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ABSTRACT

Qi Gong: Three Stochastic Models for Order Book Dynamics
(Under the direction of Vidyadhar Kulkarni)

In this dissertation, we study three stochastic models for order book dynamics. We

first consider a double-ended queue with renewal arrivals where buyers and sellers arrive

to conduct trades. Because the analytical results of the limiting behavior of the double

ended queue is intractable except in very special cases, we apply the diffusion approximation

method. We find that the queue length process of the double-ended queue converges to

an asymmetric Ornstein-Uhlenbeck process with drift. We use simulation to evaluate the

goodness of our approximations.

Next we consider the double-ended queue where the arrival processes of the buyers and

sellers are state-dependent. We assume that traders arrive at the queue according to a phase-

type renewal process (PH-renewal process), and an arriving trader is a buyer or a seller

according to state-dependent probabilities. We derive an explicit algorithm to compute the

limiting distribution of this double-ended queue. We study two special cases with Erlang

and Hyper-exponential inter-arrival times. The goodness of the algorithm is validated by

simulation.

Finally, we study a stochastic model of an order book describing the movement of the

market ask and market bid prices. As soon as the market bid price matches the market ask

price, a trade occurs. Consequently the market ask and bid prices separate and start a new

movement. We use the moment estimation method to estimate the parameters of the model,

and apply this model to the real data. One application of this model is forecasting, in which

the performance is validated by numerical examples.
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CHAPTER 1

Introduction

The main trading problem in the financial market is matching compatible traders. Traders

offer bid prices to buy and ask prices to sell. The orders are maintained in an order book and

executed by using an execution system. The highest bid price on the order book is called

the market bid price, and lowest ask price is called the market ask price. When the market

ask price matches the market bid price, a trade occurs, and the market ask and bid prices

change to reflect this trade.

Traditional studies of this mechanisms were based on quote-driven markets, where a

market maker or dealer centralizes the orders. However, with the development of Electronic

Communications Networks (ECN), more and more market participants use the alternative

order-driven trading systems. In these electronic platforms, the information of all outstand-

ing limit orders in a limit order book is available to the market participants and the market

orders are executed against the market prices. Currently many exchanges such as the NYSE,

Nasdaq, the Tokyo Stock Exchange and the London Stock Exchange provide electronic order-

driven platforms. Because of the popularity of ECN and the availability of data, stochastic

models are increasingly used to model the order-driven markets.

The dynamic models of the order book have been studied extensively in the microstruc-

ture literature. Cohen (1981)[6] and Parlour (1998)[26] studied a dynamic programming

model that describe the behavior of single trader with multiple period. Foucault (1999)

[14] modified the model with non-fixed ask and bid price. Besides, many researchers used



queueing models to describe the dynamics of limit order book. Garman (1976)[15] modeled

the limit order book as CTMC (Continuous Time Markov Chain) and derived its balance

equations. The CTMC is positive recurrent, however the limiting behavior is hard to find.

Cont (2010) [10] considered the arrival rate of orders dependent on current market price,

which make the analysis more intractable. Cont (2011) [8] proposed a model for the dynam-

ics of a limit order book in a liquid market where buy and sell orders are submitted at high

frequency. Subsequently Cont (2013) [9] derived a stochastic model for the dynamics of a

limit order book including arrivals of market orders, limit orders, and order cancelations.

Luckock (2003)[24] constructed a model similar to Garman’s model and studied the limit-

ing distribution of order book. Compared with two-sided model of order book, one-sided

model is more analytically tractable, see Kleinrock (1967)[21], Seppi (1997)[32] and Rocsu

(2009)[31]. However, one-sided models lack applicability.

At the level of applications, number of models provide a quantitative framework to help

market participants optimize their trade execution strategies, such as Domowitz (1994)[12],

Bertsimas (1998)[2], Alfonsi (2007)[1]. Besides, some researchers provide statistical view and

empirical methods to study the order book, such as Bouchaud (2002)[4], Hollifield (2004)[16]

and Farmer (2004)[13].

In the study of the order book dynamics, we aim to consider a limit order book with

finite number of trading prices which is similar to Garman’s model. Under this situation

we find that the order book dynamic forms a multidimensional double-sided queue with

dynamic priorities. Although this queue can be described by a CTMC (continuous time

Markov chain), its analytical exploration is intractable. Therefore, we reduce the dimension

of the queue to be one. Thus this queueing process becomes a one-dimensional double-ended

queue with two arrival streams–sellers and buyers.
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When the arrival process of the double-ended queue is a Poisson process, there are many

existing methods to deal with the analysis of the queueing process. In this thesis, we consider

the arrival processes of the double-ended queue to be general renewal processes. In chapter 2,

we consider a double-ended queueing system with two independent renewal arrival streams.

Whenever there is a pair of customers from both arrival streams, they immediately depart

together, and so there cannot exist nonzero customers from both arrival streams simultane-

ously. We further assume that traders are impatient, that is, if they do not see a matching

trader within a trader-specific random time (called the trader’s patience time) they leave

without completing the trade. By applying the diffusion approximation method, we find that

the queue length process of the double-ended queue converges to an asymmetric Ornstein-

Uhlenbeck process with drift. The goodness of the approximation is tested by numerical

examples.

In chapter 3, we study this double-ended queue with state-dependent arrival mechanism.

This extra assumption makes the double-ended queue more realistic. We assume the arrival

process of traders is a phase-type renewal process (that is, the inter-arrival time follows a

phase-type distribution), and an arriving trader is a buyer or a seller with state-dependent

probabilities. We derive an algorithm for the limiting distribution of this double-ended

queue, and obtain the explicit formula of limiting distribution for two special inter-arrival

distribution–Erlang distribution and hyper-exponential distribution. We also derive several

performance measures and analyze the goodness of our method through numerical examples.

In chapter 4, we build a stochastic model focusing on the market ask price and the

market bid price. Because of the new arrivals and reneging (that is, traders leaving the

market without trading) of traders, the market bid and ask prices can move upwards and

downwards. Immediately after the trade the market bid price moves down the the new

largest bid price, while the market ask price moves up to the new smallest ask price. We

3



use two independent geometric Brownian motions (GBM) to describe the movement of the

market ask and bid prices. From the model we study the inter-trading times and the trading

prices, and obtain the explicit estimators of each parameter of our model. Finally we derive

a simple forecasting formula by applying this model. The performance of the forecasting is

validated through numerical examples.

We present relevant literature review in each chapter separately.
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CHAPTER 2

The Diffusion Model for a Double-ended Queue with Renewal Arrival Processes

2.1 Introduction

We consider a double-ended queueing system which consists of two independent renewal

arrival streams. Whenever there is a pair of customers from both arrival streams, they

immediately depart together, and so there cannot exist nonzero customers from both arrival

streams simultaneously (see Figure 2.1). We further assume that traders are impatient, that

is, if they do not see a matching trader within a trader-specific random time (called the

trader’s patience time) they leave without completing the trade.

Such double-ended queues arise in many applications, such as taxi-service system, buyers

and sellers in a common market, assembly systems, organ transplant systems, to name a

few. The first work on double-ended queue was by Kashyap [19] for a taxi service example.

Kashyap considers the taxi queueing system as a double-ended queue with limited waiting

space. Under the assumptions that arrival processes of taxies and passengers are Poisson

processes, he derives the analytical results about the steady state distribution of the system

state. Conolly et al. [7] study the effect of impatient behavior primarily in the context

of double-ended queues under the assumption of Poisson arrivals and exponential patience

times. Researchers also find many other practical applications of the double-ended queues,

such as networks with synchronization nodes (Prabhakar et al. [28]), and perishable inven-

tory system (Perry et al. [27]). When renewal arrivals are considered, the explicit form of the

stationary distribution becomes intractable. Degirmenci [11] studies the asymptotic behav-



ior of the stationary distribution of the double-ended queue using algebraic approximation

methods. Several researchers study the double-ended queue using simulation methods, see

Zenios [34] and Kim et al. [20].

The rest of the this chapter is organized as follows. In the next section we present the

model of the double-ended queue with renewal arrivals and introduce the relevant notation.

In Section 2.3 we collect the results about the special case when the renewal processes are

Poisson. Some of these results are known, while some are new. We use these results to

approximate the renewal case by replacing the renewal arrivals by Poisson arrivals in Section

2.5. In Section 2.4 we study the fluid and diffusion approximations for the queue length

process. (See Kushner [23] for comprehensive references about diffusion approximations).

Under suitable conditions (Assumptions 2.4.1 and 2.4.2), the fluid limit satisfies the ODE

(2.4.6), and the diffusion limit is given by the SDE (2.4.22). We provide the exact solution

to the ODE, and study the moments and stationary distribution of the SDE. We also remark

on the connections between the fluid and diffusion approximations and the special case in

Section 2.3.

Finally we study a numerical example in Section 2.5, and compare goodness of the two

approximations: the Poisson approximation, and the diffusion approximation. We make

comments on extensions of the model in Section 2.6.

We use the following notation. Denote by R, R+, N, and Z the sets of real numbers,

nonnegative real numbers, integers, and positive integers, respectively. For a real number a,

define a+ = max{a, 0} and a− = max{0,−a}. Similarly, for a real function defined on [0,∞),

define for t ∈ [0,∞), f+(t) = max{0, f(t)} and f−(t) = max{0,−f(t)}. Let a and b be two

nonnegative real numbers. We use a� b to denote that a is much larger than b. For c ∈ R+,

denote by bcc the largest integer less than or equal to c. Denote by C2
0(R) and D([0,∞),R)
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the space of twice differentiable real-valued functions with compact support and the space of

right continuous functions with left limits defined from [0,∞) to R with the usual Skorohod

topology. For semimartingales X, Y ∈ D([0,∞) : R), we denote by [X, Y ] the quadratic

covariation of X and Y . For x ∈ D([0,∞),R), for t ∈ [0,∞), let

‖x‖t = sup
s∈[0,t]

|x(s)|.

A mapping F : D([0,∞),R) → D([0,∞),R) is called Lipschitz continuous if for any t ∈

[0,∞), there exists κ ∈ (0,∞) such that for x1, x2 ∈ D([0,∞),R),

‖F (x1)− F (x2)‖t ≤ κ‖x1 − x2‖t.

Finally, normal distribution with mean µ and variance σ2 is denoted by N(µ, σ2), and its

density and distribution function are denoted by by φ(·;µ, σ2) and Φ(·;µ, σ2), respectively.

2.2 Model Formulation

Consider a trading market where the sellers and buyers arrive according to independent

renewal processes. When a seller is matched with a buyer, a trade occurs and they both leave

the queue. The trading follows according to first-come-first-served principle. If an arriving

seller (buyer) cannot be matched with a buyer (seller), he/she will stay in the queue and

wait for the upcoming buyers (sellers). Thus there cannot be non-zero number of buyers

and sellers simultaneously in the system. We also assume that each seller (buyer) can leave

the queue without trading because of impatience. The patience time of each seller (buyer)

follows an exponential distribution with rate θ (γ). The patience times of the buyers and

sellers are independent of each other. A queueing system forms a double-ended queue is

schematically shown in Figure 2.1. Let X(t) be the length of the double-ended queue at

time t. We note that X(t) ∈ Z. If X(t) > 0, there are X(t) sellers waiting in the queue, and

if X(t) < 0, there are −X(t) buyers waiting in the queue.

7



Figure 2.1: Double-ended Queue

Let (Ω,F ,P, {Ft}t≥0) be a filtered probability space satisfying the usual conditions. All

the random variables and stochastic processes are assumed to be defined on this space.

We assume the inter-arrival times for sellers and buyers are independent sequences of i.i.d.

random variables {U(k) : k ∈ N} and {V (k) : k ∈ N}, respectively. The random variable

U(1) has mean 1/α and standard deviation σ, and V (1) has mean 1/β and standard deviation

ς. Define

Ns(t) = max

{
k :

k∑
i=1

U(i) ≤ t

}
,

Nb(t) = max

{
k :

k∑
i=1

V (i) ≤ t

}
.

The renewal processes Ns and Nb can be interpreted as the arrival processes for buyers and

seller, respectively. As mentioned before, the patience time of each seller (buyer) follows

an exponential distribution with rate θ (γ). Let Nsr and Nbr be two independent unit-rate

Poisson processes, which are independent of Ns and Nb. Then we have the following evolution

equation for X(t): For t ≥ 0,

X(t) = X(0) +Ns(t)−Nb(t)−Nsr

(
θ

∫ t

0

X+(s)ds

)
+Nbr

(
γ

∫ t

0

X−(s)ds

)
. (2.2.1)

where X(0) denotes the initial number of sellers or buyers in the system, which is assumed

to be independent of Ns, Nb, Nsr and Nbr.

8



2.3 Special Case: Poisson Arrivals

When the arrival processes are Poisson, it is easy to see that {X(t), t ≥ 0} is a birth and

death process on Z with birth parameters λi = α + i−γ and death parameters µi = β + i+θ

for i ∈ Z. Using the standard theory (see Kulkarni [22]), we see that this birth and death

process is:

• positive recurrent, if θ > 0 and γ > 0;

• null recurrent, if θ = γ = 0 and α = β;

• transient, if θ = γ = 0 and α 6= β.

In the analysis, we assume θ > 0 and γ > 0. Therefore, this CTMC has a unique limiting

distribution. Let {πi, i ∈ Z} denote the limiting distribution of X. Using the standard

theory of birth and death processes we see that the limiting distribution is given by:

πi =
αi

i∏
j=1

(β + jθ)

π0, i = 1, 2, · · · (2.3.1)

π−i =
βi

i∏
j=1

(α + jγ)

π0, i = 1, 2, · · · (2.3.2)

π0 =

1 +
∞∑
i=1

αi

i∏
j=1

(β + jθ)

+
∞∑
i=1

βi

i∏
j=1

(α + jγ)


−1

. (2.3.3)

9



Now we consider the first two moments of X(t). Define

m(t) = E(X(t)),

m+(t) = E(X+(t)),

m−(t) = E(X−(t)),

s(t) = E(X(t)2),

s+(t) = E(X+(t)2),

s−(t) = E(X−(t)2).

Clearly, m(t) = m+(t) −m−(t) and s(t) = s+(t) + s−(t). We also note that in general

m+(t) 6= m+(t), m−(t) 6= m−(t), and so |m(t)| 6= m+(t) + m−(t). The next theorem gives

our main result in this section.

Theorem 2.3.1. Assume that X(0) has finite first two moments. Then the moment func-

tions m(t) and s(t) satisfy the following differential equations. For t ≥ 0,

dm(t)

dt
= (α− β)− θm+(t) + γm−(t), (2.3.4)

and

ds(t)

dt
= −2θs+(t)− 2γs−(t) + (2α− 2β + θ)m+(t) + (−2α+ 2β + γ)m−(t) +α+ β, (2.3.5)

with initial conditions m(0) = E(X(0)) and s(0) = E(X(0)2).

Proof. We first consider m(t) = E(X(t)). Taking expectation of equation (2.2.1), we get

m(t) = m(0) + αt− βt− θ
∫ t

0

m+(s)ds+ γ

∫ t

0

m−(s)ds.

Taking derivative on both sides of above equation we get equation (2.3.4).

10



Next we consider the second moment of X(t). Using the infinitesimal analysis, for a small

h > 0, we get,

X(t+ h)2 =


(X(t) + 1)2 , w.p. (α + γX−(t))h+ o(h)

X(t)2, w.p. (1− α− γX−(t)− β − θX+(t))h+ o(h)

(X(t)− 1)2 , w.p. (β + θX+(t))h+ o(h).

Therefore,

E(X(t+ h)2|X(t)) = X(t)2 + 2X(t)
(
α− β − θX+(t) + γX−(t)

)
h

+
(
α + β + θX+(t) + γX−(t)

)
h+ o(h).

Since X(t) = X+(t)−X−(t), we have

E(X(t+ h)2|X(t)) = X(t)2 − 2θX+(t)2h− 2γX−(t)2h+ (2α− 2β + θ)X+(t)h

+(−2α + 2β + γ)X−(t)h+ αh+ βh+ o(h).

Taking expectation on both sides of above equation, we get

s(t+ h)− s(t)
h

= −2θs+(t)− 2γs−(t) + (2α− 2β + θ)m+(t)

+(−2α + 2β + γ)m−(t) + α + β +
o(h)

h
.

Taking limit h→ 0, the equation (2.3.5) follows. �

Remark 2.3.1. If θ = γ, we can further simplify (2.3.4) as follows:

dm(t)

dt
= (α− β)− θm(t), and m(0) = E(X(0)) (2.3.6)

which immediately yields

m(t) =

(
m(0)− α− β

θ

)
e−θt +

α− β
θ

. (2.3.7)

11



Also (2.3.5) can be simplified and we have that

ds(t)

dt
= −2θs(t) + (2α− 2β)m(t) + θ (m+(t) +m−(t)) + α + β

≥ −2θs(t) + (2α− 2β)m(t) + θ|m(t)|+ α + β.

Consider the following ODE

ds̃(t)

dt
= −2θs̃(t) + (2α− 2β)m(t) + θ|m(t)|+ α + β, and s̃(0) = s(0). (2.3.8)

We have that

s(t) ≥ s̃(t), t ∈ [0,∞). (2.3.9)

Using (2.4.16) to solve the ODE in (2.3.8) and, we have that

lim
t→∞

s(t) ≥
(
α− β
θ

)2

+
max{α, β}

θ
. (2.3.10)

�

In the following proposition, we study the first moment function m(t) when θ 6= γ. We

provide a feasible region for the stationary first moment.

Proposition 2.3.1.

(i) When α ≥ β and θ < γ, we have

α− β
θ
≤ lim inf

t→∞
m(t) ≤ lim sup

t→∞
m(t) ≤ min

{
α− β
θ

+
(γ − θ)β

θγ
,
α− β
γ

+
(γ − θ)α

θγ

}
.

(ii) When α ≥ β and θ > γ, we have

max

{
α− β
θ

+
(γ − θ)β

θγ
,
α− β
γ

+
(γ − θ)α

θγ

}
≤ lim inf

t→∞
m(t) ≤ lim sup

t→∞
m(t) ≤ α− β

θ
.

(iii) When α < β and θ < γ, we have

α− β
γ
≤ lim inf

t→∞
m(t) ≤ lim sup

t→∞
m(t) ≤ min

{
α− β
θ

+
(γ − θ)β

θγ
,
α− β
γ

+
(γ − θ)α

θγ

}
.

12



(iv) When α < β and θ > γ, we have

max

{
α− β
θ

+
(γ − θ)β

θγ
,
α− β
γ

+
(γ − θ)α

θγ

}
≤ lim inf

t→∞
m(t) ≤ lim sup

t→∞
m(t) ≤ α− β

γ
.

Proof. We first show (i) and (iii). We note that

m′(t) = α− β − θm+(t) + γm−(t)

= α− β − θm(t) + (γ − θ)m−(t)

≥ α− β − θm(t).

Consider the following ODE

m̃′(t) = α− β − θm̃(t)

with initial distribution m̃(0) = m(0). Then we have

lim inf
t→∞

m(t) ≥ lim
t→∞

m̃(t) =
α− β
θ

. (2.3.11)

We next observe that m−(t) can be bounded above by the expected queue length in an

M/M/∞ queue with arrival rate β and service rate γ. Hence

m−(t) ≤ m−(0)e−γt +
β

γ
(1− e−γt),

and so

m′(t) ≤ α− β − θm(t) + (γ − θ)m−(0)e−γt +
(γ − θ)β

γ
(1− e−γt).

Consider now the ODE

m̌′(t) = α− β − θm̌(t) + (γ − θ)m−(0)e−γt +
(γ − θ)β

γ
(1− e−γt)

with initial condition m̌(0) = m(0). Thus we have

lim sup
t→∞

m(t) ≤ lim
t→∞

m̌(t) =
α− β
θ

+
(γ − θ)β

θγ
. (2.3.12)

13



We note that there is an alternative estimate for m(t). In fact, we have that

m′(t) = α− β − γm(t) + (γ − θ)m+(t) ≥ α− β − γm+(t),

and

m′(t) = α−β−γm(t)+(γ−θ)m+(t) ≤ α−β−γm(t)+(γ−θ)m+(0)e−θt+
(γ − θ)α

θ
(1−e−θt).

Thus we have

α− β
γ
≤ lim inf

t→∞
m(t) ≤ lim sup

t→∞
m(t) ≤ α− β

γ
+

(γ − θ)α
θγ

. (2.3.13)

Combining (2.3.11) - (2.3.13), we show (i) and (iii). The results in (ii) and (iv) follow

similarly. �

Remark 2.3.2. In Proposition 2.3.1, if

|α− β| � max

{
|γ − θ|β

γ
,
|γ − θ|α

θ

}
, (2.3.14)

then when α ≥ β (see (i) and (ii)),

lim
t→∞

m(t) ≈ α− β
θ

,

and when α < β (see (iii) and (iv)),

lim
t→∞

m(t) ≈ α− β
γ

.

�

2.4 Fluid and Diffusion Approximations

In this section we establish fluid and diffusion approximations for the double-ended queue

under appropriate conditions (see Assumptions 2.4.1 and 2.4.2). To describe the asymptotic
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region where such an approximation is valid, we consider a sequence of double-ended queues

indexed by n ∈ N. For the n-th system, all the notation introduced in Section 4.2 is carried

forward except that we append a superscript n to all quantities to indicate the dependence

of parameters, random variables, and stochastic processes on n. In particular, on the space

(Ωn,Fn, P n, {Fnt }t≥0), {Un(k) : k ∈ N} and {V n(k) : k ∈ N} are the interarrival times,

Nn
s and Nn

b are the arrival processes, θn and γn are the reneging rates, and Nn
sr and Nn

br

are the unit-rate Poisson processes used to formulate the reneging processes. Also 1/αn, σn

and 1/βn, ςn are the means and standard deviations for the inter-arrival times of sellers and

buyers, respectively. The expectation operator with respect to P n will be denoted by En,

but frequently we will suppress n from the notation. We further assume the following strict

positivity and uniform integrability on {Un(1) : n ∈ N} and {V n(1) : n ∈ N}.

Pn(Un(1) > 0) = P(V n(1) > 0) = 1 for all n ∈ N. (2.4.1)

{(Un(1))2 : n ∈ N} and {(V n(1))2 : n ∈ N} are uniformly integrable. (2.4.2)

Finally, the queue length process Xn can be described as follows:

For t ≥ 0,

Xn(t) = Xn(0)+Nn
s (t)−Nn

b (t)−Nn
sr

(
θn
∫ t

0

Xn,+(s)ds

)
+Nn

br

(
γn
∫ t

0

Xn,−(s)ds

)
. (2.4.3)

The following assumption describes the asymptotic regime of the parameters.

Assumption 2.4.1.

(i) There exist α, β, σ, ς ∈ (0,∞) such that

αn → α, βn → β, σn → σ, ςn → ς.

(ii) For θ, γ ∈ (0,∞), we have that

nθn → θ, nγn → γ.

15



2.4.1 Fluid approximation

We begin by defining the fluid scaled processes. Loosely speaking, we accelerate time by

factor n and scale down the queue size by the same factor n. More precisely, for t ≥ 0, define

X̄n(t) =
Xn(nt)

n
, N̄n

s (t) =
Nn
s (nt)

n
, N̄n

b (t) =
Nn
b (nt)

n
, N̄n

sr(t) =
Nn
sr(nt)

n
, N̄n

br(t) =
Nn
br(nt)

n
.

(2.4.4)

Recall that for a stochastic process {Y (t), t ≥ 0},

‖Y ‖t = sup
0≤u≤t

|Y (u)| , t ∈ [0,∞).

We first establish an asymptotic limit of X̄n as n → ∞ in Theorem 2.4.1. The solution of

the fluid limit equation is then given in Proposition 2.4.1.

Theorem 2.4.1. Assume that for some x0 ∈ R, E|X̄n(0) − x0| → 0 as n → ∞, and

Assumption 2.4.1 holds. Then we have that for t ∈ [0,∞),

E
(
‖X̄n − x‖t

)
→ 0, as n→∞, (2.4.5)

where x is the solution of the following integral equation

x(t) = x0 + (α− β)t+

∫ t

0

(
−θx+(s) + γx−(s)

)
ds. (2.4.6)

Proof. We note from (2.4.3) that for t ≥ 0,

X̄n(t) = X̄n(0) + N̄n
s (t)− N̄n

b (t)− N̄n
sr

(
nθn

∫ t

0

X̄n,+(s)ds

)
+ N̄n

br

(
nγn

∫ t

0

X̄n,−(s)ds

)
.

For t ∈ [0,∞), let Nn(t) = Nn
sr(t) + Nn

br(t) and On(t) = |N̄n
s (t) − αnt − N̄n

b (t) + βnt|.

Then we have that

|X̄n(t)| ≤ |X̄n(t)− (N̄n
s (t)− αnt− N̄n

b (t) + βnt)|+On(t)

≤ |X̄n(0)|+ |αn − βn|t+On(t) + n−1Nn

(
n2(γn + θn)

∫ t

0

|X̄n(u)|du
)
.
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Define for t ∈ [0,∞),

Y n(t) = |X̄n(0)|+ |αn − βn|t+On(t) + n−1Nn

(
n2(γn + θn)

∫ t

0

Y n(s)ds

)
.

Then

|X̄n(t)| ≤ Y n(t), t ∈ [0,∞).

Noting that Nn, On and X̄n(0) are mutually independent, we see that

Mn(t) := Y n(t)− X̄n(0)− |αn − βn|t−On(t)− 2n(γn + θn)

∫ t

0

Y n(s)ds

is a {Fnt } martingale. Using Ito’s formula, we have that

(Y n(t)−On(t)) exp{−2n(γn + θn)t} = |x̄n(0)|+
∫ t

0

exp{−2n(γn + θn)s}dMn(s)

+

∫ t

0

2n(γn + θn) exp{−2n(γn + θn)s}On(s)ds+ |αn − βn|
∫ t

0

exp{−2n(γn + θn)s}ds,

and so (
Y n(t) +

|αn − βn|
2n(γn + θn)

)
exp{−2n(γn + θn)t} −

(
|X̄n(0)|+ |αn − βn|

2n(γn + θn)

)
=

∫ t

0

exp{−2n(γn + θn)s}dOn(s) +

∫ t

0

exp{−2n(γn + θn)s}dMn(s). (2.4.7)

We observe that from the functional law of large numbers for renewal processes, On ⇒ 0

as n→∞, and from the continuous mapping theorem, ‖On‖ ⇒ 0 as n→∞. For t ∈ [0,∞),

we have the following claim:

{N̄n
s (t) : n ∈ N} and {N̄n

b (t) : n ∈ N} are uniformly integrable.

{‖On‖t : n ∈ N} is uniformly integrable.

(2.4.8)

(We show the claim at the end of this proof.) Thus we conclude that for T ∈ [0,∞),

E
(

sup
0≤t≤T

On(t)

)
→ 0, as n→∞. (2.4.9)
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We next note that from (2.4.7) and (2.4.9), for any t ∈ [0,∞),

E(Y n(t))→
(
x0 +

|α− β|
2(γ + θ)

)
exp{2(γ + θ)t} − |α− β|

2(γ + θ)
, as n→∞. (2.4.10)

From Doob’s inequality and (2.4.10), for any T ∈ [0,∞),

E
(

sup
0≤t≤T

∣∣∣∣∫ t

0

exp{−2n(γn + θn)s}dMn(s)

∣∣∣∣)2

≤ 4E
(∫ T

0

exp{−2n(γn + θn)s}dMn(s)

)2

= 4E
(∫ T

0

exp{−4n(γn + θn)s}d[Mn,Mn]s

)
≤ 4E([Mn,Mn]T )

= 4n−2E
(
Nn

(
n2(γn + θn)

∫ T

0

Y n(s)ds

))
= 4n−1(nγn + nθn)

∫ T

0

E(Y n(s))ds

→ 0, as n→∞. (2.4.11)

Now from (2.4.7), (2.4.9), and (2.4.11), for any T ∈ [0,∞),

E
(

sup
0≤t≤T

∣∣∣∣Y n(t)−
[(
x0 +

|α− β|
2(γ + θ)

)
exp{2(γ + θ)t} − |α− β|

2(γ + θ)

]∣∣∣∣)
≤ E

(
sup

0≤t≤T

∣∣∣∣Y n(t)−
[(
X̄n(0) +

|αn − βn|
2n(γn + θn)

)
exp{2n(γn + θn)t} − |αn − βn|

2n(γn + θn)

]∣∣∣∣)+ o(1)

≤ exp{2n(γn + θn)T}E
(

sup
0≤t≤T

∫ t

0

exp{−2n(γn + θn)s}dOn(s)

)
+ exp{2n(γn + θn)T}E

(
sup

0≤t≤T

∣∣∣∣∫ t

0

exp{−2n(γn + θn)u}dMn(u)

∣∣∣∣)+ o(1)

→ 0, as n→∞. (2.4.12)
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We next observe that

|X̄n(t)− x(t)|

≤ |X̄n(0)− x0|+ |N̄n
s (t)− αnt− N̄n

b (s) + βnt|

+

∣∣∣∣N̄n
sr

(
nθn

∫ t

0

X̄n,+(s)ds

)
− nθn

∫ t

0

X̄n,+(s)ds

∣∣∣∣
+

∣∣∣∣N̄n
br

(
nγn

∫ t

0

X̄n,−(s)ds

)
− nγn

∫ t

0

X̄n,−(s)ds

∣∣∣∣
+

∣∣∣∣nθn ∫ t

0

X̄n,+(s)ds− θ
∫ t

0

X̄n,+(s)ds

∣∣∣∣+

∣∣∣∣nγn ∫ t

0

X̄n,−(s)ds− γ
∫ t

0

X̄n,−(s)ds

∣∣∣∣
+

∣∣∣∣θ ∫ t

0

X̄n,+(s)ds− θ
∫ t

0

x+(s)ds

∣∣∣∣+

∣∣∣∣γ ∫ t

0

X̄n,−(s)ds− γ
∫ t

0

x−(s)ds

∣∣∣∣
≤ |X̄n(0)− x0|+On(t)

+

∣∣∣∣N̄n
sr

(
nθn

∫ t

0

X̄n,+(s)ds

)
− nθn

∫ t

0

X̄n,+(s)ds

∣∣∣∣
+

∣∣∣∣N̄n
br

(
nγn

∫ t

0

X̄n,−(s)ds

)
− nγn

∫ t

0

X̄n,−(s)ds

∣∣∣∣
+ (|nθn − θ|+ |nγn − γ|)

∫ t

0

Y n(s)ds

+ (θ + γ)

∫ t

0

∣∣X̄n(s)− x(s)
∣∣ ds.

Gronwall’s inequality yields that

E
(

sup
0≤t≤T

|X̄n(t)− x(t)|
)
≤ E

(
|X̄n(0)− x0|+ sup

0≤t≤T
On(t)

+ sup
0≤t≤T

∣∣∣∣N̄n
sr

(
nθn

∫ t

0

X̄n,+(s)ds

)
− nθn

∫ t

0

X̄n,+(s)ds

∣∣∣∣
+ sup

0≤t≤T

∣∣∣∣N̄n
br

(
nγn

∫ t

0

X̄n,−(s)ds

)
− nγn

∫ t

0

X̄n,−(s)ds

∣∣∣∣
+ (|nθn − θ|+ |nγn − γ|)

∫ T

0

Y n(s)ds

)
e(θ+γ)T .

(2.4.13)

Let τn(t) =
∫ t

0
Y n(s)ds, and then from (2.4.12), for any T ∈ [0,∞),

E
(

sup
0≤t≤T

∣∣∣∣τn(t)−
[(
x0 +

|α− β|
2(γ + θ)

)
exp{2(γ + θ)t} − 1

2(γ + θ)
− |α− β|

2(γ + θ)

]
t

∣∣∣∣)→ 0.
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We then note that

E
(

sup
0≤t≤T

∣∣∣∣N̄n
sr

(
nθn

∫ t

0

X̄n,+(s)ds

)
− nθn

∫ t

0

X̄n,+(s)ds

∣∣∣∣) ≤ E

(
sup

0≤t≤nθnτn(T )

∣∣N̄n
sr (t)− t

∣∣) .
For t ∈ [0,∞), let N̄n,c

sr (t) = N̄n
sr(t) − t. Using functional law of large numbers for Poisson

processes, we have that N̄n,c
sr ⇒ 0 as n → ∞. Now from continuous mapping theorem, we

have that ‖N̄n
sr‖ ⇒ 0 as n→∞. Noting that nθnτn converges to a finite limit in probability

as n → ∞, and using the random change of time theorem (see Section 3.14 in Billingsley

[3]), we have that

‖N̄n,c
sr ‖nθnτn ⇒ 0, as n→∞.

Finally, we show the uniform integrability of ‖N̄n,c
sr ‖nθnτn(T ) for each fixed T ∈ [0,∞). In

fact, we have that for T ∈ [0,∞),

E(‖N̄n,c
sr ‖nθnτn(T ))

2 = E

(
sup

0≤t≤nθnτn(T )

∣∣N̄n
sr (t)− t

∣∣)2

≤ 2E
(
N̄n
sr (nθnτn(T ))

)2
+ 2E(nθnτn(T ))2

≤ 2n−2E
(
Nn

(
n2(θn + γn)

∫ T

0

Y n(s)ds

)
− n2(θn + γn)

∫ T

0

Y n(s)ds

)2

+ 2[(nθn)2 + (nθn + nγn)2]E(τn(T ))2

= 2E(Mn(T ))2 + 2[(nθn)2 + (nθn + nγn)2]E(τn(T ))2

= 2E([Mn,Mn]T ) + 2[(nθn)2 + (nθn + nγn)2]E(τn(T ))2 <∞,

uniformly on n ∈ N. Thus we have that for T ∈ [0,∞),

E

(
sup

0≤t≤nθnτn(T )

∣∣N̄n
sr (t)− t

∣∣) = E(‖N̄n,c
sr ‖nθnτn(T ))→ 0, as n→∞,

and so

E
(

sup
0≤t≤T

∣∣∣∣N̄n
sr

(
nθn

∫ t

0

X̄n,+(s)ds

)
− nθn

∫ t

0

X̄n,+(s)ds

∣∣∣∣)→ 0, as n→∞. (2.4.14)
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Similarly, we have that

E
(

sup
0≤t≤T

∣∣∣∣N̄n
br

(
nθn

∫ t

0

X̄n,−(s)ds

)
− nγn

∫ t

0

X̄n,−(s)ds

∣∣∣∣)→ 0, as n→∞. (2.4.15)

Applying (2.4.9), (2.4.14), (2.4.15), and the convergence nγn → γ, nθn → θ to (2.4.13),

(2.4.5) follows immediately. We now show the claim (2.4.8). We first note from Lemma 4.2

in Budhiraja and Ghosh [5], there exist ε, δ ∈ (0, 1) such that

inf
n∈N

P(Un(1) > δ) > ε. (2.4.16)

Fix t ∈ (0,∞). Following the proof of Theorem 1.1 in Sigman [33], define new interarrival

times which are given as follows: For i ∈ N,

Ũn(i) = δ1{Un(i)>δ}.

We observe that the new arrivals can only occur at the deterministic times {δk : k ∈ N∪{0}}.

Let Ck denote the number of arrivals at time δk. Then {Ck : k ∈ N} are i.i.d. random

variables with geometric distribution with success probability pn = P(Un(1) > δ). Defining

the new renewal process Ñn
s by using the new interarrival times {Ũn(i) : i ∈ N}, we then

note that for t ∈ [0,∞),

Nn
s (t) ≤ Ñn

s (t) ≤
[t/δ]∑
k=1

Ck.

Finally, we have that for x ∈ [0,∞),

E(N̄n
s (t))2 ≤ n−2E

[nt/δ]∑
k=1

Ck

2

= n−2Var

[nt/δ]∑
k=1

Ck

+ n−2

E

[nt/δ]∑
k=1

Ck

2

= n−2[nt/δ]
1− pn

(pn)2
+ n−2([nt/δ])2

(
1− pn

pn

)2

<∞,

uniformly on n ∈ N on noting that infn p
n ≥ ε > 0. This shows {N̄n

s (t) : n ∈ N} is

uniformly integrable. Similarly, we have {N̄n
b (t) : n ∈ N} is uniformly integrable. The claim

follows. �
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Proposition 2.4.1. Consider the integral equation in (2.4.6).

(i) If α ≥ β and x0 ≥ 0, then

x(t) =

(
x0 −

α− β
θ

)
e−θt +

α− β
θ

, t ∈ [0,∞).

(ii) If α ≥ β and x0 < 0, then

x(t) =


(
x0 − α−β

γ

)
e−γt + α−β

γ
, t ∈ [0, t1],

α−β
θ

(
1− e−θ(t−t1)

)
, t ∈ [t1,∞),

where

t1 = γ−1 log

(
α− β − γx0

α− β

)
.

(iii) If α < β and x0 ≤ 0, then

x(t) =

(
x0 −

α− β
γ

)
e−γt +

α− β
γ

, t ∈ [0,∞).

(iv) If α < β and x0 > 0, then

x(t) =


(
x0 − α−β

θ

)
e−θt + α−β

θ
, t ∈ [0, t2],

α−β
γ

(
1− e−γ(t−t2)

)
, t ∈ [t2,∞),

where

t2 = θ−1 log

(
α− β − θx0

α− β

)
.

Proof. We first show (i) and (ii). Assume α ≥ β. We consider the following three situations.

(a) Let x0 > 0. Define τ1 = inf{t ≥ 0 : x(t) ≤ 0}. Then for t ∈ [0, τ1), we have x(t) ≥ 0, and

so

x(t) = x0 + (α− β)t− θ
∫ t

0

x(s)ds. (2.4.17)
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Solving the above equation, we have for t ∈ [0, τ1),

x(t) =

(
x0 −

α− β
θ

)
e−θt +

α− β
θ

. (2.4.18)

If τ1 <∞, then x(τ1) = limt↑τ1 x(t) > 0, which contradicts the definition of τ1. Thus τ1 =∞,

and so equation (2.4.18) holds for all t ∈ [0,∞).

(b) Let x0 = 0. We first assume α > β and note that

x′(0) = α− β − θx+
0 + γx−0 = α− β > 0.

So there exists τ2 > 0 such that x(t) > 0 for t ∈ (0, τ2]. Define x̃(t) = x(t + τ2), t ∈ [0,∞).

Then we have for t ∈ [0,∞),

x̃(t) = x̃(0) + (α− β)t+

∫ t

0

−θx̃+(s) + γx̃−(s)ds.

Noting that x̃(0) = x(τ2) > 0, and using the result in Part (a), we obtain that x̃(t) > 0 for

all t ∈ (0,∞). Thus x(t) ≥ 0 for all t ∈ [0,∞), and so equations (2.4.17) and (2.4.18) hold

for all t ∈ [0,∞). If α = β, then

x(t) = 0 for all t ∈ [0,∞). (2.4.19)

Otherwise, if (2.4.19) fails, then there exists 0 < t1 < t2 < ∞ such that x(t1) = 0 and

x(s) > 0 (or x(s) < 0) for all s ∈ (t1, t2]. Without loss of generality, we assume x(s) > 0 for

s ∈ (t1, t2]. Then for x ∈ (t1, t2],

x(s) = x(t1)− θ
∫ s

t1

x(u)du = −θ
∫ s

t1

x(u)du = 0,

which is a contradiction.
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(c) Let x0 < 0. We note that

x′(0) = α− β − θx+
0 + γx−0 = α− β − γx0 > 0.

Let τ3 = inf{t ≥ 0 : x(t) ≥ 0}. Then for t ∈ [0, τ3],

x(t) = x0 + (α− β)t− γ
∫ t

0

x(s)ds,

and so

x(t) =

(
x0 −

α− β
γ

)
e−γt +

α− β
γ

. (2.4.20)

From the fact that x(τ3) = 0, we have

τ3 = γ−1 log

(
(α− β)− γx0

α− β

)
∈ (0,∞).

Define x̂(t) = x(t+ τ3), t ∈ [0,∞). We have for t ∈ [0,∞),

x̂(t) = x̂(0) + (α− β)t+

∫ t

0

(
−θx̂+(s) + γx̂−(s)

)
ds.

Noting that x̂(0) = x(τ3) = 0, and using the result in Part (b), we know that x̂(t) ≥ 0 for

all t ∈ [0,∞). Hence x(t) ≥ 0 for all x ∈ [τ3,∞), and equations (2.4.17) and (2.4.18) hold

for t ∈ [τ3,∞). Combining this with (2.4.20), we obtain that

x(t) =


(
x0 − α−β

γ

)
e−γt + α−β

γ
, t ∈ [0, τ3],

α−β
θ

(1− e−γt) , t ∈ [τ3,∞).

At last, letting y(t) = −x(t) and using the results in (i) and (ii), the results in (iii) and

(iv) follow immediately. �

Remark 2.4.1. We note that when θ = γ, the fluid equation is the same as the ODE for

m(t) in Section 2.3 (see (2.3.6)). However, when θ 6= γ, noting that m+(t) 6= m+(t) and
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m−(t) 6= m−(t) in general, the fluid equation doesn’t match the ODE for m(t). Nevertheless,

we note that

lim
t→∞

x(t) =


α−β
θ
, α ≥ β,

α−β
γ
, α < β,

and hence, under the condition (2.3.14), limt→∞ x(t) ≈ limt→∞m(t). �

2.4.2 Diffusion approximation

In this subsection, we consider the diffusion approximation and define the diffusion scaled

processes. We accelerate time by the same factor n and scale down the queue size by factor

√
n. To be precise, for t ≥ 0, define

X̂n(t) =
Xn(nt)√

n
, N̂n

s (t) =
Nn
s (nt)− nαnt√

n
, N̂n

b (t) =
Nn
b (nt)− nβnt√

n
,

N̂n
sr(t) =

Nn
sr(nt)− nt√

n
, N̂n

br(t) =
Nn
br(nt)− nt√

n
.

(2.4.21)

We next introduce the following “heavy traffic” condition on parameters αn and βn. Roughly

speaking, in the heavy traffic regime, the arrival processes have the same arrival rate.

Assumption 2.4.2. For some c ∈ R,

√
n(αn − βn)→ c, as n→∞.

We note that under Assumptions 2.4.1 and 2.4.2, α = β.

We now state our main results for the diffusion approximation. Define a diffusion process

Z as follows. For a given random variable Z(0) with law ν, and a standard Brownian motion

W , let Z be the unique solution to the following stochastic integral equation

Z(t) = Z(0) + aW (t) + ct− θ
∫ t

0

Z+(u)du+ γ

∫ t

0

Z−(u)du, (2.4.22)
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where

a =
√
α3σ2 + β3ς2. (2.4.23)

The existence and uniqueness of Z is guaranteed by the following lemma.

Lemma 2.4.1 (Reed and Ward [30]). Let φ : D([0,∞),R) → D([0,∞),R) be Lipschitz

continuous. Then for any given w ∈ D([0,∞),R), there exists a unique x ∈ D([0,∞),R)

that satisfies the integral

x(t) = w(t) +

∫ t

0

φ(x)(u)du,

and x(0) = w(0). Moreover, define the mapping Mφ : D([0,∞),R) → D([0,∞),R) by

Mφ(w) = x, and then Mφ is Lipschitz continuous.

Theorem 2.4.2. Assume that X̂n(0) converges weakly to a probability measure ν, E(|X̄n(0)|)→

0, and Assumptions 2.4.1 and 2.4.2 hold. Then X̂n ⇒ Z, where Z is defined by (2.4.22).

Proof. We first note that, by functional central limit theorem for renewal processes (see

Theorem 14.6 in Billingsley [3]),

N̂n
s ⇒ Ws, N̂

n
b ⇒ Wb, (2.4.24)

where Ws and Wb are independent Brownian motions with zero drifts and variances α3σ2

and β3ς2, respectively. We also note that N̂n
sr and N̂n

br converge weakly to standard Brownian

motions from functional central limit theorem for unit Poisson process. Further noting from

Theorem 2.4.1 and Proposition 2.4.1 (when α = β and x0 = 0) that X̄n ⇒ 0, and using the

random change of time theorem (see Section 3.14 in Billingsley [3]), we obtain that

N̂n
sr

(
nθn

∫ ·
0

X̄n,+(u)du

)
⇒ 0,

N̂n
br

(
nγn

∫ ·
0

X̄n,−(u)du

)
⇒ 0.

(2.4.25)
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Now define for t ≥ 0,

Ŵ n(t) = N̂n
s (t)− N̂n

b (t)− N̂n
sr

(
nθn

∫ t

0

X̄n,+(u)du

)
+ N̂n

br

(
nγn

∫ t

0

X̄n,−(u)du

)
.

Combining (2.4.24), (2.4.25), and Assumption 2.4.1(ii), we have Ŵ n ⇒ aW , where W is

a standard Brownian motion, and a is as in Equation 2.4.23. Furthermore, there exists a

random variable Z(0) with law ν such that (X̂n(0), Ŵ n) ⇒ (Z(0), aW ). By Skorohod rep-

resentation theorem, without loss of generality, we assume that (X̂n(0), Ŵ n) and (Z(0),W )

are defined on the same probability space and (X̂n(0), Ŵ n)→ (Z(0),W ) almost surely and

uniformly on compact sets of [0,∞). Define

Z(t) = Z(0) + aW (t) + ct− θ
∫ t

0

Z+(s)ds+ γ

∫ t

0

Z−(s)ds, t ≥ 0.

From Lemma 2.4.1, Z is well-defined. Also note that

X̂n(t) = X̂n(0) + Ŵ n(t) +
√
n(αn − βn)t− nθn

∫ t

0

X̂n,+(s)ds+ nγn
∫ t

0

X̂n,−(s)ds, t ≥ 0.

We then have that for t ≥ 0,

‖X̂n − Z‖t ≤ |X̂n(0)− Z(0)|+ ‖Ŵ n −W‖t + (nθn + nγn + θ + γ)

∫ t

0

‖X̂n − Z‖sds.

By Gronwall’s inequality,

‖X̂n − Z‖t ≤
(
|X̂n(0)− Z(0)|+ ‖Ŵ n −W‖t

)
e(nθn+nγn+θ+γ)t.

Using continuous mapping theorem, we have

‖Ŵ n −W‖t → 0, almost surely.

Noting that nθn + nγn + θ + γ → 2θ + 2γ, we obtain that

‖X̂n − Z‖t → 0, almost surely.

The result follows immediately. �
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When θ = γ, we derive the first and second moments of Z(t).

Proposition 2.4.2. Consider the stochastic integral equation in (2.4.22), and assume θ = γ.

Then for t ∈ [0,∞),

E(Z(t)) =
(
E(Z(0))− c

θ

)
e−θt +

c

θ
, (2.4.26)

and

E(Z(t)2) =

(
E(Z(0)2)− 2c

θ

(
E(Z(0))− c

θ

)
−
( c
θ

)2

− a2

2θ

)
e−2θt

+
2c

θ

(
E(Z(0))− c

θ

)
e−θt +

( c
θ

)2

+
a2

2θ
.

(2.4.27)

Proof. We first note that

E(Z(t)) = E(Z(0)) + ct− θ
∫ t

0

E(Z(u))du.

Thus we have

E(Z(t)) =
(
E(Z(0))− c

θ

)
e−θt +

c

θ
, t ∈ [0,∞). (2.4.28)

Using the integration by parts for stochastic integrals (see Corollary 2 in Chaper II.6 in

Protter [29]), we have

Z(t)2 = [Z,Z]t + 2

∫ t

0

Z(s)dZ(s),

where [Z,Z] is the quadratic variation process for Z, and [Z,Z]t = Z(0)2 + a2t. Thus we

have

E(Z(t)2) = E(Z(0)2) + a2t+ 2c

∫ t

0

E(Z(s))ds− 2θ

∫ t

0

E(Z(s)2)ds.

Let v(t) = E(Z(t)2). From (2.4.28), we have the following ODE with initial condition v(0) =

E(Z(0)2).

dv(t)

dt
= a2 + 2c

(
E(Z(0))− c

θ

)
e−θt +

2c2

θ
− 2θv(t).

Solving this ODE, we have for t ∈ [0,∞),

v(t) =

(
v(0)− 2c

θ

(
E(Z(0))− c

θ

)
− c2

θ2
− a2

2θ

)
e−2θt +

2c

θ

(
E(Z(0))− c

θ

)
e−θt

+
c2

θ2
+
a2

2θ
.
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Remark 2.4.2. We observe that when θ = γ,

lim
t→∞

E(Z(t)) =
c

θ

lim
t→∞

E(Z(t)2) =
( c
θ

)2

+
a2

2θ
.

(2.4.29)

Noting that under heavy traffic condition, θ = limn→∞ nθ
n and c = limn→∞

√
n(αn − βn),

we have that for large enough n ∈ N,

lim
t→∞

E(Xn(nt)) ≈ lim
t→∞

E(
√
nZ(t)) ≈ αn − βn

θn
,

lim
t→∞

E(Xn(nt))2 ≈ lim
t→∞

E
(√

nZ(t)
)2 ≈

(
αn − βn

θn

)2

+
(αn)3(σn)2 + (βn)3(ςn)2

2θn
.

In the special case of Poisson arrivals, we have for large enough n ∈ N,

lim
t→∞

E(Xn(nt))2 ≈
(
αn − βn

θn

)2

+
αn + βn

2θn
≈
(
αn − βn

θn

)2

+
max{αn, βn}

2θn
,

which matches the lower bound for s(t) in Section 2.3 (see (2.3.10)). �

When θ 6= γ, the exact moments of Z(t) become intractable. Thus we consider the

limiting distribution of the process Z, and compute the stationary moments. We observe

that Z is a unique solution of the following SDE

dZ(t) = adW (t) +
(
c− θZ+(t) + γZ−(t)

)
dt. (2.4.30)

Theorem 2.4.3. Let a be as in Equation 2.4.23 and denote by φ(·; ξ, η) and Φ(·; ξ, η) the

density and distribution function of N(ξ, η). Then the density of stationary distribution of

the diffusion process satisfying (2.4.30) is given by

ψ(x) =


C√
θ

exp
{

c2

θa2

}
φ
(
x; c

θ
, a

2

2θ

)
, x ≥ 0,

C√
γ

exp
{

c2

γa2

}
φ
(
x; c

γ
, a

2

2γ

)
, x < 0,

(2.4.31)
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where C is given by

C =
1

1√
θ

exp
{
c2

θa2

} (
1− Φ

(
0; c

θ
, a

2

2θ

))
+ 1√

γ
exp

{
c2

γa2

}
Φ
(

0; c
γ
, a

2

2γ

) . (2.4.32)

Proof. We follow Section 5 of Chapter 15 in Karlin and Taylor [17] to construct a stationary

density. Denote by µ(x) the infinitesimal drift parameter c− θx+ + γx−. We first note that

an indefinite integral of 2µ(x)
a2

is 2c
a2
x− θ

a2
x21{x ≥ 0} − γ

a2
x21{x < 0}. Define for x ∈ R,

s(x) = exp

{
2c

a2
x− θ

a2
x21{x ≥ 0} − γ

a2
x21{x < 0}

}
.

We define a density function as follows:

ψ(x) = C̃s(x)

=


C̃ exp

{
2c
a2
x− θ

a2
x2
}
, x ≥ 0

C̃ exp
{

2c
a2
x− γ

a2
x2
}
, x < 0

=


C√
θ

exp
{

c2

θa2

}
φ
(
x; c

θ
, a

2

2θ

)
, x ≥ 0

C√
γ

exp
{

c2

γa2

}
φ
(
x; c

γ
, a

2

2γ

)
, x < 0,

where

C = a
√
πC̃ =

1

1√
θ

exp
{
c2

θa2

} (
1− Φ

(
0; c

θ
, a

2

2θ

))
+ 1√

γ
exp

{
c2

γa2

}
Φ
(

0; c
γ
, a

2

2γ

) .
�

In the following, we calculate the first two moment of the stationary distribution of Z.

First, note that if X ∼ N(ξ, η), the density of truncated normal random variable on (x1, x2)

is given by φ(x;ξ,η)
Φ(x2;ξ,η)−Φ(x1;ξ,η)

. Let X1 be a truncated N( c
θ
, a

2

2θ
) random variable on (0,+∞),

and X2 be a truncated N( c
γ
, a

2

2γ
) random variable on (−∞, 0). Let V be the random variable
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with distribution ψ of Equation 2.4.31. Then V can be written as a mixture of two truncated

Normal random variables as follows:

V =

 X1 w.p. d1,

X2 w.p. d2,

where

d1 =
C√
θ

exp

{
c2

θa2

}(
1− Φ

(
0;
c

θ
,
a2

2θ

))
, (2.4.33)

d2 =
C
√
γ

exp

{
c2

γa2

}
Φ

(
0;
c

γ
,
a2

2γ

)
. (2.4.34)

Now, the first and second moments of the truncated Normals are given by

E(X1) =
c

θ
+

a√
2θ

φ
(
− c
a

√
2
θ
; 0, 1

)
1− Φ

(
− c
a

√
2
θ
; 0, 1

) ,
E(X2) =

c

γ
− a√

2γ

φ
(
− c
a

√
2
γ
; 0, 1

)
Φ
(
− c
a

√
2
γ
; 0, 1

) ,
E(X2

1 ) =
( c
θ

)2

+
a2

2θ
+

√
2

2

ac

θ
√
θ

φ
(
− c
a

√
2
θ
; 0, 1

)
1− Φ

(
− c
a

√
2
θ
; 0, 1

) ,
E(X2

2 ) =

(
c

γ

)2

+
a2

2γ
−
√

2

2

ac

γ
√
γ

φ
(
− c
a

√
2
γ
; 0, 1

)
Φ
(
− c
a

√
2
γ
; 0, 1

) .
Hence the first and second moments of V are given by

E(V ) = d1E(X1) + d2E(X2), (2.4.35)

and

E(V 2) = d1E(X2
1 ) + d2E(X2

2 ), (2.4.36)

where d1 and d2 is given by equation (2.4.33) and (2.4.34).
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Remark 2.4.3. In the above theorem, when θ = γ,

ψ(x) = φ

(
x;
c

θ
,
a2

2θ

)
,

and so the first and second moments E(V ) and E(V 2) are the same as the limits in (2.4.29).

�

2.5 Numerical Example

In this section, we use simulations to evaluate the performance of the Poisson and the

diffusion approximation under different arrival processes. We first note that the diffusion

limit Z satisfies the stochastic integral equation given by (see (2.4.22))

Z(t) = Z(0) + aW (t) + ct− θ
∫ t

0

Z+(u)du+ γ

∫ t

0

Z−(u)du,

where W (t) is a standard Brownian Motion. Hence, using (2.4.21), we get for large N ∈ N,

approximately,

XN(Nt)√
N

=
XN(0)√

N
+ aW (t) + ct− θ

∫ t

0

XN,+(Nu)√
N

du+ γ

∫ t

0

XN,−(Nu)√
N

du.

Letting s = Nt, we have approximately,

XN(s) = XN(0) + aW (s) +
c√
N
s− θ

N

∫ s

0

XN,+(v)dv +
γ

N

∫ s

0

XN,−(v)dv.

Using Assumptions 2.4.1 and 2.4.2, we get approximately,

XN(s) = XN(0) +

√
(αN)3(σN)2 + (βN)3(ςN)2W (s) +

(
αN − βN

)
s

− θN
∫ s

0

XN,+(v)dv + γn
∫ s

0

XN,−(v)dv.

Therefore, if we have a double-ended queueing system with parameters α, β, σ, ς, θ and

γ, the dynamics of the queue length process {X(t), t ≥ 0} can be approximated by an

asymmetric Ornstein- Uhlenbeck process

X(t) = X(0) + aW (t) + (α− β) t− θ
∫ t

0

X+(v)dv + γ

∫ t

0

X−(v)dv, t ≥ 0, (2.5.1)
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or by the stochastic differential equation (SDE)

dX(t) = adW (t) +
(
(α− β)− θX+(t) + γX−(t)

)
dt, t ≥ 0. (2.5.2)

We now consider a double-ended queue length process {X(t), t ≥ 0} with the buyer

inter-arrival time distribution Fs(·) and seller inter-arrival time distribution Fb(·). Let ms,

mb, sds and sdb be the mean and standard deviation of the inter-arrival time for sellers and

buyers. We consider the following inter-arrival time distributions:

• Exponential: Fs(x) = 1− e−αx, Fb(x) = 1− e−βx, ms = 1
α

, mb = 1
β
, sds = 1

α
, sdb = 1

β

• Uniform: Fs(x) = αx
2

(x ∈ [0, 2
α

]), Fb(x) = βx
2

(x ∈ [0, 2
β
]), ms = 1

α
, mb = 1

β
, sds = 1√

3α
,

sdb = 1√
3β

• Erlang(2): Fs(x) = 1 − e−2αx − 2αxe−2αx, Fb(x) = 1 − e−2βx − 2βxe−2βx, ms = 1
α

,

mb = 1
β
, sds = 1√

2α
, sdb = 1√

2β

• Hyper-exponential: Fs(x) = 1
3
(1− e− 1

2
αx) + 2

3
(1− e−2αx), Fb(x) = 1

3
(1− e− 1

2
βx) + 2

3
(1−

e−2βx), ms = 1
α

, mb = 1
β
, sds =

√
2
α

, sdb =
√

2
β

Note that the means of inter-arrival time of the above distributions are the same, while

their standard deviations are different, with the following ordering: Hyper-exponential >

Exponential > Erlang > Uniform.

We consider the following values for (α, β) = (1, 1), (1, 1.5) and (1, 2). We choose

the following reneging rates (θ, γ) = (α, β), 0.1(α, β) and 0.01(α, β). For example, when

(θ, γ) = 0.1(α, β), the seller’s (buyer’s) expected reneging time is 10 times the buyer’s

(seller’s) expected inter-arrival time. Thus we consider a total of 4 × 3 × 3 = 36 differ-

ent parameter settings.
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In each parameter setting, we use simulation, Poisson approximation, and diffusion ap-

proximation (which will be made precise below) to estimate the following performance mea-

sures:

πi = lim
t→∞

Pr{X(t) = i}, −1000 ≤ i ≤ 1000 (2.5.3)

L1 = lim
t→∞

E(X(t)) (2.5.4)

L2 = lim
t→∞

E(X(t)2). (2.5.5)

Simulation. We compute the performance measure by usingN replications of the simulation

using Matlab. Each replication consists of simulating the system for 0 ≤ t ≤ T and the

estimates are computed by using the sample paths over t ∈ [τ, T ], where τ < T is a given

warmup period. Let Xk(t) be the state of the system at time t in the k-th replication,

k = 1, 2, · · · , N , 0 ≤ t ≤ T . Using these sample paths, we compute

πsi =
1

N

N∑
k=1

1

T − τ

T∫
τ

1{Xk(t)=i}dt, −1000 ≤ i ≤ 1000.

Using these we compute the following simulation estimates of the first and second moments

of the queue-length:

Ls1 =
1000∑

i=−1000

iπs
i
, (2.5.6)

Ls2 =
1000∑

i=−1000

i2πs
i
. (2.5.7)

Poisson approximation. In this approximation we replace the renewal arrival processes

by Poisson arrival processes with the same arrival rates. Clearly, this approximation is exact

in the exponential case. From equations (3.3.2) to (3.3.3), we have:

πpi =
αi

i∏
j=1

(β + jθ)

π0, i = 1, 2, · · · , 1000
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πp−i =
βi

i∏
j=1

(α + jγ)

π0, i = 1, 2, · · · , 1000

πp0 =

1 +
1000∑
i=1

αi

i∏
j=1

(β + jθ)

+
1000∑
i=1

βi

i∏
j=1

(α + jγ)


−1

.

Let Lp1 and Lp2 be the Poisson approximation of L1 and L2 respectively. Using πpi we compute

Lp1 =
1000∑

i=−1000

iπp
i
, (2.5.8)

Lp2 =
1000∑

i=−1000

i2πp
i
. (2.5.9)

We compute the relative error of the above moments to the ones from simulation method.

For example, the relative error of Lp1 to Ls1 is given by (Lp1 − Ls1)/Ls1 × 100%.

Diffusion approximation. As the second method, we use diffusion approximation to

compute these performance measures. We know that the stationary density function of

the diffusion approximation of the queue-length process is given by equation (2.4.31). In

addition, we directly compute the first moment Ld1 and second moment Ld2 by using equations

(2.4.35) and (2.4.36). We also compute the relative errors of the moments to the ones from

simulation method.

The comparisons of limiting density are shown in Figure 2.2-3.4. In the figures, we com-

pare the density graphs derived from the simulation method and the two approximation

methods. When using simulation method, we evaluate the performance measures using the

parameter (N, τ, T ) = (400, 1000, 4000) and obtain the 90% confidence interval. The com-

parisons of L1 and L2 are shown in Tables 2.1-2.8. In the columns of Lp1 and Lp2, we evaluate

the performance measures by Poisson approximation method, and obtain the relative error

of each performance measure to the one from simulation method. In the columns of Ld1 and
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Ld2, we obtain the performance measures by diffusion approximation method, and also obtain

the relative error of each performance measure to the one from simulation method.

(a) (α, β, θ, γ) = (1, 1, 1, 1) (b) (α, β, θ, γ) = (1, 1, 0.1, 0.1) (c) (α, β, θ, γ) = (1, 1, 0.01, 0.01)

(a) (α, β, θ, γ) = (1, 1.5, 1, 1.5) (b) (α, β, θ, γ) = (1, 1.5, 0.1, 0.15) (c) (α, β, θ, γ) = (1, 1.5, 0.01, 0.015)

(a) (α, β, θ, γ) = (1, 2, 1, 2) (b) (α, β, θ, γ) = (1, 2, 0.1, 0.2) (c) (α, β, θ, γ) = (1, 2, 0.01, 0.02)

Figure 2.2: Density functions by simulation method, Poisson approximation and diffusion
approximation, when inter-arrival times follow exponential distribution
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(a) (α, β, θ, γ) = (1, 1, 1, 1) (b) (α, β, θ, γ) = (1, 1, 0.1, 0.1) (c) (α, β, θ, γ) = (1, 1, 0.01, 0.01)

(a) (α, β, θ, γ) = (1, 1.5, 1, 1.5) (b) (α, β, θ, γ) = (1, 1.5, 0.1, 0.15) (c) (α, β, θ, γ) = (1, 1.5, 0.01, 0.015)

(a) (α, β, θ, γ) = (1, 2, 1, 2) (b) (α, β, θ, γ) = (1, 2, 0.1, 0.2) (c) (α, β, θ, γ) = (1, 2, 0.01, 0.02)

Figure 2.3: Density functions by simulation method, Poisson approximation and diffusion
approximation, when inter-arrival times follow uniform distribution
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(a) (α, β, θ, γ) = (1, 1, 1, 1) (b) (α, β, θ, γ) = (1, 1, 0.1, 0.1) (c) (α, β, θ, γ) = (1, 1, 0.01, 0.01)

(a) (α, β, θ, γ) = (1, 1.5, 1, 1.5) (b) (α, β, θ, γ) = (1, 1.5, 0.1, 0.15) (c) (α, β, θ, γ) = (1, 1.5, 0.01, 0.015)

(a) (α, β, θ, γ) = (1, 2, 1, 2) (b) (α, β, θ, γ) = (1, 2, 0.1, 0.2) (c) (α, β, θ, γ) = (1, 2, 0.01, 0.02)

Figure 2.4: Density functions by simulation method, Poisson approximation and diffusion
approximation, when inter-arrival times follow Erlang distribution
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(a) (α, β, θ, γ) = (1, 1, 1, 1) (b) (α, β, θ, γ) = (1, 1, 0.1, 0.1) (c) (α, β, θ, γ) = (1, 1, 0.01, 0.01)

(a) (α, β, θ, γ) = (1, 1.5, 1, 1.5) (b) (α, β, θ, γ) = (1, 1.5, 0.1, 0.15) (c) (α, β, θ, γ) = (1, 1.5, 0.01, 0.015)

(a) (α, β, θ, γ) = (1, 2, 1, 2) (b) (α, β, θ, γ) = (1, 2, 0.1, 0.2) (c) (α, β, θ, γ) = (1, 2, 0.01, 0.02)

Figure 2.5: Density functions by simulation method, Poisson approximation and diffusion
approximation, when inter-arrival times follow hyper-exponential distribution
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(α, β) (θ, γ) Ls1 Lp1 Ld1

(1, 1)

(1, 1) 0.0001 0 0
±0.0024 NA NA

(0.1, 0.1) -0.0178 0 0
±0.0243 NA NA

(0.01, 0.01) 0.1234 0 0
±0.2084 NA NA

(1, 1.5)

(1, 1.5) -0.2352 -0.2343 -0.2375
±0.0022 -0.41% 0.98%

(0.1, 0.15) -3.248 -3.2532 -3.2625
±0.0192 0.16% 0.44%

(0.01, 0.015) -33.1485 -33.3332 -33.3332
±0.1754 0.56% 0.56%

(1, 2)

(1, 2) -0.3876 -0.3858 -0.3878
±0.002 -0.47% 0.04%

(0.1, 0.2) -4.9779 -4.9719 -4.9776
±0.0157 -0.12% -0.01%

(0.01, 0.02) -49.9609 -50 -50
±0.142 0.08% 0.08%

Table 2.1: The first moment of the stationary distribution when the arrival process is a
Poisson process

(α, β) (θ, γ) Ls1 Lp1 Ld1

(1, 1)

(1, 1) 0.0004 0 0
±0.0017 NA NA

(0.1, 0.1) -0.0009 0 0
±0.0141 NA NA

(0.01, 0.01) -0.1309 0 0
±0.1231 NA NA

(1, 1.5)

(1, 1.5) -0.2736 -0.2343 -0.2979
±0.0015 -14.39% 8.87%

(0.1, 0.15) -3.3315 -3.2532 -3.328
±0.0114 -2.35% -0.10%

(0.01, 0.015) -33.4634 -33.3332 -33.3333
±0.1132 -0.39% -0.39%

(1, 2)

(1, 2) -0.4375 -0.3858 -0.4714
±0.0013 -11.82% 7.76%

(0.1, 0.2) -4.9946 -4.9719 -4.9998
±0.0109 -0.45% 0.10%

(0.01, 0.02) -50.0716 -50 -50
±0.1036 -0.14% -0.14%

Table 2.2: The first moment of the stationary distribution when the inter-arrival times follow
Uniform distribution
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(α, β) (θ, γ) Ls1 Lp1 Ld1

(1, 1)

(1, 1) 0.0006 0 0
±0.0024 NA NA

(0.1, 0.1) -0.0113 0 0
±0.0186 NA NA

(0.01, 0.01) 0.0409 0 0
±0.1848 NA NA

(1, 1.5)

(1, 1.5) -0.2624 -0.2343 -0.2804
±0.002 -10.74% 6.84%

(0.1, 0.15) -3.2975 -3.2532 -3.3165
±0.0155 -1.34% 0.57%

(0.01, 0.015) -33.1629 -33.3332 -33.3333
±0.1613 0.51% 0.51%

(1, 2)

(1, 2) -0.4285 -0.3858 -0.4493
±0.0018 -9.96% 4.87%

(0.1, 0.2) -4.9832 -4.9719 -4.9983
±0.015 -0.23% 0.30%

(0.01, 0.02) -50.089 -50 -50
±0.1507 -0.18% -0.18%

Table 2.3: The first moment of the stationary distribution when the inter-arrival times follow
Erlang distribution

(α, β) (θ, γ) Ls1 Lp1 Ld1

(1, 1)

(1, 1) 0.0022 0 0
±0.0032 NA NA

(0.1, 0.1) -0.0169 0 0
±0.0321 NA NA

(0.01, 0.01) 0.016 0 0
±0.3177 NA NA

(1, 1.5)

(1, 1.5) -0.2039 -0.2343 -0.1735
±0.0028 14.89% -14.92%

(0.1, 0.15) -3.1406 -3.2532 -3.1368
±0.0271 3.59% -0.12%

(0.01, 0.015) -33.2392 -33.3332 -33.3261
±0.237 0.28% 0.26%

(1, 2)

(1, 2) -0.3383 -0.3858 -0.2866
±0.0026 14.04% -15.26%

(0.1, 0.2) -4.8819 -4.9719 -4.8822
±0.0214 1.84% 0.01%

(0.01, 0.02) -50.1134 -50 -50
±0.1959 -0.23% -0.23%

Table 2.4: The first moment of the stationary distribution when the inter-arrival times follow
hyper-exponential distribution
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(α, β) (θ, γ) Ls2 Lp2 Ld2

(1, 1)

(1, 1) 1.409 1.4104 1
±0.0042 0.10% -29.03%

(0.1, 0.1) 11.3894 11.3045 10
±0.0838 -0.74% -12.20%

(0.01, 0.01) 103.2893 104.0397 100
±2.2995 0.73% -3.18%

(1, 1.5)

(1, 1.5) 1.4354 1.4372 1.028
±0.0038 0.12% -28.38%

(0.1, 0.15) 21.2369 21.2498 19.4084
±0.1458 0.06% -8.61%

(0.01, 0.015) 1218.2624 1211.1069 1194.4415
±12.3607 -0.59% -1.96%

(1, 2)

(1, 2) 1.4828 1.4841 1.0755
±0.0036 0.09% -27.47%

(0.1, 0.2) 34.8606 34.956 32.4389
±0.1677 0.27% -6.95%

(0.01, 0.02) 2601.2009 2600 2575
±15.2948 -0.05% -1.01%

Table 2.5: The second moment of the stationary distribution when arrival process is a Poisson
process

(α, β) (θ, γ) Ls2 Lp2 Ld2

(1, 1)

(1, 1) 0.8254 1.4104 0.3333
±0.002 70.87% -59.62%

(0.1, 0.1) 4.3492 11.3045 3.3333
±0.0336 159.92% -23.36%

(0.01, 0.01) 34.6831 104.0397 33.3333
±0.7472 199.97% -3.89%

(1, 1.5)

(1, 1.5) 0.8961 1.4372 0.3993
±0.002 60.38% -55.45%

(0.1, 0.15) 15.775 21.2498 13.8778
±0.0952 34.71% -12.03%

(0.01, 0.015) 1148.5144 1211.1069 1138.8889
±7.7166 5.45% -0.84%

(1, 2)

(1, 2) 1.0102 1.4841 0.5019
±0.0021 46.91% -50.32%

(0.1, 0.2) 30.1933 34.956 27.4992
±0.1226 15.77% -8.92%

(0.01, 0.02) 2551.7944 2600 2525
±10.7995 1.89% -1.05%

Table 2.6: The second moment of the stationary distribution when the inter-arrival times
follow Uniform distribution
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(α, β) (θ, γ) Ls2 Lp2 Ld2

(1, 1)

(1, 1) 1.9852 1.4104 2
±0.0064 -28.95% 0.74%

(0.1, 0.1) 20.899 11.3045 20
±0.1485 -45.91% -4.30%

(0.01, 0.01) 201.652 104.0397 200
±4.4079 -48.41% -0.82%

(1, 1.5)

(1, 1.5) 1.9944 1.4372 2.0092
±0.0056 -27.94% 0.74%

(0.1, 0.15) 29.1292 21.2498 28.0112
±0.1894 -27.05% -3.84%

(0.01, 0.015) 1293.001 1211.1069 1277.5943
±16.5071 -6.33% -1.19%

(1, 2)

(1, 2) 2.0089 1.4841 2.0252
±0.0052 -26.12% 0.81%

(0.1, 0.2) 41.7095 34.956 39.8704
±0.2351 -16.19% -4.41%

(0.01, 0.02) 2684.7348 2600 2649.9986
±20.576 -3.16% -1.29%

Table 2.7: The second moment of the stationary distribution when the inter-arrival times
follow Erlang distribution

(α, β) (θ, γ) Ls2 Lp2 Ld2

(1, 1)

(1, 1) 1.9943 1.4104 2
±0.0063 -29.28% 0.29%

(0.1, 0.1) 20.8656 11.3045 20
±0.1625 -45.82% -4.15%

(0.01, 0.01) 205.774 104.0397 200
±4.7111 -49.44% -2.81%

(1, 1.5)

(1, 1.5) 1.9962 1.4372 2.0092
±0.0057 -28.01% 0.65%

(0.1, 0.15) 29.4329 21.2498 28.0112
±0.1921 -27.80% -4.83%

(0.01, 0.015) 1307.8225 1211.1069 1277.5943
±16.5066 -7.40% -2.31%

(1, 2)

(1, 2) 2.0048 1.4841 2.0252
±0.0048 -25.97% 1.02%

(0.1, 0.2) 41.5526 34.956 39.8704
±0.2282 -15.88% -4.05%

(0.01, 0.02) 2660.7665 2600 2649.9986
±20.4434 -2.28% -0.40%

Table 2.8: The second moment of the stationary distribution when the inter-arrival times
follow hyper-exponential distribution

From the numerical example, we find that the performance of the limiting behavior of
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diffusion approximation method improves when the reneging rate becomes smaller. Besides,

the variance of the inter-arrival time also affects the performance. From the four distributions

we have tried, we conclude that the larger variance results in better performance. The

Poisson approximation works well only in the exponential case, when it is in fact exact. In

most other cases, the diffusion approximation outperforms the Poisson approximation. This

implies that ignoring the variance in the inter-arrival time leads to significant errors.

When (α, β, θ, γ) = (1, 1.5, 0.01, 0.05) and (1, 2, 0.01, 0.02), we find that (α− β)/γ is -10

and -50, respectively. In this case Remark 3.2 is applicable. Using Equations (2.4.35) and

(2.4.36), we see that

Lp1 = Ld1 =
α− β
γ

,

and

Lp2 =

(
α− β
γ

)2

+
β

γ
,

and

Ld2 =

(
α− β
γ

)2

+
a2

2γ
.

The results about the first moment are shown in the tables 2.1 to 2.4 and those about

the second moment are shown in tables 2.5 to 2.8. Figures 2.2 to 3.4 show the limiting

distributions of the queue-length for the simulation, the Poisson approximation, and the

diffusion approximation. It is clear that the diffusion approximation outperforms the Poisson

approximation (except in the Exponential case, where the Poisson approximation is exact)

since it is better able to capture the effects of the variance. Furthermore, the diffusion

approximation improves as the reneging rates become small, since that brings the parameters

closer to the asymptotic region.

44



2.6 Extensions

We end this chapter with suggestions for three extensions.

1. In this chapter we have assumed that the patience times of the buyers and sellers are

exponentially distributed. It would be interesting to study the situation when the distribu-

tion is general. In this case {X(t), t ≥ 0} is no longer Markov. It would be interesting to see

if we can derive the diffusion approximation under this setting.

2. In this chapter we have assumed that the arrival processes of the buyers and sellers

are independent of the state of the system. It would be interesting to consider an extension

where the arrival processes are Poisson whose parameters depend on the state of the double-

ended queue. For example, the parameters could simply depend upon the sign of the X(t).

Thus we could capture the situation where the buyer arrival rate exceeds the seller arrival

rate when there are sellers waiting (its a buyers’ market), and the seller arrival rate exceeds

the buyer arrival rate when there are buyers waiting (its a sellers’ market). We think this

extension is doable, and the methods developed in this chapter will be useful in its study.

3. In stock market order book dynamics, the buyers and sellers have their own bid and

ask prices. Thus we can model the order book as a multi-dimensional double-ended queue.

It would be interesting to extend our analysis to such a model. However, this extension

promises to be hard, since the state-space of the multi-dimensional double-ended queue is

typically not convex.
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CHAPTER 3

Double-ended Queue with State-dependent Phase-type Arrival Process

3.1 Introduction

In this chapter we consider a double-ended queue with state-dependent phase-type arrival

process. In detail We model the combined arrival process of the buyers and sellers as a single

renewal process, with iid Phase-type(PH) inter-arrival times. An arrival from this common

stream may be a buyer or seller with given probabilities that depend on the state of the

queue. The buyers and seller may also depart without conducting a trade due to impatience.

We assume that the impatience times of the buyers and sellers are independent exponential

random variables. The form of this dependence will be made precise in the next section.

We also assume that there is a limited waiting space for the buyers and the sellers, and the

arrivals to the system are lost when it is full.

In section 3.2 we present the details of the model of the double-ended queue with arrivals

generated by a PH-renewal process and introduce the relevant notation. In Section 3.3 we

collect the results about the special case when the PH-renewal process is a Poisson process. In

Section 3.4 we derive the algorithm for the limiting distribution of the double-ended queue.

In section 3.5 we derive the explicit formula of limiting distribution for the two special

cases. In section 3.6 we study the numerical examples considering the inter-arrival time

follows Erlang distribution and Hyper-exponential distribution, derive several performance

measures and validate the algorithm using simulation. We also and make comments on the

possible extensions of the model in Section 3.7.



3.2 Model Formulation

Consider a trading market where the traders arrive at the queue according to a PH-

renewal processes. The inter-arrival times form a sequences of i.i.d. Phase-type random

variables {A(k) : k ∈ N}. Assume that A(1) follows a Phase-type distribution with param-

eters (p, T ) (see Chapter 2 section 2.2 from Neuts [25]). When a seller is matched with a

buyer (we say a trade occurs), they both leave the queue. The trading follows according

to first-come-first-served principle. If an arriving seller (buyer) cannot be matched with a

buyer (seller), he/she will stay in the queue and wait for the upcoming buyers (sellers). Thus

there cannot be non-zero number of buyers and sellers simultaneously in the queue. Also,

each seller (buyer) may leave the queue without trading because of impatience. The patience

time of each seller (buyer) follows an exponential distribution with rate θ (γ). The patience

times of the buyers and sellers are independent of each other. Thus queueing system forms

a double-ended queue as shown in Figure 3.1.

Figure 3.1: Double-ended Queue

LetX(t) be the length of the double-ended queue at time t (X(t) ∈ Z)
.
= {· · · ,−2,−1, 0, 1, 2, · · · }).

If X(t) > 0, there are X(t) sellers waiting in the queue, and if X(t) < 0, there are −X(t)

buyers waiting in the queue. An arriving trader is a buyer or a seller with state-dependent
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probabilities as given below:

Pr{Customer arriving at time t is a seller|X(t−) = n} =


α, if n > 0

β, if n < 0

η, if n = 0

Pr{Customer arriving at time t is a buyer|X(t−) = n} =


1− α, if n > 0

1− β, if n < 0

1− η, if n = 0

In practice, if X(t) > 0, we say the market state is a buyers’ market. In this case, the

buyers are more likely to come to queue, since they need not wait for sellers. On the contrary,

if X(t) < 0, we say the market state is a sellers’ market. In this case, the sellers are more

willing to come to the queue, since they need not wait for buyers. Therefore, we are likely

to have α < 0.5 and β > 0.5.

3.3 Special Case: Poisson Arrivals

When the arrival process is a Poisson process, the arrivals of sellers and buyers can be

considered as two independent Poisson processes (with state-dependent arrival rates) by

splitting the original arriving Poisson process. Thus it is obvious that {X(t), t ≥ 0} is a

birth and death process on Z. In this case, the queueing system forms a double-ended queue

as shown in Figure (3.2).

Assume the arrival process of the traders is Poisson with λ. Thus the birth rates λn

(n ∈ Z)and death rates µn (n ∈ Z)are given by:

λn =


αλ, n > 0

ηλ, n = 0

βλ− nγ, n < 0
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Figure 3.2: Double-ended Queue

µn =


(1− α)λ+ nθ, n > 0

(1− η)λ, n = 0

(1− β)λ, n < 0

Using the standard theory (see Kulkarni [22]), we see that this Birth and Death process

is:

• positive recurrent, if

θ > 0, γ > 0,

or θ = 0, γ > 0, α < 0.5,

or θ > 0, γ = 0, β > 0.5,

or θ = 0, γ = 0, α < 0.5, β > 0.5.

• null recurrent, if

θ = 0, γ > 0, α = 0.5,

or θ > 0, γ = 0, β = 0.5,

or θ = 0, γ = 0, α = β = 0.5.
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• transient, if

θ = 0, γ > 0, α > 0.5,

or θ > 0, γ = 0, β < 0.5,

or θ = 0, γ = 0, α > 0.5, β < 0.5.

In the analysis, we assume θ > 0 and γ > 0 for simplicity. Therefore, this birth and

death process is irreducible and positive recurrent and has a unique limiting distribution.

Let

πn = Pr
{

lim
t→∞

X(t) = n
}
, i ∈ Z.

Using the standard theory of birth and death processes we see that the limiting distribution

is given by:

πn =
ηαn−1λn

n∏
j=1

((1− α)λ+ jθ)
π0, n = 1, 2, · · · (3.3.1)

π−n =
(1− η)(1− β)n−1λn

n∏
j=1

(β + jγ)
π0, n = 1, 2, · · · (3.3.2)

π0 =

1 +
∞∑
n=1

ηαn−1λn

n∏
j=1

((1− α)λ+ jθ)
+
∞∑
n=1

(1− η)(1− β)n−1λi

n∏
j=1

(β + jγ)


−1

. (3.3.3)

3.4 PH-Renewal Arrival

In this section we consider the double-ended queue with a PH-Renewal arrival process

and finite capacity C, that is, there can be at most C buyers or sellers in the system at any

time. Any buyer (seller) arrivals when the system is full of buyers (sellers) are lost. We can

approximate the double-ended queue with unlimited capacity by a double-ended queue with

a sufficiently large finite capacity C.
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Suppose the inter-arrival times are iid with phase type distribution with parameters

(p, T ) of order K. Here T is an invertible K by K matrix such that (using e to denote a

K-dimensional column vector with all the entries equal to 1) T −Te

0 0


is an infinitesimal generator matrix of a CTMC with state space {1, 2, · · · , K + 1}, with

absorbing state K + 1. The vector p = [p1, p2, · · · , pK ] is a probability mass function. We

know that the mean inter-arrival time is −pT−1e.

Let X(t) be the number of traders in the system at time t, with the convention that

X(t) > 0 means that there are X(t) sellers in the system, while X(t) < 0 means that there

are −X(t) buyers in the system. Thus −C ≤ X(t) ≤ C for all t ≥ 0. Let Y (t) be the

phase of the arrival process at time t. That is {Y (t), t ≥ 0} is an irreducible continuous-

time Markov chain (CTMC) on state space {1, 2, · · · , K} with generator matrix T − Tep.

Although {X(t), t ≥ 0} is not a CTMC, the bivariate process {(X(t), Y (t)), t ≥ 0} is a

CTMC on the state space Ω = {(i, j) : −C ≤ i ≤ C, 1 ≤ j ≤ K}.

Borrowing notation from chapter 3 of Neuts(1981) [25], we define:

T 0 = −Te, T 00 = T 0e′, A0 = diag(p), A00 = ep.

Thus we have T 00A0 = T 0p.

Since {Y (t), t ≥ 0} is irreducible and jumps in {X(t), t ≥ 0} are ±1, {(X(t), Y (t)), t ≥ 0}

is irreducible. Furthermore, it has finite state space Ω, hence it has a unique stationary

distribution

πij = lim
t→∞

Pr{X(t) = i, Y (t) = j}, (i, j) ∈ Ω.

51



Let πi = [πi,1, πi,2, · · · , πi,K ] (−C ≤ i ≤ C). Following the analysis in Neuts [25], we first

introduce the following notation (−C ≤ i ≤ C):

Si =
(
iθI + (1− α)T 00A0

) (
(i− 1)θI − T − (i− 1)θA00 − (1− α)T 00A0

)−1
,(3.4.1)

Bi =
(
iγI + βT 00A0

) (
(i− 1)γI − T − (i− 1)γA00 − βT 00A0

)−1
, (3.4.2)

and

S̃i = SCSC−1 · · ·Si, (3.4.3)

B̃i = BCBC−1 · · ·Bi. (3.4.4)

In addition, we denote

Di = iγI + βT 00A0, −C ≤ i ≤ −1,

D0 = ηT 00A0,

Di = αT 00A0, 1 ≤ i ≤ C − 1,

E−C = T − CγI + (1− β)T 00A0,

Ei = T + iγI, −C + 1 ≤ i ≤ 0,

Ei = T − iθI, 1 ≤ i ≤ C − 1,

EC = T − CθI + αT 00A0,

Fi = (1− β)T 00A0, −C + 1 ≤ i ≤ −1,

F0 = (1− η)T 00A0,

Fi = iθI + (1− α)T 00A0, 1 ≤ i ≤ C.

Using this notation we see that the generator matrixQ of this Markov process {(X(t), Y (t)), t ≥
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0} is given by the following tridiagonal block matrix:

E−C D−C

F−C+1 E−C+1 D−C+1

. . . . . . . . .

FC−1 EC−1 DC−1

FC EC


.

Theorem 3.4.1. When the arrival process is a PH-renewal process, the limiting probability

vector πi (−C ≤ i ≤ C) are given by

πC = dsπ̃C , (3.4.5)

π−C = dbπ̃−C , (3.4.6)

πi = πCS̃i+1, 1 ≤ i ≤ C − 1, (3.4.7)

π−i = π−CB̃i+1, 1 ≤ i ≤ C − 1, (3.4.8)

π0 = −
(
π−1(γI + βT 00A0) + π1(θI + (1− α)T 00A0)

)
T−1, (3.4.9)

where π̃−C and π̃C satisfy

π̃−C(T − CγI + T 00A0 + CγA00) = 0, (3.4.10)

π̃C(T − CθI + T 00A0 + CθA00) = 0; (3.4.11)

and the scalar constants s, b and d are given by

s = ηπ̃−CB̃2(βT 00A0 + γA00)(1), (3.4.12)

b = (1− η)π̃CS̃2((1− α)T 00A0 + θA00)(1); (3.4.13)

d =

[
bπ̃−C(I +

C∑
i=1

B̃i)e+ sπ̃C(I +
C∑
i=1

S̃i)e

]−1

. (3.4.14)
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Proof. By using the generator matrix, the steady-state equations are given by

π−C(T − CγI + (1− β)T 00A0) + π−C+1((1− β)T 00A0) = 0, (3.4.15)

π−i−1((i+ 1)γI + βT 00A0) + π−i(T − kγI) + π−i+1((1− β)T 00A0) = 0, (2 ≤ i ≤ C − 1),

(3.4.16)

π−2(2γI + βT 00A0) + π−1(T − γI) + π0((1− η)T 00A0) = 0, (3.4.17)

π−1(γI + βT 00A0) + π0(T ) + π1(θI + (1− α)T 00A0) = 0, (3.4.18)

π0(ηT 00A0) + π1(T − θI) + π2(2θI + (1− α)T 00A0) = 0, (3.4.19)

πi−1(αT 00A0) + πi(T − jθI) + πi+1((i+ 1)θI + (1− α)T 00A0) = 0, (2 ≤ i ≤ C − 1),

(3.4.20)

πC−1(αT 00A0) + πC(T − CθI + αT 00A0) = 0. (3.4.21)

Multiply both sides of equation (3.4.15) by e, we get

π−C(βT 0 + Cγe) = π−C+1((1− β)T 0).

Applying this result in equation (3.4.17) when i = C − 1, we obtain

π−C+1(βT 0 + (C − 1)γe) = π−C+2((1− β)T 0).

Recursively, we have

π−i(βT
0 + iγe) = π−i+1((1− β)T 0), 2 ≤ i ≤ C. (3.4.22)

Similarly, we obtain

πi((1− α)T 0 + iθe) = πi−1(αT 0), 2 ≤ i ≤ C. (3.4.23)

Besides, using these recursive equations we have

π−1(βT 0 + γe) = π0((1− η)T 0), (3.4.24)

π1((1− α)T 0 + θe) = π0(ηT 0). (3.4.25)
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Multiply p on the right of equations (3.4.22) to (3.4.25), we have:

π−i(βT
00A0 + iγA00) = π−i+1((1− β)T 00A0), 2 ≤ i ≤ C, (3.4.26)

πi((1− α)T 00A0 + iθA00) = πi−1(αT 00A0), 2 ≤ i ≤ C, (3.4.27)

π−1(βT 00A0 + γA00) = π0((1− η)T 00A0), (3.4.28)

π1((1− α)T 00A0 + θA00) = π0(ηT 00A0). (3.4.29)

Substituting the above equations into the original steady state equations and simplifying,

we have

π−i−1

(
(i+ 1)γI + βT 00A0

)
+ π−i

(
T − iγI + βT 00A0 + iγA00

)
= 0, 1 ≤ i ≤ C − 1

πi+1

(
(i+ 1)θI + (1− α)T 00A0

)
+ πi

(
T − iθI + (1− α)T 00A0 + iθA00

)
= 0, 1 ≤ i ≤ C − 1.

Therefore,

π−i = π−i−1

(
(i+ 1)γI + βT 00A0

) (
iγI − T − βT 00A0 − iγA00

)−1
, 1 ≤ i ≤ C − 1

πi = πi+1

(
(i+ 1)θI + (1− α)T 00A0

) (
iθI − T − (1− α)T 00A0 − iθA00

)−1
, 1 ≤ i ≤ C − 1

With the notations defined in equations (3.4.2) to (3.4.3), we have the results for πi and

π−i in equations (3.4.7) and (3.4.8).

Substituting equation (3.4.26) and (3.4.27) when i = C into the equations (3.4.15) and

(3.4.21) respectively, we have

π−C(T − CγI + T 00A0 + CγA00) = 0,

πC(T − CθI + T 00A0 + CθA00) = 0.

Also the matrix T − CγI + T 00A0 + CγA00 and T − CθI + T 00A0 + CθA00 are stochastic,

in which the diagonal entries are negative and other entries are nonnegative, and the sum of

each row is equal to zero. Hence π−C = b̃π̃−C and πC = s̃π̃C , where b̃ and s̃ are constants.
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Since we have equations (3.4.24) and (3.4.25), we get

1

1− η
π−1(βT 00A0 + γA00) =

1

η
π1((1− α)T 00A0 + θA00).

Thus,

1

1− η
b̃π−CB̃2(βT 00A0 + γA00) =

1

η
s̃πCS̃2((1− α)T 00A0 + θA00).

Using the notations of s and b in equations (3.4.12) and (3.4.13), s̃ and b̃ are given by

s̃ = ds and b̃ = db, where d is a constant.

Finally, we determine d by normalization. From equation (3.4.18) and the normalization

equation (
−1∑

i=−C

πi + π0 +
C∑
i=1

πi

)
e = 1,

we have

d

[
bπ̃−C

(
I +

−1∑
i=−C

B̃i

)
+ sπ̃C

(
I +

C∑
i=1

S̃i

)]
e = 1.

Thus the equation (3.4.14) follows. �

Corollary 3.4.1. From the results of Theorem 3.4.1, the limiting distribution of {X(t), t ≥

0}, π̂i(−C ≤ i ≤ C), is given by

π̂i = lim
t→+∞

P{X(t) = i} = πie, −C ≤ i ≤ C. (3.4.30)

Proof. This is obvious from the definition of {(X(t), Y (t)), t ≥ 0} and πi. �

3.5 Special Case: Erlang and Hyper-exponential Arrivals

In this section, we consider the special case when the inter-arrival time of the PH-renewal

process follows an Erlang distribution or Hyper-exponential distribution, and obtain the

explicit expressions of π̃C and π̃−C as given in the following theorems:

56



Theorem 3.5.1. If the inter-arrival times follow an Erlang(k, kλ) distribution, π̃−C and π̃C

are given by the following equations:

π̃−C =

(
1,

kλ

kλ+ Cγ
,

(
kλ

kλ+ Cγ

)2

, · · · ,
(

kλ

kλ+ Cγ

)k)
, (3.5.1)

π̃C =

(
1,

kλ

kλ+ Cθ
,

(
kλ

kλ+ Cθ

)2

, · · · ,
(

kλ

kλ+ Cθ

)k)
. (3.5.2)

Proof: When inter-arrival time follows an Erlang(k, kλ) distribution, we have

T =



−kλ kλ

. . . . . .

−kλ kλ

−kλ


, T 0 =



0

...

0

kλ


, T 00 =



0 0 · · · 0

...
...

...

0 0 · · · 0

kλ kλ · · · kλ


, A0 =



1

0

...

0


, p =

(
1 0 · · · 0

)
, e =



1

1

...

1


, A00 = ep =



1 0 · · · 0

1 0 · · · 0

...
...

...

1 0 · · · 0


.

Therefore from the equation (3.4.10), we have

kλπ̃−C(1) = (kλ+ Cγ) π̃−C(2),

kλπ̃−C(2) = (kλ+ Cγ) π̃−C(3),

· · · · · ·

kλπ̃−C(k − 1) = (kλ+ Cγ) π̃−C(k),

−kλπ̃C(1) + Cγ

(
k−1∑
i=2

π̃C(i)

)
+ (Cγ + kλ) πC(k) = 0.

Thus we obtain an explicit solution for π−C from above equations, which is shown in

equation 3.5.1. Similarly we obtain an explicit solution for πC , which is shown in equation

3.5.2. �
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Theorem 3.5.2. If the inter-arrival times follow an Hyper-exponential distribution with

parameters (λ1, · · · , λk) and (p1, · · · , pk), π̃−C and π̃C are given by the following equations:

π̃−C =

(
p1

Cγ + λ1

,
p2

Cγ + λ2

, · · · , pk
Cγ + λk

)
, (3.5.3)

π̃C =

(
p1

Cθ + λ1

,
p2

Cθ + λ2

, · · · , pk
Cθ + λk

)
. (3.5.4)

Proof: When inter-arrival time follows an Hyper-exponential distribution with parame-

ters (λ1, · · · , λk) and (p1, · · · , pk) (
∑k

i=1 pk = 1), we have

T =



−λ1

−λ2

. . .

−λk


, T 0 =



λ1

λ2

...

λk


, T 00 =



λ1 λ1 · · · λ1

λ2 λ2 · · · λ2

...
...

...

λk kλk · · · λk


, A0 =



α1

α2

...

αk


, p =

(
α1 α2 · · · αk

)
, e =



1

1

...

1


, A00 = ep =



α1 α2 · · · αk

α1 α2 · · · αk
...

...
...

αk αk · · · αk


.

Therefore from the equation (3.4.10), we have

k∑
i=1

π̃−C(i) (Cγ + λi) p1 = π̃−C(1) (Cγ + λ1) ,

k∑
i=1

π̃−C(i) (Cγ + λi) p2 = π̃−C(2) (Cγ + λ2) ,

· · · · · ·
k∑
i=1

π̃−C(i) (Cγ + λi) pk = π̃−C(k) (Cγ + λk) .

Thus we obtain an explicit solution for π−C , which is given by equation 3.5.3. Similarly

we obtain an explicit solution for πC , which is shown in equation 3.5.4. �
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3.6 Numerical Example

In this section, we use simulations to test the performance of our algorithm. We consider

the following inter-arrival time distributions:

• Erlang(2, 2λ): F (x) = 1− e−2λx − 2λxe−2λx,

• Hyper-exponential with parameter (λ/2, 2λ; 1/3, 2/3): F (x) = 1
3
(1 − e−

1
2
λx) + 2

3
(1 −

e−2λx).

We want to capture the situation where the buyer arrival rate exceeds the seller arrival

rate when there are sellers waiting (its a buyers’ market), and the seller arrival rate exceeds

the buyer arrival rate when there are buyers waiting (its a sellers’ market). Therefore, we

choose α < 1
2

and β > 1
2
. Without loss of generality, we choose λ = 1.

We consider the following values for (α, β, η) = (0.1, 0.7, 0.5), (0.3, 0.6, 0.5) and (0.45, 0.55, 0.5).

We choose the following reneging rates (θ, γ) = λ(α, β), 0.1λ(α, β) and 0.01λ(α, β). Thus

when (θ, γ) = 0.1(α, β), the seller’s (buyer’s) expected reneging time is 10 times the buyer’s

(seller’s) expected inter-arrival time.

3.6.1 Limiting Probability Mass Function

We compare the limiting probability mass function (pmf) of X(t) derived from the sim-

ulation and our method. When applying simulation method, we compute the limiting pmf

of X(t) by using N replications of the simulation using Matlab. Each replication consists

of simulating the system for 0 ≤ t ≤ T and the limiting probabilities {πi} are computed by

using the sample paths over t ∈ [τ, T ], where τ < T is a given warmup period. Here we

choose i ∈ [−1000, 1000]. Since the range of this interval is large enough so that the capacity
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of the simulated queue can be considered to be infinity. Let Xk(t) be the state of the system

at time t in the k-th replication, k = 1, 2, · · · , N , 0 ≤ t ≤ T . Using these sample paths, we

compute

πsi =
1

N

N∑
k=1

1

T − τ

T∫
τ

1{Xk(t)=i}dt, −1000 ≤ i ≤ 1000.

We evaluate the limiting pmf using the parameter (N, τ, T ) = (400, 5000, 20000).

Note that our algorithm assume a finite capacity C for buyers and sellers. One can

approximate an infinite capacity (C =∞) queue by using a sufficient large C. Here we use

C = 20.

Next we use simulation to verify this approximation. The comparisons of limiting density

are shown in Figure 3.3 and 3.4. From these graphs, we observe that the pmf from our

algorithm is almost exact the same as the one from simulation.
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(a) (α, β, θ, γ) = (0.1, 0.7, 0.1, 0.7) (b) (α, β, θ, γ) = (0.1, 0.7, 0.01, 0.07) (c) (α, β, θ, γ) = (0.1, 0.7, 0.001, 0.007)

(a) (α, β, θ, γ) = (0.1, 0.7, 0.1, 0.7) (b) (α, β, θ, γ) = (0.1, 0.7, 0.01, 0.07) (c) (α, β, θ, γ) = (0.1, 0.7, 0.001, 0.007)

(a) (α, β, θ, γ) = (0.1, 0.7, 0.1, 0.7) (b) (α, β, θ, γ) = (0.1, 0.7, 0.01, 0.07) (c) (α, β, θ, γ) = (0.1, 0.7, 0.001, 0.007)

Figure 3.3: Limiting pmf functions by simulation method and our method, when inter-arrival
times follow Erlang distribution and η = 0.5
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(a) (α, β, θ, γ) = (0.1, 0.7, 0.1, 0.7) (b) (α, β, θ, γ) = (0.1, 0.7, 0.01, 0.07) (c) (α, β, θ, γ) = (0.1, 0.7, 0.001, 0.007)

(a) (α, β, θ, γ) = (0.1, 0.7, 0.1, 0.7) (b) (α, β, θ, γ) = (0.1, 0.7, 0.01, 0.07) (c) (α, β, θ, γ) = (0.1, 0.7, 0.001, 0.007)

(a) (α, β, θ, γ) = (0.1, 0.7, 0.1, 0.7) (b) (α, β, θ, γ) = (0.1, 0.7, 0.01, 0.07) (c) (α, β, θ, γ) = (0.1, 0.7, 0.001, 0.007)

Figure 3.4: Limiting pmf functions by simulation method and our method, when inter-arrival
times follow Hyper-exponential distribution and η = 0.5

3.6.2 Expected queue length

In this subsection, we test the performance of the expected queue length. More precisely,

we aim to find the queue length of sellers (Ls), queue length of buyers (Lb) and the total

queue length L, that is

Ls =
C∑
i=1

iπ̂i, Lb =
−1∑

i=−C

−iπ̂i, Ls =
C∑

i=−C

|i|π̂i.
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These performance measures are compared with the ones from simulation, shown in the

table 3.1-3.2. In the columns of Lss, L
s
b and Ls, we evaluate the the above performance

measures by simulation method, and obtain the 95% confidence interval. In the columns

Las , L
a
b and La, we obtain the performance measures by our method, and obtain the relative

error of each performance measure to the one from simulation method. From the table we

find that if the reneging rate is very small, the expected queue length largely depends on the

value of α and β. Thus if α is closer to 0.5, the expected queue length for sellers is larger.

On the other hand, if β is closer to 0.5, the expected queue length for buyers is larger. This

is true since the α(β) closer to 0.5 will result in a less frequent trades and a larger queue

length. Besides, we find that the expected queue length for Erlang inter-arrival is larger than

the one for the hyper-exponential arrival.

(α, β, η) (θ, γ) Lsb Lab Lss Las Ls La

(0.1, 0.7, 0.5)

(0.1, 0.7) 0.26 0.26 0.32 0.32 0.58 0.58
±0.00 0.09% ±0.00 0.00% ±0.00 0.01%

(0.01, 0.07) 0.58 0.58 0.27 0.27 0.84 0.84
±0.00 0.05% ±0.00 -0.04% ±0.00 -0.05%

(0.001, 0.007) 0.73 0.73 0.25 0.25 0.98 0.98
±0.00 0.02% ±0.00 0.15% ±0.00 -0.16%

(0.3, 0.6, 0.5)

(0.3, 0.6) 0.32 0.32 0.40 0.40 0.71 0.71
±0.00 -0.05% ±0.00 0.07% ±0.00 -0.02%

(0.03, 0.06) 0.84 0.84 0.49 0.49 1.34 1.33
±0.00 0.09% ±0.00 0.17% ±0.00 -0.2%

(0.003, 0.006) 1.39 1.39 0.47 0.47 1.87 1.86
±0.01 -0.03% ±0.00 -0.58% ±0.01 -0.61%

(0.45, 0.55, 0.5)

(0.45, 0.55) 0.36 0.36 0.43 0.43 0.80 0.80
±0.00 0.25% ±0.00 -0.15% ±0.00 0.02%

(0.045, 0.055) 0.93 0.94 1.08 1.07 2.01 2.01
±0.01 0.41% ±0.01 -0.67% ±0.01 0.08%

(0.0045, 0.0055) 1.83 1.82 1.95 1.93 3.78 3.76
±0.02 -0.35% ±0.03 -0.71% ±0.02 -0.64%

Table 3.1: Measures of queue length when the inter-arrival time follows the Erlang distribu-
tion
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(α, β, η) (θ, γ) Lsb Lab Lss Las Ls La

(0.1, 0.7, 0.5)

(0.1, 0.7) 0.22 0.22 0.29 0.29 0.51 0.51
±0.00 0.05% ±0.00 -0.17% ±0.00 0.01%

(0.01, 0.07) 0.56 0.56 0.26 0.26 0.82 0.82
±0.00 0.19% ±0.00 0.07% ±0.00 0.04%

(0.001, 0.007) 0.73 0.73 0.25 0.25 0.97 0.98
±0.00 0.00% ±0.00 0.27% ±0.00 0.11%

(0.3, 0.6, 0.5)

(0.3, 0.6) 0.28 0.28 0.34 0.34 0.63 0.63
±0.00 0.04% ±0.00 -0.08% ±0.00 0.00%

(0.03, 0.06) 0.83 0.82 0.48 0.48 1.30 1.30
±0.00 -0.10% ±0.00 -0.53% ±0.00 0.12%

(0.003, 0.006) 1.39 1.38 0.47 0.47 1.86 1.85
±0.01 -0.49% ±0.00 0.39% ±0.01 -0.19%

(0.45, 0.55, 0.5)

(0.45, 0.55) 0.32 0.32 0.39 0.39 0.71 0.71
±0.00 -0.17% ±0.00 -0.07% ±0.00 -0.07%

(0.045, 0.055) 0.92 0.92 1.06 1.06 1.98 1.98
±0.01 -0.46% ±0.01 -0.31% ±0.01 -0.27%

(0.0045, 0.0055) 1.82 1.82 1.94 1.93 3.79 3.75
±0.02 -0.46% ±0.03 -0.58% ±0.03 -1.11%

Table 3.2: Measures of queue length when the inter-arrival time follows the Hyper-
exponential distribution

3.6.3 Fraction of reneging

In this subsection, we test the performance of the fraction of sellers/buyers reneging from

the queue. Let the fraction of sellers reneging be fs and fraction of buyers reneging be fb

respectively. From our method, we have

fs =

∑c
i=1 π̂iiθ∑−1

i=−c π̂iβλ+ π̂0ηλ+
∑c

i=1 π̂iαλ

fb =

∑−1
i=−c π̂i(−i)γ∑−1

i=−c π̂i(1− β)λ+ π̂0(1− η)λ+
∑c

i=1 π̂i(1− α)λ
.

These performance measures are compared with the ones from simulation, shown in the

table 3.3-3.4. In the columns of f ss and f sb , we evaluate the the above performance measures

by simulation method, and obtain the 95% confidence interval. In the columns fas and fab ,

we obtain the performance measures by our method, and also obtain the relative error of
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each performance measure to the one from simulation method. From the table, we find that

when the reneging rate becomes smaller, the fraction of reneging will becomes smaller. The

fraction of reneging for Erlang inter-arrival is larger than the one for the hyper-exponential

arrival.

(α, β, η) (θ, γ) f sb fab f ss fas

(0.1, 0.7, 0.5)

(0.1, 0.7) 0.32 0.32 0.08 0.07
±0.00 0.63% ±0.00 -0.9%

(0.01, 0.07) 0.08 0.08 0.01 0.01
±0.00 0.06% ±0.00 -0.07%

(0.001, 0.007) 0.01 0.01 0.00 0.00
±0.00 0.76% ±0.00 -1.02%

(0.3, 0.6, 0.5)

(0.3, 0.6) 0.36 0.36 0.26 0.26
±0.00 0.06% ±0.00 0.45%

(0.03, 0.06) 0.10 0.10 0.03 0.03
±0.00 -0.13% ±0.00 0.09%

(0.003, 0.006) 0.02 0.02 0.00 0.00
±0.00 0.62% ±0 -0.19%

(0.45, 0.55, 0.5)

(0.45, 0.55) 0.4 0.4 0.39 0.39
±0.00 0.11% ±0.00 -0.02%

(0.045, 0.055) 0.10 0.10 0.10 0.10
±0.00 0.18% ±0.00 0.19%

(0.0045, 0.0055) 0.02 0.02 0.02 0.02
±0.00 0.29% ±0.00 -0.78%

Table 3.3: Fraction of reneging when the inter-arrival time follows the Erlang distribution
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(α, β, η) (θ, γ) f sb fab f ss fas

(0.1, 0.7, 0.5)

(0.1, 0.7) 0.28 0.28 0.07 0.07
±0.00 -0.62% ±0.00 0.81%

(0.01, 0.07) 0.08 0.07 0.01 0.01
±0.00 -0.42% ±0.00 0.39%

(0.001, 0.007) 0.01 0.01 0.00 0.00
±0.00 -0.04% ±0.00 3.32%

(0.3, 0.6, 0.5)

(0.3, 0.6) 0.32 0.32 0.22 0.22
±0.00 0.36% ±0.00 -0.36%

(0.03, 0.06) 0.10 0.10 0.03 0.03
±0.00 -0.27% ±0.00 -0.37%

(0.003, 0.006) 0.02 0.02 0.00 0.00
±0.00 1.06% ±0.00 -0.36%

(0.45, 0.55, 0.5)

(0.45, 0.55) 0.35 0.35 0.35 0.35
±0.00 0.02% ±0.00 -0.01%

(0.045, 0.055) 0.10 0.10 0.10 0.10
±0.00 -0.10% ±0.00 -0.18%

(0.0045, 0.0055) 0.02 0.02 0.02 0.02
±0.00 0.49% ±0.00 -0.55%

Table 3.4: Fraction of reneging when the inter-arrival time follows the Hyper-exponential
distribution

3.6.4 Expected waiting time

In this subsection, we test the performance of expected waiting time of sellers/buyers.

Let the expected waiting time of buyers and selelrs be wb and ws respectively. Applying

Little’s law, we have

wb =

∑−1
i=−C π̂i(−i)∑−1

i=−C π̂i(1− β)λ+ π̂0(1− η)λ+
∑C

i=1 π̂i(1− α)λ
,

ws =

∑C
i=1 π̂ii∑−1

i=−C π̂iβλ+ π̂0ηλ+
∑C

i=1 π̂iαλ
.

These performance measures are compared with the ones from simulation, shown in the

table 3.5-3.6. In the columns of wss and wsb , we evaluate the the above performance measures

by simulation method, and obtain the 95% confidence interval. In the columns was and wab ,

we obtain the performance measures by our method, and also obtain the relative error of
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each performance measure to the one from simulation method. From the tables, we find that

with the same arrival process, the smaller reneging rate results in a larger expected waiting

time. And the expected waiting time for the Erlang inter-arrival is larger than the one for

the hyper-exponential arrival.

(α, β, η) (θ, γ) wsb wab wss was

(0.1, 0.7, 0.5)

(0.1, 0.7) 0.45 0.45 0.75 0.75
±0.00 0.64% ±0.00 -0.88%

(0.01, 0.07) 1.11 1.11 0.55 0.55
±0.00 0.19% ±0.00 -0.34%

(0.001, 0.007) 1.45 1.46 0.50 0.50
±0.01 0.23% ±0.00 0.09%

(0.3, 0.6, 0.5)

(0.3, 0.6) 0.59 0.59 0.85 0.86
±0.00 0.01% ±0.00 0.24%

(0.03, 0.06) 1.63 1.63 1.02 1.02
±0.01 0.10% ±0.00 0.03%

(0.003, 0.006) 2.74 2.76 0.95 0.95
±0.02 0.55% ±0.01 -0.26%

(0.45, 0.55, 0.5)

(0.45, 0.55) 0.72 0.72 0.87 0.87
±0.00 0.16% ±0.00 -0.13%

(0.045, 0.055) 1.86 1.87 2.16 2.15
±0.01 0.35% ±0.01 -0.26%

(0.0045, 0.0055) 3.64 3.64 3.89 3.87
±0.05 -0.14% ±0.05 -0.35%

Table 3.5: Expected waiting time when the inter-arrival time follows the Erlang distribution
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(α, β, η) (θ, γ) wsb wab wss was

(0.1, 0.7, 0.5)

(0.1, 0.7) 0.40 0.40 0.66 0.67
±0.00 -0.66% ±0.00 0.72%

(0.01, 0.07) 1.08 1.07 0.55 0.55
±0.00 -0.40% ±0.00 0.49%

(0.001, 0.007) 1.46 1.45 0.50 0.50
±0.01 -0.44% ±0.00 -0.03%

(0.3, 0.6, 0.5)

(0.3, 0.6) 0.53 0.53 0.74 0.73
±0.00 0.17% ±0.00 -0.44%

(0.03, 0.06) 1.59 1.59 1.00 0.99
±0.01 -0.03% ±0.00 -0.22%

(0.003, 0.006) 2.75 2.75 0.94 0.95
±0.02 -0.02% ±0.01 0.10%

(0.45, 0.55, 0.5)

(0.45, 0.55) 0.64 0.64 0.77 0.78
±0.00 -0.22% ±0.00 0.22%

(0.045, 0.055) 1.84 1.84 2.13 2.12
±0.01 -0.07% ±0.01 -0.80%

(0.0045, 0.0055) 3.66 3.63 3.86 3.86
±0.05 -0.78% ±0.05 -0.05%

Table 3.6: Expected waiting time when the inter-arrival time follows the Hyper-exponential
distribution

3.7 Extensions

We end this chapter with suggestions for four extensions.

1. In this chapter we have assumed that the patience time of the traders follows an

exponential distribution. It may be interesting if the distribution is general. In this case

{X(t), t ≥ 0} is no longer Markov.

2. We have assumed that the arrival processes of the buyers and sellers are PH-renewal

process. It would be interesting to consider an extension where the inter-arrival time follows

an general distribution.

3. In this chapter we only consider the limiting behavior of the double-ended queueing

process. In order to consider the transient behavior, it would be interesting to derive the
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diffusion approximation to the system.

4. We only consider the double-ended queue with one dimension. It would be interesting

to extend our analysis to multidimensional queues.
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CHAPTER 4

A Stochastic Model of Order Books with Bouncing Geometric Brownian

Motions

4.1 Introduction

A trading system consists of two types of arrivals, namely, the “sellers” and “buyers”.

Each buyer and seller is interested in trading one unit of a security (such as a stock). Every

trader has his/her own trading price. The largest trading price of buyers is the market bid

price, while the smallest trading price of sellers is the market ask price. Because of the new

arrivals and reneging (that is, leaving the market without trading) of traders, the market bid

and ask prices can move upwards and downwards. When a market bid price reaches market

ask price, a trade occurs. Immediately after the trade the market bid price moves down the

the new largest bid price, while the market ask price moves up to the new smallest ask price.

In this chapter, we consider to use two independent geometric Brownian motions (GBM) to

describe the movement of market prices. From the model we study the inter-trading time

and the trading price, and obtain the explicit estimators of each parameter of our model.

Finally we derive a simple forecasting formula by applying this model.

In this chapter, we first formulate the trading system as a bouncing GBMs in section 4.2.

We also obtain a joint Laplace transform of inter-trading time and logarithmic increase of

trading price in this section. In section 4.3, we derive the estimators of the parameters of

the model. In section 4.4, we apply this model to real data and derive a simple forecasting

formula. The performance of the forecasting is validated through numerical examples. We



also and make comments on the possible extensions in section 4.5.

4.2 Model Formulation

In this section, the prices offered by sellers or buyers are assumed to be continuous,

taking values in [0,∞). Because trading occurs when the market ask price is matched with

the market bid price, we are only concerned about the dynamics of the market ask price and

market bid price. Let A(t) and B(t) be the market ask price and market bid price at time

t respectively (A(0) > B(0)). Until the market ask price is matched with the market bid

price, the market ask price can decrease because of the arrivals of new sellers with smaller

ask prices; it can also increase because of the reneging of the seller with current market ask

price (that is, the seller can leave without a trade). Similarly the market bid price can also

increase and decrease.

Let T1 be the first time the two processes meet:

T1 = min{t > 0 : A(t) = B(t)}. (4.2.1)

Thus we call (0, T1] as the first trading period. Let P1 be the first trading price, hence

P1 = A(T1) = B(T1).

After the trading occurs, the market ask price and the market bid price will separate so that

A(T1+) > B(T1+). Consequently, we define for k > 1:

Tk = min{t > Tk−1 : A(t) = B(t)},

Pk = A(Tk) = B(Tk).

Therefore, Tk is the kth trading time and Pk is the kth trading price. The dynamics of the

market ask price and the market bid price is shown in Fig (4.1).
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Figure 4.1: Dynamics of the ask price and the bid price

4.2.1 First trading period

Assume that {A(t), t ≥ 0} and {B(t), t ≥ 0} behave like two independent GBMs with

A(0) > B(0), until they meet for the first time at time T1 in equation (4.2.1). That is we

assume that, for t ∈ [0, T1],

A(t) = exp{a+ (µ̃a − σ2
a/2)t+ σaWa(t)},

B(t) = exp{b+ (µ̃b − σ2
b/2)t+ σbWb(t)},

where {Wa(t), t ≥ 0} and {Wb(t), t ≥ 0} are two independent standard Brownian motions,

and A(0) = ea and B(0) = eb are the initial market ask price and market bid price. We

assume that a > b, so that A(0) > B(0). We assume that µ̃a − σ2
a/2 < µ̃b − σ2

b/2 so that

T1 <∞ with probability 1. We aim to compute the joint Laplace transform of the bivariate

random variable (lnP1, T1). For convenience, we first denote

µa = µ̃a − σ2
a/2, µb = µ̃b − σ2

b/2

.

Theorem 4.2.1. Given A(0) > B(0), the joint Laplace transform of (lnP1, T1) are given by

E[exp(−s lnP1 − tT1)] = exp{θ1(s, t)a+ θ2(s, t)b}, (4.2.2)
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where θ1(s, t) and θ2(s, t) are given by

θ1(s, t) =
(µb − µa − sσ2

b )−
√

(µb − µa − sσ2
b )

2 − (σ2
a + σ2

b )(s
2σ2

b − 2t− 2sµb)

σ2
a + σ2

b

, (4.2.3)

θ2(s, t) = −s−
(µb − µa − sσ2

b )−
√

(µb − µa − sσ2
b )

2 − (σ2
a + σ2

b )(s
2σ2

b − 2t− 2sµb)

σ2
a + σ2

b

.(4.2.4)

Proof. Let

Ya(t) = exp{θ1(µat+ σaWa(t))− (θ1µa +
1

2
θ2

1σ
2
a)t},

Yb(t) = exp{θ2(µbt+ σbWb(t))− (θ2µb +
1

2
θ2

2σ
2
b )t},

where θ1 and θ2 are any real numbers. Therefore, {Ya(t), t ≥ 0} and {Yb(t), t ≥ 0} are two

independent martingales (see Karlin (1975)[18]), and T1 is a stopping time for the bivariate

martingale {(Ya(t), Yb(t)), t ≥ 0}. Because µa < µb and A(0) > B(0), Pr{T1 < +∞} = 1.

Hence we can apply the Optional Stopping Theorem, which yields

(E(Ya(T1)), E(Yb(T1))) = (E(Ya(0)), E(Yb(0))).

Now denote Y (t) = Ya(t)Yb(t), we obtain E(Y (T1)) = E(Y (0)). This yields

E

{
exp{(θ1 + θ2) lnP1 − (θ1µa +

1

2
θ2

1σ
2
a + θ2µb +

1

2
θ2

2σ
2
b )T1}

}
= exp{θ1a+ θ2b}.

Let

θ1 + θ2 = −s,

θ1µa +
1

2
θ2

1σ
2
a + θ2µb +

1

2
θ2

2σ
2
b = t.

Solving θ1 and θ2 in terms of s and t, we obtain equation (4.2.3) and (4.2.4). Therefore,

the Laplace transform of (P1, T1) is given by equation (4.2.2) �
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Remark: When solving θ1 and θ2 in terms of s and t, we should have two groups of solutions.

But we only choose above solution, since the other solution will produce the negative value

when we calculate the expectations in next section.

4.2.2 Multiple trading periods

In this section, we consider multiple trading periods. Let Tn be the nth trading time and

the Pn be the nth trading price (n = 1, 2, · · · ). In this section we assume that

(A(Tn+), B(Tn+)) = (Pne
δ, Pne

−δ),

where δ > 0 is a given constant. Thus if the current trading price is Pn, the immediate

new ask price will increase to Pne
δ and the immediate bid price will decrease to Pne

−δ. For

convenience, we denote

Un = lnPn+1 − lnPn, Vn = Tn+1 − Tn.

Proposition 4.2.1. {(Un, Vn), n ≥ 0} is a sequence of i.i.d. bivariate random variables with

common joint Laplace transform given by

E [exp{−s(lnPn+1 − lnPn)− t(Tn+1 − Tn)}] = exp{θ1(s, t)δ − θ2(s, t)δ},

where θ1 and θ2 are given by equation (4.2.3) and (4.2.4).

Proof. From the assumption and the results of Theorem 4.2.1, we obtain

E [exp {−slnPn+1 − t(Tn+1 − Tn)} |Pn] = exp {θ1(s, t)(lnPn + δ) + θ2(s, t)(lnPn − δ)} .

Since θ1(s, t) + θ2(s, t) = −s, we obtain

E [exp{−s(lnPn+1 − lnPn)− t(Tn+1 − Tn)}|Pn] = exp{θ1(s, t)δ − θ2(s, t)δ}.
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Hence,

E [exp{−s(lnPn+1 − lnPn)− t(Tn+1 − Tn)}] = exp{θ1(s, t)δ − θ2(s, t)δ}.

The result follows. �

Define N(t) = min{n ≥ 0 : Tn ≤ t} which gives the number of trades up to time t. We

also define P (t) = PN(t).

Proposition 4.2.2. The process {P (t), t ≥ 0} is a Semi-Markov Process (SMP) with state

space [0,+∞).

Proof. Since {(Pn, Tn), n ≥ 0} is a Markov renewal sequence, from the definition of N(t) and

P (t), the stochastic process {P (t), t ≥ 0} is a semi-Markov process. �

The process {P (t), t ≥ 0} is observable, while the {(A(t), B(t)), t ≥ 0} process may not

be publicly observable. The ask and bid processes may be accessible to the brokers and

dealers, but not to common traders. The question becomes how to find the parameters of

{(A(t), B(t)), t ≥ 0} by observing {P (t), t ≥ 0}.

4.3 Parameter Estimation

4.3.1 Moments

We shall estimate the parameters µa, µb, σa, σb and δ by the method of moment. Now

assume that {(Un, Vn), n ≥ 0} has common distribution of the random variable (U, V ), whose

bivariate Laplace transform is given by

E [exp{−sU − tV }] = exp{θ1(s, t)δ − θ2(s, t)δ}.
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Next we find the moments of U and V , namely, E(V ), E(V 2), E(U), E(U2) and E(UV ).

Theorem 4.3.1. E(U), E(U2), E(V ), E(V 2) and E(UV ) are given as follows:

E(V ) =
2δ

µb − µa
, E(V 2) =

4δ2

(µb − µa)2 +
2(σ2

a + σ2
b )δ

(µb − µa)3

E(U) =
δ(µb + µa)

(µb − µa)
, E(U2) =

δ2(µa + µb)
2

(µb − µa)2 +
2(µ2

bσ
2
a + µ2

aσ
2
b )δ

(µb − µa)3 ,

E (UV ) =
2δ2(µb + µa)

(µb − µa)2 +
2(µbσ

2
a + µaσ

2
b )δ

(µb − µa)3 .

Proof. For convenience, we first need some simple results about θ1(s, t) and θ2(s, t). For

θ1(s, t),

θ1(0, 0) = 0,

∂θ1(s, t)

∂t

∣∣∣∣
s=0,t=0

= − 1

µb − µa
,
∂2θ1(s, t)

∂t2

∣∣∣∣
s=0,t=0

=
σ2
a + σ2

b

(µb − µa)3 ,

∂θ1(s, t)

∂s

∣∣∣∣
s=0,t=0

= −µb + µa
µb − µa

,
∂2θ1(s, t)

∂s2

∣∣∣∣
s=0,t=0

=
µ2
bσ

2
a + µ2

aσ
2
b

(µb − µa)3 ,

∂2θ1(s, t)

∂s∂t

∣∣∣∣
s=0,t=0

=
µbσ

2
a + µaσ

2
b

(µb − µa)3 .

For θ2(s, t),

θ2(0, 0) = 0,

∂θ2(s, t)

∂t

∣∣∣∣
s=0,t=0

=
1

µb − µa
,
∂2θ2(s, t)

∂t2

∣∣∣∣
s=0,t=0

= − σ2
a + σ2

b

(µb − µa)3 ,

∂θ2(s, t)

∂s

∣∣∣∣
s=0,t=0

=
µa + µb
µb − µa

,
∂2θ2(s, t)

∂s2

∣∣∣∣
s=0,t=0

= −µ
2
bσ

2
a + µ2

aσ
2
b

(µb − µa)3 ,

∂2θ2(s, t)

∂s∂t

∣∣∣∣
s=0,t=0

= −µbσ
2
a + µaσ

2
b

(µb − µa)3 .
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Therefore,

E(V ) = − ∂

∂t
E [exp{−sP − tT}]|s=0,t=0

= − ∂

∂t
exp{θ1(s, t)δ − θ2(s, t)δ}|s=0,t=0

= − exp{θ1(s, t)δ − θ2(s, t)δ}
{
∂θ1(s, t)

∂t
δ − ∂θ2(s, t)

∂t
δ

}∣∣∣∣
s=0,t=0

=
2δ

µb − µa
.

Similarly, we can obtain

E(V 2) =
∂2

∂t2
E [exp{−sP − tT}]|s=0,t=0

=
4δ2

(µb − µa)2 +
2(σ2

a + σ2
b )δ

(µb − µa)3

E(U) = − ∂

∂s
E [exp{−sP − tT}]|s=0,t=0

=
δ(µb + µa)

(µb − µa)

EU2 =
∂2

∂s2
E [exp{−sP − tT}]|s=0,t=0

=
δ2(µa + µb)

2

(µb − µa)2 +
2(µ2

bσ
2
a + µ2

aσ
2
b )δ

(µb − µa)3

E (UV ) =
∂2

∂s∂t
E [exp{−sP − tT}]|s=0,t=0

=
2δ2(µb + µa)

(µb − µa)2 +
2(µbσ

2
a + µaσ

2
b )δ

(µb − µa)3 .

The results follows. �

4.3.2 Estimation of parameters

In this subsection, we assume that the sample data for the ith trading time ti and the

ith trading price pi are given for i = 1, 2, · · · , n. Let

ui = ln pi+1 − ln pi, vi = ti+1 − ti,
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hence the sample data for (U, V ) is given by ({ui}ni=1, {vi}ni=1). Denote

x1 =
n∑
i=1

vi/n, x2 =
n∑
i=1

ui/n,

x3 =
n∑
i=1

v2
i /n, x4 =

n∑
i=1

u2
i /n, x5 =

n∑
i=1

viui/n.

We aim to derive explicit estimators of the five parameters µ1, µ2, σ1, σ2, δ using moment

estimation.

Theorem 4.3.2. The estimators of µa, µb, σa, σb, δ are given by

µ̂a =
y1 −

(
y2

1 − 4y1y4−y3
y2

) 1
2

2
, σ̂a =

√
(y4 − z1y2)(z2 − z1),

µ̂b =
y1 +

(
y2

1 − 4y1y4−y3
y2

) 1
2

2
, σ̂b =

√
(z2y2 − y4)(z2 − z1),

δ̂ = (z2 − z1)x1,

where

y1 =
2x2

x1

, y2 =
x3 − x2

1

x1

, y3 =
x4 − x2

2

x1

, y4 =
x5 − x1x2

x1

,

z1 =
y1 −

(
y2

1 − 4y1y4−y3
y2

) 1
2

2
, z2 =

y1 +
(
y2

1 − 4y1y4−y3
y2

) 1
2

2
.

Proof. Using the method of moment estimation and the results of Theorem 4.3.1, we obtain

x1 =
2δ̂

µ̂b − µ̂a

x2 =
δ̂(µ̂b + µ̂a)

(µ̂b − µ̂a)

x3 =
4δ̂2

(µ̂b − µ̂a)2 +
2(σ̂2

a + σ̂2
b )δ̂

(µ̂b − µ̂a)3

x4 =
δ̂2(µ̂a + µ̂b)

2

(µ̂b − µ̂a)2 +
2(µ̂2

b σ̂
2
a + µ̂2

aσ̂
2
b )δ̂

(µ̂b − µ̂a)3

x5 =
2δ̂2(µ̂b + µ̂a)

2(µ̂b − µ̂a)2 +
2(µ̂bσ̂

2
a + µ̂aσ̂

2
b )δ̂

(µ̂b − µ̂a)3 .
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Next we solve µ̂a, µ̂b, σ̂a, σ̂b, δ̂ in terms of x1 to x5.

Let,

y1 =
2x2

x1

= µ̂b + µ̂a

y2 =
x3 − x2

1

x1

=
σ̂2
a + σ̂2

b

(µ̂b − µ̂a)2

y3 =
x4 − x2

2

x1

=
µ̂2
b σ̂

2
a + µ̂2

aσ̂
2
b

(µ̂b − µ̂a)2

y4 =
x5 − x1x2

x1

=
µ̂bσ̂

2
a + µ̂aσ̂

2
b

(µ̂b − µ̂a)2 .

Note that,

y2
1 − 4

y1y4 − y3

y2

= (µ̂b − µ̂a)2.

Since µ̂b > µ̂a, we obtain

µ̂a =
y1 −

(
y2

1 − 4y1y4−y3
y2

) 1
2

2

µ̂b =
y1 +

(
y2

1 − 4y1y4−y3
y2

) 1
2

2

Next denote

z1 =
y1 −

(
y2

1 − 4y1y4−y3
y2

) 1
2

2
,

z2 =
y1 +

(
y2

1 − 4y1y4−y3
y2

) 1
2

2
,

we obtain

σ̂a =
√

(y4 − z1y2)(z2 − z1),

σ̂b =
√

(z2y2 − y4)(z2 − z1).
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Finally we obtain

δ̂ = (z2 − z1)x1.

The result follows. �

Next we verify that these estimators are well-defined.

Proposition 4.3.1. The estimators produce real valued estimates, i.e.

y2
1 − 4

y1y4 − y3

y2

≥ 0,

(y4 − z1y2)(z2 − z1) ≥ 0,

(z2y2 − y4)(z2 − z1) ≥ 0.

Proof. First we prove the term y2
1 − 4y1y4−y3

y2
is nonnegative. Note that

y2
1 − 4

y1y4 − y3

y2

=
4

x2
1(x3 − x2

1)

[
x2

2(x3 − x2
1)− 2x1x2(x5 − x1x2) + x2

1(x4 − x2
2)
]
.

Since

x2
1 = (

n∑
i=1

vi/n)2 > 0,

x3 − x2
1 =

n
n∑
i=1

v2
i −

n∑
i=1

vi

n2
> 0,

it suffices to show

x2
2(x3 − x2

1)− 2x1x2(x5 − x1x2) + x2
1(x4 − x2

2) ≥ 0.
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Note that

x2
2(x3 − x2

1)− 2x1x2(x5 − x1x2) + x2
1(x4 − x2

2)

≥ 2x1x2

√
(x3 − x2

1)(x4 − x2
2)− 2x1x2(x5 − x1x2)

= 2x1x2(
√

(x3 − x2
1)(x4 − x2

2)− (x5 − x1x2))

= 2

∑
vi
n

∑
ui
n


√√√√(∑ v2

i

n
−
(∑

vi
n

)2
)(∑

u2
i

n
−
(∑

ui
n

)2
)
−
(∑

vi∆pi
n

−
∑
vi
n

∑
ui
n

)
= 2

∑
vi
n

∑
ui
n

√∑ (vi −
∑
vi/n)2

n

∑
(ui −

∑
ui/n)2

n
−
(∑

viui
n

−
∑
vi
n

∑
ui
n

)
≥ 2

∑
vi
n

∑
ui
n

(∑
(vi −

∑
vi/n) (ui −

∑
ui/n)

n
−
(∑

viui
n

−
∑
vi
n

∑
ui
n

))
= 0

Next we show y4 − z1y2 and z2y2 − y4 are nonnegative. Note that

y4 − z1y2 =
y2

(
y2

1 − 4y1y4−y3
y2

) 1
2

2
+
(
y4 −

y1y2

2

)
,

z2y2 − y4 =
y2

(
y2

1 − 4y1y4−y3
y2

) 1
2

2
−
(
y4 −

y1y2

2

)
.

Hence it is enough to show

y2
2

(
y2

1 − 4y1y4−y3
y2

)
4

≥
(
y4 −

y1y2

2

)2

.

After simplifying above inequality, it suffices to show that y2y3 ≥ y2
4.

Note that

y2y3 ≥ y2
4 ⇔ (x3 − x2

1)(x4 − x2
2) ≥ (x5 − x1x2)2

This is proved in previous inequality. Hence the result follows. �
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4.4 Numerical Example

In this section we apply our model to the real data, and aim to forecast the trading price

movement over a short period. Here we select the stock SUSQ (Susquehanna Bancshares

Inc). The data is chosen from 01/04/2010 9:30AM to 01/04/2010 4:00PM, including the

trading price and trading time. The unit of trading price is dollars and the unit of the

difference of consecutive trading time is seconds. From the formula

E(ln pn+1 − ln pn) =
δ(µa + µb)

µb − µa
,

we obtain

E(ln pn+1 − ln p0) =
δ(µa + µb)

µb − µa
(n+ 1).

Therefore given the initial trading price P0 = p0, we have

E(lnP (t)) =
δ(µa + µb)

µb − µa
E(N(t)) + ln p0.

Since this stock is frequently traded, we use t/τ to approximate E(N(t)), where τ = E(V ) =

2δ
µb−µa

. Hence we have the prediction formula for lnP (t) as following

f̃(t) =
µa + µb

2
t+ ln p0. (4.4.1)

Similarly, from the formula

E(lnPn+1 − lnPn) =
δ(µb + µa)

(µb − µa)
, E(lnPn+1 − lnPn)2 =

δ2(µa + µb)
2

(µb − µa)2 +
2(µ2

bσ
2
a + µ2

aσ
2
b )δ

(µb − µa)3 ,

we obtain

V ar(lnPn+1 − lnPn) =
2(µ2

bσ
2
a + µ2

aσ
2
b )δ

(µb − µa)3 .

Since {(lnPn+1 − lnPn), n ≥ 0} is an i.i.d. sequence, we have

V ar(lnPn+1 − lnP0) =
2(µ2

bσ
2
a + µ2

aσ
2
b )δ

(µb − µa)3 (n+ 1).
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Therefore, given the initial trading price P0 = p0, we have

V ar(lnP (t)) =
2(µ2

bσ
2
a + µ2

aσ
2
b )δ

(µb − µa)3 E(N(t)).

Hence by using the approximate formula of E(N(t)), we have the prediction formula for

V ar(lnP (t)) as following

g̃(t) =
(µ2

bσ
2
a + µ2

aσ
2
b )

(µb − µa)2
t. (4.4.2)

From above results, we use f̃(t)+3
√
g̃(t) and f̃(t)−3

√
g̃(t) to estimate the upper bound

and lower bound of the predicted lnP (t).

Now we perform the back test for above formula to evaluate the performance of the

prediction. In detail we predict the logarithmic trading price at each trading time using the

10-minute data 1 minute before the trading time. For example, we observe there is a trade

at 10:34:56, then we use the data from 10:23:56 to 10:33:56 to estimate the parameters and

predict the logarithmic trading price at 10:34:56. At the same time we calculate the upper

bound and lower bound of the prediction at that trading time. We compare this predicted

logarithmic trading price with the real one in Figure 4.2. We do the similar prediction for

each trading time but using the 10-minute data 5/10/15 minute before the trading time

respectively. The comparisons are shown in Figure 4.3-4.5.

4.5 Extensions

We end this chapter with suggestions for two extensions.

1. In this chapter we only consider the data of trading price and trading time. It would

be interesting to include the information of trading size (that is, the number of shares of the

traded stock for each trade).
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Figure 4.2: Prediction of trading price using the data 1 minute before each trading time

2. We have assumed that the market ask price and the market bid price separate in a

proportionally manner immediately after they meet each other. It would be interesting to

consider a price-dependent separation mechanism.
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Figure 4.3: Prediction of trading price using the data 5 minute before each trading time

Figure 4.4: Prediction of trading price using the data 10 minute before each trading time
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Figure 4.5: Prediction of trading price using the data 15 minute before each trading time
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[31] I. Roşu. A dynamic model of the limit order book. Review of Financial Studies,
22(11):4601–4641, 2009.

[32] D. J. Seppi. Liquidity provision with limit orders and a strategic specialist. Review of
Financial Studies, 10(1):103–150, 1997.

[33] K. Sigman. Lecture notes on stochastic modeling 1. Online lecture note at http:

// www. columbia. edu/ ~ ks20/ stochastic-I/ stochastic-I-RRT. pdf , 2009.

[34] S. Zenios. Modeling the transplant waiting list: a queueing model with reneging. Queue-
ing systems, 31(3):239–251, 1999.

89


