previous reports [137, 173]. For the RNA Pol II data, model estimates reveal that

G/C-content had a positive relationship in background regions, similar to previous re-

ports on G/C-content bias [38, 64, 125] (Figure 3.3A). However, in FAIRE-seq data,

G/C-content was negatively associated with the background component (Figure 3.3B).

These differences can easily be observed from scatter plots of the raw read counts from

windows classified as background versus the corresponding G/C-content for the RNA

Pol II and FAIRE-seq datasets (Figure 3.3C,D). The exact cause of the differences in

the relationship between G/C-content and background signal between datasets, and

whether it could be technical or biological, is not known.
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Figure 3.3: Estimates for the set of BIC selected covariates for the background com-
ponents of the (A) RNA Pol II ChIP-seq and (B) FAIRE-seq data from K562 cells,
chromosome 22. The set of covariates were standardized to a mean of 0 and variance of
1, which included G/C-content (GC), mappability score (Map), the local background
estimate (BG), and input control (Input). The G/C-content covariate had a positive
and negative effect on the background component of the RNA Pol II and FAIRE data,
respectively (yellow shaded bar). Density plots of G/C-content (x-axis) versus the nat-
ural log of window read count (y-axis) in non-enriched windows (enrichment posterior
probability <0.50) from the (C) RNA Pol II and (D) FAIRE data. Median regression
lines fit to the set of background windows from each dataset (windows with enrich-
ment posterior probability <0.50) mirror the ZINBA-estimated relationships between
G/C-content and signal in background regions.

The relationship for each covariate also differed in magnitude and direction across

components of the same dataset. For FAIRE-seq, although there was a negative rela-

tionship with G/C-content in background regions there was a positive relationship in

the enrichment regions. A similar difference between the relationship of G/C-content in

the background and enrichment regions was found for the RNA Pol II ChIP-seq data.
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These results suggest that the relationships of covariates may not be consistent with

background signal across different data types, or may different in their relationships

between signal in background and enrichment regions.

3.4.1 Performance using FAIRE-seq data

ZINBA was compared with MACS [173] and F-Seq [18] which represent two classes of

peak calling algorithms that also do not require an input control sample to call regions

of enrichment. MACS represents a class of algorithms that uses a sliding window

approach for the detection of enriched regions compared to a matching input control

sample or local background estimate. F-Seq represents a class of algorithms that use

kernel density estimation to estimate local read density and identifies enriched regions

as those density estimates that exceed a user-defined threshold, which is estimated

using simulations assuming random assortment of sample reads.
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Figure 3.4: For FAIRE-seq data, the top N ranked peaks from MACS (red dashed
line), F-Seq (green dashed line), ZINBA unrefined regions (light blue dashed line), and
ZINBA refined region (blue solid line) were compared based on the proportion overlap-
ping a DNase hypersensitive site (A), the average distance to the DNase hypersensitive
site (B) and average length of peaks called by each algorithm (C).

Peak calls from ZINBA, MACS and F-Seq using FAIRE-seq data from K562 cells,
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which lacked a matching input control, were compared to a set of DNase I hypersen-

sitivity sites (DHS) [19, 31] isolated from the exact same set of cells. The DHS were

called by F-seq, and were selected as a standard because of the longstanding use of

DNase as a method for identification of open chromatin sites. Both ZINBA and MACS

called a high proportion of FAIRE sites that were overlapping a DHS, but only a very

low proportion of FAIRE sites called by F-seq were localized to a DHS (Figure 3.4A).

The set of sites called by both MACS and F-Seq tended to be longer and more errant

in K562 CNV regions, where approximately 50% of ZINBA peaks were localized to a

DHS compared to only 37% and 27% of MACS and F-seq peaks. Overlap between

called peak sets from ZINBA, MACS, and F-seq for FAIRE were more disparate than

those found in high signal-to noise data.

3.4.2 Detection of regulatory elements within CNVs

One challenge for the analysis of DNA-seq data is fluctuations in background signal

resulting from copy number variation (CNVs). If not properly accounted for, such

changes in background can result in significant false-positives. This is especially true

if there is no input control for comparison or the input control is not sequenced to

a sufficient depth. To account for this, we constructed a new covariate to measure

local background, and included this covariate in our mixture regression framework

to account for local copy number changes. Changes in background signal levels due

to CNVs were estimated locally using the DNA-seq sample itself, supplemented by a

change-point detection method to determine boundaries of likely CNVs. Application

of this approach provided an accurate estimation of signal changes due to local CNVs

in a FAIRE-seq MCF-7 breast cancer dataset, which is aneuploid and has extensive

CNVs [58] (Figure 3.5A).

Using a BIC-selected model considering the local background estimate, G/C-content,
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Figure 3.5: (A) The local background estimate (red line) approximates a CNV detected
by FAIRE-seq (black line) within a 2 Mbp region of chromosome 20 in MCF-7 cells. (B)
Density plot of the window read counts for FAIRE-seq data in MCF-7 (chromosome
20) versus the posterior probability of a given window belonging to enrichment, which
included the local background estimate as a starting covariate in the ZINBA model
formulation. The red box highlights a set of windows with high read counts (CNV
background) being assigned a low posterior probability of being enriched. (C) The
read overlap representation of MCF-7 FARE-seq data for all of chromosome 20 (top
row) is displayed in the UCSC Genome Browser. The bottom panels zoom in on the
black box outlining a CNV (same as panel A). Here a set of peak calls by F-Seq, MACS
and ZINBA are shown as black boxes along with the FAIRE-seq data displayed using
either an extended (top) or standard y-axis.

and mappability score as starting covariates, ZINBA was able to correctly classify back-

ground regions within CNVs (Figure 3.5B) and called 8 and 11 times fewer peaks (1,258)

in MCF-7 CNV regions on chromosome 20 relative to MACS and F-seq (Figure 3.5C).
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However estimation of local background from the experimental data is only effective

when local background is sampled from a sufficiently large window size, where these

large windows (default 100 kb) are not dominated by enriched signal. This is the case

with the majority of data types, as most contain features that span no more than

several kb. Nevertheless, other estimates of CNV boundaries can be used, because

the flexibility of ZINBA allows for any CNV estimate to be included into the model

selection procedure and determination of enrichment.

3.5 Conclusions

Although ZINBA was initially developed to aid in the detection of enriched regions

for FAIRE-seq data, the strategies employed in the algorithm also provide a general

and unified framework for the detection of enriched regions for a variety of DNA-seq

data types. This framework will certainly be valuable as the production of NGS data

continues to increase and diversity of data types included in a given experiment expands.

Allowing researchers the opportunity to rely on a single algorithm instead integrating

results from a variety of algorithms or using a single algorithm ill-suited for all the data

types.
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Chapter 4

Isolation of active regulatory

elements from human chromatin

using FAIRE

The development of FAIRE for human cells was carried our primarily in collaboration

with Vishy Iyer at the University of Texas at Austin. All of the tissue culture and

fixation of the fibroblast cells was carried out by Jonghwan Kim, then a graduate

student in Vishy’s lab. The ENCODE microarrays used for the detection of FAIRE

samples was kindly provided by Roland Green at Nimblegen and hybridization was

carried out under the supervision of Michael Singer.

4.1 Abstract

DNA segments that actively regulate transcription in vivo are typically characterized by

eviction of nucleosomes from chromatin, and are experimentally identified by their hy-

persensitivity to nucleases. Here we demonstrate a simple procedure for the isolation of

nucleosome-depleted DNA from human chromatin, termed FAIRE (Formaldehyde As-

sisted Isolation of Regulatory Elements). To perform FAIRE, chromatin is crosslinked



with formaldehyde in vivo, sheared by sonication, and phenol-chloroform extracted.

The DNA recovered in the aqueous phase can be detected by hybridization to a DNA

microarray or directly read using high-throughput sequencing. FAIRE performed in hu-

man cells strongly enriches DNA coincident with the location of DNaseI hypersensitive

sites, transcriptional start sites, enhancers, insulators and active promoters. The set of

active regulatory elements enriched by FAIRE also vary between cell-types. FAIRE has

utility as a positive selection for genomic regions associated with regulatory activity,

including regions traditionally detected by nuclease hypersensitivity assays.

4.2 Introduction

Chromatin at genomic loci that actively regulate transcription is distinguished from

other chromatin types. The observation that the 5′ regions of genes became hypersen-

sitive to both DNaseI and micrococcal nuclease upon gene activation in Drosophila was

among the earliest demonstrations of this phenomena [82, 94, 169, 168]. The appear-

ance of these hypersensitive sites reflects a loss or destabilization of nucleosomes at the

promoters of active genes [14]. Several mechanisms act in concert to achieve this result.

Loss of nucleosomes can be caused directly by a protein bound to its cognate site on

DNA [171], facilitated in part by increased acetylation of the nucleosomes just prior

to the activation of transcription [131], or can be mediated by the well-characterized

SWI/SNF family of ATP-dependent nucleosome remodeling complexes [155, 158, 162].

Regardless of the specific mechanisms employed at any individual promoter, achiev-

ing nucleosome clearance at active regulatory regions is a conserved mechanism among

eukaryotes [165].

Because nucleosome disruption is a conserved hallmark of active regulatory chro-

matin throughout the eukaryotic lineage, a simple, high-throughput procedure to isolate

42



and map chromatin depleted of nucleosomes would allow regulatory regions to be iden-

tified in a broad range of organisms and cell types. One such procedure, which we term

FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements), was first demon-

strated in the budding yeast Saccharomyces cerevisiae [113]. In yeast, the genomic

regions immediately upstream of genes were preferentially segregated into the aqueous

phase, in a manner that was strongly negatively correlated with nucleosome occupancy

[10, 92, 172].

Human chromatin poses new challenges to FAIRE. Compared to the twelve million

base-pair genome of yeast, the three billion base-pairs of the human genome makes it

nearly 300 times as large. Only 1.5% of human DNA is coding, with perhaps 30% of

the genome transcribed (introns plus exons), relative to 50% coding for yeast, with 85%

of the genome being transcribed under a single growth condition [35, 69, 128, 167]. In

addition, mammalian chromatin is inherently more complex than that of yeast. The

majority of mammalian genes contain introns, regulation can occur at much greater

distances from the initiation of transcription, there are more repetitive and heterochro-

matic regions, and the baseline state of chromatin is more compact and repressive [1].

Therefore, it is reasonable to expect that a much smaller fraction of the genome will

be in the ”open” conformation representing regions of active chromatin. Moreover,

it is not clear a priori whether the same physical properties of yeast chromatin that

allow isolation of open regions by FAIRE can be successfully exploited for isolation of

regulatory regions in human chromatin.

The work presented in this chapter outlines the initial set of experiments charac-

terizing FAIRE in a human foreskin fibroblast cell line using DNA microarrays tiling

the 1% of the genome defined by the ENCODE (ENCyclopedia Of Dna Elements)

consortium [41]. Subsequent studies expanded upon this work by employing high-

throughput sequencing for genome-wide detection and included additional cell lines.
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The goal of the initial experiments [51] was to ascertain whether the active regulatory

elements recovered by FAIRE in human cells had similar characteristics to what had

been observed in yeast. Subsequently we sought to characterize the set active regu-

latory elements in human chromatin and determine the extent to which these varied

between cell-types [151]. The results indicate that FAIRE is a simple genomic method

for the isolation and identification of human functional regulatory elements, with broad

utility for mammalian genomes.

4.3 Materials and methods

4.3.1 Cell lines

Four independent cultures (biological replicates) of Human foreskin fibroblast (ATCC

CRL 2091) cells were grown in 245 x 245 cm plates to 90% confluence.

4.3.2 Sample amplification, labeling, hybridization, and quan-

titation

Samples were amplified using ligation-mediated (LM) PCR [133]. Briefly, DNA frag-

ments in a sample from each time-point were made blunt using T4 DNA polymerase.

Asymmetric linkers (5′GCGGTGACCCGGGAGATCTGAATTC′3 and 5′GAATTCA

GATC′3) were ligated to the blunt ends, and the samples were amplified by PCR with

a primer complementary to the linker.

Sample labeling and hybridization were performed at NimbleGen. Samples were

labeled by incorporation of cyanine dyes by polymerization with Klenow fragment

primed by random nonomers. FAIRE samples were labeled with Cy5, and genomic

DNA (to be used as a reference) was labeled with Cy3. The labeled samples were

mixed and hybridized to high-density oligonucleotide microarrays tiling the ENCODE
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regions (NimbleGen Systems, Inc.). The microarray contains approximately 385,000

50-mer probes, sharing 6 bp with the adjacent probes, allowing measurements at 38

bp resolution across the non-repetitive sequence in the ENCODE regions. Hybridiza-

tions were performed in a MAUI hybridization station for 16 hours at 42o C. Arrays

were washed and scanned with an Axon Scanner 4000B. Spot intensities were quanti-

tated using GenePix software and normalized by NimbleGens in-house software. Data

from all four crosslinking times, which were prepared from four independent biological

samples, were averaged for all analyses.

4.3.3 qPCR validation

Portions of three ENCODE regions were selected for validation: chr8:119189349-

119195557, chr21:32813792-32820968, and chr7:26978053-26987656. 96 primer pairs

were designed for qPCR and divided between the three regions, spaced as evenly apart

as possible. DNA used in the qPCR validation was obtained independently using an

identical protocol and cell line as for the microarray analysis. PCR was performed

using SYBR green chemistry on an ABI 7900 instrument. Relative enrichment of each

amplicon in the FAIRE-treated DNA was calculated using the comparative cT method

[99]. DNA from untreated fibroblast cells served as the control for the calculations.

4.3.4 Data analysis

The signal generated by FAIRE is similar to that generated by a conventional ChIP-chip

experiment. Therefore we used the peak-finding algorithm ChIPOTle [22] to identify

regions isolated with FAIRE. Briefly, ChIPOTle uses a sliding window (300 bp) to

identify statistically significant signals that comprise a peak. The null distribution is

determined by reflecting the negative data from the region of interest about zero and

fitting a Gaussian distribution. For the analysis presented, values calculated from the
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average of four FAIRE experiments were input to ChIPOTle. Displayed peaks corre-

spond to a p-value of less than 10-25, after using the Benjamini-Hochberg correction

to adjust for multiple tests [8]. All of the feature sets used to compare with FAIRE

peaks were downloaded from the UCSC genome browser. For the DNase-chip data, we

excluded peaks found in only 1 of the 3 DNase concentrations reported by [32].

For visualization, data was loaded to the UCSC genome browser [65]. Genomic

annotations including TSSs were produced by the GENCODE project [4, 61], whose

goal is to provide high-quality annotation of all protein-coding DNA sequences that

have been experimentally verified. All coordinates reported are based on human genome

sequence release hg17 (NCBI build 35). Each annotation track presented is available

for download, along with the raw FAIRE data for each microarray. The FAIRE data

is also available from GEO (GSM109841, GSM109842, GSM109843, GSM109844 and

series GSE4886).

4.4 Results

4.4.1 DNA isolated by FAIRE in human cells corresponds to

regions of active chromatin

Fibroblasts were grown in culture, and formaldehyde was added directly to actively

dividing cells to a final concentration of 1%. The cells were then disrupted with glass

beads. The resulting extract was sonicated to yield 0.5 to 1 kb chromatin fragments,

and subjected to phenol-chloroform extraction. The DNA fragments recovered in the

aqueous phase were fluorescently labeled and hybridized to high-density oligonucleotide

microarrays tiling the ENCODE regions at 38-bp resolution. The ENCODE regions

represent 1% of the human genome (30 Mb), consisting of manually-selected regions
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of particular interest and randomly-selected regions of varying gene density and evolu-

tionary conservation [41]. As a reference, DNA prepared in parallel from uncrosslinked

cells was labeled with a different fluor and simultaneously hybridized to the arrays.

We compared the genomic regions enriched by FAIRE to hallmarks of active chro-

matin, including localization of the general transcriptional machinery [85, 86], histone

H3 and H4 acetylation and methylation [88], DNaseI hypersensitivity [32, 139], and

direct assays of promoter activity [29, 157]. Genomic regions enriched by FAIRE cor-

respond well with each of these indicators of active regulatory elements (Figure 4.1).

4.4.2 Active promoters are enriched by FAIRE

Earlier experiments performed in yeast had revealed that the regulatory regions of

highly transcribed genes are preferentially isolated by FAIRE [113]. To determine if

this relationship holds in human cells, we compared FAIRE signal to measurements of

promoter strength. Predicted promoters in the ENCODE regions have been analyzed

for regulatory activity by cloning them upstream of reporters and measuring the result-

ing activity of the reporter gene in different cell types [29, 157]. We assigned each probe

on the microarray that mapped to a predicted promoter to one of four classes, based

on the average activity of the corresponding promoter. Analysis revealed that probes

mapping to the most active promoters have a higher FAIRE signal than those that

do not map to a promoter, or that map to a promoter of lower activity (Figure 4.2A,

p-value < 10-100). Therefore, more active promoters are more strongly enriched by

FAIRE in human cells.
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4.4.3 FAIRE isolates DNA encompassing transcriptional start

sites

Yeast experiments had also revealed that FAIRE isolated the nucleosome-free region

located at yeast transcription start sites (TSSs) [68, 113, 172]. Alignment of DNase-chip

signal [32], FAIRE signal, and gene annotations suggested that a similar feature was

enriched by FAIRE in human cells (Figure 4.1). To assess the extent to which this was

generally true, we aligned all TSSs for all annotated genes within the ENCODE regions,

and calculated the average FAIRE signal over a region spanning 1.5 kb upstream to

1.5 kb downstream of the TSS (solid line, Figure 4.2B). This analysis revealed that on

average, the peak of enrichment by FAIRE occurs at the TSS. DNase-hypersensitive

sites are an indicator of DNA accessibility and a well-established characteristic of TSSs

and regulatory DNA. We performed the same analysis using DNase-chip data [32] and

found that the pattern of DNA enrichment at TSSs was very similar to that generated

by FAIRE (dashed line, Figure 4.2B).

4.4.4 Global comparison of FAIRE peaks to other annotated

features

We also analyzed the overall concordance between the genomic regions enriched by

FAIRE and other selected hallmarks of active chromatin (Figure 4.2C). The overlap

of FAIRE peaks and these marks (TSS [4, 61], DNaseI hypersensitivity [32, 139], 75th

percentile of promoter activity [29, 157], RNA polymerase II (RNAP) ChIP-chip, or

TAF1 ChIP-chip [85, 86]) is very strong, in most cases over 10 times the frequency

observed with permuted data. Many of the FAIRE peaks overlap multiple marks of

active chromatin (60% of peaks shown, 21% of all peaks) (Figure 4.2C). In addition,
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there are a number of FAIRE peaks, which do not correspond to any of the annota-

tions selected for comparison. These likely arise to due to a number of factors, most

significantly the difference in cell types used among the experiments being compared,

the sparse state of current human genome annotations and yet uncharacterized distal

regulatory elements.

4.4.5 FAIRE isolates regulatory elements specific to individual

cell types

Although all somatic cells in an organism contain the same genomic DNA, different

cell types express different genes. These differences reflect differential utilization of

regulatory information encoded in the genome. To determine if FAIRE could detect

regulatory elements specific to a certain cell type, we compared FAIRE data derived

from fibroblasts and HeLaS3 cells (Figure 4.3A). The conservative set of peak calls

correspond to an extremely stringent cutoff for detection and represent very high quality

FAIRE sites. While the majority of liberal peak calls are still bona fide regulatory

elements with lower amplitude signal. Comparisons along the diagonal indicate that

regardless of the stringency ∼25% of the FAIRE sites are held in common between cell

types. Comparison of the conservative versus liberal peak calls (top right and bottom

left corners) indicate that these differences are not simply a matter of the same set of

regulatory elements with different amplitudes, but instead that these differences reflect

completely independent sets of regulatory elements between cell types.

Figure 4.3B displays high-throughput sequencing data from FAIRE performed in

an expanded set of cell lines. Across all four cell lines there are various patterns of

regulatory occurrence, which likely reflects differences and similarities in the lineage

and activity of regulatory pathways.

49



4.5 Discussion

Several aspects of FAIRE make it a powerful genome-wide approach for detecting func-

tional in vivo regulatory elements in mammalian cells. First, FAIRE requires no treat-

ment of the cells prior to the addition of formaldehyde. Formaldehyde is applied directly

to the growing cells and enters quickly because of its small size (HCHO), which is com-

parable to that of water. In yeast, 1% formaldehyde immediately stops cell growth and

results in 50% lethality in just 100 seconds, with 99% lethality achieved in 360 seconds

(data not shown). Therefore, the state of chromatin just prior to the addition of the

formaldehyde is likely to be captured. In contrast, nuclease sensitivity assays often

require that cells be permeabilized, or that nuclei be prepared, both of which allow

time for artifacts based on these preparations to occur.

Second, each time a nuclease-sensitivity assay is performed, the appropriate enzyme

concentration and incubation time must be determined, due to lot-to-lot variations

in commercial DNase activity and variations in individual nuclei preparations. With

FAIRE, a wide range of incubation times (1, 2, 4, and 7 minutes) at a single formalde-

hyde concentration (1%) appear to be equally effective. FAIRE involves few steps,

few variables, and takes less than an hour, making the method easy to control and

develop. Few reagents other than formaldehyde, phenol, and chloroform are required.

These properties make FAIRE amenable to high-throughput. Third, in contrast to

ChIP, there is no dependence on antibodies, supplies of which may be limited, or upon

tagged proteins, which may be difficult to construct, impaired in function, or expressed

at inappropriate levels. FAIRE can analyze any cells; wild-type, mutant, or those that

contain transgenes that would make histone ChIPs technically difficult (for example,

those containing Protein-A based tags).

Another important advantage of FAIRE is that it positively selects genomic regions
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at which nucleosomes are disrupted. These same regions would be degraded in nucle-

ase sensitivity assays, and require identification by their absence, or by cloning and

identification of flanking DNA [31]. In contrast, DNA isolated by FAIRE is the DNA

of interest, allowing the use of direct detection methods like DNA microarrays and

high-throughput sequencing.
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Figure 4.1: FAIRE data was loaded into the UCSC genome browser along with datasets
generated by other ENCODE consortium members (labeled on the right-hand side).
The top track represents the average log2 ratios for the FAIRE data from four inde-
pendent cultures (biological replicates), each of which were crosslinked separately (for
1, 2, 4, and 7 minutes). The second track shows FAIRE peaks (cutoff = p ¡ 10-25) as
determined by ChIPOTle [22]. The GENCODE annotations represent experimentally
verified transcribed segments [4, 61]. Promoter activity represents the average activity
of a reporter construct driven by each of the indicated regions and measured across 16
cell lines, where grey bars indicate high activity and black bars no activity [29, 157].
ChIP-chip data for RNAP and TAF1 from lung fibroblast cells (IMR90) is displayed
as the log10 of the p-value for each probe scaled to 0-16 [85, 86]. ChIP-chip data for
histone H3 and H4 acetylation and H3K4 mono-, di-, and trimethylation in embryonic
lung fibroblast cells (HFL-1) is shown as the ratio of IP-signal over background [88].
Finally, data on DNaseI hypersensitivity is shown for two different techniques, DNase-
chip and DNase-array, both techniques isolate DNA fragments flanking DNaseI cleavage
sites and map them back to the genome using microarrays [32, 139]. The data shown
for DNase-chip is the average log2 ratio for nine replicates (3 biological at 3 different
enzyme concentrations), whereas the DNase-array data is the log2 ratios scaled so that
a log2 ratio of 0 represents the 99% confidence bound on the experimental noise. The
region shown corresponds to Chromosome 19 coordinates 59,330,000 to 59,409,000.
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Figure 4.2: (A) Probes that mapped to predicted promoters were divided into quartiles
based on the level of activity for each promoter, which was measured by driving a
reporter construct [29, 157]. The black line in the center of box is the median value,
while the bounds of the box represents the inter-quartile range of the FAIRE data. (B)
Probes within +/- 1.5 kb of a GENCODE annotated transcriptional start sites [4, 61]
were analyzed using a 50 bp sliding window (1 bp step) to calculate the average FAIRE
enrichment at TSS (solid line). For comparison, the same analysis was performed
using the DNase-chip dataset (dashed line). (C) A representation of the relationship
between FAIRE peaks and other annotated features. Each row corresponds to one of
the 571 FAIRE peaks that overlap with at least one of the following: a TSS [4, 61],
DHS [32, 139], 75th percentile of promoter activity [29, 157], RNAP ChIP-chip, or
TAF1 ChIP-chip [85, 86]. A black bar represents overlap with the FAIRE signal,
while white represents no overlap (413 FAIRE peaks did not overlap with any of these
marks). Data was clustered for display [40]. (D) qPCR validation of the microarray
data was performed over three 8 kb regions. The height of the bars from the qPCR
analysis represents the enrichment of the FAIRE samples relative to the uncrosslinked
reference; the FAIRE data and peaks are the same as described in Figure 4.1.
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Figure 4.3: (A) FAIRE from HeLaS3 (rows) and fibroblast (columns) cells was hy-
bridized to DNA microarrays covering the 1% ENCODE regions and analyzed using
ChIPOTle at three levels of stringency. The thresholds were set to generate roughly
equivalent number of peaks for each category and the numbers of peaks are listed on
the corresponding rows and columns. The comparison is shown as a venn diagram,
where the degree of overlap is proportional to the extent to which the peaks were the
same. (B) Here high-throughput sequencing data for FAIRE performed in four cell lines
GM12878, K562, HeLaS3 and HepG2 is shown in a representative 60 kb of chromosome
1. The y-axis is the count of overlapping sequence fragments after being aligned and
extended.
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Chapter 5

Classification of breast cancer

subtypes using FAIRE

This work was carried out in collaboration with Charles Perou, professor in the

Department of Genetics at UNC. All of the tissue culture of the MCF7 and SUM102

cells were carried out by Olga Karginova. While the tumor samples were provided by

Xiaping He. All expression data, including RNA-seq and tumor expression microarrays,

was generated by various members of the Perou lab.

5.1 Abstract

Breast cancer is a heterogenous disease comprised of molecularly distinct subtypes

characterized by differential activity of regulatory pathways. Using FAIRE we were

able to identify the genome-wide set of subtype-selective active regulatory elements,

infer the function of regulatory pathways and classify tumor samples. The set of ac-

tive regulatory elements allowed us to identify sets of both known and novel factors

involved in transcriptional regulation. The set of subtype-selective sites were found

to be colocalized throughout the genome with the set of genes up-regulated in the re-

spective subtypes. Unexpectedly we found that separate regulatory mechanisms can



be employed between subtypes to achieve a comparable level of gene expression, sug-

gesting that gene expression alone is not sufficient to explain the molecular complexity

of breast cancer. FAIRE is also capable of identifying copy number variations (CNVs),

which provides an additional molecular characteristic for the classification of samples

based on clinical outcomes. FAIRE performed in tumors was capable of identifying

subtype-selective regulatory elements indicative of the status of transcription factors,

such as the presence of the estrogen responsive element (ERE) in the ER-positive lu-

minal tumors. Together these findings suggest that FAIRE will be a powerful tool in

the study of breast cancer and can be easily adapted for clinical research.

5.2 Introduction

One of the major challenges in the effective diagnosis and treatment of breast cancer is

understanding how the molecular composition of tumors relates to the diversity of clini-

cal outcomes. Breast cancer occurrence, progression and treatment outcomes have been

characterized molecularly based on immunohistochemical markers, genetic mutations

and gene expression signatures to reveal distinct subtypes [101]. These subtypes have

distinct morphological features and clinical behaviors, which are broadly categorized by

the originating cell type, the status of the estrogen and progesterone hormone receptors

and the presence and activity of the HER2 amplicon. Using microarray gene expression

data researchers initially characterized five intrinsic subtypes of breast cancer, which

included luminal A, luminal B, HER2-enriched, basal-like and normal breast-like [121].

Together the luminal and basal-like subtypes account for ∼80% of all incidences of

breast cancer. The vast majority being of the luminal subtypes (∼60%), which origi-

nate from the inner luminal epithelial cell layer, are positive for both hormone receptors

and are separated into an A and B group based on the status of HER2. Generally tu-

mors of the luminal subtypes are associated with better clinical outcomes, due in part
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to the effectiveness of hormone therapies. Whereas for the ∼20% of basal-like tumors,

which are negative for both hormone receptors and HER2, do not respond to hormone

therapies and are generally associated with poor outcomes. It is thought that these tu-

mors are derived from a luminal progenitor cell population [163, 164]. Currently there

is not a clinical consensus for defining or diagnosing the basal-like subtype. Instead it

has principally been defined based on the triple negative histology and gene expression

data.

The composition and activity of subtype-selective regulatory pathways operate, in

part, through binding of transcription factors to sets of regulatory elements throughout

the genome to govern levels of gene expression. One of the characteristics of these bind-

ing events is the displacement of nucleosomes, resulting in an open chromatin region.

Identification of open chromatin regions has been one of the most accurate and robust

methods to identify functional promoters, enhancers, silencers, insulators, and locus

control regions in mammalian cells. Here we have applied FAIRE to luminal and basal-

like breast cancer cells and tumors to identify the genome-wide set of active regulatory

elements. FAIRE offers several advantages for advancing of our understanding of the

molecular composition of breast cancer subtypes. First, FAIRE is amenable to clinical

applications because it is relatively easy to perform, requires only the administration

of formaldehyde and works with a limited amount of tissue samples (∼20 mg). Second,

identification of the set of regulatory elements provides a means for understanding the

mechanisms driving expression of genes in a given subtype, which will aid the refinement

of subtype classification and evaluation of clinical outcomes. Finally, identification of

the set of regulatory motifs that differentiate subtypes provides a functional means for

the identification of the relevant transcription factors and the set of putative targets.

The primary goals of the work presented here were to determine the extent to which

the application of FAIRE to breast cancer samples was capable of distinguishing breast
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cancer subtypes, recapitulated known regulatory mechanisms and could work effectively

in clinical tumor samples. We also sought to characterize the regulatory information

encoded at FAIRE sites and assess whether FAIRE provided any additional information

regarding the molecular characteristics that distinguish breast cancer subtypes.

5.3 Materials and methods

5.3.1 Cell culture

All cells were grown at 37oC and 5% CO2. The MCF7 cells were maintained in RPMI-

1640 plus 10% FBS and SUM102 cells were cultured in HuMECmedia with supplements

(Gibco).

5.3.2 Expression analysis

For all expression data mRNA was collected using the Micro-FastTrack2.0 mRNA Iso-

lation Kit (Invitrogen). Expresion data from the cell lines were measured using RNA-

seq, while the tumor expression data was measured using Agilent microarrays where

all samples were hybridized over a common reference.

For the RNA-seq data sample preparation was carried out as per the recommended

protocol from Illumina. The set of raw sequencing reads were aligned to UCSC hg18

build of the human genome [45] using bowtie [90], where each aligned position was

required to be completely unique. RPKM (Reads Per Kilobase of exon model per

Million mapped reads) [111] values were then calculated for all isoforms of the set

of genes from RefSeq [124]. The isoform with the maximal RPKM value was then

recorded as the expression value for that gene. For the cells the set of differentially

expressed genes were identified by calculating the standardized log2 ratio of RPKM

values between samples and selecting those genes with a score greater than 1.5.
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The expression data for the tumors was normalized by calculating the standardized

log2 ratio between the tumor mRNA versus a common reference samples. For each

gene in the tumor samples the mean and standard deviation of expression values was

calculated within each subtype grouping. For each gene a difference score was calculated

by subtracting the mean expression values for each subtype and dividing by the sum

of the standard deviations. The set of differentially expressed genes were identified

as those that met a false discovery rate of 0.05 based on an iterative permutation of

samples amongst the subtypes to calculate a null distribution [130].

5.3.3 Analysis of sequencing data

The raw reads for each FAIRE-seq sample were aligned to the UCSC hg18 build of

the human genome [45] using bowtie [90]. Each aligned position was allowed to occur

up to four times throughout the genome, where one was selected at random for each

those positions that were not unique. The set of enriched regions were then identified

by ZINBA [129], using 500 bp windows with 125 bp offsets. The background and

enriched components were modeled using G/C content and an interaction term between

mappability and local background estimate. No peak refinement was included in this

analysis. Overlap between datasets and with genomic features were carried using a

suite of tools called BEDTools [126].

5.3.4 Genomic clustering analysis

The set of active regulatory elements were divided into three groups based on whether

they only occurred in the luminal, basal-like or both subtypes. Each gene was catego-

rized as either up-regulated in luminal, up-regulated in basal-like and for the RNA-seq

data from the cell lines as expressed in both subtypes. Those genes in the cell lines

with a RPKM value less 1 in both subtypes were excluded from the analysis as not
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expressed. For each active regulatory element in a given FAIRE group the distance was

calculated to nearest gene in each of the expression group. To determine what would

be expected by chance the set same analysis was carried out by iteratively selecting the

same number of genes for each expression group at random throughout the genome.

Both the observed and the set random distributions were ranked in ascending order.

For each distance the degree of enrichment was calculated as the number of standard

deviation the observed distance was from the mean iterative background measure.

5.3.5 Copy number variation analysis

Copy number variation was estimated using large sliding windows (50 kb) with 10

kb steps across the genome. The value of each 50 kb window was calculated as the

median value for all 500 bp windows falling within the larger window. The value of

each 500 bp window was the number of reads per mappable base within the window,

excluding windows where <25% of the bases were mappable. The set of amplified and

deleted regions were determined using cnv-seq [170], where the mappability of the 50

kb windows were used as the reference.

5.3.6 Identification of subtype-selective sites in tumor samples

To identify the set of subtype-selective active regulatory elements from the tumor sam-

ples the union set of all peaks called from the FAIRE-seq samples was collapsed. The

count of the number of reads for each tumor samples was calculated and normalized

based on the total number sequencing sequencing tags from the given sample. The

mean and standard deviation of normalized read counts for each subtype were calcu-

lated. The set of subtype-selective active regulatory elements were identified using a

difference score (as described for expression data).
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5.3.7 Enrichment of transcription factor binding motifs

The set of sequence motifs enriched for each subtype were identified using HOMER

[63]. Here the set of active regulatory elements unique to subtype for either the cell

lines or tumor samples were compared and the set of motifs common to both were

considered the set of enriched motifs.

5.4 Results

5.4.1 Breast cancer subtypes can be distinguished based on

the genome-wide set of regulatory elements identified

by FAIRE

Initially the MCF7 and SUM102 cell lines, which are representative of the luminal A

and basal-like breast cancer subtypes respectively, were used to evaluate the suitabil-

ity of FAIRE for the detection of active regulatory elements between breast cancer

subtypes. For both cell lines FAIRE was performed on three replicates followed by

high-throughput sequencing using the Illumina GAII platform. There was a fairly high

degree of concordance (r >= 0.87) between replicates for each cell line (Figure 5.1).

Comparison of the set of regulatory elements identified by ZINBA between MCF7

and SUM102 revealed that ∼60% of the sites identified by FAIRE were unique to each

subtype (Figure 5.2A), which is slightly lower than what has been observed for two cell

lines from independent lineages (see Figure 4.3A). The set of regulatory elements held

in common between the subtypes were highly enriched within promoter regions (+/-

2kb of TSS) (Figure 5.2B). Whereas those that were unique to each subtype largely

localized to introns and intergenic regions of the genome (Figure 5.2B). Together this

suggests that the status of chromatin at promoters is less of an indicator of the degree of
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Figure 5.1: Correlation between replicates for FAIRE performed in the MCF7 (A) and
SUM102 (B) breast cancer cell lines was carried out by counting the number of aligned
sequencing tags falling within 10 kb windows spanning the genome. The values in
each window were scaled by taking the natural logarithm of counts and the pearson
correlation coefficient was calculated. Overall there was very high correlation between
(r >= 0.87) indicating that the data is reproducible.

gene expression, instead it is largely driven through the binding of transcription factors

to regulatory element at sites distal to the promoter.

5.4.2 Regulatory elements unique to each subtype cluster around

both differentially and comparably expressed genes

To determine the extent to which the set of FAIRE sites unique to each subtype co-

localize throughout the genome with the respective set of differentially expressed genes

we constructed a clustering metric. Here the set of FAIRE sites were divided into

groups based on being identified in MCF7-only, SUM102-only or common to both
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Figure 5.2: The set of enriched FAIRE sites in MCF7 and SUM102 cells were identified
using ZINBA. (A) A series of peaks calls were performed using a range of thresholds
(0.05-0.25) in each of the two cell types. Overlap between the set of calls for each cell
type were compared at each threshold. In general the degree of overlap was consistent
across the range of thresholds. (B) The set of peak calls at each threshold for those
found only in MCF7, only in SUM102 and in both cell types were compared to a set
of genomic features. The following of set of genomic features included promoters (+/-
2 kb of TSS), 3′ ends (+/- 2 kb of transcription stop), introns, exons and intergenic
regions. The genomic background is shown in the first panel for reference.

cell-types. Genes were divided into groups based on expression patterns determined

using RNA-seq data, which included up-regulated in MCF7, up-regulated in SUM102

and comparably expressed in both cell-types (genes not expressed in both subtypes

were excluded). Then the distance between each FAIRE site and the closest gene in

each group was recorded. The set of distances for each gene-FAIRE group comparison

was evaluated with respect to an iterative random sampling of all genes to calculate

enrichment. Here the set of FAIRE sites unique to each subtype were found to be

enriched around the set of genes up-regulated in the respective subtype, while the set

of FAIRE sites unique to the opposing cell type were found to be depleted (Figure 5.2,

left and right panel). Surprisingly we also found that the set of FAIRE sites unique to

each subtype were clustered around the set of comparably expressed genes (Figure 5.2,

middle panel). To rule out the possibility that this was the result of using thresholds

that were too conservative in calling genes differentially expression and/or correctly
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identifying FAIRE sites as being present in both cell types we repeated the analysis

using a more liberal set of calls for each. However, even when using a more liberal

set of calls the relationship we originally observed remained (Figure 5.4). We also

hypothesized that this could be the result of the comparably expressed genes being in

close proximity with the set of differentially expressed genes and the resulting FAIRE

sites would appear to be clustered. However, 80% of the FAIRE sites unique to each

subtype were only within 50 kb of a comparably expressed gene and were not nearby a

differentially expressed gene. In addition evaluation of the clustering of genes within the

aforementioned groups throughout the genome were found to be more closely associated

within- than between groups (Figure 5.5)

Examples for each of these gene-FAIRE groups can be found throughout the genome.

The XBP1 gene locus, which is more highly expressed in MCF7 cells, there are a set

of MCF7-only FAIRE sites ∼30 kb upstream of the promoter (Figure 5.6). These sites

coincide with ER and FOXA1 binding, which is consistent with the estrogen respon-

sive nature of this gene [145]. Whereas the FAIRE sites from SUM102 cells, where ER

is absent, were localized to the promoter region. However for the KRT5 and KRT6

genes, which are highly expressed in SUM102 cells, there were SUM102-only FAIRE

sites up to ∼5 kb upstream of the promoters (Figure 5.7). These regions have previ-

ously been reported to serve as the sites of epithelial-specific regulation of these genes,

which includes motifs for the Sp1, AP-2 and AP-1 transcription factors [116]. Finally,

at the SLC22A5 gene, which is comparably expressed in both cell types there are clear

SUM102-only FAIRE sites ∼10 kb upstream of the gene and MCF7-only FAIRE sites

in the introns of the gene that coincide with ER binding (Figure 5.8). At the 5′-end

of the gene there is a modest common FAIRE site, which likely serves as the promoter

element. Together this information suggests that differential expression alone does
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FAIRE sites

FAIRE sites

both subtypes

Figure 5.3: Here we constructed a metric to asses the extent to which the set of FAIRE
sites found in each of the cell types were localized around the set of expressed genes. For
each FAIRE site we calculated the distance to the nearest gene in each of the following
groups, including up-regulated in MCF7, up-regulated in SUM102 and expressed in
both cell types (excluding genes not expressed). For each of the gene groups the set
of distances for the FAIRE sites found only in MCF7 cells, only in SUM102 or found
in both cell types the set of distances were ranked in descending order. Enrichment
was calculated by repeating the calculation using an iterative random resampling of all
genes throughout the genome for each gene group and is represented as the number
of standard deviations from the mean. The set of FAIRE sites unique to each cell
type were enriched around the set of genes up-regulated in the respective cell types
and depleted around those up-regulated in the opposing cell type. For the set of genes
expressed in both cell types the set of FAIRE sites found in both were also highly
enriched, but so were FAIRE sites unique to each cell type.

comprise the full molecular complexity of each cell type. Therefore accurate delin-

eation of the molecular identity of samples will also rely understanding the regulatory

mechanisms driving gene expression.
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Figure 5.4: To determine whether the observed relationship between gene groups and
FAIRE sites at comparably expressed genes was the result of thresholds that were
too conservative the analysis was repeated using more lenient thresholds for differential
expression and FAIRE sites. For the set of genes the threshold for differential expression
was decreased from 1.5 fold to 1 fold (standardized log2 ratios). FAIRE sites called as
unique to each cell type were reassigned to the both group if the site in the opposing
cell type met a more lenient threshold (qvalue < 0.25). Together these liberal threshold
leave only those genes with very similar levels gene expression and those FAIRE sites
distinct to each cell type.

5.4.3 FAIRE is capable of detecting genomic copy number

variations

In addition to detection of active regulatory elements, FAIRE is able to detect large-

scale changes in the genomic content, including amplifications and deletions. This is

due to the fact that although there is enrichment at active regulatory elements, signal is

also generated within the intervening background regions. Where large-scale increases

and decreases in the background signal correspond to amplifications and deletions,

respectively. For example there are several amplifications on chr17 in MCF7 cells (Fig-

ure 5.9A and B). The FAIRE signal (Figure 5.9A) roughly approximates what is seen

from high-throughput sequencing of genomic DNA from the same cells (Figure 5.9B).

In general, the signal from FAIRE closely approximates that which is seen with genomic

DNA genome-wide (Figure 5.10). However, we still retain the ability to detect regula-

tory elements within amplified regions using FAIRE (Figure 5.9C). Therefore FAIRE

66



0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Gene clustering w.r.t. EXP_BOTH

Distance between genes (bp)

P
e

rc
e

n
t 
g

e
n

e
−

to
−

g
e

n
e

 r
a

n
k
e

d
 d

is
ta

n
c
e

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Gene clustering w.r.t. to MCF7_UP and SUM102_UP

Distance between genes (bp)

P
e

rc
e

n
t 
g

e
n

e
−

to
−

g
e

n
e

 r
a

n
k
e

d
 d

is
ta

n
c
e

Figure 5.5: To determine whether clustering of subtype-selective FAIRE sites around
comparably expressed genes was the result of their proximity to differentially expressed
genes we calculated the distances for both within and between genes of each group.
In the left panel the set of genes expressed in both cell types (excluding genes not ex-
pressed) were compared to each other (solid purple line) and to the genes up-regulated
in MCF7 (solid blue line) and SUM102 (solid red line). For reference a similar iterative
resampling of genes was carried out to determine the proximity that would be expected
at random (dashed lines). Genes expressed in both cell types were found to be colocal-
ized beyond what you would expect by chance (solid line is higher than dashed line).
While those up-regulated in either cell type were found to be depleted (dashed line is
higher than solid line). In the right panel, the set of gene up-regulated in either MCF7
(blue) or SUM102 (red) were found to be enriched within each group, but depleted
between the two groups (black line). Together this suggests that genes with similar
patterns of expression between the cell types are colocalized throughout the genome.

is capable of providing an added type of data that establishes the genomic context in

which the set of active regulatory elements operate and serves as an another molecular

characteristic that can be employed in the classification of samples.

5.4.4 FAIRE is capable of detecting subtype-specific active

regulatory elements in clinical tumor samples

Given that FAIRE was able to detected relevant differences in regulatory elements

between the luminal and basal-like subtypes using cell lines, we next performed FAIRE
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Figure 5.6: Shown is a 60 kb region on chromosome 22 containing the XBP1 gene,
which is up-regulated in MCF7 cells. All tracks show the number of extended reads
from the given assay overlapping each base pair. Peaks called by ZINBA are shown
as the top track and colored based on being detected only in MCF7 (blue), only in
SUM102 (red) or detected in both (purple). Genes are indicated as arrows, which
point in the direction of transcription.

on a set of clinical breast tumors. FAIRE was performed on 10 luminal (A and B) and

8 basal-like tumors. The FAIRE-seq data from each of the tumor samples was analyzed

using ZINBA and the union set of peaks was combined for subsequent analyses. First we

identified the set of active regulatory elements that distinguished the luminal and basal-

like subtypes. In general there were more sites identified in common between subtypes

than what was found with the cell lines. However the set of subtype-selective active

regulatory elements did reflect functionally relevant differences, such as enrichment of

ER binding sites in the regulatory elements of luminal tumors (Figure 5.11A). Whereas

for the basal-like active regulatory elements were enriched for the AP-1 motif. We also
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Figure 5.7: Shown is a 60 kb region on chromosome 12 containing the KRT5 and
KRT6A genes, which are up-regulated in SUM02 cells. All tracks show the number
of extended reads from the given assay overlapping each base pair. Peaks called by
ZINBA are shown as the top track and colored based on being detected only in MCF7
(blue), only in SUM102 (red) or detected in both (purple). Genes are indicated as
arrows, which point in the direction of transcription.

found the subtype-selective regulatory elements clustered around the genes up-regulated

in the respective subtypes (Figure 5.11B). Together these results indicate that FAIRE

will be a powerful tool for discovery of the molecular characteristics underlying cancer

and that FAIRE holds promise as a clinical diagnostic tool.

5.4.5 Discovery of transcription factor binding sites within

subtype-selective FAIRE sites

Finally, we determined the set of transcription factor binding motifs that distinguished

breast cancer subtypes using HOMER [63]. We identified the set of motifs enriched

between the luminal and basal-like subtypes. Here we compared the subtype-selective

FAIRE sites from the cell lines and the tumors independently. Many of the motifs that

were identified in a given subtype were consistent between the tumors and cell lines.

The set of motifs that were identified in both are reported in Figure 5.12.
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Figure 5.8: Shown is a 60 kb region on chromosome 5 containing the SLC22A5 gene,
which is expressed in both cell types at a comparable level. All tracks show the number
of extended reads from the given assay overlapping each base pair. Peaks called by
ZINBA are shown as the top track and colored based on being detected only in MCF7
(blue), only in SUM102 (red) or detected in both (purple). Genes are indicated as
arrows, which point in the direction of transcription.

The set of motifs identified in the luminal subtype samples included several factors

known to play a role in the regulation of genes in the luminal cells and are important

for estrogen-dependent regulation of gene expression, including the estrogen responsive

element (ERE), FOXA1, GATA, E2F, NRF1, EGR1, Sp1 (KLF7), ZBTB3 and CTCF

(Figure 5.12A). Several of these motifs serve as the binding sites for transcription factors

included within the gene signature for the luminal subtype [121] and are known to be

active in luminal breast cancer samples [28, 89, 104, 114].

Whereas for the basal-like FAIRE sites the set of motifs included AP-1, NFAT(RHD),

CEBP(bZIP), AARE(HLH), RUNX1(Runt), STAT6, Pax3, Pbx1, HoxA9, and ETS 1/2

. Given that the basal-like is principally defined by its triple negative status there is

little known about the status or activity of transcription factors. For the AP-1 complex
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dimerization between cJun/Fra1 has been identified in the basal-like subtype [5] and

Fra1 expression has been associated with high grade estrogen-receptor negative breast

tumors by immunohistochemistry [100]. Although NFAT has not been directly impli-

cated in basal-like breast cancer it does play a role in angiogenesis and is the target

of the immunosuppressive drug, tacrolimus, being explored as a treatment of breast

cancer [146]. ETS1 was recently identified to regulate alphaB-crystallin, a pro-survival

factor overexpressed in basal-like tumors [17]. This information will hopefully serve to

guide subsequent work to identify the set factors that binds to these sites and even

possibility establish an affirmative marker of the basal-like subtype.

5.5 Discussion

Genome-wide maps of active regulatory elements give us a better understanding of how

the availability of sequence-based regulatory elements are coordinated with the regula-

tion of factors that utilize them across breast cancer subtypes. Here the set of active

regulatory elements discovered between the luminal and basal-like subtypes reflect the

established differences in the presence and activity of regulatory factors. However the

established set of regulatory factors is far from exhaustive and the set of regulatory

motifs encoded within subtype-selective sites offers the ability to identify additional

candidate regulatory factors. These findings also underscore the importance of under-

standing not only which genes are differentially expressed, but what are the regulatory

events governing its expression. This information will be particularly important for rec-

onciling differences in clinical outcomes for seemingly identical tumors based on existing

molecular characteristics. The ability to detect CNVs using FAIRE offers the ability

to capture two sets of molecular data in a single assay, similar to how SNP genotyping

arrays are used to estimate CNVs. Along the same line, given the FAIRE-seq samples

are directly read, as sequencing efficiency continues to increase and cost come down it

71



will soon be possible to affordably obtain sufficient coverage for reliable genome-wide

determination of genotypes too. Detection of CNVs also offers the ability to understand

the genomic context with which genes and regulatory elements operate. These findings

support the utility of FAIRE as a clinical diagnostic for the genome-wide detection of

functional in vivo regulatory elements.
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Figure 5.9: FAIRE-seq (A) and genomic DNA-seq (gDNA-seq, B) data is shown for
all of chromosome 17. The data is represented as the median 500 bp window within
50 kb windows sliding across the chromosomes. The value of each 500 bp window is
calculated as the number of reads per alignable base. Data from all 50 kb windows
throughout the genome were normalized by median centered. (C) Here is an example
from within the large amplified region on chromosome 17. The top track shows the
set of peaks called by ZINBA. For the first MCF7 track the scale of the y-axis is 0-50,
which is normally appropriate for viewing the FAIRE-seq data in these cells, but is
saturated due to a genomic amplification. In the second MCF7 track the y-axis has
been extended to 0-500. It is now possible to see the set of peaks, which are also present
in the SUM102 data.
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Figure 5.10: Here the genome-wide set of 50 kb windows from the FAIRE-seq (x-axis)
and gDNA-seq (y-axis) are plotted. Blue indicates the density of points, with darker
indicating a higher density and white being none.
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Figure 5.11: FAIRE-seq data from luminal and basal-like breast tumors was analyzed
using ZINBA to identify a union set of enriched regions. Those regions that best distin-
guished the two subtypes were then selected based on having the greatest difference in
mean values and the lowest within group variance. Shown in (A) are the 3013 subtype-
selective FAIRE sites (rows) from chromosome 1 that were identified in the 18 tumor
samples (columns). For comparison these sites were compared to estrogen receptor
(ER) binding sites from MCF7 cells and the occurrence of the AP-1 motif. Black bars
indicate an overlap between the subtype-selective FAIRE sites and the feature. In (B),
the set of subtype-selective FAIRE sites for luminal (blue line) and basal-like (red line)
were compared to the set of genes up-regulated in the luminal (left) and basal-like
subtypes.
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Figure 5.12: The set of FAIRE sites that distinguished luminal and basal-like subtypes
were compared using HOMER to identify enrichment of known transcription factor
binding motifs. The set of motifs reported for each subtype were those that were
identified in both the cell lines and tumors. (A) Shows the set of motifs enriched in
the luminal FAIRE sites. (B) Shows the set of motifs enriched in the basal-like FAIRE
sites.

76



Chapter 6

Identification of regulatory

elements in the transformation of

mammary epithelial cells

This work was carried out in collaboration with Kevin Struhl at Harvard Medical

School. All of the tissue culture for the timecourse samples and the generation of the

gene expression data was performed by Heather Hirsch. Isolation and fixation of the

cancer stem cells was performed by Marianne Lindahl Allen. All sequencing of the

FAIRE samples was carried out at the UNC high-throughput sequencing facility.

6.1 Introduction

Carcinogenesis is the result of genetic and epigenetic alterations occurring in somatic

cells leading to the errant activity of oncogenes, tumor suppressors and microRNAs

[57, 33, 47]. These alterations cause reprogramming of the regulatory mechanisms

controlling apoptosis and cell division resulting in the formation of a tumor. The re-

sulting tumors are often composed of a heterogeneous population of cells, characterized



histopathologically by various degrees of differentiation, proliferation, vascularity, in-

flammation and invasiveness. Heterogeneity is attributed to both the emergence of

clonal populations resulting from genetic instability and the presence of cancer stem

cells.

Cancer stem cells are functionally defined based on their ability to seed tumors

in mice, cellular plasticity and expression of markers for normal stem cells. Cancer

stem cells were first implicated as the originating cell type for acute myeloid leukemia

[16]. The discovered cells were capable of initiating tumor formation in nude mice, had

similar cell surface markers to hematopoietic stem cells, had the capacity for self-renewal

and possessed the capacity to differentiate. A population of tumor initiating cells was

also isolated from solid breast tumors based on the presence of the CD44+CD24-/low

cell surface markers [2]. These too had the capacity to form tumors in mice and the

resultant tumors had the same complexity of cellular phenotypes as the original breast

tumor.

The origins and even existence of cancer stem cells within tumors is still a matter of

debate. Do normal stem cells simply undergo oncogenic transformation or can partially

or fully differentiated cells acquire stem-like properties? Given the heterogenous popu-

lation of cells found in tumors what are the molecular characteristics that distinguish

cancer stem cells? Are the diverse types of cells derived from a single clonal cell or

acquired through the cultivation of a tumor microenvironment?

A set of recent studies [66, 70] has provided both a framework to investigate these

types of questions and have provided some promising initial findings into the forma-

tion and treatment of breast cancer. Here the authors stably transfected an inducible

form of the Src oncogene into MCF10A cells, which are an estrogen-receptor negative

spontaneously immortalized mammary epithelial cell line. Upon induction the cells
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undergo an almost immediate and irreversible transformation to a cancerous pheno-

type, which form mammospheres [54, 98] and are capable of seeding tumors in mice.

Using both biochemical and genomics approaches the authors have identified the set of

components responsible for inducing an epigenetic switch, which includes activation of

the components of the inflammation pathway. In addition they identified a alteration

of metabolic pathways by gene expression analysis that are held in common across dif-

ferent forms of cancer. Most importantly they found that after 36 hours of induction

∼10% of the transformed cells expressed the CD44+CD24-/low cell surface markers of

cancer stem cells. As has been reported previously these were in fact the cells respon-

sible for seeding tumors in mice [2]. They also found them to be relatively resistant to

the chemotherapeutic agents and served as the founder cells for cancer recurrence [66].

Ultimately they found that these cells could be selectively targeted and destroyed in a

mouse model using a drug called metformin, which has long been used as a treatment

of diabetes. The drug effectively decreases systemic glucose levels, which in this case

results in the destruction of cancer stem cells when used in combination with a reduced

dose of chemotherapy.

Here we have performed FAIRE throughout a timecourse of Src induction in MCF10A

cells. We also performed FAIRE in the cancer stem cells isolated by flow-cytometry

based at the final time point. The goal of this research was to identify and charac-

terize the set of regulatory elements which varied throughout the transformation. We

also sought to characterize the set of regulatory elements that distinguished the cancer

stem cells. Initially it was thought that the MCF10A cells were a fairly homogeneous

population of cells and the creation of the cancer stem cells were affected through an

independent epigenetic pathway in a portion of the cell population. However, as will be

described below, we found that the cancer stem cell population was in fact a separate

cell population to begin with and there is evidence that the creation of the cancer stem
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cell population was achieved through the differential activation of CD44 in these cells

(Figure 6.1).

Figure 6.1: The original model proposed by the authors viewed the MCF10A cells as
a homogeneous mix of cells, whereby a sub-population is reprogrammed to become
cancer stem cells and form mammospheres. Whereas the data presented here supports
at least two cell populations are present in the MCF10A cells, which undergo differential
activation of CD44 and acquisition of the properties of cancer stem cells.

6.2 Materials and Methods

6.2.1 Cell lines

MCF10A cells are mammary epithelial cells derived from fibrocystic breast tissue that

was obtained from a mastectomy of a 36-y-old woman with no family history of breast

cancer and no evidence of disease [154]. Genetic analysis did not reveal any amplifica-

tion of HER2/neu oncogene or mutations in H-Ras oncogenes, and these cells do not
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express estrogen receptor (ER). The experiments here use a derivative of MCF10A con-

taining an integrated fusion of the v-Src oncoprotein with the ligand-binding domain

of ER.

MCF10A were cultured in a 5% CO2 humidified incubator at 37oC in growth media

(DMEM/F12 supplemented with 5% horse serum, 20 ng/ml epidermal growth factor

(EGF), 10 µg/ml insulin, 0.5 µg/ml hydrocortisone, 100 ng/ml cholera toxin, and an-

tibiotics) [36]. MCF10A were stably transfected with ER-Src using a ”virus incubation

cocktail”, which is comprised of growth media and a viral titer capably of delivering a

MOI of 3 to 5. Following 5 hours of infection cells are supplemented with additional

growth media and the complete media is replaced following 18 hours of infection. Af-

ter 36 to 48 hours postinfection cells are selected using a drug marker and passaged

once to recover from drug treatment. The Src kinase was induced with 1 ?mol/L

4OH-tamoxifen dissolved (Sigma) in ethanol. Morphologic changes, phenotypic trans-

formation, and foci formation occurred 24 to 36 h after tamoxifen addition, and were

monitored by phase-contrast microscopy.

Cancer stem cells were isolated by flow cytometric cell sorting of transformed cell

populations using single-cell suspensions. Cells were stained with CD44 antibody

(FITC conjugated; 555478, BD Biosciences) and with CD24 antibody (phycoerythrin

conjugated; 555428, BD Biosciences). Cancer stem cells (CD44high/CD24low) were

isolated from no-stemtransformed cells (CD44low/CD24high).

6.2.2 Expression analysis

RNA was extracted from MCF10A cells using standard Trizol purification through

RNeasy columns (RNeasy Clean- Up Kit, Qiagen). Biotinylated cRNA were prepared

according to [52] and hybridized to Affymetrix Human U133 2.0 A expression arrays for

16 to 18 hours at 45oC, washed on fluidics station and scanned using Affymetrix Gene
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Chip Scanner 3000. ComBat [75] was used to remove non-biological experimental vari-

ation or batch effects between batches of microarray experiments. All gene expression

data was normalized and summarized using the RMA algorithm [73] with an updated

Entrez gene probeset definition. The set of differentially expressed genes were identified

by fitting a linear model to the expression data between the 0 hour and each of the time

points. The set of residual values were recorded for comparison, which represents the

extent to which the expression between time points deviates from equal. The residuals

were standardized and the set of differentially expressed genes were identified as those

with a score >2.5 for any time point, similar to [149].

6.2.3 Analysis of sequencing data

The raw reads for each FAIRE-seq sample (3 replicates at each time point) were aligned

to the UCSC hg18 build of the human genome [45] using bowtie [90]. Each aligned

position was allowed to occur up to four times throughout the genome, where one

was selected at random for each those positions that were not unique. The set of

enriched regions were then identified by ZINBA [129], using 300 bp windows with 75

bp offsets. The background and enriched components were modeled using G/C content

and an interaction term between mappability and local background estimate. No peak

refinement was included in this analysis. Overlap between datasets and with genomic

features were carried using a suite of tools called BEDTools [126].

6.2.4 Identify differentially activated FAIRE sites

The union set of sites identified as enriched throughout the timecourse were combined

and analyzed for those that there either gained or lost during the experiment. The

occurrence of each active regulatory element was evaluated to determine the extent to

which it differed with respect to the other time points, either present at one timepoint
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and absent at the others or vice versa. The count of reads aligning to each region

identified in the union set was recorded for each timepoint and normalized by the total

number sequencing read for that sample. Here the normalized values for each timepoint

were compared to the mean value of the remaining timepoints and divided by the

standard deviation of the values for the remaining timepoints. All those regulatory

elements with a difference score >2.5 were identified as being changed throughout the

timecourse.

6.2.5 Motif discovery

The set of sequences that correspond to the active regulatory elements that changed

throughout the timecourse were analyzed to see whether any motifs were enriched.

Enriched motifs were identified using MEME [6] to compare the sequence at active

regulatory elements to a set of background sequences, which were defined as the 5 kb

of sequence flanking each active regulatory element. The set of derived motifs were

compared to several databases of known motifs using TOMTOM [56]. Finally, the set

of active regulatory elements that did not change were scanned for the presence of any

of the discovered motifs using FIMO [53].

6.2.6 FAIRE sites enrichment around differentially expressed

genes

For each gene identified as being differentially expressed throughout the timecourse the

five nearest active regulatory elements were polled to identify their group membership,

which was either identified only in the cancer stem cells, only in the timecourse or iden-

tified in both datasets. To determine what would be expected by chance the position

of the active regulatory elements were iteratively shuffled throughout the genome and

the analysis was repeated. Enrichment was calculated as the log ratio of the average
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observed numbers of a given class versus background estimate.

6.2.7 Identification of large-scale differences in genomic con-

tent

Copy number variation was estimated using large sliding windows (50 kb) with 10 kb

steps across the genome. The value of each 50 kb window was calculated as the median

value for all 500 bp windows falling within the larger window. The value of each 500

bp window was the number of reads per mappable base within the window, excluding

windows where <25% of the bases were mappable. The set of amplified and deleted

regions were determined using cnv-seq [170], where the set of 50 kb windows from the

timecourse were compared to those from the cancer stem cells directly.

6.3 Results

6.3.1 Relatively few changes in active regulatory elements de-

tected throughout the transformation

The set of active regulatory elements identified by FAIRE throughout the transfor-

mation of the MCF10A cells revealed only a minority (∼5%) were either gained or

lost (Figure 6.2A), which is consistent with the relatively few number of differentially

expressed genes (∼1500 genes, Figure 6.3A). Although there were fluctuations in am-

plitude of FAIRE signals at many of the sites, particularly at 4 hours post-induction,

which suggests changes in the activity of regulatory factors at these sites. For the set

of FAIRE sites that did change throughout the transformation the majority of changes

involved the gain of new regulatory elements, especially again at the 4 hour time point

(Figure 6.2B).
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We performed motif discovery using the minority of sites that were either gained

or lost, which detected among others the AP-1, Oct4 and NFAT motifs (Figure 6.2C).

The AP-1 is a heterodimeric complex composed of Jun, Fos and Maf protein families,

which can form both homo- and heterodimers and depending on the cellular context

can either function as a tumor suppressor or promote cellular proliferation [39]. AP-1

is activated in response to a variety of stimuli, including cytokines, growth factors and

viral infection. Oct4 is a homeodomain transcription factor encoded by the POU5F1

gene and is involved in the self-renewal of embryonic stem cells [115]. While NFAT is

a family of transcription factors conatining a REL homology domain (RHD) that are

primarily expressed in the immune system [30], some of which are activated by cal-

cium signaling through calmodulin activation of the phosphatase calcineurin. However

these motifs were not restricted to the set of FAIRE sites that changed throughout the

timecourse and were found with FAIRE sites throughout the genome (Figure 6.2D).

Together these results are consistent with those found by the Stuhl lab indicating that

the activation of the inflammation pathway and the presence of factors involved in stem

cell function.

6.3.2 Cancer stem cells have a distinct set of open chromatin

sites

FAIRE performed in the isolated cancer stem cells revealed a distinct set of regulatory

elements than those found from FAIRE performed in the timecourse samples (Fig-

ure 6.4A). Although this degree of divergence is less than what has been seen for two

cell types from separate lineages. Given that the FAIRE data from 36 hour time point

contained these samples it would appear that we were unable to detect these regulatory

elements when they are present in only ∼10% of the cells in a population. Next we

assessed the extent to which the set of genes differentially expressed throughout the
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Figure 6.2: FAIRE was performed on MCF10A cells after 0, 4, 12 and 36 hours of
induction. (A) ZINBA identified ∼100K FAIRE sites across all of the timepoints. Only
∼5% of these sites were found to be gained or lost throughout the timecourse. (B) Here
the set of FAIRE sites gained/lost (rows) in the timecourse (time points, columns) were
clustered using a self organizing map. The largest number of changes in FAIRE sites
occurred at 4 and 36 hours. In general relatively few sites were lost. (C) Motif discovery
for the set of FAIRE sites that changed was performed using MEME (left column) and
were matched to known motifs using TOMTOM (right column). (D) The set of motifs
along with CTCF, NFkB and Stat3 were mapped to the 100k FAIRE sites identified
throughout the timecourse using FIMO. Approximately 70k of the FAIRE sites (rows)
contained at least one motif (columns). The set of FAIRE sites were clustered, where
yellow indicates the presence of the motif and blue the absence.

timecourse were enriched for FAIRE sites found only in the cancer stem cells, only in

the timecourse or found in both samples. Here we found that all of the peaks from

cancer stem cells were enriched around the differentially expressed genes, whereas the
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Figure 6.3: Gene expression was measured using Affymetrix arrays at 0, 1, 2, 4, 8, 12,
16, 24 and 36 hours of induction. The expression data was normalized using RMA and
differentially expressed genes were identified as those that deviated from a linear model.
(A) The 4, 12 and 36 hour expression data was compared to 0 hour values. Genes that
were either up- or down-regulated relative to the 0 hour data are indicated as blue
or green points, respectively. Red points indicate no difference in expression. (B)
The set of differentially genes were analyzed to identify pathways or modules effected
throughout the timecourse. The set of gene groups that were collectively up- (red) or
down-regulated (green) throughout the timecourse are displayed in the columns with
the time points indicated on the rows.

FAIRE sites only present in the timecourse were depleted around the differentially ex-

pressed genes (Figure 6.4B). An example of this can be seen at the IL6 gene, which was

shown to be essential for the formation of mammospheres [70], there is a prominent

peak from the cancer stem cells (Figure 6.4C).
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Figure 6.4: Following the transformation a sub-population (∼10%) of cells are created
with characteristics of cancer stem cells. (A) Comparison of the set of FAIRE sites
from the cancer stem cells with those from the timecourse revealed approximately half
of the sites are unique to the cancer stem cells. (B) For each differentially gene the
class of five nearest FAIRE sites were polled. the classes included FAIRE sites found
only in cancer stem cell, only in the timecourse or those found in both. Enrichment was
calculated by comparing the observed relationship to what would be expect by chance.
(C) At the IL6 locus, which is differentially expressed and essential for he formation of
mammospheres, there is a distinct FAIRE site in cancer stem cells (red box).

6.3.3 Cancer stem cells are derived from a independent cell

population

Next we performed an analysis to identify any large-scale differences in genomic content

between the FAIRE samples from the timecourse and cancer stem cells. We observed

several regions with considerable variation in genomic content between the two cell
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types that corresponded to functionally relevant differences between the two cell types.

First was an amplification of the HIF1A gene on chr14 in the cancer stem cells, which

appeared to be diploid in the timecourse samples (Figure 6.5A). HIF1A is in fact highly

expressed in the cancer stem cells and given that these cells typically occupy the internal

portion of the mammosphere, which is relatively hypoxic, this would be advantageous.

Whereas a deletion was detected in the cancer stem cells on chr10 at the PTEN locus

(Figure 6.5B), which is a known tumor suppressor and its loss would certainly confer

a more carcinogenic state. Another region deleted in the cancer stem cells occurred

on chr17 and encompassed STAT5B, STAT5A and STAT3 (Figure 6.5C). The STAT

genes are transcriptional regulators that participate in a number of cellular functions,

typically in response to cytokine and growth factor stimulation. They are involved in

cell growth and apoptosis and are activated in breast cancer. On chr8 we detected a

region in the cancer stem cells that is either a heterozygous deletion or heterochromatic

region encompassing several tumor supressor genes (Figure 6.5D).

Although unlikely all of these changes could have resulted from alterations in the

genomic content of the cancer stem cells following transformation. However, we also

identified a deletion on chr9 in the timecourse samples that was not deleted in the

cancer stem cells (Figure 6.6). This occurred at the CDKN2A gene locus, which is a

cell cycle inhibitor and is frequently deleted cancers. In fact this locus is reported to be a

homozygous deletion in MCF10A cells [78], which is the result of a set of translocations

between chromosomes 3, 5 and 9 [106]. Given that it would not be possible for the

cancer stem cells to gain this locus back during the transformation, the only way this

observation is possible is if the cancer stem cells were present as a separate population

of cells prior to transformation.

89



chr14:

HIF1A

20 kb

61225000 61235000 61245000 61255000 61265000 61275000 61285000 61295000

75

0 
75

0 
75

0 
75

0 
75

0 

MCF10A SRC-ER 0HR FAIRE-seq

MCF10A SRC-ER 4HR FAIRE-seq

MCF10A SRC-ER 12HR FAIRE-seq

MCF10A SRC-ER 36HR FAIRE-seq

MCF10A SRC-ER Cancer Stem Cell FAIRE-seq

A B

C

chr10:

PTEN

C10orf59

LIPJ LIPF
LIPK

LIPN

89650000 89750000 89850000 89950000 90050000 90150000 90250000 90350000 90450000

75

0 

75

0 

75

0 
75

0 

75

0 

MCF10A SRC-ER 0HR FAIRE-seq

MCF10A SRC-ER 4HR FAIRE-seq

MCF10A SRC-ER 12HR FAIRE-seq

MCF10A SRC-ER 36HR FAIRE-seq

MCF10A SRC-ER Cancer Stem Cell FAIRE-seq

D
chr17: 37450000 37550000 37650000 37750000 37850000 37950000

DNAJC7 RAB5C
STAT5B

STAT5A

STAT3

PTRF

ATP6V0A1

75

0 
75

0 
75

0 
75

0 
75

0 

MCF10A SRC-ER 0HR FAIRE-seq

MCF10A SRC-ER 4HR FAIRE-seq

MCF10A SRC-ER 12HR FAIRE-seq

MCF10A SRC-ER 36HR FAIRE-seq

MCF10A SRC-ER Cancer Stem Cell FAIRE-seq

200 kb

200 kb

Scale
chr8:

5 Mbp

48000000 50000000 52000000 54000000 56000000 58000000 60000000 62000000 64000000

MCF10A SRC-ER 0HR FAIRE-seq

BC041354
AK097475

AX746665
KIAA0146
KIAA0146
KIAA0146
KIAA0146

KIAA0146
KIAA0146
KIAA0146
AK095778

CEBPD
PRKDC

PRKDC

MCM4

MCM4
MCM4

UBE2V2

EFCAB1

EFCAB1
EFCAB1

SNAI2
C8orf22

BC042029

SNTG1
SNTG1
SNTG1

PXDNL
PXDNL

PCMTD1
PCMTD1
PCMTD1

AX747167

ST18

ST18
ST18

KIAA0535
KIAA0535

FAM150A

RB1CC1

RB1CC1

NPBWR1
OPRK1
OPRK1
OPRK1

AK056897
ATP6V1H

ATP6V1H
ATP6V1H
ATP6V1H
ATP6V1H

ATP6V1H

RGS20

RGS20
RGS20
RGS20
RGS20
RGS20
RGS20
TCEA1

TCEA1

BC039537
LYPLA1

MRPL15
SOX17

RP1
RP1

RP1

XKR4

TMEM68
TMEM68

TMEM68
TGS1

HCA137
LYN
LYN
RPS20
RPS20

SNORD54

MOS

PLAG1
PLAG1
PLAG1
PLAG1

CHCHD7
SDR16C5

PENK
PENK

PENK
IMPAD1

CR749704
DKFZp434F122

BC048118

AX746596
FAM110B

FAM110B
BC032030

UBXN2B
UBXN2B
CYP7A1

SDCBP

SDCBP
SDCBP
SDCBP
SDCBP
SDCBP
NSMAF
NSMAF

AX747379

TOX

CR617952
CR603183

CA8
CA8
CA8

AK124262
RAB2A

CHD7
KIAA1416

RLBP1L1
RLBP1L1
RLBP1L1

RLBP1L1

ASPH

CR611604

ASPH
ASPH
ASPH

ASPH
ASPH
ASPH
ASPH
ASPH

BC047540

NKAIN3
BC045727

GGH
TTPA

YTHDF3
DKFZp451J085
DKFZp451J085
DKFZp451J085

AK093370
BC037345

75 _

0 
75 _

0 
75 _

0 
75 _

0 
75 _

0 

MCF10A SRC-ER 4HR FAIRE-seq

MCF10A SRC-ER 12HR FAIRE-seq

MCF10A SRC-ER 36HR FAIRE-seq

MCF10A SRC-ER Cancer Stem Cell FAIRE-seq

Figure 6.5: Amplified and deleted regions were identified using the count from FAIRE
data in large (50 kb) sliding windows that were analyzed using cnv-seq [170]. Several
amplifications and deletions were identified between the cancer stem and non-stem
cells. (A) An amplified region in cancer stem cells on chr14 contained the HIF1A
gene, which is overexpresed in the cancer stem cells. (B) A deletion in cancer stem
cells on chr10 that included PTEN, a tumor suppressor. (C) Deletion of STAT3A,
STAT5A and STAT5B genes on chr17 in cancer stem cells. (D) A region on chr8 with
approximately half the FAIRE signal that surrounding regions contains several tumor
suppressor genes.

6.3.4 Calcium-dependent signaling pathway drives higher ex-

pression of CD44 in cancer stem cells

CD44 is a hyaluronic acid receptor that is expressed in a variety of cell types and

has been shown to play a role in cell migration, inflammation, immune response and

even mammary gland development [62]. In mammary gland development it is first

expressed during puberty and subsequently follow estrous cycles where it is expressed

in the myoepithelium and to a lesser extent in luminal epithelial cells. During lactation

CD44 is down-regulated, but is reactivated upon involution. Several signal transduction
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events have been identified that lead to the induction of CD44 for a variety of cell types

[48, 109], including via calmodulin/Ca2+ in PMA-stimulated T lymphoma cells [147]

and by Egr1 in murine B cells [105]. Both the Egr1 and AP-1 motifs are present

within the CD44 promoter and it has been shown that AP-1 acts through activation of

CAMK2 whereas Egr1 is through JNK [109].

Prior to transformation the cancer stem cell population is not detectable using CD44

as a cell surface marker. Given that the cancer stem cells appear to be an independent

population of cells present prior to transformation we wanted determine whether there

was evidence for a distinct regulatory pathway enhancing expression levels of CD44

expression in the cancer stem cell population.

Several FAIRE sites were identified within 150 kb of the CD44, which exhibited

distinct occurrences between cancer stem and non-stem cells (Figure 6.7). Examina-

tion of the Egr1 and JNK gene loci contained FAIRE sites predominantly from cancer

non-stem cells (Figure 6.8). Whereas the calmodulin and CAMK2 gene loci, which

are amplified in the cancer stem cells, contained several prominent FAIRE sites (Fig-

ure 6.9). Although some of the FAIRE sites were unique to cancer stem cells, the

enhanced activation is likely the result of the amplification of these genes. Therefore,

it appears that the higher level of expression of CD44 in cancer stem cells is likely due

to amplification of components the calcium-dependent signaling pathway.

6.3.5 Alterations in mitochondria DNA content during the

timecourse

In addition to isolating DNA from the nuclear genome, FAIRE is also capable of iso-

lating DNA from the mitochondria. The mitochondrial genome is a short (16 kb)

circular genome that exists at high copy numbers within each organelle. Regulation

of the genes on the mitochondrial genome are controlled in part by nuclear encoded
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transcription factors, but replication is carried out independent of mitosis. The mito-

chondrial genome is also not packaged into chromatin and is therefore highly enriched

by FAIRE. Using the set of differentially expressed genes from the timecourse we looked

to see whether they were enriched with respect to a specific cellular or biological func-

tion (Figure 6.3B) [142]. Several of the groups identified reflected what had been found

in the initial studies [67, 70], including energy metabolism and inflammation response.

We observed several groups related to mitochondrial function. Analysis of the FAIRE

data revealed a sharp increase in the content of the mitochondrial genome at 4 hours

post-induction, followed by a return at 12 hours to the levels seen for the 0 hour sam-

ple (Figure 6.10). The increase corresponds to the entire mitochondrial genome and

not enrichment of a specific locus. We also observed that the mitochondrial DNA was

relatively depleted in the cancer stem cell population (Figure 6.10).

These findings are potentially significant for a few reasons, first production of all

the cellular components needed for uncontrolled cell division requires activation of

anaerobic glycolysis (the Warburg effect) [20, 102]. Second the authors of the initial

studies identified metformin as a drug that selectively targets the cancer stem cells for

destruction [67, 71]. Metformin, which is used in the treatment of diabetes, depletes

systemic glucose by decreasing gluconeogenesis in the liver, reducing glucose uptake in

the intestine and sequestering glucose in muscles. Therefore, it likely targets the cancer

stem cells by cutting off their food supply. Third, the formation of mammospheres,

which cancer stem cells are the nucleus, likely creates a relatively oxygen-depleted

environment, which is also reflected in the amplification and overexpression of HIF1A.

The reduced mitochondrial genome content of the cancer stem cells is consistent with an

increased glycolytic metabolism and greater susceptibility to the effects of metformin.
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6.4 Discussion

Here we have provided the first genome-wide assessment of the genomic regulatory

elements associated with the formation of breast cancer. We found that there were

relatively few regulatory elements actually gained or lost. Using the set of FAIRE

sites that changed were able to derived a set of transcription factor binding motifs.

Interestingly these motifs did not simply occur in the set of sites that changed but

were found at sites genome-wide. Some of these motifs serve as the binding sites for

families, such as AP-1, which form both homo- and heterodimeric complexes to direct a

wide variety of cellular functions. In the case of AP-1 depending of the composition of

the heterodimer and the cellular environment can act to promote proliferation or serve

as a tumor suppressor. Therefore, the events leading to the formation of cancer may

not be result of widespread remodeling of chromatin, but may instead be through the

aberrant activation of members of a regulatory families that use the existing regulatory

information to induce transformation.

We have also identified the genome-wide set of active regulatory elements from can-

cer stem cells isolated from transformed MCF10A cells. Understanding the molecular

events leading to the formation of these cells ultimately helps us understand how some

(if not all) breast cancers are formed. Given the stark clinical outcomes attributed

to the presence of cancer stem cells, including resistance to chemotherapeutic agents,

metastasis and recurrence, it will also be important for effective treatment.However,

several questions still remain regarding how cancer stem cells are defined and the exact

properties they possess. Such as, aside from expression of the CD44 marker are there

other properties of these cells that warrant the label of cancer stem cells. It has been

hypothesized that the CD44 marker actually confers a general stickiness that is more

amenable to adhering to the mammary fat pad in mice and would be a preferable sub-

strate for the formation of mammospheres. Results from this work offer some molecular
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characteristics that could be used in to explore the properties of tumors formed using

cancer stem cells in mice. For example, following excision of the xenografted tumor in

mice what is the genomic profile of the newly created cancer non-stem cells that make

up the bulk of the tumor. Do these cells now have the deleted region on chr9? If so,

is there evidence that they have differentiated into a new cell type other than cancer

stem cell that seeded the tumor? Conversely, if CD44 were overexpressed in the 90%

of cancer non-stem cells, would these now have the capacity to seed tumors in mice?

Even if simply having the CD44 marker is shown to be the qualifying trait for tumor

formation, this would be useful for determining candidate cell types of origin for breast

cancer. Are there other compensatory functions these cells must also posses, such being

able to operate in relatively hypoxic conditions?

Although the findings from this work were certainly unexpected and more questions

remain unanswered than answered, it does highlight the utility of FAIRE as a tool for

the investigation of breast cancer origins.
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Figure 6.6: Amplified and deleted regions were identified using the count from FAIRE
data in large (50 kb) sliding windows that were analyzed using cnv-seq [170]. A deletion
on chr9 was identified for the timecourse samples (A), but was present in the cancer
stem cells (B). (C) The region corresponds to the CDKN2A (p16) gene, which is a cell
cycle inhibitor, that is reported to be a homozygous deletion in MCF10A cells [78].
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Figure 6.7: A 150 kb genomic locus containing the transcription start sites for the CD44
gene and it upstream region. The blue boxes indicate peaks in the cancer stem cells
that were not present at the 0 hour time point. While the red boxes indicate peaks in
the timecourse that are not present in the cancer stem cells, regardless of the presence
at 0 hour.
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Figure 6.8: Genomic loci containing the (A) Egr1 and (B) JNK genes. The genes
are represented as arrows pointing in the direction of transcription. The genomic loci
containing these genes have FAIRE sites from the timecourse samples, but not the
cancer stem cells.
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Figure 6.9: Genomic loci containing the the (A) calmodulin and (B) CAMK2G genes.
Genes are represented as arrows pointing in the direction of transcription. The genomic
DNA for cancer stem cells is amplified at these loci.
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Figure 6.10: Mitochondrial genome is not packaged into chromatin and is therefore
enriched by FAIRE. Depth of coverage of the mitochondrial genome is indicated for
each of the time points, with a notable increase at 4 hours and depletion for the cancer
stem cells.
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Chapter 7

Discussions and perspectives

We have presented evidence that FAIRE is capable of isolating nucleosome-depleted

DNA, a hallmark of active regulatory elements, from human chromatin. Genome-wide

maps of active regulatory elements will allow a better understanding of how the avail-

ability of sequence-based regulatory elements are coordinated with the regulation of

factors that utilize them in a given cellular environment. Understanding this relation-

ship will be critical to constructing models of gene regulation in all eukaryotic cells.

Here we have begun to functionally annotate the catalogue of regulatory elements in

human breast cancer.

Several aspects of FAIRE make it a powerful genome-wide approach for detecting

functional in vivo regulatory elements in breast cancer. FAIRE is amenable to clinical

applications because it is relatively easy to perform and works with a limited amount

of tissue samples (∼20 mg). It requires little treatment of cells prior to the addition of

formaldehyde and involves only a few reagents: formaldehyde, phenol, chloroform, and

ethanol. The successful application of FAIRE on a limited numbers of cells expands its

utility beyond what other DNA accessibility assays can accomplish, such as perform-

ing genome-wide assays of chromatin structure on cells grown in small-well plates for

screening the effects of small molecules on chromatin. Identification of the genome-wide



set of active regulatory elements provides a means for understanding the mechanisms

driving expression of genes in a given subtype, which will aid the refinement of subtype

classification and evaluation of clinical outcomes. Finally, identification of the set of

regulatory motifs that differentiate subtypes provides a functional basis for the selection

of relevant transcription factor candidates.

Given the capacity of FAIRE for detection of regulatory elements in breast tumors,

future studies will serve to expand our understanding of the clinical heterogeneity of

breast cancer. In particular an expanded set of samples will offer the opportunity to

identify the set of regulatory elements predictive of clinical outcomes. It will also be

useful for determining a minimal set of diagnostic regulatory elements that could be

used for clinical applications. One of the major challenges for transitioning techniques

from the laboratory to the clinical is establishing standardized methodologies that

minimize variability and offer a reliable diagnostic. Given the relatively simple nature

of the FAIRE procedure it can readily be standardized using robotics to achieve a high

degree of precision and reproducibly. Another major challenge for the study of breast

cancer will be dissecting the cellular identity and molecular distinctions amongst the

heterogeneous set of cells that comprise the tumor. Given that FAIRE is capable of

working with limited cell numbers it would also be possible to generate the profiles of

active regulatory elements for subsets of tumor cells.

However a more general challenge for the analysis and interpretation of FAIRE data

from human cells will be to develop a more comprehensive understanding of the function

of these regulatory elements. For instance the the vast majority of sites identified were

far from any annotated gene. For the majority of these distal sites, it is not yet possible

to ascribe a function, identify what factors might be bound or determine the set of

target genes. One resource to address this challenge is the emerging set of consortium-

based datasets, such as those derived from the ENCODE project, which will provide
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a foundation for understanding the relationships among these factors, and be critical

to constructing realistic models of gene regulation. Additionally, since FAIRE recovers

the complete DNA fragments at regulatory elements it is possible to use this material

directly in functional assays, such as with reporter vectors, which can interrogate the

regulatory capacity of these fragments.

Altogether FAIRE is a promising new technique that offers tremendous potential

for better understanding basic chromatin biology and the study of human disease.
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Appendix A: FAIRE Protocol

FAIRE Cell Culture Protocol

1. Crosslinking

(a) If cells are grown in suspension remove an aliquot to be used as an unfixed
reference and place on ice. Otherwise, the reference sample can be obtained
by removing an aliquot following sonication, reversing the crosslinks, and
purifying the DNA.

(b) Add 37% formaldehyde directly to media to a final concentration of 1%.

(c) Incubate at 25oC for 5 min with shaking 80 rpm.

(d) Add 2.5 M glycine to a final concentration of 125 mM, incubate 5 min at
RT with shaking.

(e) Spin at 700 x g for 5 min at 4oC.

(f) Wash twice with ice cold 1xPBS, spin at 1000 rpm for 5 min at 4oC.

(g) Cells can be snap frozen at this point and stored at -80oC.

2. Cell lysis (if frozen thaw cells on ice)

(a) Resuspend cells in 1 ml of lysis buffer per 107 (or 0.4g) cells.

(b) Add 1 ml 0.5 mm glass beads to rubber sealed 2 ml screw topped tube. Add
1 ml of cells in lysis buffer.

(c) Lyse cells in the mini-beadbeater-8 for five 1 minute sessions, ice cells for
two minutes between each session.

(d) Recover the lysate by puncturing the bottom of 2 ml tube with 25G syringe
and drain into 15 ml tube on ice. Filtered air can be used to force liquid
through hole.

(e) Add an additional 500 µl of lysis buffer to flush remaining sample.

(f) Transfer 300 µl aliquots to 1.5 ml tubes and sonicate in Bioruptor for 15 min-
utes on HIGH using 30 second pulses and 30 seconds of rest, keep waterbath
at a constant 4oC.
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(g) Spin the extract at 15,000 x g for 5 minutes at 4oC to clear cellular debris.
Transfer the supernatant to a new tube.

(h) Remove an aliquot equivalent to 500 ng genomic DNA and check fragment
size on 1% agarose gel.

3. Phenol/Chloroform

(a) Add an equal volume of phenol/chloroform, vortex, and spin at 12,000 x g
for 5 minutes, transfer aqueous phase to a new tube. NOTE: If aqueous
phase is small add 500 µl of TE to interphase, vortex, spin down and recover
aqueous phase.

(b) Add an equal volume phenol/chloroform to aqueous phase in fresh tube,
vortex, spin down, and transfer aqueous phase to a fresh tube.

(c) Add an equal volume of chloroform-isoamyl alcohol (24:1), vortex, and spin
12,000 x g for 5 min.

(d) Add 1/10th volume of 3 M Sodium Acetate (pH 5.2) and 1 µl of 20 mg/ml
glycogen, mix by inverting, and add 2X volume of 95% ethanol. Incubate at
-20oC 1 hour to overnight.

(e) Pellet precipitated DNA at 15,000 x g for 30 min at 4oC and remove super-
natant. Wash pellet with 500 µl 70% ethanol, spin at 15,000 x g for 5 min
at room temp (25oC). Remove supernatant and dry pellet in speed-vac.

(f) Resuspend pellet in 50 µl 10 mM Tris-HCl (pH 7.4).

(g) Add 1 µl of 10 mg/ml RNase A and incubate at 37oC for 1 hour.

(h) Cleanup sample using spin column (must recover 75 to 200 bp DNA) or
additional phenol/chloroform extraction and ethanol precipitation.

Lysis buffer
2% Triton X-100
1% SDS
100 mM NaCl
10 mM Tris-Cl ph 8.0
1 mM EDTA

Phenol/Chloroform- Sigma #P3803 phenol, chloroform, and isoamyl alcohol
25:24:1 saturated with 10mM Tris, pH 8.0, 1 mM EDTA

Checking fragment sizes after sonication
NOTE: Limit vortexing to avoid additional shearing

1. Add 1 µl of 10 mg/ml of RNase A, flick tube to mix, and incubate at 37oC for 1
hour.

2. Incubate at 65oC for 4 hours to overnight.
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3. Add 1 µl of 10 mg/ml of Proteinase K, flick tube to mix, and incubate at 37oC
for 1 hour.

4. Add 10 mM Tris-HCl (pH7.4) to a final volume of 250 µl. Add an equal volume
phenol/chloroform, mix, and spin at 12,000 x g 5 minutes, transfer aqueous
phase to a new tube.

5. Add an equal chloroform-isoamyl alcohol (24:1), mix, spin at 12,000 x g for 5
minutes, and transfer aqueous phase to a new tube.

6. Add 1/10th volume of 3M Sodium Acetate (pH 5.2) and 1 µl of 20 mg/ml
glycogen, mix by inverting, and add 2X volume of 95% ethanol, incubate at
-20oC for 1 hour

7. Pellet DNA at 15,000 x g for 10 minutes at 4oC, wash with 500 µl 70% ethanol,
and spin at 15,000 x g for 5 min at room temp (25oC)

8. Dry pellet and resuspend in 10 µl 10 mM Tris-HCl (pH 7.4) and run on a 1%
agarose gel.

NOTE: An ideal distribution is a smear from 1000 bp to 100 bp with an average size
of 500 bp
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Alternative Cell Lysis

NOTE: If bead-beater is not available, this procedure works for cells, not yeast

1. Add 10 ml of Buffer L1 per 108 cells and rock at 4oC for 10 min.

2. Spin cells at 1300 x g for 5 min at 4oC and remove supernatant.

3. Resuspend pellet in 10 ml of Buffer L2 per 108 cells and rock at RT for 10 min.

4. Spin cells at 1300 x g for 5 min at 4oC and remove supernatant.

5. Resuspend pellet in 3.5 ml of Buffer L3 per 108 cells. Proceed with sonication

Buffer L1- per 100 ml
Volume Reagent
5 ml 1M Hepes KOH, pH 7.5
2.8 ml 5M NaCl
0.2 ml 0.5 M EDTA (pH 8.0)
10 ml 100% Glycerol
5 ml 100% NP-40
0.25 ml 100% Triton X-100
76.7 ml dH20

Buffer L2- per 100 ml
Volume Reagent
4 ml 5 M NaCl
0.2 ml 0.5 M EDTA (pH 8.0)
0.1 ml 0.5 M EGTA (pH 8.0)
1 ml 1 M Tris (pH 8.0)
94.7 ml dH20

Buffer L3- per 100 ml
Volume Reagent
0.2 ml 0.5 M EDTA (pH 8.0)
0.1 ml 0.5 M EGTA (pH 8.0)
1 ml 1 M Tris (pH 8.0)
2 ml 5 M NaCl
1 ml 10% Na-Deoxycholate
500 mg N-lauroyl sarcosine
1 ml 50X Protease Inhibitor
94.7 ml dH20
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FAIRE Tissue Protocol

Crosslinking Fresh Soft Samples

1. Mince fresh tissue with scalpel and place in dounce with 1 ml of PBS per 10
mg of tissue along with 37% formaldehyde to a final concentration of 1%, swirl
occasionally, and incubate at 25oC for 5 min.

2. Add 2.5 M glycine to a final concentration of 125 mM and incubate at 25oC for
5 min.

3. Disassociate cells with dounce, transfer to 1.5 ml tube, spin at 1,000 x g for 5
min at 4oC, discard supernatant, and wash 2x with ice cold PBS.

Crosslinking Frozen or Fibrous Samples

1. Add tissue sample to a 15 ml conical tissue grinder (VWR cat#47732-446), pre-
cooled in liquid nitrogen bath, incubate 10 minutes in liquid nitrogen bath, and
grind into powder.

2. Add 1 ml of PBS per 10 mg of tissue 37% formaldehyde to a final concentration
of 1%, swirl occasionally, and incubate at 25oC for 7 min.

3. Add 2.5 M glycine to a final concentration of 125 mM and incubate at 25oC for
5 min.

4. Spin at 1,000 x g for 5 min at 4o C, discard supernatant, and wash 2x with ice
cold PBS

Proceed with cell lysis, sonication, phenol/chloroform extraction, and ethanol
precipitation outlined above.

NOTE: For especially difficult samples use large 2.8 mm ceramic or metal beads
(Precellys CK28 or MK28) and perform additional rounds in bead-beater.

107



Appendix B: FAIRE-seq library
preparation

BLUNTING THE FRAGMENTS (Epicentre END-IT DNA REPAIR
KIT # ER0720)
1-34 µl DNA (< 5 µg)
5 µl 10x End-it Repair Buffer
5 µl 2.5 mM dNTP mix
5 µl 10 mM ATP
1 µl End Repair Enzyme mix
50 µl Reaction volume (add H2O to volume)

Incubate 45 minutes at room temperature
Cleanup using Qiagen PCR Purification Column:

Use 250 µl PBI buffer
Spin at 10,000 rpm
Elute with 35 µl EB

ADD A OVERHANG (NEB Klenow Exo-minus 50 U/µl #M0212M)
34 µl DNA
5 µl 10x NEB 2
1 µl 10 mM dATP
1 µl Klenow 50 U/µl
50 µl Reaction volume (add H2O to volume)

Incubate 30 minutes at 37oC
Cleanup using Qiagen Mini-Elute Purification Column:

Use 250 µl PBI buffer

Spin at 10,000 rpm

Elute with 11 µl EB

LIGATION OF ADAPTERS (Epicentre FAST LINK KIT #LK11025)
NOTE: Dilute adapters 1:10, for DNA sample <50 ng us 1 µl; for <100 ng use 2 µl;
for > 500 ng use 1 µl undilute
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10 µl DNA
3 µl 10x Fast-Link Buffer
1.5 µl 10 mM ATP
1 µl Adapters
2 µl Fast-Link DNA Ligase 2 U/µl
30 µl Reaction volume (add H2O to volume)

Incubate overnight at 16oC
Cleanup using Qiagen PCR Purification Column:

Use 200 µl PBI buffer
Spin at 10,000 rpm
Elute with 37 µl EB

PCR AMPLIFICATION (Stratagene PfuUltra
TM

II Fusion HS DNA
Polymerase # 600670)
36 µl DNA (use 50 ng)
2 µl Illumina primers
10 µl 10x PfuUltra II reaction buffer
10 µl 2.5 mM dNTP
1 µl Phusion polymerase
50 µl Reaction volume (add H2O to volume)

Cycling parameters:
98oC 30 sec
(98oC 20 sec, 65oC 30 sec, 72oC 30 sec ) repeat 12 cycles
72oC 5 min
Hold at 4oC
Cleanup using Qiagen Mini-Elute Purification Column:

Use 500 µl PBI buffer
Spin at 10,000 rpm
Elute with 11 µl EB

SIZE SELECT LIBRARY

Loading buffer
50 mM Tris pH 8.0
40mM EDTA
40% (w/v) sucrose

Run sample on 2% agarose gel
3 µl Loading Buffer per 10 µl Sample
Run at 120 V for 1 hour
Excise brightest region +/- 100 bp
Purify using Qiagen Gel Extraction Column
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Use 6x QG Buffer
Use 2x Isopropanol
Spin at 10,000 rpm
Elute with 51 µl EB

NOTE: Do not heat gel slice in QG buffer to the recommended 55oC
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