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ABSTRACT 
 

SARAH ANN KEIM: Long-chain Polyunsaturated Fatty Acids in Breast Milk and Infant 
Formula, Maternal Perinatal Mental Health, and Infant Development 

(Under the direction of Julie Daniels) 
 

This study examined the associations between maternal perinatal mental health or 

exposure to long-chain polyunsaturated fatty acids (LCPUFAs) in relation to infant 

development in the Pregnancy, Infection, and Nutrition Study (2002-2006) (n=358).  Certain 

LCPUFAs have been shown to benefit visual acuity, while maternal mental health may 

negatively affect child development.  Women completed questionnaires during pregnancy to 

assess trait anxiety and depressive symptoms.  A home visit in the fourth postpartum month 

assessed perceived stress and depressive symptoms, collected infant feeding data, and 

obtained breast milk samples.  Infant development was assessed at 12 months using the 

Mullen Scales of Early Learning.  Multivariable linear regression was used to examine the 

associations between trait anxiety, perceived stress, and depressive symptoms in relation to 

Mullen scores.  Similar techniques were used to examine LCPUFA exposure in relation to 

Mullen scores and whether women with elevated depressive symptoms had lower breast milk 

docosahexaenoic acid (DHA) concentration. 

High levels of trait anxiety were associated with lower Receptive Language (adjusted 

β=-2.9, 95% confidence interval: -5.6, -0.3) and Early Learning Composite (adjusted β =-4.5, 

CI: -8.9, 0.0) scores.  No associations were observed between anxiety and other sub-scale 

scores or between perceived stress or depressive symptoms and Mullen scores.  Mean DHA 

content of breast milk samples was 0.28% of fatty acids (standard deviation=0.22); mean
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arachidonic acid (AA) content 0.57% (SD=0.20).  Women with elevated depressive 

symptoms before 20 weeks gestation had 25% lower breast milk DHA than women with few 

symptoms.  Upon adjustment for preterm birth, smoking, race and ethnicity, and education, 

no differences in development were observed in relation to breastfeeding exclusivity.  No 

association was observed between the LCPUFA content of breast milk and formula and 

development. 

Maternal anxiety may influence overall infant cognitive development and the ability 

to process verbal input.  Women who experienced elevated depressive symptoms in early 

pregnancy may have less DHA available to their infants.  However, this study found no 

evidence of enhanced development related to LCPUFAs.  Given the conflicting results 

among previous studies and this study’s limitations, no actions are currently warranted to 

change infant feeding practices except to note that infant LCPUFA supplementation deserves 

further study. 
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CHAPTER 1 

INTRODUCTION 

Healthy neurodevelopment during gestation and infancy can provide a foundation for 

positive behavioral and cognitive outcomes later in childhood and beyond.  Infants who are 

born at term and at a healthy weight, unexposed to substances like tobacco and alcohol, to a 

mother with a healthy diet, and into a supportive home environment are likely to see these 

advantages reflected in their intelligence and behavior, school performance, and mental 

health later in life.1-6  Meanwhile, infants born without these advantages may not attain their 

full developmental potential.  Identifying and better understanding the factors that promote or 

impede healthy development during gestation and infancy can help inform obstetric and 

pediatric practice as well as public health policy to optimize outcomes. 

The particular role of certain dietary long-chain polyunsaturated fatty acids 

(LCPUFAs) in healthy brain development has been of interest for several decades.  Fatty 

acids are important constituents of cell membranes, and LCPUFAs accumulate in large 

concentration in the developing brain, particularly in the gray matter (especially the synaptic 

membranes) and in the rod photoreceptors of the retina.7-10  Docosahexaenoic acid (DHA) 

has been of primary interest for these reasons.  DHA and other LCPUFAs like arachidonic 

acid (AA) are present in human breast milk and are also added to enhance some 

commercially-available infant formula products.  A number of studies have found that DHA 

intake is associated with positive outcomes like improved visual acuity particularly in 

preterm infants, but other studies have found no association.11-15  A beneficial effect on  
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development has been suggested but remains uncertain as well.16-19  Lack of clear 

associations may be because of the variation in the type of formulas or supplements fed to 

participants or differences in the outcome measurements used; also, many previous studies 

have been hampered by sample size constraints, limited length of follow-up, or poor control 

of confounding.  Most studies in this area have been feeding or supplementation trials, which 

have the advantage of a randomized design but may have limited generalizability.  

Observational studies have been challenged by issues of confounding since choices about 

breastfeeding and formula feeding are intertwined with factors like socioeconomic status.  

Improved understanding of the role of LCPUFAs in development could help refine guidance 

about infant feeding practices and the content of infant formulas.  The present study will 

examine the association between feeding method, infant exposure to DHA and AA during the 

first 4 months of life and developmental outcomes at 12 months of age, using detailed 

information about feeding patterns and breast milk content and accounting for key 

confounders. 

Depression affects between 6 and 17 percent of women at some point during their 

lifetime.20-22  The life stages corresponding to pregnancy and new motherhood may be 

particularly susceptible periods; postpartum depression affects up to 19 percent of new 

mothers, and an estimated 12 to 18 percent of women are depressed during pregnancy.23, 24  

Anxiety, stress, and depressive symptoms are inter-related phenomena; women who perceive 

their circumstances as highly stressful are also likely to experience more depressive 

symptoms or anxiety.25  Numerous studies have observed an association between maternal 

postpartum or chronic depressive symptoms and poorer child performance on cognitive and 

behavioral assessments.26-35  Studies noted that greater maternal stress and anxiety interfere 
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with mother-child interaction, with consequences for infant temperament and cognition.36-39  

However, few studies have reported negative effects as early as infancy, and those results 

have been inconsistent.29, 40, 41   

Additionally, depressed adults have been shown to have lower circulating levels of 

DHA, and depressed women may have inadequate supplies of fatty acids to pass 

transplacentally to their fetus or to feed them via breast milk.42-44  The present study will 

explore the association between maternal depressive symptoms, trait anxiety, and perceived 

stress during pregnancy and postpartum and infant developmental outcomes at 12 months of 

age.  Whether women with elevated depressive symptoms have lower concentrations of DHA 

in their breastmilk will also be examined. 

The present study is an opportunity to address questions about the role of LCPUFA 

exposure and maternal psychological health in infant development.  Women and their 

children (n=358 children) who were followed prospectively from early pregnancy to one year 

of age and completed assessments of maternal depressive symptoms, trait anxiety, and 

perceived stress; infant development; and infant feeding practices will be included in the 

present study.  The study has several advantages over previous research.  First, no other 

observational studies of infant development have incorporated detailed information about the 

fatty acid content of both breast milk and infant formula (both formulas with LCPUFAs 

added and those without LCPUFAs).  Second, few studies assess women for depressive 

symptoms during pregnancy and postpartum, and this study assessed depressive symptoms at 

three time points.  Third, this study uses the Mullen, an assessment of multiple 

developmental domains.  Fourth, the study population for this study more closely resembles 

the general population of women and infants than some studies which drew samples of 
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women who were clinically depressed.  Finally, the study incorporates data on the potential 

confounders that often plague research on breastfeeding or LCPUFA exposure and brain 

development.  As a result, the present study can help address some of the shortcomings of 

previous studies and build upon the present understanding of the role of LCPUFAs and 

maternal psychological health in early child development.  The study is based on prospective 

data from the Pregnancy, Infection, and Nutrition (PIN) Study of pregnant women in central 

North Carolina and its postpartum component involving their infants.45 



CHAPTER 2 

REVIEW OF THE LITERATURE 

Introduction 

For several decades intense research efforts have been placed on uncovering the 

factors that underlie healthy development of the human brain during gestation and infancy.  

Likewise substantial effort has gone toward identifying exposures that are harmful to 

neurodevelopment with the goal of eliminating those exposures.  It is clear that children who 

experience a healthy start to life and live in a nurturing early environment are more likely to 

achieve educationally, be productive adults, bear healthy children themselves, and live free 

of mental illness.   

This healthy start may begin even before conception with the health of the parents, 

but it certainly can be marked with the earliest signs of fetal brain development.  The first 

few weeks of gestation are marked by the development of the notochord and the neural tube.  

Cell proliferation, neuronal migration and synaptic formation begin to at least some extent 

during the first trimester, and the total complement of adult neurons is present in the fetal 

brain by the time the brain growth spurt starts in the third trimester.46-48  From the third 

trimester of in utero development to approximately 18 months of age, the brain undergoes 

dramatic growth in terms of overall size and cell number.49  Myelination occurs as well as a 

large increase in dendritic complexity and synapse formation.47, 48  At the time of birth, the 

human brain has already attained 27 percent of its final adult weight.46  The brain growth 

spurt has been identified as a critical window where a wide range of exposures have been
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shown to be harmful to the developing brain.  For instance, during the third trimester, fetal 

exposure to alcohol has been associated with cerebral growth restriction and neuronal loss 

and exposure to lead with reduced intelligence.5, 50  From a psychosocial perspective, it is 

apparent from studies like the Infant Health and Development Program that positive 

influences like presence of caregivers and interventions like home visiting during infancy 

result in better cognitive and behavioral outcomes.2, 51 

 

Long-chain polyunsaturated fatty acids and infant development  

Background and Significance 

Various aspects of diet play important roles in brain development, both during 

pregnancy and in infancy.  Appropriate maternal weight gain during pregnancy has been 

shown to be important for fetal growth which is directly related to brain development.52  Iron 

deficiency during pregnancy and in childhood has been shown to adversely effect behavior in 

childhood.53-55  And, inadequate supplies of choline and folate during fetal development can 

result in neural tube defects.56, 57  Iodine seems important for cognition and motor 

development in childhood.58  Over the past two decades much research has focused on the 

role of dietary omega-6 (n-6) and omega-3 (n-3) polyunsaturated fatty acids in infant 

neurodevelopment.  Some members of these classes of fatty acids can be produced 

endogenously, but dietary sources are essential for certain fatty acids.  Linoleic acid (LA) and 

α-linoleic acid (ALA) are the predominant forms present in the human diet and are 

considered essential fatty acids since they cannot be produced endogenously.49  Most fatty 

acid metabolism is performed by the liver where fatty acids are elongated and desaturated to 

other forms, including DHA (22:6n-3) and AA (20:4n-6).49  DHA and AA are members of a 
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group of fatty acids known as LCPUFAs because of their structure consisting of more than 

18 carbon atoms.49, 59  DHA and AA are themselves present in a range of food sources as 

well as produced endogenously from ALA and LA.49  DHA is found in abundance in seafood 

like atlantic salmon, pacific cod, and tuna and also in certain oils and nuts; AA is found 

particularly in egg yolks and animal fats and organ meats.60, 61  Human breast milk also 

contains DHA and AA, and many infant formulas are enhanced with DHA and AA.62-65  

In the human body, LCPUFAs play a number of roles including as components of 

membrane phospholipids and as precursors of prostaglandins, thromboxanes, and 

leukotrienes.59, 66, 67  AA can be found in most tissues in the human body, while DHA tends 

to be more highly concentrated in the brain, retina, and testis.49  Within the retina and brain 

tissues, DHA concentrates in the rod photoreceptors and synaptic membranes in the gray 

matter.8, 9, 68  During the brain growth spurt, the amount of DHA in the brain increases 

substantially in both an absolute and relative sense.49  Between 25 weeks gestation and 2 

years of age, the total amount of DHA in the brain increases from 3,000 nmol per gram brain 

to 10,000 nmol per gram brain.69  Also during the third trimester the liver and adipose tissues 

of the developing fetus build up stores of DHA to fuel postnatal neurodevelopment.70  During 

pregnancy, maternal DHA from the diet or endogenous production crosses the placenta and is 

the major contributor to the DHA in the fetal brain (Figure 2.1).49 
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Figure 2.1. DHA accretion in the fetal and infant brain (Adapted from Lauritzen 49) 

 
 

 

During gestation the fetal liver and adipose tissues store DHA, to provide a postnatal 

source for ongoing brain development.70, 71  Thus, the main reason why infants born preterm 

might require more dietary DHA than term infants is because they have lower internal stores 

to draw from.49  Lauritzen et al. estimates the difference in the DHA stores of an infant born 

at 30 weeks versus a term infant to be 4.5 g DHA.49  Clandinin et al. estimated that term 

infants have approximately 3.6 grams of total fatty acids in total brain tissue at birth, while 

preterm infants have an average of 1.1 grams.70  Both preterm and term infants can transform 

LA to AA and ALA to DHA.72  However, rates of transformation vary across individual 

infants and preterm infants may be unable to acquire or produce enough DHA and AA during 

infancy to make up for their deficit.73, 74 

Several factors affect the amount of LCPUFAs that the developing fetus obtains via 

the placenta or breast milk, and this may affect the amount of LCPUFAs available to the 
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developing brain.  First, the third trimester of pregnancy generally corresponds to a natural 

increase in the amount of circulating fatty acids so more DHA is available during the period 

of rapid brain development.  Second, birth order plays a role.  Maternal stores of DHA are 

not completely replenished between pregnancies, so later children may receive less DHA 

than first births.75  While internal stores of DHA can help fuel postnatal brain development, 

dietary sources of DHA are likely the larger source for the infant.73  Human breast milk 

contains DHA in varying amounts depending on maternal diet, smoking, body mass index 

(BMI) and weight gain, parity, duration of lactation, adipose stores, and hepatic metabolism 

of fatty acids.  AA levels tend to be more consistent than DHA levels.73  Estimates of DHA 

concentration in the breast milk of women from the U.S. range from 0.06 to 0.29 percent of 

total fatty acids (FA%), and are lower on average than for other populations with high 

seafood intake.62, 63  For instance, Idota et al. estimated the DHA concentration in breast milk 

from a sample of Japanese women to be 1.00 FA%, and Jørgensen et al. found the 

concentration to be 0.43 wt% for a sample of Danish women.76, 77  Vegetarian and vegan 

women have lower levels of DHA in their breast milk than women who consume animal 

products; Sanders and Reddy estimated DHA in their sample to be 0.14 FA%.78  Breast milk 

fatty acid concentrations can fluctuate slightly day-to-day, but it has been estimated that 

preterm infants ingest approximately 24 mg DHA and 36 mg AA each day, while a 4-month 

old infant takes in 100 mg.49, 70  Jørgensen et al. estimate that fish intake could explain 55 

percent of the variability in breast milk DHA content.79  The LCPUFA concentration of 

breast milk does not seem to vary significantly across lactation, however.  Studies by 

Mitoulas et al. and Ribeiro et al. collected frequent samples over at least the first 4 months 

postpartum and observed no significant changes in DHA or AA content over time.80, 81  This 
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is in contrast to a few older studies that suggested a possible decrease over time, but these 

studies relied on samples collected at fewer time points.82, 83  Among women who smoke 

during lactation, breast milk LCPUFA levels tend to be lower than for non-smoking 

women.84  Maternal BMI and weight gain during pregnancy are also positively associated 

with the concentration of fatty acids in breast milk.85, 86  Maternal hepatic activity also 

contributes to breast milk fatty acid concentration, since the amount in breast milk exceeds 

the amount found in adipose stores and diet combined.49 

Infant formula manufacturers have strived to produce formulas as similar as possible 

to breast milk in how infants digest them and in their composition.87  Current 

recommendations for the content of essential fatty acids for infant formulas vary.  The U.S. 

Food and Drug Administration (FDA) issued nutrient requirements in 1985 including a 

requirement for at least 2.7 percent of total fatty acids to be from LA.88  The FDA convened 

an expert panel via the Life Sciences Research Office that provided recommendations for at 

least 8 percent of total fatty acids from LA, 1.75 percent from ALA, and a LA to ALA ratio 

of greater than 6 but less than 16.89  The 1991 report from the European Society for 

Paediatric Gastroenterology and Nutrition contained recommendations for formula LA 

content of 4.5 percent up to 10.8 percent.90  There is no consensus about the necessity of 

adding LCPUFAs to formula products.  However, a workshop involving many of the leading 

investigators in this field recommended that formulas for preterm infants contain 0.35 FA% 

as DHA and 0.4 FA% as AA, 0.2 FA% as DHA and 0.35 FA% as AA for term infants.91  In 

2002, the first infant formula product with DHA and AA added became available to 

consumers in the U.S.92  Formulas with LCPUFAs added had been available in Europe and 

some Asian countries since at least the early 1990s.93  The multiple studies carried out in the 
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1990s that suggested neurodevelopmental benefits of LCPUFAs were influential in 

manufacturers’ decisions to add DHA and AA to many of their products.  Most of the new 

formulas were based on existing products but with DHA and AA added, and in most cases 

both versions co-existed on the market for several years.  By 2007, many infant formulas 

were available in the enhanced version only.  The amount of DHA and AA added varies 

slightly by manufacturer (Appendix 1). 

Until formulas were modified to contain DHA and AA, formula-fed infants obtained 

DHA and AA by metabolizing LA and ALA.94  Studies based on postmortem examinations 

of formula or breastfed infants found that breastfed infants had a higher proportion of 

cerebral cortex fatty acids as DHA than infants fed formula with no added DHA and AA.94  

Also, the concentration of DHA in the brain increased across infancy for the breastfed infants 

but was constant for infants fed traditional formulas, suggesting that without a dietary source 

of DHA, the infant is not able to meet the needs of its rapidly developing brain.94  However, 

DHA concentrations in the infant retina did not vary between the groups nor did AA 

concentrations in the brain and retina.94.  The similarity in AA concentrations may be due to 

the composition of the formulas used at the time, where the specific LA and ALA levels 

resulted in metabolism of AA at levels close to those observed in breastfed infants.94  The 

results pertaining to concentrations in the retina may be because the amount of DHA in the 

retina plateaus at 40 weeks gestation, and the retina has mechanisms to conserve DHA in 

times of undersupply.94  A study by Farquharson et al. found that formula fed infants 

experienced a more rapid decrease in the concentration of DHA in liver and adipose tissue 

over the first ten postnatal weeks as compared to breastfed infants, indicating that formula 

fed infants tended to draw down DHA stores in the absence of dietary DHA.95, 96  Despite the 
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noted differences in LCPUFA concentrations in various infant tissues when comparing 

breastfed to formula fed infants, there remains uncertainty about whether differences in daily 

functioning (e.g., cognition, motor skills) result. 

 

Critical Review of the Literature 

Numerous studies have examined associations between various aspects of 

breastfeeding or LCPUFA supplementation and visual development, cognition and behavior 

ever since the first report by Hoefer and Hardy in 1929.97  Much of the evidence for a 

beneficial effect on neurodevelopment comes from studies comparing preterm infants fed 

formulas containing LCPUFAs to infants fed a control formula or breastfed.11, 12, 98  Many of 

these studies found a positive association between LCPUFA formulas or breast milk and 

plasma phospholipid or red blood cell DHA content and performance on tests of visual 

acuity.  Faldella et al. compared infants who received a formula with LCPUFAs to infants 

who received a traditional formula for preterm infants and infants who were breastfed.98  

They found that infants received the traditional formula lagged in the development of visual 

evoked potentials (VEPs), a measure of optic and brain visual processing maturation.98  A 

study by Uauy et al. measured electroretinographic (ERG) responses in very low birthweight 

infants to assess retinal maturity.  The infants were assigned to either human milk, formula 

low in n-3 fatty acids, formula with ALA, or formula with ALA and marine oils.99  They 

found that rod function was similar for the infants who received the formula containing DHA 

from marine oils or the human milk, and the other infants showed less well-developed 

function.99  Extending upon that work, the same team reported that VEP and forced-choice 

preferential looking at 36 and 57 weeks post-conception reflected comparable visual acuity 
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development between infants fed human milk and infants fed formula containing marine 

oils.11  Infants fed a traditional LA-containing formula performed the worst, while infants on 

a formula with ALA and LA performed in the intermediate range.11  In similar work led by 

Carlson, 33 preterm infants fed a marine-oil supplemented formula containing 

eicosapentaenoic acid (EPA), a LCPUFA, demonstrated better visual acuity as measured by 

the Teller Acuity Card test up until at least 6 months of age as compared to 34 infants on a 

traditional formula.12  However, no statistically significant differences were detected at 

subsequent ages.12  Also, it was found that the marine oil formula impeded infant growth and 

AA status, possibly due to the presence of EPA.74, 100  The DHA-formula fed infants had 

better visual acuity at term and 2 months (but not beyond 4 months) as measured by the 

Teller Acuity Card test.13  All of these studies were limited in size to approximately 10 to 35 

infants per experimental group, but all found some positive effects of DHA supplementation 

on visual development of preterm infants, even if the effect was transient. 

A number of other studies found no difference between supplemented and 

unsupplemented infants.  These include a study by Innis et al. that employed Teller cards at 2 

and 4 months.14  A study by O’Connor et al. found no effect on acuity using Teller cards at 2, 

4 and 6 months, but did see an advantage using swept-parameter VEP at 6 months.15   

A common finding for some of these studies is that effects seen at very young ages 

are no longer seen beyond 4 months of age.12, 13  It seems that LCPUFAs may accelerate very 

early visual development but unexposed infants eventually catch up.  One outstanding 

question is whether this short-lived advantage in visual acuity results in any longer-term 

advantage in terms of cognition and other aspects of development that matter for daily 
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functioning.  Further studies have attempted to answer this question by following children 

into later infancy and assessing global development. 

Tables 2.1-2.3 include studies from developed countries that assessed cognition 

(including language development), visual development (except acuity) or motor skills in 

children 18 months of age or younger.  This includes randomized and observational studies 

involving infants born at term or preterm. 

Researchers have taken several approaches to addressing the question of whether 

infants benefit from either breastfeeding or LCPUFA supplementation in terms of 

development of cognitive, visual or motor skills.  A number of studies have employed 

randomized designs while others have been observational.  Based on early indications that 

preterm infants might benefit more than term infants from breastfeeding or LCPUFA 

supplementation, some studies have continued to study preterm infants.  Others have 

attempted to detect effects in term infants.  Meanwhile, a small number of studies have tested 

supplements in pregnant or lactating women and looked for effects in their breastfed 

children. 

 

1. Randomized studies 

The results of randomized studies have been mixed.  A Cochrane review on this topic 

concluded that “there is little evidence from randomized trials of LCPUFA supplementation 

to support the hypothesis that LCPUFA supplementation confers a benefit for…general 

development of term infants….A beneficial effect on information processing is possible but 

larger studies over longer periods are required to conclude that LCPUFA supplementation 

provides a benefit when compared with standard formula.”101  These studies randomized 
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formula fed infants to one of one or more LCPUFA formulas or a control formula.  Most 

studies also included a breastfed comparison group (non-randomized).  Studies (n=20) that 

assessed infant development at 18 months of age or younger are listed in Table 2.1, Of the 

studies reviewed, 15 studies chose the Bayley Scales of Infant Development, 3 the Fagan 

Test of Infant Intelligence, 3 the MacArthur Communicative Development Inventories, 2 the 

Brunet-Lezine test, 1 the Infant Planning Test, 2 the Knobloch, Passamanick, and Sherrards 

test, 1 used gross motor milestones, and 1 an assessment of general movements.  Of the 

largest studies, only a few found that infants fed LCPUFA formulas performed significantly 

better than infants fed control formulas on the tests used.  A few of the small trials found a 

benefit of LCPUFA supplementation, but results remained inconsistent.  Studies that 

involved only preterm infants were more likely to show a benefit from LCPUFA 

supplementation than studies of term infants. 
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Table 2.1. Previous studies of LCPUFA supplementation and infant development 
Author (year) Study design 

(trial, 
observational) 
n 

Exposure Outcome 
measure(s) (age 
in months) 

Results 

Agostoni (1995)16 Trial, n=90 LCPUFA formula, 
control formula, 
breastfed 

Brunet-Lezine (4m) LCPUFA group scored higher than control formula group (105.3 
vs 96.5).  Breastfed group scored higher than control group (102.2 
vs 96.5).  F=4.93, p=0.009. 

Agostoni (2000)102 Trial, n=90 LCPUFA formula, 
control formula, 
breastfed 

Brunet-Lezine (4m, 
12m) 

Breastfed (25.4) and LCPUFA (26.0) groups scored higher on eye-
hand coordination than control formula group (22.0), p<0.001.  No 
differences on other scales or at 12 months 
 

Agostoni (2009)103 Trial, n=1160 20 mg DHA 
supplement or 
placebo 

Time to achievement 
of 4 gross motor 
milestones 

Sitting without support achieved sooner among supplemented 
group (26 weeks vs 27 weeks, p<0.001) 

Auestad (2001)104 Trial, n=404 LCPUFA formulas, 
control formula, 
breastfed 

Fagan (6m, 9m), 
Bayley (6m, 12m), 
MacArthur (9m, 
14m) 

Fagan – no difference in novelty preference, look duration 
between control and LCPUFA groups at 6 and 9 mos.  Bayley – 
no difference between groups at 6 and 12 mos.  MacArthur – no 
differences except mean vocabulary expression score higher for 
fish-LCPUFA formula than egg-LCPUFA formula (104±13 vs 
96±18) at 14 mos. 

Ben (2004)105 Trial, n=271 LCPUFA formula, 
control formula, 
breastfed 

Bayley (3m, 6m) LCPUFA group scored 2.4 pts higher on MDI, 3.6 pts higher on 
PDI compared to control formula group at 3 months.  No other 
differences observed. 

Birch (2000)17 Trial, n=56 DHA, DHA+AA, 
control formula 

Bayley (18m) DHA+AA group had higher MDI than DHA group (105.6 vs 
102.4) or control group (98.3) F=3.18, p<0.05.  No difference seen 
for PDI (101.7, 99.4, 98.6, H=4.05, p=0.13). 

Bouwstra (2003, 
2005)106-108 

Trial, n=397 LCPUFA formula, 
control formula, 
breastfed 

General movements 
(GM) (3m), Bayley 
(18m) 

Breastfeeding for >6 wks associated with less mildly abnormal 
GM (p<0.0015) and more normal-optimal GM (p,0.0025). Control 
infants had mildly abnormal movements more often than breastfed 
or LCPUFA groups (31 vs 19 vs 20%).  Bayley – no significant 
differences between control, LCPUFA, and breastfed groups 
(mean MDI=105.4±15.0, 102.7±15.4, 107.5±16.0; 
PDI=100.9±13.6, 99.4±13.4, 103.2±14.5) 

Carlson (1993)109 Trial, n=56  LCPUFA formula, 
control formula 

Bayley (12m) LCPUFA group scored lower on PDI (82.2 vs 92.6) than control 
group (p<0.03) 
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Clandinin (2005)110 Trial, n=361 LCPUFA formula 

(DHA, AA), 
LCPUFA formula 
(plus EPA), control 
formula 

Bayley (18m) LCPUFA groups 6-10 points higher on MDI (p≈0.05) 6 points on 
PDI than controls (p<0.05) 

Fang (2005)111 Trial, n=27 LCPUFA formula, 
control formula 

Bayley (6m, 12m) LCPUFA group scored higher on MDI (mean=96.1±8.6) then 
control group (91.7±10.4) at 6 mos. And at 12 mos (98.7±80, 
90.5±6.9).  For PDI at 6 mos (102.2±10.5, 95.4±13.2) and 12 mos 
(98.0±5.8, 86.7±11.1). Repeated measures ANOVA for MDI 
p=0.02, PDI p=0.008. 

Fewtrell (2002)112 Trial, n=240 LCPUFA formula, 
control formula, 
breastfed 

Knobloch (9m), 
Bayley (18m) 

No difference between LCPUFA and control groups on Knobloch 
(1.5 pts higher for LCPUFA group, CI: -1.8-4.7) or Bayley MDI 
(control group 2.6 pts lower, CI: -7.39-2.28) or PDI (2.1 pts, CI: -
6.8-2.67).  Breastfed group performed better on Knobloch than 
formula groups (5.7 to 7.2 pts higher, p<0.005) and on Bayley 
MDI (8.9 to 11.5 pts, p<0.005) and PDI (4.6-6.6 pts, p<0.005) 

Fewtrell (2004)113 Trial, n=238 LCPUFA formula, 
control formula 

Bayley (18m) No difference between LCPUFA and control group on Bayley 
except for boys on MDI (control group 5.7 pts lower, CI: 0.3-11.1) 

Lucas (1999)18 Trial, n=241 to 
250 

LCPUFA formula, 
control formula 

Bayley (18m), 
Knobloch (9m) 

Bayley – no difference between LCPUFA group and control group 
(difference in MDI=0.5, CI: -2.7-3.8; PDI=0.6, CI: -1.8-3.0). 
Knobloch – no difference overall (difference=0.5, CI: -1.6-2.7) or 
on subscales 

Makrides (2000)19 Trial, n=68 DHA, DHA+AA, 
control formula, 
breastfed 

Bayley (12m) No differences between breastfed (mean MDI=114+-13, mean 
PDI=101+-21) and DHA+AA group (MDI=108+-16, PDI=103+-
22) or any other group 

Makrides (2009)114 Trial, n=657 High DHA 
formula, standard 
DHA formula 

Bayley (18m) No difference in MDI scores except for girls (high DHA MDI 4.5 
pts higher (CI: 0.5-8.5) than standard DHA group) 
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O’Connor (2001, 
2003)15, 115 

2001 – trial, 
2003 - cohort 
from RCT, 
n=470 

2001 – LCPUFA 
fish oil formula, 
LCPUFA egg 
formula, breast 
milk, control 
formula. 2003 - 
predominantly 
breast milk, ≥50%, 
<50%, 
predominantly 
formula fed 

2001 - Fagan (6m, 
9m), Bayley (12m), 
MacArthur (9m, 
14m); 2003 -  Bayley 
(12m) 

Fagan – LCPUFA egg group scored higher (59.4±7.7) than 
LCPUFA fish group (57.0±7.5) and control group (57.5±7.4) on 
novelty preference (6), no difference at 9 mos. Bayley - No 
difference between groups in trial. Increasing breastfeeding 
duration associated with higher MDI at 12 mos.  MacArthur – no 
differences at 9 mos. in the trial, LCPUFA infants had better 
Vocabulary Comprehension than control infants (14) and 
increasing duration associated with higher Vocabulary 
Comphrension (9) 

Scott (1998)116 Trial, n=197 DHA formula, 
DHA+AA formula, 
control formula, 
breastfed 

Bayley (12m), 
MacArthur (14m) 

Bayley – no difference, Vocabulary Comprehension lower in 
DHA group than breastfed (92 vs 101, p=0.017), Vocabulary 
Production lower in DHA group than control formula group (91 vs 
101, p=0.052), no differences between DHA+AA group and 
breastfed group 

Van Wezel-Meijler 
(2002)117 

Trial, n=42 LCPUFA formula, 
control formula 

Bayley (3m, 6m, 
12m) 

No difference in Bayley MDI or PDI at any time point 

Werkman (1996), 
Carlson (1996)118, 

119 

Trial, n=51-67 DHA formula, 
control formula 

Fagan (6.5m, 9m, 
12m) 

No difference in novelty preference but greater number of looks 
and shorter duration in DHA infants 

Willats (1998)120 Trial, n=44 LCPUFA formula, 
control formula 

Infant Planning Test 
(10m) 

LCPUFA infants had more intentional solutions (median=2.0 vs 
0.0, p=0.02) and higher intention scores (14.4 vs 11.5, p=0.04) 
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2. Observational studies 

Twenty-one observational studies are detailed in Table 2.2.  These studies varied 

widely in how they defined their exposure groups.  Some compared a breastfed group to 

formula fed groups, while others made comparisons among breastfed infants only.  Outcome 

measures likewise varied widely; 15 studies used the Bayley, 1 used the Denver 

Developmental Screening Test, 1 the Fagan, 1 used the Knobloch, 1 used the Alberta Infant 

Motor Scale, 1 used a measure of parent concern about the developmental progress of their 

child, 1 used a neurobehavioral score, and 1 used a customized measure of gross and fine 

motor skills and language.  Because of the varying definitions of the exposure groups and 

choice of outcome measures, it is difficult to compare results across studies.  The largest of 

these studies found that the odds of gross motor delay decreased with increasing duration of 

breastfeeding in a representative sample of infants from the United Kingdom, after adjusting 

for maternal age, birth weight, gestational age, maternal smoking, social class, maternal 

education, maternal employment, single parenthood, Malaise Inventory, postnatal 

attachment, parenting views, number of siblings, child care, and hours cared for by others 121.  

Many of the other studies found some benefit to longer breastfeeding.  However, the studies 

varied widely in the ability to control for important confounders, and the results are 

inconsistent.
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Table 2.2. Previous studies of breastfeeding and infant development 
Author 
(year) 

Study design 
(trial, 
observational) n 

Exposure Outcome 
measure(s)  
(age in months) 

Results 

Agostoni 
(2001)122 

Obs, n=44 Breastfeeding duration Bayley (12m) No significant differences between groups.  Group breastfed ≥ 
6 mos scored higher on PDI (difference=6.6, CI:-0.6-13.8) 
and MDI (2.0, CI: -3.2-7.3) than group breastfed < 6 mos 

Angelsen 
(2001)123 

Obs, n=345 Breastfed <3 mos., 3-6 
mos., ≥ 6 mos. 

Bayley (13m) Infants breastfed ≥ 6 mos had higher MDI than infants < 3 
mos (mean MDI=117.7(SD 11.7) vs 109.9 (13.1)).  No other 
differences among groups. 

Dee (2007)124 Obs cross-
sectional, 
n=22,399 

Breastfeeding initiation, 
duration 

Parent concern about 
language and motor 
skills 

Concerns about development inversely related to 
breastfeeding initiation, duration for those breastfed 3 or more 
months 

Bier (2002)125 Obs, n=39 Partially breast milk, 
formula fed 

Alberta Infant Motor 
Scale (3m, 7m, 12m), 
Bayley (7m, 12m) 

AIMS – milk group scored higher than formula group (adj 
mean=48 (SD=20) vs 35 (12), p=0.05) at 3 mos and 12 mos 
(62 (20) vs 47 (15) p<0.05) but not 7 mos.  Bayley – milk 
group scored higher on MDI (mean=100 (12)) than formula 
group (91 (10)) at 12 mos, but no difference at 7 mos. 

Florey 
(1995)126 

Obs, n=592 Breastfed, formula fed Bayley (18m) Breastfed infants scored 3.7 to 5.7 points higher on MDI than 
formula fed infants.  No differences for PDI. 

Gomez-
Sanchiz 
(2003)127 

Obs, n=249 Breastfed partially or 
exclusively > 4 mos., ≤ 
4mos., formula fed 

Bayley (18m) Group breastfed ≤ 4 mos group scored higher than formula 
group on MDI but not PDI (MDI β=4.7 CI: 1.7-7.7, PDI 
β=3.6, CI: -0.2-7.3). Group breastfed > 4 mos scored higher 
than group breastfed ≤ 4 mos. on MDI but not PDI (MDI 
β=7.2 CI: 4.3-10.1, PDI β=0.8, CI: -2.7-4.4). 

Innis (1996)128 Obs, n=433 Breastfeeding duration, 
exclusivity 

Fagan (10m) No difference in novelty preference found by duration or 
exclusivity. 

Eidelman 
(2004), 
Feldman 
(2003)129, 130 

Obs, n=86 >75%, 25-75%, <25% 
breast milk 

Bayley (6m) MDI and PDI scores were highest for >75% group 
(MDI=94.2±8.8, PDI=85.8±11.5) compared to 25-75% group 
(91.7±7.2 p<0.05, 78.6±12.6 p<0.01). No difference between 
25-75% group and <25% group  

Jacobson 
(2008)131 

Obs, n=109 Maternal plasma 
phospholipid levels * 
weeks exclusive 
breastfeeding 

Bayley (11m) No association between exposure and Bayley MDI or PDI  
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Lucas 
(1994)132 

Trial, n=114 Donor breast milk, 
formula fed 

Bayley (18m) Breast milk group scored lower than formula group on MDI 
(0.5 pts, CI: -6.2-7.1) and PDI (1.2 pts, CI: -4.4-6.8) 

Lucas 
(1989)133 

Trial, n=502 Donor breast milk, 
formula fed 

Knobloch (9m) Formula group scored higher on Knobloch than donor breast 
milk group (3.0 pts, CI: 0.5-5.6). 

Morley 
(1988)134 

Obs, n=771 Breastfed, formula fed Bayley (18m) Breast milk group scored higher on MDI (7.9 pts, p<0.01) and 
PDI (6.8 pts, p>0.001). 

Pinelli 
(2003)135 

Cohort from 
RCT, n=148 

Exclusively breastfed, 
partially breastfed, 
formula fed 

Bayley (6m, 12m) Infants >80% breastfed scored 1 points higher on MDI and 
PDI at 6 mos. and 1 point higher on PDI and MDI at 12 mos. 
(all p<0.05) 

Rogan 
(1993)136 

Obs, n=855 Breastfed ≥ 20 wks + 
weaned ≥ 50 wks, 5-19 or 
20 wks + weaned 19-49 
wks, ≤ 4 or 5-19 wks + 
weaned 9-19 wks, ≤ 4 
wks + weaned ≤ 9 wks, 
formula fed 

Bayley (6, 12, 18) No significant differences at 6, 12, 18 mos 

Sacker 
(2006)121 

Obs, n=14,660 Breastfeeding duration, 
exclusivity 

Denver (9m) Odds of gross motor delay lower for prolonged exclusive 
breastfed group vs never breastfed group (OR=0.67, CI: 0.54-
0.84), fine motor delay (OR=0.93, CI: 0.74-1.16) 

Strain 
(2008)137 

Obs, n=229 Maternal serum fatty 
acids 

Bayley (9m) PDI positively associated with total n-3 levels.(beta=28.26, 
p=0.03) 

Vohr (2006)138 Prospective 
cohort from 
RCT, n=1,035 

Some breast milk, no 
breast milk 

Bayley (18m) Breast milk group scored higher on MDI and PDI 
(MDI=79.9±18, PDI=84.6±19) than no breast milk group 
(75.8±16, 81.3±17) (p=0.07, 0.02) 

Morrow-
Tlucak 
(1988)139 

Obs, n=219 Breastfed >4 mos, ≤ 4 
mos, formula fed 

Bayley (6m, 12m) Breastfeeding duration positively associated with Bayley 
score at 12 mos. (>4 mos: 121.3, ≤4 mos: 116.0. formula: 
111.2, F=3.24, p=0.04), No significant differences at 6 mos. 
(114.0, 113.1, 110.8, F=0.55, NS). 

Ounsted 
(1988)140 

Obs, n=307 Breastfed 2, 6, 12 months, 
bottlefed 

Neurobehavioral score 
(2m, 6m, 12m) 

No differences at 2 mos.  Breastfed babies had higher 
neurobehavioral scores at 6 mos (F=4.5, p<0.05) and 12 mos 
(4.3, p<0.05).  Breastfed babies had higher motor scores at 12 
mos (F=4.8, p<0.01) but not social scores (F=1.5). 

Temboury 
(1994)141 

Obs, n=229 Breastfed ≤ 3 mos, 
formula fed or breastfed  
≤ 1 mo 

Bayley (18m) Comparing bottle-fed to breastfeeding, (odds of lower score) 
OR=1.86, p=0.044 for MDI.  OR=1.73, p=0.06 for PDI. 
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Vestergaard 
(1999)142 

Obs, n=1656 Breastfeeding duration, 
exclusivity 

General motor skills, 
fine motor skills, 
language (8m) 

Highest vs lowest breastfeeding category: crawling (RR=1.3, 
CI:1.0-1.6), pincer grip (1.2, 1.1-1.3), polysyllable babbling 
(1.5, 1.3-1.8) 
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3. Maternal supplementation studies 

Another way to examine the association between LCPUFA intake and infant 

development is to randomize pregnant or lactating women to dietary supplements containing 

LCPUFAs or a placebo.  While biologic measures like red blood cell DHA levels were often 

associated with supplementation, developmental outcomes tended to reflect no benefit from 

supplementation. 
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Table 2.3. Previous studies of LCPUFA supplementation in pregnant and lactating women and infant development 
Author 
(year) 

Study design 
(trial, 
observational) 
n 

Exposure Outcome measure(s) (age) Results 

Helland 
(2001)143 

Trial, n=262 Cod liver oil, corn oil Fagan (6m, 9m) Cod liver oil group did not differ from the corn oil 
group on novelty preference at 6 mos (mean=55.2 
(SD=4.5) vs 55.4 (3.7) or 9 mos (55.5 (3.8) vs 56.2 
(3.5)) 

Gibson 
(1997)144 

Trial, n=52 4 different doses of 
DHA algal oil, 
placebo 

Bayley (12m) Breast milk DHA content positively associated 
with MDI (r=0.29, p=0.04) but not PDI. 

Lauritzen 
(2005)145 

Trial,  n=175 Fish oil, olive oil, 
high fish intake 

Infant Planning Test (9m), MacArthur 
(12m), gross motor 

Fish oil group no better on problem solving than 
olive oil group, except for girls (mean=5.7±2.7 vs 
3.7±2.5, p=0.024).  Fish oil group performed 
worse on Vocabulary Comprehension 
(mean=54±37) than olive oil group (71±45, 
p=0.045), and on sentence complexity (boys) 
(mean=0.05 (25th-75th pct 0-3 vs 4.5 (0-10), 
p=0.043).  No differences in gross motor function. 

Jensen 
(2005)146 

Trial, n=227 DHA capsules, 
vegetable oil capsules 

Gesell Developmental Inventory (12m), 
Clinical Linguistic and Auditory 
Milestone Scale (CLAMS) (12m), 
Clinical Adaptive Test (CAT) (12m) 

DHA group did not perform better than control 
group on Gesell (mean=101.8±13.8 vs 99.5±13.3), 
CLAMS (100.6±14.6 vs 102.5±13.2) or CAT 
(109.0±10.7 vs 110.0±10.8) 

Judge 
(2007)147 

Trial, n=29 DHA bars, placebo 
bars 

Fagan (9m), infant problem solving 
(9m) 

DHA group had better problem solving but not 
recognition memory 

Tofail 
(2006)148 

Trial, n=400 Fish oil, soy oil Bayley (10m) Fish oil group scored no higher on MDI (102.5 vs 
101.5) or PDI (101.7 vs 100.5) than soy oil group 
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It remains an unresolved question whether breastfeeding duration or supplementation 

with LCPUFAs has a beneficial effect on infant neurodevelopment, despite the large number 

of studies that have addressed this issue.  A range of challenges confront studies in this area, 

including issues of study design, exposure measurement, outcome measurement, and 

appropriate consideration of confounders. 

Several aspects of study design may be partly responsible for the equivocal results of 

previous studies.  One challenge for the randomized studies in particular is generalizability.  

The vast majority of the research on the potential benefits of LCPUFA intake has adopted a 

randomized design at least in part to eliminate issues of confounding.  Many of these studies 

tested formulas that were specially developed for research purposes and not for wide 

consumption.  Infants who were compliant with the study protocols would have been fed 

exclusively the assigned formula product and not breast milk or other formulas.  Also, studies 

that include a breastfed comparison group do not randomize infants into breastfed or 

formula-fed groups due to ethical concerns.  Instead, the breastfed group is generally made 

up of infants whose mothers intend to breastfeed while the formula-fed groups are infants 

whose mothers intend to formula feed.104, 116  The infants who participated in these studies 

are not representative of formula-fed infants in the general population who often switch 

formula products one or more times during infancy.  Also, many infants in the general 

population are fed some breast milk and some formula, and their experience is generally not 

reflected in these studies.  Second, many studies have been very small, perhaps too small to 

detect an effect.  It is helpful to consider that smaller studies in this area more often find a 

positive association, while large studies tend to find no association.149  Third, some studies 

have been of limited duration, so an effect might not be observed because infants did not 
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consume the supplemented formulas long enough or were not followed long enough.  Given 

that fetuses accrue fatty acids through the placenta over a period of months during gestation 

and then most continue to take in fatty acids through breast milk or formula over the first 

weeks and months postnatally, it may not be surprising that supplement studies of short 

duration are unable to detect an effect. 

In terms of exposure, studies have varied widely in their choice of formulas fed to 

study infants, leading to incomparability across studies.  Formulas with low fatty acid content 

have been used in some studies, possibly limiting their ability to observe an effect.  Also, the 

balance of ingredients in the formulas used can affect how much of the LCPUFAs are 

available to the infant since n-3 and n-6 fatty acids compete for the same enzyme 

substrates.150  Overabundance of one fatty acid can suppress production of another.  As a 

result, the DHA content must be considered along with the content of other fatty acids when 

comparing studies.  Previous observational studies have generally employed fairly crude 

measures of exposure.  They have not thoroughly taken into account the wide variation in the 

extent to which infants are breastfed or formula fed and the differences in LCPUFA content.  

By extension, no previous studies have had the benefit of very detailed information about 

breastfeeding and formula use (formula with and without LCPUFAs) to examine dose-

response relationships.  Many randomized studies employed intent-to-treat analysis, normally 

a strength but which may obscure the variation in LCPUFA levels infants to which infants 

were exposed.15, 112  Observational studies of breastfeeding duration and exclusivity use 

varying exposure classification schemes, and this may explain some of the inconsistency in 

results. 
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Previous studies have been challenged in terms of outcome measurement.  The choice 

of outcome measures has varied widely across studies, so it is difficult to compare them.  

Studies have focused variously on mental or motor development, language development, 

visual attention, problem-solving, behavior, or intelligence and employed a variety of 

instruments to measure each.  In some studies, developmental outcomes were not measured 

using validated and reliable instruments.  Assessments of especially young infants are often 

not predictive of later outcomes like IQ or behavior, and some instruments are not designed 

to pinpoint variations within the normal range of cognition or behavior151, 152; low predictive 

value is one drawback of using an instrument like the Bayley Scales of Infant Development 

153-155.  Another challenge is the timing of assessment.  Some instruments are only valid when 

applied to a narrow age window, and sometimes they are administered outside that window.  

Also, some previous studies employed tests of global development (e.g., Bayley) which may 

be insensitive to specific aspects of development that may be affected by LCPUFA intake or 

breastfeeding.  

A major challenge for previous studies has been control of confounding factors.  

Studies that compare breastfed children to formula-fed children are subject to criticism 

because of inadequate control of important confounding variables.  And, this is not just a 

problem for the observational studies.  Because it is generally considered unethical to 

randomize infants to breastfeeding versus formula feeding, most randomized studies only 

randomize within the formula fed group (to a LCPUFA formula or a control formula).  Thus, 

those studies are subject to some of the same confounding issues as observational studies.   

Many factors distinguish breastfed infants and formula fed infants aside from the 

amount of various fatty acids they may ingest.  First, breast milk and infant formulas differ in 
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their composition in more ways than just the fatty acid content.  For instance, human breast 

milk contains a variety of hormones, immunoglobulins, antibodies, antioxidants, proteins, 

and other substances.156  Infant formulas are designed to mimic some of these components 

but do not contain some of them or contain them in different form.156  It is possible that many 

of these substances could contribute to healthy neurodevelopment.  Second, the practice of 

breastfeeding itself involves enhanced opportunities for mother-infant bonding, not just a 

transfer of nutrients to the infant.  Strong bonds between mother and infant are important for 

optimal neurodevelopment.  Therefore, an association between the LCPUFA content of 

breast milk and enhanced development could be explained by bonding.  Third are the 

potential confounding factors underlying whether and how long an infant is breastfed versus 

formula-fed.  Whether an infant is exclusively breastfed, exclusively formula fed, or partially 

breastfed is determined by a number of factors, only some of which may be under the 

mother’s direct control.  These include attitudes about breastfeeding held by the woman and 

her family, counseling by health care providers, workplace policies, availability of 

information and help for feeding problems, and the ability for the woman and infant to be 

together.156, 157  Women who breastfeed tend to be of higher socioeconomic status including 

educational attainment and they tend to be older.158, 159  In the U.S., whites tend to choose 

breastfeeding more than other racial and ethnic groups.157, 158  Other factors can affect 

whether a woman chooses to feed her infant a formula with DHA and AA or one without, 

although little research has examined these factors.  These could include the cost (formulas 

with LCPUFAs cost more), knowledge about the purported benefits of LCPUFAs, whether 

she receives support from the Women, Infants and Children program which subsidizes 

enhanced formulas, and advice obtained from a health care provider or other trusted person.  
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These factors do influence breastfeeding initiation.158, 160-162  These psychosocial factors 

might be associated with the development of the infant as well and so could confound the 

association between LCPUFA intake and infant development.  And, a range of other factors 

(e.g., maternal diet, parity, depression) might be related to the composition of breast milk.  

These can confound an association between LCPUFA intake and developmental outcomes if 

they are associated with development as well. 

 

Opportunities for Future Research 

The limitations in previous studies leave a number of opportunities for future 

research.  Most previous studies of LCPUFA intake and infant neurodevelopment employed 

measures of visual acuity as the main outcome measures of interest.  However, recent studies 

have focused more on measures of global development.  This can help assess whether the 

effects observed on visual acuity translate into lasting effects on cognition, but this approach 

cannot ascertain whether specific aspects of development are differently affected.  Studies 

that assessed cognitive development most often employed the Bayley Scales of Infant 

Development even though the Bayley is a global measure of development and has limited 

predictive value.  No studies have examined the effect of fatty acid intake on the 

development of cognitive, visual and motor development using the Mullen Scales of Early 

Learning (Mullen).  Future studies should employ developmental measures like the Mullen 

that assess specific aspects of development, not global development, to help pinpoint what 

aspects of development may be affected. 

Well-designed observational studies that can account for the role of key confounders 

can help clarify whether there is a positive effect on child development due to LCPUFA 
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intake or from breastfeeding.  Addtionally, studies should be large enough to be able to 

detect an effect if one exists.  Exposure measurement methods should be enhanced to account 

for the variability in breast milk concentrations of LCPUFAs and the variety of infant 

formulas available.   

These opportunities are taken by the present study (Specific Aim 1).  The present 

study employs a prospective design and includes over 350 infants in follow-up to 12 months 

of age.  It employs very detailed exposure measurement techniques that incorporate breast 

milk LCPUFA content as well as formula LCPUFA content on a month-by-month basis.  

Finally, the developmental exams measure a number of specific developmental domains 

(e.g., language, motor, cognitive development). 

 

Maternal perinatal depressive symptoms, trait anxiety, and perceived stress and infant 

development  

Background and Significance 

A wide range of biological, environmental, and psychosocial factors can influence 

child development.  Maternal anxiety, perceived stress, and depression are several inter-

related psychosocial factors that have been found to negatively influence development.  

Many women experience significant psychological distress during pregnancy, with rates of 

mood disorders, post-traumatic stress disorders, and anxiety disorders reaching prevalence 

rates of 14%, 7.7%, and 6.6%, according to some studies.24, 163, 164  Approximately 10 to 15 

percent of women experience elevated postpartum depressive symptoms during at least some 

portion of the six months after delivery, although prevalence estimates vary widely from 5 to 

60 percent across studies.23, 165, 166  Pregnancy and the birth of a new infant are 
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psychoemotional milestones, and women may be more susceptible to psychological distress 

if they lack supportive influences or are experiencing other major life stresses at the same 

time.  Some of the strongest risk factors for elevated psychological distress during or after 

pregnancy include: low self-esteem, life stress, social support, marital relationship/status, 

history of depression, socioeconomic status, unplanned pregnancy, and infant 

temperament.167 

Anxiety and stress during pregnancy have been associated with more somatic 

complaints, low birth weight, preterm birth, and impaired infant orientation and self-

regulation.168-171  The physiologic pathways that connect these have not yet been well-

characterized but likely involve the interaction of cortisol and other hormones and the 

activity of the hypothalamic-pituitary-adrenal axis.172 

A number of studies have addressed the association between maternal perinatal 

psychological health and infant developmental outcomes.  The impetus for this area of 

research is the recognition that infant development is sensitive to the psychosocial 

environment and that these maternal symptoms may interfere with optimal care-giving.  

Several mechanisms could underlie this association and each is discussed below.  First, 

common genetic factors could underlie both psychological health and abnormal 

development, although research has yet to uncover any specific genetic factors.  Second, 

depressive symptoms, anxiety or stress can serve as a direct, negative psychosocial exposure 

for the infant. 

First, it is possible that common genetic factors underlie mood and stress responses 

and abnormal development.  Mother and child may share particular genotypes that 

predispose them to depression and poor neurodevelopment.  A number of studies have 
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identified possible genetic contributors to depression, although it is thought that 

environmental factors play a larger role; thus, gene-environment interactions make research 

in this area challenging.173  As examples, studies of depression have focused on the 

polymorphisms HTTPLR and BDNF V66M, and on a mutation for TPH2.174-176  Progress in 

understanding the genetic underpinnings of depressive symptoms has been disappointing; 

results of most studies have not been reproducible.  Nevertheless, it is conceivable that 

genotypes that affect neurotransmitter function, for instance, could contribute to the risk of 

mood disorders or elevated anxiety in adulthood as well as behavior during childhood. 

Second, it is possible that maternal affect and anxiety inhibit healthy bonding 

between mother and child which in turn inhibits healthy development.  The postpartum 

period is marked with major life changes and stresses for the new mother, most of which are 

offset by the great satisfactions a new baby also brings.  But some women experience 

difficulty with this transition due to a lack of or misplaced expectations, other stressful life 

events, or lack of social support.177-179  Conversely, women who exhibit many symptoms of 

depression are more likely to have low self-efficacy which can inhibit their ability to 

successfully serve in the maternal role.180, 181  In addition, a difficult or unhealthy child can 

exacerbate these circumstances.182, 183  Women who have trouble adapting to the maternal 

role may not interact optimally with their infant.  Previous studies have found that mothers 

who were depressed or anxious tended to be more irritable and hostile, display less 

engagement with their child, and to interact and play less with their child.36-39, 184  Infants of 

depressed mothers are more likely to be fussy, show fewer positive facial expressions, and 

are less vocal.185  It has been well established that positive parent or caregiver relationships 

are critical for healthy development during infancy.186 
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Critical review of the literature 

A handful number of studies have examined the association between maternal 

anxiety, depressive symptoms or stress (during pregnancy, postpartum) and developmental 

outcomes in very young children (i.e., global development, cognition).  Outcomes during 

infancy are of primary interest in this proposal, but there are relatively few studies in this age 

group.  The following inventory of the literature includes studies that assessed infants at up to 

24 months of age.  (Table 2.4). 
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Table 2.4. Previous studies of maternal depressive symptoms, anxiety, and stress and infant development 
Author (year), n 
 

Exposure Outcome measure(s), age Results 

Brouwers (2001)187, 
n=105 

State-Trait Anxiety Inventory (32w) Bayley (12m, 24m) High anxiety group had lower PDI at 12 m (89 vs 
97; t=2.35, p=0.02) than low anxiety group but not 
at 24m (98 vs 100; t=0.47, p=0.64).  High anxiety 
group had lower MDI at 24m (95 vs 106) than low 
anxiety group but not at 12m (97 vs 103; t=1.85, 
p=0.07). 

Carvalho (2008)188, n=36 State-Trait Anxiety Inventory, Beck 
Depression Inventory 

Bayley (12m) No significant correlation between anxiety or 
depression and Bayley scores (no details 
provided). 

Cornish (2005)189, n=112 Composite International Diagnostic 
Interview (4m, 12m), CES-D (4m, 
12m, 15m) 

Bayley (15m), Receptive-
Expressive Emergent 
Language Test (12m) 

Chronic but not brief depression associated with 
lower MDI scores (t=6.61, p<0.025), lower PDI 
(t=9.60, p<0.025), and proportion not yet walking 
(t=1.79, p<0.025) than never depressed.  No 
association between depression and total language 
quotient (F=0.33, p>0.10). 

DiPietro (2006)190, n=94 Profile of Moods Scale (24w 
gestation), State-Trait Anxiety 
Inventory (28w gestation), Daily 
Stress Inventory (24w gestation), 
Perceived Stress Scale (28w), Center 
for Epidemiologic Studies 
Depression Scale (32w), Pregnancy 
Experience Scale (32w) 

Bayley (24m) Pregnancy-specific distress associated with lower 
PDI (beta=-14.89, p<0.05). Prenatal depression 
and anxiety associated with better MDI and PDI 
scores (betas ranged 2.05-2.59, p<0.05). 

Galler (2000)38, n=226 General Adjustment and Morale 
Scale, Zung Depression and Anxiety 
Scale (7w, 6m) 

Griffiths Mental Development 
Scales (7w, 3m, 6m) 

Depressive symptoms at 7w associated with lower 
infant social and performance at 3m. Maternal 
mood at 6m associated with lower motor 
development at 6m 

Huizink (2003) [ref] Everyday Problem List, Pregnancy 
Related Anxieties Questionnaire-
Revised (15-17w, 27-28w, 37-38w) 

Bayley (3m, 18m) Daily hassles (espec at 15-17w) associated with 
lower MDI at 8 mos 

Kurstjens (2001) 191, 
n=1329 

Research Diagnostic Criteria, 
Schedule of Affective Disorders and 
Schizophrenia 

Griffiths Scales of Babies’ 
Abilities (20m) 

No association between postpartum depression or 
later depression or chronicity, severity or recency 
with cognitive outcomes. 
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Lyons-Ruth (1986)192, 
n=NA 

Center for Epidemiologic Studies 
Depression Scale (between 0-12m, 
18m) 

Bayley (12m) CES-D associated with MDI (r=-0.32) and PDI 
(r=-0.30) 

Murray (1993, 1996, 
1999)29, 31, 40, n=59 

Edinburgh Postnatal Depression 
Scale (6w), Research Diagnostic 
Criteria, Schedule of Affective 
Disorders and Schizophrenia (18m), 
psychiatric interview (2m) 

Piaget object concept (9m, 
18m), Reynell (18m), Bayley 
(18m) 

Depression associated with Bayley score among 
boys (interaction with gender R2=0.04, p<0.04).  
Depression associated with object concept (18m, 
not 9m) (χ2=6.20, p<0.05) 
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Many previous studies support the conclusion that perinatal depressive symptoms 

negatively affect cognition in children at least up to age 7, although whether effects can be 

seen during infancy remains unclear.  Also, it seems that chronic depressive symptoms 

continuing well into childhood may affect cognition concurrently, but perinatal symptoms 

may continue to exert a detectable effect itself as the child grows older.  Another theme 

apparent in previous research is that depressive symptoms may interact with other 

psychosocial contextual factors like socioeconomic status to produce the observed cognitive 

deficits.  A common theme in several studies is the interaction between postpartum 

depressive symptoms and infant sex; boys might be more vulnerable to the effects of 

postpartum depression.27, 29, 40, 191  However, large studies and more representative samples 

could help clarify whether this interaction is real. 

In contrast with depressive symptoms which often increase and subside over time, 

trait anxiety is a fairly stable characteristic of the individual.193  This is in contrast to state 

anxiety which is situational.  As a result, it is difficult to separate out the critical exposure 

period for trait anxiety since it may continue to affect the infant from before birth into 

childhood. 

It is important to consider the potential confounding role of the other maternal 

psychological factors (trait anxiety, perceived stress, depressive symptoms) in addition to 

factors like infant temperament, maternal self-esteem, and presence of the father or partner in 

studies of maternal psychological health and infant development.  Psychosocial factors like 

anxiety and stress have some shared biologic underpinnings with depressive symptoms.  

Some studies have taken a thorough look at the role of contextual factors like marital 

relationships and the family environment and have found that these factors appear to explain 
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at least part of what appears to be the long-term effect of perinatal depressive symptoms.194  

Some studies also looking for long-term effects have found that the effects of perinatal 

depressive symptoms are mediated by attachment during infancy—those who were insecure 

infants tended to become children with cognitive deficits or behavioral problems.194  And, the 

potential effect of anxiety seems to operate through parent-child interaction.37, 38 

Several gaps remain in understanding the effect of maternal perinatal psychological 

health on child development.  First, very few published studies conducted developmental 

assessments during infancy.  As a result, it is unclear whether there is an observable effect 

during the first year of life.  Second, many studies have been limited in size; several of the 

key studies in this area involved 120 infants or fewer and may have been underpowered since 

they have tended to find larger effects than large studies have found.  Third, previous studies 

have been inconsistent in their ability to control for potential confounding factors like the 

presence of a supportive partner or the other exposures (perceived stress, trait anxiety, 

depressive symptoms, accordingly).  Another shortcoming is that some past studies 

employed a cross-sectional design, making the temporal sequence between exposure and 

outcome uncertain.  Also, the instruments and the timing of their administration have varied 

widely across studies, making it difficult to compare results.  It is also possible that improved 

understanding of the specific aspects of development that are affected could be found if 

instruments were chosen to target those specific aspects and not broad assessments of 

development. 
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Opportunities for Future Research 

The limitations in previous research leave a number of opportunities for future 

research.  First, new studies should focus on development during infancy to determine 

whether there are observable effects during this early stage and should involve a sample size 

large enough to be able to detect an effect if one exists.  They should consider potential 

confounders like partner support and anxiety, which some previous studies did not consider.  

Another opportunity is to use developmental tests like the Mullen which examine specific 

aspects of development and have not been applied previously in this context.  The present 

study employs a prospective design and measures maternal psychological health during 

pregnancy and postpartum and follows infants to 12 months of age.  Finally, the study 

assesses infants using the Mullen to explore aspects of development that have not been 

previously examined in this context. 

 

Perinatal depressive symptoms and docosahexaenoic acid status 

Background and Significance 

Depression has been associated with low levels of n-3 fatty acids, particularly DHA, 

in red blood cell membranes and brain orbitofrontal cortex tissue of adults.43, 44, 195  

Pregnancy may exacerbate low DHA status because maternal stores of DHA are mobilized to 

support the rapid development of the fetal brain.49  If depressed women have lower 

circulating DHA levels, this could potentially limit the amount of fatty acids available to the 

infant via breast milk.  Women with elevated depressive symptoms postpartum have been 

shown to have lower plasma phospholipid levels of DHA than women who have few 

symptoms.196  The precise relationship between n-3 fatty acids and depressive symptoms is 
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only recently becoming better understood; DHA and EPA are involved in neural function 

(phospholipase A2 activity, neurotransmitter function, regulation of enzyme activity, 

inflammatory response, oxidative stress, and gene expression).197  The direction of the 

association between fatty acid levels and depressive symptoms is debatable.  It could be 

explained by diet (depressed individuals may consume a less healthy diet), by underlying 

abnormalities in how fatty acids are produced or utilized that both reduce fatty acid levels 

and induce depressive symptoms, by reduced synthesis or increased elimination of fatty acids 

among depressed individuals, or by deficiencies in fatty acid levels due to pregnancy or 

lactation that could trigger depressive episodes.197, 198  Ecologic studies have shown that 

populations with high levels of fish consumption tend to have lower rates of depressive 

symptoms, and within populations those with higher fish intake may be at lower risk.199-201  

The fatty acid content of breast milk is correlated with the content in the maternal diet.202  

Whether women who experience elevated perinatal depressive symptoms also have lower 

breast milk DHA levels has been examined in only one study; an ecologic study by Hibbeln 

found the average DHA content of breast milk to be strongly associated with national 

postpartum depression prevalence rates.42  In the postpartum period, maternal DHA stores are 

a major source of DHA via breast milk for the infant.  Approximately 73% of U.S. infants are 

breastfed for at least some time, and 12% are exclusively breastfed for the first 6 months.203  

If women suffering from perinatal depressive symptoms have lower circulating fatty acids 

levels or produce an inadequate supply of fatty acids in their breast milk, their ability to 

provide adequate LCPUFAs to their fetus or infant for brain development may be inhibited. 

 



 

40 

Critical Review of the Literature 

A handful of studies have noted lower DHA levels among women with postpartum 

depression, but the results have been inconsistent and none have examined DHA levels in the 

breast milk (Table 2.5).196, 204-206  A few clinical trials have evaluated whether n-3 fatty acid 

supplements might prevent perinatal depression or reduce symptoms, with mostly negative 

findings.207-211  Most have had very small sample sizes. 
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Table 2.5.  Previous Observational Studies of Perinatal Depressive Symptoms and DHA Status 
Author (year), n 
 

Depressive 
symptoms 
measure 

DHA measurement Results 

Browne (2006)206, 
n=80 

Composite 
International 
Diagnostic 
Interview 

Plasma 
phosphatidylcholine 

Percent of total n-3, EPA, DHA, n-6:n-3 ratio all 
unassociated with being in the Diagnosis, Screened 
High, or control group 

De Vriese (2003)204, 
n=48 

Diagnostic and 
Statistical Manual 
IV 

Serum phospholipids and 
cholesterol esters 

DHA lower in women who developed postpartum 
depression compared to controls (phospholipid, 
3.11% vs 4.22%, p=0.006) (cholesterol esters, 
0.38% vs 0.61, p=0.02) 

Makrides (2003)205, 
n=380 

Edinburgh 
Postnatal 
Depression Scale 

Plasma 
phosphatidylcholine 

A 1% increase in plasma DHA associated with 59% 
reduction in depressive symptoms 

Otto (2003)196, n=112 Edinburgh 
Postnatal 
Depression Scale 

Plasma 
phosphatidylcholine 

No association between depressive symptoms and 
DHA levels at delivery or for change in DHA 
postpartum.  Increase in DHA:EPA ratio was 
higher in non-depressed than depressed group 
(OR=0.90, p=0.04) 
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Opportunities for Future Research 

If women who experience elevated perinatal depressive symptoms also have lower 

DHA levels in their breast milk, then it would appear that perinatal depression could have 

both a psychosocial influence as well as a nutritional one on infants.  Future studies should 

examine depressive symptoms at multiple time points during pregnancy and postpartum in 

relation to breast milk DHA content. 



CHAPTER 3 

SPECIFIC AIMS, HYPOTHESES, AND CONCEPTUAL MODEL 

The following Specific Aims and Hypotheses build on previous research in this area and 

are presented with the goal of advancing understanding about the roles of LCPUFAs and 

maternal psychological health in infant development.  The Specific Aims and their 

corresponding hypotheses are reflected in the Conceptual Model in Figure 3.1:  

1- Examine the association between exposure to LCPUFAs, whether from breast milk or 

formula, and visual reception, language, and motor skills, and overall cognitive 

development at 12 months of age. 

Hypothesis – Infants exposed to low levels of certain LCPUFAs (i.e., DHA, AA) 

exhibit less advanced visual reception, language, and motor skills, and overall 

cognitive development at 12 months of age than infants exposed to high levels. 

2- Examine the association between: 

a.  maternal trait anxiety 

b. perceived stress 

c. perinatal depressive symptoms 

and visual reception, language, and motor skills, and overall cognitive development 

at 12 months of age. 

Hypothesis – Infants of women who demonstrate high levels of trait anxiety, 

perceived stress, or depressive symptoms perinatally exhibit less advanced visual 

reception, language, and motor skills, and overall cognitive development at 12 
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months of age than infants of women who demonstrate low levels of trait anxiety, 

perceived stress, or depressive symptoms. 

3- Examine whether women who experience elevated perinatal depressive symptoms 

have lower levels of DHA in their breast milk. 

Hypothesis – Women who have elevated depressive symptoms have lower DHA 

breast milk concentrations than women with fewer depressive symptoms. 

 

 

 

Figure 3.1. Conceptual Model for Each Specific Aim and the Hypothesized 
Relationships Between the Factors 
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CHAPTER 4 

METHODS 

Study Design 

Participant identification 

 The study population is derived from the PIN Study and the offspring of a portion 

of the women participants (Appendix 2).45  The goal of the PIN Study was to identify 

factors associated with preterm birth.  The goal of PIN Postpartum is to identify 

modifiable behaviors associated with high gestational weight gain and postpartum weight 

retention.  The present study employs a prospective cohort design.  (However, a 

component of Specific Aim 3 is cross-sectional in design.)  PIN Babies focuses on child 

developmental outcomes in relation to the prenatal and early childhood environment. 

All protocols were approved by the University of North Carolina (UNC) 

Biomedical Institutional Review Board; all participants provided written informed 

consent.  The dataset is property of the University of North Carolina at Chapel Hill 

Carolina Population Center and is provided for analysis only in de-identified form.  The 

University of North Carolina at Chapel Hill Public Health and Nursing Institutional 

Review Board and the National Institutes of Health Office of Human Subjects Research 

govern human subjects aspects of the present study.  An exemption from full IRB review 

was obtained from both entities. 

For the PIN Study, women were recruited from among pregnant patients at less 

than 20 weeks gestation seeking prenatal care at UNC Hospitals.  Women were ineligible  
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if they were pregnant with multiple fetuses, could not communicate in English, were 

under age 16, had no access to a telephone, or were intending to go elsewhere for future 

care or delivery.  Since the present study focuses largely on the infants resulting from 

pregnancies of women participating in PIN and because only the infants from the third 

wave of PIN enrollment (PIN3) were followed, the present study includes only women 

from PIN3. 

 Women (n=1,169) were eligible for PIN Postpartum if they completed the third 

wave of the PIN Study, agreed to be contacted after delivery and lived in the study area.  

Medical constraints (n=24), inability to recontact (n=207) or schedule (n=62), and refusal 

(n=187) resulted in 689 women who participated in a visit scheduled in the fourth 

postpartum month.  The 305 women who provided a breast milk sample at this visit were 

eligible for the analysis pertaining to Specific Aim 3.  Before the 12-month data 

collection visit, 45 became pregnant again and were ineligible to continue, 62 were 

unreachable, 29 moved from the study area, and 20 requested to leave the study.  The 

PIN Babies protocol began after PIN Postpartum began and 125 infants were ineligible to 

complete the protocol because they reached 12 months of age before the study began 

conducting the infant assessments in homes. 

Among the remaining 408 eligible maternal-infant pairs, some did not participate 

in the Mullen because the child was not present during the data collection (n=11, e.g. the 

mother completed the interview at her workplace), the child was asleep, sick, or fussy 

(n=21), the mother refused the child’s participation (n=8), there was not enough time 

during the visit (n=3), or various other reasons (n= 7).  The 358 infants who completed at 

least part of the Mullen were eligible for analyses pertaining to Specific Aims 1 and 2. 



 

 47 

 

Methods for Study 

Data collection 

 During pregnancy, information about depressive symptoms was collected via self-

administered questionnaires before 20 weeks gestation and at 24-29 weeks gestation 

using the Centers for Epidemiologic Studies Depression (CES-D) scale.212  The CES-D is 

intended to measure depressive symptoms in general population samples.  The CES-D is 

designed as a short 20-item self-report tool applicable to the general population and has 

been shown to be useful in detecting depression in a variety of groups including pregnant 

women.  It is not designed for clinical diagnosis of major depressive disorder.  

Components of depressive symptomology included in the CES-D include: depressed 

mood, feelings of guilt and worthlessness, retardation of psychomotor activity, appetite 

loss, and disturbed sleep.212  

 The questionnaire before 20 weeks gestation included the State-Trait Anxiety 

Inventory (STAI), the Rosenberg Self-Esteem Scale, and the MOS Social Support 

scale.193, 213, 214  The trait score of the STAI is a measure of an individual’s general 

feelings of anxiety and is relatively stable over time, in contrast to state anxiety which is 

situational.193  Age, education, income and other demographic and lifestyle covariates 

were obtained via telephone at 17-22 weeks gestation.  Delivery information was 

obtained from the hospital record.  Preterm birth was defined as less than 37 completed 

weeks gestation at delivery, based on ultrasound if done before 20 weeks gestation or the 

date of the last menstrual period. 
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A home visit in the fourth postpartum month collected information on maternal 

and infant health and nutrition and updated information about family circumstances and 

maternal psychosocial health.  The interview included the Edinburgh Postnatal 

Depression Scale (EPDS), a screening tool for depressive symptoms, and the 10-item 

Perceived Stress Scale to measure the extent to which one’s circumstances are perceived 

as stressful.215, 216  Information was collected about the number of feedings per day the 

infant was breastfed or fed formula or other foods for each month since birth.  The 

specific names of up to two formulas were recorded for each month.   

Women who were still breastfeeding were asked to use a breast pump at around 

10 AM on the day of the postpartum visit to provide three 1.5 ml tubes of milk for 

storage at -80 degrees Celsius at the study office.  Samples were analyzed for fatty acid 

content by two laboratories.  Samples collected before April 1, 2005, were analyzed by 

the Collaborative Studies Clinical Laboratory at the University of Minnesota Medical 

Center, Fairview (Minneapolis, Minnesota).  This lab was unable to complete the analysis 

for the second batch of samples, so those collected after April 1, 2005, were analyzed by 

the Clinical Nutrition Research Center, UNC (Chapel Hill, North Carolina). 

When infants reached 12 months of age, trained PIN Babies study staff scheduled 

a visit to administer the Mullen Scales of Early Learning (Mullen) following procedures 

outlined in the Mullen manual.217  The Mullen assesses cognitive functioning in children 

up to 68 months of age.   
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Exposure Measurement 

1. Breastfeeding and LCPUFAs 

Infants were classified as to the method by which they were fed: exclusively 

breastfed, almost exclusively breastfed, partially breastfed, or formula fed for each of the first 

4 postnatal months individually and combined: 

 

Exclusively breastfeeding: 

Breastfeeding only, neither other liquids nor solids 

Frequency of breastfeeding at the mth month of age >= 1 time/day and frequency of 

feeding other liquids or solids at the mth month of age = 0 times/day 

 

Almost exclusive breastfeeding: 

Breastfeeding, plus 1 or fewer times per day feeding any other liquids or solids 

Frequency of breastfeeding at the mth month of age >= 1 time/day and frequency of 

feeding formula at the mth month of age <= 1 time/day 

 

Partial breastfeeding: 

Breastfeeding, plus feeding other liquids or solids 

Frequency of breastfeeding at the mth month of age >= 1 time/day and frequency of 

feeding formula at the mth month of age > 1 time/day 

 

Formula feeding: 

Formula feeding only 
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Frequency of breastfeeding at the mth month of age = 0 times/day and frequency of 

feeding formula at the mth month of age > 1 time/day 

 

It is ideal to use a categorization scheme that differentiates among infants who are not 

exclusively breastfed, and similar schemes are used in many observational studies that have 

detailed breastfeeding information available.121, 218  It also parallels the recommendations of 

the World Health Organization and the Interagency Group for Action on Breastfeeding.219, 220 

The concentration of fatty acids in commercially available infant formulas was 

obtained from the U.S. Department of Agriculture Nutrient Database for Standard Reference 

(and for one formula, from the manufacturer’s website).221, 222  Forty-one women responded 

to questions about formula use with information that was ambiguous as to whether they were 

using a product with DHA and AA added.  Several answer choices on the data collection 

form did not distinguish between traditional or enhanced versions of the same formula, so it 

was not possible to determine which product was fed.  Twenty-seven of the 41 women were 

successfully recontacted to clarify their formula choices, and 26 women were able to clarify 

which formula they had used. 

The concentration of fatty acids in breast milk was obtained via laboratory 

analysis previously described.  (In addition to serving as an exposure measure for 

Specific Aim 1, the concentration of DHA in breast milk also serves as the dependent 

variable for Specific Aim 3). 

In addition to the laboratory values for the concentration of DHA and AA in 

breast milk, we calculated variables for exposure to DHA and AA using a composite of 

the breast milk values and the concentrations in the formulas fed during the 4 months.  To 
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account for variation in feeding method across months, the breast milk and formula 

values were weighted by the feeding method for each month: 
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Where, 

m=month since birth 

µ=concentration of the fatty acid of interest in breast milk (b) or infant formula (f) (units - % 

of total fatty acids) 

k=feeding pattern in m 

 1, if exclusive or almost exclusive breastfeeding 

 0.5, if partial breastfeeding 

 0, if formula feeding 

f=formula product (Fi≤2) 

 

For each month of exclusive breastfeeding or almost exclusive breastfeeding, the month 

was assigned the value for the DHA or AA concentration from the breast milk laboratory 

analysis.  Each month of formula feeding was assigned a fatty acid value based on the 

concentration in the particular formula product fed that month.  If more than one formula 

was fed that month, an average of the values for the 2 most often fed formulas served as 

the fatty acid value for that month.  Each month of partial breastfeeding was assigned a 

value that is one-half the laboratory value for the breast milk plus one-half the average 

formula value (up to 2 formulas) for that month.  Continuous DHA and AA exposure 

variables for all 4 months combined were calculated by summing the monthly values.   
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2. Maternal perinatal depressive symptoms, trait anxiety, and perceived stress 

Continuous scores from the trait anxiety scale of the STAI were categorized into 

tertiles based on their observed distribution in the study participants.  The trait anxiety 

scale measures the individual’s general approach to stressful circumstances, which is 

considered stable over time.193  The scale consists of 20 items, scored on a scale of 1 to 4 

(Not At All to Very Much So) to form a composite.  Cronbach’s alpha ranged 0.89 to 

0.92.193 

Continuous scores from the Perceived Stress Scale (PSS) were categorized into 

tertiles based on their observed distribution in the study participants.  The PSS is intended 

to measure the degree to which an individual perceives life situations to be stressful.216  It 

contains 10 items which are scored by summing scores from 0 to 4 (Never to Very Often) 

for the negative items and reversing the scoring for the positive items.223  The PSS has 

been found to correlate moderately with counts of life events, social anxiety, and 

depressive symptoms, although the PSS and the CES-D do not measure the same 

constructs.216  Test-retest correlations ranged 0.55 to 0.85, depending on the time between 

assessments.216 

Each item on the CES-D  is scored on a four-point scale that ranges from “rarely 

or none of the time” to “most or all of the time” the respondent felt or experienced the 

particular item during the previous week.224  The early work done to evaluate the 

instrument found moderate test-retest correlations (range: 0.48-0.67) between 

administrations of the instrument, which might be expected since the instrument is 

focused on feelings over the previous week which would shift over time.212  The CES-D 
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has been found to discriminate well between individuals under care for depression and 

those in the general population: 70 percent of patients and 21 percent of a general 

population samples scored above 16.212  The 16/17 cutpoint for the CES-D was chosen 

for the present study because several studies have reported reduced specificity of the 

CES-D using the 15/16 cutpoint for pregnant women because some symptoms of 

pregnancy (e.g., fatigue) are similar to CES-D components.225-227 

Similar to the CES-D, the EPDS is designed to screen for depression but some of its 

10 items are focused on circumstances related to pregnancy and motherhood.  It is not 

intended to substitute for a thorough psychiatric evaluation and a high score does not 

necessarily equate with clinical diagnosis of Major Depressive Disorder.  Instead, the EPDS 

in intended to be administered by research or clinical staff with minimal training and in a 

variety of settings, and it is quick to administer.228  In its initial validation study, at a score of 

13 or above, the EPDS was able to identify all women with Definite Major Depressive Illness 

and two-thirds of the women with Probable Major Depressive Illness.228  Sensitivity for 

detection or major or minor depressive illness was 86 percent and the positive predictive 

value was 73 percent.  Specificity was 78 percent.  At the cutpoint of 9/10, the EPDS was 

estimated to miss only 10 percent of depression cases.228  Expanding on the initial validation 

work by Cox et al., several others have validated this cutpoint in previous studies.  It detects 

minor depression or increases the sensitivity of the instrument for depression and has been 

shown to identify cases of clinical depression with more than 90% sensitivity.228-231 

For the purposes of Specific Aim 2, a variable was constructed to examine 

depressive symptoms across both the antepartum and postpartum periods based on scores 

on the CES-D and EPDS.  Women were classified as having few depressive symptoms 
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postpartum (EPDS=0-9) (regardless of antepartum symptoms), minor or major depressive 

symptoms only during the postpartum period (EPDS > 9 and both CES-D scores=0-16), 

and minor or major depressive symptoms during both the postpartum and antepartum 

periods (EPDS > 9 and at least one CES-D score > 16).  For the purposes of Specific Aim 

3, each CES-D measure and the EPDS were used as individual exposure measures, and a 

composite of the three measures (a count of the number of times a woman scored above 

the cutpoint on an assessment) was also used. 

 

Outcome Measurement – Infant Development 

Raw scores from the five Mullen sub-scales were converted to age-specific t-

scores for the four cognitive sub-scales (Visual Reception, Fine Motor, Receptive 

Language, Expressive Language) and the Gross Motor sub-scale of the Mullen.  The 

cognitive sub-scale scores were summed and converted to a standard Early Learning 

Composite (Composite) score following procedures outlined in the manual.217  All 

analyses adjusted for preterm status; however scores were not directly adjusted for 

gestational age at birth because we found the procedure recommended in the manual 

potentially overcorrected scores for preterm infants.  The age-adjusted mean score for 

preterm infants was higher than the mean score for term infants for the Composite and all 

of the Mullen sub-scales except the Fine Motor scale, although the difference was 

statistically significant for the Receptive Language sub-scale only (age-adjusted mean 

Receptive Language t-score for preterm infants=49.2, term infants=45.8, t=2.5, p=0.01). 

Test-retest reliability for each subscale has been found to be high, ranging r=0.82-

0.85 for children under 24 months of age.217  The Mullen subscales have been found to 
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have high correlations with the Bayley MDI (range=0.53-0.59) and less so with the PDI 

(range=0.21-0.52), indicating that the Mullen is more focused on cognitive abilities than 

psychomotor.217  Since the Mullen is intended to be an assessment of specific abilities 

and not a test of global development, it makes sense that the Mullen and Bayley MDI 

have between 28 and 35 percent of the variance between the measures overlapping based 

on the squared intercorrelations.217  The predictive value of the Mullen remains unclear, 

but it has been used to identify language delays in children who later were diagnosed 

with Autism Spectrum Disorders.232  In another study, the Mullen was able to identify 

approximately two-thirds of 4-year-old children who went on to fail kindergarten, first, or 

second grade.233 

 

Covariates 

A range of possible covariates were identified based on previous studies and 

evaluated initially through the use of Directed Acyclic Graphs (DAG).  DAGs are causal 

graphs that can be used to represent relationships between exposure, outcome and 

confounding factors, based on underlying assumptions about the biological mechanisms 

involved 234, 235.  The very basic concepts needed to interpret the DAGs for the present study 

are described here.  (Articles by Robins and Greenland et al. provide additional discussion 

about the use of DAGs since this topic cannot be adequately covered here.234, 235)  The 

exposure and outcome are connected by a single-headed arrow with a question mark, 

indicating the potential association under study.  Variables represented in the diagram are 

connected by arrows to indicate the direction of various associations.  A variable connecting 

the exposure and outcome via a series of arrows consistently pointing from the direction of 
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the exposure toward the outcome is considered to be on the causal path (they are mediators).  

A confounder is represented by a variable with arrows leading from it to both the exposure 

and outcome (either directly or through one or more other variables).  A collider is a variable 

that has two or more arrows pointing into it.  DAGs can be helpful to identify the minimally 

sufficient set of confounders that could be controlled for in an analysis and to avoid inducing 

confounding by adjusting for variables on the causal path.  Variables that are not measured in 

the present study are represented by the notation “U” for “unmeasured.”  DAGs 1-3 pertain 

to Specific Aims 1-3, respectively  

The presence of effect measure modification was assessed using multiple partial F-

tests.  Where no notable effect measure modification was detected, the change-in-estimate 

approach was used to refine the list to the variables to be included as confounders in 

regression models.  The confounders included in the final models are presented in Table 4.1, 

along with their source and classification scheme.   
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Table 4.1. Potential covariates for each Specific Aim, sources, classification schemes 
Covariate Description Specific Aim 

 
Source Classification scheme 

Race and 
ethnicity 

Maternal race and 
ethnicity 

1 Phone interview 17-22 
weeks gestation 

0= All others 
1= White, non-Hispanic 

Maternal 
education 

Maternal education 1, 2, 3 Phone interview 17-22 
weeks gestation 

0=0-12 years 
1=13-16 years 
2=17+ years 

Maternal age Maternal age 3 Phone interview 17-22 
weeks gestation 

0=17-20 
1=21-30 
2=31-47 

Preterm birth Preterm birth was 
defined as less than 37 
completed weeks 
gestation at delivery, 
based on ultrasound if 
done before 22 weeks 
gestation or the date of 
the last menstrual period. 

1, 2 Obstetric record 0=<37 completed weeks 
1= >= 37 completed weeks 

Feeding method Degree of breastfeeding 
or formula feeding, first 
4 post-natal months 
combined 

1 Interview 4th month 
postpartum 

2=Exclusive or almost exclusive 
breastfeeding 
1=Partial breastfeeding 
0=Formula feeding 

Maternal anxiety Trait anxiety 2 Self-administered 
questionnaire at <20 weeks 
gestation 

1=0-<31 
2=31-<40 
3=40+ 

Maternal stress Cohen’s Perceived Stress 
Scale 

2 Interview 4th month 
postpartum 

1=0-<17 
2=17-<23 
3=23+ 
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Maternal smoking Ever smoked cigarettes 

during specified time 
period 

1, 3 Phone interview 27-30 
weeks gestation 
Interview 4th month 
postpartum 

0=never smoked during 
pregnancy or to 4 months 
postpartum 
1=ever smoked during 
pregnancy or to 4 months 
postpartum 

Parity The number of prior live 
or stillbirths 

1 Phone interview 17-22 
weeks gestation 

0=none 
1=1 or more 

Maternal self-
esteem 

Rosenberg’s self-esteem 
scale 

2 Self-administered 
questionnaire at <20 weeks 
gestation 

1=0-<50 
2=50-<56 
3=56+ 

Infant sex Infant sex 1 Delivery record 0=female 
1=male 

Maternal n-3 
intake 

Estimate of daily intake 
of n-3 fatty acids 

3 Food Frequency 
Questionnaire at 24-29 
weeks gestation 

Continuous 

Presence of 
spouse or partner 

Currently married or 
living with partner 

3 Interview 4th month 
postpartum 

0=no 
1=yes 

Laboratory Variable for laboratory 1, 3 Laboratory record 0=University of North Carolina 
1=University of Minnesota 
2=University of Minnesota 
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Data Analysis 

Overview 

The conceptual model and specific aims laid out previously provide the framework 

for the analysis plan.  Some common procedures apply to all specific aims.  First, all 

exposure variables, outcome variables, and potential covariates were examined using 

univariate techniques to assess the degree of missing data and characteristics of the 

distribution of each (e.g., mean, median, mode, standard deviation, range, skewness, 

kurtosis).   

Second, based on the previously constructed exposure and outcome variables, 

bivariate analyses (chi-square, simple linear regression, odds ratios) explored unadjusted 

associations between exposures and outcomes.  Multiple partial f-tests checked for the 

presence of effect measure modification by the potential covariates included in the DAGs.  

Then, an assessment was done for whether there was potential confounding by each potential 

covariate using the change-in-estimate approach.  Confounders were defined as variables 

identified via the DAGs and subsequently via the change-in-estimate approach.  Finally, 

multivariable linear regression was used to examine exposure-outcome relationships.  

Graphical methods assisted in checking the assumptions underlying linear regression.  For 

Specific Aim 3, the dependent variable (DHA) was log transformed to provide a better fit.  

Next, multiple imputation was used to fill in values for missing data for the analyses 

pertaining to Specific Aim 2 so that all women in the dataset had three depression scores (2 

during pregnancy and 1 in the fourth postpartum month).  Some infants had one or more 

missing sub-scale scores for the Mullen, and these were imputed as well as other covariates 

with a small proportion of missing values.  Multiple imputation is a good approach when 
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more than one variable has missing data to be imputed.236, 237  It will increase the statistical 

power and also decrease potential bias that might result if analyses relied on only complete 

case analysis, if the imputation model is well-specified.  The Markov chain Monte Carlo 

method using SAS procedures (PROC MI) produced 10 replications of the dataset with 

missing values imputed.  The imputed datasets were analyzed using SAS (version 9.1) linear 

regression procedures and combined with PROC MIANALYZE to produce the effect 

estimates reported.238 

 

Directed Acyclic Graphs 

The DAG displayed in Figure 4.1 guided the analysis for Specific Aim 1.  The box 

labeled “LCPUFA intake” corresponds to the calculated LCPUFA variables described 

previously.  While those calculations consider the role of feeding method, they do not 

adequately account for the important differences between infants who are breastfed and those 

who are formula fed.  As a result, feeding method was treated as a confounder in this 

analysis.  Maternal diet is an important influence on breast milk fatty acid composition, and 

socioeconomic status and race and ethnicity both influence breastfeeding duration and 

formula choice, so these all should be considered as potential confounders given their 

association with developmental outcomes.  The other covariates noted in Figure 4.1 were 

handled by controlling for the potential confounders just mentioned. 
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Figure 4.1. Directed Acyclic Graph #1– Specific Aim 1 
 

 
Figure 4.2 displays the DAG for Specific Aim 2.  Taking into consideration all the 

potential paths and seeking the smallest possible set of potential covariates for adjustment, 

the following list of potential confounders will be considered: infant temperament, maternal 

stress, maternal anxiety, social support, marital relationship, and maternal self-esteem. 

 

LCPUFAs Infant 
development 

Feeding 
method 

Smoking 

Genes (U) 
Maternal IQ (U) 

SES 

Maternal diet/fatty 
acid stores 

Race/ethnicity 

Parity 

? 

Bonding/attachment/
parenting (U) 

Maternal 
depression 

Gestational age 

Infant sex 
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Figure 4.2. Directed Acyclic Graph #2– Specific Aim 2 
 

 
 

For Specific Aim 3, the breast milk LCPUFA values only (not incorporating formula 

values), in continuous form, will serve as the dependent variables for this component on 

depressive symptoms and DHA content of breast milk (while recognizing the uncertainty 

about the temporal direction of this potential association).  Potential confounders were 

identified from previous literature.  The direction of the association between maternal diet 

and depressive symptoms is debatable.  As a result, models initially included diet but were 

reanalyzed with diet excluded to observe whether effect estimates changed. 

Maternal 
psychological 
distress 

Infant 
development 

Feeding 
method 

Life stress 

Self-esteem 

Gestational age Infant temperament 

Fatty acid 
intake 

Marital relationship 

Social/partner support 

? 

Bonding/attachment/ 
parenting (U) 

Anxiety 

Maternal diet 

Genes (U) 

# siblings 
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Figure 4.3. Directed Acyclic Graph #3– Specific Aim 3 
 

 

 

Maternal 
perinatal 
depressive 
symptoms 
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DHA 

U 
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CHAPTER 5 

RESULTS 

Specific Aim 1: Long-chain polyunsaturated fatty acids in breast milk and formula and 

infant cognitive development 

 

Introduction 

The role of certain dietary long-chain polyunsaturated fatty acids (LCPUFAs) in 

healthy brain development has been of interest for several decades.  Fatty acids are important 

constituents of cell membranes, and LCPUFAs, especially docosahexaenoic acid (DHA), 

accumulate in large concentration in the developing brain of the infant, particularly in the 

gray matter and in the rod photoreceptors of the retina.7-10  DHA and other LCPUFAs like 

arachidonic acid (AA) are present in human breast milk.  A number of studies have found 

that feeding LCPUFA-containing formulas is associated with positive outcomes like 

improved global development; other studies have found no association with development, yet 

these fatty acids are added to many commercially available infant formulas.15, 104, 110-113, 116, 

117, 221, 239, 240 

Inconsistency in results may be because of variation in the formulas fed to study 

participants, diversity in the definition of comparison groups, differences in outcome 

measurements used, sample size constraints, limited length of follow-up, and poor control of 

confounding.  Most studies in this area have been infant feeding trials often involving only 

preterm infants.  A randomized design can be an advantage, but these studies may have  
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limited generalizability because they rely on intent-to-treat analysis by group rather than 

effective dose of LCPUFAs reaching the infant and are not based on the actual breast 

feeding patterns reflecting the combinations of breast milk and formulas infants are fed in 

the general population.  Most studies used a measure of global development like the 

Bayley Scales of Infant Development which is unable to separately evaluate specific 

aspects of development, like language, to see whether some aspects of development are 

benefited more than others.   

Because only 12% of U.S. children are exclusively breastfed at 6 months of age, 

most children are introduced to formula at some point in infancy.203  As a result, both 

breast milk and infant formulas can be important sources of LCPUFAs in infant diets, but 

their relative contribution changes with shifts in feeding method across infancy.  We 

found no studies that examined developmental outcomes in relation to the LCPUFA 

content of both breast milk and formula while considering changes in feeding method 

across time. 

Improved understanding of the role of LCPUFAs in development could help 

refine guidance about infant feeding practices.  This study addresses three distinct 

questions: 1) is the extent of breastfeeding during the first 4 postnatal months associated 

with visual reception, language, and motor skills, and overall cognitive development as 

measured via the Mullen Scales of Early learning (the Mullen) at 12 months of age?  2) Is 

the LCPUFA concentration of breast milk associated with development (Mullen scores) 

among infants who are exclusively breastfed?  3) Is the LCPUFA concentration of the 

breast milk and formulas infants are exposed to during the first 4 postnatal months 

associated with development (Mullen scores)?  
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Methods 

Study population 

Data were collected as part of the Pregnancy, Infection, and Nutrition Study 

(PIN) and its postnatal follow-up components, PIN Postpartum and PIN Babies.  The 

goal of the PIN Study was to identify factors associated with preterm birth.45  The 

goal of PIN Postpartum is to identify modifiable behaviors associated with high 

gestational weight gain and postpartum weight retention.  PIN Babies focuses on 

child developmental outcomes in relation to the prenatal and early childhood 

environment.  All protocols were approved by the University of North Carolina 

(UNC) Biomedical Institutional Review Board; all participants provided written 

informed consent.   

 Women (n=1,169) were eligible for PIN Postpartum if they completed the 

third wave of the PIN Study, agreed to be contacted after delivery and lived in the 

study area.  Medical constraints (n=24), inability to recontact (n=207) or schedule 

(n=62), and refusal (n=187) resulted in 689 women who participated in a home visit 

in the fourth postpartum month.  The PIN Babies protocol began after PIN 

Postpartum began; as a result, 125 infants were ineligible to continue to PIN Babies.  

Also, 45 women became pregnant again, 62 were unreachable, 29 moved from the 

study area, and 20 requested to leave the study.  Among the remaining 408 eligible 

maternal-infant pairs, some did not participate in the Mullen assessment during a 

home visit at 12 months of age because the child was not present during the data 

collection (n=11, e.g. the mother completed the interview at her workplace), the child 



 

 67 

was asleep, sick, or fussy (n=21), the mother refused the child’s participation (n=8), 

there was not enough time during the visit (n=3), or various other reasons (n= 7). 

 

Exposure measurement 

The first home visit collected information for each month about the number of 

feedings per day the infant was breastfed or fed formula or other foods. 

Women who were still breastfeeding were asked to use a breast pump at 

around 10 AM on the day of the postpartum visit to provide three 1.5 ml tubes of milk 

for storage at -80 degrees Celsius at the study office.  Samples were analyzed for fatty 

acid content by two laboratories.  Samples collected before April 1, 2005, were 

analyzed by the Collaborative Studies Clinical Laboratory at the University of 

Minnesota Medical Center, Fairview (Minneapolis, Minnesota).  This lab was unable 

to complete the analysis for the second batch of samples, so those collected after 

April 1, 2005, were analyzed by the Clinical Nutrition Research Center, UNC 

(Chapel Hill, North Carolina).  Fatty acid extraction was performed on 0.5 ml 

samples of breast milk mixed with 0.5 ml 0.9% saline using the method of Bligh and 

Dyer.241  The chloroform phase was transferred to a clean tube and evaporated to 

dryness under a nitrogen flow.  Residual lipids were saponified and fatty acids were 

transmethylated by sequentially adding 1ml 4.25% NaOH in CHCl3:MeOH (2:1, v/v) 

and 1N HCl in saline.242  After vigorous mixing, the samples were centrifuged at 

1500g for 5 minutes.  The fatty acid methyl esters in the lower phase were evaporated 

to dryness under nitrogen and then resuspended in 50 µl undecane and analyzed by 

capillary gas chromatography (injector 240°, detector 280°).  To check the efficacy of 
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the extraction, 0.1 mg 17:0 standard (diheptadecanoyl phosphatidylcholine) was 

added.  The individual fatty acids were identified by comparison with authentic 

standards (Nu Chek Prep, Elysian, MN).  Data were analyzed using Perkin Elmer 

Totalchrom Chromatography Software, version 6.2 (Somerset, NJ). 

Infants were classified as to the method by which they were fed: exclusively 

breastfed, almost exclusively breastfed, partially breastfed, or formula fed for each of 

the first 4 postnatal months individually and combined.  Infants who were breastfed 

for all feedings per day were considered exclusively breastfed.  Infants who were 

breastfed and also supplemented 1 formula feeding per day were considered almost 

exclusively breastfed.  Infants who were fed infant formula for all daily feedings were 

considered formula fed.  All other infants were partially breastfed.   

The specific names of up to two formulas were recorded for each month.  The 

concentration of fatty acids in commercially available infant formulas was obtained 

from the U.S. Department of Agriculture Nutrient Database for Standard Reference 

(and for one formula, from the manufacturer’s website) which was used to assign 

values for the fatty acid concentrations for each formula.221, 222  

We used a combination of the laboratory values for the concentrations of 

DHA and AA in breast milk and concentrations in formula to create composite DHA 

and AA exposure variables to reflect feeding patterns over the first 4 months.  To 

account for variation in feeding method across months, the breast milk and formula 

values were weighted by the feeding method for each month: 
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Where, 

m=month since birth 

µ=concentration of the fatty acid of interest in breast milk (b) or infant formula (f) (units - 

% of total fatty acids) 

k=feeding pattern in m 

 1, if exclusive or almost exclusive breastfeeding 

 0.5, if partial breastfeeding 

 0, if formula feeding 

f=formula product (Fi≤2) 

 

For each month of exclusive breastfeeding or almost exclusive breastfeeding, the 

month was assigned the value for the DHA or AA concentration from the breast milk 

laboratory analysis.  Each month of formula feeding was assigned a fatty acid value 

based on the concentration in the particular formula product fed that month.  If more 

than one formula was fed that month, an average of the values for the 2 most often 

fed formulas served as the fatty acid value for that month.  Each month of partial 

breastfeeding was assigned a value that is one-half the laboratory value for the breast 

milk plus one-half the average formula value (up to 2 formulas) for that month.  

Continuous DHA and AA exposure variables for all 4 months combined were 

calculated by summing the monthly values.   
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Outcome measurement 

When infants reached 12 months of age, trained PIN Babies study staff 

scheduled a visit to administer the Mullen Scales of Early Learning (Mullen) 

following procedures outlined in the Mullen manual.217  The Mullen assesses 

cognitive functioning in children up to 68 months of age.  Raw scores were converted 

to age-specific t-scores for the four cognitive sub-scales (Visual Reception, Fine 

Motor, Receptive Language, Expressive Language) and the Gross Motor sub-scale of 

the Mullen.  The cognitive sub-scale scores were summed and converted to a standard 

Early Learning Composite (Composite) score following procedures outlined in the 

manual.217  Scores were not directly adjusted for gestational age at birth because we 

found that the procedure recommended in the Mullen manual overcorrected scores for 

preterm infants.243  However, an indicator of preterm status was included in 

regression models. 

 

Covariate measurement 

 Several potential covariates were measured during pregnancy. Data on 

maternal age, education, and other demographic and lifestyle covariates were 

obtained via telephone at 17 to 22 weeks gestation.  A self-administered questionnaire 

before 20 weeks gestation included the State-Trait Anxiety Inventory (STAI) to 

measure trait anxiety.193  Parity was defined as the number of prior live or stillbirths.  

Delivery information was obtained from the hospital record.  Preterm birth was 

defined as less than 37 completed weeks gestation at delivery, based on ultrasound if 

done before 22 weeks gestation or the date of the last menstrual period.  At the first 
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home visit, women were asked about current smoking and family income and 

completed the Edinburgh Postnatal Depression Scale to assess depressive 

symptoms.228 

 

Statistical analysis 

We built three sets of models corresponding to the three research questions 

mentioned previously: 

-Breastfeeding models: we compared infants who were in the exclusively or 

almost exclusively breastfed groups for the first 4 postnatal months to those who 

were formula fed among each Mullen sub-scale and the Composite score.  Infants 

who were partially breastfed were also compared to formula fed infants. 

-Breast milk models: we examined the association between the DHA and AA 

concentration of the breast milk samples and Mullen scores among infants who 

were exclusively breastfed for the first 4 postnatal months combined. 

-Combined models: we used the constructed variables that incorporated breast 

milk and infant formula DHA and AA concentration according to the feeding 

method for each month, and these were examined in relation to Mullen scores. 

 

Linear regression models were used to examine these associations.  SAS software 

version 9.1 was used for all analyses.238  The residuals were found to be approximately 

normally distributed using kernel density and Q-Q plots and to have constant variance 

using the White test.244 
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Potential covariates were identified a priori based on previous studies and 

constructed Directed Acyclic Graphs.234, 235  Adjusted models incorporated confounders 

that resulted in a change of greater than 10% in the beta coefficient for the exposure 

variable when removed from a model.  Potential covariates considered included: income 

(categorical variable for percentage of the federal poverty level), education (high school 

or less, college, more than college), maternal age (16-20, 21-30, 31+), parity (0 or 1+), 

race and ethnicity (white, non-Hispanic versus all others), infant sex, preterm birth, trait 

anxiety (tertiles), and depressive symptoms (EPDS 0-9 versus 10+).  Multiple partial F-

tests checked for the presence of effect measure modification. 

Because some women who breastfed for at least several weeks did not provide a 

breast milk sample, we explored the effect on our results of imputing missing fatty acid 

values for those women (n=88, 24.6% of women). The Markov chain Monte Carlo 

method using SAS procedures (PROC MI) produced 10 dataset replications with missing 

values imputed, and these were combined with PROC MI ANALYZE for linear 

regression analysis.236-238 

 

Results 

To be eligible for the present analysis, infants completed at least one sub-scale of 

the Mullen at (n=358; 343 completed all sub-scales).  All infants had information 

available about feeding method.  Overall, 57.8% of infants were exclusively or almost 

exclusively breastfed, 31.3% partially breastfed, and 10.9% formula fed for the 4 months.  

When examined month-by-month, it is apparent that breast feeding gradually declined 

while formula feeding increased.  By the time of the first home visit, 68 (19.0%) of the 
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358 women eligible for this analysis had discontinued breastfeeding, 231 (64.5%) 

provided a breast milk sample (230 were analyzable), 17 (4.7%) were unable to provide a 

sample, and 3 (0.8%) refused participation in breast milk collection. 

Women who discontinued breastfeeding before the visit or were unable to refused 

to provide a sample were more likely to smoke (OR=7.8, 95% CI: 3.5, 17.3), have a 

preterm infant (OR=3.0, 95% CI: 1.5, 6.3), have a 12th grade or less education (OR=7.9, 

95% CI: 3.7, 17.0), and be other than white, non-Hispanic (OR=3.4, 95% CI: 1.9, 6.3), 

compared to women who provided a breast milk sample. 

Table 5.1 shows the distribution of feeding method for each month and for all 4 

months combined.  Among infants not exclusively breastfed, the proportion of infants fed 

primarily a formula with DHA and AA added decreased from 72.4% in the first postnatal 

month to 61.2% in the fourth month (Table 5.1).  Eight infants were fed more than one 

formula product in one or more months.  Only 3 infants were fed only formulas with no 

DHA and AA added for all 4 months.  A few women (n=6) were unable to provide 

enough information about the formula they fed in one or more months to determine 

whether DHA and AA were added, and they were excluded from the combined models.  

The percent of fatty acids in the formulas ranged from 0.30 to 0.37% for DHA and 0.50 

to 0.67% for AA. 

Feedings of other foods like cereal, fruit, juice or other milk substitutes (i.e., 

cow’s milk) were not commonly seen in this cohort until infants were 3 months old.  At 

that time the most commonly eaten foods were cereal (14% of infants fed cereal one or 

more times per day), fruit or vegetables (4%), and juice (4%). 
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Table 5.2 presents characteristics of infants and mothers in the study in relation to 

the concentration of DHA and AA in breast milk, feeding method, and Mullen Composite 

scores.  Women with more years of education (t=-2.5, p=0.02) or a term infant (t=-2.5, 

p=0.02) had higher breast milk DHA levels on average than women with less education 

or an infant born preterm.  Mean DHA and AA concentration also differed by laboratory 

(for DHA: t=-6.3, p<0.01; for AA: t=-6.3, p<0.01).  Women who were white, non-

Hispanic, more highly educated, did not smoke, or had an infant at term tended to 

breastfeed more than women of another race and ethnicity, women with less education, 

smokers or women with preterm infants. 

.  The infants had mean Mullen t-scores and Composite scores similar to expected 

scores for a general population sample of infants, with mean sub-scale t-scores around 50 

and a mean Composite score of 99.  Women with more years of education and non-

smokers tended to have infants with higher Mullen Composite scores; female and term 

infants also tended to score higher.   

Only education, race and ethnicity, smoking and preterm status were found to be 

important confounders in the breastfeeding models.  In the unadjusted models, infants 

who were exclusively or almost exclusively breastfed for the first 4 months exhibited 

more advanced cognitive development compared to infants who were formula fed, but 

these differences were notably attenuated upon adjustment (Table 5.3).  Infants of women 

who discontinued breastfeeding before breast milk collection did not score lower on the 

Mullen Composite than infants of women who had a breast milk sample. 

The breast milk models included variables for lab batch, infant sex, parity, 

smoking, and preterm status as confounders.  Within the group of infants exclusively 
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breastfed for the first 4 months, there were no notable differences in Mullen sub-scale or 

Composite scores in relation to the concentration of DHA in breast milk (Table 5.4).  

Gross motor development was positively associated with AA concentration. 

In the combined models incorporating breast milk and formula DHA or AA 

concentrations and feeding method, there was no observed difference between infants in 

terms of Mullen sub-scale and Composite scores in relation to the weighted combination 

of DHA or AA in breast milk and formulas fed (Table 5.5).  Adjusted models included 

laboratory, feeding method for the 4 months combined, infant sex, parity, smoking, 

education, race/ethnicity, and preterm status as confounders. 

The results from the combined models were very similar when including imputed 

fatty acid values for women (n=88) who had no breast milk sample, so we report the 

estimates from complete case analyses. 

 

Discussion 

 Our goal was to address three questions about infant feeding and fatty acid 

exposure in relation to developmental outcomes at 12 months of age.  The breast feeding 

models addressed whether the extent of breastfeeding during the first 4 postnatal months 

is associated with cognitive development at 12 months.  Infants who were exclusively or 

almost exclusively breastfed for the first 4 months exhibited better cognitive development 

on several Mullen scales than formula fed infants but estimates were imprecise and 

attenuated after accounting for the role of maternal smoking, education, race and 

ethnicity and preterm birth.  These results are similar to some previous studies that found 

breastfeeding duration or exclusivity to be unrelated to infant development,128, 136 but in 
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contrast to other studies that noted enhanced development among breastfed infants.122, 135, 

139, 141, 142  Studies vary in their ability to control for key confounders of the association 

between breastfeeding and infant development, and this may explain some of the 

variation in results.  Also, studies often use tests of global development which may not 

reveal whether specific aspects of development are affected differently from others.   

In models focused on breast milk, we found the LCPUFA concentration to be 

unrelated to infant development among exclusively breastfed infants.  Breast milk is the 

sole source of LCPUFAs for some infants through at least the first few months of life.  

The mean DHA and AA concentrations in the breast milk samples in this study were 

similar to those in other studies of U.S. women; for instance, Birch et al. found mean 

levels of 0.29% as DHA and 0.56% as AA.63  Studying the association between breast 

milk DHA and AA levels and developmental outcomes among children who were 

exclusively breastfed avoids the potential for confounding due to the choice of feeding 

method; this is a strength of the present study.  Most studies that focused on breast milk 

as the source of DHA have been maternal supplementation trials, and results have been 

equivocal possibly because global tests of development are generally used.144-146 

Because many infants are not exclusively breastfed, we built models that 

combined information about the DHA and AA concentration of breast milk samples and 

the DHA and AA concentration of formulas fed.  The relative DHA and AA contribution 

from each source was accounted for by weighting both concentrations by the feeding 

method for each month.  We are aware of no previous studies that incorporated 

information about changing feeding methods across time with measures of LCPUFA 

exposure from multiple sources.  This method of assessing exposure may better reflect 
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the reality of infant feeding, where feeding methods and formula choices change over 

time.  The results of these combined models showed no association between the 

constructed LCPUFA variables and developmental outcomes. 

 Several potential weaknesses underlie our findings.  First, we had too few infants 

fed only formulas without DHA and AA to be able to compare them to infants fed only 

formulas with DHA and AA.  When these data were collected, commercial formulas with 

DHA and AA added already comprised a substantial proportion of the formulas on the 

market.  Second, our method of assessing LCPUFA exposure by combining breast milk 

and formula sources is novel.  It treats LCPUFAs from breast milk and from formula as 

equally available to the infant; it is possible that the physiologic benefit to infants from 

LCPUFAs varies by source.  The method assumes the concentration of DHA and AA in 

breast milk is constant across lactation which is supported by recent studies, but may not 

be true for all women.80, 81  While our infant feeding interview was very detailed, it could 

not quantify amount consumed.   

Some infants were fed foods other than breast milk or formula one or more times 

per day by the time they reached 4 months of age.  These foods could be an additional 

source of LCPUFAs.  Typical baby foods are not a significant source of DHA (baby 

foods with DHA added were not commercially available during the time of this study), 

unless mixed with breast milk or formula.  Feeding baby foods could reduce overall 

LCPUFA exposure since the foods can displace breast milk and formula in the diet.  It 

was not possible with the available data to assess LCPUFA exposure from baby foods. 

Finally, because some women stopped breastfeeding before the study visit or 

refused to provide a breast milk sample, we were unable to directly measure their infants’ 
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exposure via breast milk and so they were excluded from the combined models.  We 

imputed breast milk DHA and AA values to be able to include them in the models and 

explore whether results would be altered.  Results were virtually unchanged, so we opted 

to present results with these women excluded.  

This study has several strengths; the first is generalizability.  Much of the research 

on the potential benefits of LCPUFAs has adopted a randomized design at least in part to 

eliminate issues of confounding.  Many of these studies tested formulas that were 

developed specially for research purposes and not for wide consumption.  Parents who 

were compliant with the study protocols would have fed their infants exclusively the 

assigned formula product and not breast milk or other formulas.  It is unclear whether the 

experience of the infants who participated in these studies is representative of formula-

fed infants in the general population who are fed commercially available formulas.  Also, 

many infants in the general population are fed some breast milk and some formula, and 

their experience is generally not reflected in these studies.   

Second, we incorporated LCPUFA content from breast milk and formula with 

detailed, monthly information about feeding method.  Most studies do not take into 

account the wide variation in the extent to which infants are breastfed or formula fed and 

the differences in LCPUFA content.  Previous studies have not had the benefit of this 

detailed information to examine dose-response relationships.  Also, we were able to 

include infants fed (for one to three months) formulas with no DHA or AA added.  This 

increased the variability of exposure compared to what might be observed in a sample of 

infants born more recently because almost all formula products today contain DHA and 

AA.  Most randomized studies employed intent-to-treat analysis.  This is normally a 
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strength, but it may obscure variations in exposure that occur.15, 112  For instance, many 

infants in the general population are exposed to LCPUFAs from both breast milk and 

formula.  Measuring exposure based on the actual breast feeding patterns and 

combinations of breast milk and formulas infants are fed would be more applicable to the 

general population.  A major strength of a randomized design is control of confounding 

factors.  However, this advantage may not outweigh the disadvantage of the lack of 

generalizability; a non-randomized design with a closer-to-representative sample and 

good control of confounding factors might be more informative in this case.  

Third, this study was able to account for several factors (e.g., education, smoking) 

that confound the association between feeding method and infant development.  Studies 

that compare breastfed children to formula-fed children are subject to criticism because 

of inadequate control of important confounding variables.  Because it is considered 

unethical to randomize infants to breastfeeding versus formula feeding, most randomized 

studies only randomize within the formula fed group (to a LCPUFA formula or a control 

formula).  The breastfed group is generally made up of infants who mothers intend to 

breastfeed while the formula-fed groups are infants whose mothers intend to formula 

feed.104, 116  Thus, those studies are subject to some of the same confounding issues as 

observational studies. 

Finally, few studies simultaneously assessed multiple aspects of infant 

development, not just global development, in relation to feeding method or LCPUFA 

exposure.  The Mullen offers sub-scales corresponding to specific developmental areas, 

exhibits high test-retest reliability, and correlates strongly with the Bayley MDI.217  To 

our knowledge, the Mullen has not previously been used to examine the associations 
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between feeding method or LCPUFA exposure and infant development.  This study 

employed trained interviewers who used standard assessment techniques with high 

reliability.   

 

Conclusion 

 The results of our analysis suggest that differences in visual reception, 

language, and motor skills, and overall cognitive development among infants at 12 

months may be explained by factors other than DHA and AA exposure, breastfeeding 

duration and exclusivity, and the socio-demographic factors that underlie choices 

about feeding method.  It is possible that the effects of LCPUFA intake are limited to 

visual acuity and are transient, or that more lasting effects do not become apparent 

until after infancy.  Continued efforts to improve LCPUFA exposure assessment in 

population-based studies may clarify possible associations. 
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Table 5.1.  Infant feeding characteristics in the PIN Babies Study, 2002-2006 
 1st postnatal 

month (n, %) 
2nd postnatal 
month 

3rd postnatal 
month 

4th postnatal 
month 

First 4 months 
combined 

Feeding methoda      
Exclusively or almost exclusively breastfed 266 (74.3) 251 (70.1) 229 (64.0) 215 (60.1) 207 (57.8) 

Partially breastfed 53 (14.8) 36 (10.1) 41 (11.5) 40 (11.2) 112 (31.3) 
Formula fed 39 (10.9) 71 (19.8) 88 (24.6) 103 (28.8) 39 (10.9) 

Primary formula fed (for those not exclusively breastfed)      
DHA, AA added 79 (72.4) 85 (68.0) 92 (63.4) 101 (61.2) -- 

No DHA, AA added 24 (22.0) 34 (27.2) 49 (33.8) 61 (37.0) -- 
unknown 6 (5.5) 6 (4.8) 4 (2.8) 3 (1.8) -- 

a Infants who were breastfed for all feedings per day for the first 4 postnatal months were considered exclusively breastfed.  Infants who were breastfed plus up to 
1 formula feeding per day were considered almost exclusively breastfed.  Infants who were fed infant formula for all daily feedings were considered formula fed.  
All other infants were partially breastfed. 
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Table 5.2.  Characteristics of Infants in the PIN Babies Study and Associations with Breast Milk DHA and AA Concentrations, Feeding Method, and 
Mullen Scales of Early Learning Composite Score, 2002-2006 
 Mean DHA 

concentration of 
breast milk (% of 
total fatty acids) 
(SD) 

Mean AA 
concentration of 
breast milk (% of 
total fatty acids) 
(SD) 

Feeding method (first 4 postnatal months)a Mullen 
Composite 
(mean, SD) 

   Exclusively or almost 
exclusively breastfed  
(n, %) 

Partially 
breastfed  
(n,%) 

Formula fed 
(n,%) 

 

Overall 0.28 (0.22) 0.57 (0.20) 207 (57.8) 112 (31.3) 39 (10.9) 99.4 (13.6) 
Race and ethnicity       

White, non-Hispanic 0.28 (0.23) 0.56 (0.18) 184 (65.0) 77 (27.2) 22 (7.8) 100.1 (13.6) 
All others 0.25 (0.17) 0.60 (0.30) 23 (30.7) 35 (46.7) 17 (22.7) 97.1 (13.8) 

Maternal education       
High school or less 0.20 (0.10) 0.50 (0.19) 7 (14.0) 29 (58.0) 14 (28.0) 95.7 (14.7) 

Greater than high school 0.28 (0.22) 0.57 (0.20) 200 (64.9) 83 (27.0) 25 (8.1) 100.1 (13.4) 
Preterm birth       

Preterm 0.21 (0.11) 0.56 (0.17) 14 (31.1) 22 (48.9) 9 (20.0) 94.1 (14.8) 
Term 0.28 (0.23) 0.57 (0.21) 193 (61.7) 90 (28.8) 30 (9.6) 100.2 (13.3) 

Smoking       
Yes 0.38 (0.28) 0.57 (0.19) 10 (22.7) 23 (52.3) 11 (25.0) 94.3 (12.6) 
No 0.27 (0.22) 0.57 (0.20) 197 (62.7) 89 (28.3) 28 (8.9) 100.1 (13.6) 

Parity       
0 0.30 (0.24) 0.58 (0.22) 104 (60.5) 55 (32.0) 13 (7.6) 99.6 (13.9) 

>=1 0.25 (0.20) 0.55 (0.18) 103 (55.4) 57 (30.7) 26 (14.0) 99.3 (13.4) 
Infant sex       

Female 0.30 (0.23) 0.58 (0.22) 94 (57.3) 54 (32.9) 16 (9.8) 102.3 (14.0) 
Male 0.26 (0.21) 0.55 (0.18) 113 (58.6) 57 (29.5) 23 (11.9) 97.1 (12.8) 

Laboratory       
Minnesota 0.20 (0.15) 0.50 (0.10) 109 (85.2) 19 (14.8) -- 100.6 (14.2) 

North Carolina 0.37 (0.26) 0.65 (0.26) 86 (83.5) 17 (16.5) -- 101.7 (13.0) 
a Infants who were breastfed for all feedings per day for the first 4 postnatal months were considered exclusively breastfed.  Infants who were breastfed plus up to 
1 formula feeding per day were considered almost exclusively breastfed.  Infants who were fed infant formula for all daily feedings were considered formula fed.  
All other infants were partially breastfed. 
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Table 5.3.  Association between feeding method for the first four postnatal months and scores on the Mullen Scales of Early Learning, PIN Babies 
study, 2002-2006 
Mullen Scales of Early Learning  Feeding Method (formula fed=reference, n=39) 
  Exclusively or almost exclusively breastfed (n=207) Partially Breastfed (n=112) 
Gross motor    
 β (CI) (unadjusted model) 1.7 (-2.4, 5.8) 0.9 (-3.5, 5.3) 
 β (CI) (adjusted model) b 1.1 (-3.4, 5.5) 0.8 (-3.6, 5.2) 
Visual reception    
 β (CI) (unadjusted model) 4.4 (0.7, 8.2) 0.6 (-3.4, 4.7) 
 β (CI) (adjusted model) b 2.5 (-1.6, 6.6) 0.0 (-4.1, 4.0) 
Fine motor    
 β (CI) (unadjusted model) 4.6 (0.8, 8.3) 2.2 (-1.8, 6.3) 
 β (CI) (adjusted model) b 2.7 (-1.4, 6.8) 1.5 (-2.6, 5.6) 
Receptive language    
 β (CI) (unadjusted model) 1.2 (-1.6, 3.9) -1.2 (-4.1, 1.7) 
 β (CI) (adjusted model) b 0.7 (-2.3, 3.7) -1.3 (-4.2, 1.7) 
Expressive language    
 β (CI) (unadjusted model) 2.2 (-0.9, 5.3) 0.4 (-2.9, 3.7) 
 β (CI) (adjusted model) b 1.7 (-1.7, 5.1) 0.3 (-3.1, 3.6) 
Composite    
 β (CI) (unadjusted model) 6.2 (1.6, 10.8) 1.0 (-4.0, 5.9) 
 β (CI) (adjusted model) b 4.0 (-1.1, 9.0) 0.2 (-4.8, 5.2) 

a Infants who were breastfed for all feedings per day for the first 4 postnatal months were considered exclusively breastfed.  Infants who were breastfed plus up to 
1 formula feeding per day were considered almost exclusively breastfed.  Infants who were fed infant formula for all daily feedings were considered formula fed.  
All other infants were partially breastfed. 
b Adjusted models include education, race and ethnicity, smoking, and preterm status. 
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Table 5.4.  Association between DHA, AA in breast milk and scores on the Mullen Scales of Early Learning among infants exclusively breastfed (n=183) 
the first 4 postnatal months, PIN Babies Study, 2002-2006 
  Breast milk DHA (continuous) Breast milk AA (continuous) 
Mullen Scales of Early Learning    
Gross motor    
 β (CI) (unadjusted model) a 5.6 (-2.8, 13.9) 10.6 (0.5, 20.7) 
 β (CI) (adjusted model) b 3.9 (-4.6, 12.4) 9.0 (-1.0, 19.0) 
Visual reception    
 β (CI) (unadjusted model) a -3.5 (-11.1, 4.1) 4.3 (-4.7, 13.3) 
 β (CI) (adjusted model) b -2.7 (-10.5, 5.1) 4.4 (-4.6, 13.3) 
Fine motor    
 β (CI) (unadjusted model) a 2.8 (-4.8, 10.5) 3.8 (-5.3, 12.8) 
 β (CI) (adjusted model) b 2.3 (-5.2, 9.9) 1.7 (-7.0, 10.4) 
Receptive language    
 β (CI) (unadjusted model) a 0.7 (-4.5, 5.9) 3.5 (-2.8, 9.8) 
 β (CI) (adjusted model) b -0.7 (-5.9, 4.5) 2.2 (-4.0, 8.5) 
Expressive language    
 β (CI) (unadjusted model) a -0.4 (-6.3, 5.6) 4.7 (-2.4, 11.9) 
 β (CI) (adjusted model) b -1.6 (-7.6, 4.4) 3.6 (-3.6, 10.8) 
Composite    
 β (CI) (unadjusted model) a -0.3 (-9.5, 8.8) 8.2 (-2.6, 19.1) 
 β (CI) (adjusted model) b -1.3 (-10.3, 7.7) 6.1 (-4.3, 16.5) 

aUnadjusted models include a variable for laboratory 
bAdjusted models include lab batch, infant sex, parity, smoking, and preterm status
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Table 5.5.  Association between DHA, AA in breast milk and infant formula weighted by feeding method for the first four postnatal months and scores 
on the Mullen Scales of Early Learning, PIN Babies Study, 2002-2006 
  DHA in breast milk and formula 

(continuous) 
AA in breast milk and formula 
(continuous) 

Mullen Scales of Early Learning    
Gross motor    
 β (CI) (unadjusted model) a 1.3 (-0.7, 3.2) 1.4 (-0.9, 3.6) 
 β (CI) (adjusted model) b 1.1 (-0.9, 3.1) 1.2 (-1.1, 3.4) 
Visual reception    
 β (CI) (unadjusted model) a -0.2 (-2.0, 1.7) 0.8 (-1.3, 2.8) 
 β (CI) (adjusted model) b -0.1 (-2.0, 1.8) 0.7 (-1.3, 2.8) 
Fine motor    
 β (CI) (unadjusted model) a 0.5 (-1.4, 2.3) 0.3 (-1.7, 2.4) 
 β (CI) (adjusted model) b 0.2 (-1.7, 2.0) 0.0 (-2.0, 2.0) 
Receptive language    
 β (CI) (unadjusted model) a 0.3 (-1.0, 1.5) 0.4 (-1.0, 1.9) 
 β (CI) (adjusted model) b -0.1 (-1.4, 1.2) 0.3 (-1.2, 1.7) 
Expressive language    
 β (CI) (unadjusted model) a -0.2 (-1.6, 1.2) 1.0 (-0.6, 2.7) 
 β (CI) (adjusted model) b -0.6 (-2.1, 0.8) 0.7 (-0.9, 2.3) 
Composite    
 β (CI) (unadjusted model) a -0.0 (-2.3, 2.2) 1.2 (-1.3, 3.7) 
 β (CI) (adjusted model) b -0.5 (-2.7, 1.7) 0.9 (-1.5, 3.4) 
aUnadjusted models include a variable for laboratory 
bAdjusted models include laboratory, feeding method for first 4 postnatal months, infant sex, parity, smoking, education, race/ethnicity, and preterm status



 

 

 
CHAPTER 6 

RESULTS 

Specific Aim 2: A prospective study of maternal anxiety, perceived stress, and 

depressive symptoms in relation to infant cognitive development 

 
Introduction 

Infancy is a period of rapid cognitive development, transitioning between the critical 

early brain development in utero and the emergence of more advanced abilities in later 

childhood.  The early psychosocial environment of the child plays a role in mental and 

emotional health across the lifespan.  Maternal anxiety, stress, and depression are common 

psychosocial influences of concern for child development.  Pregnancy and new motherhood 

may be particularly stressful periods for women; with postpartum depression affecting up to 

19% of new mothers.23 

Anxiety, stress, and depressive symptoms are inter-related phenomena; women who 

perceive their circumstances as highly stressful are also likely to experience more depressive 

symptoms or anxiety.25  Mothers who experience significant anxiety, stress, or depression 

may provide a less stimulating environment for their children’s development at least in part 

because they may react inappropriately to their children’s cues.184, 245, 246  Numerous studies 

have observed an association between maternal postpartum or chronic depressive symptoms 

and poorer child performance on cognitive and behavioral assessments.26-35  Studies noted 
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that greater maternal stress and anxiety interfere with mother-child interaction, with 

consequences for infant temperament and cognition.36-39  However, few studies have reported 

negative effects as early as infancy, and those results have been inconsistent.29, 40, 41  

Variability across studies could be due to variation in the timing and methods of assessing 

maternal psychological health, the timing and challenges of assessing very young children, 

insufficient statistical power to detect small effects, and varying ability to control for key 

confounders.  Additionally, previous studies have used a variety of instruments to assess 

child development, often assessing development globally.  Some areas of development may 

be more affected by maternal affect than others; thus separately evaluating language, visual 

reception, and motor skills provide more detail about potential associations. 

 This study examines maternal trait anxiety, perceived stress, and depressive 

symptoms during the pre- and early post-natal period in relation to infant visual reception, 

language, and motor skills, and overall cognitive development as measured via the Mullen 

Scales of Early Learning (the Mullen).   

 

Methods 

Study population 

The Data were collected as part of the Pregnancy, Infection, and Nutrition Study 

(PIN) and its postnatal follow-up components, PIN Postpartum and PIN Babies.  The 

goal of the PIN Study is to identify factors associated with preterm birth.  The goal of 

PIN Postpartum is to identify modifiable behaviors associated with high gestational 

weight gain and postpartum weight retention.45  PIN Babies focuses on child 

developmental outcomes in relation to the prenatal and early childhood environment.  
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The University of North Carolina Biomedical Institutional Review Board approved all 

protocols; all participants provided informed consent.   

 Women (n=1,169) were eligible for PIN Postpartum if they completed the third 

wave of the PIN Study, agreed to be contacted after delivery, and did not become 

pregnant again in the first year postpartum.  Medical constraints (n=24), inability to 

recontact (n=207) or schedule (n=62), and refusal (n=187) resulted in 689 women who 

participated in a visit scheduled in the fourth postpartum month.  Of these, 45 became 

pregnant again, 62 were unreachable, 29 moved from the study area, and 20 left the study 

before the PIN Babies visit at 12 months could be scheduled.  The PIN Babies protocol 

began after PIN Postpartum began, and 125 infants were ineligible to complete the 

protocol because they reached 12 months of age before the study began conducting the 

assessments in the home.  Among the remaining 408 eligible maternal-infant pairs, some 

did not participate in the Mullen because the child was not present (n=11, e.g. the mother 

completed the interview from work); the child was asleep, sick, or fussy (n=21); the 

mother refused the child’s participation (n=8); there was not enough time during the visit 

(n=3); or other reasons (n= 7). 

 

Data collection 

 During pregnancy, information about depressive symptoms was collected via self-

administered questionnaires before 20 weeks gestation and at 24-29 weeks gestation 

using the Centers for Epidemiologic Studies Depression (CES-D) scale.212  The CES-D is 

intended to measure depressive symptoms in general population samples.  The 

questionnaire before 20 weeks gestation included the State-Trait Anxiety Inventory 
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(STAI), the Rosenberg Self-Esteem Scale, and the MOS Social Support scale.193, 213, 214  

The trait score of the STAI is a measure of an individual’s general feelings of anxiety and 

is relatively stable over time, in contrast to state anxiety which is situational.193  Age, 

education, income and other demographic and lifestyle covariates were obtained via 

telephone at 17-22 weeks gestation.  Delivery information was obtained from the hospital 

record.  Preterm birth was defined as less than 37 completed weeks gestation at delivery, 

based on ultrasound if done before 20 weeks gestation or the date of the last menstrual 

period. 

The home visit in the fourth postpartum month collected information on maternal 

and infant health and nutrition and updated information about family circumstances and 

maternal psychosocial health.  The interview included the Edinburgh Postnatal 

Depression Scale (EPDS), a screening tool for depressive symptoms, and the 10-item 

Perceived Stress Scale to measure the extent to which one’s circumstances are perceived 

as stressful.215, 216 

At 12 months postpartum, study staff administered the Mullen following 

procedures outlined in the Mullen manual.  The Mullen is a commonly used assessment 

of cognitive functioning appropriate for children up to 68 months of age.  Five sub-scales 

separately assess visual reception, expressive and receptive language, and fine and gross 

motor development.  All but gross motor are combined to comprise a composite score 

reflecting overall cognitive ability. 
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Statistical analysis 

Continuous scores from the trait anxiety scale of the STAI and the Perceived 

Stress Scale were categorized into tertiles based on their observed distribution in the 

study participants.  A variable was constructed to examine depressive symptoms across 

both the antepartum and postpartum periods based on scores on the CES-D and EPDS.  

Women were classified as having few depressive symptoms postpartum (EPDS=0-9) 

(regardless of antepartum symptoms), minor or major depressive symptoms only during 

the postpartum period (EPDS > 9 and both CES-D scores=0-16), and minor or major 

depressive symptoms during both the postpartum and antepartum periods (EPDS > 9 and 

at least one CES-D score > 16).  The 9/10 cutpoint for the EPDS has been validated in 

previous studies to measure minor depression or increase the sensitivity of the instrument 

to depression, and it has been shown to identify cases of clinical depression with more 

than 90% sensitivity.228-231  The 16/17 cutpoint for the CES-D was chosen because 

several studies have reported reduced specificity of the CES-D using the 15/16 cutpoint 

for pregnant women because some symptoms of pregnancy (e.g., fatigue) are similar to 

CES-D components.225-227 

Raw scores were converted to age-specific t-scores for the four cognitive sub-

scales (Visual Reception, Fine Motor, Receptive Language, Expressive Language) and 

the Gross Motor sub-scale of the Mullen.  The cognitive t-scores were summed and 

converted to a standard Early Learning Composite (Composite) score following 

procedures outlined in the manual.217 

All analyses adjusted for preterm status; however scores were not directly 

adjusted for gestational age at birth because we found the procedure recommended in the 
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manual potentially overcorrected scores for preterm infants.  The age-adjusted mean 

score for preterm infants was higher than the mean score for term infants for the 

Composite and all of the Mullen sub-scales except the Fine Motor scale, although the 

difference was statistically significant for the Receptive Language sub-scale only (age-

adjusted mean Receptive Language t-score for preterm infants=48.9, term infants=45.9, 

t=2.3, p=0.02). 

Linear regression models were used to examine the association between maternal 

anxiety, perceived stress, or depressive symptoms and infant scores on each Mullen sub-scale 

and the Composite.  The residuals were found to be approximately normally distributed using 

kernel density and Q-Q plots and to have constant variance using the White test and plots of 

the residuals versus predicted values.244  Observations were considered to be independent 

because only one child per family participated.  The exposure-outcome relationships 

appeared to be linear.  Since the exposure categories have an inherent ordering, tests for 

linear trend for each unadjusted model were conducted by including in a regression model a 

continuous variable for the median value of the anxiety or stress score for each tertile of 

anxiety or stress.  To assess a linear trend for the depressive symptoms models, linear 

regression models included a categorical three-level depressive symptoms variable.   

Multiple partial F-tests checked for effect measure modification by poverty, maternal 

pre-pregnancy body mass index (BMI), education, social support, infant sex, preterm birth, 

presence of a spouse/partner, and one or more of trait anxiety, depressive symptoms, and 

perceived stress depending on the exposure of interest.  Potential confounders were identified 

a priori based on previous studies and constructed Directed Acyclic Graphs.234, 235  Poverty, 

maternal pre-pregnancy BMI, social support, infant sex, and presence of a spouse/partner 
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were considered potential confounders a priori but were eliminated via the change-in-

estimate approach.247  This produced a final set of covariates that resulted in a change of 

greater than 10% in the beta coefficient for the exposure variable when removed from a 

model.247  Adjusted models incorporated confounders based on this selection process. 

To include women with missing data on anxiety (5.1% of women), covariates, or 

depressive symptoms at 1 or 2 time points (15.8% missing 1 time point, 3.4% missing 2 time 

points), multiple imputation was used to impute missing data .  The Markov chain Monte 

Carlo method using SAS procedure (PROC MI) produced 10 replications of the dataset with 

missing values imputed.236-238  The imputation model included: CES-D scores during 

pregnancy, EPDS score, perceived stress scores (17-22 weeks gestation,  27-30 weeks 

gestation, fourth month postpartum), trait anxiety score, state anxiety score at less than 20 

weeks gestation, Rosenberg self-esteem score, MOS social support score, maternal age, 

family income as a percentage of the federal poverty level, maternal pre-pregnancy BMI, 

education, gestational age at delivery, parity, maternal race, infant sex, each Mullen sub-scale 

score and Composite score, and infant scores on the MacArthur Communicative 

Development Inventory at 12 months.248  (For the purposes of this publication, we focused on 

the Mullen; MacArthur scores were not analyzed.)  The imputed datasets were analyzed 

using SAS (version 9.1) linear regression procedures and combined with PROC 

MIANALYZE to produce the effect estimates reported.238  

 

Results 

To be eligible for this analysis, infants must have completed at least one sub-scale of 

the Mullen (n=358; 343 completed all).  Table 6.1 shows trait anxiety, depressive symptoms, 
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and perceived stress categories in relation to participant characteristics.  Approximately 10% 

of women experienced minor or major depressive symptoms during both the ante- and 

postpartum periods.  Higher levels of anxiety, stress, and depressive symptoms were 

associated with younger maternal age, low self-esteem, poverty, and fewer years of 

education, but not with preterm birth.  Anxiety, stress, and depressive symptoms were 

positively correlated with each other (Spearman 
∧

ρ  for anxiety and stress=0.41 (p=0.04), for 

anxiety and depressive symptoms=0.30 (p=0.04), for stress and depressive symptoms=0.51 

(p=0.03)). 

Infants had mean Mullen t-scores and Composite scores similar to expected for a 

general population sample of infants, with mean sub-scale t-scores around 50 and a mean 

Composite score of 99 (Table 6.1).  Older and more educated mothers tended to have infants 

with higher Fine Motor scores (data not shown).  Infants of women with more education also 

tended to score higher on the Composite.  Preterm infants had lower Gross Motor, Fine 

Motor, and Composite scores than term infants. 

Maternal anxiety was inversely associated with Receptive Language t-scores; infants 

of mothers in the highest anxiety group scored slightly lower than those in the lowest group, 

in a model adjusted for preterm birth, education, and self-esteem (Table 6.2).  Anxiety was 

also associated with lower Composite scores.  Trend tests suggested a linear trend across 

categories of anxiety for Receptive Language and Composite scores; increasing levels of 

anxiety were associated with decreasing Mullen scores, although all estimates were 

imprecise. 

Maternal antepartum and postpartum depressive symptoms were not associated with 

Mullen scores (Table 6.3).  The results were similar for maternal perceived stress, with the 
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exception of a positive association with Receptive Language scores.  No effect measure 

modification was detected for the associations evaluated in Tables 6.2-6.4. 

To address the possibility that women in PIN who refused or who were unable to 

participate in the study through the 12-month visit might be more likely to have significant 

levels of anxiety, stress and depressive symptoms and an infant who would have scored 

poorly on the Mullen, we examined the available antepartum anxiety, stress and depressive 

symptoms data.  Women who were eligible but refused, were unreachable or not able to be 

scheduled for a visit in the fourth postpartum month were more likely to score above 16 on 

the CES-D at either time point and to score in the highest trait anxiety tertile (OR for CES-D 

17+=1.5, 95% CI: 1.1, 2.0; OR for highest anxiety tertile=1.4, 95% CI: 1.1, 1.8) compared to 

women who participated in the first postpartum visit.  Those who participated in the first 

postpartum visit but not the second visit at 12 months were more likely to score in the highest 

perceived stress tertile than those who participated in both visits (OR for the highest 

tertile=1.7, 95% CI: 1.1, 2.5), but scored no differently on the EPDS or trait anxiety scales 

(OR for EPDS 10+=1.2, 95% CI: 0.7, 1.9; OR for highest anxiety tertile=1.0, 95% CI: 0.6, 

1.5).  It is not possible to determine with available data whether the children who 

discontinued participation would have had lower Mullen scores.  However, we examined 

other infant characteristics that might be related to Mullen scores.  Infants who were born 

preterm were as likely as term infants to participate in the home visits (2
1χ  for the first 

visit=0.18, p=0.67; 2
1χ

 for the second visit=0.20, p=0.66).  Maternal anxiety, stress, or 

depressive symptoms were no more strongly associated with an infant being preterm among 

those who stopped participation after the first home visit compared to those who completed 

the second visit. 
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Discussion 

Elevated maternal trait anxiety was found to be associated with lower Receptive 

Language and Composite scores in adjusted models.  Receptive language reflects the infant’s 

use of both visual and auditory skills to process information.  It is possible that mothers with 

high anxiety levels participate in fewer language stimulation activities with their infants, or it 

could be that unmeasured factors underlying maternal anxiety could affect receptive 

language ability as well.  Previous research has found anxious mothers to be less likely to 

speak to their infants and less sensitive and responsive to their needs.249,250  The association 

between maternal anxiety and Composite scores suggests anxiety may exert a slight negative 

effect across several areas of motor and language development, if not only through receptive 

language. 

The observed difference between infants exposed to the highest levels of maternal 

anxiety and those exposed to the lowest levels was small (approximately one-third of a 

standard deviation) and imprecise.  In comparison, a study comparing “late-talking” toddlers 

to normally developing toddlers observed a 9.5 point difference.251  However, even small 

differences within the normal range can be meaningful at the population level.252 

High levels of perceived stress were associated with slightly higher Receptive 

Language t-scores.  This is unexpected in light of previous studies that assessed maternal 

stress in relation to infant behavior and global development.253, 254  There were no significant 

differences in other Mullen sub-scale or Composite scores between infants exposed to 

maternal trait anxiety, postpartum stress, or antepartum and postpartum depressive symptoms 

after adjusting for key confounders. 
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Several factors may have contributed to the null results observed here.  First, many 

women in this study were well-educated, had adequate financial resources, and reported high 

levels of social support.  These factors may buffer the child’s development from detrimental 

effects of depressive symptoms or stressful circumstances.   

Second, women who experienced significant depressive symptoms or anxiety during 

pregnancy or high stress levels postpartum were somewhat less likely to participate 

postpartum.  If these children would also have scored lower on the Mullen scales than 

participating children, these results may underestimate the true association, but the data to 

evaluate this were unavailable. 

Third, stress, anxiety, and depression can occur together and be easily confounded by 

each other and other demographic factors.  This study was able to examine the role of several 

factors that may affect the observed associations between maternal anxiety, stress, and 

depressive symptoms and infant development.  The lack of control for key demographic and 

psychosocial confounders could have contributed to spurious or exaggerated associations 

between depressive symptoms and infant development in previous studies. 

Finally, most previous studies reporting detrimental effects of maternal anxiety, stress 

or depression were focused on older children.  Our finding that anxiety was associated with 

poorer receptive language among infants is one of a few published studies to observe 

differences in infants.  It is possible that additional effects of these exposures might become 

apparent when the children are older. 

This sample of infants was larger and more population-based than many previous 

clinical samples, which may have enabled us to detect subtle differences between groups.  

However, because the infants were generally developing typically, differences among them 
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due to maternal psychosocial characteristics may be slight and difficult to detect, and may 

partially account for null results.  Also, we used a standard but lower threshold for the EPDS 

to enhance the sensitivity for a broader group of women who may have had minor depression 

in the postpartum period.215  This inclusiveness may explain our inability to observe an 

association between depressive symptoms and infant development because maternal stress, 

depression, and anxiety may only adversely affect infant development when it is severe.  We 

examined results using a cutpoint of 12/13 for the EPDS, and most parameter estimates were 

larger than our reported results but very imprecise.  A larger sample of participants would 

enable detection of differences with greater precision. 

The multiple imputation techniques assume that the missing data can be predicted 

from the available data; however, no statistical test can verify this.236  The wide range of 

demographic and psychosocial variables in this dataset that were used to impute missing 

values provides some assurance that missingness was reasonably predicted, and imputation 

produced slightly more precise results than complete case analyses. 

Several strengths distinguish this study.  First, few studies have simultaneously 

assessed multiple aspects of infant development, not just global development, in relation to 

these exposures.  The Mullen offers sub-scales corresponding to specific developmental 

areas, exhibits high test-retest reliability, and correlates strongly with the Bayley MDI.217  

The Mullen has not previously been used to examine the associations between maternal 

anxiety, stress and depressive symptoms and child development in a sample of typically 

developing infants.  Some previous studies relied on maternal report for measures of infant 

outcomes which can inflate the association between poor maternal psychological health and 

infant behavior since depressed mothers may be more critical or less observant of their 



 

 98 

 

child’s development.  This study employed trained interviewers who used standard 

assessment techniques with high reliability.  This study also relied on well-established, 

validated instruments for measuring anxiety, stress, and depressive symptoms.  The CES-D, 

EPDS, STAI, and Perceived Stress scales are commonly used instruments in psychosocial 

research and have been applied in many studies of pregnancy or postpartum health.37, 40, 187, 

226, 255  Finally, the longitudinal design of this study allowed assessment of maternal 

psychological health in the antepartum and postpartum periods before the developmental 

outcomes were assessed at 12 months.  This avoided assessing the exposures based on recall 

or confusing the temporal sequence of the exposures and outcomes. 

 

Conclusion 

Infants of mothers with elevated levels of trait anxiety exhibited slightly lower 

receptive language and overall cognitive ability compared to infants of mothers with low 

levels of trait anxiety, after adjusting for preterm birth, maternal education, and self-esteem.  

No similar associations were observed for infants exposed to maternal minor or major 

depressive symptoms or to perceived stress.  The effects of maternal psychological disorders 

might be more likely to produce subtle shifts in development rather than developmental 

delays.  Continued efforts to follow this cohort for future language and general cognitive 

development would be valuable to see if the associations with anxiety persist or if 

associations with maternal depressive symptoms or stress become apparent.  Clinicians 

should be aware of the potential detrimental effect of maternal anxiety on very early child 

development.
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Table 6.1. Characteristics of mothers and infants in the Pregnancy, Infection, and Nutrition (PIN), PIN Postpartum and PIN Babies 
Studies and associations with maternal depressive symptoms, trait anxiety, and perceived stress, 2002-2006 
 n (%) State-Trait Anxiety Inventory (trait 

anxiety score) 
Antepartum and postpartum depressive 

symptoms 
Cohen’s Perceived Stress 

Scale score 
Mullen 

Scales of 
Early 

Learning 
Composite 

      Few 
symptoms 
postpartum 

Minor or 
major 
depressive 
symptoms 
postpartum 

Minor or 
major 
symptoms 
postpartum 
and 
antepartum 

    

  Score = 
0-<31  
(n, %) 

31-<40 
 (n, %) 

40+ 
(n, %) 

Missing 
(n, %) 

EPDS 
score=0-9 
(n, %) 

EPDS score 
10+ and 
both CES-D 
scores=0-16 
(n, %) 

EPDS score 
10+ and at 
least 1 CES-
D score= 
17+ (n, %) 

Score= 
0-<11 
(n, %)  

11-<17  
(n, %) 

17+ 
 (n, %) 

Mean, SD 

All 
women (n, 
%) 

358 
(100) 

118 
(33.0) 

127 
(35.5) 

91 
(25.4) 

22 (6.2) 302 (84.4) 21 (5.9) 35 (9.8) 120 
(33.5) 

150 
(41.9) 

88 
(24.6) 

99.4 
(13.6) 

Maternal 
age 
(years) 

            

17-20 16 (4.5) 1 (6.3) 4 (25.0) 9 
(56.3) 

2 (12.5) 8 (50.0) 1 (6.3) 7 (43.8) 2 (12.5) 5 (31.3) 9 (56.3) 96.7 
(17.2) 

21-30 167 
(46.6) 

45 
(27.0) 

55 
(32.9) 

54 
(32.3) 

13 (7.8) 139 (83.2) 9 (5.4) 19 (11.4) 57 
(34.1) 

66 
(39.5) 

44 
(26.4) 

98.8 
(13.5) 

31-47 175 
(48.9) 

72 
(41.1) 

68 
(38.9) 

28 
(16.0) 

7 (4.0) 155 (88.6) 11 (6.3) 9 (5.1) 61 
(34.9) 

79 
(45.1) 

35 
(20.0) 

100.3 
(13.4) 

Self-
esteem 

            

0-49 106 
(29.6) 

9 (8.5) 36 
(34.0) 

61 
(57.6) 

0 (0.0) 76 (71.7) 5 (4.7) 25 (23.6) 23 
(21.7) 

41 
(38.7) 

42 
(39.6) 

99.7 
(13.6) 

50-55 114 
(31.8) 

34 
(29.8) 

57 
(50.0) 

23 
(20.2) 

0 (0.0) 97 (85.1) 10 (8.8) 7 (6.1) 35 
(30.7) 

51 
(44.7) 

28 
(24.6) 

99.3 
(13.3) 

56-60 114 
(31.8) 

75 
(65.8) 

32 
(28.1) 

7 
(6.1) 

0 (0.0) 109 (95.6) 3 (2.6) 2 (1.8) 57 
(50.0) 

47 
(41.2) 

10 (8.8) 100.1 
(13.7) 
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0 

missing 24 (6.7) 0 (0.0) 2 (8.3) 0 
(0.0) 

22 
(91.7) 

20 (83.3) 3 (12.5) 1 (4.2) 5 (20.8) 11 
(45.8) 

8 (33.3) 96.4 
(15.4) 

Poverty             
<185% of 

federal 
level 

49 
(13.7) 

3 (6.1) 14 
(28.6) 

23 
(46.9) 

9 (18.4) 32 (65.3) 5 (10.2) 12 (24.5) 10 
(20.4) 

18 
(36.7) 

21 
(42.9) 

96.7 
(15.0) 

185-350% 73 
(20.4) 

22 
(30.1) 

27 
(37.0) 

20 
(27.4) 

4 (5.5) 62 (84.9) 5 (6.9) 6 (8.2) 19 
(26.0) 

30 
(41.1) 

24 
(32.9) 

98.1 
(14.5) 

>350% 225 
(62.8) 

91 
(40.4) 

82 
(36.4) 

43 
(19.1) 

9 (4.0) 200 (88.9) 11 (4.9) 14 (6.2) 90 
(40.0) 

97 
(43.1) 

38 
(16.9) 

100.4 
(13.0) 

missing 11 (3.1) 2 (18.2) 4 (36.4) 5 
(45.5) 

0 (0.0) 8 (72.7) 0 (0.0) 3 (27.3) 1 (9.1) 5 (45.5) 5 (45.5) 101.3 
(12.3) 

Maternal 
education 

            

0-12 years 50 
(14.0) 

6 (12.0) 9 (18.0) 26 
(52.0) 

9 (18.0) 33 (66.0) 3 (6.0) 14 (28.0) 8 (16.0) 18 
(36.0) 

24 
(48.0) 

95.7 
(14.7) 

13-16 177 
(49.4) 

54 
(30.5) 

67 
(38.9) 

47 
(26.6) 

9 (5.1) 150 (84.8) 10 (5.7) 17 (9.6) 61 
(34.5) 

79 
(44.6) 

37 
(20.9) 

99.0 
(13.8) 

>16 131 
(36.6) 

58 
(44.3) 

51 
(38.9) 

18 
(13.7) 

4 (3.1) 119 (90.8) 8 (6.1) 4 (3.1) 51 
(38.9) 

53 
(40.5) 

27 
(20.6) 

101.5 
(12.7) 

Preterm 
birth 

            

Term 313 
(87.4) 

108 
(34.5) 

108 
(34.5) 

79 
(25.2) 

18 (5.8) 266 (85.0) 16 (5.1) 31 (9.9) 109 
(34.8) 

127 
(40.6) 

77 
(24.6) 

100.2 
(13.3) 

Preterm 45 
(12.6) 

10 
(22.2) 

19 
(42.2) 

12 
(26.7) 

4 (8.9) 36 (80.0) 5 (11.1) 4 (8.9) 11 
(24.4) 

23 
(51.1) 

11 
(24.4) 

94.1 
(14.8) 
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Table 6.2. Results of linear regression models for the association between maternal trait anxiety score and scores on the Mullen Scales of 
Early Learning: Pregnancy, Infection, and Nutrition (PIN), PIN Postpartum and PIN Babies Studies, 2002-2006 

 State-Trait Anxiety Inventory (trait anxiety score)  
 Score=0-<31 

(n=118, 35.1%) 
31-<40 

(n=127, 37.8%) 
40+ 

(n=91, 27.1%) 
P for trenda 

Mullen Scales of Early Learning     
Gross motor    0.60 

Mean (SD) 50.3 (12.4) 48.7 (12.3) 50.9 (10.8)  
β (95% CI) (Unadjusted model) - -1.5 (-4.5, 1.5) 0.6 (-2.6, 3.8)  
β (95% CI) (Adjusted model)b - -1.8 (-5.0, 1.4) 1.1 (-2.9, 5.1)  

Visual reception    0.10 
Mean (SD) 51.8 (11.1) 48.7 (11.4) 47.8 (10.0)  

β (95% CI) (Unadjusted model) - -3.0 (-5.8, -0.2) -4.0 (-6.9, 1.0)  
β (95% CI) (Adjusted model)b - -2.6 (-5.6, 0.3) -3.0 (-6.7, 0.6)  

Fine motor    0.50 
Mean (SD) 51.3 (11.3) 48.6 (11.0) 50.0 (10.9)  

β (95% CI) (Unadjusted model) - -2.7 (-5.5, 0.0) -1.3 (-4.4, 1.7)  
β (95% CI) (Adjusted model)b - -2.9 (-5.8, 0.1) -1.4 (-5.0, 2.2)  

Receptive Language    0.02 
Mean (SD) 46.8 (7.0) 45.4 (8.3) 44.8 (8.5)  

β (95% CI) (Unadjusted model) - -1.4 (-3.4, 0.6) -2.0 (-4.1, 0.1)  
β (95% CI) (Adjusted model)b - -1.8 (-4.0, 0.3) -2.9 (-5.6, -0.3)  

Expressive Language    0.53 
Mean (SD) 53.2 (9.0) 53.2 (9.0) 52.8 (8.9)  

β (95% CI) (Unadjusted model) - 0.0 (-2.2, 2.3) -0.4 (-2.8, 2.0)  
β (95% CI) (Adjusted model)b - -0.2 (-2.6, 2.2) -1.0 (-4.0, 2.1)  

Composite    0.05 
Mean (SD) 101.9 (13.5) 98.3 (13.6) 97.9 (13.3)  

β (95% CI) (Unadjusted model) - -3.5 (-6.9, -0.2) -4.0 (-7.6, -0.4)  
β (95% CI) (Adjusted model)b - -3.9 (-7.5, -0.3) -4.5 (-8.9, 0.0)  

aTrend tests are reported for the adjusted models 
bCovariates include preterm birth, maternal education, self-esteem  
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Table 6.3. Results of linear regression models for the association between maternal depressive symptoms and scores on the Mullen Scales 
of Early Learning: Pregnancy, Infection, and Nutrition (PIN), PIN Postpartum and PIN Babies Studies, 2002-2006 
 Antepartum and postpartum depressive symptoms  
 Few symptoms 

postpartum 
Minor or major depressive 
symptoms postpartum only 

Minor or major symptoms 
postpartum and antepartum 

 

 

Mullen Scales of Early Learning EPDS score=0-9 
(n=302, 84.4%) 

EPDS score 10+ & both CES-D 
scores=0-16 (n=21, 5.9%) 

EPDS score 10+ & at least one 
CES-D score=17+ (n=35, 9.8%) 

P for 
trenda 

Gross motor    0.50 
Mean (SD) 49.4 (11.9) 52.1 (15.1) 52.1 (11.3)  

β (95% CI) (Unadjusted model) - 2.6 (-4.0, 9.2) 2.7 (-1.5, 6.8)  
β (95% CI) (Adjusted model)b - 1.5 (-5.4, 8.5) 1.7 (-3.5, 6.9)  

Visual reception    0.61 
Mean (SD) 50.0 (11.2) 45.7 (10.3) 47.3 (9.9)  

β (95% CI) (Unadjusted model) - -4.3 (-9.9, 1.4) -2.7 (-6.3, 1.0)  
β (95% CI) (Adjusted model)b - -2.8 (-8.9, 3.3) -0.9 (-5.5, 3.7)  

Fine motor    0.77 
Mean (SD) 50.0 (11.1) 47.5 (11.6) 50.1 (11.1)  

β (95% CI) (Unadjusted model) - -2.5 (-8.3, 3.4) 0.1 (-3.8, 3.9)  
β (95% CI) (Adjusted model)b - -3.6 (-9.7, 2.6) -0.9 (-5.6, 3.9)  

Receptive Language    0.79 
Mean (SD) 45.6 (7.9) 45.9 (7.1) 46.2 (8.8)  

β (95% CI) (Unadjusted model) - 0.3 (-4.1, 4.6) 0.5 (-2.1, 3.2)  
β (95% CI) (Adjusted model)b - -0.8 (-5.4, 3.8) -0.9 (-4.2, 2.5)  

Expressive Language    0.44 
Mean (SD) 53.2 (9.0) 50.5 (8.7) 53.2 (8.3)  

β (95% CI) (Unadjusted model) - -2.7 (-7.5, 2.2) 0.0 (-3.0, 3.1)  
β (95% CI) (Adjusted model)b - -4.4 (-9.8, 0.9) -1.5 (-5.4, 2.4)  

Composite    0.64 
Mean (SD) 99.7 (13.6) 95.2 (12.8) 98.6 (13.7)  

β (95% CI) (Unadjusted model) - -4.5 (-11.8, 2.8) -1.2 (-5.7, 3.4)  
β (95% CI) (Adjusted model)b - -5.6 (-13.3, 2.0) -2.0 (-7.6, 3.7)  

aTrend tests are reported for the adjusted models 
bCovariates include preterm birth, maternal education, self-esteem, trait anxiety, postpartum perceived stress  
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Table 6.4. Results of linear regression models for the association between maternal perceived stress score in the fourth postpartum month 
and scores on the Mullen Scales of Early Learning: Pregnancy, Infection, and Nutrition (PIN), PIN Postpartum and PIN Babies Studies, 
2002-2006 

 Cohen’s Perceived Stress Scale score  
 Score=0-<11 

(n=120, 33.5%) 
11-<17 

(n=150, 41.9%) 
17+ 

(n=88, 24.6%) 
P for trenda 

Mullen Scales of Early Learning     
Gross motor    0.19 

Mean (SD) 49.6 (13.7) 49.0 (10.6) 51.8 (11.6)  
β (95% CI) (Unadjusted model) - -0.6 (-3.5, 2.3) 2.2 (-1.1, 5.5)  
β (95% CI) (Adjusted model)b - -0.9 (-3.9, 2.1) 3.0 (-0.8, 6.7)  

Visual reception    0.77 
Mean (SD) 50.4 (11.2) 49.9 (11.6) 47.6 (9.6)  

β (95% CI) (Unadjusted model) - -0.5 (-3.2, 2.1) -2.8 (-5.9, 0.3)  
β (95% CI) (Adjusted model)b - 0.5 (-2.3, 3.2) -0.8 (-4.2, 2.6)  

Fine motor    0.13 
Mean (SD) 49.5 (11.5) 49.8 (11.1) 50.6 (10.8)  

β (95% CI) (Unadjusted model) - 0.3 (-2.4, 3.0) 1.0 (-2.1, 4.1)  
β (95% CI) (Adjusted model)b - 1.2 (-1.6, 4.0) 2.4 (-1.0, 5.8)  

Receptive Language    0.05 
Mean (SD) 45.5 (7.5) 45.2 (8.4) 46.8 (7.8)  

β (95% CI) (Unadjusted model) - -0.3 (-2.2, 1.6) 1.3 (-0.9, 3.5)  
β (95% CI) (Adjusted model)b - 0.2 (-1.8, 2.2) 2.8 (0.3, 5.3)  

Expressive Language    0.06 
Mean (SD) 52.4 (9.7) 52.9 (8.8) 54.3 (8.1)  

β (95% CI) (Unadjusted model) - 0.4 (-1.7, 2.6) 1.9 (-0.6, 4.3)  
β (95% CI) (Adjusted model)b - 1.0 (-1.3, 3.2) 2.8 (-0.1, 5.6)  

Composite    0.09 
Mean (SD) 99.4 (14.1) 99.3 (13.8) 99.8 (12.7)  

β (95% CI) (Unadjusted model) - -0.1 (-3.4, 3.2) 0.4 (-3.4, 4.2)  
β (95% CI) (Adjusted model)b - 1.3 (-2.1, 4.6) 3.3 (-0.9, 7.4)  

aTrend tests are reported for the adjusted models 
bCovariates include preterm birth, maternal education, self-esteem, trait anxiety 



 

 

 

CHAPTER 7 

RESULTS 

Specific Aim 3: Perinatal depressive symptoms and the concentration of 

docosahexaenoic acid in breast milk 

 

Introduction 

Pregnancy and new motherhood are particularly stressful periods for many women, 

with depression during pregnancy affecting an estimated 12 to 18% of women and 

postpartum depression affecting up to 19% of new mothers.23, 24  Several studies have shown 

that depressed women tend to have impaired interaction with their infant, and negative 

effects on child development have been observed into the school-age years.26, 27, 29-31 

Low levels of long-chain polyunsaturated fatty acids (LCPUFAs), particularly 

docosahexaenoic acid (DHA), have been noted in the red blood cell and plasma cell 

membranes and brain orbitofrontal cortex tissue of clinically depressed adults.43, 44, 195  

Pregnancy may exacerbate low DHA status because maternal stores of DHA are mobilized to 

support the rapid development of the fetal brain.49  A handful of studies have noted lower 

postpartum plasma DHA levels among women with postpartum depression, but the results 

have been inconsistent and none have examined DHA levels in the breast milk.196, 204-206  A 

few clinical trials have evaluated whether n-3 fatty acid supplements might prevent perinatal 

depression or reduce symptoms, with mostly negative findings.207-211 
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In the postpartum period, maternal DHA stores are a major source of DHA for the 

infant via breast milk.  Approximately 73% of U.S. infants are breastfed for at least some  

time, and 12% are exclusively breastfed for the first 6 months.203  Some studies have 

observed a positive association between infant DHA intake and developmental outcomes 

such as visual acuity, although studies have often been conflicting.116, 239, 256, 257   

If women with elevated perinatal depressive symptoms also have reduced DHA 

content of their breast milk, then it would appear that perinatal depression could have 

both psychosocial and nutritional influences on infant development.  The aim of the 

current study was to examine whether women with depressive symptoms at various time 

points during pregnancy and postpartum have lower breast milk DHA content. 

 

Methods 

Study population 

Data were collected as part of the Pregnancy, Infection, and Nutrition Study 

(PIN) and its postnatal follow-up component, PIN Postpartum.  The goal of the PIN 

Study was to identify factors associated with preterm birth.  The goal of PIN 

Postpartum was to identify modifiable behaviors associated with high gestational 

weight gain and postpartum weight retention.45 All protocols were approved by the 

University of North Carolina (UNC) Biomedical Institutional Review Board; all 

participants provided written informed consent.   

 Women (n=1,169) were eligible for PIN Postpartum if they completed the 

third wave of the PIN Study, agreed to be contacted after delivery and lived in the 

study area.  Medical constraints (n=24), inability to recontact (n=207) or schedule 
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(n=62), and refusal (n=187) resulted in 689 women who participated in a visit 

scheduled in the fourth postpartum month.  Women were eligible to provide a breast 

milk sample if they delivered their child between February 2004 and May 2007 

(n=519) and were still breastfeeding and living in the area, but 165 women never 

initiated or had discontinued breastfeeding by the time of the visit.  Some women 

were unable (n=26) or declined (n=23) to provide a sample; 305 provided a sample 

(304 were analyzable). 

 

Breast milk collection and fatty acid analysis 

Women were asked to use a breast pump at around 10 AM on the day of the 

postpartum visit to provide three 1.5 ml tubes of milk for storage at -80 degrees 

Celsius at the study office.  Samples were analyzed for fatty acid content by two 

laboratories.  Samples collected before April 1, 2005 were analyzed by the 

Collaborative Studies Clinical Laboratory at the University of Minnesota Medical 

Center, Fairview (Minneapolis, Minnesota).  This lab was unable to complete the 

analysis for the second batch of samples, so those collected after April 1, 2005 were 

analyzed by the Clinical Nutrition Research Center, UNC (Chapel Hill, North 

Carolina).  Fatty acid extraction was performed on 0.5 ml samples of breast milk 

mixed with 0.5 ml 0.9% saline using the method of Bligh and Dyer.241  The 

chloroform phase was transferred to a clean tube and evaporated to dryness under a 

nitrogen flow.  Residual lipids were saponified and fatty acids were transmethylated 

by sequentially adding 1ml 4.25% NaOH in CHCl3:MeOH (2:1, v/v) and 1N HCl in 

saline.242  After vigorous mixing, the samples were centrifuged at 1500g for 5 
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minutes.  The fatty acid methyl esters in the lower phase were evaporated to dryness 

under nitrogen and then resuspended in 50 µl undecane and analyzed by capillary gas 

chromatography (injector 240°, detector 280°).  To check the efficacy of the 

extraction, 0.1 mg 17:0 standard (diheptadecanoyl phosphatidylcholine) was added.  

The individual fatty acids were identified by comparison with authentic standards (Nu 

Chek Prep, Elysian, MN).  Data were analyzed using Perkin Elmer Totalchrom 

Chromatography Software, version 6.2 (Somerset, NJ). 

 

Depressive symptoms 

During pregnancy, information about depressive symptoms was collected via 

self-administered questionnaires before 20 weeks gestation and at 24-29 weeks 

gestation using the Centers for Epidemiologic Studies Depression (CES-D) scale.212  

The CES-D is intended to measure depressive symptoms in general population 

samples.  Women who scored above 16 on the CES-D were classified as having 

minor or major depressive symptoms.  The 16/17 cutpoint for the CES-D was chosen 

because several studies have reported reduced specificity of the CES-D using the 

15/16 cutpoint for pregnant women because some symptoms of pregnancy (e.g., 

fatigue) are similar to CES-D components.225-227  

 In the fourth postpartum month, women were interviewed in the home and 

screened for depressive symptoms using the Edinburgh Postnatal Depression Scale 

(EPDS).215  Women who scored above 9 on the EPDS were classified as having 

minor or major depressive symptoms.  The 9/10 cutpoint for the EPDS has been 
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validated in previous studies and has been shown to increase the sensitivity of the 

instrument to minor depression.228-230 

 

Covariate measurement 

Age, education, and other demographic and lifestyle covariates were obtained 

via telephone at 17-22 weeks gestation.  At the clinic visit at 24-29 weeks gestation, 

women were asked to complete a modified version of the Block Food Frequency 

Questionnaire (FFQ) to assess diet during the previous three months, from which 

estimated daily dietary intake of n-3 fatty acids for the three previous months was 

calculated.258, 259  At the postpartum visit, information was collected about current 

smoking and the presence of a spouse or partner in the woman’s life. 

 

Statistical analysis 

 We used t-tests and one-way analysis of variance to examine the difference in 

mean breast milk DHA concentration between groups with elevated depressive symptoms 

(i.e., above the cutpoint for the particular depressive symptoms screener) versus few 

depressive symptoms (i.e., below the cutpoint for the screener) at each time point 

depressive symptoms were measured.  To consider whether the DHA status of women 

who scored above the cutpoint multiple times differed from the DHA status of women 

who scored above the cutpoint zero or one times, we formed a variable for the count of 

the number of times women scored above a cutpoint.  DHA concentration was 

approximately log-normally distributed, so it was log-transformed for use in regression 
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models.  The association between depressive symptoms and logDHA was examined 

using linear regression.   

Potential covariates were identified a priori based on previous studies and 

constructed Directed Acyclic Graphs.234, 235  Multiple partial F-tests checked for the 

presence of effect measure modification.  Covariates included in the regression models 

included maternal age (tertiles), education (0-12, 13-16, >16 years), estimated daily 

intake of n-3 fatty acids (quartiles), presence of a spouse or partner (yes/no), smoking 

(ever during pregnancy or postpartum versus none), and a variable for laboratory. 

 

Results 

 All women except participated in at least one assessment of depressive symptoms, 

leaving 303 total women eligible for inclusion in this analysis.  The proportion of women 

scoring above the cutpoint on the first or second prenatal CES-D or the postpartum EPDS 

was 11.9%, 15.8%, and 11.2%, respectively; and 8.6% scored above the relevant cutpoint 

at 2 or 3 of the time points these instruments were administered (Table 7.1).  Elevated 

depressive symptoms were associated with fewer years of maternal education, absence of 

a spouse or partner, smoking, and younger maternal age; these associations were 

strongest among women who scored above the cutpoint 2-3 times. 

The mean breast milk DHA concentration was 0.28% (SD=0.22) and ranged 

0.07%-1.49%.  Women with more years of education had higher breast milk DHA levels 

on average than women with less education.  Mean DHA concentration also differed by 

laboratory (t=-7.2, p<0.01).  DHA levels were 25% lower among women with elevated 

depressive symptoms at less than 20 weeks gestation compared to women with few 
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depressive symptoms at that time (adjusted β for logDHA= -0.22, 95% CI: -0.42, -0.03) 

(Table 7.2).  There was a suggestion of a similar association with the number of times 

women scored above a depressive symptoms screener cutpoint.  DHA levels were 19% 

lower for women who scored above a cutpoint 2-3 times compared to women who never 

scored above a cutpoint, although this estimate was imprecise (adjusted β for  

logDHA=-0.17, 95% CI: -0.40, 0.06).  All women with elevated depressive symptoms at 

less than 20 weeks gestation had DHA levels below 0.45%, and all women with elevated 

symptoms at 2-3 time points had DHA levels below 0.35%.  Women with elevated 

depressive symptoms at 24-29 weeks gestation or postpartum did not have lower breast 

milk DHA levels than women with few depressive symptoms at those time points.  We 

re-examined models with dietary n-3 intake excluded and observed no difference in the 

results. 

 

Discussion 

 The goal of this study was to examine whether women who experienced elevated 

depressive symptoms during pregnancy or postpartum also had lower DHA levels in their 

breast milk.  A few previous studies have noted lower DHA levels as measured in 

plasma, but DHA levels in breast milk are a better reflection of infant dietary 

exposure.196, 204, 206  Our interest lies in infant dietary exposure since infant exposure to 

LCPUFAs is a prominent component of this dissertation.  

Depressive symptoms early in pregnancy could reflect maternal affect over a long 

period of time pre-conception through early pregnancy.  Likewise, breast milk DHA 

levels are more reflective of long-term stores of fatty acids and lifetime diet than short 
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term influences.260  If women who are chronically depressed have low DHA stores, then 

it might be reflected in the breast milk.  In contrast, depression later in pregnancy or 

postpartum might be related to perinatal events, and women who have a brief depressive 

episode might not exhibit lower DHA levels in breast milk. 

 While there has been growing interest in the relation between depression and 

DHA, studies have been unable to verify the temporal direction of the association.  It is 

possible that depressed individuals have lower dietary n-3 intake, but this appears to be 

an incomplete explanation as some studies have observed no association between dietary 

intake and depressive symptoms and the results of trials to evaluate DHA supplements to 

treat depression have often been negative.206, 211, 261-263  Other indications are that 

depressed individuals may have impaired DHA synthesis or accelerated breakdown of 

DHA.197  This study cannot verify the temporal direction; however, our intention was not 

to uncover the mechanisms involved but to understand the relationship between 

depressive symptoms and DHA status in the context of fatty acids in the diets of 

breastfed infants.   

Few studies in this area have focused on maternal affect in the perinatal period 

(most are unrelated to pregnancy).  Of the perinatal studies, one observed no relationship 

between postpartum depression and DHA status, while three others observed that 

decreasing DHA levels were accompanied by increasing depressive symptoms, based on 

plasma DHA levels.196, 204-206 

The proportion of women who experienced significant depressive symptoms in 

this study is similar to other studies, and the mean DHA concentration in the breast milk 
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samples in this study was in the range of other U.S. studies.  For instance, Birch et al. 

found mean DHA levels of 0.29%.63   

 Some weaknesses of our study deserve mention.  First, a clinical diagnosis of 

depression might be preferred over the use of depressive symptoms screeners; however, 

if an effect is observed at sub-clinical levels of depressive symptoms, it indicates a larger 

proportion of individuals might be affected, not only those who are clinically depressed.  

Second, we cannot rule out reduced dietary intake of n-3 fatty acids among individuals 

with elevated depressive symptoms as the reason for low DHA levels.  However, we 

included n-3 intake in our regression models, and our results did not change when it was 

removed from the models.  Several issues limit our ability to extend this analysis further 

at this time.  For instance, incorporating information about red blood cell DHA 

concentrations during pregnancy would provide more information about antepartum 

DHA status, and red blood cell levels are a better indicator of maternal DHA status.  

Also, the PIN Babies Study has too few infants to examine the interaction between 

maternal perinatal depressive symptoms and infant exposure to LCPUFAs, so we cannot 

examine whether infants who are exposed to both maternal psychological distress and 

low levels of LCPUFAs demonstrate poorer developmental outcomes than infants 

exposed to only one or none of these. 

One strength of this study is that it included three depressive symptoms 

assessments instead of just one, and two of the three assessments occurred during 

pregnancy which no previous studies have included.  Second, we chose to measure DHA 

in breast milk, which may be a better marker of infant DHA exposure than DHA 

measured in plasma and red blood cells even though plasma and red blood cells may be 
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better markers of maternal DHA status.  Third, most previous studies of perinatal 

depression and DHA status involved patients with clinical depression.  We were able to 

examine associations in a sample of women unselected for pre-existing mental health 

conditions who experienced from very few to many depressive symptoms. 

 

Conclusion 

 Women who experienced elevated depressive symptom early in pregnancy had 

25% less DHA in their breast milk than women who experienced few symptoms.  This 

difference may or may not be meaningful in terms of infant DHA exposure.  The 

difference in DHA content of the treatment versus control formulas in infant feeding 

trials is greater than this, and the results of these trials (usually focused on 

neurodevelopment) are mixed.  It is possible that any benefits might be more apparent at 

high doses.116, 239, 256, 257  Regardless, perinatal depression remains an exposure of concern 

for clinicians and families due to its psychosocial influence on child development.  A 

possible negative effect on infant nutrition is another reason to seek ways to reduce the 

prevalence of perinatal depression.  If DHA supplementation can prevent or lessen 

depressive symptoms, it could have the added benefit of increasing the amount of DHA 

available to infants, if DHA indeed benefits child development. 
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Table 7.1.  Characteristics of Women in the PIN Postpartum Study and Associations with Depressive Symptoms and Breast Milk DHA Concentration, 
2002-2006 
 CES-D, <20 weeks gestation 

(n, %) 
CES-D, 24-29 weeks gestation (n, %) EPDS, 4th month 

postpartum (n, %) 
Mean DHA 
concentration of breast 
milk (% of total fatty 
acids) (SD) 

 0-16 17+ missing 0-16 17+ missing 0-9 10+  
Overall 253 (83.5) 36 (11.9) 14 (4.6) 225 (74.3) 48 (15.8) 30 (9.9) 269 (88.8) 34 (11.2) 0.28 (0.22) 
Maternal education          

0-12 years 11 (64.7) 4 (23.5) 2 (11.8) 8 (47.1) 7 (41.2) 2 (11.8) 13 (76.5) 4 (23.5) 0.31 (0.24) 
13-16 112 (78.3) 24 (16.8) 7 (4.9) 103 (72.0) 25 (17.5) 15 (10.5) 124 (86.7) 19 (13.3) 0.25 (0.19) 

>16 130 (90.9) 8 (5.6) 5 (3.5) 114 (79.7) 16 (11.2) 13 (9.1) 132 (92.3) 11 (7.7) 0.17 (0.09) 
Smoking          

Yes 9 (56.3) 7 (43.8) 0 8 (50.0) 7 (43.8) 1 (6.3) 12 (75.0) 4 (25.0) 0.30 (0.24) 
No 244 (85.0) 29 (10.1) 14 (4.9) 217 (75.6) 41 (14.3) 29 (10.1) 257 (89.6) 30 (10.5) 0.28 (0.22) 

Maternal age (years)          
17-20 3 (50.0) 3 (50.0) 0 2 (33.3) 3 (50.0) 1 (16.7) 5 (83.3) 1 (16.7) 0.16 (0.05) 
21-30 113 (79.0) 20 (14.0) 10 (7.0) 101 (70.6) 27 (18.9) 15 (10.5) 124 (86.7) 19 (13.3) 0.28 (0.23) 
31-47 137 (89.0) 13 (8.4) 4 (2.6) 122 (79.2) 18 (11.7) 14 (9.1) 140 (90.9) 14 (9.1) 0.28 (0.21) 

Daily dietary n-3 
intake 

         

>=75th percentile 55 (80.9) 11 (16.2) 2 (2.9) 53 (77.9) 12 (17.7) 3 (4.4) 61 (89.7) 7 (10.3) 0.32 (0.29) 
50-<75th percentile 63 (91.3) 6 (8.7) 0 57 (82.6) 12 (17.4) 0 65 (94.2) 4 (5.8) 0.24 (0.13) 
25-<50th percentile 56 (87.5) 6 (9.4) 2 (3.1) 52 (81.3) 10 (15.6) 2 (3.1) 56 (87.5) 8 (12.5) 0.28 (0.25) 
0-<25th percentile 64 (83.1) 11 (14.3) 2 (2.6) 60 (77.9) 14 (18.2) 3 (3.9) 69 (89.6) 8 (10.4) 0.28 (0.19) 

missing 15 (60.0) 2 (8.0) 8 (32.0) 3 (12.0) 0 22 (88.0) 18 (72.0) 7 (28.0) 0.24 (0.12) 
Presence of spouse or 
partner 

         

Yes 250 (84.8) 32 (10.9) 13 (4.4) 222 (75.3) 46 (15.6) 27 (9.2) 264 (89.5) 31 (10.5) 0.28 (0.22) 
No 3 (37.5) 4 (50.0) 1 (12.5) 3 (37.5) 2 (25.0) 3 (37.5) 5 (62.5) 3 (37.5) 0.24 (0.11) 

Laboratory          
Minnesota 149 (85.1) 19 (10.9) 7 (4.0) 132 (75.4) 27 (15.4) 16 (9.1) 153 (87.4) 22 (12.6) 0.20 (0.14) 

North Carolina 104 (81.3) 17 (13.3) 7 (5.5) 93 (72.7) 21 (16.4) 14 (10.9) 116 (90.6) 12 (9.4) 0.38 (0.26) 
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Table 7.2.  Breast milk fatty acid concentration (logDHA) by depressive symptoms categories: Pregnancy, Infection, and Nutrition (PIN) and PIN 
Postpartum studies, 2002-2006 
LogDHA CES-D (<20 weeks 

gestation) (0-16=ref) 
CES-D (24-29 weeks 
gestation) (0-16=ref) 

EPDS (4th month 
postpartum) (0-9=ref) 

Number of times scored above a depressive 
symptoms screener cutpointa (0=ref) 

 
 

17+ 17+ 10+ 1 2-3 

β (95% CI) 
Unadjusted model 

-0.20 (-0.42, 0.02) -0.07 (-0.26, 0.12) 
 

-0.11 (-0.33, 0.12) 0.03 (-0.17, 0.23) -0.23 (-0.48, 0.02) 

β (95% CI) 
Adjusted modelb 

-0.22 (-0.42, -0.03) -0.05 (-0.22, 0.12) -0.02 (-0.21, 0.17) 0.00 (-0.17, 0.18) -0.17 (-0.40, 0.06) 

a Count of the number of times scored above 16 on the CES-D or above 9 on the EPDS 
bAdjusted models included: maternal age, estimate of daily dietary n-3 intake during pregnancy, education, smoking, presence of a spouse or partner, and 
laboratory 
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Figure 7.1. Distribution of Breast Milk DHA by Depressive Symptoms Categories 

 

 



 

 

CHAPTER 8 

CONCLUSIONS 

Overview 

The goal of the present study was to fill gaps in the understanding of the roles of 

LCPUFA intake and maternal perinatal depression in infant neurodevelopment.  Impaired 

development early in life can translate into lifelong cognitive deficits and behavioral 

disorders.  Improved understanding of the role of LCPUFA intake in cognitive development 

can help optimize early life nutrition for development.  Additionally, refined understanding 

of the role of perinatal depression, particularly when considered in relation to infant nutrition 

and other psychosocial influences, can potentially help direct mental health services or 

nutritional interventions.   

This study built on an existing large pregnancy cohort study with an infant follow-up 

component and, thus, had a large database of prospective psychosocial, nutritional, and 

developmental data from which to draw.  We developed a Conceptual Model that integrated 

the exposures and outcomes under study within the context of the perinatal period and 

infancy. 

The results of our analysis suggest that differences in visual reception, language, and 

motor skills, and overall cognitive development among infants at 12 months may be 

explained by factors other than DHA and AA exposure, breastfeeding duration and 

exclusivity, and the socio-demographic factors that underlie choices about feeding method.  

We also examined the role of maternal psychological health in cognitive development and 
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found that maternal trait anxiety, but not perinatal depressive symptoms or perceived stress, 

was associated with reduced receptive language ability and overall cognition, but the 

differences were small.  However, women who experienced elevated depressive symptoms 

early in pregnancy or at several points during the perinatal period had lower levels of DHA 

available to their infants via their breast milk.  It is possible that the effects of LCPUFA 

exposure and maternal psychological health become more apparent after infancy or that our 

sample size limited the ability to detect small differences.   

 

 

Strengths and limitations 

LCPUFA exposure measurement 

Despite the large number of studies that have examined the association between the 

LCPUFA content of infant formulas and various neurodevelopmental outcomes, there is no 

consensus about whether LCPUFAs enhance development.  One reason for this may be the 

variety of exposure measures used in these studies and their ability to reflect infants’ 

complex feeding patterns.  Most studies do not take into account the wide variation in the 

extent to which infants are breastfed or formula fed and the differences in LCPUFA content 

of breast milk.  Infant feeding trials generally use intent-to-treat analysis which can limit the 

generalizability of findings.  This study had the benefit of detailed information about 

breastfeeding and formula use over time, and we used this information to develop a novel 

exposure measure that combined both sources.  It was clear that feeding practices changed 

fairly frequently in this cohort: shifts in the number of feedings that were breastfed to 

formula fed and changes in the formula products used over time.  Our exposure measurement 
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approach was able to capture this complexity and so is more reflective of actual infant 

feeding patterns compared to the intent-to-treat driven approaches used in infant feeding 

trials.  Also, we were able to include some infants fed formulas with no DHA or AA added.  

This increased the variability of exposure compared to what might be observed in a sample 

of infants born more recently because almost all formula products today contain DHA and 

AA.  In fact, a cohort of infants enrolled just a couple of years after this one might have zero 

infants fed only formulas without DHA and AA, making it impossible to have an unexposed 

comparison group.   

Despite these strengths, this study was subject to some limitations pertaining to the 

ability to measure infant exposure to LCPUFAs.  First, we had very few infants fed only 

formulas without supplemental DHA and AA for all months to allow direct comparison with 

infants fed only formulas with DHA and AA.  This is because formulas with DHA and AA 

have increasingly displaced formulas without DHA and AA.  Also, the formulas tend to have 

similar amounts of DHA and AA added, and this somewhat limits the variability in exposure.  

Second, despite the detailed nature of our novel exposure measure, it cannot capture some of 

the inter-individual and intra-individual variability in LCPUFA exposure across time.  For 

instance, the study relied on a single breast milk measurement as the basis for estimating 

LCPUFA exposure from breast milk, thereby not capturing any possible variability in 

LCPUFA content of breast milk across lactation.  Also, the study did not have information 

available on the amount of formula or breast milk consumed per feeding (or how this 

changed over time) so some variability in LCPUFA exposure was not accounted for.  In 

addition, because some women stopped breastfeeding before the study visit or refused to 

provide a breast milk sample, we were unable to directly measure their infants’ exposure via 
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breast milk.  Finally, two depression symptoms instruments were used in this study; 

consistent use of a single instrument might have been preferred.  Because of these 

limitations, the results of this study should be interpreted with caution.  It is possible that this 

study underestimated the potential benefits of breastfeeding or LCPUFA exposure on infant 

development, particularly in light of the null results for the breastfeeding models which one 

might have expected to suggest a benefit.  The null results for LCPUFA exposure are less 

surprising given that the majority of studies in this area have shown no benefit to cognitive 

development. 

 

Outcome measurement – infant development 

Assessing infant development is difficult and somewhat subjective because infant 

behavior in testing situations is variable and to some degree relies on input from mothers, 

who may vary in their ability to provide objective information.  Assessments of young 

children are sensitive to rapport with the examiner as well.  In addition, developmental 

assessments of infants tend to have somewhat limited predictive value largely because of the 

rapid developmental changes occurring in infancy.  Few studies of LCPUFA exposure assess 

infant development beyond a measure of global development, like the Bayley.  A major 

strength of this study was the use of the Mullen which simultaneously assesses multiple 

domains of infant development using five sub-scales and an overall composite.  As a result, 

this study was able to assess whether the exposures varied in their associations by domain. 
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Study design and study population 

Several features of the PIN Study design served as strengths and limitations to the 

analyses presented here.  First, the prospective design of this study was a strength in that it 

avoided assessing the exposures based on recall or confusing the temporal sequence of the 

exposures and outcomes.  The length of the follow-up period allowed for study of exposures 

during pregnancy with developmental outcomes more than one year later.  Some previous 

studies were not able to study prenatal exposures or to follow infants for as many months.  

Second, while the women were recruited into this observational study via prenatal care 

clinics, they were not selected based on any pre-existing condition or screened for mental 

health characteristics.  Also, infants were breastfed or formula fed according to what the 

family chose, not assigned to one particular method or product.  These are strengths in that 

this study population might resemble the general population of women and infants more 

closely than a sample selected for prior depression history, for instance.  Consequently, the 

results of this study might be more applicable to the general population than the clinical trials 

in this area.  However, because the exposure prevalence (e.g., for maternal perinatal 

depressive symptoms) was fairly low in this sample and the sample was limited in size, we 

might have been unable to detect small differences between groups in this study that might 

have been apparent in a larger sample.  This might explain some of our null results.  Also 

because of our limited sample size we were unable to examine the effect of changes in 

depressive symptoms across pregnancy and the postpartum period.  Third, with any 

prospective cohort study, selection bias is a limitation.  The infants who participated in the 

developmental assessments at 12 months of age were a select group—those whose mothers 

completed the PIN Study and elected to continue into the PIN Postpartum component to 12 
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months.  Women who experienced significant depressive symptoms or anxiety during 

pregnancy or high perceived stress postpartum were somewhat less likely to participate 

postpartum.  If these children would also have scored lower on the Mullen scales than 

participating children, our results may underestimate the true association, but the data to 

evaluate this were unavailable.  Finally, a prospective cohort study is normally considered a 

weaker design than a randomized controlled trial due to the trial’s ability to handle 

confounding factors by randomization.  However, when infant feeding trials include a non-

randomized breastfed comparison group, this advantage no longer applies to comparisons 

involving this group, especially if key confounders are not addressed in the analysis.  As 

such, the observational design of the present study is not necessarily a disadvantage, 

especially since we were able to incorporate key confounders into our analyses pertaining to 

feeding method. 

 

Implications 

 Our findings suggest that maternal trait anxiety interferes to a slight extent with 

optimal infant cognitive development, and this is apparent by 12 months of age.  Because 

trait anxiety is a stable characteristic of the individual, it is not easily modifiable but 

techniques for stress management and reliance on supportive family and friends might help 

buffer the potential effects of anxiety.  Pharmaceutical interventions to control anxiety may 

be unwise during pregnancy and lactation.  Our findings about depressive symptoms and 

breast milk DHA status support existing proposals that improving DHA status during 

pregnancy might help relieve depressive symptoms.  Since DHA is naturally available in 

certain foods like fatty fish and also in over-the-counter supplements, recommendations for 
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pregnant women at risk of depression to consume more DHA could be implemented.  To 

date, clinical trials in this area have failed to show relief from postpartum depression from 

DHA supplementation, but there have only been a few small studies.  Also, there is 

uncertainty about the effects of large doses of DHA and concern about exposure to high 

levels of mercury and polychlorinated biphenyls in seafood.  Whether consuming more DHA 

can help manage anxiety as well remains to be seen, but at least one study suggests it is a 

possibility.264  Aside from its potential to reduce depressive symptoms in adults, the benefits 

of DHA to infant development remain uncertain as well.  Our results indicated no benefit 

from LCPUFA intake, whether from breast milk or formula.  Many previous feeding trials 

have shown similar results, and results overall have been equivocal.17, 103, 110, 114  Most 

clinical trials that randomized women to LCPUFA supplements to examine effects on infant 

development have been unable to show any benefit to development from this method of 

supplementation.143-148  As a result, if it is found that maternal supplementation helps with 

depressive symptoms, it cannot be expected that maternal supplementation will benefit infant 

development simultaneously.  Given the conflicting results among previous studies and the 

strengths and limitations of this study, no actions are warranted to change infant feeding 

practices at this time except to provide a note of caution that the effects of LCPUFA 

supplementation of infants remain unclear and deserve further study. 

 

Directions for Future Research 

 Future studies in five key areas are recommended to advance this field of research.  

First, studies of infant development should follow children longer into the school age years 

and examine specific developmental domains in relation to early life exposures to maternal 
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psychosocial influences, LCPUFAs, and the interaction between them.  Second, larger 

studies should be designed to better pinpoint the optimal intake of n-3 fatty acids for women 

and LCPUFAs for infants.  Feeding or supplementation dose-ranging trials covering a wider 

range of doses would be useful.  The increasing acceptance and ubiquity of formula products 

and baby foods with LCPUFAs added might make forming an unexposed comparison group 

of infants for these studies more difficult, however.  Third, methods development studies 

should be conducted to develop better ways of assessing infant exposure to LCPUFAs in 

ways that are applicable to the general population of infants and their complex feeding 

patterns.  Fourth, more basic research into the neurophysiologic mechanisms involved in the 

relationship between n-3 fatty acids and mental health would help clarify the direction of the 

association between them and better direct efforts to improve mental health and optimize n-3 

fatty acid status.  Finally, because infant cognition is a product of complex interactions 

between multiple influences, future studies of infant development in this area should avoid 

examining one exposure alone and instead focus on the interactions between genetics (e.g., 

fatty acid desaturase genes), diet, and the psychosocial environment. 
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APPENDIX 1. 
 

DHA and AA Content of Common Infant Formulas in Powder Form, 2002-2006a 
Manufacturer Formula Product DHA (g/100g 

edible portion) 
AA (g/100g edible 
portion) 

Mead Johnson Enfamil AR LIPIL 0.087 0.164 
 Enfamil EnfaCare 0 0 
 Enfamil EnfaCare LIPIL 0.080 0.170 
 Enfamil Lactose Free 0 0 
 Enfamil Lactose Free 

LIPIL 
0.090 0.180 

 Enfamil LIPIL 0.090 0.175 
 Enfamil LIPIL with iron 0.089 0.168 
 Enfamil low iron 0 0 
 Enfamil with iron 0 0 
 Nutramigen 0 0 
 Nutramigen LIPIL 0.080 0.170 
 ProSobee 0 0 
 ProSobee LIPIL 0.085 0.170 
Ross Alimentum 0 0 
 Alimentum Advance 0.011 0.018 
 Isomil 0 0 
 Isomil Advance 0.096 0.187 
 Neosure 0 0 
 Similac Advance 0.096 0.187 
 Similac Lactose Free 0 0 
 Similac low iron 0 0 
 Similac with iron 0 0 
Carnation Good Start 0 0 
 Good Start with iron, 

DHA, ARA 
0.084 0.167 

Other Kirkland DHA, iron 0.103 0.181 
a Source: U.S. Department of Agriculture Nutrient Database for Standard Reference221 
(except for Carnation products, source: Nestle Infant Nutrition Center website222).
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APPENDIX 2 
 

Participants for the present study from PIN, PIN Postpartum, PIN Babies Studies 

 

3203  invited to participate in PIN3 

2006 agreed to participate in PIN3 

375 Became Ineligible/Dropped out of PIN3: 
    33 lost pregnancy 
    87 requested to drop out 
    84 did not complete PIN Phone Interview 1 
      4 multiple births 
    42 did not deliver at UNC Hospitals 
    72 requested no future contact 
    45 moved out of area/lost contact 
      8 medical problems at delivery 

1169 eligible for PIN Postpartum 

689 agreed to participate, attended 3-mo visit 
(305 provided breast milk) 

1197 declined 
      0 otherwise excluded 

281 Ineligible/Dropped out of Study: 
    45 became pregnant 
    62 unreachable 
    29 moved out of area 
    20 requested to leave study 
  125 infants reached 12 months before assessments 408 attended 12-mo visit  

(358 completed at least partial Mullen. 21 
child asleep, sick, fussy; 11 infant not 
present; 8 refused; 3 not enough time; 7 other 
reasons) 

462 delivered before Postpartum Study recruitment 

480 Ineligible or Refused: 
    24 medical constraints 
  207 unreachable 
  187 refused 
    62 unable to schedule 
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