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ABSTRACT 

Lida Swann: The effect of sintering process on zirconia’s optical and physical 
properties 

(Under the direction of Lyndon F. Cooper) 
 

Zirconia restorations present an alternative dental restorative option with an 

average flexural strength of 1000 MPA.  One of the challenges of this material is the 

decreased translucency when compared with less strong ceramic materials like 

feldespatic porcelain or lithium disilicate. A potential solution to this challenge is to 

the increase of sintering temperature and or increase holding times.  

 

The present study evaluated the effect of different sintering temperatures and 

holding times on contrast ratio as a measure of translucency, and evaluated if any 

temperatures or holding times could have a negative effect on materials strength. 

We also looked at the effect of cyclic loading vs conventional load to failure testing. 

 

One hundred and twenty (120) milled zirconia disks with .2mm thickness and 

14mm diameter were sintered. Temperatures vary in 50-degree increments from 

1450 to1600 F. Each of those temperatures was held for different times including 1h, 

2h, 3h. The zirconia disks used were pure white Zenostar, 10 disks were obtained to 

test each variable.  
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Contrast ration was measured on a spectophotometer for all specimens.  60 

specimens  (5 per group) were subjected to mechanical cyclic loading under water at 

a load of 100N for 100,000 cycles at a frequency of 1.5Hz.  

After fatigue loading samples and control group were tested on an Instron machine 

until catastrophic failure occurred.  

 

Under the conditions measured, increasing temperature and / or holding time 

did not alter translucency or significantly affected physical properties. 
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Introduction 

Biomaterials in dentistry must address several requirements that include 

biocompatibility, strength related to intended purpose and esthetics.  The history of 

dental prostheses reflects a progression from function to esthetics with gold 

restorations being largely replaced by porcelain fused to metal restorations during a 

period from the 1970’s to 1990’s.  The introduction of various all-ceramic 

restorations beginning in the 1980’s initiated a continuous transition from metal-

based ceramics to different multilayered and monolithic all ceramic restorations. 

The central issue for all ceramic restorations has been the balancing of 

esthetics (color and translucency) with strength or function.  Different materials have 

been utilized (Table 1) and their esthetic value traditionally has been inversely 

related to strength.  The basis for this clinical paradox is the use of glass phase 

ceramics to impart translucency to dental ceramics and the use of relatively opaque 

crystalline ceramics to achieve strength.  Today, lithium disilicate restorations (e.g., 

IPS e-max Ivoclar Vivadent (175 Pineview Drive, Amherst, NY 14228 USA) 

exemplifies a glass phase ceramic with remarkable translucency and color 

adaptability that achieves only 50 % strength represented by traditional porcelain 

fused to metal restorations.  In contrast, contemporary zirconia-based ceramics can 

achieve nearly 80- 90% strength of traditional porcelain fused to metal restorations, 

but in its strongest monolithic form offers little translucency.  
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Table 1- Ceramic restorations in dentistry 

 

 
CERAMIC RESTORATIONS IN DENTISTRY 

 
 

MATERIAL 
 

 
STRENGHT 

 
TRANSLUCENCY 

 
LAYERED 

 
MONOLITHIC 

 
SINGLE 
UNITS 

 
MULTI 
UNITS 

 
FELDESPATHIC 

 
Vita Mark  

 

 
 
- 

 
 

+++ 

 
 

yes 

 
 

Yes 

 
 

yes 

 
 

no 

 
LEUCITE 

REINFORCED 
 

IPS Empress 
 

 
 

+ / - 
 

 
 

+++ 

 
 

yes 

 
 

Yes 

 
 

yes 

 
 

no 

 
LITHIUM 

DISILICATE 
 

IPS e-max 
 

 
 

+ 

 
 

++ 

 
 

yes 

 
 

Yes 

 
 

yes 

 
 

+ / - 

 
ALUMINA 

 
In-ceram 
Rondo 

 

 
 

+ / - 

 
 

+ / - 

 
 

yes 

 
 

No 

 
 

yes 

 
 

+ 

 
ZIRCONIA 

 
Lava 

Everest 
In Ceram 
Cercon 

 

 
 
 

++ 

 
 
 

+ / - 

 
 
 

yes 

 
 
 

Yes 

 
 
 

yes 

 
 
 

+++ 

 
 

 

 

Despite the esthetic limitations of zirconia-based restorations, the dental 

profession has seen remarkable penetration into clinical practice.  A recent survey of 

dental laboratory owners indicates that  all ceramic restorations are largely replacing 

porcelain fused to metal.  The reasons for this replacement of metal and metal 
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ceramic restorations is attributable to several factors including the relative cost of 

gold alloys, the integration of Zirconia materials into the CAD CAM workflow, and the 

esthetic value of ‘white’ dental materials.  Suggested by this migration of clinical 

preferences from metal ceramics to all ceramic materials is the satisfactory 

performance of the all-ceramic material.  

The past decade of clinical research has provided some insight regarding the 

performance of zirconia prostheses. A systematic review by Raigrodski looked at the 

survival and complications of zirconia FDP. He reported survival rates that ranged 

from 73.9% to 100% within 12 studies. Five studies reported 100% survival rates 

during the observations period. One study reported 73.9% survival of frameworks 

and the rest (6 studies) had survival rates ranging between 88.2% and 96.6%. The 

common complication reported was chipping and it was suggested that with the 

development of new layering porcelains better clinical properties would be expected. 

[2] 

 In a second report, a 2010 systematic review on the performance of zirconia 

based fixed dental prosthesis evaluated not only the survival but also the 

complication rates for this type of prosthesis up to 5 years.  Three hundred and ten 

prosthesis were included.  The 5-year survival rate for all FDP was 94.29% and 

76.41% were considered free of complications with chipping being the most reported 

complication [3].   Very rarely, do we seem to see fractures within the zirconia 

framework itself. For example, the systematic review by Sailer [4], indicated that 

compared to chipping rates of 13.6%, framework fractures occurred only 6.5 %.  

Observed fractures were reported most commonly in connectors of multiunit 
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posterior restorations, and, or second molar abutments. Larsson’s systematic review 

in 2014 [5], suggested that the success rate of tooth-supported and implant-

supported zirconia-based crowns is adequate, similar, and comparable to that of 

conventional porcelain-fused-to-metal crowns.  A recent laboratory study utilized 

indentation to induce chipping of monolithic zirconia and lithium disilicate materials.  

The results confirm that ceramic veneered-zirconia displayed high chipping and 

monolithic lithium disilicate resisted this chipping, monolithic zirconia was most 

resistant to this induced chipping behavior [6]. 

When considering the outcome of zirconia single unit full coverage 

restorations, less information is available.  The earliest clinical efforts of zirconia-

based restorations involved the creation of a milled zirconia coping supporting a 

compatible ceramic veneer.  Most recently, a 5 – year cohort study revealed that 

less than 60% of the crowns demonstrated success at 5 years and 11 of 47 crowns 

at 5 years required replacement due to chipping.  This 2014 paper advised that new 

materials should be more carefully evaluated before introduction to clinical use. [7]    

Previous outcomes for zirconia restorations including crowns have been 

considered in several systematic reviews.  A 5-year retrospective study of survival of 

zirconia single crowns fitted in a private clinical setting by Anders showed promising 

results for zirconia single crowns.  Most crowns (78%) were placed on premolars 

and molars. Among the 143 crowns that were followed for 5 years, 88% did not have 

any complications. The reported complications were: extraction of abutment tooth (7; 

3%), loss of retention (15; 7%), need of endodontic treatment (9; 4%) and porcelain 

veneer fracture (6; 3%). No zirconia cores fractured [8]. 
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Jung’s systematic review focused on single crowns. The five to ten year 

results showed high survival rates for tooth and implant supported single crowns, 

but technical, biological and aesthetic complications were common.  It is possible to 

suggest that many of the complications were mostly related to restoring implants 

compared to tooth supported restorations [9]. 

As revealed in the aforementioned reviews concerning zirconia restoration 

performance, one of the early and prominent observations made regarding the 

clinical performance of zirconia-based all ceramic restorations was chipping of the 

veneering porcelain from the zirconia frameworks.   While many different 

investigators have suggested fundamental reasons for this phenomenon (reviewed 

below), the clinical response to chipping is a concern for layered zirconia 

restorations. 

When used as a framework, zirconia has an inherent basic esthetic value, 

due to the fact that it is white and can be alternatively colored to mimic surrounding 

dentin. Further it can be provided with high opacity to cover discolored teeth and 

implant components [10]. This can be advantageous to the technician who is trying 

to conceal a dark underlying tooth structure, a metal post, or the remainder of 

amalgam restorations left after initial preparation.  

Zirconia framework based- restorations, when veneered with an appropriate 

ceramic layering system designed for zirconia, may result in exceptional aesthetics 

and can achieve an imperceptible match to the surrounding dentition.  The talented 

technician may develop appropriate color and optical properties of the restoration 

within the veneering ceramics.  However, the past decade of investigation has 
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revealed that chipping within the veneering ceramic or at the framework/veneer 

interface frustrates higher clinical success and survival of these restorations.  

Veneer chipping, not framework fracture, appears to be the weak link in zirconia-

based restorations. 

For traditional porcelain fused to metal restorations, layering porcelains 

possess a lower coefficient of thermal expansion (CTE) than the metallic substrate. 

In this manner the veneering porcelain gains strength by compressive loading. 

Unfortunately, the simple mis-matching of CTEs doesn't work effectively for zirconia-

layered restorations.  This results in the creation of stress fields throughout the 

restoration leading to cracking and delamination during the cooling phase of the 

veneering process. [11]. Fortunately, specific ceramic veneering materials have 

been developed for application to Zirconia frameworks.  Given that veneering 

materials and framework zirconia CTEs are today well matched, it is unlikely that 

CTE represents the root cause of veneered zirconia framework chipping. 

Laboratory processes can inevitably have an effect on final physical 

properties of a restoration. Zirconia does possess important physical properties that 

influence its behavior with respect to veneering with ceramics.  For example, it has a 

relatively high modulus of elasticity that encourages its use in larger prostheses with 

longer spans.  It displays high toughness. Most veneering porcelains have a low 

fracture toughness Z (K) values (0.7-0.9MPa. m ½) that is about 1/8 of the values for 

zirconia core ceramics.  Zirconia as a crystalline material is a relatively poor 

conductor of heat and this is in striking contrast to metals traditionally used in dental 

prostheses and this affects the processing of zirconia based prostheses. Thus the 
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rate of change in temperature may, in addition to differences in CTE, influence the 

strength of the veneer / framework bond.  For example, Belli et al (2013) 

demonstrated by chewing simulation and compressive loading that attempts to 

minimize the thermal residual stresses within the veneer (closer CTEs) and 

application of slow-cooling cycles (< 30oC/minute) delayed the experimental failure 

of zirconia-veneer crowns.  This was more important where larger differences in 

CTE were displayed.  In an interesting and related paper Belli, the fractographic 

analysis of zirconia –veneered crowns demonstrated failures occurred solely within 

the veneering porcelains [12].  Others have also reported that a longer the cooling 

rate after firing will affect negatively bond strength of ceramic veneered restorations 

[13,14]. The number of firing cycles has also been considered to affect the bond 

strength, and it has been reported that between 3 and 5 firing cycles would be 

recommended to obtain a better bonding [15,16]. On the other hand one report 

argues than more than six firings will reduce bond strength [17].   

Additionally, the influence of veneer thickness on residual stresses is another 

variable that may influence chipping of zirconia-veneer crowns.  Mainjot et al (2012) 

compared 1mm - 3 mm veneers modeled on zirconia disks versus metal disks.  

They observed that stresses in the surface of metal samples were not influenced by 

veneer thickness.  Zirconia samples exhibited a stress depth profile of larger 

magnitude and the role of crystalline transformation may contribute to this elevated 

stress profile. [18]. 
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The surface finish of a zirconia framework could also affect the core- veneer 

bond strength. Roughening of zirconia by the means of air abrasion could potentially 

improve bond strength but in the same time it could also make the core more 

susceptible to fractures. 50 um alumina oxide particles create less severe damage 

than when 120 particles are used [19]. 

Finally, the application of wet thick layers of porcelain onto a dried zirconia 

facilitates the t-m conversion and can create residual stress  [20].  This too may 

result from water-mediated crystalline transformation of the zirconia framework.  

Contemporary workflow for veneered zirconia restorations include very long drying 

periods to assure firing occurs in the absence of water.  It may be concluded that the 

process of veneering application has an important role in is the bond between the 

zirconia surface and the veneering porcelain. 

In three different reports, using different systems (lava, DC-Zircon) , zirconia 

frameworks that were veneered with layering porcelain all developed cracking or 

crazing over two years of observation, ranging from 80% to 50% loss of material 

[21,22,23]. These studies may indicate that the observed porcelain fractures were 

material-system specific. It also indicates that factors such as type of zirconia 

framework thickness, and framework design, may very well be a cause for ceramic 

fracture.  

1.1 Biocompatibility 

Research regarding zirconia as biomaterial was started in the late 60s. 

Helmer and Driscoll [24], published the first paper 1969. Christel, in 1988, offered 

the use of zirconia, as an alternative to other materials used at time, to manufacture 
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the ball heads for total hip replacements [25]. Zirconia is still used in this application 

and other medical prosthetics to this day.  Implied was acceptable biocompatibility.  

Clark showed that zirconia was found to be better than other ceramic biomaterials in 

use circa 1990, because it possessed higher strength and hardness [4].  

Direct assessment of biocompatibility of zirconia has been achieved.  In vivo 

testing in rats (Christel, 1989) showed satisfactory results on the biological reactions 

of zirconia into muscle and bone. [27] [28].  Earliest studies by Hayashi et al 

demonstrated biocompatibility of end osseous Zr.  In vitro studies of Zr powders also 

suggested safety using human osteoblast cell culture [29].  This underscores the 

interest in Zr as a material for dental implants [30].  Other recent studies using 

gingival epithelial cells reiterate this observation of biocompatibility [31].   The 

interaction of zirconia with oral soft tissues may be central to the performance of 

tooth and implant supported restorations [32].  The formation of biofilm on dental 

prostheses, either natural tooth - or implant – supported is material-related.  A recent 

investigation [33] measured the colonization of dental implant abutments.  DNA 

checkerboard analysis revealed that, compared to Zirconia abutment materials, 

higher total bacterial counts were greater on cast or machined titanium disks after 24 

hours.  This confirms the work of Bremer et al who showed that biofilm was lowest 

and thinnest on zirconia compared to lithium disilicate restorations [34].  The clinical 

impression that low biofilm formation and limited inflammation at zirconia 

restorations is supported by such in vitro and in vivo studies.  Bacterial adhesion has 

proven to be slightly better that titanium.  Scarano reported a degree of coverage by 

bacteria of 12.1% for zirconia as compared to 19.3% on titanium [35].  Rimindini 
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confirmed these results with an in vivo study where y-TZP accumulated fewer 

bacteria than Ti in terms of total numbers of bacteria and presence of potential 

pathogens such as rods [36].   It may be concluded that zirconia materials offer 

advantages of biocompatibility for use as endosseous biomaterials and oral 

biomaterials due, both to its remarkable strength and durability as well as the 

surface properties of the material. 

1.2 Strength  

Introduction of zirconia-based ceramics as a restorative dental material has 

generated much interest in the dental profession. The mechanical properties of 

zirconia are the highest ever reported for any ceramic used prosthetic dentistry. The 

strength of zirconia has allowed the incorporation of high-strength all ceramics, into 

its use for posterior FDP [37].  High-strength, coupled with the possible high 

aesthetics that zirconia offers, allows the material to become a highly valuable option 

in our prosthetic armamentarium.   

The basis for the valued strength displayed by Zirconia is its unique 

crystalline structure and its behavior under loads.   Zirconium dioxide (ZrO2), also 

known as zirconia, is a white crystalline oxide of the metal element zirconium. Its 

most naturally occurring form is the rare mineral baddeleyite though zirconium metal 

used for dentistry is obtained from the zirconium- containing mineral ore called 

zircon. After being processed and purified these powders can be further processed 

to produce somewhat porous bodies that can be CAD/CAM milled with great 

precision. Once densely sintered, a polycrystalline ceramic material is produced 

which, unlike most other dental ceramics, contains no glass phase. 
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Zirconium dioxide (ZrO2, zirconia) has a unique crystallographic property that 

greatly improves its strength and toughness. Zirconia crystals can have a monoclinic 

(M), tetragonal (T) or cubic structure depending on temperature.  Figure 1 

A crystal structure is the spacing of the atoms of zirconium and oxygen and 

produces a resulting volume. At high temperatures, zirconia has a cubic structure. 

As the temperature is lowered, the atoms rearrange themselves and the structure 

becomes tetragonal. Further cooling results in additional rearrangement into a 

monoclinic structure. The transformation from tetragonal to monoclinic is 

accompanied by	   a volume change. The volume change accompanying the 

tetragonal to monoclinic transformation is what makes zirconia stronger and tougher 

than aluminum oxide and therefore, unique as a dental structural material for 

multiple unit posterior bridges.  

Certain oxides, such as magnesium oxide (MgO), yttrium oxide, (Y2O3), 

calcium oxide (CaO), cerium(III) oxide (Ce2O3), and others are added to zirconia to 

stabilize the tetragonal crystal structure at room temperature. The conversion from 

the tetragonal phase to the monoclinic then occurs when the material is stressed 

and a crack starts to propagate. However, because of the volume increase 

accompanying the T to M transformation, the crack is closed until a much higher 

stress is applied. [62].  When considering yttria – doped zirconia (Y-TZP) ceramics, 

the flexural resistance has been measured to be from 700 MPa to 1200 MPa. These 

values exceed typical masticatory loads during chewing.  The fracture resistance 

has been measured to be greater than 2,000N, a value that is two to three times 

greater than alumina or lithium disilicate materials used in dentistry [38].  
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Over the last several years, many high strength ceramics have been 

developed for the construction of metal free restorations [39]. Several studies have 

evaluated different all ceramic systems, and offered conclusions on where these 

ceramic systems may be used in the oral environment with success. Luthy, 

measured average load bearing capacities for several ceramic systems, and found 

518 N, for alumina-based restorations, 282 N, for lithium disilicate based 

restorations, and 755 N, for zirconium restorations [40]. Raigrodski, also analyzed 

several different all ceramic systems, and concluded that the all ceramic systems he 

studied, were only to be used in the anterior, for single crown restorations, and 

possibly three unit FPDs. He also concluded that because of the higher strength of 

zirconia, this material offers a wider area of restorative options in the oral cavity, 

including posterior single units, and multiunit FDPs [39]. 
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Figure 1- Transformation toughening of zirconia 

 

Biomedical grade zirconia usually contains 3 to 5 mol% yttria (Y2 O3) as a 

stabilizer (3Y-TZP). The mechanical properties of 3Y-TZP strongly depend on its 

grain size. Above a critical grain size, 3Y-TZP is less stable and more susceptible to 

spontaneous t →  m transformation whereas smaller grain sizes (<1 um) are 

associated with a lower transformation rate [41]. Moreover, below a certain grain 

size (∼0.2 um), the transformation is not possible, leading to reduced fracture 

toughness [42]. Consequently, the sintering conditions have a strong impact on both 

stability and mechanical properties of the final product as they dictate the grain size 

Higher sintering temperatures and longer sintering times lead to larger grain sizes 

[43,44] 

Along with learning of the positive attributes possessed by zirconia, there is 

also a growing realization of process and fabrication challenges when using zirconia 

to fabricate dental prostheses. Grinding and sandblasting can trigger the (t-m) 

transformation, possibly leading to the increase of the formation of surface 
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compressive strength stresses, but at the same time, can also alter the phase 

integrity of the material and increase the susceptibility of aging [45].  When 

considering bulk zirconia as required for an anatomical, monolithic prosthesis, 

laboratory manipulation and clinical alterations required following sintering may 

influence the strength of the material.   For example, air abrasion is utilized as a 

cleaning step during veneering and cementation procedures.  Air abrasion was 

shown to increase the flexural strength of zirconia by T-M phase transformation that 

places the surface ceramic in compression.  Machining with fine diamond 

instruments (<40 um) provided a similar effect on the compression surface zone, 

where as large grit instruments (> 125 um) created flaws beyond the depth of the 

surface zone, thereby weakening the structure [46]. It should be acknowledged that 

beyond the physical damage, heat induced by grinding might be of the magnitude to 

induce low temperature degradation of the material that leads to weakness. 

Other factor to consider for the long-term success of zirconia-based 

restorations in multiunit FPD's is the size of the interproximal connectors. The 

minimal interproximal connector surface should be at least 6.25mm. Also, the height 

of the terminal abutments, is fundamental to achieving proper interproximal 

connectors, and should be evaluated with utmost care [37]. 

Reich looked at the influence of different finish lines and its influence on 

fracture resistance and found that chamfer finish lines had a higher fracture 

resistance in comparison to featheredge margins while Clausen found no differences 

at all. [47,48]. 
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To circumvent the need for veneering altogether, another option is to develop 

fracture resistant, partially translucent monolithic ceramics. Monolithic all ceramic 

restorations are becoming more accepted due to higher strength, by avoiding weak 

veneer-core interfaces. All ceramic restorations, such as, IPS e-max (lithium 

disilicate), Wieland (zirconia), 3M lava Plus (zirconia), offer several all ceramic 

monolithic, restorative options, that have acceptable aesthetics, and eliminate the 

need for veneering ceramics altogether. [41]  

1.3 Wear 

During the early 2000’s zirconia was perceived as a material that would cause 

high wear to the opposing dentition.  Today this perception is being challenged [49] 

and multiple studies have shown how zirconia can be a material gentle to opposing 

dentition, in comparison to glass ceramics that are layered on PFM restorations. 

This low wear property can be attributed to zirconia’s microstructure, and it’s small 

grain size, that allows for a mirror polished surface to be created, that is kind to 

opposing enamel surfaces. [50-51] 

An in vitro study by Yu-Seok evaluated the wear of enamel opposing zirconia 

surface. They found that zirconia surfaces appear to be less abrasive to enamel than 

feldespathic porcelains.  They also found that polished zirconia without glazing is 

less abrasive than Zirconia glazed surfaces. [52]. A second study by Burgess also 

evaluated the wear of enamel by full contour zirconia polished and glazed. A wear 

simulator and producing a 4mm slide at 20 N rate was applied and samples 

evaluated using a non-contact 3D profilometer.  Although the wear of glazed zirconia 
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was more than polished zirconia, it was still less than commonly used porcelains for 

PFM restorations [53]. See figure 2 

	  

Figure 2- Wear of zirconia vs enamel 

These results were further investigated in a six-month clinical study that 

evaluated the wear on opposing dentition for monolithic full contour zirconia 

prostheses. 20 monolithic crowns were placed in patients and mean vertical loss for 

specimens, antagonists and contralateral was recorded.  Both mean and maximum 

enamel wear were significantly different between the antagonists of the zirconia 

crowns and the contralateral antagonists. Under clinical conditions, monolithic 

zirconia crowns seem to be associated with more wear of opposed enamel than are 

natural teeth, but the amount of wear is comparable if not less than other ceramic 

systems. [54] 
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1.4 Accuracy 

Zirconia is currently utilized in construction of dental prostheses by CAD-CAM 

milling of partially sintered materials.  These materials shrink in dimension with 

sintering.  When utilized as a framework with veneered ceramic, further distortion 

may occur.  However, when compared to the internal fit and marginal adaptation of 

metal ceramic crowns, there was no difference in the fit of the different restorations.  

However, prior to veneering, metal copings displayed better internal fit [55].   When 

extended to larger restorations, the ceramic veneering of CAD/CAM frameworks did 

lead to distortion as measured by higher strain development using strain gauges.  

Non-veneered anatomic zirconia restorations showed little distortion and significantly 

less strain upon measurement [56]. 

There are many dental CAD_CAM systems offered on the market today, for 

commercial laboratories. The majority of these Systems, can mill partially sintered 

zirconia, into a full contour, anatomical tooth shape. Denry and Kelly [37] reported 

that the milling of partially sintered zirconia offers a final surface virtually free of the 

monoclinic phase. Even with these observations, damage to the surface of zirconia 

can be created during the milling process. Several commercially available zirconia's, 

were evaluated after milling, and specimens showed flakes, debris, and a smear 

layer, and also observed were micro cracking that penetrated 4-6um into the 

surface.  While the evaluation of post-sintered zirconia following its milling in the pre-

sintered state reveals that micro-cracking is evident, it is not clear to what extent this 

influences the zirconia’s physical properties.  Several investigations suggest that the 

use larger grit burs or abrasives can negatively influence the resulting prosthesis.  It 
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is not clear what the influence of other milling parameters (rate, speed, tool path) will 

impose on the ultimate integrity of the surface layer [57]. 

With regards to marginal integrity several studies have been done and 

showed that with the aid of new milling systems and in some instances digital 

impression systems. Seelbach looked at the marginal adaptation of alumina and 

zirconia restorations various CAD CAM Systems including Lava COS, CEREC and 

iTero, conventional impressions were used as well. The overall marginal fit for the 

groups was 44+/- 26.  He reported that within the limitations of his in-vitro study the 

marginal adaptation of this all-ceramic crowns is acceptable and comparable to the 

ones made with conventional methods. [58] 

A systematic review described the marginal discrepancies for zirconia FDP. 

The occurrences of marginal gaps for six studies were reported as follows. Marginal 

integrity was clinically unacceptable for 16.7% [59], marginal integrity was 

considered a success [60], marginal discrepancies were detected in 11.5 %[61], 

visible evidence of ditching along the margins 5-26% [62], marginal gaps were 

evident in 58.7 [63] , and visible evidence and or catch of the explorer was present in 

one case [2]. 

Similar results were observed by Martinez-Rus. The measurement of marginal 

discrepancy of four different milled zirconia copings was shown to result in mean 

marginal openings of 8.7 – 29.9 um, demonstrating that all offered accuracy within 

the range of clinical acceptability 120 um [64]. Larger, more complex frameworks 

also demonstrate relatively good marginal adaptation.  The marginal gaps reported 

for milled zirconia framework 3 unit FDPs was less than 90 um in all cases [65].  A 
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report of the marginal fit of a 14 - unit zirconia FDP framework produced using Zeno 

CAD CAM on master dies was reported.  The mean marginal gaps were again small 

(25 +/-29 um), but larger than that measured for single unit crowns placed on the 

retainers.  The quality of fit was location dependent, suggesting that large 

frameworks are subject to complex changes.  It should be further noted that these 

frameworks were not veneered [66]. 

1.5 Esthetics 

The difficulty in reproducibly achieving good esthetics with PFM restorations 

and the desire for metal free solutions has led to the increased use of zirconia.  The 

unique optical properties of zirconia require new and different understanding of how 

the materials are managed [67]. 

Translucency and color are important and often inseparable variables for 

dental restorations.  Translucency may be an innate optical property of the zirconia 

material related to its crystalline structure.  Colorants may be infused within the 

partially sintered zirconia and incorporated during sintering.  Hjerppe examined the 

influence of shading on zirconia disks [68].  Differences in biaxial strength were 

measured among the samples (885 MPa – 1007MPa) compared to the control group 

(1132 MPa). 

Traditionally, all ceramics could be classified into 2 groups: highly translucent 

and those with a high strength opaque core that will require the application of an 

esthetic layering ceramic. Among translucent porcelains we have feldespathic 

porcelains like Empress and Vita glass ceramics. Feldespathic dental porcelain and 

its additives manipulate light in a favorable manner. Scattering occurs at the 
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boundaries between the various phases and is influenced by the crystals’ particle 

size, shape, volume concentrations, and relative refractive indices.  Physical 

properties for these types of materials are optimized by the use of bonding 

techniques, but still it is recommended the use of these of materials to be limited to 

the esthetic zone.  

 Examples of the high strength cores are alumina, and zirconia.  Opaque 

ceramic cores allow the clinician to be able to hide dark underlying tooth structures 

or the color of a metal implant abutment.  The optical properties of core materials 

play an important role in matching ceramic restorations to the appearance of natural 

teeth. Kelly indicated that core translucency was one of the primary factors in 

achieving esthetics and affected the shade of the restoration greatly [69].  Spink in 

2009 measured the level of translucency for several all-ceramic materials. (Table 1) 

In addition to the data that shows the different contrast ratios, she also reported that 

the increase of thickness of the specimen would decrease the percentage of light 

transmission [70]. The issue of translucency of high strength ceramics becomes 

more important today, as efforts focus on the elimination of the issues with layering 

porcelain on full contour milled zirconia restorations that are being fabricated. The 

translucency of zirconia may be controlled by several properties including grain size, 

distribution of grains, processing methods and additives [71].   
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Table 2- Translucency- contrast ratio of dental ceramics  

 

Regarding the present knowledge pertaining to zirconia – based dental prostheses, 

the following conclusions are suggested: 

1) Milled zirconia restorations fabricated by pre-sintering CAD CAM display 

acceptable fit.  Greater accuracy is displayed for smaller prostheses. 
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2) Layered zirconia restorations display chipping of the veneer ceramic material, 

but framework fracture is rare. 

3) Anatomic, monolithic zirconia restorations may offer promises of improved 

physical strength and absence of chipping, but the translucency of the bulk 

zirconia may challenge esthetics. 

Monolithic zirconia restorations were recently introduced to address the strength 

and chipping complications reported.  The concept of avoiding veneering porcelains 

is directed at elimination of chipping.  However, elimination of the veneering 

porcelains may reduce the technician and clinician ability to impart natural 

appearances attributable to translucency.  It is the aim of this project to examine the 

relationship of translucency and strength of zirconia as a function of sintering 

conditions. 
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2.The Effect of Sintering Process on Zirconia’s Optical and Physical 
Properties. 

Introduction 

One of the emerging challenges inherent to the adoption of new CAD-CAM 

procedures for fabricating dental prosthesis is identifying the physical limitations 

presented.  Anusavice (2012) described many of the limitations in dental materials 

testing in prediction of clinical outcomes [72].  For the emergent use of Zirconia 

restorations that are presently supported by work-flow (digital), cost (versus gold) 

and esthetics (all-ceramic) issues, a complex set of concerns must be addressed.  

For example, if the strength of zirconia is sufficient for fabrication of single as well as 

multiunit restorations, can it be utilized in a highly esthetic manner?  Although 

Zirconia is white, it is relatively opaque.  Clinical strategies to utilize this promising 

dental material in an effective, efficient and esthetic manner require careful 

assessment. 

Zirconia is strong and tough.  Its strength is based on its crystalline structure.  

In its tetragonal form, stresses lead to local transformation to monoclinic form that 

resists or stops crack propagation [73]. This can be measured in bulk and observed 

by fractography.  Zirconia is white.  This appeals to dentists and patients alike.  

However, teeth are subtly colored and not white.  Using bulk zirconia to 

develop prosthesis that functions and resists imposed loads over time requires its 

clinical alteration.  Presently, two different approaches have emerged.  A third 
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approach, milling zirconia from the sintered state has been largely discounted in 

recent years. 

One approach to utilizing zirconia for reproducibly esthetic and lasting 

restorations is by CAD CAM generation of a framework that is veneered with a 

compatible veneering ceramic.  The other approach involves the generation of a fully 

anatomical prosthesis or ‘monolithic’ zirconia prosthesis that is devoid of veneering 

ceramic.  Modification of the zirconia’s white color occurs by infusion of colorants 

prior to sintering.  

Ceramic veneered zirconia prostheses require the careful design and 

manufacture of a framework that is produced by CAD CAM procedures from bulk 

zirconia.  Recent reports suggest that proper contour and design of the framework 

be employed to assure ceramic veneer integrity [74].  Other studies confirm that 

milled zirconia frameworks fit with acceptable fidelity  [75].  Beautiful ceramics can 

be applied to these frameworks and remarkable prostheses can be made.  However, 

when considering the growing data set regarding the clinical outcomes for this 

approach to using zirconia for clinical dentistry, chipping of the framework (often an 

irreversible complication) occurs with relatively high frequency [76] 

The use of anatomical or ‘monolithic’ zirconia prosthesis to provide lasting 

and esthetic restorations offers other clinical challenges [77]. Generally these 

prostheses are complex in architecture, especially when made for screw retained 

implant prostheses.  The complex milling procedures requires confidence in design. 

Thus, a resin prototype prosthesis is a necessary intermediary step [78].  Further, 

the monolithic nature of the prosthesis also refers to the white color.  The coloring of 
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a monolithic prosthesis is a complex procedure requiring the use of multiple colors 

and a precise drying and sintering procedure.  When completed, a monolithic 

zirconia prosthesis lacks a ceramic veneer that is susceptible to chipping.  However, 

compared to veneered prostheses, relative opacity may be noted [79]. 

Monolithic zirconia restorations were recently introduced to address the 

strength and chipping complications reported.  The concept of avoiding veneering 

porcelains is directed at elimination of chipping.  However, elimination of the 

veneering porcelains may reduce the technician and clinician ability to impart natural 

appearances attributable to translucency.  It is the aim of this project to examine 

the relationship of translucency and strength of zirconia as a function of 

sintering conditions. 

2.1 Materials  and Methods 

One hundred and twenty (120) zirconia disks were created using Materialize 

software and milled using Wieland’s Zenotec Mini, Wieland Dental + Technik GmbH 

& Co. KG  Lindenstraße 2 Germany - 75175 Pforzheim. The zirconia blanks used 

were Zenostar Zr Translucent, Shade Pure 98x18mm, Ivoclar Vivadent, Inc. 175 

Pineview Drive Amherst, NY. File design was created to meet the following post 

sintering dimensions: 1.2 mm thickness by 14mm diameter. Figures 3 and 4. 
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Figure 3- Disks design file 

 

 

 

 

Figure 4- Milled zirconia disk 

	  
	  
All di5sks were subsequently subjected to a processing and polishing protocol 

(Figure 5) 
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Figure 5- Diagram of research sequence 

 

 

All disks were sintered in a four stage protocol using Origin® DuoTron™ Pro 

Furnace , B&D Dental Technologies  2371 S. Presidents Dr., Ste. E ,West 

Valley City, UT ,  and were sintered according to manufacturer’s recommendations 

in regards to Stages 1,2 and 4 (Closing, heat ramp and Cooling). Stage 3 (holding 

temperature) was the variable considered in this study as the holding temperature 

and times were modified to explore what combination would give the best outcome 

as far as optical and physical properties.  

Disks were divided into 12 groups and each groups was assigned a holding 

(sintering) temperature and holding time according to table 1. 
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Table 3- Sintering temperatures   

Max 
temperature 
Holding time 

 

         1450 

 

          1500 

 

        1550 

 

         1600 

           1H            10            10            10            10 

           2H            10            10            10            10 

           3H            10            10            10            10 

 

 

All disks were surfaced after sintering using table top polisher Ecomet 3 

(Buehler 41 Waukegan Road Lake Bluff, Illinois), using water at 100 RPM. Buelher 

Carbimet disks were used first grit 320/P400 followed by 600/P1200.   Each of the 

12 groups was later subdivided into 2 subgroups representing fatigued and non-

fatigued (control) samples (n=5). 

 

Table 4- Test fatigued group 

Total specimens 60 

 

Max 
temperature 
Holding time 

 

         1450 

 

          1500 

 

        1550 

 

         1600 

           1H             5             5                                 5                      5 

           2H             5                        5             5                       5            

           3H             5                        5                        5             5 
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Table 5- Control group    

Total specimens 60 

 

Max 
temperature 
Holding time 

 

         1450 

 

          1500 

 

        1550 

 

         1600 

           1H             5             5                                 5                      5 

           2H             5                        5             5                       5            

           3H             5                        5                        5             5 

 

 

Using a calibrated spectrophotometer (UltraScan VISDelta TRAC with 

EasyMatch QC, Calibration date 11-6-13, Hunter Associates Laboratory Inc. 

Reston VA samples were evaluated for contrast ratio(CR) as a measure of 

translucency. Contrast Ratio is the ratio between the reflectance of a specimen over 

a black background to that over a white background of a known reflectance [80, 81]. 

The CR values are calculated according to the equation CR = Yb/Yw, in which Yb 

represents the spectral reflectance of light of the specimen over a black background 

and Yw over a white background. The CR value of a totally transparent material is 0, 

while the value of a totally opaque material is 1. 

Specimens were later fatigued and thermo cycled using SD Mechatronik 

chewing simulator CS-4 (SD MECHATRONIK GMBH Miesbacher Straße 34 D-

83620 Feldkirchen-Westerham GERMANY).  Samples where mounted in a 

customized supporting device using Bosworth acrylic.  Combined thermal cycling 
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(TC: 6000 58/558; 2 min each cycle) and mechanical loading (100 N; 1.6 Hz 

100.000 cycles) was performed with parameters based on previous reports. 

 

Figure 6- SD Mechatronik chewing simulator  CS-4 

	  
Specimens in group A (fatigued) and group B (control), were measured for 

strength with a biaxial strength test (piston on 3 balls) as described in the ISO 

standard 6872 for dental ceramics [82]. Each disk was measured with digital caliper 

and values were taken into account up to 2 decimal points. Average disk thickness 

of 1.20 was observed for the specimens.  

 

 

Figure 7- Samples measurement 
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Tension-compression test machine Instron 33R4204 ,Instron Worldwide 

Headquarters 825 University Ave. Norwood, MA. with a crosshead speed of 0.15 

mm/min was used (Calibration day 04/10/13).  To support the specimen 3 steel balls 

with a diameter of  (3mm) were positioned in a support circle with (16mm) diameter 

The disk - shaped specimens were positioned concentrically on these supports and 

load was applied centrally with a stainless steel stylus 1.4 mm in diameter at the tip. 

The load at the point of fracture was recorded and biaxial strength for each 

specimen recorded and the mean and standard deviations were calculated.  Figure 

8 

 

 

	  
 

Figure 8 - Instron 33R4204 
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2.2 Statistics 

The outcomes of the study were strength and translucency, measured as a 

contrast ratio. The explanatory variables of interest were group, temperature and 

holding time for strength and temperature and holding time for translucency.   The 

statistical method used separately for each outcome was a factorial ANOVA with 

main effects only, no interactions were included because of small sample size. Level 

of significance was set at 0.05.  Pairwise contrasts using least mean squares were 

performed when a main effect was statistically significant. 
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2.3 Results 

2.3.1 Model for Strength 

The results obtained from biaxial loading of samples revealed only modest 

differences among samples created using all conditions.  Generally, a trend for 

greater strength with higher temperatures and longer holding times was observed 

(Table 4 and 5).  More specific observations are revealed by the statistical 

evaluations. 

The model can be summarized in the following formula, 

Strength = group+ temperature+ holdtime 

The Type 3 results for this model are, 

Source DF Type III SS Mean Square F Value Pr > F 
Group 1 0.0424 0.0424 0.00 0.9988 
Temp 3 143180.9626 47726.9875 2.68 0.0506 
Holdtime 2 112575.1159 56287.5580 3.16 0.0464 

	  
 

The average strength was not statistically different among the groups 

(P=0.99). Holding time was statistically significant (P=.046) after adjusting for 

temperature and group.  The pairwise comparisons indicate that the average 

material strength with 1 hour holding time is statistically significantly different 

(smaller) than that with 2 hour holding time (P=0.016). But the comparisons between 

1 hr and 3 hrs and between 2 hrs and 3 hrs were not statistically significant (P 

=0.078 and P=0.515 respectively). In addition, temperature approached statistical 

significance (p = 0.0506). The pairwise comparisons show that the average material 

strength obtained using the 1550-degree temperature was statistically significantly 
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different (smaller) than that with 1600 degree temperature (p=0.0072). But the 

differences between other pairs (i.e. 1450 vs 1500, 1450 vs 1550, 1450 vs 1600, 

1500 vs 1550 and 1500 vs 1600) are not statistically different. 

	  

Table 6- Results for holding time 

	  
holdtime strength LSMEAN 
1 hour 999.30664 
2 hours 1072.35000 
3 hours 1052.85000 

 
 
 
 
 
 

Least Squares Means for Effect holdtime 
t for H0: LSMean(i)=LSMean(j) / Pr > |t| 

Dependent Variable: strength 
i/j 1 hour 2 hours 3 hours 
1 hour   

  
 

-2.4298 

0.0167 
 

-1.78113 

0.0776 
 

2 hours 2.429804 

0.0167 
 

  

  
 

0.652963 

0.5151 
 

3 hours 1.781132 

0.0776 
 

-0.65296 

0.5151 
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Table 7- Results for temperature 

	  
	  

	  
temp strength LSMEAN 
1450 deg 1031.70000 
1500 deg 1034.23333 
1550 deg 1002.44218 
1600 deg 1097.63333 
 
 
 
 

 

  
 

i/j 1450 deg 1500 deg 1550 deg 1600 deg 
1450 deg   

  
 

-0.07346 

0.9416 
 

0.84104 

0.4021 
 

-1.91201 

0.0584 
 

1500 deg 0.073464 

0.9416 
 

  

  
 

0.913863 

0.3628 
 

-1.83854 

0.0686 
 

1550 deg -0.84104 

0.4021 
 

-0.91386 

0.3628 
 

  

  
 

-2.73635 

0.0072 
 

1600 deg 1.912008 

0.0584 
 

1.838544 

0.0686 
 

2.736349 

0.0072 
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The following graphics summarizes the above results: 
 
 
Figure 9- Biaxial strength test for control group 
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Figure 10- Biaxial strength test for fatigued group 

 

 
 
 
 
	  

2.3.2 Model for Translucency 
 

The results obtained from spectrophotometric of samples revealed minor 

changes in the translucency of the samples created using all conditions.  Generally, 

a trend for higher translucency with higher temperatures and longer holding times 

was observed (Table 3).  More specific observations are revealed by the statistical 

evaluations. 
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The	  model	  can	  be	  summarized	  in	  the	  following	  formula,	  

𝑡𝑟𝑎𝑛𝑠𝑙𝑢𝑐𝑒𝑛𝑐𝑦 = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + ℎ𝑜𝑙𝑑𝑡𝑖𝑚𝑒	  

The	  Type	  3	  results	  for	  this	  model	  are,	  

	  

Source DF Type III SS Mean Square F Value Pr > F 
Temp 3 0.00156971 0.00052324 7.02 0.0005 
Holdtime 2 0.00004025 0.00002012 0.27 0.7644 
      

	  
Average translucency was not statistically significantly different among the 3 

holding times (P=0.76) but was statistically significantly different for the 4 

temperatures after adjusting for holding time.  The average contrast ratio (i.e. 

translucency) between 1450  and 1550 degrees , 1450 degree and 1600 degrees, 

and 1500 and 1600 degrees are significantly different. The average contrast ratios 

between the other pairs of temperatures (1450 vs 1500; 1500 vs 1550; and 1550 vs 

1600) are not statistically significantly different. 

	  

 
Table 8- Translucency results for temperature  

temp trans LSMEAN 
1450 deg 0.79922784 
1500 deg 0.79648005 
1550 deg 0.79137061 
1600 deg 0.78583723 
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Least Squares Means for Effect temp 
t for H0: LSMean(i)=LSMean(j) / Pr > |t| 

Dependent Variable: trans 
i/j 1450 deg 1500 deg 1550 deg 1600 deg 
1450 deg   

  
 

0.871674 

0.3872 
 

2.492523 

0.0158 
 

4.247859 

<.0001 
 

1500 deg -0.87167 

0.3872 
 

  

  
 

1.620849 

0.1109 
 

3.376185 

0.0014 
 

1550 deg -2.49252 

0.0158 
 

-1.62085 

0.1109 
 

  

  
 

1.755336 

0.0849 
 

1600 deg -4.24786 

<.0001 
 

-3.37619 

0.0014 
 

-1.75534 

0.0849 
 

  

  
 

 

 

2.4  Discussion 

In this investigation, the influence of firing time and temperature on zirconia’s 

physical properties of strength and translucency were examined.  Using disks and a 

biaxial model of strength testing, the current results confirm the relatively high 

strength of zirconia that approximates 1,000 MPa.  This is a central advantage of 

zirconia among other dental ceramics available today. For example the reported 

strength of other materials are: Lithium disilicate 400 MPa, Leucite reinforced 

ceramics (Empress) 140 MPa. 

The samples made in this investigation were disks of 14 mm diameter.  This 

was mandated by our need to adapt samples to the UltraScan VIS 

spectrophotometer  (Hunter Associates Laboratory Inc. Reston VA). Because of this, 

strength was measured using a biaxial strength test.  In the biaxial flexural test a 
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disk shaped specimen is supported below by 3 ball bearings distributed o a circular 

pattern. The load is applied from above by use of a piston concentric with the 

support ball bearings.  

The 3 - point flexural strength test that has been commonly used to test 

dental ceramics presents a problem since it can be sensitive to flaws along the 

specimen edges [82].  Biaxial flexure described in ISO 6872 is a reliable method of 

choice, since the effect of possible flaws in the edges is eliminated by applying the 

load in the central area  [82]. Several studies have used biaxial flexural strength as a 

method to predict performance of all-ceramic materials [83-85]. For example, 

Pittayachawan in 2007 tested the biaxial strength of lava and reported Biaxial 

flexural strength around 1100 MPa. [86] 

This study employed a thermocycling regimen in the evaluation of fatigue.  

This may be of particular relevance to zirconia testing. Low-temperature degradation 

(LTD) has been associated with several 3Y-TZP-based biomaterials, but it is difficult 

to simulate in the laboratory. Thermocycling has been described as an effective way 

to simulate the oral environment and evaluate the effect of (LDT). Currently, Y2O3 

(yttria) or CeO2 (ceria) are being incorporated to zirconia. These stabilizers improve 

the retention of the tetragonal structure at room temperature.  Perdigao in 2012 

evaluated the effect of thermocycling in zirconia with yttria and Ceria as stabilizers 

and reported lower monoclinic fraction in the group that contained Ceria as 

stabilizer. The group that contained yttria reflected greater susceptibility to LTD. 

A spectrophotometric method was used to measure translucency.  They are 

useful in measuring the amount of light reflected from a sample and the amount of 
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light adsorbed from the sample to calculate translucency.  There exist other methods 

of measuring translucency that include spectroradiometry. These instruments 

measure different parameters of irradiance and radiance.  When Lim et al compared 

the measures of translucency using both spectroradiometry and spectrophotometry; 

values were higher for the spectroradiometry measures.  The measures were highly 

correlated.  A previous study measured translucency of various ceramics and the 

CR results were between 0.82 and 0.89 for zirconia samples such as Vita Y Z 

zirconia and Lava, and for more translucent materials such as Empress values 

range from 0.69 to 0.77. [70]. 

An important phenomenon that affects measurement of translucency is ‘edge-

loss’.  This refers to the scattering of incident light to the edges of a translucent 

material without being adsorbed and thus, not being detected by the 

spectrophotometer.   Edge-loss is influenced by the physical characteristics of the 

spectrophotometer, the properties of the material, the thickness of the translucent 

layer and the reflectance of the backing layer.  In this study, the various parameters 

affecting edge loss were well controlled using a single investigation, a single sample 

thickness and consistent measurement.  However, the properties of the material 

were hypothesized to vary with holding temperature and time.  One other variable 

that could have influenced the measured values is the surface topography.  These 

samples were polished using 300 and 600 grit abrasives after sintering.  The 

imposed or resultant roughness may have induced or permitted scatter of incident 

light and an induced edge-effect.  While this may be important, it should be noted 

that all samples were polished equally resulting in similar surface roughness (polish) 
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among all groups.   Further studies may be performed with an immersed sample or 

highly polished sample to reduce the influence of scatter and edge-effect.  The 

opportunity to use glazed samples was avoided in response to the report of 

Heffernan (2002) that revealed modestly higher translucency for glazed materials.  

In this regard, the clinical use of polished zirconia may be preferred due to favored 

wear versus natural teeth or prostheses. [87,88] 

A clinically relevant zirconia substrate dimension was studied. Its use in 

anatomic monolithic prostheses often requires 16 – 20 mm2 connector dimensions 

minimally. Implant supported prostheses with anterior tooth display will have incisor 

thicknesses approaching or exceeding anatomic limits.  Here, samples were 1.2 mm 

thick.   Among the many variables affecting translucency, thickness reduces 

translucency of dental porcelains [87-88].  

Sintering temperatures are one variable that influences the strength of 

zirconia.  Previous investigations demonstrated zirconia demonstrated highest 

strengths with sintering temperatures of 1400 C and 1550 C.  Sintering temperatures 

of 1650 C and above lead to changes in the microstructure that decreased the 

materials strength. One of the limitations described in this study was the fact that 

they only used one type of zirconia and those results might not be applicable for all 

brands. [70]. 

The laboratory or clinical manipulation of zirconia for dental prostheses must 

follow careful guidelines.  Here, significantly lower strength was noted for zirconia 

sintered at the relatively low temperature of 1450 degrees C.  A trend for higher 

strength was seen when high temperatures >1550 or long holding times > 2 hours 
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were used.  It may be suggested that clinical manipulations of zirconia be conducted 

in calibrated ovens. Further, under no circumstances should firing be conducted 

using reduced holding times.   

The hypothesis that elevated sintering temperatures will increase the 

translucency of the resulting zirconia was not supported by the spectrophotometric 

analyses.  Globally, translucency values of 0.78 to 0.82 were observed.  These 

values reflect previous measures of zirconia and confirm that zirconia is less 

translucent than lithium disilicate materials with translucency values measured to be 

approximately 0.7 [71].  We speculate that further polishing, glazing or wet 

measurement of these samples would reduce the reflectance component of the 

measurement and improve translucency.  Whether or not highly polished or glazed 

materials that are represented clinically are more or less translucent than the 

samples measure here cannot be determined.  However, the issue of reflectance 

would affect all samples similarly and mask translucency with equal magnitude.  

Although there is a trend toward greater translucency with higher sintering 

temperatures and times, it is unclear how this may translate into the clinical 

environment. 

One limitation of this study may reflect the choice to polish and not glaze 

these samples [87] evaluated translucency for several ceramics and performed 

several measurements before and after the glazing process. Significant differences 

(CR) were found and between glazed and non-glazed specimens. The glass disc 

Vitadur Alpha, IPS Empress, In-Ceram Spinell, and Procera glazed specimens were 

significantly more translucent than their corresponding non-glazed specimens, 
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respectively. No significant difference was found in the opacity of glazed and non-

glazed specimens of IPS Empress 2, In-Ceram Alumina, In- Ceram Zirconia, and 

metal-ceramic. Glazing cycles decreased the opacity for all veneered materials, 

except for In-Ceram Zirconia and metal-ceramic specimens. We could possibly 

suggest that the effect of glazing for translucency measures is material dependent. 

Clinical performance of contemporary all ceramics systems depend on a 

variety of factors that finally would determine how a material would perform in the 

oral environment.  Prior to clinical manipulation evaluation of material properties in 

vitro might help to predict its clinical performance. The opportunity to compare the 

measured translucency with previous reports is limited.  Existing studies have used 

very different samples of different thickness and made of different zirconia 

substrates.  This work, however, demonstrates the modest sensitivity of zirconia 

translucency to holding temperatures and times.   

One potential clinical implication that may be suggested from this 

investigation is that while ‘fine-tuning’ of the firing cycle can provide minor 

enhancement of zirconia translucency without deleterious effects on strength, other 

approaches to creating highly translucent restorations using monolithic zirconia are 

needed.  

 2.5 Conclusions 

Within the limitations of these experiments, the follow observations were made: 

1) Increasing temperature from 1450 – 1600oC led to minor increase in biaxial 

flexural strength that were not significantly different 
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2) Increasing the holding times from 1 to 2 to 3 hours at temperatures ranging 

from1450 – 1600oC led to increased flexural strength when holding times 

exceed 1 hour. 

3) Under the conditions measured, increasing temperature and / or holding time 

did not alter translucency.  Further investigations may be required to fully 

explore the influence of firing technique on translucency. 
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