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ABSTRACT 
 

DEREK WAYNE WOLFE:  High-Pressure Cylindrical Ion Trap Mass Spectrometry 
(Under the direction of J. Michael Ramsey) 

 

This work describes the development of mass spectrometry (MS) instrumentation 

capable of operating at helium buffer gas pressures up to 1 torr.  This is approximately 

three orders of magnitude higher than the pressures used in commercially available MS 

instrumentation.  High-pressure operation is desirable since it reduces the size, weight, 

and power (SWaP) of the instrument by reducing the pumping system workload.  A 

simple and rugged roughing pump could achieve these pressures while reducing SWaP 

by eliminating the turbo pump.  Therefore this technology could be used to develop next 

generation hand-portable instruments and bring MS to new applications. 

Custom MS instrumentation was designed and built to utilize 500 µm radius 

cylindrical ion trap (CIT) mass analyzers.  Two vacuum chamber configurations were 

used to establish a performance baseline at traditional ion trap operating pressures.  The 

instrument design was refined during these simple experiments before moving to high-

pressure operation. 

The feasibility of high-pressure CIT operation up to 1 torr was first demonstrated 

using a differentially pumped instrument.  Electron ionization was performed and a mass-

selective instability scan was used to eject ions into a low-pressure chamber for detection 

with an electron multiplier.  Peak broadening effects at high pressure were reduced by 

increasing axial RF amplitude and ejecting ions into a low-pressure detection region.  



 iv

Peak widths for Xe+ spectra at pressures from 38.6 to 983.5 mTorr were analyzed and 

average peak widths for these low and high-pressure spectra were found to be relatively 

constant. 

After demonstrating the CIT operation at high pressure, it was desirable to replace 

the electron multiplier with a pressure tolerant detector and simplify the instrument to a 

single vacuum chamber.  The first experimental investigation of MS in this isobaric 

chamber at pressures up to 867 mTorr is reported.  A solid-state capacitive 

transimpedance amplifier (CTIA) was used for ion detection at high pressures.  Average 

peak widths for Xe+ ions in spectra acquired at pressures from 133 to 867 mTorr were 

found to be nearly constant.  Results presented here demonstrate mass spectra at ~1 torr 

using a solid-state ion detector capable of operating at atmospheric pressure for MS 

applications requiring portability. 
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CHAPTER 1 

INTRODUCTION 

1.1  Portable MS 

Interest in portable mass spectrometry (MS) has increased due to applications 

where rapid in situ or field measurements are critical.1-18 Conventional mass 

spectrometers are unsuitable for these situations because their large size, weight, and 

power consumption (SWaP) confine them to the laboratory.3  Additionally, the turbo 

pumps required to maintain high vacuum conditions are costly and fragile due to their 

≈90,000 RPM operational speeds.  Miniaturized vacuum pumps have made mass 

spectrometers luggable but hand portability is still limited due to overall system SWaP, 

low pumping capacity, and lack of pumping system robustness.10-12, 15  Two strategies to 

overcome decreased pumping capacity in miniaturized mass spectrometers are high-

pressure instrument operation and restricted sample inlet flow rate.14, 19  Restricted flow 

through a small orifice decreases gas conductance but at the cost of reduced ion 

throughput and sensitivity.  One alternative to address this limitation is a cycled inlet 

valve (e.g. discontinuous atmospheric pressure inlet - DAPI) to sample at atmospheric 

pressure and subsequently pinch off the sample inlet to pump-down to operational 

pressures.15, 20  In this case, the time delay required to reach suitable analysis pressures 

decreases instrument duty cycle, limiting its utility for rapid field analysis. 

High-pressure operation is a more attractive strategy than restricted sample flow 

since a high-pressure instrument could have a significant reduction in SWaP while 
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maintaining sensitivity and duty cycle.  High-pressure MS instrumentation would greatly 

improve portability by reducing the vacuum pump workload19 and overall system size 

while creating a simpler and more robust vacuum system.21  Ideally the turbo pump could 

be eliminated to simplify the pumping system to a rugged and relatively inexpensive 

roughing pump.  This new generation of high-pressure MS instruments would be useful 

for applications such as in situ detection of chemical warfare (CW) agents and toxic 

industrial compounds (TICs) where hand portability is required. 

1.2  Quadrupole ion traps 

Quadrupole ion traps (QITs) were first disclosed in 1953 by Paul and 

Steinwedel.22  They are commonly used as ion storage devices and mass analyzers for a 

wide range of mass spectrometry applications.  A QIT consists of a confined volume 

formed by stacking a hyperbolic endcap electrode on either side of a larger diameter ring 

electrode (Figure 1.1).  A QIT is typically operated by applying a high voltage (HV) 

radio-frequency (RF) sine wave to the ring electrode while holding the endcap electrodes 

at ground potential.  This configuration creates a quadrupolar electric field in the center 

of the trap and allows the QIT to trap ions in the resulting potential energy well.  The 

geometry of the QIT is described by the distance from the trap center to both the ring 

electrode (r0) and endcap electrode (z0).  The ideal QIT geometry is predicted to occur 

when r0
2 = 2z0

2. 

The three dimensional (3D) electric field inside the QIT can be found by solving 

the Laplace equation.23  The resulting potential inside the trap can be represented by a 

sum of polynomial terms as shown below with A2, A3, and A4 representing the 

quadrupolar, hexapolar, and octapolar  weighting coefficients, respectively. 
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   Where: φ0 = potential applied to ring electrode 
    r = radial distance from trap center 
    z = axial distance from trap center 
    r0 = trap radius 
    An = weighting coefficient for nth order field 
 
In this equation, the weighting coefficient (An) for each field component describes how 

much of the nth order field is present in the 3D electric field.  In an ideal case, the QIT 

electrodes extend infinitely and create an electric field that is purely quadrupolar where 

A3 = A4 = 0 (Figure 1.2).  In this purely quadrupolar electric field, forces applied to an 

ion are uncoupled in the r and z dimensions.  This is represented mathematically in the 

equation for φr,z by the fact that there are no “cross terms” containing the product of r and 

z.  Consequently, force applied in one dimension doesn’t affect the motion of the ions in 

the other dimension.  This allows the user to add energy only in the z dimension of the 

trap and eject ions toward the detector in a narrow beam.  However, it is not feasible to 

construct a QIT that produces purely quadrupolar (A2) fields because of the non-idealities 

introduced by truncated electrodes and endcap holes for ion transmission.  This results in 

A3, A4, and higher order coefficients with non-zero values.  Since the fundamental QIT 

theory was developed under the assumption of perfectly quadrupolar electric fields, these 

higher order field components can cause deviations from ideal QIT behavior.  Early 

commercial ion traps compensated for these higher order fields with a configuration 

where the QIT was “stretched” by a 10.6% increase in z0.
24  This modification to the trap 

geometry helps to offset the detrimental higher order field effects introduced by imperfect 

electrodes. 
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A working theoretical knowledge of the QIT is necessary to understand the 

experiments presented here.  A full theoretical explanation can be found in the literature 

and will not be presented in great detail here.23  The fundamental theory underlying QIT 

operation is derived from the Mathieu equation which mathematically describes the 

motion of ions in a quadrupolar electric field. 

2 cos 2 0 

Where: u = displacement 
 ξ = dimensionless parameter = Ωt / 2 
 au = stability parameter 
 qu = stability parameter 
 

The solutions to this second order linear differential equation yield two equations for the 

dimensionless trapping parameters az and qz which relate experimental parameters to the 

stability of an ion in the z dimension inside the trap. 

16
2 Ω

 

8
2 Ω

 

Where:  e = charge of the ion 
U = DC potential applied to the ring 
V = AC amplitude applied to the ring 
m = mass of the ion 
r0 = trap radius 
z0 = trap half length 
Ω = drive RF frequency 
 

If a stable ion is defined as having a trajectory that is periodic around the center of the 

trap, regions of stability in the r and z dimensions can be plotted in az vs. qz space to form 

the QIT stability diagram (Figure 1.3).  The ion is considered stable inside the trap where 

the regions of stability in the r and z dimensions overlap.  Although there are a few of 
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these overlapping regions of stability, the first region is used almost exclusively because 

it is experimentally easiest to achieve due to lower required voltages (Figure 1.4).  The 

stability of an ion can be predicted by calculating the value of az and qz for the ion of 

interest and drawing a point on the stability diagram.  If the resulting point lies inside the 

overlapping regions of r and z stability the ion is determined to be stable inside the trap.  

However, in a typical ion trap experiment there is no DC voltage applied to the ring 

electrode which results in an az value of 0.  Therefore it is only necessary to have a qz 

value below 0.908 for an ion to be trapped. 

QITs are typically operated with a low mass buffer gas such as helium at 

pressures of ≈1 mTorr for improved resolution.  The neutral helium atoms undergo 

collisions with trapped ions and remove kinetic energy in small increments.  This 

“collisional cooling” causes the ion orbits to collapse toward the center of the trap.  The 

result is a smaller potential energy spread between ions of the same m/z and consequently 

improved resolution as the ions reach the detector with less temporal variation.  

Sensitivity is also improved as a higher percentage of ions are near the axis of the trap 

and therefore will eject through the endcap hole toward the detector instead of being lost 

by striking an electrode. 

To further improve QIT resolution, a low voltage supplementary AC signal can be 

applied to an endcap electrode to perform resonance ejection.  The frequency of the 

supplementary AC corresponds to the frequency of oscillation (secular frequency) which 

all ions achieve before becoming unstable in the trap and is less than the drive RF 

frequency.  When an ion reaches the resonant point in the mass scan it absorbs energy 

from the matching supplemental AC signal and is ejected from the trap rapidly.  This 
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results in a smaller temporal variation for ions of a given m/z and therefore narrower peak 

widths and improved resolution.  Resonance ejection also extends the mass range of the 

QIT by ejecting ions at a qz value below 0.908, thus a larger m/z ion can be ejected from 

the trap with a given RF amplitude value. 

A QIT becomes a mass spectrometer by selectively ejecting different m/z values 

as a function of time.  A common method to achieve this is via a mass selective 

instability scan.  In this experiment, ions or electrons are first gated into the trap through 

small holes in the entrance endcap.  The ions of interest are trapped and the drive RF 

amplitude is then ramped linearly to increase the qz value for all ions in the trap.  

Eventually the qz value for a given m/z reaches 0.908 and those ions become unstable in 

the z dimension and are ejected from the trap through holes in the endcaps to be detected.  

In this fashion the ions are sequentially scanned out from lowest to highest m/z value to 

produce the familiar mass spectrum. 

QITs are a popular mass analyzer for portable or high-pressure mass spectrometry 

due to their relatively high-pressure operation and tandem MS capabilities.1, 6-8, 10-11, 13, 15, 

19  It is known that mTorr pressures of He buffer gas improve ion trap efficiency and 

resolution21, 23-26 while similar pressures degrade performance in other mass analyzers.11, 

15  Therefore ion traps have an advantage over other mass analyzer designs for high-

pressure mass spectrometry applications.  However, to have a significant effect on 

pumping demands the operational pressures need to increase by several orders of 

magnitude making conventional QITs inappropriate.  Although ion traps can operate at 

elevated pressures relative to other mass analyzers, special considerations must be taken 

to further increase operational pressures beyond a few tens of mTorr.  It is known that 
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high buffer gas pressures will cause performance degradation in an ion trap as a reduced 

mean free path results in more frequent collisions between ions and neutral molecules.  

However, Whitten et. al. predicted that performance degradation at high pressures can be 

offset by increasing the RF drive frequency and decreasing trap size to maintain mass 

resolution.3  Therefore, miniaturizing the ion trap is necessary to achieve truly high-

pressure operation.  Optimizing the axial RF amplitude can also help to maintain a strong 

signal by offsetting the effects of increased numbers of collisions at high pressures.19, 21 

1.3  Cylindrical ion traps 

To achieve a significant increase in QIT operating pressure it is necessary to 

construct traps that are much smaller than the conventional r0 = 1 cm size.  However, it 

becomes extremely difficult to fabricate hyperbolic electrode shapes at very small sizes 

because conventional machining inaccuracies represent an increasingly large percentage 

of the overall trap geometry.  If the trap dimensions pass below the capabilities of 

conventional machining techniques, microfabrication techniques become appropriate but 

are unable to produce the desired hyperbolic electrode shape.  Therefore, to realize trap 

miniaturization it is desirable to use a simplified version of the hyperbolic QIT geometry 

that is easier to fabricate but still produces electric fields that are largely quadrupolar.  

The cylindrical ion trap (CIT) shown in Figure 1.5 is one such geometry and is much 

easier to fabricate on a miniaturized scale while still functioning as a quadrupole ion 

trap.1, 4, 15, 27-32  A CIT consists of simple planar electrodes with cylindrical holes making 

it amenable to much smaller dimensions using both conventional and microfabrication 

techniques.  Although the shape of the cylindrical CIT electrode profile differs from the 

hyperbolic QIT electrodes, the CIT still produces electric fields that are largely 
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quadrupolar (Figure 1.6).  However, non-idealities introduced by the electrode shape and 

endcap holes result in higher-order electric field components in the CIT.23 

1.4  Ion trap arrays 

A disadvantage of miniaturized CITs is that the charge capacity of a single trap 

decreases with the trap radius (r).  However, the area of the trap decreases as r2 so total 

charge capacity can be maintained in a given area by employing CIT arrays where 

multiple traps operate in parallel.  This is a convenient strategy because switching from a 

single trap to an array doesn’t require any modifications to the experiment.  An array of 

miniaturized CITs is also significantly smaller than a conventional QIT since volume 

decreases as r3.  When using a CIT array it is important to ensure each individual trap is 

fabricated with the best possible positional accuracy and consistent dimensions for the 

best performance.  If there are variations in hole position or size the array elements will 

not function identically and the resolution of the instrument will be degraded by ions of a 

given m/z ejecting at different times from different traps.  Due to inevitable differences 

between individual traps, the resolution in a CIT array will be limited by the precision of 

the machining technique utilized and cannot exceed that of a single trap.  However, for a 

properly constructed CIT array the loss in resolution is minimal and typically 

insignificant. 

1.5  High-pressure trap operation 

There are relatively few examples of high-pressure MS in the literature.  The 

highest pressure experimental results were generated by Song et. al. using a rectilinear 

ion trap (RIT) instrument to explore MS performance at elevated pressures.19  The 

authors demonstrated full width half max (FWHM) peak widths of 2 m/z with the RIT 
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operating at 50 mTorr with air buffer gas.  Further experimental exploration of high-

pressure MS operation in this instrument was limited by electrical discharge above these 

pressures.  Using theoretical models the authors predicted FWHM peak widths of 9.5 m/z 

for their instrument operating with air buffer gas at 250 mTorr.21  The RIT was predicted 

to be capable of mass analysis at pressures of several hundred mTorr but with 

increasingly degraded resolution. 

Previous experiments with microscale CITs utilized a trap with a radius (r0) of 

500 µm operating at pressures of ≈3 mTorr using He buffer gas.33-35  This trap 

configuration was used as a basis for the work presented here since it should theoretically 

be capable of operating at buffer gas pressures significantly higher than the 1 mTorr 

levels typically used in conventional r0 = 1 cm hyperbolic QITs.3  However, to perform 

MS at these pressures it was necessary to design a differentially pumped vacuum system 

to maintain a low-pressure chamber for effective electron multiplier operation. 

1.6  High-pressure detector 

With current technology the detector is the limiting factor in high-pressure MS.  

There are many examples of high-pressure ionization sources, and mass analysis has 

recently been demonstrated at high pressures (Chapter 4), but detector technology has 

seen less development.  The electron multiplier is the most common ion detector used in 

MS instruments due to its high gain and low noise characteristics.36-37  However, electron 

multipliers are unable to operate at pressures above a few mTorr due to an ion feedback 

mechanism that saturates the output and damages the surface coating.38-40  Furthermore, 

sustained operation at even moderately elevated pressures will accelerate degradation of 

the surface coating and shorten the useful lifetime of the multiplier.  Therefore it is 
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necessary to replace the electron multiplier with a pressure tolerant ion detector to truly 

achieve high-pressure portable MS.  Ideally the detector would be capable of operating at 

any pressure which would allow for a simplified single chamber vacuum system. 

One alternative is Fourier transform image current detectors that have been used 

in CITs without buffer gas41 and in linear ion traps (LITs) up to 50 mTorr42.  Although 

image current detectors don’t suffer from the breakdown issues of the electron multiplier, 

they require long lasting ion motions.  At high pressures the large numbers of collisions 

between ions and neutral gas molecules makes this detector design ineffective.  Long 

detection times would also reduce the spectral acquisition rate of the instrument and 

increase the overall analysis time. 

Solid-state Faraday cup (FC) detectors are a second alternative type of detector 

that are pressure tolerant.37  They are also independent of ion energy, stable, inexpensive, 

measure positive and negative ions, and operate with low voltages.  However, they are 

generally less sensitive than an electron multiplier and require careful design to measure 

a usable signal.36, 38, 43-44  These FC detectors can either be configured to measure current 

or charge from incoming ions.  Those that measure current (electrometers) rely on a large 

feedback resistor for sufficient gain.  The small ion currents from a microscale CIT 

require a very high gain, which would decrease the time response of the detector and 

limit peak resolution.  Furthermore, the limit of detection (LOD) in an electrometer 

circuit is typically dominated by thermal (Johnson) noise in the feedback resistor which 

increases with gain.37, 40  FC detectors that measure charge (integrators) rely on a very 

small feedback capacitor to store the collected charge.  The gain of these detectors is 

inversely proportional to the feedback capacitance which allows for high gain without 
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decreasing the time response of the detector.  Another advantage is a lower detector read 

noise and LOD resulting from the inherently superior noise characteristics of a capacitor.  

An example of a charge detector design is the capacitive transimpedance amplifier 

(CTIA) which integrates incoming ion current on a feedback capacitor and produces a 

proportional output voltage.  This detector technology has been previously described in 

detail in the literature.36  CTIA technology has the same high-pressure advantages as an 

electrometer but is generally more sensitive due to the ability to microfabricate extremely 

small fF range capacitors directly on silicon.45  This makes direct electronic detection of 

ions via charge integration feasible.  There are several reports of these CTIA detectors 

configured in an array format with up to 1696 individual channels.36, 40, 44, 46-49  They have 

been used primarily on magnetic sector MS instruments where they can simultaneously 

detect multiple m/z values across the array.  Single channel CTIA detectors have also 

been demonstrated to operate at atmospheric pressure in an ion mobility spectrometer.45  

Another home built charge detector has been reported to work up to approximately 50 

mTorr in a CIT MS but the detector was not described in detail.50 

Although alternate detector technologies exist, there are relatively few options for 

pressure tolerant detectors with sufficient gain and time response to detect small numbers 

of ions arriving on µs time scales from an ion trap.  The work presented here uses a 

second generation single channel CTIA as a pressure tolerant ion detector for an isobaric 

microscale CIT instrument. 

1.7  Objectives 

This dissertation describes the development and characterization of MS at buffer 

gas pressures up to 1 torr.  To investigate this previously unexplored region of high-



 12

pressure MS, it was necessary to develop custom high-pressure MS instrumentation 

(Chapter 2).  The instrument was then characterized at typical ion trap operating 

pressures to empirically optimize various experimental parameters and ensure proper 

system operation (Chapter 3).  High-pressure CIT operation was then performed to 

demonstrate the feasibility of mass analysis at high pressures (Chapter 4).  Finally, high-

pressure MS experiments were performed using a pressure tolerant solid-state CTIA 

detector to demonstrate high-pressure MS in a single vacuum chamber (Chapter 5).  This 

work demonstrates the ability to perform MS at very high pressures which could be 

achieved with a simple and rugged roughing pump.  This represents a significant step 

toward the next generation of portable MS instrumentation. 
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1.8  Tables and figures 

 
 
Figure 1.1:  Exploded view of a commercial QIT showing the hyperbolic electrode 
geometry.23 
  



 14

 
 
Figure 1.2:  SIMION simulation showing the quadrupolar electric field inside a QIT.  
Critical dimensions r0 (trap radius) and z0 (trap half length) describe the trap geometry. 
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Figure 1.3:  The stability diagram derived from the Mathieu equation describes regions of 
r and z dimension stability plotted in (az, qz) space.  Ions are predicted to be trapped in 
regions where the r and z dimension stability overlap (labeled A and B).24 
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Figure 1.4:  QIT stability region “A” close-up view.  In a typical experiment az = 0 so the 
ion is stable for qz < 0.908.  A mass-selective instability scan increases the qz value for a 
given m/z ion until it reaches 0.908 and passes the stability boundary thus ejecting from 
the trap.23  The iso-βr and iso-βz lines are shown in this diagram. 
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Figure 1.5:  Exploded view of a CIT showing the simplified electrode geometry with 
cylindrical hole profiles.27 
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Figure 1.6:  SIMION simulation showing the electric field inside a microscale CIT.  
Although the field is largely quadrupolar, some higher order field components are 
introduced due to non-idealities near the electrodes and endcap holes.  Critical 
dimensions r0 (trap radius) and z0 (trap half length) describe the trap geometry. 
  



 19

1.9  References 

(1)  Patterson, G. E.; Guymon, A. J.; Riter, L. S.; Everly, M.; Griep-Raming, J.; Laughlin, 
B. C.; Zheng, O.; Cooks, R. G., Anal. Chem. 2002, 74, 6145-6153. 

(2)  Chaudhary, A.; van Amerom, F. H. W.; Short, R. T.; Bhansali, S., Int J Mass 
Spectrom 2006, 251, 32-39. 

(3)  Whitten, W. B.; Reilly, P. T.; Ramsey, J. M., Rapid Commun. Mass Spectrom. 2004, 
18, 1749-52. 

(4)  Van Amerom, F. H. W.; Chaudhary, A.; Cardenas, M.; Bumgarner, J.; Short, R. T., 
Chem. Eng. Commun. 2008, 195, 98 - 114. 

(5)  Yang, M.; Kim, T.-Y.; Hwang, H.-C.; Yi, S.-K.; Kim, D.-H., J. Am. Soc. Mass 
Spectrom. 2008, 19, 1442-1448. 

(6)  Ouyang, Z.; Noll, R. J.; Cooks, R. G., Anal. Chem. 2009, 81, 2421-2425. 

(7)  Blain, M. G.; Riter, L. S.; Cruz, D.; Austin, D. E.; Wu, G.; Plass, W. R.; Cooks, R. 
G., Int J Mass Spectrom 2004, 236, 91-104. 

(8)  Fico, M.; Yu, M.; Ouyang, Z.; Cooks, R. G.; Chappell, W. J., Anal. Chem. 2007, 79, 
8076-8082. 

(9)  Ferran, R. J.; Boumsellek, S., J. Vac. Sci. Technol. A 1996, 14, 1258-1265. 

(10)  Contreras, J. A.; Murray, J. A.; Tolley, S. E.; Oliphant, J. L.; Tolley, H. D.; 
Lammert, S. A.; Lee, E. D.; Later, D. W.; Lee, M. L., J. Am. Soc. Mass Spectrom. 2008, 
19, 1425-1434. 

(11)  Gao, L.; Song, Q.; Patterson, G. E.; Cooks, R. G.; Ouyang, Z., Anal. Chem. 2006, 
78, 5994-6002. 

(12)  Gao, L.; Sugiarto, A.; Harper, J. D.; Cooks, R. G.; Ouyang, Z., Anal. Chem. 2008, 
80, 7198-7205. 

(13)  Edwards, G. D.; Shepson, P. B.; Grossenbacher, J. W.; Wells, J. M.; Patterson, G. 
E.; Barket, D. J.; Pressley, S.; Karl, T.; Apel, E., Anal. Chem. 2007, 79, 5040-5050. 

(14)  Keil, A.; Talaty, N.; Janfelt, C.; Noll, R. J.; Gao, L.; Ouyang, Z.; Cooks, R. G., 
Anal. Chem. 2007, 79, 7734-9. 

(15)  Ouyang, Z.; Cooks, R. G., Annu. Rev. Anal. Chem. 2009, 2, 187-214. 

(16)  Smith, J. N.; Noll, R. J.; Cooks, R. G., Rapid Commun. Mass Spectrom. 2011, 25, 
1437-1444. 

(17)  Orient, O. J.; Chutjian, A., Rev. Sci. Instrum. 2002, 73, 2157-2160. 



 20

(18)  Keil, A.; Hernandez-Soto, H.; Noll, R. J.; Fico, M.; Gao, L.; Ouyang, Z.; Cooks, R. 
G., Anal. Chem. 2008, 80, 734-741. 

(19)  Song, Q.; Xu, W.; Smith, S. A.; Gao, L.; Chappell, W. J.; Cooks, R. G.; Ouyang, Z., 
J. Mass Spectrom. 2010, 45, 26-34. 

(20)  Gao, L.; Cooks, R. G.; Ouyang, Z., Anal. Chem. 2008, 80, 4026-4032. 

(21)  Xu, W.; Song, Q.; Smith, S. A.; Chappell, W. J.; Ouyang, Z., J. Am. Soc. Mass 
Spectrom. 2009, 20, 2144-53. 

(22)  Paul, W.; Steinwedel, H., Zeitschrift fuer Naturforschung 1953, a8, 448-450. 

(23)  March, R. E., Mass Spectrom. Rev. 2009, 28, 961-989. 

(24)  March, R. E., J. Mass Spectrom. 1997, 32, 351-369. 

(25)  Badman, E. R.; Cooks, R. G., Anal. Chem. 2000, 72, 3291-7. 

(26)  Stafford Jr, G. C.; Kelley, P. E.; Syka, J. E. P.; Reynolds, W. E.; Todd, J. F. J., Int. 
J. Mass Spectrom. Ion Processes 1984, 60, 85-98. 

(27)  Kornienko, O.; Reilly, P. T. A.; Whitten, W. B.; Ramsey, J. M., Rapid Commun. 
Mass Spectrom. 1999, 13, 50-53. 

(28)  Wells, J. M.; Badman, E. R.; Cooks, R. G., Anal. Chem. 1998, 70, 438-444. 

(29)  Bonner, R. F.; Fulford, J. E.; March, R. E.; Hamilton, G. F., Int. J. Mass Spectrom. 
Ion Phys. 1977, 24, 255-269. 

(30)  Pau, S.; Pai, C. S.; Low, Y. L.; Moxom, J.; Reilly, P. T.; Whitten, W. B.; Ramsey, J. 
M., Phys. Rev. Lett. 2006, 96, 120801. 

(31)  Ouyang, Z.; Wu, G.; Song, Y.; Li, H.; Plass, W. R.; Cooks, R. G., Anal. Chem. 
2004, 76, 4595-4605. 

(32)  Beaty, E. C., J. Appl. Phys. 1987, 61, 2118-2122. 

(33)  Moxom, J.; Reilly, P. T.; Whitten, W. B.; Ramsey, J. M., Anal. Chem. 2003, 75, 
3739-43. 

(34)  Moxom, J.; Reilly, P. T. A.; Whitten, W. B.; Ramsey, J. M., Rapid Commun. Mass 
Spectrom. 2002, 16, 755-760. 

(35)  Moxom, J.; Reilly, P. T. A.; Whitten, W. B.; Ramsey, J. M., Rapid Commun. Mass 
Spectrom. 2004, 18, 721-723. 

(36)  Knight, A. K.; Sperline, R. P.; Hieftje, G. M.; Young, E.; Barinaga, C. J.; 
Koppenaal, D. W.; Denton, M. B., Int J Mass Spectrom 2002, 215, 133-139. 



 21

(37)  Koppenaal, D. W.; Barinaga, C. J.; Denton, M. B.; Sperline, R. P.; Hieftje, G. M.; 
Schilling, G. D.; Andrade, F. J.; Barnes, J. H. I. V., Anal. Chem. 2005, 77, 418A-427A. 

(38)  Barnes, J. H.; Hieftje, G. M., Int J Mass Spectrom 2004, 238, 33-46. 

(39)  Bower, C. A.; Gilchrist, K. H.; Lueck, M. R.; Stoner, B. R., Sensors and Actuators, 
A: Physical 2007, A137, 296-301. 

(40)  Lorincik, J.; Denton, M. B.; Sperline, R. P.; Young, E. T.; Williams, P., Anal. Lett. 
2011, 44, 1050-1057. 

(41)  Badman, E. R.; Wells, J. M.; Bui, H. A.; Cooks, R. G., Anal. Chem. 1998, 70, 3545-
3547. 

(42)  Xu, W.; Maas, J. B.; Boudreau, F. J.; Chappell, W. J.; Zheng, O. Y., Anal. Chem. 
2011, 83, 685-689. 

(43)  Darling, R. B.; Scheidemann, A. A.; Bhat, K. N.; Chen, T. C., Sensors and 
Actuators, A: Physical 2002, 95, 84-93. 

(44)  Schilling, G. D.; Shelley, J. T.; Barnes, J. H.; Sperline, R. P.; Denton, M. B.; 
Barinaga, C. J.; Koppenaal, D. W.; Hieftje, G. M., J. Am. Soc. Mass Spectrom. 2010, 21, 
97-103. 

(45)  Babis, J. S.; Sperline, R. P.; Knight, A. K.; Jones, D. A.; Gresham, C. A.; Denton, 
M. B., Anal. Bioanal. Chem. 2009, 395, 411-419. 

(46)  Schilling, G. D.; Ray, S. J.; Rubinshtein, A. A.; Felton, J. A.; Sperline, R. P.; 
Denton, M. B.; Barinaga, C. J.; Koppenaal, D. W.; Hieftje, G. M., Anal. Chem. 2009, 81, 
5467-5473. 

(47)  Rubinshtein, A. A.; Schilling, G. D.; Ray, S. J.; Sperline, R. P.; Denton, M. B.; 
Barinaga, C. J.; Koppenaal, D. W.; Hieftje, G. M., J. Anal. Atom. Spectrom. 2010, 25, 
735-738. 

(48)  Schilling, G. D.; Ray, S. J.; Sperline, R. P.; Denton, M. B.; Barinaga, C. J.; 
Koppenaal, D. W.; Hieftje, G. M., J. Anal. Atom. Spectrom. 2010, 25, 322-327. 

(49)  Felton, J. A.; Schilling, G. D.; Ray, S. J.; Sperline, R. P.; Denton, M. B.; Barinaga, 
C. J.; Koppenaal, D. W.; Hieftje, G. M., J. Anal. Atom. Spectrom. 2011, 26, 300-304. 

(50)  Zhu, Z. Q.; Xiong, C. Q.; Xu, G. P.; Liu, H.; Zhou, X. Y.; Chen, R.; Peng, W. P.; 
Nie, Z. X., Analyst 2011, 136, 1305-1309.



CHAPTER 2 

INSTRUMENTATION 

2.1  Introduction 

Since there is no source for commercially available high-pressure MS 

instrumentation, it was necessary to design and build a significant amount of custom 

hardware and software to perform the MS experiments described here.  This chapter 

discusses the design and development of a custom mass spectrometry instrument capable 

of operating at high buffer gas pressures.  Further specialized instrumentation developed 

for a specific experiment will be discussed later in the context of those experimental 

results for clarity. 

2.2  Instrument configuration 

A complete diagram of the typical MS instrument configuration is shown in 

Figure 2.1.  The EI source, CIT, and electron multiplier are mounted inside a vacuum 

chamber and connected to electrical feedthroughs.  The differential vacuum chamber was 

used to perform high-pressure experiments with the electron multiplier.  A brief 

description of a typical experiment begins by passing electrons through the CIT to ionize 

analyte molecules inside the trap.  The ions are trapped inside the CIT for a few 

milliseconds until they collisionally cool toward the center of the trap.  The RF amplitude 

is then linearly increased to sequentially destabilize the ions and eject them toward the 

detector. 
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Instrument software written in LabVIEW (National Instruments, Austin, TX) was 

used to synthesize control waveforms using an analog voltage output card (PXI-6733, 

National Instruments).  Two pulse waveforms were connected to the HV pulsing power 

supply to control the timing of ionization and detection.  Two benchtop DC power 

supplies were used to provide the heating current and bias voltage necessary for driving 

the hot cathode EI source.  A third pulse waveform was used to gate the axial RF signal 

from an arbitrary function generator (AFG3022, Tektronix, Beaverton, OR) to perform 

resonance ejection during the mass scan.  This low voltage axial RF was applied directly 

to one CIT endcap.  A fourth analog output waveform was connected to an RF signal 

generator (HP 8648A, Hewlett Packard, Palo Alto, CA or E4428C, Agilent, Santa Clara, 

CA) to produce an amplitude modulated RF signal.  This low voltage RF signal was 

passed through an RF preamplifier and power amplifier to generate the required HV RF 

signal applied to the ring electrode.  Output from the electron multiplier was connected to 

a current preamplifier and finally to a 16 bit analog voltage input card (PXI-6122, 

National Instruments, Austin, TX) for digitization. 

The timing diagram used for a representative MS experiment is shown in Figure 

2.2.  Initially 0 V is applied to the gate electrode to pass electrons through during the 

ionization period.  The drive RF amplitude is held at a fixed voltage to trap ions 

generated inside the CIT.  At the end of the ionization period the gate electrode voltage is 

driven to -150 V to block the electron beam and stop ionization.  The drive RF amplitude 

is then held constant for 5 ms to collisionally cool trapped ions towards the center of the 

trap.  The electron multiplier is activated by driving it to -1600 V a few ms before the 

mass scan to stabilize the applied voltage for a constant gain.  The drive RF amplitude is 
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then linearly ramped to perform a mass instability scan and eject ions toward the detector 

in order of increasing m/z.  The axial RF signal is simultaneously gated on to perform 

resonance ejection during the mass scan for improved resolution and mass range.  Data is 

acquired during the mass instability scan and converted to a m/z axis using custom 

LabVIEW software to produce a mass spectrum.  Finally the drive RF amplitude is 

dropped to a low voltage to clear any remaining ions from the trap and prepare for the 

next scan. 

2.3  Vacuum chamber designs 

Vacuum chambers were designed to accommodate the experiments required to 

explore MS at high pressures.  Two chamber designs were developed to perform the MS 

experiments described here.  An isobaric chamber was designed for low-pressure MS and 

high-pressure MS using a pressure tolerant detector.  A differentially pumped chamber 

was designed for high-pressure MS using a conventional electron multiplier detector 

which required a low-pressure region for safe detector operation. 

2.3.1  Isobaric chamber 

The first vacuum chamber was an isobaric design where the components under 

vacuum operated at an equilibrated pressure.  This chamber was built using a standard 6” 

conflat (CF) cube (Figure 2.3) and a variety of flanges for vacuum pumps, gauges, gas 

inlets, electrical feedthroughs, and viewports.  A custom electrical feedthrough flange 

(Accu-Glass, Valencia, CA) with 18 isolated coaxial connections provided electrical 

connectivity into the vacuum chamber (Figure 2.4).  A dry scroll roughing pump and 

turbo pump were used to achieve the desired pressures inside the chamber (SH110 / 

Turbo-V 70D, Varian, Palo Alto, CA).  A manual gate valve between the chamber and 
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turbo pump was used to decrease vacuum conductance for performing high-pressure 

experiments.  The mounting system employed inside the chamber consisted of two 

parallel 1/4”-20 threaded rods protruding from the electrical feedthrough flange.  All 

components of the MS under vacuum were secured to these rods using custom mounting 

fixtures and jam nuts.  Independent positioning and alignment of instrument components 

inside the chamber was simple and straightforward with this design.  Modifications to 

components under vacuum were performed by removing the electrical feedthrough flange 

from the cube and extracting the MS components for servicing on the benchtop.  This 

design is capable of performing MS experiments up to the pressure tolerance of the 

particular detector in use. 

2.3.2  Differentially pumped chamber 

The second vacuum chamber design was a differentially pumped system with a 

high-pressure region for the ionization source and cylindrical ion trap (CIT) and a second 

low-pressure region for safe electron multiplier operation (Figure 2.5).  Separate turbo 

pumping systems (TPS Bench / TPS Compact, Varian, Palo Alto, CA) and conductance 

limiting valves independently controlled the pressure in each chamber (Figure 2.6).  This 

differentially pumped design was custom built for exploring MS performance at ≈1 torr 

pressures using a standard electron multiplier detector.  A key aspect of this design is the 

use of the exit endcap electrode of the CIT to create a seal against the chamber wall and 

function as a flow-restricting orifice (Figure 2.7).  This is what effectively separates the 

two regions and creates the differential pressure during an experiment.  Each chamber has 

three 1.33” CF flange ports for vacuum pumps, gauges, gas inlets, and electrical 

connections.  An optional port expander manifold was created to increase the original 
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three vacuum ports to a total of seven on each chamber so more functionality can be 

added as required.  The chamber covers utilized o-rings and polished grooves to achieve 

a vacuum seal against the chamber wall.  Multi-pin (9C-133, Accu-Glass, Valencia, CA) 

and SMA coaxial (IFDCF012012, Kurt J. Lesker, Clairton, PA) electrical feedthroughs 

were used to connect low and high frequency signals to the vacuum chamber 

components, respectively.  A photo of the assembled chamber with several connections to 

the port expander manifold is shown in Figure 2.8.  The positioning and alignment 

scheme in this chamber utilized a precision rail system where components were designed 

with a common mounting section for connecting to the rail. This made possible very 

precise positioning and alignment of components inside the chamber.  With this 

mounting system, select components can be removed or replaced without disturbing other 

components therefore simplifying system integration.  Modifications to the instrument 

were typically performed in place by removing the rectangular chamber cover exposing 

the internal components and connections.  It is also possible to easily remove the entire 

rail with all components still attached for performing modifications on the benchtop.  

This chamber design is more flexible than the isobaric chamber and can perform both low 

and high-pressure MS experiments by maintaining pressures below 1 mTorr in the 

detection chamber. 

2.4  Ionization source 

An electron ionization (EI) source was chosen for experimental simplicity and the 

availability of standard EI spectral libraries.  Commercially available thermionic emitters 

were used as electron sources for all MS experiments presented here (Figure 2.9).  

Although designed for operation in high vacuum, these emitters will operate at high 
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pressure in an inert atmosphere without burning out, much like an incandescent light 

bulb.  Initial MS experiments were performed using a simple tungsten wire filament (ES-

020, Kimball Physics, Wilton, NH) (Figure 2.9a) but the relatively large emission area of 

a yttria-coated iridium disk emitter (ES-525, Kimball Physics, Wilton, NH) (Figure 2.9b) 

provided a higher emission current over a wider area for more efficient ionization in CIT 

arrays.  The yttria coated disk emitters can also tolerate higher partial pressures of oxygen 

without degradation.  A pair of benchtop DC power supplies provided the heating current 

and bias voltage to drive the emitter.  Floating the emitter to -70 V provides the 70 eV 

electron energy typically used for EI experiments.  A custom mount secured the ceramic 

base of the emitter to the mounting system inside each chamber (Figure 2.10).  A gate 

electrode with a small hole in the center was placed between the emitter and the CIT to 

selectively block electron current from the emitter and stop further ionization.  During the 

ionization time the gate electrode is grounded thus allowing electrons to pass and perform 

EI inside the trap.  When a negative voltage (i.e. -150 V) is applied to the gate electrode, 

electrons are blocked and the EI source is effectively turned off.  This strategy enables EI 

source activation and deactivation on µs time scales without disturbing the relatively 

slow thermal equilibrium of the thermionic emitter.  A complete EI assembly installed on 

a rail is shown in Figure 2.11. 

2.5  CIT 

A CIT consists of a stack of three planar electrodes with an endcap electrode on 

either side of a relatively large diameter ring electrode.1  These CIT electrodes were 

fabricated using brass, copper, or beryllium copper sheet metal stock.  Two different 

fabrication methods were employed with each resulting in trap electrodes with slightly 
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different performance characteristics.  The simplest fabrication strategy is to 

conventionally machine the electrodes using a computer numerical control (CNC) mill.  

With this approach a computer-aided design (CAD) model of the electrode is interpreted 

by a computer that machines the electrodes from a piece of brass sheet metal using a 

three axis mill.  Brass was chosen because it is easy to machine with a CNC but hard 

enough to make accurate features.  This fabrication strategy produces electrodes with 

nearly cylindrical hole profiles as shown in Figure 2.12.  The machined CITs used for 

this work were fabricated on a MicroMill DSLS3000 CNC mill (MicroProto Systems, 

Chandler, AZ).  The machining process creates imperfections around the edge of the hole 

but these should not cause issues with trap operation because they don’t protrude into the 

trap.  Advantages of this approach include rapid turnaround time for prototyping new 

electrode designs and a very low cost for small numbers of parts.  CITs made from 

conventionally machined electrodes were more difficult to correctly align due to feature 

placement accuracy but produced the highest resolution spectra when a properly 

functioning trap was built. 

Photolithography followed by a wet chemical etch was also used to create 

electrodes. This slightly more complex fabrication strategy uses a CAD model of the 

electrodes to produce a photolithographic mask.  The stock copper or beryllium copper 

sheet metal is covered with a light sensitive photoresist coating and exposed by passing 

light through the mask to directly write electrode features into the photoresist.  

Subsequent chemical development steps remove exposed areas of the photoresist and the 

entire sheet is then placed into a wet chemical etching solution.  Only exposed areas of 

metal are removed by the etching process.  Wet chemically etched CIT electrodes in this 
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work were purchased from Towne Technologies, Somerville, NJ.  Since the etching 

process is isotropic, it is necessary to etch from both sides of the sheet metal to keep the 

ring electrode profiles symmetric and uniform.  This method does not produce CIT 

electrodes with perfectly cylindrical sidewalls.  A small cusp feature is visible around the 

center of the ring electrode as a result of the two-sided isotropic etching process (Figure 

2.13).  The endcap electrodes were etched from a single side to produce bowl shaped 

features with cylindrical openings (Figure 2.14).  The flat side of the endcap electrode 

faces the center of the trap to correctly define the trap half-length (z0) value and create 

appropriate electric fields.  The bowl shaped side of the endcap doesn’t contribute to the 

electric field inside the trap.  However, it provides a funnel shaped opening where 

electrons or ions can pass from a larger solid angle than an equivalent cylindrical endcap 

hole formed by conventional machining techniques.  This etched endcap profile is similar 

to the shape of quadrupole ion trap (QIT) endcap electrodes2 and should result in 

improved signal intensity due to higher ion and electron transmission into and out of the 

trap.  This was consistent with the observed performance of many chemically etched 

traps.  However, the most significant advantage to this chemically etched fabrication 

method is the excellent positional accuracy of a photolithography based process.  The 

electrode features could be positioned to an accuracy below 1 µm vs. the ≈25 µm 

accuracy of a conventional CNC mill.  This is especially important with CIT arrays 

because optimal performance is achieved when each set of endcap and ring electrodes is 

accurately aligned.  The experimental consequence of this improved positional accuracy 

in etched traps was much more consistent and reproducible behavior in terms of signal 

strength and resolution between different traps.  Overall, both fabrication strategies have 
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advantages for different types of experiments and are very inexpensive with a total cost 

below $25 per trap.  These strategies are also amenable to batch fabrication for scaling up 

the number of traps produced per fabrication run. 

The CIT electrode design shown in Figure 2.15 contained a number of important 

elements, which affected the ease of use and overall trap performance.  Each electrode 

started as a 1” diameter circle with three mounting holes for mechanically fastening the 

assembled trap to a mounting fixture.  Excess electrode material near the perimeter was 

removed to decrease trap capacitance and consequently the RF amplifier load.  Solder 

tabs protruding from the electrodes were included for convenient electrical connections to 

the CIT.  Pin connectors were soldered to the electrode tabs so wires could be 

disconnected easily for trap modification or removal.  Polyimide washers (McMaster-

Carr, Atlanta, GA) were used as spacers beneath the mounting screws to electrically 

isolate each electrode and create the desired z0 spacing value for the trap.  Three 1 mm 

diameter holes around the perimeter were used to accurately align the stack of three CIT 

electrodes relative to each other using 1 mm pins (McMaster-Carr, Atlanta, GA).  Three 

adjacent holes have concentric features of decreasing size for measuring electrode 

alignment under a microscope.  With these alignment features, rapid screening of traps 

with poor electrode alignment could be completed prior to installation in the instrument 

and subsequent vacuum pumpdown.  The active area on the CIT consists of holes in the 

middle of each electrode that align concentrically with the other stacked electrodes. 

Parallel arrays of CITs can be fabricated by simply increasing the number of holes in the 

electrodes.  The particular arrangement of holes doesn’t have much effect but the pattern 

needs to be identical on all three electrodes so the endcap and ring electrode holes align 
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concentrically when the electrodes are stacked together.  Alignment of these array 

electrodes is performed in the same manner as aligning a single trap and doesn’t add a 

significant amount of difficulty.  For the CIT arrays used here a symmetric pattern of 19 

hexagonally close-packed holes were chosen as a reasonable number of parallel CITs and 

since symmetric, the electrodes could be rotated 120° without affecting trap operation.  

CIT arrays were primarily used to maximize signal strength for experiments where a 

larger number of ions was beneficial. 

After a CIT was constructed and secured to the mounting flange, the entire 

assembly was secured directly to the differential chamber wall to achieve a vacuum seal 

where the endcap hole limits gas conductance between the two chambers.  The spacer 

material used to construct the trap created an open structure between electrodes to 

maintain equilibrium between the high-pressure chamber and the trap.  Therefore the 

pressure inside the trap was the same as that measured in the high-pressure chamber.  A 

CIT assembled on a differential chamber trap mounting fixture is shown in Figure 2.16 

with the endcap hole visible in the center of the top electrode.  An assembled 19 hole CIT 

array assembled on an isobaric chamber mounting fixture is shown in Figure 2.17.  Both 

single traps and arrays could be used in either mounting fixture design. 

2.6  Electron multiplier 

The most commonly used detector for MS experiments is the electron multiplier 

(EM).3  An EM was chosen for most experiments presented here because it is a mature 

and proven detector technology that requires no developmental work.  The EMs used 

here are replacement modules (2300 or 2312, DeTech, Palmer, MA) originally designed 

for commercial instruments (Figure 2.18) and were easily adapted for use in these custom 
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MS instruments.  They are both continuous dynode type EMs where the active region 

consists of a specially designed continuous resistive coating deposited on a glass 

substrate.  Custom mounting fixtures were fabricated to secure these EMs and make 

electrical connections to the front and rear of the resistive glass surface (Figure 2.19).  To 

activate an EM, a negative HV is applied to the front while the back side is grounded.  

The negative potential on the front end attracted positive ions exiting the CIT.  When an 

ion strikes the resistive coating a plume of secondary electrons are ejected from the 

surface.  Since the front of the EM is at a negative potential relative to the rear, the 

negatively charged electrons are pushed toward the rear by the electric field and strike the 

surface further down the tube releasing several more plumes of secondary electrons.  This 

process repeats multiple times until the original positively charged ion that struck the 

front of the EM is converted into approximately 106 electrons at the rear.  The 

multiplication of the original number of charge carriers made reading an EM’s output 

easy with a commercially available current preamplifier (SR570, Stanford Research 

Systems, Sunnyvale, CA).  Recording the detector’s output current as a function of time 

with a 16 bit analog voltage input card (PXI-6122, National Instruments) produced the 

familiar mass spectrum. 

This physical mechanism of electron multiplication where plumes of secondary 

electrons eject from the surface can cause undesired ionization of neutral gas molecules 

through an EI mechanism.3  These unwanted ions are generated after mass analysis and 

therefore have an unknown m/z value that contributes to detector noise.  At low pressures 

the density of neutral molecules is sufficiently low such that these events do not initiate 

uncontrolled feedback.  However, at high pressures there are significantly more neutral 
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molecules near the EM surface and these unwanted ions create a feedback loop that 

saturates the detector output almost immediately.4-5  This breakdown overwhelms any 

usable signal and can damage the sensitive EM surface coating and reduce the lifetime of 

the multiplier.  Therefore the detector chamber pressure must be maintained below 1 

mTorr to ensure safe EM operation. 

2.7  CTIA detector 

An ideal detector would be capable of operating at any pressure which would 

simplify the vacuum system to a single chamber and significantly reduce SWaP.  

Therefore, it is desirable to replace the electron multiplier with a pressure tolerant ion 

detector to achieve high-pressure portable MS.  Faraday cup (FC) detectors are an 

alternative ion detector technology that utilize pressure tolerant solid-state electronics to 

detect charge.6  In addition, they are independent of ion energy, stable and inexpensive. 

They measure positive and negative ions and operate with low voltages.  FC detectors 

that measure charge (integrators) rely on a very small feedback capacitor to store the 

collected charge.  The gain of these detectors is inversely proportional to the feedback 

capacitance, which allows for high gain without decreasing the time response of the 

detector.  An advantage of an integrating style of FC detector is a lower detector read 

noise and LOD resulting from the inherently superior noise characteristics of a capacitor.  

An example of this charge detector design is the capacitive transimpedance amplifier 

(CTIA), which integrates incoming ion current on a feedback capacitor and produces a 

proportional output voltage.  This detector technology has been described in detail 

previously.6  CTIA technology has high sensitivity and low noise due to the ability to 

microfabricate extremely small fF range capacitors directly on silicon.7  This makes 
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direct electronic detection of ions via charge integration feasible.  Although alternate 

detector technologies exist, there are relatively few options for pressure tolerant detectors 

with sufficient gain and time response to detect small numbers of ions arriving on µs time 

scales from an ion trap. 

The work presented here uses a second-generation, single-channel CTIA designed 

by a collaborator (M. Bonner Denton, UA, Tuscon, AZ) as a pressure tolerant ion 

detector for an isobaric microscale CIT instrument.7  A complete diagram of this 

instrument is shown in Figure 2.20.  Most of this instrument operates in the same fashion 

as the differential chamber instrument with the electron multiplier except for some 

electronics related to the detector.  The CTIA is fully differential with two inputs to reject 

input noise and two outputs which reject common mode noise by subtracting the outputs 

to generate the final signal.  The detector consists of a custom integrated circuit (IC) and 

copper Faraday cup electrode mounted on a 1.5 x 2” circuit board (Figure 2.21).  The 

custom IC includes four independent CTIA amplifiers with differential inputs and outputs 

for common mode noise rejection.  Each CTIA amplifier includes independent gain 

control implemented with two built-in feedback capacitors to accommodate a larger 

range of signal intensities.  A 10 fF feedback capacitor is used for high gain and a second 

990 fF capacitor is connected in parallel for a total capacitance of 1000 fF in low gain 

mode.  This represents two orders of magnitude in signal intensity between high and low 

gain mode.  The detector operates by collecting incoming charges at the Faraday cup 

electrode and storing them on the feedback capacitor.  This results in an integrating style 

detector where the output voltage is proportional to the number of collected charges and 

inversely proportional to the feedback capacitance.  Common mode noise is picked up by 
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a second reference input and the CTIA differentially amplifies the input signal and 

produces two identical but inverted outputs.  The differential output can further reduce 

noise picked up after the amplifier and double the resulting signal intensity by subtracting 

the outputs before digitization. 

A 12 V DC supply was used to power the detector and a second -125 V DC 

supply provided the detector bias voltage to attract low energy ions exiting the CIT.  A 

custom designed aluminum enclosure was used to shield the CTIA’s sensitive amplifier 

circuitry from RF interference.  An isolated wire mesh grid was placed over an opening 

in the shield box and a 1 µF high voltage ceramic shunt capacitor was connected between 

the grid and the grounded shield box.  This isolated grid configuration can be biased 

along with the CTIA detector while still providing a low impedance path to ground for 

RF interference. 

Since the detector circuitry was biased to attract charged particles, a few special 

considerations had to be taken for safely interfacing to the floating detector.  To reset the 

detector it was necessary to bias the TTL reset pulse using a custom digital pulse isolator 

circuit based on the H11N1 logic optocoupler (Figure 2.22).  This circuit converted a 

ground referenced pulse to a bias referenced pulse for resetting the detector.  To safely 

connect the detector output to a ground referenced analog input channel it was also 

necessary to remove the bias voltage from both differential outputs.  This was achieved 

with a custom high-voltage subtraction circuit based on the AD629 HV difference 

amplifier.  This circuit simultaneously removed the bias and combined the differential 

outputs by subtracting both signals.  The 500 kHz bandwidth of this subtraction circuit 

ensures the time response of the detector won’t be degraded by the isolation circuitry.  
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The resulting ground referenced output was then connected to a 16 bit analog voltage 

input card (PXI-6122, National Instruments) for digitization.  Due to the integrating 

functionality of the CTIA it was then necessary to perform a numerical derivative in 

software to produce the recorded mass spectrum. 

2.8  Electronics 

Custom circuitry was designed and built to produce appropriate voltages for 

driving various instrument components.  The circuits described here were critical to 

performing most MS experiments and were used extensively in the lab. 

2.8.1  RF amplifiers 

A HV RF signal needs to be applied directly to the CIT ring electrode to produce 

appropriate quadrupolar electric fields for trapping ions.8  This RF signal is initially 

created by an RF generator at low voltage.  The signal is then passed into a RF 

preamplifier circuit based on the Linear Technology LT1206 current feedback amplifier.  

This circuit amplifies a low power input waveform to an appropriate power level for 

driving the input of a larger power amplifier. 

A first generation RF power amplifier was built by the UNC electronics facility 

using a modified Motorola EB63A 140 W communications amplifier kit 

(Communications Concepts, Beavercreek, OH).  The amplifier was powered by a 12 V 

DC switching power supply and featured an air core roller inductor for resonating the 

capacitive CIT connected to the output to maximize the applied voltage.  This roller 

inductor design tunes the amplifier to a new frequency or capacitive load on the fly by 

turning a knob.  An oscilloscope monitored and measured the RF signal during MS 

experiments (TDS3034B, Tektronix, Beaverton, OR).  This amplifier design is capable of 
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generating 500 V0-p RF waveforms at ≈6 MHz with ≈2 ppth amplitude stability as 

measured by a real-time spectrum analyzer (FSVR7, Rohde & Schwarz, Columbia, MD). 

A second generation RF power amplifier was built with the help of the UNC 

electronics facility using a modified Motorola AN762 140 W communications amplifier 

kit (Communications Concepts).  A number of modifications were performed to improve 

the RF amplitude stability including input power bypass capacitors, power supply filters, 

and a custom double-regulated 12 V DC power supply.  This power supply used a large 

bank of capacitors and two stages of voltage regulation to produce a very stable 12 V DC 

output at several amps of current.  The tunable roller inductor was replaced with a fixed 

tap inductor to improve the electrical connection and therefore improve amplitude 

stability.  This amplifier is capable of generating 500 V0-p RF waveforms at ≈6 MHz with 

<1 ppth amplitude stability. 

2.8.2  HV pulsing power supply 

A circuit to generate the HV pulses for driving the ionization gate electrode and 

EM detector was designed using the EMCO F series miniature HV DC power supplies 

(Figure 2.23).  This circuit is controlled by two 5 V input pulses and generates variable 

output pulses up to -200 V and -2 kV for the gate electrode and EM, respectively.  A 

variable voltage regulator powers each HV supply to generate a proportional HV DC 

voltage.  A solid-state relay (SSR) is used to switch the gate electrode voltage between 

ground and -200 V for controlling ionization.  A custom HV single pole double throw 

(SPDT) switch was constructed using two Voltage Multipliers OC100HG optocouplers.  

Activating an optocoupler electrically connects the two sides together so it can be used as 

a HV switching element.  Alternately activating the two optocouplers switches the output 
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between ground and -2 kV in ≈2 ms.  Since the EM is only activated for the mass scan, a 

fast switching time is highly desirable to avoid limiting the type of experiments that can 

be performed due to a long detector turn-on delay.  An inverter is used on one of the 

optocoupler inputs to prevent both switching elements from activating simultaneously 

and shorting the HV power supply. 

2.9  Instrument control 

In the early stages of development for this project all of the timing, control, and 

data acquisition functionality of the instrument were performed with separate benchtop 

devices like pulse delay generators, arbitrary function generators, and oscilloscopes.  

Although this method was functional, it was slow, cumbersome, and prone to mistakes 

because a simple modification to the experimental design required changes in multiple 

locations.  It was also necessary to meticulously record all experimental parameters by 

hand for any saved data, which was also prone to oversights and mistakes.  Therefore it 

was highly desirable to combine as much functionality as possible into an integrated 

instrument control system to automate the instrument and enable users to rapidly perform 

a variety of MS experiments. 

An integrated control system was developed based on a PXI chassis with analog 

input and output cards from National Instruments.  The LabVIEW programming 

environment was chosen because the excellent hardware integration and high level 

programming style are made for rapid software development.  Using this foundation, a 

suite of software was written in LabVIEW to integrate the tasks of previously separate 

benchtop control devices and provide a much more efficient and user-friendly interface to 

the custom MS instruments.  A modular design was chosen for this control software to 
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make the code easy to understand, reuse, or modify.  It was designed to be very flexible 

so the same program could be distributed to several MS instruments to perform a variety 

of experiments without needing to maintain specialized software on each system. 

To begin an experiment, the user opens the main graphical user interface (GUI) 

program which incorporates most instrument functionality (Figure 2.24).  This program 

controls waveform generation and timing, data acquisition, and viewing of previously 

saved data files.  Since the operation of this program is dependent on user interaction, an 

event-driven methodology was chosen so the software would only respond to specific 

events instead of forcing it to constantly check the input parameters.  By taking 

advantage of the events that are generated when a user interacts with a LabVIEW GUI, it 

was possible to configure the program to restart waveform generation only when a 

change was made to a control.  When no events are being generated the software 

continuously writes the desired waveforms without further interaction or data transfer 

between the computer and analog output card. 

A diagram illustrating the hierarchy of various modules of the control software is 

shown in Figure 2.25.  All user interaction with the software is handled by the main GUI 

control program (Control_Experiment.vi).  The three major functions performed by this 

software can be operated independently or simultaneously to give the user more 

flexibility for performing different experiments.  Global variables were used to 

communicate between modules when necessary. 

When the user starts the waveform generation module 

(Write_Experiment_Waveforms.vi), experimental parameters feed into separate programs 

for creating a pulse waveform (Create_Pulse.vi) and a linear ramp waveform 
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(Create_Ramp.vi) to generate the correct timing and amplitude of the instrument control 

signals.  Another program is used to convert this waveform data inside the computer to 

the corresponding real voltages (Write_Waveforms.vi) by writing this waveform data to 

the analog outputs.  This program calculates the experimental control waveforms once 

and then continuously writes them to the analog outputs until the user changes one of the 

input parameters or stops waveform generation.  This is much more efficient than writing 

a set of waveforms once since there is a significant amount of overhead involved with 

calculating new waveforms and transferring that data to the analog output cards 

continuously. 

When the user starts the data acquisition (DAQ) module, the analog voltage input 

program (Analog_In.vi) records two channels of analog voltage waveforms.  When 

activated this program takes the DAQ input parameters and acquires the requested 

number of spectra.  The output of this module is two digitized waveforms representing 

the averaged signals present on the two analog input channels.  If the user chooses to save 

the resulting data it is passed to a data saving program (Save.vi) along with a list of all 

computer controlled experimental parameters converted to a string 

(Parameters_to_String.vi).  This information is combined and saved as a text file 

(Write_Data.vi) along with an image of the data as displayed on the screen for quickly 

browsing through data files (Write_Image.vi). 

A final module quickly reads saved data files (Read_Data.vi) and displays the 

data on a graph.  The text file header information is parsed from a large string back into 

individual experimental parameter variables (String_to_Parameters.vi) for making 

programmatic decisions based on these parameters. 
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2.10  Post-processing software 

Several LabVIEW programs were written to perform post-processing operations 

on saved MS data files.  A general purpose signal processing program 

(signal_processing.vi) can be used to apply a variety of signal processing algorithms to a 

MS data file for improving the signal to noise ratio (S/N) (Figure 2.26).  This program 

was designed to be used in a standalone mode for processing single files or in an 

embedded mode where it can be placed inside another program.  The implemented 

algorithms include standard low-pass filtering and boxcar averaging which are primarily 

used for data taken with an electron multiplier.  The remaining algorithms were 

implemented specifically for processing data taken with the pressure tolerant Faraday cup 

detector.  Processing this data is more challenging because the integrating style of 

detector requires a numerical derivative to produce the final mass spectrum.  This 

derivation reduces the S/N significantly by effectively amplifying small signal changes 

due to noise in the data.  The first algorithm performed a sliding window derivative 

which is similar to a typical point-by-point derivative except the slope is calculated using 

a linear regression through more than two consecutive data points.  This helps to remove 

high frequency noise from the data by reducing the influence of a single noisy point.  The 

multi-read average derivative algorithm combines multiple consecutive data points into a 

single averaged point to reduce the inherent read noise in the analog input process.  A 

standard numerical derivative is then performed on the new data to produce a mass 

spectrum.  This effectively reduces the sampling rate in exchange for a reduced read 

noise so it is important to oversample any data processed by this algorithm.  Since this 

algorithm effectively reduces the sampling rate, a sampling rate reduction algorithm was 
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also implemented to compare data before and after the derivative.  This algorithm simply 

eliminates data points to simulate the same data recorded at a lower sampling rate.  The 

final signal processing algorithm utilized a MATLAB library named Cromwell that was 

developed by the University of Texas M. D. Anderson Cancer Center specifically for 

processing MS proteomics data.9  This library performs a wavelet transformation on the 

raw data using wavelets designed specifically for signal processing applications.  It 

effectively separates different components of the data, some of which contain primarily 

noise components and are removed with a threshold value before transforming the data 

back into its original form to produce the final filtered data. This wavelet deconvolution 

would be appropriate for extremely noisy data when the simpler algorithms aren’t able to 

sufficiently improve S/N. 

A batch processing program (signal_processing_batch.vi) for rapidly performing 

signal processing on an entire folder of data files was developed using the embedded 

signal processing program.  Creating this batch processing program was simply a matter 

of looping through all MS data files in a given folder, passing the individual files to the 

embedded signal processing program, and saving the resulting filtered data in a separate 

folder.  This program was able to process 100 MS data files in a few seconds. 

Since the raw instrument data is recorded as a function of time a program was 

written (create_calibrated_mass_axis.vi) (Figure 2.27) to convert the X-axis time units to 

m/z units for generating a real mass spectrum.  Using the experimental parameters saved 

inside each file, the program automatically extracted the portion of data corresponding to 

the mass scan and provided two cursors to define two known mass values in the data.  By 

defining two mass values and assuming a linear RF amplitude ramp, the program 



 43

converted every time point to a corresponding m/z value using the equation of a line.  

Signal processing functionality was embedded inside this program to clean up data and 

make assignment of the two known m/z values more accurate.  An additional feature of 

this program is the ability to display NIST standard spectra along with the experimental 

data on an m/z axis.  These spectra are automatically generated based on an Excel file to 

make addition of more standard spectra easy.  The user can add an arbitrary number of 

NIST standard spectra to the graph for comparison to the experimental data.  The 

superimposed standards also help delineate any mass shifts as a result of incorrect peak 

assignment before the data is saved. 
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2.11  Tables and figures 

 
 

Figure 2.1:  Schematic diagram of microscale CIT MS instrument with EM detector.  
Custom and commercially available electronics are represented in green and white, 
respectively.  The vacuum chamber is represented in red. 
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Figure 2.2:  Timing diagram used for a representative MS experiment.  The ramp 
waveform modulates the RF amplitude throughout the experiment and the three pulses 
control the timing of ionization, detection, and axial RF voltages applied to the 
instrument. 
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Figure 2.3:  6" CF cube used for isobaric chamber design.  Connections for vacuum 
pumps. gauges, gas inlets, viewports and electrical feedthroughs are made by attaching 
flanges to the cube. 
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Figure 2.4:  Internal view of custom 6" CF electrical feedthrough flange with 18 isolated 
coaxial connections and threaded rods for mounting components. 
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Figure 2.5:  (a) Differential vacuum chamber design with high and low pressure 
chambers used for high-pressure MS experiments.  (b) Exploded view showing internal 
components (1) EI source, (2) CIT, and (3) Electron multiplier mounted on a precision 
rail (4) for accurate alignment.  The vacuum chambers have 4” inside dimensions and are 
easily removable for working on internal components.  An optional 1.33” CF manifold 
block (5) was designed to accommodate up to 7 total ports on each chamber. 
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Figure 2.6:  Schematic of differential vacuum chamber showing high and low pressure 
chambers.  (a) Ionization source, (b) CIT, and (c) EM detector are pictured in their 
respective chambers.  Separate pumping systems and conductance limiting valves 
controlled pressure independently in each chamber. 
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Figure 2.7:  Image of endcap electrode sealed against the chamber wall as viewed from 
the detector chamber. 
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Figure 2.8:  Image of assembled differential chamber instrument showing multiple 
vacuum connections on the 7 port manifold indicated in red. 
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Figure 2.9:  Commercially available (a) tungsten filament and (b) yttria coated iridium 
disk emitter EI sources.  The disk emitters have a much larger emission area than the 
filament which results in a higher emission current and consequently a larger signal 
intensity. 
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Figure 2.10:  (a) Custom mounting fixture for EI sources with a standard rail mount base.  
(b) Ionization gate electrode with mounting holes and a hole in the center for electron 
passage. 
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Figure 2.11:  Image of the complete EI source assembly installed on the mounting rail.  
Two electrical connections covered with large ceramic beads provide the heating current 
and bias for the emitter and a third connection covered with small ceramic beads provides 
the voltage for controlling the gate electrode. 
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Figure 2.12:  Image taken at a 15° angle of 1 mm cylindrical ring electrode hole formed 
by CNC machining a piece of brass sheet metal.  Small burrs and imperfections from the 
machining process are visible around the edge of the hole. 
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Figure 2.13:  Image taken at 30° angle of 1 mm cylindrical ring electrode hole formed by 
wet chemical etching a piece of copper sheet metal.  The cusp feature created by the two 
sided isotropic chemical etching process is visible inside the hole. 
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Figure 2.14:  Image taken at 30° angle of 400 µm endcap electrode formed by wet 
chemical etching a piece of beryllium copper sheet metal.  The bowl shaped feature 
formed by the one sided isotropic chemical etching process is visible from the outside of 
an assembled trap. 
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Figure 2.15:  CAD drawing of a ring electrode showing (a) #4 mounting screw holes, (b) 
solder tab, (c) 1 mm diameter holes for alignment pins, (d) optical alignment verification 
features, and (e) array of CIT holes. 
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Figure 2.16:  Image of single hole CIT assembled on a differential chamber trap 
mounting fixture.  Electrical connections were made using (a) removable pin connectors.  
(b) Holes for alignment pins are visible near the three nylon screw heads with (c) three 
adjacent holes that enable optical alignment measurement.  The CIT endcap hole is in the 
center of the electrode. 
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Figure 2.17:  Image of 19 hole CIT array assembled on an isobaric chamber trap 
mounting fixture. 
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Figure 2.18:  (a) DeTech 2312 and (b) DeTech 2300 EM detector modules and associated 
electrical connections. 
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Figure 2.19:  CAD model of EM detector mounting fixture for the differential chamber.  
(a) HV connection, (b) ground connection, and (c) rail mount base are shown. 
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Figure 2.20:  Schematic diagram of microscale CIT MS instrument with pressure-tolerant 
FC detector.  Custom and commercially available electronics are represented in green and 
white, respectively.  The vacuum chamber is represented in red. 
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Figure 2.21:  (a) Image of assembled CTIA detector circuit board.  The copper Faraday 
cup is visible near the center.  (b) Schematic of a single CTIA inside the custom IC.  
Feedback capacitors provide two gain settings for each amplifier and the CTIA is reset by 
shorting these capacitors to dissipate stored charges.  Signal (S) is present only on one 
input while common mode noise (N) is present on both.  The differential outputs are 
subtracted to double the signal intensity and cancel common mode noise. 
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Figure 2.22:  H11N1 logic optocoupler circuit used for biasing FC detector reset pulse. 
 



 

66

 
 

Figure 2.23:  Schematic of HV pulsing power supply v2.0 designed to drive the ionization gate electrode (top) and EM detector 
(bottom).  Each channel has a separate (a) variable power supply, (b) HV power supply, (c) 5 V logic circuitry, and (d) HV switch. 
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Figure 2.24:  Instrument control software GUI (Control_Experiment.vi) showing modules 
for (a) generating control waveforms, (b) acquiring data, and (c) reading saved data. 
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Figure 2.25:  Instrument control software diagram illustrating the relationships between various subprograms.  The programs shown 
are (a) Control_Experiment.vi, (b) Write_Experiment_Waveforms.vi, (c) Create_Pulse.vi, (d) Create_Ramp.vi, (e) 
Write_Waveforms.vi, (f) Analog_In.vi, (g) Save.vi, (h) Write_Data.vi, (i) Write_Image.vi, (j) Parameters_to_String.vi, (k) 
Read_Data.vi, and (l) String_to_Parameters.vi. 
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Figure 2.26:  Signal processing program for performing various processing algorithms to 
MS data (signal_processing.vi).  This program can be used in a standalone mode or 
embedded inside another program. 
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Figure 2.27:  Post-processing program for converting MS data from a time axis to a m/z 
axis (create_calibrated_mass_axis.vi).  The user moves two cursors to known m/z value 
peaks (top graph) and runs the program to display the data as a function of m/z (bottom 
graph).  Signal processing functionality is embedded and NIST standard spectra can be 
overlaid with experimental data for validation. 
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CHAPTER 3 

LOW-PRESSURE MS 

3.1  Introduction 

After building a functional MS instrument it was necessary to characterize its 

operation at conventional buffer gas pressures.  This was accomplished through a series 

of experiments each varying a single experimental parameter.  Resulting mass spectra 

were then compared to evaluate the effects of parameter variation on system 

performance.  These characterization experiments generated a working knowledge of the 

system which served as a basis of operation for future experiments.  Because many 

factors contribute to overall instrument performance, it usually was not possible to 

optimize a parameter only once and utilize the same value for all subsequent experiments.  

Therefore, typical experiments began with parameter values that were known to generally 

work and performance was then further optimized for a given instrument configuration. 

Some mass spectra in this chapter are displayed as a function of time because 

conversion to a m/z axis would not add value in terms of data analysis.  The time axis 

data is presented exactly as it was recorded from the instrument without any further data 

processing or manipulation.  This raw data analysis is instructive since the time domain 

contains some information that is lost in the conversion to the m/z domain.  For example, 

it would not be possible to see long-term signal drift or the effects of changing the RF 

amplitude if the spectra are plotted on a calibrated mass axis.  Although a proper mass 

spectrum displays the data as a function of m/z, the time domain data will also be 
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considered spectra for the purpose of these characterization experiments since the 

conversion is a simple linear relationship between time and m/z. 

3.2  Experimental parameter effects 

MS experiments were performed at conventional ion trap pressures of a few 

mTorr to evaluate the effect of a given experimental parameter and to optimize 

instrument performance.  These experiments were performed multiple times in the course 

of characterizing changes to the instrument or as a diagnostic tool in system 

troubleshooting.  Representative data presented here were chosen to illustrate the effect 

of each experimental parameter on the resulting mass spectra. 

The first step was to perform ionization inside the trap by activating the EI source.  

The number of ions created and therefore the signal intensity of the resulting mass 

spectrum was proportional to this ionization time for a fixed EI current (Figure 3.1) as 

anticipated.  It was also verified that the signal intensity of the spectra increased as a 

function of the current supplied to the thermionic emitter (Figure 3.2).  The emission 

current from a thermionic EI source is a function of temperature and increasing the 

heating current increases the emission current.  This was verified using a picoammeter to 

measure the current at the entrance endcap, the ring electrode, and at the front of the 

electron multiplier as a function of the heating current supplied to the tungsten filament 

(Figure 3.3).  Additionally, the alignment between the emitter tip and CIT endcap hole is 

important for maximizing signal intensity since tungsten filament EI sources have a small 

emission area of 5 x 10-5 cm2.  Figure 3.4 shows spectra taken with ≈100 µm lateral 

changes in filament position.  An increase in signal of approximately one order of 

magnitude was obtained when the endcap and filament were properly aligned.  Disk 
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emitter EI sources were found to eliminate this alignment issue because the emission area 

is large enough to tolerate small misalignments between the EI source and endcap hole.  

The larger emission area was also found to be advantageous when working with CIT 

arrays because it was possible to perform EI simultaneously in multiple traps due to the 

larger electron beam size. 

The RF waveforms applied to the CIT had the most noticeable influence on 

instrument performance.  As was previously described1, applying axial RF to the endcap 

electrode to perform resonance ejection significantly improved resolution (Figure 3.5).  

The achievable resolution for a given CIT and drive RF frequency is extremely sensitive 

to the frequency and amplitude of this axial RF signal.  Therefore axial RF optimization 

is required for every experiment.  The drive RF scan rate is also important as it affects the 

location in the mass scan where a given ion will appear (Figure 3.6).  The peaks 

simultaneously spread apart and move toward the right side of the ramp because it takes 

longer for the RF amplitude to reach the ejection voltage for a given ion at a slower scan 

rate.  The RF amplitude ramps used for this scan rate experiment are shown in Figure 3.7.  

The slope of these ramps define the mass scan rate for the spectra in Figure 3.6.  If the 

scan rate is too fast, the various ions will be bunched together increasing the signal 

intensity but reducing the resolution.  Slowing the scan rate causes the peaks to spread 

apart resulting in increased resolution.  This is clearly demonstrated in Figure 3.8 where 

all seven Xe+ isotopes are visible at the slower scan rate while at the faster scan rate only 

five peaks were detected.  However, this strategy of reducing the scan rate has practical 

limitations because if the rate is too slow the ions will not eject from the trap within a 

reasonable time frame resulting in very broad peaks and low signal intensity.  Therefore 
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it is desirable to choose a scan rate that is as fast as possible to maintain signal intensity 

while still resolving the ions of interest.  The scan rate is initially measured in V/s but is 

later converted to Da/s when the data is converted to the m/z domain.  The drive RF 

amplitude also affects the location of a given ion in the mass scan.  Figure 3.9 shows Xe+ 

ions shifted in time toward the right side of the ramp as the RF amplitude is decreased 

since it takes longer for the RF amplitude to reach the ejection voltage for a given ion.  In 

this experiment the peaks also spread apart slightly because the scan rate also decreases 

when the RF amplitude is decreased.  This is a consequence of the RF ramp generation 

because it is configured to scan between values specified by percentage multipliers for 

the amplified signal generator output.  The same percentage of a smaller amplitude value 

results in a smaller voltage range and therefore a slower scan rate. 

The construction and alignment of the CIT electrodes were also found to be very 

important for achieving optimum performance.2  Figure 3.10 shows poor performance in 

an improperly aligned trap and improved performance of the same trap following 

electrode realignment.  The exact magnitude of the electrode misalignment is unknown 

but it was estimated to be ≈100 µm.  To address this problem, a procedure was developed 

for improved electrode alignment utilizing pins and concentric alignment holes in the 

electrodes.  The spacing between electrodes is also important because it changes the z0 

value for the trap and therefore affects the quality of the resulting electric field by 

changing the relative strength of higher-order field components.2  Figure 3.11 shows an 

experiment with the same trap electrodes at several different spacing values.  These data 

demonstrate that an optimum spacing value of 375 µm for this trap significantly improves 

both resolution and signal intensity.  Optimizing the electrode spacing for a given trap 
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size is time consuming because the chamber needs to be vented and subsequently 

pumped down each time a new trap configuration is tested. 

To address the need for rapidly optimizing electrode spacing, a custom system 

was designed for changing the spacing of the trap in place without venting the vacuum 

(Figure 3.12).  This custom electrode positioning system utilized a motion control system 

(NSC200, Newport, Irvine, CA) to allow movement of the trap electrodes under vacuum.  

The completed system included two vacuum compatible linear actuators to control the 

position of one endcap and the position of the ring electrode while the second endcap 

remained stationary (Figure 3.13).  The actuators allow for convenient and reproducible 

adjustments to the CIT electrode spacing under vacuum with a step size of 0.1 μm.  

Figure 3.14 shows this positioning system installed on the isobaric vacuum chamber 

flange.  Custom LabVIEW software (Figure 3.15) was written to control the linear 

actuators using LabVIEW drivers supplied by Newport.  This control software provides 

independent functionality for reading the electrode positions, seeking to new positions, 

moving a given number of steps, and saving or returning to given positions.  In addition, 

the software implements a fully automated geometry adjustment that moves both 

electrodes the appropriate number of steps to create the desired trap spacing value.  The 

manual electrode spacing experiments in Figure 3.11 were repeated using this electrode 

positioning system (Figure 3.16).  Signal intensity in this data is low because the trap was 

not operating under optimum conditions.  Electrode alignment is the most likely cause of 

the low signal intensity.  At the time these experiments were performed it was difficult to 

properly align the electrodes and make them parallel to each other in the moveable 

mounting scheme used for the positioning system.  Although the trap was not working 
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perfectly, it was still possible to record spectra of Xe+ at the spacing values used for the 

manual spacing experiments.  The data are more difficult to interpret but they also 

indicates that a 375 µm spacing value yields the best combination of resolution and S/N.  

A major advantage of this positioning system is the possibility of evaluating much 

smaller changes to electrode spacing than a manual spacing experiment could achieve.  

Theoretically, the smallest achievable change in spacing is 0.1 µm but it is unlikely there 

will be any significant difference in trap performance with this small of a change.  To 

evaluate the effects of finer spacing value changes, a similar experiment was performed 

in which the electrode spacing was changed in 25 µm increments (Figure 3.17).  The 

resulting data indicated an optimum spacing value of 400 µm, illustrating the 

effectiveness of the positioning system for optimizing the spacing value more quickly and 

accurately than what would be possible with manual spacing experiments.  Overall, this 

electrode positioning system functioned as expected although alignment of the trap is a 

significant challenge because of the extra degrees of freedom inherent in the moveable 

electrode mounting scheme.  It should be possible to achieve better MS performance with 

this system in future experiments by incorporating the advances to electrode design and 

fabrication made over the past few years. 

Other attempts at optimizing CIT geometry involved using two different 

fabrication methods for producing electrodes (Figure 3.18).  Initially the electrodes were 

fabricated using conventional machining procedures on a CNC mill.  Traps built from 

these machined electrodes had nearly cylindrical wall profiles (Figure 3.19) and produced 

good resolution but relatively low signal intensities.  These machined traps were difficult 

to reproducibly assemble to a working condition on initial attempts because uncertainties 
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in the hole locations caused misalignment problems.  Second generation devices were 

fabricated using wet chemical etching methods and photolithographic processes to 

produce the electrodes.  This strategy significantly improved the reproducibility of a 

given trap because the features were more accurately located on the electrodes.  The 

signal intensities produced by these etched traps were found to be significantly greater 

than the machined electrodes.  A small cusp feature was left on the inside of the ring 

electrode as a consequence of the isotropic etching process (Figure 3.20).  This cusp 

likely causes changes to the electric field inside the trap resulting in a slightly lower 

resolution for the etched traps compared to a properly functioning machined trap.  The 

size of the endcap hole can also affect performance because a larger hole will allow more 

electrons to enter the trap and more ions to leave the trap.  However, if the endcap hole 

becomes too large it will adversely affect the electric fields inside the trap and degrade 

instrument performance.2  These effects are evident in Figure 3.21 as the signal intensity 

increases between 300 and 400 µm endcaps but then decreases between 400 and 600 µm 

endcaps.  Additionally the spectrum taken with 600 µm endcaps is distorted and contains 

more noise due to improper ion ejection from the trap. 

Signal averaging was employed to improve S/N at the expense of spectral 

acquisition time.  When the trap was generating strong signal intensities a single scan 

spectrum would be recognizable, although noisy (Figure 3.22).  Increasing the number of 

averaged scans to 10 and finally 100 caused the S/N to improve significantly.  In these 

cases it was possible to use low numbers of averaged scans to produce sufficient S/N in 

the resulting spectra.  However, in experiments with weak signal intensity, a single scan 

spectrum is not recognizable (Figure 3.23).  For these experiments it was necessary to 
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perform signal averaging with 100-1000 consecutive scans to generate a recognizable 

mass spectrum.  If the averaged signal intensity is too low it is possible to increase the 

current preamplifier gain to generate a larger voltage from the same detector output.  In 

practice a preamplifier gain of 200 nA/V was almost exclusively used because it provided 

the largest gain with sufficient bandwidth to resolve the mass peaks (Figure 3.24).  When 

the gain was increased to 100 nA/V, the internal circuitry of the preamplifier changed and 

a drastic decrease in bandwidth was observed.  These high preamplifier gain values were 

only used to find very small signals when the instrument was not functioning properly. 

The final parameter varied during these characterization experiments was the 

helium buffer gas pressure since it is known to have an effect on instrument 

performance.3  The isobaric chamber instrument was initially limited in terms of 

achievable buffer gas pressures because there was no valve between the chamber and 

pump to reduce vacuum conductance.  However, preliminary experiments with increased 

helium pressure showed promising results (Figure 3.25).  This data shows an increase in 

both signal intensity and resolution when the helium buffer gas pressure was increased 

from 1.3 to 19 mTorr.  This is a relatively small change in buffer gas pressure but the 

results justified construction of the differential vacuum chamber to further explore the 

MS performance as a function of buffer gas pressure. 

3.3  RF noise effects 

Since the stability parameter qz is directly proportional to RF amplitude, any 

uncertainty in the RF amplitude will cause a corresponding uncertainty in qz.  Therefore 

ion ejection directly depends on the short and long-term stability of the drive RF 

amplitude.  Figure 3.26 illustrates the effects of severe short-term RF amplitude 
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instability.  This data consists of single scan spectra recorded two seconds apart.  In this 

experiment, the Xe+ peaks were shifting between two discrete locations in the ramp due 

to RF amplitude instability on the order of 20 V.  If these short-term instabilities occur 

while the instrument is averaging spectra, reduced resolution and increased noise results 

due to the superposition of two sets of mass peaks (Figure 3.27).  In this case the 

instability was caused by a tuning problem with the RF amplifier.  Instrument 

performance improved significantly after re-tuning the RF amplifier (Figure 3.28).  

Figure 3.29 shows a second example with a smaller RF amplitude instability but the 

effects are still significant.  The magnitudes of these instabilities are unknown since it 

wasn’t possible to accurately measure the RF amplitude at the time of these experiments.  

Re-tuning the RF amplifier resulted in a resolution improvement in this data as well.  

Long-term amplitude instability that occurred on the order of minutes had a less 

significant detrimental impact on mass spectra because the amplitude shifts did not occur 

while the instrument was averaging consecutive spectra.  Figure 3.30 shows two spectra 

with a small time shift after 95 minutes of elapsed time.  This type of longer term 

amplitude instability can be corrected when the mass axis is calibrated or could be 

eliminated with an RF amplitude feedback loop.  Cross-talk between different RF 

amplifiers operating simultaneously at the same frequency was also observed to have a 

significant impact on instrument resolution (Figure 3.31).  In this experiment, simply 

activating the drive RF on an adjacent MS system caused the S/N to decrease and peak 

widths to increase by at least a factor of 2.  The performance returned to the original state 

after turning the other RF amplifier off.  This problem was addressed by tuning RF 
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amplifiers to different frequencies when they are operating simultaneously in the same 

room. 

To further investigate how sensitive the instrument was to RF amplitude 

instability, the control software was modified to digitally add white noise to the RF 

amplitude ramp waveform.  This was the most convenient way to introduce a measured 

amount of noise for quantifying the effect of RF amplitude instability.  Figure 3.32 shows 

an example of the noisy ramp waveforms used in these experiments.  Ramp waveforms 

used in each scan were different because the noise was recalculated for each scan to 

simulate real noise.  RF amplitude noise was added in mV quantities to a 1 V amplitude 

ramp waveform so in this case 1 mV = 1 part-per-thousand (ppth) noise.  The results of 

this experiment show a significant decrease in resolution and signal intensity as the 

amplitude noise is increased from 0 to 21 ppth (Figure 3.33).  This is a consequence of 

ions of a given m/z ejecting at slightly different times between subsequent scans.  When 

these individual scans are averaged together the peaks broaden out significantly.  Figure 

3.34 shows the quantitative effects on peak width as a function of added noise.  This 

experimentally confirmed the importance of good RF amplitude stability for optimizing 

instrument performance. 

3.4  Analytes 

Xenon gas was used for most experiments presented here because it was 

convenient to introduce as a gaseous analyte and has no associated reactivity or residue 

issues.  It also provides a set of closely spaced isotope peaks that are good for evaluating 

the resolution of the instrument.  Because it is an atomic species there is no fragmentation 

and the isotopic ratios can be directly compared to NIST standard spectra.  Figure 3.35 
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shows a Xe+ spectrum with all seven major isotopes present.  Although xenon was used 

in most experiments, some common lab solvents were also used to demonstrate the 

feasibility of detecting small volatile organic analytes.  These chemicals were introduced 

by first using a rough pump to remove atmospheric gasses from a sealed tube containing 

the solvent in liquid form.  The vapor pressure of the solvent then filled the tube and was 

introduced into the instrument as a gas using a leak valve.  Figure 3.36 shows a spectrum 

of toluene and Figure 3.37 shows a spectrum of hexane obtained in this manner. 

Using these low-pressure MS experiments, we characterized the instrument 

performance and established a set of operating parameters for a typical experiment.  

Critical parameters such as CIT electrode alignment, axial RF configuration, and drive 

RF amplitude stability were identified.  The knowledge gained in these low-pressure 

experiments proved essential for identifying and overcoming the experimental difficulties 

associated with high-pressure experiments. 
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3.5  Tables and figures 

 
 
Figure 3.1: Plots of Xe+ signal intensity as a function of ionization time (0.1 ms to 5 ms). 
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Figure 3.2:  Xe+ signal intensity increased with the heating current supplied to the EI 
source due to increased electron emission at higher temperatures. 
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Figure 3.3:  Electron emission current as a function of heating current for a tungsten 
filament EI source.  Current was measured at the entrance endcap, the ring electrode, and 
the front of the electron multiplier to characterize the amount of current passing through 
the CIT. 
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Figure 3.4:  Plots demonstrating the changes in signal intensity as a function of tungsten 
filament positioning. The small emission area of the filament requires proper alignment 
with the CIT endcap hole to maximize the signal. 
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Figure 3.5:  Applying axial RF to one endcap for performing resonance ejection 
significantly increased instrument resolution. 
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Figure 3.6:  Decreasing the RF scan rate causes peaks to move toward the right side of 
the ramp and spread apart.  This is a consequence of the slower scan rate because it takes 
longer to reach the ejection voltage for a given ion. 
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Figure 3.7:  RF amplitude ramps used for scan rate experiment.  A slower scan rate is 
graphically represented by a smaller slope during the ramp. 
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Figure 3.8:  Decreasing RF scan rate causes peaks to move right and spread apart 
(increased resolution).  The number of visible Xe+ peaks increased from five to seven 
with this decreased scan rate. 
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Figure 3.9:  Decreasing drive RF amplitude causes peaks to shift toward the right side of 
the ramp because it takes longer to reach the ejection voltage for a given ion.  The peaks 
also spread apart because the ramp scan is based on a percentage of the RF amplitude.  
Therefore, a decrease in RF amplitude causes a corresponding decrease in scan rate. 
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Figure 3.10:  CIT electrode misalignment caused poor instrument performance.  
Realigning the same CIT resulted in a significant increase in resolution and signal 
intensity. 
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Figure 3.11:  Electrode spacing experiment where four spacing values between 125 and 
500 µm were evaluated by manually changing the number of spacers between electrodes.  
These data indicate an optimal inter-electrode spacing of 375 μm for a r0 = 500 μm CIT. 
Successive curves are mass shifted by 10 Da for display purposes. 
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Figure 3.12:  SolidWorks model of electrode positioning system showing (a) trap 
electrodes, (b) linear bearing for endcap, (c) linear bearing for ring, and (d) vacuum 
compatible linear actuators.  This system was designed for adjusting electrode spacing 
without venting the vacuum chamber. 
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Figure 3.13:  Images of the electrode positioning system from (a) top view and (b) side 
view. 
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Figure 3.14:  Image of the isobaric MS instrument with electrode positioning system 
installed on a 6” conflat flange.  The instrument consists of: (a) tungsten filament, (b) 
gate electrode, (c) CIT, (d) electrode positioning system, and (e) electron multiplier. 
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Figure 3.15:  LabVIEW software for controlling the electrode positioning system.  The 
user (a) chooses which electrode to move and then executes a command on that electrode.  
The software provides functionality to (b) read the current position, (c) seek to a new 
position, (d) move a given number of steps, (e) record a home position, (f) seek to the 
home position, and (g) automatically move both electrodes to create a given spacing. 
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Figure 3.16:  In situ spacing experiments with the electrode positioning system also 
indicate an optimum inter-electrode spacing of 375 μm for a r0 = 500 μm CIT.  The S/N 
is low for these data because the CIT was not producing strong signal intensities during 
this experiment.  Successive curves are mass shifted by 10 Da for display purposes. 
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Figure 3.17:  Further in situ spacing experiments show trap performance in 25 μm 
increments around 375 μm.  These data indicate the 400 μm spacing is optimal for a r0 = 
500 μm CIT because proper isotope abundances are achieved while maintaining 
resolution.  Successive curves are mass shifted by 10 Da for display purposes. 
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Figure 3.18:  Xe+ spectra generated by CNC machined and wet chemically etched trap 
electrodes.  The machined traps generally give better resolution and etched traps give 
higher signal intensity. 
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Figure 3.19:  SEM image of a CNC machined 1 mm ring electrode hole.  The hole profile 
is nearly cylindrical with small imperfections along the edge and inside the hole. 
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Figure 3.20:  SEM image of a chemically etched 1 mm ring electrode hole.  The surface 
finish is very smooth and uniform but there is a cusp feature inside the hole as a result of 
the etching process. 
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Figure 3.21:  Experiment evaluating different endcap hole sizes.  The 400 µm endcap has 
higher signal intensity than the 300 µm endcap because more electrons and ions can pass 
through the larger hole.  The 600 µm endcap is too large, which is detrimental to the 
electric fields inside the trap.  This results in distorted peaks and increased noise due to 
improper ion ejection. 
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Figure 3.22:  Increased signal averaging results in a corresponding increase in S/N.  This 
data is recognizable as Xe+ in the single scan spectra because the signal intensity is high. 
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Figure 3.23:  Increased signal averaging results in a corresponding increase in S/N.  This 
data is not recognizable as Xe+ in the single scan spectra because the signal intensity is 
low.  This type of data typically requires between 100 and 1000 averaged scans for good 
S/N. 
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Figure 3.24:  Increasing the current preamplifier gain above 200 nA/V causes a 
significant decrease in bandwidth.  The spectrum recorded at 100 nA/V has an artificially 
low resolution and distorted isotope abundances due to the bandwidth change. 
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Figure 3.25:  Increasing helium buffer gas pressure from 1.3 to 19 mTorr caused an 
increase in signal intensity and resolution. 
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Figure 3.26:  Single scan spectra recorded two seconds apart.  A severe RF amplitude 
instability resulted in the ions constantly moving back and forth in the ramp. 
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Figure 3.27:  Averaged data with severe RF amplitude instability shows higher noise and 
decreased resolution due to the superposition of two shifted spectra. 
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Figure 3.28:  Averaged data after eliminating the RF amplitude instability by re-tuning 
the amplifier.  These spectra show increased resolution, signal intensity, and S/N. 
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Figure 3.29:  Averaged data with a small RF amplitude instability shows an increase in 
resolution after re-tuning the amplifier. 
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Figure 3.30:  Signal drift between two spectra taken 95 minutes apart.  This is caused by 
a long-term RF amplitude instability but doesn’t negatively impact instrument resolution 
since the amplitude change didn’t occur while the data is averaging. 
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Figure 3.31:  Spectra showing a decrease in resolution and signal intensity caused by 
crosstalk from an adjacent instrument’s RF amplifier tuned to the same frequency. 
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Figure 3.32:  RF amplitude ramps with 0 to 21 ppth superimposed white noise. 
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Figure 3.33:  Spectra generated with noisy RF amplitude ramps.  As the noise increases 
from 0 to 21 ppth, resolution and signal intensity decrease significantly. 
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Figure 3.34:  Quantitative effects of RF amplitude noise on peak width of spectra. 
  



 117

 
 

Figure 3.35:  Representative mass spectrum of 7.3 x 10-6 torr xenon in 19 mTorr helium 
buffer gas compared to NIST standard.  The concentration of xenon was 384 ppm relative 
to the helium buffer gas. 
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Figure 3.36:  Representative mass spectrum of 8.0 x 10-6 torr toluene in 2 mTorr helium 
buffer gas compared to NIST standard.  The concentration of toluene was 4.0 ppth 
relative to the helium buffer gas. 
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Figure 3.37:  Representative mass spectrum of 9.2 x 10-6 torr hexane in 6.9 mTorr helium 
buffer gas compared to NIST standard.  The concentration of hexane was 1.33 ppth 
relative to the helium buffer gas. 
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CHAPTER 4 

HIGH-PRESSURE MS 

4.1  Introduction 

The goals of this chapter are to demonstrate mass analyzer operation at high 

buffer gas pressures and characterize CIT performance as a function of pressure.  

Previous low-pressure experiments with microscale CITs utilized a trap with radius r0 = 

500 µm and ≈3 mTorr of He buffer gas.1-3  This trap configuration was used as a basis for 

these experiments since it should be capable of operating at buffer gas pressures 

significantly higher than the 1 mTorr levels typically used in r0 = 1 cm commercial 

hyperbolic QITs.  Experimental parameters were similar to those used for low-pressure 

experiments (Chapter 3) except where specified otherwise.  For these experiments a 

differentially pumped CIT mass spectrometer (Chapter 2) with critical dimensions r0 

(radius) = 500 µm and z0 (half-length) = 645 µm was used to explore MS instrument 

performance at previously unreported helium buffer gas pressures up to 1 torr.  The 

results described here advance development of a high-pressure CIT mass analyzer for use 

in portable MS systems with smaller pumping systems and reduced SWaP. 

4.2  Instrumental challenges 

A number of experimental parameters needed to be optimized before successful 

high-pressure MS experiments were possible.  Initial high-pressure MS experiments were 

disappointing because analyte signal intensity was found to decrease as a function of 

pressure. The data in Figure 4.1 show the changes in Xe+ signal as the helium buffer gas 
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was increased from 13 mTorr to 83 mTorr.  At the highest pressure the signal was barely 

discernible above the background.  To enable high-pressure MS a number of parameters 

were addressed and investigated as discussed below. 

4.2.1  RF electrical discharge 

Early attempts at operating the CIT at high buffer gas pressures above 100 mTorr 

were limited by electrical breakdown near the drive RF pin connector (Figure 4.2).  This 

breakdown occurred when the RF amplitude reached approximately 300 V resulting in a 

strong blue glow in the vicinity of the pin connector.  It was impossible to perform 

experiments with this discharge occurring because the large amount of uncontrolled 

background ionization quickly overwhelmed any analytical signal by saturating the 

detector.  Since the amplitude of the drive RF is critical for trap operation, it was possible 

to avoid the breakdown by covering sharp edges of the pin connector with heat shrink 

tubing.  This effectively insulated the high electric fields from being able to discharge to 

ground. 

4.2.2  EI source efficacy 

While driving the EI source with a constant current, the applied voltage was 

observed to decrease as the helium buffer gas was increased.  This indicated that the 

inherent resistance of the hot cathode was decreasing, most likely due to increased 

cooling at high buffer gas pressures.  Since EI sources are not typically operated in the 

100 mTorr regime, the efficacy of the EI source was a potential explanation for the 

observed signal loss.  To offset these cooling effects the EI source was driven with a 

constant voltage power supply.  At a given pressure, the temperature and resistance of the 

source will reach equilibrium causing the current to stabilize.  As the pressure increases 
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and the source resistance decreases, the constant applied voltage drives more current 

through the source to increase the temperature and maintain emission current levels.  This 

effect is illustrated in Figure 4.3 where a current preamplifier was used to measure 

emission current as a function of buffer gas pressure.  The first region of the graph shows 

a relatively constant emission current while the source was being driven with a constant 

voltage.  Eventually the power supply reached the current limit of the emitter and 

switched to constant current mode.  This prevented the supply from driving the source 

harder and caused a noticeable emission current decrease for the last three pressure 

values.  Therefore it is advantageous to operate the EI source in a constant voltage mode 

to help maintain the emission current at high pressures. 

4.2.3  Axial RF amplitude increase 

Since the axial RF frequency and amplitude are critical to instrument 

performance, these parameters are typically optimized immediately and remain 

unchanged throughout an experiment.  Figure 4.4 shows an experiment where the axial 

RF parameters were optimized for operation at 12 mTorr.  When the pressure was 

increased to 110 mTorr, two sets of Xe+ peaks were observed.  This spectrum was 

characteristic of a non-optimal axial RF amplitude because one population of ions 

resonantly ejected with good resolution while a second population ejected later with poor 

resolution in a ‘grounded endcap’ state as if no axial RF was applied.  Simply increasing 

the axial RF amplitude from 300 to 500 mVpp with no change in frequency caused the 

second ion population to resonantly eject and immediately merge with the first set of 

peaks.  This resulted in a recognizable Xe+ spectrum at 110 mTorr with good resolution 
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and S/N.  This strategy of increasing the axial RF amplitude with pressure enabled the 

instrument to generate spectra at buffer gas pressures above 100 mTorr. 

4.3  High-pressure MS 

The differentially pumped CIT MS instrument described in Chapter 2 could 

maintain pressures below 1 mTorr for safe electron multiplier operation with the high-

pressure inlet chamber at 1 torr.  No issues related to electron multiplier ion feedback 

were observed during high-pressure experiments.  Analyte gas pressures were chosen to 

be slightly above the high-pressure chamber’s base pressure of 1.0e-5 torr.  Helium 

buffer gas pressures were then set by changing the He mass flow controller setpoint until 

the desired total pressure was achieved.  Helium gas flow rates of 1 and 34 sccm 

generated 38.6 and 983.5 mTorr respectively in the high-pressure chamber.  To avoid 

overloading the electron multiplier during the ionization period it was only turned on 

during the mass scan.  The custom HV pulsing power supply was able to bring the 

multiplier to a stable-on state in 3 ms by driving it from 0 V to -1600 V.  Fast detector 

turn-on times are desirable to avoid limiting the instrument spectra acquisition rate.  A 

disc emitter was chosen instead of a tungsten wire filament as an EI source to eliminate 

alignment issues between the EI source and CIT endcap.  Early experiments using 

tungsten filament EI sources showed that signal intensity was a function of filament 

alignment with respect to the endcap hole as previously mentioned in Chapter 3.  

Electrode alignment pin holes helped to precisely and reproducibly align the CIT 

electrodes for optimum trap performance.  CIT spacing values were empirically 

optimized for best trap performance by varying the electrode spacing from 125 µm to 500 

µm using 125 µm polyimide spacers.  The optimum signal intensity and resolution were 
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observed with a spacing value of 250 µm which corresponds to z0 = 645 µm.  The trap 

capacitance was 30 pF at 6 MHz which is in agreement with the calculated capacitance 

based on electrode area and spacing.  A scan rate of 33,000 Da/s for these experiments 

produced < 1 m/z unit peak widths and strong signal intensities during a relatively short 5 

ms mass scan.  The mass range of a typical scan was ≈160 m/z units under these 

conditions.  The custom RF amplification system generated the RF signal with better 

amplitude stability than commercially available amplifiers that were tested in the lab.  

Short term RF amplitude noise was measured with a spectrum analyzer to be ≈ 2 ppth 

under load conditions.  This resulted in peak widths below 1 m/z unit in the acquired 

mass spectra.  An RF frequency of 6.3 MHz was chosen due to RF amplifier bandwidth 

limitations at higher frequencies. 

Representative spectra from a high-pressure MS experiment with 2.7e-5 torr Xe in 

He buffer gas pressures up to 983.5 mTorr are shown in Figure 4.5.  These spectra were 

collected by scanning the RF amplitude from 175 to 375 V0-p while applying 4.23 MHz 

axial RF to resonantly eject the ions.  The current preamplifier gain was set to 200 nA/V 

to provide enough amplification and sufficiently wide bandwidth to avoid broadening 

individual peaks.  These spectra were averaged for 1000 consecutive scans to produce 

good S/N characteristics without any filtering or signal processing of the raw data.  

Analog control waveforms were written at a 500 kHz rate to generate a smooth RF 

amplitude ramp.  Analog data acquisition rates of 500 kHz resulted in ≈20 points across a 

typical mass peak. 

Peak width as a function of He pressure was quantitatively determined by 

performing a Gaussian fit on the five highest abundance Xe isotopes (m/z = 129, 131, 
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132, 134, and 136) and averaging them together at each pressure (Table 4.1).  This 

average FWHM peak width as a function of He pressure is shown in Figure 4.6.  Average 

peak widths for Xe+ at 38.6 and 983.5 mTorr He were measured to be 0.40 and 0.49 m/z, 

respectively.  The average peak width didn’t increase significantly as a function of He 

pressure but a decrease in S/N was observed due to non-ideal EI source operation and 

trapping conditions at high pressure.  The ratio of signal intensity between the spectra at 

38.6 and 983.5 mTorr was 6.5:1.  Spectra shown in Figure 4.5 were normalized to 1 for 

display purposes. 

Previous theoretical work by Goeringer4 and Xu5 predict that peak width will 

increase linearly with the neutral buffer gas pressure above some optimum pressure for a 

given trap.  This effect arises when collisions begin to dominate the trajectory of the ions 

and it becomes more difficult to control them with the electric fields inside the trap.  Peak 

widths are broadened further by collisions with buffer gas molecules after the ions are 

scanned out of the trap towards the detector.  To help offset these peak broadening 

effects, the axial RF amplitude was increased from 200 to 1800 mVpp to maintain strong 

resonance conditions as the pressure was increased.  The differentially pumped chamber 

design also helped offset broadening due to collisions between the trap and detector by 

maintaining ≈1 mTorr pressures in the space between the endcap and detector.  This 

coupled with the small distance between the trap and detector results in relatively few 

collisions after the ions exit the trap.  Ionization time was also increased from 1 to 50 ms 

to help offset reduced electron flux inside the CIT caused by cooling of the relatively 

large disk emitter surface at high pressures.  After optimization, the five most abundant 

Xe+ isotopes are clearly visible at He buffer gas pressures up to 577.5 mTorr (Figure 4.5).  
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At 868.7 mTorr the m/z = 131 and 132 isotopes merge together resulting in four clearly 

visible peaks.  The highest pressure spectrum at 983.5 mTorr is more difficult to 

distinguish due to decreased signal intensity but the Xe+ isotope peaks remain visible.  

Performance at higher operating pressures should improve with increased drive RF 

frequency and decreased CIT size. 

Electrical breakdown was avoided by covering sharp edges on the RF pin 

connectors with shrink wrap to shield the high electric fields.  Discharge is unlikely to 

spontaneously occur inside the trap at these pressures and distances since the Paschen 

values are very small (p*d ≤ 0.025 Torr*cm) and therefore far to the left of the Paschen 

curve minimum for He. 

Recent experimental results by Song et. al. utilized a rectilinear ion trap (RIT) 

instrument to explore MS performance at elevated pressures.6  They demonstrated full 

width half max (FWHM) peak widths of 2 m/z units at 50 mTorr of air buffer gas.  

Experimental exploration of high-pressure operation was limited by electrical discharge 

above these pressures.  Theoretical models predicted FWHM peak widths of 9.5 m/z for 

the RIT operating with air buffer gas at 250 mTorr.5  The RIT was expected to be capable 

of mass analysis at pressures of several hundred mTorr but with poor resolution. 

The peak widths achieved here are approximately an order of magnitude lower 

than the 9.5 m/z FWHM peak widths predicted previously for a RIT instrument with air 

buffer gas at 250 mTorr5.  This is possible due to the use of He buffer gas, a smaller trap 

size, increased RF frequency, and resonance ejection conditions. 
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4.4  Conclusions 

The differentially pumped CIT instrument described collected mass spectra at 

high buffer gas pressures by maintaining a separate detection chamber below 1 mTorr for 

electron multiplier operation.  Custom RF amplifiers, HV pulsing power supply, and 

LabVIEW instrument control software were developed to drive the RF, control 

waveforms, and data acquisition modules required for a custom built MS instrument. 

The use of a r0 = 500 µm CIT was successfully employed to generate mass 

spectra at previously unreported He buffer gas pressures up to 983.5 mTorr.  CIT mass 

analyzers are inexpensive and easy to fabricate in single or batch quantities via 

conventional or micromachining methods.  The electrodes used for these experiments 

were fabricated by wet chemical etching techniques in quantities of 20 per piece of 4 x 5” 

sheet metal.  Alignment pin holes and removable RF connections simplified CIT mass 

analyzer construction.  Due to the low manufacturing cost of an individual CIT, 

permanently bonding the electrodes with epoxy to prevent trap misalignment is feasible.  

This electrode design can also be easily modified to accommodate CIT arrays if larger 

signal intensities are desired.  Single trap CIT electrodes were used for these high-

pressure MS experiments because the differential pressure capability of the instrument 

will decrease with additional endcap holes between chambers.  Therefore a pressure 

tolerant ion detector is required to take advantage of the CIT arrays. 

In the high-pressure mass spectra shown here, peak widths remained relatively 

constant at pressures ranging from 38.6 to 983.5 mTorr.  Although the peak width does 

increase slightly, it is much less than the order of magnitude peak width increase that 

would be expected over the range of pressures presented here.  Increasing the axial RF 
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amplitude helped to maintain the performance by offsetting the effects of increasing 

pressure.  Increasing the ionization time with pressure offset the decreasing electron flux 

due to emitter cooling and electron scattering at higher pressures. 

The pressures described here are approximately three orders of magnitude higher 

than conventional ion trap operating pressures and should result in a significant reduction 

in SWaP for a portable MS instrument.  These results demonstrate that significant 

increases to mass analyzer operational pressures can be made to improve MS portability 

while maintaining sufficient performance.  Further increases to operational pressures 

should be possible with smaller traps, a high-pressure ionization source, and 

improvements in pressure tolerant detectors. 
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4.5  Tables and figures 

 
 

Figure 4.1:  Spectra of Xe+ acquired at He buffer gas pressures from 13 to 83 mTorr. The 
signal intensity decreases with increasing pressure when experimental parameters are not 
reoptimized. 
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Figure 4.2:  Images of the instrument operating at 86 mTorr with (a) RF turned off and 
(b) 700 Vpp RF applied to the CIT.  The electrical discharge around the RF connection 
produces a bright blue light. 
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Figure 4.3:  Emission current remained relatively constant as a function of the He 
pressure when driving the EI source with a constant voltage (CV) supply.  When the 
supply switched to constant current (CC) mode, emission current decreased due to 
emitter cooling at high pressures. 
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Figure 4.4:  Axial RF amplitude was optimized for operation at 12 mTorr (black).  When 
the pressure was increased to 110 mTorr, two sets of Xe+ peaks were observed (red).  
This is characteristic of insufficient axial RF amplitude where some ions resonantly eject 
and others eject later in the non-resonant location.  Increasing the axial RF amplitude to 
500 mVpp caused all ions to resonantly eject and resulted in improved MS performance at 
110 mTorr (blue). 
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Figure 4.5:  Xe+ spectra taken with He buffer gas pressures from 38.6 to 983.5 mTorr.  
Peak widths remain relatively constant but there is a decrease in S/N due to non-ideal EI 
source operation and trapping conditions at very high pressures.  Optimization of spectra 
required changing ionization time (IT) and axial RF peak-to- peak amplitude as indicated 
above for each corresponding He buffer gas pressure. 
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FWHM (Th)

Pressure (mTorr) Axial RF (mVpp) IT (ms) 129 131 132 134 136 Avg Std. Dev

38.6 200 1 0.46 0.44 0.32 0.40 0.39 0.40 0.05

150.4 300 2 0.43 0.40 0.39 0.79 0.45 0.49 0.17

292.9 500 3 0.63 0.73 0.35 0.41 0.41 0.50 0.16

430.4 500 4 0.63 0.45 0.45 0.70 0.64 0.57 0.12

577.5 650 15 0.61 0.43 0.56 0.76 0.44 0.56 0.14

720.2 900 20 0.63 0.16 0.44 0.64 0.53 0.48 0.19

868.7 1100 50 0.78 0.54 0.56 0.47 0.39 0.55 0.14

983.5 1800 40 0.59 0.33 0.70 0.35 0.48 0.49 0.16  
 
Table 4.1:  High-pressure peak width analysis for Xe+ m/z = 129, 131, 132, 134, and 136. 
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Figure 4.6:  Effects of He buffer gas pressure on the FWHM peak width for the five most 
abundant Xe+ isotopes (m/z = 129, 131, 132, 134, and 136) averaged together.  Error bars 
show the peak width standard deviation at each pressure value. 
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CHAPTER 5 

HIGH-PRESSURE DETECTOR 

5.1  Introduction 

Previous high-pressure experiments with microscale CITs have demonstrated 

operation at pressures approaching 1 Torr using a trap with r0 (radius) = 500 µm and z0 

(half-length) = 645 µm (Chapter 4).  These experiments used an electron multiplier 

detector and a differentially pumped vacuum system to maintain a low-pressure region 

for safe detector operation.  An ideal detector would be capable of operating at any 

pressure, which would further simplify the instrument to a single vacuum chamber. 

The work presented here uses a second-generation, single-channel CTIA as a 

pressure tolerant ion detector for an isobaric microscale CIT instrument.  The CTIA is 

fully differential with two inputs to reject input noise and two outputs that reject common 

mode noise by subtracting the outputs to generate the final signal.  In this single vacuum 

chamber design, minimizing the distance that ions travel is important for reducing neutral 

gas collisions between the CIT and the detector at high pressures.  Additional challenges 

to integrating this detector in a MS instrument include RF interference and biasing the 

detector for attracting positive ions.  These results further advance the development of a 

high-pressure MS by demonstrating a pressure tolerant ion detector for use in portable 

instruments with smaller pumping systems and reduced SWaP. 
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5.2  Experimental 

An isobaric MS instrument was built on a standard 6” Conflat (CF) flange for 

operation at high buffer gas pressures (Figure 5.1).  This instrument did not require a 

second low-pressure chamber since the electron multiplier was replaced with a pressure 

tolerant CTIA detector.  Custom mounting fixtures for the EI source, CIT, and CTIA 

detector were attached to two parallel threaded rods for alignment. 

An array of 19 parallel CITs was used in these experiments to maximize signal 

intensity for the CTIA detector.  The CIT array was constructed with a custom 790 µm 

thick copper ring electrode and two 250 µm thick beryllium copper endcap electrodes 

fabricated by wet chemical etching (Towne Technologies, Somerville NJ).  Electrode 

spacing was set to 250 µm with polyimide washers (McMaster-Carr, Atlanta, GA) to 

create a CIT array where each trap had critical dimensions r0 = 500 µm, z0 = 645 µm. 

5.3  Instrumental challenges 

A number of challenges needed to be addressed before successful high-pressure 

MS experiments with the CTIA detector were possible.  It was necessary to investigate 

and address the following issues to enable truly high-pressure MS in a single vacuum 

chamber. 

5.3.1  RF interference 

Working with high-frequency and high-voltage RF signals can cause interference 

issues when the RF appears in undesired places.  The highly sensitive solid-state CTIA 

detector is more sensitive to this interference than electron multiplier detectors and 

therefore requires careful shielding for proper operation.  Early unshielded experiments 

with the CTIA showed a large low-frequency noise component appearing when the drive 
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RF was activated.  This resulted in large fluctuations on the CTIA outputs which made it 

nearly impossible to capture a small analytical signal.  An electrical shielding box was 

designed to enclose the CTIA detector inside a grounded metal housing (Figure 5.2).  

Although a solid metal box would provide the best electrical shielding, there needs to be 

an opening for ions to pass through to the detector.  To accommodate this, a hole with an 

integrated grid electrode was added on the front of the shield box.  The grid allows ions 

to pass while still providing effective electrical shielding.  This grid was isolated from the 

grounded shield box since it was desirable to apply a voltage for attracting ions.  A 

bypass capacitor between the isolated grid and the box provided a low impedance path to 

ground for RF interference picked up on the grid electrode.  This strategy for shielding 

the detector was used in all CTIA experiments shown here. 

5.3.2  Floating the CTIA 

Since ions eject from the CIT with relatively low energy, it is desirable for the ion 

detector to have a negative voltage to attract ions to the detector surface.  The electron 

multiplier accomplishes this by applying a negative HV to the front of the detector.  

However, with ground referenced power supplies the CTIA detector operates with the 

Faraday cup electrode at ground potential.  Therefore the ions need to traverse a field-free 

region between the trap and the CTIA to be detected.  This results in fewer ions striking 

the detector and consequently a decrease in signal intensity.  Figure 5.3 demonstrates this 

effect with a Xe+ signal intensity that decreases as the CTIA bias voltage is decreased 

toward 0 V.  At high pressures the effect is more severe because ions undergo multiple 

collisions in this field-free region and are more easily lost.  A relatively simple solution to 

this problem is to float the CTIA detector to apply a negative potential to the Faraday cup 
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electrode.  This creates an electric field between the trap and detector to attract ions and 

improve signal strength.  Although floating the detector is easily accomplished, special 

considerations must be made to properly interface to the floating circuit. 

The first issue is resetting the floating detector to begin the next mass scan.  To 

accomplish this, a ground referenced TTL pulse was converted to a floating pulse using a 

pulse isolation circuit based on the H11N1 logic optocoupler.  The output of this circuit is 

a 5 V pulse referenced to the float voltage.  The second issue is that both detector outputs 

are referenced to the float voltage and cannot be directly connected to the ground 

referenced DAQ system.  Therefore it was necessary to design a signal isolation circuit 

based on the HCNR201 analog optocoupler to remove the bias voltage and ground 

reference both detector outputs for digitization. 

5.3.3  Detector response time 

The first generation signal isolation circuit based on the HCNR201 analog 

optocoupler had a bandwidth of 10 kHz which is too low to effectively pass higher 

frequency components of the detector output.  With this limitation in mind, the first 

generation isolation circuit was sufficient for all early experiments with the CTIA 

detector since a considerable amount of development was required before ions were 

observed.  For comparison purposes, Figure 5.4 shows the typical time response of the 

electron multiplier during an experiment where the scan rate was varied.  When the same 

experiment was performed with the CTIA detector and first generation isolation circuitry, 

there is a clear loss in resolution due to the decreased time response of the isolation 

circuitry (Figure 5.5).  To improve this slow response time, a second generation signal 

isolation circuit based on the AD629 HV difference amplifier was later developed.  The 
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500 kHz bandwidth of this second generation isolation circuit was a significant 

improvement over the first generation design and made it possible to resolve individual 

mass peaks.  In addition, this circuit is less complex and automatically subtracts the two 

detector outputs so the DAQ system is simplified to a single analog input.  This second 

generation isolation circuit was used for all high-pressure MS experiments using the 

CTIA detector. 

5.3.4  Signal processing 

The CTIA is an integrating style detector so it is necessary to perform a 

mathematical derivative to generate the final mass spectrum.  Since the data is recorded 

at high sampling rates, a small amount of read noise between two consecutive points is 

amplified by the derivation process resulting in a mass spectrum with much lower S/N 

than the original integrated signal.  Therefore it is important to perform some signal 

processing to remove this unwanted noise.  Figure 5.6 compares a representative 

integrated Xe+ spectrum at 260 mTorr, the resulting numerical derivative, and the results 

of several signal processing algorithms applied to the derivative.  The various algorithms 

produced similar beneficial results, with the exception of the wavelet deconvolution 

algorithm that decreased baseline noise significantly.  However, a simple low-pass 

filtering algorithm was used for subsequent CTIA data processing because it produced 

satisfactory and predictable results with minimal complexity. 

5.4  High-pressure MS with CTIA 

The isobaric CIT MS instrument described performed MS at pressures up to 867 

mTorr with no issues related to the CTIA detector.  To achieve these pressures, the turbo 

pump drive frequency was reduced from 1250 to 500 Hz with further reduced gas 
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conductance using a manual gate valve between the chamber and pump.  Analyte gas 

pressures were then chosen to be slightly above the base pressure of the vacuum 

chamber, 5.9 x 10-5 Torr, to allow for measurement.  Helium buffer gas pressures were 

set by changing the He mass flow controller setpoint until the desired total pressure was 

achieved.  Helium gas flow rates of 7 and 35 sccm generated 133 and 867 mTorr in the 

chamber, respectively. 

A disc emitter was chosen as an EI source to eliminate alignment issues between 

the source and CIT endcap.  This prevented signal intensity from varying with small 

emitter alignment errors.  Using a thermionic electron source was feasible at these 

pressures due to the inert buffer gas atmosphere.  Yttria coated emitters were chosen for 

further resistance to oxidation.  The custom HV pulsing power supply was able to control 

the electron beam by driving the gate electrode from 0 V to -150 V at the end of the 

ionization time. 

CIT spacing values were previously optimized for best trap performance by 

varying the electrode spacing from 125 µm to 500 µm using 125 µm polyimide washers 

(Chapter 4).  The optimum signal intensity and resolution were observed with a spacing 

value of 250 µm, which corresponds to z0 = 645 µm.  Electrode alignment pin holes 

helped to precisely and reproducibly align the CIT electrodes for optimum trap 

performance.  The trap capacitance was measured to be approximately 30 pF at 6.000 

MHz, which is in agreement with the calculated capacitance based on electrode area and 

spacing.  A scan rate of 28,500 Da/s for these experiments resulted in ~1 Da peak widths 

and a mass range of ~140 Da during the 5 ms mass scan. 
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The electrode design previously demonstrated in a single CIT configuration 

(Chapter 4) was modified to produce a 19 hole CIT array for maximizing signal intensity 

in these experiments.  It was possible to use a CIT array for these high-pressure MS 

experiments because the endcap electrode did not need to function as a conductance-

limiting orifice as with a differentially pumped high-pressure instrument. 

Electrical discharge could be a limiting factor in a high pressure MS instrument 

due to the high voltage and pressure present in the chamber.  However, this discharge is 

unlikely to spontaneously occur inside the trap at these pressures and distances since the 

Paschen values are very small (p*d ≤ 0.025 Torr*cm) and therefore far to the left of the 

Paschen curve minimum for He gas.  Induced electrical breakdown was avoided by 

focusing electrons from the EI source to prevent them from reaching areas with high 

electric fields (i.e. near pin connectors). 

The custom RF amplification system was able to generate the necessary RF signal 

with better amplitude stability than commercially available amplifiers.  Short term RF 

amplitude noise was measured with a spectrum analyzer to be ~1 ppth under load 

conditions.  This is sufficiently low noise to avoid limiting the instrument resolution due 

to RF amplitude instability.  A RF frequency of 5.9 MHz was chosen due to RF amplifier 

bandwidth limitations at higher frequencies. 

The CTIA detector was able to integrate both electrons from the EI source and 

positive ions from the CIT.  The detector operates by collecting incoming charges at the 

Faraday cup electrode and storing them on the feedback capacitor.  This results in an 

integrating style detector where the output voltage is proportional to the number of 

collected charges and inversely proportional to the feedback capacitance.  Common mode 
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noise is picked up by a second reference input and the CTIA differentially amplifies the 

input signal and produces two identical but inverted outputs.  The differential output can 

further reduce noise picked up after the amplifier and double the resulting signal intensity 

by subtracting the outputs before digitization.  The only limitation for this detector at 

high pressures is physically transporting the charged particles to the surface of the 

Faraday cup to deposit the charge.  To help attract electrons or ions to the Faraday cup 

electrode, the detector was oppositely biased to set up appropriate electric fields between 

the CIT and detector.  To successfully interface to the biased detector, a bias voltage was 

added to the detector’s TTL reset pulse using a pulse isolator circuit.  The bias voltage 

was removed from the output signal by subtracting the differential outputs using a HV 

difference amplifier.  To avoid saturating the detector during ionization it was only 

activated during the mass scan.  High gain mode was utilized in these experiments to 

maximize signal intensity and therefore S/N. 

Gated electrons from the EI source were used as test charges to verify the CTIA 

detector functionality (Figure 5.7).  When electrons from the EI source pass through the 

gate electrode, the detector integrates negative charges and produces a constant negative 

slope.  When electrons are subsequently gated off, the integrated signal flattens out with a 

small positive slope due to dark current integration.  Taking the numerical derivative of 

the integrated signal and low-pass (LP) filtering with a 1 kHz cutoff reproduces the 

square wave used to generate the four pulses of electrons. 

Representative spectra from a high-pressure MS experiment with 8.7 x 10-5 Torr 

Xe in He buffer gas pressures up to 867 mTorr are shown in Figure 5.8.  These spectra 

were collected by scanning the RF amplitude from 160 to 360 V0-p while applying 3.95 
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MHz axial RF to resonantly eject the ions.  Analog to digital data acquisition rates of 500 

kHz were used to accurately record raw mass spectra by sampling ~30 points across a 

typical mass peak.  These spectra were averaged for 1000 consecutive scans to improve 

S/N and processed offline with a digital 40 kHz low-pass filter to produce the final mass 

spectra.  Attempts to obtain higher-pressure spectra were limited by the decreasing EI 

source efficacy and the sensitivity of the CTIA detector.  An alternative EI source design 

that is better able to tolerate high pressures would increase the signal intensity and help to 

overcome these limitations. 

Peak width as a function of He pressure was quantitatively determined by 

performing a Gaussian fit on the five highest abundance Xe isotopes: m/z = 129, 131, 

132, 134, and 136 (Table 5.1).  Average FWHM peak width as a function of He pressure 

is shown in Figure 5.9.  Average peak widths for Xe+ at 133 and 867 mTorr He were 0.84 

and 1.03 Da, respectively.  This is similar to a previously reported trend where the 

average peak width didn’t increase significantly as a function of He pressure up to 1 Torr 

(Chapter 4).  However, a decrease in S/N was observed due to reduced electron emission 

and energy at high buffer gas pressures.  The ratio of signal intensity between the spectra 

at 133 and 867 mTorr was 3.2:1.  Spectra shown here were normalized to 1 for display 

purposes. 

Previous theoretical work by Goeringer49 and Xu20 predict that peak widths will 

increase linearly with the neutral buffer gas pressure above some optimum pressure.  This 

effect arises when collisions begin to dominate the trajectory of the ions and it becomes 

more difficult to control them with the electric fields inside the trap.  Peak widths are 

further broadened by collisions with buffer gas molecules after the ions are ejected out of 
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the trap toward the detector.  To help offset these peak-broadening effects, the axial RF 

amplitude was increased from 600 to 1500 mVpp to maintain strong resonance conditions 

as the pressure was increased.  It was also important to position the CTIA detector close 

to the CIT to minimize peak broadening due to collisions between the endcap and 

detector.  Ionization time was increased from 15 to 75 ms to help offset reduced electron 

flux inside the CIT caused by cooling of the relatively large disk emitter surface at higher 

pressures.  Emitter bias voltage was increased from -70 to -120 V to offset the effects of 

electron scattering and energy loss at high pressures.  With increased drive RF frequency 

and decreased CIT size even higher pressure instrument operation should be possible. 

The peak widths demonstrated here are approximately a factor of two larger than 

previous results with a dual chamber instrument and an electron multiplier detector 

(Chapter 4).  However, these results show similar behavior where peak width does not 

increase significantly with pressure up to 1 Torr.  These experimental results are much 

better than the 9.5 Da FWHM peak widths predicted previously for a RIT instrument 

with air buffer gas at 250 mTorr20.  This is possibly due to several factors, including the 

use of He buffer gas, a smaller trap size, reduced ion travel distances, increased RF 

frequency, and resonance ejection conditions. 

5.5  Conclusions 

The isobaric CIT instrument described here performed MS at buffer gas pressures 

up to 867 mTorr using a solid-state CTIA detector.  Custom RF amplifiers, HV pulsing 

power supply, and LabVIEW instrument control software were used to drive the RF, 

ionization source, control waveforms, and data acquisition modules required for the high-

pressure MS instrument.  The second generation CTIA detector originally developed for 
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ion mobility spectrometry was successfully utilized in a high-pressure CIT MS 

instrument for the first time.  The CTIA demonstrated detection of positive and negative 

charges at high pressure without suffering increased noise or electrical breakdown issues.  

Special considerations for the detector included construction of a shielded enclosure to 

reduce drive RF interference and custom circuitry to operate the detector in a biased 

configuration to attract charges.  Solid-state detectors like the CTIA are ideal for portable 

MS instruments due to their low voltage and power consumption requirements.  They 

could be produced quickly and inexpensively using standard silicon IC and printed circuit 

board manufacturing technology. 

Mass spectra at He buffer gas pressures up to 867 mTorr were successfully 

generated using a r0 = 500 µm CIT array.  CITs are inexpensive and easy to fabricate 

mass analyzers that are amenable to batch fabrication via conventional or 

micromachining methods.  The electrodes used for these experiments were fabricated by 

wet chemical etching techniques in quantities of 20 per 4” x 5” piece of sheet metal.  Due 

to the low cost of an individual CIT array, the electrodes used for these experiments were 

permanently bonded with epoxy to prevent changes to trap alignment. 

In the high-pressure mass spectra shown here, peak widths remained relatively 

constant at pressures ranging from 133 to 867 mTorr.  Increasing the axial RF amplitude 

helped to counteract the effects of increased collisions at high pressures.  Increasing the 

ionization time and emitter bias with pressure helped to offset the decreasing electron 

flux due to emitter cooling and electron scattering at higher pressures. 

The pressures described here are similar to those previously demonstrated with a 

CIT MS but are more than an order of magnitude higher than previously demonstrated 
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with MS ion detectors.  Ion detectors capable of operating at high pressures will eliminate 

the need for a low-pressure detection chamber and therefore result in a reduction in 

SWaP for a portable MS instrument.  These results demonstrate that significant increases 

to mass analyzer and ion detector operational pressures can be made to improve MS 

portability while maintaining sufficient performance.  This miniaturization strategy could 

eliminate the fragile and costly turbo pump and result in a new generation of rugged 

high-pressure MS instruments weighing <5 pounds with a battery life from 8-24 hours, 

depending on the choice of roughing pump.  Further increases to operational pressures 

should be possible with smaller traps and a high-pressure ionization source. 
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5.6  Tables and figures 

 
 
Figure 5.1:  Model of isobaric CIT MS instrument mounted on a 6” CF flange.  The hot 
cathode EI source (a), ionization gate electrode (b), 19 hole CIT array (c), detector shield 
grid (d), CTIA detector (e), and detector shield box (f) are mounted on threaded rods for 
alignment. 
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Figure 5.2:  (a) Exploded CAD drawing of CTIA detector shield box and (b) finished box 
showing the isolated mesh grid where ions strike the detector. 
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Figure 5.3:  Xe+ signal intensity decreases as the CTIA bias voltage is decreased toward 0 
V.  This is consistent with the negatively biased Faraday cup electrode attracting more 
positive ions. 
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Figure 5.4:  The mass scan rate of the instrument was varied to illustrate the characteristic 
time response of the electron multiplier detector.  Individual Xe+ peaks are clearly visible 
and the resolution is not limited by the detector. 
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Figure 5.5:  The mass scan rate of the instrument was varied to illustrate the characteristic 
time response of the CTIA detector with first generation signal isolation circuitry.  
Individual Xe+ peaks are not visible in this experiment because the resolution is limited 
by the signal isolation circuitry. 
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Figure 5.6:  Effects of signal processing on a representative CTIA Xe+ spectrum at 260 
mTorr.  The S/N in the original integrated data is high but taking a numerical derivative 
decreases S/N due to noise amplification.  Application of various signal processing 
algorithms improved the final S/N.  The algorithm performance is very similar except for 
the wavelet deconvolution algorithm which produced significantly lower baseline noise. 
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Figure 5.7:  A gated electron beam produces negative integration slopes on the CTIA 
detector output.  Taking the numerical derivative recovers the shape of the four original 
electron pulses from the EI source. 
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Figure 5.8:  Xe+ spectra taken with He buffer gas pressures from 133 to 867 mTorr.  Peak 
widths remain relatively constant but there is a decrease in S/N (about a factor of 3 from 
133 to the highest pressure) due to decreasing EI source effectiveness at very high 
pressures.  Optimization of spectra required increasing axial RF peak-to-peak amplitude, 
ionization time (IT), and emitter bias (EB) to improve signal strength at high pressures. 
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Pressure (mTorr) Axial RF (mVpp) IT (ms) EB (V) 129 131 132 134 136

133 600 15 ‐70 1.07 0.87 0.76 0.74 0.76

426 1000 50 ‐70 0.91 0.92 0.86 0.73 0.94

508 1000 50 ‐70 0.87 0.94 0.84 0.86 0.84

669 1200 50 ‐99.2 1.05 0.94 0.97 0.89 1.07

867 1500 75 ‐120.1 1.15 0.94 1.11 0.83 1.11

FWHM (m/z)

 
Table 5.1:  High-pressure peak width analysis for Xe+ m/z = 129, 131, 132, 134, and 136.  
Instrument parameters optimized at each pressure are also shown. 
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Figure 5.9:  Effects of He buffer gas pressure on average peak width for the five most 
abundant Xe+ isotopes (m/z = 129, 131, 132, 134, and 136).  Error bars show the peak 
width standard deviation at each pressure value. 
  



 160

5.7  References 

(1)  Goeringer, D. E.; Whitten, W. B.; Ramsey, J. M.; McLuckey, S. A.; Glish, G. L., 
Anal. Chem. 1992, 64, 1434-1439. 

(2)  Xu, W.; Song, Q.; Smith, S. A.; Chappell, W. J.; Ouyang, Z., J. Am. Soc. Mass 
Spectrom. 2009, 20, 2144-53. 


