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ABSTRACT

YANG SUN: RELATIONS BETWEEN 6D N = (2,0) CONFORMAL FIELD
THEORY AND 5D, 4D GAUGE THEORIES.

(Under the direction of Louise Dolan.)

The six-dimensional (6D), N = (2, 0) super conformal field theory (SCFT), which

contains a tensor multiplet, is considered to govern some of the lower dimensional

supersymmetric gauge theories. After a general introduction to the 6D, N = (2, 0)

theory with sixteen supercharges and supersymmetric Yang-Mills theory in 4D and

5D, there follows a description of the partition function approach for a single M5-

brane of which the world volume theory is the abelian 6D, N = (2, 0) SCFT. We

introduce the conjecture by Michael Douglas and Neil Lambert that the (2, 0) SCFT

on S1 is equivalent to the 5D maximally supersymmetric Yang-Mills theory. S-duality

is an important property first found in Maxwell theory and later generalized to dif-

ferent supersymmetric gauge theories, such as 4D, N = 4 super Yang-Mills and 4D

supersymmetric QCD. We briefly discuss the origin of the S-duality of the 4D abelian

gauge theory with an theta angle from the 6D tensor theory. By computing and com-

paring the explicit formulas for the partition functions, we will show that the 4D and

5D abelian gauge theories share fundamental properties with the 6D tensor theory.

In Chapter 2, we give our preliminary test of the conjecture of Douglas and Lam-

bert by using the partition functions computation. We give an explicit computation

of the partition function of a five-dimensional abelian gauge theory on a five-torus

T 5 with a general flat metric using the Dirac method of quantizing with constraints.

We compare this with the partition function of a single fivebrane compactified on

S1 times T 5, which is obtained from the six-torus calculation of Dolan and Nappi

[arXiv:hep-th/9806016]. The radius R1 of the circle S1 is set to the dimension-

ful gauge coupling constant g2
5YM = 4π2R1. We find the two partition functions are

equal only in the limit where R1 is small relative to T 5, a limit which removes the
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Kaluza-Klein modes from the 6D sum. This suggests the 6D, N = (2, 0) tensor the-

ory on a circle is an ultraviolet completion of the 5D gauge theory, rather than an

exact quantum equivalence.

In Chapter 2, we compute the partition function of four-dimensional abelian gauge

theory on a general four-torus T 4 with flat metric using Dirac quantization. In ad-

dition to an SL(4,Z) symmetry, it possesses SL(2,Z) symmetry that is electromag-

netic S-duality. We show explicitly how this SL(2,Z) S-duality of the 4D abelian

gauge theory has its origin in symmetries of the 6D (2, 0) tensor theory, by comput-

ing the partition function of a single fivebrane compactified on T 2 × T 4, which has

SL(2,Z)×SL(4,Z) symmetry. If we identify the couplings of the abelian gauge the-

ory τ = θ
2π

+ i4π
e2

with the complex modulus of the T 2 torus, τ = β2 + iR1

R2
, then in the

small T 2 limit, the partition function of the fivebrane tensor field can be factorized,

and contains the partition function of the 4D gauge theory. In this way the SL(2,Z)

symmetry of the 6D tensor partition function is identified with the S-duality sym-

metry of the 4D gauge partition function. Each partition function is the product of

zero mode and oscillator contributions, where the SL(2,Z) acts suitably. For the 4D

gauge theory, which has a Lagrangian, this product redistributes when using path

integral quantization.
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Chapter 1

Introduction

1.1 Fundamentals of the 6D Theory

6D Supersymmetric Field Theory with 16 Super Charges

In six dimensions, massless particles are specified by representations of the little

group, which is spin(4) or SU(2) × SU(2). Using representations by SU(2) × SU(2),

one can have two different super charges Qα,i and Qβ̇,j , where i, j = 1, 2 which trans-

form as (2,1) and (1,2) of SU(2)×SU(2). These can be seen as annihilation operators

acting on the spin state of the particles and their adjoint operators can be seen as the

creation operators.

(1, 1) Supersymmetry

By taking different combinations of the two raising operators Q†α,i and Q†
β̇,j

, one

obtains the representations

r = (2,2) + 2 (2,1) + 2 (1,2) + 4 (1,1), (1.1)

acting on the state |1,1〉 to give

|2,2〉+ 2 |2,1〉+ 2 |1,2〉+ 4 |1,1〉, (1.2)

which is the vector multiplet. Acting on the state |2,2〉 gives the supergravity multi-

plet,

|3,3〉 ⊕ |3,1〉 ⊕ |1,3〉 ⊕ |1,1〉 ⊕ 4 |2,2〉

⊕ 2 |3,2〉 ⊕ 2 |2,3〉 ⊕ 2 |1,2〉 ⊕ 2 |2,1〉. (1.3)



The bosonic field content contains a graviton, an antisymmetric tensor, a scalar and

four vectors.

(2, 0) Supersymmetry

Another possible 6D supersymmetry has a (2, 0) whose supercharges have a com-

plex 2(2,1) representation. The raising operator form

r′ = (3,1)⊕ 4 (2,1)⊕ 5 (1,1). (1.4)

Acting on |1,3〉, these produce the supergravity multiplet

|3,3〉 ⊕ 4 |2,3〉 ⊕ 5 |1,1〉, (1.5)

which contains one graviton, four gravitinos, and five anti-self-dual antisymmetric

tensors. Acting on |1,1〉we obtain the tensor supermultiplet,

|3,1〉 ⊕ 4 |2,1〉 ⊕ 5 |1,1〉 (1.6)

with one chiral two-formBMN with self-dual anti-symmetric tensorHMNL, five scalars

and four fermions. If we only consider the tensor supermultiplet of the (2, 0) su-

persymmetry, it is the 6D N = (2, 0) superconformal field theory (SCFT) in six-

dimension that enjoys an OSp(2, 6|2) super conformal symmetry that we will study

later. Interesting features in lower-dimensional gauge theory are found to have their

origin in this theory.

1.2 Fundamentals

5D Maximally Supersymmetric Yang-Mills

The 5D maximally supersymmetric Yang-Mills theory has 16 supercharges with

the little group SO(3) ' SU(2). It has the field content of a vector Am with m =

0, 1, 2, 3, 4, five scalars XI with I = 6, 7, 8, 9, 10 and fermions Ψ, which transform
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under the little group as
(
1(3), 2(2), 5(1)

)
and all taking values in the adjoint repre-

sentation of a Lie-algebra. The supersymmetry transformations are

δεXI = iε̄ΓIΨ,

δεAm = iε̄ΓmΓ5Ψ,

δεΨ =
(1

2
FmnΓmn +DmXIΓ

mI +
i

2
[XI , XJ ]ΓIJ

)
ε, (1.7)

where the spinor ε satisfies Γ012345ε = ε. The covariant derivative acts as DmXI =

∂mXI−i[Am, XI ], and Fmn = ∂mAn−∂nAm−i[Am, An]. The supersymmetric invariant

action is given by

S = − 1

g2
YM

∫
d5x tr

(
FmnF

mn +

∫
DmXIDmXI

− iΨ̄ΓmDmΨ +
1

2
Ψ̄Γ5ΓI [XI ,Ψ]− 1

4
[XI , XJ ]2

)
, (1.8)

where the spinors are eleven-dimensional spinors.

4D, N = 4 Supersymmetric Yang-Mills

The 4D, N = 4 Supersymmetric Yang-Mills theory has 16 supercharges and the

little group SO(2). It has the field content of one gauge fieldAi, i = 0, 1, 2, 3 , six mass-

less real scalar fieldsXI , I = 1...6 and four chiral fermions Ψα,a with a = 1...4 and the

indices α = 1, 2, and helicities
(
(±1), 4(±1

2
), 6(0)

)
. All fields transform in the adjoint

representation of the gauge group. Similarly, the supersymmetric transformation for

the four-dimensional super Yang-Mills are

δεXI = −iε̄ΓIΨ,

δεAi = −iε̄ΓiΨ,

δεΨ =
(1

2
FijΓ

ij +DiXIΓ
iI +

i

2
[XI , XJ ]ΓIJ

)
ε. (1.9)
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The supersymmetric invariant Euclidean action is given by

S = −
∫
d4x tr

( 1

2g2
YM

FijF
ij +

iθ

16π2
FijF̃

ij
)

− 1

2g2
YM

(
2DiXID

iXI − [XI , XJ ]2 − 2iΨ̄ΓiDiΨ− 2Ψ̄ΓI [ΦI ,Ψ]
)
. (1.10)

The N = 4 theory is conformal and enjoys PSU(2, 2|4) symmetry, even at the quan-

tum level. In particular, the β-function vanishes to all orders in perturbation theory.

A salient feature of N = 4 is that it is conjectured to be invariant under an SL(2,Z)

transformation acting on the Yang-Mills coupling constant, known as the S-duality.

1.3 Free Abelian Version of the Actions

Restricted to the non-supersymmetric and abelian case, the 5D and 4D action is given

by (1.8) and (1.10),

S5D = − 1

4g2
YM

∫
d5xFmnF

mn,

S4D = −
∫
d4x

( 1

2g2
YM

FµνF
µν +

iθ

16π2
FµνF̃

µν
)
. (1.11)

1.4 Partition Function of the M5-brane and Gauge Theory

M5-branes describes an SCFT with (2, 0) supersymmetry. The world-volume of a

single M5-brane propagates an abelian chiral two-form potential with self-dual field

strength as discussed in the previous section. Therefore, the 6D (2, 0) theory does not

have a covariant Lagrangian description. For a single M5-brane, one can write down

its partition function [1]. The first partition function for the tensor field is computed

explicitly for a T 6 manifold [2] with a flat metric. To circumvent the difficulty of lack-

ing a covariant Lagrangian for a self-dual three-form tensor field, one can first write

down an SL(5,Z) covariant Hamiltonian and momentum for a T 6 and compute the

partition function by separating the field strength HMNL into a zero mode part and
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an oscillator mode part,

H = H0 ⊕H ′. (1.12)

where the zero modes are the harmonic representatives of the self-dual three-form

H0, and the oscillator modes areH ′ = dB for the chiral two-form. One obtains a fully

SL(6,Z) invariant partition function by tracing over the zero modes and the oscilla-

tor modes. Later, a single M5-brane partition function is computed on an arbitrary

six-dimensional manifold by the holomorphic factorization approach [3].

On the gauge theory side, for convenience to compare to the chiral two-form, we

adopt the Hamiltonian formulation, and separated the partition function again into

zero and oscillator modes. After choosing the appropriate holonomy condition, the

zero mode partition function is computed by summing over the electric and magnetic

fields as integers from integrals on homology cycles due to the Dirac charge quanti-

zation condition. We treat the oscillators of the abelian gauge theory on the general

torus by the method of Dirac quantization. In this dissertation, we will present ex-

plicit formulas for the partition functions for both gauge theory and the tensor theory.

1.5 Motivation and Plan of this Work

Part I

It has been known that the M5-brane can be dimensionally reduced to a D4-brane

by compactifying the M5-brane on a circle. But recently it had been conjectured that

these two quantum theories are completely equivalent [4] [5]. When we compactify

the x1 direction of the six-torus on a circle of circumference 2πR1, using dimensional

reduction of the self-dual three-form HMNL, one obtain the 5D gauge field strength

Fmn = H1mn, where 1 ≤ M,N,L ≤ 6 and 2 ≤ m,n ≤ 6. The other component, Hmnl

are obtained by the self-duality condition. As a preliminary test of this conjecture, we

consider the partition function of five-dimensional Maxwell theory on a five-torus

and compare it with that obtained in [2] for a single M5-brane restricted to T 5 × S1.

5



Part II

It has been suggested that S-duality of the 4D, N = 4 Yang-Mills has its origin

in the 6D, non-abelian N = (2, 0) SCFT and this can be tested at the abelian and

non-supersymmetric level by comparing the partition functions. We consider two

different quantum field theories in four and six dimensions. One is a 4D free abelian

gauge theory with coupling constant τ = θ
2π

+i4π
e2

on T 4. The other is an abelian chiral

two-form potential BMN with the self-dual field strength tensor HMNL compactified

on T 2×T 4. The two-torus T 2 is described by the complex modulus τ ′ = iR1

R2
+β2 and

identified with the 4D coupling constant τ . We will show that in the limit that T 2 is

small, the 6D partition function is equivalent to the 4D partition function times the

contribution of an additional scalar. The 6D partition function on T 2×T 4 is invariant

under the modular group SL(2,Z), which is the mapping class group of the two-

torus T 2. Therefore, the SL(2,Z) of T 2 symmetry implies the S-duality in the 4D

abelian gauge theory.

6



Chapter 2

Partition Functions for T 5 and S1 × T 5

2.1 Introduction

A quantum equivalence between the six-dimensional N = (2, 0) theory of multiple

fivebranes compactfied on a circle S1, and five-dimensional maximally supersym-

metric Yang Mills has been conjectured by Douglas and Lambert et al. in [4, 5]. in

this chapter we will study an abelian version of the conjecture where the common

five-manifold is a five-torus T 5 with a general flat metric, and find an equivalence

only in the weak coupling limit.

The physical degrees of freedom of a single fivebrane are described by an N =

(2, 0) tensor supermultiplet which includes a chiral two-form field potential, so even

a single fivebrane has no fully covariant action. In order to investigate its quantum

theory [2] computes the partition function instead, which we carried out on the six-

torus T 6. We will use this calculation to investigate the partition function of the self-

dual three-form field strength restricted to S1 × T 5 and compare it with the partition

function of the five-dimensional Maxwell theory on a twisted five-torus quantized

via Dirac constraints in radiation gauge.

Because both the theory and the manifold are so simple, we do not use local-

ization techniques fruitful for non-abelian theories and their partition functions on

spheres [7]-[12].



The five-dimensional Maxwell partition function on T 5 is defined as in string the-

ory [13],

Z5D,Maxwell ≡ tre−2πH5D+i2πγiP 5D
i = Z5D

zero modes · Z5D
osc,

H5D =
R6

g2
5YM

∫ 2π

0

dθ2dθ3dθ4dθ5√g
( 1

2R2
6

gii
′
F6iF6i′ +

1

4
gii
′
gjj
′
FijFi′j′

)
,

P 5D
i =

1

g2
5YMR6

∫ 2π

0

dθ2dθ3dθ4dθ5√g gjj′ F6j′Fij, (2.1)

in terms of the gauge field strengthFm̃ñ(θ2, θ3, θ4, θ5, θ6), and constant metric gij, R6, γ
i.

The partition function of the abelian chiral two-form on a space circle times the five-

torus is

Z6D,chiral = tr e−2πR6H+i2πγiPi = Z6D
zero modes · Z6D

osc,

H =
1

12

∫ 2π

0

dθ1 . . . dθ5
√
G5G5

ll′G5
mm′G5

nn′Hlmn(~θ, θ6)Hl′m′n′(~θ, θ
6),

Pi = − 1

24

∫
0

2π

dθ1...dθ5εrsumnHumn(~θ, θ6)Hirs(~θ, θ
6) (2.2)

where θ1 is the direction of the circle S1. The time direction θ6 we will use for quan-

tization is common to both theories, and the angles between the circle and the five-

torus denoted by α, βi in [2] have been set to zero. The final results are given in (3.73),

(3.74).

We use (3.2,2.2) to compute both the zero mode and oscillator contributions, and

find an exact equivalence between the zero mode contributions,

Z6D
zero modes = Z5D

zero modes . (2.3)

Not surprisingly, we find the oscillator traces differ by the absence in Z5D
osc of the

Kaluza-Klein modes generated in Z6D
osc from compactification on the circle S1.

The Kaluza-Klein modes have been associated with instantons in the five-dimensional

non-abelian gauge theory in [4, 5, 17, 18], with additional comments given for the

abelian limit. It would be interesting to find a systematic way to incorporate these

8



modes in a generalized five-dimensional partition function along the lines of a char-

acter, in order to match the partition functions exactly, but we have not done that

here. Rather our explicit expressions show an equivalence between the oscillator

traces of the two theories only in the limit where the compactification radius R1 of

the circle is small compared to the five-torus T 5.

Other approaches to N = (2, 0) theories formulate fields for non-abelian chiral

two-forms [19]-[24] which would be useful if the non-abelian six-dimensional theory

has a classical description and if the quantum theory can be described in terms of

fields. On the other hand the partition functions on various manifolds [20]-[29] can

demonstrate aspects of the six-dimensional finite quantum conformal theory pre-

sumed responsible for features of four-dimensional gauge theory [30].

In section 2, the contribution of the zero modes to the partition function for the

chiral theory on a circle times a five-torus is computed as a sum over the ten integer

eigenvalues, and its relation to that of the gauge theory is shown via a fiber bundle

approach. In section 3, the abelian gauge theory is quantized on a five-torus using

Dirac constraints, and the Hamiltonian and momenta are computed in terms of the

oscillator modes. In section 4, we construct the oscillator trace contribution to the

partition function for the gauge theory and compare it with that of the chiral two-

form. Section 5 contains discussion and conclusions. We presents details of the Dirac

quantization and Appendix B verifies the Hamilton equations of motion. Appendix

C regularizes the vacuum energy. Appendix D proves the SL(5,Z) invariance of

both partition functions.

2.2 Zero Modes

The N = (2, 0) 6D world volume theory of the fivebrane contains five scalars, two

four-spinors and a chiral two-formBMN , which has a self-dual three-form field strength

9



HLMN = ∂LBMN + ∂MBNL + ∂NBLM with 1 ≤ L,M,N ≤ 6,

HLMN(~θ, θ6) =
1

6
√
−G

GLL′GMM ′GNN ′ε
L′M ′N ′RSTHRST (~θ, θ6). (2.4)

(2.4) gives HLMN(~θ, θ6) = i
6
√
|G|
GLL′GMM ′GNN ′ε

L′M ′N ′RSTHRST (~θ, θ6) for a Euclidean

signature metric. In the absence of a covariant Lagrangian, the partition function of

the chiral field is defined via a trace over the Hamiltonian [2] as is familiar from string

calculations. We display this expression in (2.2) where the metric has been restricted

to describe the line element for S1 × T 5,

ds2 = R1
2(dθ1)2 +R6

2(dθ6)2 +
∑

i,j=2...5

gij(dθ
i − γidθ6)(dθj − γjdθ6) (2.5)

with 0 ≤ θI ≤ 2π, 1 ≤ I ≤ 6. The parameters R1 and R6 are the radii for directions

1 and 6, gij is a 4D metric, and γj are the angles between between 6 and j. So from

(3.5),

Gij = gij ; G11 = R1
2; Gi1 = 0 ; G66 = R6

2 + gijγ
iγj; Gi6 = −gijγj ; G16 = 0;

(2.6)

and the inverse metric is

Gij = gij +
γiγj

R2
6

; G11 =
1

R2
1

; G1i = 0; G66 =
1

R2
6

; Gi6 =
γi

R2
6

; G16 = 0. (2.7)

We want to keep the time direction θ6 common to both theories, so in the 5D expres-

sions (3.2) the indices are on 2 ≤ m̃, ñ ≤ 6; and the Hamiltonian and momenta in

(2.2) sum on 1 ≤ m,n ≤ 5. The common space index is labeled 2 ≤ i, j ≤ 5. To this

end, for the metricGMN in (2.6) we introduce the 5-dimensional inverse (in directions

1,2,3,4,5)

G5
ij = gij; G5

i1 = 0; G5
11 =

1

R2
1

; (2.8)
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and the 5-dimensional inverse (in directions 2,3,4,5,6) for the five-torus T 5,

G̃ij
5 =gij +

γiγj

R2
6

; G̃i6
5 =

γi

R2
6

; G̃66
5 =

1

R2
6

. (2.9)

The determinants of the metrics are related simply by
√
G = R6

√
G5 = R1

√
G̃5 =

R6R1
√
g , and ε23456 ≡ G̃5 ε

23456 = G̃5, with corresponding epsilon tensors related by

G, G5, g.

To compute Z6D
zero modes we neglect the integrations in (2.2) and get

−2πR6H = −π
6
R6R1

√
ggii

′
gjj
′
gkk

′
HijkHi′j′k′ −

π

4

R6

R1

√
g(gjj

′
gkk

′ − gjk′gkj′)H1jkH1j′k′ ,

i2πγiPi = −iπ
2
γiεjkj

′k′H1jkHij′k′ =
iπ

3
γiεjj

′kk′Hj′kk′H1ij,

(2.10)

where the zero modes of the four fieldsHijk are labeled by the integers n7, . . . , n10.

The six fields H1jk have zero mode eigenvalues H123 = n1, H124 = n2, H125 = n3,

H134 = n4, H135 = n5, H145 = n6, and the trace on the zero mode operators in (2.2) is

Z6D
zero modes =

∑
n1,...,n6

exp{−π
4

R6

R1

√
g(gjj

′
gkk

′ − gjk′gkj′)H1jkH1j′k′}

·
∑

n7,...,n10

exp{−π
6
R6R1

√
ggii

′
gjj
′
gkk

′
HijkHi′j′k′ −

iπ

2
γiεjkj

′k′H1jkHij′k′}.

(2.11)

The same sum is obtained from the 5D Maxwell theory (3.2) where the gauge cou-

pling is identified with the radius of the circle g2
5YM = 4π2R1, as follows. The zero

modes of the gauge theory are eigenvalues of operator-valued fields that satisfy

Maxwell equations with no sources. Even classically these solutions have constant

Fij which lead to non-zero flux through closed two-surfaces that are not a boundary

of a three-dimensional submanifold in T 5. Working in A6 = 0 gauge, if we consider

the U(1) gauge field Ai at any time θ6 as a connection on a principal U(1) bundle with

base manifold T 4, then the curvature Fij = ∂iAj − ∂jAi

11



for 2 ≤ i, j ≤ 5 must have integer flux [31, 32], in the sense that

nI =
1

2π

∫
ΣI2

F ≡ 1

2π

∫
ΣI2

1

2
Fij dθ

i ∧ dθj, nI ∈ Z, for each 1 ≤ I ≤ 6. (2.12)

In T 4, the six representative two-cycles ΣI
2 are each a 2-torus constructed by the six

ways of combining the four S1 of T 4 two at a time, given by the cohomology class,

dimH2(T 4) = 6. Relabeling nI as ni,j and ΣI
2 as Σi,j

2 , 2 ≤ i < j ≤ 5, we have
∫

Σg,h2
dθi ∧

dθj = (2π)2(δigδ
j
h − δihδjg). So (3.25) is

Fij =
ni,j
2π

, ni,j ∈ Z for i < j. (2.13)

Furthermore we show how the zero mode eigenvalues of F6i are found from those of

the conjugate momentum Πi. In section 3 we derive the form of H5D and P 5D
i given

in (3.2) from a canonical quantization using a Lorentzian signature metric. In (3.44)

the conjugate momentum is defined as

Πi =

√
g

4π2R1R6

gii
′
F6i′ . (2.14)

From the commutation relations (3.52) we can compute its commutator with the

holonomy
∫

Σk1
A ≡

∫
Σk1
Ai(~θ, θ

6)dθi where Σk
1 are the four representative one-cycle

circles in T 4,

[∫
Σk1

Ai(~θ, θ
6)dθi,

∫
d4θ′

2π
Πj(~θ′, θ6)

]
=

i

2π

∫
Σk1

dθj = i δjk. (2.15)

Hence an eigenstate ψ of the the zero mode operator 1
2π

∫
d4θ′Πk(~θ′, θ6) with eigen-

value λ is

ψ = e
iλ

∫
Σk1

A |0〉,
( 1

2π

∫
d4θ′Πk(~θ′, θ6)

)
e
iλ

∫
Σk1

A |0〉 = λ e
iλ

∫
Σk1

A |0〉.

Since the holonomy is defined mod 2π, thus allowing A to vary by gauges when

12



crossing neighborhoods, but ensuring e
i
∫
Σk1

A
to be a single valued element of the

structure group U(1), then the states

e
iλ

∫
Σk1

A |0〉 and e
iλ
(

2π+
∫
Σk1

A
)
|0〉 (2.16)

must be equivalent, so the eigenvalue λ of the operator 1
2π

∫
d4θ′Πk(~θ′, θ6) must have

integer values n(k),

Πk(~θ′, θ6) =
n(k)

(2π)3
, n(k) ∈ Z4. (2.17)

In this normalization of the zero mode eigenvalues for the gauge theory, we are tak-

ing the dθi space integrations into account. So (3.2) gives

− 2πH5D + i2πγiP 5D
i

=
(
−

π
√
g

R1R6

gii
′
F6iF6i′ −

πR6

2R1

√
ggii

′
gjj
′
FijFi′j′ + 2πiγi

√
g

R1R6

gjj
′
F6j′Fij

)
(2π)2.

(2.18)

We can use the identity

−1

4
εjkj

′k′H1jkHij′k′ =
1

6
εjj
′kk′Hj′kk′H1ij,

to rewrite the last term in (2.11) as

−iπ
2
γiεjkj

′k′H1jkHij′k′ =
iπ

3
γiεjj

′kk′Hj′kk′H1ij,

which is equal to the last term in (2.18) if we identify

1

6
εjj
′kk′Hj′kk′ =

2π
√
g

R1R6

gjj
′
F6j′ , H1ij = 2πFij. (2.19)

13



Then, from (2.19) we have that the first term in (2.18) becomes

−
4π3√g
R1R6

gii
′
F6iF6i′ = −π

6

√
gR1R6 g

j′g′gghgg
′h′Hj′kk′Hg′hh′ .

Thus with the identifications in (2.19), the 5D Maxwell expression in (2.18) is equal

to the 6D chiral exponent in (2.11),

−2πH5D + i2πγiP 5D
i =

(
−

π
√
g

R1R6

gii
′
F6iF6i′ −

πR6
√
g

2R1

gii
′
gjj
′
FijFi′j′ +

i2π
√
g

R1R6

γigjj
′
F6j′Fij

)
(2π)2

= −tH + i2πγiPi = −π
6
R6R1

√
ggii

′
gjj
′
gkk

′
HijkHi′j′k′ −

π

4

R6

R1

√
g(gjj

′
gkk

′ − gjk′gj′k)H1jkH1j′k′

− iπ

2
γiεjkj

′k′H1jkHij′k′ .

We now discuss the sum over integers in (2.11). From (2.19), if H1jk are integers,

then 2π Fij are integers. If Hijk are integers, then 1
6
εjj
′kk′Hj′kk′ are also integers. This

implies, again from (2.19), that 2π
√
g

R1R6
gjj
′
F6j′ should be integers, which we justify in

(3.27) and (2.17) with (2.14). Thus the Maxwell zero mode trace can be written as

Z5D
zero modes =

∑
n1...n6

exp{−2π3R6
√
g

R1

gii
′
gjj
′
FijFi′j′}

·
∑

n7...n10

exp{−
4π3√g
R1R6

gii
′
F6iF6i′ +

i(2π)3√g
R1R6

γigjj
′
F6j′Fij} (2.20)

where the integer eigenvalues are n1 = 2πF23, n2 = 2πF24, n3 = 2πF25, n4 = 2πF34,

n5 = 2πF35, n6 = 2πF45; (n7, n8, n9, n10) ≡ (n(2), n(3), n(4), n(5)),

for n(k) ≡ 2π
√
g

R1R6
gki
′
F6i′ ∈ Z4. So we have proved the relation (2.3)

Z6D
zero modes = Z5D

zero modes (2.21)

and the explicit expression is given by (2.11) or (2.20).
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2.3 Dirac Quantization of Maxwell Theory on a Five-torus

To evaluate the oscillator contribution to the partition function in (3.2), we will first

quantize the abelian gauge theory on the five-torus with a general metric. The equa-

tion of motion is ∂m̃Fm̃ñ = 0. For Fm̃ñ = ∂m̃Añ−∂ñAm̃, a solution is given by a solution

to

∂ñ∂ñAm̃ = 0, ∂m̃Am̃ = 0. (2.22)

These have a plane wave solution Am̃(~θ, θ6) = fm̃(k)eik·θ + (fm̃(k)eik·θ)∗ when

G̃m̃ñ
L km̃kñ = 0, km̃fm̃ = 0. (2.23)

In order for the operator formalism (3.2) to reproduce a path integral quantization

with spacetime metric (2.9), we must canonically quantize H5D and P 5D
i via a metric

that has zero angles with the time direction, i.e. γi = 0, and insert γi in the partition

function merely as the coefficient of P 5D
i [13]. Furthermore a Lorentzian signature

metric is needed for quantum mechanics, so we modify the metric on the five-torus

(2.6), (2.9) to be

G̃L ij = gij ; G̃L 66 = −R6
2; G̃L i6 = 0 ; G̃ij

L = gij; G̃66
L = − 1

R2
6

; G̃i6
L = 0, G̃L = det G̃Lm̃ñ.

(2.24)

Solving for k6 from (2.23) we find

k6 = ±

√
−G̃66

L

G̃66
L

|k|, (2.25)

where 2 ≤ i, j ≤ 5, and |k| ≡
√
gijkikj. Use the gauge invariance fm̃ → f ′m̃ = fm̃ +

km̃λ to fix f ′6 = 0, which is the gauge choice A6 = 0. This reduces the number of

components of Am̃ from 5 to 4. To satisfy (2.23), we can use the ∂m̃Fm̃6 = −∂6∂
iAi = 0
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component of the equation of motion to eliminate f5 in terms of the three f2, f3, f4,

f5 = − 1

p5
(p2f2 + p3f3 + p4f4),

leaving just three independent polarization vectors corresponding to the physical

degrees of freedom of the 5D one-form with Spin(3) content 3. From the Lorentzian

Lagrangian

L = −1

4

√
−G̃L

g2
5YM

G̃m̃m̃′
L G̃ññ′

L Fm̃ñFm̃′ñ′ =
R6
√
g

4π2R1

(
− 1

4
gii
′
gjj
′
FijFi′j′ −

1

2
G̃66
L g

jj′F6jF6j′

)
,

(2.26)

the energy-momentum tensor

T m
n =

δL
δ∂mAp

∂nAp − δmn L (2.27)

leads to the Hamiltonian and momenta operators

Hc ≡
∫
d4θ T 6

6 =

∫
d4θ
(R6
√
g

4π2R1

(
− 1

2
G̃66
L g

ii′ F6iF6i′ +
1

4
gii
′
gjj
′
FijFi′j′ − F 6i∂iA6

)
+ Π6∂6A6

)
,

(2.28)

Pi ≡
∫
d4θ T 6

i =

∫
d4θ
(R6
√
g

4π2R1

(
− G̃66

L g
jj′ F6j′Fij − F 6j∂jAi

)
+ Π6∂iA6

)
,

(2.29)

where the conjugate momentum is

Πi =
δL
δ∂6Ai

= −
R6
√
g

4π2R1

F 6i = −
R6
√
g

4π2R1

G̃66
L g

ii′F6i′ , Π6 =
δL

δ∂6A6

= 0. (2.30)

We quantize the Maxwell field on the five-torus with the metric (2.24) in radiation

gauge using Dirac constraints [50, 51]. The theory has a primary constraint Π6(~θ, θ6) ≈

16



0. We can express the Hamiltonian (3.42) in terms of the conjugate momentum as

Hcan =

∫
d4θ
(
− 2π2R1

R6
√
gG̃66

L

gii′Π
i Πi′ +

R6
√
g

16π2R1

gii
′
gjj
′
FijFi′j′ − ∂iΠiA6

)
, (2.31)

where the last term has been integrated by parts. The primary Hamiltonian is defined

by

Hp =

∫
d4θ
(
− 2π2R1

R6
√
gG̃66

L

gii′Π
i Πi′ +

R6
√
g

16π2R1

gii
′
gjj
′
FijFi′j′ − ∂iΠiA6 + λ1Π6

)
, (2.32)

with λ1 as a Lagrange multiplier. In Appendix A, we use the Dirac method of quan-

tizing with constraints for the radiation gauge conditions A6 ≈ 0, ∂iAi ≈ 0, and find

the equal time commutation relations (A.13), (A.14):

[Πj(~θ, θ6), Ai(~θ
′, θ6)] = −i

(
δji − gjj

′
(∂i

1

gkk′∂k∂k′
∂j′)
)
δ4(θ − θ′),

[Ai(~θ, θ
6), Aj(~θ

′, θ6)] = 0, [Πi(~θ, θ6),Πj(~θ′, θ6)] = 0. (2.33)

Appendix B shows the Hamilitonian (3.51) to give the correct equations of motion.

In A6 = 0 gauge, the free quantum vector field on the torus is expanded as

Ai(~θ, θ
6) = zero modes +

∑
~k 6=0,~k∈Z4

(fκi a
κ
~k
eik·θ + fκ∗i a

κ†
~k
e−ik·θ),

where 1 ≤ κ ≤ 3, 2 ≤ i ≤ 5 and k6 defined in (3.40). The sum is on the dual lattice

~k = ki ∈ Z4 6= ~0. Having computed the zero mode contribution in (2.20), here we

consider

Ai(~θ, θ
6) =

∑
~k 6=0

(a~k ie
ik·θ + a†~k ie

−ik·θ), (2.34)

with polarizations absorbed in

a~k i = fκi a
κ
~k
. (2.35)
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From (3.52) the commutator in terms of the oscillators is

∫
d4θd4θ′

(2π)8
e−ikiθ

i

e−ik
′
iθ
′i
[Ai(~θ, 0), Aj(~θ

′, 0)] = [(a~k i + a†
−~k i

), (a~k′ j + a†
−~k′ j

)] = 0. (2.36)

The conjugate momentum Πj(~θ, θ6) in (3.44) is expressed in terms of a~k i, a
†
−~k i

by

Πj(~θ, θ6) = −i
R6
√
g

4π2R1

G̃66
L g

jj′
∑
~k

k6 (a~k j′e
ik·θ − a†~k j′e

−ik·θ). (2.37)

Then taking the Fourier transform of Πj(~θ, θ6) at θ6 = 0, we have

∫
d4θ

(2π)4
e−ikiθ

i

Πj(~θ, 0) = −i
R6
√
g

4π2R1

G̃66
L g

jj′k6 (a~k j′ − a
†
−~k j′

). (2.38)

From (2.38) and the commutators (3.52) and (3.55), we find

∫
d4θd4θ′

(2π)8
e−ikiθ

i

e−ik
′
iθ
′i
[Πj(~θ, 0), Ai(~θ

′, 0)]

= −i(δji −
gjj
′
kikj′

gkk′kkkk′
)δ~k,−~k′

1

(2π)4
= −i

R6
√
g

4π2R1

G̃66
L g

jj′k6 [(a~k j′ − a
†
−~k j′

), (a~k′ i + a†
−~k′ i

)].

(2.39)

To reach the oscillator commutator (2.45), we define

A~k i ≡ a~k i + a†
−~k i

= A†
−~k i

, E~k i ≡ a~k i − a
†
−~k i

= −E†
−~k i

, (2.40)

a~k i =
1

2
(A~k i + E~k i), a†~k i =

1

2
(A†~k i + E†~k i) =

1

2
(A−~k i − E−~k i). (2.41)

Now inverting (2.39) we have

[E~k j, A~k′ i] =
R1

R6
√
gG̃66

L k6

1

(2π)2

(
gji −

kjki
gkk′kkkk′

)
δ~k,−~k′ , (2.42)

and from (2.38) and the relations (3.52) and (3.55),

[A~k i, A~k′ j] = 0, [E~k i, E~k′ j] = 0. (2.43)
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Using (2.41),

[a~k i, a
†
~k′ j

] =
1

4

(
[A~k i, A−~k′ j]− [E~k i, E−~k′ j]− [A~k i, E−~k′ j] + [E~k i, A−~k′ j]

)
, (2.44)

together with (2.42), (2.43) we find the oscillator commutation relations

[a~k i, a
†
~k′ j

] =
R1

R6
√
gG̃66

L k6

1

2(2π)2

(
gij −

kikj
gkk′kkkk′

)
δ~k,~k′ ,

[a~k i, a~k′ j] = 0, [a†~k i, a
†
~k′ j

] = 0. (2.45)

In the gauge ∂iAi(~θ, θ6) = 0, then kia~k i = gijkja~k i = 0, kia†~k i = gijkja
†
~k i

= 0 as in

(2.23), and these are consistent with the commutator (3.56). We will use this commu-

tator to proceed with the evaluation of the Hamiltonian and momenta in (3.42,2.29).

In A6 = 0 gauge,

Hc =

∫
d4θ

R6
√
g

4π2R1

(
− 1

2
G̃66
L g

ii′ ∂6Ai∂6Ai′ +
1

4
gii
′
gjj
′
FijFi′j′

)
, (2.46)

which is the Hamiltonian H5D in (3.2). In (2.29) after integrating by parts, we also set

the second constraint described in Appendix A ∂iΠ
i = 0, to find

Pi =
1

4π2R1R6

∫ 2π

0

dθ2dθ3dθ4dθ5√g gjj′ F6j′Fij, (2.47)

which is the momenta P 5D
i in (3.2).

From (2.46), in terms of the normal mode expansion (3.53),

Hc = (2π)2R6
√
g

R1

∑
~k∈Z4 6=~0

(1

2
G̃66
L g

ii′k6k6 +
1

2
(gii

′
gjj
′ − gij′gji′)kjkj′

)
(a~k ia−~k i′e

2ik6θ6

+ a†~k ia
†
−~k i′

e−2ik6θ6

)

+ (2π)2R6
√
g

R1

∑
~k∈Z4 6=~0

(
− 1

2
G̃66
L g

ii′k6k6 +
1

2
(gii

′
gjj
′ − gij′gji′)kjkj′

)
(a~k ia

†
~k i′

+ a†~k ia~k i′),

(2.48)
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with the delta function

∫
d4θ

(2π)4
ei(ki−k

′
i)θ

i

= δ~k,~k′ , (2.49)

and where k6 is given in (3.40). From the on-shell and transverse conditions (2.23),

G̃66
L k6k6 + |k|2 = 0, and kia~k i = kia†~k i = 0, so the time-dependence of Hc on θ6 cancels

and

Hc = (2π)2R6
√
g

R1

∑
~k∈Z4 6=~0

gii
′ |k|2 (a~k ia

†
~k i′

+ a†~k ia~k i′). (2.50)

Similarly the momenta from (2.47) become

Pi = −
R6
√
g

R1

G̃66
L g

jj′(2π)2
∑

~k∈Z4 6=~0

k6ki
(
a~k j′a

†
~k j

+ a†~k j′a~k j
)
. (2.51)

Then

−Hc + iγiPi = ∓
√
−G̃66

L

R6
√
g

R1

(2π)2
∑

~k∈Z4 6=~0

|k|
(
± |k|√

−G̃66
L

+ iγiki
)
gjj
′(
a~k ja

†
~k j′

+ a†~k ja~k j′
)

= ∓i
√
−G̃66

L

R6
√
g

R1

(2π)2
∑

~k∈Z4 6=~0

|k|
(
± i

√
−G̃66

L

G̃66
L

|k|+ γiki
)
gjj
′(
a~k ja

†
~k j′

+ a†~k ja~k j′
)
.

(2.52)

Since we are using a Lorentzian signature metric at this point,−G̃66
L > 0. Then rewrit-

ing in terms of a real Euclidean radiusR6, and making the upper sign choice in (3.40),

we have

−Hc + iγiPi = −i 1

R6

R6
√
g

R1

(2π)2
∑

~k∈Z4 6=~0

|k|
(
− iR6|k|+ γiki

)
gjj
′(
a~k ja

†
~k j′

+ a†~k ja~k j′
)
.

(2.53)
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Inserting the polarizations as a~k i = fκi a
κ
~k

and a†~k i = fλ∗i aλ†~k from (3.54) in the commu-

tator (3.56) gives

[a~k i, a
†
~k′ j

] =
R1

R6
√
g

R6

|k|
1

2(2π)2

(
gij −

kikj
|k|2

)
δ~k,~k′ = fκi f

λ∗
j [aκ~k, a

λ†
~k

], (2.54)

where we choose the normalization

[aκ~k, a
λ†
~k′

] = δκλδ~k,~k′ . (2.55)

Then the polarization vectors satisfy

fκi f
λ∗
j δκλ =

R1√
g |k|

1

2(2π)2

(
gij −

kikj
|k|2

)
, gjj

′
fκj f

λ∗
j′ δ

κλ =
R1√
g |k|

1

2(2π)2
· 3,

gjj
′
fκj f

λ∗
j′ = δκλ

R1√
g |k|

1

2(2π)2
.

So the exponent in (3.2) is given by

−Hc + iγiPi = −i 1

R6

R6
√
g

R1

(2π)2
∑

~k∈Z4 6=~0

|k|
(
− iR6|k|+ γiki

)
gjj
′(

2a†~k ja~k j′ + [a~k j, a
†
~k j′

]
)

= −i
∑

~k∈Z4 6=~0

(
γiki − iR6|k|

)
aκ†~k a

κ
~k
− i

2

∑
~k∈Z4 6=~0

(
− iR6|k|

)
δκκ.

(2.56)

Then the partition function is

Z5D,Maxwell ≡ tr exp{2π(−Hc + iγiPi)} = Z5D
zero modes Z

5D
osc, (2.57)

where from (3.62),

Z5D
osc = tr e−2πi

∑
~k∈Z4 6=~0

(
γiki−iR6|k|

)
aκ†
~k
aκ~k
−πR6

∑
~k∈Z4 6=~0 |k| δ

κκ

. (2.58)
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2.4 Comparison of Oscillator Traces Z5D
osc and Z6D

osc

In order to compare the partition functions of the two theories, we first review the

calculation for the 6D chiral field from [2] setting the angles between the circle and

five-torus α, βi = 0. The oscillator trace is evaluated by rewriting (2.2) as

−2πR6H + i2πγiPi =
iπ

12

∫ 2π

0

d5θHlrsε
lrsmnH6mn =

iπ

2

∫ 2π

0

d5θ
√
−GH6mnH6mn

= −iπ
∫ 2π

0

d5θ(ΠmnH6mn +H6mnΠmn) (2.59)

where the definitions H6mn = 1
6
√
−Gε

mnlrsHlrs and H6mn = 1
6
√
−GG66 εmnlrsH

lrs fol-

low from the self-dual equation of motion (2.4). Πmn(~θ, θ6), the field conjugate to

Bmn(~θ, θ6) is defined from the Lagrangian for a general (non-self-dual) two-form

I6 =
∫
d6θ(−

√
−G
24

)HLMNH
LMN , so Πmn = δI6

δ∂6Bmn
= −

√
−G
4
H6mn . The commutation

relations of the two-form and its conjugate field Πmn(~θ, θ6) are

[Πrs(~θ, θ6), Bmn(~θ′, θ6)] =− iδ5(~θ − ~θ′)(δrmδsn − δrnδsm),

[Πrs(~θ, θ6),Πmn(~θ′, θ6)] =[Brs(~θ, θ
6), Bmn(~θ′, θ6)] = 0.

From the Bianchi identity ∂[LHMNP ] = 0 and the fact that (2.4) implies ∂LHLMN = 0,

then a solution to (2.1) is given by a solution to the homogeneous equations ∂L∂LBMN =

0, ∂LBLN = 0 . These have a plane wave solution

BMN(~θ, θ6) = fMN(p)eip·θ + (fMN(p)eip·θ)∗; GLNpLpN = 0 ; pLfLN = 0; (2.60)

and quantum tensor field expansion

Bmn(~θ, θ6) = zero modes +
∑

~p=pl∈Z5 6=~0

(fκmnb
κ
~pe
ip·θ + fκ∗mnb

κ†
~p e
−ip∗·θ) (2.61)

for the three physical polarizations of the 6D chiral two-form [2], 1 ≤ κ ≤ 3. Because

oscillators with different polarizations commute, each polarization can be treated
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separately and the result then cubed. Without the zero mode term,

Bmn(~θ, θ6) =
∑
~p 6=0

(b~pmn e
ip·θ + b†~pmne

−ip∗·θ) , (2.62)

for b~pmn = f 1
mnb

1
~p for example, with a similar expansion for Πmn(~θ, θ6) in terms of

c6mn†
~p . From (2.60) the momentum p6 is

p6 = −γipi − iR6

√
gijpipj +

p2
1

R2
1

. (2.63)

For the gauge choice B6n = 0, the exponent (3.68) becomes

− iπ(2π)5
∑

~p=pl∈Z5 6=0

ip6(C6mn†
~p B~pmn +B~pmnC6mn†

~p )

= −2iπ
∑
~p 6=0

p6Cκ†~p B
λ
~p f

κmn(p)fλmn(p)− iπ
∑
~p 6=0

p6f
κmn(p)fκmn(p)

= −2iπ
∑
~p 6=0

p6Cκ†~p B
κ
~p − iπ

∑
~p 6=0

p6δ
κκ, (2.64)

with B~pmn ≡ b~pmn + b†−~pmn, C6mn†
~p ≡ c6mn

−~p + c6mn†
~p . The polarization tensors have

been restored where 1 ≤ κ, λ ≤ 3 and the oscillators Bκ
~p , C

λ†
~p satisfy the commutation

relation

[Bκ
~p , C

λ†
~p ] = δκλ δ~p,~p′ . (2.65)

So restricting the manifold to a circle times a five-torus in [2] we have

− 2πR6H + i2πγiPi

= −2iπ
∑

~p∈Z5 6=0

(
− γipi − iR6

√
gijpipj +

p2
1

R2
1

)
Cκ†~p B

κ
~p − πR6

∑
~p∈Z5

√
gijpipj +

p2
1

R2
1

δκκ

(2.66)
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The oscillator trace (2.2) is

Z6D
osc = tr e−tH+i2πγiPi = tr e

−2iπ
∑
~p6=0 p6Cκ†~p Bκ~p−πR6

∑
~p

√
gijpipj+

p21
R2

1
δκκ

,

Z6D,chiral = Z6D
zero modes ·

(
e
−πR6

∑
~n∈Z5

√
gijninj+

n2
1

R2
1

∏
~n∈Z5 6=0

1

1− e
−2πR6

√
gijninj+

n2
1

R2
1

+i2πγini

)3
.

(2.67)

Regularizing the vacuum energy as in [2], the chiral field partition function (2.2)

becomes

Z6D,chiral = Z6D
zero modes ·

(
e
R6π−3

∑
~n6=~0

√
G5

(gijn
inj+R2

1(n1)2) 3
∏

~n∈Z5 6=~0

1

1− e
−2πR6

√
gijninj+

(n1)2

R2
1

+i2πγini

)3

,

(2.68)

where Z6D
zero modes is given in (2.11). Lastly we compute the 5D Maxwell partition

function (3.2) from (3.64),

Z5D,Maxwell = Z5D
zero modes · tr e

−2iπ
∑
~k 6=~0(γiki−iR6

√
gijkikj) a

κ†
~k
aκ~k
−π

∑
~k 6=~0(R6

√
gijkikj) δ

κκ

,

(2.69)

where ~k = ki = ni ∈ Z4 on the torus. From the standard Fock space argument

tr ω
∑
p pa
†
pap =

∏
p

∞∑
k=0

〈k|ωpa
†
pap |k〉 =

∏
p

1

1− ωp
,

we perform the trace on the oscillators,

Z5D
osc =

(
e−πR6

∑
~n∈Z4

√
gijninj

∏
~n∈Z4 6=~0

1

1− e−i2π(γini−iR6

√
gijninj)

)3

, (2.70)

Z5D,Maxwell = Z5D
zero modes ·

(
e−πR6

∑
~n∈Z4

√
gijninj

∏
~n∈Z4 6=~0

1

1− e−2πR6

√
gijninj−2πiγini

)3

,

(2.71)

where Z5D
zero modes is given in (2.20). (3.66) and (2.67) are each manifestly SL(4,Z)
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invariant due to the underlying SO(4) invariance we have labeled as i = 2, 3, 4, 5.

We use the SL(4,Z) invariant regularization of the vacuum energy reviewed in Ap-

pendix C to obtain

Z5D,Maxwell = Z5D
zero modes ·

(
e

3
8
R6π−2

∑
~n6=0

√
g

(gijn
inj)

5
2

∏
~n∈Z4 6=~0

1

1− e−2πR6

√
gijninj−2πiγini

)3

,

(2.72)

where the sum is on the original lattice ~n = ni ∈ Z4 6= ~0, and the product is on the

dual lattice ~n = ni ∈ Z4 6= ~0. In Appendix D we prove that the product of the zero

mode contribution and the oscillator contribution in (3.67) is SL(5,Z) invariant. In

(F.48) we give an equivalent expression,

Z5D,Maxwell = Z5D
zero modes ·

(
e
πR6
6R2

∏
n6=0

1

1− e−2π
R6
R2
|n|+2πiγ2n

)3

·
( ∏
nα∈Z3 6=(0,0,0)

e−2πR6<H>p⊥
∏
n2∈Z

1

1− e−2πR6

√
gijninj+2πiγini

)3

,

(2.73)

with< H >p⊥ defined in (B.13). In Appendix D we also prove the SL(5,Z) invariance

of the 6D chiral partition function (2.68), using the equivalent form (C.44),

Z6D,chiral = Z6D
zero modes ·

(
e
πR6
6R2

∏
n∈Z6=0

1

1− e−2π
R6
R2
|n|+2πi γ2 n )

)3

·
( ∏
n⊥∈Z4 6=(0,0,0,0)

e−2πR6<H>6D
p⊥
∏
n2∈Z

1

1− e
−2πR6

√
gijninj+

n2
1

R2
1

+i2πγini

)3

(2.74)

with < H >6D
p⊥

in (F.64). Thus the partition functions of the two theories are both

SL(5,Z) invariant, but they are not equal.

The comparison of the 6D chiral theory on S1 × T 5 and the abelian gauge theory

on T 5 shows the exponent of the oscillator contribution to the partition function for
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the 6D theory (2.66),

− 2πR6H + i2πγiPi

= −2π
∑

~p∈Z5 6=0

(
− iγipi +R6

√
gijpipj +

p2
1

R2
1

)
Cκ†~p B

κ
~p − πR6

∑
~p∈Z5

√
gijpipj +

p2
1

R2
1

δκκ,

(2.75)

and for the gauge theory (3.62),

−2πH5D + 2πiγiP 5D
i = −2π

∑
~k∈Z4 6=0

(
iγiki +R6

√
gijkikj

)
aκ†~k aκ~k − πR6

∑
~k∈Z4

√
gijkikj δ

κκ,

(2.76)

differ only by the sum on the Kaluza-Klein modes p1 of S1 since for the chiral case

~p ∈ Z5, and for the Maxwell case ~k ∈ Z4. Both theories have three polarizations, 1 ≤

κ ≤ 3, and from (3.69), (3.61) the oscillators have the same commutation relations,

[Bλ
~p , C

λ†
~p ] = δκλ δ~p,~p′ , [aκ~k, a

λ†
~k′

] = δκλ δ~k,~k′ . (2.77)

If we discard the Kaluza-Klein modes p2
1 in the usual limit [30] as the radius of the

circle R1 is very small with respect to the radii and angles gij, R6, of the five-torus,

then the oscillator products in (3.74) and (3.73) are equivalent. This holds as a precise

limit since we can separate the product on n⊥ = (n1, nα) 6= 0⊥ in (3.74), into (n1 =

0, nα 6= (0, 0, 0)) and (n1 6= 0, all nα), to find at fixed n2,

∏
n⊥∈Z4 6=(0,0,0,0)

1

1− e
−2πR6

√
gijninj+

(n1)2

R2
1

+2πiγini

=
∏

nα∈Z3 6=(0,0,0)

1

1− e−2πR6

√
gijninj+2πiγini

·
∏

n1 6=0,nα∈Z3

1

1− e
−2πR6

√
gijninj+

(n1)2

R2
1

+2πiγini

.

(2.78)
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In the limit of small R1 the last product reduces to unity, thus for S1 smaller than T 5

∏
n⊥∈Z4 6=(0,0,0,0)

1

1− e
−2πR6

√
gijninj+

(n1)2

R2
1

+2πiγini

→
∏

nα∈Z3 6=(0,0,0)

1

1− e−2πR6

√
gijninj+2πiγini

.

(2.79)

Inspecting the regularized vacuum energies < H >p⊥ and < H >6D
p⊥

in (B.13),(F.64),

< H >p⊥ 6=0 = −π−1 |p⊥|
∞∑
n=1

cos(pακ
α2πn)

K1(2πnR2|p⊥|)
n

, for |p⊥| ≡
√
g̃αβnαnβ,

< H >6D
p⊥ 6=0 = −π−1 |p⊥|

∞∑
n=1

cos(pακ
α2πn)

K1(2πnR2|p⊥|)
n

, for |p⊥| ≡

√
(n1)2

R2
1

+ g̃αβnαnβ,

(2.80)

we see they have the same form of spherical Bessel functions, but the argument dif-

fers by Kaluza-Klein modes. Again separating the product on n⊥ = (n1, nα) in (3.74),

into

(n1 = 0, nα 6= (0, 0, 0)) and (n1 6= 0, all nα) we have

∏
n⊥∈Z4 6=(0,0,0,0)

e−2πR6<H>6D
p⊥ =

( ∏
nα∈Z3 6=(0,0,0)

e−2πR6<H>p⊥
)
·
( ∏
n1 6=0,nα∈Z3

e−2πR6<H>6D
p⊥
)
.

(2.81)

In the limit R1 → 0, the last product is unity because for n1 6= 0,

lim
R1→0

√
(n1)2

R2
1

+ g̃αβnαnβ ∼
|n1|
R1

,

lim
R1→0

|p⊥| K1(2πnR2|p⊥|) = lim
R1→0

|n1|
R1

K1

(
2πnR2

|n1|
R1

)
= 0, (2.82)

since limx→∞ xK1(x) ∼
√
x e−x → 0. [52]. So (3.78) leads to

lim
R1→0

∏
n⊥∈Z4 6=(0,0,0,0)

e−2πR6<H>6D
p⊥ =

∏
nα∈Z3 6=(0,0,0)

e−2πR6<H>p⊥ . (2.83)

27



Thus in the limit where the radius of the circle S1 is small with respect to T 5, which

is the limit of weak coupling g2
5YM , we have proved

lim
R1→0

∏
n⊥∈Z4 6=(0,0,0,0)

e−2πR6<H>6D
p⊥
∏
n2∈Z

1

1− e
−2πR6

√
gijninj+

n2
1

R2
1

+i2πγini

=
∏

nα∈Z3 6=(0,0,0)

e−2πR6<H>p⊥
∏
n2∈Z

1

1− e−2πR6

√
gijninj+2πiγini

. (2.84)

So together with (2.3), we have shown the partition functions of the chiral theory on

S1 × T 5 and of Maxwell theory on T 5, which we computed in (3.74) and (3.73), are

equal only in the weak coupling limit,

lim
R1→0

Z6D,chiral = Z5D,Maxwell. (2.85)

2.5 Discussion and Conclusions

We have addressed a conjecture of the quantum equivalence between the six-dimensional

conformally invariantN = (2, 0) theory compactified on a circle and the five-dimensional

maximally supersymmetric Yang-Mills theory. in this chapter we consider an abelian

case without supersymmetry when the five-dimensional manifold is a twisted torus.

We compute the partition functions for the chiral tensor field BLN on S1×T 5, and for

the Maxwell field Am̃ on T 5. We prove the two partition functions are each SL(5,Z)

invariant, but are equal only in the limit of weak coupling g2
5YM , a parameter which

is proportional to R1, the radius of the circle S1.

To carry out the computations we first restricted an earlier calculation [2] of the

chiral partition function on T 6 to S1 × T 5. Then we used an operator quantization

to compute the Maxwell partition on T 5 as defined in (3.2) which inserts non-zero

γi as the coefficient of P 5D
i , but otherwise quantizes the theory in a 5D Lorentzian

signature metric that has zero angles with its time direction, i.e. γi = 0, 2 ≤ i ≤ 5,

[13]. We used this metric and form (3.2) to derive both the zero mode and oscillator

contributions. The Maxwell field theory was thus quantized on T 5, with the Dirac
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method of constraints resulting in the commutation relations in (3.56).

Comparing the partition function of the Maxwell field on a twisted five-torus

T 5 with that of a two-form potential with a self-dual three-form field strength on

S1× T 5, where the radius of the circle is R1 ≡ g2
5YM/4π

2, we find the two theories are

not equivalent as quantum theories, but are equal only in the limit where R1 is small

relative to the metric parameters of the five-torus, a limit which effectively removes

the Kaluza-Klein modes from the 6d partition sum. How to incorporate these modes

rigorously in the 5D theory, possibly interpreted as instantons in the non-abelian

version of the gauge theory with appropriate dynamics remains difficult [36]-[39],

suggesting that the 6d finite conformal N = (2, 0) theory on a circle is an ultraviolet

completion of the 5D maximally supersymmetric gauge theory rather than an exact

quantum equivalence.

Furthermore, it would be compelling to find how expressions for the partition

function of the 6d N = (2, 0) conformal quantum theory computed on various mani-

folds using localization should reduce to the expression in [2] in an appropriate limit,

providing a check that localization is equivalent to canonical quantization.
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Chapter 3

EM Duality on T 4 from the Fivebrane on T2 ×T4

3.1 Introduction

Four-dimensionalN = 4 Yang-Mills theory is conjectured to possess S-duality, which

implies the theory with gauge coupling g, gauge group G, and theta parameter θ

is equivalent to one with τ ≡ θ
2π

+ 4πi
g2 transformed by modular transformations

SL(2,Z), and the group to G∨ [41]-[43], with the weight lattice of G∨ dual to that of

G . The conjecture has been tested by the Vafa-Witten partition function on various

four-manifolds [44]. More recently, a computation of the N = 4 Yang-Mills partition

function on the four-sphere using the localization method for quantization, enables

checking S-duality directly [8].

This duality is believed to have its origin in a certain superconformal field theory

in six dimensions, the M5 brane (2, 0) theory. When the 6d, N = (2, 0) theory is

compactified on T 2, one obtains the 4d, N = 4 Yang-Mills theory, and the SL(2,Z)

group of the torus should imply the S-duality of the four-dimensional gauge theory

[45]-[32].

in this chapter, we compare the partition function of the 6d chiral tensor boson

of one fivebrane compactified on T 2 × T 4, with that of U(1) gauge theory with a θ

parameter, compactified on T 4. We use these to show explicitly how the 6d theory

is the origin of S-duality in the gauge theory. Since the 6d chiral two-form has a

self-dual three-form field strength and thus lacks a Lagrangian [1], we will use the

Hamiltonian formulation to compute the partition functions for both theories.

As motivated by [13], the four-dimensional U(1) gauge partition function on T 4



is

Z4d,Maxwell ≡ tre−2πH4d+i2πγαP 4d
α = Z4d

zero modes · Z4d
osc, (3.1)

where the Hamiltonian and momentum are

H4d =

∫ 2π

0

d3θ
(e2

4

R2
6√
g
gαβΠαΠβ +

e2

32π2

√
g

[
θ2

4π2
+

16π2

e4

]
gαβgγδFαγFβδ +

θe2

16π2

R2
6√
g
gαβε

αγδFγδΠ
β
)
,

P 4d
α =

∫ 2π

0

d3θ ΠβFαβ

(3.2)

in terms of the gauge field strength tensor Fij(θ3, θ4, θ5, θ6), the conjugate momen-

tum Πα, and the constant parameters gαβ, R6 and γα in the metric Gij of T 4. They

will be derived from the abelian gauge theory Lagrangian, given here for Euclidean

signature

I =
1

8π

∫
T 4

dθ3dθ4dθ5dθ6

(4π

e2

√
gF ijFij −

iθ

4π
εijklFijFkl

)
, (3.3)

with ε3456 = 1, εijkl = gεijkl, and g = det(Gij).

In contrast, the partition function of the abelian chiral two-form on T 2 × T 4 is [2]

Z6d,chiral = tr e−2πR6H+i2πγαPα = Z6d
zero modes · Z6d

osc,

H =
1

12

∫ 2π

0

dθ1 . . . dθ5
√
G5G5

mm′G5
nn′G5

pp′Hmnp(~θ, θ
6)Hm′n′p′(~θ, θ

6),

Pα = − 1

24

∫
0

2π

dθ1...dθ5εmnprsHmnp(~θ, θ
6)Hαrs(~θ, θ

6) (3.4)

where θ1 and θ2 are the coordinates of the two one-cycles of T 2. The time direction θ6

is common to both theories, the angle between θ1 and θ2 is β2, andG5
mn is the inverse

metric of G5mn, where 1 ≤ m,n ≤ 5. The eight angles between the two-torus and the

four-torus are set to zero.

Section 2 is a list of our results; their derivations are presented in the succeeding
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sections. In section 3, the contribution of the zero modes to the partition function for

the chiral theory on the manifold M = T 2×T 4 is computed as a sum over ten integer

eigenvalues using the Hamiltonian formulation. The zero mode sum for the gauge

theory on the same T 4 ⊂ M is calculated with six integer eigenvalues. We find that

once we identify the modulus of the T 2 contained in M , τ = β2 + iR1

R2
, with the gauge

couplings τ = θ
2π

+ i4π
e2

, then the two theories are related by Z6d
zeromodes = εZ4d

zeromodes,

where ε is due to the zero modes of the scalar field that arises in addition to Fij

from the compactification of the 6d self-dual three-form. In section 4, the abelian

gauge theory is quantized on a four-torus using Dirac constraints, and the Hamilto-

nian and momentum are computed in terms of oscillator modes. For small T 2, the

Kaluza-Klein modes are removed from the partition function of the chiral two-form,

and in this limit it agrees with the gauge theory result, up to the scalar field contribu-

tion. In Appendix E, we show the path integral quantization gives the same result for

the 4d gauge theory partition function as canonical quantization. However, the zero

and oscillator mode contributions differ in the two quantizations. In Appendix F, we

show how the zero and oscillator mode contributions transform under SL(2,Z) for

the 6d theory, as well as for both quantizations of the 4d theory. We prove the parti-

tion functions in 4d and 6d are both SL(2,Z) invariant. In Appendix G, the vacuum

energy is regularized. In Appendix H, we introduce a complete set of SL(4,Z) gener-

ators, and then prove the 4d and 6d partition functions are invariant under SL(4,Z)

transformations.
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We compute partition functions for a chiral two-form on T 2 × T 4 and for a U(1)

gauge boson on the same T 4. The geometry of the manifold T 2×T 4 will be described

by the line element,

ds2 = R2
2(dθ2 − β2dθ1)2 +R2

1(dθ1)2

+
∑
α,β

gαβ(dθα − γαdθ6)(dθβ − γβdθ6) +R2
6(dθ6)2, (3.5)

with 0 ≤ θI ≤ 2π, 1 ≤ I ≤ 6, and 3 ≤ α ≤ 5. R1, R2 are the radii for directions I = 1, 2

on T 2, and β2 is the angle between them. gαβ fixes the metric for a T 3 submanifold of

T 4, R6 is the remaining radius, and γα is the angle between those. So, from (3.5) the

metric is

T 2 : G11 = R1
2 +R2

2β
2β2, G12 = −R2

2β
2, G22 = R2

2;

T 4 : Gαβ = gαβ, Gα6 = −gαβγβ, G66 = R6
2 + gαβγ

αγβ;

Gα1 = Gα2 = 0, G16 = G26 = 0; (3.6)

and the inverse metric is

T 2 : G11 =
1

R1
2 , G12 =

β2

R1
2 , G22 =

1

R2
2

+
β2β2

R1
2 ≡ g22 +

β2β2

R1
2 ;

T 4 : Gαβ = gαβ +
γαγβ

R6
2 , Gα6 =

γα

R6
2 , G66 =

1

R6
2

G1α = G2α = 0, G16 = G26 = 0. (3.7)

θ6 is chosen to be the time direction for both theories. In the 4d expression (3.3) the

indices of the field strength tensor have 3 ≤ i, j, k, l ≤ 6, whereas in (3.4), the Hamil-

tonian and momentum are written in terms of fields with indices 1 ≤ m,n, p, r, s ≤ 5.
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The 5-dimensional inverse in directions 1, 2, 3, 4, 5 is G5
mn,

G11
5 =

1

R1
2 , G12

5 =
β2

R1
2 , G22

5 = g22 +
β2β2

R1
2

Gαβ
5 = gαβ, G1α

5 = 0, G2α
5 = 0. (3.8)

gαβ is the 3d inverse of gαβ. The determinants are related by

√
G =

√
detGIJ = R1R2

√
g = R1R2R6

√
g̃ = R6

√
G5, (3.9)

where G is the determinant for 6d metric GIJ . G5, g and g̃ are the determinants for

the 5D metric Gmn, 4d metric Gij , and 3d metric gαβ respectively.

The zero mode partition function of the 6d chiral two-form on T 2 × T 4 with the

metric (3.7) is

Z6d
zero modes =

∑
n8,n9,n10

exp{− πR6

R1R2

√
g̃gαα

′
H12αH12α′}

·
∑
n7

exp{−π
6
R6R1R2

√
g̃gαα

′
gββ

′
gδδ
′
HαβδHα′β′δ′ − iπγαεγβδH12γHαβδ}

·
∑

n4,n5,n6

exp{−π
2
R6R1R2

√
g̃(

1

R2
2

+
β22

R1
2 )gαα

′
gββ

′
H2αβH2α′β′}

·
∑

n1,n2,n3

exp{−πR6R2

R1

√
g̃β2gαα

′
gββ

′
H1αβH2α′β′ + iπγαεγβδH1γβH2αδ

− π

4

R6R2

R1

√
g̃(gαα

′
gββ

′ − gαβ′gβα′)H1αβH1α′β′} (3.10)

where the zero mode eigenvalues of the field strength tensor are integers, and (3.10)

factors into a sum on Hαβγ as H345 = n7, H12α as H123 = n8, H124 = n9, H125 = n10; and

a sum over H1αβ defined as H134 = n1, H145 = n2, H135 = n3 and H2αβ as H234 = n4,

H245 = n5, H235 = n6, as we will show in section 3.

The zero mode partition function of the 4d gauge boson on T 4 with the metric
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(3.6) is

Z4d
zero modes =

∑
n4,n5,n6

exp{−e
2

4

R2
6√
g
gαβΠ̃αΠ̃β} ·

∑
n1,n2,n3

exp{−θe
2

8π

R2
6√
g
gαβε

αγδF̃γδΠ̃
β}

· exp{−
e2√g

8
(
θ2

4π2
+

16π2

e4
)gαβgγδF̃αγF̃βδ + 2πiγαΠ̃βF̃αβ}, (3.11)

where Π̃α take integer values Π̃3 = n4, Π̃4 = n5, Π̃5 = n6, and F̃34 = n1, F̃35 =

n2, F̃45 = n3, from section 3. We identify the integers

H2αβ = F̃αβ and H1αβ =
1

g̃
εαβγΠ̃

γ, (3.12)

where g̃ = g R−2
6 from (3.9), and the modulus

τ = β2 + i
R1

R2

=
θ

2π
+ i

4π

e2
,

so that as shown in section 3, we have the factorization

Z6d
zero modes = ε Z4d

zero modes, (3.13)

where ε comes from the remaining four zero modes Hαβγ and H12α due to the addi-

tional scalar that occurs in the compactification of the 6d self-dual three-form field

strength,

ε =
∑

n8,n9,n10

exp{− πR6

R1R2

√
g̃gαα

′
H12αH12α′}

·
∑
n7

exp{−π
6
R6R1R2

√
g̃gαα

′
gββ

′
gδδ
′
HαβδHα′β′δ′ − iπγαεγβδH12γHαβδ}. (3.14)

From section 4, there is a similar relation between the oscillator partition functions

limR1,R2→0Z
6d
osc = ε′Z4d

osc, (3.15)
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where

Z6d
osc =

(
e
R6π−3

∑
~n6=~0

√
G5

(Gmpnmnp) 3
∏

~p∈Z5 6=~0

1

1− e−2πR6

√
gαβpαpβ+p̃2+2πiγαpα

)3

, (3.16)

Z4d
osc =

(
e

1
2
R6π−2

∑
~n6=0

√
g̃

(gαβn
αnβ)2 ·

∏
~n∈Z3 6=~0

1

1− e−2πR6

√
gαβnαnβ−2πiγαnα

)2

, (3.17)

where p̃2 ≡ p2
1

R2
1

+ ( 1
R2

1
+ β2β2

R2
2

)p2
2 + 2β2

R2
1
p1p2, and ε′ is the oscillator contribution from the

additional scalar,

ε′ = e
1
2
R6π−2

∑
~n6=0

√
g̃

(gαβn
αnβ)2 ·

∏
~n∈Z3 6=~0

1

1− e−2πR6

√
gαβnαnβ−2πiγαnα

. (3.18)

Therefore, in the limit of small T 2, we have

limR1,R2→0 Z
6d, chiral = ε ε′ Z4d,Maxwell. (3.19)

We use this relation between the 6d and 4d partition functions to extract the S-duality

of the latter from a geometric symmetry of the former. For τ = β2 + iR1

R2
= θ

2π
+ i4π

e2
,

under the SL(2,Z) transformations

τ → −1

τ
; τ → τ − 1, (3.20)

Z6d
zero modes and Z6d

osc are separately invariant, as are Z4d
zero modes and Z4d

osc, which we will

prove in Appendix F. In particular, Z4d
osc is independent of e2 and θ. A path integral

computation agrees with our U(1) partition function, as we review in Appendix E

[47]. Nevertheless, in the path integral quantization the zero and non-zero mode con-

tributions are rearranged, and although each is invariant under τ → τ−1, they trans-

form differently under τ → − 1
τ
, with ZPI

zero modes → |τ |3ZPI
zero modes and ZPI

non−zero modes →
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|τ |−3ZPI
non−zero modes. For a general spin manifold, the U(1) partition function trans-

forms as a modular form under S-duality [48], but in the case of T 4 which we consider

in this chapter the weight is zero.

3.2 Zero Modes

In this section, we show details for the computation of the zero mode partition func-

tions. The N = (2, 0), 6d world volume theory of the fivebrane contains a chiral

two-form BMN , which has a self-dual three-form field strength HLMN = ∂LBMN +

∂MBNL + ∂NBLM with 1 ≤ L,M,N ≤ 6,

HLMN(~θ, θ6) =
1

6
√
−G

GLL′GMM ′GNN ′ε
L′M ′N ′RSTHRST (~θ, θ6). (3.21)

Since there is no covariant Lagrangian description for the chiral two-form, we com-

pute its partition function from (3.4). As in [2],[6] the zero mode partition function of

the 6d chiral theory is calculated in the Hamiltonian formulation similarly to string

theory,

Z6d
zero modes = tr

(
e−tH+iylPl

)
(3.22)

where t = 2πR6 and yl = 2π Gl6

G66 , with l = 1, ..5. However, y1 and y2 are zero due to

the metric (3.7). Neglecting the integrations and using the metric (3.8) in (3.4), we

find

−tH = −π
6
R6R1R2

√
g̃gαα

′
gββ

′
gλλ

′
HαβλHα′β′λ′ −

π

2
R6
R1

R2

√
g̃gαα

′
gββ

′
H2αβH2α′β′

− π

2

R6

R1

R2β
22
gαα

′
gββ

′√
g̃H2αβH2α′β′ − π

R6

R1

R2β
2
√
g̃gαα

′
gββ

′
H1αβH2α′β′

− πR6

R1R2

√
g̃gαα

′
H12αH12α′ −

π

4
R2
R6

R1

√
g̃(gαα

′
gββ

′ − gαβ′gα′β)H1αβH1α′β′ , (3.23)
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and the momentum components 3 ≤ α ≤ 5 are

Pα = −1

2
εγβδH12γHαβδ +

1

2
εγβδH1γβH2αδ, (3.24)

where the zero modes of the ten fieldsHlmp are labeled by integers n1, . . . n10 [2]. Then

(3.22) is given by (3.10).

Similarly, we compute the zero mode partition function for the 4d U(1) theory

from (3.1). We consider the charge quantization condition

nI =
1

2π

∫
ΣI2

F ≡ 1

2π

∫
ΣI2

1

2
Fαβ dθ

α ∧ dθβ, nI ∈ Z, for each 1 ≤ I ≤ 3. (3.25)

as well as the commutation relation obtained from (3.52)

[∫
Σγ1

Aα(~θ, θ6)dθα,

∫
d3θ′

2π
Πβ(~θ′, θ6)

]
=

i

2π

∫
Σγ1

dθβ = i δβγ , (3.26)

and use the standard argument [6],[3] to show that the field strength Fαβ and mo-

mentum Πα zero modes have eigenvalues

Fαβ =
nα,β
2π

, nα,β ∈ Z for α < β, and Πα(~θ′, θ6) =
n(α)

(2π)2
, n(α) ∈ Z3.

(3.27)

Thus we define integer valued modes F̃αβ ≡ 2πFαβ and Π̃α ≡ (2π)2Πα. Taking into

account the spatial integrations dθα, (3.2) gives

− 2πH4d + i2πγαP 4d
α

= −e
2

4

R2
6√
g
gαβΠ̃αΠ̃β −

e2√g
8

[
θ2

4π2
+

16π2

e4

]
gαβgγδF̃αγF̃βδ −

θe2

8π

R2
6√
g
gαβε

αγδF̃γδΠ̃
β

+ 2πiγαΠ̃βF̃αβ, (3.28)
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where (3.2) itself is derived in section 4. So from (3.28) and (3.1),

Z4d
zero modes =

∑
n4,n5,n6

exp{−e
2

4

R2
6√
g
gαβΠ̃αΠ̃β} ·

∑
n1,n2,n3

exp{−θe
2

8π

R2
6√
g
gαβε

αγδF̃γδΠ̃
β}

· exp{−
e2√g

8
(
θ2

4π2
+

16π2

e4
)gαβgγδF̃αγF̃βδ + 2πiγαΠ̃βF̃αβ}, (3.29)

where nI are integers, with F̃34 = n1, F̃35 = n2, F̃45 = n3, and Π̃3 = n4, Π̃4 = n5, Π̃6 =

n6. (3.29) is the zero mode contribution to the 4d U(1) partition function (3.1), and is

(3.11).

If we identify the gauge couplings τ = θ
2π

+ i4π
e2

with the modulus of T 2, τ =

β2 + iR1

R2
, then

e2

4π
=
R2

R1

,
θ

2π
= β2, (3.30)

and (3.29) becomes

Z4d
zero modes =

∑
n4,n5,n6

exp{−π R2R
2
6

R1
√
g
gαβΠ̃αΠ̃β} ·

∑
n1,n2,n3

exp{−πβ2 R2R
2
6

R1
√
g
gαβε

αγδF̃γδΠ̃
β}

· exp{−π
2

R2

R1

√
g(β22

+
R2

1

R2
2

)gαβgγδF̃αγF̃βδ + 2πiγαΠ̃βF̃αβ}.

(3.31)

Then the last four terms in the chiral two-form zero mode sum (3.10) are equal to

(3.11) since

−π
2

R2R6

√
g̃

R1

(
R2

1

R2
2

+ β22
)gαα

′
gββ

′
H2αβH2α′β′ = −π

2

R2R6

R1

√
g̃ (
R2

1

R2
2

+ β22
)gαβgγδF̃αγF̃βδ,

−πR6R2

R1

√
g̃ β2gαα

′
gββ

′
H1αβH2α′β′ = −πβ2 R6R2

R1

√
g̃
gαβε

αγδF̃γδΠ̃
β,

iπγαεγβδH1γβH2αδ = 2πiγα Π̃βF̃αβ,

−π
2

R6R2

R1

√
g̃gαα

′
gββ

′
H1αβH1α′β′ = −π R6R2

R1

√
g̃
gαβΠ̃αΠ̃β,

(3.32)
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when we identify the integers

H2αβ = F̃αβ and H1αβ =
1

g̃
εαβγΠ̃

γ, (3.33)

with g̃ = g R−2
6 from (3.9). Thus the 6d and 4d zero mode sums from (3.10) and (3.11)

are related by

Z6d
zero modes = ε Z4d

zero modes, (3.34)

where

ε =
∑

n8,n9,n10

exp{− πR6

R1R2

√
g̃gαα

′
H12αH12α′}

·
∑
n7

exp{−π
6
R6R1R2

√
g̃gαα

′
gββ

′
gδδ
′
HαβδHα′β′δ′ − iπγαεγβδH12γHαβδ}. (3.35)

3.3 Oscillator modes

To compute the oscillator contribution to the partition function (3.1), we quantize the

U(1) gauge theory with a theta term on the T 4 manifold using Dirac brackets. From

(3.3), the equations of motion are ∂iFij = 0, since the theta term is a total divergence

and does not contribute to them. So in Lorenz gauge, the gauge potential Ai with

field strength tensor Fij = ∂iAj − ∂jAi is obtained by solving the equation

∂i∂iAj = 0, with ∂iAi = 0. (3.36)

The potential has a plane wave solution

Ai(~θ, θ
6) = zero modes +

∑
~k 6=0

(fi(k)eik·θ + (fi(k)eik·θ)∗) (3.37)
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with momenta satisfying the on shell condition and gauge condition

G̃ij
Lkikj = 0, kifi = 0. (3.38)

As in [13],[6] the HamiltonianH4d and momentum P 4d
α are quantized with a Lorentzian

signature metric that has zero angles with the time direction, γα = 0. So we modify

the metric on the four-torus (3.6), (3.7) to be

G̃Lαβ = gαβ , G̃L 66 = −R6
2, G̃Lα6 = 0

G̃αβ
L = gαβ, G̃66

L = − 1

R2
6

, G̃α6
L = 0, G̃L = det G̃L ij = −g. (3.39)

Solving for k6 from (3.38) we find

k6 =

√
−G̃66

L

G̃66
L

|k|, (3.40)

where 3 ≤ α, β ≤ 5, and |k| ≡
√
gαβkαkβ . Employ the remaining gauge invariance

fi → f ′i = fi + kiλ to fix f ′6 = 0, which is the gauge choice

A6 = 0.

This reduces the number of components of Ai from 4 to 3. To satisfy (3.38), we can

use the ∂iFi6 = −∂6∂
αAα = 0 component of the equation of motion to eliminate f5 in

terms of f3, f4,

f5 = − 1

p5
(p3f3 + p4f4),

leaving just two independent polarization vectors corresponding to the physical de-

grees of freedom of a four-dimensional gauge theory.
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From the Lorentzian Lagrangian and energy-momentum tensor given by

L = − 1

2e2

√
−G̃LG̃

ik
L G̃

jl
LFijFkl +

θ

32π2
εijklFijFkl,

T i
j =

δL
δ∂iAk

∂jAk − δijL, (3.41)

we obtain the Hamiltonian and momentum operators

Hc ≡
∫
d3θ T 6

6 =

∫
d3θ
(
−
√
g

e2
G̃66
L g

αβ F6αF6β +

√
g

2e2
gαα

′
gββ

′
FαβFα′β′ − ∂αΠαA6

)
,

(3.42)

Pα ≡
∫
d3θ T 6

α =

∫
d3θ
(
− 2

e2

√
g G̃66

L g
βγF6γFαβ − ∂βΠβ Aα + Π6∂αA6

)
, (3.43)

where we have integrated by parts; and the conjugate momentum is

Πα =
δL

δ∂6Aα
= − 2

e2

√
g G̃66

L g
αβF6β −

θ

8π2
εαβγFβγ, Π6 =

δL
δ∂6A6

= 0. (3.44)

Then we have

Hc − iγαPα =

∫
dθ3
(R2

6

4

e2

√
g
gαβ
(
Πα +

θ

8π2
εαγδFγδ

)(
Πβ +

θ

8π2
εβρσFρσ

)
+

√
g

2e2
gαα̃gββ̃FαβFα̃β̃ − iγ

α
(
Πβ +

θ

8π2
εβγδFγδ

)
Fαβ

)
, (3.45)

up to terms proportional to A6 and ∂αΠα which vanish in Lorenz gauge. Note the

term proportional to εβγδFγδFαβ vanishes identically. (3.45) is equal to H4d − iγαP 4d
α

given in (3.2), and is used to compute the zero mode partition function in (3.11) via

(3.28).

To compute the oscillator modes, the appearance of θ solely in the combination

Πα + θ
8π2 ε

αγδFγδ in (3.45) suggests we make a canonical transformation on the oscil-

lator fields Πα(~θ, θ6), Aβ(~θ, θ6) [49]. Consider the equal time quantum bracket, sup-

pressing the θ6 dependence,

42



[ ∫
d3θ′εαβδFαβAδ, Πγ(~θ)

]
= 2iεγαβFαβ(~θ), (3.46)

and the canonical transformation

U(θ) = exp{i θ

32π2

∫
d3θ′εαβγFαβAγ}, (3.47)

under which Πα(~θ, θ6), Aβ(~θ, θ6) transform to Π̂α(~θ, θ6), Âβ(~θ, θ6),

Π̂α(~θ) = U−1(θ) Πα(~θ)U(θ) = Πα(~θ) +
θ

8π2
εαγδFγδ(~θ)

Âβ(~θ) = U−1(θ)Aβ(~θ)U(θ) = Aβ(~θ). (3.48)

Therefore the exponent (3.45) contains no theta dependence when written in terms

of Π̂α, which now reads

(
Hc − iγαPα

)
=

∫
dθ3
(
− R2

6

4

e2

√
g
gαβΠ̂αΠ̂β +

√
g

2e2
gαα̃gββ̃FαβFα̃β̃ − iγ

αΠ̂βFαβ
)
. (3.49)

Thus, for the computation of the oscillator partition function we will quantize with

θ = 0. Note that had we done this for the zero modes, it would not be possible to

pick the zero mode integer charges consistently. Since the zero and oscillator modes

commute, we are free to canonically transform the latter and not the former.

In the discussion that follows we assume θ = 0 and drop the hats. We directly

quantize the Maxwell theory on the four-torus with the metric (3.39) in Lorenz gauge

using Dirac constraints [50, 51]. The theory has a primary constraint Π6(~θ, θ6) ≈ 0.

We can express the Hamiltonian (3.42) in terms of the conjugate momentum as

Hc =

∫
dθ3R

2
6

4

e2

√
g
gαβΠαΠβ +

√
g

2e2
gαα̃gββ̃FαβFα̃β̃. (3.50)
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The primary Hamiltonian is defined by

Hc =

∫
dθ3
(R2

6

4

e2

√
g
gαβΠαΠβ +

√
g

2e2
gαα̃gββ̃FαβFα̃β̃ − ∂αΠαA6 + λ1Π6

)
, (3.51)

with λ1 as a Lagrange multiplier. As in [6], we use the Dirac method of quantizing

with constraints for the radiation gauge conditions A6 ≈ 0, ∂αAα ≈ 0, and find the

equal time commutation relations:

[Πβ(~θ, θ6), Aα(~θ′, θ6)] = −i
(
δβα − gββ

′
(∂α

1

gγγ′∂γ∂γ′
∂β′)

)
δ3(θ − θ′),

[Aα(~θ, θ6), Aβ(~θ′, θ6)] = 0, [Πα(~θ, θ6),Πβ(~θ′, θ6)] = 0. (3.52)

In A6 = 0 gauge, the vector potential on the torus is expanded as

Aα(~θ, θ6) = zero modes +
∑

~k 6=0,~k∈Z3

(fκαa
κ
~k
eik·θ + fκ∗α a

κ†
~k
e−ik·θ),

where 1 ≤ κ ≤ 2, 3 ≤ α ≤ 5 and k6 defined in (3.40). The sum is on the dual

lattice ~k = kα ∈ Z3 6= ~0. Here we only consider the oscillator modes expansion of the

potential and the conjugate momentum in (3.44) with vanishing θ angle

Aα(~θ, θ6) =
∑
~k 6=0

(a~k αe
ik·θ + a†~k αe

−ik·θ),

Πβ(~θ, θ6) = −i
2
√
g

e2
G̃66
L g

ββ′
∑
~k

k6 (a~k β′e
ik·θ − a†~k β′e

−ik·θ). (3.53)

and the polarizations absorbed in

a~k α = fκαa
κ
~k
. (3.54)
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From (3.52), the commutator in terms of the oscillators is

∫
d3θd3θ′

(2π)6
e−ikαθ

α

e−ik
′
αθ′

α

[Aα(~θ, 0), Aβ(~θ′, 0)] = [(a~k α + a†
−~k α

), (a~k′ β + a†
−~k′ β

)] = 0.

(3.55)

We consider the Fourier transform (3.55) of all the commutators (3.52), so the com-

mutator of the oscillators is found to be:

[a~k α, a
†
~k′ β

] =
e2

2
√
gG̃66

L k6

1

2(2π)3

(
gαβ −

kαkβ
gγγ′kγkγ′

)
δ~k,~k′ ,

[a~k α, a~k′ β] = 0, [a†~k α, a
†
~k′ β

] = 0. (3.56)

InA6 = 0 gauge, we use (3.53) and (3.56) to evaluate the Hamiltonian and momentum

in (3.42) and (3.43)

Hc =

∫
d3θ

2
√
g

e2

(
− 1

2
G̃66
L g

αα′ ∂6Aα∂6Aα′ +
1

4
gαα

′
gββ

′
FαβFα′β′

)
,

Pα =
2

R2
6e

2

∫ 2π

0

dθ3dθ4dθ5√g gββ′ F6β′Fαβ. (3.57)

With (3.53), (3.57) can be expressed in terms of the oscillator modes where time-

dependent terms cancel,

Hc = (2π)3 2
√
g

e2

∑
~k∈Z3 6=~0

gαα
′|k|2 (a~k αa

†
~k α′

+ a†~k αa~k α′),

Pα = −
2
√
g

e2
G̃66
L g

ββ′(2π)3
∑

~k∈Z3 6=~0

k6kα
(
a~k β′a

†
~k β

+ a†~k β′a~k β
)
. (3.58)

and we have used the on-shell condition G̃66
L k6k6 + |k|2 = 0, and the transverse con-

dition kαa~k α = kαa†~k α = 0. Then,

−Hc + iγαPα = −i 1

R6

2
√
g

e2
(2π)3

∑
~k∈Z3 6=~0

|k|
(
− iR6|k|+ γαkα

)
gββ

′(
a~k βa

†
~k β′

+ a†~k βa~k β′
)
.

(3.59)
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Inserting the polarizations as a~k α = fκαa
κ
~k

and a†~k α = fλ∗α aλ†~k from (3.54) in the commu-

tator (3.56) gives

[a~k α, a
†
~k′ β

] =
e2

4
√
g

R6

|k|
1

(2π)3

(
gαβ −

kαkβ
|k|2

)
δ~k,~k′ = fκαf

λ∗
β [aκ~k, a

λ†
~k

], (3.60)

where we choose the normalization

[aκ~k, a
λ†
~k′

] = δκλδ~k,~k′ , (3.61)

with 1 ≤ κ, λ ≤ 2. Then the polarization vectors satisfy

fκαf
λ∗
β δκλ =

e2

4
√
g

R6

|k|
1

(2π)3

(
gαβ −

kαkβ
|k|2

)
, gββ

′
fκβ f

λ∗
β′ δ

κλ =
e2

4
√
g

R6

|k|
1

(2π)3
· 2,

gββ
′
fκβ f

λ∗
β′ = δκλ

e2

4
√
g

R6

|k|
1

(2π)3
.

So the exponent in (3.1) is given by

−Hc + iγαPα = −iR6

2
√
g

e2
(2π)3

∑
~k∈Z3 6=~0

|k|
(
− iR6|k|+ γαkα

)
gββ

′(
2a†~k βa~k β′ + [a~k β, a

†
~k β′

]
)

= −i
∑

~k∈Z3 6=~0

(
γαkα − iR6|k|

)
aκ†~k a

κ
~k
− i

2

∑
~k∈Z3 6=~0

(
− iR6|k|

)
δκκ.

(3.62)

The U(1) partition function is

Z4d,Maxwell ≡ tr exp{2π(−Hc + iγiPi)} = Z4d
zero modes Z

4d
osc, (3.63)

so from (3.62),

Z4d
osc = tr e−2πi

∑
~k∈Z3 6=~0

(
γαkα−iR6|k|

)
aκ†
~k
aκ~k
−πR6

∑
~k∈Z3 6=~0 |k| δ

κκ

. (3.64)
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From the usual Fock space argument

tr ω
∑
p pa
†
pap =

∏
p

∞∑
k=0

〈k|ωpa
†
pap |k〉 =

∏
p

1

1− ωp
,

we perform the trace on the oscillators,

Z4d
osc =

(
e−πR6

∑
~n∈Z3

√
gαβnαnβ

∏
~n∈Z3 6=~0

1

1− e−i2π(γαnα−iR6

√
gαβnαnβ)

)2

, (3.65)

Z4d,Maxwell = Z4d
zero modes ·

(
e−πR6

∑
~n∈Z3

√
gαβnαnβ

∏
~n∈Z3 6=~0

1

1− e−2πR6

√
gαβnαnβ−2πiγαnα

)2

,

(3.66)

where Z4d
zero modes is given in (3.11). (3.66) and (3.72) are each manifestly SL(3,Z) in-

variant due to the underlying SO(3) invariance we have labeled as α = 3, 4, 5. We use

the SL(3,Z) invariant regularization of the vacuum energy reviewed in Appendix G

to obtain

Z4d,Maxwell = Z4d
zero modes ·

(
e

1
2
R6π−2

∑
~n6=0

√
g̃

(gαβn
αnβ)2

∏
~n∈Z3 6=~0

1

1− e−2πR6

√
gαβnαnβ−2πiγαnα

)2

,

(3.67)

which leads to (3.17).

On the other hand, one can evaluate the oscillator trace for the 6d chiral two-form

from (3.4) as in[2],[6]. The exponent in the trace is

−2πR6H + i2πγiPi =
iπ

12

∫ 2π

0

d5θHlrsε
lrsmnH6mn =

iπ

2

∫ 2π

0

d5θ
√
−GH6mnH6mn

= −iπ
∫ 2π

0

d5θ(ΠmnH6mn +H6mnΠmn)

= −2iπ
∑
~p 6=0

p6Cκ†~p B
κ
~p − iπ

∑
~p 6=0

p6δ
κκ, (3.68)

where Πmn = −
√
−G
4

Π6mn, and Π6mn is the momentum conjugate toBMN . In the gauge

B6n = 0, the normal mode expansion for the free quantum fields Bmn and Πmn on a

47



torus is given in terms of oscillators Bκ
~p and Cκ†~p defined in [2], with the commutation

relations

[Bκ
~p , C

λ†
~p′ ] = δκλ δ~p,~p′ (3.69)

where 1 ≤ κ, λ ≤ 3 labels the three physical degrees of freedom of the chiral two-

form, and ~p = (p1, p2, pα) lies on the integer lattice Z5. From the on-shell condition

GLMpLpM = 0,

p6 = −γαpα − iR6

√
gαβpαpβ +

p2
1

R2
1

+ (
1

R2
2

+
β22

R2
1

)p2
2 + 2

β2

R2
1

p1p2. (3.70)

Thus the oscillator partition function of the chiral two-form on T 2 × T 4 is obtained

by tracing over the oscillators

Z6d
osc = tr e−2iπ

∑
~p6=0 p6Cκ†~p Bκ~p−iπ

∑
~p6=0 p6δκκ

=
(
e−πR6

∑
~p

√
gαβpαpβ+p̃2

∏
~p 6=0

1

1− e−2πip6

)3

=
(
e−πR6

∑
~p∈Z5

√
gαβpαpβ+p̃2

∏
~p∈Z5 6=~0

1

1− e−2πR6

√
gαβpαpβ+p̃2+2πiγαpα

)3

, (3.71)

where p̃2 ≡ p2
1

R2
1

+ ( 1
R2

2
+ β22

R2
1

)p2
2 + 2 β

2

R2
1
p1p2. Regularizing the vacuum energy in the

oscillator sum [2] yields

Z6d,chiral = Z6d
zero modes ·

(
e
R6π−3

∑
~n6=~0

√
G5

(Gmpnmnp) 3
∏

~p∈Z5 6=~0

1

1− e−2πR6

√
gαβpαpβ+p̃2+2πiγαpα

)3

,

(3.72)

where ~n ∈ Z5 is on the dual lattice, Gmp is defined in (3.6), and Z6d
zero modes is given

in (3.10).

Comparing the 4d and 6d oscillator traces (3.66) and (3.71), the 6d chiral two-form

sum has a cube rather than a square, corresponding to one additional polarization,

and it contains Kaluza-Klein modes. In Appendix H, we prove that the product of
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the zero mode and the oscillator mode partition function for the 4d theory in (3.67) is

SL(4,Z) invariant. In (F.48) we give an equivalent expression,

Z4d,Maxwell = Z4d
zero modes ·

(
e
πR6
6R3

∏
n3 6=0

1

1− e−2π
R6
R3
|n3|+2πiγ3n3

)2

·
( ∏

(na)∈Z2 6=(0,0)

e−2πR6<H>p⊥
∏
n3∈Z

1

1− e−2πR6

√
gαβnαnβ+2πiγαnα

)2

,

(3.73)

where 4 ≤ a ≤ 5, with < H >p⊥ defined in (E.3).

In Appendix H, we also prove the SL(4,Z) invariance of the 6d chiral partition

function (3.72), using the equivalent form (F.65),

Z6d,chiral = Z6d
zero modes ·

(
e
πR6
6R3

∏
n3∈Z6=0

1

1− e−2π
R6
R3
|n3|+2πi γ3 n3 )

)3

·
( ∏
n⊥∈Z4 6=(0,0,0,0)

e−2πR6<H>6d
p⊥
∏
n3∈Z

1

1− e−2πR6

√
gαβnαnβ+ñ2 +i2πγαnα

)3
, (3.74)

with < H >6d
p⊥

in (F.64), and ñ2 = (n1)2

R2
1

+ ( 1
R2

2
+ β2

R2
1
)n2

2 + 2 β
2

R2
1
n2n1. In the limit when R1

and R2 are small with respect to the metric parameters gαβ, R6 of the four-torus, the

contribution from each polarization in (3.73) and (3.74) is equivalent. To see this limit,

we can separate the product on n⊥ = (n1, n2, na) 6= 0⊥ in (3.74), into (n1 = 0, n2 =

0, na 6= (0, 0)), (n1 6= 0, n2 6= 0, all na), (n1 = 0, n2 6= 0, all na), (n1 6= 0, n2 = 0, all na))
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to find, at fixed n3,

∏
n⊥∈Z4 6=(0,0,0,0)

1

1− e
−2πR6

√
gαβnαnβ+

(n1)2

R2
1

+( 1

R2
2

+ β2

R2
1

)n2
2+2 β

2

R2
1
n2n1+2πiγαnα

=
∏

na∈Z2 6=(0,0)

1

1− e−2πR6

√
gαβnαnβ+2πiγαnα

·
∏

n1 6=0,n2 6=0,(na∈Z2)

1

1− e
−2πR6

√
gαβnαnβ+

(n1)2

R2
1

+( 1

R2
2

+ β2

R2
1

)n2
2+ β2

R2
1
n2n1+2πiγαnα

·
∏

n1=0,n2 6=0,(na∈Z2)

1

1− e
−2πR6

√
gαβnαnβ+( 1

R2
2

+ β2

R2
1

)n2
2+2πiγαnα

·
∏

n2=0,n1 6=0,(na∈Z2)

1

1− e
−2πR6

√
gαβnαnβ+

(n1)2

R2
1

+2πiγαnα

(3.75)

Thus for T 2 smaller than T 4, the last three products reduce to unity, so

∏
n⊥∈Z4 6=~0

1

1− e−2πR6

√
gαβnαnβ+ñ2+2πiγαnβ

R1,R2→0−−−−−→
∏

na∈Z2 6=(0,0)

1

1− e−2πR6

√
gαβnαnβ+2πiγαnα

.

(3.76)

The regularized vacuum energies in (E.3) and (F.64),

< H >p⊥ 6=0 = −π−1 |p⊥|
∞∑
n=1

cos(paκ
a2πn)

K1(2πnR3|p⊥|)
n

, for |p⊥| ≡
√
g̃abnanb,

< H >6d
p⊥ 6=0 = −π−1 |p⊥|

∞∑
n=1

cos(paκ
a2πn)

K1(2πnR3|p⊥|)
n

, for |p⊥| ≡
√
ñ2 + g̃abnanb,

(3.77)

have the same form of spherical Bessel function, but the argument differs by modes

(p1, p2). Again separating the product on n⊥ = (n1, n2, na) in (3.74), into

(n1 = 0, n2 = 0, na 6= (0, 0)), (n1 6= 0, n2 6= 0 all na), (n1 = 0, n2 6= 0, all na), (n1 6=
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0, n2 = 0, all na)) we have

∏
n⊥∈Z4 6=(0,0,0,0)

e−2πR6<H>6d
p⊥ =

( ∏
na∈Z2 6=(0,0)

e−2πR6<H>4d
p⊥
)
·
( ∏
n1 6=0,n2 6=0,na∈Z2

e−2πR6<H>6d
p⊥
)

·
( ∏
n1 6=0,n2=0,na∈Z2

e−2πR6<H>6d
p⊥
)
·
( ∏
n1=0,n2 6=0,na∈Z2

e−2πR6<H>6d
p⊥
)

(3.78)

In the limit R1, R2 → 0, the last three products are unity. For example, the second is

unity because for n1, n2 6= 0,

lim
R1,R2→0

√
ñ2 + g̃αβnαnβ ∼

√
ñ2,

lim
R1,R2→0

(|p⊥| K1(2πnR3|p⊥|) = lim
R1,R2→0

√
ñ2 K1

(
2πnR3

(√
ñ2
))

= 0, (3.79)

since limx→∞ xK1(x) ∼
√
x e−x → 0 [52]. So (3.78) leads to

lim
R1,R2→0

∏
n⊥∈Z4 6=(0,0,0,0)

e−2πR6<H>6d
p⊥ =

∏
na∈Z2 6=(0,0)

e−2πR6<H>p⊥ . (3.80)

Thus in the limit when T 2 is small with respect to T 4,

lim
R1,R2→0

∏
n⊥∈Z4 6=(0,0,0,0)

e−2πR6<H>6d
p⊥
∏
n3∈Z

1

1− e
−2πR6

√
(gαβnαnβ+

n2
1

R2
1

+ β2

R2
1

)n2
2+ β2

R2
1
n2n1 +i2πγαnα

=
∏

na∈Z2 6=(0,0)

e−2πR6<H>p⊥
∏
n3∈Z

1

1− e−2πR6

√
gαβnαnβ+2πiγαnα

.

(3.81)

So we have shown the partition functions of the chiral theory on T 2 × T 4 and of

gauge theory on T 4, agree in the small T 2 limit upon neglecting the less interesting

contribution ε′,

lim
R1,R2→0

Z6d
osc = ε′ · Z4d

osc, (3.82)
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which is (3.15). Again, ε′ is equivalently the oscillator contribution from one polar-

ization, that is

ε′ =
(
e

1
8
R6π−2

∑
~n6=0

√
g̃

(gαβn
αnβ)2 ·

∏
~n∈Z3 6=~0

1

1− e−2πR6

√
gαβnαnβ−2πiγαnα

)
(3.83)

The relation between the 4d gauge and 6d tensor partition function is shown in

the small T 2 limit,

lim
R1,R2→0

Z6d,chiral = εε′ · Z4d,Maxwell, (3.84)

which is (3.19). εε′ is the partition function of a real scalar field in 4d, and is indepen-

dent of the gauge coupling τ.

3.4 S-duality of Z4d,Maxwell from Z6d,chiral

In Appendices B and D we show explicitly how the SL(2,Z) × SL(4,Z) symmetry

of the partition function of the 6d tensor field of the M-fivebrane of N = (2, 0) theory

compactified on T 2×T 4 implies the SL(2,Z) S-duality of the 4d U(1) gauge field par-

tition function. These computations use the Hamiltonian formulation. In Appendix

E we review the path integral formalism for the 4d zero and non-zero mode partition

functions, and give their relations to the quantities computed in the Hamiltonian

formulation. The results are summarized here.

Z4d
zero modes = (Im τ)

3
2
g

1
4

R2
6

ZPI
zero modes. (3.85)

Z4d
osc = (Im τ)−

3
2 g−

1
4R2

6Z
PI
osc. (3.86)
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Z4d
zero modes −→ Z4d

zero modes, ZPI
zero modes −→ |τ |3ZPI

zero modes under S

Z4d
zero modes −→ Z4d

zero modes, ZPI
zero modes −→ ZPI

zero modes under T (3.87)

and

Z4d
osc −→ Z4d

osc, ZPI
non−zero modes −→ |τ |−3ZPI

non−zero modes under S

Z4d
osc −→ Z4d

osc, ZPI
non−zero modes −→ ZPI

non−zero modes under T . (3.88)

S and T are the generators of the duality symmetry SL(2,Z), S : τ → − 1
τ
, T : τ →

τ − 1, where τ = θ
2π

+ i4π
e2

is also given by the modulus of the two-torus, τ = β2 + iR1

R2
.

3.5 Discussion and Conclusions

We computed the partition function of the abelian gauge theory on a general four-

dimensional torus T 4 and the partition function of a chiral two-form compactified on

T 2 × T 4. The coupling for the 4D gauge theory, τ = θ
2π

+ i4π
e2

, is identified with the

complex modulus τ = β2 + iR1

R2
of T 2. Assuming the metric of T 2 is much smaller

than T 4, the 6D partition function factorizes to a partition function for gauge theory

on T 4 and a contribution from the extra scalar arising from compactification. The

6D partition function has a manifest SL(2,Z) × SL(4,Z) symmetry. Therefore the

SL(2,Z) symmetry with the group action on the coupling, τ = θ
2π

+ i4π
e2

, known as

S-duality becomes manifest in the 4D Maxwell theory.

The 6D chiral two-form has no Lagrangian, so we use the Hamiltonian approach

to compute both the 4D and 6D partition functions. For gauge theory, the integration

of the electric and magnetic fields as observables around one- and two-cycles re-

spectively take integer values due to charge quantization. We sum over all possible

integers to get the zero mode partition function. For the oscillator mode calculation,

we quantize the gauge theory using the Dirac method with constraints. In 6D, the

partition function follows from [2],[6].

We have also given the result of the 4D partition function, computed by the
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path integral formalism. It agrees with the partition function obtained with the

Hamiltonian formulation. However, the path integral form factors into zero modes

and oscillator modes differently, which leads to different SL(2,Z) transformation

properties for the components. The 6D and 4D partition functions share the same

SL(2,Z)× SL(4,Z) symmetry.

If we consider supersymmetry, compactification of the 6D theory on T 2 leads to

N = 4 gauge theory in the limit of small T 2. On the other hand, an N = 2 theory of

class S [53],[54] arises when the 6D, (2, 0) theory is compactified on a punctured Rie-

mann surface with genus g. Here the mapping class group of the Riemann surfaces

acts as a generalized S-duality on 4D super-Yang-Mills theory [55]-[57]. In Additional

data about the gauge theory such as the discrete θ angle where the S-duality group

acts can also specified [57]. another direction, we can study the 2D conformal field

theory present when 6D theory is compactified on a four-dimensional manifold. The

2D-4D relation can also be studied from a topological point of view [58],[59]. Finding

explicit results, such as we have derived for T 2 × T 4, for these more general investi-

gations would be advantageous.
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Chapter 4

Conclusions and Future Directions

We computed the partition function of the five-dimensional abelian gauge theory on

a five-torus T 5 with a general flat metric by separating into zero modes and oscillator

modes. The computation is familiar from the one-loop modular invariant partition

function computation in string theory [13]. Although neither the zero mode nor the

oscillator mode partition functions are SL(5,Z) invariant, the product of them is an

SL(5,Z) invariant function of the metric parameters. This arises from the T 5 com-

pactification. We compared this with the partition function of a single fivebrane com-

pactified on a circle S1 times T 5, which is computed by reducing the six-torus calcu-

lation of Dolan and Nappi [2]. The two partition functions agree for the zero modes,

but the Kaluza-Klein modes (KK modes) associated with the compactification on the

circle are missing from the 5D oscillator expression. Hence, these two theories only

agree in the weak coupling limit, thus disproving the conjecture by Douglas et al.

at the abelian level [6]. However, it is still interesting to understand the relation be-

tween these two theories at the non-abelian level. When the 6D (2, 0) is compactified

on a circle S1, the associated KK modes could be identified with the instantons in

the 5D Yang-Mills theory. One might try to include instantons in the computation of

the 5D partition function. The full 6D spectrum might thus be obtained from the 5D

theory. One of my future research projects will be to give a systematic way to account

for instantons in the partition function which is itself a very challenging topic [20].

When one computes the partition function for the 5D supersymmetric gauge theory

on a more general manifold, one can use the supersymmetric localization technique

to quantize the theory, which is under active investigation [27].



S-duality has its origin in a supersymmetric conformal field theory in six dimen-

sions, the 6D, N = (2, 0) theory. When the 6D, N = (2, 0) theory is compactified on

T 2, we obtain the 4D, N = 4 super Yang-Mills theory, and the SL(2,Z) symmetry of

the torus implies the electromagnetic duality of the four-dimensional gauge theory.

To test this, we compute the partition function for the 6D self-dual two-form poten-

tial on T 2 × T 4, which posesses SL(2,Z) × SL(4,Z) symmetry. Also, we compute

the 4D gauge theory on a general T 4 torus with the gauge coupling, τ = θ
2π

+ i4π
e2

set

to the complex modulus of the torus T 2, τ = β2 + iR1

R2
. In the small T 2 limit, the 6D

chiral two-form partition function contains the partition function for the 4D abelian

gauge theory combined with a factor that represents the extra modes that transforms

trivially under the SL(2,Z). Therefore, the SL(2,Z) symmetry of the gauge the-

ory on T 4 follows from the 6D theory. For the 4D gauge theory, since there exists

a Lagrangian description, we also compute the partition function using the path in-

tegral formalism which turns out to be consistent with the result obtained from the

canonical quantization. However, it factorizes differently into the zero modes and

the oscillator modes [6].

Our partition function computation shows explicitly that the S-duality of four-

dimensional gauge theory has a six-dimensional origin. More generally, one can con-

sider anN = 2 theory of class S arises when the 6D, (2, 0) is compactified on a punc-

tured Riemann surface with genus g [53]. In such a way, the mapping class group

of the Riemann surfaces acts as a generalized S-duality on the 4D super Yang-Mills

theory. Viewed differently, we obtain a 2d Toda conformal field theory by compact-

ification on a four-dimensional manifold. The equivalence of the 2d and 4D theory,

known as the AGT correspondence [55], has been studied via their superconformal

index computation [11]. However, since the AGT correspondence has its root in the

6D theory, it will be even more interesting to understand this duality from the 6D

partition function.
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APPENDIX A

EQUATION OF MOTION

The 5D Maxwell theory on a five-torus with metric (2.24) has the Hamiltonian
(3.51),

Hp =

∫
d4θ
(
− 2π2R1

R6
√
gG̃66

L

gii′Π
i Πi′ +

R6
√
g

16π2R1

gii
′
gjj
′
FijFi′j′ − ∂iΠiA6 + λ1Π6

)
,

(A.1)

with λ1 as a Lagrange multiplier. To quantize and derive the commutation rela-
tions, we start with the equal-time canonical Poisson brackets

{Πm̃(~θ, θ6), Añ(~θ′, θ6)} = −{Añ(~θ′, θ6),Πm̃(~θ, θ6)} = −δ4(~θ − ~θ′) δm̃ñ ,

{Πm̃(~θ, θ6),Πñ(~θ′, θ6)} = {Am̃(~θ, θ6), Añ(~θ′, θ6)} = 0. (A.2)

The constraints are required to be time-independent, so for φ1(θ) ≡ Π6(~θ, θ6),

∂6φ
1(~θ, θ6) = {φ1(~θ, θ6), Hp} = −

∫
d4θ′{Π6(θ), A6(θ′)} ∂iΠi(θ′) = ∂iΠ

i(θ) ≈ 0.

(A.3)

Thus the secondary constraint is

φ2(θ) ≡ ∂iΠ
i(~θ, θ6) ≈ 0, (A.4)

which is time-independent from the contribution

∂6φ
2(~θ, θ6) = {φ2(~θ, θ6), Hp} =

R6
√
g

16π2R1

gii
′
gjj
′
∫
d4θ′{∂kΠk(θ), Fij(θ

′)Fi′j′(θ
′)} = 0.

(A.5)



The two constraints φ1, φ2 are first class constraints since they have vanishing
Poisson bracket,

{Π6(θ), ∂iΠ
i(θ′)} = 0. (A.6)

We introduce the gauge conditions

φ3(θ) ≡ A6(θ) ≈ 0, φ4(θ) ≡ ∂iAi(θ) = gij∂jAi ≈ 0. (A.7)

These convert all four constraints to second class, i.e. all now have at least one non-
vanishing Poisson bracket with each other, where the non-vanishing brackets are

{φ1(θ), φ3(θ′)} = {Π6(θ), A6(θ′)} = −δ4(θ − θ′) = −{A6(θ),Π6(θ′)},

{φ2(θ), φ4(θ′)} = {∂iΠi(θ), gjj
′
∂j′Aj(θ

′)} = gij
∂

∂θi
∂

∂θj
δ4(θ − θ′) = −{gjj′∂j′Aj(θ), ∂iΠi(θ′)}.

(A.8)

Furthermore, there are no new constraints since ∂6φ
A(~θ, θ6) = {φA(~θ, θ6), H} ≈ 0,

when all φA ≈ 0, 1 ≤ A ≤ 4, and λ1 = ∂6A6. We can write (A.8) as a matrix
CAB(θ, θ′) ≡ {φA(θ), φB(θ′)},

CAB =



0 0 −1 0

0 0 0 gij ∂
∂θi

∂
∂θj

1 0 0 0

0 −gij ∂
∂θi

∂
∂θj

0 0


δ4(θ − θ′). (A.9)

The inverse matrix is

(CAB)−1 =



0 0 1 0

0 0 0 − 1
gkk′ ∂

∂θk
∂

∂θk
′

−1 0 0 0

0 1
gkk′ ∂

∂θk
∂

∂θk
′

0 0


δ4(θ − θ′). (A.10)
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The Dirac bracket is defined to vanish with any constraint,

{Am̃(θ),Πñ(θ′)}D = {Am̃(θ),Πñ(θ′)} −
∫
d4ρd4ρ′

(
{Am̃(θ),Π6(ρ)}C−1

13 {A6(ρ′), πñ(θ′)}

+ {Am̃(θ), ∂iΠ
i(ρ)}C−1

24 {∂jAj(ρ′),Πñ(θ′)}

+ {Am̃(θ), A6(ρ)}C−1
31 {Π6(ρ′), πñ(θ′)}

+ {Am̃(θ), ∂jAj(ρ)}C−1
42 {∂iΠi(ρ′),Πñ(θ′)}.

)

(A.11)

So

{Ai(θ),Πj(θ′)}D = {Ai(θ), πj(θ′)} −
∫
d4ρd4ρ′

(
{Ai(θ), ∂kΠk(ρ)} C−1

24 {∂k
′
Ak′(ρ

′), πj(θ′)}
)

=
(
δji − gjj

′
∂i

1

gkk′∂k∂k′
∂j′
)
δ4(θ − θ′),

(A.12)

where here all ∂j are with respect to θj . So promoting the Dirac Poisson bracket to a
quantum commutator, we derive the equal time commutation relations

[Πj(~θ, θ6), Ai(~θ
′, θ6)] = −i

(
δji − gjj

′
(∂i

1

gkk′∂k∂k′
∂j′)
)
δ4(θ − θ′), (A.13)

and similarly,

[Ai(~θ, θ
6), Aj(~θ

′, θ6)] = 0, [Πi(~θ, θ6),Πj(~θ′, θ6)] = 0. (A.14)

Furthermore we can check explicitly that Dirac brackets with a constraint vanish, for
example

{Πj(θ), ∂iAi(θ
′)}D = {Πj(θ), gik∂kAi(θ

′)− gikγkΠi(θ′)

= G̃jk
L

∂

∂θk
δ4(θ − θ′)− G̃jl

L

∂

∂θl
δ4(θ − θ′) = 0 = [Πj(θ), ∂iAi(θ

′)], (A.15)
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and

[∂jΠ
j(θ), Ai(θ

′)] = ∂j

(
δji − gjj

′
(∂i

1

gkk′∂k∂k′
∂j′)
)
δ4(θ − θ′) = 0. (A.16)

60



APPENDIX B

REGULARIZATION FOR 5D MAXWELL THEORY

The Fourier transform of powers of a radial function is

|~p|α−n =
cα

(2π)n

∫
dny
√
Gn e

−i~p·~y 1

|~y|α
, where cα ≡

π
n
2 2αΓ(α

2
)

Γ(n−α
2

)
. (B.1)

This formula holds by analytic continuation, since for general n, α, where the
area of the unit sphere Sn−2 is

ωn−2 =
2π

n−1
2

Γ(n−1
2

)
≡
∫ π

0

dθ1dθ2 . . . dθn−3 sin θ1 sin2 θ2 . . . sin
n−3 θn−3

∫ 2π

0

dφ, (B.2)

the Fourier integral is

∫
dny
√
Gn e

−i~p·~y 1

|~y|α
=

∫ ∞
0

dy yn−1−α
∫ π

0

dθ sinn−2 θ e−i|~p|y cos θ ωn−2

=

∫ ∞
0

dy yn−1−α (2π)
n
2

(|~p|y)
n−2

2

Jn−2
2

(|~p|y)

= |~p|α−n (2π)
n
2

2
n
2
−αΓ(n−α

2
)

Γ(α
2
)

, (B.3)

where the last expression is valid for the integral when−n
2
< n

2
−α < 1

2
, but can

be analytically continued for all α 6= −n,−n− 1, . . .

So expressing |~p| in terms of its 4D Fourier transform,

|~p| = − 3

4π2

∫
d4y
√
g e−i~p·~y

1

|~y|5
,

< H >=
1

2

∑
~p∈Z4

|~p| ei~p·~x|~x=0 =
1

2

∑
~p∈Z4

√
gijpipj, (B.4)



we have for the sum on the dual lattice, pi ∈ Z4,

∑
~p∈Z4

|~p|ei~p·~x = − 3

4π2

√
g

∫
d4y

1

|~y|5
∑
~p

ei~p·(~x−~y)

= − 3

4π2

√
g

∫
d4y

1

|~y|5
(2π)4

∑
~n6=0

δ4(~x− ~y + 2π~n) = −12π2√g
∑

~n∈Z4 6=0

1

|~x+ 2π~n|5

(B.5)

where the regularization consists of removing the ~n = 0 term from the equality,

∑
~p∈Z4

ei~p·~x = (2π)4
∑
~n∈Z4

δ4(~x+ 2π~n) (B.6)

and the sum on ~n is on the original lattice ~n = ni ∈ Z4. The regularized vacuum
energy is

< H >= − 3

16π3

√
g
∑

~n∈Z4 6=0

1

(gijninj)
5
2

= −6π2√g
∑

~n∈Z4 6=0

1

|2π~n|5
. (B.7)

For the discussion of SL(5,Z) invariance in Appendix G, it is also useful to write
the regularized sum (E.1), as

< H > =
∑
p⊥∈Z3

< H >p⊥=< H >p⊥=0 +
∑

p⊥∈Z3 6=0

< H >p⊥ , (B.8)

where p⊥ = pα ∈ Z3, α = 3, 4, 5, and

< H >p⊥=0=
1

2

∑
p2∈Z

√
g22p2p2 =

1

R2

∞∑
n=1

n =
1

R2

ζ(−1) = − 1

12R2

(B.9)

by zeta function regularization. For general p⊥, we express (E.1) as a sum of terms at
fixed transverse momentum [2],

< H >p⊥ = −6π2√g 1

(2π)3

∫
d3z⊥e

−ip⊥·z⊥
∑

~n∈Z4 6=0

1

|2π~n+ z⊥|5
, (B.10)

using the equality for the periodic delta function,∑
pα∈Z3 eip·z = (2π)3

∑
nα∈Z3 δ3(~z + 2π~n). Changing variables zα → yα + 2πnα,
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(B.10) becomes

< H >p⊥= −6π2√g 1

(2π)3

∫
d3y⊥e

−ip⊥·y⊥
∑
n∈Z6=0

1

|2πn+ y⊥|5
(B.11)

where n is the n2 component on the original lattice, and the denominator is |2πn +

y⊥|2 ≡ [(2πn)2G22+2(2πn)G2αy
α
⊥+yα⊥y

β
⊥Gαβ] = [(2πn)2(R2

2+gαβκ
ακβ)−2(2πn)gαβκ

βyα⊥+

yα⊥y
β
⊥gαβ]. We can extract the p⊥ = 0 part of (B.11) to verify (B.9),

< H >p⊥=0 = −6π2√g 1

(2π)3

∑
n∈Z6=0

∫
d3y⊥

1

|2πn+ y⊥|5

= −6π2√g 1

(2π)3

∑
n∈Z6=0

4π

3

1

(2π)2R2
2

1

n2

1√
g̃

= − ζ(2)

2π2R2

= − 1

12R2

,

(B.12)

by performing the y integrations. For general p⊥ ∈ Z3 6= 0, (B.11) integrates to give
the spherical Bessel functions,

< H >p⊥ 6=0 = |p⊥|2R2

∞∑
n=1

cos(pακ
α2πn)

[
K2(2πnR2|p⊥|)−K0(2πnR2|p⊥|)

]
= −π−1 |p⊥|R2

∞∑
n=1

cos(pακ
α2πn)

K1(2πnR2|p⊥|)
n

, (B.13)

where |p⊥| =
√
g̃αβnαnβ can be viewed as the mass of three scalar bosons [2].

For a d-dimensional lattice sum, the general formula used in (B.4) for regulating
the divergent sum is [2],

|~p| = 2π−
d
2

Γ(d+1
2

)

Γ(−1
2
)

∫
ddy
√
Gd e

−i~p·~y 1

|~y|d+1
,

< H > =
1

2

∑
~p∈Zd
|~p| ei~p·~x|~x=0 =

1

2

∑
~p∈Zd

√
gαβpαpβ

= 2dπ
d
2

Γ(d+1
2

)

Γ(−1
2
)

√
Gd

∑
~n∈Zd 6=~0

1

|2π~n|d+1
. (B.14)
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APPENDIX C

SL(5,Z) INVARIANCE

Rewriting the 5D metric (2,3,4,5,6)
From (2.6) the metric on the five-torus, for i, j = 2, 3, 4, 5, is

Gij = gij, Gi6 = −gijγj, G66 = R2
6 + gijγ

iγj,

G̃5 ≡ detGm̃ñ = R2
6 det gij ≡ R2

6 g. (C.1)

We can rewrite this metric using α, β = 3, 4, 5,

g22 ≡ R2
2 + g̃αβκ

ακβ, gα2 ≡ −g̃αβκβ, gαβ ≡ g̃αβ, (γ2)κα − γα ≡ −γ̃α,

G22 = R2
2 + g̃αβκ

ακβ, G26 = −(γ2)R2
2 + g̃αβκ

βγ̃α, G2α = −g̃αβκβ,

Gαβ = g̃αβ, Gα6 = −g̃αβγ̃β, G66 = R2
6 + (γ2)2R2

2 + g̃αβ γ̃
αγ̃β.

(C.2)

The 4D inverse of gij is

gαβ = g̃αβ +
κακβ

R2
2

, gα2 =
κα

R2
2

, g22 =
1

R2
2

,

(C.3)

where g̃αβ is the 3d inverse of g̃αβ .

g ≡ det gij = R2
2 det g̃αβ ≡ R2

2 g̃.



The line element can be written as

ds2 = R2
6(dθ6)2 +

∑
i,j=2,...,5

gij(dθ
i − γidθ6)(dθj − γjdθ6)

= R2
2(dθ2 − (γ2)dθ6)2 +R2

6(dθ6)2

+
∑

α,β=3,4,5

g̃αβ(dθα − γ̃αdθ6 − καdθ2) (dθβ − γ̃βdθ6 − κβdθ2). (C.4)

We define

τ̃ ≡ γ2 + i
R6

R2

. (C.5)

The 5D inverse is

G̃22
5 =

|τ̃ |2

R2
6

= G̃66
5 |τ̃ |2, G̃66

5 =
1

R2
6

, G̃26
5 =

γ2

R2
6

, G̃2α
5 =

κα|τ̃ |2

R2
6

+
γ2γ̃α

R2
6

,

G̃αβ
5 = g̃αβ +

κακβ

R2
6

|τ̃ |2 +
γ̃αγ̃β

R2
6

+
γ2(γ̃ακβ + καγ̃β)

R2
6

, G̃6α
5 =

γα

R2
6

=
γ2κα + γ̃α

R2
6

. (C.6)

Generators of SL(n,Z)

The SL(n,Z) unimodular groups can be generated by two matrices For SL(5,Z)

these can be taken to be U1, U2,

U1 =



0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0


; U2 =



1 0 0 0 0

1 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


, (C.7)

so that every matrix M in SL(5,Z) can be written as a product Un1
1 Un2

2 Un3
1 . . . . There-

fore to prove the SL(5,Z) invariance of (3.67), we will show it is invariant under
U1 and U2. Matrices U1 and U2 act on the basis vectors of the five-torus ~αm̃ where
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~αm̃ · ~αñ ≡ αp̃m̃α
q̃
ñGp̃q̃ = Gm̃ñ,

~α2 = (1, 0, 0, 0, 0)

~α6 = (0, 1, 0, 0, 0)

~α3 = (0, 0, 1, 0, 0)

~α4 = (0, 0, 0, 1, 0)

~α5 = (0, 0, 0, 0, 1). (C.8)

For our metric (F.3), the U2 transformation



~α′2

~α′6

~α′3

~α′4

~α′5


= U2



~α2

~α6

~α3

~α4

~α5


=



1 0 0 0 0

1 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


(C.9)

results in ~α′2 · ~α′2 ≡ α′p̃2α
′q̃
2Gp̃q̃ = G22 = G′22, ~α

′
2 · ~α′6 ≡ α′p̃2α

′q̃
6Gp̃q̃ = G22 +G26 = G′26, etc.

So U2 corresponds to

R2 → R2, R6 → R6, γ
2 → γ2 − 1, κα → κα, γ̃α → γ̃α + κα, g̃αβ → g̃αβ, (C.10)

or equivalently

R6 → R6, γ
2 → γ2 − 1, gij → gij, γ

α → γα, (C.11)

which leaves invariant the line element (F.5) if dθ2 → dθ2−dθ6, dθ6 → dθ6, dθα → dθα.

U2 is the generalization of the usual τ̃ → τ̃ − 1 modular transformation. The 4D
inverse metric gij ≡ {gαβ, gα2, g22} does not change under U2. It is easily checked
that U2 is an invariance of the 5D Maxwell partition function (3.66) as well as the
chiral partition function (2.68). It leaves the zero mode and oscillator contributions
invariant separately.

The other generator, U1 is related to the SL(2,Z) transformation τ̃ → −(τ̃)−1 that
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we discuss as follows:

U1 = U ′M4 (C.12)

where M4 is an SL(4,Z) transformation given by

M4 =



0 0 −1 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0


(C.13)

and U ′ is the matrix corresponding to the transformation on the metric parameters
(F.16),

U ′ =



0 1 0 0 0

−1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


. (C.14)

Under U ′, the metric parameters transform as

R2 → R2|τ̃ |, R6 → R6|τ̃ |−1, γ2 → −γ2|τ̃ |−2, κα → γ̃α, γ̃α → −κα, g̃αβ → g̃αβ.

τ̃ → −1

τ̃
. Or equivalently,

Gαβ → Gαβ, Gα2 → Gα6, Gα6 → −Gα2, G22 → G66, G66 → G22, G26 → −G26,

G̃αβ
5 → G̃αβ

5 , G̃α2
5 → G̃α6

5 , G̃α6
5 → −G̃α2

5 , G̃22
5 →

G̃22
5

|τ̃ |2
, G̃66

5 → |τ̃ |2G̃66
5 , G̃26

5 → −G̃26
5 ,

(C.15)

where 3 ≤ α, β ≤ 5, and

τ̃ ≡ γ2 + i
R6

R2

, |τ̃ |2 = (γ2)2 +
R2

6

R2
2

. (C.16)
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The transformation (F.16) leaves invariant the line element (F.5) when dθ2 → dθ6,

dθ6 → −dθ2, dθ1 → dθ1, dθα → dθα. The generators have the property detU1 = 1,

detU2 = 1, detU ′ = 1, detM4 = 1.

Under M4, the metric parameters transform as

R6 → R6, γ2 → −γ3, γα → γα+1, gαβ → gα+1,β+1, gα2 → −gα+1,3, g22 → g33,

gαβ → gα+1,β+1, gα2 → −gα+1,3, g22 → g33, det gij = g, g → g. Or equivalently,

Gαβ → Gα+1,β+1, Gα2 → −Gα+1,3, Gα6 → Gα+1,6, G22 → G33, G66 → G66, G26 → −G36,

G̃αβ
5 → G̃α+1,β+1

5 , G̃α2
5 → −G̃

α+1,3
5 , G̃α6

5 → G̃α+1,6
5 , G̃22

5 → G̃33
5 , G̃26

5 → −G̃36
5 , G̃66

5 → G̃66
5 ,

det G̃5 = R6 g, det G̃5 → det G̃5,

(C.17)

where 3 ≤ α, β ≤ 5, and α + 1 ≡ 2 for α = 5.
We can check that Z5D

zero modes is invariant under M4 given in (C.13) as follows. Let-
ting the M4 transformation (C.17) act on (2.20), we find that the three subterms in the
exponent

− 2π3R6
√
g

R1

(
gαα

′
gββ

′
FαβFα′β′ + 4gαα

′
gβ2FαβFα′2 + 2gαα

′
g22Fα2Fα′2 − 2gα2gα

′2Fα2Fα′2

)
,

− πR1R6√
g
migijm

j,

i4π2γimjFij

(C.18)
are separately invariant under (C.17), if we replace the the integers 2πFij ∈ Z6,mi ∈

Z4 by

2πFαβ → 2πFα+1,β+1, 2πFα2 → −2πFα+1,3, m2 → −m3, mα → mα+1, (C.19)

where mi ≡ 2π
√
g

R1R6
gii
′
F6i′ relabels (n7, n8, n9, n10) = (m2,m3,m4,m5).

Therefore under M4, for the zero mode contribution,

∑
n1,...,n6,n7,...n10

e−2πH5D+i2πγiP 5D
i →

∑
n1,...,n6,n7,...n10

e−2πH5D+i2πγiP 5D
i . (C.20)
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So Z5D
zero modes is invariant under M4. The origin of this is the SO(4) invariance in the

coordinate space labeled by i = 2, 3, 4, 5.

Next we show under U ′ that Z5D
zero modes transforms to |τ̃ |3 Z5D

zero modes . From (2.20),

Z5D
zero modes =

∑
n1...n6

exp{−2π3R6
√
g

R1

gii
′
gjj
′
FijFi′j′}

∑
m2...m5

exp{−πR1R6√
g
migijm

j + i4π2γimj Fij}

=
∑
n1...n6

exp{−2π3R6
√
g

R1

gii
′
gjj
′
FijFi′j′}

∑
m2...m5

exp{−πm · A−1 ·m+ 2πim · x},

(C.21)

where A−1
ij = R1R6√

g
gij and xj = 2πγiFij. Using a generalization of the Poisson sum-

mation formula

∑
m∈Zp

e−πm·A
−1·me2πim·x = (detA)

1
2

∑
m∈Zp

e−π(m+x)·A·(m+x))

we obtain from (C.21),

Z5D
zero modes = (detA)

1
2

∑
n1...n6∈Z6

exp{−2π3R6
√
g

R1

gii
′
gjj
′
FijFi′j′}

·
∑

m2...m5∈Z4

exp{−π
√
g

R1R6

gjj
′
(mj + γi2πFij)(mj′ + γi

′
2πFi′j′)},

(C.22)

where

Ajj
′
=

√
g

R1R6

gjj
′
, detA = (detA−1)−1 =

g

(R1R6)4
. (C.23)

To check how this transforms under U ′ as given in (F.16), it is convenient to express
(C.22) in terms of the metric G̃l̃m̃

5 found in (2.9),

Z5D
zero modes =

√
g

(R1R6)2

∑
n1...n6∈Z6

exp{−π
2

R6
√
g

R1

G̃ii′

5 G̃
jj′

5 (2πFij)(2πFi′j′)}

·
∑

m2...m5∈Z4

exp
{
− 2π

√
gR6

R1

G̃6i′

5 G̃jj′

5 mj′(2πFij)− π
R6
√
g

R11
gjj
′
mjmj′

}
.

(C.24)
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Curiously we can identify the exponent in (C.24) as the Euclidean action, if we relabel
the integersmi by f6i, and the 2πFij by fij ; and neglect the integrations. In this form it
will be easy to study its U ′ transformation, where (C.24) and (2.20) can also be written
as

Z5D
zero modes =

√
g

(R1R6)2

∑
fm̃ñ∈Z10

exp
{
− 2π

√
G̃5

4R1

G̃m̃m̃′

5 G̃ññ′

5 fm̃ñfm̃′ñ′
}
. (C.25)

Under U ′ from (F.16), the coefficient transforms as

U ′ :

√
g

(R1R6)2
→

√
g

(R1R6)2
|τ̃ |3, (C.26)

since
√
g

(R1R6)2 =
R2

√
g̃

(R1R6)2 . The Euclidean action for the zero mode computation is invari-
ant under U ′, as we show next by first summing m̃ = {2, α, 6}, with 3 ≤ α ≤ 5.

− 2π

√
G̃5

4R1

G̃m̃m̃′G̃ññ′fm̃ñfm̃′ñ′

= −πR2R6

√
g̃

2R1

(
G̃αα′

5 G̃ββ′

5 fαβfα′β′ + 4G̃αα′

5 G̃β2
5 fαβfα′2 + 4G̃αα′

5 G̃β6
5 fαβfα′6 + 2G̃αα′

5 G̃22
5 fα2fα′2

− 2G̃α2
5 G̃α′2

5 fα2fα′2 + 4G̃αα′

5 G̃26
5 fα2fα′6 − 4G̃α6

5 G̃α′2
5 fα2fα′6 + 4G̃α2

5 G̃α′6
5 fαα′f26

+ 2G̃αα′

5 G̃66
5 fα6fα′6 − 2G̃α6

5 G̃α′6
5 fα6fα′6 + 4G̃α2

5 G̃26
5 fα2f26 − 4G̃α6

5 G̃22
5 fα2f26

+ 4G̃α2
5 G̃66

5 fα6f26 − 4G̃α6
5 G̃26

5 fα6f26 − 2G̃26
5 G̃

26
5 f26f26 + 2G̃22

5 G̃
66
5 f26f26

)
.

(C.27)
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Letting the U ′ transformation (F.16) act on (F.25), we see (F.25) changes to

(
− 2π

√
G̃5

4R1

G̃m̃m̃′G̃ññ′fm̃ñfm̃′ñ′
)′

= −πR2R6

√
g̃

2R1

(
G̃αα′

5 G̃ββ′

5 fαβfα′β′ + 4G̃αα′

5 G̃β6
5 fαβfα′2 − 4G̃αα′

5 G̃β2
5 fαβfα′6 +

2

|τ̃ |2
G̃αα′

5 G̃22
5 fα2fα′2

− 2G̃α6
5 G̃α′6

5 fα2fα′2 − 4G̃αα′

5 G̃26
5 fα2fα′6 + 4G̃α2

5 G̃α′6
5 fα2fα′6 − 4G̃α6

5 G̃α′2
5 fαα′f26

+ 2|τ̃ |2G̃αα′

5 G̃66
5 Fα6Fα′6 − 2G̃α6

5 G̃α′2
5 fα6fα′6 − 4G̃α6

5 G̃26
5 fα2f26 +

4

|τ̃ |2
G̃α2

5 G̃22
5 fα2f26

+ 4|τ̃ |2G̃α6
5 G̃66

5 fα6f26 − 4G̃α2
5 G̃26

5 fα6f26 − 2G̃26
5 G̃

26
5 F26F26 + 2G̃22

5 G̃
66
5 f26f26

)
.

(C.28)

In the partition sum
∑

fm̃ñ∈Z10 e
−2π

(√
G̃5

4R1
G̃m̃m̃

′
G̃ññ

′
fm̃ñfm̃′ñ′

)′
, we can replace the inte-

gers as follows: fα2 → fα6, fα6 → −fα2. Then using (F.7), we have

∑
fm̃ñ∈Z10

e
−2π

(√
G̃5

4R1
G̃m̃m̃

′
G̃ññ

′
fm̃ñfm̃′ñ′

)′
=

∑
fm̃ñ∈Z10

e
−2π

(√
G̃5

4R1
G̃m̃m̃

′
G̃ññ

′
fm̃ñfm̃′ñ′

)
. (C.29)

So we have proved that under the U ′ transformation (F.16),

Z5D
zero modes(R2|τ̃ |, R6|τ̃ |−1, g̃αβ,−γ2|τ̃ |2, γ̃α,−κα) = |τ̃ |3 Z5D

zero modes(R2, R6, g̃αβ, γ
2, κα, γ̃α);

(C.30)

and thus under the SL(5,Z) generator U1, Z5D
zero modes transforms to |τ̃ |3 Z5D

zero modes .
(F.28) also holds forZ6D

zero modes , from (2.21). This is sometimes referred to as an SL(2,Z)

anomaly of the zero mode partition function, because U ′ includes the τ̃ → − 1
τ̃

trans-
formation. Finally we will show how this anomaly is canceled by the oscillator con-
tribution. The 5D and 6D oscillator contributions are not equal, as given in (3.65) and
(2.67). By inspection each is invariant under M4, (C.17).

U ′ acts on Z5D
osc

To derive how U ′ acts on Z5D
osc , we first separate the product on ~n = (n, nα) 6= ~0

into a product on (all n, but nα 6= (0, 0, 0)) and on (n 6= 0, nα = (0, 0, 0)). Then
using the regularized vacuum energy (E.1) expressed as sum over zero and non-zero
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transverse momenta p⊥ = nα in (E.2),(B.9),(B.13), we find that (3.65) becomes

Z5D,Maxwell = Z5D
zero modes ·

(
e
πR6
6R2

∏
n6=0

1

1− e−2π
R6
R2
|n|−2πiγ2n

)3

·
( ∏
nα∈Z3 6=(0,0,0)

e−2πR6<H>p⊥
∏
n2∈Z

1

1− e−2πR6

√
gijninj−2πiγini

)3

.

(C.31)

As in [2] we observe the middle expression above can be written in terms of the
Dedekind eta function η(τ̃) ≡ e

πiτ̃
12

∏
n∈Z 6=0(1− e2πinτ̃ ), with τ̃ = γ2 + iR6

R2
,

(
e
πR6
6R2

∏
n6=0

1

1− e−2π
R6
R2
|n|−2πiγ2n

)3

= (η(τ̃)η̄(¯̃τ))−3. (C.32)

This transforms under U ′ in (F.16) as

(η(−τ̃−1)η̄(−¯̃τ
−1

))−3 = |τ̃ |−3 (η(τ̃)η̄(¯̃τ))−3, (C.33)

where η(−τ̃−1) = (iτ̃)
1
2η(τ̃). In this way the anomaly of the zero modes in (F.28) is

canceled by the massless part of the oscillator partition function (F.50). Lastly we
demonstrate the third expression in (F.48) is invariant under U ′,

( ∏
nα∈Z3 6=(0,0,0)

e−2πR6<H>⊥
∏
n2∈Z

1

1− e−2πR6

√
gijninj−2πiγini

)3

= (PI)
3
2 (C.34)

where (PI)
3
2 is the modular invariant 2d partition function of three massive scalar

bosons of mass
√
g̃αβnαnβ, coupled to a worldsheet gauge field following [2]. From

(3.66),

Z5D
osc = (e−πR6

∑
~n∈Z4

√
gijninj

∏
~n∈Z4 6=~0

1

1− e−2πR6

√
gijninj

)3

(C.35)
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we can extract for fixed nα 6= 0,

(PI)
1
2 ≡ e−πR6

∑
n2∈Z

√
gijninj

∏
n2∈Z

1

1− e−2πR6

√
gijninj+2πiγini

=
∏
s∈Z

e−
β′E

2

1− e−β′E+2πi(γ2s+γαnα)
where s ≡ n2, E ≡

√
gijninj, β′ ≡ 2πR6

=
∏
s∈Z

1√
2
√

cosh β′E − cos 2π(γ2s+ γαnα)
for nα → −nα

= e−
1
2

∑
s∈Z

(
ln [coshβ′E−cos 2π(γ2s+γαnα)]+ln 2

)
≡ e−

1
2

∑
s∈Z ν(E), (C.36)

where

∑
s∈Z

ν(E) ≡
∑
s∈Z

(
ln [cosh β′E − cos 2π(γ2s+ γαnα)] + ln 2

)
=
∑
s∈Z

∑
r∈Z

ln [
4π2

β′2
(r + γ2s+ γαnα)2 + E2]. (C.37)

(F.54) follows in a similar way to steps (B.3)-(B.3) in [2], thus confirming its U ′ invari-
ance due to the modular invariance of the massive 2d partition function, which we
discuss further in the next section. We can also show directly that (F.54) is invariant
under U ′, since

E2 = gijninj = g22s2 + 2g2αsnα + gαβnαnβ =
1

R2
2

(s+ κα)2 + g̃αβnαnβ,

4π2

β′2
(r + γ2s+ γαnα)2 =

1

R2
6

(r + γ̃αnα + γ2(s+ καnα))2, (C.38)

then

4π2

β′2
(r + γ2s+ γαnα)2 + E2

=
1

R2
6

(s+ καnα)2 |τ̃ |2 +
1

R2
6

(r + γ̃αnα)2 +
2γ2

R2
6

(r + γ̃αnα)(s+ καnα) + g̃αβnαnβ.

(C.39)

So we see the transformationU ′ given in (F.16) leaves (F.56) invariant if s→ r and r →
−s. Therefore (F.54) is invariant under U ′, so that (PI)

1
2 given in (F.53) is invariant

under U ′.
In this way, we have established invariance under U1 and U2, and thus proved the
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partition function for the 5D Maxwell theory on T 5, given alternatively by (3.67) or
(F.48), is invariant under SL(5,Z), the mapping class group of T 5.
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U ′ acts on Z6D
osc

For the 6D chiral theory on S1 × T 5, the regularized vacuum energy from (B.14),

< H >6D = −32π2
√
G5

∑
~n6=~0

1

(2π)6(gijninj +R2
1(n1)2) 3

(C.40)

can be decomposed similarly to (E.2),

< H >6D =
∑
p⊥∈Z3

< H >6D
p⊥

= < H >6D
p⊥=0 +

∑
p⊥∈Z3 6=0

< H >6D
p⊥
, (C.41)

where

< H >6D
p⊥

= −32π2
√
G5

1

(2π)4

∫
d4y⊥e

−ip⊥·y⊥
∑

n2∈Z6=0

1

|2πn2 + y⊥|6
, (C.42)

with denominator |2πn2 + y⊥|2 = G22(2πn2)2 + 2(2πn2)G2ky
k
⊥ +Gkk′y

k
⊥y

k′

⊥ ,

< H >6D
p⊥=0 = − 1

12R2

,

< H >6D
p⊥ 6=0 = |p⊥|2R2

∞∑
n=1

cos(pακ
α2πn)

[
K2(2πnR2|p⊥|)−K0(2πnR2|p⊥|)

]
= −π−1 |p⊥|R2

∞∑
n=1

cos(pακ
α2πn)

K1(2πnR2|p⊥|)
n

, (C.43)

where p⊥ = (p1, pα) = n⊥ = (n1, nα) = (n1, n3, n4, n5) ∈ Z4, |p⊥| =
√

(n1)2

R2
1

+ g̃αβnαnβ.

The U ′ invariance of (2.68) follows when we separate the product on ~n ∈ Z5 6= ~0

into a product on (n2 6= 0, n⊥ ≡ (n1, n3, n4, n5) = (0, 0, 0, 0),) and on (all n2, but
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n⊥ = (n1, n3, n4, n5) 6= (0, 0, 0, 0)). Then

Z6D,chiral = Z6D
zero modes ·

(
e
πR6
6R2

∏
n2∈Z6=0

1

1− e2πi (γ2 n2+i
R6
R2
|n2| )

)3

·
( ∏
n⊥∈Z4 6=(0,0,0,0)

e−2πR6<H>6D
p⊥
∏
n2∈Z

1

1− e
−2πR6

√
gijninj+

n2
1

R2
1

+i2πγini

)3

= Z6D
zero modes ·

(
η(τ̃) η̄(¯̃τ)

)−3

·
( ∏

(n1,n3,n4,n5)∈Z4 6=(0,0,0,0)

e−2πR6<H>6D
p⊥
∏
n2∈Z

1

1− e
−2πR6

√
gijninj+

n2
1

R2
1

+i2πγini

)3
,

(C.44)

where τ̃ = γ2 + iR6

R2
. So from the previous section together with (2.3), U ′ leaves

invariant

Z6D
zero modes ·

(
η(τ̃) η̄(¯̃τ)

)−3
. (C.45)

The part of the 6D partition function (C.44) at fixed n⊥ 6= 0,

e−2πR6<H>n⊥6=0

∏
n2∈Z

1

1− e
−2πR6

√
gijninj+

n2
1

R2
1

+i2πγini

(C.46)

corresponds to massive bosons on a two-torus and is invariant under the SL(2,Z)

transformation U ′ given in (F.16), as follows [2]. Each term with fixed n⊥ 6= 0 given
in (F.67) is the square root of the partition function on T 2 (in the directions 2,6) of a
massive complex scalar with m2 ≡ G11n2

1 + g̃αβnαnβ , 3 ≤ α, β ≤ 5, that couples to a
constant gauge field Aµ ≡ iGµini with µ, ν = 2, 6; i, j = 1, 3, 4, 5. The metric on T 2 is
h22 = R2

2 , h66 = R2
6 + (γ2)2R2

2 , h26 = −γ2R2
2. Its inverse is h22 = 1

R2
2

+ (γ2)2

R2
6

, h66 = 1
R2

6
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and h26 = γ2

R2
6
. The manifestly SL(2,Z) invariant path integral on the two-torus is

P .I . =

∫
dφ dφ̄ e−

∫ 2π
0 dθ2

∫ 2π
0 dθ6 hµν(∂µ+Aµ)φ̄(∂ν−Aν)φ+m2φ̄φ

=

∫
dφ̄ dφe

−
∫ 2π
0 dθ2

∫ 2π
0 dθ6φ̄(−( 1

R2
2

+
(γ2)2

R2
6

)∂2
2−( 1

R6
)2∂2

6−2 γ
2

R2
6
∂2∂6+2A2∂2+2A6∂6+G11n1n1+Gαβnαnβ)φ

= det
(

[−( 1

R2
2

+ ( γ
2

R6
)2)∂2

2 − ( 1
R6

)2∂2
6 −2γ2( 1

R6
)2∂2∂6 +G11n1n1 +Gαβnαnβ + 2iG2αnα∂2 + 2iG6αnα∂6]

)−1

= e
−tr ln

[
−( 1

R2
2

+( γ
2

R6
)2)∂2

2−( 1
R6

)2∂2
6−2γ2( 1

R6
)2∂2∂6+G11n1n1+Gαβnαnβ+2iG2αnα∂2+2iG6αnα∂6

]

= e
−

∑
s∈Z

∑
r∈Z

[
ln( 4π2

β′2
r2+( 1

R2
2

+( γ
2

R6
)2)s2+2γ2( 1

R6
)2rs+G11n1n1+Gαβnαnβ+2G1αnα s+2G6αnα r)

]
= e−

∑
s∈Z ν(E) (C.47)

where from (2.7), G11 = 1
R2

1
, Gαβ = gαβ + γαγβ

R2
6
, G2α = g2α + γ2γα

R2
6
, G6α = γα

R2
6
, and

β′ ≡ 2πR6, and ∂2φ = −isφ; ∂6φ = −irφ, and n2 ≡ s. The sum on r is

ν(E) =
∑
r∈Z

ln
[4π2

β′2
(r + γ2s+ γαnα)2 + E2

]
, (C.48)

with E2 ≡ Glm
5 nlnm = G11

5 n1n1 +Gαβ
5 nαnβ + 2Gα2

5 nαn2 +G22
5 n2n2, and G11

5 = 1
R2

1
,

G12
5 = 0, G1α

5 = 0, G2α
5 = g2α = κα

R2
2
, G22

5 = g22 = 1
R2

2
, Gαβ

5 = gαβ = g̃αβ + κακβ

R2
2
. We

evaluate the divergent sum ν(E) on r by

∂ν(E)

∂E
=
∑
r

2E
4π2

β′2
(r + γ2s+ γαnα)2 + E2

= ∂E ln
[
cosh β′E − cos 2π

(
γ2s+ γαnα

)]
, (C.49)

using the sum
∑

n∈Z
2y

(2πn+z)2+y2 = sinh y
cosh y−cos z

. Then integrating (F.70), we choose the
integration constant to maintain modular invariance of (F.68),

ν(E) = ln
[
cosh β′E − cos 2π

(
γ2s+ γαnα

)]
+ ln 2. (C.50)
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It follows for n2 ≡ s we have that (F.68) is

(P .I .)
1
2 =

∏
s∈Z

1√
2
√

cosh βE − cos 2π(γ2s+ γαnα)

=
∏
s∈Z

e−
βE
2

1− e−βE+2πi(γ2s+γαnα)

= e−πR6
∑
s∈Z

√
Glm5 nlnm

∏
s∈Z

1

1− e−2πR6

√
Glm5 nlnm+2πiγ2s+2πiγαnα

= e−2πR6<H>n⊥
∏
n2∈Z

1

1− e−2πR6

√
Glm5 nlnm+2πiγ2n2+2πiγαnα

, (C.51)

which is (F.67). Its invariance under U ′ follows since (F.16) is an SL(2,Z) transfor-
mation on T 2 combined with a gauge transformation on the 2d gauge field, Aµ ≡
hµνiniG

νi where µ, ν = 2, 6, Aµ → Aµ + ∂µλ, and φ→ eiλ, φ̄→ e−iλ,

λ(θ1, θ6) = θ2 i(γ̃α − κα)− θ6 i(γ̃α + κα) (C.52)

since A2 = iκαnα, A6 = i γ̃α nα. Hence (F.72) and thus (F.67) are invariant under U ′.
So we have proved the 6D partition function for the chiral field on S1 × T 5, given
by (2.68) or equivalently (C.44), is invariant under U1 and U2 and is hence SL(5,Z)

invariant.
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APPENDIX D

CANONICAL AND PATH INTEGRAL APPROACHES

For convenience in comparing the 4d gauge theory with the 6d chiral theory
in sections 2 and 3, we quantized both using canonical quantization. Since a
Lagrangian exists for the 4d gauge theory, it is useful to verify that its path in-
tegral quantization agrees with canonical quantization. We find the two quan-
tizations distribute zero and oscillator mode contributions differently, and thus
these factors transform differently under the action of SL(2, Z). We summarize
the path integral quantization results from [32], [47], [48], [60]. Following [32],
[48], the two-form zero mode part, F

2π
is the harmonic representative and can be

expanded in terms of the basis αI = 1
(2π)2dθ

1 ∧ dθ2, etc., I = 1, 2, .., 6 namely

F

2π
≡ m =

∑
I

mIαI , (D.1)

wheremI are integers. Define (m,n) to be the intersection form such that (m,n) =∫
m ∧ n, and thus

(m,m) =
1

16π2

∫
d4θεijklFijFkl

(m, ∗m) =
1

8π2

∫
d4θ
√
gF ijFij. (D.2)

So the action (3.3) is given as

I =
4π2

e2
(m, ∗m)− iθ

2
(m,m) =

1

2e2

∫
d4θ
√
gF ijFij −

iθ

32π2

∫
d4θεijklFijFkl.

(D.3)

The zero mode partition function from the path integral formalism can be ex-
pressed as a lattice sum over the integral basis of mI [32], [48],



ZPI
zero modes =

∑
mI∈Z6

exp
[
− 4π2

e2

(
m, ∗m

)
+
iθ

2

(
m,m

)]
=
∑
mI∈Z6

exp
[iπ

2
τ
((
m,m

)
+
(
m, ∗m

))
− iπ

2
τ̄
(
−
(
m,m

)
+
(
m, ∗m

))]
,(D.4)

where τ = θ
2π

+ i4π
e2

, and we have chosen the θ dependence of the action as in [32].
Alternatively the zero mode sum be can written in terms of the metric using (D.3)

ZPI
zero modes =

∑
F̃ij∈Z6

exp
{[
− π

2
R6

√
g̃gαβgγδF̃αγF̃βδ − π

√
g̃

R6

gδδ
′
F̃δβγ

βF̃δ′β′γ
β′ − π

√
g̃

R6

gαβF̃6αF̃6β

+ 2π

√
g̃

R6

gαδF̃6αF̃δβγ
β − iθe

2

8π
εαβγF̃6αF̃βγ

] 4π

e2

}
(D.5)

where F̃ij = 2πFij = mI are integers due to the charge quantization (D.1), and where
we have taken into account the integrations

∫
d4θ = (2π)4 in (D.5). To compare the

zero mode partition functions from the Hamiltonian and path integral formalisms,
we rewrite the Hamiltonian formulation result (3.11) as

Z4d
zero modes

=
∑

Π̃α,F̃αβ

exp
[
− e2R6

4
√
g̃
gαβ
(
Π̃α + i

4π
√
g̃

e2R6

gαδF̃δλγ
λ +

θεαγδ

4π
F̃γδ
)
·
(
Π̃β + i

4π
√
g̃

e2R6

gβδ
′
F̃δ′λ′γ

λ′ +
θεβγ

′δ′

4π
F̃γ′δ′

)
− 4π2

e2

√
g̃

R6

gδδ
′
F̃δβγ

βF̃δ′β′γ
β′ − 2π2

e2

√
ggαβgγδF̃αγF̃βδ

]
. (D.6)

After Poisson resummation,

∑
n∈Z3

exp[−π(n+ x) · A · (n+ x)] = (detA)−
1
2

∑
n∈Z3

e−πn·A−1·ne2πin·x, (D.7)
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where Aαβ ≡ e2R6

4π
√
g̃
gαβ and xα ≡ i4π

√
g̃

e2R6
gαδF̃δλγ

λ + θ
4π
εαγδF̃γδ, we get the Hamiltonian

expression as

Z4d
zero modes = (

e2

4π
)−

3
2
g̃

1
4

R6

3
2

∑
Π̂α,F̃αβ

exp{−4π2
√
g̃

e2R6

gαβΠ̂αΠ̂β − i
θ

2
Π̂αε

αγδF̃γδ +
8π2
√
g̃

e2R6

gαβΠ̂αF̃βδγ
δ

− 4π2

e2

√
g̃

R6

gδδ
′
F̃δβγ

βF̃δ′β′γ
β′ − 2π2R6

e2

√
g̃gαβgγδF̃αγF̃βδ}

= (Im τ)
3
2
g̃

1
4

R6

3
2

ZPI
zero modes,

(D.8)

where Π̂α is the integer value of Π̃α, and we identify Π̂α with F̃6α in (D.5). Then

ZPI
zero modes = (Im τ)−

3
2
R2

6

g
1
4

Z4d
zero modes, (D.9)

which is (3.85).
We review from [47] how the non-zero mode partition function is defined by a

path integral,

ZPI
non−zero modes =

∫
A

DAµe−I . (D.10)

Performing the functional integration with the Fadeev-Popov approach, [47] regular-
izes the path integral by

ZPI
non−zero modes =

1

(2π)
b1−1

2

( g

volT 4

) 1
2
[
det(∆0)

det(2πImτ∆0)

det(2πImτ∆1)

] 1
2

= (
g

(2π)4
√
g

)
1
2 (2πImτ)

b1−1
2

det∆0

det∆
1
2
1

,

(D.11)

where b1 = 4 is the dimension of the group H1(T 4). ∆p = (d†d + dd†)p is the kinetic
energy operator acting on the p-form. g = detGij . So ∆0 = −Gij∂i∂j , and det(∆1) =

det(∆0)4. Thus

ZPI
non−zero modes =

g
1
4

√
2π

(Imτ)
3
2 det∆−1

0 . (D.12)
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The determinant can be computed

det∆
− 1

2
0 = exp{−1

2
trlnA}, (D.13)

exp{−1

2
trln∆0} = exp

(
− 1

2
trln
(
−G66∂2

6 − 2G6α∂6∂α −Gαβ∂α∂β
))

= exp
(
− 1

2

∑
nα 6=0̃

∑
n6

ln
( 1

R2
6

n2
6 + 2

γα

R2
6

nαn6 + Gαβnαnβ
))

= exp
(
− 1

2

∑
nα 6=0̃

∑
n6

ln
( 1

R2
6

(n6 + γαnα)2 + gαβnαnβ
))
.

(D.14)

Let µ(E) ≡
∑

n6
ln
(

1
R2

6
(n6 + γαnα)2 + E2

)
, where E2 ≡ gαβnαnβ , ρ = 2πR6,

∂µ(E)

∂E
=
∑
n6

2E
1
R2

6
(n6 + γαnα)2 + E2

=
ρ sinh(ρE)

cosh(ρE)− cos(2πγαnα)

= ∂Eln
[
cosh(ρE)− cos(2πγαnα)

]
. (D.15)

After integration, we have

µ(E) = ln
[
cosh(ρE)− cos(2πγαnα)

]
+ ln

(
R2

6

√
2

π

)
. (D.16)

where the constant ln
(
R2

6

√
2
π

)
maintains SL(4, Z) invariance of the partition func-

tion. So,

det∆0
− 1

2 = exp
(
− 1

2
trln∆0

)
= e−

1
2

∑
nα 6=~0 µ(E)

=
(2π)

1
4

R6

∏
nα∈Z3 6=~0

1√
2
√

cosh(ρE)− cos(2πγαnα)

=
(2π)

1
4

R6

∏
nα∈Z3 6=~0

e−
ρE
2

1− e−ρE+2πiγαnα
. (D.17)
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Therefore, using (D.12), we have

ZPI
non−zero modes = (Im τ)

3
2
g

1
4

R2
6

Z4d
osc, (D.18)

which is (3.86).
Together with (D.9), the partition functions from the two quantizations agree but

they factor differently into zero and oscillator modes of the Z6d,chiral and Z4d,Maxwell

partition functions The S-duality group SL(2,Z) group has two generators S and Twhich act on the parameter τ to give

S : τ → −1

τ
, T : τ → τ − 1. (D.19)

Since τ = β2 + iR1

R2
= θ

2π
+ i4π

e2
, the transformation S corresponds to

R1 → R1|τ |−1, R2 → R2|τ |, β2 → −|τ |−2β2, (D.20)

and T corresponds to

β2 → β2 − 1. (D.21)

Or equivalently

S :
4π

e2
→ 4π

e2
|τ |−2, θ → −θ|τ |−2

T : θ → θ − 2π, (D.22)

which for θ = 0 is the familiar electromagnetic duality transformation e2

4π
→ 4π

e2
.

6d partition function
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The 6d chiral two-form zero mode partition function (3.10),

Z6d
zero modes =

∑
n8,n9,n10

exp{− πR6

R1R2

√
g̃gαα

′
H12αH12α′}

·
∑
n7

exp{−π
6
R6R1R2

√
g̃gαα

′
gββ

′
gδδ
′
HαβδHα′β′δ′ − iπγαεγβδH12γHαβδ}

·
∑

n4,n5,n6

exp{−π
2
R6R1R2

√
g̃(

1

R2
2

+
β22

R1
2 )gαα

′
gββ

′
H2αβH2α′β′}

·
∑

n1,n2,n3

exp{−πR6R2

R1

√
g̃β2gαα

′
gββ

′
H1αβH2α′β′ + iπγαεγβδH1γβH2αδ

− π

4

R6R2

R1

√
g̃(gαα

′
gββ

′ − gαβ′gβα′)H1αβH1α′β′} (D.23)

where H134 = n1,H145 = n2, H135 = n3, H234 = n4, H245 = n5, H235 = n6, H345 = n7,
H123 = n8, H124 = n9, H125 = n10, is invariant under both S and T . To show the
invariance using (D.20,D.21) we group the exponents in (D.23) into two sets,

− πR6

R1R2

√
g̃gαα

′
H12αH12α′ −

π

6
R6R1R2

√
g̃gαα

′
gββ

′
gδδ
′
HαβδHα′β′δ′ − iπγαεγβδH12γHαβδ,

(D.24)

and

− π

2
R6R1R2

√
g̃(

1

R2
2

+
β22

R1
2 )gαα

′
gββ

′
H2αβH2α′β′ − π

R6

R1

R2

√
g̃β2gαα

′
gββ

′
H1αβH2α′β′

+ iπγαεγβδH1γβH2αδ −
π

2

R6R2

R1

√
g̃ gαα

′
gββ

′
H1αβH1α′β′ .

(D.25)

(D.24) has no β2 dependence and therefore is invariant under T . (D.25) transforms
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under under T to become

− π

2
R6R1R2

√
g̃(

1

R2
2

+
β22

R1
2 )gαα

′
gββ

′
H2αβH2α′β′ − π

R6

R1

R2

√
g̃β2gαα

′
gββ

′
H1αβH2α′β′

+ iπγαεγβδH1γβH2αδ −
π

2

R6

R1R2

√
g̃ gαα

′
gββ

′
H1αβH1α′β′

+ π
R6

R1

√
g̃R2β

2gαα
′
gββ

′
H2αβH2α′β′ −

π

2

R6

R1

√
g̃R2g

αα′gββ
′
H2αβH2α′β′ + π

R6

R1

R2

√
g̃gαα

′
gββ

′
H1αβH2α′β′

(D.26)

which is equivalent to (D.25) in the sum where we shift the integer zero mode field
strength H1αβ to H1αβ −H2αβ .

Under S, we see (D.24) as a function of R1R2 is invariant, and find (D.25) trans-
forms to

− π

2

R6R2

R1

√
g̃gαα

′
gββ

′
H2αβH2α′β′ + π

R6

R1

R2

√
g̃β2gαα

′
gββ

′
H1αβH2α′β′

+ iπγαεγβδH1γβH2αδ −
π

2
R1R6R2

√
g̃(g22 +

β22

R2
1

)gαα
′
gββ

′
H1αβH1α′β′ . (D.27)

So by shifting the integer field strength tensors H1αβ → H2αβ and H2αβ → −H1αβ , the
sum on (D.25) is left invariant by S. Thus we have proved SL(2,Z) invariance of the
6d zero mode partition function (3.10), and that its factors ε and Z4d

zeromodes in (3.13) are
separately SL(2,Z) invariant.

For the oscillator modes (3.71), the only term that transforms in the sum and prod-
uct is

p̃2 ≡ p1
2

R1
2 + (g22 +

β22

R1
2 )p2

2 +
2β2

R1
2p1p2, (D.28)

which is invariant under T by shifting the momentum p1 → p1 + p2. With the S
transformation, p̃2 becomes

p1
2(g22 +

β22

R1
2 ) +

1

R1
2p

2
2 −

2β2

R1
2p1p2, (D.29)

and by also exchanging the momentum p1 → p2 and p2 → −p1, the term remains the
same. So the 6d oscillator partition function (3.71) is SL(2Z) invariant, which holds
also for regularized vacuum energy as given in (3.72).
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4d U(1) partition function
In the Hamiltonian formulation, SL(2,Z) leaves invariant the U(1) oscillator par-

tition function (3.65), since it is independent of e2 and θ. We have also checked above,
starting from 6d, that the zero mode 4d partition function (3.11) is invariant. Thus the
U(1) partition function from the Hamiltonian formalism is S-duality invariant.

The S-duality transformations on the corresponding quantities in the path inte-
gral quantization can be derived from (D.9) and (D.18). Since Im τ → 1

|τ |2 Imτ under
S, and is invariant under T, we have

Z4d
zero modes −→ Z4d

zero modes, ZPI
zero modes −→ |τ |3ZPI

zero modes under S

Z4d
zero modes −→ Z4d

zero modes, ZPI
zero modes −→ ZPI

zero modes under T (D.30)

and

Z4d
osc −→ Z4d

osc, ZPI
osc −→ |τ |−3ZPI

osc under S

Z4d
osc −→ Z4d

osc, ZPI
osc −→ ZPI

osc under T , (D.31)

which is (3.87) and (3.88).
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APPENDIX E

REGULARIZATION OF 4d MAXWELL THEORY

The sum in (3.65) is divergent. We regularize the vacuum energy following
[2],[6]. For < H >= 1

2

∑
pα∈Z3

√
gαβpαpβ , the SL(3,Z) invariant regularized

vacuum energy becomes

< H >= − 1

4π3

√
g̃
∑

nα∈Z3 6=0

1

(gαβnαnβ)2
= −4π

√
g̃
∑

~n∈Z3 6=0

1

|2π~n|4
. (E.1)

For the proof of SL(4,Z) invariance in Appendix H, it is also useful to write
the regularized sum (E.1), as

< H > =
∑
p⊥∈Z2

< H >p⊥= < H >p⊥=0 +
∑

p⊥∈Z2 6=0

< H >p⊥ , (E.2)

where p⊥ = pa ∈ Z2, a = 4, 5, and

< H >p⊥=0 =
1

2

∑
p3∈Z

√
g33p3p3 =

1

R3

∞∑
n=1

n =
1

R3

ζ(−1) = − 1

12R3

;

< H >p⊥ 6=0 = |p⊥|2R3

∞∑
n=1

cos(paκ
a2πn)

[
K2(2πnR3|p⊥|)−K0(2πnR3|p⊥|)

]
.(E.3)

|p⊥| =
√
papbg̃ab, using the 2d inverse metric as defined in Appendix H.



APPENDIX F

SL(4,Z) INVARIANCE OF Z4d,Maxwell AND Z6d,chiral

Rewriting the 4dmetric (3,4,5,6) From (3.6) the metric on the four-torus, for α, β =

3, 4, 5, is

Gαβ = gαβ, Gα6 = −gαβγβ, G66 = R2
6 + gαβγ

αγβ. (F.1)

We can rewrite this metric using a, b = 4, 5,

g33 ≡ R2
3 + gabκ

aκb, ga3 ≡ −gabκb, gab ≡ gab, (γ3)κa − γa ≡ −γ̃a,

(F.2)

G33 = R2
3 + gabκ

aκb, G36 = −(γ3)R2
3 + gabκ

bγ̃a, G3a = −gabκb,

Gab = gab, Ga6 = −gabγ̃b, G66 = R2
6 + (γ3)2R2

3 + gab γ̃
aγ̃b.(F.3)

The 3d inverse of gαβ is

gab = g̃ab +
κaκb

R2
3

, ga3 =
κa

R2
3

, g33 =
1

R2
3

, (F.4)

where g̃ab is the 2d inverse of gab.

g ≡ detGij = R2
6 det gαβ ≡ R2

6 g̃ = R2
6R

2
3 det gab ≡ R2

6R
2
3 ḡ.



The line element can be written as

ds2 = R2
6(dθ6)2 +

∑
α,β=3,4,5

gαβ(dθα − γαdθ6)(dθβ − γβdθ6)

= R2
3(dθ3 − (γ3)dθ6)2 +R2

6(dθ6)2

+
∑
a,b=4,5

gab(dθ
a − γ̃adθ6 − κadθ3) (dθb − γ̃bdθ6 − κbdθ3). (F.5)

We define

τ̃ ≡ γ3 + i
R6

R3

. (F.6)

The 4d inverse is

G̃33
4 =

|τ̃ |2

R2
6

= G̃66
4 |τ̃ |2, G̃66

4 =
1

R2
6

, G̃36
4 =

γ3

R2
6

, G̃3a
4 =

κa|τ̃ |2

R2
6

+
γ3γ̃a

R2
6

,

G̃ab
4 = g̃ab +

κaκb

R2
6

|τ̃ |2 +
γ̃aγ̃b

R2
6

+
γ3(γ̃aκb + κaγ̃b)

R2
6

, G̃6a
4 =

γa

R2
6

=
γ3κa + γ̃a

R2
6

. (F.7)

Generators of GL(n,Z)

The GL(n,Z) unimodular group can be generated by three matrices For GL(4,Z)

these can be taken to be U1, U2 and U3,

U1 =



0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0


; U2 =



1 0 0 0

1 1 0 0

0 0 1 0

0 0 0 1


; U3 =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, (F.8)

so that every matrixM inGL(4,Z) can be written as a productUn1
1 Un2

2 Un3
3 Un4

1 Un5
2 Un6

3 . . . ,
for integers ni. Matrices U1, U2 and U3 act on the basis vectors of the four-torus ~αi
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where ~αi · ~αj ≡ αki α
l
jGkl = Gij ,

~α3 = (1, 0, 0, 0)

~α6 = (0, 1, 0, 0)

~α4 = (0, 0, 1, 0)

~α5 = (0, 0, 0, 1). (F.9)

For our metric (F.3), the U2 transformation



~α′3

~α′6

~α′4

~α′5


= U2



~α3

~α6

~α4

~α5


=



1 0 0 0

1 1 0 0

0 0 1 0

0 0 0 1


(F.10)

results in ~α′3 · ~α′3 ≡ α′i3α
′j
3Gij = G33 = G′33, ~α

′
3 · ~α′6 ≡ α′i3α

′j
6Gij = G33 +G36 = G′36, etc.

So U2 corresponds to

R3 → R3, R6 → R6, γ
3 → γ3 − 1, κa → κa, γ̃a → γ̃a + κa, gab → gab, (F.11)

or equivalently

R6 → R6, γ
3 → γ3 − 1, gαβ → gαβ, γ

a → γa, (F.12)

which leaves invariant the line element (F.5) if dθ3 → dθ3−dθ6, dθ6 → dθ6, dθa → dθa.

U2 is the generalization of the usual τ̃ → τ̃ − 1 modular transformation. The 3d
inverse metric gαβ ≡ {gab, ga3, g33} does not change under U2. It is easily checked
that U2 is an invariance of the 4d Maxwell partition function (3.67) as well as the
6d chiral two-form partition function (3.72). It leaves the zero mode and oscillator
contributions invariant separately.

The other generator, U1 is related to the SL(2,Z) transformation τ̃ → −(τ̃)−1 that
we discuss as follows:

U1 = U ′M3 (F.13)
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where M3 is a GL(3,Z) transformation given by

M3 =



0 0 −1 0

0 1 0 0

0 0 0 1

1 0 0 0


(F.14)

and U ′ is the matrix corresponding to the transformation on the metric parameters
(F.16),

U ′ =



0 1 0 0

−1 0 0 0

0 0 1 0

0 0 0 1


. (F.15)

Under U ′, the metric parameters transform as

R3 → R3|τ̃ |, R6 → R6|τ̃ |−1, γ3 → −γ3|τ̃ |−2, κa → γ̃a, γ̃a → −κa, gab → gab.

τ̃ → −1

τ̃
. Or equivalently,

Gab → Gab, Ga3 → Ga6, Ga6 → −Ga3, G33 → G66, G66 → G33, G36 → −G36,

G̃ab
4 → G̃ab

4 , G̃a3
4 → G̃a6

4 , G̃a6
4 → −G̃a3

4 , G̃33
4 →

G̃33
4

|τ̃ |2
, G̃66

4 → |τ̃ |2G̃66
4 , G̃36

4 → −G̃36
4 ,

(F.16)

where 4 ≤ a, b ≤ 5, and

τ̃ ≡ γ3 + i
R6

R3

, |τ̃ |2 = (γ3)2 +
R2

6

R2
3

. (F.17)

The transformation (F.16) leaves invariant the line element (F.5) when dθ3 → dθ6,

dθ6 → −dθ3, dθa → dθa. The generators have the property detU1 = −1, detU2 = 1,

detU3 = −1, detU ′ = 1, detM3 = −1.
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Under M3, the metric parameters transform as

R6 → R6, γ3 → −γ4, γa → γa+1, gab → ga+1,b+1, ga3 → −ga+1,4, g33 → g44,

gab → ga+1,b+1, ga3 → −ga+1,4, g33 → g44, det gαβ = g̃, g̃ → g̃. Or equivalently,

Gab → Ga+1,b+1, Ga3 → −Ga+1,4, Ga6 → Ga+1,6, G33 → G44, G66 → G66, G36 → −G46,

G̃ab
4 → G̃a+1,b+1

5 , G̃a3
4 → −G̃

a+1,4
5 , G̃a6

4 → G̃a+1,6
4 , G̃33

4 → G̃44
4 , G̃36

4 → −G̃46
4 , G̃66

4 → G̃66
4 ,

det G̃4 = R6 g̃, det G̃4 → det G̃4,

(F.18)

where 4 ≤ a, b ≤ 5, and a + 1 ≡ 3 for a = 5. We see that M3 takes Z4d
zero modes to its

complex conjugate as follows. Letting the M3 transformation (F.18) act on (3.11), we
find that the three subterms in the exponent

− e2

8
R6

√
g̃(

θ2

4π2
+

16π2

e4
)
(
gaa

′
gbb
′
F̃abF̃a′b′ + 4gaa

′
gb3F̃abF̃a′3 + 2gaa

′
g33F̃a3F̃a′3 − 2ga3ga

′3F̃a3F̃a′3

)
,

− e2R6

4
√
g̃

Π̃αgαβΠ̃β,

− θe2R6

8π2
√
g̃
gαβε

αγδF̃γδΠ̃
β,

(F.19)

are separately invariant under (F.18) if we replace the integers F̃αβ ∈ Z3, Π̃α ∈ Z3

by

F̃ab → F̃a+1,b+1, F̃a3 → −F̃a+1,4, Π̃3 → Π̃4, Π̃a → −Π̃a+1. (F.20)

However, acted on by M3 with the field shift (F.20), the term

2πiγαΠ̃βF̃αβ → −2πiγαΠ̃βF̃αβ (F.21)

changes sign. Thus we have

M3 : Z4d
zero modes → Z4d ∗

zero modes (F.22)
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The action of U ′ on Z4d
zero modes

Next we show that under U ′, Z4d
zero modes transforms to |τ̃ |2 Z4d

zero modes. From (D.5)
and (D.9), we have

Z4d
zero modes = (

4π

e2
)−

3
2
g̃

1
4

R
3
2
6

∑
F̃ij∈Z6

exp{−2π2

e2
R6

√
g̃gijgi

′j′F̃ii′F̃jj′ −
i

2
θεαβγF̃6αF̃βγ}, (F.23)

from which it will be easy to see how it transforms under the U ′ transformation.
Under U ′ from (F.16), the coefficient transforms as

U ′ : (
4π

e2
)−

3
2
g̃

1
4

R
3
2
6

→ (
4π

e2
)−

3
2
g̃

1
4

R
3
2
6

|τ̃ |2. (F.24)

The Euclidean action for the zero mode computation is invariant under U ′, as we
show next by first summing i = {3, a, 6}, with 4 ≤ a ≤ 5.

− 2π2R6

√
g̃

e2

R1

R2

gijgi
′j′F̃ii′F̃jj′

= −2π2R6

√
g̃

e2

(
G̃aa′

4 G̃bb′

4 F̃abF̃a′b′ + 4G̃aa′

4 G̃b3
4 F̃abF̃a′3 + 4G̃aa′

4 G̃b6
4 F̃abF̃a′6 + 2G̃aa′

4 G̃33
4 F̃a3F̃a′3

− 2G̃a3
4 G̃

a′3
4 F̃a3F̃a′3 + 4G̃aa′

4 G̃36
4 F̃a3F̃a′6 − 4G̃a6

4 G̃
a′3
4 F̃a3F̃a′6 + 4G̃a3

4 G̃
b6
4 F̃abF̃36

+ 2G̃aa′

4 G̃66
4 F̃a6F̃a′6 − 2G̃a6

4 G̃
a′6
4 F̃a6F̃a′6 + 4G̃a3

4 G̃
36
4 F̃a3F̃36 − 4G̃a6

4 G̃
33
4 F̃a3F̃36

+ 4G̃a3
4 G̃

66
4 F̃a6F̃36 − 4G̃a6

4 G̃
36
4 F̃a6F̃36 − 2G̃36

4 G̃
36
4 F̃36F̃36 + 2G̃33

4 G̃
66
4 F̃36F̃36

)
.

(F.25)

Letting the U ′ transformation (F.16) act on (F.25), we see the first term in the exponent
of (F.23) changes to
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− 2π2R6

√
g̃

e2

(
G̃aa′

4 G̃bb′

4 F̃abF̃a′b′ + 4G̃aa′

4 G̃b6
4 F̃abF̃a3 − 4G̃aa′

4 G̃b3
4 F̃abF̃a′6 +

2

|τ̃ |2
G̃aa′

4 G̃33
4 F̃a3F̃a′3

− 2G̃a6
4 G̃

a′6
4 F̃a3F̃a′3 − 4G̃aa′

4 G̃36
4 F̃a3F̃a′6 + 4G̃a3

4 G̃
a′6
4 F̃a3F̃a′6 − 4G̃α6

5 G̃α′3
5 F̃aa′F̃36

+ 2|τ̃ |2G̃aa′

4 G̃66
4 Fa6Fa′6 − 2G̃a6

4 G̃
a′3
4 F̃a6F̃a′6 − 4G̃a6

4 G̃
36
4 F̃a3F̃36 +

4

|τ̃ |2
G̃a3

4 G̃
33
4 F̃a3F̃36

+ 4|τ̃ |2G̃a6
4 G̃

66
4 F̃a6F̃36 − 4G̃a3

4 G̃
36
4 F̃a6F̃36 − 2G̃36

4 G̃
36
4 F̃36F̃36 + 2G̃33

4 G̃
66
4 F̃36F̃36

)
.

(F.26)

The second term in the exponential of (F.23) is a topological term, and is left invariant
under the action of U ′ by inspection. If we replace the integers F̃3a → F̃6a and F̃a6 →
−F̃a3, the two terms are left invariant, so the sum

∑
F̃ij∈Z6

e−
2π2√g
e2

gijgi
′j′ F̃ii′ F̃jj′+i

θ
2
εαβγ F̃6αF̃βγ (F.27)

is invariant. Thus we have shown that under the U ′ transformation (F.16),

Z4d
zero modes(R3|τ̃ |, R6|τ̃ |−1, gab,−γ3|τ̃ |−2, γ̃a,−κa) = |τ̃ |2 Z4d

zero modes(R3, R6, gab, γ
3, κa, γ̃a).

(F.28)

Also from (F.23), we can write (F.22) as

M3 : Z4d
zero modes(e

2, θ, Gij)→ Z4d
zero modes(e

2,−θ,Gij). (F.29)

and thus under the GL(4,Z) generator U1,

Z4d
zero modes → |τ̃ |2

(
Z4d

zero modes

)∗
. (F.30)

The residual factor |τ̃ |2 is sometimes referred to as an SL(2,Z) anomaly of the zero
mode partition function, because U ′ includes the τ̃ → − 1

τ̃
transformation. Finally we

will show how this anomaly is canceled by the oscillator contribution.
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Under U3, the metric parameters transform as

R6 → R6, γ3 → −γ3, γa → γa, gab → gab, ga3 → −ga3, g33 → g33,

gab → gab, ga3 → −ga3, g33 → g33, det gαβ = g̃, g̃ → g̃. Or equivalently,

Gab → Gab, Ga3 → −Ga3, Ga6 → Ga6, G33 → G33, G66 → G66, G36 → −G36,

G̃ab
4 → G̃ab

4 , G̃a3
4 → −G̃a3

4 , G̃a6
4 → G̃a6

4 , G̃33
4 → G̃33

4 , G̃36
4 → −G̃36

4 , G̃66
4 → G̃66

4 ,

det G̃4 = R6 g̃, det G̃4 → det G̃4, (F.31)

where 4 ≤ a, b ≤ 5 and G̃αβ is the 3d inverse. We can check that Z4d
zero modes becomes its

complex conjugate under U3 given in (F.31) as follows. Letting the U3 transformation
(F.31) act on (3.11), we find that three of the terms in the exponent

− e2R6

√
g̃

8
(
θ2

4π2
+

16π2

e4
)
(
gaa

′
gbb
′
FabFbb′ + 4gaa

′
gb3FabFa′3 + 2gaa

′
g33Fa3Fa′3 − 2ga3ga

′3Fa3Fa′3

)
,

− e2R6

4
√
g̃

Π̃αgαβΠ̃β,

− θe2R6

8π
√
g̃
gαβε

αγδF̃γδΠ̃
β,

(F.32)

are separately invariant under (F.18), if we replace the the integers F̃αβ ∈ Z3, Π̃α ∈ Z3

by

F̃ab → F̃ab, F̃a3 → −F̃a3, Π̃3 → Π̃3, Π̃a → −Π̃a, (F.33)

However the subterm

2πiγαΠ̃βF̃αβ → −2πiγαΠ̃βF̃αβ (F.34)

acted by U3 with the field shift in (F.33). Therefore the zero mode partition function
goes to its complex conjugate under U3.

Appropriate generators for SL(4,Z)

We claim that U2
1 , U2 and U1U3 generate the group SL(4,Z) since GL(n,Z) is
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generated by U1, U2 and U3 or alternatively R1 = U1, R2 = U−1
3 U2 and R3 = U3, i.e.,

any element in GL(n,Z) U can be written as

U = R1
n1R2

n2R3
n3R1

n4R2
n5R3

n6 .... (F.35)

It is understood that SL(n,Z) is generated by even numbers of R1, R2 and R3. Thus,
the possible set of group generators for SL(n,Z) is

R2
1, R

2
2, R

2
3, R1R2, R2R3, R3R1, R2R1, R3R2, R1R3 (F.36)

with the properties that R2
2 = 1 and R2

3 = 1. A smaller set of the SL(4,Z) generators
is

R2
1, R1R3, R2R3, (F.37)

since other generators in (F.36) can be expressed with the generators in (F.39) through
the following relations

R1R2 = R1R3(R2R3)−1, R2R1 = (R1R2)−1R2
1

R3R2 = (R2R3)−1, R3R1 = (R1R3)−1R2
1. (F.38)

Notice that

{R2
1, R1R3, R2R3} = {U2

1 , U1U3, U
−1
2 }. (F.39)

These three matrices generate SL(4,Z). They can be shown to generate Trott’s twelve
generators Bij

Since we have tested the invariance of the zero mode partition function under U2,
we only need to check invariance under U1U3 and U2

1 . For U1U3, as previously we
separate U1 into U ′ and M3,

U1U3 = U ′M3U3 = U ′(M3U3). (F.40)

Since both M3 and U3 take Z4d
zero modes to its complex conjugate, M3U3 is an invariance
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of the zero mode partition function. Thus from (F.28),

U1U3 : Z4d
zero modes → |τ̃ |2Z4d

zero modes. (F.41)

U1
2 acts on Z4d

zero modes

Since we have shown before

U1 : Z4d
zero modes → |τ̃ |2Z4d ∗

zero modes, (F.42)

then

U1
2 : Z4d

zero modes → Z4d
zero modes. (F.43)

To summarize, we have

U2 : Z4d
zero modes → Z4d

zero modes,

U1U3 : Z4d
zero modes → |τ̃ |2Z4d

zero modes,

U1
2 : Z4d

zero modes → Z4d
zero modes. (F.44)

One can derive a similar transformation property for Z6d
zero modes using (3.13),

U2 : Z6d
zero modes → Z6d

zero modes,

U1U3 : Z6d
zero modes → |τ̃ |3Z6d

zero modes,

U1
2 : Z6d

zero modes → Z6d
zero modes, (F.45)

which follows from transformations on the factor ε, given in (3.14). By inspection ε is
invariant under U2 and M3, and transforms as

U ′ : ε→ |τ̃ |ε. (F.46)
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This can be seen by Poisson resummation since ε can be written as

ε =
∑
na

exp{−πR6

√
g̃

R1R2

gabnanb −
πR6

√
ḡ

R3R1R2|τ̃ |2
γ̃aγ̃bnanb}

∑
m,n3

exp{−π(N + x) · A · (N + x)},

= |τ̃ |−1 U ′ ε,

(F.47)

where

H12α = nα, Hαβδ =
εαβδ
g̃

m, m, nα ∈ Z4,

A =

 R6
√
ḡ

R3R1R2
iγ3

iγ3 R6R1R2

R3
√
ḡ

 , detA = |τ̃ |2, N =

n3

m

 , x =

κana + γ3γ̃ana
|τ̃ |2

i R6
√
ḡ γ̃3na

R3R1R2|τ̃ |2 ,

 .

U ′ acts on Z4d
osc

To derive how U ′ acts on Z4d
osc, we first separate the product on ~n = (n, na) 6= ~0

into a product on (all n, but nα 6= (0, 0)) and on (n 6= 0, na = (0, 0)). Then using the
regularized vacuum energy (E.1) expressed as sum over zero and non-zero transverse
momenta p⊥ = na in (E.2), we find that (3.67) becomes

Z4d,Maxwell = Z4d
zero modes ·

(
e
πR6
6R3

∏
n 6=0

1

1− e−2π
R6
R3
|n|−2πiγ3n

)2

·
( ∏
na∈Z2 6=(0,0)

e−2πR6<H>p⊥
∏
n3∈Z

1

1− e−2πR6

√
gαβnαnβ−2πiγαnα

)2

.

(F.48)

As in [2] we observe the middle expression above can be written in terms of the
Dedekind eta function η(τ̃) ≡ e

πiτ̃
12

∏
n∈Z6=0(1− e2πinτ̃ ), with τ̃ = γ3 + iR6

R3
,

(
e
πR6
6R3

∏
n6=0

1

1− e−2π
R6
R3
|n|−2πiγ3n

)2

= (η(τ̃)η̄(¯̃τ))−2. (F.49)
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This transforms under U ′ in (F.16) as

(η(−τ̃−1)η̄(−¯̃τ
−1

))−2 = |τ̃ |−2 (η(τ̃)η̄(¯̃τ))−2, (F.50)

where η(−τ̃−1) = (iτ̃)
1
2η(τ̃). In this way the anomaly of the zero modes in (F.28) is

canceled by (F.50). Lastly we demonstrate the third expression in (F.48) is invariant
under U ′,

( ∏
na∈Z2 6=(0,0)

e−2πR6<H>⊥
∏
n3∈Z

1

1− e−2πR6

√
gαβnαnβ−2πiγαnα

)2

= PI, (F.51)

where PI is the modular invariant 2d path integral of two massive scalar bosons of
mass

√
g̃abnanb, coupled to a worldsheet gauge field, on a two-torus in directions 3,6.

Following [2], with more detail in (F.68), we extract from (3.65)

Z4d
osc = (e−πR6

∑
~n∈Z3

√
gαβnαnβ

∏
~n∈Z3 6=~0

1

1− e−2πR6

√
gαβnαnβ−2πiγαnα

)2

(F.52)

the 2d path integral of free massive bosons coupling to the gauge field, where na is
fixed and non-zero,

(PI)
1
2 ≡ e−πR6

∑
n3∈Z

√
gαβnαnβ

∏
n3∈Z

1

1− e−2πR6

√
gαβnαnβ+2πiγαnα

=
∏
s∈Z

e−
β′E

2

1− e−β′E+2πi(γ3s+γana)
where s ≡ n3, E ≡

√
gαβnαnβ, β′ ≡ 2πR6

=
∏
s∈Z

1√
2
√

cosh β′E − cos 2π(γ3s+ γana)
for na → −na

= e−
1
2

∑
s∈Z

(
ln [coshβ′E−cos 2π(γ3s+γana)]+ln 2

)
≡ e−

1
2

∑
s∈Z ν(E), (F.53)

where

∑
s∈Z

ν(E) ≡
∑
s∈Z

(
ln [cosh β′E − cos 2π(γ3s+ γana)] + ln 2

)
=
∑
s∈Z

∑
r∈Z

ln [
4π2

β′2
(r + γ3s+ γana)

2 + E2]. (F.54)
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We can show directly that (F.54) is invariant under U ′, since

E2 = gαβnαnβ = g33s2 + 2g3asna + gabnanb =
1

R2
3

(s+ κana)
2 + g̃abnanb,

4π2

β′2
(r + γ3s+ γana)

2 =
1

R2
6

(r + γ̃ana + γ3(s+ κana))
2, (F.55)

then

4π2

β′2
(r + γ3s+ γana)

2 + E2

=
1

R2
6

(s+ κana)
2 |τ̃ |2 +

1

R2
6

(r + γ̃ana)
2 +

2γ3

R2
6

(r + γ̃ana)(s+ κana) + g̃abnanb.

(F.56)

So we see the transformationU ′ given in (F.16) leaves (F.56) invariant if s→ r and r →
−s. Therefore (F.54) is invariant under U ′, so that (PI)

1
2 given in (F.53) is invariant

under U ′.

M3 acts on Z4d
osc

M3 leaves the Z4d
osc invariant as can be seen from (F.48) by shifting the integer nα

as

n3 → −n4, na → na+1. (F.57)

So, under U1 = U ′M3,

Z4d
osc → |τ̃ |−2Z4d

osc. (F.58)

U2 is an invariance of the oscillator partition function by inspection.

U3 acts on Z4d
osc

U3 leaves the Z4d
osc invariant as can be seen from (F.48) by shifting the integers nα

as

n3 → −n3, na → na. (F.59)

Thus, the oscillator partition function transforms under the SL(4,Z) generators {U2
1 , U1U3, U2}
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as

U2 : Z4d
osc → Z4d

osc,

U1U3 : Z4d
osc → |τ̃ |−2Z4d

osc,

U1
2 : Z4d

osc → Z4d
osc. (F.60)

So together with (F.44) we have established invariance under (F.39), and thus proved
the partition function for the 4d Maxwell theory on T 4, given alternatively by (3.67)
or (F.48), is invariant under SL(4,Z), the mapping class group of T 4.

U ′ acts on Z6d
osc

For the 6d chiral theory on T 2 × T 4, where < H >6d≡ 1
2

∑
~p∈Z5

√
Glm

5 plpm appears
in (3.71), the SL(3,Z) invariant regularized vacuum energy [2] becomes,

< H >6d = − 1

2π4

√
G5

∑
~n6=~0

1

(Glmnlnm)3

= −32π2
√
G5

∑
~n6=~0

1

(2π)6
(
gαβnαnβ + (R2

1 +R2
2β

2β2)(n1)2 − 2β2R2
2n

1n2 +R2
2(n2)2

)3

(F.61)

and can be decomposed similarly to (E.2),

< H >6d =
∑
p⊥∈Z4

< H >6d
p⊥

= < H >6d
p⊥=0 +

∑
p⊥∈Z4 6=0

< H >6d
p⊥
, (F.62)

where

< H >6d
p⊥

= −32π2
√
G5

1

(2π)4

∫
d4y⊥e

−ip⊥·y⊥
∑

n3∈Z6=0

1

|2πn3 + y⊥|6
, (F.63)

with denominator |2πn3 + y⊥|2 = G33(2πn3)2 + 2(2πn3)G3ky
k
⊥ + Gkk′y

k
⊥y

k′

⊥ , with k =
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1, 2, 4, 5,

< H >6d
p⊥=0 = − 1

12R3

,

< H >6d
p⊥ 6=0 = |p⊥|2R3

∞∑
n=1

cos(paκ
a2πn)

[
K2(2πnR3|p⊥|)−K0(2πnR3|p⊥|)

]
= −π−1|p⊥|R3

∞∑
n=1

cos(paκ
a2πn)

K1(2πnR3|p⊥|)
n

, (F.64)

with p⊥ = (p1, p2, pa) = n⊥ = (n1, n2, na) = (n1, n2, n4, n5) ∈ Z4,
|p⊥| =

√
(n1)2

R2
1

+ 2 β
2

R2
1

+ ( 1
R2

2
+ β22

R2
1

)n2
2 + g̃abnanb.

The U ′ invariance (3.72) follows when we separate the product on ~n ∈ Z5 6= ~0

into a product on (n3 6= 0, n⊥ ≡ (n1, n2, n4, n5) = (0, 0, 0, 0)), and on (all n3, but
n⊥ = (n1, n2, n4, n5) 6= (0, 0, 0, 0)). Then

Z6d
osc =

(
e
πR6
6R3

∏
n3∈Z6=0

1

1− e2πi (γ3 n3+i
R6
R3
|n3| )

)3

·
( ∏
n⊥∈Z4 6=(0,0,0,0)

e−2πR6<H>6d
p⊥
∏
n3∈Z

1

1− e−2πR6

√
ñ2+gαβnαnβ +i2πγαnα

)3

=
(
η(τ̃) η̄(¯̃τ)

)−3

·
( ∏

(n1,n2,n4,n5)∈Z4 6=(0,0,0,0)

e−2πR6<H>6d
p⊥
∏
n3∈Z

1

1− e−2πR6

√
gαβnαnβ+ñ2 +i2πγαnα

)3
,

(F.65)

where τ̃ = γ3 + iR6

R3
, and ñ2 ≡ n2

1

R2
1

+ 2 β
2

R2
1
n1n2 + ( 1

R2
2

+ β22

R2
1

)n2
2. Under U ′,

η(τ̃) η̄(¯̃τ)→ |τ̃ | η(τ̃) η̄(¯̃τ). (F.66)

U ′ leaves invariant the part of the 6d oscillator partition function (F.65) at fixed n⊥ 6=
0, since

e
−2πR6<H>6d

n⊥6=0

∏
n3∈Z

1

1− e
−2πR6

√
gαβnαnβ+

n2
1

R2
1

+2 β
2

R2
1
n1n2+( 1

R2
2

+β22

R2
1

)n2
2 +i2πγαnα

(F.67)
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is the square root of the partition function on T 2 (now in the directions 3,6) of a
massive complex scalar with m2 ≡ G11n2

1 +G22n2
2 + 2G12n1n2 + g̃abnanb, 4 ≤ a, b ≤ 5,

that couples to a constant gauge field Aµ ≡ iGµini with µ, ν = 3, 6; i, j = 1, 2, 4, 5.
The metric on this T 2 is h33 = R2

3 , h66 = R2
6 + (γ3)2R2

3 , h36 = −γ3R2
3. Its inverse is

h33 = 1
R2

3
+ (γ3)2

R2
6

, h66 = 1
R2

6
and h36 = γ3

R2
6
. The manifestly SL(2,Z) invariant path

integral is

P.I. =

∫
dφ dφ̄ e−

∫ 2π
0 dθ3

∫ 2π
0 dθ6 hµν(∂µ+Aµ)φ̄(∂ν−Aν)φ+m2φ̄φ

=

∫
dφ̄ dφe

−
∫ 2π
0 dθ3

∫ 2π
0 dθ6φ̄(−( 1

R2
3

+
(γ3)2

R2
6

)∂2
3−( 1

R6
)2∂2

6−2 γ
3

R2
6
∂3∂6+2A3∂3+2A6∂6+G11n1n1+G22n2n2+2G12n1n2+Gabnanb)φ

= det
(

[−( 1

R2
3

+ ( γ
3

R6
)2)∂2

3 − ( 1
R6

)2∂2
6 − 2γ3( 1

R6
)2∂3∂6 +G11n1n1 +G22n2n2

+ 2G12n1n2 +Gabnanb + 2iG3ana∂3 + 2iG6ana∂6]
)−1

= e
−trln

[
−( 1

R2
3

+( γ
3

R6
)2)∂2

3−( 1
R6

)2∂2
6−2γ3( 1

R6
)2∂3∂6+G11n1n1+G22n2n2+2G12n1n2+Gabnanb+2iG3ana∂3+2iG6ana∂6

]

= e
−

∑
s∈Z

∑
r∈Z

[
ln( 4π2

β′2
r2+( 1

R2
3

+( γ
3

R6
)2)s2+2γ3( 1

R6
)2rs+G11n1n1+G22n2n2+2G12n1n2+Gabnanb+2G3ana s+2G6ana r)

]
= e−

∑
s∈Z ν(E), (F.68)

where from (3.7), G11 = 1
R2

1
, G22 = 1

R2
2

+ β22

R2
1
, G12 = β2

R2
1
, Gab = gab + γaγb

R6
2 ,

G3a = g3a + γ3γa

R2
6
, G6a = γa

R2
6
, G63 = γ3

R2
6
, and ∂3φ = −isφ, ∂6φ = −irφ, s = n3, and

β′ = 2πR6. The sum on r is

ν(E) =
∑
r∈Z

ln
[4π2

β′2
(r + γ3s+ γana)

2 + E2
]
, (F.69)

with E2 ≡ Glm
5 nlnm = G11

5 n1n1 +G22
5 n2n2 +G21

5 n2n1 +Gab
5 nanb + 2Ga3

5 nan3 +G33
5 n3n3,

and G11
5 = 1

R2
1
, G12

5 = β2

R2
1
, G22

5 = 1
R2 + β2β2

R2
1
, G1α

5 = G2α
5 = 0, G3a

5 = g3a = κa

R2
3
,

G33
5 = g33 = 1

R2
3
, Gab

5 = gab = g̃ab + κaκb

R2
3
. We evaluate the divergent sum ν(E) on r by

∂ν(E)

∂E
=
∑
r

2E
4π2

β′2
(r + γ3s+ γana)2 + E2

= ∂E ln
[
cosh β′E − cos 2π

(
γ3s+ γana

)]
, (F.70)

using the sum
∑

n∈Z
2y

(2πn+z)2+y2 = sinh y
cosh y−cos z

. Then integrating (F.70), we choose the

103



integration constant to maintain modular invariance of (F.68),

ν(E) = ln
[
cosh β′E − cos 2π

(
γ3s+ γana

)]
+ ln 2. (F.71)

It follows for s = n3 that (F.68) gives

(P.I.)
1
2 =

∏
s∈Z

1√
2
√

cosh β′E − cos 2π(γ3s+ γana)

=
∏
s∈Z

e−
β′E

2

1− e−β′E+2πi(γ3s+γana)

= e−πR6
∑
s∈Z

√
Glm5 nlnm

∏
s∈Z

1

1− e−2πR6

√
Glm5 nlnm+2πiγ3s+2πiγana

= e−2πR6<H>n⊥
∏
n3∈Z

1

1− e−2πR6

√
Glm5 nlnm+2πiγ3n3+2πiγana

, (F.72)

which is (F.67). Its invariance under U ′ follows from the U ′ invariance of (F.54), which
differs from (F.69) only by an additional contribution of ñ2 to the mass m2.

Hence (F.72) and thus (F.67) are invariant under U ′.
Furthermore Z6d

osc is invariant under M3, U2, U3 by inspection.
Using the same approach for proving SL(4,Z) symmetry of the 4d partition func-

tion, we have shown the 6d oscillator partition function for the chiral two-form given
by (3.71), or equivalently (F.65), transforms as

U2 : Z6d
osc → Z6d

osc,

U1U3 : Z6d
osc → |τ̃ |−3Z6d

osc,

U1
2 : Z6d

osc → Z6d
osc. (F.73)

Together with (F.45), the 6d partition function Z6d,chiral ≡ Z6d
zero modes Z

6d
osc is SL(4,Z)

invariant.
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