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ABSTRACT

YANG SUN: RELATIONS BETWEEN 6D N = (2,0) CONFORMAL FIELD
THEORY AND 5D, 4D GAUGE THEORIES.
(Under the direction of Louise Dolan.)

The six-dimensional (6D), V' = (2,0) super conformal field theory (SCFT), which
contains a tensor multiplet, is considered to govern some of the lower dimensional
supersymmetric gauge theories. After a general introduction to the 6D, V' = (2,0)
theory with sixteen supercharges and supersymmetric Yang-Mills theory in 4D and
5D, there follows a description of the partition function approach for a single M5-
brane of which the world volume theory is the abelian 6D, N' = (2,0) SCFT. We
introduce the conjecture by Michael Douglas and Neil Lambert that the (2,0) SCFT
on S is equivalent to the 5D maximally supersymmetric Yang-Mills theory. S-duality
is an important property first found in Maxwell theory and later generalized to dif-
ferent supersymmetric gauge theories, such as 4D, ' = 4 super Yang-Mills and 4D
supersymmetric QCD. We briefly discuss the origin of the S-duality of the 4D abelian
gauge theory with an theta angle from the 6D tensor theory. By computing and com-
paring the explicit formulas for the partition functions, we will show that the 4D and
5D abelian gauge theories share fundamental properties with the 6D tensor theory.

In Chapter 2, we give our preliminary test of the conjecture of Douglas and Lam-
bert by using the partition functions computation. We give an explicit computation
of the partition function of a five-dimensional abelian gauge theory on a five-torus
T° with a general flat metric using the Dirac method of quantizing with constraints.
We compare this with the partition function of a single fivebrane compactified on
S' times 7°, which is obtained from the six-torus calculation of Dolan and Nappi
[arXiv:hep-th/9806016]. The radius R; of the circle S! is set to the dimension-
ful gauge coupling constant ¢2y-,, = 47*R;. We find the two partition functions are

equal only in the limit where R, is small relative to T°, a limit which removes the
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Kaluza-Klein modes from the 6D sum. This suggests the 6D, N' = (2,0) tensor the-
ory on a circle is an ultraviolet completion of the 5D gauge theory, rather than an
exact quantum equivalence.

In Chapter 2, we compute the partition function of four-dimensional abelian gauge
theory on a general four-torus 7* with flat metric using Dirac quantization. In ad-
dition to an SL(4, Z) symmetry, it possesses SL(2, Z) symmetry that is electromag-
netic S-duality. We show explicitly how this SL(2, Z) S-duality of the 4D abelian
gauge theory has its origin in symmetries of the 6D (2,0) tensor theory, by comput-
ing the partition function of a single fivebrane compactified on 7% x T, which has
SL(2,Z) x SL(4, Z) symmetry. If we identify the couplings of the abelian gauge the-
ory 7 = 5= + i‘% with the complex modulus of the T” torus, 7 = (* + {2, then in the
small 72 limit, the partition function of the fivebrane tensor field can be factorized,
and contains the partition function of the 4D gauge theory. In this way the SL(2, Z)
symmetry of the 6D tensor partition function is identified with the S-duality sym-
metry of the 4D gauge partition function. Each partition function is the product of
zero mode and oscillator contributions, where the SL(2, Z) acts suitably. For the 4D
gauge theory, which has a Lagrangian, this product redistributes when using path

integral quantization.
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Chapter 1

Introduction

1.1 Fundamentals of the 6D Theory

6D Supersymmetric Field Theory with 16 Super Charges

In six dimensions, massless particles are specified by representations of the little
group, which is spin(4) or SU(2) x SU(2). Using representations by SU(2) x SU(2),
one can have two different super charges Q,; and ) ;, where i, j = 1, 2 which trans-
formas (2,1) and (1, 2) of SU(2) x SU(2). These can be seen as annihilation operators
acting on the spin state of the particles and their adjoint operators can be seen as the
creation operators.

(1,1) Supersymmetry

By taking different combinations of the two raising operators QLJ and QT.J,, one

obtains the representations
r=(2,2)+2(2,1)+2(1,2) +4(1,1), (1.1)
acting on the state |1, 1) to give
12,2) +212,1) +2|1,2) +4]1,1), (1.2)

which is the vector multiplet. Acting on the state |2, 2) gives the supergravity multi-

plet,

3,3)@(3,1) & [1,3) & [1,1) ®4(2,2)

$2(3,2)$2(2,3) ®2[1,2) ©2(2,1). (1.3)



The bosonic field content contains a graviton, an antisymmetric tensor, a scalar and
four vectors.

(2,0) Supersymmetry

Another possible 6D supersymmetry has a (2, 0) whose supercharges have a com-

plex 2(2, 1) representation. The raising operator form

P =(3,1)®4(2,1)®5(1,1). (1.4)

Acting on |1, 3), these produce the supergravity multiplet

13,3) ®4(2,3) ®5/1,1), (1.5)

which contains one graviton, four gravitinos, and five anti-self-dual antisymmetric

tensors. Acting on |1, 1) we obtain the tensor supermultiplet,

3,1)®©4(2,1) @ 5/1,1) (1.6)

with one chiral two-form B,y with self-dual anti-symmetric tensor H)n, five scalars
and four fermions. If we only consider the tensor supermultiplet of the (2,0) su-
persymmetry, it is the 6D N = (2,0) superconformal field theory (SCFT) in six-
dimension that enjoys an OSp(2, 6|2) super conformal symmetry that we will study
later. Interesting features in lower-dimensional gauge theory are found to have their

origin in this theory.

1.2 Fundamentals

5D Maximally Supersymmetric Yang-Mills
The 5D maximally supersymmetric Yang-Mills theory has 16 supercharges with
the little group SO(3) ~ SU(2). It has the field content of a vector A,, with m =

0,1,2,3,4, five scalars X; with I = 6,7,8,9,10 and fermions ¥, which transform



under the little group as (1(3),2(2),5(1)) and all taking values in the adjoint repre-

sentation of a Lie-algebra. The supersymmetry transformations are

6. X = iel 0,
5. A, = il TsW,

1 |
O = (5 Foua D™ 4 D Xy T+ L[X7, X0 ), (1.7)

where the spinor e satisfies I'g12345¢ = €. The covariant derivative acts as D,, X; =
Om X1 —i[Ap, X1], and F,,,;, = 0 Ay, — 0 Am —i[Ap, A,]. The supersymmetric invariant

action is given by

1
S =— D) /dBZL’ tT(anan +/DmX]DmX[
9y m

_ 1- 1
— U™ D,, ¥ + §\Ifr5rf[Xf, ] — Z[Xf, X%, (1.8)

where the spinors are eleven-dimensional spinors.

4D, N = 4 Supersymmetric Yang-Mills

The 4D, N = 4 Supersymmetric Yang-Mills theory has 16 supercharges and the
little group SO(2). It has the field content of one gauge field A%, = 0, 1,2, 3, six mass-
less real scalar fields X, I = 1...6 and four chiral fermions ¥, , with @ = 1...4 and the
indices a = 1,2, and helicities ((+1),4(£3),6(0)). All fields transform in the adjoint
representation of the gauge group. Similarly, the supersymmetric transformation for

the four-dimensional super Yang-Mills are

5. X = —ielw,
(SEAi - —ZEFZ\IJ,
1 . : )
50 = (GE5TY 4+ DX T + S [X1, X)) (1.9)



The supersymmetric invariant Euclidean action is given by

1 T (A
S=— [ dztr(z=——F;;F? FF
/ o T(Zg%M T 1672 " )
1 ) - _
———(2D:X;D'X; — [X1, X, — 209" D, ¥ — 20T [0/, U]). (1.10)

29y m

The N = 4 theory is conformal and enjoys PSU(2,2|4) symmetry, even at the quan-
tum level. In particular, the S-function vanishes to all orders in perturbation theory.
A salient feature of /' = 4 is that it is conjectured to be invariant under an SL(2, Z)

transformation acting on the Yang-Mills coupling constant, known as the S-duality.

1.3 Free Abelian Version of the Actions

Restricted to the non-supersymmetric and abelian case, the 5D and 4D action is given

by ([8) and (LT0)

1

Ssp = — / &z Frp ™,

5D 4g%M

S4D:—/d4x( L gy 2 F ™). (1.11)
298, " 1672 *

1.4 Partition Function of the M5-brane and Gauge Theory

Mb5-branes describes an SCFT with (2,0) supersymmetry. The world-volume of a
single M5-brane propagates an abelian chiral two-form potential with self-dual field
strength as discussed in the previous section. Therefore, the 6D (2, 0) theory does not
have a covariant Lagrangian description. For a single M5-brane, one can write down
its partition function [1]]. The first partition function for the tensor field is computed
explicitly for a 7° manifold [2] with a flat metric. To circumvent the difficulty of lack-
ing a covariant Lagrangian for a self-dual three-form tensor field, one can first write
down an SL(5, Z) covariant Hamiltonian and momentum for a 7° and compute the

partition function by separating the field strength H ),y into a zero mode part and



an oscillator mode part,

H=H'o H. (1.12)

where the zero modes are the harmonic representatives of the self-dual three-form
HP, and the oscillator modes are H’ = dB for the chiral two-form. One obtains a fully
SL(6, Z) invariant partition function by tracing over the zero modes and the oscilla-
tor modes. Later, a single M5-brane partition function is computed on an arbitrary
six-dimensional manifold by the holomorphic factorization approach [3].

On the gauge theory side, for convenience to compare to the chiral two-form, we
adopt the Hamiltonian formulation, and separated the partition function again into
zero and oscillator modes. After choosing the appropriate holonomy condition, the
zero mode partition function is computed by summing over the electric and magnetic
fields as integers from integrals on homology cycles due to the Dirac charge quanti-
zation condition. We treat the oscillators of the abelian gauge theory on the general
torus by the method of Dirac quantization. In this dissertation, we will present ex-

plicit formulas for the partition functions for both gauge theory and the tensor theory.

1.5 Motivation and Plan of this Work

Part I

It has been known that the M5-brane can be dimensionally reduced to a D4-brane
by compactifying the M5-brane on a circle. But recently it had been conjectured that
these two quantum theories are completely equivalent [4] [5]. When we compactify
the z! direction of the six-torus on a circle of circumference 27 R;, using dimensional
reduction of the self-dual three-form H),y, one obtain the 5D gauge field strength
Fon = Hipn, where 1 < M, N,L < 6 and 2 < m,n < 6. The other component, H,,,,
are obtained by the self-duality condition. As a preliminary test of this conjecture, we
consider the partition function of five-dimensional Maxwell theory on a five-torus

and compare it with that obtained in [2] for a single M5-brane restricted to 7° x S*.



Part I1

It has been suggested that S-duality of the 4D, N' = 4 Yang-Mills has its origin
in the 6D, non-abelian N/ = (2,0) SCFT and this can be tested at the abelian and
non-supersymmetric level by comparing the partition functions. We consider two
different quantum field theories in four and six dimensions. One is a 4D free abelian
gauge theory with coupling constant 7 = £ 427 on 7. The other is an abelian chiral
two-form potential B,y with the self-dual field strength tensor H,,y; compactified
on 7% x T*. The two-torus T? is described by the complex modulus 7’ = if2 + 3% and
identified with the 4D coupling constant 7. We will show that in the limit that 7% is
small, the 6D partition function is equivalent to the 4D partition function times the
contribution of an additional scalar. The 6D partition function on 72 x T* is invariant
under the modular group SL(2, Z), which is the mapping class group of the two-
torus T2. Therefore, the SL(2, Z) of T? symmetry implies the S-duality in the 4D

abelian gauge theory.



Chapter 2

Partition Functions for 7° and S' x T°

2.1 Introduction

A quantum equivalence between the six-dimensional N' = (2, 0) theory of multiple
fivebranes compactfied on a circle S!, and five-dimensional maximally supersym-
metric Yang Mills has been conjectured by Douglas and Lambert et al. in [4,5]. in
this chapter we will study an abelian version of the conjecture where the common
five-manifold is a five-torus 7° with a general flat metric, and find an equivalence
only in the weak coupling limit.

The physical degrees of freedom of a single fivebrane are described by an N =
(2,0) tensor supermultiplet which includes a chiral two-form field potential, so even
a single fivebrane has no fully covariant action. In order to investigate its quantum
theory [2] computes the partition function instead, which we carried out on the six-
torus 7°. We will use this calculation to investigate the partition function of the self-
dual three-form field strength restricted to S x T° and compare it with the partition
function of the five-dimensional Maxwell theory on a twisted five-torus quantized
via Dirac constraints in radiation gauge.

Because both the theory and the manifold are so simple, we do not use local-
ization techniques fruitful for non-abelian theories and their partition functions on

spheres [7]-[12].



The five-dimensional Maxwell partition function on 7° is defined as in string the-

ory [13],
75D, Mazwell — 4,.,—2nHP +i2ny'PPP _ 775D e 75D
H5D _ RG o d92d93d94d05 1 i’ 1 i’ jj'
= V9 (—29 FeiFe +—g" g Ejﬂ’j/)>
95y m Jo 2Rg 4
1 2 L,
PP = R / do*d9>do*de® /g g7 Fe;Fy, (2.1)
5Y M 0

in terms of the gauge field strength F;,7 (6%, 6%, 6*,6°,6°), and constant metric g/, Rg, 7"

The partition function of the abelian chiral two-form on a space circle times the five-

torus is
ZﬁD,chi'ral — tr e—27rR6”H+i27r'yi73i — Z,SeDm odes © ngcv
]. 2 ’ ’ ’ — —
H= = / 60 .. . A9\ GG Gy G Hypon (6, 0°) Hivmns (6, 6%),
0
1 27 . .
P=— / d6' .05, (F,6%) Hypo (8, 6°) (2.2)
0

where ' is the direction of the circle S*. The time direction §° we will use for quan-
tization is common to both theories, and the angles between the circle and the five-
torus denoted by «, 3 in [2] have been set to zero. The final results are given in ,
(3.74).

We use to compute both the zero mode and oscillator contributions, and
tind an exact equivalence between the zero mode contributions,

780 = 75D (2.3)

zero modes zero modes*

Not surprisingly, we find the oscillator traces differ by the absence in Z32 of the

osc

6D
osc

Kaluza-Klein modes generated in Z8%, from compactification on the circle S.

The Kaluza-Klein modes have been associated with instantons in the five-dimensional

non-abelian gauge theory in [4] 5, 17, 18], with additional comments given for the

abelian limit. It would be interesting to find a systematic way to incorporate these



modes in a generalized five-dimensional partition function along the lines of a char-
acter, in order to match the partition functions exactly, but we have not done that
here. Rather our explicit expressions show an equivalence between the oscillator
traces of the two theories only in the limit where the compactification radius R, of
the circle is small compared to the five-torus 7°.

Other approaches to N/ = (2,0) theories formulate fields for non-abelian chiral
two-forms [19]-[24] which would be useful if the non-abelian six-dimensional theory
has a classical description and if the quantum theory can be described in terms of
fields. On the other hand the partition functions on various manifolds [20]-[29] can
demonstrate aspects of the six-dimensional finite quantum conformal theory pre-
sumed responsible for features of four-dimensional gauge theory [30].

In section 2, the contribution of the zero modes to the partition function for the
chiral theory on a circle times a five-torus is computed as a sum over the ten integer
eigenvalues, and its relation to that of the gauge theory is shown via a fiber bundle
approach. In section 3, the abelian gauge theory is quantized on a five-torus using
Dirac constraints, and the Hamiltonian and momenta are computed in terms of the
oscillator modes. In section 4, we construct the oscillator trace contribution to the
partition function for the gauge theory and compare it with that of the chiral two-
form. Section 5 contains discussion and conclusions. We presents details of the Dirac
quantization and Appendix B verifies the Hamilton equations of motion. Appendix
C regularizes the vacuum energy. Appendix D proves the SL(5, Z) invariance of

both partition functions.

2.2 Zero Modes

The N = (2,0) 6D world volume theory of the fivebrane contains five scalars, two

four-spinors and a chiral two-form B}y, which has a self-dual three-form field strength



HLMN = 8LBMN + 8MBNL + 8NBLM with 1 S L, M,N S 6,

- 1 ’ !/ / -
HLMN(Q; 06) = 6\/__GGLL/GMM/GNN/€L MN RSTHRST(Q, 06) (24)
" gives HLMN(H_: 96) \/EGLL GMM’GNN’ EL/M/NIRSTHRST(Q 0 ) for a Euclidean
signature metric. In the absence of a covariant Lagrangian, the partition function of
the chiral field is defined via a trace over the Hamiltonian [2] as is familiar from string
calculations. We display this expression in (2.2) where the metric has been restricted

to describe the line element for S' x 77,

ds® = Ri*(d0") + Rg*(d6°)* + > gi;(d6" — +'d6°)(d6? — 4/ d6°) (2.5)
4,j=2...5
with 0 < 67 < 27,1 < I < 6. The parameters R, and R; are the radii for directions

1 and 6, g;; is a 4D metric, and +7 are the angles between between 6 and j. So from

@.9),

Gz’j = Gij ; Gn = R12; Gii=0; Ge = R62 + giﬂi’Yj; Gis = —gz’j’Yj; Gis = 0;
(2.6)

and the inverse metric is

= G%= L. G%=0. (2.7)

y y ind 1 ;
Gi=git 1. gh= — . Gi=0 G%-= R’ RQ’

RZ’ RQ’
We want to keep the time direction 05 common to both theories, so in the 5D expres-
sions the indices are on 2 < m,n < 6; and the Hamiltonian and momenta in
sumon 1 < m,n < 5. The common space index is labeled 2 < i, 7 < 5. To this
end, for the metric Gy in we introduce the 5-dimensional inverse (in directions
1,2,3,4,5)

Gg,ij = g”7 G5i1 = O, G511 = —

; (2.8)
R

10



and the 5-dimensional inverse (in directions 2,3,4,5,6) for the five-torus 77,

~ij o g vy i ol =~ 1

The determinants of the metrics are related simply by VG = Rs\/G;5 = Rl\/a =
ReR1\/g, and €456 = Gs 23456 — G with corresponding epsilon tensors related by
G, Gy, g.

To compute 72 we neglect the integrations in and get

zero modes

m YY) / m R v / e -/
—2nR¢H = —gRgRu/Eg“ g’ gkk Hiiji’j’k/ - ZE? g(g” gkk - gjk Qk] )Hlijlj/k’7

ZQﬂ")/lPZ = —%’Yiﬁjkjlk/Hlijij/k/ = %f)/iejj/klej’kk'Hlij7
(2.10)
where the zero modes of the four fields H,;, are labeled by the integers nr, ..., no.
The six fields H,j; have zero mode eigenvalues Hio3 = n1, Hi2a = no, Hios = ngs,

Hi34 = ng, Hi35 = n5, Hi45 = ng, and the trace on the zero mode operators in (2.2) is

TR o, P
delzomodes - Z exp{___ﬁ g(gjj gkk - g]k gk] )Hljk‘Hljlk'}

4 Ry
NYyeney ne
"R R TN TN = SNV B Y0 S = 0
Z exp{ 6 199" 97 g igktirjkr — € ik Hijn b
n7,...,110

2.11)

The same sum is obtained from the 5D Maxwell theory where the gauge cou-
pling is identified with the radius of the circle ¢3,,, = 47?R;, as follows. The zero
modes of the gauge theory are eigenvalues of operator-valued fields that satisfy
Maxwell equations with no sources. Even classically these solutions have constant
F;; which lead to non-zero flux through closed two-surfaces that are not a boundary
of a three-dimensional submanifold in 7°. Working in A¢ = 0 gauge, if we consider
the U(1) gauge field 4; at any time 6° as a connection on a principal U(1) bundle with

base manifold 7%  then the curvature F}; = 0;A; — 04

11



for 2 <4, j < 5 must have integer flux [31} 32], in the sense that

1 1 1 , ,
ny=— F=— —F;;do" N\ de’, ny € Z, foreach 1 <1 <6. (2.12)
2m 2£ 2 Eé 2
In T*, the six representative two-cycles 4 are each a 2-torus constructed by the six

ways of combining the four S* of T* two at a time, given by the cohomology class,

dim H,(T*) = 6. Relabeling n; as n;; and ¥4 as X257, 2 < i < j < 5, we have fzg,h do’ A
do7 = (2m)2(8.8) — 8407). So (3.25) is

1 5

E]: 27_[_7

n;; € 2 fori < j. (2.13)

Furthermore we show how the zero mode eigenvalues of Fi; are found from those of
the conjugate momentum II'. In section 3 we derive the form of H°” and P’” given
in 1) from a canonical quantization using a Lorentzian signature metric. In (3.44)

the conjugate momentum is defined as

. \/g .
II' = ———g" Fs. 2.14

From the commutation relations (3.52) we can compute its commutator with the
_ n i k .
holonomy fE’f A = fZ’f Ai(6,6°)d0" where X are the four representative one-cycle

circles in 7%,

2 Cor

g 06\ 9t d'o' q pb ‘ j . o
(0. 690, w@,e0)| = [ a0’ =isl. (2.15)
i sk
Hence an eigenstate ¢ of the the zero mode operator ;- [ d*0'TT*(#, ¢°) with eigen-

value )\ is

iX [y A 1 ik 7 iX [y A iX [y A
o =My, (%/d‘*en’f(e,e%)e Bt 410y — x st o).

Since the holonomy is defined mod 2, thus allowing A to vary by gauges when

12



ifz,fA

crossing neighborhoods, but ensuring e to be a single valued element of the

structure group U(1), then the states

Mo A | ez’)\<27r+fz;f A)

0) and |0) (2.16)

must be equivalent, so the eigenvalue \ of the operator .- [ d*0'TT*(¢, 6°) must have

integer values n(®),

(k)

(2m)*’

1*(6',0%) = n® e 24, (2.17)

In this normalization of the zero mode eigenvalues for the gauge theory, we are tak-

ing the df' space integrations into account. So (3.2) gives

—2rH®P + z'27r’yiPi5D

W\/' i 2
_ W R Py — W i B Fy 4 2min ¢ F, F) 97)2.
( Rl RG 61464/ 2R \/_g g J J + ™Y 5 RlRG 67 ( 7T>

(2.18)

We can use the identity

1 N AN 1 s ! !
kj'k kk
——6] J Hlijij’k:’ = éﬁjj Hj’kk’Hlij7

to rewrite the last term in as

VT - iy T 1110
i _jkj'k kk
—5’}/ Ej J Hljk’Hij’k:’ = 3’7 6]] Hj’kk’Hlija

which is equal to the last term in (2.18)) if we identify

1

g 2m4/q
! /
Z IR L = V9

RiRg

g’ Fa, Hyy; = 21y (2.19)

13



Then, from (2.19) we have that the first term in (2.18) becomes

47r3
R \/_ 9" FoiFoir = __\/—RlRG 9" g9 g Hijor Hop
1

Thus with the identifications in (2.19), the 5D Maxwell expression in (2.18)) is equal
to the 6D chiral exponent in (2.11),

. R YY) Z2
o ey PP = (= T g gy, - TN i gy DTV g ) (2

R1R6 2R, R R Rg
. i il idl ’ TR - / WA
= —tH + 21y’ P, = _gRﬁRl\/Eg g gkk Hiiji’j’k’ - Zﬁj 9(9” gkk - gjk g’ k)HlijIj’k’
'iﬂ' TN
= 5 e Higo.

We now discuss the sum over integers in (2.11). From (2.19), if H,,;, are integers,

then 27 F}; are integers. If H,j;, are integers, then lejj/kk/H ke are also integers. This

implies, again from (2.19), that % 2 ‘[ g“ Fgjr should be integers, which we justify in
(3.27) and (2.17) with (2.14). Thus the Maxwell zero mode trace can be written as

zero modes

R6 g i il
z0 =) eXp{—27T3R—\/_g 9”7 FijFyj}

ni...neg

3 : 3
E \/_ zz <27T) \/g i g5
eXp{— RlR FGZFG’L/ + TRG’Y g]] Fﬁjlﬂj} (2.20)

n7..nlo0

where the integer eigenvalues are n; = 21 Fy3, ng = 2mFyy, ng = 2mF55, ny = 2w F3y,
ns = 21 Fss, ng = 2mFys; (07, n®,n% n1%) = (@ n® n® n®),
for n® = %ﬁ g"' Fyir € Z%. So we have proved the relation 1}
780 =750 (2.21)

zero modes — “zero modes

and the explicit expression is given by (2.11) or (2.20).

14



2.3 Dirac Quantization of Maxwell Theory on a Five-torus

To evaluate the oscillator contribution to the partition function in (3.2), we will first
quantize the abelian gauge theory on the five-torus with a general metric. The equa-
tion of motion is 9™ Fy;,;, = 0. For F;; = 057, A7 — 05 A, a solution is given by a solution

to

0"0; Ap = 0, O™ Az = 0. (2.22)
These have a plane wave solution Ay (6, 6°) = f5(k)e*? + (f(k)e™*?)* when

G kkn =0, k™ fm = 0. (2.23)

In order for the operator formalism to reproduce a path integral quantization
with spacetime metric (2.9), we must canonically quantize H>” and P?” via a metric
that has zero angles with the time direction, i.e. 7* = 0, and insert 7’ in the partition
function merely as the coefficient of PP [13]. Furthermore a Lorentzian signature

metric is needed for quantum mechanics, so we modify the metric on the five-torus

28, @) tobe

- - ~ . . 1~ ~ ~
Grij = gij; Gres = —Re*; Gris=0; GY =g"; G = R GP =0, Gp=detGppma.
6
(2.24)
Solving for k¢ from (2.23) we find
_(N;%G
o =+~ |kl, (2.25)
Gy

where 2 < 4,5 < 5, and |k| = \/¢"k;k;. Use the gauge invariance f; — f- = fam +
kxA to fix fi = 0, which is the gauge choice As = 0. This reduces the number of
components of A from 5 to 4. To satisfy (2.23), we can use the 9™ F;,6 = —90'A; = 0
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component of the equation of motion to eliminate f5 in terms of the three f, f3, fu,

J5s = —I%(p2f2 + 0’ fs + p*fa),

leaving just three independent polarization vectors corresponding to the physical

degrees of freedom of the 5D one-form with Spin(3) content 3. From the Lorentzian

Lagrangian
1V - Re+\/g 1
— mm! i/ F F _ JJ == (166
L=— 9§YM = G G 47r21~21< 19" Py G ¢ FyiFey ).
(2.26)
the energy-momentum tensor
d
T" = 50, EA OnAp — 0™ L (2.27)

leads to the Hamiltonian and momenta operators

H, = /d467'6 = /d49 (6—\/5(— §G§6g“ FeiFe + 4g " g FyyFyy — F90,Aq) +H686A6>,

47T2R1
(2.28)
R ~ oy A
P = / 0T, = / d40<47f;]/51(— Gl By Fyy — FO99,A,) +H682~A6>,
(2.29)
where the conjugate momentum is
, J R R
= Of _ FeV e _ G\fa% L O | (- L o, (2.30)

N 586141 N 47T2R1 586146

We quantize the Maxwell field on the five-torus with the metric (2.24) in radiation

gauge using Dirac constraints [50,51]. The theory has a primary constraint I16(d, 6°) ~

16



0. We can express the Hamiltonian (3.42) in terms of the conjugate momentum as

272 R - .
Hopp = / d40<— 2k BV ¢ FyFyy — 91T Aﬁ), (2.31)
Re\/gG%0 1672R, 7

where the last term has been integrated by parts. The primary Hamiltonian is defined

by

on’R - '
H,= /d4 R T/—é%g ATIT + 166;/}; "o FyFy — O A6+)‘1H6)’ (2.32)
6 1

with A, as a Lagrange multiplier. In Appendix A, we use the Dirac method of quan-
tizing with constraints for the radiation gauge conditions Ag &~ 0, 9°A; ~ 0, and find

the equal time commutation relations (A.13), (A.14):

[117(6, %), A;(F, 6°)] = —z'(ag‘ — ¢7 (8, k’f/(})‘k ak,a )) 546 — 0",
[A;(0,609), A;(0,6%) =0, [IT'(0,6°), 1V (6, )] = 0. (2.33)

Appendix B shows the Hamilitonian (3.51) to give the correct equations of motion.

In Ag = 0 gauge, the free quantum vector field on the torus is expanded as

—

Ai(0796) = zero modes + Z f” K 1k9+fm* RT —zkﬂ)’
k£0,keZ,

where 1 < k < 3,2 < i < 5 and kg defined in (3.40). The sum is on the dual lattice
k=1k e 2 #0. Having computed the zero mode contribution in 1} here we

consider
Ai(0,609) = (ag,e™? +al e*), (2.34)
with polarizations absorbed in

ap; = I ag. (2.35)

17



From (3.52) the commutator in terms of the oscillators is

d49d49, —ik: 0 _ik/_eli — = + T
e” M e M [A(0,0), A;(07,0)] = [(az; +a' ), (ap; + a_E,j)] =0. (2.36)

(2m)8 —ki
The conjugate momentum IT7 (6, §) in (3.44) is expressed in terms of a;:,, a’ z. by
I (6, 6%) = 4;2\2: G g’ Z ks (a —af e ). (2.37)
Then taking the Fourier transform of II(d, §%) at §5 = 0, we have
/ (;i;0;4 e~ kO (6,0) = f6f G g7 kg (ap , —a’ i) (2.38)

From (2.38) and the commutators (3.52) and (3.55)), we find

B0 o o 7 1 4
/ e~k =0 (113 (4.0), A,(A,0)]

(2m)®
g g ki 1 Rﬁ\f
J I NsL L _ 66 e
= 0 = e 5 G = T g, CL 9 e oy — o) (a4 aly )
(2.39)
To reach the oscillator commutator (2.45), we define
= — t_ gt
Ap=ag+a  =AT . By=ag—d . =—E (2.40)
1 1
az (Az, + Ez) al. = §(ATEi +EL) = S(A i — B (2.41)

Now inverting (2.39) we have

Ry 1 kik;
A= L B LY S 2.42
[Ef s Afr ] Ro/g0%%k, (27)? (95 g kkkk/) —F (2.42)
and from (2.38) and the relations (3.52) and (3.55),
[Agi Ap ) = [Ezi» B ;] = 0. (2.43)
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Using (2.41),
agoal) = 1 (Are A py) — B B g )~ [Apo B p )+ e A g )]), 244)

together with (2.42)), (2.43) we find the oscillator commutation relations

R 1 kik;

T 1 ilvj

Ui Q) = =~ i~ ) Ok

i ]] Re\/gGP ks 2(2m)? (9 gr* kkkk’) ok

lag s a5 = 0, [a£i7 G,T;,j] = 0. (2.45)

In the gauge & A4;(f,6°) = 0, then kia;, = g"kjaz, = 0, kiaj;i = gijkjaj;i = 0 asin
(2.23), and these are consistent with the commutator (3.56). We will use this commu-
tator to proceed with the evaluation of the Hamiltonian and momenta in (3.42}2.29).

In A¢ = 0 gauge,
H.= [ d% L 60 i 0. .06 Ay + 2" g F (2.46
47T2R1 —5 L9 6i6i’+199 gL ) 46)
which is the Hamiltonian H°? in (3.2). In (2.29) after integrating by parts, we also set

the second constraint described in Appendix A §;II* = 0, to find

1 o
P=— dp*do>de*de® i’ [ Fys 247
47T2R1R6/ V9 g 65/ L5 ( )

which is the momenta P?? in (3.2).

From (2.46)), in terms of the normal mode expansion (3.53),

=
[

kez4+£0

Rﬁ 1~ il 1 il qdl iil
+ (27 \/_ > | §G%69 keke + 5(9 g7 — g7 )k;jkj/)(a,gia%i, + agia,gi/),

kez4+£0

(2.48)
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with the delta function

o (2.49)

=L

/ A i _ g
(2m)?

and where kg is given in ((3.40)). From the on-shell and transverse conditions (2.23),
G kek + |k|> = 0, and Kag, = kiagi = 0, so the time-dependence of H, on #° cancels

and

RG qg i
H, = (27]')2T\/_ Z g |k|? (a,;iaj;i, - a%ia,gi,). (2.50)
! ke Z4+£0

Similarly the momenta from (2.47) become

R
pi:_ﬁ_\/g

66 54’ 2 1 o
R, G%gi7 (27) Z kek; (an,an + an,akj). (2.51)

kez4+£0

Since we are using a Lorentzian signature metric at this point, —G% > 0. Then rewrit-
ing in terms of a real Euclidean radius R, and making the upper sign choice in (3.40),

we have

—H.+1iy'P; = —ZR—G R—\l/_ (2)? Z k| ( — iRe|k| + ~'ki) g (agjagj, + ajz ,a,;j,).

kez4+£0
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Inserting the polarizations as a;, = ffa} and ajzi = f}*a%T from (3.54) in the commu-

tator (3.56) gives

Rl R6 ! kk K *
Re\/g | k| 2(27)? <9U |/<;|2> = f7 1 ag, a2, (2.54)

T _
[aE’N a/]z/ j] -

where we choose the normalization
[af, a2l = 6"0; 1. (2.55)

Then the polarization vectors satisfy

R 1 k. k. o R 1
K )\* Ii>\ 1 o 1'v] 77 r; );*55)\: 1 i
F1 0 = )(gw |W), g7 T e
R, 1
g7 e = o .
VK| 2(2m)?

So the exponent in is given by

o 1 R ) ) .
—H, +iy' P = —i— 6\/_( 2mr)? Z k| ( — iRe|k| + ~'ki) g (2a£~ja,;j/+[a,gj,at,])

Re R, ) k7
EeZ1540
. K Z Hf{
—=i Y (k- iRalk]) e 5 Z —iRolk|) 8
kEZ‘l;ﬁO cZ4+£
(2.56)
Then the partition function is
zePMazeell = trexp{2m(—He + iv'P))} = 2223, modes Zose: (2.57)
where from (3.62),
250 — g o2 Srezize (VhimiRolb] ) afl o —mRo Sreza 0™ (2.58)
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2.4 Comparison of Oscillator Traces Z52 and 72

osc osc

In order to compare the partition functions of the two theories, we first review the
calculation for the 6D chiral field from [2] setting the angles between the circle and

five-torus «, * = 0. The oscillator trace is evaluated by rewriting (2.2) as

2 . 2
—27TR6H + 227'(")/ ,P %/ d59HlTs€lmmnH6mn = % d59\/ —GHGmnHGmn
0
27
= —im / dO(T1™™ Hepn + HepmnII™) (2.59)
0
where the definitions H"" = w;_fGem”lrsHlm and Hg,pp = Wemnlm]{ Irs fol-

low from the self-dual equation of motion (2.4). 11™"(6, %), the field conjugate to

Binn (6, 6°) is defined from the Lagrangian for a general (non-self-dual) two-form

Is = [d®0(— )H N HMMY so T = wggmn = mHﬁm" The commutation

relations of the two-form and its conjugate field T (6, 6°) are

[I73(6,6°), Bra (6, 6°)] = — i6°(6 — 0)(3},05 — 0757,),

(1176, 6°), TT""™ (67, 6°)] =[Bys(0, 6°), Bpun (67, 6°)] = 0.

From the Bianchi identity d;;, Hy/yp) = 0 and the fact that |i implies " Hypy = 0,
then a solution to (2.1) is given by a solution to the homogeneous equations 9“9, By n =

0, 9By = 0. These have a plane wave solution

Bun(0,0°) = fun(®)e™” + (fun(@)e™)s Gpupy =03 ph v = 0; (2:60)
and quantum tensor field expansion

B (0,0°) = zero modes  + Z Kbt ? 4 e et (2.61)

mn”p mn“p
P=plEZ5#0

for the three physical polarizations of the 6D chiral two-form [2], 1 < x < 3. Because

oscillators with different polarizations commute, each polarization can be treated
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separately and the result then cubed. Without the zero mode term,

Bn(0,60°) = " (bimn €77 + b5 e (2.62)
p#0
for bsnn = fy.by for example, with a similar expansion for I1™(9,6°) in terms of

6mn

Cy . From (2.60) the momentum Dg 1S

pe = —7'pi — s\ [ 9" pipj + % (2.63)
1

For the gauge choice Bg,, = 0, the exponent (3.68) becomes

—im(2m)° Z ipe (CgmnTBﬁmn + Bﬁmncg.mnT)

P=pi€EZ5#0
= —2im > peCy By f " (p) forn(P) — T Y pof " (D) £ (P)
0 0
= —2im > peCy By —im Y psd™”, (2.64)
P#0 P#0
with Bppn = bgmn + biﬁmn, Cgmm = cfi’g»” + CgmnT. The polarization tensors have

been restored where 1 < k, A < 3 and the oscillators Bg, C;T satisfy the commutation

relation
(B, C51] = 6" 6. (2.65)
So restricting the manifold to a circle times a five-torus in [2] we have
— 2 R¢H + 27" P,

9 2
. i . i p R K 1% p Kk
PEZ5#0 ' PeE? 1

(2.66)

23



The oscillator trace (2.2) is

2
- —2in S o P6CEI BE—mRe S o1 [ g pipj+ ok 5
76D _ . omtHARTY P g o pAOIOYE T P Wi R2

osc Y

2
_ e daiinin, e 2L
ZGD,chiral Z . ( TR Y mez51/9 nsz‘FR% 1 )3
zero modes € - 2 ' .
REZ540 —27Rg glJninj—i—R—% +i27wyin;
1—e 1

(2.67)

Regularizing the vacuum energy as in [2], the chiral field partition function (2.2)

becomes
-3 VGs
Z6D chiral ZGD . Rem Zﬁ;ﬁ@ (gi;nind +RZ(n1)2)3 1 3
zero modes € — D) 5
ﬁ€Z5756 1_ 6—27TR6\/Q1J7’LT+127F’}/ n;
(2.68)
where Z80 . is given in (2.11). Lastly we compute the 5D Maxwell partition

function from (3.64),

it e—zmz,#ﬁ(yiki—mm/ g kik; )aﬂ afi—m 3 5(Rer/ g kik;) 6%F

zero modes )

(2.69)

Z5D Mazwell Z

where k = k; = n; € Z% on the torus. From the standard Fock space argument

tr oo — TTS (kle o k) = H —

p k=0

we perform the trace on the oscillators,

220 = (e Saea v ] ! ) (2.70)
ose —i27r(’yin7;—iR6 v/ g¥ning) 7
n6247é0

— 3
. (6—7T36 Yiezt VIInin, | | 1 ) ’
e~ 2 Rey/ g¥inin;—2wiving

(2.71)

5D, Maxwell
Z Zzero modes

n€Z47éO

where 720 is given in (2.20). (3.66) and (2.67) are each manifestly SL(4, Z)
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invariant due to the underlying SO(4) invariance we have labeled as i = 2,3,4,5.
We use the SL(4, Z) invariant regularization of the vacuum energy reviewed in Ap-

pendix C to obtain

%Rfﬂf2 >oiiro #@ 1 3
(6 (gijn*nt)2 H )
1 — e—27rR6 v/ g nin;—2miving ’

ReZ440

5D,Maxwell __ 75D
Z - Zzem modes

(2.72)

where the sum is on the original lattice 7 = n' € Z* # 0, and the product is on the
dual lattice 7i = n; € Z2* # 0. In Appendix D we prove that the product of the zero
mode contribution and the oscillator contribution in (3.67) is SL(5, Z) invariant. In

(F.48) we give an equivalent expression,

R 3
Z5D7Maxwell _ Z5D X ng 1
— “zero modes € on Be 2
=21 2 n|+27miyin
n#0 1—e 2
3
H o—2mRe<H>p, ] [ 1 )
) . Y
—2mRe/ g nin;+2miyin;
ne€Z3#(0,0,0) mezl—e OV g AT

(2.73)

with < i >, definedin (B.13). In Appendix D we also prove the SL(5, Z) invariance
of the 6D chiral partition function (2.68), using the equivalent form (C.44),

. . mRg 1
6D,chiral __ 76D . CRo
Z - Zzero modes (6 2

)3
AL

6D 1
) ( H o2 Re<H>3P H )3
/ 2
n) €24+£(0,0,0,0) no€Z —27Rg gijninj—‘r% +i2myin,
1—e !

(2.74)

with < H > in (E64). Thus the partition functions of the two theories are both
SL(5, Z) invariant, but they are not equal.
The comparison of the 6D chiral theory on S* x 7% and the abelian gauge theory

on 7° shows the exponent of the oscillator contribution to the partition function for
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the 6D theory (2.66),

— 2 RgH + 1277 P,
2
s . K - Z p RK
=2 ) <_ 'pi + Rey [ 97 pipj + R? ) Cy' By —mhs ) \|apw; + R12 "
FeZ540 peZs 1

and for the gauge theory (3.62),

—2nH°P 4 21iy' PPP = —2r Z (Wk:z + Re/ g kik; ) ap — mRe Z v 97kik; 6",

keZ4£0 kez4

(2.76)

differ only by the sum on the Kaluza-Klein modes p; of S since for the chiral case
p € Z°, and for the Maxwell case k € Z4. Both theories have three polarizations, 1 <
k < 3, and from (3.69), (3.61) the oscillators have the same commutation relations,

[B3,C31] = 6" 65 [af, a2l] = 6"* 67 . (2.77)

pp> k;’ k!

If we discard the Kaluza-Klein modes p? in the usual limit [30] as the radius of the
circle R, is very small with respect to the radii and angles g;;, R, of the five-torus,
then the oscillator products in (3.74) and (3.73) are equivalent. This holds as a precise
limit since we can separate the product on n;, = (ny,n,) # 0, in , into (n; =
0,n4 # (0,0,0)) and (n; # 0,all n,), to find at fixed no,

11 :
4 —2mRe, [gmin;+ <n12>2 +27iying
n1€24£(0,000) | _ e
11 T 11 1
B —27Rg+/ g¥ninj+2mivying _ i (n)? L
na€Z3#(0,0,0) l—e o YA g €23 1—e 2m Ry [t min+- R? +2miying

(2.78)
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In the limit of small R; the last product reduces to unity, thus for S* smaller than 7°

1 1
H 27 R, | gid ()% o i - H —27Rgr/ g9 nin; +2miving
— . . . 7 7
ni€24£(0000) | _ 2oy g mnit T tamiatne -, ezs2000) 1 — € g

(2.79)

Inspecting the regularized vacuum energies < H >, and < H >8” in (B.13),(E.64),

o Ki(2mnR —
<H 0= o] S cos(pon®2mn) LD g | = e,

n=1 n
_ - o Ki(2mnRs|p ni)? .
<H >0 == pi| Y cos(par2mn) ! p L) for | = \/% + §Pnang,
n=1
(2.80)

we see they have the same form of spherical Bessel functions, but the argument dif-
fers by Kaluza-Klein modes. Again separating the product on n, = (ny,n,) in (3.74),
into

(n1 = 0,n, # (0,0,0)) and (n; # 0, all n,) we have

H o2 Re<H>3T ( H 67271'R6<H>pj_) ) ( H 6727rR6<H>2[£).

ny €24£(0,0,0,0) na€23+£(0,0,0) n17£0,n0 €23
(2.81)
In the limit R, — 0, the last product is unity because for n; # 0,
: (m)* | - ||
1 af ~N —
lim |p,| K;1(27nRs|p,|) = lim I K (QWnRQM) =0 (2.82)
R1—0 R1—0 Rl Rl ’
since lim,_, o, x Ky (z) ~ /z e* — 0. [52]. So (3.78) leads to
I; —2nRg< H>6D _ —2rRe<H>p, )
A H e PL H e PL (2.83)
n1 €24£(0,0,0,0) na€23+£(0,0,0)
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Thus in the limit where the radius of the circle S! is small with respect to T°, which

is the limit of weak coupling ¢2,-,,, we have proved

: —2nRg< H>6D 1
lim | | e 2 Re<H>p, | |
Rl —0 .. n% . .
ny €24#£(0,0,0,0) no€Z ] —2mRey [g¥nin;+ 5 +i2mying
— e 1

_ H 6—27rR6<H>pL H 1 . (284)

—27Rg/ g nin;+2miying
na€234(0,0,0) npez 1 — € o ‘

So together with (2.3), we have shown the partition functions of the chiral theory on
St x T® and of Maxwell theory on 7, which we computed in (3.74) and (3.73), are

equal only in the weak coupling limit,

lim ZGD,chzral — Z5D,Mzzmwell' (285)
R14>0

2.5 Discussion and Conclusions

We have addressed a conjecture of the quantum equivalence between the six-dimensional
conformally invariant N = (2, 0) theory compactified on a circle and the five-dimensional
maximally supersymmetric Yang-Mills theory. in this chapter we consider an abelian
case without supersymmetry when the five-dimensional manifold is a twisted torus.
We compute the partition functions for the chiral tensor field B,y on S' x T°, and for
the Maxwell field A;; on T°. We prove the two partition functions are each SL(5, Z)
invariant, but are equal only in the limit of weak coupling ¢2,-,,, a parameter which
is proportional to R;, the radius of the circle S*.

To carry out the computations we first restricted an earlier calculation [2] of the
chiral partition function on 7° to S* x T°. Then we used an operator quantization
to compute the Maxwell partition on 7° as defined in which inserts non-zero
7' as the coefficient of PP, but otherwise quantizes the theory in a 5D Lorentzian
signature metric that has zero angles with its time direction, i.e. v =0, 2 < i < 5,
[13]. We used this metric and form to derive both the zero mode and oscillator

contributions. The Maxwell field theory was thus quantized on 7°, with the Dirac
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method of constraints resulting in the commutation relations in (3.56).

Comparing the partition function of the Maxwell field on a twisted five-torus
T° with that of a two-form potential with a self-dual three-form field strength on
S x T5, where the radius of the circle is Ry = ¢2,-,,/47?%, we find the two theories are
not equivalent as quantum theories, but are equal only in the limit where R; is small
relative to the metric parameters of the five-torus, a limit which effectively removes
the Kaluza-Klein modes from the 6d partition sum. How to incorporate these modes
rigorously in the 5D theory, possibly interpreted as instantons in the non-abelian
version of the gauge theory with appropriate dynamics remains difficult [36]-[39],
suggesting that the 6d finite conformal N = (2,0) theory on a circle is an ultraviolet
completion of the 5D maximally supersymmetric gauge theory rather than an exact
quantum equivalence.

Furthermore, it would be compelling to find how expressions for the partition
function of the 6d N = (2, 0) conformal quantum theory computed on various mani-
folds using localization should reduce to the expression in [2] in an appropriate limit,

providing a check that localization is equivalent to canonical quantization.
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Chapter 3

EM Duality on 7 from the Fivebrane on T? x T4

3.1 Introduction

Four-dimensional N = 4 Yang-Mills theory is conjectured to possess S-duality, which
implies the theory with gauge coupling g, gauge group G, and theta parameter ¢
is equivalent to one with + = £ + % transformed by modular transformations
SL(2, Z), and the group to G [41]-[43], with the weight lattice of GV dual to that of
G . The conjecture has been tested by the Vafa-Witten partition function on various
four-manifolds [44]. More recently, a computation of the N = 4 Yang-Mills partition
function on the four-sphere using the localization method for quantization, enables
checking S-duality directly [8].

This duality is believed to have its origin in a certain superconformal field theory
in six dimensions, the M5 brane (2,0) theory. When the 6d, N = (2,0) theory is
compactified on 72, one obtains the 4d, N = 4 Yang-Mills theory, and the SL(2, Z)
group of the torus should imply the S-duality of the four-dimensional gauge theory
[45]-[32].

in this chapter, we compare the partition function of the 6d chiral tensor boson
of one fivebrane compactified on 7% x T*, with that of U(1) gauge theory with a 0
parameter, compactified on 7. We use these to show explicitly how the 6d theory
is the origin of S-duality in the gauge theory. Since the 6d chiral two-form has a
self-dual three-form field strength and thus lacks a Lagrangian [1], we will use the
Hamiltonian formulation to compute the partition functions for both theories.

As motivated by [13], the four-dimensional U(1) gauge partition function on 7"



is

Z4d,Maxwell = tTe—ZTrH4d+i27r7"‘P§d — Ziio odes Zglgc’ (31)
where the Hamiltonian and momentum are
2 2 R2 e? 02 1672 fe? R2
e :/ a0 (5 =L gapmoTl? T G F, F, L g T
. 157" VI gt |9 0 F gg gtest )
2T
pid — / PO TI°F,p
0
(3.2)

in terms of the gauge field strength tensor F;;(6?,6%,6°, 6%), the conjugate momen-
tum I1%, and the constant parameters g.3, R and 7* in the metric G;; of T*. They
will be derived from the abelian gauge theory Lagrangian, given here for Euclidean

signature

1 4 } 0 .
= [ dbsdfiddsddy (e—f\/gF”Fij - i—e”leiijl), (3.3)
T

™ v

with €490 =1, ¢ = ge’™, and g = det(Gy).

In contrast, the partition function of the abelian chiral two-form on 72 x 7% is [2]

Z6d,chi7’al = tr e—?ﬂR6H+i27r'ya73'a — Zzﬁedro odes Zggca
1 2m ’ / / — —
H = E / det. .. d05\/55G5mm G5nn G5pp Hmnp(Q, 96) Hm’n’p’(‘gv 86),
0
1 27 o .
Pa= =57 [ A0 Hy (0.0°) Horo(0,0°) (3.4)
0

where 6! and 6? are the coordinates of the two one-cycles of 72. The time direction §°
is common to both theories, the angle between 6! and 6 is 3%, and G5™" is the inverse
metric of Gf,,,,,, where 1 < m,n < 5. The eight angles between the two-torus and the
four-torus are set to zero.

Section 2 is a list of our results; their derivations are presented in the succeeding
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sections. In section 3, the contribution of the zero modes to the partition function for
the chiral theory on the manifold M = 7% x T* is computed as a sum over ten integer
eigenvalues using the Hamiltonian formulation. The zero mode sum for the gauge
theory on the same T* C M is calculated with six integer eigenvalues. We find that
once we identify the modulus of the 72 contained in M, 7 = 3% + z’%, with the gauge
couplings 7 = £ + i?3, then the two theories are related by 2%~ =~ =ez3 .
where ¢ is due to the zero modes of the scalar field that arises in addition to F};
from the compactification of the 6d self-dual three-form. In section 4, the abelian
gauge theory is quantized on a four-torus using Dirac constraints, and the Hamilto-
nian and momentum are computed in terms of oscillator modes. For small 7%, the
Kaluza-Klein modes are removed from the partition function of the chiral two-form,
and in this limit it agrees with the gauge theory result, up to the scalar field contribu-
tion. In Appendix E, we show the path integral quantization gives the same result for
the 4d gauge theory partition function as canonical quantization. However, the zero
and oscillator mode contributions differ in the two quantizations. In Appendix F, we
show how the zero and oscillator mode contributions transform under SL(2, Z) for
the 6d theory, as well as for both quantizations of the 4d theory. We prove the parti-
tion functions in 4d and 6d are both SL(2, Z) invariant. In Appendix G, the vacuum
energy is regularized. In Appendix H, we introduce a complete set of SL(4, Z) gener-
ators, and then prove the 4d and 6d partition functions are invariant under SL(4, Z)

transformations.

32



We compute partition functions for a chiral two-form on 7% x T* and for a U(1)
gauge boson on the same T*. The geometry of the manifold 72 x T* will be described

by the line element,

ds? = R2(d6? — B%dHY)? + R2(d*)?

+ 3 gap(do™ — yd0°)(d0” — 57 do°) + RE(d6°)?, (3.5)
a,f

with0 < @' <2r,1<1<6,and 3 < a < 5. Ry, R, are the radii for directions I = 1,2
on 72, and [3? is the angle between them. g, fixes the metric for a 7° submanifold of
T*, R is the remaining radius, and ~* is the angle between those. So, from (3.5) the

metric is

T2 G =R+ 3352527 Gio = —33527 Gao = RS;
T':  Gag=0ap  Gas=—9as7",  Gos = Rs" + gasy™V’;

Ga1 = Go2 =0, Gis = G = 0; (3.6)

and the inverse metric is

1 52 1 5252 5252
TQ : Gll = —, G12 == G22 - — 4 — 422 i :
R,? Ry? R2 R’ g R,
a~B « 1
T4: Gaﬁz a6+7’y : GQGZL, G66:—
g R62 R62 R62
Gla — G2a — O’ Glﬁ — G26 —0. (37)

0% is chosen to be the time direction for both theories. In the 4d expression 1} the
indices of the field strength tensor have 3 < i, j,k,l < 6, whereas in (3.4), the Hamil-

tonian and momentum are written in terms of fields with indices 1 < m,n,p,r, s < 5.
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The 5-dimensional inverse in directions 1, 2, 3, 4, 5 is G5™",

1 ia p*p
Gl — — G2 — Nl G2 — o2
5 R12 5 R12 9 + R12
G =g, G =0, GFF=0 (3.8)

g°? is the 3d inverse of g,s. The determinants are related by

\/a =\ detGU = RlRQ\/_ = RleRﬁ\/T = RG\/ G5, (39)

where G is the determinant for 6d metric G;;. G5, g and g are the determinants for
the 5D metric G,,,,, 4d metric G, and 3d metric g, respectively.

The zero mode partition function of the 6d chiral two-form on 7% x T* with the

metric (3.7) is

_ E ~ oo/
Zzero modes — €xp g H12a HlQa’ }

ng,ng,n10
Zexp{——R6R1R2\/_gm 5 49" H s Horgryr — iy €% Hyg Hops
1 p¥
> eXP{——RGRlR2\/_(R2 X 59" 9" Haop Howrs'}
n4,N5,Ne6 1
. ReRy /= 2 _aa' BB P 761
Z exp{—m I V3B%9°% %% Hy g Howrgr + iy P H g Hypg
1
ni,n2,n3
WRGRQ =~/ oo ’ aB Bo’
Vilg* g — ¢*% ¢° ) HiosHiwp } (3.10)

4 R

where the zero mode eigenvalues of the field strength tensor are integers, and
factors into a sum on H,g, as Hsus = ny, Hi2q as Higz = ng, Hioa = ng, Hiz5 = nyo; and
a sum over H,p defined as Hi34 = ny, Hiys = ng, Hizs = ng and Haap as Haza = ny,
Hyus = ns, Hazs = ng, as we will show in section 3.

The zero mode partition function of the 4d gauge boson on T* with the metric
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@.6) is

0e? R?
Zzeromodes: Z exp{— gaﬁHaHB} Z exp{— ‘ 690466&75}7 6H6}

M4,N5,M6 \/_ ni,n2,n3 \/_
e?\/q , 62 1672 ~ ~ Lo~
-exp{— é;/_(47r2 + i )9 g F o Fgs + 2miy* 1P F g}, (3.11)

where TI° take integer values I3 = ng, 04 = ng, [I° = ng, and Fyy = ny, Fyy =

na, f45 = ng, from section 3. We identify the integers

~ 1 ~
HQaﬁ = Faﬁ and' Hlaﬁ - TGQB')/H’Y, (312)
g

where § = g R;? from , and the modulus

so that as shown in section 3, we have the factorization

754 =M

zero modes zero modes’

(3.13)

where € comes from the remaining four zero modes H,s, and H;,, due to the addi-
tional scalar that occurs in the compactification of the 6d self-dual three-form field

strength,

R
€= Z exp{—7r 6 \/_g "HigoHigor }

ng,ng9,n10

Zexp{_—RGRlRQ\/_gaa BE’ 66H BgH 188! —ZTF’Y EA/B ]’1127 0466} (3 14)

nr

From section 4, there is a similar relation between the oscillator partition functions

limR17R2_>026d € Z4d

0osc osc)

(3.15)
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where

-3 = AL 3
78 = (07 20 G . (3.16)
osc B =2 o ’ )
s 2540 1 — e~ 2mBe/ 9*7Papg+p+2miv*pa
pez?

1 -2 N 2
PR L Y S e 1 (3.17)
osc e B .« ) :
. 23756 1 — 6727TR6\/‘(] Nang—2TiY*Na
ne

2
where p* = 2 + (% + %)p% - %%i;plpg, and € is the oscillator contribution from the
1 1 2 1

additional scalar,

1 —2 e
;3BT a0 ey 1
€ =e afB . . (318)
1— 6—27”‘%6\/g"‘ﬁnan[g—27\'1"}/"%Oé

ReZ340

Therefore, in the limit of small 7%, we have
lile,Rgﬁo Z6d7 chiral —_ EE/ Z4d’ Ma:pwell. (319)

We use this relation between the 6d and 4d partition functions to extract the S-duality
of the latter from a geometric symmetry of the former. For 7 = 5% + i% =2 14,

under the SL(2, Z) transformations

T—>—l; T—=T7—1, (3.20)
T

and Z* which we will

zero modes osc’/

z%d and Z% are separately invariant, as are Z:

zero modes osc

prove in Appendix F. In particular, Z!¢ is independent of ¢* and 6. A path integral
computation agrees with our U(1) partition function, as we review in Appendix E
[47]. Nevertheless, in the path integral quantization the zero and non-zero mode con-

tributions are rearranged, and although each is invariant under 7 — 7—1, they trans-

form differently under 7 — —1, with Z2! — |T]PZE! and Z'! —

zero modes zero modes non—zero modes
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17| 320 edess FOT @ general spin manifold, the U(1) partition function trans-

forms as a modular form under S-duality [48], but in the case of T* which we consider

in this chapter the weight is zero.

3.2 Zero Modes

In this section, we show details for the computation of the zero mode partition func-
tions. The N = (2,0), 6d world volume theory of the fivebrane contains a chiral
two-form By, which has a self-dual three-form field strength H;yn = 0rBun +

8MBNL + 8NBLM with 1 S L, M,N S 6,

1

W—__GGLL/ Cornn Guyre” M N EST o (8,69). (3.21)

HLMN(é: 0°) =

Since there is no covariant Lagrangian description for the chiral two-form, we com-
pute its partition function from (3.4). As in [2],[6] the zero mode partition function of

the 6d chiral theory is calculated in the Hamiltonian formulation similarly to string

theory,
Z80 e = tr (e P (3.22)
where t = 21 Rg and ' = 27rg—éz, with [ = 1,..5. However, y' and y? are zero due to

the metric (3.7). Neglecting the integrations and using the metric (3.8) in (3.4), we
tind

T = ad ’ ’ T R ~ ao /
—tH = _ERGRlRZ V39° %% ™ HoprHorgrn — ERGEl V39 % Hyop Hopr
2

TR 2 aal / = R ~ aa 4
— Ry BF g g% \/gHQaBHQa’ﬁ’ — TRy 3° \/59 "% Hy g Hour

2R1 Rl
7TR = ad T R ~/ aad ’ aB o

— /39" Hiza Hisor — R \/3(9° 9% = 9°% ") HyopHiorpr,  (3.23)
RlRQ 4 Rl
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and the momentum components 3 < a < 5 are
L g5 L g5
Py = —5€ HyoyHopgs + € Hy\gHous, (3.24)

where the zero modes of the ten fields H;,,, are labeled by integers n4, . .. nyo [2]. Then

(3.22) is given by (3.10).

Similarly, we compute the zero mode partition function for the 4d U(1) theory
from (3.1). We consider the charge quantization condition
1 1 1
F

= =_— | —F,pdo* Ndb°, n; € Z, foreach1 <I<3.  (3.25)
T Eg 27T Eg 2

nr

as well as the commutation relation obtained from (3.52)

A
21

i

° (@, 6%| = do® =i 6P, (3.26)
=Y 7

Aa(0,0%d6°, /

2

D

and use the standard argument [6],[3] to show that the field strength Fi s and mo-

mentum [1* zero modes have eigenvalues

. () )
_ o Nap € Z for a < 3, and (¢, 6% = (Z B n® e 23,
7

(3.27)

Thus we define integer valued modes F,; = 2rF,; and II* = (2)2I1*. Taking into

account the spatial integrations d6*, (3.2) gives

—2rHY" + 27y PY?

e R~ =~ 62\/§ 62 1672 ~ ~ 0e? R2 ~ ~
=———2q, H&Hﬁ _ aB ’Y§Fa Flos — 6 N a'yéF Hﬂ
4\/595 8 |:47T2+ 64]9 g Farliss 87r\/§gﬁ€ 7o
+ 21N TIP F o, (3.28)

38



where itself is derived in section 4. So from (3.28) and (3.1)),

0e? R?
Z;lgromodes: Z exp{— gaﬁnanﬁ} Z exp{— GQaﬁeawaF Hﬁ}
n4,n5,M6 \/_ n1,n2,n3 \/_
e’ 0> 1672 ~ o
exp{= z;ﬁ (g2 + = )99 Fay oy + 2min T Fog}, (3.29)

where n; are integers, with Fyy = ny, Fys = no, Fys = ng, and 113 = ny, [1* = ns, 116 =
ng. is the zero mode contribution to the 4d U(1) partition function (3.1), and is
(3.11).

If we identify the gauge couplings 7 = £ + %} with the modulus of 7%, 7 =

B2+ le then

62 R2 0 2
R R 3
TR 5 B, (3.30)
and (3.29) becomes
RyR? ~ ~ RyR? ~ ~
Z4d — o 6 N HQHB . . 2 6 N a’y&F HB
zero modes Z exp{ WRM/EQ B } Z eXp{ ﬂ-ﬁ R gg BE 0 }
n4,n5,N6 ny n2,n3
exp{— (BQQ ) abB 7‘SFOWFBC;—l—va H/BFaﬁ}
(3.31)

Then the last four terms in the chiral two-form zero mode sum (3.10) are equal to

(3.11) since

™ RQRG\/_ R 92 55 ™ R2R6 22 6 o
oo H a H o' = — = OC/B ’Y F ,
2 Rl (R2 + /B ) 2ap+12a/ 8 \/_ R2 6 Bé
R R R
2 \/—529w gﬂﬁ HiopgHanig = —r3? ,BGM(SFWSHﬂa
1\/_
iﬂ7a67B5H175H2a5 = 2m’7°‘H Fag,
T(-RGRZ o ’ 56/ R6R2 ~ ~
T ' B H) g Higrpr = —T e g g TIOTT?
5 R, \/59 g 1ap 110/ WRl\/Egﬁ

(3.32)
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when we identify the integers

- 1 -
Haop = Fup and Hinp = EeamH”, (3.33)

with § = g Rg? from (3.9). Thus the 6d and 4d zero mode sums from (3.10) and (3.11)

are related by
ngro modes — € Z;l(:lro modes> (3.34)
where
€= Z “H 12aH 120/ }

ng,ng9,n1o

ZeXp{——RﬁRlRQ\/_gw 9 HapsHorgr — im7 € Hizy Haps }. (3.35)

nr

3.3 Oscillator modes

To compute the oscillator contribution to the partition function (3.1), we quantize the
U(1) gauge theory with a theta term on the 7 manifold using Dirac brackets. From
, the equations of motion are 8iFij = 0, since the theta term is a total divergence
and does not contribute to them. So in Lorenz gauge, the gauge potential A, with

tield strength tensor F;; = 0;A; — 0;A; is obtained by solving the equation
D'0;A; =0, with  0'4; = 0. (3.36)
The potential has a plane wave solution

A;(0,6% = zero modes + Z(f,-(k)eik'e + (fi(k)e™ ) (3.37)
k+#£0
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with momenta satisfying the on shell condition and gauge condition
Gikik; =0,  Kfi=0. (3.38)

As in [13],[6] the Hamiltonian H*? and momentum P2 are quantized with a Lorentzian
signature metric that has zero angles with the time direction, v* = 0. So we modify

the metric on the four-torus (3.6), (3.7) to be

éLaﬁ = Jas Gres = —Rs?, Gras =0

~ - 1 =~ ~ -
Gy =g, Gff = T RY Gi° =0, Gp=detGry=—g. (3-39)
6
Solving for k¢ from (3.38) we find
— 6L6

where 3 < o, f < 5, and |k| = /¢*Pkoks. Employ the remaining gauge invariance
fi = fl = fi + kA to fix f§ = 0, which is the gauge choice

Ag = 0.

This reduces the number of components of A; from 4 to 3. To satisfy (3.38)), we can
use the 0'Fjs = —050“A, = 0 component of the equation of motion to eliminate f; in

terms of f3, fa,

fs = —]%(ngz +p*fa),

leaving just two independent polarization vectors corresponding to the physical de-

grees of freedom of a four-dimensional gauge theory.
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From the Lorentzian Lagrangian and energy-momentum tensor given by

1
L= %2 —GLGEGIFFy + 39, e
i oL i
T’ = 50— 3L (3.41)

we obtain the Hamiltonian and momentum operators

Hc = /d39 T66 — /d30 ( - géG Ctﬁ FﬁaFﬁﬁ + \/_ aa gﬁﬂ/FaﬂFa/lBI o 8(11—[04 A6>,

(3.42)

2 ~
P, = / BOTC, = / d39( - 3V9 GPg" FoyFap — 0p11° Ay + H%Aﬁ), (3.43)

where we have integrated by parts; and the conjugate momentum is

5L 2 - 0 5L
[~ = = = JgG% ¢ Py — P 1% = =0. 3.44
baA. — VI Fes = g5 506 Ag (344)
Then we have
e R2 o 9 avyd 9 o
I{C — vy Pa = /d(gg <I7 (H + @E g F"/(S) (Hﬁ + @Gﬁp Fpo)
- 0
\/;gwgﬁﬁF sFyz — iy (17 + @eﬁvéFvé)Faﬁ), (3.45)

up to terms proportional to A¢ and J,I1* which vanish in Lorenz gauge. Note the
term proportional to €7’ F s F, 5 vanishes identically. is equal to H*® — iy~ P
given in (3.2), and is used to compute the zero mode partition function in via
(3.28).

To compute the oscillator modes, the appearance of 6 solely in the combination
I + ;% F,5 in suggests we make a canonical transformation on the oscil-
lator fields Ha(é’, 6%), Aﬁ(é, 6%) [49]. Consider the equal time quantum bracket, sup-

pressing the 0° dependence,
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—

{ / AP0 P F 5 As, m(*)} — 20" F,4(0), (3.46)

and the canonical transformation

- 9 ! _o
o) = exp{l327r2 /dge € BWFO‘BAW}’ (347)

under which I1%(d, 6%), A4(6, 6°) transform to I1%(4, 6°), A(6, 6°),

—

OO UG) = TG + e (0

—

U~
UH(60) As(6) U(0) = As(B). (3.48)
Therefore the exponent (3.45) contains no theta dependence when written in terms

of ﬁ“, which now reads

et R2 62 FaTy \/g ad 3 . afy
(Ho—iv"P,) = /d63(— fﬁgaﬁn I’ + 2029 9 FosFys — iy 1P Fap). (3.49)

Thus, for the computation of the oscillator partition function we will quantize with
¢ = 0. Note that had we done this for the zero modes, it would not be possible to
pick the zero mode integer charges consistently. Since the zero and oscillator modes
commute, we are free to canonically transform the latter and not the former.

In the discussion that follows we assume 6 = 0 and drop the hats. We directly
quantize the Maxwell theory on the four-torus with the metric (3.39) in Lorenz gauge
using Dirac constraints [50} 51]. The theory has a primary constraint 116(6, 6°) ~ 0.
We can express the Hamiltonian in terms of the conjugate momentum as

H, = / a3 o ga e11” + ;/jgadgﬂBFaf;F&B. (3.50)
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The primary Hamiltonian is defined by
R? e?
H,— / d93<fﬁgaﬁnanﬂ n \/;gwgﬂﬁF sF; — 0,11 Ag + /\1H6>, (3.51)

with \; as a Lagrange multiplier. As in [6], we use the Dirac method of quantizing
with constraints for the radiation gauge conditions Ag ~ 0, 0“4, ~ 0, and find the

equal time commutation relations:

- - y 1
B 6 P o6\ — (S8 _ BB N 3 /
[I17(0,6°), An(0',60°)] = z(da 97" (Ou o, 7/85 )) 50 —0"),

[Aa(0,69), Ag(@,6%)] =0,  [11%(0,6%),11°(F, 6°)] = 0. (3.52)

In Ag = 0 gauge, the vector potential on the torus is expanded as

—

6 KK zk@ Kk KT —ik-0
An(0,60°) = zeromodes + Z (fha + falaz'e™),
k#0,E€ 23

where 1 < k < 2,3 < o < 5 and kg defined in (3.40). The sum is on the dual
lattice k = ko € Z3 # 0. Here we only consider the oscillator modes expansion of the

potential and the conjugate momentum in (3.44) with vanishing 6 angle

Aa(0.6%) = Y (ag,e™ +af e ),

k0
L 200 ~5 . y
B 6\ __ 66 33 L iko _ f ik-0
11°(0,6°) = —Z?GL g Z ke (ag gre e ). (3.53)
and the polarizations absorbed in
g =I5 (3.54)
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From (3.52), the commutator in terms of the oscillators is

OO iy po i oo A (F.0). A 0)] = f i =
G ¢ 400,0), 4@ 0] = (oo + alg,) (o5 0l ) =0

(3.55)

We consider the Fourier transform (3.55) of all the commutators (3.52)), so the com-

mutator of the oscillators is found to be:

2
I [ 1 __kaks s
95 T ) 2,/GG ke 2(2m)? 5 (40 97 kb e
[aparapsl =0, o al, J=0. (3.56)

In A¢ = 0 gauge, we use (3.53) and (3.56) to evaluate the Hamiltonian and momentum

n (3.42) and (3.43)

H.= /d3

P, = e / d63d6*de°\/g g*° Fsp Fop. (3.57)

1~ / 1 /
= SGEG D Ads A + 199" FusFurs ),

With (3.53), (3.57) can be expressed in terms of the oscillator modes where time-

dependent terms cancel,

2 g aa’
He = P20 ST g (ag,at, + af 0g0)

kez340

2,/q9 ~ ,
P, = _GLQ_G%GQBB Y keka (aggal, +al ag,). (3.58)
kez3£0

and we have used the on-shell condition Gkgkg + |k|> = 0, and the transverse con-

dition k%ay,, = k:"‘aj;a = 0. Then,

12 /
_HC+Z.70[P - R \/_( ) Z |k’<_ZR6|k’+7aka)g/Bﬁ (aEB k/B/—Fa* akﬁ’)'
6 kezZ340

(3.59)
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. . . o T Xk AT .
Inserting the polarizations as a;, = fyaf and a;. = fi*a>' from (3.54) in the commu-

tator (3.56) gives

2
B t (& R6 1 o k k?g s &
[akoﬂa’]z/ﬁ] 4\/_|l€| (2’71’) (gaﬁ |k‘|2 ) kk’ f f [ k’ k ] (360)
where we choose the normalization
[Gk, aE/ ] 61{)\5]; ) (361)

with 1 < k, A < 2. Then the polarization vectors satisfy

2 2
K )\* wx _ € RG 1 kakﬁ >\* kA € RG 1
« ; T '2a
Fle = e e g ) I = e
2
Reg 1

BB rk )\/* :511)\ € .
Tl = 0y 5 Tl

So the exponent in is given by

\/_

kez3:£0
. o . KT K Z ; KK
= — Z (vko — ZR6|k|)aETaE ~3 Z (— iRg|k|) 6"".
kez340 Eez340
(3.62)
The U(1) partition function is
Z4d,Ma1‘well = tr eXp{QW(—Hc + Z")/ZPZ)} Zz4edro modes Z;J‘Sdm (363)
so from (3.62),
A _ e o2 ez i (1 kamiRolkl ) it —wRe Spe g g1k 87 (3.64)
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From the usual Fock space argument

tr oo — TTS (kle o k) = H —

p k=0

we perform the trace on the oscillators,

2

Z4d _ —7R6 X sez3 /9% nang 1 3.65

osc € ) .

7@271’(’}/0‘%& —iRe/g*Pnang)
n€Z37$0
2

Z4dMazwell _ 7dd < o~ R6 S e 28 /9P nans H 1 ) ’

#ero modes —27rR6\/m—27rmana

nEZ57éO

(3.66)

where Z2 e is given in (3.11). (3.66) and (3.72) are each manifestly SL(3, Z) in-
variant due to the underlying SO(3) invariance we have labeled as o = 3,4, 5. We use

the SL(3, Z) invariant regularization of the vacuum energy reviewed in Appendix G

to obtain
1 —2 Vi 2
Ad, Magwell _ 74d _ <62R6ﬂ Yazo (o GnanB)2 H 1 )
zero modes Mg 1 — 6727rR6\/ga5nan6*27ri’7ana ’
ne

(3.67)

which leads to (3.17).
On the other hand, one can evaluate the oscillator trace for the 6d chiral two-form

from (3.4) as in[2],[6]. The exponent in the trace is

. 2 . 2m
9w RsH + 217 P = % / AP0 Hypye ™™ Hy, o = % / POV —GH™ H,,,
0 0

21
= —im / d°0(I1™" Hep + Hepmn II™™)
0

= —2im > peCy By —im Y psd™”, (3.68)
p#0 P#0
where IT"" = —YZGTI5™", and [T is the momentum conjugate to By y. In the gauge

Bg, = 0, the normal mode expansion for the free quantum fields B,,,, and II""" on a
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torus is given in terms of oscillators B and C}’;T defined in [2], with the commutation

relations
Bz, c;f | = 6 05 (3.69)

where 1 < k, A < 3 labels the three physical degrees of freedom of the chiral two-
form, and ' = (p1, p2, pa) lies on the integer lattice Z°. From the on-shell condition

GLMprM = 0/

p p p2 . ( * )

pl

Pe = _,-)/Oépa - Z‘R6\/gaﬁpozpﬂ + =3 RQ

Thus the oscillator partition function of the chiral two-form on 7% x T* is obtained

by tracing over the oscillators

ZGd —tre Zzwzp#opgc Bq zwzﬂ#opgzs'm

osc
3
— (e~™Rs X5/ 9% papp+p? H
— e 2mipe

P70
_ (e S VI ] ! ). @
e~ 2mRe7\/ 9P papp+p°+27i7*pa ’
p€Z57€0
where p? = + (72 " T R2 )102 + 2%22]71]?2. Regularizing the vacuum energy in the
1
oscillator sum [2] yields
Z6d chiral Z dos - <6R67r73 Zﬁ;éﬁ W% H 1 >3
zero modes o . - o ?
ezl — ¢~ 27 R61/9°Ppaps+p>+2miv*pa

(3.72)

where 77 € Z° is on the dual lattice, G,,, is defined in (3.6), and Z5¢

zero modes is glven

in (3.10).
Comparing the 4d and 6d oscillator traces (3.66) and (3.71)), the 6d chiral two-form
sum has a cube rather than a square, corresponding to one additional polarization,

and it contains Kaluza-Klein modes. In Appendix H, we prove that the product of
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the zero mode and the oscillator mode partition function for the 4d theory in (3.67) is

SL(4, Z) invariant. In (F.48) we give an equivalent expression,

, 2
4d Mazwell _ 74d . (e% H 1 >

zero modes R .
—271 58 |n3|+2miy3n
ns#0 1 — e R3| sl s

2
H o= 2mRe<H>p,| ] [ l )
—27 Rg A /g”‘Bnang—i-Qﬂi'yana ’

(na)€22£(0,0) nsez 1 —e

(3.73)

where 4 < a < 5, with < H >, defined in (E.3).
In Appendix H, we also prove the SL(4, Z) invariance of the 6d chiral partition
function (3.72), using the equivalent form (F.65),

. . mRg 1 3
6d,chiral __ r76d X 6Ra )
Z - Zzero modes (6 3 Rg . 3
220 1 6727TR—3|7’L3|+27T1'Y n3)
ns -

_ 6d 1 3
(T e )2, (374)
—27Rg4/9*Pnang+n? +i2ny%ng

n1 €24:(0,0,0,0) nsez 1 —e

. ~ n 2 . .
with < H >% in (F64), and 7* = % + (RL% + %)n% + Q%ngnl. In the limit when R;

and R, are small with respect to the metric parameters g,3, Rs of the four-torus, the

contribution from each polarization in (3.73) and (3.74) is equivalent. To see this limit,

we can separate the product on n;, = (ny,n2,n,) # 0, in (3.74), into (n; = 0,ny =
0,14 # (0,0)), (n1 # 0,n9 # 0, all n,), (ny = 0,12 # 0, all n,), (N1 # 0,n9 = 0, all n,))
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to find, at fixed ns,

H 1
—27Rg, [ g*Pnan +M+(i+ﬁ)n2+2ﬁn2n1+2ﬂ'i’yan
ni€24£(0,000) 1 _ , o8 TR2 R "RZ/T2TOR2 o

11 -
—27Re4/ 9P nang+2miv*na

nac224(0,0) L — €

11 :
—2mRg, [ g*Pnan + ()2 +(i+ﬁ)n2+ﬁn2m+2m"7an
m#0,n2#0,(na€22) | _ o oSBT TR T\RZ T RZ/2TR2 @
11 -

9 B 1 B2y 9 0 ia
n1=0,n2#0,(n.€Z2) 1—e TFRG\/Q no‘n5+(R§+R% ) +2miy e

11 1
—27Rg 4 [ g*Pnan —l—(nl)2 +2miyen,
n2=0,n17#£0,(n.€Z2) 1—e altp R? *

(3.75)

Thus for T2 smaller than T, the last three products reduce to unity, so

H 1 Ri, R0, H 1
1 — ¢ 2mBsy/ 9Pnang+n?+2mwinong 0.0) 1— G—QﬂRs\/gaﬂnanﬁ-i-Qm'yana ’

n| €Z4£0 ngEZ2#£(
(3.76)
The regularized vacuum energies in (E.3)) and (F.64),
- Ki(2mnR ~
<H >y p0=—m"[pi] ) cos(pew®2mn) Crefslpil) g pLl = Vg name,

n
n=1

nd K{(2mnR — =
< H >2i7&0 =—m " |pL] ZCOS(paHGQWn) 1(2mn 3|p¢|)7 for |p.|= /1% + §%ngny,

n
n=1

(3.77)

have the same form of spherical Bessel function, but the argument differs by modes
(p1, p2). Again separating the product on n, = (n4,ng, n,) in (3.74), into
(n1 = 0,n2 = 0,nq # (0,0)), (n1 # 0,n2 # 0all n,), (n1 = 0,n2 # 0, all n,), (n1 #
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0,n9 =0, all n,)) we have

_ N 6d _ . 4d _ N 6d
H e 2mRe<H>p| _ ( H e 27rR()<H>pJ_) . ( H e 27rR(,<H>pl)

n1 €24£(0,0,0,0) na€22+£(0,0) n1£0,127£0,nq €22

) ( H 6—27rR6<H>g‘i) . ( H e—27rR6<H>g‘i)

n17#0,m2=0,n,EZ?2 n1=0,m2#0,n,EZ2

(3.78)

In the limit R, R; — 0, the last three products are unity. For example, the second is

unity because for ny,ny # 0,

lim /72 4+ g*¥nang ~ ViZ,

Rl,RQ—)O
3 — 1 52 2 _
Gl (pu] Ki@mnRalpo]) = | lim V32 Ky <27mR3(\/n )) —0, (3.79)

since lim, o, *K1(z) ~ /x e — 0 [52]. So (3.78) leads to

. _ 6d B
lim H e 2nRg<H>P| H e 2rRe<H>p | ) (380)

R1,Ra—0
n1 €24£(0,0,0,0) na€Z2+£(0,0)

Thus in the limit when 72 is small with respect to 7%,

. _ 6d 1
lim H e 2rRg<H>J% H
R1,R2—0 2 2 2 .
n) €24#£(0,0,0,0) n3€Z 1 2ﬂR6\/(ga5nan5+:%+§%)n%+1’i%n2nl +i2TY%ng
— €

_ H o-2mRe<H>p, H 1
_ af e '
nsCZ 1 — e 2mRe\/ g Nang+2miy*na

na€22#(0,0)

(3.81)

So we have shown the partition functions of the chiral theory on 7% x T* and of
gauge theory on T*, agree in the small 7 limit upon neglecting the less interesting

contribution ¢/,

lim Z = 750, (3.82)
1,02—
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which is (3.15). Again, € is equivalently the oscillator contribution from one polar-

ization, that is

1 -2 5 Va
¢ = (ST Bt ] ! (3.83)
—2mRe+/ 9% nang—2miv*ng )
rezigg Ll — €

The relation between the 4d gauge and 6d tensor partition function is shown in

the small 77 limit,

lim ZGd,chzral — 66/ X Z4d7Ma1’well7 (384)
R1,R2—0

which is (3.19). e’ is the partition function of a real scalar field in 4d, and is indepen-

dent of the gauge coupling 7.

3.4 S-duality of ZdMazwell from 76d.chiral

In Appendices B and D we show explicitly how the SL(2, Z) x SL(4, Z) symmetry
of the partition function of the 6d tensor field of the M-fivebrane of N = (2, 0) theory
compactified on 7% x T* implies the SL(2, Z) S-duality of the 4d U(1) gauge field par-
tition function. These computations use the Hamiltonian formulation. In Appendix
E we review the path integral formalism for the 4d zero and non-zero mode partition
functions, and give their relations to the quantities computed in the Hamiltonian
formulation. The results are summarized here.

1
= (Im7)3 L 7P (3.85)

R2 zero modes*
6

Z4d

zero modes

ZM — (Imr) 2g 3 R2ZE! (3.86)

osc’
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; 3
Zzero modes Zzero modes? Zzero modes |T| Zzero modes under S
Zzero modes Zzero modes> Zzero modes Z zero modes under T (387)
and
4d 4d 3
Z, 0sc Z, 0sc) Z non—zero modes |7—| non zero modes under S
4d 4d
Zosc Zosc? Znon zero modes Znon zero modes under T. (388)

S and T are the generators of the duality symmetry SL(2,2), S : 7 — -1, T : 7 —

7—1,where 7 = = +i%f is also given by the modulus of the two-torus, 7 = 3° + i

3.5 Discussion and Conclusions

We computed the partition function of the abelian gauge theory on a general four-
dimensional torus 7* and the partition function of a chiral two-form compactified on
T? x T*. The coupling for the 4D gauge theory, 7 = = + %3, is identified with the
complex modulus 7 = 2 + i{ll of T?. Assuming the metric of 7% is much smaller
than 7, the 6D partition function factorizes to a partition function for gauge theory
on T* and a contribution from the extra scalar arising from compactification. The
6D partition function has a manifest SL(2, Z) x SL(4, Z) symmetry. Therefore the
SL(2, Z) symmetry with the group action on the coupling, 7 = = + %, known as
S-duality becomes manifest in the 4D Maxwell theory.

The 6D chiral two-form has no Lagrangian, so we use the Hamiltonian approach
to compute both the 4D and 6D partition functions. For gauge theory, the integration
of the electric and magnetic fields as observables around one- and two-cycles re-
spectively take integer values due to charge quantization. We sum over all possible
integers to get the zero mode partition function. For the oscillator mode calculation,
we quantize the gauge theory using the Dirac method with constraints. In 6D, the
partition function follows from [2],[6].

We have also given the result of the 4D partition function, computed by the
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path integral formalism. It agrees with the partition function obtained with the
Hamiltonian formulation. However, the path integral form factors into zero modes
and oscillator modes differently, which leads to different SL(2, Z) transformation
properties for the components. The 6D and 4D partition functions share the same
SL(2,Z) x SL(4, Z) symmetry.

If we consider supersymmetry, compactification of the 6D theory on 72 leads to
N = 4 gauge theory in the limit of small 7. On the other hand, an N = 2 theory of
class S [53],[54] arises when the 6D, (2, 0) theory is compactified on a punctured Rie-
mann surface with genus g. Here the mapping class group of the Riemann surfaces
acts as a generalized S-duality on 4D super-Yang-Mills theory [55]-[57]. In Additional
data about the gauge theory such as the discrete § angle where the S-duality group
acts can also specified [57]. another direction, we can study the 2D conformal field
theory present when 6D theory is compactified on a four-dimensional manifold. The
2D-4D relation can also be studied from a topological point of view [58],[59]. Finding
explicit results, such as we have derived for 7% x T*, for these more general investi-

gations would be advantageous.
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Chapter 4

Conclusions and Future Directions

We computed the partition function of the five-dimensional abelian gauge theory on
a five-torus T° with a general flat metric by separating into zero modes and oscillator
modes. The computation is familiar from the one-loop modular invariant partition
function computation in string theory [13]. Although neither the zero mode nor the
oscillator mode partition functions are SL(5, Z) invariant, the product of them is an
SL(5, Z) invariant function of the metric parameters. This arises from the 7° com-
pactification. We compared this with the partition function of a single fivebrane com-
pactified on a circle S' times 7, which is computed by reducing the six-torus calcu-
lation of Dolan and Nappi [2]. The two partition functions agree for the zero modes,
but the Kaluza-Klein modes (KK modes) associated with the compactification on the
circle are missing from the 5D oscillator expression. Hence, these two theories only
agree in the weak coupling limit, thus disproving the conjecture by Douglas et al.
at the abelian level [6]. However, it is still interesting to understand the relation be-
tween these two theories at the non-abelian level. When the 6D (2, 0) is compactified
on a circle S', the associated KK modes could be identified with the instantons in
the 5D Yang-Mills theory. One might try to include instantons in the computation of
the 5D partition function. The full 6D spectrum might thus be obtained from the 5D
theory. One of my future research projects will be to give a systematic way to account
for instantons in the partition function which is itself a very challenging topic [20].
When one computes the partition function for the 5D supersymmetric gauge theory
on a more general manifold, one can use the supersymmetric localization technique

to quantize the theory, which is under active investigation [27].



S-duality has its origin in a supersymmetric conformal field theory in six dimen-
sions, the 6D, ' = (2,0) theory. When the 6D, ' = (2,0) theory is compactified on
T?, we obtain the 4D, A" = 4 super Yang-Mills theory, and the SL(2, Z) symmetry of
the torus implies the electromagnetic duality of the four-dimensional gauge theory.
To test this, we compute the partition function for the 6D self-dual two-form poten-
tial on 7% x T*, which posesses SL(2, Z) x SL(4, Z) symmetry. Also, we compute
the 4D gauge theory on a general T torus with the gauge coupling, 7 = = + i%Z set
to the complex modulus of the torus 7%, 7 = > + ifiL. In the small 7* limit, the 6D
chiral two-form partition function contains the partition function for the 4D abelian
gauge theory combined with a factor that represents the extra modes that transforms
trivially under the SL(2, Z). Therefore, the SL(2, Z) symmetry of the gauge the-
ory on T* follows from the 6D theory. For the 4D gauge theory, since there exists
a Lagrangian description, we also compute the partition function using the path in-
tegral formalism which turns out to be consistent with the result obtained from the

canonical quantization. However, it factorizes differently into the zero modes and

the oscillator modes [6]].

Our partition function computation shows explicitly that the S-duality of four-
dimensional gauge theory has a six-dimensional origin. More generally, one can con-
sider an N = 2 theory of class S arises when the 6D, (2,0) is compactified on a punc-
tured Riemann surface with genus ¢ [53]. In such a way, the mapping class group
of the Riemann surfaces acts as a generalized S-duality on the 4D super Yang-Mills
theory. Viewed differently, we obtain a 2d Toda conformal field theory by compact-
ification on a four-dimensional manifold. The equivalence of the 2d and 4D theory,
known as the AGT correspondence [55], has been studied via their superconformal
index computation [11]. However, since the AGT correspondence has its root in the
6D theory, it will be even more interesting to understand this duality from the 6D

partition function.
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APPENDIX A

EQUATION OF MOTION

The 5D Maxwell theory on a five-torus with metric (2.24) has the Hamiltonian
(3.51),
272 — ,
H,= /d49< L 6;/_ 97 g7 Fy; Fyyo — 01T Ag + /\1H6>,
Re\/gG% 1672 Ry
(A1)

with \; as a Lagrange multiplier. To quantize and derive the commutation rela-

tions, we start with the equal-time canonical Poisson brackets

{T17(0,6°), A (07,6°)} = —{Aa(6.6°), 11 (0,6°)} = —6"(0 — ') 67",

{1170, 6°), 11 (6, 0°)} = { A (6, 6°), Ax(8,6°)} = 0. (A2)
The constraints are required to be time-independent, so for ¢!(#) = I1(4, 6°),

0001 (0.6°) = 61(0.6°), H,} = — [ a*9'(IT°(6), Au(#)} 01T (¢") = O1T'(6) .
(A.3)

Thus the secondary constraint is
¢*(0) = O,11°(0,6°%) ~ 0, (A.4)
which is time-independent from the contribution

. - R
G(0.0°) = {G(0.0°) 1y} = S Vg [ 0 {0 6), Fy(0) Fip (0} = 0

(A.5)



The two constraints ¢!, ¢? are first class constraints since they have vanishin
y g

Poisson bracket,
{11°(9), 5,11 (6")} = 0. (A.6)
We introduce the gauge conditions
¢*(0) = Ag(0) =~ 0, ' (0) = 0'A;(0) = g70;A; ~ 0. (A7)

These convert all four constraints to second class, i.e. all now have at least one non-
vanishing Poisson bracket with each other, where the non-vanishing brackets are

{0'(0),0°(0")} = {I1°(0), As(0')} = —6"(0 — 0') = —{Aq(0),11°(0") },
{6%(0), 0*(0)} = {O:11(0), g7 01 A;(0')} = 9”%%54(9 —0') = —{g"7 9/ A;(0), O,1T'(6')}.

(A.8)

Furthermore, there are no new constraints since dg¢(f,6°) = {¢*(,6°), H} ~ 0,
when all 94 ~ 0, 1 < A <4, and \; = 9sA¢. We can write (A.8) as a matrix
CAB(0,0') = {¢"(0), 0" (0')},

0 0 -1 0
0 0 0 g2 .2
CAB — g 00t 00 64(6 - 9/) (A9)
1 0 0 0
0 —g¥252 0 0
The inverse matrix is
0 0 1 0
0 0 0 —m
(Cap)™' = 20" o0k [ 540 — ). (A.10)
-1 0 0 0
0 kk’LlL 0 0
06k 9ok’
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The Dirac bracket is defined to vanish with any constraint,

{An(0), (0" }p = {An(0), II"(9)} —/d4pd4p/({f1m(9),Hﬁ(p)}Cﬁl{Aﬁ(p’)wW’)}
+ {4 (0), 01T (p) }Coy {07 A; (p), 11 (0') }
+ {4 (0), As(p)}C {II°(p'), 7" (61) }

+{An(0), 07 A;(p)}Cip {OIT' (p), II*(61) }.)

(A.11)

So

(A0). 00} = {A:0). P (@)} — [ d'pa's ({40, IT(0)} €t (0¥ A, (6)
_ (53.' _ gfﬂ"a,-ma,) 50— 8,
(A.12)

where here all 9; are with respect to 7. So promoting the Dirac Poisson bracket to a

quantum commutator, we derive the equal time commutation relations

N - . . 1
J 6 (0 o\ — (5T — ) , 4 o .
[1(6,6%), Ay(6, 09)] 2(5Z 9 O 50 )) 50— 0, (A.13)

and similarly,
[A:(,69), A;(07,6%) =0,  [IT(0,6°),11 (#,6°)] = 0. (A.14)

Furthermore we can check explicitly that Dirac brackets with a constraint vanish, for

example

{TF(0),0"Ai(0")}p = {TF(0), g™ OuAi(8') — gy TT' ()
0 0

= égk%m — ) — @gwa‘l(@ —0') =0=[I(F),0'A;(¢")], (A.15)
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and

. ; L 1
T (O = 0. (& J3°( ., 4 N —
(0,117 (6), Ay(6")] a](az g (@gkk/ akak/(?’ )) 5O —6)=0. (A.16)
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APPENDIX B

REGULARIZATION FOR 5D MAXWELL THEORY

The Fourier transform of powers of a radial function is

1 a
Ipl*" ( / "y\/ Gy e~ 'y—, where Co = WF—)Q) (B.1)

This formula holds by analytic continuation, since for general n, o, where the

area of the unit sphere 5,,_5 is

27?771;1 7r . oy s 27
Wng = ——~ = dO,dby . ..db,_5 sinf, sin“By...sin"" >0, _3 do, (B.2)
F(T> 0 0

the Fourier integral is

ply) =
. 2270T(259)
= ‘pa " (27T)§ - 2 , (B3)
L(s)
where the last expression is valid for the integral when —2 < % —a < 1 but can

be analytically continued for all & # —n,—n —1,...

So expressing |p] in terms of its 4D Fourier transform,

3
7= - " d'yyg e

S L ®

pez4 pez4

<Y
S‘r—*



we have for the sum on the dual lattice, p; € Z4,

i 3 1 i (@7
Z |ple” :_mﬁ/d4y%261)( )

Pzt

\/_/ _,|5 (27) Z§4x— j+ 2mi) = —121%\/g Z

5
0 Wl |Z + 2mii® 27m|

(B.5)

where the regularization consists of removing the 77 = 0 term from the equality,

D e = (2m) Y oM (T + 2nii) (B.6)

pezZ4 nezZ4

and the sum on 7i is on the original lattice 7 = n’ € Z*. The regularized vacuum

energy is

<H>——16 VI Y : = —61%\/g Z . (B.7)

o 5
2
REZAA£0 (g T )2 n€Z47é0

For the discussion of SL(5, Z) invariance in Appendix G, it is also useful to write
the regularized sum (E.1), as

<H>= )Y <H>,=<H>, o+ » <H>,, (B.8)

pLEZ3 p1EZ3#0

where p, = p, € 23, o = 3,4,5, and

1 - 1 1
< H >pL:0: 5 Z A /922p2p2 - E Zn - EC(_1> = - (B,9)
n=1

g 12R,

by zeta function regularization. For general p,, we express (E.1) as a sum of terms at

fixed transverse momentum [2],

1 - 1
< H >, =—6r d>z) e L — B.10
pL ™ \/5(27]_)3 / zie ﬁE;#) 27+ 2P ( )

using the equality for the periodic delta function,
D opaezs €77 = (21)% Y aczs 0°(Z+ 2771).  Changing variables 2* — y* + 27n®,
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(B.10) becomes

1 ‘ 1
< H>, =—672 _ | By e Prve - B.11
= —6m \/5(%)3/ yLe n;éo T IiT (B.11)

where n is the n* component on the original lattice, and the denominator is [27n +
yol? = [(2mn)* Goat-2(2mm) Gaay +y/5y) Gas] = [(270)* (R3+9aph® k)~ 2(2mm) oy +
y*y” gop). We can extract the p, = 0 part of (B.11) to verify ,

<H>, o=

EZ;&O |27m+yL|5

1 1 1 1 2 1
Z _C()_

(27r)3 W50 27m)2R2 n? \/5 2m2R,  12R,’

——67r\/_

(B.12)

by performing the y integrations. For general p; € Z* # 0, (B.11) integrates to give
the spherical Bessel functions,

< H >, 20 = pLRy Z cos(pak®2mn) [ Ky (2mnRolpy|) — Ko(27nRslp, )]

n=1

- Ky (2
= g1 |pL|RQZcos(par<ca27rn) i ﬂnR2|pL|), (B.13)

n

n=1

where |p)| = 1/9*®nans can be viewed as the mass of three scalar bosons [2].
For a d-dimensional lattice sum, the general formula used in (B.4) for regulating
the divergent sum is [2],

PEPE G ) /dd N
p = ™ y d e = )
T(—3) ik
H 1
<H>:—Z\ﬂ 6”“”\*:0:5 \/ 9% Paps
pezd peZd
[(4H) 1
=odrs 2 /g . — B.14
TTEpYT ; 2T B19
ne
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APPENDIX C

SL(5, Z) INVARIANCE

Rewriting the 5D metric (2,3,4,5,6)
From (2.6) the metric on the five-torus, for i, j = 2,3, 4,5, is

Gij = 9ij Gis = —9i57, Gos = R + 917",
65 =detGup = Rg det gi; = R?i g. (C.1)
We can rewrite this metric using «, 5 = 3,4, 5,

922 = R3 + Guphkr’, Go2 = —Gaph’, GoB = Gap> (V> — 7y = =57,
Goy = R% + ﬁaﬁﬁaﬁﬂ, Gog = —(72)33 + gaﬁﬁﬂ:?aa Gaq = —gaﬂ/fﬁa

Gas = Gas, Gt = —Gai¥, Goo = RE + (V)2 B3 + Gap 7°7”.

(C.2)

The 4D inverse of g, is

e R_%7
(C.3)

where g is the 3d inverse of g,3.

g =detg; = R detgos = R5 3.



The line element can be written as
ds® = RA(dO°) + Y gij(df” — +'do°)(d67 — ~7de")

= R2(d6? — (v*)d#°)? + R%(d6°)>

+ Z Gop(dO —72dO° — k*dO*) (d0° —FPdO°® — KPdO?). (C.4)

a,3=3,4,5
We define
R
~__ 9 Y
=~ +1—. C5
Pt i (€5)
The 5D inverse is
~22 \7l2 66 |~(2 ~66 1 26 72 ~2a ’fOl|7ﬁ:|2 72&#&
G5:R%:G5|T’a GszR_ga G5:R_§’ G5 = R% +R§’
a, B ~axp 2(xa,.B ax B « 2,.« ~a
R O L e & G R ) T A Gl !
G =g L 2|72 , G'=-—=——1—"—(Cb

Generators of SL(n, Z)
The SL(n, Z) unimodular groups can be generated by two matrices For SL(5, Z)
these can be taken to be Uy, U,

01000 10000

00100 11000
U=10001 0]; Us=(0 010 0}, (C.7)

00001 000710

10000 00001

so that every matrix M in SL(5, Z) can be written as a product U Uy2U7* . ... There-
fore to prove the SL(5, Z) invariance of (3.67), we will show it is invariant under
U, and U,. Matrices U; and U, act on the basis vectors of the five-torus &, where
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ay = (1,0,0,0,0)
as = (0,1,0,0,0)
as = (0,0,1,0,0)
ay = (0,0,0,1,0)

ds = (0,0,0,0,1). (C.8)

For our metric (E3), the U, transformation

a, 0y 10000
al, ag 11000
a|=Us]ldas| =100 100 (C9)
a, ay 00010
al as 00001

results in O_.;IQ . O?é = a’ga’gGﬁq = GQQ = G’22, O?é . O_Z/G = Oé/ZQ)O/gGﬁq = G22 + G26 = G/%, etc.

So U, corresponds to

Ry = Ry, Rg— Re, 7> =7 =1, K% = &% 3% 2 3"+ K%, Gag = Gags  (C.10)

or equivalently

Rs — Re, > =¥ — 1, gij — gij, 7 — 7%, (C.11)

which leaves invariant the line element if d9? — df*—do°, do° — dos, do~ — do°.
U, is the generalization of the usual 7 — 7 — 1 modular transformation. The 4D
inverse metric gV = {¢”, g°2?, g**} does not change under U,. It is easily checked
that U, is an invariance of the 5D Maxwell partition function as well as the
chiral partition function (2.68). It leaves the zero mode and oscillator contributions
invariant separately.

The other generator, U is related to the SL(2, Z) transformation 7 — —(7) ! that
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we discuss as follows:

U, = UM, (C.12)

where M, is an SL(4, Z) transformation given by

00 —1 00
01 0 00

Msy=100 0 10 (C.13)
00 0 01
10 0 00

and U’ is the matrix corresponding to the transformation on the metric parameters
(E.16),

0 1000
-1 000 0

U=10 010 0]- (C.14)
0 0010
0 000 1

Under U’, the metric parameters transform as

Ry — Ro|7|, R — Re|7|™", ¥ = =772 &*=73% 7° = =K% Jap = Gas-

ELN _i, Or equivalently,
=

Gozﬁ — Gaﬂ, Gaz = Gos, Gas — —Gaz, G — Ges, Ges — Gz, Gag — —Ga,
- - ~ - ~ ~ - G2 - o~ - -
Ge7 > GEP, G -GS, GEt - -G, GP - ﬁ G — [FPGY, G — -GY,
(C.15)
where 3 < o, < 5, and

_ R _ R
Ty +io, FP=0P)+ o (C.16)

Ry
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The transformation (F.16) leaves invariant the line element when df* — d6°,
df® — —db?, do* — do*, do~ — dO*. The generators have the property det U; = 1,
detUsy =1, detU' =1, det My = 1.

Under M,, the metric parameters transform as

R¢ — R, ’YQ — —’73, v = ’Yaﬂ, 9aB 7 Ga+1,8+1s  Ga2 = —YGa+1,3, G22 — g33,

goP — go AL ey get L3 g2 g3 detgij =g, g— g Or equivalently,

Gapg = Gatip41, Gaz = —Gag13, Gas = Gag16, Gao — Gs3, Ges — Ges,  Gag — —Gse,
Gl o G gt GRS, G0 s GeNS, R LGB, G oGP, 0P o3P,
det 65 = Rs g, det 57’5 — det 65,

(C.17)

where3 < a,8 <5,and a+ 1 =2 for o = 5.
We can check that Z37 is invariant under M, given in (C.13) as follows. Let-

zero modes

ting the M, transformation (C.17) act on (2.20), we find that the three subterms in the
exponent

R6 9( an 4 ao’ aa’ a2 o
—2W3Tf(g 9% FagFuvr + 46" 4% FapFa + 20 g™ Faa Fara — 2929 Fas Farz )

1
R R
V9

20 ]
4r sy 'm! F;

: ,
-T m'giym’,

(C.18)
are separately invariant under (C.17), if we replace the the integers 27 F;; € Z5 m' €
Z4by

2rkog — 21 841, 2mFhe — —2mF, 113, m? — —m?, m® — m> (C.19)
where m' = Ri—‘égg“/FGi/ relabels (n”,n% n% n'%) = (m?, m3, m*, m®).

Therefore under M,, for the zero mode contribution,

_ 5D | ;9. ~i p5D _ 5D | ;9. ~i p5D
2 e 2m H>Z +i27y* P; N E : e 2w H>% +127y* P; ) (CZO)

n1,eesm6,n7 510 n1,ee,m6,n7 ,..n 10
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So 75D is invariant under 1/,. The origin of this is the SO(4) invariance in the

zero modes

coordinate space labeled by i = 2, 3,4, 5.
Next we show under U’ that Z5? transforms to |7]> Z30 From (2.20),

zero modes zero modes*

3 s
ngomodes: Z exp{— 27° R\/_ i J]F Firj '} Z exp{— 71'

migijmj + idm®y'm? Fi;}

ni...ne 1 m \/_
R VY
= Z eXP{—273%§g” g7 FijFy} Z exp{—mm - A" -m+2mim - x},
ni...ng m?2...m5

(C.21)

where A = feg; and ; = 277'F;;. Using a generalization of the Poisson sum-

mation formula

Z e*ﬂm-A’l-me%rim-x _ detA Z e —m(m+z)-A-(m+x))

meZP meZP

we obtain from (C.21)),

1 R o
B, s = (et )Y espl2nt N i g )
n1...n6626 1
9 i i il
Y. ew{- WR\/I; g7 (mj + 21 Fy) (mye + " 2mFy)
ma...ms5€Z4
(C.22)
where
A= N9 e A= (det A = — 9 (C.23)

Ry Rg (R1Re)*

To check how this transforms under U’ as given in (F.16), it is convenient to express
|i in terms of the metric é{,}ﬁ found in 1D

9 R6 i
del?“o modes # Z {__ \/_G GJJ (27TF )(27TF/ )}
1246 n1...n6€Z6
gR ~6i' ~ii
Z exp{ — 27 \/};1 GGg G m; (2nF;) — ;{g“ mim }

msa...msEZ4

(C.24)
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Curiously we can identify the exponent in (C.24) as the Euclidean action, if we relabel
the integers m; by fs;, and the 27 F}; by f;;; and neglect the integrations. In this form it
will be easy to study its U’ transformation, where (C.24) and (2.20) can also be written
as

é [N B3
75D _ V9 S exp{ - o N 0 G Gl g Favr }- (C.25)

zero modes (Rl R6)2 Pt 4R1

Under U’ from (F.16), the coefficient transforms as

/. \/g \/§ 7’:3
U R~ BR) 173, (C.26)

i

V39
Ri1Rs)2 = (R1Rs)?
ant under U’, as we show next by first summing m = {2, o, 6}, with 3 < a <5.

since . The Euclidean action for the zero mode computation is invari-

L

i J 7!
4Ry

TRoReN/7 [~ =5 . _ o
= TN (G0 G o+ 4G G s+ 4G G+ 208 G

— 2G22G? [y fary + AG2Y G2 [y farg — AG2OGE [ furg + 4G22GE0 for fas

+ 2G2% G fog fare — 2GEGE fas furs + AGL2GE fan fos — 4G GE faz fas
+ 45§2é§6fa6f26 — 45?6é§6fa6f26 — 2636626]36]626 + 2é§2§§6f26f26> -

(C.27)
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Letting the U’ transformation (F.16) act on ( , we see (F.25) changes to
g g

< — 27 {aémmlémlfmﬁfmw)/

RyR
= _7T 2 6\/_ (Gaa G’Bﬁ faﬁfa/ﬁ/ + 4Gaa GﬁGfoaﬁfouz - 4Gaa Gﬁ2foz,3fo/6 + =5 Gaa G22fa2fa’2

2R, kd |

— 2G2OGE oo faro — AGEY G2 fua o + AG2GE foz fars — 45“65“'21”&(1/ fos

+ 2|T| Gw GGGFabF 6 — QGQGGQ 2fa6fo/6 - GaGG%fazfzﬁ + =5 GaQGfoazfzb

7|2
+ 4|?|26?6(~?§6fa6f26 — 4é?2ég6fa6f26 — 262663656}7’26 + 2@§2é§6f26f26>-

(C.28)

~ /
G5 G/ i/
¥ Fanii Fsr

2
In the partition sum >, -1 e 7T( , we can replace the inte-

gers as follows: fuo = fas, fa6 — —fa2- Then using (E7), we have

é5~-~/~~~/ ! é5~-~/~~~/
—om | N2 G G f frt —2om | M2 G GR f frt
E e ! = g e 1 .

fmn€Z10 fran€Z0

(C.29)

So we have proved that under the U’ transformation (F16),

Z?e[r)o modes (R2|7’:|7 R6|7’:|_1a gozﬁv _'72|’7:|27 ?aa _"{a) = |7A:|3 Zi)e[r)o modes(R27 RG’ gozﬁ? /72’ /{av 7});
(C.30)

and thus under the SL(5, Z) generator Uy, Z32
8) also holds for Z52 . from (2.21). This is sometimes referred to as an SL(2, 2)
anomaly of the zero mode partition function, because U’ includes the 7 — —2 trans-

transforms to |7|* 250

zero modes*®

formation. Finally we will show how this anomaly is canceled by the oscillator con-
tribution. The 5D and 6D oscillator contributions are not equal, as given in (3.65) and
(2.67). By inspection each is invariant under My, (C.17).

U’ acts on Z°P

osc
—

To derive how U’ acts on Z3P, we first separate the product on 7 = (n,n,) # 0

osc’/

into a product on (all n, but n, # (0,0,0)) and on (n # 0, n, = (0,0,0)). Then

using the regularized vacuum energy (E.1) expressed as sum over zero and non-zero
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transverse momenta p, = n,, in (E.2),(B.9),(B.13), we find that (3.65) becomes

3
75D, Mazwell _ 5D (oors 1
— “zero modes Rg 5
—2m 5o |n|=2miy*n
n#£0 1—e 2
3
H o—27Re<H>p, H 1 )
na €Z3#(0,0,0) ez 1 — e 2o/ gt nin; —2miyini
(C.31)

As in [2] we observe the middle expression above can be written in terms of the

ks

Dedekind eta function n(7) = e i [L.cz 7éo(l — e¥nT) with 7 = 4% + i%a

(‘“’@ 11 Rl%,_m%)g = (n(M)n(7))~". (C.32)

_onBe
n;éOl_e "Ry

(=7 (=7 N =77 @nF) >, (C.33)

where n(—71) = (i7)25(7). In this way the anomaly of the zero modes in 1' is
canceled by the massless part of the oscillator partition function (E50). Lastly we
demonstrate the third expression in (F.48) is invariant under U’,

H o2 Re<H> . H 1 )3 = (PI): (C.34)

—2mRg+/ g ninj—2mivyin,
na€Z3#(0,0,0) necz 1 — e i :

where (PI )% is the modular invariant 2d partition function of three massive scalar
bosons of mass /g**n,ng, coupled to a worldsheet gauge field following [2]. From
(3.66),

- 1 3
25D _ (o~ F6 Sz v g0 mam; ) C.35
osc ( H 1 . 6_27TR6 /gijninj ( )

REZ4£0
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we can extract for fixed n,, # 0,

(PI)} = e Tmez VoTnms T L
gt 1— 6—27rR6\/gijninj+27ri'yini
2

B

B H ,3’E+27rz(’7 s+7%na) where s =n,, E= gijninja ﬁ/ =21 R
SGZ

= H ! forn, — —n
i V2 \/cosh B'E — cos 27 (725 + 7°n,) “ “

— o3 Lsez (10 cosh 8" E—cos 2m(12 5490 ) +12) = 73 Zaez V(E) (C.36)

where

Z v(E) = Z (In [cosh B'E — cos2m(v*s +7*ng)] + In2)

SEZ seEZ

_ZZIH r+’y s +7%ns)? + E. (C.37)

SEZ rez

follows in a similar way to steps (B.3)-(B.3) in [2], thus confirming its U’ invari-
ance due to the modular invariance of the massive 2d partition function, which we
discuss further in the next section. We can also show directly that is invariant
under U’, since

- 1 -
E? = g"nin; = g**s* + 2g**sn, + 9 nang = R2 — (5 + K*)? 4+ §*Pnang,
? 2 1 2
57 (r 4+ 7% +vn4)? = I (r 4+ 7ng +Y(s + £%n4))?, (C.38)
then

2

7 (r+7%s+7"n.)° + E°
1 .1 242 N
R2(8+li no)? |7)? + RZ(r—i-v N )? + R2 (r +9na)(s + K Na) + g% nang.

(C.39)

So we see the transformation U’ given in (F.16) leaves (E.56) invariantif s — rand r —
—s. Therefore (E.54) is invariant under U’, so that (PI )2 given in (E53) is invariant
under U’.

In this way, we have established invariance under U; and Us, and thus proved the
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partition function for the 5D Maxwell theory on 7°, given alternatively by (3.67) or
(F.48), is invariant under SL(5, Z), the mapping class group of 7°.
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U’ acts on 7P

osc

For the 6D chiral theory on S' x T, the regularized vacuum energy from (B.14),

1
< H >% = -3272°\/G — C.40
7/ G5 ; (20)8(gynind + R2(n1)?)? (C.40)
can be decomposed similarly to (E.2),
<H>"=3" <H>P=<H> + Y <H>, (C.41)
pLEZ? pLEZ3#0
where
1 , 1
< H >%"= -327%\/G /d4 TPy — C.42
n2eZ+#0
with denominator [27n% +y, |> = G 2)2 2 K k ok
yil* = Gaa(2mn?®)* + 2(2mn%) Gory + Grey' Tyl
1
<H>% =——
pL=0 12R,’
<H >2f¢0 = p.*Ry Z cos(pak®2mn) [Ka(2mnRo|p.1 |) — Ko(2rnRs|p|)]
n=1
- Ki(2mnR
=71 pL|Ry Zcos(pam“%m) 1(2mn 2!p¢|)7 (C.43)

n
n=1

(n1)?

where p1 = (p1,pa) = 1 = (n1,Ma) = (N1, 13, 1n4,15) € Z4, lpL| = \/R—z{ + g*Pnang.
The U’ invariance of (2.68) follows when we separate the product on 7@ € Z° # 0
into a product on (ny # 0, n, = (ni,n3,n4,n5) = (0,0,0,0),) and on (all ny, but
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n, = (ny,n3,ng,ns) # (0,0,0,0)). Then

6D,chiral __ 76D (s 1 3
Z =7 (e ][ )

zero modes . "R
27 (72 na+i 58 |no|
na€2#0 1 — e Ry

_ 6D 1 3
. ( | | e 27TR6<H>I,J_ | | )
.. 2 .
n, €24#£(0,0,0,0) na€Z 1 *ZWRﬁwlgwnmj+% +i27y'n;
—e 1
_ 76D =\ =) T3
- Zzem modes (77<7'> 77(7—))

9% Re 6D 1 3
( H e 2mRe<H>p H ) ’
2
(n1,n3,n4,n5)€ Z47(0,0,0,0) ne€z —2m Ry g ning+ ik +i2mying
— e 1

(C.44)

where 7 = ~* + if%. So from the previous section together with 1 , U’ leaves
invariant

de[r)o modes (77(7,\—) 77(:7?:)) 73‘ (C45)

The part of the 6D partition function (C.44) at fixed n, # 0,

6—27TR6<H>nJ_;éO H 1

2
no€Z _QWRG\/m +i2mying
1—e 1

corresponds to massive bosons on a two-torus and is invariant under the SL(2, Z)
transformation U’ given in (F16), as follows [2]. Each term with fixed n, # 0 given
in is the square root of the partition function on 7% (in the directions 2,6) of a
massive complex scalar with m? = G''n? + §*°n,ng, 3 < a, 8 < 5, that couples to a

(C.46)

constant gauge field A* = iG"'n; with pu,v = 2,6; i,j = 1,3,4,5. The metric on T2 is

. . 2\2
hos = R%,hes = R:+ (v?)*R3, hog = —v2R3. Tts inverse is h?? = RLg + —(}g) , ho¢ = R%%
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2. The manifestly SL(2, Z) invariant path integral on the two-torus is

P ] o /dqbdgﬁ o= 027rd92f027rd06 h“”(au-l-Au)Qg(au—Au)(ﬁ-&-mZd%

— 2,2 2
- = 3T 0% [T A0S B(— (S + g )02 — (7208 —2 L5 B206-+2A202+2 4506+ G inamy + G P nang)¢
= d¢ dgbe 2 6 6 6

= det([—(Ri% + (%)2)622 - (%6)203 - 272(%6)28286 +GMyng + GPrgng + 2iG?1,05 + 2G50, 0,

2
—trin [—(#—&—(E—G)2)83—(%6)23§—272(RLG)28286+G11n1n1+G°"8nanﬁ+2iG2“na82+2iG6°‘na86 :|
= e 2

2
=Y ez 2orez |:1n( az" +($%+(g—6)2)s2+2'yz(%6)2r5+G11n1n1+G“ﬁnan5+2G1"‘na s+2G%n, T)]

= o Seezv(B) (C47)

where from lb Gl = Q,GO‘B = g*¥ + 1 Wﬁ ,GP = gPr 4 X R2 ,G% = L and
6
B =21 Rg, and Os¢ = —ise; 86¢ = —ir¢, and n2 = s. The sum on r is

Zln[ r—i—”y 5 +7%n4)° + E?| (C.48)

rez

with E? = Gnyn,, = Gnyng + G2° nang + 2G22n4ng + G2*nan,, and G} =
Gé2207G%a:O7G§a:g - R27G22_g -

evaluate the divergent sum v(£) on r by

R27
GeP = goB = B 4 ”R'Zﬁ. We
2

R27

2F
Z47r

(r +v2s + v°ny )2 + E?

r 6’2
=0gln |:COSh B'E — cos 2w (723 + Vana)] , (C.49)
using the sum ) G +Z)2 W = Coslii;‘ﬁfosz. Then integrating (F.70), we choose the

integration constant to maintain modular invariance of (F.68),

v(E) =1n [cosh B'E — cos 27r(723 + Wana)} +In2. (C.50)
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It follows for ny = s we have that (E.68) is

; 1
H V/24/cosh BE — cos 2m(72s + 7°n,)

sEZ
ﬁE

H — e ﬁE+27rz (v2s+7%nq)

sGZ
= WRGZSEZ V G ninm H 1
ez 1 — 6*27FR6\/Gl5mnlnm+27ri725+27rifyana
1
_ €*2T|'R6<H>nj_ H (C51)

iz 1 — 6727TR6\/GlsmnlnerQﬂ'i'anngQﬂ’i’yana ’
na

which is (F.67). Its invariance under U’ follows since (F.16) is an SL(2, Z) transfor-
mation on 7” combined with a gauge transformation on the 2d gauge field, A, =
h,inG"* where p,v = 2,6, A, — A, + 9,\, and ¢ — e?, ¢ — e,

A0, 605) = 0%i(7* — k) — 0% i(7™ + k) (C.52)

since Ay = ikn,, Ag = i7* n,. Hence (E72) and thus (F.67) are invariant under U’.
So we have proved the 6D partition function for the chlral field on S* x T°, given
by (2.68) or equivalently (C.44), is invariant under U; and U, and is hence SL(5, Z)
invariant.
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APPENDIX D

CANONICAL AND PATH INTEGRAL APPROACHES

For convenience in comparing the 4d gauge theory with the 6d chiral theory
in sections 2 and 3, we quantized both using canonical quantization. Since a
Lagrangian exists for the 4d gauge theory, it is useful to verify that its path in-
tegral quantization agrees with canonical quantization. We find the two quan-
tizations distribute zero and oscillator mode contributions differently, and thus
these factors transform differently under the action of SL(2, Z). We summarize
the path integral quantization results from [32], [47], [48], [60]. Following [32],
[48], the two-form zero mode part, £ is the harmonic representative and can be

expanded in terms of the basis a; = (271r)2 do* A db?, etc., I = 1,2, ..,6 namely

F
— Em:ZmlaI, (D.1)

where m; are integers. Define (m, n) to be the intersection form such that (m, n) =
[ m A n, and thus

1 .
(m,m) = W/d%ﬁ”klﬂjﬂcz
1 .
(m, *m) = ) /d40\/§F”F,~j. (D.2)
So the action (3.3) is given as
4’ if 1 i0
I = ?(m, *m) - E(m,m) = @ /d49\/§FJFw - 327‘(‘2 /d49€ JklEijl.
(D.3)

The zero mode partition function from the path integral formalism can be ex-
pressed as a lattice sum over the integral basis of m; [32], [48],



Pt = 3 0] - A () + 2 om,m)]
= m%:ze exp[%ﬂr((m, m) + (m, *m)) - %T( — (m,m) + (m, *m)ﬂD-‘l)

where 7 = % + ii—’;, and we have chosen the § dependence of the action as in [32].
Alternatively the zero mode sum be can written in terms of the metric using (D.3)

7T ~ o \/E " 7 4 \/5 B
Zz]go modes — Z eXp{ [ - §R6\/§g ngsFavFﬁ& - WR_GQ&S F(S,B'YﬂF&’ﬁ"yﬁ - WEQ 5F60¢F66
ﬁij€Z6

VG 5= = 0e?

~ o~ 47

2L g F Fspy® — i— eV Foo Fg | —

+ 7TR69 6oL’ 587 Z87T6 6 Bv] 62}
(D.5)

where ﬁij = 27 F;; = my are integers due to the charge quantization , and where
we have taken into account the integrations [ d' = (27)* in (D.5). To compare the
zero mode partition functions from the Hamiltonian and path integral formalisms,
we rewrite the Hamiltonian formulation result as

Zjeflromodes
ATV 40 Per® ~ 7r\/_ y= o 0P
= Z eXp[ 4\/_gaﬁ(H +1 2R F ’)/ + Ar F ) (H'B 2R6 B F(;/)\/’)/ + A F,y/(;/)
ﬁa,ﬁag
47r \/§ ' 22 o ~ ~
2 R 9" Fygy"Fyay” — V99 5975Fa7F56]- (D.6)

After Poisson resummation,

Z exp|—m(n+z)- A-(n+xz)] = (detA)~ Z e AT mg2rinx (D.7)

nez3 necz3
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ad Fs A + L €| L5, we get the Hamiltonian

where A,s = fgag and z¢ = A;’;]‘g
expressmn as
ez s fgvi 2\/_ A 0 - ~ 8TNVG aper =
Z4d - —2 — g*PT I — i=11,e*VF. P11, Fa57°
zero modes (477') R6% AZ eXp{ B 7/2 € €2R6 g Bs7Y
HcmFaﬂ
47T \/5 / 8 27T2R6 ~ a ~
2R, 9" By Fygy® — = V9% 9 Fory Fgs}
~1
= (ImT)% 9 Zé;{omodes’
R62
(D.8)

where I1,, is the integer value of ¢, and we identify ﬂa with Fg, in . Then
(D.9)

s R?
PI 6 r74d
Zzero modes — (Im T) 2 I Zzero modes?
g4

which is (3.85).
(D.10)

path integral,
/ DAte ™.
A

PI
Znon zeromodes ~

We review from [47] how the non-zero mode partition function is defined by a

Performing the functional integration with the Fadeev-Popov approach, [47] regular-

izes the path integral by
1 g \: det(27rIm7Ag)7 2 g 1 ni-1 detd
A = (=———=)2 (2n1] T —F
- <V01T4> [det( O)det<27TImTA1)] ((27r)4\/§) (2mTm) detA?
(D.11)

ZIJ:OIH zero modes =
" en
(d'd + dd), is the kinetic

where b; = 4 is the dimension of the group H'(T*). A
= —G"0,0;, and det(A;)

energy operator acting on the p-form. g = detG;;. So A
(D.12)

det(Ap)*. Thus
i
I (Imr)? detAg’.

ZPI _
non—zero modes ~ \/_
2w
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The determinant can be computed

_1 1
detA,? = exp{—§trlnA},

(D.13)

1
exp{—§trlnA0} = exp< — §trln( — G%9? — 2G 6,060, — G“56a85)>
1 1 o o
= exp( —3 Z Z ln(ﬁgng + 2R—%nan6 +G Bnan5)>
n,#0 16

:exp<—%z Zln(

1 a a
Lt ),
n,#0 16

ou(E) _ Z 2F _ psinh(pE)
OF - Rig(ng + 7y )? + E?

cosh(pE) — cos(2my*n,)
= Opln|[cosh(pE) — cos(2m7na)].

(D.14)
Let /L(E) = Znﬁ ln(ng(nG + ’Yana)2 + EQ)’ where F? = gaﬂnanﬁ, p= 27 Rg,

(D.15)
After integration, we have

u(E) =In [cosh(pE) - Cos(27wana)} +1n (Rg \/g) . (D.16)
tion. So,

where the constant In (Rg \/g) maintains SL(4, Z) invariance of the partition func-

1 1
detAg 2 = exp( — §trlnA0) — 72 Loz HE)

@i
_ 0o

H 1

g V24/cosh(pE) — cos(2my°n,)

67%
R AL 5

— e PE+2minOng
Na€Z340

(D.17)
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Therefore, using (D.12), we have

=

ZP! — (Imr)3 L 7% (D.18)

non—zero modes RQ osc)
6

which is (3.86).
Together with (D.9), the partition functions from the two quantizations agree but
they factor differently into zero and oscillator modes of the Z6¢%chiral qpd Z4d.Mazwell

phishastraRdBs ARSI AIRBMOup SL(2, Z) group has two generators S and T

SZT—>—1, T:7—71—-1 (D.19)
T

Since 7 = 8% + ifit = - + i, the transformation S corresponds to

Ry — Rir|™,  Ro— Ryl7|, B*— —|7|7%8% (D.20)

and T corresponds to

B2 62— 1. (D.21)
Or equivalently
4 4
R e
€ €
T: 6—6-2r (D.22)

which for § = 0 is the familiar electromagnetic duality transformation % — 4.

6d partition function
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The 6d chiral two-form zero mode partition function (3.10),

6d _ E
Zzero modes — eXp

ng,mng9,n10

ZGXP{——Rb’RlRm/_gw 7 9% Hops Horgrr — im0y €™ Higy Hogs}

g aa,HlZaHIQQ/}

1 B2
' Z exp{__RﬁRlRQ\/_(RQ )g gﬁﬁ HQa,BHQa’B/}

Ry
4,105,106
RsRo /= o oo 85 .
Y exp{-m ; 2V 3829°% ¢°% Hynpg Hoorpr + im0y € Hy g Hoos
ni,n2,n3 1
WR6R2 ~ aa/ !/ a !/ a/
4 Rl \/5(9 gﬁ/j -9 ﬁgﬂ )HlaﬁHla’[g”} (D23)

where Hi3qy = ny,Hius = no, Higs = ng, Hogy = na, Hoss = 15, Hazs = ng, Hsus = 17,
His3 = ng, Hios = ng, Hizs = nyp, is invariant under both S and 7. To show the

invariance using (D.20}D.21) we group the exponents in (D.23)) into two sets,

TR — aa’ aa’ ! sy
N R1}%62 V39° Hygo Hyor — gRﬁRle\/_ 9 ¢ ¢° Hops Hoprsr — im7y* €™ Hyoy Hops,

(D.24)

and

22

1 ’ R = aa’ ’
- _RGRlRQ\/_( R2 R )gm gﬁﬁ HoogHonrg — WR—? Rz\/&ﬁzg W HiogHow g

s RﬁRQ
2 R,

+ Ty @B HygHoos — \/Eg‘”o"gﬁﬁ/ HiopHiwp

(D.25)

(D.24) has no % dependence and therefore is invariant under 7. (D.25) transforms
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under under 7T to become

1 22 , R _ Vs
— _R6R1R2 \/_(Rz i —3)9™ 9% How Hoorgr — =2 R, VB2 ¢° Hop Hawg

Rl Rl
m R =~ ad ’
+imy* € Hyyg Hons — 0 Vi9*" 6% HingHiwp
2 R Ry
+ 7T—\/_R B%g 9’6ﬁ HongHongr — ——6\/_R g 9’3ﬁ HywgHonrg + 7T—R2\/_g g'Bﬁ HiogHow g

Ry

(D.26)

which is equivalent to (D.25) in the sum where we shift the integer zero mode field
strength Hy,p to Hiap — Haap-
Under S, we see (D.24) as a function of R, R is invariant, and find (D.25) trans-

forms to

T RgR = ao ’ R oo ,
-5 ; Vg™ g% H2aﬂH2a’ﬁ’+7TERz\/_529 9" HiagHoorr
22
1 Q@ T ~ aq /
+ iy Hy s Hoos — 5313632\/5( + %2 )9° §% Hy s Hy o (D.27)

So by shifting the integer field strength tensors Hi,3 — Haws and Haop — —Hiap, the
sum on (D.25) is left invariant by S. Thus we have proved SL(2, Z) invariance of the
6d zero mode partition function (3.10), and that its factors e and Z2¢ . in (3.13) are
separately SL(2, Z) invariant.
For the oscillator modes (3.71), the only term that transforms in the sum and prod-
uct is
) _ D1’ B, 28

)t = —5 + + —5)p; + , D.28

P =R (9% R 2)P3 RPN (D.28)
which is invariant under 7" by shifting the momentum p; — p; + p,. With the S

transformation, p* becomes

622 1 2B2
R12) + ngpg - R12P1P27 (D.29)

pi*(g*

and by also exchanging the momentum p; — p, and p, — —p;, the term remains the
same. So the 6d oscillator partition function (3.71) is SL(2Z2) invariant, which holds
also for regularized vacuum energy as given in (3.72).
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4d U (1) partition function

In the Hamiltonian formulation, SL(2, Z) leaves invariant the U(1) oscillator par-
tition function (3.65), since it is independent of ¢? and §. We have also checked above,
starting from 6d, that the zero mode 4d partition function (3.11)) is invariant. Thus the

U (1) partition function from the Hamiltonian formalism is S-duality invariant.

The S-duality transformations on the corresponding quantities in the path inte-
. . . . 1
gral quantization can be derived from and 1} Since Im7 — mplmr under
S, and is invariant under T, we have

Z;lg"o modes — Z;lgro modes’
Z;l(io modes — Z;Lgro modes’
and
Zote = Zoter
Zoe — Zote
which is and (3.88).

VA Y 7 under S

zero modes zero modes

ZP! — ZP! under T (D.30)

zero modes zero modes

zP |3z under S
zP sz under T, (D.31)

86



APPENDIX E

REGULARIZATION OF 4d MAXWELL THEORY

The sum in (3.65) is divergent. We regularize the vacuum energy following
[2],[6]. For < H >= %Zpaezg V 9Ppaps, the SL(3, Z) invariant regularized
vacuum energy becomes

<H>——4—7r3\/_ Z

neeZ3+£0

e nPR (E.1)
gaﬁn“n

For the proof of SL(4, Z) invariance in Appendix H, it is also useful to write
the regularized sum (E.1), as

<H>= Y <H>,=<H>, o+ Y <H>,, (E.2)

pLEZ? pLEZ2HA0

where p, =p, € 22, a = 4,5, and

1 1 — 1 1
= s Vi = 3 n =

P3E€EZ

< H >, 20 = |pL’Rs Y | cos(par®2mn) [Ky(2mnRs|p.|) — Ko(2rnRs|py |)[E.3)

n=1

L] = /Pappg®, using the 2d inverse metric as defined in Appendix H.



APPENDIX F

SL(4,Z) INVARIANCE OF z#dMaxwell AND 76dchiral

Rewriting the 4d metric (3,4,5,6) From (3.6) the metric on the four-torus, for o, § =
3,4,5,1s

Gop = Gap,  Gas = —9apg?’s  Gos = Rg + gapg¥™’. (E1)
We can rewrite this metric using a,b = 4, 5,

a

g33 = R§ + gabﬁaﬁba Ja3 = —gabﬁb, Jab = Yab, (’73)5 — ' = -7

(E2)
Gs3 = R§ + gab/falib, Gss = —(73)33 + gabﬁbf’?a, Gsq = —gabfib7
Gab = Gabs Gas = —Gab)'s Ges = R2 + (v*)2R3 + gy 7"AE3)
The 3d inverse of g,z is
ab __ ~ab + K;a’%b a3 __ K" 33 __ 1 (F4)

where §% is the 2d inverse of gg.

g=detG;; = R; det gop = R g = RER; det gup = RRS §.



The line element can be written as

ds® = RA(d0° + ) gas(do™ — y*d6°)(d6” — 7 db")

a,3=3,4,5

= R2(d6® — (v*)d6%)? + R2(d#°)?

+ ) gap(do” —Fd0° — k°d0°) (d6” — F'd6° — Kd6®). (E5)
a,b=4,5
We define
F=43 +¢%§. (F.6)

The 4d inverse is

S T A e
G33: ‘ :G66T2, GBGI—, GSG:—, GSa: 4 ’
4 Ré 4 | | 4 R% 4 R(Qj 4 Rg R%
a,.b ~axb 3(~a, b axb a 3,..a ~a
Sab b KUK o0 MY (VR + KUY T e e o
Gab — gab + 2 + 4 , GY = — = E7

Generators of GL(n, Z)
The GL(n, Z) unimodular group can be generated by three matrices For GL(4, Z)
these can be taken to be Uy, U, and Us,

01 00 1 0 0 O -1 0 0 O
0010 1 1 00 0 1 00

U, = ; Uy = ; Us = . (E8)
00 01 0010 0O 010
1 0 0 O 0 0 01 0 0 01

so that every matrix M in GL(4, Z) can be written as a product U} Uy? U5 U Uy US® . . .,
for integers n,. Matrices U;, U, and U; act on the basis vectors of the four-torus @,
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where @; - @; = af oGy = G,

ds = (1,0,0,0)
ds = (0,1,0,0)
d,; = (0,0,1,0)
ds = (0,0,0,1). (E9)

For our metric (E3)), the U, transformation

A as 1000
a, & 1100
= U, = (F.10)
a, as 0010
al s 0001

= —

results in &} - @5 = /504G, = Gs3 = Gy, a4 - A = /500G, = Gss + G = Gy, etc.

So U, corresponds to
Ry — R3, Ro = R, v° = 7% = 1, &% = &% 3" = " + K%, gap = an, (E11)

or equivalently

Rs — Re, 7> = 7° =1, gap = Gap, 7* = 7%, (F12)

which leaves invariant the line element if d6® — d6®—db®, do® — do°, d6* — do*.
U, is the generalization of the usual 7 — 7 — 1 modular transformation. The 3d
inverse metric ¢*° = {¢%, g*, ¢**} does not change under U,. It is easily checked
that U, is an invariance of the 4d Maxwell partition function as well as the
6d chiral two-form partition function (3.72). It leaves the zero mode and oscillator
contributions invariant separately.

The other generator, U is related to the SL(2, Z) transformation 7 — —(7) ! that

we discuss as follows:

U, = U'Ms (F.13)
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where M3 is a GL(3, 2) transformation given by

00 —10
01 0 0

M = (F.14)
00 0 1
10 0 0

and U’ is the matrix corresponding to the transformation on the metric parameters
(E-16),

0 1 .00

o |-1o000
U = (E15)

0 010

0 001

Under U’, the metric parameters transform as

R3 — R3|7’r|7 RG — R6|7’:|_1’ 73 — _73|7A:|_27 K — :77(17 %a — _K'aa Gab =7 YGab-

1
T— —=. Or equivalently,
T

Gap = Gapy, Gaz = Gag, Gag — —Gaz,  Gs3 — Ges, Ges — Gz, Gzg — —Glse,
G

ézb - ézbv ézg — 6267 626 — _6237 éii’) — |~‘27 é26 — ’?‘26267 6?16 — _éi67
T
(E.16)
where 4 < a,b <5, and
R R?
~_ 3 - L6 ~2 332 6
= - = 0 F17
F=rtbig, =0 (F17)

The transformation (F.16) leaves invariant the line element when d6® — d6°,
df® — —df?, do* — df”. The generators have the property det U; = —1,det U, = 1,
detUs = —1, det U’ =1, det M3 = —1.
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Under Mj, the metric parameters transform as

3 4 1
R¢ — R, Y= =Y T = Gab = Gat1pd1s Yas = —Yatias 933 — Gad,

gt = gt gy gt g3 gt detgas =G, §— G- Or equivalently,

Gap = Gayipr1,  Gaz = —Gag1a, Gag = Gay16,  Gs3 — Gua, Ges — Ges, Gzg — —Gls,
G GErOL G s G GO L G GP L Gl GF G 3P o G,
det G, = R §,  det Gy — det Gy,

(E.18)

where 4 < a,b < 5,and a + 1 = 3 for a = 5. We see that M; takes Z%¢ to its

zero modes

complex conjugate as follows. Letting the M3 transformation (F.18) act on (3.11), we
find that the three subterms in the exponent

62 ~ 02 167?2 aa’ bV 10 I aa’ b3 10 T aa’ 3317 I a3 a'31 1
_ _RG \/g(— -+ )(g g FabFa’b’ + 49 g FabFa’3 + 2g g Fa3Fa’3 — 2g g Fa3Fa’3>7

8 42 et
62R6 ~ ~
— 2 T%gll°,
45 77
06236 ~ -~
_ ayd o T1P
87_[_2\/59&,36 o7 )

(F.19)
are separately invariant under (F.18) if we replace the integers I3 € 23 11* € 23
by

Fu = Fopipr1, Fus— —Foppg, 1P =114 e — —11ett, (E.20)
However, acted on by M3 with the field shift , the term
2min TP Floy — —2min TP F (F21)
changes sign. Thus we have

M Zd — 74 * (F.22)

zero modes zero modes
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4d
2,8 o modes- From (D.5)

. / 4d
The action of U' on Z,5, 1odes
4d 7|?
ZM  qes transforms to |7

Next we show that under U’,

and (D.9), we have

4W)_

e2

wlw
| =

S lw

g 27'('2 T i il S 1 a ~ o~
ngro modes — ( R Z eXp{_?RG\/Eg ]g ! Ei’F}j/ o 596 ,B’YFGaFﬁ’Y}7 (F23)
from which it will be easy to see how it transforms under the U’ transformation.

Under U’ from (F.16), the coefficient transforms as
Ar. s gi
D32 72, (F.24)

Fij626

The Euclidean action for the zero mode computation is invariant under U’, as we

show next by first summing i = {3, a,6}, with4 < a <5.

i i T
979" Fi Fy

o 2 QRG\/E Rl
(ég“’ G EyEyy + 4G G FoyFys + 4G9 GY Foy Fryg 4 2G99 G Fyg Fyrg

62 R2
_ 27T2R6\/§

e2

— 2GBGY3 3 Fyy + 4G GO E 3 Frog — AG9SGY3 Foy Frg + 4GB GO Fy Fg
1 2G9 G Fryg Frog — 2GGY O Fyg Frg + AGP GO F3 Fag — 4GSGH FogFyg

(F.25)

Letting the U’ transformation (F.16) act on (E.25)), we see the first term in the exponent

of (F.23) changes to
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2 Re\/ G ( oot Fttr 72 7 Fad' (6
_ —ﬂ- 6\/5 <Gza Gib FabFa’b’ + 4GZ(L GZ6FabFa3 Gaa GbgFabF '6 + Gaa GigFa?)F '3

e? kd |
— 2GOGY s Fyg — AGY GO F ;5 Fyg + 4GP GO F s Fyg — 4@&660/31&%, Fye

+ 272G G Fpg Fg — 2G99G Fryg Frurg — GG6G36FQ3F36+| ; S GPGP Fos Fig

(F.26)

The second term in the exponential of (F.23) is a topological term, and is left invariant
under the action of U’ by inspection. If we replace the integers Fy, — Fg, and F,s —

—ﬁag, the two terms are left invariant, so the sum

272 f ij 7,] aBy i
§ e~ g’g F /F /-‘rl € F@aFﬁpY (F.27)

Fij €z6

is invariant. Thus we have shown that under the U’ transformation (F.16)),

Z;Lgromodes<R3‘7f:’7 R6‘?|717 Gab, _’73‘?| 27 a/lav - ) = ’?‘2 Zéledromodes<R37 R67 Yabs 737 Ha’ :5/’(1)'
(E.28)
Also from (F23), we can write (F.22) as
M3 : Z;Lgro modes(627 97 Gl]) — ngro modes( 27 _07 GZ]) (F29)
and thus under the GL(4, Z) generator U,
Zf&iomodes - ‘;’ (Zélgromodes)*‘ (F3O)

The residual factor |7]? is sometimes referred to as an SL(2, Z) anomaly of the zero
mode partition function, because U’ includes the 7 — —% transformation. Finally we
will show how this anomaly is canceled by the oscillator contribution.
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Under Us, the metric parameters transform as

R6 — R6a 73 — _737 ,.)/a — ,ya’ 9ab = Gab, 9a3 = —Ya3, g33 — g33,

g’ = g g = g ¢ =g detgus =39, 737 Or equivalently,

Gap = Gapy,  Gaz = —Gaz, Gag — Gag, Gzz — Gz, Ges — Ggs, Gag — —Gisg,
G =GP, G =GP, G- GP, GP-GP, P —-GF, G —aY,

det Gy = Rg §,  det G4 — det Gu, (F31)

where 4 < a,b < 5 and G is the 3d inverse. We can check that Z%d

zero modes

complex conjugate under Us given in as follows. Letting the U; transformation
(F.31) act on (3.11), we find that three of the terms in the exponent

becomes its

B 62R6\/§( 0> 167>

8 472 et
2
RG ~
asll?,
4\/— I1%g B
962R6
W p TP,
oy \/—gaﬂe %)

(F.32)

are separately invariant under 1 ,if we replace the the integers F, 3 € Z3,11* € 23
by

ﬁab — ﬁaba Fag — —Fag, ﬂ3 — ﬁg, ﬁa — _ﬂa’ (F33)
However the subterm

omiy* TP E,p — —2min®TIP Fop (F.34)

acted by Us with the field shift in (E.33). Therefore the zero mode partition function
goes to its complex conjugate under Us.

Appropriate generators for SL(4, Z)
We claim that U?, U, and U,Us generate the group SL(4, Z) since GL(n, Z) is
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generated by U;, U, and Us or alternatively R, = U;, Ry = U3_1U2 and R3; = Us, i.e.,

any element in GL(n, Z) U can be written as

U= R™ Ry Rs™R™ Ry"" Ry"... (F.35)

It is understood that SL(n, Z) is generated by even numbers of R, R, and Rs. Thus,
the possible set of group generators for SL(n, Z) is

R} R3,R;, RiRy,ReR3, R3Ri, RaoRi, R3Ry, RiR; (F.36)

with the properties that R3 = 1 and R3 = 1. A smaller set of the SL(4, Z) generators

is
R}, R1Rs, RoRs, (F.37)

since other generators in (F.36) can be expressed with the generators in (F.39) through
the following relations

RiRy = R\ R3(RyR3) ™, RyRy = (RiRy) 'R}
R3Ry = (RyR3) ™1, RsR, = (R R3) 'R, (E.38)
Notice that
{Ri R1R37 RQRS} = {U127 U1U37 U2_1} (F39)
These three matrices generate SL(4, Z). They can be shown to generate Trott’s twelve
generators B;;
Since we have tested the invariance of the zero mode partition function under Us,

we only need to check invariance under U,U; and U?. For U,Us, as previously we
separate U, into U’ and M3,

Since both M; and U take Z*4

zero modes

to its complex conjugate, M;3U; is an invariance
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of the zero mode partition function. Thus from (F.28),

Ul U3 : Zzero modes - |7—| Zze’ro modes* (F41)
Ul acts on Z zero modes
Since we have shown before
. 4d *
U1 . Zzero modes — |T| zero modes) (F42)
then
2.
Ul . Zzero modes - Zzero modes* (F43)
To summarize, we have
U2 Zzero modes - Z zero modes)
Ul U3 Zzero modes 7 |T| zero modes’
2
Ul Z Zero modes Z zero modes* (F44)
One can derive a similar transformation property for Z zero modes USINE ‘ ,
U Zzero modes Zzero modes?
3
U1U3 Zzero modes 7 |T‘ zero modes’
U Zzero modes — Zzero modes) (F45)

which follows from transformations on the factor ¢, given in (3.14). By inspection ¢ is

invariant under U, and M3, and transforms as

U':e—|Tle (F.46)

97



This can be seen by Poisson resummation since € can be written as

: _Zexp{—igabnanb TRV 3} 3 exp{-x(N +2)- A- (N +2)),

_ VI e
R3R1R2’T‘2
m,n3
=77 U,
(F47)
where
_ H _ 60‘55 Z4
H12a = Nq, aBs = —=— M, m,ng € )
g
Re\/3 . 3 a 3314
vy n3 K'Ng + =3
RsRi R -
A= | e , det A = |72, N = , T = A
i 3 RgR1Ro m Z-RG\/ﬁ'ySna
v R3\/3 R3RiRa|72

U’ acts on Z*

osc

To derive how U’ acts on Z¢, we first separate the product on 7i = (n,n,) # 0
into a product on (all », but n, # (0,0)) and on (n # 0, n, = (0,0)). Then using the
regularized vacuum energy (E.1) expressed as sum over zero and non-zero transverse

momenta p, = n, in (E.2), we find that (3.67) becomes

Ad, Mazwell ueC H 1 2
arwe . 6R-
Z Zzero modes (6 3 onB6 1,19 )
ot 1_e¢ ¥R \n\ miy3n

2
_ ( H o 2mRe<H>p H 1 )
. G—QNRGN/gaﬁnang—Qm‘wana

nqe€Z2+£(0,0) n3ezZ 1

(FA8)

As in [2] we observe the middle expression above can be written in terms of the
Dedekind eta function n(7) = e [], . o1 — e2mnT) with 7 = 73 + Z'g_g’

<6% 1 : )2 = (n(M)n(7))~% (F.49)

R
—27 56 |n|—27iy3n
n£0 1 e R3| | Y
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This transforms under U’ in as

)72 =717 (P)a@) (F.50)

where n(—71) = (i7)2(7). In this way the anomaly of the zero modes in (F.28) is
canceled by (F.50). Lastly we demonstrate the third expression in (F.48) is invariant
under U,

1 2
—2TRg<H>| > = PJ F51
( H € H —27Rg4/ 9% nang—2miv*na ’ ( )

na€22#£(0,0) nsez 1 —€

where PI is the modular invariant 2d path integral of two massive scalar bosons of
mass \/ g%n,ns, coupled to a worldsheet gauge field, on a two-torus in directions 3,6.
Following [2], with more detail in , we extract from (3.65))

2
Z4d — (e—ﬂ'Rﬁ ZﬁezS V4 gaﬁnanﬁ H 1 ) (F52)
08¢ —27rR6\ /9P nang—2mwiv*nq
nEZ37éO

the 2d path integral of free massive bosons coupling to the gauge field, where n, is

fixed and non-zero,

(PI)z = ¢ ™Mo Enez Vorinens TT #1
cz 1l — o 2mRe/ 9P nang+2min na
n3
ﬁ

— — ’
= H B/E+27m(7 SEyena) where s = n3, E=./9g*"n.ng, [ =27Rg

SEZ
_ H 1 for n, — —n,
i V2 y/cosh B'E — cos 27 (735 + von,)
_ 6_%2562 (ln [coshB’E—cos27r(735+7“na)]+1n2) = e—% Yecz y(E)7 (F53)

where

Z v(E) = Z (In[cosh B'E — cos 2m(y’s + 7"n,)] + In 2)

sEZ SEZ

—ZZln 7’+75+7na) + E7. (F.54)

SEZ rez
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We can show directly that (F.54) is invariant under U’, since

1 ~
E? = ¢™Pnang = g%s* 4+ 2¢% snq + 9" nany, = I (5 + K1) + §"nany,
A7

i (r+ 735 +9"n,)* =

1
I (1 +3"ng + 7 (5 + K*4q))?,

(F.55)
then
4 2
G r s ) 4+ B
~ 1 273 -
= (5 + K"n,)? |7 + I (r +7%na)* + ]; (r +5"n4) (s + £*N4) + G nans.
(F.56)

So we see the transformation U’ given in (F.16)) leaves (F.56) invariant if s — r and r —

—s. Therefore 1} is invariant under U’, so that (PI)z given in li is invariant
under U’.

Ms acts on Z4¢

osc
Ms; leaves the Z2¢ invariant as can be seen from (F.48) by shifting the integer n,,
as

ng — —Ny, Ng — Ng+41-

(E.57)
So, under U, = U’ M,

Zote = [T Zoie- (F.58)

U, is an invariance of the oscillator partition function by inspection

Us acts on 744

OSsC

Us leaves the Z2¢ invariant as can be seen from (E48) by shifting the integers n,,
as

ng — —ns, Ng — Ng-

(F.59)

Thus, the oscillator partition function transforms under the SL(4, Z) generators {UZ, U;Us, Us }
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as

. 4d 4d

Us : Zosc — Zosc?
. 4d ~|—2 r74d
U1U3 . Zosc — ’7—‘ ZOSC’

Uy Zyk — 23

osc osc*

(F.60)

So together with (F.44) we have established invariance under (F.39), and thus proved
the partition function for the 4d Maxwell theory on T*, given alternatively by (3.67)
or (F48), is invariant under SL(4, Z), the mapping class group of T*.

/ 6d
U’ acts on Z3¢.

For the 6d chiral theory on 7% x T, where < H >%'= 3" .5 \/GY"pip,, appears
in (3.71), the SL(3, Z) invariant regularized vacuum energy [2] becomes,

1 1
CH>M— GBS
s 5 %:6 (Glmnlnm)3

= —32m%\/G5 Y !

3
i (27)0 (gasnon? + (1 + R3626%)(n')2 — 262 Rgn'n? + R3(n?)?)

(E.61)
and can be decomposed similarly to (E.2),
<H>%= 3" <H>M=<H> 1+ Y <H>H (F.62)
pLEZ? p1E€Z4#0
where
, 1 , 1
< H >%= -321*\/G / d'y e Ly _— F.63
pL ™ 5 (271’)4 yiLe 36227&0 |27rn3 + yL|6’ ( )

with denominator |27n° + y, |2 = G3(27n?)? + 2(27n°) Gy + Gyt vy, with k =
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17 2’ 47 57

6a _ 1

< H >>*_ —
p1=0 12R;’

<H >gil7éo = |p.*Rs Zcos(pafi“27rn) [K>(27nRs|p.|) — Ko(2mnRs|py|)]

n=1

= —7 Y pL|Rs Z cos(paKr*2mN)

n=1

Ky (2mnRs|p.|)
n b)

(F.64)

withp, = (p17p27pa) =N = (n17n27na) = (nl,ng,n4,n5) € 34,
IpL| = \/("1)2 +28 4 (L + 12 )n + gobngny,.
R? R T \R 2 a

The U’ invariance (3.72) follows when we separate the product on @ € Z° # 0
into a product on (n3 # 0, ny = (ny,n2,n4,n5) = (0,0,0,0)), and on (all ny, but
ny = (ni,ng,n4,n5) # (0,0,0,0)). Then

7 Rg 1

6d __ 6Ra
Zosc - (6 3

)3
2w (y ng—l—z— ns
ns€Z#0 1 —e o nsl)

6d 1
’ ( H 67271_R6<H>pj_ H )3
- 6 n « ] “Ne
1 e 21 Re /2 +g*Pnang +i2nyen

n1 €24£(0,0,0,0) n3eZ

-3

= (n(7) 1(7))

—2m Rg< H>8¢ 1 3
( H e 2T Re<H>p" H _ ) 7
. 6—271'Rm /9P nang+n? +i2ry*ng

(n1,n2,14,n5)€Z4£(0,0,0,0) nsez 1
(E.65)
where 7 = 73 + @P‘6 and n? = RQ + 2R2n1n2 + (R2 + %)ng Under U’,
n(7) 1(7) = [ 0(7) 7(7). (E.66)

U’ leaves invariant the part of the 6d oscillator partition function (F.65) at fixed n, #
0, since

o2 Re<H>01 g H 1

22 .
n3€Z —27TR6\/ U‘Bnang—i- 2+2 n1n2+( +i22 )3 +i2my%ng
— e 2 1

(F.67)
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is the square root of the partition function on T? (now in the directions 3,6) of a
massive complex scalar with m? = G1n? + G*2n2 + 2G2nyny + §nany, 4 < a,b < 5,
that couples to a constant gauge field A* = iG*'n; with u,v = 3,6; 4,5 = 1,2,4,5.
The metric on this T2 is h3s = R%,hes = R2 + (v°)?R3, has = —7*R3. Its inverse is
h¥ = R%% + %, R = R%% and h3¢ = ;;é. The manifestly SL(2, Z) invariant path
integral is

Pl = / dpd e Jo " 0 J5T d0° B (Bt A) 68— Ay )pmP o

_ 3
LTRSS H(— (o)) 82 (A )202 2Ly By 06+2A305+2A8 0+ G M nyn + G oo+ 2G 201 na+ G ngny)
= [d¢dope Ry g R R3

- det([—(% + ()02 — ()22 — 293 ()20 + Gy + GPngny

-1
+ 2G"n1ny + G ngny + 2iG3n,05 + 2iG% N4 0] )

3
—trln |:7(§+(%—6)2)837(Ri6)2637273(%6)28386+G11n1n1+G22n2n2+2G12n1ng+G’”’nanb+2iG3“na83+2iG6“na86 :|
= e 3

6_ Dsez 2rez |] |: (Blz 7"2‘*‘(1?2 HE ) )52'*‘273(%6)27“8+G'11n1n1+G22n27I2+2G12n1n2+G“bnanb+2G3“na s+2G%n, 1”)]

= ¢~ 2sezV(B) (F.68)

where from (3 1‘} GH" = Rz, G* = }%2 + Rg, G"? = R27 G =g+ 7
Ga_93a+ G6a:R37G63:

B = 27 Rg. The sum on r is

R2’

and 03¢ = —is¢p, Jg¢ = —ir¢p, s = n3, and

RQI

Zln[ r—l—v 5+ vn,)% + E?|, (F.69)

rez

with F? = Glmnlnm = G niny + G®nyng + G2ngng + GPngny + 2GS nang + G23n3ng,

and G11 327 G12 _ R2’ G22 R2 + ﬁ;?’ Géo‘ _ G%a =0, G3* = g¥ = R_g)
Gy’ = Rz, GgP =g» =g» (E) onr by
OFE . ﬁ/Q(r+75+7an) + E?
=0gln [cosh B'E — cos 2w (735 + ’yana)] , (E.70)
using the sum ) G fz)Q W = COSEiZEfOSZ. Then integrating (F.70), we choose the
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integration constant to maintain modular invariance of (F.68),

v(E) = In[cosh B'E — cos 21 (7°s + v*ny) ]| + In2. (E71)

It follows for s = nj that (E.68) gives

D=1 !
V2y/cosh B'E — cos 27 (v3s + 7on,)

se€Z
B E

- H —,3’E+27r7,('y s+7%nq)

sEZ

N/ 1
— e TR ez VGE unm H /Gl
p— m :~3 - a
wezl—ce 27 Re\/ GE™nynm+2miy3 s+2miv%ng
1

— 6_27TR6<H>ni (F72)

€z 1-— 6_2WR6\/M+27ri'y3n3+2m.yana ’
ng

which is 1) Its invariance under U’ follows from the U’ invariance of (F.54), which
differs from (F.69) only by an additional contribution of 7 to the mass m?.
Hence (F and thus (F.67) are invariant under U’

Furthermore Z8% is invariant under M3, Us,, U; by inspection.

Using the same approach for proving SL(4, Z) symmetry of the 4d partition func-
tion, we have shown the 6d oscillator partition function for the chiral two-form given

by (3.71)), or equivalently (F.65), transforms as

Uy : 238 — Z3%,
UUs : Z, — [717° 28,
Uy* 2 2% — Za.. (E73)

Together with (F45), the 6d partition function Z0*<hirel = 764 z% is SL(4, Z)

zero modes ““osc

invariant.
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