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ABSTRACT
HONGYUAN CAO: High Dimensional Statistical Testing With Applications to Gene

Significance Detection

(Under the direction of Michael R. Kosorok)

High-throughput screening has become an important mainstay for contemporary biomedical

research. A standard approach is to use a large number of t-tests simultaneously and then select

p-values in a manner that controls false discovery rate (FDR). Existing methods require very

strong assumptions on the distribution of the data and the distribution of the p-values. We

propose an asymptotically valid, data-driven procedure to find critical values for the t-statistics

which requires minimal assumptions. A new asymptotically consistent estimate for the propor-

tion of alternatives has been developed along the way. We demonstrate that our approach has

improved computational efficiency and power over existing approaches while requiring fewer as-

sumptions. The method controls the k-family wise error rate (k-FWER), the tail probability of

false discovery proportion (FDTP) and false discovery rate (FDR). Simulation studies support

our theoretical results and demonstrate the favorable performance of our new multiple testing

procedure. We also apply our method to analyze cancer microarray studies.

One feature of our approach is that it takes the alternative into account. Existing approaches

take the alternative into account as well. However, we found that a standard concavity assump-

tion on the p-value distribution for the alternative is violated under certain circumstances. A

more general concept is the monotone likelihood ratio condition (MLRC) introduced in Sun

and Cai (2007). We show that the concavity assumption can be violated for (i) a simple het-

eroscedastic normal mixture model and (ii) dependent tests. Some interesting implications,

including the choice of test statistics, existing FDR control procedures (step-up and step-down)

and the power definition, are discussed.
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CHAPTER 1

Introduction and Background

With the advancement of modern technology, it is now easier to get access to large data

sets. For example, microarrays in genomics, functional Magnetic resonance imaging (MRI) in

imagine analysis, astronomical surveys and many contemporary scientific endeavors. Compared

with traditional ones, such data has very different structures. First, the number of features is

huge, usually of the orders of tens of thousands; second, the number of observations is modest,

usually of the orders of dozens; and third, very few individual features are related to the

outcome, the so-called sparsity issue. The scientific objective is to do statistical inference about

the true association between outcomes and relevant features. People have referred to it vividly

as “finding needles in a haystack”.

There are several inter-related problems that are of interest. First, we want to ask if there

are any features in the data that are of interest to the scientist. This is a signal detection

problem. Second, we would like to know what is the fraction of the features that contain

the signals. This involves proportion estimation; third, after we know that there are certain

features, we want to ask where are the features? This is a large scale multiple testing problem;

and fourth, it is of interest to know the sizes of the features, this is a high-dimensional model

selection and related coefficient estimation issue. In this dissertation, we focus on the second

and third topics, large scale multiple testing and the related proportion estimation.

This dissertation is composed of three parts. In the first part, we propose an asymptotically

valid, data-driven procedure to find critical values for t-statistics with minimal assumptions.

The method controls the k-family wise error rate (k-FWER), the tail probability of false dis-

covery proportion (FDTP) and false discovery rate (FDR). A new asymptotically consistent

estimate for the proportion of alternatives has been developed along the way. In the second



part, we examine a standard assumption (monotone likelihood ratio condition) placed on the

alternative hypotheses that is required for the optimal testing procedures. We exhibited a

counter example situation under which this assumption does not hold. Some interesting im-

plications, including step-up, step-down procedures, the choice of test statistics and power

definition in multiple testing scenario are discussed. In the previous two parts, there is an

underlying exchangeability assumption for all the tests, which means that each test is equally

important. While in practice, some tests are more important than others. Therefore, in the

third project, instead of doing individual tests, we put tests into different groups and study the

joint association of each group with a phenotype of interest. The tests are grouped by some

prior knowledge, for example, the inherent pathways by the underlying biological functioning

in gene expression data. In the literature, the absolute association strength is evaluated, which

favors larger groups at the expense of smaller groups. This motivated us to use the relative

measure — the proportion of significant tests in a group—as comparison criterion. The pro-

portion estimates are derived for the t-test, F- test and χ2-test. This approach is shown to be

robust to the size of the groups. Subsampling and the bootstrap are used to do inference.

In many areas of application, particularly in bioinformatics, conclusions are drawn by simul-

taneous testing of a large number of hypotheses. In these high-dimensional situations, common

single inference approaches are well known to fail, leaving open the problem of making a small

number of false discoveries by controlling a suitable error rate, and maximizing the power of

each test at the same time. Such problems of simultaneous inference is usually refereed to as

multiple testing. Applications of multiple testing include identifying neuronal activity in the

living brain or the identification of differentially expressed genes in DNA microarray experi-

ments. For a review of multiple testing methods in the context of microarray data analysis,

see Dudoit, Shaffer and Boldrick (2003) and Sebastiani, Gussoni, Kohane and Ramoni (2003)

for an excellent review of genomics and statistical challenges in genomics. Among the other

possible applications, there are general medicine, pharmacology, epidemiology, psychometrics

and even marketing. Moreover, multiple tests can be used as a key part of statistical proce-

dures, like variable selection, item-response modeling, structural equation modeling, decision

trees, wavelet thresholding, and so on.

Let’s start with a motivating example. The dataset is from a microarray gene expression
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study, see Golub (1999). There are 72 samples, of which 47 are from class ALL (acute lym-

phoblastic leutemia) and 25 are from class AML (acute myeloid leukemia). Each array was

measured on the expression level for the same 7129 genes. Our interest is which genes are dif-

ferentially expressed (d.e.) between these two types of tumors? The dataset can be represented

in table 1 as follows:

Table 1.1: Gene expression data structure

d.e.(0/1) ALL AML t-stat p-value
indicator X1 · · · X47 Y1 · · · Y25 T P

H1 x1,1 · · · x1,47 y1,1 · · · y1,25 t1 p1

H2 x2,1 · · · x2,47 y2,1 · · · y2,25 t2 p2
...

...
...

...
...

...
...

...
...

H7129 x7129,1 · · · x7129,47 y7129,1 · · · y7129,25 t7129 p7129

Consider a multiple testing situation in which m (m = 7129) tests are being performed.

Suppose m0 of the m hypotheses are true, and m1 are false. Table 1 summarizes the possible

outcomes: we denote with R the number of rejections, with V and F the exact (unknown)

number of errors made after testing; and with U and S the number of correctly retained and

rejected null hypotheses. The number of rejected hypotheses R is random, while m0 and m1 can

either be considered as random or just not observable, depending on the specific application.

In this dissertation, we treat m0 and m1 as unknown parameters.

Table 1.2: Outcomes when testing m hypotheses.

Hypothesis Accept Reject Total

Null true U V m0

Alternative true F S m1

Total W R m

In the usual (single) test setting, one controls the probability of false rejection (Type I

error) while looking for a procedure that possibly minimizes the probability of observing a false

negative (Type II error).

In the multiple case, despite the fact that each uncorrected level γ test falsely rejects the

null hypothesis with small probability (namely, γ), as m increases the number of false positives

can explode. For instance, if m = 1000 true null hypotheses are simultaneously tested at level

γ = 0.05, around R = 50 false discoveries are expected. The consequences of so high a number

3



of false discoveries in real applications would usually be extremely disturbing to investigators.

From a different point of view it can be said that a p-value around, for instance, 0.05 is unlikely

to be correspondent to a true discovery, since it is very likely under the null hypothesis that

such a small p-value will occur when many are computed at once.

Corrections arise from the control of specific type I error measures, and there are a variety

of functions of the counts of false positives V that can serve as possible generalizations of the

probability of Type I error. Control of the chosen Type I error rate can be loosely defined

to be achieved when the error rate is bounded above by a pre-specified γ ∈ (0, 1). The most

classical multiple Type I error rate is based only on the distribution of V , that is, on what

happens for the tests corresponding to the true null hypotheses. Here and in what follows,

unless stated otherwise, probability and expectations are computed conditionally on the true

parameter configurations, that is, on which and how many hypotheses are true.

FWER (FWER = P (V ≥ 1)) control is desirable when the number of tests is small, so that

a good number of rejections can be made, and all can be trusted to be true findings. But in

modern applications, the number of tests can be very large. In these settings, FWER controlling

procedures tend to become conservative and finally lead to rejection of a very limited number

of hypotheses, if any. One way around this is to increase the number k of false rejections one is

willing to tolerate. This results in a relaxed version of FWER, k-FWER = P (V ≥ k), defined

as the chance of at least k type I errors.

Benjamini and Hochberg (1995) (BH) pioneered an alternative. Define the false discovery

proportion (FDP) to be the number of false rejections divided by the number of rejections

(FDP = V/(R ∨ 1)). The only effect of the R ∪ 1 in the denominator is that the ratio V/R is

set to zero when R = 0. Without loss of generality, we treat FDP = V/R. The FDP is based

on the distribution of R, that is, on what happens for the hypotheses for which H0 is false.

Define the false discovery tail probability FDTP = P (V ≥ αR), where α is pre-specified based

on the application. van der Laan, Dudoit and Pollard (2004) and independently Genovese and

Wasserman (2006) along similar lines propose to control FDTP. Several papers have developed

procedures for FDTP control. We shall not attempt a complete review here but mention the

following: van der Laan, Dudoit and Pollard (2004) proposed an augmentation-based procedure,

Lehmann and Romano (2005b) derived a step-down procedure and Genovese and Wasserman

4



(2004) suggested an inversion-based procedure, which is equivalent to the van der Laan, Dudoit

and Pollard (2004) procedure under mild conditions (Genovese and Wasserman (2004)).

The false discovery rate (FDR) is the expected FDP. Benjamini and Hochberg (1995) pro-

vided a distribution-free, finite sample method for choosing a p-value threshold that guarantees

that the FDR is less than a target level γ. The first to consider this error measure was probably

Seeger (1968) who advocated control of FWER but with additional checking of the proportion

of false nulls. Control of FDTP or FDR is justified by the idea that any researcher is prepared

to bear a higher number of Type I errors when more rejections are made. In practical high-

dimensional data analysis, the goal is to reduce a vast set of possibilities to a much smaller set

of scientifically interesting prospects, which fits into the definition of FDR. Since this publica-

tion, there has been considerable research on both the theory and application of FDR control.

Benjamini and Hochberg (2000) and Benjamini and Yekutieli (2001) extended the BH method

to a class of dependent tests. Further generalizations of the FWER and FDR and proposed in

Efron and Tibshirani (2002), Storey (2002) and Lehmann and Romano (2005a).

Storey for instance introduced the positive FDR defined as pFDR = E[FDP |R > 0].

Control of this error measure is more appropriate when the probability of making no rejections is

high, so that FDR control may be misleading; and can moreover lead to more powerful multiple

testing procedures in certain situations. Note that for any number of rejected hypotheses

FDR ≤ pFDR. Storey suggested how to estimate and thus control pFDR using a fixed rejection

region, and introduced the q-value, a pFDR analogue of the p-value. An interpretation of the

pFDR and q-value as Bayesian posterior probabilities is in Storey (2003), who also shows

connections to classification theory. A discussion of weighted FDR controlling procedures,

included in Benjamini and Hochberg (1997) and Genovese, Roeder and Wasserman (2006), also

shows how to give different importance to each hypothesis, and also how to enhance power by

weighting.

It is straightforward to see that FDR and FDTP control is also a weak control on the FWER

in the sense that FWER is controlled if all the null hypotheses are true.

FDTP and FDR are closely related, being functionals of the same random variable, namely,

the FDP. It is straightforward to see that in general if FDTP is controlled at level γ, then

FDR is controlled at level α + (1 − α)γ. A partial converse is given by an application of

5



Markov’s inequality, which shows that if FDR < γ, then FDTP < γ/α. Moreover, note that

FDR = E[FDTP] =
∫ 1

0 P (V > αR)dα, that is, FDR control is a control on the average FDTP

(with respect to Lebesgue measure). Following this statement, we can apply the mean value

theorem and prove that at least asymptotically there exist η ∈ [0, 1] such that FDTP(η) = FDR.

That is, if FDR ≤ γ, there exist η ∈ [0, 1] for which FDTP ≤ γ for any α > η.

A Bayesian mixture model approach to obtain multiple testing procedures controlling the

FDR is considered in Efron, Tibshirani, Storey and Tusher (2001), Storey (2002), Storey (2003),

Storey and Tibshirani (2003), Storey, Tibshirani and Siegmund (2004). Wu (2008) considered

the conditional dependence model under the assumption of Donsker properties of the indicator

function of the true state for each hypothesis and derived asymptotic properties of false discov-

ery proportions and numbers of rejected hypotheses. A systematic study on multiple testing

procedures is given in a book by Dudoit and van der Laan (2008). Other related work can be

found in Chi (2007) and Chi and Tan (2008).

One challenge in multiple hypothesis testing is that many procedures depend on the pro-

portion of null hypotheses which is not known in reality. Estimating the proportion has long

been known as a difficult problem. There have been some interesting developments recently,

for example, an approach by Meinshausen and Rice (2006) (see also Efron, Tibshirani, Storey

and Tusher (2001), Genovese and Wasserman (2004), Meinshausen and Bühlmann (2005), and

Langaas, Lindqvist and Ferkingstad (2005)). Roughly speaking, these approaches are only suc-

cessful under a condition which Genovese and Wasserman (2004) called the “purity” condition.

Unfortunately, the purity condition depends on p-values and is hard to check in practice.

The general framework for k-FWER, FDTP and FDR control and the estimation of propor-

tion of alternative hypotheses is based on p-values which are assumed to be known in advance

or can be accurately approximated. However, the assumption that p-values are always avail-

able is not realistic. In some special settings, approximate p-values have been shown to be

asymptotically equivalent to exact p-values for controlling FDR (Fan, Hall and Yao (2007) and

Kosorok and Ma (2007)). But these approximations are only helpful in certain simultaneous

error control settings and are not universally applicable. Moreover, if the p-values are not

reliable, any procedures derived afterwards are problematic.

This motivates us to propose a method to find critical values directly for rejection regions to

6



control k-FWER, FDTP and FDR by using one-sample and two-sample t-statistics. The advan-

tage of using t-tests is that they require minimum conditions on the population, only existence

of the fourth moment, which is relatively easy to be satisfied by most statistical distributions,

rather than other stringent conditions such as the existence of the moment generating function.

In addition, we approximate tail probabilities of both null and alternative hypotheses accu-

rately, rather than p-value approaches that only consider the case under the null hypotheses.

Thus a better ranking of hypotheses is obtained. Furthermore, we propose a consistent estimate

of the proportion of alternative hypotheses which only depends on test statistics. As long as the

asymptotic distribution of the test statistic is known under the null hypothesis, we can apply

our method to get this proportion estimated, resulting in more precise cutoffs.

The BH procedure controls the FDR conservatively at π0γ, where π0 is the proportion of null

hypotheses and γ is the targeted significance level. If π0 is much smaller than 1, the statistical

power is greatly compromised. The power we use in this paper is NDR = E[S]/m1 as defined in

Craiu and Sun (2008). We also discuss a parallel concept called false non-discovery rate (FNR)

first proposed by Genovese and Wasserman (2002) and independently by Sarkar (2002) and the

rationale for using NDR as a power definition. In the situation that t-statistics can be used, our

procedure gives a better approximation, and more accurate critical values can be obtained, by

plugging in the estimate of π0. The validity of our approach is guaranteed by empirical process

methods and recent theoretical advances of self-normalized moderate deviations in combination

with Berry-Esseen type bounds for central and non-central t-statistics.

To illustrate, we simulate a Markov chain as in Sun and Cai (2009) of Bernoulli vari-

ables (Hi), i = 1, · · · , 5000 to indicate the true state of each hypothesis test (Hi = 1 if the

alternative is true; Hi = 0 if the null is true). Conditional on the indicator, observations

xij , i = 1, · · · , 5000, j = 1, · · · , 80 are generated according to the model xij = µi + εij . The

one-sample t-statistic is used to perform simultaneous hypothesis testing. Figure 1.1 shows the

plot of 10000 MCMC results of the realized and nominal FDR control based on the BH method

for different control levels. From this plot, we can see that as the control level increases, the

BH procedure becomes more and more conservative. For instance, the actual obtained FDR is

0.167 when the nominal level is set at 0.2, reflecting a significant loss in power.

The three methods of multiple testing control we utilize are k-FWER, FDTP and FDR.
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Figure 1.1: Claimed and obtained FDR control using BH procedure
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The criterion for using k-FWER is asymptotically

P (V ≥ k) ≤ γ. (1.1)

Since we only apply our method when there are discoveries (R > 0), we need for the FDTP

with a given proportion 0 < α < 1 and significance level 0 < γ < 1, asymptotically, to satisfy

P (V ≥ αR) ≤ γ. (1.2)

Similarly, the criterion for using FDR is asymptotically

FDR ≤ γ or

∫ 1

0
P (V ≥ αR)dα ≤ γ. (1.3)

For each hypothesis test, we claim it is significant if |Ti| ≥ t, where Ti is the ith test

statistic under consideration from i = 1, . . . ,m distinct hypotheses. In this dissertation, the Tis

are one-sample or two-sample t-statistics unless otherwise noted. Our goal is to choose t such

that control of k-FWER FDTP and FDR is asymptotically guaranteed simultaneously over all

8



i = 1, . . . ,m.

In evaluating the efficiency of multiple testing procedures, the FNR is used as a criterion

similar to type II error in single hypothesis testing. Defined as FNR = E[F/W ], formally, FNR

is the expected value of missed discoveries divided by the total number of accepted hypotheses.

Basically, it evaluates the detection ability of a multiple testing procedure. In the literature,

the multiple testing problem is framed as a weighted classification problem minimizing FNR +

λFDR, see Genovese and Wasserman (2002), Storey (2003) and Sun and Cai (2007). The

optimal procedure is the one that minimizes E(FNR) subject to E(FDR) ≤ α. Under the

assumption that the distribution of p-values under the alternative is concave, FNR is shown

to be a monotone decreasing function with respect to FDR see Sun and Cai (2007). So the

best procedure is the one that satisfies E(FDR) = α and E(FNR) is automatically minimized.

The concavity assumption is intuitively appealing—under the null hypothesis, the p-value has

a Unif(0, 1) distribution, and under the alternative, the cumulative distribution function of the

p-value is stochastically smaller than the cumulative distribution of Unif(0, 1) since small p-

values indicate significance of the alternative. However, the monotone decreasing relationship

between FDR and FNR does not necessarily hold in general as will be illustrated in one of

our simulation studies in chapter 5. On the other hand, NDR defined as NDR = E[F/m1] is

monotonically decreasing as more true alternatives are rejected (S decreases and m1 is fixed if

F increases.) So we use NDR as the detection ability measure in this dissertation.

An FDR procedure based on the test statistic T in general has the following form:

δδδ(T, c) = {I[T < c] : i = 1, · · · ,m}.

T is any test statistic, not necessarily a t-statistic. Note that we omit the dependent relationship

of T on the dataX and simply write it as T . In the multiple testing literature, it is often assumed

that

the FDR of δδδ(T, c) is monotonically increasing in the cutoff c. (1.4)

When p-values are used, a sufficient condition for (5.1) to hold is that

G1
P (t) is concave in t, (1.5)
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where G1
P (t) is the p-value distribution under the alternative. The concavity of G1

P (t) has been

assumed in Storey (2003), Genovese and Wasserman (2004) and Kosorok and Ma (2007). A

generalized condition was considered for a family of test statistics T in Sun and Cai (2007).

Specifically, let G0
T and G1

T be the conditional cdf of T under the null and alternative, respec-

tively. Denote by g0
T and g1

T the corresponding density functions. A sufficient condition for

(5.1) to hold is the following monotone likelihood ratio condition (MLRC):

g1
T (c)/g0

T (c) is monotonically decreasing in c. (1.6)

Note that G0
P is uniform, and it is easy to verify that (5.2) implies (5.3) when the p-value is

used. In some applications, it may be important to impose less structure under the alternative.

The main contribution of this dissertation is as follows: 1. Moderate deviation results which

only require the finiteness of fourth moment from which the statistic is computed in probability

theory are applied in multiple testing. Thus the applicability of this procedure is dramatically

expanded—it can deal with non-normal populations and even highly skewed populations. 2.

The critical values for rejection regions are computed directly, which circumvents the intermedi-

ate p-value step. 3. An asymptotically consistent estimation of the proportion of alternative is

developed for multiple testing procedures under very general conditions. 4. A non-monotonicity

phenomenon of FDR in terms of cut-off value is noted, with a counter example to show the

consequence of this violation in implementing different testing procedures.

The remainder of the dissertation is organized as follows. In chapter 2, we present the

basic data structure, our goals, the procedures and theoretical results for the one-sample t-

test. Two-sample t-test results are discussed in chapter 3. Chapter 4 is devoted to numerical

investigations using simulation, and we apply our procedure to detect significantly expressed

genes in a microarray study of leukemia cancer. In chapter 5, we provide a counter example

in violation of the monotonicity assumption of FDR analytically and numerically, discuss the

implication on different testing procedures as well as the interpretation of the testing result.

Group testing is discussed in Chapter 6 and concluding remarks are given in chapter 7. Proofs

of results from Sections 2 and 3 are given in the Appendix.
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CHAPTER 2

One-sample t-test

2.1 One-sample t-test

In this section, we first introduce the basic framework for simultaneous hypothesis testing

followed by our main results. Estimation of the unknown proportion of alternative hypotheses

π1 is presented next. We conclude this section by presenting theoretical results for the special

case of completely independent observations. This special setting is the basis for the more

general main results and also is of independent interest since fairly precise rates of convergence

can be obtained.

2.1.1 Basic framework

As a specific application of multiple hypothesis testing in very high dimensions, we use gene

expression microarray data to illustrate. At the level of single genes, researchers seek to establish

whether each gene in isolation behaves differently in a control versus a treatment situation. If

the transcripts are pair-wise under two conditions, we can use a one-sample t-statistic to test

for differential expression.

The mathematical model is

Xij = µi + εij , 1 ≤ j ≤ n, 1 ≤ i ≤ m. (2.1)

It should be noted that the following discussion is under this model and does not hold in general.

Here Xij represents the expression level in the ith gene and jth array. Since the subjects are

independent, for each i, εi1, εi2, · · · εin are independent random variables with mean zero and

variance σ2
i . The null hypothesis is µi = 0 and the alternative hypothesis is µi 6= 0. For the



relationship between different genes, we propose the conditional independence model: Let (Hi)

be a 0/1 valued stationary process, and, given (Hi)
m
i=1, Xij , i = 1, · · · ,m are independently

generated. The dependence is imposed on the hypothesis (Hi), where Hi = 0 if the null

hypothesis is true and Hi = 1 if the alternative is true. From Table 1, we can see that∑m
i=1Hi = m1 and

∑m
i=1(1−Hi) = m0. It is assumed that (Hi)

m
i=1 satisfy a strong law of large

numbers:

1

m

m∑
i=1

Hi → π1 ∈ (0, 1) a.s. asm→∞. (2.2)

This condition is satisfied in a variety of scenarios, for example, the independent case, Markov

models, stationary ergodic models, etc. Consider the one-sample t-statistic

Ti =
√
nX̄i/Si,

where

X̄i =
1

n

n∑
j=1

Xij , S2
i =

1

n− 1

n∑
j=1

(Xij − X̄i)
2.

If we use t as a cut-off, then the number of rejected hypotheses, and the number of false

discoveries are

R =

m∑
i=1

1{|Ti|≥t}, V =

m∑
i=1

(1−Hi)1{|Ti|≥t}. (2.3)

Under the null hypothesis, it is well known that Ti follows a student t-distribution with n−1

degrees of freedom if the sample is from a normal distribution. Asymptotic convergence to a

standard normal distribution holds when the population is completely unknown provided it has

finite fourth moment under the null hypothesis. Moreover, under the alternative hypothesis, Ti

can also be approximated by a normal distribution but with a shift in location. We will show

that

F0(t) := P (|Ti| ≥ t|Hi = 0) = P (|Z| ≥ t)(1 + o(1)) = 2Φ̄(t)(1 + o(1)) asn→∞, (2.4)

F1(t) := P (|Ti| ≥ t|Hi = 1) = E[P (|Z +
√
nµi/σi| ≥ t|µi, σi)](1 + o(1)) asn→∞, (2.5)

uniformly for t = o(n1/6) under some regularity conditions, where Z denotes the standard
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normal random variable, Φ̄ is the tail probability of the standard normal distribution and that

the critical values tn,m that control the FDTP and FDR asymptotically at prescribed level γ

are bounded. These assumptions are fairly realistic in practice. We do not require the critical

value for k-FWER to be bounded. Although we do not typically know m1, F0(t) or F1(t) in

practice, we need the following theorem—the proof of which is given in the Appendix—as the

first step. We will shortly extend this result, in Theorem 2.1.2 below, to permit estimation of

the unknown quantities.

Theorem 2.1.1. Assume that E(εij |µi, σ2
i ) = 0, Var(εij |µi, σ2

i ) = σ2
i , supi,j Eε

4
ij < ∞, 0 <

π1 < 1− α and (2.2) is satisfied. Also assume that there exist ε0 > 0 and c0 > 0 such that

P (|
√
nµi/σi| ≥ ε0|Hi = 1) ≥ c0 ∀n ≥ 1. (2.6)

Let

µm(t) = αm1F1(t)− (1− α)m0F0(t), (2.7)

and

σ2
m(t) = α2m1F1(t)(1− F1(t)) + (1− α)2m0F0(t)(1− F0(t)). (2.8)

(i) If tfdtpn,m is chosen such that

tfdtpn,m = inf{t : µm(t)/σm(t) ≥ zγ}, (2.9)

where zγ is the γth quintile of standard normal distribution, then

lim
m→∞

P (FDP ≥ α) = lim
m→∞

P (V ≥ αR) ≤ γ (2.10)

holds.

(ii) If tfdrn,m is chosen such that

tfdrn,m = inf{t :
m0F0(t)

m0F0(t) +m1F1(t)
≤ γ}, (2.11)
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then

lim
m→∞

FDR = lim
m→∞

E(V/R) ≤ γ (2.12)

holds.

(iii) If tk−FWER
n,m is chosen such that

tk−FWER
n,m = inf{t : P (η(t) ≥ k) ≤ γ}, (2.13)

where η(t) ∼ Poisson(θ(t)) and

θ(t) = moF0(t),

then

lim
m→∞

k-FWER = lim
m→∞

P (V ≥ k) ≤ γ (2.14)

holds.

Remark. In the next section, we use a Gaussian approximation for F0(t) and F1(t) for both

FDTP and FDR, for which the critical values are shown to be bounded. In this case, m can

be arbitrarily large while the critical value remains bounded. Due to sparsity, we use a Poisson

approximation for k-FWER, for which the critical value is no longer bounded as m→∞, and

we require logm = o(n1/3).

2.1.2 Main Results

Note that in Theorem 2.1.1, there are unknown parameter m1 and unknown functions F0(t)

and F1(t) involved in µm(t) and σm(t). For practical settings, we need to estimate these

quantities. We will begin by assuming that we have a strongly consistent estimate of π1, and

we will then provide one such estimate in the next section. Given H, note that p(t) = P (|Ti| ≥

t) = (1 − Hi)P (|Ti| ≥ t|Hi = 0) + HiP (|Ti| ≥ t|Hi = 1) can be estimated from the empirical

distribution p̂m(t) of {|Ti|}, where

p̂m(t) =
1

m

m∑
i=1

I{|Ti|≥t} (2.15)
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and that P (|Ti| ≥ t|Hi = 0) is close to P (|Z| ≥ t) when n is large by (2.4). The next theorem,

proven in the Appendix, provides a consistent estimate of the critical value tn,m.

Theorem 2.1.2. Let

νm(t) = αp̂m(t)− 2(1− π̂1)Φ̄(t) (2.16)

and

τ2
m(t) = α2(p̂m(t)− 2(1− π̂1)Φ̄(t))(1− 1

π̂1
(p̂m(t)− 2(1− π̂1)Φ̄(t))) (2.17)

+ 2(1− α)2(1− π̂1)Φ̄(t)(1− 2Φ̄(t)),

where π̂1 is a strongly consistent estimate of π1. Assume that the conditions of Theorem 2.1.1

are satisfied.

(i) If t̂fdtpn,m is chosen such that

t̂fdtpn,m = inf{t :

√
mνm(t)

τm(t)
≥ zγ}, (2.18)

then

|t̂fdtpn,m − tfdtpn,m | = o(1) a.s.. (2.19)

(ii) If t̂fdrn,m is chosen such that

t̂fdrn,m = inf{t :
2(1− π̂1)Φ̄(t)

p̂m(t)
≤ γ} (2.20)

then

|t̂fdrn,m − tfdrn,m| = o(1) a.s.. (2.21)

(iii) If t̂k−FWER
n,m is chosen such that

t̂k−FWER
n,m = inf{t : P (ζ(t) ≥ k)} ≤ γ (2.22)
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where ζ(t) ∼ Poisson(θ̄(t)) and

θ̄(t) = 2m(1− π̂1)Φ̄(t),

then as long as logm = o(n1/3)

|t̂k−FWER
n,m − tk−FWER

n,m | = o(1) a.s.. (2.23)

Remark. This theorem deals with the general dependence case, where (Hi)
m
1 is assumed to

follow a two state hidden model and the data are generated independently conditional on (Hi)
m
1 .

The proof is mainly based on the independence case, which we present in Section 2.4 below,

plus a conditioning argument.

2.1.3 Estimating π1

In the previous section, we assumed that π̂1 was a consistent estimator of π1. Now we develop

one such estimator. By the two group nature of multiple testing, the test statistic is essentially

a mixture of null and alternative hypotheses with proportion as a parameter. By virtue of

moderate deviations, the distribution of t-statistics can be accurately approximated under both

null and alternative hypotheses. But for the alternative approximation, an unknown mean and

variance are involved. So we think of a functional transformation of the t-statistics which has a

ceiling at 1 to get a conservative estimate of π first which is consistent under certain conditions.

Let c > 0 and define gc(x) = min(|x|, c)/c. It is easy to see that gc is a decreasing function of

c, bounded by 1 and that the derivative dgc
dc is bounded by 1/c. Hence the function class {gc}

indexed by c is a Donsker class and thus also Glivenko-Cantelli. Let

ĝc =
1

m

m∑
i=1

gc(Ti). (2.24)

Theorem 2.1.3. We have

π1 ≥ lim
m→∞,n→∞

sup
c>0

ĝc − E(gc(Z))

1− E(gc(Z))
a.s.
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If, in addition, we assume that

√
nµi/σi →∞ for all i with Hi = 1, i = 1, · · · ,m, a.s., as n→∞, (2.25)

then

π1 = lim
m→∞,n→∞

sup
c>0

ĝc − E(gc(Z))

1− E(gc(Z))
a.s.,

where

E(gc(Z)) =
2

c
√

2π
(1− e−c2/2) + 2Φ̄(c).

Proof. We can write

ĝc =

∑m
i=1 1{Hi=0}

m

∑m
i=1 gc(Ti)1{Hi=0}∑m

i=1 1{Hi=0}
+

∑m
i=1 1{Hi=1}

m

∑m
i=1 gc(Ti)1{Hi=1}∑m

i=1 1{Hi=1}

:=
m0

m
I +

m1

m
II.

Let H = {Hi, 1 ≤ i ≤ m}. Conditional on H, Ti, 1 ≤ i ≤ m, are independent random

variables. We consider I first. Let

Am(c) =

∑m
i=1 gc(Ti|H)1{Hi=0}∑m

i=1 1{Hi=0}
−
∑m

i=1E(gc(Ti|H)1{Hi=0}∑m
i=1 1{Hi=0}

,

and let E be the infinite sequence 1{H1=0}, 1{H2=0}, . . ., and let F be the event that∑m
i=1 1{Hi=0} →∞ as m→∞. By the assumption (2.2), we know that P (F ) = 1. Thus

P

(
limm→∞ sup

c>0
|Am(c)| = 0

)
= E

[
P

(
lim
m→∞

sup
c>0
|Am(c)| = 0

∣∣∣∣E)] = 1,

where the second equality follows from the fact that, conditional on E, the terms in the sum

are i.i.d., and thus the standard Glivenko-Cantelli theorem applies. Arguing similarly based on

conditioning on the sequence 1{H1=1}, 1{H2=1}, . . ., we can also establish that

sup
c>0

∣∣∣∣
∑m

i=1 gc(Ti|H)1{Hi=1}∑m
i=1 1{Hi=1}

−
∑m

i=1E(gc(Ti|H)1{Hi=1}∑m
i=1 1{Hi=1}

∣∣∣∣→ 0, a.s..

Now note that II ≤ 1. Thus, since m0/m → (1 − π1) a.s. and m1/m → π1 a.s., we have that
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when m→∞, n→∞,

ĝc ≤ (1− π1)E(gc(Z)) + π1 a.s.

= E(gc(Z)) + (1− E(gc(Z)))π1.

We now have the following lower bound for π1:

π1 ≥ lim
m→∞,n→∞

sup
c>0

ĝc − E(gc(Z))

1− E(gc(Z))
a.s. (2.26)

Define

∆1 := (1− π1)E(gc(Z)) + π1
1

m1

m∑
i=1

E(gc(Ti)|H)1{Hi=1},

∆2 := (1− π1)E(gc(Z)) + π1

∑m
i=1E(gc(Z +

√
nµi
σi

))1{Hi=1}∑m
i=1 1{Hi=1}

.

Letting n→∞, we have supc>0 |∆1 −∆2| → 0 a.s.. Also,

∆2 = (1− π1)E(gc(Z)) + π1
1∑m

i=1 1{Hi=1}

m∑
i=1

E(gc(Z +

√
nµi
σi

)(I
{|Z+

√
nµi
σi
|≥c}

+ I
{|Z+

√
nµi
σi
|<c}

))Hi

≥ (1− π1)E(gc(Z)) + π1

∑m
i=1 P (|Z +

√
nµi
σi
| ≥ c)Hi∑m

i=1 1{Hi=1}

≥ (1− π1)E(gc(Z)) + π1

= E(gc(Z)) + π1(1− E(gc(Z))).

Note that

sup
c
|ĝc −∆1| → 0 a.s., as m→∞, n→∞.

Therefore,

ĝc ≥ E(gc(Z)) + π1(1− E(gc(Z))) a.s., as m→∞, n→∞.

Thus we obtain

π1 ≤ lim
m→∞,n→∞

sup
c>0

ĝc − E(gc(Z))

1− E(gc(Z))
a.s.. � (2.27)
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Figure 2.1: Histogram of π1 estimate
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In consequence of this theorem, we propose the following estimate of π1:

π̂1 := sup
c>0

ĝc − E(gc(Z))

1− E(gc(Z))
, (2.28)

where

E(gc(Z)) =
2

c
√

2π
(1− e−c2/2) + 2Φ̄(c).

The histogram of a simulation study on the accuracy of this estimate is plotted.

Remark. If we use π̂1 as given in (2.28), then theorem 2.1.2 yields a fully automated procedure

to do multiple hypothesis testing in very high dimensions in practical data settings.

2.1.4 Consistency and rate of convergence under independence

In order to prove the main results in the general, possibly dependent t-test setting we need

results under the assumption of independence between t-tests. Specifically, we assume in this

section that (Ti, Hi), i = 1, · · · ,m are independent, identically distributed random variables,
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with π1 = P (Ti = 1). This independence assumption can also yield stronger results than the

more general setting and is of independent interest.

The next theorem, proven in the Appendix, provides a strong consistent estimate of the

critical value tn,m as well as its rate of convergence:

Theorem 2.1.4. Let

νm(t) = αp̂m(t)− 2(1− π1)Φ̄(t) (2.29)

and

τ2
m(t) = α2p̂m(t)(1− p̂m(t)) + 4α(1− π1)p̂m(t)Φ̄(t)

+2(1− π1)Φ̄(t)(1− 2α− 2(1− π1)Φ̄(t)).

Assume the conditions of Theorem 2.1.1 with (2.2) replaced by the assumption that (Ti, Hi), i =

1, · · · ,m are i.i.d. and π1 = P (Ti = 1). Let J = {i : Hi = 1} be the set that contains the

indices of alternative hypotheses. Also assume that µi, σi are i.i.d. for i ∈ J .

(i) If t̂fdtpn,m is chosen such that

t̂fdtpn,m = inf{t :

√
mνm(t)

τm(t)
≥ zγ}, (2.30)

then

|t̂fdtpn,m − tfdtpn,m | = O(n−1/2 +m−1/2(log logm)1/2) a.s. (2.31)

and

|t̂fdtpn,m − tfdtpn,m | = O(n−1/2 +m−1/2) in probability. (2.32)

Here tfdtpn,m is the critical value defined in (A.17).

(ii) If t̂fdrn,m is chosen such that

t̂fdrn,m = inf{t :
2(1− π1)Φ̄(t)

p̂m(t)
≤ γ}, (2.33)
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then

|t̂fdrn,m − tfdrn,m| = O(n−1/2 +m−1/2(log logm)1/2) a.s. (2.34)

and

|t̂fdrn,m − tfdrn,m| = O(n−1/2 +m−1/2) in probability. (2.35)

Here tfdrn,m is the critical value defined in (A.19).

(iii) If t̂k−FWER
n,m is chosen such that

t̂k−FWER
n,m = inf{t : P (ζ(t) ≥ k)} ≤ γ (2.36)

where ζ(t) ∼ Poisson(θ̄(t)) and

θ̄(t) = 2m(1− π̂1)Φ̄(t),

then

|t̂k−FWER
n,m − tk−FWER

n,m | = O((logm)−1/2) a.s.. (2.37)

Here tk−FWER
n,m is the critical value defined in (A.21).

Remark. If α = γ in theorem 2.1.4, then it is not difficult to see that t̂fdtpn,m − t̂fdrn,m =

O(m−1/2) a.s.. Therefore (2.31) and (2.32) remain valid with t̂fdtpn,m replaced by t̂fdrn,m. This

shows that controlling FDTP is asymptotically equivalent to controlling FDR. This is also true

in the more general dependence case. Thus we will focus primarily on FDR in our numerical

studies.

Remark. Note that π1 is assumed to be known in order to get a precise rate of convergence for

FDTP and FDR. If π̂1 is estimated with rate of convergence rn, then the correct convergence

rate for the in probability result for FDR and FDTP would involve an additional term O(rn)

added in (2.32) and (2.35). It is unclear what the correction would be for the almost sure rate

in (2.31) and (2.34). These corrections are beyond the scope of this paper and will not be

pursued further here. Note that the rate of π̂1 is not needed in the main results presented in

Sections 2.1–2.3.
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CHAPTER 3

Two-sample t-test

3.1 Two-sample t-test

In this section, the results of the previous section are extended to the two-sample t-test setting.

The estimator of the unknown parameter π1 remains the same as in the one-sample case but

with Ti in (2.24) being the two-sample rather than one-sample t-statistic. Theoretical results

for the rates of convergence under independence are also presented as in the previous section.

3.1.1 Basic set-up and results

When two groups such as a control and experimental group are independent, which we assume

here, a natural statistic to use is the two-sample t-statistic. We adopt the same notation used in

the one-sample case, as much as possible, and assume that (2.2) holds. We observe the random

variables

Xij = µi + εij , 1 ≤ j ≤ n1, 1 ≤ i ≤ m, Yij = νi + ωij , 1 ≤ j ≤ n2, 1 ≤ i ≤ m,

with the index i denoting the ith gene, j indicating the jth array, µi representing the mean

effect for the ith gene from the first group, and νi representing the mean effect for the ith

gene from the second group. The sampling processes for the two groups are assumed to be

independent of each other. The sample sizes n1 and n2 are assumed to be of the same order, i.e.

0 < b1 ≤ n1/n2 ≤ b2 <∞. We will also assume that for each i, εi1, εi2, · · · εin1 are independent

random variables with mean zero and variance σ2
i ; ωi1, ωi2, · · ·ωin2 are independent random

variables with mean zero and variance τ2
i . The null hypothesis is µi = νi, the alternative

hypothesis is µi 6= νi, and the dependence is assumed to be generated in the same manner as



the dependence in the one-sample setting. Consider the two-sample t-statistic

T ∗i =
X̄i − Ȳi√

S2
1i/n1 + S2

2i/n2

,

where

X̄i =
1

n1

n1∑
j=1

Xij , Ȳi =
1

n2

n2∑
j=1

Yij ,

S2
1i =

1

n1 − 1

n1∑
j=1

(Xij − X̄i)
2, S2

2i =
1

n2 − 1

n2∑
j=1

(Yij − Ȳi)2 .

Then

R =

m∑
i=1

1{|T ∗i |≥t}, V =

m∑
i=1

(1−Hi)1{|T ∗i |≥t}. (3.1)

The two-sample t-statistic is one of the most commonly used statistics to construct con-

fidence intervals and do hypothesis testing for the difference between two means. There are

several premises underlying the use of two-sample t-tests. It is assumed that the data has been

derived from populations with normal distributions. Based on the fact that S1i → σi, S2i → τi

a.s., with moderate violation of the assumption, quite often statisticians recommend using the

two sample t-test provided the samples are not too small and the samples are of equal or nearly

equal size. When the populations are not normally distributed, it is a consequence of the central

limit theorem that two-sample t-tests remain valid. A more refined confirmation of this validity

under non-normality based on moderate deviations is shown in in Cao (2007). Furthermore,

under the alternative hypothesis, the asymptotic results still hold but with a shift in location

similar to the one sample case under certain conditions, i.e.,

P (|T ∗i | ≥ t|Hi = 0) = P (|Z| ≥ t)(1 + o(1)),

P (|T ∗i | ≥ t|Hi = 1) = P (|Z +
µi − νi
Bn1,n2

| ≥ t)(1 + o(1)),

uniformly in t = o(n1/6), where B2
n1,n2

= σ2
i /n1 + τ2

i /n2. Under the assumption of (2.2),

asymptotic critical values to control FDTP, FDR and k-FWER are very similar to the one-

sample t-test case with the one-sample t-statistic Ti replaced by the two-sample t-statistic
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T ∗i . The following theorem, proved in the Appendix, is analogous to Theorem 2.1.1 and is a

necessary first step:

Theorem 3.1.1. Assume that E(εij |µi, σ2
i ) = 0, E(ωij |νi, τ2

i ) = 0, V ar(εij |µi, σ2
i ) = σ2

i ,

V ar(ωij |νi, τ2
i ) = τ2

i , lim supEε4ij < ∞, lim supEτ4
i,j < ∞, 0 < π1 < 1 − α and (2.2) is

satisfied. Assume that there exist ε0 and c0, such that

P (|µi − νi
Bn1,n2

| ≥ ε0|Hi = 1) ≥ c0 for all n1, n2. (3.2)

Then the conclusions of Theorem 2.1.1 hold with the one-sample t-statistic Ti replaced by the

two-sample t-statistic T ∗i .

3.1.2 Main Results

The unknown parameter m1 and functions F0(t) and F1(t) in Theorem 3.1.1 are estimated

similarly as in the one-sample case with the one-sample t-statistic replaced by its two-sample

counterpart. The following theorem, the proof of which is given in the Appendix, gives our

main results for two-sample t-tests:

Theorem 3.1.2. Assume the conditions in Theorem 3.1.1 are satisfied. Replace the one-sample

t-statistic Ti by the two-sample t-statistic T ∗i in Theorem 2.1.2. Let π̂1 be a strong consistent

estimate of π1 as in (2.28) using the two-sample t-statistic T ∗i .

(i) If t̂fdtpn,m is chosen such that

t̂fdtpn,m = inf{t :

√
mνm(t)

τm(t)
≥ zγ}, (3.3)

then

|t̂fdtpn,m − tfdtpn,m | = o(1) a.s. (3.4)

(ii) If t̂fdrn,m is chosen such that

t̂fdrn,m = inf{t :
2(1− π̂1)Φ̄(t)

p̂m(t)
≤ γ} (3.5)

|t̂fdrn,m − tfdrn,m| = o(1) a.s. (3.6)
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(iii) If t̂k−FWER
n,m is chosen such that

t̂k−FWER
n,m = inf{t : P (ζ(t) ≥ k)} ≤ γ (3.7)

where ζ(t) ∼ Poisson(θ̄(t)) and

θ̄(t) = 2m(1− π̂1)Φ̄(t),

then as long as logm = o(n1/3)

|t̂k−FWER
n,m − tk−FWER

n,m | = o(1) a.s. (3.8)

Remark. π̂1 can be estimated through (2.28) by using two-sample t-statistics. Theorem 2.1.3

is applicable in the two-sample setting as well as in the one-sample case, and consistency follows.

Thus theorem 3.1.2 gives a fully automated procedure to conduct multiple hypothesis testing

using two-sample t-statistics after we plug in the π̂1 given in (2.28).

3.1.3 Consistency and rate of convergence under independence

Results for the independence setting are needed for the proofs of the main results, as was the case

for one-sample t-tests. We can, once again, obtain more precise estimation compared with the

general dependence case. The following theorem, proven in the Appendix, gives us conditions

and conclusions using two-sample t-statistics for controlling FDTP and FDR asymptotically as

well as rates of convergence under the assumption that (Ti, Hi) are independent of each other

for 1 ≤ i ≤ m. Assume π1 is the proportion of the alternative hypotheses among m hypothesis

test, i.e., π1 = P (Hi = 1). Let J = {i : Hi = 1}.

Theorem 3.1.3. Assume the conditions of Theorem 3.1.1 are satisfied. Rather than (2.2), we

assume that (Ti, Hi) are independent and identically distributed. In addition, π1 = P (T1 = 1)

and µi, σi are i.i.d. for i ∈ J . Let

p(t) = P (|T ∗1 | ≥ t), (3.9)
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a1(t) = αp(t)− (1− π1)P (|T ∗1 | ≥ t|H1 = 0), (3.10)

b21(t) = α2p(t)(1− p(t)) + 2α(1− π1)p(t)P (|T ∗1 | ≥ t|H1 = 0)

+(1− π1)P (|T ∗1 | ≥ t|H1 = 0)(1− 2α− (1− π1)P (|T ∗1 | ≥ t|H1 = 0)),

p̂m(t) =
1

m

m∑
i=1

I{|T ∗i |≥t}, (3.11)

νm(t) = αp̂m(t)− 2(1− π1)Φ̄(t), (3.12)

and

τ2
m(t) = α2p̂m(t)(1− p̂m(t)) + 4α(1− π1)p̂m(t)Φ̄(t)

+2(1− π1)Φ̄(t)(1− 2α− 2(1− π1)Φ̄(t)).

Then the conclusions of Theorem 2.1.4 hold with the one-sample t-statistics Ti replaced by the

two-sample t-statistics T ∗i .

Remark. In the above sections, we developed our theorems based on two-sided tests. The

results for the case of one sided tests are very similar but with rejection region {Ti ≥ t} for

each test. We omit the details.
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CHAPTER 4

Numerical Studies

4.1 Simulations

In this section, we present numerical studies based on simulated data and compare the power of

our approach with Benjamini and Hochberg (1995)(BH) and Storey and Tibshirani (2003)(ST)

approaches using one-sample t-statistics. The results for using two-sample t-statistics are very

similar and we omit the details here.

4.1.1 Asymptotic sample path

We investigate the results for the i.i.d. case first. Recall the model

Xij = µi + εij , 1 ≤ i ≤ m, 1 ≤ j ≤ n.

We set the signal using µi ∼ Unif(0.5, 1) or µi ∼ Unif(−1,−0.5), which is of the right order for

the standardized error term. Here, the number of hypothesis tests is m = 10, 000, which is the

same for all following simulation studies unless otherwise noted, the proportion of alternatives

π1 = 0.2 and the error term t(4) are used just to illustrate the asymptotic results. We vary the

number of arrays n from 20, 50 to 300 to evaluate our asymptotic approximation. Empirical

distributions of FDTP, FDR and k-FWER based on 100, 000 repetitions are treated as the

gold standard since it has almost negligible Monte Carlo error. The samples are generated

to evaluate our proposed method based on asymptotic theory. Specifically, for each sample,

we calculate the sample paths of the following quantities indexed by t:
√
mνm(t)/τm(t) for

studying FDTP, 2(1− π̂1)Φ̄(t)/p̂m(t) for studying FDR and P (Poisson(2m(1− π̂1)Φ̄(t)) ≥ 10)

for studying 10-FWER (Here we pick k = 10 just for illustration). π̂1 is defined as in (2.28).



Figure 4.1: Overlay of true and 100 random estimated sample paths with respect to cut-off t
for the three procedures under differing sample sizes.
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Figure 4.1 shows the overlay of the true path and 100 random estimated paths for FDTP

FDR and k-FWER respectively. As n increases, we see that the true path and estimated paths

are pretty close to each other, which in turn validates our asymptotic theory. We can see that

the slope of FDTP and 10-FWER are very steep, which means a small change in the critical

value results in a large change in the level of control, while the FDR has a flatter trend.

4.1.2 Robustness to different error terms

Under the same setup as in the previous section, we simulate data with different error terms:

standard normal(N(0, 1)), student t with 1 degree of freedom (Cauchy), student t with 4 degree

of freedom (t(4)), student t with 10 degree of freedom (t(10)), Laplace and exponential. Note

that except for the Cauchy error term, all the remaining error terms satisfy the condition of finite

4th moment. Empirical distributions of FDTP FDR and k-FWER based on 100, 000 repetitions

are treated as the gold standard to obtain true critical values. Each scenario is repeated 1000

times to evaluate our proposed method for estimating the critical value based on asymptotic

theory. We control FDR at different levels (from 0.01 to 0.2) to get true and estimated critical

values. Asymptotically, the estimated critical value t̂ based on our theory should be very close
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Figure 4.2: Comparison of true and estimated critical values using FDR for different error terms
and numbers of arrays n.
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to the true critical value t and lie on a diagonal line of the square. From Figure 3, the estimated

critical values t̂ do not match the true critical value t under the Cauchy error since the Cauchy

distribution does not have finite 4th moment. For the Cauchy distribution, even the central

limit theorem does not hold since it does not have finite mean. As the number of arrays n

increases, the estimated critical values t̂ match the true critical values t better under symmetric

error terms (N(0, 1), t(4), t(10) and Laplace) but not quite so well under asymmetric errors

(e.g., exponential errors). The difficulty with the exponential error terms suggest the value of

conducting research to derive higher order approximations. We plan on undertaking this in the

near future.

4.1.3 Prescribed FDR control

The above results are from the independent test setting. We did similar simulation studies for

the dependent setting, and found that the corresponding plots are quite similar to the above

results and the same conclusions can be drawn. To see whether our proposed method obtains

the claimed level of control, we use a hidden Markov chain to generate dependent indicators

Hi, i = 1, · · · ,m. Conditional on Hi, i = 1, · · · ,m, the data is generated independently. The
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Figure 4.3: Comparison of nominal and obtained control level for different error terms and
numbers of arrays n.
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transition probability of the hidden Markov chain is set to

 1− p1 p1

p0 1− p0

 ,

where p1 is the transition probability from 0 to 1 and p0 is the transition probability from 1

to 0. In the simulation, p0 = 0.8 and p1 = 0.2. Based on the limiting stationary distribution,

the alternative proportion should be π1 = p1/(p0 + p1). Under the null hypothesis, we simulate

data from four error terms (N(0, 1), t(4), Laplace and exponential); and under the alterna-

tive hypothesis, we simulate data with mean effects half from Unif(0.1, 0, 5) and half from

Unif(−0.5,−0.1) plus the same four error terms. Figure 4.3 uses FDR as the control criterion.

For different control levels γ, we compare the claimed level of control and the actually obtained

level of control based on our method for different numbers of arrays: small (n = 20), medium

(n = 50) and large (n = 300).

From Figure 4.3, we can see that when the number of arrays n is small (n = 20), we do not

in general achieve the claimed level of control. If we have a medium sample size (n = 50), the
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obtained level of control is very close to the nominal level of control and the results are almost

perfect if we have a large number of arrays (n = 300), even for the asymmetric exponential

error term. This strongly supports our theoretical predictions but suggests that higher order

approximations would be useful in some settings.

To see the performance of our method using 10-FWER Table 4.1 summarizes the actually

obtained control level for different error terms and numbers of arrays n when the nominal control

level is 0.05. The obtained control level is incorrect when the number of arrays n is small, which

Table 4.1: Obtained control level using 10-FWER with nominal control level 0.05.
n N(0, 1) t(4) Laplace exponential

20 0.998 (9.0e-05) 0.90 (7.0e-03) 0.81 (1.1e-02) 1(0)
50 0.52 (1.2e-02) 0.14 (9.1e-03) 0.17 (1.2e-02) 1 (0)
300 0.076 (3.8e-03) 0.031 (2.8e-03) 0.05 (2.7e-03) 0.82 (4.6e-03)

can be deduced from the samples paths of 10-FWER given in Figure 1.1. It has a very steep

slope, so that when n is small, the approximation is crude and there is a noticeable difference

between the estimated critical value and the true critical value, yielding a big difference in the

control level. For large sample sizes, the obtained control level is reasonably good because our

asymptotic theory begins to take effect. The exponential error setting appears to not perform

as well as the other error settings.

4.1.4 Estimation accuracy of π1

All previous numerical studies involve the alternative proportion estimate π̂1 defined in (2.28).

In this section, we investigate numerically how this estimate is affected by number of arrays n

and compare with the alternative estimate proposed by Storey and Tibshirani (2003). The first

simulation setup is similar to the one in the previous section. We drew N = 1000 sets of data as

follows. Dependent indicators Hi, i = 1, · · · ,m are generated from a hidden Markov chain with

the limiting alternative proportion π1 = 0.2. Conditional on these, a vector of expected values,

µ = (µ1, · · · , µm), was constructed. The expected values for the true null hypotheses were set

to 0 with standard normal noise, whereas the expected values for the alternative hypotheses

were draw from Unif(0.1, 0.5) plus standard normal noise. Correspondingly, 1000 replications
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of the proportion estimate π̂1 were calculated by using (2.28). The RMSE is given as

RMSE =

√√√√ 1

N

N∑
n=1

(π̂
(n)
1 − π(n)

1 )2,

where π̂
(n)
1 is the estimate of π1 for the nth simulated data set and π

(n)
1 is the truth. Table 4.2

summarizes the effect of n. As the number of arrays n increases, the RMSE gets smaller, which

validates our asymptotic prediction.

Table 4.2: RMSE for N = 1000 estimated values of π1.
n 20 50 300

RMSE 0.0156 0.0136 0.0104

In the second simulation, we compare our proportion estimate with the one using spline

smoothing proposed by Storey and Tibshirani (2003). Recall the proportion estimate π0(λ) =

#{pi > λ; i = 1, · · · ,m}/(m(1 − λ)). The smoothing approach proceeds as follows: first π0(λ)

are calculated over a (fine) grid of λ; then, a natural cubic spline y with 3 degree of freedom

is fitted to (λ, π̂0(λ)); finally, π0 is estimated by π̂0 = y(1). The simulation setup is similar to

the previous one except that we have two groups here with n1 = 70 and n2 = 80. We change

the alternative proportion to compare the performances of our approach (πck1 ) with the spline

smoothing approach (πst1 ) in Table 4.3. They produce very similar results, both are conservative,

with less bias using our approach and less variance using the spline smoothing approach. The

advantage of our approach is that it is computationally very fast, while the spline smoothing

approach requires obtaining p-values using permutation first, which is computationally much

more intensive than our approach which can be computed directly from the t-statistics.

Table 4.3: Proportion estimate comparison
π1 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

π̂ck1 0.044 0.091 0.141 0.182 0.217 0.255 0.289 0.335 0.365
π̂st1 0.041 0.081 0.125 0.161 0.195 0.236 0.276 0.323 0.355

sd(π̂ck1 ) 0.042 0.043 0.041 0.040 0.046 0.041 0.047 0.042 0.038
sd(π̂st1 ) 0.039 0.041 0.036 0.040 0.041 0.038 0.034 0.036 0.031
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4.2 Comparison with BH and ST procedure

In this section, we compare our approach with the BH and ST procedures under the dependence

structure described in Wu (2008)’s paper. We also use a Hidden Markov model to simulate

the indicator function Hi, i = 1, · · · ,m. Conditional on Hi, i = 1, · · · ,m, the data is generated

independently. The number of hypotheses tested m = 5000 and the number of arrays n = 80.

The data generating mechanism is otherwise the same as in the independence case. First, we

construct a one-sample t-statistic and apply our procedure to get the critical value for the

rejection region. We then obtain p-values and q-values, and apply the BH and ST procedures

to decide which genes are significantly expressed. We now briefly describe the BH procedure.

Let pi be the marginal p-value of the ith test, 1 ≤ i ≤ m, and let p(1) ≤ · · · ≤ p(m) be the order

statistics of p1, · · · pm. Given a control level γ ∈ (0, 1), let

r = max{i ∈ {0, 1, · · · ,m+ 1} : p(i) ≤ γi/m},

where p0 = 0 and p(m+1) = 1. The BH procedure rejects all hypotheses for which p(i) ≤ p(r). If

r = 0, then all hypotheses are accepted. The q-value in ST’s paper is similar though to the well

known p-value, except it is a measure of significance in terms of FDR rather than type I error

and an estimate of alternative proportion is plugged in based on available p-values as described

in the previous section. We revisit the motivating example and give a plot of the claimed FDR

and actually obtained FDR by using the proposed critical value method. From Figure 4.4, we

can see that our procedure controls the FDR at the claimed level asymptotically, though a little

bit liberally for finite samples, and has better power at the same target FDR level compared

with the BH and ST procedures. especially when the proportion of alternatives exceeds 0.1.

4.3 Applications to microarray analysis

We now apply the proposed procedure to the analysis of a leukemia cancer data set (Golub

(1999)) in order to identify differentially expressed genes between AML and ALL. For the orig-

inal data, please see http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi. In this

analysis, we use the methodology developed for the dependence case. The raw data consist

of m = 7129 genes and 72 samples coming from two classes: 47 in class ALL (acute myeloid
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Figure 4.4: Power comparison and FDR control
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leukemia) and 25 in class AML (acute lymphoblastic leukemia). Our simulation results showed

reasonable performance of the procedure for moderate sample size in this range. For each gene

location, the two-sample t-statistic comparing the 47 ALL responses with the 25 AML responses

was computed. Using our proposed approach for the dependent case, we find the critical value

for controlling FDR at level γ:

t̂fdrn,m = inf{t :
2(1− π̂1)Φ̄(t)

p̂m(t)
≤ γ},

where p̂m =
∑m

i=1 1{|Ti|≥t}/m and π̂1 is estimated by (2.28).

In Figure 4.5, we plot the FDR level and the number of significantly expressed genes by our

procedure (CK), BH procedure and the q-value based Storey Tibshirani (ST) procedure. From

the plot, we can see that our procedure detects the largest number of significant genes, followed

by the ST procedure and then the BH procedure, which is the most conservative one. At FDR

level 0.01, we detected 870 genes, the ST procedure detected 778 gens and the BH procedure

detected 614 genes. Using the two-sample t-test, similar to the higher power of our approach

in simulation studies, we detected all of the genes that the other two approaches detected. The

BH procedure is very conservative at the expense of power loss. The ST procedure requires

permutation to get p-values, while our procedure gets the critical value directly, and thus is

faster in terms of computation. The estimation of π1 is 0.467 by our procedure and 0.477 by

the ST procedure. These results can serve as a first exploration step for more refined analyses

concerning these significant genes. Another issue may be that the critical value approach based

on asymptotic FDR control may not be conservative enough in some settings.
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Figure 4.5: Comparison between our procedure (CK), the ST procedure and the BH procedure
in real data.
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CHAPTER 5

Counter example for monotone likelihood ratio
condition

5.1 Background

The concavity of p-value distribution under the alternative has been a standard condition for

developing many FDR procedures: Storey; 2003, Genovese and Wasserman; 2004, Kosorok

and Ma; 2007. A more general concept is the monotone likelihood ratio condition (MLRC)

introduced in Sun and Cai (2007). We show in this chapter that the concavity assumption

can be violated for (i) a simple heteroscedastic normal mixture model and (ii) dependent tests.

Some interesting implications, including different testing procedures (step-up vs step down),

the choice of test statistic and the power definition in multiple testing are discussed.

Consider a random mixture model

Ti
i.i.d∼ (1− π1)F0 + π1F1, i = 1, · · · ,m.

We can think of this asymptotically, Ti has limiting distribution F0 under the null and F1 under

the alternative with a prior belief that among the m hypotheses, π1 are from the alternative.

Let H1, · · · , Hm be the associated unknown states with Hi = I(Ti comes from F1). A FDR

procedure based on test statistics T in general has the following form

δδδ(T, c) = {I[T > c] : i = 1, · · · ,m}.



5.2 The monotone likelihood ratio condition

In the multiple testing literature, it is often assumed that

the FDR of δδδ(T, c) is monotonically decreasing in the cutoff c. (5.1)

When p-values are used, a sufficient condition for (5.1) to hold is that

G1
P (t) is concave, (5.2)

where G1
P (t) is the p-value distribution under the alternative. The concavity of G1

P (t) has been

assumed in Storey (2003) and Genovese and Wasserman (2004). A generalized condition was

considered for a family of test statistics T in Sun and Cai (2007). Specifically, let G0
T and G1

T

be the conditional cdf of T under the null and alternative, respectively. Denote by g0
T and g1

T

the corresponding density functions. A sufficient condition for (5.1) to hold is the following

monotone likelihood ratio condition (MLRC):

g1
T (c)/g0

T (c) is monotonically decreasing in c. (5.3)

Note that G0
P is uniform, and it is easy to verify that (5.2) implies (5.3) when p-values are used.

This MLRC holds if the null and alternative distribution have the same spread. However, for

heteroscedastic variance, it fails. We use a single hypothesis test to illustrate. Suppose under

the null, that the test statistic follows a N(0, 1) distribution and under the alternative, the test

statistic follows a N(0.5, 0.5). If we control the traditional 0.025 tail probability, the critical

value is 1.96. But at 1.96, the probability that the observation comes from the alternative is

0.0018, much smaller than the probability that it comes from the null which is 0.025. In fact, it

is 13.89 times more likely that the observation comes from the null rather than the alternative.

The concavity of the alternative distribution is useful in deriving the optimal testing

procedure—maximizing the power at the same level of FDR control. The monotone likelihood

assumption is a generalization for the concavity of p-value distribution under the alternative.
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Figure 5.1: Heteroscedastic variance between null and alternative
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Genovese and Wasserman (2002) and independently Sarkar (2002) proposed to use false non-

discovery rate FNR defined as E(F/W ) as a detection ability criterion in multiple testing. Later

on, various procedures were developed to optimize this FNR on the same level of FDR control,

see Sun and Cai (2007), etc. But the key assumption for these procedure is that the FNR is

a monotone non-increasing function of FDR which does not necessarily hold, especially when

the signal is weak no matter what the proportion of alternatives is.

In a simulation, we now study the trajectory of FDR and FNR with respect to critical value

t based on the model xij = µi + εij with null hypothesis µi = 0 and alternative hypothesis

µi 6= 0. Here εij ∼ N(0, 1) marginally and Corr(εij , εik) = ρ when j 6= k. For this simulation,

we use multivariate normal to simulate the data with pairwise correlation 0.8, the proportion

for alternatives is 0.05 and 0.2 respectively and we use Unif(0.1, 0.5) as a weak alternative

signal and Unif(0.5, 1) as a strong alternative signal. From Figure 5.2 , we can see that the

FDR decreases with respect to critical value while FNR decreases first and then increase with

respect to critical value for both small and large proportions of alternatives when the signal is
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Figure 5.2: Non-monotonicity between FDR and FNR under positive correlation for weak signal
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weak under strong correlation.

When the signal is strong, the monotonicity relationship between FDR and FNR holds and

under weak signal, it holds if the tests are independent or the correlation is weak. See Figure

5.3.

Due to this non-monotonicity between FDR and FNR we propose to use the non-discovery

rate (NDR) defined as NDR = E(F/m1) for the power definition in multiple testing. The

denominator m1 is a fixed but unknown parameter and the denominator F represents the total

number of missed discoveries, which decreases monotonically as the critical value increases, and

correspondingly the total number of true rejections increases.

5.3 Counter examples

5.3.1 One-sided Z test

This section gives an example where the concavity of G1
P does not hold in a multiple testing

situation. Consider a two component normal mixture

Ti
i.i.d.∼ (1− π1)N(0, 1) + π1N(µ, σ2). (5.4)

The null hypothesis µ = 0 vs µ > 0 and take Pi = P{N(0, 1) > Ti}. Denote by Φ and φ the

cdf and pdf of a standard normal variable, respectively. Observe that

G1
P (t) = Pθi=1(Pi < t) = Φ

{
Φ−1(t) + µ

σ

}
,

the conditional pdf of the p-value is

g1
P (t) =

1

σ
φ

{
Φ−1(t) + µ

σ

}
/φ{Φ−1(t)}

=


(1/σ) exp

[
−1−σ2

2σ2

{
Φ−1(t) + µ

1−σ2

}2
+ µ2

2(1−σ2)

]
if σ < 1

(1/σ) exp

[
σ2−1
2σ2

{
Φ−1(t)− µ

σ2−1

}2
− µ2

2(σ2−1)

]
if σ > 1

exp
{
−Φ−1(t)µ− 1

2µ
2
}

if σ = 1

41



Figure 5.3: Monotonicity between FDR and FNR under independence and positive correlation
for strong signal
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The critical region for inference is the interval t ∈ (0, η), where η is usually very small. In

order to guarantee that G1
P (t) is concave, g1

P (t) should be decreasing in t. It is easy to see that

g1
P (t) is a decreasing function for t ∈ (0, η) when σ ≥ 1. However, g1

P (t) is increasing in t for

t < Φ
{
−µ/(1− σ2)

}
when σ < 1, which implies that G1

P is not concave. (Φ−1(t) < Φ−1(η) <

Φ−1(1/2) = 0) The MLRC (5.3) also fails. Some further analysis reveals that the FDR can be

decreasing in t.

5.3.2 Two-sided Z test

Consider a three component normal mixture

Xi
i.i.d.∼ (1− p1 − p2)N(0, 1) + p1N(µ1, σ

2
1) + p2N(µ2, σ

2
2). (5.5)

Define the two-sided p-value Pi = P{|N(0, 1)| > |Xi|} = 2Φ(−|Xi|). Therefore

G0
P (t) = P0{|Xi| > −Φ−1(t/2)}

= P0{Xi < Φ−1(t/2)}+ P0{Xi > −Φ−1(t/2)}

= t.

and

G1
P (t) =

p1

p1 + p2

[
Φ

{
Φ−1(t/2)− µ1

σ1

}
+ Φ

{
Φ−1(t/2) + µ1

σ1

}]
+

p2

p1 + p2

[
Φ

{
Φ−1(t/2)− µ2

σ2

}
+ Φ

{
Φ−1(t/2) + µ2

σ2

}]

Similarly, for σi 6= 1, we have

g1
P (t) =

p1

p1 + p2

[
1

2σ1
exp

{
−1− σ2

1

2σ2
1

(
Φ−1

(
t

2

)
− µ1

1− σ2
1

)2

+
µ2

1

2(1− σ2
1)

}]

+
p1

p1 + p2

[
1

2σ1
exp

{
−1− σ2

1

2σ2
1

(
Φ−1

(
t

2

)
+

µ1

1− σ2
1

)2

+
µ2

1

2(1− σ2
1)

}]

+
p2

p1 + p2

[
1

2σ2
exp

{
−1− σ2

2

2σ2
2

(
Φ−1

(
t

2

)
− µ2

1− σ2
2

)2

+
µ2

2

2(1− σ2
2)

}]
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+
p2

p1 + p2

[
1

2σ2
exp

{
−1− σ2

2

2σ2
2

(
Φ−1

(
t

2

)
+

µ1

1− σ2
2

)2

+
µ2

2

2(1− σ2
2)

}]

For σ1 = σ2 = 1, we have

g1
P (t) =

p1

p1 + p2

[
1

2
exp

{
Φ−1(t/2)µ1 − µ2

1/2
}

+
1

2
exp

{
−Φ−1(t/2)µ1 − µ2

1/2
}]

+
p2

p1 + p2

[
1

2
exp

{
Φ−1(t/2)µ2 − µ2

2/2
}

+
1

2
exp

{
−Φ−1(t/2)µ2 − µ2

2/2
}]

Specifically for the case of σ1 = σ2 = 1, it follows that

(g1
P )′(t) =

p1 exp(−µ2
1/2)µ1

4(p1 + p2)φ{Φ−1(t/2)}

[
eΦ−1(t/2)µ1 − e−Φ−1(t/2)µ1

]
+

p1 exp(−µ2
2/2)µ2

4(p1 + p2)φ{Φ−1(t/2)}

[
eΦ−1(t/2)µ2 − e−Φ−1(t/2)µ2

]
.

Hence we have (g1
P )′(t) < 0, implying that the p-value cdf is always concave. Two sided tests

still depend on σ: there is nothing special for this case.

Remark. In practice, the Z-test is seldom used since it involves the unknown variance which

has to be estimated from the data. However the asymptotic distributions of a fair number of

test statistics are asymptotically normal under both the null and alternative. The sign test is

one of them.

5.3.3 Sign test

Suppose we are interested to see if a continuous random variable Y is symmetrically distributed

around 0. We can use a sign test to do the analysis. Assume that we have n independent

realizations of Y, Y1, Y2, · · · , Yn, and let

sign(Yi) =

 1 if Yi > 0

−1 if Yi < 0.

The test statistic we use is Tn = n−1
∑n

i=1 sign(Yi) = n−1
∑n

i=1[2I{Yi>0} − 1]. The null hy-

pothesis is H0 : p = P (Yi > 0) = 0.5 and the alternative hypothesis is H1 : p 6= 0.5. Under
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the null hypothesis, Tn has expected value E(sign(Yi)) = P (Yi > 0)− P (Yi < 0) = 0 and vari-

ance V ar(sign(Tn)) = n−2
∑n

i=1 4Var(I{Yi>0}) = 4P (Yi > 0)(1 − P (Yi > 0))/n = 1/n. So the

standardized test statistic
√
nTn → N(0, 1) under the null hypothesis. Under the alternative

hypothesis, E(sign(Yi)) = P (Yi > 0) − P (Yi < 0) = 2P (Yi > 0) − 1, V ar(sign(Yi)) = 4P (Yi >

0)(1− P (Yi > 0)) = −4P (Yi > 0)2 + 4P (Yi > 0), and so

√
nTn −

√
n[2P (Yi > 0)− 1]√

−4P (Yi > 0)2 + 4P (Yi > 0)
∼ N(0, 1) as n→∞.

So under the alternative, for the unstandardized test statistic
√
nTn, the asymptotic distribution

is normal with a shift in location and shrinkage of the variance (it is smaller than 1). This can

serve as an example of the normal mixture counter example for practical testing problems.

To fix the problem, we recommend to use the standardized version of the sign test by

plugging in the consistent estimate of the parameter p = P (Yi > 0) by p̂ =
∑n
i=1 I{Yi}
n in the

variance to get the estimate.

Remark. We conjecture that the heteroscedasticity phenomenon exists for central and non-

central χ2 test as well, but this is a future research topic.

5.3.4 Numerical studies

We use a normal mixture model to do the simulation. The summary statistic T has a N(0, 1)

distribution under the null and a N(µ, σ) distribution under the alternative. Suppose the

proportion of alternatives is π1. We have summary statistic Ti, i = 1, · · · ,m for each test and

the mixture model:

Ti ∼ (1− π1)N(0, 1) + π1N(µ, σ).

In the simulation study, the number of tests m = 1000 and we have 1001 replications. We first

study the effect of µ on the shape of FDR for σ ≥ 1 and σ < 1.

In the first simulation, the proportion of alternatives is 0.2 and the alternative standard

deviation is 0.3. We change the mean effect from small to large (0.5 to 3) and see the shape

of the FDR. Figure 5.4 is the plot for the case σ < 1. When σ ≥ 1, the FDR is a monotone

decreasing function with respect to the critical value t. In other words, the MLRC holds in this

case. See Figure 5.5.
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Figure 5.4: FDR with respect to alternative mean for fixed alternative proportion and small
variance
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Figure 5.5: FDR with respect to alternative mean for fixed alternative proportion and large
variance
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Figure 5.6: FDR with respect to small alternative variance for fixed alternative proportion and
mean
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In the second simulation, we fix the proportion of alternatives to be the same 0.2, the

alternative mean µ = 2 and change the alternative stand deviation from small to large (0.1 to

0.9). The FDR is not monotone with respect to the critical value as in Figure 5.6. When we

change the alternative standard deviation σ ≥ 1, the FDR is a monotone decreasing function

with respect to the critical value t. In other words, the monotonicity of FDR holds in this case

as can be seen from Figure 5.7.

In the third simulation, we fix the alternative mean µ = 2, set a small alternative standard

deviation σ = 0.2 and change the proportion of alternatives from small to large (0.01 to 0.25).
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Figure 5.7: FDR with respect to large alternative variance for fixed alternative proportion and
mean
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Figure 5.8: FDR with respect to alternative proportion for fixed alternative mean and small
variance
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From Figure 5.8, the FDR is not monotone for any proportion of alternatives. Next, we change

the alternative standard deviation σ ≥ 1, and the FDR is a monotone decreasing function with

respect to the critical value t as illustrated in Figure 5.9.

In observing of the heteroscedasticity phenomenon of the variance under null and alternative

hypotheses, in practical multiple testing implementation, we would like to use test statistics

that do not have such issues. The t-statistics are good candidates.
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Figure 5.9: FDR with respect to alternative proportion for fixed alternative mean and large
variance
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5.4 t-statistics

5.4.1 one-sided test

Lemma 5.4.1. Suppose X,Xi, i = 1, · · · , n are independent identically distributed random

variables. Let

X̄ =

∑n
i=1Xi

n
, s2

n =
1

n− 1

n∑
i=1

(Xi − X̄)2.

If X satisfies E|X|4 <∞, E(X2) = σ2 > 0 and E(X) = 0, then

P (

√
n(X̄ + c)

sn
≥ t) =

(
1− Φ(t− c

√
n/σ)

)
(1 + o(1)) (5.6)

uniformly in |c
√
n/σ| ≤ t/5 and t = o(n1/6). We remark that following the same lines as their

proof, we can see that (A.13) remains valid for −t/5 ≤ c
√
n/σ ≤ t.

If we use t-statistics, consider the one-sided test first:

Pi = P (Ti > tobserved
i ) = P (Z > Tobserved

i )(1 + o(1))

= (1− Φ(Ti))(1 + o(1)).

The distribution of p-values under the null hypothesis is

G0
p(t) = P ((1− Φ(Ti))(1 + o(1)) < t)

= P (Φ(Ti)(1 + o(1)) > 1− t+ o(1))

= P (Ti > Φ−1(1− t+ o(1)))

= P (−Ti < Φ−1(t+ o(1))) = t+ o(1)

Under the alternative hypothesis,

G1
p(t) = P (Ti > Φ−1(1− t+ o(1)))
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= P (

√
n(X̄ − µ+ µ)

sn
> Φ−1(1− t+ o(1)))

= Φ̄(−Φ−1(t+ o(1))−
√
nµ

σ
)

= Φ(Φ−1(t+ o(1)) +

√
nµ

σ
)

Take derivative with respect to t, we get the pdf of p-values under the alternative hypothesis.

g1
p(t) =

φ(Φ−1(t+ o(1)) +
√
nµ
σ )

φ(Φ−1(t+ o(1)))

= exp(−1

2

nµ2

σ2
−
√
nµΦ−1(t+ o(1))

σ
),

which is a monotone decreasing function with respect to t.

5.4.2 two-sided test

Lemma 5.4.2. Suppose X,Xi, i = 1, · · · , n are independent identically distributed random

variables. Let

X̄ =

∑n
i=1Xi

n
, s2

n =
1

n− 1

n∑
i=1

(Xi − X̄)2.

If X satisfies E|X|4 <∞, E(X2) = σ2 > 0 and E(X) = 0, then

P (|
√
n(X̄ + c)

sn
| ≥ t) = P (|Z + c

√
n/σ| ≥ t)(1 + o(1)) (5.7)

uniformly in c and t = o(n1/6). Here and in the sequel, Z denotes a standard normal random

variable. Note that

Pi = P (|Ti| > |tobserved
i |) = P (|Z| > |Ti|observed)(1 + o(1))

= 2Φ̄(|Ti|)(1 + o(1)) = 2Φ(−|Ti|)(1 + o(1)).
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The distribution of p-values under the null hypothesis is

G0
p(t) = P (Φ(−|Ti|)(1 + o(1)) < t/2)

= P (−|Ti| < Φ−1(t/2 + o(1)))

= P (|Ti| > −Φ−1(t/2 + o(1)))

= P (|Z| > −Φ−1(t/2 + o(1)))

= 2Φ(Φ−1(t/2 + o(1))) = t+ o(1).

Under alternative hypothesis,

G1
p(t) = P (|Ti| > −Φ−1(t/2 + o(1)))

= P (|
√
n(X̄ − µ+ µ)

sn
| > −Φ−1(t/2 + o(1)))

= P (|Z +

√
nµ

σ
| > −Φ−1(t/2 + o(1)))

= P (Z > −
√
nµ

σ
− Φ−1(t/2 + o(1))) + P (Z < Φ−1(t/2 + o(1))−

√
nµ

σ
)

= Φ(Φ−1(t/2 + o(1)) +
√
nµ/σ) + Φ(Φ−1(t/2 + o(1))−

√
nµ/σ).

Taking derivative with respect to t, we get the pdf of p-values under the alternative hypothesis:

g1
p(t) =

1

2
[
φ(Φ−1(t/2 + o(1)) +

√
nµ/σ)

φ(Φ−1(t/2 + o(1)))
+
φ(Φ−1(t/2 + o(1))−

√
nµ/σ)

φ(Φ−1(t/2 + o(1)))
]

=
1

2
[exp(−1

2

nµ2

σ2
−
√
nµ

σ
Φ(t/2 + o(1))) + exp(−1

2

nµ2

σ2
+

√
nµ

σ
Φ(t/2 + o(1)))]

=
1

2
exp−

1
2
nµ2

σ2 [exp(

√
nµ

σ
Φ(t/2 + o(1))) + exp(−

√
nµ

σ
Φ(t/2 + o(1)))],

which is monotone decreasing. So the p-value distributions under the alternative is a concave

function.

Remarks

• Step-up vs. Step-down Procedures. If the FDR is not monotonically increasing in c,

53



the step-up and step-down procedure will for sure produce different results. One is too

conservative and the other is two liberal in terms of FDR control. Further numerical

studies are in progress for evaluating different procedures in face of this non-monotonicity

issue. For the comparison literature of these two procedures, see Lehmann, Romano and

Shaffer (2005).

• On the choice of test statistics. A test statistic that does not satisfy the MLRC seems

to be inappropriate and counter-intuitive. In contrast, it can be shown using similar

techniques in the proof of Corollary 1 in Sun and Cai (2009) that when the local fdr

statistic Lfdr(Xi) is used, that the MLRC (5.3) always holds. We’ve proved that the

MLRC holds for t-tests as well. The scenarios considered in Fan, Hall and Yao (2007)

still hold.

• Implications on existing FDR procedures. The concavity assumption has been extensively

used in Storey (2003) and Genovese and Wasserman (2004). It is a convenient assumption

to obtain desired results. The conclusions still hold as long as the tail distribution of the

alternative is concave.

• Efficiency of multiple testing. As long as p-values are uniformly distributed under the

null hypothesis, the BH procedure and some variants can be applied for testing with valid

FDR control. But if MLRC does not hold, many procedures claimed to control FDR at

a specified level and minimize FNR are not valid.

• Dependent case. It is of interest to investigate analytically whether the MLRC holds

when tests are dependent. This is a future research topic. We plan to start with pairwise

correlated tests or with a hidden Markov model assumption.
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CHAPTER 6

Group testing under dependence

6.1 Background

With the easy access to massive datasets, it is increasingly important to extract useful features,

which at most are only a small portion of the high throughput data from the vast amounts

of data. In genomics microarrays, usually the available dataset are two matrices Xp×n, and

Yn×k, where p is the total number of genes, n is the number of subjects, and k is the number

of covariates for each subject. In the simplest treatment and control situation, k = 1 with

dichotomous categories. Usually, the number of genes p is of the order of thousands, while the

number of arrays is at most hundreds. The interest lies in finding relevant genes that contribute

to the different phenotypes, which can be casted into a multiple testing framework.

Many methods have been proposed in the literature. Usually an appropriate test statistic is

calculated for each gene and used to assign a parametric or permutation-based p-value (Tusher

et al., 2001; Dudoit et al., 2002b; Newton et al., 2004). Once a test statistic has been chosen,

the primary statistical obstacle is accounting for multiple comparisons. Ranked lists of genes

with small p-values are typically produced and subjected to an appropriate form of error rate

control, such as the family-wise error rate (FWER) or the false discovery rate (FDR). However,

this usual mode of analysis has been found to have several limitations. In particular, individual

Gene analysis is often too conservative due to the need to control for a large number of multiple

comparisons and correlation among genes, and results are subject to poor interpretability and

reproducibility. An alternative approach is to incorporate prior biological information. Specifi-

cally, it is known that biological phenomena occur through the concerted expression of multiple

genes. Thus, we can use our prior knowledge of what genes belong to various pathways to focus



our analysis on groups of functionally related genes called gene sets. The logic behind this type

of analysis is that several functionally related genes demonstrating moderate differences be-

tween experimental conditions may be more important than a single, possibly spurious, highly

significant gene. Instead of considering individual genes, the pathway approach treats the gene

set as a single unit to be tested. This approach is becoming increasingly popular as it addresses

various issues associated with individual gene analysis and provides more directly interpretable

and reproducible results. Therefore, recent efforts have focused on the discovery of biological

pathways rather than individual gene function, with the development of methods that are ro-

bust to the inaccuracies of specific gene estimates and which provide a more expansive view of

the underlying processes.

A good approach for finding significant pathways depends on two components: (i) an accu-

rate and powerful statistical method to discover significant patterns for a group of genes and

(ii) a comprehensive and well-characterized pathway information mapped to microarray probes.

The overall objective of the analysis is to test whether a group of genes has a coordinated as-

sociation with a phenotype of interest. In terms of formal statistical language, there are two

ways to formulate the null hypothesis. First, the competitive Null, Hcomp
0 : The genes in a gene

set show the same pattern of associations with the phenotype compared with the rest of the

genes. Second, the self-contained Null, Hself
0 : The gene set does not contain any genes whose

expression levels are associated with the phenotype of interest.

An essential difference between Hcomp
0 and Hself

0 is that Hcomp
0 compares the association

strength for genes in a gene set with the association strength for genes outside the gene set,

whereas Hself
0 only focuses on the associations of genes within the gene set. As a ranking

criterion, Hself
0 has its own limitation: When there is a significant proportion of genes associated

with the phenotype of interest, large gene sets corresponding to irrelevant pathways could

contain many genes associated with the phenotype by chance and be ranked highly according

to Hself
0 . To circumvent such problems, we propose a gene sets testing approach based on

the proportion of significant genes in the gene pathway rather than the absolute number of

significant genes. Therefore, we can produce more robust results irrespective of the size of gene

sets.

Suppose we have G gene sets (which is available from the Gene Ontology or KEGG
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database), with different sizes ranging from 30 to 200. For each gene set, we use πg, g = 1, · · · , G

to denote the proportion of differentially expressed genes in the pathway and πcg, g = 1, · · · , G

to denote the proportion of differentially expressed genes in the complement pathway. We want

to see if this pathway is special compared with the whole gene lists:

H0 : πg = πcg, H1 : πg 6= πcg, where g ∈ {1, · · · , G}.

Based on previous work, if we use the two sample t statistic as the testing statistic, under

certain assumptions, the proportion can be written as

πg = limmg→∞,n→∞supc>0
ĝc − E(gc(Z))

1− E(gc(Z))
a.s.,

where mg is the total number of genes in gene pathway Gg, n is the number of arrays, and Z ∼

N(0, 1). Here gc(x) = min(|x|, c)/c, ĝc =
∑mi

l=1 gc(Tl) and E(gc(Z)) = 2
c
√

2π
(1−e−c2/2)+2Φ̄(c).

For the proportion estimate π̂ = ĝc−Egc(Z)
1−Egc(Z) , under the assumption

√
nµi/σi →

∞ a.s., as n → ∞ for all i that represent the differentially expressed genes, we have

P (|Z +
√
nµi
σi
| ≥ c) = 1. So

Eπ̂ =
Eĝc − Egc(Z)

1− Egc(Z)

=
πEgc(T )|H = 1 + (1− π)Egc(T )|H = 0

1− Egc(Z)

≈ πgc(Z +
√
nµi/σi) + (1− π)Egc(Z)

1− Egc(Z)

≈ π(1− Egc(Z))

1− Egc(Z)
= π.

suppose the maximum is obtained at value c0 in π̂. Now we calculate the variance of this

proportion estimate. We assume that for the alternative hypotheses, Hi = 1,
√
nµi/σi →

∞ a.s. We first try the pairwise correlation between test statistics cov(Ti, Tj) = ρ.

So

var(ĝc0) =
1

m
{(1− π)Egc0(Z)2 − (1− π)(Egc0)2 + π(1− π)(1− Egc0(Z))2}

+
2(m− 1)

m
{π2 + 2π(1− π)Egc0(Z) + (1− π)2Egc0(X)gc0(Y )− [(1− π)Egc0(Z) + π]2},
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where X,Y are bivariate normal with variance σ2
1, σ

2
2 and correlation ρ and Egc0(Z)2 = 2Φ̄(c0)+

2
c20

Φ(c0)− 1
c20
− 2e−c

2
0/2√

2πc0
. Recall that gc(x) = min{ |x|c , 1}, we have

Egc0(X)gc0(Y ) = 4

∫ c0

0

∫ c0

0

xy

c2
0

fρ(x, y)dxdy + 4

∫ ∞
c0

∫ ∞
c0

fρ(x, y)dxdy + 8

∫ c0

0

∫ ∞
c0

x

c0
fρ(x, y)dxdy,

where fρ(x, y) = 1

2πσ1σ2
√

1−ρ2
e
− 1

2(1−ρ)2
(x2/σ2

1+y2/σ2
2)

. Eventually, if the number of test m is big,

var(π̂) = O(1/m)+
2

(1− Egc0(Z))2
{(1− π)2Egc0(X)gc0(Y ) + 2π(1− π)(Egc0(Z)− Egc0(Z)2)2}.

Suppose within a gene set group g(g = 1, · · · , G), the model is as follows:

xji = µi + εji, i = 1, · · · ,mg; j = 1, · · · , n,

where i indicates different gene location within the group and j indicates different samples. µi

is the fixed effect of expression level of gene i, and εji is the random noise. Let εj , represent the

genes corresponding to sample i and εj ∼ N(0,Σ). For now, we assume that Σ is of the form



1 ρ · · · ρ

ρ 1 · · · ρ

ρ · · · 1 ρ

ρ ρ · · · 1


.

In other words, for the sample subject, we assume the genes are dependent with a pairwise

correlation ρ. Compared with the within-group correlation, the correlation between different

gene sets is very weak, and we ignore it for now.

6.2 Simulation

In our numerical studies, we want to see the performance of this proportion estimate under

dependence and compare this proportion with its complement for each gene set to test for the

groups that are different from the rest.

The set-up is as follows. We have G = 100 different groups, with group size mG ∼

Unif(30, 200). The group size is modest between 30 − 200 for the asymptotics to work and
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the consideration that larger groups always tend to be significant. The proportion of significant

groups is 0.2, which is 20 in our case. Within the significant groups, the proportion of alterna-

tive tests is generated from a β(1, 3) distribution. For the remaining 80 groups, the proportions

of alternative tests are generated by the weighted average of the 20 significant proportions—

the same value for all 80 groups. So the average of the overall proportion is the same as the

average of the null 80 groups. For the 20 significant group, the proportion of the group and

its complement is different, while for the null 80 groups, the proportion is the same as their

complements. Within each gene set, the signal is generated according to Unif(0.5, 1) and the

noise is generated according to a multivariate normal with mean 0 and pairwise correlation 0.7.

Based on the two-sample t-statistic, the proportion πg is calculated for each group as well as

its complement πcg for each gene set. The point estimate of πg is reasonable as can be seen in

Figure 6.1. In order to get the confidence interval of πg − πcg, we use the bootstrap method to

permute the column from two different groups, calculate πg−πcg for each gene set based on 100

permutation, and evaluate whether 0 falls into the empirical 90% percentile of the permuted

πg −πcg. This is a per-comparison test, which did not adjust for multiple comparison. We com-

bine the results across different gene sets and calculate the FDR. For the nominal significance

level of 0.1, the overall FDR is controlled around 20% based on this empirical study. We tried

to implement the BH procedure by calculating bootstrap p-values for each set, ranking and

thresholding to adjust for the multiplicity. The performance is very poor due to the reason

that in our case, under the null hypothesis, the p-value is not Unif(0, 1) distributed. Further

investigation in this approach will be pursued by possibly smoothing the p-value under the null

to be Unif(0, 1) or using non-parametric multiple comparison adjustment which doesn’t require

knowing the distribution of p-values.
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Figure 6.1: Proportion estimate for group testing under dependence
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CHAPTER 7

Concluding Remarks

7.1 Overview

In this dissertation, we have presented a groundbreaking new approach to large scale multiple

testing which improves the power at the same FDR level but requires minimum assumptions

compared with standard approaches, developed a new asymptotically consistent estimate for

the proportion of alternatives, pointed out a new non-monotone phenomenon of FDR with

respect to the threshold, its practical implications for existing FDR procedures, and a group

testing method using relative measure of error with applications in genomics. The general idea

is to incorporate alternatives into decision making rather than the p-value approach which only

takes into account of the null with specific test statistics and in certain applications. Our work

was motivated by high-throughput techniques in genomics, recent theoretical advancement in

the field of moderate deviations, concentration inequalities and empirical processes.

We have presented a new approach for the significance analysis of thousands of features in

high-dimensional biological studies. The approach is based on estimating the critical values of

the rejection regions for high dimensional multiple hypothesis testing rather than the conven-

tional p-value approaches in the literature. We developed a detailed method that can be used

to identify differentially expressed genes in microarray experiments. The proposed procedure

performs well for large samples, reasonably good for intermediate samples and not quite as

good for small samples, and appears to perform better than existing alternatives under realistic

sample sizes. Our method is also computationally faster than the competing approaches. The

potential for improvement in small sample performance motivates the need for a second order

expansion of our theoretical work. In addition, we have proposed a new consistent estimate of



the proportion of alternative hypotheses under certain conditions. Numerical studies demon-

strate that our methodology fits the truth well and improves the statistical power in multiple

testing.

The non-monotonicity of FDR with respect to the threshold is interesting since it opens a

new door for the interpretation of high-throughput screening in terms of statistical analysis. The

traditional ranking does not work well in this circumstance — the features corresponding to large

test statistic values are important, followed by a gap which jumps over the intermediate value

and the features corresponding to some relatively small test statistics are picked up as important,

while the traditional FDR approach ranks and thresholds only features corresponding to the

large test statistics.

7.2 Future Research

Extensions of the current work can be done in several directions.

First, as we said before, the precision of the asymptotic approximations has room for im-

provement in small to moderately small sample sizes, suggesting that a second order expansion

would be valuable. Second, under the dependence case, it would be of interest to see how the

rate of convergence could be derived under various assumptions on the form of the dependence.

Thirdly, the plug-in estimator π1 is consistent but somewhat ad-hoc. Complete, theoretical

properties of this estimator remain to be explored. Fourth, we only considered a fixed propor-

tion π1 of alternative hypotheses. It is of great interest to consider also the sparsity setting,

in which π1 → 0 as m → ∞, and see what patterns emerge. When the number of hypothesis

tests is of the order of millions, the number of signals doesn’t change much, so it is not realistic

to assume the proportion of alternatives is fixed when the number of tests increase. Higher

Criticism is shown to be useful in rare proportions and weak signal modeling. See Donoho

and Jin (2004) and Donoho and Jin (2006). But no proportion estimates have been derived

in the higher criticism approach and the assumption of sharing the same signal strength for

all alternatives is not realistic. We plan to add some prior on the alternative mean, model

the alternative variances as random variables coming from an underlying smooth function, and

then explore the multiplicity calibration when the proportion of alternatives goes to 0.
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APPENDIX A

Preliminary lemmas

A.1 Berry-Esseen bound for non-central t-statistics

Our main tools are limit theorems of empirical processes, Berry-Esseen bounds, and self-

normalized moderate deviations for one and two sample t-statistics.

We first state a non-uniform Berry-Esseen inequality for non-linear statistics:

Lemma A.1.1. Chen and Shao (2007). Let ξ1, ξ2, . . . , ξn be independent random variables

with Eξi = 0,
∑n

i=1Eξ
2
i = 1 and E|ξi|3 < ∞. Let Wn =

∑n
i=1 ξi and ∆ = ∆(ξ1, . . . , ξn) be a

measurable function of {ξi}. Then

|P (Wn + ∆ ≤ z)− Φ(z)| ≤ P (|∆| > (|z|+ 1)/3)

+ C(|z|+ 1)−3
(
||∆||2 +

n∑
i=1

(Eξ2
i )1/2(E(∆−∆i)

2)1/2 (A.1)

+

n∑
i=1

E|ξi|3
)

(A.2)

This is Theorem 2.2 in Chen and Shao (2007) and the proof can be found therein. The next

lemma gives a Berry-Esseen bound for non-central t-statistics:

Lemma A.1.2. Let X,X1, · · · , Xn be i.i.d. random variables with E(X) = 0, σ2 = EX2 and

EX4 <∞. Let

X̄ =
1

n

n∑
i=1

Xi, s2
n =

1

n− 1

n∑
i=1

(Xi − X̄)2.

Then

|P (

√
n(X̄ + c)

sn
≤ x)− Φ(x−

√
nc/σ)| ≤ K (1 + |x|)

(1 + |x−
√
n c/σ|)

√
n

(A.3)

for any c and x, where K is a finite constant that may depend on σ and EX4.

Proof. Without loss of generality, assume x ≥ 0 and σ = 1. Using

1− |t| ≤ (1 + t)1/2 ≤ 1 + |t| for t ≥ −1, (A.4)
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we have

xsn = x(1 + s2
n − 1)1/2 ≤ x(1 + |s2

n − 1|). (A.5)

and

xsn ≥ x(1− |s2
n − 1|). (A.6)

Therefore

P (

√
n(X̄ + c)

sn
≤ x) = P (

√
n(X̄ + c) ≤ x sn)

≤ P
(√
nX̄ ≤ x−

√
n c+ x|s2

n − 1|
)
. (A.7)

We now apply (A.2) with ξi = Xi/
√
n, Wn =

√
n X̄, and

z = x−
√
n c, ∆ = −x|s2

n − 1|, ∆i = −x|s2
n,i − 1|,

where s2
n,i is defined as s2

n with 0 to replace Xi.

Noting that

s2
n − 1 =

1

n− 1
(
n∑
j=1

(X2
j − 1)− nX̄2) +

1

n− 1
,

s2
n,i − 1 =

1

n− 1
(
∑
j 6=i

(X2
j − 1)− n(X̄ −Xi/n)2),

we have

E|s2
n − 1|2 ≤ KEX4/n (A.8)

and

E(s2
n − s2

n,i)
2 =

1

(n− 1)2
E
(

(X2
i − 1)− nX̄2 + n(X̄ −Xi/n)2 + 1

)2

=
1

(n− 1)2
E
(

(X2
i − 1)−Xi(2(X̄ −Xi/n) +Xi/n) + 1

)2

≤ 2

(n− 1)2
E
(

2(X2
i − 1)2 + 2 +X2

i (2(X̄ −Xi/n) +Xi/n)2
)

≤ 2

(n− 2)2

(
4EX4 + 6 + EX2

i (8(X̄ −Xi/n)2 + 2EX2
i /n)

)
≤ KEX4/n2. (A.9)
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It follows from (A.8) and (A.9) that

||∆||2 ≤ K
|x|
√
EX4

√
n

,

P (|∆| > |z|+ 1

3
) ≤ K

|x|
√
EX4

√
n(1 + |z|)

,

n∑
i=1

(Eξ2
i )1/2(E(∆−∆i)

2)1/2 ≤ K
|x|
√
EX4

√
n

,

and

n∑
i=1

E|ξi|3 ≤
EX3

√
n
.

Therefore, by (A.2),

|P
(√
nX̄ ≤ x−

√
n c+ x|s2

n − 1|
)
− Φ(x−

√
n c)| ≤ K(1 + |x|)

(1 + |x−
√
nc|)
√
n
. (A.10)

Similarly,

P (

√
n(X̄ + c)

sn
≤ x) ≥ P

(√
nX̄ ≤ x−

√
n c− x|s2

n − 1|
)

and

|P
(√
nX̄ ≤ x−

√
n c− x|s2

n − 1|
)
− Φ(x−

√
n c)| ≤ K(1 + |x|)

(1 + |x−
√
nc|)
√
n
. (A.11)

This proves (A.3). �

A.2 Moderate deviation for non-central t-statistics

We also need a moderate deviation for the non-central t-statistics:

Lemma A.2.1. Suppose X,Xi, i = 1, · · · , n are independent identically distributed random

variables. Let

X̄ =

∑n
i=1Xi

n
, s2

n =
1

n− 1

n∑
i=1

(Xi − X̄)2.
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If X satisfies E|X|4 <∞, E(X2) = σ2 > 0 and E(X) = 0, then

P (|
√
n(X̄ + c)

sn
| ≥ t) = P (|Z + c

√
n/σ| ≥ t)(1 + o(1)) (A.12)

uniformly in c and t = o(n1/6). Here and in the sequel, Z denotes a standard normal random

variable.

Proof. When t is bounded, (A.12) follows from Lemma A.1.2. Consider large t with t = o(n1/6).

We need the following result of Wang and Hall (2009) and Wang (2008):

P (

√
n(X̄ + c)

sn
≥ t) =

(
1− Φ(t− c

√
n/σ)

)
(1 + o(1)) (A.13)

uniformly in |c
√
n/σ| ≤ t/5 and t = o(n1/6). We remark that following the same lines as their

proof, we can see that (A.13) remains valid for −t/5 ≤ c
√
n/σ ≤ t. Write

P (|
√
n(X̄ + c)

sn
| ≥ t) = P (

√
n(X̄ + c)

sn
≥ t) + P (

√
n(−X̄ − c)

sn
≥ t).

By (A.13), the remark above and the fact that

1− Φ(t+ x) = o(1− Φ(t− x))

for x ≥ 1 (recall here we assume t is large), (A.12) holds for −t ≤ c
√
n/σ ≤ t. Now assume

|c|
√
n/σ > t. Then by (A.3)

|P (|
√
n(X̄ + c)

sn
| ≥ t)− P (|Z + c

√
n/σ| ≥ t)| = o(1).

Since |c|
√
n/σ > t, we have P (|Z + c

√
n/σ| ≥ t) ≥ 1/2 and hence

P (|
√
n(X̄ + c)

sn
| ≥ t) = P (|Z + c

√
n/σ| ≥ t)(1 + o(1)).

This completes the proof of (A.12). �
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A.3 Results under i.i.d. assumption

The following i.i.d. results are essential for the general results.

Lemma A.3.1. Assume the conditions of Theorem 2.1.1 with (2.2) replaced by the assumption

that (Ti, Hi), i = 1, · · · ,m are i.i.d. and π1 = P (Ti = 1). Let J = {i : Hi = 1} be the set that

contains the indices of alternative hypotheses. Also assume that µi, σi are i.i.d. for i ∈ J . Let

p(t) = P (|T1| ≥ t), (A.14)

a1(t) = αp(t)− (1− π1)F0(t), (A.15)

and

b21(t) = α2p(t)(1− p(t)) + 2α(1− π1)p(t)F0(t) + (1− π1)F0(t)(1− 2α− (1− π1)F0(t)). (A.16)

(i) If tfdtpn,m is chosen such that

tfdtpn,m = inf{t :
√
ma1(t)/b1(t) ≥ zγ}, (A.17)

then

lim
m→∞

P (FDP ≥ α) = lim
m→∞

P (V ≥ αR) ≤ γ (A.18)

holds.

(ii) If tfdrn,m is chosen such that

tfdrn,m = inf{t :
(1− π1)F0(t)

p(t)
≤ γ}, (A.19)

then

lim
m→∞

FDR = lim
m→∞

E(V/R) ≤ γ (A.20)

holds.
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(iii) If tk−FWER
n,m is chosen such that

tk−FWER
n,m = inf{t : P (η(t) ≥ k) ≤ γ}, (A.21)

where η(t) ∼ Poisson(θ(t)) and

θ(t) = m(1− π1)F0(t),

then

lim
m→∞

k-FWER = lim
m→∞

P (V ≥ k) ≤ γ (A.22)

holds.

Proof. We first prove the i.i.d. case for one-sample t-statistic. By (2.3),

αR− V = α
m∑
i=1

I{|Ti|≥t} −
m∑
i=1

(1−Hi)I{|Ti|≥t}

=
m∑
i=1

(Hi + α− 1)I{|Ti|≥t}

=
m∑
i=1

αI{|Ti|≥t}I{Hi=1} +
m∑
i=1

(α− 1)I{|Ti|≥t}I{Hi=0}

=
m∑
i=1

αI{|Ti|≥t}(1− I{Hi=0}) +
m∑
i=1

(α− 1)I{|Ti|≥t}I{Hi=0}

=
m∑
i=1

(αI{|Ti|≥t} − I{|Ti|≥t}I{Hi=0})

=
m∑
i=1

ξi,

where

ξi := ξi(t) = αI{|Ti|≥t} − I{|Ti|≥t}I{Hi=0}.

is obviously a Donsker class indexed by t (Kosorok (2008)). Hence

P (V ≥ αR) = P (

m∑
i=1

ξi(t) ≤ 0). (A.23)
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Note that since ξi are independent random variables, we can apply the uniform central limit

theorem to choose t so that

P (

m∑
i=1

ξi(t) ≤ 0) ≤ γ. (A.24)

To this end, we need to have the mean and variance of ξi. Without loss of generality, we use ξ1

as an example, since ξi are i.i.d. random variables. Thus

Eξ1 = αP (|T1| ≥ t)− P (|T1| ≥ t,H1 = 0)

= αP (|T1| ≥ t)− P (H1 = 0)P (|T1| ≥ t|H1 = 0)

= αP (|T1| ≥ t)− (1− π1)P (|T1| ≥ t|H1 = 0). (A.25)

Similarly,

Eξ2
1 = E(α2I{|T1|≥t} + (1− 2α)I{|T1|≥t}I{H1=0})

= α2P (|T1| ≥ t) + (1− 2α)(1− π1)P (|T1| ≥ t|H1 = 0) (A.26)

and

Var(ξ1) = Eξ2
1 − (Eξ1)2

= α2P (|T1| ≥ t) + (1− 2α)(1− π1)P (|T1| ≥ t|H1 = 0)

−{αP (|T1| ≥ t)− (1− π1)P (|T1| ≥ t|H1 = 0)}2

= α2P (|T1| ≥ t)(1− P (|T1| ≥ t))

+(1− π1)P (|T1| ≥ t|H1 = 0)(1− 2α− (1− π1)P (|T1| ≥ t|H1 = 0))

+2α(1− π1)P (|T1| ≥ t)P (|T1| ≥ t|H1 = 0). (A.27)

Now define

tn,m = inf{t :

√
mEξ1(t)

(Var(ξ1(t)))1/2
≥ zγ}. (A.28)
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By Lemma A.4.1, tn,m is bounded and hence the uniform central limit theorem yields

P (
m∑
i=1

ξi(tn,m) ≤ 0)

= P
(∑m

i=1(ξi(tn,m)− Eξi(tn,m))

(
∑m

i=1 Var(ξi(tn,m)))1/2
≤ −

∑m
i=1Eξi(tn,m)

(
∑m

i=1 Var(ξi(tn,m)))1/2

)
≤ P

(∑m
i=1(ξi(tn,m)− Eξi(tn,m))

(
∑m

i=1 Var(ξi(tn,m)))1/2
≤ −zγ

)
→ Φ(−zγ) = γ. (A.29)

This proves (A.18).

Note that

FDR =

∫ 1

0
P (FDTP ≥ x)dx

=

∫ 1

0
P (V ≥ xR)dx

=

∫ 1

0
P (

m∑
1

ξi ≤ 0)dx

=

∫ 1

0
P (N(0, 1) ≤ −

√
mEξ1√
V arξ1

))dx.

Let m → +∞, P (N(0, 1) ≤ −
√
mEξ1/

√
V arξ1) is either 0 or 1 depending on the sign of Eξ1.

Thus the range of x that makes this probability 1 satisfies

Eξ1 = xP (|T1| ≥ t)− (1− π1)P (|T1| ≥ t|H1 = 0) < 0

and the corresponding x < (1− π1)P (|T1| ≥ t|H1 = 0)/P (|T1| ≥ t). In order to control FDR at

level γ, we require

(1− π1)P (|T1| ≥ t|H1 = 0)

P (|T1| ≥ t)
≤ γ.

This proves (A.19).

For the k-FWER, we use the characteristic function method. Letting ηi = (1−Hi)I{|Ti|≥t},
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we have

Eeis
∑m
i=1 ηi =

m∏
i=1

Eeisηi

=
m∏
i=1

[eis(1− π1)F0 + 1− (1− π1)F0]

= [1 +
1

m
m(1− π1)F0(eis − 1)]m

→ eλ(eis−1),

where m0F0 → λ as m→∞, and λ is the parameter for Poisson distribution, such that

P (Poiss(λ) ≥ k) ≤ γ. �

The following functional central limit theorem is needed in the proof of theorem 2.1.1:

Lemma A.3.2. Suppose the triangular array {fni(ω, t), i = 1, · · · ,mn, t ∈ T} consists of inde-

pendent processes within rows and is AMS. Let

Xn(ω, t) ≡
mn∑
i=1

[fni(ω, t)− Efni(., t)]. (A.30)

Assume:

(A) the {fni} are manageable, with envelopes {Fni} which are also independent within rows;

(B) H(s, t) = limn→∞EXn(s)Xn(t) exists for every s, t ∈ T ;

(C) limsupn→∞
∑mn

i=1E
∗F 2

ni <∞;

(D) limn→∞
∑mn

i=1E
∗F 2

ni1{Fni > ε} = 0, for each ε > 0;
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(E) ρ(s, t) = limn→∞ρn(s, t), where

ρn(s, t) ≡ (

mn∑
i=1

E|fni(., s)− fni(., t)|2)1/2,

exists for every s, t ∈ T , and for all deterministic sequences {sn} and {tn} in T , if

ρ(sn, tn)→ 0 then ρn(sn, tn)→ 0.

Then Xn converges weakly on l∞(T ) to a tight mean zero Gaussian process X concentrated on

UC(T, ρ), with covariance H(s, t).

The definitions involved in this lemma and the proof can be found in Theorem 11.16 of

Kosorok (2008). Below, we verify that conditional on H, fni(ω, t) = ξi(ω, t)/
√
m satisfy the

conditions in Lemma A.3.2. Since ξi(ω, t) is the difference between two monotone bounded

functions, it is clear that conditional on H, ξi(ω, t)/
√
m is AMS, manageable and has envelopes

α/
√
m. Also,

EXn(s)Xn(t) = EE[Xn(s)Xn(t)|H]

= EE[

∑m
i=1(ξi(s)|H − Eξi(s)|H)√

m

∑m
j=1(ξj(t)|H − Eξj(t)|H)

√
m

]

= EE

∑m
i=1(ξi(s)|H − Eξi(s)H)(ξi(t)|H − Eξi(t)H)

m

=
1

m
E

m∑
i=1

E(ξi(s)|H)(ξi(t)|H)−
m∑
i=1

E(ξi(s)|H)E(ξi(t)|H)

=
1

m
E

m∑
i=1

(α2Hi + (1− α)2(1−Hi))EI{|Ti|≥t∪s|H}

−
m∑
i=1

[αHi + (1− α)(1−Hi)]
2EI{|Ti|≥sH}EI{|Ti|≥t|H}

=
1

m
E

m∑
i=1

(α2HiF1(t ∪ s) + (1− α)2(1−Hi)F0(t ∪ s))

−
m∑
i=1

[α2Hi + (1− α)2(1−Hi)][HiF1(s) + (1−Hi)F0(s)][HiF1(t) + (1−Hi)F0(t)]

=
1

m
E

m∑
i=1

[α2Hi(F1(t ∪ s)− F1(t)F1(s)) + (1− α)2(1−Hi)(F0(t ∪ s)− F0(t)F0(s))]

→ π1α
2(F1(t ∪ s)− F1(t)F1(s)) + (1− π1)(1− α)2(F0(t ∪ s)− F0(t)F0(s))

≡ H(s, t),
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which is the same as q2(t) when s = t. (C) is easily satisfied. ∀ε > 0, there exists a N0 such

that α/N0 < ε so limm→∞
∑m

i=1Eα
2/m1{α/

√
m > ε} = limm→∞

∑N0−1
i=1 α2/m = 0, which

verifies (D). Similarly we can show that (E) is satisfied and thus the functional central limit

theorem holds. �

Let

G(t) = απ1EP (|Z +
√
nµ1/σ1| ≥ t)− (1− α)(1− π1)P (|Z| ≥ t)

= απ1EP (|Z +
√
n|µ1|/σ1| ≥ t)− (1− α)(1− π1)P (|Z| ≥ t)

and

t1 = inf{t : G(t) = 0}. (A.31)

The following lemma is needed in the proof of consistency.

Lemma A.3.3. Assume 0 < π1 < 1− α and (A.40) is satisfied. Then

G(t)


< 0 for t < t1,

= 0 for t = t1,

> 0 for t > t1.

(A.32)

Moreover, G′(t1) ≥ e−t20/2/
√

2π.

Proof: We first observe that 0 < t1 ≤ t0 by the fact that G(0) < 0, G(t0) > e−t
2
0/2 > 0 in

(A.48) and G(t) is a continuous function.

To prove (A.32), it suffices to show that there exists a t2 > t1 such that G(t) is increasing

in [0, t2] and decreasing in [t2,∞). To this end, consider the derivative of G:

G′(t) = −απ1E
(
φ(t−

√
n|µ1|/σ1) + φ(t+

√
n|µ1|/σ1)

)
+ 2(1− α)(1− π1)φ(t)

=
e−t

2/2

√
2π

{
− απ1E

(
exp

(
− nµ2

1

2σ2
1

+

√
n|µ1|t
σ1

)
+ exp

(
− nµ2

1

2σ2
1

−
√
n|µ1|t
σ1

))
+2(1− α)(1− π1)

}
. (A.33)
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Let

H(t) = −απ1E
(

exp
(
− nµ2

1

2σ2
1

+

√
n|µ1|t
σ1

)
+ exp

(
− nµ2

1

2σ2
1

−
√
n|µ1|t
σ1

))
+ 2(1− α)(1− π1).

Then

H ′(t) = −απ1E
{√n|µ1|

σ1
exp

(√n|µ1|t
σ1

− nµ2
1

2σ2
1

)
−
√
n|µ1|
σ1

exp
(
−
√
n|µ1|t
σ1

− nµ2
1

2σ2
1

)}
= −απ1E

{√n|µ1|
σ1

e
−nµ

2
1

2σ21

(
exp

(√n|µ1|t
σ1

)
− exp

(
−
√
n|µ1|t
σ1

))}
< 0 (A.34)

for all t > 0. Therefore, H(t) is monotone decreasing. Taking into account the fact that

H(0) > 0 by assumption, and π1 < 1 − α and H(+∞) < 0, we conclude that H(t) has only

one zero point, say, t2. Moreover, H(t) > 0 for t < t2 and H(t) < 0 for t > t2. This is also

true for G′(t) by (A.33). Hence, G(t) is increasing for t < t2 and decreasing for t > t2. Notice

that since G(0) < 0, G(t0) > 0 and G(+∞) = 0, we can see that G(t) has a unique zero point

t1 and t2 > t1. Since G(t) is increasing for 0 < t < t2, we have G′(t1) > 0. We now prove that

G′(t1) ≥ e−t20/2/
√

2π. It follows from the proof of (A.48) that

G(t0) ≥ e−t20/2. (A.35)

Recalling that G′(t) = e−t
2/2
√

2π
H(t) and H is decreasing, we have

G(t0) = G(t0)−G(t1) =

∫ t0

t1

G′(s)ds

≤
∫ t0

t1

e−s
2/2

√
2π

H(t1)ds

≤ H(t1)(1− Φ(t1)) ≤ H(t1)e−t
2
1/2 = G′(t1)

√
2π. (A.36)

This proves G′(t1) ≥ e−t20/2/
√

2π. �

Now, let’s go back to show our main theorem under dependence. Let H = {Hi, 1 ≤ i ≤ m}.

To prove (i), following along the same lines as the proof of lemma A.3.1, we need to obtain the

74



asymptotic distribution of

P (V ≥ αR) = P (
m∑
i=1

ξi(t) ≤ 0), (A.37)

where

ξi(t) = αI{|Ti|≥t} − I{|Ti|≥t}I{Hi=0} = (α+Hi − 1)I{|Ti|≥t} = [αHi − (1− α)(1−Hi)]I{|Ti|≥t}.

Note that

P (|Ti| ≥ t|H) = (1−Hi)P (|Ti| ≥ t|Hi = 0) +HiP (|Ti| ≥ t|Hi = 1).

Given H, ξi(t), 1 ≤ i ≤ m are independent random variables. The conditional mean equals

E(
m∑
i=1

ξi|H)

=
m∑
i=1

{
αE(I{Hi=0}|H)P (|Ti| ≥ t|Hi = 0) + αE(I{Hi=1}|H)P (|Ti| ≥ t|Hi = 1)

−E(I{Hi=0}|H)P (|Ti| ≥ t|Hi = 0)
}

=

m∑
i=1

{
α(1−Hi)P (|Ti| ≥ t|Hi = 0) + αHiP (|Ti| ≥ t|Hi = 1)

−(1−Hi)P (|Ti| ≥ t|Hi = 0)
}

= α
m∑
i=1

{
HiP (|Ti| ≥ t|Hi = 1)

}
− (1− α)

m∑
i=1

{
(1−Hi)P (|Ti| ≥ t|H1 = 0)

}
= αm1F1(t)− (1− α)m0F0(t).

Next we calculate the conditional variance of
∑m

i=1 ξi(t), given H:

var(
m∑
i=1

ξi(t)|H)

= var(
m∑
i=1

[αHi − (1− α)(1−Hi)]I{|Ti|≥t|H})

=

m∑
i=1

(α2Hi + (1− α)2(1−Hi))var(I{|Ti|≥t|H})

= α2m1F1(t)(1− F1(t)) + (1− α)2m0F0(t)(1− F0(t)).
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From (2.7) and (2.8),

µm(t)

σm(t)
=
√
m

µm(t)/m√
σ2
m(t)/m

.

By the fact that m1/m→ π1 a.s. , we have

µm(t)/m→ απ1F1(t)− (1− α)(1− π1)F0(t) a.s. (A.38)

and

σ2
m(t)/m→ α2π1F1(t)(1− F1(t)) + (1− α)2(1− π1)F0(t)(1− F0(t)) = q2(t) a.s., (A.39)

which is smaller than var(ξ1(t)) due to the fact that

varX = E(var(X|Y )) + var(E(X|Y ))

for any two random variables X and Y . By (A.43), we can see that the critical value defined

at (2.9) is bounded. Thus conditional on H, we can use the functional central limit theorem

on
∑m

i=1 ξi(t)/
√
m by virtue of lemma A.3.2. The limit is a Gaussian process with continuous

sample paths. Hence

P (

m∑
i=1

ξi(t) ≤ 0) = E(E1{
∑m
i=1 ξi(t)/

√
m≤0}|H)

= E
{
P
( m∑
i=1

ξi/
√
m−

m∑
i=1

E(ξi|H)/
√
m ≤

−
∑m

i=1E(ξi|H)σm(t)√
mσm(t)

|H
)}

≤ E
{
P
( m∑
i=1

ξi/
√
m−

m∑
i=1

E(ξi|H)/
√
m ≤

−
∑m

i=1E(ξi|H)

σm(t)

σm(t)√
m
|H
)}

≤ E
{
P
(
N(0, 1)q(t) ≤ −zγq(t)

)}
→ P (N(0, 1) ≤ −zγ) = γ as m→∞.

This proves (2.9).

(ii) can be proved similarly. The characteristic function method can be used to prove (iii).

�
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A.4 Boundedness of critical values

The lemma below shows that tn,m defined in (A.17) under independence is bounded:

Lemma A.4.1. Assume that there exist ε0 > 0 and c0 > 0 such that

P (|
√
nµ1/σ1| ≥ ε0) ≥ c0. (A.40)

Let tn,m satisfy (A.28). Then

tn,m ≤ t0, (A.41)

where t0 is the solution to

απ1c0 exp((t0 − ε0)ε0) = 12(1 + t0 − ε0). (A.42)

Proof. It suffices to show that

√
mEξ1(t0) ≥ (Var(ξ1(t0)))1/2zγ . (A.43)

It is easy to see that P (|Z + a| ≥ t0) is a monotone increasing function of a > 0. Hence

P (|Z +
√
nµ1/σ1| ≥ t0)

≥ P (|Z +
√
nµ1/σ1| ≥ t0, |

√
nµ1/σ1| ≥ ε0)

≥ P (|Z + ε0| ≥ t0)P (|
√
nµ1/σ1| ≥ ε0)

≥ c0P (|Z + ε0| ≥ t0) ≥ c0(1− Φ(t0 − ε0))

≥ c0

3(1 + t0 − ε0)
exp(−(t0 − ε0)2/2)

≥ c0

3(1 + t0 − ε0)
exp(−t20/2 + (t0 − ε0)ε0), (A.44)

Here we use the fact that

1

2
e−x

2/2 ≥ 1− Φ(x) ≥ 1√
2π(1 + x)

e−x
2/2 for x ≥ 0.
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Under the null hypothesis H1 = 0, which corresponds to µi = 0, we apply Lemma A.2.1 and

obtain

P (|T1| ≥ t|H1 = 0) = P (|Z| ≥ t)(1 + o(1)). (A.45)

uniformly in t = o(n1/6).

Under the alternative hypothesis H1 = 1, we apply Lemma A.2.1 to Xij − µi and obtain

P (|T1| ≥ t|H1 = 1) = P (|
√
n(X̄1 − µ1 + µ1)/s1| ≥ t|H1 = 1)

= E[P (|Z +
√
nµ1/σ1)| ≥ t | µ1, σ1)](1 + o(1))

= P (|Z +
√
nµ1/σ1)| ≥ t)(1 + o(1)) (A.46)

uniformly in t = o(n1/6).

Also note that

P (|T1| ≥ t) = P (|T1| ≥ t,H1 = 0) + P (|T1| ≥ t,H1 = 1)

= (1− π1)P (|T1| ≥ t|H1 = 0) + π1P (|T1| ≥ t|H1 = 1)

= (1− π1)P (|Z| ≥ t)(1 + o(1)) + π1P (|Z +
√
nµ1/σ1| ≥ t)(1 + o(1)).(A.47)

By (A.25), (A.45), (A.47) and (A.44),

Eξ1(t0) = α(1− π1)P (|Z| ≥ t0)(1 + o(1)) + απ1P (|Z +
√
nµ1/σ1| ≥ t0)(1 + o(1))

−(1− π1)P (|Z| ≥ t0)(1 + o(1))

≥ απ1
c0

6(1 + t0 − ε0)
exp(−t20/2 + (t0 − ε0)ε0)− 2P (Z ≥ t0)

≥ απ1c0

6(1 + t0 − ε0)
exp(−t20/2 + (t0 − ε0)ε0)− e−t20/2

= e−t
2
0/2
( απ1c0

6(1 + t0 − ε0)
exp((t0 − ε0)ε0)− 1

)
= e−t

2
0/2 (A.48)

by (A.42) and the definition of t0. It is easy to see that Eξ2
1 ≤ 1 and Var(ξ1(t0)) ≤ 1 in

78



particular. Thus, by (A.48),

√
mEξ1(t0)

(Var(ξ1(t)))1/2
≥
√
me−t

2
0/2 ≥ zγ , (A.49)

provided that m is large enough. This proves (A.43). �
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APPENDIX B

Proof of Theorems in chapter 2

B.1 Proof of Theorem 2.1.2

We first prove (i), and (ii) follows along the same lines as the independent case plus a conditional

argument. Without loss of generality, we use T1 as a representative that comes from the

alternative. We have to show that

|t̂n,m − tn,m| = o(1) a.s.. (B.1)

We first prove

|t̂n,m − t1| = o(1) a.s., (B.2)

where t1 is defined as in (A.31). It suffices to show that for any ε > 0,

√
mνm(t1 + ε)

τm(t1 + ε)
≥ zγ (B.3)

and √
mνm(s)

τm(s)
< zγ for all s ≤ t1 − ε. (B.4)

Recall p̂m(t) = 1
m

∑m
i=1 I{|Ti|≥t}. Given H, by the uniform law of the iterated logarithm (see

e.g., Dudley and Philipp (1983)),

p̂m(t)− 1

m

m∑
i=1

{
(1−Hi)F0(t) +HiF1(t)

}
= o(m−1/2(loglogm)1/2) a.s.,

combined with

1

m

m∑
i=1

{
(1−Hi)F0(t) +HiF1(t)

}
→ (1− π1)F0(t) + π1F1(t) a.s., (B.5)

by (A.3), our strong consistent estimate π̂1 described in Section 2.3 and the continuous mapping
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theorem, we have

sup
t
|νm(t)− {α((1− π1)F0(t) + π1F1(t))− (1− π1)P (|Z| ≥ t)}| → 0 a.s., (B.6)

which together with (A.47) and the definition of G implies

sup
0≤t≤1+t0

|νm(t)−G(t)| → 0 a.s.. (B.7)

In particular, since G(t1 + ε) > 0 for 0 < ε < t2 − t1, we have

νm(t1 + ε) ≥ G(t1 + ε)/2 a.s., (B.8)

for sufficiently large m, and therefore
√
mνm(t1 + ε) ≥ zγτm(t1 + ε). This proves (B.3).

Similarly, since G(t) is increasing and G(t1 − ε) < 0, we have

max
s≤t1−ε

νm(s) ≤ G(t1 − ε)/2 a.s., (B.9)

for sufficiently large m. Hence, (B.4) holds. This proves (B.2).

Following the same lines as the proof of (B.2), we have

|tn,m − t1| = o(1). (B.10)

This completes the proof of (B.1).

For k-FWER, let η0 be the number that satisfies P (Poiss(η0) ≥ k) ≤ γ. Let t0,m = tk-FWER
n,m

and tm = t̂k-FWER
m,n . Thus, by definition, t0,m is the t that satisfies (1 − π1)mFo(t) = η0 and

tm is the t that satisfies 2(1− π̂1)mΦ̄(t) = η0. Then we have
(1−π1)F0(t0,m)

(1−π̂1)2Φ̄(tm)
= 1 which implies

F0(t0,m)

2Φ̄(tm)
=

1− π̂1

1− π1
= 1 + oP (1)⇒

Φ̄(t0,m)

Φ̄(tm)
(1 +O(n−1/2)) = 1 + oP (1)⇒

Φ̄(t0,m)

Φ̄(tm)
= 1 + oP (1)⇒
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tm
t0,m

e−t
2
0,m/2+t2m/2 = 1 + oP (1)⇒

Re−t
2
0,m/2+R2t20,m/2 = Re−(1−R2)t20,m/2 = 1 + oP (1).

Hence R = tm/t0,m → 1 in probability. Thus

t20,m − t2m = oP (1)⇒ |t0,m − tm| =
oP (1)

1 + |t0,m + tm|
= Op((logm)−1/2),

since tm = oP (n1/6) and logm = o(n1/3). �

B.2 Proof of Theorem 2.1.4

In this section, we give the proof of the rate of convergence for the i.i.d. case by using the

one-sample t-statistic. Let p(t) = P (|T1| ≥ t) and let

p̂m(t) =
1

m

m∑
i=1

I{|Ti|≥t}.

By the Glivenko-Cantelli theorem,

sup
t
|p̂m(t)− p(t)| → 0 a.s., (B.11)

and, by the Donsker theorem,

sup
t
|p̂m(t)− p(t)| = O(m−1/2) in probability. (B.12)

By the uniform law of the iterated logarithm,

sup
t
|p̂m(t)− p(t)| = O(m−1/2(loglogm)1/2) a.s.. (B.13)

We define strong consistent estimators of Eξ1(t) and Var(ξ1(t)) by νm(t) and τ2
m(t) respectively,

where

νm(t) = αp̂m(t)− (1− π1)P (|Z| ≥ t) (B.14)
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and

τ2
m(t) = α2p̂m(t)(1− p̂m(t)) + 2α(1− π1)p̂m(t)P (|Z| ≥ t)

+(1− π1)P (|Z| ≥ t)(1− 2α− (1− π1)P (|Z| ≥ t)). (B.15)

Now we define an estimator of tn,m by

t̂n,m = inf{t :

√
mνm(t)

τm(t)
≥ zγ}. (B.16)

For FDTP, we have to show that

|t̂n,m − tn,m| = O(
1√
n

+ (
log logm

m
)1/2) a.s. (B.17)

and

|t̂n,m − tn,m| = O(n−1/2 +m−1/2) in probability. (B.18)

Below we prove (B.17) and (B.18). We will show that

|t̂n,m − t1| = O((
1

n
)1/2 + (

log logm

m
)1/2) a.s., (B.19)

|tn,m − t1| = O((
1

n
)1/2 + (

log logm

m
)1/2) a.s.. (B.20)

By the uniform law of the iterated logarithm,

sup
t
|p̂m(t)− p(t)| = O((

log logm

m
)1/2) a.s.. (B.21)

So we have

sup
t
|vm(t)− [αp(t)− (1− π1)P (|Z| ≥ t)]| = O((

log logm

m
)1/2) a.s.. (B.22)

Note that

αp(t)− (1− π1)P (|Z| ≥ t)−G(t)
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= α(1− π1)(P (|T1| ≥ t|H1 = 0)− P (|Z| ≥ t))

+ απ1(P (|T1| ≥ t|H1 = 1)− EP (|Z +
√
nµ1/σ1| ≥ t)).

From (A.3), we obtain

P (|T1| ≥ t|H1 = 0)− P (|Z| ≥ t) = O(
1√
n

) a.s. (B.23)

and

P (|T1| ≥ t|H1 = 1)− EP (|Z +
√
nµ1/σ1| ≥ t) = O(

1√
n

) a.s.. (B.24)

Thus we have

sup
t
|αp(t)− (1− π1)P (|Z| ≥ t)−G(t)| = O(

1√
n

) a.s.. (B.25)

Taking into account (B.22), we have

sup
t
|vm(t)−G(t)| ≤ c2(

1√
n

+ (
log logm

m
)1/2) a.s. (B.26)

for some constant 0 < c2 < ∞. Below we show that there exists a finite constant c3 > 0 such

that

t1 − c3(
1√
n

+ (
log logm

m
)1/2) < t̂n,m < t1 + c3(

1√
n

+ (
log logm

m
)1/2). (B.27)

Recalling (B.26), we have, for ε = c3( 1√
n

+ ( log logm
m )1/2), that

vm(t1 + ε) ≥ G(t1 + ε)− c2(
1√
n

+ (
log logm

m
)1/2)

= G(t1) + εG′(t1 + θ1)− c2(
1√
n

+ (
log logm

m
)1/2)

≥ c1ε− c2(
1√
n

+ (
log logm

m
)1/2) > 2

( log logm

m

)1/2
,

provided that c3 is chosen large enough: here 0 ≤ θ1 ≤ ε and we used Lemma A.3.3. For

sufficiently large m, we have

√
mvm(t1 + ε) > τm(t1 + ε)zγ .
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This proves

t̂n,m − t1 ≤ c3((
1

n
)1/2 + (

log logm

m
)1/2) a.s..

Similarly, we have

t̂n,m − t1 ≥ −c3((
1

n
)1/2 + (

log logm

m
)1/2) a.s..

This proves (B.19).

Following the same line of proof, we have

|tn,m − t1| = O(
1√
n

+ (
log logm

m
)1/2) a.s..

If we use

sup
t
|p̂m(t)− p(t)| = O(m−1/2) in probability (B.28)

based on the Donsker theorem instead of (B.21), using the same line of the proof of the a.s.

convergence rate, we can obtain the rate of convergence in probability, which is

|t̂n,m − tn,m| = O(n−1/2 +m−1/2) in probability.

This completes the proof of (B.17).

Similarly, the critical value for FDR control is bounded due to the fact that

EP (|Z +

√
nµ1

σ1
| ≥ t) ≤ 1.

By (B.12), (B.13), (B.23) and (B.24), we have

sup
t
| m0F0(t)

m0F0(t) +m1F − 1(t)
− 2(1− π1)Φ̄(t)

p̂m(t)
| = O(n−1/2 + (

log logm

m
)1/2) a.s.

sup
t
| m0F0(t)

m0F0(t) +m1F − 1(t)
− 2(1− π1)Φ̄(t)

p̂m(t)
| = O(n−1/2 + (m)−1/2) in probability.

Noting that 2(1− π1)Φ̄(t)/[2(1− π1)Φ̄(t) +EP (|Z +
√
nµ1/σ1| ≥ t)] is a monotone decreasing

continuous function with respect to t combined with the definition of (tfdrn,m) and (t̂fdrn,m), (2.34)

and (2.35) hold.
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The proof of k-FWER is the same as that given in Theorem 2.1.2. �
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APPENDIX C

Proof of Theorems in chapter 3

C.1 Proof of Theorem 3.1.1

For the two-sample t-statistic, the only part we need to show is the boundedness of tn,m under
independence, which will imply the boundedness in the general dependence case as happens
with the one-sample t-statistic. The remaining results follow along the same lines as the proof
in the one sample t-statistic setting. Based on lemma C.1.1 below, plus (3.1.1), and using
the same line of proof as in the one-sample t-statistic case, the boundedness of tn,m holds for
two-sample t-statistics.

The proof of the boundedness of tn,m is based on the following asymptotic distribution of
T ∗i under the alternative hypothesis:

Lemma C.1.1. Suppose X,X1, · · · , Xn1 are independent and identically distributed random
variables from a population with mean µ1 and variance σ2

1; Y, Y1, · · · , Yn2 are independent and
identically distributed random variables from another population with mean µ2 and variance
σ2

2. Assume the sampling processes are independent of each other. Assume also that there are
0 < c1 ≤ c2 <∞ such that c1 ≤ n1/n2 ≤ c2. Let

T ∗ =
X̄ − Ȳ√

s2
1/n1 + s2

2/n2

, (C.1)

where

X̄ =
1

n1

n1∑
i=1

Xi, Ȳ =
1

n2

n2∑
i=1

Yi, (C.2)

s2
1 =

1

n1 − 1

n1∑
i=1

(Xi − X̄)2, and s2
2 =

1

n2 − 1

n2∑
i=1

(Yi − Ȳ )2. (C.3)

If EX4 <∞ and EY 4 <∞, then

P (|T ∗| ≥ t) = P (|Z +
µ1 − µ2√

σ2
1/n1 + σ2

2/n2

| ≥ t)(1 + o(1)) (C.4)

uniformly in t = o(n1/6), where n = max {n1, n2}.

The proof of this lemma is very similar to the proof of Lemma A.2.1 and we omit the details.
�.

C.2 Proof of Theorem 3.1.2

This follows the same arguments as in the one-sample t-statistic case by virtue of lemma C.1.1.
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C.3 Proof of Theorem 3.1.3

When we plug in an estimator of P (|T ∗i | ≥ t),

p̂m(t) =
1

m

m∑
i=1

I{|T ∗i |≥t},

the proof of the two-sample t-statistic case is along the same lines as its one-sample counterpart
except that we have to show the rate of convergence under the alternative hypothesis for the
two-sample t-statistic. This follows from the following lemma which completes the proof of
Theorem 3.1.3.

Lemma C.3.1. Let X,X1, · · · , Xn1 be i.i.d. random variables from a population with mean µ1

and variance σ2
1; Y, Y1, · · · , Yn2 be i.i.d. random variables from another population with mean µ2

and variance σ2
2. The sampling processes are assumed to be independent of each other. Assume

that there are 0 < c1 ≤ c2 < ∞ such that c1 ≤ n1/n2 ≤ c2. Let T ∗ be defined as in Lemma
C.1.1. If E|X|4 <∞ and E|Y |4 <∞, then

|P (T ∗ ≤ x)− Φ(x− µ1 − µ2√
σ2

1/n1 + σ2
2/n2

)| ≤ K(1 + |x|)
(1 + |x− µ1−µ2√

σ2
1/n1+σ2

2/n2
|)
√
min{n1, n2}

. (C.5)

where K is a finite constant that may depend on σ2
1, σ

2
2, E|X|3, E|Y |3, EX4 and EY 4.

Proof. Without loss of generality, we assume n1 = b1n, n2 = b2n, b1 + b2 = 1 with b1 > 0 and
b2 > 0. Note that

P (T ∗ ≤ x) = P (
X̄ − µ1 − (Ȳ − µ2)√

s2
1/n1 + s2

2/n2

+
µ1 − µ2√

s2
1/n1 + s2

2/n2

≤ x)

= P (
X̄ − µ1 − (Ȳ − µ2)√

σ2
1/n1 + σ2

2/n2

+
µ1 − µ2√

σ2
1/n1 + σ2

2/n2

≤ x
√
s2

1/n1 + s2
2/n2√

σ2
1/n1 + σ2

2/n2

)

≤ P (
X̄ − µ1 − (Ȳ − µ2)√

σ2
1/n1 + σ2

2/n2

≤ x− µ1 − µ2√
σ2

1/n1 + σ2
2/n2

+ x| s
2
1/n1 + s2

2/n2

σ2
1/n1 + σ2

2/n2
− 1|),

where we make use of (A.4). Now we apply (A.2) with ξi = (Xi−µ1)/n1√
σ2
1/n1+σ2

2/n2
for 1 ≤ i ≤ n1 and

ξi = − (Yi−µ2)/n2√
σ2
1/n1+σ2

2/n2
for n1 + 1 ≤ i ≤ n1 + n2. Let

z = x− µ1 − µ2√
σ2

1/n1 + σ2
2/n2

, ∆ = −x| s
2
1/n1 + s2

2/n2

σ2
1/n1 + σ2

2/n2
− 1|,

∆i = −x|
s2

1,i/n1 + s2
2/n2

σ2
1/n1 + σ2

2/n2
− 1|,

for 1 ≤ i ≤ n1, and

∆i = −x|
s2

1/n1 + s2
2,i/n2

σ2
1/n1 + σ2

2/n2
− 1|,

for n1 + 1 ≤ i ≤ n1 + n2, where s2
1,i is defined as s2

1 with 0 to replace Xi and s2
2,i is defined as

s2
2 with 0 to replace Yi. Noting that

s2
1/n1 + s2

2/n2

σ2
1/n1 + σ2

2/n2
− 1 =

1

σ2
1/n1 + σ2

2/n2
[(s2

1 − σ2
1)/n1 + (s2

2 − σ2
2)/n2],

88



we have by (A.8) that

E| s
2
1/n1 + s2

2/n2

σ2
1/n1 + σ2

2/n2
− 1|2 ≤ KEX4 + EY 4

n
.

For 1 ≤ i ≤ n1,

E(
s2

1/n1 + s2
2/n2

σ2
1/n1 + σ2

2/n2
− s2

1i/n1 + s2
2/n2

σ2
1/n1 + σ2

2/n2
)2

=
1

n2
1(σ2

1/n1 + σ2
2/n2)2

E(s2
1 − s2

1i)
2 ≤ KEX4

n2

by (A.9). Similarly for n1 + 1 ≤ i ≤ n1 + n2, we have

E(
s2

1/n1 + s2
2/n2

σ2
1/n1 + σ2

2/n2
− s2

1/n1 + s2
2i/n2

σ2
1/n1 + σ2

2/n2
)2

=
1

n2
2(σ2

1/n1 + σ2
2/n2)2

E(s2
2 − s2

2i) ≤
KEY 4

n2
.

It follows that

||∆||2 ≤ K
|x|
√
EX4 + EY 4

√
n

,

P (|∆| > |z|+ 1

3
) ≤ K

E|∆|
|z|+ 1

≤ K ||∆||2
|z|+ 1

≤ K |x|
√
EX4 + EY 4

√
n(|z|+ 1)

,

n∑
i=1

(Eξ2
i )1/2(E(∆−∆i)

2)1/2 ≤ K

√
(σ2

1 + σ2)(EX4 + EY 4)√
n

,

n∑
i=1

E|ξi|3 ≤ K
E|X|3 + E|Y |3√

n
.

Therefore, by (A.2),

|P (
X̄ − µ1 − (Ȳ − µ2)√

σ2
1/n1 + σ2

2/n2

≤ x− µ1 − µ2√
σ2

1/n1 + σ2
2/n2

+ x| s
2
1/n1 + s2

2/n2

σ2
1/n1 + σ2

2/n2
− 1|)

− Φ(x− µ1 − µ2√
σ2

1/n1 + σ2
2/n2

)| ≤ K 1 + |x|
(1 + |x− µ1−µ2√

σ2
1/n1+σ2

2/n2
|)
√
n
.

Similarly,

P (T ∗ ≤ x) = P (
X̄ − µ1 − (Ȳ − µ2)√

s2
1/n1 + s2

2/n2

+
µ1 − µ2√

s2
1/n1 + s2

2/n2

≤ x)

≥ P (
X̄ − µ1 − (Ȳ − µ2)√

σ2
1/n1 + σ2

2/n2

≤ x− µ1 − µ2√
σ2

1/n1 + σ2
2/n2

− x| s
2
1/n1 + s2

2/n2

σ2
1/n1 + σ2

2/n2
− 1|)

and

|P (
X̄ − µ1 − (Ȳ − µ2)√

σ2
1/n1 + σ2

2/n2

≤ x− µ1 − µ2√
σ2

1/n1 + σ2
2/n2

− x| s
2
1/n1 + s2

2/n2

σ2
1/n1 + σ2

2/n2
− 1|)

− Φ(x− µ1 − µ2√
σ2

1/n1 + σ2
2/n2

)| ≤ K 1 + |x|
(1 + |x− µ1−µ2√

σ2
1/n1+σ2

2/n2
|)
√
n
.

This proves (C.5). �
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