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ABSTRACT

MOONSU KANG: Multiple Testing in Genome-Wide Studies.
(Under the direction of Dr.Pranab K.Sen.)

DNA microarray technologies allow us to monitor expression levels of thousands

of genes simultaneously. A basic task in analyzing microarray data is the identifica-

tion of differentially expressed genes under different experimental conditions. The null

hypothsis is no association between the expression levels and explanatory variables or

covariates. Family-wise error rate (FWER), although very conservative, controls type

I error. False Discovery Rate (FDR) is a less stringent approach which aims to control

the expected proportion of Type I errors among the rejected hypotheses. Since there

are thousands of genes tested simultaneously, FDR may be enhanced. High correlation

between tested genes, attributed to co-regulations and dependency in the measurement

errors, further complicates the problem. Most of the current FDR procedures assume

independence or rather restrictive dependence structures, resulting in being less reli-

able.

In this work, we address these very large multiplicity problems by adopting a two-stage

FDR controlling procedure under suitable dependence structures and based on Poisson

distributional approximation, which eliminates the need to assume restricted depen-

dence structures. We compare the performance of the proposed FDR procedure with

that of other FDR controlling procedures, with illustration of the leukemia microarray

study of Golub et al. (1999) and simulated data. In these studies, the proposed FDR

procedure has greater power without much elevation of FDR.

Current FDR procedures have not been used extensively in genomic sequences involv-

ing count or discrete, or purely qualitative responses, confronted with high-dimensional

iii



low sample size constraints. Using the 2002-03 SARS epidemic model, it is shown that

proposed FDR procedure along with an appropriate test statistic based on a pseudo-

marginal approach with Hamming distance performs better.

Finally, for classfication of genes of dependent genes with heterogeneity amidst a small

sample, standard robust inference may not work out. This issue involves setting up a

hypothesis when parameters of interest are subject to inequality restrictions. Usual (re-

stricted) likelihood based statistical inference procedures may not be computationally

intensive. Roy’s union-intersection principle may be a viable alternative. The breast

cancer study of Lobenhofer et al. is included for numerical illustration.
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CHAPTER 1

INTRODUCTION AND

LITERATURE REVIEW

1.1 Introduction

The Human Genome Project announced the completion of a map of the human

genome in 2003. DNA microarrays are used to measure the level of expression of genes

under different enviromental setups by hybridizing a labeled cRNA representation of

the mRNA to cDNA sequences (cDNA microarrays) or by hybridizing a labeled cRNA

representation of the mRNA to short specific segments (synthetic oligonucleotide mi-

croarrays).

These new developments have to analyze genomic data. The technology creates an

abundance of complex and enormously large dimensional data models, resulting in the

high-dimension (K) low sample size (n) environments. Genes tend to be heavily cor-

related for co-regulations on genomic locations and gene expression biases based on

the effects of aneuploidy, resulting in complicated dependency structures. One of the

important aims of this study is the identification of differentially expressed genes. This

issue can be restated as a problem in multiple hypothesis testing: the simultaneous mul-



tiple test for each gene of no association between the expression levels and explanatory

variables or covariates. Thus, we are faced with large multiplicity problems generated

in such studies. Two types of errors are involved: a false positive, Type I error is com-

mitted when a gene is declared to be differentially expressed when it is not, and a false

negative, Type II error, is committed when a gene is not declared to be differentially

expressed when it is. The traditional approach to the multiplicity is control of the

familywise error rate (FWER) which adjusts the p-value so that it reflects the chance

of at least 1 false positive being found in the list. The FWER methods are unduly con-

servative when there are thousands of hypotheses (or genes) tested and thus a different

approach to this problem is needed. Benjamini and Hochberg (1995) defined False

discovery rate (FDR) as the expected proportion of Type I error among the number of

rejections. Compared to FWER, the FDR is a better way to deal with uncertainty in

large screening data sets, where a small number of false positives is acceptable. It is

said that merely controlling the FDR could lose power, considered as false nonrejection.

This false nonrejection rate (FNR) is defined as the expected rate of false acceptance

against the number of total acceptances. An approach with the balance between the

FDR and the FNR would be better than one purely controlling the FDR. Current FDR

controlling procedures do not take into account complex dependency structures among

the genes, resulting in loss of power and unreliable estimation. They control the FDR

only when the p-values meet some regularity conditions under which central limit the-

orems apply. In reality, it’s not easy to find suitable mixing conditions for central limit

theorems, under complex dependence structures of the genes. Under fairly mild regu-

larity conditions about the dependence of genes, we adopt a new false discovery rate

controlling procedure. For these problems, two-stage FDR and FNR are proposed us-

ing alternative limit theorems for dependent genes by the Chen-Stein methods. These

procedures attain both more power and exact estimation. We apply proposed FDR
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procedure along with an appropriate test statistics to microarray experiment as well as

categorical genomic sequences in Chapters 2 and 3.

The high-dimension (K) low sample size (n) environments make it hard to classfiy thou-

sands of genes. These problems make it unreasonable to adopt standard models where

the number of parameters outnumber the sample size. Studies such as dose-response

microarray experiments or time-course data mainly involves order-restricted inference.

In these enviroments, Roy’s (1953) union-intersection principle have some advantanges

(Silvapulle and Sen 2004, Tsai and Sen 2005). Based on the Union-Intersection prin-

ciple, robust M-statistics , insensitive to outlier arrays, and linear rank statistics, a

locally most powerful test, is proposed in Chapter 4. The real microarray datasets,

real genomic sequence and simulation models are presented in Chapter 5 to evaluate

proposed FDR and the corresponding test statistics. Overview of research work on this

problems is summarized in section 1.3.

1.2 Literature Review

1.2.1 Multiple Testing And Adjusted p-values

Multiple hypothesis testing issues arise frequently in biomedical and genomic research.

For example, a number of recent articles have addressed multiple testing in DNA mi-

croarrays, but the solutions proposed so far have not always been in the standard

framework Dudoit et al. (2003). A key feature of this methodology is the general

characterization and an explicit construction of a test statistics null distribution. We

shall briefly review some of the existing methodologies and also describe some recent

developements in this field. The adjusted p-values are one of the useful tools to describe

some multiple testing procedure. We shall also address it.
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1.2.1.1 Multiple Testing In DNA Microarray Experiments

Define multiple hypotheis testing procedure in microarray experiment. An m × n

matrix X = (xji) = (X1, . . . , Xm) represents the gene expression level data with rows

corresponding to genes and columns corresponding to individual microarry experiments.

The expression measures xji are in general highly preprocessed data. We use the sample

data {(xi, yi)}i=1,...,n formed by the expression profiles xi and response or covariates yi

in order to test hypotheses regarding the joint distrubution of the expression measures

X = (X1, . . . , Xm) and response or covariate Y . A standard approach to the multiple

testing problem includes two aspects:

• computing an appropriate test statsistic Tj for each gene j,

• applying a multiple testing procedure to determine which hypotheses are rejected

while controlling a suitably defined Type I error rate.

1.2.1.2 Type I Error Rates

A multiple testing procedure controls a particular Type I error rate at level α if

this error rate is less than or equal to α when the given procedure is applied to a set

of rejected hypotheses.

Consider the problem of simultaneous testingm null hypotheses, Hj, j = 1, . . . ,m which

are assumed to be known, of which m0 are true and unknown. The corresponding p-

values are P1, . . . , Pm. This situation can be expressed by the table below. R is the

number of hypotheses rejected, which is an observable random variable. U, V, S, and T

are unobservable random variable.

The focus is on the proportion of false positives V with respect to the number of

rejected hypotheses R. When multiple testing procedure is applied to high-dimensional

genomic data, one may wish to bear some false positives as long as their number is small.
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TABLE I: Number of errors committed when testing m null hypotheses

Number not rejected Number rejected Total
Non-differentially expressed U V m0

Differentially expressed T S m−m0

m−R R m

In the microarray setting, there is a null hypothesisHi for each gene i and rejection ofHi

corresponds to declaring that gene i is differentially expressed. In general, we’d like to

minimize the number V corresponding to Type I error and the number T corresponding

to Type II error. When testing a single hypothesis H, the probability of Type I error

is controlled at prespecified level α. This may be achieved by choosing a critical value

cα so that Pr(|T | ≥ cα|H) ≤ α and rejecting the null hypothesis when |T | > cα. The

Type I error rates shown below are the most standard ones Shaffer (1995).

• The per-comparison error rate (PCER):the expected value of the number of Type

I errors divided by the number of hypotheses, that is, PCER = E(V )/m.

• The per-family error rate (PFER):the expected number of Type I errors, E(V ).

• The family-wise error rate (FWER):the probability of at least one Type I error,

that is, FWER = Pr(V ≥ 1).

• The false discovery rate (FDR) of Benjamini and Hochberg (1995):the expected

proportion of Type I errors among the rejected hypotheses.

It is easy to prove that PCER ≤ FDR ≤ FWER ≤ PFER. Note that the error

rates are defined under the true and typically unknown data generating distribution

for gene expression data X = (xji) = (X1, . . . , Xm) where a gene expression profile is

xi = (x1i, . . . , xmi). In particular, they depend on which specific subset Λ0 ⊂ {1, . . . ,m}
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of null hypotheses is true for this distribution. Weak control refers to control of Type

I error rate when all the null hypotheses are true. In the microarray setting, it seems

more appropriate to have strong control of the Type I error rate, that is, control under

any combination of true and false null hypothesis.

1.2.1.3 Adjusted p-values

The multiple testing procedure may be defined in terms of unadjusted p-values

or adjusted p-values. Unadjusted p-value gives the probability of obtaining a value

of a test statistic that is at least as unfavorable to H0 as the observed one, that is,

pj = Pr(|Tj| ≥ |tj||Hj) for hypothesis Hj. The adjusted p-value for Hj is defined as

the nominal level of the entire test procedure at which Hj to be rejected, provided

that the values of all test statistics are given. For FWER controlling procedure, p̃j is

defined as inf{α ∈ [0, 1] : Hj is rejected at nominal FWER = α}. For FDR controlling

procedure, p̃j is defined as inf{α ∈ [0, 1] : Hj is rejected at nominal FDR = α}(Yekutieli

and Benjamini, 1999). An advantage of reporting adjusted p-values is that the level of

the test does not have to be determined in advance.
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1.2.2 Simes Inequality And MTP2 Property

To test the overall null hypothesis H0 =
⋂n

i=1Hi with their corresponding P values

at a prespecified significance level α is a common problem in practice. For example,

when identifying differentially expressed genes, multiple studies are often performed:

the simultaneous multiple test for each gene. Type I error should be controlled at

preassigned level in multiple testing procedure. Simes method is one of the methods to

control type I error. We intend to identify the correlation structure among the genes.

It is said that MTP2 property may characterize a general class of positive dependence

structures among the genes. We introduce this concept along with positive regression

dependence.

The classical and well-known Bonferroni method rejects H0 IF Pi ≤ α/m for at least

one i. But this method is very conservative, particulary when the dependence among

the test statistics is very high. Simes (1986) proposed modified Bonferroni methods.

Let P(1) ≤, . . . ,≤ P(m) be the ordered P values. Simes suggested the test procedure to

reject H0 if Pi ≥ iα
m

at least one i. Under Simes inequality, this method controls the

type I error rate for the test statistics having the folllowing distributions.

The null distributions of test statistics, X1, . . . , Xm, have probability densities of the

form ∫ m∏
i=1

f(xi, z)g(z)dz (1)

for some probability densities f(x, z) and g(z), where f(x, z) is TP2 in (x, z). Statistics

whose distributions has the form (1) are called positively dependent. The Simes con-

jecture holds only for positively dependent test statistics. Equicorrelated Multivariate

normal with nonnegative correlation, absolute-valued equicorrelated multivariate nor-

mal, absolute-valued central multivariate t, central multivariate F , and Bayes methods

including fraility model when a parameter z is random and other multivariate distribu-
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tions have densities of the form (1). The following MTP2 property Karlin and Rinott

(1980) characterizes a class of positive dependent distribution. A multivariate distri-

bution is said to have positive regression dependency (PRDS) if for any increasing set

D,P (X ∈ D|X1 = x1, . . . , Xi = xi) is nondecreasing in (x1, · · · , xi). A stricter con-

dition, that is, positive regression dependency, is multivariate total positivity of order

2, MTP2 if for all x and y, f(x) · f(y) ≤ f(min(x,y))· f(max(x,y)) where f is either

the joint density or the joint probability function, and the minimum and maximum are

evaluated componentwise.

Let X(1), . . . , X(m) be the ordered values of a set of MTP2 random variables X1, . . . , Xm

with a marginal F . Then Pr(X(j) ≤ aj, j = 1, . . . ,m) ≤ 1 − α. If {aj} are such that

F (aj) = jα
m

, with the equality holding when when {Xi} are independent. The Simes

inequality holds in general for all MTP2 distributions. However, Karlin and Rinott

(1980) considered the strongly multivariate reverse rule of order two (S−MRR2) con-

dition characterizing negatively dependent multvariate distributions. They proved that

the Simes conjecture is not true in general for such distributions.

1.2.3 Control Of FWER

The common approach to the multiplicity problem is to control the FWER at preas-

signed level. The FWER is said to be controlled at level α by a particular multiple

testing procedure if FWER ≤ α. We shall introduce the existing FWER methodologies

here.

• Single-step procedures: Strong control of FWER is provided based on Boole’s

inequality.

FWER = Pr(V ≥ 1) = Pr(

m0⋃
j=1

{P̃j ≤ α}) ≤
m0∑
j=1

Pr(P̃j ≤ α) =

m0∑
j=1

Pr(Pj ≤
α

m
) ≤ m0α

m
.

Single-step Bonferroni adjusted p-values are given by p̃j = min(mpj, 1) The fol-
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lowing S̃idák’s procedure controls for FWER for test statistics that satisfy the

S̃idák’s inequality.

Pr(|T1| ≤ c1, . . . , |Tm| ≤ cm) ≤
m∏

j=1

Pr(|Tj| ≤ cj).

The single-step S̃idák’ adjusted p-values are given by p̃j = 1− (1− pj)
m.

Westfall and Young (1993) proposed adjusted p-values for less conservative pro-

cedures which take into account the dependence structure among test statistics.

The single-step min P adjusted p-values are given by

p̃j = Pr(min1≤l≤mPl ≤ pj|HC
0 ).

The single-step max T adjusted p-values are given by

p̃j = Pr(max1≤l≤mTl ≤ tj|HC
0 ).

• Step-down procedures: Step-down FWER procedures achieve higher power rather

than by single-step procedures. Let pr1 ≤ pr2 ≤ · · · ≤ prm denote the observed

ordered unadjusted p-values and Hr1 , Hr2 , . . . , Hrm denote the corresponding null

hypotheses. The Holm (1979) procedure operates in the following manner. Define

j∗ = min{j : prj
> α/(m−j+1)} and reject hypotheses Hrj

, for j = 1, . . . , j∗−1.

If no such j∗ exists, reject all hypotheses. Similarly, the step-down Holm adjusted

p-values are given by p̃rj
= maxk=1,...,j{min((m − k + 1)prk

, 1)}. The step-down

S̃idák adjusted p-values are defined as p̃rj
= maxk=1,...,j{1 − (1 − prk

)(m−k+1)}.

The Westfall and Young (1993) step-down min P adjusted p-values are defined

by

p̃rj
= maxk=1,...,j{Pr(minl∈{rk,...,rm}Pl ≤ prk

|HC
0 )}.
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And the step-down max T adjusted p-values are defined by

P p̃rj
= maxk=1,...,j{Pr(maxl∈{rk,...,rm}|Tl| ≥ |trk

||HC
0 )}.

where |tr1| ≥ |tr2| ≥ · · · ≥ |trm| denote the observed ordered test statistics.

• Step-up procedures: Under the complete null hypothesis HC
0 and for independent

test statistics, the ordered unadjusted p-values P(1) ≤ P(2) ≤ · · · ≤ P(m) satisfy

Pr(P(j) ≥ jα
m
, ∀j = 1, . . . ,m|HC

0 ) ≥ 1 − α with equality in the continuous

case. Step-up procedures start with this Simes inequality (1986). Hochberg

(1988) applied the Simes inequality to derive the following FWER controlling

procedure. Let j∗ = max{j : prj
≤ α/(m− j+1)} and reject hypotheses Hrj

, for

j = 1, . . . , j∗. If no such j∗ exists, reject no hypotheses. The step-up Hochberg

adjusted p-values are given by p̃rj
= mink=j,...,m{min(m− k+ 1)prk

, 1)}. Related

procedure are those of Hommel (1988) and Rom (1990). All procedures based

upon the Simes inequality have the assumption that the result derived under

independence is a conservative procedure for dependent tests.

However, Benjamini and Hochberg (1995) argued that this FWER approach has

the following limitations.

• Much of the methodology of FWER controlling procedures is concerned with com-

parisons of multiple treatments and families whose test statstics have multivariate

normal (or t).

• Strong control of the FWER tends to be less powerful than the per comparison

procedure of the same levels.

• The control of the FWER is not quite often needed.

10



In many situations, control of the FWER is too restrictive at the expense of substan-

tially lower power in detecting false hypotheses. One may wish tolerate some Type

I errors, provided their number is small in comparison to the number of rejected hy-

potheses.

1.2.4 Control Of FDR

As we have seen before, control of the FWER is too conservative when there are

many hypotheses such as in microarray experiments. The number of erroneous re-

jections should be considered in many multiplicity problems. At the same time, the

seriousness of the loss by erroneous rejections is related to the number of rejected hy-

potheses.

Benjamini and Hochberg (1995) introduced the concept of the false discovery rate

(FDR) in order to control for the conservativeness of the FWER. Let the unobserved

random variable Q= V
V +S

-the proportion of the rejected null hypothses which are erro-

neously rejected. Q = 0 when V + S=0. We define the FDR Qe to be the expectation

of Q, Qe = E(Q) = E{ V
V +S

} = E{V
R
}. Under the complete null hypotheses, control of

the FDR implies control of the FWER in the weak sense. When m0 < m, the FDR is

smaller than or equal to the FWER.

Benjamini and Hochberg (1995) proposed the following step-up FDR controlling proce-

dure. Consider testing H1, H2, . . . , Hm with the corresponding p-values P1, P2, . . . , Pm.

Let P(1) ≤ P(2) ≤, . . . ,≤ P(m) be the ordered p-values, and denote by H(i) the null hy-

pothesis corresponding to P(i). Define the following Bonferrroni type multiple-testing

procedure :

Let k be the largest i for which P(i) ≤ i
m
q; then reject all H(i), i = 1, 2, . . . , k. If no such

i exists, reject no hypothesis Benjamini and Hochberg (1995).
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Benjamini and Liu (1999) derived a new step-down procedure when test statistics are

independent. Define the m critical values by

δi ≡ 1− [1−min(1,
m

(m− i+ 1)
q)]

1
(m−i+1) , 1 ≤ i ≤ m.

The step-down procedure then operates as follow . Let k be the smallest i for which

P(i) > δi. RejectH(1), . . . , H(k−1). This procedure controls the FDR at level q Benjamini

and Liu (1999). They proved that their procedure neither dominates nor is dominated

by the step-up procedure.

Benjamini and Yekutieli (2001) showed that if the joint distribution of the test statis-

tics is PRDS on the subset of test statistics corresponding to true null hypotheses, the

Benjamini-Hochberg procedure controls the FDR at less than or equal to m0

m
q. They

also introduced a simple conservative modification of the procedure which controls the

FDR for arbitrary dependence structures. Adjusted p-values for this modified step-up

procedures are p̃rj
= mink=j,...,m{min(

m
Pm

j=1 1/j

k
prk
, 1)}.

Choosing the critical values c1 ≤ · · · ≤ cm subject to a preassigned level α, is equivalent

to finding constants a1 ≤ · · · ≤ am satisfying the following set of inequalities Sarkar

(2000):P (X1:k ≤ a1, . . . , Xk:k ≤ ak) ≥ 1 − α where X1:k ≤ . . . Xk:k denote the ordered

components of (X1, . . . , Xk). Finner and Roters (1998) illustrated this, which provided

that the critical values (a1 ≤ a2 ≤ a3) satisfying this inequality involving an equicor-

related trivariate standard normal distribution is in fact monotone when the common

correlation is positive and at most (z2
α/2 − z2

1/4)/(z
2
α/2 + z2

1/4), where zα/2 is the upper

100α percent point of N(0, 1). This example is generalized to the fact that the desired

monotonicity property holds in general for MTP2 test statistics.

The work of Benjamini and Yekutieli (2001) and the Benjamini-Liu step-down proce-

dure can be extended to a more general stepwise procedure. Sarkar(2002) obtained an

12



explicit expression of the FDR of a generalized step-up-step-down procedure of order r,

in terms of right-tailed test based on X1, . . . , Xm with the corresponding critical values

c1, . . . , cm. Starting with the formula FDR =
∑

i∈I0

∑m−1
j=0

1
m−j

P [{Xi ≥ c(j+1)}]∩Br
j,m,

where {Hi, i ∈ I0} is the list of true null hypotheses.

FDR =
1

m− r + 1

∑
i∈I0

P{Xi ≥ c(r)}

+
∑
i∈I0

r−1∑
j=1

E[φr
j,m(Xi)(

I(Xi ≥ c(j))

m− j + 1
−
I(Xi ≥ c(j+1))

m− j
)]

+
∑
i∈I0

m−1∑
j=r

E[Ψr
j,m(Xi)(

I(Xi ≥ c(j+1))

m− j
−
I(Xi ≥ c(j))

m− j + 1
)

with φr
j,m(Xi) = P{X(j) ≥ c(j), . . . , X(r) ≥ c(r)|Xi}

and Ψr
j,m(Xi) = P (X(r) < c(r), · · · , X(j) < c(j)|Xi). Sarkar (2004)

Under a variety of distributional settings of the X ′
is, the c

′

(i)s can be obtained such

that the FDR in above formula is controlled at less than or equal to m0α/m, and

hence less than or equal to α. For example, when the X ′
is are stochastically inde-

pendent, or have a multivariate distribution exhibiting a positive dependence propo-

erty in the sense that the X ′
is are PRDS on the subset {Xi, i ∈ I0}, c

′

(i)s satisfying

F (c(i)) = 1 − (m − i + 1)α/m, i = 1, . . . ,m with F (·) being the common marginal

null cumulative distribution function of the X ′
is, provide a control of the FDR at

α (Sarkar,2002). These are the Simes (1986) critical values used in the Benjamini-

Hochberg step-up test with independent test statistics. It is important to note that

the step-up test with these critical values in the independent case is actaully exactly

equal to m0α/m (Benjamini and Yekutieli 2001; Finner and Roters 2001; Sarkar 2002).

The FDR-controlling property of other step-up-step-down procedures for these types of

null hypotheses is not clear. There is another step-down procedure suggested by Ben-

jamini and Liu (1999) that controls the FDR at level α. The critical values c′(i)s of this

13



step-down procedure are such that F (c(i)) =
[
1−min(1, m

i
α)

]1/i
, i = 1, . . . ,m.

This step-down procedure controls the FDR at α for the independent statistics. Sarkar

(2002) has strengthened this fact by proving that the FDR-controlling property still

holds when the test statistics are positively dependent in the sense of being MTP2

under any alternatives, and exchangeable under the null distribution.

The proportion of false negatives among the accepted null hypotheses is defined as

N = T/A if A > 0 and = 0 if A = 0, and then we define the false negatives rate (FNR)

by E(N). The FNR of a generalized step-up-step-down procedure of order r is given

by

FNR =
1

r

∑
i∈I1

P{Xi ≤ c(r)}

+
∑
i∈I1

r∑
j=2

E[φr
j,m(Xi){

I(Xi ≤ c(j))

j − 1
−
I(Xi ≤ c(j))

j
}]

+
∑
i∈I1

n∑
j=r+1

E[Ψr
j,m(Xi){

I(Xi ≤ c(j))

j
−
I(Xi ≥ c(j−1))

j − 1
}]

Sarkar (2004) A step-down procedure can be used to control the FNR under certain

conditions, for example, independence or PRDS, on the test statistics.

The difference 1 − (FDR + FNR) indicates the strength of unbiasedness as well as a

measure of power of a multiple testing procedure. Between two procedures, the one

with higher value of this difference is more powerful, in that it maintains either a higher

proportion of corretly accepted null hypotheses or a low proportion of falsely rejected

null hypotheses. Based on simulation data from equi-correlated multivariate normals,

the performance of the Benjamini-Hochberg test performs better than any other step-

up-step-down test.

Sarkar (2003) also proposed single-step FDR and FNR testing procedures. First, under

fixed configuration of true and false null hypotheses, inequalities are obtained repre-
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senting how the results show FDR-or-FNR-controlling single-step procedure, like Bon-

ferroni or Sidak procedure, can be improved by borrowing information about m0 or

m1 in the sprit of Benjamini and Hochberg (2000), Benjamini, Krieger, and Yekutieli

(2002), Storey (2002) and Storey, Taylor, and Siegmund (2004). Storey, Taylor, and

Siegmund (2004) provided procedures modifying the BH procedure using estimates of

m0 and proved that they control the FDR under independence. Two families of proce-

dures ,one modifying the FDR-controlling and the other modifying the FNR-controlling

Sidak procedures are proposed. These control FDR or FNR under independence less

conservatively than the corresponding families modifying the FDR-or FNR-controlling

Bonferroni procedure by using the estimates of m0 considered in Storey, Taylor, and

Siegmund(2004). Sarkar extends Storey’s (2002, 2003) result to dependent case by

considering a mixture model where different configurations of true and false null hy-

potheses are assumed to have certain probabilities Sarkar (2004).

However, it was shown that most of all FDR controlling procedures were shown to

control the FDR in cases of restricted dependency but they were not designed to make

use of the dependency structure to gain more power when possible. Denote the true

null hypotheses by {H01, . . . , H0m0} and the false null hypotheses by {H11, . . . , H1m1}.

The corresponding vectors of p-values are P0 and P1, respectively. Knowing how P0

is distrubuted, we can construct more powerful MCPs. Resampling-based FDR con-

trolling procedure along the line of Westfall and Young(1993) for FWE control, use

p-value resampling to simulate P0 and utilize the dependency structure of the data

so as to construct more powerful MCPs. p-value resampling is conducted under the

complete null hypothesis. The resampling procedure makes use of these simulated sets

of p-values. Based on p-value resampling, the FDR of the generic MCP, the FDR local

estimators is estimated.
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The BH FDR local estimator is defined as QBH
est (p) =

 m · p/r(p) if r(p) ≥ 1

0 otherwise

Based on the resampling-based distributionR∗, Benjamini and Yekutieli also introduced

two resampling-based estimators differing in their treatment of s(p): point estimator

and an upper limit. The first estimator is r(p) − mp. Using this downward biased

estimator, the resampling-based FDR local estimator is given by

Q∗(p) =

 ER∗
R∗(p)

R∗(p)+r(p)−p·m if r(p)− r∗β(p) ≥ p ·m

PrR∗{R∗(p) ≥ 1} otherwise

The second estimator is r(p)-r∗β(p), assuming subset pivotality conditioning on

S(p) = s(p), The resampling based 1− β FDR upper limit is defined as

Q∗
β(p) = supx∈[0,p]

 ER∗
R∗(p)

R∗(p)+r(p)−r∗β(p)
if r(p)− r∗β(p) ≥ 0

PrR∗R∗(p) ≥ 1 otherwise

Based on Q̂, the FDR local estimator computed, the size q MCP based on the FDR

local estimator is :if kq = maxk{Q̂(p(k) ≤ q}, reject H0
(1), . . . , H

0
(kq) Yekutieli and Ben-

jamini (1999).

The traditional FDR controlling procedures involve sequential p-value rejection meth-

ods. For example, Benjamini and Hochberg (1995) provided a sequential p-value

method. A sequential p-value method gives us an estimate k̂ that leads to reject

p(1), p(2), . . . , p(k̂), where p(1) ≤ p(2) ≤ · · · ≤ p(k̂) are the ordered observed p-values.

However, k̂ may not be reliable case by case. Secondly, the method controls the error

rate for all possible values of m0, which is the number of true null hypotheses simulta-

neously without any information about m0. Instead of fixing the error rate and then

estimating k, we propose the opposite approach to fix the rejection region and then

estimate α.

Storey (2002) suggested an updated version of FDR called pFDR, which is defined as
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the conditional FDR given that there is at least one rejection. pFDR protects false

discovery better than FDR since it is conditioned on the occurence of discovery. Let

FDR(t) denote the FDR when rejecting all null hypotheses with pi ≤ t for i = 1, . . . ,m.

For t ∈ [0, 1], let V (t), S(t), and R(t) denote the number of {null pi : pi ≤ t}, the num-

ber of {alternative pi : pi ≤ t}, and V (t)+S(t), respectively. In terms of these empirical

processes, FDR(t) = E[ V (t)
R(t)∨1

]. Similarly, pFDR = E(V (t)
R(t)

|R(t) > 0).

Storey proposed a bootstrap-based algorithm to control FDR and pFDR. Similarly,

pFDR(λ) is estimated by ˆpFDR(λ)(t) = π̂0(λ)t

P̂ r(P≤t)
{1− (1− t)m}. For B bootstrap sam-

ples of p1, . . . , pm, caculate the bootstrap esimates ˆpFDR
∗b
λ (b = 1, . . . , B).

Form a 1−α upper confidence interval for pFDR(t) by taking the 1−α quantile of the

ˆpFDR
∗b
λ (t) as the upper confidence bound. Since FDR is not conditioned on at least

one rejection occuring, we can set ˆFDRλ(t) = π0(λ)t

P̂ r(P≤t)
. Tibshirani et al (2001) develop

the software package SAM applying this approach.

Let’s look at the finite sample setting of m.

Theorem 1.2.1 If the p-values for the true null hypotheses are independent and have

uniform distribution, E{ ˆpFDRλ(t)} ≥ pFDR(t) and E{ ˆFDRλ(t)} ≥ FDR(t) for all

t and π0.

ˆFDRλ(t) and ˆpFDRλ(t) is a conservative point esimate of FDRλ(t) and pFDRλ(t),

respectively.

Storey (2002)

Theorem 1.2.2 If the p-values corresponding to the true null hypotheses are

independent, then, for λ > 0, FDR{(tα( ˆFDR
∗
λ} ≤ (1− λπ0m)α ≤ α.

Storey et al. (2004)

Hence, the thresholding procedure using ˆFDRλ(t), which is a family of conservatively

biased estimate of FDR(t), controls the FDR at prespecified level α in the strong
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sense. So, the goals of the BH procedure and this procedure can be met with this one

family of estimates.

Now, let’s look at the case when m is large. For large m, the assumption of

independence can be weakened to ”weak dependence”. The following three

assumptions are needed for large m results.

limm→∞{V (t)
m0
} = G0(t), limm→∞{

S(t)

m1

} = G1(t) a.s.t ∈ (0, 1] (1),

0 < G0(t) ≤ t , t ∈ (0, 1]; (2),

limm→∞
m0

m
≡ π0 (3).

where G0 and G1 are continous functions.

ˆFDR
∞
λ (t) = {1−G0(t)

1− λ
π0 +

1−G1(t)

1− λ
π1}G0(t)/{π0G0(t) + π1G1(t)}.

This is the pointwise limit of ˆFDRλ(t) under the assumptions (1)-(3)Storey et al.

(2004).

Theorem 1.2.3 Suppose that the convergence assumptions of equations (1)− (3)

hold. For each δ > 0,

limm→∞inft≥δ{ ˆFDRλ − FDRλ(t))} ≥ 0 and limm→∞inft≥δ{ ˆFDRλ − V (t)
R(t)∨1

} ≥ 0

with probability 1.

Storey et al. (2004)

Hence, an estimate of FDR(t) proposed in Storey (2002) a conservative estimate of

the error rate over all significance regions simultaneously in the asymptotic setting.

Thus, the goals of the traditional sequential p-value method and a new method are

equivalent.

Let’s investigate the statistical properties of the pFDR. First, under the assumption
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that the test statistics have a random mixture of the null and alternative

distributions, the pFDR can be restated as a simple Bayesian posterior probability as

shown below. Second, these properties remain asymtotically under general conditions,

even under certain form of dependence in that the realizd V/R, the FDR, and the

pFDR all converge to the Bayesian form of the pFDR simultaneously over all

significance regions. Third, the pFDR can be used to define the q-value, a natural

pFDR analogue to the p-value.

For an observed statistic T = t, the q-value of t is defined as

q(t) = inf{Γα : t∈Γα}{pFDR(Γα)}. In words, the q-value is a measure of the strenth of

an observed statistic with respect to pFDR. The q-value is ”posterior Baysian

p-value”-the minimum posterior probability H = 0 over all significance containing the

statistic. Fourth, the pFDR has a connection to classification theory, and the set of

Bayes rule can be used to minimize (1− w) · pFDR + w · pFNR, where the pFNR is

the natural counterpart to the pFDR,where pFNR = E[ T
W
|W > 0].

We have shown that in both finite sample and asymptotic settings, the goals of two

approaches are equivalent. Using this new approach, we reject a greater number of

hypotheses while controlling the same error rate as the Benjamini and Hochberg

(1995) method, which leads to higher power. If the number of tests is large, it’s

appropriate to tolerate more than one false rejection provided the number of such

cases is controlled, therefore increasing the ability of the procedure to detect false null

hypotheses. E.L.Lehmann and J.P.Romano (2005) derived single-step and stepdown

k-FWER procedures, controlling the probability of k or more false rejections, without

any assumptions about the dependence structure of the p-values Lehmann and

Romano (2005).

Theorem 1.2.4 For testing Hi : P ∈ wi, i = 1, . . . ,m, suppose p̂i satisfies the

following: P{p̂i ≤ u} ≤ u for any u ∈ (0, 1) and any P ∈ wi. Consider the procedure
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that rejects any Hi for which p̂i ≤ kα/s. This procedure controls the k-FWER, so that

P{p̂i ≤ u} ≥ P{X ∈ Si(u)}. holds. Equivalently, if each of the hypotheses is tested at

level kα/s, then the k-FWER is controlled.

Theorem 1.2.5 (i) Let the αi be given below.

αi =


kα
m

i ≤ k

kα
m+k−i

i > k

For any i ≥ k there exists a joint distribution for p̂1, . . . , p̂s such that m+ k − i of the

p̂i are uniformly distributed on (0,1) and the following holds.

P{p̂(1) ≤ α1, p̂(2) ≤ α2, . . . , p̂(i−1) ≤ αi−1, p̂(i) ≤ αi} = α.

(ii) For testing Hi : P ∈ wi, i = 1, . . . ,m, suppose p̂i satisfies the following:

P{p̂i ≤ u} ≤ u for any u ∈ (0, 1). Let α1 ≤ α2 ≤ · · · ≤ αm be constants. If p̂(1) > α1,

reject no null hypotheses. If hatp(1) ≤ α1, . . . , p̂(r) > αr, reject hypotheses

H(1), . . . , H(r). For this stepdown procedure with αi , one cannot increase even one of

the constants αi (for i ≥ k) without violating the k-FWER.

Lehmann and Romano (2005)

Lehmann and Romano (2005) proposed one stepdown procedure to control the FDP

under mild conditions on the dependence structure of p-values. p̂1, . . . , p̂s denotes the

p-values of the individual tests. Also let q̂1, . . . , q̂|I| denote the p-values corresponding

to the |I| = |I(P )|ture null hypotheses. So qi = pji
, where j1, . . . , j|I| correspond to

the indices of the true null hypotheses. Also let r̂1, . . . , r̂s−|I| denote the p-values of

the false null hypotheses.
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Theorem 1.2.6 Assume the following condition: P{q̂i ≤ u|r̂1, . . . , r̂s−|I|} ≤ u, the

stepdown procedure with αi given by αi = (bγic+1)α
s+bγic+1−i

controls the FDP in the sense that

P{FDP > γ} ≤ α. They also proposed more conservative stepdown methods without

any dependence assumptions.

Lehmann and Romano (2005)

Lehmann and Romano constructed stepdown procedures to control the FDR with a

dependence assumptions on the joint distribution of the p-values.

Theorem 1.2.7 For testing Hi : P ∈ wi, i = 1, . . . , s, suppose p̂i satisfies

P{p̂i ≤ u} ≤ u for any u ∈ (0, 1).Consider the stepdown procedure with constants

α∗i = min{ sα
(s−i+1)2

, 1} and assume the condition P{q̂i ≤ u|r̂1, . . . , r̂s−|I|} ≤ u. Then

FDR ≤ α.

Lehmann and Romano (2005)

1.2.5 Recent Proposals For DNA Microarray Experiments

Let us review the recent proposals for DNA Microarray Experiments. Golub et al.

(1999) proposed neighborhood analysis for identifying genes that are differentially

expressed in patients with two types of leukemias: acute lymphoblastic leukemia

(ALL) and acute myeloid leukemia (AML). The authors computed a test statistic tj

for each gene, tj =
x1j−x2j

s1j+s2j
where xkj and skj denote the average and standard

deviation of the expression measures of gene j in the class k = 1, 2

samples,respectively. Golub et al.used the term neighborhood to refer to sets of genes

with test statistics Tj greater in absolute value than a given critical value c > 0, sets

of rejected hypotheses {j : Tj ≥ c} or {j : Tj ≤ −c}. The ALL/AML labels were

permuted B = 400 times to estimate the complete null distribution of the numbers

R(c) = V (c) =
∑m

j=1 I(Tj ≥ c) of false positives for different critical values c.

However, there are some limitations in this approach. Golub et al. did not provide
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further guidelines for selecting the critical value c or discussion of the Type I error

control of the procedure. The error rate controlled by this analysis is in fact a p-value

for the number of rejected hypotheses under the complete null,

G(c) = Pr(R(c) ≥ r(c)|HC
0 ). A critical value c is selected to control this unusual error

at a preassigned nominal level α. G(c) is not, in fact, decreasing overall and there

may be several values of c with G(c) = α. Dudoit, Shaffer, and Boldrick

(2002)considered a step-down and a step-up version of neighborhood analysis in order

to handle the monotonicity of G(c) and they derived corresponding adjusted p-values.

Since neighborhoood analysis is based on the distribution of order statistics under the

complete null, this analysis controls the Type I error rate in the weak sense. The

step-down version controls the FWER weakly, whereas the step-up analysis does not

control any error rate.

We consider the Significance Analysis of Microarrays. The earlier version of SAM

procedure (Efron et al.,2000) and Tusher, Tibshirani and Chu (2001) version of SAM

procedure seems very similar. SAM procedure from Tusher, Tibshirani and

Chu(2001).

1. compute a test statistic tj for each gene j and define order statistics t(j) such that

t(1) ≥ t(2) · · · ≥ t(m).

2. Perform B permutations of the response/covariates y1, . . . , yn. For each

permutation b compute the test statistic tj,b and the corresponding order statistics

t(1),b ≥ t(2), b ≥ · · · t(m), b.

3. From the B permutations, estimate the expected value(under the complete null) of

the order statistics by t(j) = (1/B)
∑

b t(j),b.

4. Form a quantile-quantile plot of the observed t(j) versus the expected t(j).

5. For a fixed threshold ∆, let

j0 = max{j : t(j) ≥ 0}, j1 = max{j ≤ j0 : t(j) − t(j) ≥ ∆} and
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j2 = min{j > j0 : t(j) − t(j) ≤ −∆}. All genes with j ≤ j1 are called significant

positive and all genes with j ≥ j2 are called significant negative. Define the uppper

cut point, cutup(∆) = min{t(j) : j ≤ j1} = t(j1), and the lower cut point,

cutlow(∆) = max{t(j) : j ≥ j2} = tj2). If no such j1(j2) exists, set

cutup(∆) = ∞(cutlow(∆) = −∞).

6. For a given threshold ∆, the expected number of false positives, PFER, is

estimated by computing for each of the B permutations the number of genes with tj,b

above cutup(∆) or below cutlow(∆), and averaging this number over permutations.

7. A threshold ∆ is chosen to control the expected number of false positives, PFER,

under the complete null, at an acceptable nominal level.

The only difference between the latter version of SAM and standard procedures which

rejects the null Hj for |tj| ≥ c is in the use of asymmetric critical values chosen from a

Q-Q plot. Otherwise, SAM does not provide any new definition of Type I error rate

nor any new procedure for controlling this error rate. However, there are number of

problems linked to the implementation of the Tusher, Tibshirani and Chu (2001)

SAM procedure.

1.2.6 Classification Of Genes

There are various clustering techniques of the genes which has their own issues. First,

various clustering algorithms produce different sets of clusters. There is not a

standard criterion or algorithm for choosing a cutoff point for a dendrogram. Second,

a more fundamental issue is which samples will be clustered in the first place, and on

which genes (for example, whether or not to include control samples). Third, the

difficulties are inherent in not only assessing cluster reliability, but also determining

the number of clusters. As a typical statistical clustering method, k-means method

are not flexible: It is not effective for handling different within-variations (variations
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within each cluster) and for finding outliers. For these problems, a model-based

clustering method using a normal mixture model and a well-conceived penalized

likelihood was proposed Fujisawa et al. (2004). Ridge regression, Principal

components regression, and Partial least squares regression which are regularized

regression models were proposed to deal with classification problems in gene

expression studies Ghosh (2003). These regression procedures were used to classify

the genes with the optimal scoring algorithm. A combination of the results across

several microarray experiments helps to gain significant increases in power of

identifying differentially expressed genes.

1.2.7 The Chen-Stein Method

The following method may be a useful tool to approximate a distribution to the

Poisson distribution. Arratia, Goldstein and Gordon (1989) verify the following

theorem. Write L(Y ) for the law of Y.

One may write ||L(Y0)− L(Y1)||=2supA|P (Y0 ∈ A)− P (Y1 ∈ A)|=2minP(Y0 6= Y1).

For each α ∈ I, let Xα be a Bernoulli random variable with pα=P(Xα = 1)> 0. Let

W =
∑

α∈I Xα and λ = EW . Z is denoted as a Poisson random variable with the

same mean as W. For each α ∈ I, we choose Bα ⊂ I with α ∈ Bα. Define

b1 =
∑
α∈I

∑
β∈Bα

pαpβ,

b2 =
∑
α∈I

∑
α 6=β∈Bα

pαβ,

and b3 =
∑
α∈I

E|E{Xα − pα|σ(Xβ : β /∈ Bα)|,

where pαβ = E[XαXβ]. In applications where Xα is independent of the collection

|Xβ : β /∈ Bα|, the term b3=0.
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Theorem 1.2.8 ||L(W )− L(Z)|| ≤ 2(b1 + b2 + b3)

Arratia et al. (1990)

1.3 Overview of Research

This dissertation was motivated by high-dimension low-sample size perspective for

identifying differentially expressed genes among thousands of genes. It involves

defining an appropriate multiple testing procedure with the associated test statistics

for each gene. The traditional approach to the multiplicity is familywise error rate

(FWER), but it is known to be unduly conservative. As stated before, false discovery

rate (FDR) is the better procedure in the microarray setting and genomic sequence,

in that we are interested in detecting as many differentially expressed genes as

possible. Main concerns are to estimate the underlying null distribution of test

statistics, that is, genes. Many researchers tried to oversimplify this distribution

under independence or restrictive dependence structure among the genes. Or they

have exploited unfeasible conditions under which central limit theorems apply,

resulting in too much restrictive mathematical assumptions. It is natural that we

don’t know the real dependence structures among the genes. Besides, the assumption

among the genes has been a practical issue and checking this distributional

assumption in a whole genomic study may not be easy. In these sense, we use false

discovery rate procedure to overcome these difficulties. The Chen-Stein method

addressed in section 1.2.7 plays a fundamental role in deriving an appropriate false

discover rate. This theorem presents alternative limit theorems and its ramification

wherein Poisson approximation for more general dependent sequences. This is

attainable under mild regularity conditions regarding the dependence of the genes:

the classification into two subsets of non-differentially expressed genes and
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differentially expressed genes crucial to sort plausible dependence patterns out. A

suitable false discover rate procedure must provide the exact estimation of true FDR

and attain better power than other procedures.

Developing this false discovery rate in the high dimension low sample size data in

miroarray experiment is discussed in Chapter 2. First, the first-stage FDR procedure

is derived and then we take another testing procedure to this procedure. This

procedure is designed to minimize V and maximize S in FDR. We do not estimate a

smaller false discovery rate than truly exists. In Chapter 3, we address the complexity

of high-dimension categorical genomic models that the full multisample,

multi-dimensional multinomial law may not be reasonable. The categories are not

even ordered, and a stochastic ordering may not be applicable. Diversity measures

such as the Hamming distance can have stochastic ordering. But individual statistics,

even coordinatewise ones, based on Hamming distance do not have a known null

hypothesis distribution. In these sense, we use jackknife variance estimation and

permutation distribution to construct some permutation tests. A pseudo-marginal

approach based on these facts is used to construct an appropriate marginal test

statistics. For the problem of small sample size along with discrete p-values, we

simulate the permutation distribution of this marginal test statistics and use the

exact permutation theory. In Chapter 4, we develop two nonstandard robust methods

to classify genes in order-restricted inference and small size perspective, without

assuming a linear or any specific nonlinear form that other researchers have used.

One method is to construct a locally most powerful test statistics using a suitable

rank scores, instead of deriving a uniformly most powerful test statistics which is not

feasible in our studies. Gene expression data usually has many outliers, and is highly

probable to be noisy. The small sample sizes results in unreliable estimation of

variance. Because of the large number of genes and small number of arrays, and
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higher signal-noise ratio in microarray data, traditional approaches do not work

properly. For these reasons, we propose the test statistics for each gene based on

robust M-estimator insensive to outlier arrays. Union-Intersection principle is used to

construct these test statistics. However, such tests are in general conservative. The

locally smoothed Kendall’s tau statistics is also illustrated in microarray study with

continuous responses. In Chapter 5, numerical studies are conducted assessing

proposed false discovery rate and the associated test statistics. Most of the researchers

have evaluated the performance of their FDR procedures only, not comparing with

other procedures. They have neglected a numerical study with application to real

data example. In this chapter, our numerical studies present simulated data as well as

three real data examples, by comparing with other conventional procedures.
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CHAPTER 2

FALSE DISCOVERY RATE IN

MICROARRAY STUDIES

2.1 Dependence structures among tested genes

2.1.1 Introduction

DNA microarrays have been used for monitoring expression levels of thousands of

genes simultaneously and ultimately, selecting differentially expressed genes: Multiple

hypothesis testing of thousands of gene expression levels under different experimental

conditions. As stated before, one wish to find as many differentially expressed genes

as possible. In these senese, FDR has been mostly used in microarray studies rather

than FWER. However, high correlation structures between test genes due to the gene

coregulation patterns and dependency in the measurement errors has been a great

concern in developing an appropriate FDR controlling procedure. Ignoring complexed

correlation structures among tested genes results in increase of the variability of the

FDR estimate, which inevitably misses a large portion of the informations produced

by a microarray experiment.



Mostly, current FDR controlling procedures developed thus far control the FDR

under independence or positive regression dependence using MTP2 property or do not

exploit the joint distribution of the test statistics, resulting in unduly

conservativeness. This motivates us to find out another approach to account for more

general dependence structures.

Most of the FDR controlling procedures in microarray data focused on estimating an

underlying null distribution of genes (or test statistics). This required a rather

restricted dependence assumption among thousands of genes. In fact, correlation

structures among tested genes (or p-values) is still unknown. This motivates us to

take into account that test genes might have more general dependence structures.

They have assumed some regularity conditions under which central limit theorems

may work. Unfortunately, without some knowledge of any positional ordering of the

genes, it was hard to find these conditions. For these reason, we propose a new

approach to false discovery rates, which directly estimate the distributions of V and

R, accounting for more general dependence structures among tested genes. One

fundamental property underlying the analysis of microarray data is that p-values from

non-differentially expressed genes, the null hypotheses are uniformly distributed on

(0,1) (Casella and Berger, 1990). There are another two assumptions behind our

model: the classification into two subsets of non-differentially expressed genes and

differentially expressed genes. One important assumption is that any correlation

between a non-differentially expressed gene (a null hypothesis) and a differentially

expressed gene (an alternative hypothesis) appears to be negligible. The other

important assumption is that any correlation between non-differentially expressed

genes is small. Non-differentially expressed gene expression levels having

stochastically small expression levels may not have significant interaction among

themselves as well as differentially expressed genes. On the other hand, stochastic
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dependence among differentially expressed genes may be significant. Incorporating

these fairly milder regularity conditions, this problem motivates us to utilize

alternative limit theorems by the Chen-Stein theorem where Poission approximations

for more general dependent sequences are allowed.

2.1.2 Model

Consider a DNA microarray expression data on large m genes, of which m0 is the

number of non-differentially expressed genes and m1 is the number of differentially

expressed genes. m1

m
is assumed to be close to 0 ,that is, m1 may not be small.

Numerous false positives are due to the large number of non-differentially expressed

genes. There is a null hypothesis Hi for each gene i and rejection of Hi corresponds to

declaring that a gene i is differentially expressed. For each hypothesis Hi, a test

statistic Ti is calculated with the corresponding Pi = Pr(|Ti| ≥ ti). Let Vm0 denote the

number of genes among the m0 genes erroneously rejected, Sm1 the number of genes

among the m1 genes, declared to be differentially expressed and Rm0 = Vm0 + Sm1 be

the number of genes rejected by a procedure. Let αm denote Pr(a non-differentially

expressed genes will be errorneously rejected), for example, αm = α
m

. Let α∗m denote

Pr(a differentially expressed gene will be declared to be differentially expressed), for

example, α∗m = 1− (1− αm)λ. α∗m is assumed to be greater than αm.

2.1.3 Distributions

Theorem 2.1.1 Vm0 , Sm1, and Rm0 follow Poisson distribution with rates µm0 , λm1,

and µ∗m0
, respectively, where µm0 = m0 · αm, λm1 = m1 · α∗m, and

µ∗m0
= m0 · αm +m1 · α∗m.
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The theorem follows from the Chen-Stein methods, whose proof is given in Appendix

A. For this theorem to hold we must use the two assumptions described above. In

fact. if two variables are Poisson variables, it is obvious that given the sum of two

variables, one variable has Binomial distribution. The following elementary corollaries,

whose proof is omitted, incorporate the distributions we need for deriving the FDR.

Corollary 2.1.2 Vm0, given Rm0 = r, follows Binomial distribution with r and

µm0

µ∗m0

= m0αm

m0αm+(m−m0)α∗m
.

Corollary 2.1.3 Sm1 given Rm0 = r follow Binomial distribution with r and

1− µm0

µ∗m0

= (m−m0)α∗m
m0αm+(m−m0)α∗m

.

2.1.3.1 FDR

Using the distribution results above, we prove the following theorem giving an explicit

expression of FDR. We consider the large m case in that data of interest is

high-dimension (large m) genomic data.

Theorem 2.1.4 FDR = 1

1+
m1
m0

(
α∗m
αm

)
(1− exp(−(mαm +m1(α

∗
m − αm)))

Proof.
[Proof of the Main Theorem]

FDR = E(
Vm0

Rm0

|Rm0 > 0) · Pr(Rm0 > 0)

=
mX

r=1
E[

Vm0

Rm0

|Rm0 = r] · Pr(Rm0 = r|Rm0 > 0) · Pr(Rm0 > 0)

=
mX

r=1

1

r
· r ·

µm0

µ∗m0

·
exp(−µ∗m0

)(µ∗m0
)r

r!
/Pr(Rm0 > 0) · Pr(Rm0 > 0)

=
µm0

µ∗m0

(1− exp(−µ
∗
m0

))

=
m0αm

m0αm + (m − m0)α∗
m

· (1− exp(−(m0αm + (m − m0)α
∗
m)))

=
1

1 +
m1
m0

(
α∗m
αm

)
(1− exp(−(mαm + m1(α

∗
m − αm)))
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In fact, as m goes to infinity, m1(α
∗
m − αm) becomes small but mαm becomes large.

exp(−(mαm +m1(α
∗
m − αm)) goes to 0. The ratio m1

m0
· α∗m

αm
(=

λm1

µm0
) is much larger than

1. Since the dominating term 1

1+
m1
m0

(
α∗m
αm

)
becomes much smaller than 1, the FDR

becomes much smaller. Hence, FDR is controlled at prespecified level α , where

0 < α < 1.

2.1.4 Stochastic ordering

In this section, we prove some elementary stochastic ordering results for FDR and

FNR. These results are used to prove the monotonicities of FDR and FNR. Let

Vm0−1, Sm1+1, and Rm0−1 be the number of genes among the m0 − 1 genes erroneously

rejected, the number of genes among the m1 + 1 genes, declared to be differentially

expressed and the number of genes rejected by a procedure, respectively after a

non-differentially expressed gene becomes infected to a differentially expressed gene.

Let FVm0
, FSm1

, and FRm0
denote the distribution functions of Vm0 , Sm1 ,and Rm0

respectively. Likewise, FVm0−1 , FSm1+1 , FRm0−1denote the distribution functions of

Vm0−1, Sm1+1, and Rm0−1, respectively. In fact, the relationship between Vm0−1 and

Vm0 is defined based on the probability αm.

Pr{Vm0−1 = v − 1|Vm0 = v} = Pr{Pi < cα} = αm i = 1, 2, . . . ,m0.

P r{Vm0−1 = v|Vm0 = v} = Pr{Pi ≥ cα} = 1− αm i = 1, 2, . . . ,m0.

Theorem 2.1.5 Vm0 >
st Vm0−1.

Proof.
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[Proof of the Main Theorem]

FVm0−1 = Pr(Vm0−1 ≤ v)

= E(I(Vm0−1 ≤ v))

= E(E(I(Vm0−1 ≤ v)|Vm0 = vm0))

= αmE(I(Vm0 − 1 ≤ v)) + (1− αm)E(I(Vm0 ≤ v)))

= αmFVm0
(v + 1) + (1− αm)FVm0

(v)

FVm0−1(v)− FVm0
(v) = αmFVm0

(v + 1) + (1− αm)FVm0−1(v)− FVm0
(v)

= αm(FVm0
(v + 1)− FVm0

(v))

= αm · Pr(Vm0 = v) ≥ 0, v ≥ 0.

By the relationship between cumulative distribution function and stochastic ordering,

we can prove

F Vm0
≥ F Vm0−1 ⇔ Vm0 >

st Vm0−1.

Similarly, there is a relationship between Sm1+1 and Sm1 is defined based on the

probability α∗m.

Pr{Sm1+1 = s+ 1|Sm1 = s} = Pr{Pi < cα} = α∗m i = m0 + 1, . . . ,m

Pr{Sm1+1 = s|Sm1 = s} = Pr{Pi ≥ cα} = 1− α∗m i = m0 + 1, . . . ,m.

Theorem 2.1.6 Sm1+1 >
st Sm1

Proof.

33



[Proof of the main theorem]

FSm1+1 = Pr(Sm1+1 ≤ s)

= E(I(Sm1+1 ≤ s))

= E(E(I(Sm1+1 ≤ s)|Sm1 = sm1))

= α∗mE(I(Sm1 + 1 ≤ s)) + (1− α∗m)E(I(Sm1 ≤ s)))

= α∗mFSm1
(s− 1) + (1− α∗m)FSm1

(s)

F Sm1+1(s)− F Sm1
(s) = FSm1

(s)− α∗mFSm1
(s− 1)− (1− α∗m)FSm1

(s)

= α∗m(FSm1
(s)− FSm1

(s− 1))

= α∗m · Pr(Sm1 = s− 1) ≥ 0, s ≥ 1

The corollary 2.17 directly comes from theorem 2.16, whose proof is omitted.

Corollary 2.1.7 Sm1+1 <
st Sm1 + 1

Proof.

F 1+Sm1
(s)− FSm1+1(s) = 1− FSm1

(s− 1)− (1− α∗mFSm1
(s− 1)− (1− α∗m)FSm1

(s))

= −FSm1
(s) + α∗m(FSm1

(s− 1) + (1− α∗m)FSm1
(s))

= (α∗m − 1) · FSm1
(s− 1) + (1− α∗m)FSm1

(s))

= (1− α∗m)Pr(Sm1 = s− 1) ≥ 0, s ≥ 1

The relationship between Rm0−1 and Rm0 is defined in terms of both αm and α∗m in
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the following theorem.

Pr {Rm0−1 = r|Rm0 = r}

= Pr(Vm0−1 = v, Sm1+1 = s|Vm0 = v, Sm1 = s)

+ Pr(Vm0−1 = v − 1, Sm1+1 = s + 1|Vm0 = v, Sm1 = s)

= Pr(Sm1+1 = s|Vm0−1 = v, Vm0 = v, Sm1 = s) · Pr(Vm0−1 = v|Vm0 = v, Sm1 = s)

+ Pr(Sm1+1 = s + 1|Vm0−1 = v − 1, Vm0 = v, Sm1 = s) · Pr(Vm0−1 = v − 1|Vm0 = v, Sm1 = s)

= (1− α
∗
m) · (1− αm) + α

∗
m · αm

= 1− αm − α
∗
m + 2α

∗
m · αm

Pr {Rm0−1 = r + 1|Rm0 = r}

= Pr(Vm0−1 = v, Sm1+1 = s + 1|Vm0 = v, Sm1 = s)

= Pr(Sm1+1 = s + 1|Vm0−1 = v, Vm0 = v, Sm1 = s) · Pr(Vm0−1 = v|Vm0 = v, Sm1 = s)

= (1− αm) · α
∗
m

Theorem 2.1.8 Rm0−1 >
st Rm0

Proof.
[Proof of the main theorem]

F Rm0−1 (r) −F Rm0
(r)

= 1− (1− αm − α
∗
m + 2α

∗
m · αm)FRm0

(r)− (1− αm) · α
∗
mFRm0

(r − 1)− 1 + FRm0
(r)

= (1− αm) · α
∗
m(FRm0

(r)− FRm0
(r − 1)) + (1− α

∗
m) · αmFRm0

(r) ≥ 0, r ≥ 1

Like Vm0 , Sm1 , and Rm0 , Vm0−1, Sm1+1, and Rm0−1 follow Poisson distribution with

rates (m0 − 1)αm, (m1 + 1)α∗m, and (m0 − 1)αm + (m1 + 1)α∗m, respectively.

2.1.5 Monotonicity property of FDR

By using stochastic ordering, we can prove the following theorem.

Theorem 2.1.9 FDR is a monotone decreasing function of m1.

35



Proof.

Given Rm0 > 0 and Rm0−1 > 0,

Vm0−1

Rm0−1

=
Vm0 + (Vm0−1 − Vm0)

Rm0 + (Rm0−1 −Rm0)

<st Vm0

Rm0

E(
Vm0−1

Rm0−1

|Rm0−1 > 0) < E(
Vm0

Rm0

|Rm0 > 0)

E(
Vm0

Rm0
|Rm0 > 0) is a nonincreasing function of m1. Since α∗m ≈ αm,

Pr(Rm0−1 > 0)− Pr(Rm0 > 0) = exp(−µ∗m0
) · [1− exp(−(α∗m − αm))] ≈ 0

.

2.1.6 FNR

We will derive in this section an explicit expression of FNR analogous to that of FDR.

FNR = E(
Tm1

Am0

|Am0 > 0) · Pr(Am0 > 0)

= E(
m1 − Sm1

m − Rm0

|Rm0 < m) · Pr(Rm0 < m)

=

m−1X
r=0

E[
m1 − Sm1

Rm0

|Rm0 = r] ·
Pr(Rm0 = r)

Pr(Rm0 < m)
· Pr(Rm0 < m)

=

m−1X
r=1

1

m − r
· [m1 − E(Sm1 |Rm0 = r)] ·

exp(−µ∗m0
)(µ∗m0

)r

r!

=

m−1X
r=1

1

m − r
· [m1 − r ·

(m − m0)α∗
m

m0αm + (m − m0)α∗
m

] ·
exp(−µ∗m0

)(µ∗m0
)r

r!

2.1.7 Monotonicity property of FNR

Making the similar arguments as we made before the monotonicity property of the

FDR, we notice the relationship between FNR and m1.
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Theorem 2.1.10 FNR is a monotone increasing function of m1.

Proof.

Given m−Rm0 > 0 and m−Rm0−1 > 0

m1 + 1− Sm1+1

m−Rm0−1
=

m1 + 1− Sm1 + (1 + Sm1 − Sm1+1)
m−Rm0 − (Rm0−1 −Rm0)

where Rm0−1 >st Rm0 and Sm1+1 <st 1 + Sm1 .

m1 + 1− Sm1+1

m−Rm0−1
>st m1 − Sm1

m−Rm0

E(
m1 + 1− Sm1+1

m−Rm0−1
|Rm0−1 < m) > E(

m1 − Sm1

m−Rm0

|Rm0 < m)

Pr(Rm0 < m) = 1− Pr(Rm0 = m)

= 1− exp(−m0 · αm −m1 · α∗m) · (m0 · αm + m1 · α∗m)m

m!

Pr(Rm0−1 < m) −Pr(Rm0 < m)

=
exp(−m0 · αm −m1 · α∗m) · (m0 · αm + m1 · α∗m)m

m!

− exp(−(m0 − 1) · αm − (m1 + 1) · α∗m) · ((m0 − 1) · αm + (m1 + 1) · α∗m)m

m!

≤ exp(−m0 · αm −m1 · α∗m)(1− exp(αm − α∗m)) · ((m0 − 1) · αm + (m1 + 1) · α∗m)m

m!

≈ 0

2.2 Two stage FDR procedure
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2.2.1 Introduction

In last section, we find out the strategy to allow for more general dependence

structures among tested genes. Researchers are aware of high rate of false positives in

microarray data studies. Many small microarray studies has reported the large FDR

problem. We propose two-stage procedure to add the first stage FDR derived in last

section to another testing procedure. This leads to not only minimize the FDR level

but also increase power. We still have two great concerns involved in developing an

appropriate FDR procedure. For FDR estimation purpose, we don’t want to report a

smaller false discovery rate than truly exists. On the other hand, FDR procedure

must be controlled at preassigned level α. Optimal FDR procedure maximizes the

expected number of true positives (S) for each fixed level of expected false positives

(V), which ideally corresponds to better estimate of false-discovery rates (estimation)

and minimized false positives and false negatives (Power) Storey (2007). We develop

proposed FDR procedure to achieve these goals. We will show stochastic ordering

thoroughly in this section. The number of rejected hypotheses, R, the number of

accepted hypotheses in favor of the alternative, the number of true null hypotheses

m1 turn out to be stochastic in nature. It is feasible only when data are continous.

However, for the categorical models, another techiniques will be needed. We will

investigate this case in details in Chapter 3.

2.2.2 Model

Consider the following two-stage FDR procedure. There is a null hypothesis Hi for

each gene i , with the corresponding alternative hypothesis Hc
i and rejection of Hi

corresponds to declaring that gene i is differentially expressed. For each hypothesis

Hi, a test statistic Xi is caculated with the corresponding Pi = Pr(Xi ≥ xi) for a

right-tailed test.
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Stage 1 : H0 :
⋂m

i=1Hi vs H1 :
⋃m

i=1H
c
i .

Let α1m = Pr(Pi < Cα, i = 1, . . . ,m0) denote Pr(a underexpressed gene will be

errorneously rejected at the first stage), for example, α1m = α
m

. Let

α∗1m = Pr(Pi < Cα, i = m0 + 1, . . . ,m) denote Pr(an overexpressed gene will be

declared to be differentially expressed at the first stage), for example,

α∗1m = 1− (1− α1m)λ. α∗1m is assumed to be greater than α1m. Assume that the P ′
is

are uniformly distributed among the m0 genes. Let V1(m0) denote the number of genes

among the m0 genes erroneously rejected, S1(m1) the number of genes among the m1

genes, declared to be differentially expressed and R1(m0) = V1(m0) + S1(m1) be the

number of genes rejected by a procedure. There is a Type I error that inactive genes

are declared to be active genes.

Stage 2 : Among the set of genes not rejected at the first stage,m0 −R1(m0) genes,

repeat performing the same testing procedure with different critical values. Let

α2m = Pr(Pi < C∗
α|Pi > Cα, i = 1, . . . ,m0) denote Pr(a underexpressed gene will be

errorneously rejected at the second stage), for example, α2m = α
m

. Let

α∗2m = Pr(Pi < C∗
α|Pi > Cα, i = m0 + 1, . . . ,m) denote Pr(an overexpressed gene

will be declared to be differentially expressed at the second stage), for example,

α∗2m = 1− (1− α2m)λ. α∗2m is assumed to be greater than α2m. Assume that the P ′
is

are uniformly distributed among the m0 −R1(m0) genes. Let V2(m0) denote the number

of genes among the m0 − V1(m0) genes erroneously rejected, S2m1 the number of genes

among the m1 − S1(m1) genes, declared to be differentially expressed and

R2(m0) = V2(m0) + S2(m1) be the number of genes rejected by a procedure.

2.2.3 Distributions

Making the same arguments in the previous section, using the Chen-Sten method, we

derive V, S, and R at both stages.
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Theorem 2.2.1 V1(m0), S1(m1), and R1(m0) follow Poisson distribution with rates

µ1(m0), λ1(m1), and µ∗1(m0), respectively, where µ1(m0)(= m0 · α1m), λ1(m1)(= m1 · α∗1m),

and µ∗1(m0)(= m0 · α1m +m1 · α∗1m).

Similarly, V2(m0), S2(m1), and R2(m0) , given V1(m0), S1(m1), and R1(m0) ,follow Poisson

distribution with rates µ2(m0), λ2(m1), and µ∗2(m0), respectively, where

µ2(m0)(= (m0 − V1(m0)α2m), λ2(m1)(= (m1 − S1(m1))α
∗
2m), and

µ∗2(m0)(= (m0 − V1(m0))α2m + (m1 − S1(m1))α
∗
2m).

The corollaries are directly proven by the theorem above.

Corollary 2.2.2 V1(m0), given R1(m0) = r1, follows Binomial distribution with r1 and

µ1(m0)

µ∗
1(m0)

= m0α1m

m0α1m+(m−m0)α∗1m
.

Corollary 2.2.3 S1(m1) given R1(m0) = r1 follow Binomial distribution with r1 and

1− µ1(m0)

µ∗
1(m0)

=
(m−m0)α∗1m

m0α1m+(m−m0)α∗1m
.

2.2.4 FDR(2)

Using the distibutional settings of V, S, and R at both stages, we get an explicit form

of the FDR. It is important to note that FDR(2) is a little bit smaller than the FDR

in section 2.1.2.1. Analogous to the FDR, we derive two stage pFDR in the theorem.

Theorem 2.2.4 FDR(2) = 1

1+
m1(α∗1m·eα∗2m+α∗2m)

m0(α1m·eα2m+α2m)

Proof.
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[Proof of the Main Theorem]

FDR
(2)

= E(E(
V1(m0) + V2(m0)

R1(m0) + R2(m0)
|V1(m0) = v1, S1(m1) = s1)|R1(m0) > 0) · Pr(R1(m0) > 0)

= E(
V1(m0) + V2(m0)

R1(m0) + R2(m0)
|R1(m0) > 0) · Pr(R1(m0) > 0)

=
mX

r1=1
E(

V1(m0) + V2(m0)

R1(m0) + R2(m0)
|R1(m0) = r1) · Pr(R1(m0) = r1|R1(m0) > 0) · Pr(R1(m0) > 0)

=
mX

r1=1
E(

V1(m0) + V2(m0)

R1(m0) + R2(m0)
|R1(m0) = r1) · Pr(R1(m0) = r1 > 0)

=
mX

r1=1

m0X
v1=0

m0X
v2=0

mX
r2=0

V1(m0) + V2(m0)

R1(m0) + R2(m0)
Pr(V1(m0) = v1, V2(m0) = V2, R2(m0) = r2|R1(m0) = r1)

×
Pr(R1(m0) = r1)

Pr(R1(m0) > 0)
· Pr(R1(m0) > 0)

= E(
V1(m0) + V2(m0)

R1(m0) + R2(m0)
)

In fact, R = R1(m0) +R2(m0) is always positive in this FDR formula due to two stage
rejection procedures. The distribution of V1(m0) + V2(m0) is as below.

Pr(V1(m0) + V2(m0) = v) = E(Pr(V2(m0) = v − v1|V1(m0) = v1))

=

vX
v1=0

PrV1(m0)
(v1)PrV2(m0)|V1(m0)

(v − v1)

=
vX

v1=0
e
−m0·α1m ·

(m0 · α1m)v1

v1!
∗ e

−(m0−v1)α2m ·
(m0 − v1) · α2m)v−v1

(v − v1)!

=

vX
v1=0

e
−m0·(α1m+α2m) · e

α2m·v1 ·
m

v1
0 · α

v1
1m

v1!
α

v−v1
2m

(m0 − v1)v−v1

(v − v1)!

= m
v
0 ·

e−m0·(α1m+α2m)

v!
·

vX
v1=0

„
v

v1

«
α

v−v1
2m (α1me

α2m )
v1 (1−

v1

m0
)
v−v1

= m
v
0 ·

e−m0·(α1m+α2m)

v!
·

vX
v1=0

„
v

v1

«
α

v−v1
2m (α1me

α2m )
v1e

(v−v1)ln(1− v1
m0

)

= m
v
0 ·

e−m0·(α1m+α2m)

v!
·

vX
v1=0

„
v

v1

«
α

v−v1
2m (α1me

α2m )
v1e

(v−v1)g(v1)

= m
v
0 ·

e−m0·(α1m+α2m)

v!
·

vX
v1=0

„
v

v1

«
(α2m · e

g(v1)
)
v−v1 (α1me

α2m )
v1

= m
v
0 ·

e−m0·(α1m+α2m)

v!
·

vX
v1=0

„
v

v1

«
· e

g(v1)
θ

v−v1 (1− θ)
v1 · (α2m + α1me

α2m )
v

= m
v
0 ·

e−m0·(α1m+α2m)

v!
· E(e

g(v1)
) · (α2m + α1me

α2m )
v

= m
v
0 ·

e−m0·(α1m+α2m)

v!
· (1−

1

m0
·

α1meα2m

α2m + α1meα2m
) · (α2m + α1me

α2m )
v

=
e−m0·(α1m+α2m)

v!
· (1−

1

m0
·

α1meα2m

α2m + α1meα2m
) · (m0(α2m + α1me

α2m ))
v

where θ = α2m

α2m+α1meα2m
. The distribution has the form of Poisson distibution with

rate m0 · (α1m + α2m), except for the second term (1− 1
m0
· α1meα2m

α2m+α1meα2m
).

41



The distribution of S1(m1) + S2(m1) is as below.

Pr(S1(m1) + S2(m1) = s) = E(Pr(S2(m1) = s − s1|S1(m1) = s1))

=
sX

s1=0
PrS1(m1)

(s1)PrS2(m1)|S1(m1)
(s − s1)

=
sX

s1=0
e
−m0·α

∗
1m ·

(m1 · α∗
1m)s1

s1!
∗ e

−(m0−s1)α∗2m ·
(m1 − s1) · α∗

2m)s−s1

(s − s1)!

=
sX

s1=0
e
−m1·(α∗1m+α∗2m) · e

α∗2m·s1 ·
m

s1
1 · α

∗s1
1m

s1!
α
∗(s−s1)
2m

(m1 − s1)s−s1

(s − s1)!

= m
s
1 ·

e−m1·(α∗1m+α∗2m)

s!
·

sX
s1=0

„
s

s1

«
α
∗(v−v1)
2m (α

∗
1me

α∗2m )
s1 (1−

s1

m1
)
s−s1

= m
s
1 ·

e−m1·(α∗1m+α∗2m)

s!
·

sX
s1=0

„
s

s1

«
α
∗(s−s1)
2m (α

∗
1me

α∗2m )
s1e

(s−s1)ln(1− s1
m1

)

= m
s
1 ·

e−m1·(α∗1m+α∗2m)

s!
·

sX
s1=0

„
s

s1

«
α
∗(s−s1)
2m (α

∗
1me

α∗2m )
s1e

(s−s1)g(s1)

= m
s
1 ·

e−m1·(α∗1m+α∗2m)

s!
·

sX
s1=0

„
s

s1

«
(α

∗
2m · e

g(s1)
)
s−s1 (α

∗
1me

α∗2m )
s1

= m
s
1 ·

e−m1·(α∗1m+α∗2m)

s!
·

sX
s1=0

„
s

s1

«
· e

g(s1)
θ

s−s1 (1− θ)
s1 · (α∗

2m + α
∗
1me

α∗2m )
s

= m
s
1 ·

e−m1·(α∗1m+α∗2m)

s!
· E(e

g(s1)
) · (α∗

2m + α
∗
1me

α∗2m )
s

= m
s
1 ·

e−m1·(α∗1m+α∗2m)

s!
· (1−

1

m1
·

α∗
1meα∗2m

α∗
2m + α∗

1me
α∗2m

) · (α∗
2m + α

∗
1me

α∗2m )
s

=
e−m1·(α∗1m+α∗2m)

s!
· (1−

1

m1
·

α∗
1meα∗2m

α∗
2m + α∗

1me
α∗2m

) · (m1(α
∗
2m + α

∗
1me

α∗2m ))
s

where θ =
α∗2m

α∗2m+α∗1meα∗2m
.

The distribution of S1(m1) + S2(m1) has the form of Poisson distibution with rate

m1 · (α∗1m + α∗2m), except for the second term (1− 1
m1
· α∗1meα∗2m

α∗2m+α∗1meα∗2m
).

For convenience of notation, let V1(m0) + V2(m0)be Vm0 and S1(m1) + S2(m1) be Sm1 .

Pr (Vm0 + Sm1 = r)

=
rX

v=0

e−m0·(α1m+α2m)

v!
· (m0(α1m · e

α2m + α2m))
v ·

e−m1·(α∗1m+α∗2m)

(r − v)!
· (m1(α

∗
1m · e

α∗2m + α
∗
2m)

r−v

× (1−
1

m0
·

α1meα2m

α2m + α1meα2m
) · (1−

1

m1
·

α∗
1meα∗2m

α∗
2m + α∗

1me
α∗2m

)

=
exp(−m0 · (α1m + α2m)− m1 · (α∗

1m + α∗
2m))

r!

×
rX

v=0
rCv · (m0(α1m · e

α2m + α2m))
v · (m1(α

∗
1m · e

α∗2m + α
∗
2m)

r−v

× (1−
1

m0
·

α1meα2m

α2m + α1meα2m
) · (1−

1

m1
·

α∗
1meα∗2m

α∗
2m + α∗

1me
α∗2m

)

=
exp(−m0 · (α1m + α2m)− m1 · (α∗

1m + α∗
2m))

r!
· (m1(α

∗
1m · e

α∗2m + α
∗
2m) + m0(α1m · e

α2m + α2m))
r

× (1−
1

m0
·

α1meα2m

α2m + α1meα2m
) · (1−

1

m1
·

α∗
1meα∗2m

α∗
2m + α∗

1me
α∗2m

)
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The distributions of Vm0 and Sm1 do not have the exact forms of Poisson distibution.
However, based on the distribution of Vm0 and Sm1 , we can derive the conditional
distribution of Vm0 , given Vm0 + Sm1 = r and prove that it is a Binomial distribution
with r and p.

Pr (Vm0 = v|Vm0 + Sm1 = r)

=
Pr(Vm0 = v, Sm1 = r − v)

Pr(Vm0 + Sm1 = r)

=

exp(−m0·(α1m+α2m)−m1·(α∗1m+α∗2m))
r!(r−v)!

exp(−m0·(α1m+α2m)−m1·(α∗1m+α∗2m))
r!

·
(m0(α1m · eα2m + α2m))v(m1(α∗

1m · eα∗2m + α∗
2m))r−v

(m1(α∗
1m · e

α∗2m + α∗
2m) + m0(α1m · eα2m + α2m))r

×

(1− 1
m0

· α1meα2m

α2m+α1meα2m
) · (1− 1

m1
·

α∗1me
α∗2m

α∗2m+α∗1me
α∗2m

)

(1− 1
m0

· α1meα2m

α2m+α1meα2m
· (1− 1

m1
·

α∗1me
α∗2m

α∗2m+α∗1me
α∗2m

)

=

„
r

v

«
p

v
(1− p)

r−v

where p= m0(α1m·eα2m+α2m)

m1(α∗1m·e
α∗2m+α∗2m)+m0(α1m·eα2m+α2m)

Based on the conditional distribution shown, we can derive two stage FDR as below.

E(
V1(m0) + V2(m0)

R1(m0) + R2(m0)
) = E(

Vm0

Vm0 + Sm1

)

= E(E(
Vm0

Vm0 + Sm1

|Vm0 + Sm1 ))

= E(
Vm0 + Sm1

Vm0 + Sm1

· p)

=
m0(α1m · eα2m + α2m)

m1(α∗
1m · e

α∗2m + α∗
2m) + m0(α1m · eα2m + α2m)

=
1

1 +
m1(α∗1m·eα∗2m+α∗2m)
m0(α1m·eα2m+α2m)

In fact, α1m and α∗1m are estimated by max(V1(m0)/R1(m0),cα) and S1(m1)/R1(m0),

respectively.
Similary, Two stage pFDR is defined as follow.

pFDR = E(
V1(m0) + V2(m0)

R1(m0) + R2(m0)
|R1(m0) > 0)

=
1

1 +
m1(α∗1m·eα∗2m+α∗2m)
m0(α1m·eα2m+α2m)

/(1− Pr(R1(m0) = 0))

=
1

1 +
m1(α∗1m·eα∗2m+α∗2m)
m0(α1m·eα2m+α2m)

/(1− exp(−(m0 · α1m + m1 · α
∗
1m)))
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2.2.5 Stochastic ordering

We can make the same arguments as done in section 2.1.3. Let V1(m0−1), S1(m1+1), and

R1(m0−1) be the number of genes among the m0 − 1 genes erroneously rejected, the

number of genes among the m1 + 1 genes, declared to be differentially expressed and

the number of genes rejected by the first stage procedure, respectively after a

underexpressed gene becomes infected to an overexpressed gene. Let

V2(m0−1), S2(m1+1), and R2(m0−1) be the number of genes among the m0 − 1 genes

erroneously rejected, the number of genes among the m1 + 1 genes, declared to be

differentially expressed and the number of genes rejected by the second stage

procedure, respectively after a underexpressed gene becomes infected to an

overexpressed gene. This stochastic ordering property supports the fact that the

increase in the proportion of the true null hypotheses (π0), the greater FDRs are and

the smaller FNRs are.

Let FV1(m0)
, FS1(m1)

, and FR1(m0)
denote the distribution functions of V1(m0), S1(m1),and

R1(m0) respectively. Likewise, FV1(m0−1)
, FS1(m1+1)

, FR1(m0−1)
denote the distribution

functions of V1(m0−1), S1(m1+1), and R1(m0−1), respectively. Similarly, Let FV2(m0)
,

FS2(m1)
, and FR2(m0)

denote the distribution functions of V2(m0), S2(m1),and R2(m0)

respectively. Likewise, FV2(m0−1)
, FS2(m1+1)

, FR2(m0−1)
denote the distribution functions

of V2(m0−1), S2(m1+1), and R2(m0−1), respectively. We define α1m, α
∗
1m, α2m,and α∗2m in

terms of Cα and C∗
α.

Pr(Pi < Cα) = α1m i = 1, 2, . . . ,m0

= α∗1m i = m0 + 1, 2, . . . ,m
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Pr(Pi < C∗
α|Pi > Cα) = α2m i = 1, 2, . . . ,m0

= α∗2m i = m0 + 1, 2, . . . ,m

where Cα and C∗
α are cutoffpoints of the first stage and the second stage, respectively.

In fact, the relationship between V1(m0−1) and V1(m0) is explained by α1m and the

relationship between V2(m0−1) and V2(m0) is explained by α2m.

Pr{V1(m0−1) = v1 − 1|V1(m0) = v1} = α1m

Pr{V1(m0−1) = v1|V1(m0) = v1} = 1− α1m

Pr{V2(m0−1) = v2 − 1|V2(m0) = v2} = α2m

Pr{V2(m0−1) = v2|V2(m0) = v2} = 1− α2m

Similarly, we can find out the relationship between S1(m1+1) and S1(m1) and the

relationship between S2(m1+1) and S2(m1).

Pr{S1(m1+1) = s1 + 1|S1(m1) = s1} = α∗1m

Pr{S1(m1+1) = s1|S1(m1) = s1} = 1− α∗1m

Pr{S2(m1+1) = s2 + 1|S2(m1) = s2} = α∗2m

Pr{S2(m1+1) = s2|S2(m1) = s2} = 1− α∗2m

Based on these relationships, we can derive the following stochastic orderings.

Theorem 2.2.5 V1(m0) >
st V1(m0−1), S1(m1+1) >

st S1(m1),and R1(m0−1) >
st R1(m0) ,

where R1(m0) = V1(m0) + S1(m1)

Proof.
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[Proof of the main theorem]

FV1(m0−1)
(v1)− FV1(m0)

(v1) = FV1(m0)
(v1)− α1mFV1(m0)

(v1 + 1)− (1− α1m)FV1(m0)
(v1)

= −α1m · (FV1(m0)
(v1 + 1)− FV1(m0)

(v1))

= −α1m · Pr(V1(m0) = v1) ≤ 0, v1 ≥ 0.

By the relationship between cumulative distribution function and stochastic ordering,

we can prove

F V1(m0)
≥ F V1(m0−1)

⇔ V1(m0) >
st V1(m0−1).

As for S1(m1),

FS1(m1+1)
(s1)− FS1(m1)

(s1) = FS1(m1)
(s1)− α∗1mFS1(m1)

(s1 − 1)− (1− α∗1m)FS1(m1)
(s1)

= α∗1m · (FS1(m1)
(s1)− FS1(m1)

(s1 − 1))

= α∗1m · Pr(S1(m1) = s1 − 1) ≤ 0, s1 ≥ 1.

F S1(m1)
≤ F S1(m1+1)

⇔ S1(m1+1) >
st S1(m1).

Stochastic ordering of R1(m0) can be defined in terms of V1(m0) and S1(m1).

P{R1(m0−1) = r1|R1(m0) = r1} = P (V1(m0−1) = v1 − 1, S1(m1+1) = s1 + 1|V1(m0) = v1, S1(m1) = s1)

+ P (V1(m0−1) = v1 − 1, S1(m1+1) = s1 + 1|V1(m0) = v1, S1(m1) = s1)

= P (S1(m1+1) = s1|V1(m0−1) = v1, V1(m0) = v1, S1(m1) = s1)

× P (V1(m0−1) = v1|V1(m0) = v1, S1(m1) = s1)

+ P (S1(m1+1) = s1 + 1|V1(m0−1) = v1 − 1, V1(m0) = v1, S1(m1) = s1)

× P (V1(m0−1) = v1 − 1|V1(m0) = v1, S1(m1) = s1)

= (1− α
∗
1m) · (1− α1m) + α

∗
1m · α1m

= 1− α1m − α
∗
1m + 2α

∗
1m · α1m
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P{R1(m0−1) = r1 + 1|R1(m0) = r1} = P (V1(m0−1) = v1, S1(m1+1) = s1 + 1|V1(m0) = v1, S1(m1) = s1)

= P (S1(m1+1) = s1 + 1|V1(m0−1) = v1, V1(m0) = v1, S1(m1) = s1)

× P (V1(m0−1) = v1|V1(m0) = v1, S1(m1) = s1)

= (1− α1m) · α
∗
1m

F R1(m0−1)
(r1)− F R1(m0)

(r1) = 1− (1− α1m − α
∗
1m + 2α

∗
1m · α1m)FR1(m0)

(r1)

− (1− α1m) · α
∗
1mFR1(m0)

(r1 − 1)− 1 + FR1(m0)
(r1)

= (1− α1m) · α
∗
1m(FR1(m0)

(r1)− FR1(m0)
(r1 − 1))

+ (1− α
∗
1m) · α1mFR1(m0)

(r1) ≥ 0, r1 ≥ 1

Thus, R1(m0−1) >
st R1(m0).

Like V1(m0), S1(m1), and R1(m0), V1(m0−1), S1(m1+1), and R1(m0−1) follow Poisson

distribution with rates (m0 − 1)α1m, (m1 + 1)α∗1m, and (m0 − 1)α1m + (m1 + 1)α∗1m,

respectively.

Theorem 2.2.6 V2(m0) >
st V2(m0−1), S2(m1+1) >

st S2(m1),and R2(m0−1) >
st R2(m0),

where R2(m0) = V2(m0) + S2(m1)

Proof.

FV2(m0−1)
(v2)− FV2(m0)

(v2) = FV2(m0)
(v2)− α2mFV2(m0)

(v2 + 1)− (1− α2m)FV2(m0)
(v2)

= −α2m · (FV2(m0)
(v2 + 1)− FV2(m0)

(v2))

= −α2m · Pr(V2(m0) = v2) ≤ 0, v2 ≥ 0.

F V2(m0)
≥ F V2(m0−1)

⇔ V2(m0) >
st

V2(m0−1).

FS2(m1+1)
(s2)− FS2(m1)

(s2) = FS2(m1)
(s2)− α

∗
2mFS2(m1)

(s2 − 1)− (1− α
∗
2m)FS2(m1)

(s2)

= α
∗
2m · (FS2(m1)

(s2)− FS2(m1)
(s2 − 1))

= α
∗
2m · Pr(S2(m1) = s2 − 1) ≤ 0, s2 ≥ 1.

F S2(m1)
≤ F S2(m1+1)

⇔ S2(m1+1) >
st

S2(m1).
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P{R2(m0−1) = r2|R2(m0) = r2} = P (V2(m0−1) = v2 − 1, S2(m1+1) = s2 + 1|V2(m0) = v2, S2(m1) = s2)

+ P (V2(m0−1) = v2 − 1, S2(m1+1) = s2 + 1|V2(m0) = v2, S2(m1) = s2)

= P (S2(m1+1) = s2|V2(m0−1) = v2, V2(m0) = v2, S2(m1) = s2)

× P (V2(m0−1) = v2|V2(m0) = v2, S2(m1) = s2)

+ P (S2(m1+1) = s2 + 1|V2(m0−1) = v2 − 1, V2(m0) = v2, S2(m1) = s2)

× P (V2(m0−1) = v2 − 1|V2(m0) = v2, S2(m1) = s2)

= (1− α
∗
2m) · (1− α2m) + α

∗
2m · α2m

= 1− α2m − α
∗
2m + 2α

∗
2m · α2m

P{R2(m0−1) = r2 + 1|R2(m0) = r2} = P (V2(m0−1) = v2, S2(m1+1) = s2 + 1|V2(m0) = v2, S2(m1) = s2)

= P (S2(m1+1) = s2 + 1|V2(m0−1) = v2, V2(m0) = v2, S2(m1) = s2)

× P (V2(m0−1) = v2|V2(m0) = v2, S2(m1) = s2)

= (1− α2m) · α
∗
2m

F R2(m0−1)
(r2)− F R2(m0)

(r2) = 1− (1− α2m − α
∗
2m + 2α

∗
2m · α2m)FR2(m0)

(r2)

− (1− α2m) · α
∗
2mFR2(m0)

(r2 − 1)− 1 + FR2(m0)
(r2)

= (1− α2m) · α
∗
2m(FR2(m0)

(r2)− FR2(m0)
(r2 − 1))

+ (1− α
∗
2m) · α2mFR2(m0)

(r2) ≥ 0, r2 ≥ 1

Thus, R2(m0−1) >
st R2(m0). Like V2(m0), S2(m1), and R2(m0), V2(m0−1), S2(m1+1), and

R2(m0−1) , given V1(m0−1), S1(m1+1), and R1(m0−1), follow Poisson distribution with rates

(m0 − V1(m0) − 1)α2m, (m1 + 1− S1(m1))α
∗
2m, and

(m0 − V1(m0) − 1)α2m + (m1 + 1− S1(m1))α
∗
2m, respectively.

2.2.6 Monotonicity of FDR(2)

By using stochastic ordering described above, we can prove the following theorem.

Theorem 2.2.7 FDR(2) is a monotone decreasing function of m1.

Proof.
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FDR(2) = E(
V1(m0) + V2(m0)

R1(m0) +R2(m0)

|R1(m0) > 0) · Pr(R1(m0) > 0)

Given R1(m0) +R2(m0) > 0, in particular, R1(m0) > 0, and R1(m0−1) +R2(m0−1) > 0, in

particular, R1(m0−1) > 0,
V1(m0)+V2(m0)

R1(m0)+R2(m0)
<

V1(m0−1)+V2(m0−1)

R1(m0−1)+R2(m0−1)
.

So, E(
V1(m0)+V2(m0)

R1(m0)+R2(m0)
|R1(m0) > 0) is a monotone nonincreasing function of m1. Since

α∗1m ≈ α1m,

Pr(R1(m0−1) > 0)− Pr(R1(m0) > 0) = exp(−µ∗1(m0)) · [1− exp(−(α∗1m − α1m))] ≈ 0.

The dominating term E(
V1(m0)+V2(m0)

R1(m0)+R2(m0)
|R1(m0) > 0) is a monotone nonincreasing

function of m1. Hence, FDR is a monotone decreasing function of m1.

In fact, since µ1(m0)(= m0 · α1m) < λ1(m1)(= m1 · α∗2m), V1(m0) <
st S1(m1). Likewise,

V2(m0) <
st S2(m1).

Given R1(m0) +R2(m0) > 0, in particular, R1(m0) > 0,

V1(m0)

R1(m0)
−
V1(m0) + V2(m0)

R1(m0) +R2(m0)

=
V1(m0) ·R2(m0) − V2(m0) ·R1(m0)

R1(m0) · (R1(m0) +R2(m0))

=
V1(m0) · (V2(m0) + S2(m1))− V2(m0) ·R1(m0)

R1(m0) · (R1(m0) +R2(m0))

=
V1(m0) · S2(m1) − V2(m0) · S1(m1)

R1(m0) · (R1(m0) +R2(m0))

≥
S1(m1) · S2(m1) − V2(m0) · S1(m1)

R1(m0) · (R1(m0) +R2(m0))

=
S1(m1) · (S2(m1) − V2(m0))

R1(m0) · (R1(m0) +R2(m0))

≥st 0.

Hence, The dominating term E(
V1(m0)+V2(m0)

R1(m0)+R2(m0)
|R1(m0) > 0) of FDR(2) is smaller than
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the dominating term E(
V1(m0)

R1(m0)
|R1(m0) > 0) of FDR. FDR(2) is smaller(better) than

the first-stage FDR, FDR.

2.2.7 FNR(2)

We introduce the following two-stage FNR procedure. Let T1(m1), and A1(m0) be the
number of genes among the m−m0 genes not rejected, the number of genes not
rejected by the first stage procedure. Let T2(m1), and A2(m0) be the number of genes
among the m−m0 genes not rejected, the number of genes not rejected by the second
stage procedure.

FNR
(2)

= E(
T1(m1) + T2(m1)

A1(m0) + A2(m0)
|A1(m0) + A2(m0) > 0) · Pr(A1(m0) + A2(m0) > 0)

= E(
m1 − (S1(m1) + S2(m1))

m − R1(m0) − R2(m0)
|R1(m0) + R2(m0) < m) · Pr(R1(m0) + R2(m0) < m)

=

m−1X
r=0

(E[
m1 − (S1(m1) + S2(m1))

m − R1(m0) − R2(m0)
|R1(m0) + R2(m0) = r]

×
Pr(R1(m0) + R2(m0) = r)

Pr(R1(m0) + R2(m0) < m)
· Pr(R1(m0) + R2(m0) < m))

=

m−1X
r=0

1

m − r
· [m1 − E(S1(m1) + S2(m1)|R1(m0) + R2(m0) = r)] · pr(R1(m0) + R2(m0) = r)

=

m−1X
r=0

1

m − r
· [m1 − E(S1(m1) + S2(m1)|R1(m0) + R2(m0) = r)] · pr(R1(m0) + R2(m0) = r

=

m−1X
r=0

1

m − r
· [m1 − r(1− p)] ·

exp(−m0 · (α1m + α2m)− m1 · (α∗
1m + α∗

2m))

r!

× (m0(α1m · e
α2m + α2m))

v · (m1(α
∗
1m · e

α∗2m + α
∗
2m) + m0(α1m · e

α2m + α2m))
r

= exp(−m0 · (α1m + α2m)− m1 · (α
∗
1m + α

∗
2m)) ·

m−1X
r=0

1

m − r
· [

m1 − r(1− p)

r!
]

× (m0(α1m · e
α2m + α2m))

v · (m1(α
∗
1m · e

α∗2m + α
∗
2m) + m0(α1m · e

α2m + α2m))
r

where p= m0(α1m·eα2m+α2m)

m1(α∗1m·e
α∗2m+α∗2m)+m0(α1m·eα2m+α2m)

2.2.8 Monotonicity of FNR(2)

By using stochastic ordering described above, we can prove the following theorem.

Theorem 2.2.8 FNR(2) is a monotone increasing function of m1.

Proof.

FNR
(2)

= E(
T1(m1) + T2(m1)

A1(m0) + A2(m0)
|A1(m0) + A2(m0) > 0) · Pr(A1(m0) + A2(m0) > 0)

= E(
m1 − (S1(m1) + S2(m1))

m − R1(m0) − R2(m0)
|R1(m0) + R2(m0) < m) · Pr(R1(m0) + R2(m0) < m)
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S1(m1+1) <st 1 + S1(m1) and 1− S1(m1+1) >st 1 + S1(m1).

Given R1(m0−1) + R2(m0−1) < m and R1(m0) + R2(m0) < m,

m1 + 1− S1(m1+1) − S2(m1+1)

m − R1(m0−1) − R2(m0−1)
>

st
m1 − S1(m1) − S2(m1)

m − R1(m0) − R2(m0)

E(
m1+1−S1(m1+1)−S2(m1+1)

m−R1(m0−1)−R2(m0−1)
|R1(m0−1) + R2(m0−1) < m) > E(

m1−S1(m1)−S2(m1)
m−R1(m0)−R2(m0)

|R1(m0) + R2(m0) < m)

E(
m1−S1(m1)−S2(m1)
m−R1(m0)−R2(m0)

|R1(m0) + R2(m0) < m) is a monotone nondecreasing function of m1. α∗
1m ≈ α1m and α∗

2m ≈ α2m,

Pr (Rm0 < m)− Pr(Rm0−1 < m)

= (1− Pr(Rm0 = m))− (1− Pr(Rm0−1 = m))

≤ exp(−m0(α1m + α2m)− m1(α
∗
1m + α

∗
2m)) ·

[1− exp(−(α∗
1m − α1m)− (α∗

2m − α2m))]

m!

× ((m1 + 1)(α
∗
1m · e

α∗2m + α
∗
2m) + (m0 − 1)(α1m · e

α2m + α2m))
m

≈ 0

The dominating term E(
m1−S1(m1)−S2(m1)

m−R1(m0)−R2(m0)
|R1(m0) +R2(m0) < m) is a monotone

nondecreasing function of m1.Thus, FNR(2) is a monotone nondecreasing function of

m1

2.2.9 Control of FDR

FWER represents the upper bound of FDR, determining each stage’s significance

level. We want to determine each stage’s significance level so that the overall

significance level is equal to α.

FWER

= Pr(V1(m0) + V2(m0) ≥ 1)

= 1− Pr(V1(m0) + V2(m0) = 0)

= 1− Pr(V1(m0) = 0) · Pr(V2(m0) = 0|V1(m0) = 0)

= 1− exp(−m0 · α1m) · exp(−m0 · α2m)

= 1− exp(−m0(α1m + α2m)) = α
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Each stage’s significance level is determined such that α1m + α2m = − ln(1−α)
m0

. Since

FWER is always smaller than FDR, we can ensure that FDR is controlled at

preassigned level α by any combination of α1m and α2m.

2.2.10 Estimation procedure

Storey (2002) argues that estimation is often preferred over control because it is

difficult to pre-specify an appropriate control level (Stan Pounds and Cheng Cheng,

2006). Instead of fixing the error rate and then estimating the rejection region, we

attempt to use a new approach to fix the rejection region and estimate the error rate.

The full details of the estimation and inference for proposed FDR are given in

algorithm below.

Proposed FDR= 1

1+
m1(α∗1m·eα∗2m+α∗2m)

m0(α1m·eα2m+α2m)

(1)

1. For the m hypothesis tests, calculate their respective p-values p1, . . . , pm.

2. Estimate α1m by min(V1mo

m0
, cα)

3. Estimate α∗1m by max(S1mo

m1
, cα)

4. For fixed α1m, compute α2m by max(-α1m − log(1−α)
m0

, 0)

5. For fixed α∗1m and α2m, pick up α∗2m for some range (α2m, α
∗
1m)

6. For B number of values α∗2m, average their respective FDRs.

In (1), there still remains some space of improvement for tighter control if we know

π0. To estimate π0, Storey and Tibshirani (2001) use the fact that null p-values are

distributed uniformly on [0,1] and then plug it in estimating FDR. It was shown that

the violation of uniformity of p-values could bias the estimate of π0 upward. Discrete

p-values become encountered in practice as categorical genomic data discussed in next
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chapter. These p-values may be stochastically larger than uniform, thus violating the

assumption of uniformity. Gene expression levels and most of are typically

continuous. Thus, the estimation of π0 perform better in DNA microarray gene

expression datasets.
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CHAPTER 3

FALSE DISCOVERY RATE IN

GENOMIC SEQUENCES

3.1 Introduction

High dimension, low sample size data may appear in various areas of science: the

dimension tends to ∞ while the sample size is small. This data models are abound in

genomic studies, in particular, where sample size n may be small and there are

different epidemiologic strata G(> 2), so that classical MANOVA(multivariate

analysis of variance) may be pertinent. An important task of this study is to identify

the most siginifcant genes(or positions) among a number of genes: Which positions

are differentially expressed across the groups? The feature of this study is that the

number of genes in a sequence(K) is much larger than the number of sequences(n). As

we have seen before, control of the FWER is too conservative when there are many

hypotheses such as microarray experiments. False discovery rate (FDR) procedure is

better than the FWER procedure to handle multiple testing problem in large scale

assciation study. However, most of the FDR procedures has not been used extensively

in genomic studies compared to gene expression studies. On the other hand, in



multiple testing problems, the response variables are continuous, but may be count or

discrete, or purely qualitative responses, that is, high-dimensional low sample size

categorical data setups, complicating the multiplicity problems. In SARS epidemic

models in chapter 5 for illustration, we have 900 genes (or positions) for each sequence

and 14 samples downloaded from four locations, Guadong, Beijing, Hongkong and

Taiwan. The response variables are a,c,g, and t, having even not ordered categories.

Suppose we have a general model comprise G(> 2) groups of sequences. Each

sequence has K positions, and in each position, there is a categorical response with C

categories. ngkc denotes the number of responses in category c at site k in the g-th

group, c = 1, . . . , C; k = 1, . . . , K and g = 1, . . . , G. There is a set C of CK joint

labels c = (c1, . . . , cK) in which each ck takes on value 1, . . . , C. The number of

observations in the g-th group with the label combination c is denoted by

ng(c), c ∈ C . We also have
∑

c∈C ng(c) = ng and
∑

c∈C πg(c) = 1,∀g = 1, . . . , G. The

full multi-dimensional multinomial law is

G∏
g=1

{ ng!∏
c∈C(ng(c)!

∏
c∈C

[πg(c)]
ng(c)}.

The total number of unknown parameters is q0 = G(CK − 1), but q0 is too large

compared to sample size n, where n =
∑G

g=1 ng. Because of this problem, this law

may not be reasonable. That’s why the standard multivariate approach may be of

limited utilities. In these sense, the (pseudo) marginal diversity measures may be

combined into a composite measure providing a less stringent way of CATAMANOVA

(categorical MANOVA). In the SNP model, the categories are not ordered, and hence,

a stochastic ordering may not be feasible. However, the Hamming distance may have

ordering. Even in that case, individual statistics, even coordinatewise ones, do not

have a known null hypothesis distribution. That’s why we have to use there jackknife

55



variance estimation and permutation distribution to construct some permutation

tests. A pseudo-marginal approach based on Hamming distance provides some

promising test statistic. Proposed FDR procedure along with the associated test

statistic may be a useful tool for genomic studies. These perspectives are appraised in

a nonstandard statistical analysis, using the 2002-03 SARS epidemic model.

3.2 A Pseudo Marginal Model

As stated before, the full multisample, multi-dimensional multinomial law may not be

reasonable. For geographically separated sequences, the assumption of independence

among G groups may be tenable but within group sequences may not be independent.

For each sequence, the K positions may not have independent responses nor

identically distributed. Under this assumption of inter-position stochastic

dependence, we need to consider another measure of variation. The Gini Simpson

biodiversity index has found useful applications in genetics and in bioinformatics.

Mostly, categorical data models, without an ordering of the categories, appear, which

preempts use of measures of quantitative diversity analysis. Without much stringent

structural regularity assumptions, the Hamming distance exploits the idea of

Gini-Simpson diversity index in a variety of multidimensional setups, We exploit the

following Gini-Simpson index: I(π) = 1− πtπ = 1−
∑C

c=1 π
2
c , where π = (π1, . . . , πC)t

for a single multinomial population with C cells. Define I(πgk) for each k=1,. . . ,K and

every g=1,. . . ,G. For each g(=1,. . . ,G) and k(=1,. . . ,K),

I(π)gk = 1− (πgk)
tπgk = 1−

∑C
c=1(πgkc)

2. Also, define I(πk) in the pooled sample, for

each k=1,. . . ,K. Define H (
∏

g) = 1/K
∑K

k=1 I(π)gk, g = 1, . . . , G as the Hamming

distance based measure. In genomic studies, the following multiple hypotheses are

represented in terms of the Hamming distance.
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H0 : I(π)1k ≡ I(π)2k ≡ · · · I(π)Gk, , k(= 1, . . . , K)

vs

H1 : There are at least one of k’s that I(π)gk 6= I(π)g′k , 1 <= g < g′ <= G.

3.2.1 Proposed Test Statistics and P-values

Let us consider the following asymptotic distribution of the test statistic. For each

k(=1,. . . ,K) and each g(=1,. . . ,G), the estimate of I(πgk) is

Ugk =

(
ng

2

)−1 ∑
1<=i<j<=ng

I(Xgik 6= Xgjk)

=
C∑

c=1

ngkc(ng − ngkc)

ng(ng − 1)

This is a U-statistic based on a kernel of degree 2, an unbiased estimator of

Gini-Simpson index. In the pooled sample,

Uk =

(
n

2

)−1 ∑
1<i<j<=n

I(Xik = Xjk)

=
C∑

c=1

nkc(n− nkc)

n(n− 1)
.

,where nkc =
∑G

g=1 ngkc. This statistic has the following asymptotic distribution only

if the ng’s are large.

√
ng(Ugk − Igk) ∼ N(0, 4ζ1gk),

where ζ1gk = E{I(Xgik 6= Xgjk)I(Xgi′k 6= Xgj′k)− E(I(Xgik 6= Xgjk)I(Xgi′k 6= Xgj′k))}.
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This ζ1gk can be replaced by ζ1.k from the pooled sample. ζ1.k is estimated by the

Jacknife variance estimator of Uk, which is ζ̂1.k(=
1

n−1

∑n
i=1(Unk,i − Uk)

2), because the

Jacknife variance estimator is more stable than other variance estimator.

For each each k(=1,. . . ,K), the test statistic Lk is defined as∑G
g=1 ng[Ugk − Uk]

2/(4ζ̂1.k). By virtue of Cochran’s theorem, it has χ2 distribution

with degree G-1. But a conclusion based on this asymptotic distribution, whenever

sample size is small, may give us misleading results. Moreover, for n not adequately

large, the p-values have discrete distribution without assuming uniform distribution

for the associated p-values under the null hypothesis. Hence, it might be better to

simulate the permutation distribution of the marginal test statistic Lk. At least for

small to moderate values of the sample sizes, n1, . . . , nG, the permutation distribution

can be generated by considering all possible n!(equally likely) permutations of the

combined sample observations among the G groups of (sizes n1, . . . , nG). Hence,

conditionally distribution-free tests may be constructed for the test statistic Lk. The

corresponding p-value is defined as below.

Pr(Lk > lk|H0)

, where Lk is a test statistic from the permuted distribution. Under the null

hypothesis, the permutation distribution of Lk may be symmetric about 0, with mean

E0(Lk) = 0. Under the alternative hypothesis, the distribution is tilted to the right.

That’s why we use a right-sided test. However, though the distribution freeness hold

under the null hypothesis, such distributions are more complex to evaluate.

3.3 Discussion
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3.3.0.1 cFDR

Tsai et al.(2003) discuss another measure of false discovery rate, the conditional FDR

(cFDR), defined as

cFDR = E(
V

R
|R = r) =

E(V |R = r)

r

Under Storey’s(2002) mixture model, Tsai et al.(2003) show that

cFDR(c) = pFDR(c) =
π × c

F (c)
,

where F(c)=Pr(p <= c). Let V1(m0) + V2(m0)be Vm0 , S1(m1) + S2(m1) be Sm1 , and

Rm0 = Vm0 + Sm1 . As we have seen in the earlier chapter,

Pr (Vm0 = v|Rm0 = r)

= Pr(Vm0 = v|Vm0 + Sm1 = r)

=

(
r

v

)
pv(1− p)r−v

where p= m0(α1m·eα2m+α2m)

m1(α∗1m·e
α∗2m+α∗2m)+m0(α1m·eα2m+α2m)

. Hence,

cFDR =
E(Vm0|Rm0 = r)

r

= r × p

r

= p

This is exactly the same as the Proposed FDR procedure.

Theorem 3.3.1 In the asymptotic sample setting, Proposed FDR is a conservative

point estimate of the FDR over all siginificance regions simultaneously.

Proof.
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limm→∞α2m = 0 and limm→∞α
∗
2m ∈ (0, c).

E(FDR(2)(c)) = E(
m0(α1m · eα2m + α2m)

m1(α∗1m · eα∗2m + α∗2m) +m0(α1m · eα2m + α2m)
)

→ E(
V (c)

V (c) + S(c)α∗2m +m1 ∗ α∗2m

)

<= E(
V (c)

V (c) + S(c)
)

<= E(
V (c)

R(c)
∨

1
)

3.3.1 False discovery rate optimality and Average Power

Storey et al. (2005) introduced the optimal discovery procedure which is the

procedure to maximize the expected number of true positives (ETP) for each fixed

expected number of false positives (EFP). This proposed optimality criterion is

related to optimality in terms of FDRs and misclassification rates. For FDRs,

FDR ≈ EFP
EFP+ETP

. It has been suggested that this FDR optimality should be defined

in terms of the proportion of true alternatives among the tests not called significant

Genovese and Wasserman (2002). This quantity has been called the ”false

non-discovery rate”’ Genovese and Wasserman (2002) and the ”miss rate” (Taylor et

al. 2005); We call it the ”missed discovery rate(MDR)”. A procedure is optimal if for

each fixed FDR level, the MDR is minimized: MDR ≡ E[ FN
FN+TN

] ≈ EFN
EFN+ETN

, where

EFN is expected number of false negatives and ETN is the expected number of true

negatives. Now, applying this to our proposed FDR procedure, since α1m and α∗1m is
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estimated by V/m0 and S/m1, respectively,

MDR ≈ EFN

EFN + ETN

=
m−m0 − ETP

m− ETP − EFP

=
m1 −m1(α∗1m + α∗2m − α∗1m × α∗2m)

m1−m1(α∗1m + α∗2m − α∗1m × α∗2m) + m0 −m0(α1m + α2m − α∗1m × α2m)

=
(m1 − S)(1− α∗2m)

(m1 − S)(1− α∗2m) + (m0 − V )(1− α2m)

=
1

1 + (m0−V )(1−α2m)
(m1−S)(1−α∗2m)

Our FDR procedure is considered to be optimal if for fixed V and S, there is a big

difference between α2m and α∗2m.

On the other hand, comparing the first stage FDR(AV1) with two stage

FDR(Proposed FDR)(AV2) in terms of average power,

AV1 : E(S1)/m1 = α∗1m

AV2: E(S1 + S2)/m1 = α∗1m + α∗2m(1− α∗1m). Obviously, AV1 < AV2. By taking the

second stage testing procedure from the first stage FDR, the increase in power that

we achieve is greater. For fixed α∗1m and α1m, as α increases, α2m and α∗2m increases.

Thus, the average power of two stage FDR is a monontone nondecreasing function of

α.
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FIGURE I: Comparison of the null distribution with the alternative distribution
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CHAPTER 4

CLASSIFICATION OF GENES

4.1 Introduction

In a genomic data, the goal of class discovery is to partition a set of subjects into

groups relatively similar, in the sense that subjects in the same group are more alike

than subjects in different groups. In a large number of correlated genes with

heterogeneity amidst a smaller sample like DNA microarray data, order-restricted

inference problems often appears in complex ways. To study gene expression pattern

across various treatment groups with this order constraint weakens the effectiveness of

standard statistical inference and as a result, calls for different perspectives. For this

reason, nonstandard robust methods are proposed to classify genes reflecting the

concept of order-restricted inference without any assumptions of specific forms.

M-estimator based on Union-Intersection principle (UIP), proposes

distribution-insensitive clustering of genes. It might be also possible to construct a

locally most powerful rank test using a suitable rank scores along with UIP, though it

is too difficult to construct an optimal test based on UMP. The Kendall-tau statistics

may be utilized to construct a distribution-free test. Gene expression levels may be

compared among more than 2 groups using exact tests of homogeneity; associations

among the variables assessed using the Kendall’s tau-b statistic.



By using exact permutation distrubution theory, conditionally distribution-free test

based upon these three proposed test statistics is used to generate p-values and as a

result is amenable in small sample size setup. It is also computationally tractable and

statistically robust.

4.2 Proposed Test Statistics and P-values

4.2.1 Preliminary notation

Consider a DNA microarray experiment having expression data on K genes for n

mRNA samples. The gene expression data are in a K × n matrix X = (Xki), with

rows corresponding to genes and columns corresponding to individual microarry

experiments,where xji denotes the expression measure of gene k in sample i, i = 1,

. . . ,n, k = 1,. . . ,K. The expression measures xki are assumed to be preprocessed data.

For comparing several groups, a general model consists of G (> 2) groups of subjects,

each subjects having K genes. For simplicity, we assume that there are no missing

values resulting in ngk = ng,∀k. Let n =
∑G

g=1 ng be the total number of subjects in

the pooled sample. A row vector Xk = (X1,k, X2,k, . . . , Xn1,k, . . . , Xn,k) represents the

pooled sample at gene k. In this pooled sample, define

Rk = (R1,k, . . . , Rn1,k, Rn1+1,k, . . . , Rn,k), where Ri,k is the rank of Xi,k in the pooled

sample among all the n observations in the kth gene.

4.2.2 Linear Rank Statistics

We want to find out a gene’s true profile to one of a specified set of candidate profiles.

Two common inequality profiles (nondecreasing/nonincreasing) in terms of mean gene

expression levels are introduced here. Without loss of generality, we focus on
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monotone increasing pattern among the groups.

Let µki = E(Xki) denote the mean expression level of the kth gene in the ith

observation. For the kth gene (or position), we can formulate H0k vs H1k as below.

H0k : µ1k = µ2k = · · · = µGk H1k : µ1k ≤ µ2k ≤ · · · ≤ µGk

where

µk = (µ1k, . . . , µGk)
′

The (G− 1)×G matrix

A =



−1 1 0 0 0 . . .

0 −1 1 0 0 . . .

0 0 −1 1 0 . . .

...
...

...
...

... . . .

0 0 0 . . . −1 1


These hypotheses can be restated as the following two hypotheses.

H0k : θk = Aµk =
G−1⋂
j=1

H0jk = 0

vs

H1k : θk = Aµk =
G−1⋃
j=1

H1jk ≥ 0

where H0jk : θjk = µj+1,k − µj,k = 0 vs H1jk : θjk = µj+1,k − µj,k ≥ 0. These

hypotheses are written in terms of Finite UI principle. But an infinite UIT will be

formulated as well.
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These hypotheses can be restated as the following two hypotheses. For a given a,

H0k : θk = Aµk =
⋂

a∈R+G

H0ak = 0

vs

H1k : θk = Aµk =
⋃

a∈R+G

H1ak ≥ 0

where H0ak : a′θk = 0, H1ak : a′θk ≥ 0.

This UI (Union-Intersection) principle assumes that for testing H0ak vs H1ak, we

have a optimal test. However, the underlying density of gene expression levels

Xik, i = 1, . . . , n, k = 1, . . . , K are completely unknown with unknown variance. In

this framework, it is hard to construct either an optimal test based on UMP or a

similar test using UMPI. In these sense, nonparametrics might yield robust statistical

inference procedures that are distribution free.

Fortunately, the null hypothesis H0k is a hypothesis of invariance (under suitable

groups of transformation that map the sample space onto itself). Then it might be

possible to construct a test for H0akvs H1ak, a locally most powerful rank test

(LMPR)test for each a. By definition, a test is LMPR if among the class of rank

tests, it is uniformly most powerful (UMP)for H0 against a class H1(ε) of alternatives

that are indexed by a parameter ∆, such that 0 < ∆ < ε, ε > 0 Silvapulle and Sen

(2004). LMPR properties may not be available for restricted alternatives. However,

UIT-based LMPR test can handle such a problem.

Even though each sample size ng differs by group, all the n(=
∑G

g=1 ng) observations

Xk = (X1,k, . . . , Xn1,k, Xn1+1,k . . . , Xn,k) for each gene k in the pooled sample are i.i.d

r.v’s under the null hypothesis. Under the null hypothesis of homogeneity, the joint

distribution of n observations for each gene k, remains invariant under any
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permutation. This permutation distribution Pn can be obtained by considering every

possible n! permutations of the pooled sample observations among the G groups.

Hence, conditionally distribution-free tests can be constructed by an appeal to this

permutational invariance. We denote this condtional probability law by Pn.

For each gene k, define a multivariate linear rank statistics

Tgk, g = 1, . . . , G, k = 1, . . . , K as follow. For a suitable rank scores a(k),

Tgk =
n∑

i=1

(cig − c̄n)a(Ri,k) =
n∑

i=1

ciga(Ri,k)

where

cig =


1
ng

if i =
∑g−1

l=1 nl + 1, . . . ,
∑g

l=1 nl

0 otherwise

and Tk = (T1k, . . . , TGk)
′.

Without loss of generality, assume that
∑n

i=1 a(Ri,k) = 0. The mean of Tgk is

EPn(Tgk) = (EPn(a(Ri,k))(
n∑

i=1

(cig − c̄n))

= (
1

n

n∑
i=1

a(Ri,k))(
n∑

i=1

cig)

= 0
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The variance of Tgk is

VPn(Tgk) = EPn(Tgk)
2

= VPn(a(Ri,k)
n∑

i=1

(cig)
2 +

∑
1≤i6=i′≤n

(cig)(ci′g)EPn(a(Ri,ka(Ri′,k)

= (
1

n

n∑
i=1

a2(Ri,k))
n∑

i=1

(cig)
2 +

∑
1≤i6=i′≤n

cigci′g × (− 1

n(n− 1)

n∑
i=1

a2(Ri,k))

= (
1

(n− 1)

n∑
i=1

a2(Ri,k))× ((
(n− 1)

n

n∑
i=1

(cig)
2)− (

1

n

∑
1≤i6=i′≤n

cigci′g))

= (A2
n)(

(n− ng)

n · ng

)

where

(n− 1)

n

n∑
i=1

(cig)
2 − 1

n

∑
1≤i6=i′≤n

cigci′g =
(n− 1)

n

n∑
i=1

(cig)
2 − 1

n
(

n∑
i=1

(cig)
2 −

n∑
i=1

(cig)
2)

=
n∑

i=1

(cig)
2 − 1

n

n∑
i=1

(cig)
2

=
1

ng

− 1

n

=
(n− ng)

n · ng

and A2
n = 1

(n−1)

∑n
i=1 a

2(Ri,k).
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For 1 ≤ g 6= g′ ≤ G, the covariance of Tgk and Tg′k is

CovPn(Tgk, Tg′k) = EPn(Tgk, Tg′k)

= EPn(
n∑

i=1

ciga(Ri,k)
n∑

i=1

cig′a(Ri,k)

= EPn

Pg
g=1 ng∑

i=
Pg−1

g=1 ng−1

ciga(Ri,k)

Pg′
i′=1

ng∑
i′=

Pg′−1
g=1 ng−1

ci′g′a(Ri′,k))

= (

Pg
g=1 ng∑

i=
Pg−1

g=1 ng−1

cig)(

Pg′
i′=1

ng∑
i′=

Pg′−1
g=1 ng−1

ci′g′)(EPn(a(Ri,k)a(Ri′,k)))

= A2
n(− 1

n
)

Hence, the permutation variance of Tk is

Vk = var(Tk)

= A2
nCn

where

Cn =
n∑

i=1

(ci − c̄n1n)(ci − c̄n1n)′

= ((
δg,g′n− ng

n · ng

))

,where

δg,g′ =

 1 if 1 ≤ g = g′ ≤ G

0 otherwise

ci = (ci1, . . . , ciG)′, a n× 1 matrix 1n = (1, . . . , 1)′, IG is a G×G Identity matrix,
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and

Cn =



n−n1

n·n1
− 1

n
− 1

n
− 1

n
− 1

n
. . .

− 1
n

n−n2

n·n2
− 1

n
− 1

n
− 1

n
. . .

− 1
n

− 1
n

n−n3

n·n3
− 1

n
− 1

n
. . .

...
...

...
...

... . . .

− 1
n

− 1
n

− 1
n

. . . − 1
n

n−nG

n·nG


If we define Tk in terms of the vector ci, Tk is

∑n
i=1(ci − c̄n1n)a(Ri,k).

The mean of Tk is

EPn(Tk) = (ci − cn1n)EPna(Ri,k)

= 0

For 1 ≤ k ≤ k′ ≤ K,the covariance matrix of Tk and T′
k is

CovPn(Tk,T
′
k) = Cn ×vk,k′

where vk,k′ = 1
(n−1)

∑n
i=1(a(Ri,k)− ān)(a(Ri,k′)− ān). The matrix Vn(= ((vk,k′))) is a

Pn-invariant and completely known matrix.

Tn = (T1, . . . ,TK)′. Define the G×K matrix T0
n =

∑n
i=1(ci − cn1n)an(Ri) as the

transpose matrix of Tn,where an(Ri) = (an1Ri,1, . . . , anK
(Ri,K))′. By using the

concept of a multivariate linear rank statistics, the mean and the covariance matrix of

T0
n are defined as below.

EPn(T0
n) = 0G×K

CovPn(T0
n) = Cn

⊗
Vn.

In general, multivariate models, LMPR tests, by construction, might be conditionally

distribution free (CDF). Given the invariance of Vn under Pn, we adapt the UIP to
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formulate a rank test for H0k : θk = 0 vs H1k : θk ≥ 0. Let Zk = ATk and

Sk = AVkA
t. Let G = {1, . . . , G− 1}, and for every a : ∅ ⊆ a ⊆ G, let a′ be its

complement and |a| its cardinality. For each a : ∅ ⊆ a ⊆ G, partition Zk and Sk as

Zk =

 Zka

Zka′

 Sk =

 Skaa Skaa′

Ska′a Ska′a′


and write

Zka:a′ = Zka − Zkaa′S
−1
ka′a′Zka′ ,

Skaa:a′ = Skaa − Skaa′S
−1
ka′a′Ska′a

Then the test statistics for the kth gene is,

Lk = Σ∅⊆a⊆GI(Zka:a′ > 0,S−1
ka′a′Zka′ ≤ 0)(nZ′

ka:a′S
−1
kaa:a′Z

′
ka:a′)

and rejecting the null hypothesis for large positive values. By reference to the n!
n1!···nG!

conditionally(permutationally) equally likely realizations of Rk for each k, we can

enumerate Tk (and hence Lk); this generates the exact conditional (permutational)

null distribution Pn of Lk, so that the test based on Lk is CDF (Conditionally

Distribution Free). Now, p-value can be computed as below.

Pk = Pr(Lk ≥ lk)

where Lk is a test statistic from the permuted distribution and lk is an observed test

statistics. The behavior of Lk under alternatives depends on the stochastic ordering of

µk and these statistics may not be exact distribution-free nor have identical

probabilitiy laws. However, for every i < i′, Xi′k −Xik has a distribution tilted to the
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right so that

E{Lk|H1k} ≥ 0, k = 1, . . . , K.

This motivates us to use tests based on Lk using the right hand side critical region. A

proper multiple testing procedure may be applied to the set of dependent p-values.

The proposed FDR procedure was shown to work well for this kinds of p-values. The

procedure is used to determine which gene has monotone increasing pattern among

the groups.

Choice of rank scores a(k) determine if a test statistic is locally most powerful. For

example, the Wilcoxon rank test is LMPR when the density is logistic and the normal

score test is LMPR when the density is normal. In Chapter 5, we thoroughly

investigate this aspect. For the test for linear trend, the Jonckheere test might be

tenable. But without the linear ordering or the logistic density, the LMPR property

might work for the Jonckheere test.

4.2.3 A Marginal Model Based On Kendall tau statistics

Following the same multisample (ordered alternative) model described in earlier

section, define a design variate ti in the ith array, for i=1, . . . , n. We don’t assume

linear or specific parametric ordering of them. We can divide sample size n into G

subsets of sizes n1, . . . , nG. Xik represents a gene expression level in the ith array and

forms a K-vector Xi = (Xi1, . . . , Xik)
′, for i = 1, . . . , n. Fi(x) is the joint distribution

of Xi. If a gene k is NDG, the Fik, i = 1, . . . , n are assumed to be the same. For a DG

k, for i < i′, Xik < Xi′k, for i < i′, the Fik has some monotone pattern:

F1k ≥ F2k ≥ · · · ≥ Fnk. We are interested in the following hypotheses.

H0 =
K⋂

k=1

H0k vs H1 =
K⋃

k=1

H1k
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Considering possible dependence of the test statistics, Roy’s Union Intersection

principle may have an appeal. Now we define the Kendall tau statistics as

Tnk =

(
n

2

)−1 ∑
1≤i<i′≤n

sign(Xi′k −Xik)sign(ti′ − ti).

In fact, this statistics is a generalized U-statistic of degree 2. Conveniently, we may

define Sn = {(i, i′) : ti < ti′ ; 1 ≤ i < i′ ≤ n}, where N is the cardinality of the set S.

Since the variation of Tnk ranges from -1 and 1, we can find the modified Kendall tau

as

T 0
nk = N−1

∑
S

sign(Xi′k −Xik).

. In fact, for any k(= 1, . . . , K), under H0k, for every i 6= i′, Xi′k −Xik has symmetric

distribution around 0 so that E0(T
0
nk) = 0, k = 1, . . . , K. For small values of n, by

using S, we obtain the exact null distribution of T 0
nk. For k(= 1, . . . , K), under H0k,

for every i 6= i′, Xi′k −Xik, under alternatives has tilted distribution to the right so

that E(T 0
nk) ≥ 0, k = 1, . . . , K. For n small, the null distribution of T 0

nk is in fact

discrete. In these sense, we simulate the permutation distribution of any marginal test

statistics T 0
nk.

4.2.4 Robust M-test

For the kth gene(or position), consider the linear model Yk = Xβk + Ek.

where Yk = (Y1k, . . . , Ynk)
′ is the vector of gene expression levels across G groups in
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the kth position and The (known)Design matrix of the n×G matrix

X =



1 0 0 0 0 . . .

...
...

...
...

... . . .

1 1 0 0 . . .

...
...

...
...

... . . .

1 0 1 0 0 . . .

...
...

...
...

... . . .

1 0 0 0 . . . 1



,

The unknown parameter of the G× 1 matrix

βk = (µ1k, δ2k, δ3k, . . . , δGk),

where µ1k denotes the average expression level at site k in the first group and δjk

refers to the difference between µ1k and the average expression level at site k in the

jth group, j = 2, . . . , G. The vector of independent and identically distributed (i.i.d.)

errors with a distribution F of the n× 1 matrix

Ek = (E1k, E2k, E3k, . . . , Enk)

A paramter of interest βk should be estimated for each k=1,. . . ,K. However, gene

expression data usually has many outliers, and is highly probable to be noisy. The

small sample sizes used in typical microarray experiments result in unreliable

estimation of variance. Because of the large number of genes and small number of

arrays, and higher signal-noise ratio in microarray data, many traditional approaches

seem improper. Robust statistics methods (Tukey 1977 ; Huber 1981) provide tools

for this statistics problem in which an underlying distribution F are unknwon. A
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robust procedure should be insensitive to departures from underlying assumptions

caused by, for example, outliers. That is, it should have good performance under the

underlying assumptions and the performance deteriorates as the situation departs

from the assumptions. There are several types of robust estimators. Among them are

M-estimator (maximum likelihood type estimator), L-estimator (linear combinations

of order statistics) and R-estimator (estimator based on rank transformation) (Huber

1981); RM estimator (repeated median) (Siegel 1982) and LMS estimator (estimator

using the least median of squares) (Rousseeuw 1984). We are concerned with the

M-estimator, because even when a sample size is small, it still provides a good

estimate.

Let ρ : Rp ×X → R be a measurable function. We define an M-estimator Mn as a

solution of the minimization with respect to t ∈ Rp.

n∑
i=1

ρ((Yi − x′it)),

where x′i(= (xi1, . . . , xiG)) is the ith row of X, i = 1, . . . , n. Mn should be not only

regression equivalent: Mn(Y + Xb) = Mn(Y) + b) for b in Rp, but also scale

equivalent:Mn(cY) = cMn(Y) for c > 0. In general, the second condition is not met.

Studentization leads to Mn scale as well as regression equivalent. Define an

studentized M-estimator Mn of βk as a solution of the minimization

n∑
i=1

ρ((Yi − x′it)/Sn)

with respect to t(G× 1 matrix) where xi’ the ith row of X, i = 1, . . . , n and

Sn = Sn(Y) is an appropriate scale statistic.

The linear model above is the classical one-way ANOVA model except that the
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distribution Y1k, . . . , Ynk may not be normal but is of the form F and the G groups are

stochastically ordered. Within this framework, we consider the null hypothesis H0

that the G groups in the kth gene are statistically homogeneous and the alternative

hypothesis H1 refers to the fact that the G groups in the kth gene are ordered in

increasing level of dominance. It is plausible to construct H0k and H1k as below.

H0k : δ2k = δ3k = · · · = δGk = 0

vs

H1k : 0 ≤ δ2k ≤ δ3k ≤ · · · ≤ δGk

These hypothesis can be rephrased as the following two hypotheses.

H0k : θk = Aβk = 0 H1k : θk = Aβk ≥ 0

where the (G− 1)×G matrix

A =



0 0 0 0 0 . . .

0 1 0 0 0 . . .

0 −1 1 0 0 . . .

...
...

...
...

... . . .

0 0 0 . . . −1 1


,

For testing the null hypothesis, it may be intended to consider alternatives that the

vector θk belongs to the nonnegative orthant space <+(G−1). In the univariate case,

an optimal UMP test exists for such one-sided alternative. However, in such a

multivariate case, UMP tests do not exist. For example, the Hotelling T 2 will result

in a larger set of confidence interval and will entail some loss of efficiency. It’s
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therefore interesting to appraise statistical inference under such restricted setups. UIP

(Union-Intersection Principle) formulation of Roy (1953) could be well tailored for

Statistical inference under the one-sided multivariate alternative hypothesis

Let the first derivative of ρ function be ψ. Mn is a median-unbiased estimator of βk.

Skewsymmetry of ψ and symmetry of F are necessary for this median-unbiasedness of

Mn. For this reason, Huber loss function may be a good candidate for ψ function.

Hence, minimiazation leads to the estimator that is scale as well as regression

equivalent.

Define the Huber function as

ρ(t) =

 c|t| − (1/2)× c2 if |t| > c

(1/2)× t2 if |t| <= c

The derivative of the Huber function ψ is

ψ(t) =

 c× sign(t) if |t| > c

t if |t| ≤ c

ψ function can be decomposed into the sum

ψ = ψa + ψb + ψc

where ψa is absolutely continous function having absolutely continous derivative, ψc is

a continous, piecewise linear function which is constant in a neighborhood of ±∞,

and ψs is a nondecreasing step function. In case of Huber loss function, ψa = ψc = 0.

Now this function satisfy the following condtions. Jurec̆ková and Sen (1996)

• M1 : Sn(Y) is regression invariant and scale invariant, Sn > 0 a.s. and

n
1
2 (Sn − S) = Op(1)
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• M2 : H(t) =
∫
ρ((z − t)/S)dF (z) has the unique minimum at t=0.

• M3 : For some δ > 0 and η > 1,

∫ ∞

∞
[|z|sup|u|≤δsup|υ|≤δ|ψ′′a(e−υ(z + u)/S|]ηdF (z) <∞

and ∫ ∞

∞
[|z|2sup|u|≤δ|ψ′′a(e−υ(z + u)/S|]ηdF (z) <∞

where ψ′a(z) = (d/dz)ψa(z) and ψ′′a(z) = (d2/dz2)ψa(z).

• M4 : ψc is a continous, piecewise linear function with knots at µ1, . . . , µk, which

is constant in a neighborhood of ±∞. Hence the derivative ψ′c is a step function

ψ′c(z) = αν , µν < z < µν+1, ν = 0, 1, . . . , k,

where α0, α1, . . . , αk ∈ <1, α0 = αk = 0 and

−∞ = µ0 < µ1 < · · · < µk < µk+1 <∞. Assume that f(z) is bounded in

neighborhoods of Sµ1, . . . , Sµk.

• M5 : ψs(z) = λν for qν < z ≤ qν+1, ν = 1, . . . ,m where

−∞ = q0 < q1 < · · · < qm+1 = ∞,−∞ < λ0 < λ1 < · · · < λm <∞.

Assume that f(z) and f’(z) are bounded in neigborhood Sq1, . . . , Sqm. The asymptotic

representation of Mn is involved in the functionals

γ1 = S−1

∫ ∞

−∞
(ψ′a(z/S) + ψ′c(z/S))dF (z)

γ2 = S−1

∫ ∞

−∞
z(ψ′a(z/S) + ψ′c(z/S))dF (z)
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Moreover the following condtions are satisfied.

X1 . xi1 = 1, i = 1, . . . , n

X2 . n−1

n∑
i=1

||xi||4 = Op(1)

X3 . limn→∞Qn = Q

where Qn = n−1X′X and Q is a positive definite p× p matrix. Then under these

conditions, Mn is a solution of the system of equations

n∑
i=1

xiψ(
Yi − x′it

Sn

) = 0.

To make Sn(Y) regression invariant and scale invariant, Sn(Y) is computed in the

following manner. We use regression scores defined below. For α ∈ (0, 1),

ân(α) = (ân1(α), . . . , ânn(α))′ is the optimal solution to maximize

n∑
i=1

Yiâni(α)

with the constraint:

n∑
i=1

xij âni(α) = (1− α)
n∑

i=1

xij, j = 1, . . . , G

.

Hajék(1965) proposed scores:

a∗n(Ri, α) =


0 if Ri/n < α

Ri − nα if (Ri − 1)/n < α < Ri/n

1 if α < (Ri − 1)/n
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Select a nondecreasing, square integrable function φ : (0, 1) → R1 such that

φ(α) = −φ(1− α), 0 < α < 1. For a fixed number α0(0 < α0 < 1/2), assumed that φ

is standardized ∫ 1−α0

α0

φ2(α)dα = 1.

Define the regression scores generated by φ.

b̂ni = −
∫ 1−α0

α0

φ(α)dâni(α), i = 1, . . . , n.

That is,

b̂ni =



n
∫ Ri/n

(Ri−1)/n
φ(α)a∗

′
n (Ri, α)dα if α ≤ (Ri − 1)/n ≤ 1− α,Ri/n ≤ 1− α

n
∫ 1−α

(Ri−1)/n
φ(α)a∗

′
n (Ri, α)dα if α ≤ (Ri − 1)/n ≤ 1− α,Ri/n > 1− α

n
∫ Ri/n

α
φ(α)a∗

′
n (Ri, α)dα if α > (Ri − 1)/n,Ri/n ≤ 1− α

0 if 1− α < (Ri − 1)/n

n
∫ 1−α

α
φ(α)a∗

′
n (Ri, α)dα else

Sn is defined as

n−1

n∑
i=1

Yib̂ni = n−1X′b̂n.

Suppose that γ1 is not equal to zero. The following theorem tells us about the

asymptotic distribution of Mn.

Theorem 4.2.1 The sequence

n
1
2{γ̂1(Mn − β) + γ̂2(

Sn

S
− 1)e1}

has the asymptotic G-dimensional normal distribution NG(0, σ2Q−1), where

σ2 =
∫∞
−∞ ψ2(z/S)dF (z).
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Jurec̆ková and Sen (1996) The asymptotic variance of n
1
2 (Mn − β + c) is ∆k, where

c = γ̂2(
Sn

S
− 1)e1 and ∆k is (γ̂1)

−2σ̂2Q−1. The scale factor (γ̂1)
−2σ̂2 is the same for

every possible permutation and does not affect the partitions of the following Zk and

Vk. For simplicity, the term c could be disregarded for deriving a test statistics.

We are tempted to use the UIP to formulate a robust M-test for

H0k : θk = 0 H1k : θk ≥ 0

Let Zk = AMn and Vk = AQ−1At. Let G = {1, . . . , G− 1}, and for every a :

∅ ⊆ a ⊆ G, let a′ be its complement and |a| its cardinality. For each a : ∅ ⊆ a ⊆ G,

partition Zk and Vk as

Zk =

 Zka

Zka′

 Vk =

 Vkaa Vkaa′

Vka′a Vka′a′


and write

Zka:a′ = Zka − Zkaa′V
−1
ka′a′Zka′ ,

Vkaa:a′ = Vkaa −Vkaa′V
−1
ka′a′Vka′a

By virtue of weak convergence of n
1
2 (Mn − β) to a G-variate normal law, for n very

large, we got (nV−1
k )(1/2)(Zk − θk) →D NG−1(0, I)

Let then

Lk = Σ∅⊆a⊆GI(Zka:a′ > 0,V−1
ka′a′Zka′ ≤ 0)(nZ′

ka:a′V
−1
kaa:a′Z

′
ka:a′)

and rejecting the null hypothesis for large positive values.

Typically, we are dealing with high dimension(K) low sample size dataset. Our case
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pertains to the case when n is small and the asymptotic normality does not hold. On

the other hand, the permutation distribution theory is valid for small sample size

setup. Under the null hypothesis of homogeneity, the joint distribution of all n

observations remains invariant under any permutation, leading to manageable testing

procedures. There are all possible n!
n1!n2!···nG!

equally likely permutations, which is a

large number to overcome this problem. Hence, conditionally distribution-free tests

can be constructed by using the permutational invariance structure. Now, p-value can

be computed as below.

Pk = Pr(Lk ≥ lk), k = 1, . . . , K

where Lk is a test statistic from the permuted distribution and lk is an observed test

statistics. And then an appropriate multiple testing procedure may be applied to the

K p-values. As a multiple testing procedure, proposed FDR procedure is used to

determine which gene has monotone increasing pattern across the groups.
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CHAPTER 5

NUMERICAL STUDY

5.1 Numerical Study of FDR in DNA microarray

experiment

Simulation study can provide a concrete description of performance of FDR

estimators. It is useful for numerical evaluation of performance in a large number of

hypotheses, that is, many genes. We assess the performance of our FDR procedure

with that of other procedures in terms of FDR control and power: Storey’s FDR, the

Benjamini-Hochberg procedure (BH), the Benjamini and Liu procedure (BL), and

Lehmann and Romano’s FDR (Lehmann). In this simulation study, these five

different FDR procedures are computed for different values of α and the proportion of

true null hypotheses, π0. In particular, we examine the amount of improvement

offered by the different procedures in terms of controlling FDR. We also present the

performance of proposed pFDR compared to Storey’s pFDR. First, numerical results

are shown in both an independent p-value example and a dependent p-value example.

In each of these examples, the average power is defined to be the average probability

of rejecting the false null hypotheses, E(S)/m1. At the final point, proposed FDR is

applied to real data: Leukemia study of Golub.et al to illustrate the performance.



Suppose we collect data from n microarrys with the same m genes. We observe the

vectors X(j) = (X1j, . . . , Xmj), j = 1, . . . , n. We assume that the Xij are independent

across the n arrays or n observations for each gene i, but they are not necessarily

independent or identically distributed across m genes of the vector for each j. In other

words, the data may be expressed as a m× n matrix X with dependent rows and

indepedent columns. We construct a test statistic Ti , a function of Xi1, . . . , Xin.

5.1.1 Independence example

We consider a multiple hypothesis testing situation where each independent random

variable Ti has mean µi and the same variance 1, i=1, . . . , 1000. The problem is to

test 1000 one-sided hypothesis of µ = 0 against µ > 0 with the null distribution

N(0,1) and alternative distribution N(2,1). Each individual hypothesis is tested by a

z-test. We let m0 = 100, 400, 700 and generated 1000 indepedent sets of 1000 normal

random variables for each m0-value. Proposed FDR and other procedures are

computed at the FDR level α = 0.1, 0.05, and 0.01, respectively. The actual (true)

FDR is estimated by averaging the Q values over 1000 iterations Storey

(2002)Yekutieli and Benjamini (1999)Pawitan et al. (2006). We also present a

numerical study to compare the average power of our proposed FDR controlling

procedure with other procedures. Table I presents different FDR procedures such as

Storey’s FDR, the Benjamini and Hochberg procedure (BH), the Benjamini and Liu

procedure (BL), Lehmann and Romano’s FDR (Lehmann) with Proposed FDR. All

FDR procedures seem to control the FDR at α under independence. The increase in

the proportion of the true null hypotheses (π0), the greater FDRs are. All FDR

procedures increase as α increases. It can be seen that Proposed FDR is relatively

close to the actual FDR. The another point is that we don’t want to report a smaller

false discovery rate than truly exists. Hence, proposed FDR is a consistently

84



conservative point estimate of the FDR at all levels simultaneously. Proposed FDR

performs better than other procedures, because the average power of proposed FDR is

always greater than other procedures in figure I. As α increases, average power also

increases. Proposed FDR offers a more powerful alternative to the traditional

Benjamini and Hochberg procedure. We lose no power regardless of the value of π0

and α. Table II presents Proposed pFDR gets better than Storey’s pFDR.

TABLE I: Comparison of different FDR procedures (Independence)

α π0 Storey’s FDR BH BL Lehmann Actual FDR Proposed FDR
0.1 0.1 0.00072 0.0099 0.0004 0.0004 0.00075 0.00078

0.4 0.00408 0.04023 0.00124 0.00124 0.00424 0.00395
0.7 0.01063 0.07101 0.00768 0.00768 0.01615 0.01199

0.05 0.1 0.00051 0.00494 0.00016 0.00016 0.00047 0.00045
0.4 0.00297 0.01986 0.00121 0.00125 0.00215 0.00276
0.7 0.01048 0.03522 0.00447 0.00456 0.01009 0.00997

0.01 0.1 0.00024 0.00108 0 0 0.00017 0.0003
0.4 0.00143 0.00378 0.00088 0.00088 0.0013 0.0012
0.7 0.00522 0.00645 0.00138 0.00138 0.00431 0.0037

TABLE II: Comparison of different pFDR procedures (Independence)
α π0 pFDR Proposed pFDR
0.1 0.1 0.00129 0.00108

0.4 0.00759 0.00355
0.7 0.026561 0.01199

0.05 0.1 0.00154 0.00075
0.4 0.00902 0.00276
0.7 0.03178 0.00797

0.01 0.1 0.00309 0.00032
0.4 0.01859 0.00119
0.7 0.067889 0.00367
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5.1.2 Dependence example

Our second numerical study illustrates the performance of our FDR procedure

compared to the other procedures including Benjamini and Hochberg procedure under

a certain form of dependence. The null statistics have N(0,1) marginal distributions

and the alternative distributions have marginal distribution N(3,1) with different

value of m0. 1000 dependent random variable Ti with mean µi ,the same variance 1

and common correlation ρ, i=1, . . . , 1000 are generated. 1000 one-sided hypothesis

tests of µ = 0 against µ > 0 are tested by a z-test. We let m0 = 100, 400, 700 and

generated 1000 sets of 1000 normal random variables for each m0-value. Our proposed

FDR and other procedures are applied at each ρ = 0.3, 0.5, and 0.7 and α = 0.1. In

this section, we will show that our FDR procedure performs better under all

configurations of dependence structures.

Table III compares different FDR procedures such as Storey’s FDR, the Benjamini

and Hochberg procedure (BH), the Benjamini and Liu procedure (BL), Lehmann and

Romano’s FDR (Lehmann) with proposed FDR. All five FDR procedures seem to

control the FDR when the proportion of true null hypotheses is less than 1. It is

shown that Proposed FDR procedure is very close to the actual FDR. As ρ increases,

all FDR procedures decreases. Proposed FDR procedure controls the FDR at all

levels under all configurations of dependence structures. Figure II is the graphical

summary to show that proposed FDR is more powerful than other procedures. Table

IV compares the performance of Proposed pFDR with Storey’s pFDR. Proposed

pFDR is always smaller than Storey’s pFDR.
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TABLE III: Comparison of different FDR procedures (Dependence)

ρ π0 Storey’s FDR BH BL Lehmann Actual FDR Proposed FDR
0.3 0.1 0.00428 0.00959 0.00024 0.00025 0.00569 0.00467

0.4 0.02410 0.03943 0.00054 0.00059 0.03382 0.02784
0.7 0.08264 0.06069 0.00215 0.00228 0.09142 0.08446

0.5 0.1 0.00355 0.01079 0.00085 0.00076 0.00689 0.00583
0.4 0.01887 0.04229 0.00096 0.00117 0.03527 0.03135
0.7 0.06129 0.06920 0.01113 0.01099 0.09963 0.09013

0.7 0.1 0.00279 0.01155 0.00357 0.00332 0.00779 0.00736
0.4 0.02499 0.03526 0.00769 0.00775 0.03042 0.03484
0.7 0.11931 0.05009 0.01224 0.01226 0.07246 0.09323

TABLE IV: Comparison of different pFDR procedures (Dependence)
ρ π0 pFDR Proposed pFDR

0.3 0.1 0.00467 0.00428
0.4 0.02784 0.02410
0.7 0.0846 0.08264

0.5 0.1 0.00583 0.00355
0.4 0.03887 0.01887
0.7 0.1000 0.06129

0.7 0.1 0.00736 0.00279
0.4 0.02499 0.03484
0.7 0.11931 0.10323
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5.1.3 Application to Real Data: Leukemia study

Correct diagnosis of neoplasia malignancies is necessary for proper treatment.

Microarray technologies provided the means by which neoplasms can be more

accurately classified, thus leading to effective treatment. Golub et al. (1999) studied

two hematologic malignancies: acute lymphoblastic leukemia (ALL) and acute

myeloid leukemia (AML). They expected these two malignancies could be identified

based on microarray gene expression measures. They measured gene expression levels

using Affymetrix high-density oligonucleotide chips. The goal of this study is to

identify differentially expressed genes between the two diseases. Gene expression data

has 7129 genes and 38 tumor mRNA samples. Pre-processing was done as described

in Dudoit et al. (2002). Differentially expressed genes in ALL and AML patients were

identified.

Figure III shows the randomness assumption of array effects are reasonable. Figure

IV compares the original expression level with signed square root transformation(Z

score transformation) of the expression level. By transforming the original expression

level, this Z score transformation, provides a way of standardizing data and allows the

comparison of microarray data independent of the original hybridization intensities.

Data normalized by Z score transformation can be used in the calculation of

significant changes in gene expression between different samples and conditions

Cheadle et al. (2003).

Each p-value is computed based on welch two sample t-statistics for each gene. We

assumed that the P ′
is are uniformly distributed among the m0 genes. This

assumption is appropriate and realistic. Figure V displays that p-values, greater than

0.001, are uniformly disributed and the assumptions among the non-disease genes, m0

genes are reasonable.
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We will numerically compare the performance of proposed FDR procedure with

others for different values of m0. The study was performed for π0=0.2,0.4,0.6. Table

V compares different FDR procedures such as Storey’s FDR (FDR), the Benjamini

and Hochberg procedure (BH) and Proposed FDR. It can be shown that the increase

in the proportion of the true null hypotheses (π0), that is, non-disease genes is

greater, the greater FDRs and pFDRs are. Proposed FDR controls the FDR at all

levels α=0.1 (threshold=0.0004),0.05 (threshold=0.0002),0.01 (threshold=0.000175)

,whereas the Benjamini and Hochberg procedure having greater power fails to control

the FDR. It turns out that Proposed FDR is more amenable in real microarray data

structures. Storey’s method of estimating π0 works well in the continous gene

expression levels data. Table VII displays Modified FDR using the estimate of π0

(=0.4). Table VIII presents Storey’s pFDR (pFDR) with Proposed pFDR. Proposed

pFDR is smaller than Storey’s pFDR. Table VI display the 30 most significant genes

in the dataset at FDR level=0.1.

TABLE V: Different FDRs In Real Data
α π0 Storey’s FDR BH Proposed FDR
0.1 0.20 0.00197 0.0687 0.01686

0.40 0.0025 0.14964 0.0434
0.60 0.0036 0.2658 0.0997

0.05 0.20 0.0013 0.0534 0.0115
0.40 0.00169 0.1302 0.02879
0.60 0.00256 0.2445 0.04877

0.01 0.20 0.0012 0.04279 0.0081
0.40 0.00159 0.10617 0.00934
0.60 0.00236 0.19248 0.0100
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TABLE VI: Displaying the 30 most significant genes at FDR=0.1
pvalues gene.names

1.381111e-10 C-myb gene extracted from Human (c-myb) gene, comp
2.138241e-10 FAH Fumarylacetoacetate
3.837362e-09 Zyxin
6.082366e-09 Leukotriene C4 synthase (LTC4S) gene
2.221575e-08 TCF3 Transcription factor 3 (E2A immunoglobulin en
2.517146e-08 RETINOBLASTOMA BINDING PROTEIN P48
3.740919e-08 CTPS CTP synthetase
5.867391e-08 CCND3 Cyclin D3
6.796881e-08 Clone 22 mRNA, alternative splice variant alpha-1
8.590343e-08 MB-1 gene
8.639399e-08 LEPR Leptin receptor
9.888047e-08 Thrombospondin-p50 gene extracted from Human throm
1.352416e-07 PROTEASOME IOTA CHAIN
1.820797e-07 RPA1 Replication protein A1 (70kD)
1.890900e-07 MYL1 Myosin light chain (alkali)
2.368127e-07 TOP2B Topoisomerase (DNA) II beta (180kD)
2.574041e-07 ACADM Acyl-Coenzyme A dehydrogenase, C-4 to C-12 s
2.796545e-07 Cytoplasmic dynein light chain 1 (hdlc1) mRNA
3.576030e-07 CST3 Cystatin C (amyloid angiopathy and cerebral h
4.776810e-07 GB DEF = Homeodomain protein HoxA9 mRNA
5.193354e-07 LYN V-yes-1 Yamaguchi sarcoma viral related oncoge
5.590720e-07 PRG1 Proteoglycan 1, secretory granule
6.749931e-07 Transcriptional activator hSNF2b
6.875291e-07 CYP2C18 Cytochrome P450, subfamily IIC (mephenytoi
7.288953e-07 Liver mRNA for interferon-gamma inducing factor(IG
7.733038e-07 Inducible protein mRNA
8.367065e-07 Catalase (EC 1.11.1.6) 5primeflank and exon 1 mapp
8.565317e-07 CD33 CD33 antigen (differentiation antigen)
9.520948e-07 CARCINOEMBRYONIC ANTIGEN PRECURSOR
9.716227e-07 MCM3 Minichromosome maintenance deficient (S. cere

TABLE VII: Modified FDR at π0 = 0.4
α Modified FDR
0.1 0.0422
0.05 0.02819
0.01 0.009224
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FIGURE III: Comparison of arrays
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TABLE VIII: Comparison of different pFDR procedures (Real data):Golub et al.
α π0 pFDR Proposed pFDR
0.1 0.20 0.02558332 0.0169

0.40 0.03257848 0.04339
0.60 0.04633 0.09975

0.05 0.20 0.0328 0.0115
0.40 0.04318 0.02879
0.60 0.06519 0.0588

0.01 0.20 0.0349 0.0081
0.40 0.0464 0.01934
0.60 0.0687 0.04907

5.2 FDR in genomic sequences

5.2.1 Application to The SARSCoV RNA Genome

FIGURE VI: The SARSCoV RNA Genome

Following its origin in Southern China, the SARS epidemic resulted in 8422 infected

people and 916 deaths. The SARS causative agent was identified as a coronavirus
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(SARSCoV) with GenBank database. The SARS epidemic has an identified

single-stranded and positive-sense RNA virus with large genome size and moderate

mutation rate. For these sequences, an enormously high-dimensional purely

qualitative categorical model is constructed. n (=14) SARS complete sequences are

downloaded ,isolated from Guadong, Beijing, Hongkong and Taiwan: n1(= 5) from

Guadong, n2(= 4) from Beijing, n3(= 3) from Hongkong and n4(= 2) from Taiwan.

To simplify the measurement of variation, the sequences with no nucleotide changes

are removed. The responses consist of not even ordered categories, a,c,g,and t and an

ordering may not be feasible. The Hamming distance give us a stochastic ordering.

But individual statistics using Hamming distance do not have a known null

hypothesis distribution in general. For these reasons, we use jackknife variance

estimation ζ̂1.k and permutation distribution to construct some permutation tests.

There are K=900 genes (or positions) for each sequence and for each position, the test

statistic described and corresponding p-value are computed. The test statistic Lk is

defined as
∑4

g=1 ng[Ugk − Uk]
2/(4ζ̂1.k), k = 1, . . . , 900. The permutation distribution

can be generated by considering 14!(equally likely) permutations of the combined

sample observations among four groups of (sizes 5,4,3 and 2). Based on 900 p-values

from the positons, each p-value are computed from the permuted distribution.

Storey’s FDR procedure, Benjamini and Hochberg procedure, Benjamini and Liu

procedure, and Proposed FDR are computed and compared with α = 0.1

(threshold=0.003),0.05 (threshold=0.0015) in Table IX. It turns out that the

Benjamini and Hochberg (BH) and the Benjamin and Liu (BL) procedures don’t work

well in this genomic data. Table X presents proposed pFDR with Storey’s pFDR.

Proposed pFDR is always smaller than Storey’s pFDR.
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TABLE IX: Comparison of different FDR procedures-Hamming distance
α π0 Storey’s FDR BH BL Proposed FDR
0.1 0.40 0.037 0.038 0 0.0134

0.60 0.054 0.049 0 0.0384
0.80 0.103 0 0 0.0898

0.05 0.40 0.0209 0.034 0 0.007
0.60 0.0313 0.0203 0 0.0157
0.80 0.0616 0 0 0.0402

TABLE X: Comparison of different pFDR procedures-Hamming distance
α π0 pFDR Proposed pFDR
0.1 0.40 0.037 0.0234

0.60 0.054 0.0484
0.80 0.1032 0.0898

0.05 0.40 0.022 0.007
0.60 0.032 0.0257
0.80 0.064 0.0402

5.3 Numerical Study in Classification Of Genes

Mitogenesis in hormone-responsive breast cancer cells may be stimulated by the

steroid hormone estrogen. The cDNA microarray gene expression levels of a

hormone-responsive breast cancer epithelial cell line with a mitogenic dose of estrogen

without other confounding growth factors in serum ,were examined. Gene expression

changes were measured at 6 time points 1, 4, 12, 24, 36, and 48 hours after estrogen

stimulation. The expression levels of DNA replication fork genes stimulated by

estrogen, without growth factors in serum, shows that the steroid hormone estrogen

plays a important role of generating Mitogenesis. (Molecular Endocrinology 16, 2002).

For the purpose of illustration, the data set in Lobenhofer et al. (2002) is analyzed.

The data consists of 1900 genes measured at 6 time points with 8 observations (n=8)

each time point. Gene expression levels are log-transformed. But the dataset to which

we applied the analysis contains 1000 genes and 5 time points (1, 4, 12, 24, 36 hours
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after estrogen stimulation), at which each group has 4,3,2,2,and 1 observations,

respectively. Figure VII and VIII shows mean expression level changes at 5 time

points. The patterns over time include monotone nondecreasing, monotone

nonincreasing, up-down, and down-up profiles. The pattern of interest is the

monotone nondecreasing profile over time. We then express these in term of

inequalities between the expected expression levels at 5 time points.

5.3.1 Application To the Breast Cancer Study

We generate p-values in terms of 6 test statistics: Proposed FDRs (PLF) using 3 rank

score statistics in linear rank statistics (uniform(Wilcoxon)(U), Normal(N),and

logistic(L),respectively) Proposed FDRs(PMF) using robust M-estimator with the

regression scores generated by φ which can be Normal (N) or uniform (U) and

Kendall-tau statistic. Proposed pFDRs are defined similarly.

Table XI displays comparison of FDR procedures with application to Breast data.

The study was performed for π0 = 0.3, 0.5, and 0.70. Proposed FDR always controls

the FDR at all levels α=0.1 (threshold=0.001), 0.05 (threshold=0.0005), regardless of

test statistics used. The increase in the proportion of the true null hypotheses(π0),

the greater FDRs and pFDRs are, except for the Benjamini-Hochberg procedure

(BH). The Benjamini-Hochberg procedure (BH) and Storey’s FDR fail to control the

FDR at some α. Moreover, they have higher variability of the standard estimate of

the false discovery rate, so these FDR methodologies are far from the true FDP.

Figure X shows that proposed FDR using p-values generated by linear rank statistics

with normal scores not only attains greater powers regardless of α but also reports

smaller FDR estimates. When the distribution of the test statistics is Gaussian, this

will be better. Proposed FDR is more feasible in this microarray data. Table XII

presents Proposed pFDR is always smaller than Storey’s pFDR.
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TABLE XI: Comparison of different FDR procedures (Breast data):

α π0 Test statistics Storey’s FDR BH Proposed FDR

0.1 0.3 linear rank statistics(Uniform) 0.049 0.089 0.021
...(Normal) 0.049 0.085 0.020
...(logistic) 0.084 0.003 0.030

M-estimator(Normal) 0.038 0.168 0.027
...(Uniform) 0.039 0.164 0.026
Kendall-tau 0.039 0.163 0.025

0.5 linear rank statistics(Uniform) 0.066 0.041 0.051
...(Normal) 0.066 0.040 0.037
...(logistic) 0.112 0.000 0.049

M-estimator(Normal) 0.052 0.123 0.052
...(Uniform) 0.052 0.125 0.051
Kendall-tau 0.050 0.122 0.049

0.7 linear rank statistics(Uniform) 0.098 0.00 0.078
...(Normal) 0.100 0.00 0.078
...(logistic) 0.170 0.000 0.100

M-estimator(Normal) 0.074 0.007 0.095
...(Uniform) 0.073 0.006 0.093
Kendall-tau 0.070 0.004 0.089

0.05 0.3 linear rank statistics(Uniform) 0.043 0.00 0.019
...(Normal) 0.044 0.00 0.022
...(logistic) 0.082 0.000 0.030

M-estimator(Normal) 0.038 0.000 0.023
...(Uniform) 0.038 0.000 0.042
Kendall-tau 0.035 0.001 0.040

0.5 linear rank statistics(Uniform) 0.058 0.000 0.036
...(Normal) 0.059 0.000 0.040
...(logistic) 0.113 0.000 0.047

M-estimator(Normal) 0.050 0.000 0.042
...(Uniform) 0.050 0.000 0.042
Kendall-tau 0.048 0.002 0.040

0.7 linear rank statistics(Uniform) 0.088 0.00 0.050
...(Normal) 0.088 0.00 0.047
...(logistic) 0.174 0.000 0.050

M-estimator(Normal) 0.082 0.000 0.047
...(Uniform) 0.082 0.006 0.047
Kendall-tau 0.079 0.0045 0.045
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TABLE XII: Comparison of different pFDR procedures (Breast data)

α π0 Test statistics Storey’s FDR Proposed pFDR
0.1 0.3 linear rank statistics(Uniform) 0.052 0.021

...(Normal) 0.050 0.020
...(logistic) 0.084 0.003

M-estimator(Normal) 0.040 0.027
...(Uniform) 0.041 0.026
Kendall-tau 0.040 0.023

0.5 linear rank statistics(Uniform) 0.066 0.041
...(Normal) 0.069 0.040
...(logistic) 0.118 0.059

M-estimator(Normal) 0.054 0.052
...(Uniform) 0.054 0.052
Kendall-tau 0.050 0.049

0.7 linear rank statistics(Uniform) 0.103 0.078
...(Normal) 0.105 0.079
...(logistic) 0.178 0.100

M-estimator(Normal) 0.078 0.095
...(Uniform) 0.077 0.093
Kendall-tau 0.074 0.090

0.05 0.3 linear rank statistics(Uniform) 0.049 0.020
...(Normal) 0.050 0.022
...(logistic) 0.094 0.030

M-estimator(Normal) 0.043 0.023
...(Uniform) 0.042 0.022
.Kendall-tau 0.040 0.021

0.5 linear rank statistics(Uniform) 0.066 0.036
...(Normal) 0.067 0.040
...(logistic) 0.128 0.050

M-estimator(Normal) 0.058 0.042
...(Uniform) 0.058 0.042
Kendall-tau 0.057 0.041

0.7 linear rank statistics(Uniform) 0.099 0.050
...(Normal) 0.100 0.049
...(logistic) 0.197 0.050

M-estimator(Normal) 0.088 0.045
...(Uniform) 0.088 0.043
Kendall-tau 0.085 0.040
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CHAPTER 6

SUMMARY AND FUTURE

RESEARCH

6.1 Summary and Conclusion

My thesis consists of three topics: False discovery rate in microarray studies, False

discovery rate in genomic sequences, and Classification of genes. For estimating false

discovery rates in microarray setting, we wanted to consider more general dependence

structures among tested genes. We utilized the Chen-Stein method to derive the

Poisson distributions of V and R, respectively. This was derived from fairly mild

regularity conditions regarding the dependence of the genes: the classification into

two subsets of non-differentially expressed genes and differentially expressed genes

crucial to sort plausible dependence patterns out. These estimation procedure has an

advantage of not needing unfeasible conditions under which central limit theorems

apply and it prevents the standard estimate of FDR from being increased due to

ignoring high correlations. A primary goal of developing FDR procedure under this

framework is to minimize FDR level and increase the associated power. Two-stage

FDR procedure by adding one more rejection procedure has these desirable



properties. Besides, this proposed FDR procedure is always controlled at preassigned

overall significance level α. We also developed proposed pFDR procedure as well. In

the simulated data example and real data example, the proposed FDR procedure

provides exact estimation to actual FDR and has greater power than other

conventinal FDR procedures. Proposed pFDR procedure has smaller values than

Storey’s pFDR procedure

Secondly, We considered high dimension low sample size genomic sequences without

ordering of response categories. When constructing an appropriate test statistics in

this model, the classical MANOVA approach may not be tenable due to too large

number of parameters and too small sample size. In thsese sense, a pseudo marginal

model based on the Hamming distance were presented. The Hamming distance

utilizes the idea of Gini-Simpson diversity index in a variety of multidimensional

setups. For small sample size, the permutation distribution was generated by

considering all possible n!(equally likely) permutations of the combined sample

observations among the G groups of (sizes n1, . . . , nG). We applied proposed FDR

procedure developed earlier to SARS epidemic genomic sequences. This procedure

along with the associated test statistics for each gene worked well in the set of

p-values generated from the exact permutation theory and controls the FDR at any

level α. Proposed pFDR procedure was smaller than Storey’s pFDR procedure

Finally, these previous setups may fall into classification of genes. This classification

may involve complex order-restricted inference. For this problem, Roy’s (1953)

union-intersection principle have some advantanges (Silvapulle and Sen 2004, Tsai

and Sen 2005). We presented three appropriate test statistics: linear rank statistics, a

M-estimator, and kendall-tau statistics. The test statistic based on linear rank

statistics using a suitable rank scores has the property of achieving a locally most

powerful test, instead of the most powerful test. The M-estimator accounting for
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outlier arrays provides robust test statistic, that is, distribution-insensitive clustering

of genes. The Kendall-tau statistic may be utilized to construct a distribution-free

test, not depending on any nuisance parameters. By exact permutation distrubution

theory, conditionally distribution-free test based upon each test statistic generated

corresponding p-values in small sample size setup. We assessed the performance of

proposed FDR associated with each test statistic to Lobenhofer et al’s breast cancer

study (2002). The linear rank statistic using a normal score has smaller FDR level

compared to other FDR procedures.

6.2 Discussion and Future Research

The statistical properties proposed in FDR procedure may depend on choice of

appropriate parameters, α1m and α2m, based on two-stage estimator. Simulation

studies suggest that the proposed procedure along with parameters outperform the

conventional FDR procedures. We considered two-stage FDR procedure only, but still

one may ask about a FDR procedure accomodating more rejection stages. In this case,

choice of multiple parameters may be complicated but may definitely help to minimize

FDR level and increase the associate power compared to two-stage procedure.

Average power has been mostly used in assessing the performance of FDR procedure.

We assessed the performance of proposed FDR procedure in terms of average power.

However, balancing FDR procedure and FNR procedure may be of greater importance

in statistical practice of high-throughput screeing data analysis like microarray

experiment, that is, controlling the FNR level while maintaining fixed FDR level. We

already developed two-stage FNR procedure but one may need to evaluate power in

terms of this procedure in simulated data example and in real data example

A pseudo marginal approach based on the Hamming distance seeks to find a
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distribution-free test. In fact, it still depends on unknown parameter, maybe

preempting an appropriate method in generating p-values. And the distribution of

the test statistic based on linear rank statistic with appropriate constants still

depends on values of constants. In these sense, Kendall-tau statistics may be a

promising alternative to them, because the distribution of this statistic is free of

unknown nuisance parameters. In view of using exact distribution-free tests, more

sophisticated methods must be taken into account. However, Kang and Sen (2007)

presented more general version of Kendall’s tau statistics. to utilize a hybrid of

Kendall’s tau and linear rank statistics. It incorporated the sign function which have

invariance property under the monotone transformations of observations. It showed

not only sign of the difference between two observations but also the magnitude of the

difference. They evaluated the performance of this Kendall’s tau- type linear rank

statistics and Kendall’s tau statistics considered in Sen (2007-2008) with the real

data, Lobenhofer et al. (2002). This resulted in smaller FDR procedure associated

with two-stage FDR procedure presented in my thesis. More simulation studies are

expected under more various situations. For example, we used two means of gene

expression level according to two hypotheses, but by varying this mean expression

levels, we can evaluate the performance of proposed FDR along with associated test

statistics very well. We also conduct simulation studies with more complex

dependence structures, such as complicated Markov chain structures or positive

regression dependence structures (PRDS).

We considered two-stage FDR procedure but this result can be extended to

multi-stage FDR procedure incorporating the Chen-Stein method. We expect that

this procedure will provide less stringent FDR estimation as well as more power in the

multiple testing context, even though it is mathematically and computationally

complicated to implement.
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Appendix

[proof of Theorem 2.1.1] M0 = {1, 2, . . . ,m0} and M = {1, 2, . . . ,m}. Assume that

Cov(Pi, Pj) ≈ 0 when i, j ∈M0 or (i ∈M0, j ∈M −M0) or (j ∈M0, i ∈M −M0).

Let qi denote Pr(Pi < cα). B2α is defined as any subset of inactive genes out of m0

genes. B1α is defined to be any subset of active genes out of m−m0 genes.

Vm0 =
∑

i∈M0
I(Pi < cα) is approximately Poisson variable with EVm0 = µm0 = m0αm.

By the Chen-stein method,

b1 =
∑

α∈M0

∑
j∈B2α

qiqj = m2
0(αm)2 = o(1),

b2 =
∑
i∈M0

∑
i6=j∈B2α

qij = m0(m0 − 1)α2
m ≈ m2

0(αm)2 = o(1),

if and only if αm = o( 1
m0

) and b3 = 0.

Let Z1 be a Poisson random variable with EZ = EVm0 = m0αm.

||L(Vm0)− L(Z1)||=2supA|P (Vm0 ∈ A)− P (Z1 ∈ A)| =≤ 2(b1 + b2 + b3) = o(1).

Sm1 =
∑

i∈M−M0
I(Pi < cα) is approximately Poisson variable with

ESm1 = (m−m0)α
∗
m.

By the Chen-stein method,

b1 =
∑

α∈M−M0

∑
j∈B1α

qiqj = (m−m0)
2(α∗m)2 = o(1)

b2 =
∑

i∈M−M0

∑
i6=j∈B1α

qij = (m−m0)(m−m0 − 1)α2
m ≈ (m−m0)

2(αm)2 = o(1)

if and only if αm = o( 1
m1

) and b3=0.

Let Z2 be a Poisson random variable with EZ = ESm1 = (m−m0)α
∗
m.

||L(Sm1)−L(Z2)||=2supA|P (Sm1 ∈ A)− P (Z2 ∈ A)| =≤ 2(b1 + b2 + b3) = o(1). Thus,

Rm0 =
∑m

i=1 I(Pi < cα) = Vm0 + Sm1 is approximately Poisson variable with
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ERm0 = µ∗m0
= m0αm + (m−m0)α

∗
m. [proof of Theorem 2.2.1]

Let M0 be {1, 2, . . . ,m0} and M be {1, 2, . . . ,m}. Assume that Cov(Pi, Pj) ≈ 0 when

i, j ∈M0 or (i ∈M0, j ∈M −M0) or (j ∈M0, i ∈M −M0). Let qi denote

Pr(Pi < cα). B2α is defined as any subset of inactive genes out of m0 genes. B1α is

defined to be any subset of active genes out of m−m0 genes.

V1(m0) =
∑

i∈M0
I(Pi < cα) is approximately Poisson variable with

EV1(m0) = µ1(m0) = m0α1m.

b1 =
∑

α∈M0

∑
j∈B2α

qiqj = m2
0(α1m)2 = o(1),

b2 =
∑
i∈M0

∑
i6=j∈B2α

qij = m0(m0 − 1)α2
1m ≈ m2

0(α1m)2 = o(1)

if and only if α1m = o( 1
m0

) and b3 = 0.

Let Z1 be a Poisson random variable with EZ = EV1(m0) = m0α1m.

||L(V1(m0))− L(Z1)||=2supA|P (V1(m0) ∈ A)− P (Z1 ∈ A)| =≤ 2(b1 + b2 + b3) = o(1).

S1(m1) =
∑

i∈M−M0
I(Pi < cα) is approximately Poisson variable with

ES1(m1) = (m−m0)α
∗
1m.

By the Chen-stein method,

b1 =
∑

α∈M−M0

∑
j∈B1α

qiqj = (m−m0)
2(α∗1m)2 = o(1),

b2 =
∑

i∈M−M0

∑
i6=j∈B1α

qij = (m−m0)(m−m0 − 1)α2
1m ≈ (m−m0)

2(α1m)2 = o(1)

if and only if α1m = o( 1
m1

) and b3=0.

Let Z2 be a Poisson random variable with EZ = ES1(m1) = (m−m0)α
∗
1m.

||L(S1(m1))− L(Z2)||=2supA|P (S1(m1) ∈ A)− P (Z2 ∈ A)| =≤ 2(b1 + b2 + b3) = o(1).

Thus, R1(m0) =
∑m

i=1 I(Pi < cα) = V1(m0) + S1(m1) is approximately Poisson variable

109



with ER1(m0) = µ∗m0
= m0α1m + (m−m0)α

∗
1m.
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