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ABSTRACT 
 

YANG SHAO: Mapping and Modeling the Urban Landscape in Bangkok, Thailand: 
Physical-Spectral-Spatial Relations of Population – Environmental Interactions 

(Under the Direction of Stephen J. Walsh) 
 

              This research focuses on the application of remote sensing, geographic information 

systems, statistical modeling, and spatial analysis to examine the dynamics of urban land 

cover, urban structure, and population-environment interactions in Bangkok, Thailand, with 

an emphasis on rural-to-urban migration from rural Nang Rong District, Northeast Thailand 

to the primate city of Bangkok. The dissertation consists of four main sections: (1) 

development of remote sensing image classification and change-detection methods for 

characterizing imperviousness for Bangkok, Thailand from 1993-2002; (2) development of 

3-D urban mapping methods, using high spatial resolution IKONOS satellite images, to 

assess high-rises and other urban structures; (3) assessment of urban spatial structure from 2-

D and 3-D perspectives; and (4) an analysis of the spatial clustering of migrants from Nang 

Rong District in Bangkok and the neighborhood environments of migrants' locations. 

                Techniques are developed to improve the accuracy of the neural network 

classification approach for the analysis of remote sensing data, with an emphasis on the 

spectral unmixing problem. The 3-D building heights are derived using the shadow 

information on the high-resolution IKONOS image. The results from the 2-D and 3-D 

mapping are further examined to assess urban structure and urban feature identification. This 

research contributes to image processing of remotely-sensed images and urban studies. The 

rural-urban migration process and migrants’ settlement patterns are examined using spatial
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statistics, GIS, and remote sensing perspectives. The results show that migrants’ spatial 

clustering in urban space is associated with the source village and a number of socio-

demographic variables. In addition, the migrants’ neighborhood environments in urban 

setting are modeled using a set of geographic and socio-demographic variables, and the 

results are scale-dependent.  
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Rapid urban growth has received increasing attention from urban and regional 

planners, geographers, demographers, decision-makers, and researchers from the social, 

natural, and spatial sciences. Although recent statistics show that urban areas account for 

only a small fraction of the Earth’s surface area, most agree that continuing urban 

expansion has far-reaching and disproportionate effects on mass, energy, and resource 

fluxes over large geographic extents (Small et al., 2005). One of the main concerns is 

related to the environmental consequences of urban development. The land 

transformations from agriculture and other natural lands to urban land uses are typically 

irreversible and may lead to possible environmental degradation, primarily associated 

with the deterioration of air and water quality (Kalnay and Cai, 2003). Moreover, 

researchers argue that urban development may reduce the number of native species and 

generate substantial local extinction rates of local flora and fauna (Luniak, 1994; 

Marzluff, 2001). Currently, the highest urban growth rates are in the developing 

countries. Many fast growing cities are located in China, Thailand, Malaysia, and other 

regions with rapid economic development and population growth. The dominant trend of 

land use/cover change is from cultivated land to urban and build-up and the rates of land 

transformations to such developed places are striking (Yeh and Li, 1997). The rates, 

from-to land use types, and the trajectories of land transformations from natural to built-
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up land uses have become a central concern of groups and organizations involved in 

questions related to sustainable development and food security (Hong and Li, 2000). In 

addition to the areal expansion of urban places, the spatial structure of urban areas is also 

important, particularly the loss of green-space in built-up areas and the fate of land use at 

the urban-rural interface. For instance, the spread of low density settlement patterns 

through urban sprawl is often considered an inefficient and wasteful use of land 

resources, although it certainly has other ecological and socio-economic implications and 

benefits (Clapham, 2003).  

The timely information about the condition and status of urban land use/cover is 

important for planning and management purposes. In most developing countries, 

however, the land use/cover maps are often limited and generally outdated, and the data 

sources and quality may also be questionable (Donnay et al., 2001). Therefore, it is 

generally difficult to estimate the rates and trajectories of urban growth based on the best 

available information, particularly for historical periods and for comparisons to other 

geographic areas and periods. Satellite remote sensing is one such data source that 

provides a consistent data source for the characterization of urban land use/cover types 

and their changes over space and through time (e.g., Forster, 1983; Mesev, 1998; Paola 

and Schowengerdt, 1995). Currently, medium spatial resolution imagery (e.g., Landsat 

TM/ETM) is considered an ideal data set for many urban applications, especially for 

urban growth analysis and modeling (Carlson, 2003), because of the rich time-series, 

depth of the historical coverage, large geographic extent of image scenes, broad 

geographic coverage for most of the developed and developing worlds, and their multi-

spectral resolutions for landscape characterization. Challenges in the use of remotely 
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sensed data, particularly the intermediate spatial resolution satellite data, however, are 

substantial, extending from methodological and conceptual perspectives. First, the 

spectral mixture problem of the integrated pixel in which multiple land use/cover types 

contribute to a single “integrated” spectral response pattern at the pixel level is highly 

likely in urban areas, particularly when a 30 x 30 m pixel is used to characterize the 

landscape. What results is often relatively low image classification accuracy for complex 

and fragmented landscapes that are typical of urban settings (Small, 2003). Large 

numbers of pixels may have mixed spectral signals from two or more land use/cover 

types (i.e., impervious cover and vegetation), when medium spatial resolution data are 

used for urban mapping. Therefore, traditional per-pixel classifications may be less useful 

in representing the urban landscape. Second, most current urban mapping applications 

only consider land use/cover at the two-dimensional or 2-D level; the building height 

information has generally not received sufficient attention in remote sensing of urban 

places, particularly satellite-based remote sensing, and, as such, information on 

population densities, for instance, may be excluded from the typical information base of 

urban settings. The ability to characterize the three-dimensional or 3-D urban setting may 

provide very useful and even essential information for assessing urban structure and 

socio-demographic implications of urban areas and urban structures. Third, there is very 

limited information that describes the urban form or urban structure, especially for the 

urban areas in developing countries. Urban form considers the myriad of urban features 

in urban places, whereas urban structure considers the spatial organization of urban 

features, including land use/cover, arrayed across the landscape. Researchers have 

inferred social-demographic implications from urban form and their dynamics, although 
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most studies that link pattern to process are conducted for cities in North American and 

Europe. One of the main objectives of this research is to examine advanced remote 

sensing image analysis techniques to improve urban characterization. It is also important 

to assess the robustness and consistency of the remote sensing derived products for 

analyses through time and for other regions of the world. The level of accuracy and 

consistency is critical for the estimation of urban growth rates and patterns, and so 

approaches that are repeatable and generate high quality and informative data are of 

utmost concern.  

Moving beyond urban mapping, many researchers are interested in developing 

models to understand the causes and consequences of land use/cover change. A 

considerable number of urban growth models have been developed, including simple 

statistical models and more complicated spatial simulation models, such as Cellular 

Automata and Neural Network models. Statistical models have been used to assess the 

associations between land use/cover changes and a variety of geographic, biophysical, 

and socio-demographic variables (e.g., Seto et al., 2003; Walsh et al., 1999). Spatial 

simulation models such as Cellular Automata or CA provide an improved capability to 

examine alternate scenarios of land use/cover change and to predict future growth forms 

in urban settings, although there are considerable uncertainties with regard to model 

calibration and validation (e.g., Clarke, 1998). Wilson et al. (2003) examined urban 

growth patterns and developed a set of spatial models to quantify urban development 

across the landscape. The urban processes of population and structure infilling, diffusive 

expansion, and isolated urban growth may provide very useful descriptions of urban form 

and function relations useful to local urban planners and decision-makers. The concepts 
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of linking form and function through remote sensing characterizations and pattern and 

process relations through statistical and spatial models, however, have not been 

rigorously employed for cities in developing countries, where urban growth or 

development may take different forms compared with those from developed countries. 

This research will examine the existing models and analytical approaches that have 

proved useful in characterizing urban growth patterns in Bangkok, a primate city in 

Thailand. 

Urbanization and urban growth, more generally, is the consequence of three 

factors: rural–urban migration, differential natural increase, and re-classification of the 

urban administrative area as a consequence of planned and actual uses (Cohen et al., 

2003; United Nations, 2004; White et al., 2003). In Thailand, over the past several 

decades, rural-urban migration has been a major contributor to urban growth 

(Phongpaichit, 1993), especially the growth of Bangkok. Bangkok is the destination for 

about 50-percent of rural-urban migrants in Thailand (NSO Thailand, 2000). The city has 

experienced an increase in population density from 3,001 people per square kilometer in 

1980 to 4,051 people per square kilometer in 2000 (NSO Thailand, 2000). About 37-

percent of the population in Bangkok was born outside of the province of residence (NSO 

Thailand, 2000). These large numbers of migrants relocating in Bangkok from rural 

source areas are of critical concern for urban planners, government officials, and social 

and spatial scientists. As such, uncontrolled rural-urban migration may cause rapid 

population growth in urban areas and quickly outstrip urban services and related 

infrastructure. This is largely due to the age-selection of the migration process in which 

people willing to relocate in urban settings from rural locations are often young and in 
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reproductive age. Increased total population and population density in urban setting may 

also cause a number of possible social/environmental problems such as urban poverty, 

homelessness, traffic congestion, infrastructure deficiencies, and a general reduction in 

the quality of life. Also, the living conditions of migrants, including housing and 

neighborhood conditions are often poor. Some researchers argue that the settlement 

patterns of rural-urban migrants can be directly related to informal housing and urban 

slums (Wu, 2002), and may also cause problems related to physical health and a variety 

of long-run, social outcomes for children (Jencks and Mayer, 1989).  

Most previous rural-urban migration studies have focused on the push-pull factors 

of population relocation from source to destination areas. Studies regarding migrants’ 

settlement patterns in urban settings have received much less attention in the geography 

literature. One possible reason is the general lack of good and available data to 

understanding the socio-economic and demographic characteristics of migrants and their 

relationship to other migrants from similar or nearby towns in rural places. It is generally 

difficult to tract migrants’ locations in urban areas. Migrants’ settlements vary from 

informal housing to single-family homes. Some migrants are permanent, while others are 

temporary or seasonal (Guest, 1996; Korinek et al., 2005). Some migrants live close to 

other migrants, and others are areally dispersed. Currently, the lack of data and 

subsequent analyses severely limit our understanding of the settlement patterns of rural-

urban migrants, the impact of rural-urban migration on cities, as well as the impact of 

cities on migrants themselves. This study will use a unique data set that describes the 

spatial pattern and demographic characteristics of rural-urban migrants from Nang Rong 

to Bangkok, Thailand. The data were collected in 2000 as part of the Nang Rong Projects 
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(see the web site at http://www.cpc.edu/Nang Rong). Out-migrants from 22 of the 

original 51 survey villages in Nang Rong who temporarily or permanently relocated to 

Bangkok (as well as other locations not assessed here) were geo-coded and linked to their 

home addresses (and in some cases to the factories where they worked) using GPS 

technology. Spatial analyses were conducted that relate migrant patterns to urban 

characteristics, defined through remote sensing image processing and subsequent 

interpretations. The spatial organization of migrants in Bangkok and their neighborhood 

environments are of particular interest.  

The interconnectedness of people, place, and environment is the central research 

context of this research. The focus of the research is the remote sensing image analysis 

and physical-spectral-spatial relationships of land use/cover patterns measured by remote 

sensing systems and GIS techniques in a major urban setting (i.e., the greater Bangkok 

area). The context of this research is framed within a set of broad questions including: 

• What are the characteristic features of urban areas and urban form?  

• Which remote sensing and GIS approaches can effectively be used to 

characterize urban features and their dynamics?  

• To what extent can GIScience techniques be used to study land use/cover 

patterns and dynamics, as well as population characteristics in urban 

places?  

1.2 Research Aims and Significance 

The overall goal of this study is to examine the urban setting of Bangkok, 

Thailand through studies involving surface imperviousness; 3-D urban mapping from 

satellite data; urban morphology using a satellite image time-series and human settlement 
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patterns captured through land use/cover classifications; GIS coverages that describe the 

basic urban infrastructure of Bangkok; landscape pattern analysis metrics of rural, urban, 

and rural-urban transitions; and geo-coded migrant locations in Bangkok and their source 

areas in Nang Rong.  

The first research aim is to map and monitor the biophysical characteristics of 

urban settings in Bangkok through digital image classification and pattern recognition 

approaches. A set of 2-D urban mapping and change-detection techniques are examined 

via three research objectives: (1) derive impervious cover using Neural Network-based 

sub-pixel classifications; (2) examine the rates of urban growth from 1993 to 1999 and 

1999 to 2002; and (3) develop an urban growth model using the concepts of areal 

infilling, diffusive expansion, and isolated development (Wilson et al., 2003), and 

identify any other pattern-process relationships that might be unique to Bangkok, or 

primate cities more generally. As previously indicated, the use of traditional per-pixel 

classification techniques can be problematic for mapping urban environments, because 

large numbers of pixels may have mixed spectral signals from two or more land cover 

types. Recent advances in urban remote sensing focus on the development of sub-pixel 

classification techniques that describe fractions or proportions of land use/cover types in 

pixels as sub-resolution information. Linear Mixture Models are the most widely used 

approach for decomposing pixels into their component parts, although more complicated 

algorithms such as Decision Trees (e.g., DeFries et al., 1999; Xian et al., 2005) and 

Neural Networks (e.g., Atkinson et al., 1997; Carpenter et al., 1999; Fernandes et al., 

2004) have been increasingly used. Many argue that these non-parametric models are 

superior to linear mixture models for solving spectral “unmixing” problems. A main 
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problem with the use of non-parametric models is that the results are often sensitive to 

the characteristics of training data and training protocols. Until now, few researchers have 

assessed their impacts on the classification results. Moreover, most current spectral 

mixture models focus on a single image classification; few have attempted to apply the 

spectral mixture model to time-series data and subsequent urban land cover change 

analysis. This research will develop a neural-network based, sub-pixel classifier to derive 

impervious cover from a time-series of Landsat TM/ETM imagery. The challenge is to 

consider its generalizability in the spatial and temporal domains. The main advantage of 

the sub-pixel approach is that it is typically considered to be a more accurate and realistic 

representation of urban landscapes. It should be noted that the sub-pixel land-cover 

proportions (e.g., percentage of impervious cover) and their dynamics can be easily 

converted to traditional per-pixel approaches, thus the unmixing approach provides 

greater flexibility for data representation and analysis.  

The second research aim considers the 3-D urban characterization and mapping. 

Few previous studies on urban mapping and urban form consider the building height, or 

3-D information in their characterization. This is largely due to the limitations imposed 

by the cost of the imagery, satellite images vs. aerial photography, and digital image 

analysis techniques vs. manual interpretation using traditional photogrammetric methods 

to discern building height. In fact, building height information may be critical for certain 

urban applications, especially for the delineation of urban core, urban fringe, and rural 

areas. The building height also has consideration implications for socio-demographic 

characterization of urban places. For instance, the function of a high-rise building can be 

very different from a single-story structure, although they may be simply grouped into the 
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same urban class (i.e., impervious cover) in conventional 2-D urban mapping 

applications. The use of aerial photogrammetry techniques are the most common 

approach to derive 3-D information using standard equations and devices such as 

stereoscopes and parallax wedges. Building height can be derived from a single or stereo-

pairs of aerial photographs (Paine and Kiser, 2003). LIDAR (Light Detection and 

Ranging) data has also been used for estimating building heights (Gamba and 

Houshmand, 2000), but the cost and data availability severely limit its application in 

large urban areas in developing counties, for change-detection studies and in studies with 

a deep historical context as LIDAR is a recently developed technology for landscape 

mapping applications. Few researchers have used satellite remote sensing data to 

characterize the building height largely due to the limitation on spatial resolution 

(Shettigara and Sumerling, 1998). The newly available hyper-spatial, remote sensing data 

(e.g., IKONOS and QuickBird) have improved spatial resolutions, thus offering new 

opportunities for 3-D urban mapping using similar approaches to traditional 

photogrammetry. This study will examine the use of high spatial resolution satellite 

imagery to estimate building heights in a crowded and complex urban setting. The 

approach will use the shadow information represented in the spectral response patterns of 

IKONOS data and the ephemeris information of the image linked to the solar geometry at 

that location. The challenge is to identify and analyze shadow objects on the satellite 

image. Three research objectives are proposed: (1) examine object-oriented computer 

algorithms to identify shadow/water objects from high satellite resolution imagery; (2) 

examine the object shape, size, and spatial neighborhood characteristics to delineate 

shadow and water objects, areas of spectral similarity and traditional confusion in image 
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processing; (3) estimate building height using the relationship between building, shadow, 

and solar position (e.g., elevation angle and azimuth angle) for Bangkok.  

The third research aim is to characterize urban form using image classification 

results and 3-D building heights. The definition of urban form may be subjective in the 

field of urban studies, but a common approach is to analyze the spatial pattern of the 

various land use/cover categories, especially the impervious cover (Donnay, 1994). The 

spatial pattern of impervious cover from a single image may provide direct information 

about urban structure or urban-rural gradients. The evolution of urban form, however, has 

not received much attention in the urban remote sensing literature. This research will 

employ landscape pattern analysis to study urban form from static and dynamic 

perspectives. In addition to the spatial organization of impervious cover, the building 

height information is also considered in the characterization of urban form. Two research 

objectives are further proposed: (1) examine alternative approaches to characterize urban-

rural gradients and delineate patterns that are suggestive of the urban core, urban fringe, 

and rural areas; and (2) examine the temporal variability of urban-rural gradients from 

1993 to 2002.  

The fourth research aim is to study the rural-urban migrants’ settlement pattern in 

Bangkok, Thailand. Three research objectives will be addressed: (1) analyze the 

migrants’ settlement pattern with regard to the urban form and urban development; (2) 

assess the neighborhood environments of rural-urban migrants; and (3) examine the 

spatial clustering of rural-urban migrants in the urban setting. The studies on the 

interrelationships between migrants’ locations, urban form, and urban development are 

generally absent from the urban and remote sensing literatures. Very few statistics are 
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available for a set of simple questions including: Are migrants choosing to settle in the 

urban center or urban fringes? Are migrants choosing to settle in newly urbanized areas 

in the cities, or in pre-existing urban places, possibly more familiar to earlier migrants 

from the same or spatially- and/or socially-connected villages? In addition, the literature 

on migrants’ neighborhood environments (i.e., imperviousness, green/open spaces, and 

road accessibility) are considerably less represented than migrants’ housing conditions 

(e.g., Wu, 2002). Finally, it is also important to study the influential factors for migrants’ 

settlement pattern in an urban setting. These factors include job location, housing/rent 

price, duration of stay in the urban area (i.e., permanent/temporary), and the relevance of 

social networks in explaining the geographic distribution of migrants from the same or 

different rural villages. A common origin or source area can be viewed as one type of 

social ties, or social network, although not the only one (see Korinek et al., 2005). 

Spatially-explicit investigations of social ties are generally rare, at least in the geography 

literature (see Faust et al. 2000 as an example of a social network analysis that operated 

within a spatial context). This study will apply spatial analyses and GIS techniques to 

examine the residential clustering of migrants from Nang Rong to Bangkok. Patterns of 

residential clustering will be examined in relation to origin or source villages, asking 

whether migrants from the same village are more likely to live in close proximity to one 

another than those from different villages. The origin village represents a social context 

for migration and a set of social ties that travel with the migrant from the origin to the 

destination.  

1.3 Method  
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The study of urban space and population-environment interactions relies on many 

data types and sources. Spatial and social data at multi-levels are combined to address 

specific research questions; the data types used in this research are described below.  

A rich satellite image datasets have been assembled for Bangkok, Thailand. The 

time-series of Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper (ETM) data 

includes multiple scenes acquired for the period of 1993-2002. In terms of high spatial 

resolution data, two IKONOS scenes (i.e., May 2000 and November 2002) were acquired 

for the Bangkok metropolitan area. Some GIS layers were acquired through a Nang Rong 

project trip held in Bangkok and Nang Rong district in 2004. In addition, a geo-located 

point file of migrant locations in Bangkok from the 22 survey villages was generated 

from the 2000 survey. Villagers who had out-migrated to Bangkok, the Eastern Seaboard, 

and other places were followed and surveyed. There are approximately 1,100 individual 

migrants who left 22 study villages in 2000 and settled in Bangkok at one of nearly 800 

locations throughout the city. This survey was linked to the households and villages of 

their origin location in Nang Rong. Questions related to the pattern of rural-urban 

migrants are examined as a meaning of addressing the rural-urban connection.  

1.3.1 Mixture Modeling and Urban Change Detection  

A Multi-Layer Perceptron (MLP) neural network model was trained to estimate 

sub-pixel land use/cover proportions from Landsat TM/ETM imagery. Four land 

use/cover classes are considered: impervious cover, vegetation, bare soil, and 

water/shadow. The model is similar to Ridd’s (1995) conceptual Vegetation-Impervious 

surface-Soil (V-I-S) model. The shadow class is included, because many urban pixels, 

especially in the urban center, may have considerable proportions of shadow. The 
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spectral signals of shadow, however, are very similar to the water class. Therefore, these 

two classes are combined into a single class in the spectral mixture model. Using high 

spatial resolution IKONOS imagery as the reference data set, large numbers of training 

pixels are identified from the 2002 Landsat ETM image. A number of network training 

protocols are examined, including the numbers of hidden nodes, learning rate, early stop 

criteria, and momentum. The sub-pixel classification results are cross-validated using the 

IKONOS data set as the reference image in the validation exercise. The training and 

validation procedures are conducted through a trial-and-error evaluation approach. The 

network with the best generalization ability is retained as the primary sub-pixel classifier.  

Landsat TM imagery from 1993 and 1999 are radiometrically normalized to 

Landsat ETM 2002 imagery using an image regression approach. These two rectified 

images are directly classified using the same primary sub-pixel classifier. This approach 

is efficient, because there is no need to collect training samples from different images 

(i.e., 1993 and 1999) as the same classifier can be applied to different images. The image 

change detection was conducted by comparing the impervious cover proportions for each 

pixel from 1993 to 1999 and from 1999 to 2002. This approach provides urban land 

use/cover change maps at the sub-pixel level. It is also straightforward to convert the land 

use/cover change map from the sub-pixel level to the per-pixel level. A threshold value of 

0.5 was found to identify urban change pixels in this analysis. The rate of urban growth is 

quantified for two time-periods, 1993 to 1999 and 1999 to 2002. Moreover, urban growth 

patterns are characterized as infilling growth, diffusive expansion growth, and isolated 

growth. Infilling growth is defined as an '”urbanized pixel'” surrounded by more than 40-
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percent existing urban pixels, whereas diffusive expansion is defined as an “urbanized 

pixel” surrounded by less than 40-percent existing urban pixels (Wilson et al., 2003). 

1.3.2 Building Height Estimation  

The building height is derived using the shadow information on the high-

resolution IKONOS imagery. The IKONOS image was first classified through an object-

based algorithm instead of the more traditional pixel-based approaches. The land 

use/cover classes include impervious cover, soil, vegetation, and shadow/water. Three 

key image analysis procedures are designed to derive the building height information: (1) 

identify shadow objects from IKONOS image. Shadows typically have very similar 

spectral signals as the water class. A number of spatial indices are developed to separate 

shadow and water objects. These include the size, shape, and the spatial relationship of 

the target object to its neighboring objects. For instance, the adjacency of shadow objects 

and impervious objects can be an important index for the differentiation of shadow and 

water objects; (2) the shadow length is measured according to the direction of the solar 

azimuth angle. The building height is calculated using the relationship between building, 

shadow length, and sun elevation angle; (3) derived building heights are validated using 

field data from Bangkok, Thailand. The focus of building height estimation is on the 

high-rise buildings. Actual building height data are obtained for a sample of buildings. 

The correlation coefficient and RMSE (Root Mean Square Errors) value are generated for 

accuracy evaluation.   

1.3.3 Urban Form Analysis  

The urban form is characterized using three image analysis approaches: (1) the 

arbitrary distance measure to the urban center. The urban center is first defined as a single 
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point representing the historical urban center area. Spatial buffers around these points are 

constructed using a number of distance threshold values. Within each buffer zone (i.e., 

10~20km), the density and spatial organization of impervious cover is analyzed. This 

provides an arbitrary urban-rural gradient based on the distance to the urban center; (2) 

the second approach to define urban form considers the “characteristic scale” of 

impervious cover. Semivariance analysis is conducted to find the characteristic scale of 

the impervious cover. At this characteristic scale, a moving spatial/statistical kernel is 

used to examine the abundance and spatial organization of imperviousness. Critical 

thresholds are derived from kernel statistics to aid the urban area differencing. For 

instance, the urban fringe area may exhibit a relatively low density of imperviousness as 

compared to the urban center. The spatial pattern of impervious cover at the urban fringe 

area may show more fragmentation as compared to the urban center area; (3) the third 

approach examines the building height for the urban form characterization. The locations 

of high-rise buildings are used to differentiate the urban core and urban periphery, 

because most high-rise buildings are business centers, hotels, and offices that are located 

in urban centers. To assess the temporal variability of urban form, the first two image 

analysis approaches are applied to a time-series of Landsat TM/ETM imagery. However, 

due to the lack of available high-resolution image data, the temporal variability of urban 

form has not been characterized using the third image analysis approach. 

1.3.4 Migrants’ Settlement Patterns in Bangkok 

 First, the migrants’ locations are linked to urban form. The objective is to 

identify the percentage of migrants that live in urban centers, urban fringe, and rural 

areas. This analysis provides an overall picture of migrants’ settlement patterns in urban 
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spaces, with an emphasis on Bangkok. Second, the migrants’ locations are compared to 

urban development or growth patterns. The location of new urbanized areas is identified 

through image change detections. The relationship between migrants’ location and new 

urbanized area is assessed through simple overlay analysis within a GIS. This approach 

provides useful information about whether rural-urban migrants’ are directly linked to 

urban development. Third, the migrants’ neighborhood environments are characterized 

and modeled. Two sets of models are developed. The dependent variables are the 

abundance of impervious cover and the spatial organization of impervious cover. 

Independent valuables include a number of geographic variables (e.g., distance to roads) 

and socio-demographic variables (e.g., age, sex, education, etc). Finally, the spatial 

patterns of migrants’ locations in Bangkok are examined using spatial clustering 

techniques to determine whether migrants live in spatial clusters organized by economic 

activity, demographic characteristics, or rural village residence patterns.  

1.4 Dissertation Organization 

 The remainder of the dissertation is organized as follows: Chapter 2 examines 

in detail the Neural-Network based sub-pixel classification method for characterizing 

urban land use/cover and dynamics. The rates of urban growth are assessed for two time-

periods from 1993 to 1999 and from 1999 to 2002. In addition, the patterns of urban 

growth are quantified using a set of urban models. Chapter 3 examines the 3-D urban 

mapping techniques using high spatial resolution IKONOS imagery. The height 

estimation is focused on high-rise buildings. Advanced image analysis techniques, 

particularly objective-oriented algorithms, are used to identify shadow objects. The 

subsequent building height estimation is based on the relationship between building, 
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shadow, and solar position at the day/time and location of image acquisition. Chapter 4 

assesses the alternative approaches for the characterization of urban form. The input to 

the analysis is from the 2-D and 3-D urban mapping analyses. The evolution of urban 

form is assessed for the period 1993 to 2002. Chapter 5 describes the rural-urban 

migrants’ settlement patterns in Bangkok, Thailand. The migrants’ spatial clustering, 

neighborhood environments, and their linkages to the urban form and urban development 

are examined. Chapter 6 presents conclusions, synthesizes the findings among the 

chapters, and describes an agenda for future work.  
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CHAPTER 2 
 

MIXTURE MODELING AND URBAN CHANGE DETECTION 
 

2.1 Introduction 

The spectral mixture problem, or unmixing, has been studied intensively in 

remote sensing. In urban environments, particularly, unmixing has often been applied, 

because of the typically heterogeneous land cover types that occur and their complex 

spatial organization. Many urban pixels have mixed spectral signals from two or more 

land cover types involving some proportion of vegetated and non-vegetated surfaces 

(Song, 2005). This is especially the case when images with low or medium spatial 

resolution are employed in urban environments, or other complex settings, for land cover 

classification. Therefore, traditional per-pixel classifications are often problematic in 

representing urban landscapes and estimating built-up or vegetated areas. Spectral 

Mixture Analysis (SMA), or “unmixing”, has long been used to solve the mixture 

problem in remote sensing applications (e.g., Adams et al., 1995; Smith et al., 1990). 

Ridd (1995) proposed a conceptual Vegetation - Impervious surface- Soil (V-I-S) model 

to unmix the pixels in urban settings. This type of linear mixture modeling has been 

employed by many researchers to derive one or more urban landscape elements (e.g., 

Phinn et al., 2002; Small, 2001; Ward et al., 2000; Wu and Murray, 2003; Song, 2005).         

Impervious surfaces are of particular interest, because they indicate important 

urban and non-urban structures, suggest historical and contemporary social and 
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biophysical processes, and represent the probable quality of life of the associated 

population (Lo, 1997; Yang and Lo, 2002). In addition to linear spectral mixture analysis, 

numerous other models have been employed to derive land cover composition at the sub-

pixel level. Using a Fuzzy C-Means algorithm, Fisher and Pahirana (1990) found 

significant, but varied, relationships between the fuzzy membership values and land 

cover proportions. Wang (1990) presented a fuzzy supervised classification in which the 

class membership function was defined using a modified maximum-likelihood algorithm, 

and Foody et al. (1992) also found high correlations between the land cover proportions 

and the class membership probabilities derived from the maximum-likelihood algorithm.  

Over the last decade, considerable effort has been expended in the use of non-

parametric models to derive sub-pixel proportions. Decision Trees (e.g., DeFries et al., 

1999; Xian et al., 2005) and Neural Networks (e.g., Atkinson et al., 1997; Carpenter et 

al., 1999; Fernandes et al., 2004) have been of particular interest and applicability. Many 

have suggested that these types of models are superior to traditional spectral mixture 

analysis and fuzzy supervised classification approaches, because they do not make 

assumptions about the nature of the spectral mixing, and the function is simply learned 

from training samples. Several neural network models are common. For instance, 

ARTMAP models have been increasingly used due to their stable and fast performance 

(Carpenter et al., 1999; Liu et al., 2004). The Multi-Layer Perceptron (MLP) neural 

network model is probably one of the most widely used neural network models in sub-

pixel classification (e.g., Atkinson, 1997; Fernandes et al., 2004; Foody, 1996; Liu, 

2005). Depending on whether sub-pixel proportions are incorporated at the network 

training stage, Foody et al. (1997) defined the neural network approaches as full fuzzy or 
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partial fuzzy classification. In the full fuzzy approach, the sub-pixel proportions are 

known for the training pixels and the proportions are directly used as the network targets 

in training. These network targets are treated as continuous variables (e.g. 0-1). On the 

other-hand, the sub-pixel proportions are unknown for training pixels in the partial fuzzy 

approach. Training pixels are selected in the same manner as in traditional per-pixel 

neural network classification. The network targets are set as discrete variables (e.g. 1-of-

M coding system such as 1,0,0). The network output signals, however, are retained in a 

“fuzzy” manner (i.e., between 0 and 1). Within the neural network literature, these two 

approaches are generally referred to as the Neural Network Regression and Neural 

Network Classification problems, based on the characteristics of the network targets 

(continuous or discrete). In the regression problem, the neural network approximates the 

regression function between the input patterns and the target values. In the classification 

problem, the network outputs approximate the probabilities of class membership for each 

class (Bishop, 1995).  

A review of recent neural network applications in sub-pixel estimation shows that 

the neural network regression approach is used more often, and the results are promising 

as compared to linear spectral mixture analysis and fuzzy supervised classification 

(Atkinson et al., 1997; Zhang and Foody, 1998). One limitation of the regression 

approach is that sub-pixel proportions are required for training. The proportions are 

typically derived from aerial photography or satellite imagery with relatively higher 

spatial resolution. The high spatial resolution data, however, are often expensive to 

obtain, cover limited geographic areas, and requires a substantial amount of processing 

time and effort to co-register fine and medium spatial resolution imagery (e.g., QuickBird 
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and Landsat Thematic Mapper data, respectively). For instance, the high spatial 

resolution image may be available for urban core areas only. It is highly questionable to 

employ the trained neural network for larger spatial extents including urban fringes and 

surrounding rural areas, where the types and the spectral signals of land cover (i.e., 

agricultural field) can be very different from urban core areas. Fernandes et al. (2004) 

found that the neural network sub-pixel classification accuracy is substantially lower if 

the test sites are further away from the training sites (i.e., 100-km). The poor 

generalization ability can seriously impact the implementation of the neural network 

regression approach for mapping in large urban environments. The neural network 

classification approach, on the other-hand, is a straightforward supervised classification. 

Although the training pixels need to be identified by photointerpretion, typically using 

maps and air photographs as reference, it does not require that sub-pixel proportions be 

known in the network training stage. Therefore, training data can be selected in a more 

relaxed manner for all apparent classes in the image. The major limitation of the neural 

network classification approach is that it generally has a relatively lower accuracy in 

terms of overall performance (Schowengerdt, 1996; Zhang and Foody, 2001; Moody et 

al., 1996). For instance, Foody (1996) trained the network with pure pixels and found that 

the network outputs were close to the two extremes (0 or 1). These network outputs are 

not directly suitable for the estimation of sub-pixel proportions. A number of practical 

techniques were employed to improve the classification performance, including the re-

scaling of network outputs (Foody, 1996) and the modification of the activation function 

(Warner and Shank, 1997).  
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One common problem of these neural network classification approaches is that 

they assume the network outputs approximate the probabilities of class membership, 

which are often interpreted as sub-pixel proportions in remote sensing applications (e.g. 

Foody et al., 1992; Ju et al., 2003; Lee et al., 2006). Richard and Lippmann (1991) 

indicate that MLP neural networks require a large number of training data points to 

model the posterior probabilities. They state that the training data also needs to be 

representative in both class likelihood distributions and class prior probabilities. In many 

remote sensing classification practices, however, these requirements are ignored. For 

instance, the training pixels are normally selected from spectrally homogeneous areas and 

the numbers of training pixels are often very limited. This type of sampling scheme may 

not reflect the spectral variability of cover types (Gong and Howarth, 1990; Huang et. al., 

2002). In addition, the proportion of occurrences of each class in the training set or the 

prior probabilities of the training set can also affect the network training and 

classification results. Few researchers, however, have evaluated the impacts of prior 

probability on the classification results, especially for the sub-pixel classification 

problems. From an urban application perspective, it is also important to study the 

temporal variation of land cover. In most previous change detection studies, the pixels are 

labeled as discrete values (0 or 1) indicating change/no change or a specific type of land 

cover change. The sizes or shapes of land cover change patches, however, can very 

greatly across the landscape. Some changes occur at sizes smaller than the imposed 

spatial resolution of the satellite sensor system. With sub-pixel classification results, it is 

possible to consider a fuzzy representation of land cover change.  
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This chapter is designed to examine and improve the neural network classification 

approach for an urban mapping application. The theory and empirical testing are 

discussed for the following two methodological improvements: (1) evaluation of the 

impacts of the class likelihood distribution on the sub-pixel classification results. In one 

training set, training pixels are identified from spectrally homogeneous areas and the 

number of training pixels is relatively small. In the other training set, large number of 

training pixels are identified from both spectrally homogeneous and heterogeneous (i.e., 

edge pixels) areas; (2) impacts of varying prior probabilities in the training set are also 

examined. Specifically, number of training pixels is arbitrarily reduced for one class in a 

given training dataset, while keeping the number of training pixels in the other classes 

constant. The results from the neural network classification approach are compared with 

those from the more widely used neural network regression approach. The classifier with 

the higher accuracy is used to derive the proportional impervious cover from a Landsat 

TM/ETM image time-series. The rates of urban growth from 1993 to 1999 and 1999 to 

2002 are examined.  

2.2 MLP Neural Network: Background 

MLP is composed of multiple layers of processing nodes and links. Figure 2.1 

illustrates a typical three-layer MLP.  
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Figure 2.1. A typical three-layer MLP neural network 

Input, hidden, and output units are denoted by Xi, Hj, and Ok respectively. Wij 

denotes the links from input nodes to hidden nodes, and Wjk indicates the links from 

hidden nodes to output nodes. Hj is computed according to Equation 1, and Ok is 

computed according to Equation 2.  
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In Equations 1 and 2, f indicates an activation function: a sigmoid function is 

generally used. The function must be differentiable. The sigmoid function saturates at 

both extremes. M and n are the numbers of the nodes at the hidden layer and the input 

layer, respectively. To train neural networks, the weights are first initialized with random 

values; input patterns such as the spectral signals of training pixels are presented forward 
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through the network. The resultant values at output nodes are compared with the target 

values (Tk) using the sum of the squared error (Equation 3). 
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A back-propagation algorithm is used to adjust the weights and minimize the 

overall error (Rumelhart et al., 1986). Using the 1-of-M target coding system (e.g. 1,0,0), 

the output of the MLP classifier can approximate the Bayesian a posterior probabilities if 

large numbers of training samples are available (Richard and Lippmann, 1991). The 

Bayesian posterior probability can be written as: 
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In remote sensing applications, x can be seen as the DN (Digital Number) value from one 

spectral band or a DN vector from multispectral space. P(ci|x) is the posterior probability, 

indicating the probability that a pixel belongs to class ci given the pixel’s DN value(s), x. 

p(x|ci) is the likelihood -- the probability that a pixel has DN value/vector x, given it is in 

class ci. P(ci) is the class prior probability. It is the probability that a randomly chosen 

pixel in the image is of class ci, or simply, the fraction of pixels in the image belonging to 

class ci. P(x) is a normalization term, and is calculated as: 
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For a given training set, the frequency distribution of classes can be seen as the 

prior probabilities of the training set. As McIver and Friedl (2002) suggest, the selection 

of training pixels is often subjective, depending on data availability and user preferences. 

Therefore, the prior probabilities of the training set can be very different from the prior 
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probabilities of the full image. In most previous research, however, the trained network is 

applied to the whole image and the network outputs are directly used as the estimation of 

sub-pixel proportions. This procedure assumes that the prior probabilities in the full 

image are equal to those from the training set. This assumption is not necessarily true and 

may lead to poor classification results. The network outputs may also be sensitive to a 

number of training protocols that include network architecture, learning rates, and the 

criteria used to stop training (Duda and Hart, 2001).  Large amounts of time must be 

invested in the network training stage, especially to evaluate the impacts of training 

protocols on the performance of the classification (Gopal and Woodcock, 1996; Paola 

and Schowengerdt, 1995).  

2.3 Data  

Six Landsat TM/ETM images (see Table 2.1) are obtained for the land use/cover 

classification and change-detection analysis. A mosaic of the Landsat image is produced 

for each of the time periods, and a subset of 2370 × 2690 pixels is created to cover the 

Bangkok Metropolitan Area and its surrounding provinces (see Figure 2.1). A Landsat-7 

image (1999) is treated as the master image, and the image to image registration is 

performed for the Landsat-5 image (1993) and the Landsat-7 image (2002) respectively. 

The geometric error of registration is less than 0.5 pixel. 
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Table 2.1: 

Landsat TM/ETM Images for the Study Area. 

Acquisition date Path Row 
December 25, 1993 129 50 
December 25, 1993 129 51 
November 16, 1999 129 50 
November 16, 1999 129 51 

January 8, 2002 129 50 
January 8, 2002 129 51 

 

 

Figure2.2a. December 25, 1993 image. 
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Figure2.2b. November 16, 1999 image. 

 

Figure2.2c. January 8, 2002 image. 
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High-spatial resolution IKONOS data from November 2002 and May 2000 were 

also obtained. Substantial numbers of shadow pixels can be observed from the November 

2002 IKONOS image, and, as such, may cause difficulty in image classification and 

uncertainty in area estimation. Therefore, the May 2000 IKONOS image is treated as the 

primary ground truth data to evaluate the performance of sub-pixel classifications.  

2.4 Method 

2.4.1 Using the Classification Approach 

The Landsat ETM (November 16, 1999) image is chosen as the primary dataset 

for testing the sub-pixel classification approach. A five-class classification scheme is 

designed for the neural network classification task: impervious cover, vegetation, bare 

soil, water/shadow, and agricultural fields. The scheme is an extended version of the 

Vegetation-Impervious cover-Soil (V-I-S) model. In this study, the agricultural fields 

indicate the cleared rice/cash crops that have different spectral signals from bare soil due 

to crop residue. Two methods are employed to identify training samples. The first 

approach follows a common practice and sampling scheme for a supervised 

classification. A total of 904 pixels (236, 225, 212, 231 and 215 for impervious, 

vegetation, water/shadow, soil, and agricultural fields respectively) are collected from 

spectrally-homogeneous areas on the Landsat ETM image. The high spatial resolution 

IKONOS image and Google Earth maps are employed as reference data for identify 

training sites. In the second sample selection approach, large numbers of training samples 

(4923, 2842, 1813, 2017, and 2453 for impervious, vegetation, water/shadow, soil, and 

agricultural field respectively) are manually selected. In addition to spectrally- 

homogeneous areas, pixels at the edges of impervious/vegetation patches are also 
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selected. Figure 2.3 shows the distributions for selected training pixels in Band3 and 

Band4 feature space for the two training datasets, respectively. Only one in every 20 

vegetation and impervious cover pixels are plotted here to make it more readable. 

 

Figure 2.3. Select training pixels from two training sets (small vs. large sample size). 

The software employed in this study is called Stuttgart Neural Network Simulator 

(ftp.informatik.uni-tuebingen.de). It is a powerful software package for neural network 

analysis on UNIX workstations. A three-layer neural network was employed in this 

study:  six inputs nodes were used indicating six spectral bands from Landsat imagery. 

Five output nodes indicate five land-cover types: vegetation, impervious, water/shadow, 

soil, and agricultural field.  Different numbers of nodes were tested for the hidden layer:  

6, 12, and 18. The Landsat ETM spectral signals were scaled to values between 0 and 1 

prior to their input into the MLP for training and classification. Three different learning 

rates were tested: 0.1, 0.2 and 0.3.  The momentum was specified as 0.9. The network 

training was stopped as the learning curve began to converge.  
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The proportion of occurrences of each class in the training set, or the prior 

probabilities of the training set, can also affect the network training and classification 

results. To examine the impacts of prior probability on the classification results, the 

frequency distributions of classes in the second training set are modified arbitrarily. 

Specifically, the training pixels were reduced or increased for impervious cover, while 

the numbers of training pixels from other classes (e.g., vegetation, soil and water/shadow) 

remain the same. In this study, 75-percent and 125-percent of impervious pixels are 

randomly selected from the second training set. The randomly selected impervious pixels 

are combined with training pixels from other land cover classes to generate additional 

training datasets. It should be noted that the random selection of training pixel may cause 

variations in the class likelihood distributions. Therefore, the procedure of random 

selection and training dataset generation are repeated 5 times. The classification results 

are examined for each of the training dataset. Table 2.2 shows the number of training 

pixels for each class and their fractions in different training datasets. 

Table 2.2: 

The Number of Training Pixels (and Percentages) for Each Class 

Training 

dataset 

Impervious 

cover 
Vegetation Water Soil 

Agricultural 

fields 

Total  

2 4923 (35%) 2842 (20%) 1813 (13%) 2017(14%) 2453(17%) 14048 

3 3692(29%) 2842(22%) 1813 (14%) 2017(16%) 2453(19%) 12817 

4 6105(40%) 2842(19%) 1813(12%) 2017(13%) 2453(16%) 15230 
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2.4.2 Using the Regression Approach 

To evaluate whether the neural network classification methods generate 

acceptable accuracy, the sub-pixel estimation was also implemented as with the more 

widely used regression approach. The sub-pixel proportions are required for network 

training for the neural network regression approach. The high resolution IKONOS image 

was first classified into 30 spectral clusters using an unsupervised classification 

procedure. The IKONOS image only covers limited areas in the urban core and some 

urban fringe areas, and the dominant land cover types are impervious cover, vegetation, 

soil, and shadow/water. Therefore, the spectral clusters were subsequently grouped into 

these four broad land cover types. The classified IKONOS image was degraded to 30 × 

30-m resolution to spatially correspond to the Landsat ETM data, providing a “fractional 

map” for each of the four land cover types.  

The fraction maps derived from IKONOS data are directly incorporated in the 

network training. Specifically, six inputs nodes were used indicating six spectral bands 

from Landsat ETM imagery. The four output nodes indicate land cover fractions from the 

four land cover types. Different numbers of nodes were tested for the hidden layer -- 6, 

12, and 18. A total of 3000 random pixels were selected from the Landsat ETM image. 

These Landsat pixels, together with their land cover fractions at the sub-pixel level, were 

combined to build the training samples and targets for the MLP. To avoid overfitting, the 

network training was stopped after every 100 epochs to determine the optimum stopping 

point for network training, and the entire fractional maps were used as testing data at each 

stopping point.  
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2.4.3 Accuracy Assessment and Generalization 

To assess the accuracy of sub-pixel classification, the RMSE values between the 

IKONOS-generated fractional map and the neural network outputs were examined. The 

error of co-registration can seriously impact the results (Song 2005; Townshend et al., 

1992), thus aggregated class proportions were generated using a 3x3 window (90m x 

90m) for both the fractional map and the MLP classification results before calculating 

RMSE. RMSE is calculated using the following equation: 

n

AE
RMSE

n

i
ii∑

=

−
= 1

2)(

                                                  Equation 7 

where Ei is the estimated fraction cover from Landsat ETM pixels, Ai is the actual 

fraction cover derived from high-resolution IKONOS data, and n is the total number of 

windows used in testing. 

For both neural network classification and regression approaches, the networks 

with the best classification performance (i.e., smallest RMSE) are retained for the 

classification of the entire image. It should be noted that the high resolution IKONOS 

data only covers limited areas of the urban core and some urban fringe areas (see Figure 

2.4). The high classification accuracy achieved at the urban core and fringe areas does not 

guarantee its generalizability to rural-dominated landscapes. As described earlier, some 

agricultural fields may have very similar spectral signals to those from impervious cover. 

Overestimation of impervious cover is a common problem for many remote sensing 

applications. Therefore, it is important to examine the generalizability of network 

classifiers over large spatial extents. The visual interpretation of Landsat ETM image and 
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Google Earth maps is the most feasible approach for the validation of image 

classification over large spatial extents.   

 

Figure 2.4. The Spatial Extents of IKONOS Image and Landsat ETM Image. 

2.4.4 Image Change Detection  

The Neural network classification approach is employed to derive proportional 

impervious cover for Landsat-5 TM (1993) and Landsat-7 ETM (2002) images. The 

reason to choose the neural network classification approach over the regression approach 

is largely due to data availability. For the Landsat-5 TM (1993) image, there is no high 

resolution data available for generating fractional maps, which is necessary for the neural 

network regression approach. Therefore, large numbers of training samples representing 
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impervious, vegetation, water/shadow, soil, and agricultural fields are manually selected 

from Landsat-5 TM image (1993) and Landsat-7 ETM (2002) image. Again, different 

network learning protocols are assessed for sub-pixel classification. To evaluate the 

classification performance or consistency over time, 100 3x3 windows (90m x 90m) are 

selected as testing sites. The sample windows are typically located at commercial areas in 

the urban core, primary roads, and some old residential areas at the urban fringe. The land 

covers in these testing windows are considered stable through time. Cross-plots of 

impervious cover percentages are generated for these testing windows (i.e., 1993 vs.1999 

and 1999 vs. 2002). The classification results with the highest consistency (i.e., low 

scattering for the cross-plots) are employed for image change detection analysis.  

The urban land cover change information is presented at both sub-pixel and per-

pixel levels. At the sub-pixel level, the change of proportional impervious cover is 

calculated for each pixel from 1993 to 1999 and from 1999 to 2002, respectively. The 

fuzzy representation of land cover change map can be easily converted to per-pixel based 

change maps using a threshold of 0.5. The annul rates of urban growth are calculated for 

two time periods: 1993 to 1999 and 1999 to 2002.  

2.5 Results  

The RMSE values are used to assess the classification performances. For each 

training set, a variety of  numbers of network trainings are conducted using different 

combinations of learning rates (0.1, 0.2, and 0.3) and hidden nodes (6, 12, and 18). For 

any given network architecture and learning rate, the network training is repeated 5 times. 

Figure 2.5 shows a boxplot of RMSE values for the first two training sets. Training set 1 

has 904 training pixels, while training set 2 has 14048 training pixels. Figure 5 indicates 



 41 

that the sub-pixel classification results improve with an increasing training sample size. 

The RMSE values for training set 1 show a wide scattering (i.e., from 0.11 to 0.184), 

while the RMSE values from training set 2 are consistently lower, in the range of 0.106 to 

0.125. This is important from both an estimation-accuracy and a time-efficiency 

perspective. For instance, it is possible to achieve high accuracy of sub-pixel 

classification using a limited number of training samples. However, the classification 

results vary substantially with learning rate, network architecture, and network 

initialization. It requires more time for trial-error testing to achieve acceptable accuracy. 

On the other-hand, the classification results are less sensitive to these network training 

protocols. In fact, the classification results are always acceptable, if large numbers of 

training pixels are available.  
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Figure 2.5. Comparison of RMSE values from varying training sample sizes: training set 
1 (small sample size), training set 2 (large sample size). 
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The results reported here are supported by Richard and Lippmann’s (1990) 

simulation work. They demonstrated that the estimation of posterior probabilities 

deteriorates dramatically when the size of the training set decreases from 3000 samples 

per class to 1000 samples per class. More importantly, if the training pixels are solely 

selected in spectrally homogeneous areas, the within-class variance may be under-

estimated (Gong and Howarth, 1990; Huang et. al., 2002). Previous research also 

suggests that network outputs can be uncertain if input patterns are novel to the trained 

network (Bishop, 1994). This implies that neural networks may produce erroneous 

outputs for pixels with mixed signals, if the network is trained using pure pixels only.  

The impacts of the prior probabilities on the sub-pixel classification are also 

evaluated. The ranges of RMSE values are slightly different using training sets with 

varying prior probabilities: training set 2 (0.106-0.125), training set 3 (0.105-0.1318), and 

training set 4 (0.104-0.1307).  Figure 2.6 shows the boxplot of the RMSE values for a 

variety of numbers of network trainings using different combinations of training sets, 

learning rates, and network architectures. Although the boxplot shows different ranges or 

scattering of RMSE values from three training datasets, a simple t-test shows that there is 

no significant difference between the average classification performances. For each 

training dataset, RMSE values are very similar using different learning rates (0.1, 0.2 and 

0.3). The results are slightly better when 12 or 18 hidden nodes are used.  
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Figure 2.6. Comparison of RMSE values from varying prior probabilities. 

In the regression approach, the high-resolution data are incorporated in both 

network training and testing stages. The range of RMSE for the regression approach is 

from 0.097 to 0.105. Figure 2.7a and 2.7b show the scatter-plots of estimated sub-pixel 

proportions plotted against the actual proportions. The actual proportions of impervious 

cover are derived from high resolution IKONOS imagery that only covers limited areas 

in the urban core and some urban fringe areas. The regression approach generated slightly 

better results in the areas with high resolution IKONOS training data. This was 

anticipated, because high-resolution data were used in both network training and testing. 

The relationships between sub-pixel proportions and the input spectral signals are simply 

learned through training samples (with sub-pixel proportions specified as the training 

targets). In the neural network classification approach, however, the assumption is made 

that posterior probabilities are equal to sub-pixel proportions. This assumption may or 



 44 

may not be true, depending on the characteristics of the study site and the information 

class of interest. Schowengerdt (1996) presents the importance of spectral signature 

separability – the approach is valid only if classes of interest have high spectral 

separability. In addition, the characteristics of training data may not be representative for 

the study site, including the class likelihood distributions and class prior probabilities. 

Although the accuracy of this approach is lower than for that of the regression approach, 

the difference in accuracy is not substantial, and for many objectives, this loss in 

accuracy may be worth the savings in time and costs associated with the regression 

approach. 
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Figure 2.7a. Classification approach. Figure 2.7b. Regression approach. 
Figure 2.7. Accuracy Assessment of Neural Network Classification and Regression 

Approaches 
                            

Figure 2.8a and 2.8b show the results for the entire Bangkok city and surrounding 

areas using the neural network classification and the regression approach, respectively. 

Initial visual interpretation indicates that urban areas or impervious cover is clearly 

discernible from the results of neural network classification approach. For neural network 

regression approach, however, there appears to be confusion between impervious cover 
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and several other land use/cover types (i.e., soil, cleared rice field, and even water class). 

This is to be expected since all training pixels for the regression approach are randomly 

selected and limited by the spatial extents of high resolution IKONOS imagery. 

Therefore, the network may generate uncertain outputs if input patterns are novel to the 

trained network. In practice, it is difficult to obtain high resolution data to cover large 

spatial extents and then produce sub-pixel proportional covers for network training. Data 

availability and poor generalizability can be major challenges in the use of neural 

network regression for mapping large urban environments.  

 

 

Figure 2.8a. Neural network classification approach 
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Figure 2.8b. Neural network regression approach 

Figure 2.8. Imperviousness Derived from 1999 Landsat ETM image using Neural Network 
Classification and Regression Approaches.  

 

One potential solution for the improvement of the neural network regression 

approach is to incorporate more training samples. For instance, more training pixels can 

be identified from areas at the urban fringe or at rural setting, especially for those pixels 

confused in the initial classification. The target values can be set as 0 (i.e., 0% of 

impervious cover) for these additional training pixels (i.e., agricultural fields). However, 

visual interpretation of initial classification results shows that almost all other land cover 

types need to be evaluated, including agricultural fields, bare soil, and even water. In 

other words, the sample selection procedure at this step is simply to repeat the same 

training data collection conducted in the neural network classification approach. After 

collecting large numbers of training samples, the network is re-trained and the Landsat 
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ETM image is re-classified. The result is shown in Figure 2.9, which is similar to the 

impervious cover derived from the neural network classification approach.  

 

Figure 2.9. Improved Classification Results from Neural Network Regression Approach.  
 

The neural network classification approach is also used to derive the proportional 

impervious cover from Landsat-5 TM (1993) and Landsat-7 ETM (2002) imagery. Figure 

2.10 shows the proportional impervious cover for 1993 and 2002, respectively. On the 

left-side of Figure 2.10 is Landsat TM/ETM images, whereas on the right-side is the 

derived impervious cover.  
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December 25, 1993 
 

December 25, 1993 

January 8, 2002  
January 8, 2002 

Figure 2.10. Landsat TM/ETM images and Imperviousness of Bangkok from 1993 and 2002. 
 

Change-detection analysis is simply conducted by comparing the difference in the 

proportional impervious cover for each pixel from different time-periods. Figure 2.11 

shows the fuzzy representation of land cover change.  Overall, there are more urban 

developments from 1993 to 1999 than from 1999 to 2002. The acquisition dates for the 

1999 and 2002 images are November 16, 1999 and January 8, 2002, respectively. 

Therefore, the actual difference between these two images is only about 2 years, and 

dramatic urban development and change rarely occurs within this short period. Due to 
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complexity of scene-spatial/scale-ground object relationships, the fuzzy representation of 

land cover change may be considered a more realistic approach than traditional per-pixel 

analysis. However, it should be noted that the sub-pixel classification accuracy is about 

11-percent for the 3 by 3 window size (90m). The accuracy of sub-pixel classification at 

30m spatial resolution may be even lower than this number. Also, the mis-registration 

between images may introduce additional uncertainty in change-detection analysis, 

especially for pixel-by-pixel comparisons (Townshend et al., 1992). Therefore, the urban 

change in fuzzy representation needs to be interpreted with caution. For instance, an 

increase of proportional impervious cover less than 22-percent may or may not be a real 

change due to uncertainty in sub-pixel classification.  

 

                  From 1993 to 1999                                      From 1999 to 2002 

Figure 2.11. Fuzzy Representation of Image Change Detection (Imperviousness) from 1993 
to1999 and 1999 to 2002. 
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Figure 2.12. Per-Pixel Change Detection (Imperviousness) from 1993 to 1999 and 1999 to 2002 

               

The fuzzy representation of urban change can be easily converted to traditional 

per-pixel change maps. A threshold of 0.5 is applied for the proportional change map. A 

pixel is considered to be a significant change pixel, if there is an increase of 50-percent 

impervious cover. Figure 2.12 shows urban development from 1993 to 2002 using the 

per-pixel approach. Pixels in green indicate urban growth from 1993 to 1999; pixels in 

red indicate urban growth from 1999 to 2002.  The metropolitan growth has extended 

well beyond official Bangkok boundaries. Administrative boundaries seem to be 

irrelevant in studying the dynamics of urban growth (McGee 1991, 1995). For the entire 

study area, the total area of impervious cover is 560km2, 7082 and 7792 km for 1993, 

1999, and 2002, respectively. The annual growth rate is 4-percent from 1993 to 1999 and 

5-percent from 1999 to 2002.  
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2.6 Conclusion  

Sub-pixel proportions are estimated through neural network regression and neural 

network classification approaches. Although the regression approach generated slightly 

better results (i.e., lower RMSE values) in the areas with high resolution IKONOS 

training data, the classification approach also achieved acceptable accuracy. In addition, 

the neural network regression approach requires high-resolution data in the network 

training process. The data availability and poor generalizability may seriously impact the 

implementation of the neural network regression approach for mapping in large urban 

environments. The neural network classification approach, on the other-hand, is a 

straightforward supervised classification. It does not require that sub-pixel proportions be 

known in the network training stage. Therefore, the training pixels can be identified in a 

more relaxed manner. This can be advantageous for mapping large urban environments 

using time-series remote sensing data.  

To generate accurate sub-pixel fraction estimates using the neural network 

classification approach, two practical concerns are recommended. First, evaluate the 

impacts of training sample size and the class likelihood distribution on the sub-pixel 

classification results. Second, the impacts of varying prior probabilities in the training set 

should also be examined. High-resolution IKONOS data are only used to validate the 

classification results. Through this case study, a large sample size and spectral 

heterogeneity in the training set were found to be important for deriving consistent sub-

pixel estimations. A large improvement in the performance of the classification was 

realized as compared to previous studies that used limited training samples from 

spectrally homogeneous areas. The prior probability in the training set may also affect 
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classification performance, but its impacts are less than those from training sample size. 

In practice, however, it is impossible to define specific sample size for each land 

cover/use class and the prior probabilities are often unknown for the study areas. 

Therefore, a solution is to collect large numbers of training samples and evaluate the 

classification results based on ground truth or references derived from high-resolution 

images. The network architecture and other training protocols also need to be examined. 

The entire process requires large amounts of time and it is probably the most challenging 

question for the users and researchers of neural networks. In this research, the neural 

network classification approach is also employed to derive proportional impervious cover 

for a Landsat TM and ETM image time-series for Bangkok, Thailand. The urban changes 

are represented using both fuzzy and per-pixel approaches. It is found that most urban 

developments are located outside of the Bangkok city boundary. Traditional urban 

analysis or modeling using administrative boundaries may not be ideal for studying the 

dynamics of urban environments.   
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CHAPTER 3 

BUILDING HEIGHT ESTIMATION USING SHADOW INFORMATION 

3.1 Introduction 

The classification of remotely-sensed data is generally conducted at the two-

dimensional or 2-D level in which a target pixel or object is assigned to each of the 

predefined land use/cover categories such as impervious cover, water, vegetation and soil 

cover (e.g., Ridd, 1995). In a more detailed land use classification, individual pixels may 

be classified as agriculture, forest, residential/commercial and roads and parking lots 

(e.g., Landgrebe, 2003; Paola and Schowengerdt, 1995). In this type of 2-D land 

use/cover mapping, a high-rise building and a single-story structure may be classified as 

the same land cover category (i.e., impervious cover). The building height information 

has generally not received sufficient attention in remote sensing of urban places, 

particularly satellite-based remote sensing. The ability to characterize the three-

dimensional or 3-D urban setting may provide very useful, and even essential, 

information for assessing urban structure and socio-demographic implications of urban 

areas that are of particular interests to urban planners and researchers in social, 

population, and environmental studies (Delaney, 2000; Gruen and Nevatia, 1998; Shiode, 

2001).  

The use of aerial photogrammetry techniques is the most common approach to 

derive 3-D structural information. Manual interpretation of building height from aerial 

photography is a time-consuming and expensive task that often relies on the application 
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of standard equations and devices such as stereoscopes, stereoplotting instruments, and 

parallax wedges (Paine and Kiser, 2003). Over the past 30-years, automatic building 

extraction and building height estimation have been one of the main challenges in the 

fields of photogrammetry and computer vision (e.g., Baillard, 1999; Gruen et al., 1995; 

Mohan and Nevatia, 1989; Noronha and Nevatia, 2001). One approach to estimate 

building height is to examine shadows cast by the structure on aerial photograph (e.g., 

Avery, 1977; Huertas and R. Nevatia, 1988; Irvin et al., 1989). The building height can 

be estimated from the shadow length using simple trigonometry. The shadow approach is 

appealing, because shadows often have relatively homogeneous spectral responses (i.e., 

dark areas) compared to spectral patterns from buildings. Therefore, the segmentation of 

shadow is relatively easier to accomplish than direct building extraction and building 

height estimation (i.e., Huertas and R. Nevatia, 1988; Lin et al., 1994; McGlone et al., 

1994; Yi-Hsing and Wang 2003).  

A few researchers have used satellite-borne remote sensing data to estimate 

building height. For instance, Shettigara and Sumerling (1998) derived building heights 

using shadow information on a SPOT panchromatic image. However, shadow detection 

from medium spatial-resolution satellite imagery (e.g., SPOT, Landsat TM/ETM) is 

difficult, because the shadow size may be less than the size of a single pixel. The size, 

shape, and boundary of a building’s shadow may not be well defined in a medium spatial 

resolution image. The newly available high resolution imagery (e.g., IKONOS) has 

improved spatial resolution to 1-m to 4-m. These data offer new opportunities for 

building height estimation using shadow information, however, until recently very few 

studies have used IKONS images for 3-D building height estimation. Fraser et al. (2002) 
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conducted traditional photogrammetric analysis using 1-m panchromatic IKONOS stereo 

images, but the data availability (i.e., stereo-pair) and the variability of scene-to-scene 

image quality are main concerns. The shadow analysis, however, shows significant 

potential as an alternative approach for building height estimation or 3-D urban mapping. 

The main purpose of this chapter is to design a semi-automated approach for shadow 

detection and building height estimation using IKONOS imagery.  

There are three main challenges for the automatic shadow detection and building 

height estimation. First, the classification of high resolution imagery is a difficult task 

due to the high information content of high-resolution data (Schowengerdt, 1997). Pixels 

of a homogeneous land cover patch may have heterogeneous spectral responses (i.e., roof 

structures). A “salt and pepper” effect is a main concern using traditional per-pixel 

classifiers that are generally employed for image classification (Bauer et al., 2001; 

Stuckens et al., 2000). Second, the spectral responses of shadows are very similar to those 

from other dark features such as a water body. Although the shadows can be identified 

using visual interpretation, often based on neighboring buildings or texture information, it 

is difficult to delineate shadow and water automatically (e.g., Sawaya et al. 2003). Third, 

there is a need to develop computer algorithms to estimate shadow length and building 

height in an automatic manner. This is especially important for a large study area such as 

Bangkok, Thailand. Manual interpretation of shadow length can be extremely expensive 

and time consuming, if large numbers of buildings are involved. 

One potential approach for shadow detection on high resolution imagery is to use 

the “per-field” classification approach (Ballard and Brown, 1982; Janssen, 1994; Roberts, 

1970; Tilton, 1989; Woodcock et al., 1992). Per-field classification employs not only 
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spectral information, but also the spatial concepts such as shape and neighborhood 

information to segment an image. Recently developed commercial software, eCognition, 

provides a user-friendly environment to generate and analyze images through an object-

based image analysis (i.e., OBIA) approach (Blaschke et al. 2000; eCognition User Guide 

2003). OBIA has been increasingly used in high-resolution image classifications (e.g., 

Walsh et al., in press). This study examines the use of OBIA in a complex urban setting. 

The main purpose is to identify shadow objects from high resolution IKONOS images. In 

addition to the spectral information, a number of spatial indices, such as size, shape, and 

spatial neighbors are used to separate shadow and water objects, a challenge in remote 

sensing image analyses. The building height is estimated using the relationship between 

building location, shadow, and solar position (e.g., elevation angle and azimuth angle). 

The high-rise buildings in Bangkok, Thailand are of particular interests.  

3.2 Data 

Two IKONOS images were used in this study. The image acquisition dates are 

May 08, 1999 and November 27, 2002. The November 27, 2002 image is of high quality 

with no clouds and haze, while the May 08, 1999 image has some clouds present. The 

spatial extent of each IKONOS image is approximately 11km × 11km. There is a 10km × 

6km overlap area between the two images. However, a substantial portion of the overlap 

area for the 1999 image has cloud cover. Therefore, it is not feasible to conduct a stereo-

pair image analysis. In addition, these two images cover the entire core area of Bangkok, 

as well as some fringe areas of the city (Figure 3.1). Thus, single image-based shadow 

analysis is used to provide 3-D information for a larger spatial extent (i.e., 16 × 10 km).   
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Figure 3.1. IKONOS Image from 1999 and 2002 (Band 4, 3, and 2 composite). 

An IKONOS image has a spatial resolution of 4-m for the multi-spectral bands. 

The spatial resolution of satellite remote sensing systems have greatly improved and now 

approached those of medium-scale aerial photography. IKONOS has three spectral bands 

from the visible spectrum and one band from the near-infrared spectrum. In addition to 

the multi-spectral bands, there is also a panchromatic band with a spatial resolution of 1-

m. The radiometric resolution is 11-bit. The improvements of spatial, spectral, and 

radiometric resolutions are critical for detailed 2-D and 3-D land use/cover classification 

in compact urban setting. The information describing the sun azimuth angle and sun 

elevation angle are obtained from image header files. Table 3.1 presents ephemeris data 
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about image acquisition time, sun elevation angle, and sun azimuth angle for both 

images.  

Table 3.1: 

     IKONOS Image Acquisition Date, Sun Azimuth Angle and Sun Elevation Angle 

 1999 image 2002 image 
Acquisition date 
Sun azimuth (degree) 
Sun elevation (degree) 

May 08, 1999 
78.1385 
67.0952 

November 27, 2002 
154.2802 
51.5396 

 

3.3 Method  

The 2002 image was used as the primary dataset for the shadow detection and 

building height estimation. The image was first classified using an OBIA classification 

method. The classification results were evaluated by the standard error matrix. The 

spectrally confusing classes (i.e., shadow and water) were further analyzed using object 

size, shape, and spatial neighbor information. A simple thresholding method was 

employed to separate shadow and water objects. The “clean” shadow objects were then 

processed by a derived computer algorithm to generate shadow length and building 

height for high-rise buildings in Bangkok.   

3.3.1 Image Segmentation    

OBIA emphasizes image segments or objects. Individual pixels are grouped into 

meaningful objects based on spectral statistics and textural information (Blaschke et al., 

2000). The first commercial software for OBIA is eCognition and now referred to as 

Definiens Professional. One main advantage of OBIA is its ability in multi-resolution 

segmentation. Multi-resolution segmentation uses a region-merging approach starting 

with 1-pixel objects. The resultant image objects can be considered as homogenous 
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image regions with regard to spectral statistics, texture, shape, and neighbor information 

(eCognition User guide, 2003). The image objects, instead of individual pixels, are the 

inputs for the image classification. Training samples (i.e., image objects) need to be 

identified for different land use/cover types. The input feature may include spectral 

information and additional object attributes such as shape, texture, and the spatial 

relationship between the objects.  

The multi-resolution segmentation was first used to generate image objects. A 

number of parameters need to be defined in this process, including scale, color/shape, and 

smoothness/compactness. The parameter setting directly affects the size and the shape of 

image objects. It is impossible to define these parameters using prior knowledge, as trial-

error tests are routinely used. For a specific image, large scale factors typically produce 

large image objects. A relatively small scale factor (i.e., 8) was used, thus small image 

objects such as individual buildings or shadows are discernable through visual 

interpretation. Color/shape (i.e., 0.3 and 0.7 respectively) and smoothness/compactness 

(i.e., 0.4 and 0.6 respectively) were defined. Four spectral bands were weighted equally 

in the image segmentation process.  

The resultant image objects, from the image segmentation process, were used as 

inputs for classification. A six-class classification scheme was employed. Land cover 

types include shadow, water, vegetation, high albedo impervious cover, low albedo 

impervious cover, and soil. Training samples (i.e., image objects) were identified using 

visual interpretation. Both panchromatic and multi-spectral bands of IKONOS were used 

as reference. The classification is primarily based on the spectral statistics (i.e., mean 

value of spectral response) of image objects. A nearest neighbor classifier was employed 
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for the classification task. It should be noted that eCognition uses a fuzzy logic approach 

where each image object has a set of membership values with regard to the classification 

scheme. The image objects were labeled according to the highest membership value. The 

classification results were assessed using a standard error matrix. A total of 30 random 

pixels were selected for each of the land cover classes. These “test” pixels were examined 

by visual interpretation using IKONOS panchromatic and multi-spectral bands as 

reference.  

3.3.2 Shadow Detection 

Both shadow and water classes appear dark in the image. Spectral responses from 

these two classes are very similar, thus, it is difficult to separate these two classes using 

spectral information only. A number of object attributes such as size, shape, and spatial 

neighbor are employed to separate shadow and water objects. The object 

size/shape/spatial neighbor analysis is based on the classified image, instead of initial 

image segmentation results. For instance, all the spatially-connected pixels from the 

water class were treated as a single image object. A river, therefore, may become a single 

image object. The object size was used first to delineate extremely large objects such as 

rivers, streams, and large water bodies, such as lakes and ponds. These objects were 

discarded, because the sizes of most shadow objects from high-rise buildings are 

substantially smaller. The remaining image objects from shadow and water classes were 

then merged into a single water/shadow class. The object sizes were recalculated. 

Thresholding was employed to remove extremely small objects (i.e., less than 10 pixel) 

as small shadow objects are often related to low buildings.  
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The remaining image objects were further examined using shape indices. Visual 

interpretation of the IKONOS image shows that the shadows from low buildings in 

residential areas typically have an elongated linear shape, while those from high-rise 

buildings have a disk shape (Figure 3.2). A Perimeter-Area ratio was used to differentiate 

these two types of objects. In addition, some small streams may also show a linear shape, 

which can be detected using the same shape index. In additional to the Perimeter-Area 

ratio index, an Object Length index was also examined for the water/shadow objects. The 

Length index was calculated as the largest distance among individual pixels for a given 

image object. Similarly, thresholding was used to define potential shadow objects from 

high-rise buildings. All other shadow/water objects were discarded.  

  

Shadows from high-rise buildings Shadows from low buildings 

Figure 3.2. Examples of Shadow Objects for High- and Low- rise Buildings from IKONOS. 

                 



 66 

The spatial relationship of neighboring objects was also examined. An image 

object is considered a shadow if an impervious cover object is located in its 

“neighborhood” and in the sun-side direction. The object size, shape and spatial neighbor 

together serve as thresholds to generate a “clean” shadow dataset for building height 

estimation.  

3.3.3 Shadow Length and Building Height Estimation   

The shadow objects were first smoothed by removing the “pixel spurs”. The 

shadow length was then measured according to the sun-azimuth angle. A computer 

algorithm was designed for the task. First, the perimeter pixels were identified for each 

input shadow object. The distances and azimuth angles were calculated for all possible 

combinations between two perimeter pixels. However, only the largest distance measure 

in the defined azimuth angle range (i.e., 152~156 degrees) were retained as the shadow 

length. This measurement may be problematic for buildings with multileveled rectangular 

solids, but the approach is simple and efficient. The shadow lengths derived from this 

automatic computer algorithm were compared with the results from manual interpretation 

of the IKONOS image. Specifically, 20-percent of the shadow objects are randomly 

selected and shadow length was manually measured for each object.  

The simplest method of building height estimation is to use trigonometry to link 

shadow length and building height. One key assumption is that the surface on which 

shadows fall is flat, which is the case for Bangkok. The topography of Bangkok is a low-

lying, flat surface. Equation 1 shows a simply model of sun-building-shadow 

relationships: 

     H = L × tan (θ)                                                                               Equation 1 
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where L is the length of the shadow and θ is the sun elevation angle. Sun elevation angle 

is directly available from the IKONOS image header file. In this approach, the accuracy 

level of building height measurements depends on the shadow length estimations. 

3.4 Results 

3.4.1 Image Segmentation    

Multi-resolution image segmentation generated a total of 996,640 image objects. 

The object size varies greatly over the image. These image objects were labeled 

according to the strength of class membership outputs. Figure 3.3 shows a subset of 

initial classification results using the OBIA approach.  

 

Figure 3.3. Image Classification Results from OBIA. 
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The classification results show more homogenous patches and less “salt and 

pepper” effects than a traditional per-pixel classifier (i.e., ISODATA), especially for the 

vegetation cover. A classification error matrix is presented in Table 3.2. The overall 

classification accuracy is 84-percent. The users’ and producers’ accuracy for the shadow 

class is 87-percent and 74-percent, respectively. The users’ and producers’ accuracy for 

the water class is 73-percent and 85-percent, respectively. The error matrix also suggests 

that the main difficulty is the confusion between shadow and water classes, as it is 

difficult to delineate shadow from water class using spectral information only. This is 

expected since the spectral responses from these two classes are very similar (Sawaya et 

al., 2003). There is also obvious confusion between the soil class and low albedo 

impervious class. However, the total amount of soil cover is very limited, because the 

image primarily covers the central area of Bangkok. Thus, there is no need to re-train or 

re-classify the soil class.  

Table 3.2: 

Error Matrix for Image Classification 

  Ground Truth 
  Shadow Water Imp_high Imp_low Vegetation Soil Total 
Shadow 26 4 0 0 0 0 30 
Water 7 22 0 0 1 0 30 
Imp_high 0 0 29 1 0 0 30 
Imp_low 2 0 0 24 3 1 30 
Vegetation 0 0 0 0 29 1 30 
Soil  0 0 0 8 1 21 30 
  35 26 29 33 34 23 180 

 

3.4.2 Shadow Detection  

The results are quite acceptable for a general land use/cover classification. 

However, the confusion between water and shadow class makes it impossible to conduct 
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building height estimation directly. For instance, many shadow pixels were labeled as 

water in the initial image classification and vise versa. Therefore, the size, shape, and 

spatial neighborhood information were further used to separate shadow and water objects. 

Figure 3.4 shows the distribution of water objects from the 2002 IKONOS image. Large 

rivers and streams are obvious in the image, however, there are also large numbers of 

small objects scattered across the entire image. These small objects can be ponds and 

shadow objects from nearby buildings and trees. The sizes of these water/shadow objects 

were calculated. A threshold of 500 pixels was used to delineate large rivers, streams, and 

lakes and ponds from other small objects. Figure 3.5 shows the derived large water 

objects. The largest object is located in the lower left corner of image -- a segment of the 

Chao Phya River. The image objects in the shadow layer are relatively small and 

homogeneous in their size distribution. 

 

Figure 3.4. Water objects from the initial classification. 
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Figure 3.5. Derived large rivers, streams and ponds. 

After removing the extremely large water objects, the remaining small 

water/shadow objects from the water layer were combined with the previously classified 

shadow layer. Therefore, a single layer of shadow/water was generated. New image 

objects were reconstructed for this shadow/water layer by linking spatially connected 

pixels. The total number of water/shadow objects is 52,840. The sizes of these objects 

range from 1 to 1,564 pixels. 

A histogram plot of object size suggests that there are large numbers of 

water/shadow objects with a relatively small size (i.e., less than 10 pixels). Small shadow 

objects may be cast by low buildings or trees, and therefore discarded for building height 

estimation. This procedure reduced the total number of objects to 12,906. Perimeter-Area 

Ratio was used to define the shape complexity of these objects. Figure 3.6 shows the 

histogram plot of the Perimeter-Area ratio for the water/shadow objects. A large number 

of objects (48,539) have a Perimeter-Area Ratio of 1. The remaining objects show an 
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interesting bimodal (2 peak) form. Figure 3.7 shows Perimeter-Area ratio of objects using 

an R-G-B color ramp. Red suggests high values of the Perimeter-Area ratio, and blue 

indicates low values of the Perimeter-Area ratio. The color representation clearly shows 

that shadows from high-rise buildings have a characteristic Perimeter-Area ratio range 

(i.e., 0.2~0.5). Figure 3.8 further illustrates the contrast of spatial objects with regard to 

the Perimeter-Area ratio. Linear objects typically have high values of Perimeter-Area 

ratio (i.e., 1), while shadows from high-rise buildings have a low or intermediate 

Perimeter-Area ratio (i.e., 0.2~0.5). A threshold of 0.5 was used to remove linear-shaped 

objects from the image. In addition, a Length index was calculated for the remaining 

shadow/water objects. The Length index was found to be useful in the detection of the 

elongated stream segments. A threshold of 60 was applied to remove stream segments.  

 

Figure 3.6. Histogram Plot of the Perimeter-Area Ratio for Water/Shadow Object. 
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Figure 3.7. Color Ramp of the Perimeter-Area Ratio for Water/Shadow Objects. 

 
Shadows from low-rise buildings 

 
Shadows from high-rise buildings 

Figure 3.8. Comparison of Shadow Objects from High- and Low-rise Buildings 

The remaining objects were overlaid on the panchromatic IKONOS image. Most 

objects matched very well with the shadows of high-rise buildings. However, it was 

found that some small ponds have very similar shape characteristics compared to those 

from high-rise buildings, especially in the urban-rural fringe areas, as indicated in Figure 

3.9. Spatial neighborhood information was used to separate water ponds with shadows. 

The fundamental assumption of the sun-angle shadow method is that buildings and their 
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shadows must be spatial neighbors. A shadow/water image object is considered a shadow 

only if an impervious cover object is located in its neighborhood and in the sun-side 

direction. This approach successfully removed most ponds, because they are surrounded 

by other land cover types, especially vegetation cover. The remaining objects were 

considered to be “clean”. Each represents a shadow object for a specific high-rise 

building or a relatively high building (Figure 3.10). The total number of the remaining 

objects is 455.  

 
 

Figure 3.9. Spatial Neighborhoods of Small Water Ponds in Urban-rural Fringe Areas 
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Figure 3.10. “Clean” Shadow Objects from High-rise Buildings. 
Table 3.3 presents a set of threshold values and the remaining numbers of objects 

after each step of size, shape, and spatial neighbor analysis. The threshold of object size 

removed extremely large objects (i.e., rivers) and extremely small objects (i.e. shadows 

from low buildings or trees). Perimeter-Area ratio and Length index were used to remove 

elongated linear features. Finally, the spatial neighbor information was used to validate 

the relationship between shadow objects and impervious cover objects.   

Table 3.3: 

Threshold Values and the Remaining Image Objects 

  Size(pixel) 
 Large 

Size (pixel) 
Small  

Perimeter-
Area ratio 

Length 
(pixel) 

Spatial 
neighbor 

Threshold  <500  >10 0.2-0.5 <60  - 
The number of 
remaining objects 

52840 12906 489 477 455 

 

3.4.3 Shadow Length and Building Height Estimation  
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The shadow objects were first smoothed by removing the “pixel spurs”. Perimeter 

pixels were then identified for each shadow object. The distances and azimuth angles 

were calculated for all possible combinations between two perimeter pixels. The largest 

distance measure in the defined azimuth-angle range (i.e., 152~156 degrees) was retained 

as the shadow length. Figure 3.11 shows examples of shadow objects (in yellow) and 

their perimeter pixels (in red). The shortest and longest shadow lengths are 17.89-m and 

193.20-m, respectively. This shadow-length detection method is different from methods 

previously applied to aerial photography by Irvin et al. (1989). In their study, the mean 

value of shadow length at sun azimuth-angle was estimated. Although no accuracy level 

was reported in their study, the results may underestimate the building height. Massalabi 

et al. (2004) used the manual interpretation of shadow length, but it can be time 

consuming and expensive.  

 

Figure 3.11. The Perimeter Pixels from Shadow Objects  
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A total of 85 shadows were randomly selected and their lengths were measured 

manually. Four shadows were found to be falsely identified: one was water and the other 

three were dark impervious materials. The manually interpreted shadow lengths and the 

automatic detected values are plotted in Figure 3.12. The correlation coefficient is 

0.9460, and 62.5-percent of buildings have less than 4-m error. Recall that IKONOS 

multi-spectral bands (4-m spatial resolution) are being used for shadow identification and 

measurements, as such, the error is quite small. In addition, the performance of the 

shadow length measurement appears to be relatively consistent, and there is no obvious 

error distribution across different building heights.   

 
Figure 3.12. Accuracy Evaluation of the Shadow Length Estimation 

 

Figure 3.12 also suggests that there are several buildings where the automatic 

algorithm produced large errors. These shadow objects and buildings were identified for 
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further analysis. Figures 3.13a, 3.13b, and 3.13c show different scenarios of high-rise 

buildings’ relative positions, orientations, and the resultant shadow sizes and shapes. A 

common problem is that two individual buildings’ shadows are merged into a single 

shadow object. This will cause two obvious errors. First, one of the buildings will not be 

identified. Second, the shadow length from automatic detection may generate large error 

estimates (i.e., overestimation of shadow length). Figure 3.13d shows another type of 

error, where shadow objects are connected to a dark surface area (i.e., water body). Both 

error types are difficult to correct using the automatic approach. For the first type of 

error, a potential solution is to decompose a shadow object. However, it is a very 

complicated problem and there is no universal method/algorithm that can be applied to all 

images or study areas (Irvin, 1989; Lin et al, 1999). Another solution is to incorporate 

multiple images obtained at different sun elevation/azimuth angles. Different shadow 

position, size, and shape may be potentially useful for the analysis (i.e., Lee and Lei, 

1990). Overall, the approach developed here can generate shadow length with high 

accuracy for most isolated high-rise buildings, but the performance is problematic for 

clustered high–rise buildings. In some case, the shadow objected can be fragmented and 

this can lead to extraneous shadow length estimations, but these are common problems 

for all automatic or semi-automatic shadow/building extractions. In fact, it is widely 

recognized that most previous works in aerial photography analysis only focuses on very 

simple scenes and detached buildings (Baillard, 1999). Few automatic systems have been 

developed to extract buildings or estimate building heights in a dense and complex urban 

setting.  
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Figure 3.13a 

 
Figure 3.13b 

 
Figure 3.13c 

 
Figure 3.13d 

Figure 3.13. Error Sources of Shadow Length Estimation. 

It should be noted that a good match between automatic estimated shadow length 

and visually interpreted shadow length does not guarantee a good estimation of actual 

building height. The size and shape of shadow objects can be affected by many factors, 

including the surface cover types on the ground, the building structure (i.e., sharp-pointed 

structure), the relative position of buildings (isolated or clustered), sun elevation/azimuth 

angle, and sensor elevation/azimuth angle. To further assess the accuracy of building 

height estimation, actual building heights were obtained by accessing government/city 

information by colleagues at IPSR (Institute for Population and Social Research), 



 79 

Thailand. Building heights were obtained for a total of 21 high-rises from the Bangkok 

central business district (CBD), especially in the Sukhumvit area. The actual building 

heights and the automatic detected values are plotted in Figure 3.14. The correlation 

coefficient is 0.97. In sum, 57-percent of buildings have less than 4-m error and 67-

percent of buildings have less than 8-m error.  

 

Figure 3.14. Accuracy Evaluation of the Building Height Estimation. 
 

There is an error pattern of overestimation for almost all buildings. A careful 

visual interpretation of the panchromatic IKONOS band shows that the self-shadowing is 

one of the main error sources. Proportions of buildings were classified as shadows in the 

multi-spectral image segmentation and the overestimation of shadow length leads to the 

errors in building height estimation. The pixel size imposed (i.e., 4-m) may also affect the 
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shadow identification. A pixel may have mixed spectral signals from different land cover 

types that can cause difficulties and errors in image classification. There are 3 buildings 

that show extremely large errors (i.e., >15-m difference) between the actual and the 

estimated building heights. These are caused by the spatial clustering of high-rise 

buildings. It is probably the most challenging question for the shadow-based method. The 

high level of the fusion/fragmentation of shadow objects may cause large uncertainty of 

building height estimation. The surface terrain information is also important. The method 

suggested in this study may not be appropriate for cities with high levels of terrain 

variation, where a very detailed digital elevation model may be needed to correct the 

terrain effects on the shadows. Shettigara and Sumerling (1998) also addressed the 

importance of the sensor azimuth, sensor elevation angle, and building orientation for 

building height estimation. In any case, the estimated building height needs to be 

evaluated using actual building height.  

The shadow detection and shadow length estimation methods were extended to 

the May 1999 image. As a result, a total of 903 shadow objects were identified and linked 

to high-rise buildings or relatively high buildings for Bangkok.  The building height was 

simply estimated using a trigonometry method described previously. A simple 3-D urban 

map for the Bangkok city was generated. Figure 3.15 show 3-D images (i.e., from 

multiple viewpoints) of Bangkok, Thailand. Landsat ETM image (2002) and road 

coverage were used as background. 3-D objects or markers were placed in the map by 

reading height information from each building. It should be noted that all buildings were 

simply represented using uniform objects/markers (in grey).  This data provide additional 

information for urban structure analysis. For instance, most high-rise buildings are 
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clustered in the central business area (CBD) in Bangkok. The 3-D urban map can be 

useful for the identification of CBD area. This will be further discussed in the next 

chapter.  

                  

                  

Figure 3.15. 3-D urban view of Bangkok, Thailand 
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3.5 Conclusions  

Building height or 3-D urban information can provide very useful information for 

assessing urban structure and socio-demographic implications of urban areas. Shadow 

analysis is one of several methods used in traditional aerial photography analysis. 

However, few studies have used shadow information from satellite remote sensing data to 

derive building height. The recently available high-resolution remote sensing data (i.e., 

IKONOS, QuickBird) provides increased spatial and radiometric resolution. Thus, 

traditional photogrammetry techniques such as shadow analysis may be used to estimate 

3-D building information from 2-D satellite images.   

This chapter examined advanced image classification methods for the automatic 

detection of shadow objects from high-resolution IKONOS image. Object-based image 

analysis (OBIA) was first used to segment a high-resolution image. The main advantage 

of OBIA is that it incorporates both spectral and spatial information for image 

classification. This often leads to better classification results, especially in urban setting 

where spatial and spectral variation is the main concern. In addition, a number of size, 

shape, and spatial neighborhood information were used to delineate shadow objects from 

water objects. This type of rule-based classification generated a “clean” shadow dataset. 

Computer algorithms were developed to measure shadow length automatically. This can 

be useful if large numbers of shadows/buildings are involved for analysis. Overall, the 

method produced excellent shadow detections and shadow length measurements, 

especially for high or isolated buildings. However, the approach is problematic for 

clustered high-rise buildings. The shadows from different buildings may merge into a 

single large shadow object. The automatic system designed in this study generated poor 
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results for this case. While there are still many challenges in automatic building height 

estimation, this study suggested that shadow information on a 2-D image may provide 

very useful information with regard to 3-D building height. A semi-automatic system was 

developed that incorporates object-based image analysis, object size/shape/spatial 

neighbor analysis, automatic shadow length detection, and building height estimation. 

The results are potentially useful for urban structure/function analysis. For instance, the 

urban center or CBD area in Bangkok may be identified using building height 

information.  
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CHAPTER 4 

URBAN FORM ANALYSIS 

4.1 Introduction  

In urban studies, administration officials, city managers, and urban researchers are 

often concerned with the analysis of urban form, because of the implicit and explicit links 

to urban function. The compactness and diversity of urban form may have direct and 

indirect impacts on energy demand and environmental consequences (Anderson, 1996). 

For instance, urban sprawl is generally considered an inefficient urban form in that low 

density suburban development may generate long commutes, traffic congestion, and air 

pollution. Urban sprawl also can contribute to the decay of downtown areas and a 

reduction in social interactions (Brueckner, 2000). In addition, dispersed urban 

development can affect urban runoff, fragmentation of land cover, and a reduction in 

local species diversity (Lassila, 1999). Dale et al. (2000) provides a review of the direct 

effects of urban growth pattern on ecosystem form and function.  

Despite these main concerns, there are still fundamental questions about urban 

form that remains unanswered.  First, the measurement criteria of urban form may vary 

among researchers. Urban form may have different definitions and implications for 

researchers that range from urban planning, urban geography, urban ecology, and urban 

sociology (e.g., Alberti, 1999; Batty and Longley 1988; Harvey and Clark 1965; Mills, 

1981; Song and Knaap 2004; von Thünen, 1825). Researchers have employed a variety 

of measurements or indices to characterize urban form. The input datasets may include 
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population statistics, land use and land cover patterns from remote sensing systems, and 

GIS coverages such as road networks and locations of shops and industrial, commercial, 

and residential uses. The most commonly used indices include measures of density, 

pattern, and proximity (Fulton et al., 2002; Galster et al., 2001; Song and Knaap, 2004). 

AS such, a high diversity of measurement criteria and approaches makes the comparison 

of urban form very difficult across space and time. Second, the measurements or indices 

are often derived by city boundaries, district/census tracts, and ZIP code areas (Krizek, 

2003). However, these units all have arbitrary shapes and boundaries that may or may not 

offer meaningful representations of actual urban forms and their dynamics. For instance, 

the city of Bangkok has extended its geographic reach well beyond its administrative 

boundary to include surrounding provinces. This also leads to an important concept of 

scale-dependence in which measurement units influence the nature of patter-process 

relations (i.e., Walsh et al., 1999). Urban form may be defined at local to regional scales 

(Krizek, 2003), and each has different implications on human and natural processes. 

Third, there is a large gap between the characterization of urban form and the analysis of 

urban function. The causes, consequences, and feedback mechanisms of urban form on 

the social and biophysical processes have not been thoroughly examined. For instance, 

land use/cover transformations are an important process that has direct impacts on the 

urban form. On the other hand, the spread of land use/cover change may also be affected 

by urban form and/or landscape heterogeneity.  

The coupling of scale, pattern, and process in urban settings is rooted in landscape 

ecology (Risser et al., 1984; Turner, 1989). Landscape ecology theory argues that 

landscape patterns should be addressed at their “characteristic” scales or ranges of spatial 
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(or temporal) scales that are autocorrelated so that associated processes can be described 

(e.g., Allen and Starr, 1982; O’Neill et al., 1986; Turner et al., 1990; Urban et al., 1987; 

Walsh et al., 1999). Landscape pattern analysis in urban setting is relatively new 

compared to its wide application in natural environments (Seto and Fragkias, 2005). 

Recently, the concept of urban-rural gradients, proposed by McDonnell and Pickett 

(1990), has been increasingly used to examine urbanization and ecological conditions. 

The basic concept of urban-rural gradients incorporates humans as a component of 

“natural” ecosystems. The theory and methods of landscape ecology, therefore, can be 

directly used to assess the pattern-process interactions in urban setting. Many urban–rural 

gradients studies assess the composition and spatial organization of land use/cover along 

one or more linear transects across a metropolitan area (Conway and Hackworth, 2007; 

Luck and Wu, 2002). Researchers have studied the variations of species diversity and 

water quality along these transects (Sukopp, 1998; Wear et al., 1998). In addition, the 

study of “patchiness” and their dynamics along transects provides a convenient way to 

organize question of spatial heterogeneity vs. homogeneity. This allows researchers to 

characterize the relationships between observed patterns and underlying processes across 

different spatial scales (Wu and Loucks, 1995; Zipperrer et al., 2000). The inputs into the 

urban-rural gradient analysis largely depend on the research objective and data 

availability. Derived remotely-sensed land use/cover classification is often used as an 

input to urban-rural gradient analyses, although it is not uncommon to incorporate road 

networks, dwelling units, population, and other socio-demographic dataset for more 

advanced studies of urban analysis (e.g., Conway and Hackworth, 2007). For most 
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developing countries, however, data availability and data quality are considerable 

concerns.  

A fundamental assumption of urban-rural gradient analysis is that cities are mono-

centric. However, urban forms in the real world can be more complicated, especially for 

large cities or metropolitan areas. For instance, researchers have defined three key urban 

forms: concentric city, radial city, and multinucleated city (Burgess, 1925; Hoyt, 1939). 

More recent studies of urban forms also include fractal city (Batty and Longley, 1994) 

and self-organization city (Portugali, 2000; Schweitzer, 1997). As a result, it is very 

difficult to characterized overall urban form using the customary limited number of 

transects, because the location, width, length, and orientation of transects may be 

subjectively designed. The imposed length/width of transects also ignores the fact that 

pattern-process interactions are scale-dependent. There is a need, therefore, to develop 

alternative strategies for characterizing the overall urban-rural gradients with higher 

consistency and robustness. A multi-scale approach is of particular interest as it reflects 

landscape ecology theory: the interplay of scale-patter-process relations and an inter-

connected area of urban-rural landscapes. In addition, urban-rural gradients are typically 

characterized using one image or a single snapshot of the landscape in time. In practice, 

researchers are more interested in the temporal dynamics of urban form that responds to 

social, natural and/or ecological processes. Until now, few multi-temporal, urban-rural 

gradient analyses have been conducted, and the advantage of high temporal resolution, 

remote sensing data has yet to be fully utilized in the study of urban settings.  

In landscape ecology, a consistent challenge is to find appropriate measures of 

landscape composition/structure that can be linked to underlying processes (Gustafson, 
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1998; Turner et al., 1991). Hundreds of landscape pattern metric indices have been 

developed to quantify area, shape, connectivity, and diversity characteristics at class, 

patch, and landscape-levels (O’Neill et al., 1988). Empirical analysis shows the relative 

importance of indices for specific applications (Gustafson, 1998). However, measurement 

of pattern indices is very sensitive to land use/cover classification schemes and 

classification accuracy assessments (Wu, 2000).  The inconsistency of urban 

classification schemes and accuracies make it difficult to compare urban forms across 

space and time. Recently, the impervious cover mapping of urban space has received 

increased attention in the remote sensing literature. Simple measurements such as density 

and spatial structure of imperviousness may provide a useful basis for urban form 

analysis and urban feature identification (i.e., urban core, inner zone, urban fringe, 

peripheral clusters, and rural). It should be noted that some urban features/functions may 

not be discernible using imperviousness as the only input. For instance, the urban core or 

the central business districts (CBD) is often characterized by clustered high-rise 

buildings. However, there is no 3-D or building height information in a traditional 2-D 

impervious cover map. Therefore, it may be difficult to delineate the CBD from the urban 

fringe or peripheral clusters based on present imperviousness as a single description 

variable. Urban form characterization also provides a general framework to study the 

process of urban space filling (Donnay et al., 2001). The relationships between urban 

form and land use/cover change are considered as pattern-process interactions that 

operate on multiple spatial and temporal scales. One simple approach to characterize 

these interactions is to examine the linkage between the newly urbanized pixels and their 

neighborhoods or pre-existing urban form. Specifically, the urban change pixels can be 



 92 

grouped into several classes based on urban form at immediate, local, and regional spatial 

scales. The concept is similar to that proposed by Wilson et al.’s (2003) in which urban 

change pixels are labeled as structural infilling, diffusive expansion, and isolated urban 

growth based on the conditions of neighborhood pixels.  

This chapter is designed to examine and improve urban form characterization 

using multi-scale landscape pattern metrics. The study site is Bangkok, Thailand. The 

empirical testing is discussed through three objectives: (1) traditional transect sampling is 

used to examine urban-rural gradients for Bangkok, Thailand; pattern indices are 

calculated and compared across space and time; (2) the urban-rural gradients are 

examined over the entire remote sensing image of the Greater Bangkok Area using a 

moving window strategy; urban features (i.e., core, inner zone, fringe, and rural) are 

identified using 2-D and 3-D maps as inputs; the temporal change of urban features is 

also considered; (3) the relationships between the locations of urban change pixels and 

pre-existing urban form/structure are examined from 1993-2002 at multiple spatial scales.  

4.2 Study Area 

Bangkok is Thailand’s largest metropolitan area. It has experienced rapid 

population growth and urban growth since the mid-1970s. The urban area continues to 

expand outwardly, mainly along three major transport corridors (southwest, southeast, 

and north of the city). Population growth, including both natural growth and in-migration, 

is one of the main contributing factors to this areal expansion (Choiejit, 2005; 

Nanthamongkolchai, 1999;). The average household size in Bangkok has also decreased 

during the past three decades (NSO, 2000). This demographic shift demands more 

housing units and additional built-up areas. Furthermore, researchers indicated that the 
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lack of coordination between the public sector (i.e., transportation planning policy) and 

private sector (i.e., residential/commercial development) may be responsible for the 

inefficient urban land use patterns or urban forms seen across the landscape. In fact, 

urban area of Bangkok has encroached into five surrounding provinces, including 

Nonthaburi, Pathumthani, Samutprakarn, Nakonpathom, and Samutsakorn. As a result, 

Bangkok has emerged as a primate city and the Greater Bangkok region that describes the 

areal expansion of the space, geographic reach, and functional influence. Administrative 

boundary of Bangkok city bears litter resemblance of urban form or urban functions.   

4.3 Data  

This chapter uses sub-pixel classification results (see Chapter 2) and building 

height information (see Chapter 3) for the analysis of urban form. Two Landsat TM/ETM 

images (1993 and 2002) were initially classified using a neural network, sub-pixel 

classification approach in which land use/cover are represented as percent impervious 

cover at the sub-pixel (30-m) level. Chapter 2 provided details of land use/cover 

classification methods and results. Most landscape pattern studies require discrete input 

values (e.g., 0 or 1). Therefore, the sub-pixel classification results were converted into 

discrete impervious/non-impervious cover using a threshold value of 0.5 that reduces the 

uncertainty in image classification. The landscape pattern metrics are highly sensitive to 

image classification errors, especially when large numbers of land use/cover types are 

involved (Wu, 2000). Building height information was derived from photogrammetric 

analyses of two high-resolution IKONOS images (May 2000 and November 2002). These 

two IKONOS images cover a relatively large portion of the central Bangkok area, where 

most high-rise buildings are located. A total of 901 high-rise buildings were identified. 
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The heights of the tallest and the lowest buildings in the study area as of the two image 

dates are 299-m and 38-m, respectively. The detailed method and results of building 

height estimation were provided in Chapter 3.   

4.4 Method 

4.4.1 Sampling Transect-Based Urban-Rural Gradients  

Two 3-km transects belt were designed to sample the urban-rural gradient in 

Bangkok (Figure 4.1). Both transects are oriented in a west to east direction. For Transect 

A, the center line is located approximately 30-km north of the Bangkok city center. The 

transect bisects a main transport corridor and crosses urban fringe area, however, a 

majority of the transect is characterized as agricultural, rural landscape. Transect B 

traverses the central city area of Bangkok. It also follows a main transport corridor that is 

oriented in a west-east direction. Previous research suggested that land development in 

Bangkok has followed this main transport corridor (Guest et al., 2000), and, as such, high 

variability of landscape structure is hypothesized along Transect B over time. A moving 

window approach is used to analyze landscape patterns along these two transects. The 

size of the moving window is 3×3-km. Fragstats software (McGarigal and Marks, 1993) 

was used to calculate landscape pattern indices for each moving window. Three indices 

were measured: the percentage of impervious cover, mean patch size, and patch number. 

The pattern indices are calculated at class level. The percentage of impervious cover 

within each moving window suggests a general level of urban development, while the 

mean patch size and patch number provide information about landscape fragmentation 

(Riitters, 1995). The landscape pattern indices are plotted against the distance to the 
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origin (west edge of the transect). The curves of landscape pattern indices are evaluated, 

providing insights into the spatial/temporal dynamics of landscape structure.  

 

 

Figure 4.1. Transects for urban-rural gradient analysis. 

4.4.2 Overall Urban-Rural Gradients and Urban Feature Identification 

The sampling transect approach provides a measurement of landscape pattern for 

limited areas. The orientation, position, width, and length of the transects are subjective 

to and constrained by the design. Therefore, urban-rural gradient analysis was applied to 

the entire image. The approach is similar to an image convolution operation in which a 

A 

B 
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moving window is positioned over each pixel as the focal cell of the image, so the 

landscape pattern indices can be calculated for the defined neighboring through the 

window size. As indicated, three pattern indices are calculated: the percentage of 

impervious cover, mean patch size and patch number. Thus, three resultant landscape 

pattern images are generated: a density image, a mean patch size image, and a patch 

number image. For these images, the pixel values represent the compositional and 

structural information of defined neighborhoods (i.e., 3-km buffer). The image 

“convolution” operation is simply an extension of the sampling transect approach. To 

examine the effects of window size on the landscape pattern metrics indices and their 

effectiveness in describing urban form, four different window sizes (150-m, 500-m, 

1500-m and 3000-m) were examined, because different window sizes provide spatial 

structure information at different scales.  

Two approaches are used to identify urban features (i.e., urban core, inner zone, 

urban fringe, and rural areas). The first approach reclassifies the landscape pattern 

images. For instance, urban core area may have high values of mean patch size for 

impervious cover, while a rural landscape may have lower values. Using different 

threshold values, the landscape pattern image can be reclassified into several regions. 

Each of these regions has similar characteristics in terms of urban landscape structure. 

This approach quantifies urban features from the perspective of spatial organization of 

urban space. Using the percentage of impervious index as an example, urban core can be 

simply identified using a threshold value that is three standard deviations above the mean 

value. Visual interpretation can be used to specify the threshold values. Landscape 

pattern images from different time periods (i.e., density image from 1993 and 2002) can 
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be classified using the same set of threshold values for comparison purposes. Thus, the 

changes of urban features and spatial pattern can be monitored through time. Urban 

features may vary in locations and spatial extents if different landscape pattern indices 

are used for classification. In this study, the density and mean patch size indices are 

employed for urban feature classification and analysis consistency.   

In the second approach, the building height information is used as an alternative 

input to analyze urban features. The locations of high rise buildings are treated as 

individual points. Their areal distribution is mapped using a kernel smoothing technique 

(Bailey, 1995). A kernel sizes of 3000-m is used. Within the moving kernel, the distances 

to the kernel center are calculated for the high-rise buildings, and the intensity value of 

the center-point is derived as a function of the weighted distances. This approach allows 

the variation of high-rise building intensity over Bangkok to be examined. The urban core 

area is defined by thresholding the intensity image. The temporal change of urban 

features is not examined using this approach due to limitations of data availability. There 

is no high-resolution data available for the study area in early 1990.  

4.4.3 Urban Change Pixels and Pre-Existing Urban Form 

To examine the spatial relationships between urban change pixels and pre-existing 

urban form or urban gradients, the change detection results from 1993 to 2002 are 

overlaid on landscape pattern images from 1993. The total number of change pixels from 

1993 to 2002 is 175,926. To reduce the data volume and computational cost, 10-percent 

of change pixels are selected for urban space infilling and expansion analysis. For 

comparison purpose, the same numbers of pixels are randomly selected for stable urban 

and stable non-urban classes for the periods of analysis. These randomly selected pixels 
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serve as control samples to evaluate whether there are significant differences between the 

change pixels and non-change pixels with regard to the pre-existing urban form. Simple 

boxplots were used as the primary data exploration method. The comparisons were 

conducted for different window sizes, ranging from 150-m to 3000-m. A small window 

size (i.e. 150-m) provides urban structure information at immediate pixel neighborhoods, 

while large window size (i.e., 3000-m) allows high level urban structures, such as urban 

core/fringe, to be examined. The operation at a small window size is similar to the urban 

growth modeling work conducted by Wilson et al. (2003). The change pixels are grouped 

into three main urban growth patterns: urban infilling growth, diffusive expansion 

growth, and isolated growth. Infilling growth is defined as an “urbanized pixel” 

surrounded by more than 50-percent existing urban pixels, whereas isolated growth is 

defined as an “urbanized pixel” surrounded by 0-percent existing urban pixels. All other 

change pixels are labeled as diffusive expansion growth.  

4.5 Result 

4.5.1 Urban-Rural Gradients from Sampling Transects 

Figure 4.2 shows plots of pattern metrics derived for Transect A and Transect B. 

Both transects are orientated along a west-east direction. The X-axis indicates the 

distance to the origin (about 40-km to Bangkok city center), and the Y-axis indicates the 

measurements of the selected pattern indices: the percentage of impervious cover, mean 

patch size, and patch number. Transect A is located in an urban fringe area. There is a 

main transport route oriented across transect A at about 47-km from the west edge of the 

transect. The location of this transport corridor can be easily identified by examining the 

peak values of impervious cover density and mean patch size presented in Figure 4.2. 
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Urban development is represented as the gaps between the blue line (1993) and the red 

line (2002). For transect A, the urban growth is primarily located near the transport route, 

between the distance of 35-km and 60-km from the west edge of the transect. Other 

regions (0~35-km and 60~80-km) from the west edge of the transect can be considered as 

a rural-dominated landscape, because the percentage of the impervious cover is quite low 

(i.e., less than 5-percent). Overall, the level of urban development in Transect B is much 

higher than in Transect A, as indicated by higher values of imperviousness. For Transect 

B, the peak value of percent imperviousness is located around 37-km from the west edge 

of the transect. Visual interpretation of Landsat TM/ETM (1993 and 2002) images 

confirms that the location of the peak value matches well with the high density urban 

space in central Bangkok area or the city center. There are also several peak values 

around 15-km, 25-km, 47-km, and 60-km from the west edge of the transect. These peak 

values match well with important urban features such as peripheral urban clusters, 

transport intersections, and other major urban developments. There is a peripheral cluster 

located at 15-km from the west edge of the transect, and two major road interactions are 

located at 25-km and 47-km, respectively. A new airport is developing around 60-km.  

The curves of impervious density show a high level of oscillation along Transect B. This 

is largely due to the location of Transect B that follows a main transport route that is 

oriented from west to east. The urban development along this transport route is complex. 

It is also interesting to see that impervious density is generally stable between 27-km to 

45-km from the west edge of the transect from 1993 to 2002. Most urban development 

actually occurs beyond this range (i.e., at least 10-km away form the urban center). The 

mean patch size curves look smoother than those for the impervious density index. This 
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is misleading, because of the data range. For Transect B, the highest mean patch value is 

around 1,700 (at 37-km), which is substantially higher than values from other regions. 

The plots at the bottom of Figure 4.2 show patch numbers along transect A and B, 

respectively. The curves are much more complicated than those for density indices and 

mean patch size indices. It is difficult to delineate urban center and rural area, because the 

urban center may also have smaller numbers of impervious patches, although their patch 

size may be significantly larger than those for rural area. Through time, there are obvious 

increases of patch numbers between 0~37-km and 60~80-km from the west edge of the 

transect for Transect A and Transect B, respectively.  
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Figure 4.2. The density, mean patch size, and patch number of Impervious Cover along Transects 

A and B 
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The landscape pattern indices derived for these two transects show very different 

characteristics with regard to the spatial and temporal dynamics. For instance, Transect A 

indicates abrupt contrasts between urban and rural landscape, while Transect B shows 

high oscillations due to the presence of peripheral clusters, road intersections, and other 

urban developments across space. In fact, it is difficult to capture general urban form 

based on the limited number of sampling transects, especially for large metropolitan that 

often have more complicated urban forms than a simple concentric urban shape (Conway 

and Hackworth, 2007).  

4.5.2 Urban-Rural Gradients for Entire Image and Urban Feature Identification 

Figure 4.3 shows resultant landscape pattern images using a moving window or 

image convolution approach for the entire Greater Bangkok area represented in the 

satellite images. The mean value of impervious density increases from 0.11 in 1993 to 

0.14 in 2002 (top panel). A visual interpretation of 1993 and 2002 density images shows 

the expansion of the road network and the development of several peripheral urban 

clusters in the eastern part of Bangkok. For mean patch size, the mean value increases 

from 17.01 in 1993 to 26.8 in 2002 (middle panel).  There is one cluster with an 

extremely high mean patch size in 1993 image. The cluster is located in the middle of 

Bangkok city and near the Chao Phraya River. An additional cluster has developed from 

1993 to 2002. It is located to the northeast of the initial cluster. The mean value of the 

patch number also increases from 56 to 72 during this period (lower panel). This 

generally indicates an increased level of land fragmentation, which is clearly shown in 

Figure 3 (lower panel). The fragmentation of rural landscape is particularly obvious.   
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Figure 4.3. Urban-rural gradients analysis using moving window (3-km window size) approach: 

density, mean patch size, and patch number of impervious cover 
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The impact of window size are examined using a range of window sizes: 150-m, 

500-m, 1500-m and 3000-m. Using the derived density image for 1993 as an example, 

Figure 4 shows that small window size (i.e., 150-m) characterizes the local variation in 

imperviousness as the resultant image appears very similar to the original input image 

(i.e., impervious cover from 2002). It should be noted that the edge effect for a small 

window size may introduce uncertainty (Urban et al. 2001). Therefore, spatial structure 

information derived from small window size can be difficult for interpretation. The 

images are much smoother if large window sizes (i.e., 1500-m, 3000-m) are employed. It 

is not possible to define a window size as a-prior knowledge. Geo-statistical method such 

as a semivariogram may be employed for data exploration. However, it is also useful to 

examine a range of window sizes or a multi-scale approach that captures urban structure 

at different levels. In practice, the resultant landscape pattern images should be examined 

using satellite images and other GIS dataset (e.g., road network) as a reference. A larger 

window size should be used if the overall urban-rural gradients are of interests, while a 

smaller window size emphasizes urban structure for each pixel’s immediate 

neighborhood locale. In this study, the window size of 3000-m was appropriate to assess 

the urban-rural gradients that characterize the city of Bangkok. The general contrast of 

the urban/rural landscape can be easily identified, while key urban features such as 

peripheral clusters are retained as well.  
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Figure 4.4. Impervious Density Image of 1993 (with 150-m window size). 

The urban features are classified by applying different threshold values to 

landscape pattern images. For the 1993 impervious density image, the mean value for the 

entire image is 0.11 and the standard deviation is 0.16. The threshold value for the urban 

core area was defined as 0.6, which is three standard deviations above the mean value. 

The urban fringe area was defined as the mean value (0.11) and one standard deviation 

above the mean (0.27). The region of Bangkok that has the density value between the 

urban core and the urban fringe is labeled as inner zone and has a range of value 

extending from 0.27-0.6. All other regions with a density measure of less than 0.11 are 

assigned to the rural area. Figures 4.5a and 4.5b show the urban core, inner zone, urban 

fringe and rural areas for 1993 and 2002 images, respectively. The urban features are also 

classified using mean patch size pattern images. Figures 4.5c and 4.5d show the locations 

and areal distributions of urban features defined by the mean patch size index. The shape, 

location, orientation, and area of urban features can be different depending on the inputs 

(e.g., density image or mean patch size image). Using 2002 urban features as an example, 
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the inner zone and urban fringe areas derived from the density image show much higher 

levels of connectivity than those from the mean patch size image. Although threshold 

values can be modified to reshape urban feature, the fundamental differences between the 

compositional and structural information of the landscape remain. Both can be useful for 

quantifying the level or form of urban development. The urban feature statistics can also 

be compared for different metropolitan areas over space and time to examine pattern –

process relations across a range of settings and conditions.  

19
93

 

4.5a 
 

4.5b 

20
02

 

4.5c 
 

4.5d 

 Density index Mean patch size index 
 

Figure 4.5. Urban Feature Identification Using Density and Mean Patch Size Indices: Urban Core, 
Inner Zone, Urban Fringe, and Rural Areas. 

 



 107 

The shape of the urban area is highly irregular for Bangkok. It has a dense core 

area and urban development that extends towards east, west, and north directions, mainly 

along three transportation corridors. The locations and area extents of urban features 

change from 1993 to 2002. General trends include the conversion from inner zone to 

urban core, urban fringe to inner zone, and rural area to urban fringe. Using the density 

image as an input, Table 4.1 shows areal distributions of these urban features for 1993 

and 2002.  It should be noted that there is another city, Samut sakhon, located at the 

southwest corner of the image. Considerable urban built-up areas have been developed 

along the transport routes between Bangkok and Samut sakhon since the early 1990s. As 

a result, the urban fringe areas of these two cities have merged and Samut sakhoon 

appears as a peripheral cluster of Bangkok.  

 

Table 4.1: 

Areal Distribution of Urban Features for 1993 and 2002 

 Urban core Inner zone Urban fringe Rural 

1993 0.0239 0.1095 0.1383 0.7283 

2002 0.0379 0.1412 0.1975 0.6234 

 

Using a moving window approach, an intensity image was generated to represent 

the spatial clustering of high-rise buildings in Bangkok, Thailand. Figure 4.6 shows an 

overlay of the intensity image and previously defined urban core areas using the 

impervious density index. It is interesting to note that the areas with most high-rise 

buildings do not match well locations with the highest impervious density. In other 
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words, the locations of urban core areas may be different depending on the inputs: 2-D 

impervious cover or 3-D building height. In Bangkok, high-rise buildings are often 

clustered in the Central Business Districts (CBD), most of them are office buildings, 

hotels, and luxury condominiums. In a traditional 2-D land use/cover map, these high-rise 

buildings may be simply grouped into the same urban class (i.e., impervious cover), 

although the function of a high-rise building can be very different from a single-story 

structure. Therefore, it may be difficult to delineate the CBD area from fringe areas or 

peripheral clusters using only 2-D impervious cover information. This will be another 

challenge for the physical characterization of urban form or features from remotely-

sensed imagery. Urban mapping in 3-D may offer a significant potential for the 

identification of meaningful urban functions (e.g., CBD), because of the capability to 

characterize building area for demographics studies.  
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Figure 4.6. Comparison of Urban Core Areas Derived from 2-D and 3-D Inputs. 
 

4.5.3 Urban Change and Urban Form 

To examine the relationship between urban change pixels and pre-existing urban 

form, 17,000 random pixels were selected from the total number of change pixels from 

1993 to 2002. The same numbers of random pixels were selected from stable urban class 

areas and from stable non-urban class areas. Within predefined window sizes, three 

indices were calculated for these sample pixels, including the percentage of impervious 

cover, mean patch size, and patch number. Figure 4.7 shows the boxplots for these 

indices. Overall, the density indices for change pixels are substantially lower than those 

from stable urban class. The stable non-urban class has the lowest overall density indices 

and the boxplot for this class is highly skewed. The mean patch size index shows similar 
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characteristics as the impervious cover density index. The stable urban class has the 

largest mean patch size over a range of window sizes from 150-m to 3000-m, and the 

stable non-urban class has, in general, the lowest mean patch size. In addition, the overlap 

between the three classes becomes smaller as the window size decreases. This is 

anticipated, because a larger window size emphasizes the variability of the landscape at a 

larger scale and local variations may be smoothed. However, it is still useful to examine 

the large scale contextual information for the locations of the change pixels, as it provides 

a general distribution of change pixels along rural-urban gradients or urban form/features. 

Using previously defined urban features (i.e., density based urban features) as zoning 

boundaries, the distribution of change pixels are 2-percent, 18-percent, 25-percent and 

55-percent for the urban core, inner zone, fringe, and rural area, respectively. The patch 

numbers are similar for the change pixel and the stable urban pixel. Both classes have 

relatively higher values of patch numbers than the stable non-urban class. It should be 

noted that the patch number indices at small window size (i.e., 150-m) are clustered at 

fairly low values (0 or 1). This will not be very useful for examining the relationships 

between urban change and urban structure/form.  
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3000-m Window Size 

 
150-m Window Size 

 
Figure 4.7a. Percentage of impervious cover for the spatial neighborhoods of the change, stable 
urban and stable non-urban pixels. 
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3000-m Window Size 

 
150-m Window Size 

 
Figure 4.7b. Mean patch size of impervious cover for the spatial neighborhoods of the change, 
stable urban and stable non-urban pixels. 
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3000-m Window Size 

 
150-m Window Size 

Figure 4.7c. Patch number of impervious cover for the spatial neighborhoods of the change, 
stable urban and stable non-urban pixels. 
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The indices derived at the small window size (i.e., 150-m) can be used for 

characterizing conceptual urban growth models, such as infilling growth, diffusive 

expansion growth, and isolated growth (Wilson et al., 2003). In this study, 8-percent of 

change pixels can be labeled as infilling growth. For these pixels, the density of 

impervious cover in a 150-m window size is equal or above 50-percent. 45-percent 

change pixels can be considered as diffusive expansion growth, because these pixels are 

located in areas with between 0~50-percent impervious cover density. All the remaining 

change pixels (47-percent) are labeled as isolated growth. The contribution of diffusive 

expansion growth and isolated growth are almost identical, and they are substantially 

higher than infilling growth. This may suggest that Bangkok has increased its level of 

urban sprawl through time.  

4.6 Conclusion  

Urban-rural gradients in Bangkok, Thailand was initially examined through a 

transect sampling approach. Three landscape pattern indices were measured along two 

transects. The density of impervious cover provides, in general, the level of urban 

development, while mean patch size and patch number indicate landscape fragmentation. 

Pattern indices show very different characteristics (i.e., abrupt transition/oscillation) 

depending on the location of the transects. Thus, it is difficult to capture the overall urban 

form using a limited number of transects. A moving window or “convolution” approach 

was employed for the entire image. Pattern indices were calculated within each moving 

window. Urban features (i.e., urban core, inner zone, urban fringe, and rural) were then 

defined as regions with similar characteristics of impervious density or spatial structure. 

The temporal dynamics of urban features were also examined. The area expansion of 
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urban core, inner zone, and urban fringe are obvious from 1993 to 2002, although the 

measurements exclusively rely on physical characteristics of urban space. The urban core 

of Bangkok was also defined using 3-D building height information. It was found that the 

location and areal distribution of the urban core can be different depending on the inputs 

(i.e., 2-D impervious map vs. 3-D building height). The measurement of urban features 

allows researchers to compare urban form, or the level of development, across space and 

time. In addition, the approach provides a general framework to study the relationship 

between urban change process and urban form/pattern. Simple boxplot analysis shows 

that there are significant differences among urban change pixels, stable urban pixels, and 

stable non-urban pixels with regard to their spatial context or neighboring urban 

structure. The relationships are scale-dependent. Urban structures at local neighborhoods 

are useful for characterizing urban growth models such as infilling, diffusive expansion, 

and isolated growth. Large scale urban structure provides an overall picture of urban 

growth. The distribution of change pixels along rural-urban gradients or urban 

form/features can be summarized and compared.   
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CHAPTER 5 
 

SPATIAL CLUSTERING AND URBAN SETTINGS OF RURAL MIGRANTS IN 
BANGKOK, THAILAND1  

 

5.1 Introduction 

Rural migration to urban places continues to fuel urbanization in developing 

countries, although natural increase and reclassification also have roles to play (Cohen et 

al., 2003; White et al., 2003; United Nations, 2004). Rapid urbanization can generate 

negative consequences through dramatic increases in population density that may out-

strip infrastructure development. Related effects of urbanization can include 

environmental degradation, deterioration of land and water quality, loss of open green-

space, alteration of urban hydrology, air pollution, and general degradation of the quality 

of life in urban settings. While urban places offer a number of pull-factors (e.g., 

manufacturing and construction jobs) to migrants that encourage their arrival, rural 

places, the source of much of the in-migration to Bangkok and other urban destinations, 

experience a number of push-factors (e.g., lack of good agricultural land for new 

households) that increase the propensity of people to leave their villages for urban 

settings. Often, remittances are returned to the origin household by family migrants, 

thereby, affecting rural household assets, and perhaps rural land use/land cover (LULC) 

patterns.

                                                 
1 The research work described in this chapter has been accepted for publication in Geocarto 
International (Shao et al., in press).   
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The data used in this paper are from an ongoing longitudinal study of social 

change in Nang Rong district, Northeast Thailand (Entwisle et al., 1998; Rindfuss et al., 

2004, 2005; Walsh et al., 2005; www.cpc.unc.edu/projects/nangrong). As part of the 

2000/01 round of survey data collection, migrants from 22 of the 51 study villages were 

followed to the top urban destinations: metropolitan Bangkok (Thailand’s capital), the 

Eastern Seaboard (three provinces that the government has designated as an economic 

development zone), Korat (the largest city in the Northeast), and Buriram (a provincial 

capital). The overwhelming majority of urban migrants were in Bangkok. The migrants 

who were followed included those who resided in the 22 Nang Rong villages in either or 

both 1984 and 1994, but were not resident in 2000. Approximately 70 percent of these 

migrants were found and interviewed. 

In August 2003, GPS coordinates were collected for the migrants from the 22 

study villages who settled in Bangkok. These coordinates were for the addresses recorded 

when the migrants were interviewed in 2000/01, and, for the most part, represented their 

place of residence; for a few, it is their job location. Through the migrant follow-up 

questionnaire, the GPS coordinates of the surveyed locations in Bangkok, and data from 

earlier survey rounds, a rural-to-urban link was established. Because of this geo-

locational link, urban migrants can be assessed relative to geographic location and other 

demographic attributes in their destination and/or origin. This unique characteristic of the 

Nang Rong data set offers the opportunity for insights into the spatial pattern and 

geographic proximity of urban migrants from Nang Rong district relative to urban 

features such as roads, rivers, and development zones, as well as, the social and 
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demographic characteristics of the migrants relative to each other and to their origin 

villages.  

This study examines selected social, spatial, and spectral characteristics of 

migrants, and their origin and destination locations within the context of a wide ranging 

set of questions including: How is the nature of LULC change in Nang Rong associated 

with the pattern of out-migration to cities within metropolitan Bangkok? Are migrants 

choosing to settle in newly urbanized areas in the cities, or in pre-existing places, 

possibly more familiar to earlier migrants from the same or spatially- and/or socially-

connected villages? What are the spatial links between migrants in destinations and the 

home locations of migrants? To what extent can the concepts, techniques, and data of 

spatial analysis be brought to bear on the study of migration and land use in rural and 

urban places? And, how might such information help us understand the social 

demography of urban areas, the interrelationships between rural and urban places, and the 

bridge between traditional demographic data sources and geo-spatial data and spatial 

digital technologies? 

The basic intent of this research is to conduct a descriptive social, spatial, and 

spectral analysis of migrants and their geographical settings surveyed and geo-located in 

Bangkok, and linked to their rural villages, as part of the 2000/01 Nang Rong survey. The 

first objective is to examine the spatial pattern of Nang Rong migrants in Bangkok by 

testing alternative approaches for characterizing the spatial pattern of all migrants and 

migrants linked to their 22 origin villages. Questions to be addressed include: (a) do the 

spatial patterns of migrants in Bangkok suggest spatial-social connections between 

migrants from the same source village as a consequence of spatial clustering in the 
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destination urban setting; and (b) how does the level of spatial clustering correlate with 

socio-demographic characteristics of rural-urban migrants? The second objective 

examines the use of satellite remote sensing to characterize urban environments that 

surround migrant locations (i.e., spatial neighborhoods) with particular emphasis on the 

degree and spatial pattern of impervious surfaces within a defined spatial window or 

kernel around the geo-located migrants’ location. Specific questions to address include 

(a) what are the physical characteristics of the migrants’ neighborhood environments in 

terms of impervious surface and the spatial organization of imperviousness, and (b) how 

do selected demographic variables and geographic variables correlate with migrants’ 

neighborhood characteristics?  

5.2 Geographic Setting 

Nang Rong district is located in northeastern Thailand (Figure 5.1). Until well 

into the second half of the Twentieth Century, Nang Rong was a frontier area, with 

available, ambiguously titled, forested land. Even today, most villagers are farmers, 

growing rice and upland crops such as cassava, sugar cane, kenaf, and corn. As is true for 

Thailand as a whole, Nang Rong is in the final phase of the demographic transition, with 

low mortality and replacement level fertility (Knodel, Chamratrithirong, and Debavalya, 

1987; Hirschman et al., 1994). Mortality declined prior to fertility, and the steepest 

declines were infant and child mortality. Such an age pattern of decline is equivalent to 

an increase in fertility. As a result of these demographic processes in Nang Rong, there is 

a generation that is larger than preceding and subsequent generations. Coupled with the 

closing of the frontier, the stage was set for substantial out-migration from Nang Rong. 

Migration, both permanent moves to Bangkok and other urban areas, and temporary 



 123 

movement, are common (Fuller et al., 1985; Fuller, 1990; Guest et al., 1994; Korinek et 

al., 2005). Further, seasonal migration is affected by the rhythm of agricultural activities 

in Nang Rong. The dominant crop is paddy rice, and there is almost no irrigation. The 

climate is monsoonal, with rains arriving late spring – early summer. The rice harvest 

typically occurs in December, and then there is a long dry season, with few agricultural 

activities prior to the start of the next rainy season. This dry season is a traditional time 

for Nang Rong residents to seasonally migrate in search of short-term employment prior 

to the next rainy season. 

 
 

Figure 5.1. Nang Rong district, northeastern Thailand. 
 

 
Bangkok is located in the central part of Thailand along the Chao Phraya River 

(Figure 5.2). Since the mid-1980s, direct foreign investments in manufactured exports 

created substantial employment in manufacturing, construction, and service sectors in 
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Bangkok and vicinity (Douglas, 1995). The economic efficiency of the metropolis and 

urban life draw large numbers of migrants from northeast Thailand and elsewhere. 

Bangkok now exceeds 9 million inhabitants and uncontrolled urban growth has been a 

major concern of the Thai government (UN Thailand ,2005). Urban problems, such as 

air/water pollution, traffic congestion, infrastructure deficiency, and environmental 

degradation have been exacerbated by increased population density in recent years. 

 
Figure 5.2. Bangkok, Thailand: a Landsat TM view 

5.3 Spatial Data 

In 2003, 1022 migrants' locations in Bangkok were collected using GPS 

technology. Among these locations where GPS coordinates were collected, 100 points 

were recorded at migrants' work addresses; these points are not included in the analyses 

reported here. There are also 18 migrants whose addresses have missing data values. 
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These 18 records are deleted from the dataset. The remaining 904 migrants' geographic 

positions were collected at their home address. In some case, two or more migrants were 

at the same address, resulting in one GPS point location to represent more than one 

migrant. Thus, the actual number of GPS points (n = 747) used in this analysis is less 

than the number of migrants. Note that the focus of this paper is migrants and each 

migrant is treated as an individual observation. We also use satellite data to describe the 

composition and spatial organization of migrants’ urban environments. Two Landsat 

ETM images (both from January 08, 2002) and one IKONOS image (November, 2002) 

were obtained. A mosaic of the two Landsat ETM images was produced, and an areal 

subset of 2,500 × 2,500 pixels was created to cover the Greater Bangkok Metropolitan 

Area and its surrounding provinces. The IKONOS image, with 4-meter spatial resolution, 

was used to generate training statistics and to test samples for Landsat ETM image 

classification. It should be noted that the IKONOS image only covers approximately a 10 

× 10 km area, primarily the urban center of Bangkok.  

5.4  Background 

5.4.1 Migration and Urbanization 

Urbanization and urban growth, more generally, is the consequence of three 

factors: rural–urban migration, differential natural increase, and re-classification of the 

urban administrative area as a consequence of planned and actual uses (Cohen et al., 

2003; United Nations, 2004; White et al., 2003). In Thailand, over the past several 

decades, rural-urban migration has been a major contributor to urban growth 

(Phongpaichit, 1993), especially the growth of Bangkok. Over the same period, rural-

urban migration has been a major contributor to population loss in rural areas, notably 
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those of the Northeast region (Susangkarn and Chalamwong, 1996), where Nang Rong is 

located. The migrants in our analyses, originating in rural Nang Rong and moving to 

Bangkok, are participants in Thailand’s largest internal migration stream (Guest, 1996; 

Pejaranonda et al., 1995).  

The impact of rural-urban migration on cities and other urban places, whether 

positive (e.g., Bilsborrow, 1996) or negative (e.g., Stern et al., 1992), as well as the 

impact of cities on them, will depend on how long migrants stay and where they settle. 

Some migrants are permanent, others are temporary (Guest, 1996; Korinek et al., 2005). 

Some live close to other migrants, others are dispersed. What is more, these two aspects 

of the migration stream are linked: the extent to which migrants live in close proximity to 

one another, and provide assistance to one another, affects the length of stay in the 

destination (Korinek et al., 2005). This study applies spatial analyses and GIS techniques 

to examine the residential clustering of migrants from Nang Rong.  

Although spatial point pattern analysis has been intensively studied in spatial 

statistics (e.g., Bailey 1995; Cressie 1991; Diggle, 1983; Romesburg, 1989), ecology 

(e.g., Davis et al., 2000), and epidemiology (e.g., Gatrell et al., 1996), its application to 

migrants' individual location is relatively new. We study patterns of residential clustering 

in relation to origin villages, asking whether migrants from the same village are more 

likely to live in close proximity than those from different villages. The origin village 

represents a social context for migration and a set of social ties that travel with the 

migrant from the origin to the destination. A common origin can be viewed as one set of 

social ties, or social network, although not the only one (see Korinek et al., 2005). 
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Spatially explicit investigations of social ties are rare (see Faust et al. 2000 as an example 

of a social network analysis that operated within a spatial context).  

5.4.2 Remote Sensing of Urban Places 

Remote sensing has long been used to characterize urban settings by mapping 

land use and land cover (e.g., Forster, 1983; Mesev, 1998; Paola and Schowengerdt, 

1995). The thematic maps generated from satellite images can be further used to study 

urban form (Batty and Longley, 1994) and urban growth (Ward et al., 2000, Xian et al., 

2000). Empirical models have also been developed to link biophysical and social-

demographic variables (Forster, 1983; Jensen et al., 1999; Weeks et al., 2005). Due to the 

heterogeneous land cover surfaces and their complex spatial organization, many urban 

pixels have mixed spectral signals from two or more land cover types. This is especially 

the case when images with low or medium spatial resolution are employed for 

classification. Therefore, traditional per-pixel classification is questionable in 

representing urban landscapes and estimating built-up areas. Ridd (1995) proposed a 

conceptual vegetation - impervious surface - soil model (V-I-S) to un-mix the pixels. This 

type of linear spectral mixture modeling has received intensive study, and imperviousness 

is considered the most important indicator of urban structure (Rashed et al., 2001; Small, 

2001; Wu and Murray, 2003).  

In addition to linear spectral mixture modeling, numerous other models have been 

employed to derive land cover proportions at the sub-pixel level. Neural networks 

(Atkinson et al., 1997; Foody, 1996; Liu et al., 2004) and decision trees (DeFries et al., 

1999; Xian et al., 2005) are of particular interest, because no assumptions are made about 

the nature of the spectral mixture and the function is simply “learned” from training 
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samples. If the size of the training sample is relatively large and representative, neural 

network based models often work well. We apply the neural network approach in the 

sub-pixel classification to derive impervious cover for Bangkok, and extend our 

preliminary and descriptive analyses to social demographic processes. 

5.5 Methods 

5.5.1 Point Pattern Analysis of Migrants' Locations 

The migrants' locational data set is relatively large (n = 904). Multiple 

observations representing migrants’ locations are referenced at the same GPS location 

(i.e., several migrants may share the same dwelling unit). In addition, many types of 

attributes (i.e., age, sex, education level, occupation, and origin village) are linked to each 

migrant. A spatial statistical approach was used to perform a point pattern analysis of 

their geo-coded locations. First, we considered the rural-urban migrants as a single group. 

Their areal distribution was mapped using a kernel smoothing technique (Bailey 1995). 

Kernel sizes of 1000-meters and 2000-meters were tested. Within the moving kernels, the 

migrants' distances to the kernel center were calculated, and the intensity value of the 

center point was derived as a function of the weighted distances. This allowed the 

variation of migrants' intensity over Bangkok and the surrounding areas to be examined 

within a spatial context.  

Social networks from origin villages are inferred based on the spatial clustering of 

migrants. Nearest neighbor distance was employed as an indicator of spatial clustering. In 

this study, migrants were stratified based upon 22 origin villages, and the Euclidean 

distance was computed for each migrant to his/her nearest neighbor from the same origin 

village. To summarize the spatial clustering by origin village, we simply calculated the 
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percent of nearest neighbor distance measures that are less than or equal to a specified 

threshold value (Bailey 1995) using the following equation (1):  

G(D) = #(NND ≤ D)/n        (1) 

NND indicates a vector of the nearest neighbor distance measures for an origin 

village. D indicates certain threshold distances specified as 500 or 1000 meters. The # 

symbol simply means counts and n is the total number of migrants for the source village. 

Thus G(500m) offers the percent of migrants who have nearest neighbor distances less 

than or equal to 500 meters. In this study, only two distance thresholds were considered – 

500-meters and 1000-meters. We suspect that migrants may interact at relatively local 

levels and at nearby distances, and so the 0.5-km and 1.0-km distances seemed quite 

appropriate.  

To test the significance of spatial clustering/randomness of migrants from a single 

village with respect to the total migrant population, we used a Monte Carlo 

randomization technique (e.g., Davis et al., 2000; Manly, 1991; Romesburg, 1989;). For 

example, if there are 30 migrants from an origin village, we repeatedly (i.e., 10,000 

times) and randomly selected 30 migrants from the entire migrants’ data set; G-values 

were calculated for each selection, and the distribution of G-values was defined. 

Assuming a normal distribution, we created 95% confidence intervals from the Monte 

Carlo simulations. The null hypothesis (Ho) is that the G-values calculated for the origin 

village are the same as the randomized simulation. The alternative hypothesis (H1) is that 

the G-values calculated from the origin village are higher than that obtained from the 

randomized simulation. Accepting H1 indicates spatial clustering of migrants from the 

same origin village in Nang Rong district.  
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To further evaluate the variation of spatial clustering/randomness, a correlation 

matrix was created to indicate how education level, occupation, age, and gender were 

related to the spatial pattern of migrants. This comparison is at the village level, so the 

individual socio-demographic variables have been aggregated based on origin villages. 

The education variable was computed as the percentage of migrants who completed 10 or 

more years' of education. The occupation variable was computed as the percentage of 

migrants who were in manufacturing. The percentage of males was used as the sex 

variable, and mean age was used as the age variable.  

5.5.2 Neighborhood Environment of Migrants' Locations 

The sub-pixel classification used in this study is a cross-sensor modeling 

approach, because images with two different spatial resolutions are involved. The 

IKONOS image was first classified into 30 spectral clusters using an unsupervised 

classification procedure. These spectral clusters were then grouped into four broad land 

cover types: impervious cover, vegetation, water/shadow, and soil. This classified 

IKONOS image was degraded to a 30 × 30m resolution, providing a “fractional map” for 

each of the land cover types. The fractional maps were registered to the Landsat ETM 

imagery so that the location of the 30 x 30m degraded IKONOS pixel precisely overlaid 

on the comparable 30 x 30m Landsat ETM pixel. A multi-layer perceptron (MLP) neural 

network was employed to model the relationships between the Landsat spectral signals 

and the fractional maps (e.g. impervious). Specifically, 6 bands of Landsat ETM spectral 

data were used as the input layer. The output layer had 4 nodes and each node 

represented one land cover type. The number of nodes at the “hidden layer” was 

determined through numerous trials. To train the neural network, 3,000 pixels were 
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randomly selected from the Landsat ETM image, with 2,000 pixels used as the training 

set and the remaining 1,000 pixels as the validation set. The network was trained through 

a back-propagation algorithm. A number of practical techniques, such as the number of 

hidden units, learning rate, momentum, and training iterations were evaluated. The best 

estimation was obtained with a hidden layer of 10 nodes, a learning rate of 0.01, 

momentum of 0.8, and 1,200 training iterations. With the trained network, the Landsat 

ETM images were classified and the resultant impervious cover map was used for further 

analysis.  

The neighborhoods of migrants' locations were defined as kernels with different 

sizes. Within each kernel, the percentage of impervious cover was calculated. Using 

FRAGSTATS software, the spatial arrangement of impervious cover was also 

characterized. Pattern indices, such as mean patch size and patch density, were derived 

for each spatial definition of neighborhood (i.e., kernel dimension). To perform this 

analysis, the results from the sub-pixel classification were transformed to “hard” classes 

and labeled by land use/land cover types using a threshold value of 0.5.  

The migrants' neighborhood environment was modeled using multiple regression 

techniques. Each migrant was treated as an individual observation. The dependent 

variable was the percentage of impervious land use/land cover as well as the pattern 

indices for the derived migrants' neighborhoods. Independent variables included a 

number of socio-demographic characteristics and geographic variables. The socio-

demographic variables included age, sex, education, and occupation. Sex and occupation 

variables were treated as dummy variables in the model. Occupation was equal to 1.0 if 

the migrant was engaged in manufacturing, and 0.0 for all other jobs. Geographic 
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variables included the Euclidean distance to primary roads and the Euclidean distance to 

the city center from the point location of the geocoded migrant’s positions in Bangkok. 

Since the model's performance may be scale dependent, a number of kernel sizes were 

tested (e.g., 300-, 600-, 900-, 1500-, 2100-, and 3000-meters). A focal filter was used for 

all calculations centered on the migrant’s locations and iteratively assessed. Multiple 

regression models were developed at each spatial scale (i.e., the kernel dimensions used 

to represent each migrant’s neighborhood).  

5.6 Results 

5.6.1 Point Pattern Analysis for Migrants' Locations 

Considering all the rural-urban migrants as a single group, two different kernel 

dimensions were tested to generate intensity surfaces for migrants' locations. Figure 3 

shows the intensity surfaces of migrants’ locations for kernel sizes of 1000-meters and 

2000-meters. The smaller kernel size shows a more irregular intensity surface and the 

pattern of “hot spots” at the local scale. The intensity surface generated by the larger 

kernel smoothes local details and provides a regional view of migrant’s locational 

distribution. We can see in Figure 5.3 that there are local peaks in the intensity surfaces 

for migrant’s locations.  

 

 
Figure 5.3. Intensity surfaces for migrants' locations in Bangkok. 
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In Figure 4, we plotted G(500) values (i.e., threshold of 500-meter) against the 

number of migrants from each source village to ascertain whether migrants from their 

corresponding source villages were spatially clustered. The x-axis indicates the number 

of migrants and the y-axis shows G(500) values for different source villages. A G(500) 

value of 0.8 indicates that 80 percent of the migrants have nearest neighbor distances that 

are equal to or less than 500-meters. The confidence interval generated from the Monte 

Carlo simulation is shown as dashed lines. A 95-percent confidence interval 

(0.025≤p≤97.5) was applied to analyze the spatial clustering or randomness. Figure 4 

indicates that 12-villages have significantly higher G-values than the randomized 

simulation, suggesting a pronounced clustering. In Figure 5, we plotted G(1000) values 

(i.e., threshold of 1000-meter) against the number of migrants from each source village. 

Spatial clustering is fairly stable as compared to the G(500) value, i.e., 12 villages show 

strong spatial clustering at 1000-m. Note that in Figures 5.4 and 5.5, the villages with the 

most migrants living in Bangkok are considerably more likely to show clustering beyond 

that which would be expected by chance. This is consistent with the migration literature 

on the role of social networks in maintaining migration streams (e.g., DeJong, 2000; 

Hugo, 1981; Korinek et al., 2005; Massey, 1990; Massey et al., 1993).   
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Figure 5.4. Spatial clustering of migrants from origin villages (500-meters threshold) 

 

 

 

Figure 5.5. Spatial clustering of migrants from origin villages (1000-meters threshold) 
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To further explain the variation of spatial clustering, the G-values were linked to 

socio-demographic characteristics of the source villages using simple correlation 

coefficients and p-values (Table 5.1).  

 

Table 5.1: Correlation Coefficients of Spatial Clustering and Socio-demographic 

Characteristics at the Village Level. 

         G(500-meters)          G(1000-meters) 

 
% of migrants in manufacturing 

0.60 
(p = 0.003) 

0.62 
(p = 0.002) 

 
% of migrants who completed 10 or more years educatio

-0.65 
(p = 0.0012) 

-0.67 
(p = 0.0005) 

Mean age 
0.23 

(p = 0.31) 
0.15 

(p = 0.51) 

% of male 
-0.05 

(p = 0.81) 
-0.08 

(p = 0.73) 
  

It can be seen that the occupation variable (the percentage of migrants in 

manufacturing) is positively correlated with spatial clustering -- the higher the percentage 

of migrants in manufacturing, the greater the spatial clustering. The education level is 

negatively correlated with spatial clustering -- the higher the percentage of migrants who 

completed 10 or more years' of education, the less the degree of spatial clustering. There 

is almost no correlation between the sex variable and spatial clustering, and the age 

variable shows a weak correlation, and not statistically significant. No major difference is 

found in the size of the correlations across two G-values.  

To interpret these results, it is important to note that a substantial number of the 

manufacturing establishments in Bangkok are work and residential compounds. They are 

enclosed by a fence, with a guard at the entrance. The compound contains both the 

manufacturing facility and a dormitory for the workers, who typically are young and 
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unmarried. To the extent that social networks link origin and destination, an important 

role in recruiting factory workers, one would expect the percent in manufacturing to be 

positively associated with more geographical clustering of migrants. 

Education, on the other hand, tends to disperse people. Most of the migrants went 

through the school system when mandatory education ended at grade 6. Having 10 or 

more years of education qualifies individuals for a greater diversity of jobs, and the 

results in Table 1 suggest that this diversity of jobs is also related to greater geographic 

scatter in their destination. 

5.6.2 Neighborhood Environment of Migrants' Locations 

The Landsat ETM representation of sub-pixel impervious surface for Bangkok 

and the surrounding area is shown in Figure 5.6. Light tones indicate higher degrees of 

imperviousness, whereas darker tones indicate lower degrees of imperviousness. The 

intensity of urbanization along the river and roads that bisect the image are readily 

apparent.  
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Figure 5.6. Impervious cover for Bangkok and surrounding areas. 

 

The following box-plot (Figure 5.7) shows the variation of migrants' 

neighborhood environments using the percentage of impervious cover as the indicator. 

Different kernel sizes (i.e., 150 - 3000-meters) were assessed. According to Figure 5, the 

variation in the percentage of imperviousness decreases with increasing kernel size, as 

would be expected. However, even using a relatively large kernel size (i.e., 3000-meters), 

considerable variations in the degree of imperviousness resulted (i.e., a range from 10 to 

70 percent).  
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        Figure 5.7. Box-plots of the percent impervious cover from varying kernel size. 

 
Multiple regression models were developed to examine the percentage of 

impervious cover in migrants' neighborhoods as a function of selected socio-demographic 

(i.e., age, occupation, sex, and education level) and geographic (the log transform of the 

Euclidean distance to the nearest road and to the city center) variables. City center is 

arbitrarily specified as the center of the central business district. Each migrant's 

neighborhood environment is considered to be an individual observation, and the total 

number of observation is 904. Occupation and sex were treated as dummy variables in 

the model. Occupation is equal to 1 if the migrant is engaged in manufacturing work, and 

0 for all other jobs. Male is coded as 1, and female is coded as 0. Education is the years 

of school completed. Seven multiple regression models were run, one for each of the 
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different kernel sizes (i.e., 150- to 3000-meters). Table 5.2 shows model coefficients for 

the predictor variables and R-squared values. 

 

Table 5.2: 

Coefficients for Impervious Cover Percentage Model 

 150m 300m 600m 900m 1500m 2000m 3000m 
(Intercept) 2.099** 2.112** 2.095** 2.0886** 2.175** 2.192** 2.206** 
Distance to center -0.131** -0.139** -0.140** -0.144** -0.163** -0.168** -0.174** 
Distance to road -0.056** -0.048** -0.041** -0.034** -0.025** -0.022** -0.018** 
Occupation 0.061** 0.049** 0.036** 0.034** 0.027** 0.018** 0.002 
Sex -0.002 -0.002 -0.002** -0.002** -0.001** -0.001 -0.001 
Age -0.029 -0.017 -0.011 -0.013 -0.015 -0.015** -0.015** 
Education 0.001 0.000 0.000 0.000 0.001 0.001 0.000 
        
R2 0.26 0.33 0.39 0.44 0.55 0.63 0.70 
**significant at 0.05 level 

 

Variation in the percent of impervious cover percentage is significantly associated 

with the log distance to the nearest road, the log distance to city center, occupation, sex 

and age. The geographic variables showed consistent significance at 0.05 level, while the 

social variables only showed significance at certain kernel sizes. The occupation variable 

is the most consistently significant of the social variables, and its positive sign is 

consistent with the large size and compound-like nature of many of the manufacturing 

establishments in Bangkok. For the distance to the nearest road variable, it has a negative 

sign and it suggests that the imperviousness is negatively associated with the distance to 

road. This is consistent with the overall spatial pattern of built-up areas in Bangkok – 

most developments follow the transportation corridors of the city. Note that the R-

squared values increase from 0.26 to 0.70 as the kernel size increases from 150 - to 3000-
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meters. It is also worth noting the effect of distance to center increases with kernel size, 

whereas the effect of distance to road and occupation variable decreases with kernel size.  

The spatial pattern of impervious cover within specified kernels can be 

characterized using a number of pattern indices. Mean patch size was selected to 

represent the level of fragmentation. Seven regression models were developed for a range 

of kernel sizes, and the log transformation of mean patch size was used as the response 

variable. Table 5.3 shows model coefficients for the predictor variables and R-squared 

values. 

Table 5.3: 

Coefficients for Spatial Pattern Model 
 
  150m 300m 600m 900m 1500m 2000m 3000m 
(Intercept) 8.090** 11.260** 13.19** 13.100** 13.870** 13.76** 13.290** 
Distance to center -0.490** -0.690** -0.850** -0.885** -1.025** -1.029** -0.998** 
Distance to road -0.240** -0.270** -0.250** -0.170** -0.098** -0.088** -0.063** 
Occupation 0.202** 0.200** 0.177** 0.156** 0.217** 0.180** 0.094** 
Sex -0.120 -0.056 -0.061 -0.088 -0.067 -0.073 -0.054 
Age -0.009 -0.014** -0.010 -0.010 -0.006 -0.004 -0.004 
Education 0.005 0.001 0.003 0.005 0.006 0.008 0.005 
        
R2 0.210 0.250 0.340 0.360 0.480 0.550 0.630 
**significant at 0.05 level. 

 

Three variables, the log distance to city center, the log distance to the nearest 

major road, and occupation of the migrant showed significant relationships with the mean 

patch size. R-squared values increased from 0.21 to 0.63 as the kernel size increased from 

150- to 3000-meters. Again, the effect of distance to the city center increases with kernel 

size, whereas the effect of distance to road and occupation variable decrease with kernel 

size.  
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5.7 Conclusions 

The unique character of the Nang Rong migrant data set allowed us to quantify 

the spatial patterns of migrants' locations in Bangkok. Nearest neighbor distance and 

Monte Carlo simulation were combined to perform the spatial point pattern analyses. 

Migrants from 12 of the 22 origin villages showed spatial clustering that may indicate 

strong social networks related to origin villages. The level of spatial clustering was 

positively correlated with the occupation variable -- the higher the percentage of migrants 

in manufacturing, the greater the spatial clustering. The education level is negatively 

correlated with spatial clustering -- the higher the percentage of migrants who completed 

10 or more years' of education, the less the degree of spatial clustering. This finding 

suggests that migrants with high education backgrounds may have greater flexibility in 

the job market, and they may rely less on village social networks. For age and sex/gender 

variables, we did not find statistically significant evidence of spatial clustering. Note that 

these conclusions are based upon village level aggregations.  

The neighborhood analysis of migrants' locations was characterized by the 

percentage and the mean patch size of impervious cover. These neighborhood 

environment indicators can be modeled as a function of selected socio-demographic and 

geographic variables. Variation in the percentage of impervious cover is associated with 

the distance to the nearest major roads, the distance to the city center, age, occupation and 

sex. The mean patch size was associated with the distance to the nearest major road, the 

distance to the city center, and occupation. The model’s performance is scale-dependent -

- R-squared values generally increased as the kernel size increased from 150- to 3000-

meters. 
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             One of the main contributions of this research is the integration of GPS, GIS, 

remote sensing, and spatial statistical techniques for the study of rural-urban migration 

process and migrants’ settlement pattern in urban setting. The interpretation of social 

networks from distance measures and spatial clustering is relatively new. The correlations 

between spatial clustering and socio-demographic characteristics are consistent with 

general perceptions with regard to rural-urban migration processes, however, the methods 

introduced in this research provid quantitative measures to specific aspects of rural-urban 

migration process (i.e., social network from source villages). One limitation of the 

neighborhood environment analysis is that the definition of neighborhood is arbitrary. For 

instance, simple distance buffers may not be appropriate due to the complexity of 

neighborhoods in the real world, however, the analysis still helps one understand the 

settlement patterns of rural-urban migrants, the impact of rural-urban migration on cities, 

as well as the impact of cities on migrants themselves. Overall, the integration of spatial 

data and analysis to the social research is advantageous from both theoretical and 

practical perspectives.  
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CHAPTER 6 

CONCLUSIONS 

The movement of people towards cities has accelerated over the past 50-years. 

Currently, about one-half of the world’s population live in urban areas, and it is projected 

that 70-percent of the population will live in urban within the next 20-years (Cohen, 

2003; UN, 2004).  Accordingly, urban areas have been growing at a striking rate. Most of 

the fast growing cities are located in developing countries (UN, 1998b). The 

transformation of natural and agricultural lands to urban land use is typically irreversible 

and has implications for biodiversity, climate change, green house gas, hydrological 

change, and quality of life more generally (Mayer and Turner, 1992; Kalnay and Cai, 

2003; Landsberg, 1981; Mckinney, 2002; Wear, 1998; Lo and Faber, 1997). Rapid urban 

growth and the spread of low-density forms of settlement are two of the main concerns 

for urban planners, decision-makers, and researchers in the social, spatial, and natural 

sciences. This research examined urban land use/cover characterization, urban growth, 

urban form, and human settlement pattern using remote sensing, GIS, spatial analysis, 

and statistical techniques.  

The goals of this research were to examine 2-D and 3-D urban land use/cover 

mapping using remotely-sensed data; assess urban-rural gradients, urban form, and urban 

function; and understand rural-urban migrants’ settlement patterns in Bangkok. Chapter 1 

provided an overview of research objectives and significance. Chapter 2 focused on the 

sub-pixel classification of a Landsat TM/ETM time-series. Chapter 3 used high spatial-
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resolution IKONOS images to derive 3-D building height information, with particular 

emphasis on high-rise buildings. Chapter 4 examined the urban form and urban functions 

using the results from the sub-pixel classification and 3-D building height estimates. 

Chapter 5 considered the spatial patterns of migrants’ locations in Bangkok, Thailand. 

Spatial patterns of migrants from origin villages were geo-coded and spatial clustering of 

migrants were assessed. In addition, migrants’ neighborhood environments were 

characterized and modeled using a number geographical and socio-demographic 

variables.  

This research emphasized the use of remote sensing as a tool for mapping and 

monitoring urban areas.  The mapping of imperviousness was of particular interests. The 

primary advantage of using imperviousness is that it is a relatively simple land cover type 

to classify. In an Asian city such as Bangkok, it might be very difficult to characterize 

urban land use at the Anderson's Level II classification scheme, because there is no clear 

zoning of urban land use, and most land use types (e.g., residential, commercial, 

industrial) are inter-mixed together (Kaothien and Webster, 2001). Without detailed 

ground truth data or aerial photography as reference data, a simple land cover (i.e., 

imperviousness) classification scheme is probably the most feasible solution for urban 

landscape characterization. The main challenge of urban land cover classification is the 

spectral mixture problem. In fact, it has been suggested that the most important technical 

issue in urban remote sensing is the spatial resolution of image data (Welch, 1982). One 

of the important contributions of this research is to assess the feasibility of a neural 

network-based, sub-pixel classifier for mapping a large metropolitan area using a Landsat 

TM/ETM image time-series. The results from sub-pixel classification provided a 
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consistent measure (i.e., imperviousness) for characterizing the rates and patterns of 

urban growth, urban form and function, and migrants’ neighborhood environments. 

Another contribution of this research is 3-D building height estimation using high spatial 

resolution satellite imagery. The shadows on high spatial resolution images are typically 

considered “noise” or the loss of information for an image classification task. However, 

this study used shadow information to derive building height. The results of building 

height estimation and 3-D urban mapping provide useful information for detailed urban 

land use classification and urban form/feature analysis. The research suggests that 

shadows can be automatically detected using advanced image classification and shape 

analysis techniques. The building heights, especially those from high-rise buildings, can 

be estimated with a high level of accuracy. The approach has both theoretical and 

practical implications, because shadows are an important component for high spatial 

resolution image.  

In addition to urban mapping, this research addresses the spatial patterns of 

impervious cover and the locations of high-rise buildings to provide valuable information 

for urban form characterization and urban feature identification.  Urban form was 

analyzed using a landscape ecology perspective that considered the interactions between 

patterns, processes, and scale. It was hypothesized that a meaningful urban-rural gradient 

can be characterized by analyzing the density and the spatial structure of imperviousness 

and urban features such as core, inner zone, periphery, and rural landscape, delineated 

according to the landscape pattern indices. In other words, the delineation of urban 

features was largely based on the contextual information, rather than land cover types 

from a single pixel. Furthermore, the concept of spatial neighborhoods and the contextual 
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information provided a framework for characterizing urban growth models, including 

infilling, diffusive expansion, and isolated growth. Diffusive expansion and isolated 

growth was further linked to the concept of urban sprawl (Wilson et al., 2003).  

This research also examined the relationship between population and physical 

characteristics of urban space. The results from 2-D and 3-D urban mapping, and the 

urban change and urban form analysis were linked to the residence locations of rural-

urban migrants. The uniqueness of this study is that it relies on a special socio-spatial 

dataset of rural-urban migrants from Nang Rong to Bangkok, Thailand. Specially, the 

location of each migrant was geo-coded using GPS techniques, and the social survey was 

spatially linked to each GPS location. Therefore, the socio-demographic characteristics of 

rural-urban migrants were examined from a spatial perspective by integrating remote 

sensing, GIS, and spatial statistical techniques. This research is useful to understand 

questions such as: Are migrants choosing to settle in the urban center or urban fringes? 

Are migrants choosing to settle in newly urbanized areas in the cities, or in pre-existing 

urban places? What are the migrants’ neighborhood environments (i.e., imperviousness)? 

What are the influential factors for migrants’ settlement pattern in urban setting (i.e., job 

location, housing/rent price, social networks)? A better understanding of migrants’ 

settlement pattern in urban space helps urban planners and decision-makers design more 

efficient policies in infrastructure/residential development, land use and environmental 

planning, and quality of life in general.  

6.1 Technical Improvements in Remote Sensing and Spatial Analysis  

This study used a neural network classification approach, instead of the more 

widely used neural network regression approach to characterize the proportional 
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impervious cover from Landsat TM/ETM image. This approach was taken, because of 

the limited availability of training data and the generalizability of neural networks. The 

neural network regression approach typically requires the used of high spatial resolution 

images for network training. However, a metropolitan region such as Bangkok often has 

a very complex spatial organization of land use/cover types. The number and the type of 

dominant land cover may differ from the urban core area to the urban edge and rural 

landscape. This makes it difficult to generalize a trained neural network regression 

classifier across large spatial extents. On the other hand, a neural network classification 

approach may select training pixels in a more relaxed manner for all apparent classes in 

the image. The approach is similar to a traditional neural network per-pixel classification 

task. The only difference is that the outputs of the neural network are retained in a fuzzy 

format. One of the important improvements of this research is its consideration for the 

Bayesian interpretation of neural network outputs. In theory, MLP neural networks 

require a large number of training data points to model the posterior probabilities 

(Richard and Lippmann, 1991). However, most previous studies ignore this fundamental 

assumption and use a very limited number of training samples. In this study, practical 

techniques were developed to improve the accuracy level of the neural network 

classification approach. It was found that a large sample size and spectral heterogeneity 

in the training set are both important for deriving robust sub-pixel estimations.  

Advanced image processing techniques were applied to high spatial resolution 

image classification and 3-D urban mapping. The OBIA (i.e., object-Based Image 

Analysis) algorithm was used to generate image objects with homogeneous spectral and 

texture signatures. This is advantageous to the traditional per-pixel classifiers (i.e., 
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ISODATA). However, it was found that there were substantial areas of confusions 

between shadow and water objects. The size, shape, and spatial neighborhood 

information were used to separate these objects. A shadow detection system was 

developed as a rule-based classifier (i.e., Wharton, 1989). For instance, the one-to-one 

relationship between shadow and its spatial neighborhood of an impervious object is a 

robust rule that aids shadow identification. The shadow detection system also 

automatically produced the shadow length and building height estimation. The approach 

is similar to the commonly used aerial photogrametry technique, but an automatic 

detection and estimation is emphasized. This can be advantageous if large study areas and 

large numbers of buildings are involved in the analysis. Moreover, it is among a new 

wave of research that uses shadow information from high spatial resolution IKONOS to 

estimate building height. For most isolated high-rise buildings, the shadow detection 

method generated excellent results (i.e., less than 4-m error). The algorithm is 

problematic for the clustered high-rise buildings and the fragmented building shadows, 

however, this is a common problem for most automatic or semi-automatic 

shadow/building extraction algorithms. 

For spatial pattern analysis of migrants’ locations, a nearest neighbor distance and 

Monte Carlo simulation were combined to perform the spatial point-pattern analyses. The 

pattern of migrants from source villages was simply characterized using a nearest 

neighbor distance measures, but Monte Carlo simulation provided a statistical test of 

significance. This is important because the number of migrants from a specific village 

may affect the result of nearest neighbor distance measures. Furthermore, simple 

correlation coefficient analysis was used to examine the relationship between the level of 



 153 

spatial clustering and socio-demographic characteristics of rural-urban migrants. For 

instance, it was found that the level of spatial clustering was positively correlated with 

the occupation variable -- the higher the percentage of migrants in manufacturing, the 

greater the spatial clustering. The education level is negatively correlated with spatial 

clustering -- the higher the percentage of migrants who completed 10 or more years' of 

education, the less the degree of spatial clustering. This finding suggests that migrants 

with higher education backgrounds may have greater flexibility in the job market, and 

they may rely less on village networks. The spatial point-pattern analysis of rural-urban 

migrants’ locations is new in the literature. In this study, only a few socio-demographic 

variables are examined, however, this approach can be easily extended to more detailed 

social survey data. Adding a spatial aspect to traditional social science may generate 

additional information that helps us understand socio-demographic processes to a greater 

extent. 

6.2 Implications on Urban Growth, Urban Form and Human Settlement Analysis  

For the entire study area, the total area of impervious cover is 560km2, 708 km2 

and 779 km2 for 1993, 1999, and 2002, respectively. Simple post-classification change 

detection was used to examine urban growth rates from 1993 to 1999 and 1999 to 2002. 

The annual growth rate is 4-percent and 5-percent from 1993 to 1999 and from 1999 to 

2002, respectively. The dominant trend of land use/cover change is the conversion from 

agricultural land to urban development or impervious cover. There is a slight increase of 

the urban growth rate through time. It should be noted that the urban area of Bangkok has 

extended well beyond official administrative boundaries. In fact, most urban 

developments are located outside of Bangkok’s city boundary. For instance, the airport 
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corridor is extended into Pathum Thani province, and heavy industry is extended into 

Samut Prakarn province. The new Bangkok International Airport is currently developing 

in the east of Bangkok, thus it is expected to see rapid urban growth along the east 

corridor. There is no efficient mechanism that coordinates the urban planning of Bangkok 

with the surrounding provinces. The comprehensive planning of the Bangkok 

metropolitan area has not been effectively implemented (Kaothien and Webster, 2001). 

As a result, the urban growth rates and patterns are relatively uncontrolled, largely 

depending on the impacts from the private sector. In Chapter 4, the urban form and urban 

structure analysis, it was found that the primary urban form of Bangkok is highly 

irregular and shaped by several major transport corridors.  Population growth and urban 

development in these areas may quickly outstrip urban services and related infrastructure. 

The problems of traffic congestion and air pollution will remain and potentially worsen 

with time. The results from Chapter 4 also show that most newly urbanized pixels can be 

labeled as diffusive expansion growth and isolated growth (Wilson et al., 2003). This 

may suggest that Bangkok has increased the level of urban sprawl through time.  

The identification of urban features (i.e., urban core) from image analysis varies, 

depending on the nature of the input dataset (i.e., 2-D or 3-D maps) and indices used in 

their analysis. For instance, the urban core can be delineated by thresholding the density 

or the patch size of impervious cover. On the other hand, the 3-D urban map can provide 

a more meaningful urban core or CBD area. This occurs because most high-rise office 

buildings and hotels are clustered in the urban core or CBD area in Bangkok. One 

shortcoming of this research is that only high-rise buildings were identified. Ideally, the 

urban structure and urban features can be characterized using a combination of 2-D and 
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3-D information. A 2-D map provides the density and spatial structure of land use/cover 

types, while a 3-D map provides variations in the building heights. As a result, more 

meaningful socio-demographic statistics and processes can be inferred from this type of 

urban structure or urban morphology. With the availability of high spatial resolution 

imagery (i.e., IKONOS, QuickBird) and advanced digital image processing techniques 

(i.e., OBIA), there is ample opportunity for urban mapping, urban structure/feature 

analysis, and urban growth modeling.  

Finally, the settlement patterns and neighborhood environments of rural-urban 

migrants were analyzed. The spatial definition of neighborhood is arbitrary. Simple 

distance buffers were used in this study.  The neighborhood environments were 

characterized using a measure of the density and spatial organization of impervious 

cover. This is different from more widely used vegetation indicators in the literature (e.g., 

Lo and Faber, 1998). The main reason is that there are mixed uses of agricultural land 

and residential areas in the Bangkok area. A high percentage of vegetation cover (i.e., 

crops) in a neighborhood does not mean a better quality of life. Impervious cover, on the 

other hand, may have a direct or indirect implication of urban form and urban function 

(Ridd, 1995). It was found that both a density index and a spatial structure index can be 

modeled using a set of geographic and socio-demographic variables. For instance, 

variation in the density of impervious cover is associated with the distance to the nearest 

major road, the distance to the city center, age, occupation, and sex. The mean patch size 

was associated with the distance to the nearest major road, the distance to the city center, 

and occupation. For socio-demographic factors, the job locations and characteristics may 

impact the trend of residential segregation for rural-urban migrants. It should be noted 
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that a large proportion of these rural-urban migrants are seasonal or temporary migrants. 

Their residential location in urban setting may not be recorded through a census or large-

scale social surveys. Without this unique socio-spatial dataset, it is impossible to 

characterize the spatial patterns of these migrants’ locations and their neighborhood 

environments. This rural-urban migration following-up dataset and the analysis 

conducted may provide useful information that could not be derived from census-based 

studies.   

This research makes contributions to image processing of remotely-sensed images 

and urban studies. Both areas benefit from the links established between urban form and 

function and the capability to derive additional information about urban land use patters. 

The goal has been to approach the study of Bangkok from the perspective of a remote 

sensing and spatial analyst, and then to focus on commonly available satellite data for 

broad applicability of the methods to cities across the globe.  In many ways the study 

challenges planners and social scientists to engage remote sensing scientists to link 

talents and perspectives to address customary and new questions about the “peopling” of 

urban places. 

 

 

 

 

 

 

 



 157 

Reference 

Cohen, B., White, M, Montgomery, M.R., McGee, T.G., Yeung, Yue-Man. (2003). 
Urban Population Change. National Research Council, Cities Transformed: 
Demographic Change and Its Implications in the Developing World. Panel on Urban 
Population Dynamics, Montgomery, M.R., Stren, R., Cohen, B., and Reed, H.E. 
(editors). Washington, DC: The National Academies Press, 75-107. 

 
Kalnay, E, Cai, M. (2003). Impact of urbanization and land-use change on climate. 

Nature, 423:528-31. 
 
Kaothien, U, Webster, D. (2000). Globalization and Urbanization: The Case of Thailand. 

In Local Dynamics in an Era of Globalization, edited by S. Yusuf, W. Wu and S. 
Evenett. Washington, DC: Oxford University Press, Inc for The World Bank. 

 
Landsberg. H.E. (1981). The Urban Climate. Academic Press, 275 pp.  

Lo, C. P., Faber, B. J. (1997). Integration of Landsat Thematic Mapper and census 
data for quality of life assessment. Remote Sensing of Environment 62, 143-157. 

 
Mayer, W.B., Turner, B. L. (1992). Human population growth and global land-use/cover 

change. Annu. Rev. Ecol. Syst. 23:39-61. 
 
McKinney, M.L. (2002) Influence of settlement time, human population, park shape and 

age, visitation and roads on the number of alien plant species in protected areas in the 
USA. Diversity and Distributions, 8, 311–318. 

 
Richard, M.D., Lippmann, R.P. (1991). Neural network classifiers estimate Bayesian a 

Posteriori probabilities. Neural Computation, 3, 461-483.  
 
United Nations. (2004). Department of Economic and Social Affairs. World Urbanization 

Prospects: The 2003 Revision. New York: United Nations. 
 
Wear, D.N., Turner, M.G., Naiman, R.J. (1998). Land cover along an urban-rural 

gradient: implications for water quality. Ecological Applications 8, 619–630. 
 
Welch, R. (1982). Spatial resolution requirements for urban studies. International 

Journal of Remote Sensing, 3, 139-146. 
 
Wilson, J.S., Clay, M., Martin, E., Struckey, D., Vedder-Risch, K. (2003). Evaluating 

environmental influences of zoning in urban ecosystems with remote sensing. Remote 
Sensing Environment, 86, 303-321.  

 
 
 


	title.pdf
	abstract.pdf
	ack.pdf
	contents.pdf
	tables.pdf
	figures.pdf
	chapter1.pdf
	chapter2.pdf
	chapter3.pdf
	chapter4.pdf
	chapter5.pdf
	chapter6.pdf

