
NEW STOCHASTIC AND RANDOMIZED ALGORITHMS FOR
NONCONVEX OPTIMIZATION IN MACHINE LEARNING

Nhan H. Pham

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy

in the Department of Statistics and Operations Research.

Chapel Hill
2021

Approved by

Yufeng Liu

Ion Necoara

Dzung T. Phan

Quoc Tran-Dinh

Serhan Ziya

©2021
NHAN H. PHAM

ALL RIGHTS RESERVED

ii

ABSTRACT

Nhan H. Pham: New Stochastic and Randomized Algorithms for Nonconvex Optimization in
Machine Learning

(Under the direction of Quoc Tran-Dinh)

The goal of this dissertation is to develop efficient stochastic and randomized first-order

methods to solve composite nonconvex problems arising from modern machine learning applica-

tions. The content of this dissertation is divided into four main chapters. Firstly, we motivate

our research topics by briefly introducing our interested problems and their challenges. We also

review necessary mathematical concepts and tools used throughout this dissertation.

Our first contribution is in Chapter 2, where we propose ProxSARAH, a new framework

that uses a variance reduced stochastic gradient estimator called SARAH, to develop new

algorithms for solving the stochastic composite nonconvex problems. Our analysis shows that

our methods can achieve the best-known convergence results and even match the lower bound

complexity. We also provide extensive numerical experiments to illustrate the advantages of our

methods compared to existing ones.

Next, we study a policy gradient strategy in reinforcement learning in Chapter 3. We

propose a new proximal hybrid stochastic policy gradient algorithm, called ProxHSPGA, using

a new policy gradient estimator built from two different estimators. ProxHSPGA makes uses

of a newly hybrid stochastic estimator introduced in Tran-Dinh et al. (2019b), and apply it

to reinforcement learning. This new algorithm is able to solve the general composite policy

optimization problem which includes regularization or constraint on the policy parameters. It

also achieves the best-known sample complexity compared to existing methods. Our experiments

on both discrete and continuous control tasks show that our proposed methods indeed are

advantageous over existing ones.

Then, in Chapter 4, we focus on a new machine learning paradigm, called federated learning

(FL), where multiple agents collaboratively train a machine learning model in a distributed

iii

fashion. We propose two new algorithms, FedDR and asyncFedDR, for solving the nonconvex

composite optimization problem which can handle convex regularizers in FL. Our algorithms rely

on a novel combination between a nonconvex Douglas-Rachford splitting method, randomized

block-coordinate strategies, and asynchronous implementation. Unlike previous primal-dual

based method for FL, our algorithms allow not only partial participation at each communication

round but also asynchronous updates between agents which greatly improves their practicality.

Our convergence analyses show that the new algorithms match the communication complexity

lower bound up to a constant factor under standard assumptions. Our numerical experiments

illustrate the advantages of our methods compared to existing ones on various datasets.

Finally, we summarize our contribution, further discuss some notable points of our results,

and outline some ongoing and possible future directions. One of our ongoing works is to develop

a class of accelerated Douglas-Rachford splitting algorithms for federated learning.

iv

ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor, Dr. Quoc Tran-Dinh, who has guided me

throughout all the topics of my research, and provided invaluable support during my Ph.D

period at UNC. His vision, discipline, and motivation have deeply inspired me. It was a great

privilege and honor to work and study under his guidance.

I would like to express my gratitude to the faculty and staff at the Department of Statistics

and Operations Research, The University of North Carolina at Chapel Hill, for their support.

Within a great and friendly environment, the last five years have allowed me to grow as a

researcher, an educator, as well as an individual.

I am also grateful to my committee members, Dr. Yufeng Liu, Dr. Ion Necoara, Dr. Dzung

T. Phan, and Dr. Serhan Ziya for their help, comments, and suggestions to further improve my

dissertation. My gratitude also goes to Dr. Lam Nguyen and Dr. Marten van Dijk for their

assistant and support in our joint projects. My research has also been partly supported by the

National Science Foundation (Grant No. 1619884) and the Office of Naval Research (Grant No.

N00014-20-1-2088).

I would like to express my deepest gratitude to my parents. Without you, I would not be

able to pursue my dream. A special thank to my beloved wife, Quynh, for her unconditional

love, endless faith, and patient support with my work, my dreams, my goals, and the life that

we share together. You remain my strength and inspiration through it all.

Last but not least, I would like to thank all my friends and colleagues, who are numerous to

list without risking an acknowledgment longer than the thesis paper itself. Thank you everyone.

v

TABLE OF CONTENTS

LIST OF TABLES . xi

LIST OF FIGURES. xii

1 Introduction . 1

1.1 Overview . 1

1.1.1 Problems of interest . 2

1.1.2 Challenges . 3

1.1.3 The goals of this research. 4

1.2 Background and mathematical tools . 4

1.2.1 Basic concepts . 4

1.2.2 Tools from convex analysis . 5

1.2.3 Other mathematical tools . 7

1.3 The outline of dissertation . 8

2 An Efficient Framework for Stochastic Composite Nonconvex Optimization 11

2.1 Introduction . 11

2.1.1 Problem of interest . 11

2.1.2 Related work . 13

2.1.3 Our approach . 15

2.1.4 Our contribution . 16

2.1.5 Overview and chapter outline . 17

2.2 Mathematical tools and preliminary results . 17

2.2.1 Notation . 17

vi

2.2.2 Fundamental assumptions . 18

2.2.3 Optimality conditions . 20

2.2.4 Stochastic gradient estimators . 21

2.2.4.1 Single sample estimators . 21

2.2.4.2 Mini-batch estimators . 22

2.2.5 Basic properties of stochastic and SARAH estimators . 23

2.3 ProxSARAH framework and convergence analysis . 24

2.3.1 Analysis of the inner-loop: Key estimates . 26

2.3.2 Convergence analysis for the Problem (FS-OPT) . 27

2.3.3 Lower-bound complexity for the Problem (FS-OPT) . 30

2.3.4 Mini-batch size and learning rate trade-offs . 30

2.3.5 Convergence analysis for the Problem (St-OPT) . 31

2.4 Dynamic step-sizes for non-composite problems . 33

2.5 Numerical experiments . 35

2.5.1 Nonnegative principal component analysis . 36

2.5.2 Sparse binary classification with nonconvex losses . 40

2.5.3 Feedforward neural network training . 45

2.6 Proofs of technical results . 47

2.6.1 Technical lemma . 47

2.6.2 The proof of technical results in Section 2.3 . 50

2.6.2.1 The proof of Lemma 2.3: The analysis of the inner loop 51

2.6.2.2 The Proof of lemma 2.4: The selection of constant step-sizes 54

2.6.2.3 The proof of Theorem 2.1: The dynamic step-size case 56

2.6.2.4 The proof of Theorem 2.2: The constant step-size case 58

2.6.2.5 The proof of Theorem 2.3: The expectation problem 59

2.6.2.6 The proof of Theorem 2.4: The non-composite cases 60

3 A Hybrid Stochastic Policy Gradient Algorithm for Reinforcement Learning 64

vii

3.1 Introduction . 64

3.1.1 Problem of interest . 65

3.1.2 Related work . 66

3.1.3 Our approach and contribution . 68

3.1.4 Chapter outline . 69

3.2 A new hybrid stochastic policy gradient algorithm . 70

3.2.1 Assumptions . 70

3.2.2 Optimality condition . 72

3.2.3 Novel hybrid stochastic policy gradient estimator . 73

3.2.3.1 REINFORCE - an unbiased estimator: . 73

3.2.3.2 New stochastic policy gradient estimator: . 73

3.2.4 The complete algorithm . 74

3.2.5 Restarting variant . 75

3.3 Convergence analysis . 75

3.3.1 Properties of the hybrid SPG estimator . 76

3.3.2 Complexity estimates. 76

3.4 Numerical experiments . 77

3.5 Proofs of technical results . 81

3.5.1 Proof of Lemma 3.2 . 82

3.5.2 Proof of Lemma 3.3 . 84

3.5.3 Proof of Theorem 3.1: Key bound on the gradient mapping 86

3.5.4 Proof of Corollary 3.1: trajectory complexity of Algorithms 2 and 3 89

4 FedDR - Douglas-Rachford Splitting Methods for Federated Learning 91

4.1 Introduction . 91

4.1.1 Problem of interest . 92

4.1.2 Related work . 93

4.1.3 Our approach and contribution . 94

viii

4.1.4 Outline . 96

4.2 FedDR algorithm and its convergence analysis . 96

4.2.1 The derivation of FedDR . 96

4.2.2 Convergence analysis of FedDR . 102

4.3 AsyncFedDR and its convergence guarantee . 106

4.3.1 Derivation of asyncFedDR . 106

4.3.2 Probabilistic model . 108

4.3.3 Convergence analysis . 110

4.4 Numerical Experiments . 112

4.4.1 Experiment setup . 112

4.4.2 Results on non-composite example . 114

4.4.3 Results on composite example using `1-norm regularizer 117

4.4.4 Results using asynchronous update . 119

4.5 Appendix . 120

4.5.1 Convergence analysis of FedDR . 121

4.5.1.1 Useful lemmas . 121

4.5.1.2 Proof of Lemma 4.10 . 125

4.5.1.3 Proof of Lemma 4.2 . 131

4.5.1.4 Proof of Theorem 4.1 . 133

4.5.2 Proof of Theorem 4.2 . 134

4.5.3 Convergence analysis of asyncFedDR . 139

4.5.3.1 Proof of Lemma 4.3 . 139

4.5.3.2 Proof of Lemma 4.4 . 143

4.5.3.3 Proof of Lemma 4.5 . 144

4.5.3.4 Proof of Theorem 4.3 . 146

5 Conclusions and Future Research . 149

5.1 Conclusions . 149

ix

5.2 Ongoing and Future Research. 150

BIBLIOGRAPHY. 153

x

LIST OF TABLES

2.1 Common quantities used in this chapter. 18

2.2 The results of 9 algorithms on three data sets: url combined, avazu-app, and

kddb-raw. 44

3.1 A summary of various methods for the non-composite setting (3.1) of (CP-OPT). 70

3.2 All algorithms’ configurations on discrete and continuous control environments. . . 79

xi

LIST OF FIGURES

2.1 The objective value residuals and gradient mapping norms of (2.42) on
three data sets: mnist, rcv1-binary, and real-sim. 37

2.2 The relative objective residuals and the norms of gradient mappings
of ProxSARAH algorithms with different mini-batch sizes for solving
(2.42) on three data sets: mnist, rcv1-binary, and real-sim. 38

2.3 The relative objective residuals and the norms of gradient mappings of
5 algorithms for solving (2.42) on three data sets: mnist, rcv1-binary,
and real-sim. 39

2.4 The relative objective residuals and the absolute gradient mapping norms
of 4 algorithms for solving (2.42) on three data sets: url combined,
news20.binary, and avazu-app. 40

2.5 The relative objective residuals and gradient mapping norms of (2.43)
on three data sets using the loss `2(s, τ) - The single sample case. 41

2.6 The relative objective residuals and gradient mapping norms of (2.43)
on three data sets using the loss `2(s, τ) - The mini-batch case. 42

2.7 The relative objective residuals and gradient mapping norms of (2.43)
on three data sets using the loss `2(s, τ). 43

2.8 The relative objective residuals and gradient mapping norms of (2.43)
on three large data sets using the loss `2(s, τ) - The mini-batch case. 44

2.9 The training loss, gradient mapping, and test accuracy on mnist (top
line) and fashion mnist (bottom line) of 5 algorithms. 46

2.10 The training loss, gradient mapping, and test accuracy on mnist of 5 algo-
rithms on a 784×800×10 neural network (See http://yann.lecun.com/exdb/mnist/). 47

3.1 Performance of three algorithms on Carpole-v0 and Acrobot-v1 environments. . 78

3.2 Performance of three non-composite algorithms on the MountainCar-v0

environment and the Roboschool Inverted Pendulum-v1 environments. 80

3.3 Performance of composite vs. non-composite algorithms on the Swimmer-v2
and Walker2d-v2 environments. 81

4.1 Asynchronous update with 4 workers. Here, “A” blocks represent
server process and “UP” blocks represent worker process; C1-C4 are
communication rounds. 108

xii

http://yann.lecun.com/exdb/mnist/

4.2 The performance of 4 algorithms on iid synthetic dataset without user
sampling scheme. 114

4.3 The performance of 4 algorithms on non-iid synthetic datasets without
worker sampling scheme. 115

4.4 The performance of 4 algorithms with worker sampling scheme on non-iid
synthetic datasets. 116

4.5 The performance of 4 algorithms on the FEMNIST dataset. 117

4.6 The performance of FedDR on synthetic dataset in composite setting. 118

4.7 The performance of FedDR on FEMNIST dataset in composite setting. 118

4.8 The performance of FedDR in composite setting in terms of communi-
cation rounds. 119

4.9 The performance of FedDR in composite setting in terms of number of bytes. . . 120

4.10 The performance of FedDR and asyncFedDR on the MNIST dataset. 120

4.11 The performance of FedDR and asyncFedDR on FEMNIST - 62
classes dataset. 121

xiii

CHAPTER 1

Introduction

1.1 Overview

In the last two decades, large-scale optimization has played an important role in computa-

tional sciences, including compressive sensing, signal and image processing, modern statistics,

machine learning, and data science. Some applications may have the input sizes ranging up to

millions which make these large-scale problems more challenging to solve, even approximately,

as the cost of evaluating full gradient and function values for first-order methods becomes

significantly expensive or even impossible in the contemporary computational devices.

On the one hand, second order methods often have faster convergence rates, and therefore,

better iteration-complexity, it may be more costly to compute the second order oracle (i.e.,

Hessian or its approximations) when the sample size is large so we do not consider it here. On

the other hand, although first-order methods can only guarantee convergence to a stationary

point (Nesterov, 2013), it has been empirically shown that for many large-size optimization

problems such as neural network training and matrix factorization, local optima is almost as

good as a global one (Choromanska et al., 2015). Therefore, first-order methods have been

widely used in practice in the past few years, especially for solving large-scale problems.

This dissertation will focus on developing different stochastic optimization algorithms to

handle complex and large-scale optimization models which cover many applications in different

fields. In particular, we focus on designing new stochastic first-order methods which can

achieve better first-order oracle complexity than existing methods and achieve state-of-the-art

performance to solve common classes of nonconvex optimization problems in machine learning.

We also develop randomized algorithms for solving optimization problems in federated learning.

Let us first discuss the motivation for research presented in this dissertation where we briefly

describe the problems of interest. Next, we identify fundamental challenges related to those

1

problems, and then clearly state the goal of our research. Finally, we review several important

mathematical concepts and tools which will be used in the following chapters of this dissertation.

1.1.1 Problems of interest

There has been intensive research focusing on designing gradient methods to solve convex

problems. Instead, we want to target the nonconvex setting which is often more challenging to

solve. This setting also covers many problems related to classification using nonconvex losses or

neural network training where the objective function is highly nonconvex. As the theoretical

results of variance reduction method to solve nonconvex problems in some areas are still limited,

our first goal of this dissertation is to develop new stochastic first-order methods that achieve

state-of-the-art complexity over existing methods with practical performance.

In this dissertation, we also consider applications of stochastic estimators in reinforcement

learning which is also a highly active research area. In reinforcement learning, there is an agent

in a normally unknown environment and the agent can obtain some rewards by interacting with

the environment. The agent should take actions to maximize the cumulative rewards. The

overall goal of reinforcement learning is to learn good strategy for the agent via interacting with

the environment and rewards returned from the environment. An optimal strategy can help the

agent adapt to the environment and maximize future rewards.

There are many methods in the literature to solve reinforcement learning problems. Classical

algorithms include policy iteration, temporal-difference learning, and Q-learning (Sutton and

Barto, 2018). Another well-known approach is the policy gradient method where we can model

the problem as a maximization over a reward function then apply the gradient ascent step to

update the policy parameter given that we can compute the gradient of the objective function.

We will first propose a new stochastic policy gradient estimator based on Tran-Dinh et al.

(2019b) in reinforcement learning which is a combination of two other estimators and propose a

new policy gradient algorithm that is advantageous over existing ones.

We also consider problems in an emerging computing paradigm called federated learning

where multiple local devices collaboratively learn a machine learning model. This setting was first

introduced in 2016 and has been extensively studied. A notable difference of federated learning

from distributed optimization is that the local agents only exchange the local model instead

2

of their gradients to promote data privacy. In federated learning, communication becomes the

bottleneck so our goal is to design algorithms that can achieve state-of-the-art communication

complexity to solve federated learning problems.

1.1.2 Challenges

The large-scale optimization models in modern data analysis and machine learning appli-

cations create several theoretical and computational challenges. Among these challenges, the

following three are common in most applications. The first challenge is large-scale instances.

Problems are getting bigger and bigger in terms of both the number of variables and the size

of input data. The second one is nonconvexity, which is present in various applications, where

nonlinear models are used. The third challenge is nonsmoothness, which is often due to the

use of regularizers, penalty terms, and the presence of constraints. These three fundamental

challenges make traditional optimization techniques inefficient or even infeasible to solve.

In addition, the data and computational devices are distributed across multiple nodes

in a common network which poses another challenge. As machine learning and data science

applications are often equipped with uncertainty and can accept solutions with moderate or low

accuracy, gradient-based methods become more desirable especially stochastic gradient-based

methods. The classical stochastic gradient descent (SGD) method suffers from slow convergence

rate due to the effect of non-diminishing variance of the stochastic gradient estimator (Ghadimi

and Lan, 2012, 2013; Ghadimi et al., 2016), another type of gradient-based method has been

proposed which is the so-called variance reduction method, e.g. Johnson and Zhang (2013);

Defazio et al. (2014); Nguyen et al. (2017a), where the variance of the stochastic gradient

estimator can decrease over the iterations.

Concurrently, improving oracle complexity, i.e. number of stochastic gradient evaluations,

becomes an attractive research direction on computation complexity of optimization algorithms

when the training sample sizes are huge. Therefore, we also take into account this trend

when developing new stochastic optimization methods. In general, most of practical problems

nowadays are nonconvex and possibly nonsmooth which is hard to solve. Note that first-order or

gradient-based method can only guarantee to find a stationary point or a local optimum which

is also our aim in this dissertation (Nesterov, 2013).

3

1.1.3 The goals of this research

The first goal of this research is to develop a new variance reduction framework to solve a

general composite stochastic optimization problem that cover many applications in statistics,

machine learning, and data science. Our algorithms rely on the SARAH stochastic gradient

estimator (Nguyen et al., 2017a) which possesses the variance reduced property. The new

algorithms achieve the best-known oracle complexity along with cutting edge performance over

existing methods.

Another goal of this research is to design variance reduction methods to improve the sample

efficiency in reinforcement learning. We first consider existing policy gradient estimators and

proposed a new “hybrid” estimator which is the key element in our new algorithms. Our

algorithms should also have an edge over existing methods in terms of both sample complexity

and practical performance.

The third goal of this dissertation is to introduce new methods to solve problems in federated

learning, a new machine learning paradigm, which has recently gained a lot of attention. By

looking at a reformulation of the original problem and existence of convex regularizers, we

propose two new algorithms, FedDR and asyncFedDR, inspired by the classical Douglas-Rachford

splitting scheme. The proposed methods are shown to achieve state-of-the-art results in terms

of communication complexity while being able to handle data and system heterogeneity.

Finally, we summarize our research contributions presented in this dissertation and provide

details on possible research direction based on our current results.

1.2 Background and mathematical tools

This section only recalls necessary concepts and mathematical tools which will be used in

the sequel. Further definitions, properties, and examples can be found in, e.g., Bauschke and

Combettes (2011); Nesterov (2013).

1.2.1 Basic concepts

We are working with Euclidean spaces, Rp or Rn, equipped with the standard inner product

〈·, ·〉, and the Euclidean norm ‖·‖. Given a function f : Rp → R ∪ {+∞}, we use dom(f) :=

4

{
w ∈ Rd | f(w) < +∞

}
to denote its (effective) domain. We say that f is proper if it does not

take −∞ as its value and dom(f) is nonempty. A set is closed if it contains all its limit points.

A function f : Rp → R is said to be closed if its epi-graph {(x, t) ∈ dom(f)× R : f(x) ≤ t} is

a closed set. We denote [n] := {i ∈ N : 1 ≤ i ≤ n}, the set of integers from 1 to n for a given

integer n.

1.2.2 Tools from convex analysis

We also work with the class of proper, closed, and convex functions. A function f is called

convex if for any x, y ∈ dom(f) and α ∈ [0, 1], we have f((1− α)x+ αy) ≤ (1− α)f(x) + αf(y)

where dom(f) is a convex set. If f is proper, closed, and convex, its subdifferential at x ∈ dom(f)

is defined as

∂f(x) :=
{
v ∈ Rd | f(z) ≥ f(x) + 〈v, z − x〉, ∀z ∈ dom(f)

}
.

If x /∈ dom(f), ∂f(x) ≡ ∅. Any element ∇f(x) of ∂f(x) is called a subgradient of f at x. If f is

differentiable at x, then ∂f(x) = {∇f(x)}, the gradient of f at x. In this case, the convexity of

f is equivalent to f(x) +∇f(x)>(y − x) ≤ f(y) for all x, y ∈ dom(f).

Smoothness. A continuously differentiable function f : Rd → R is said to be Lf -smooth with

a Lipschitz constant Lf ∈ [0,+∞) if ∇f is Lipschitz continuous on its domain, i.e.:

‖∇f(x)−∇f(y)‖ ≤ Lf‖x− y‖, ∀x, y ∈ dom(f). (1.1)

As proved in (Nesterov, 2013), (1.1) is equivalent to

−
Lf
2
‖y − x‖2 + f(x) + 〈∇f(x), y − x〉 ≤ f(y) ≤ f(x) + 〈∇f(x), y − x〉+

Lf
2
‖y − x‖2, (1.2)

for all x, y ∈ dom(f).

Proximal operator. The proximal operator for a proper, closed, and convex function is also

defined as

proxf (x) := arg min
z

{
f(z) +

1

2
‖z − x‖2

}
. (1.3)

5

Note that if f is the indicator of a nonempty, closed, and convex set X , i.e., f(x) = δX (x),

then proxf (·) = projX (·), the projection of x onto X . When the function f is separable such as

f(x) = 1
n

∑n
i=1 fi(x), evaluating proxηf is equivalent to solving

proxηfi(x) := argmin
y

{
fi(y) + 1

2η‖y − x‖
2
}
, (1.4)

for i = 1, · · · , n seperately. Even when fi is nonconvex, if fi is L-smooth as in (1.1), if we choose

0 < η < 1
L , then proxηfi is well-defined and single-valued. Evaluating proxηfi requires to solve a

strongly convex program. Evaluating proxηfi can be done by various existing methods, including

local SGD and accelerated GD-type algorithms. More details about proximal operators can be

found in Parikh and Boyd (2014).

Gradient mapping. given a composite function F (x) := f(x) + g(x), suppose f(x) is smooth

and g(x) is convex and possibly nonsmooth. For any fixed η > 0, the quantity

Gη(x) :=
1

η

(
x− proxηg(x− η∇f(x))

)
(1.5)

is called the gradient mapping of F (Nesterov, 2013). When g(·) ≡ 0, Gη(x) = ∇f(x) which is

the gradient of f at x.

We have the following property: ‖Gη(x)‖ = 0 iff x? is a stationary point of F (x), i.e.

0 ∈ ∇f(x?) + ∂g(x?). Let us give more details why x? is a stationary point of F when

‖Gη(x?)‖ = 0. If we define x+ := proxηg(x
? − η∇f(x?)), then we can write x+ as

x+ = argmin
z

{
g(z) +

1

2η
‖z − (x? − η∇f(x?))‖2

}
.

Therefore, x? satisfies the optimality condition of this problem. Equivalently, we have

0 ∈ ∂g(x+) +
1

η
(x+ − (x? − η∇f(x?))),

or can write it as

1

η
(x? − x+) ∈ ∇f(x?) + ∂g(x+). (1.6)

6

The condition ‖Gη(x?)‖ = 0 leads to
∥∥∥ 1
η (x? − proxηg(x

? − η∇f(x?)))
∥∥∥ = 0, which further results

in
∥∥∥ 1
η (x? − x+)

∥∥∥ = 0 or x? = x+. As a result, we have 0 ∈ ∇f(x?) + ∂g(x?) by replacing x+ by

x? in (1.6).

1.2.3 Other mathematical tools

In this subsection, we recall some other concepts and notations used in this dissertation.

Basic concepts and notations in reinforcement learning. We first provide a brief overview

on basic concepts in reinforcement learning which will be used in Chapter 3. In general, most

problems in reinforcement learning can be formulated as a Markov Decision Process (MDP). In

a MDP, all states have Markov property, i.e., the transition to next state only depends on the

current state and the action taken at that state.

We consider a MDP (Sutton and Barto, 2018) equipped with 6 components {S,A,P,R, γ,P0}

where S, A are the state and action spaces, P denotes the set of transition probabilities when

taking certain actions, R is the reward function which characterizes the immediate reward

earned by taking certain action, γ is a discount factor, and P0 is the initial state distribution.

Let π(·|s) be a density function over A when current state is s and πθ(·|s) is a policy

parameterized by parameter θ. We define a trajectory τ = {s0, a0, s1, a1, · · · , sH−1, aH−1} with

effective length H as a collection of states and actions sampled from a stationary policy. Denote

pθ(·) as the density induced by policy πθ over all possible trajectories and pθ(τ) is the probability

of observing a trajectory τ . Let R(τ) =
∑H−1

t=0 γtR(st, at) be the total discounted reward for a

trajectory τ .

Complexity notions. Thought out the dissertation, we often come across the Big-O notation

O. Formally, given two function f(x) and g(x) defined on some unbounded subset of R+ (positive

real numbers) and g(x) is strictly positive for all large enough x, we say

f(x) = O (g(x)) as x→∞

if |f(x)| ≤ Mg(x) for all x ≥ x0, i.e. the magnitude of f(x) is at most a positive constant

multiple of g(x) for sufficiently large x. In other words, we also say that the growth rate of

7

f(x) is at most the growth rate of g(x). In addition, we may encounter the Big-Theta (Θ) or

Big-Omega (Ω) notations where these notation means f(x) grows in the same order or at least

as fast as g(x), respectively.

1.3 The outline of dissertation

The main content of this dissertation is divided into four chapters, and is organized as

follows. Note that the results of Chapter 2, 3, and 4 are presented in Pham et al. (2020b), Pham

et al. (2020a), and Tran-Dinh et al. (2021), respectively.

• Chapter 2: This chapter is based on the following paper:

[1] Nhan H. Pham, Lam M. Nguyen, Dzung T. Phan, and Quoc Tran-Dinh. Prox-

SARAH: An efficient algorithmic framework for stochastic composite nonconvex

optimization. Journal of Machine Learning Research, 21(110):1–48, 2020. (Reference

Pham et al. (2020b)).

Summary: In this chapter, we consider two common stochastic composite nonconvex

formulation that covers many applications in statistics and machine learning. As theoretical

results for variance reduction methods to solve these composite models are still limited,

we propose a proximal algorithm using SARAH estimator, a variance reduced stochastic

gradient estimator, and show that this method can achieve the best-known complexity

to solve both models and also matches the lower bound in certain settings. We provide

multiple numerical examples to illustrate the advantages of the proposed algorithms

compared to state-of-the-art methods.

Our main contribution: We propose ProxSARAH, a new and general stochastic variance

reduction framework relying on the SARAH estimator to solve both expectation and

finite-sum stochastic composite optimization models. We propose different variants of

ProxSARAH with constant and dynamic step-size. Our convergence analysis shows that

all ProxSARAH variants achieve the best-known complexity under standard assumptions

to solve both problems. The results in the expectation case also match the lower bound in

Arjevani et al. (2019).

8

• Chapter 3: This chapter is based on the following paper:

[1] Nhan H. Pham, Lam M. Nguyen, Dzung T. Phan, Phuong Ha Nguyen, Marten

Van Dijk, and Quoc Tran-Dinh. A hybrid stochastic policy gradient algorithm

for reinforcement learning. International Conference on Artificial Intelligence and

Statistics, PMLR 108:374-385, 2020. (Reference Pham et al. (2020a)).

Summary: In this chapter, we focus on dealing with one of the common problem in

reinforcement learning which is the policy optimization problem. We consider the composite

policy optimization which is a generalized model of the original problem. We first introduce

a new ”hybrid” stochastic policy gradient estimator and then propose a new algorithm

using the new hybrid estimator. We also evaluate the performance of our algorithms in

multiple discrete and continuous control tasks using well-known simulators in reinforcement

learning and show that our algorithms indeed are advantageous over existing methods

and solving the composite model may be beneficial than the original policy optimization

problem.

Our main contribution: Our first contribution is the novel hybrid stochastic policy

gradient estimator by combining existing REINFORCE estimator with the adapted SARAH

estimator for policy gradient. We then propose a new algorithm to solve a composite

maximization problem for policy optimization in reinforcement learning. Our model not

only covers existing settings but also handles constraints and convex regularizers on policy

parameters. We show that under standard assumptions, our algorithms not only achieve

the best-known sample complexity but also consider a more general setting compared to

existing policy gradient methods.

• Chapter 4 This chapter is based on the following paper:

[1] Quoc Tran-Dinh, Nhan H. Pham, Dzung T. Phan, and Lam M. Nguyen. FedDR -

Randomized Douglas-Rachford splitting algorithms for nonconvex federated composite

optimization. Thirty-fifth Conference on Neural Information Processing Systems,

2021. (Reference Tran-Dinh et al. (2021)).

9

Summary: In this chapter, we develop two new algorithms, FedDR and asyncFedDR,

for solving a nonconvex composite optimization problem which can handle convex reg-

ularizers in federated learning. Our algorithms rely on a novel combination between

nonconvex Douglas-Rachford splitting method, randomized block-coordinate strategies,

and asynchronization. The new algorithms are able to address multiple key challenges

in federated learning including communication efficiency, data and system heterogeneity.

Our convergence analysis shows that the proposed algorithms match the communication

complexity lower bound up to a constant factor under standard assumptions. Our numeri-

cal experiments illustrate the advantages of our methods compared to existing ones on

various synthetic and real datasets.

Our main contribution: Our first contribution is to develop a new FL algorithm,

called FedDR (Federated Douglas-Rachford), by combining the classical DR splitting

technique and randomized block-coordinate strategy to solve the nonconvex composite

optimization problem in FL. Our algorithm can handle nonsmooth convex regularizers and

allows inexact evaluation of the underlying proximal operators as in FedProx or FedPD. It

also achieves the best known O
(
ε−2
)

communication complexity for finding a stationary

point under standard assumptions, where ε is a given accuracy. Different from FedSplit

(Pathak and Wainwright, 2020) and FedPD (Zhang et al., 2020), our algorithm allows

partial participation requiring only a subset of workers to perform local update at each

communication round. The second contribution lies within the asynchronous algorithm,

asyncFedDR, where each worker independently performs local update and send the

update to the server for proximal aggregation in an asynchronous fashion. asyncFedDR

achieves the same communication complexity O
(
ε−2
)

as FedDR (up to a constant factor)

under the same standard assumptions.

• Chapter 5 concludes our research presented in this dissertation and propose potential

research directions in the future where we incorporate acceleration techniques into FedDR

to further improve its communication complexity.

10

CHAPTER 2

An Efficient Framework for Stochastic Composite Nonconvex Optimization

2.1 Introduction

With the recent advances in computing power making the field of large-scale optimization

more active than ever. As a result, there is also need to design efficient numerical methods

to solve those challenging problems. In this chapter, we want to focus on an optimization

problem that is general enough to cover many applications in different fields and propose a new

algorithmic framework that can solve the problem efficiently.

2.1.1 Problem of interest

We first consider the following finite-sum composite optimization problem

min
x∈Rd

{
F (x) := f(x) + ψ(x) ≡ 1

n

n∑
i=1

fi(x) + ψ(x)
}
. (FS-OPT)

where f(·) : Rd → R is a smooth (possibly nonconvex) function and ψ : Rd → R ∪ {+∞} is a

(possibly nonsmooth) proper, closed, and convex function.

This problem is general enough to cover many applications in statistical learning, machine

learning and deep learning. Here are some examples:

• Regularized least-squares: given an input data A ∈ Rn×p and response vector b ∈ Rn a

penalty parameter λ, we need to solve

min
x∈Rp

1

2
‖Ax− b‖2 +

λ

2
‖x‖2 .

We can cast this problem into (FS-OPT) by defining fi(x) = 1
2(a>i x − bi)2 and ψ(x) =

λ
2 ‖x‖

2 where ai is the i-th row of A and bi is the i-th component of b.

11

• Regularized binary classification: given an input data A ∈ Rn×p, a response vector y and

a bias vector b, we need to solve

min
x∈Rp

1

n

n∑
i=1

`(a>i x+ bi, yi) + λ ‖x‖1 ,

where `(·) represents certain loss function which can be convex (logistic regression) or

nonconvex (Zhao et al., 2010) and λ is a penalty parameter. This problem can be cast

into (FS-OPT) using fi(x) = `(a>i x+ bi, yi) and ψ(x) = λ ‖x‖1.

• Neural network training for image classification: given a set of n observations (images)

with size d× p represented as a tensor A ∈ Rn×d×p and an input label matrix y ∈ 0, 1n×m

where m is the number of class, i.e. yi is the vector of binary values indicating the correct

class of observation i. The problem we want to solve is

min
w

1

n

n∑
i=1

`(f(w, ai), yi),

where f(w, ai) is the output of a neural network using input data ai and weight w

and ` is the cross-entropy loss function. We can define fi(w) = `(f(w, ai), yi) =

−
∑m

j=1 yi,j log(f(w, ai)) and ψ(w) = 0.

If the input data is constantly collected (streaming data setting), the size of input data

becomes too large in which the problem (FS-OPT) becomes inapplicable. Therefore, each input

data point can be viewed as an i.i.d. sample of a random variable with a certain distribution

(usually unknown). In particular, we come up with a more general model which is referred to as

the stochastic composite optimization as

min
x∈Rd

{
F (x) := f(x) + ψ(x) ≡ E [f(x; ξ)] + ψ(x)

}
, (St-OPT)

where f(x) := E [f(w; ξ)] is the expectation of a stochastic function f(x; ξ) depending on a

random vector ξ in a given probability space (Ω,P), and ψ : Rd → R∪{+∞} is a proper, closed,

and convex function. (FS-OPT) can be seen as a special case of (St-OPT) where we use sample

average approximation for the expectation.

12

2.1.2 Related work

Most of available methods to solve (St-OPT) and (FS-OPT) rely on stochastic approaches

(Johnson and Zhang, 2013; Schmidt et al., 2017; Shapiro et al., 2014; Defazio et al., 2014; Frostig

et al., 2015; Lei and Jordan, 2017; Lin et al., 2015). In the convex case (when f(·) is convex),

both non-composite and composite settings of (St-OPT) and (FS-OPT) have been intensively

studied with different schemes such as standard stochastic gradient (Robbins and Monro, 1951),

proximal stochastic gradient (Nemirovski et al., 2009; Ghadimi and Lan, 2013), stochastic

dual coordinate descent (Shalev-Shwartz and Zhang, 2013), stochastic conditional gradient

(Frank-Wolfe) methods (Reddi et al., 2016c), stochastic primal-dual methods (Chambolle et al.,

2018), and variance reduction methods (Defazio et al., 2014; Allen-Zhu, 2017a; Johnson and

Zhang, 2013; Schmidt et al., 2017; Nitanda, 2014; Shalev-Shwartz and Zhang, 2014; Xiao and

Zhang, 2014). The two most popular variance reduction methods are SAGA and SVRG. While

SAGA (fast incremental gradient algorithm), a successor of SAG (Stochastic Average Gradient)

(Schmidt et al., 2017), can only solve the finite-sum problem, SVRG (Stochastic Variance

Reduced Gradient) (Johnson and Zhang, 2013) can solve both finite-sum and expectation

problems. Thanks to variance reduction techniques, several efficient methods with constant

step-sizes have been developed for convex settings that match the lower-bound worst-case

complexity (Agarwal et al., 2012).

In the nonconvex case, both problems (St-OPT) and (FS-OPT) have been intensively studied

in recent years with a vast number of research papers. While numerical algorithms for solving the

non-composite setting, i.e., ψ = 0, are well-developed and have received considerable attention

(see Allen-Zhu, 2018; Allen-Zhu and Li, 2018; Allen-Zhu and Yuan, 2016; Fang et al., 2018;

Lihua et al., 2017; Nguyen et al., 2017b, 2020, 2019; Reddi et al., 2016b; Zhou et al., 2018a),

methods for composite setting remain limited (Reddi et al., 2016b; Wang et al., 2019). In terms

of algorithms, Reddi et al. (2016b) study a non-composite finite-sum problem as a special case

of (FS-OPT) using SVRG estimator from Johnson and Zhang (2013). Additionally, they extend

their method to the composite setting by simply applying the proximal operator of ψ as in the

well-known forward-backward scheme. Another related work using SVRG estimator can be

found in Li and Li (2018). These algorithms have some limitation as will be discussed later.

13

The same technique is applied in Wang et al. (2019) to develop other variants for both

(St-OPT) and (FS-OPT), but using the SARAH estimator from Nguyen et al. (2017a). The

authors derive a large constant step-size, but at the same time control mini-batch size to

achieve desired complexity bounds. Consequently, it has an essential limitation as will also

be discussed in Section 2.3.4. Both algorithms achieve the best-known complexity bounds

for solving (St-OPT) and (FS-OPT). In addition, Reddi et al. (2016c) propose a stochastic

Frank-Wolfe method that can handle constraints as special cases of (FS-OPT). Recently, a

stochastic variance reduction method with momentum was studied in Zhou et al. (2019) for

solving (FS-OPT) which can be viewed as a modification of SpiderBoost in Wang et al. (2019).

In terms of theory, many researchers have been working on theoretical aspects of existing

algorithms. For example, Ghadimi and Lan (2013) appear to be one of the first pioneering

works studying convergence rates of stochastic gradient descent-type methods for nonconvex and

non-composite finite-sum problems. They later extend it to the composite setting in Ghadimi

et al. (2016). Wang et al. (2019) also investigate the gradient dominance case, and Karimi et al.

(2016) consider both finite-sum and composite finite-sum under different assumptions, including

Polyak- Lojasiewicz condition.

Whereas many researchers have been trying to improve complexity upper bounds of stochastic

first-order methods using different techniques (Allen-Zhu, 2018; Allen-Zhu and Li, 2018; Allen-

Zhu and Yuan, 2016; Fang et al., 2018), other researchers attempt to construct examples for

lower-bound complexity estimates. Existing works for lower-bound in the convex case include

Agarwal et al. (2012); Nemirovskii and Yudin (1983); Nesterov (2013). In Fang et al. (2018);

Zhou and Gu (2019), the authors have constructed a lower-bound complexity for nonconvex

finite-sum problem covered by (FS-OPT). They showed that the lower-bound complexity for

any stochastic gradient method using only smoothness assumption to achieve an ε-stationary

point in expectation is Ω
(
n1/2ε−2

)
given that the number of objective components n does not

exceed O
(
ε−4
)
, where ε is a desired accuracy for the approximate solution.

For the expectation problem (St-OPT), the best-known complexity bound to achieve an

ε-stationary point in expectation is O
(
σε−3 + σ2ε−2

)
as shown in Fang et al. (2018); Wang

et al. (2019), where σ > 0 is an upper bound of the variance of the stochastic gradient. This

14

complexity matches the lower bound recently developed in Arjevani et al. (2019) up to a given

constant under the same assumptions for the non-composite setting of (St-OPT).

Theory for stochastic methods to solve both composite nonconvex problems (St-OPT)

and (FS-OPT) are still in progress and require substantial effort to obtain efficient algorithms

with rigorous convergence guarantees. It is shown in Fang et al. (2018); Zhou and Gu (2019)

that there is still a gap between the upper-bound complexity in state-of-the-art methods and

the lower-bound worst-case complexity for the nonconvex problem (FS-OPT) under standard

smoothness assumption. Motivated by this fact, we attempt to develop a new algorithmic

framework that can reduce and at least nearly close this gap in the composite finite-sum setting

(FS-OPT). In addition to the best-known complexity bounds, we expect to design practical

algorithms advancing beyond existing methods by providing a dynamic rule to update step-sizes

with rigorous complexity analysis.

2.1.3 Our approach

We take advantage of the SARAH estimator, a biased stochastic recursive gradient estimator,

to design new proximal variance reduction stochastic gradient algorithms to solve both (St-OPT)

and (FS-OPT). The SARAH algorithm (Nguyen et al., 2017a) is simply a double-loop stochastic

gradient method with a flavor of SVRG (Johnson and Zhang, 2013), but using a novel biased

estimator different from SVRG. Although SARAH algorithm is a recursive method as SAGA

(Defazio et al., 2014), it is more advantageous than SAGA as it avoids the major issue of storing

gradients which is memory-inefficient in big-data regime.

Our algorithm remains a variance reduction stochastic method, but it is different from these

works at two major points: an additional averaging step and two different step-sizes. Having

two step-sizes allows us to flexibly trade-off them and develop a dynamic update rule. Note

that our averaging step looks similar to the robust stochastic gradient method in Nemirovski

et al. (2009), but is fundamentally different since it evaluates the proximal step at the averaging

point. In fact, it is closely related to averaged fixed-point schemes in the literature (Bauschke

and Combettes, 2011).

15

2.1.4 Our contribution

Our main contributions can be summarized as follows:

(a) Novel algorithms: We propose ProxSARAH, a new and general stochastic variance

reduction framework relying on the SARAH estimator to solve both expectation and finite-

sum problems (St-OPT) and (FS-OPT) in composite settings. As usual, the algorithm has

double loops, where the outer loop can either take full gradient or mini-batch to reduce

computational burden in large-scale and expectation settings. The inner loop can work

with single sample or a broad range of mini-batch sizes. This framework has two different

step-sizes as opposed to existing methods. We also derive different variants of ProxSARAH

for using constant or dynamic step-sizes and for non-composite settings of (St-OPT) and

(FS-OPT) (i.e., ψ = 0)

(b) Best-known complexity guarantees under constant step-sizes: We analyze our

framework and its variants to design appropriate constant step-sizes instead of diminishing

step-sizes as in standard Stochastic Gradient Descent (SGD) methods. In the finite-sum

setting (FS-OPT), our methods achieve O
(
n+ n1/2ε−2

)
complexity bound to attain an

ε-stationary point in expectation under only the smoothness of fi. This complexity matches

the lower-bound worst-case complexity in (Fang et al., 2018; Zhou and Gu, 2019) up to a

constant factor when n ≤ O
(
ε−4
)
. In the expectation setting (St-OPT), our algorithms

require O
(
σ2ε−2 + σε−3

)
stochastic first-order oracle calls of f to achieve an ε-stationary

point in expectation under only the smoothness of f and bounded variance σ2 > 0. To

the best of our knowledge, this is the best-known complexity so far for (St-OPT) under

standard assumptions in both the single sample and mini-batch cases. This complexity

also matches the lower bound recently studied in Arjevani et al. (2019) up to a constant.

(c) Best-known complexity guarantees under dynamic step-sizes: Apart from con-

stant step-size algorithms, we also analyze variants of Algorithm 1 using dynamic step-sizes

for both composite and non-composite settings in both single sample and mini-batch cases.

Our dynamic step-sizes are increasing along the inner iterations rather than diminishing

as usually used in standard SGDs.

16

Our result covers the non-composite setting in the finite-sum case (Nguyen et al., 2019), and

matches the best-known complexity in Fang et al. (2018); Wang et al. (2019) for both problems

(St-OPT) and (FS-OPT). Since the composite setting covers a broader class of nonconvex

problems including convex constraints, we believe that our method has better chance to handle

new applications than non-composite methods. It also allows one to deal with composite

problems under different type of regularizers such as sparsity or constraints on weights as in

neural network training applications.

2.1.5 Overview and chapter outline

The remaining of this chapter is organized as follows. Section 2.2 provides essential math-

ematical tools along with fundamental assumptions on the problem. It also contains useful

properties of the stochastic gradient estimators used in our proposed methods. Section 2.3

introduces the ProxSARAH framework and main convergence results of the proposed algorithms.

Next, we illustrate the advantage of our algorithm via three numerical examples in Section 2.5.

Lastly, Section 2.6 presents the missing proofs for the results presented in Sections 2.2 and 2.3.

2.2 Mathematical tools and preliminary results

In this section, we recall basic notations and concepts in optimization which can be found in

Bauschke and Combettes (2011); Nesterov (2013). We then state the fundamental assumptions

and show how to characterize the optimality condition of (St-OPT) and (FS-OPT). Eventually,

we present several preliminary results needed for the convergence analysis of our algorithms.

2.2.1 Notation

Apart from the basic concepts presented in 1.2 we present additional notations used in this

chapter. We use Up(S) to denote a finite set S := {s1, s2, · · · , sn} equipped with a probability

distribution p over S. If p is uniform, then we simply use U(S). For any real number a, bac

denotes the largest integer less than or equal to a. We use [n] to denote the set {1, 2, · · · , n}. In

addition, Table 2.1 provides common notations used in this chapter.

17

Notation Meaning Type and range

ε The target accuracy for stochastic gradient mapping positive real
m The epoch length (i.e., the number of iterations of the inner loop t) positive integer
Bs The mini-batch of the snapshot point w̃s−1 finite set of realizations
bs The size of the mini-batch Bs of the snapshot point w̃s−1 positive integer

B̂(s)
t The mini-batch for evaluating SARAH estimator in the inner loop t finite set of realizations

b̂
(s)
t The size of the mini-batch B̂(s)

t positive integer

Table 2.1: Common quantities used in this chapter.

2.2.2 Fundamental assumptions

We aim to develop numerical methods for solving (St-OPT) and (FS-OPT) that rely on

basic assumptions usually used in stochastic optimization methods.

Assumption 2.1 (Bounded from below). Both problems (St-OPT) and (FS-OPT) are bounded

from below. That is F ? := infw∈Rd F (w) > −∞. Moreover, dom(F) := dom(f) ∩ dom(ψ) 6= ∅.

This assumption usually holds in practice since f often represents a loss function which

is nonnegative or bounded from below. In addition, the regularizer ψ is also nonnegative or

bounded from below, and its domain intersects dom(f).

Our next assumption is the smoothness of f with respect to the argument w.

Assumption 2.2 (L-average smoothness). In the expectation setting (St-OPT), for any real-

ization of ξ ∈ Ω, f(·; ξ) is L-smooth (on average), i.e., f(·; ξ) is continuously differentiable and its

gradient ∇wf(·; ξ) is Lipschitz continuous with the same Lipschitz constant L ∈ (0,+∞), i.e.:

Eξ
[
‖∇wf(w; ξ)−∇wf(ŵ; ξ)‖2

]
≤ L2‖w − ŵ‖2, w, ŵ ∈ dom(f). (2.1)

In the finite-sum setting (FS-OPT), the condition (2.1) reduces to

1

n

n∑
i=1

‖∇fi(w)−∇fi(ŵ)‖2 ≤ L2‖w − ŵ‖2, w, ŵ ∈ dom(f). (2.2)

We can write (2.2) as Ei
[
‖∇fi(w)−∇fi(ŵ)‖2

]
≤ L2‖w − ŵ‖2. Note that (2.2) is weaker

than assuming that each component fi is Li-smooth, i.e., ‖∇fi(w) − ∇fi(ŵ)‖ ≤ Li‖w − ŵ‖

for all w, ŵ ∈ dom(f) and i ∈ [n]. Indeed, the individual Li-smoothness implies (2.2) with

18

L2 := 1
n

∑n
i=1 L

2
i . Conversely, if (2.2) holds, then ‖∇fi(w) − ∇fi(ŵ)‖2 ≤

∑
i=1 ‖∇fi(w) −

∇fi(ŵ)‖2 ≤ nL2‖w − ŵ‖2 for i ∈ [n]. Therefore, each component fi is
√
nL-smooth, which

is larger than (2.2) within a factor of
√
n in the worst-case. We emphasize that ProxSVRG,

ProxSVRG+, and ProxSpiderBoost all require the L-smoothness of each component fi in

(FS-OPT). However, the condition (2.1) is stronger than the L-smoothness of the expected

function f (i.e., ‖∇f(w)−∇f(ŵ)‖ ≤ Lf‖w − ŵ‖ for w, ŵ ∈ dom(f)) as used in standard SGD

algorithms (Ghadimi and Lan, 2013).

It is well-known that the L-smooth condition leads to the following bound

Eξ [f(ŵ; ξ)] ≤ Eξ [f(w; ξ)] + Eξ [〈∇wf(w; ξ), ŵ − w〉] +
L

2
‖ŵ − w‖2, w, ŵ ∈ dom(f). (2.3)

Indeed, from (2.1), we have

‖∇f(w)−∇f(ŵ)‖2 = ‖Eξ [∇wf(w; ξ)−∇wf(ŵ; ξ)] ‖2

≤ Eξ
[
‖∇wf(w; ξ)−∇wf(ŵ; ξ)‖2

]
≤ L2‖w − ŵ‖2,

which shows that ‖∇f(w)−∇f(ŵ)‖ ≤ L‖w − ŵ‖. Hence, using either (2.1) or (2.2), we get

f(ŵ) ≤ f(w) + 〈∇f(w), ŵ − w〉+
L

2
‖ŵ − w‖2, w, ŵ ∈ dom(f). (2.4)

The L-smooth condition also leads to the L-almost convexity of f (see Zhou and Gu, 2019) since

f(·) + L
2 ‖ · ‖

2 is convex.

In the expectation setting (St-OPT), we need the following bounded variance condition:

Assumption 2.3 (Bounded variance). For the expectation problem (St-OPT), there exists a

uniform constant σ ∈ (0,+∞) such that

Eξ
[
‖∇wf(w; ξ)−∇f(w)‖2

]
≤ σ2, ∀w ∈ dom(f). (2.5)

19

For the finite-sum problem (FS-OPT), there exists a uniform constant σ ∈ (0,+∞) s.t.

1

n

n∑
i=1

‖∇fi(w)−∇f(w)‖2 ≤ σ2, ∀w ∈ dom(f). (2.6)

This assumption is standard in stochastic optimization and often required in almost any

solution method for solving (St-OPT) (see Ghadimi and Lan, 2013). For problem (FS-OPT), if

n is extremely large, passing over n data points is exhaustive or impossible. We refer to this

case as the online case mentioned in Fang et al. (2018), and can be cast into Assumption 2.3.

Therefore, we do not consider this case separately. However, our theory and algorithms developed

in this chapter do apply to such a setting. In addition, for the finite-sum problem (FS-OPT),

if we define σ2
n(w) := 1

n

∑n
i=1

[
‖∇fi(w)‖2 − ‖∇f(w)‖2

]
, then (2.6) becomes σ2

n(w) ≤ σ2 for all

w ∈ dom(f), which is consistent to (2.5). We only use the condition (2.6) in Remark 2.

2.2.3 Optimality conditions

Under Assumption 2.1, we have dom(f) ∩ dom(ψ) 6= ∅. When f(·; ξ) is nonconvex in w, the

first order optimality condition of (St-OPT) can be stated as

0 ∈ ∂F (w?) ≡ ∇f(w?) + ∂ψ(w?) ≡ Eξ [∇wf(w?; ξ)] + ∂ψ(w?). (2.7)

Here, w? is called a stationary point of F . We denote S? the set of all stationary points. The

condition (2.7) is called the first-order optimality condition, and also holds for (FS-OPT).

Since ψ is proper, closed, and convex, its proximal operator proxηψ satisfies the nonexpan-

siveness, i.e., ‖proxηψ(w)− proxηψ(z)‖ ≤ ‖w − z‖ for all w, z ∈ Rd.

Recall the definition of gradient mapping in (1.5), by using Gη(·), the optimality condition

(2.7) can be equivalently written as

‖Gη(w?)‖2 = 0. (2.8)

If we apply gradient-type methods to solve (St-OPT) or (FS-OPT), then we can only aim at

finding an ε-approximate stationary point w̃T to w? in (2.8) after at most T iterations within a

20

given accuracy ε > 0, i.e.:

E
[
‖Gη(w̃T)‖2

]
≤ ε2. (2.9)

The condition (2.9) is standard in stochastic nonconvex optimization methods. To obtain

approximate second-order optimality, one can use the idea of perturbed gradient as in Lu et al.

(2019); Tziotis et al. (2020); Chen et al. (2021) for structured problems or require additional

assumptions and more sophisticated optimization methods such as cubic regularized Newton-type

schemes (see Nesterov and Polyak, 2006).

2.2.4 Stochastic gradient estimators

One key step to design a stochastic gradient method for (St-OPT) or (FS-OPT) is to query

an estimator for the gradient ∇f(w) at any w. Let us recall some existing stochastic estimators.

2.2.4.1 Single sample estimators

A simple estimator of ∇f(w) can be computed as follows:

∇̃f(wt) := ∇wf(wt; ξt), (2.10)

where ξt is a realization of ξ. This estimator is unbiased, i.e., E
[
∇̃f(wt) | Ft

]
= ∇f(wt), but

its variance is fixed for any wt, where Ft is the history of randomness collected up to the t-th

iteration, i.e.:

Ft := σ
(
w0, w1, · · · , wt

)
. (2.11)

This is a σ-field generated by random variables {w0, w1, · · · , wt}. In the finite-sum setting

(FS-OPT), we have ∇̃f(wt) := ∇fit(wt), where it ∼ U([n]) with [n] := {1, 2, · · · , n}.

In recent years, there has been huge interest in designing stochastic estimators with variance

reduction properties. The first variance reduction method was perhaps proposed in Schmidt

et al. (2017) since 2013, and then in Defazio et al. (2014) for convex optimization. However,

the most well-known method is SVRG introduced by Johnson and Zhang (2013) that works for

21

both convex and nonconvex problems. The SVRG estimator for ∇f in (FS-OPT) is given as

∇̃f(wt) := ∇f(w̃) +∇fit(wt)−∇fit(w̃), (2.12)

where ∇f(w̃) is the full gradient of f at a snapshot point w̃, and it is a uniformly random index

in [n]. It is clear that E
[
∇̃f(wt) | Ft

]
= ∇f(wt), which shows that ∇̃f(wt) is an unbiased

estimator of ∇f(wt). Moreover, its variance is reduced along the snapshots.

Our methods rely on the SARAH estimator introduced in Nguyen et al. (2017a) for the

non-composite convex problem instances of (FS-OPT). We instead consider it in a more general

setting to cover both (FS-OPT) and (St-OPT), which is defined as follows:

vt := vt−1 +∇wf(wt; ξt)−∇wf(wt−1; ξt), (2.13)

for a given realization ξt of ξ where v0 is a snapshot gradient estimator whose definition is

presented in Sections 2.3.2 and 2.3.5. Each evaluation of vt requires two gradient evaluations.

Clearly, the SARAH estimator is biased, since E [vt | Ft] = vt−1 +∇f(wt)−∇f(wt−1) 6= ∇f(wt).

However, it has a variance reduced property.

2.2.4.2 Mini-batch estimators

We consider a mini-batch estimator of the gradient ∇f in (2.10) and of the SARAH estimator

(2.13) respectively as follows:

∇̃fBt(wt) :=
1

bt

∑
ξi∈Bt

∇wf(wt; ξi),

and vt := vt−1 +
1

bt

∑
ξi∈Bt

(∇wf(wt; ξi)−∇wf(wt−1; ξi)) ,

(2.14)

where Bt is a mini-batch of the size bt := |Bt| ≥ 1. For the finite-sum problem (FS-OPT), we

replace f(·; ξi) by fi(·). In this case, Bt is a uniformly random subset of [n]. Clearly, if bt = n,

then we take the full gradient ∇f as the exact estimator.

22

2.2.5 Basic properties of stochastic and SARAH estimators

We recall some basic properties of the standard stochastic and SARAH estimators for

(St-OPT) and (FS-OPT). The following result was proved in Nguyen et al. (2017a).

Lemma 2.1. Let {vt}t≥0 be defined by (2.13) and Ft be defined by (2.11). Then

E [vt | Ft] = ∇f(wt) + εt 6= ∇f(wt), where εt := vt−1 −∇f(wt−1).

E
[
‖vt −∇f(wt)‖2 | Ft

]
= ‖vt−1 −∇f(wt−1)‖2 + E

[
‖vt − vt−1‖2 | Ft

]
− ‖∇f(wt)−∇f(wt−1)‖2.

(2.15)

Consequently, for any t ≥ 0, we have

E
[
‖vt −∇f(wt)‖2

]
= E

[
‖v0 −∇f(w0)‖2

]
+
∑t

j=1 E
[
‖vj − vj−1‖2

]
−
∑t

j=1 E
[
‖∇f(wj)−∇f(wj−1)‖2

]
.

(2.16)

Our next result is some properties of the mini-batch estimators in (2.14). Most of the proof

have been presented in Harikandeh et al. (2015); Lohr (2009); Nguyen et al. (2017b, 2020), and

we only provide the missing proof of (2.20) and (2.21) in Section 2.6.1.

Lemma 2.2. If ∇̃fBt(wt) is generated by (2.14), then, under Assumption 2.3, we have

E
[
∇̃fBt(wt) | Ft

]
= ∇f(wt) and

E
[
‖∇̃fBt(wt)−∇f(wt)‖2 | Ft

]
=

1

bt
E
[
‖∇wf(wt; ξ)−∇f(wt)‖2 | Ft

]
≤ σ2

bt
.

(2.17)

If ∇̃fBt(wt) is generated by (2.14) for the finite-sum problem (FS-OPT), then

E
[
∇̃fBt(wt) | Ft

]
= ∇f(wt) and

E
[
‖∇̃fBt(wt)−∇f(wt)‖2 | Ft

]
≤ 1

bt

(
n−bt
n−1

)
σ2
n(wt),

(2.18)

where σ2
n(w) is defined as

σ2
n(w) :=

1

n

n∑
i=1

[
‖∇fi(w)‖2 − ‖∇f(w)‖2

]
. (2.19)

23

If vt is generated by (2.14) for the finite-sum problem (FS-OPT), then

E
[
‖vt − vt−1‖2 | Ft

]
= n(bt−1)

bt(n−1)‖∇f(wt)−∇f(wt−1)‖2

+ (n−bt)
bt(n−1) ·

1
n

∑n
i=1 ‖∇fi(wt)−∇fi(wt−1)‖2.

(2.20)

If vt is generated by (2.14) for the expectation problem (St-OPT), then

E
[
‖vt − vt−1‖2 | Ft

]
=

(
1− 1

bt

)
‖∇f(wt)−∇f(wt−1)‖2

+ 1
bt
E
[
‖∇wf(wt; ξ)−∇wf(wt−1; ξ)‖2 | Ft

]
.

(2.21)

Note that if bt = n, i.e., we take a full gradient estimate, then the second estimate of (2.18)

is vanished and independent of σn(·). The second term of (2.20) is also vanished.

2.3 ProxSARAH framework and convergence analysis

We describe our unified algorithmic framework and then specify it to solve different instances

of (St-OPT) and (FS-OPT) under appropriate structures. The general algorithm is described

in Algorithm 1, which is abbreviated by ProxSARAH.

Algorithm 1 (Proximal SARAH with stochastic recursive gradient estimators)

1: Initialization: An initial point w̃0 and necessary parameters ηt > 0 and γt ∈ (0, 1] (will be
specified in the sequel).

2: Outer Loop: For s := 1, 2, · · · , S do

3: Generate a snapshot v
(s)
0 at w

(s)
0 := w̃s−1 using (2.34) for (St-OPT) and (2.26) for

(FS-OPT).

4: Update ŵ
(s)
1 := proxη0ψ(w

(s)
0 − η0v

(s)
0) and w

(s)
1 := (1− γ0)w

(s)
0 + γ0ŵ

(0)
1 .

5: Inner Loop: For t := 1, · · · ,m do

6: Generate a proper single random sample or mini-batch B̂(s)
t .

7: Evaluate v
(s)
t := v

(s)
t−1 + 1

|B̂(s)t |

∑
ξ
(s)
t ∈B̂

(s)
t

[
∇wf(w

(s)
t ; ξ

(s)
t)−∇wf(w

(s)
t−1; ξ

(s)
t)
]
.

8: Update ŵ
(s)
t+1 := proxηtψ(w

(s)
t − ηtv

(s)
t) and w

(s)
t+1 := (1− γt)w(s)

t + γtŵ
(s)
t+1.

9: End For

10: Set w̃s := w
(s)
m+1

11: End For

In terms of algorithm, ProxSARAH is different from SARAH where it has one proximal

step followed by an additional averaging step, Step 8. However, using an approximation G̃η of

24

the gradient mapping Gη defined by (1.5), we can view Step 8 as:

w
(s)
t+1 := w

(s)
t − ηtγtG̃ηt(w

(s)
t), (2.22)

where G̃ηt(w
(s)
t) := 1

ηt

(
w

(s)
t − proxηtψ(w

(s)
t − ηtv

(s)
t)
)

can be considered as an approximation of

Gηt(w
(s)
t) and η̂t := ηtγt can be viewed as a combined step-size. Hence, the update (2.22) is

similar to the gradient step applying to the approximate gradient mapping G̃ηt(w
(s)
t) of F . In

particular, if we set γt = 1, then we obtain a vanilla proximal SARAH variant which is similar to

ProxSVRG, ProxSVRG+, and ProxSpiderBoost discussed above. ProxSVRG, ProxSVRG+, and

ProxSpiderBoost are simply vanilla proximal gradient-type methods in stochastic setttings. If

ψ = 0, then G̃ηt(w
(s)
t) ≡ v(s)

t and ProxSARAH is reduced to SARAH in Nguyen et al. (2017a,b,

2020) with a step-size η̂t := γtηt. Note that Step 8 can be represented as a weighted averaging

step with given weights {τ (s)
j }mj=0:

w
(s)
t+1 :=

1

Σ
(s)
t

t∑
j=0

τ
(s)
j ŵ

(s)
j+1, where Σ

(s)
t :=

t∑
j=0

τ
(s)
j and γ

(s)
j :=

τ
(s)
j

Σ
(s)
t

.

Compared to Ghadimi and Lan (2012); Nemirovski et al. (2009), ProxSARAH evaluates vt at

the averaged point w
(s)
t instead of ŵ

(s)
t . Therefore, it can be written as

w
(s)
t+1 := (1− γt)w(s)

t + γtproxηtψ(w
(s)
t − ηtv

(s)
t),

which is similar to averaged fixed-point schemes (e.g., the Krasnosel’skii—Mann scheme) in the

literature (see Bauschke and Combettes, 2011).

In addition, we will show in our analysis a key difference in terms of step-sizes ηt and γt,

mini-batch, and epoch length between ProxSARAH and existing methods, including SPIDER

(Fang et al., 2018) and SpiderBoost (Wang et al., 2019).

25

2.3.1 Analysis of the inner-loop: Key estimates

This subsection proves two key estimates of the inner loop for t = 1 to m. We break our

analysis into two different lemmas, which provide key estimates for our convergence analysis.

We assume that the mini-batch size b̂ := |B̂(s)
t | in the inner loop is fixed.

Lemma 2.3. Let {(wt, ŵt)} be generated by the inner-loop of Algorithm 1 with |B̂(s)
t | = b̂ ∈ [n−1]

fixed. Then, under Assumption 2.2, we have

E
[
F (w

(s)
m+1)

]
≤ E

[
F (w

(s)
0)
]

+
ρL2

2

m∑
t=0

γt
(
1 + 2η2

t

) t∑
j=1

γ2
j−1E

[
‖ŵ(s)

j − w
(s)
j−1‖

2
]

− 1

2

m∑
t=0

γt

(
2

ηt
− Lγt − 3

)
E
[
‖ŵ(s)

t+1 − w
(s)
t ‖2

]
+

1

2
σ̄(s)

(m∑
t=0

βt

)
−

m∑
t=0

γtη
2
t

2
E
[
‖Gηt(w

(s)
t)‖2

]
,

(2.23)

where σ̄(s) := E
[
‖v(s)

0 −∇f(w
(s)
0)‖2

]
≥ 0, ρ := 1

b̂
if Algorithm 1 solves (St-OPT), and ρ :=

(n−b̂)
b̂(n−1)

if Algorithm 1 solves (FS-OPT).

The proof of Lemma 2.3 is deferred to Appendix 2.6.2.1. The next lemma shows how to

choose constant step-sizes γ and η by fixing other parameters in Lemma 2.3 to obtain a descent

property. The proof of this lemma is given in Appendix 2.6.2.2.

Lemma 2.4. Under Assumption 2.2 and b̂ := |B̂(s)
t | ∈ [n − 1], let us choose ηt = η > 0 and

γt = γ > 0 in Algorithm 1 such that

γt = γ :=
1

L
√
ωm

and ηt = η :=
2
√
ωm

4
√
ωm+ 1

, (2.24)

where ω := 3
2b̂

if Algorithm 1 solves (St-OPT) and ω := 3(n−b̂)
2b̂(n−1)

if Algorithm 1 solves (FS-OPT).

Then

E
[
F (w

(s)
m+1)

]
≤ E

[
F (w

(s)
0)
]
− γη2

2

m∑
t=0

E
[
‖Gη(w(s)

t)‖2
]

+
γθ

2
(m+ 1)σ̄(s), (2.25)

where θ := 1 + 2η2 ≤ 3
2 .

26

Remark 1. As mentioned in (2.22), the main update at Step 8 of Algorithm 1 can be written

as w
(s)
t+1 := w

(s)
t − ηtγtG̃ηt(w

(s)
t), where η̂t := ηtγt can be viewed as a combined step-size. Using

(2.24), we have η̂t = 2
L(4
√
ωm+1)

= O
(

1
L

)
. This step-size is proportional to 1

L as commonly seen

in gradient-based methods (Nesterov, 2013).

2.3.2 Convergence analysis for the Problem (FS-OPT)

In this section, we specify Algorithm 1 to solve the composite finite-sum problem (FS-OPT).

We replace v
(s)
0 at Step 3 and v

(s)
t at Step 7 of Algorithm 1 by the following ones:

v
(s)
0 :=

1

bs

∑
j∈Bs

∇fj(w(s)
0), and v

(s)
t := v

(s)
t−1 +

1

b̂
(s)
t

∑
i∈B̂(s)t

(
∇fi(w(s)

t)−∇fi(w(s)
t−1)

)
, (2.26)

where Bs is an outer mini-batch of a fixed size bs := |Bs| = b, and B̂(s)
t is an inner mini-batch of

a fixed size b̂
(s)
t := |B̂(s)

t | = b̂. Moreover, Bs is independent of B(s)
t .

We consider two separate cases of this algorithmic variant: dynamic1 step-sizes and constant

step-sizes, but with fixed inner mini-batch size b̂ ∈ [n− 1]. The following theorem proves the

convergence of the dynamic step-size variant, whose proof is in Appendix 2.6.2.3.

Theorem 2.1. Assume that we apply Algorithm 1 to solve (FS-OPT), where the estimators

v
(s)
0 and v

(s)
t are defined by (2.26) such that bs = b ∈ [n] and b̂

(s)
t = b̂ ∈ [n− 1], respectively. Let

ηt := η ∈ (0, 2
3) be fixed, ωη := (1+2η2)(n−b̂)

b̂(n−1)
, and δ := 2

η − 3 > 0. Let {γt}mt=0 be the sequence of

step-sizes updated in a backward mode as

γm :=
δ

L
, and γt :=

δ

L
[
η + ωηL

∑m
j=t+1 γj

] , t = 0, · · · ,m− 1, (2.27)

Then, the following statements hold:

(a) The sequence of step-sizes {γt}mt=0 satisfies

δ

L(1 + δωηm)
≤ γ0 < γ1 < · · · < γm, and Σm :=

m∑
t=0

γt ≥
2δ(m+ 1)

L(
√

2δωηm+ 1 + 1)
. (2.28)

1We call γt defined by (2.27) a dynamic step-size since γt is computed based on its previously computed
candidates γt+1, γt+2, · · · , γm.

27

(b) Under Assumptions 2.1 and 2.2, and σ2
n(w) defined by (2.19) (σ2

n(w) can be unbounded),

the following bound holds:

1

SΣm

S∑
s=1

m∑
t=0

γtE
[
‖Gη(w(s)

t)‖2
]
≤ 2

η2SΣm

[
F (w̃0)− F ?

]
+

3

2η2S

S∑
s=1

(n− bs)σ2
n(w̃s−1)

nbs
.

(2.29)

(c) Under Assumptions 2.1 and 2.2, if we choose η := 1
2 , m :=

⌊
n
b̂

⌋
, bs := n, and b̂ ∈ [1, b

√
nc],

then for w̃T ∼ Up

(
{w(s)

t }s=1→S
t=0→m

)
such that

Prob
(
w̃T = w

(s)
t

)
= p(s−1)m+t :=

γt
SΣm

,

we have

E
[
‖Gη(w̃T)‖2

]
≤ 4
√

6L [F (w̃0)− F ?]
S
√
n

. (2.30)

Consequently, the number of outer iterations S needed to obtain an output w̃T of Algorithm 1

such that E
[
‖Gη(w̃T)‖2

]
≤ ε2 is at most S := 4

√
6L[F (w̃0)−F ?]√

nε2
. Moreover, if 1 ≤ n ≤

96L2[F (w̃0)−F ?]2

ε4
, then S ≥ 1.

The number of individual stochastic gradient evaluations ∇fi does not exceed

Tgrad :=
20
√

6L
√
n [F (w̃0)− F ?]
ε2

= O
(
L
√
n

ε2
[F (w̃0)− F ?]

)
.

The number of proxηψ operations does not exceed Tprox := 4
√

6(
√
n+1)L[F (w̃0)−F ?]

b̂ε2
.

Remark 2. When n is sufficiently large, if we choose bs < n, then to guarantee convergence

of Algorithm 1 for solving (FS-OPT), we need to impose Assumption 2.3 and choose bs :=

O
(
n ∧ ε−2

)
. Then we can derive similar conclusions as in Theorem 2.1(c).

Alternatively, Theorem 2.2 below shows the convergence of Algorithm 1 for the constant

step-size case, whose proof is given in Appendix 2.6.2.4.

Theorem 2.2. Assume that we apply Algorithm 1 to solve (FS-OPT), where the estimators

v
(s)
0 and v

(s)
t are defined by (2.26) such that bs = b ∈ [n].

28

Let us choose constant step-sizes γt = γ and ηt = η as

γ :=
1

L
√
ωm

and η :=
2
√
ωm

4
√
ωm+ 1

, where ω :=
3(n− b̂)
2b̂(n− 1)

and b̂ ∈ [1, b
√
nc]. (2.31)

Then, under Assumptions 2.1 and 2.2, if we choose b̂ such that b̂ ∈ [1, b
√
nc], m :=

⌊
n
b̂

⌋
, bs := n,

and w̃T ∼ U
(
{w(s)

t }s=1→S
t=0→m

)
, then the number of outer iterations S to achieve E

[
‖Gη(w̃T)‖2

]
≤

ε2 does not exceed

S :=
16
√

3L√
2nε2

[
F (w̃0)− F ?

]
.

Moreover, if n ≤ 384L2

ε4

[
F (w̃0)− F ?

]2
, then S ≥ 1.

Consequently, the number of stochastic gradient evaluations Tgrad does not exceed

Tgrad :=
16
√

3L
√
n√

2ε2

[
F (w̃0)− F ?

]
= O

(
L
√
n

ε2

[
F (w̃0)− F ?

])
.

The number of proxηψ operations does not exceed Tprox := 16
√

3L(
√
n+1)

b̂
√

2ε2

[
F (w̃0)− F ?

]
.

Note that the condition n ≤ O
(
ε−4
)

is to guarantee that S ≥ 1 in Theorems 2.1 and 2.2.

In this case, our complexity bound is O
(
n1/2ε−2

)
. Otherwise, when n > O

(
ε−4
)
, then our

complexity becomes O
(
n+ n1/2ε−2

)
due to the full gradient snapshots. In the non-composite

setting, this complexity is the same as SPIDER (Fang et al., 2018), and the range of our

mini-batch size b̂ ∈ [1,
√
n], which is the same as in SPIDER, instead of fixed b̂ = b

√
nc as in

SpiderBoost (Wang et al., 2019). We can extend our mini-batch size b̂ such that
√
n < b̂ ≤ n− 1,

but our complexity bound is no longer the best-known one.

The step-size η in (2.31) can be bounded by η ∈ [2
5 ,

1
2] for any batch-size b̂ and m instead of

fixing at η = 1
2 . Nevertheless, this interval can be enlarged by slightly modifying the proof of

Lemma 2.3. For example, we can show that η can go up to 2
3 by appropriately manipulating the

parameters in the proof of Lemma 2.3. The step-size γ ∈ (0, 1] can change from a small to a

large value close to 1 as the batch-size b̂ and the epoch length m change as we will discuss in

Section 2.3.4.

29

2.3.3 Lower-bound complexity for the Problem (FS-OPT)

Let us analyze a special case of (FS-OPT) with ψ = 0. We consider any stochastic first-order

methods to generate an iterate sequence {wt} as follows:

[wt, it] := At−1
(
ω,∇fi0(w0),∇fi1(w1), · · · ,∇fit−1(wt−1)

)
, t ≥ 1, (2.32)

where At−1 are measure mapping into Rd+1, fit is an individual function chosen by At−1 at

iteration t, ω ∼ U([0, 1]) is a random vector, and [w0, i0] := A0(ω). Clearly, Algorithm 1

can be cast as a special case of (2.32). As shown in Fang et al. (2018, Theorem 3) and later

in Zhou and Gu (2019, Theorem 4.5.), under Assumptions 2.1 and 2.2, for any L > 0 and

2 ≤ n ≤ O
(
L2
[
F (w0)− F ?

]2
ε−4
)

, there exists a dimension d = Õ(L2
[
F (w0)− F ?

]2
n2ε−4)

such that the lower-bound complexity of Algorithm 1 to produce an output w̃T such that

E
[
‖∇f(w̃T)‖2

]
≤ ε2 is Ω

(
L[F (w0)−F ?]

√
n

ε2

)
. This lower-bound clearly matches the upper bound

Tgrad in Theorems 2.1 and 2.2 up to a given constant factor.

2.3.4 Mini-batch size and learning rate trade-offs

Although our step-size defined by (2.31) in the single sample case is much larger than that

of ProxSVRG (Reddi et al., 2016b, Theorem 1), it still depends on
√
m, where m is the epoch

length. To obtain larger step-sizes, we can choose m and the mini-batch size b̂ using the same

trick as in Reddi et al. (2016b, Theorem 2). Let us first fix γ := γ̄ ∈ (0, 1]. From (2.31), we have

ωm = 1
L2γ̄2

. It makes sense to choose γ̄ close to 1 in order to use new information from ŵ
(s)
t+1

instead of the old one in w
(s)
t .

Our goal is to choose m and b̂ such that ωm = 3(n−b̂)m
2b̂(n−1)

= 1
L2γ̄2

. If we define C := 2
3L2γ̄2

,

then the last condition implies that b̂ := mn
Cn+m−C ≤

m
C provided that m ≥ C. Our suggestion is

to choose

γ := γ̄ ∈ (0, 1], b̂ :=
⌊ mn

Cn+m− C

⌋
, and η :=

2

4 + Lγ̄
. (2.33)

If we choose m = bn1/3c, then b̂ = O
(
n1/3

)
≤ n1/3

C . This mini-batch size is much smaller than

bn2/3c in ProxSVRG. Note that, in ProxSVRG, they set γ := 1 and η := 1
3L .

30

In ProxSpiderBoost (Wang et al., 2019), m and the mini-batch size b̂ were chosen as

m = b̂ = bn1/2c so that they can use constant step-sizes γ = 1 and η = 1
2L . In our case, if γ = 1,

then η = 2
4+L . Hence, if L = 1, then ηProxSpiderBoost = 1

2 > ηProxSARAH = 2
5 > ηProxSVRG = 1

3 .

But if L > 4, then our step-size ηProxSARAH dominates ηProxSpiderBoost. However, by manipulating

some parameters in the proof of Lemma 2.3, we can obtain ηProxSARAH = 2
3 , which shows that

ηProxSARAH > ηProxSpiderBoost = 1
2 when L = 1.

If we choose m = O
(
n1/2

)
and b̂ = O

(
n1/2

)
, then we maintain the same complexity

bound O
(
n1/2ε−2

)
as in Theorems 2.1 and 2.2. Nevertheless, if we choose m = O

(
n1/3

)
and

b̂ = O
(
n1/3

)
, then the complexity bound becomes O

(
(n2/3 + n1/3)ε−2

)
, which is similar to

ProxSVRG. The choice of m in Theorem 2.1 affects the values of {γt}mt=0. Hence, a reasonably

small value of m is recommended in the dynamic step-size case.

2.3.5 Convergence analysis for the Problem (St-OPT)

In this section, we apply Algorithm 1 to solve the composite expectation setting (St-OPT).

In this case, we generate the snapshot at Step 3 of Algorithm 1 as follows:

v
(s)
0 :=

1

bs

∑
ζ
(s)
i ∈Bs

∇wf(w
(s)
0 ; ζ

(s)
i), (2.34)

where Bs :=
{
ζ

(s)
1 , · · · , ζ(s)

bs

}
is a mini-batch of i.i.d. realizations of ξ at the s-th outer iteration

and independent of ξt from the inner loop, and bs := |Bs| = b ≥ 1 is fixed.

Now, we analyze the convergence of Algorithm 1 for solving (St-OPT) using (2.34) above.

For simplicity of discussion, we only consider the constant step-size case. The dynamic step-size

variant can be derived similarly as in Theorem 2.1 and we omit the details. The proof of the

following theorem can be found in Appendix 2.6.2.5.

Theorem 2.3. Let us apply Algorithm 1 to solve (St-OPT) using (2.34) for v
(s)
0 at Step 3 of

Algorithm 1 with fixed outer loop batch-size bs = b ≥ 1 and inner loop batch-size b̂ := |B(s)
t | ≥ 1.

If we choose fixed step-sizes γ and η as

γ :=
1

L
√
ω̄m

and η :=
2
√
ω̄m

4
√
ω̄m+ 1

, with ω̄ :=
3

2b̂
, (2.35)

31

then, under Assumptions 2.1, 2.2, and 2.3, we have the following estimate:

1

(m+ 1)S

S∑
s=1

m∑
t=0

E
[
‖Gη(w(s)

t)‖2
]
≤ 2

γη2(m+ 1)S

[
F (w̃0)− F ?

]
+

3σ2

2η2b
. (2.36)

In particular, if we choose b :=
⌊

75σ2

ε2

⌋
and m :=

⌊
σ2

b̂ε2

⌋
for b̂ ≤ σ2

ε2
, then after at most

S :=
32L[F (w̃0)− F ?]

σε

outer iterations, we obtain E
[
‖Gη(w̃T)‖2

]
≤ ε2, where w̃T ∼ U

(
{w(s)

t }s=1→S
t=0→m

)
.

Consequently, the number of individual stochastic gradient evaluations ∇wf(w
(s)
t ; ξt) and

the number of proximal operations proxηψ, respectively do not exceed:

Tgrad :=
2464σL[F (w̃0)− F ?]

ε3
, and Tprox :=

32σL[F (w̃0)− F ?]
b̂ε2

.

If σ = 0, i.e., no stochasticity involved in our problem (St-OPT), then (2.36) reduces to

1

(m+ 1)S

S∑
s=1

m∑
t=0

E
[
‖Gη(w(s)

t)‖2
]
≤ 2

γη2(m+ 1)S

[
F (w̃0)− F ?

]
,

where the expectation is taken over all the randomness generated by the algorithm. From

this bound, we can derive the well-known O
(
ε−2
)

oracle complexity bound for gradient-based

methods in the deterministic case as often seen in the literature.

If σ > 0, then Theorem 2.3 achieves the best-known complexity O
(
σLε−3

)
for the composite

expectation problem (St-OPT) as long as σ ≤ 32L[F (w̃0)−F ?]
ε2

. Otherwise, our complexity is

O
(
σε−3 + σ2ε−2

)
due to the snapshot gradient for evaluating v

(s)
0 . This complexity is the same

as SPIDER (Fang et al., 2018) in the non-composite setting and ProxSpiderBoost (Wang et al.,

2019) in the mini-batch setting. It also matches the lower bound complexity recently studied

in Arjevani et al. (2019) up to a constant under the same set of assumptions, but only for the

non-composite setting of (St-OPT). Hence, our complexity is nearly optimal. Note that our

method does not require to perform mini-batch in the inner loop, i.e., it is independent of B̂(s)
t ,

and the mini-batch is independent of the number of iterations m of the inner loop, while in

Wang et al. (2019), the mini-batch size |B̂(s)
t | must be proportional to

√
|Bs| = O

(
ε−1
)
, where

32

Bs is the mini-batch of the outer loop. This is perhaps the reason why ProxSpiderBoost can

take a large constant step-size η = 1
2L as discussed in Section 2.3.4.

Remark 3. The constants have not been optimized in the complexity bounds of all theorems

above including Theorems 2.1, 2.2, and 2.3. The analysis can be refined to possibly obtain

smaller constants in these complexity bounds by manipulating different parameters.

2.4 Dynamic step-sizes for non-composite problems

In this section, we consider the non-composite settings of (St-OPT) and (FS-OPT) as special

cases of Algorithm 1. Note that if we solely apply Algorithm 1 with constant step-sizes to

solve the non-composite case of (St-OPT) and (FS-OPT) when ψ ≡ 0, then by using the same

step-size as in Theorems 2.1, 2.2, and 2.3, we can obtain the same complexity as stated in

Theorems 2.1, 2.2, and 2.3, respectively. However, we will modify our proof of Theorem 2.1 to

take advantage of the extra term
∑m

t=0
γt
2 E
[
‖∇f(w

(s)
t)− v(s)

t − (ŵ
(s)
t+1 − w

(s)
t)‖2

]
in the proof of

Lemma 2.3. The proof of this theorem is given in Appendix 2.6.2.6.

Theorem 2.4. Let {w(s)
t } be generated by a variant of Algorithm 1 to solve the non-composite

instance of (St-OPT) or (FS-OPT) using the following update for both Step 4 and Step 8:

w
(s)
t+1 := w

(s)
t − η̂tv

(s)
t . (2.37)

Let ρ := 1
b̂

for (St-OPT) and ρ := n−b̂
b̂(n−1)

for (FS-OPT), and η̂t is computed recursively as:

η̂m =
1

L
and η̂t :=

1

L
(
1 + ρL

∑m
j=t+1 η̂j

) , ∀t = 0, · · · ,m− 1. (2.38)

Then, we have Σm :=
∑m

t=0 η̂t ≥
2(m+1)

(
√

2ρm+1+1)L
.

Suppose that Assumptions 2.1 and 2.2 hold. Then, we have

1

SΣm

S∑
s=1

m∑
t=0

η̂tE
[
‖∇f(w

(s)
t)‖2

]
≤ (
√

2νm+ 1 + 1)L

S(m+ 1)

[
f(w̃0)− f?

]
+

1

S

S∑
s=1

σ̂s, (2.39)

where σ̂s := E
[
‖∇f(w

(s)
0)− v(s)

0 ‖2
]
.

33

Let w̃T ∼ Up

(
{w(s)

t }s=1→S
t=0→m

)
such that Prob

(
w̃T = w

(s)
t

)
= p(s−1)m+t := η̂t

SΣm
for all

s = 1, · · · , S and t = 0, · · · ,m, be the output of Algorithm 1. Then:

(a) The finite-sum case: If we apply this variant of Algorithm 1 to solve (FS-OPT) with

ψ = 0 using bs := n, m := bn
b̂
c, and b̂ ∈ [1,

√
n], then under Assumptions 2.1 and 2.2 the

following holds:

E
[
‖∇f(w̃T)‖2

]
≤ 2L

S
√
n

[f(w̃0)− f?]. (2.40)

Consequently, the total of outer iterations S to achieve E
[
‖∇f(w̃T)‖2

]
≤ ε2 does not

exceed S := 2L[f(w̃0)−f?]√
nε2

. The number of individual stochastic gradient evaluations ∇fi

does not exceed Tgrad := 10
√
nL[f(w̃0)−f?]

ε2
.

(b) The expectation case: If we apply this variant of Algorithm 1 to solve (St-OPT) with

ψ = 0 using bs = b := 2σ2

ε2
for the outer-loop, m := σ2

b̂ε2
, and b̂ ≤ σ2

ε2
, then under

Assumptions 2.1, 2.2, and 2.3:

E
[
‖∇f(w̃T)‖2

]
≤ 2L

S
√
b̂m

[
f(w̃0)− f?

]
+
σ2

b
. (2.41)

Consequently, the total of outer iterations S to achieve E
[
‖∇f(w̃T)‖2

]
≤ ε2 does not

exceed S := 4L[f(w̃0)−f?]
σε . The number of individual stochastic gradient evaluations does

not exceed Tgrad := 16σL[f(w̃0)−f?]
ε3

, provided that σ ≤ 8L[f(w̃0)−f?]
ε .

Note that the first statement (a) of Theorem 2.4 covers the nonconvex case of Nguyen et al.

(2019) by fixing step-size η̂t = η̂ = 2
L(1+

√
4m+1)

. However, this constant step-size is rather small

if m ≤ O (n) is large. Hence, it is better to update η̂t dynamically increasing as in (2.38), where

η̂m = 1
L is a large step-size. In addition, Nguyen et al. (2019) only study the finite-sum problem,

while we also consider the expectation setting (St-OPT).

Again, combining the first statement (a) of Theorem 2.4 and the complexity lower bound

in Fang et al. (2018), we conclude that this variant still achieves a nearly-optimal complexity

O
(
n1/2ε−2

)
for the non-composite finite-sum problem in (FS-OPT) to find an ε-stationary point

in expectation if n ≤ O
(
ε−4
)
. In Statement (b), if σ > 8L[f(w̃0)−f?]

ε , then the complexity of our

method is O
(
σ2ε−2 + σε−3

)
due to the gradient snapshot of the size b = O

(
σ2ε−2

)
to evaluate

v
(s)
0 . Note that this complexity matches the lower bound in Arjevani et al. (2019).

34

2.5 Numerical experiments

We present three numerical examples to illustrate our theory and compare our methods

with state-of-the-art algorithms in the literature. We implement 8 different variants of our

ProxSARAH algorithm:

• ProxSARAH-v1: Single sample and fixed step-sizes γ :=
√

2
L
√

3m
and η := 2

√
3m

4
√

3m+
√

2
.

• ProxSARAH-v2: γ := 0.95 and mini-batch size b̂ :=
⌊√n
C

⌋
and m := b

√
nc.

• ProxSARAH-v3: γ := 0.99 and mini-batch size b̂ :=
⌊√n
C

⌋
and m := b

√
nc.

• ProxSARAH-v4: γ := 0.95 and mini-batch size b̂ :=
⌊
n

1
3

C

⌋
and m := bn

1
3 c.

• ProxSARAH-v5: γ := 0.99 and mini-batch size b̂ :=
⌊
n

1
3

C

⌋
and m := bn

1
3 c.

• ProxSARAH-A-v1: Single sample (i.e., b̂ = 1), and dynamic step-sizes.

• ProxSARAH-A-v2: γm := 0.99 and mini-batch size b̂ := b
√
nc and m := b

√
nc.

• ProxSARAH-A-v3: γm := 0.99 and mini-batch size b̂ := bn
1
3 c and m := bn

1
3 c.

Here, C is given in Section 2.3.4. We also implement 4 other algorithms:

• ProxSVRG: The proximal SVRG algorithm in Reddi et al. (2016b) for single sample with

theoretical step-size η = 1
3nL , and for the mini-batch case with b̂ := bn2/3c, the epoch

length m := bn1/3c, and the step-size η := 1
3L .

• ProxSpiderBoost: The proximal SpiderBoost method in Wang et al. (2019) with b̂ := b
√
nc,

m := b
√
nc, and step-size η := 1

2L .

• ProxSGD: Proximal stochastic gradient descent scheme (Ghadimi and Lan, 2013) with

step-size ηt :=
η0

1+η̃bt/nc , where η0>0 and η̃≥0 will be given in each example.

• ProxGD: Standard proximal gradient descent algorithm with step-size η := 1
L .

All algorithms are implemented in Python running on a single node of a Linux server (called

Longleaf) with configuration: 3.40GHz Intel processors, 30M cache, and 256GB RAM. For the

neural network example, we implement these algorithms in TensorFlow (Abadi et al., 2016)

running on a GPU system. The code is available online at

https://github.com/unc-optimization/StochasticProximalMethods.

To be fair for comparison, we compute the norm of gradient mapping ‖Gη(w(s)
t)‖ for visualization

at the same value η := 0.5 in all methods. To compute the relative loss residuals F (w̃T)−F ∗
|F ∗| , we

35

https://www.tensorflow.org
https://github.com/unc-optimization/StochasticProximalMethods

use F ∗ := min
{
F̃ ∗j | j

}
as the minimum loss values F̃ ∗j generated by all algorithms. To increase

the readability of figures, we only plot the performance of some representative variants among

the 8 instead of reporting them all. We run the first and second examples for 20 and 30 epochs,

respectively whereas we increase it up to 150 and 300 epochs in the last example. Several data

sets used in this section are from Chang and Lin (2011)2. Two other well-known data sets are

mnist3 and fashion mnist4.

2.5.1 Nonnegative principal component analysis

We reconsider the problem of non-negative principal component analysis (NN-PCA) studied

in Reddi et al. (2016b). More precisely, for a given set of samples {zi}ni=1 in Rd, we solve the

following constrained nonconvex problem:

f? := min
w∈Rd

{
f(w) := − 1

2n

n∑
i=1

w>(ziz
>
i)w | ‖w‖ ≤ 1, w ≥ 0

}
. (2.42)

By defining fi(w) := −1
2w
>(ziz

>
i)w for i = 1, · · · , n, and ψ(w) := δX (w), the indicator of

X :=
{
w ∈ Rd | ‖w‖ ≤ 1, w ≥ 0

}
, we can formulate (2.42) into (FS-OPT). Moreover, since zi is

normalized, the Lipschitz constant of ∇fi is L = 1 for i = 1, · · · , n. Since (2.42) is nonconvex,

it may have different stationary points. For a given algorithm to approximate a good stationary

point of (2.42), it crucially depends on initial point. Following Reddi et al. (2016b), we use

ProxSGD to generate an initial point and use it for all algorithms.

(a) Small and medium data sets: We test all the algorithms on three different well-known

data sets: mnist (n = 60000, d = 784), rcv1-binary (n = 20242, d = 47236), and real-sim

(n = 72309, d = 20958). In ProxSGD, after manipulating different values, we set η0 := 0.1 and

η̃ := 1.0 that allow us to obtain good performance.

Experiment 1 (Single sample comparison): We first verify our theory by running 5 algorithms

with single sample (i.e., b̂ = 1). The relative objective residuals and the absolute norm of

gradient mappings of these algorithms after 20 epochs are plotted in Figure 2.1.

2Available online at https://www.csie.ntu.edu.tw/∼cjlin/libsvm/

3Available online at http://yann.lecun.com/exdb/mnist/

4Available online at https://github.com/zalandoresearch/fashion-mnist

36

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist

Number of effective passes
0 5 10 15 20

T
ra
in
in
g
L
os
s:

F
(w̃

T
)−

F
⋆

|F
⋆
|

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

Training Loss: mnist

ProxSARAH-v1
ProxSARAH-A-v1
ProxSVRG
ProxSGD
ProxGD

Number of effective passes
0 5 10 15 20

T
ra
in
in
g
L
os
s:

F
(w̃

T
)−

F
⋆

|F
⋆
|

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

Training Loss: rcv1_train.binary

ProxSARAH-v1
ProxSARAH-A-v1
ProxSVRG
ProxSGD
ProxGD

Number of effective passes
0 5 10 15 20

T
ra
in
in
g
L
o
ss
:

F
(w̃

T
)−

F
⋆

|F
⋆
|

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

Training Loss: real-sim

ProxSARAH-v1
ProxSARAH-A-v1
ProxSVRG
ProxSGD
ProxGD

Number of effective passes
0 5 10 15 20

N
or
m

of
G
ra
d
ie
n
t
M
ap

p
in
g
‖G

η
(w̃

T
)‖

10
-15

10
-10

10
-5

Norm of Gradient Mapping: mnist

ProxSARAH-v1
ProxSARAH-A-v1
ProxSVRG
ProxSGD
ProxGD

Number of effective passes
0 5 10 15 20

N
or
m

of
G
ra
d
ie
n
t
M
ap

p
in
g
‖G

η
(w̃

T
)‖

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

Norm of Gradient Mapping: rcv1_train.binary

ProxSARAH-v1
ProxSARAH-A-v1
ProxSVRG
ProxSGD
ProxGD

Number of effective passes
0 5 10 15 20

N
or
m

of
G
ra
d
ie
n
t
M
ap

p
in
g
‖G

η
(w̃

T
)‖

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

Norm of Gradient Mapping: real-sim

ProxSARAH-v1
ProxSARAH-A-v1
ProxSVRG
ProxSGD
ProxGD

Figure 2.1: The objective value residuals and gradient mapping norms of (2.42) on three data
sets: mnist, rcv1-binary, and real-sim.

Figure 2.1 shows that both ProxSARAH-v1 and its dynamic variant work really well and

dominate all other methods. ProxSARAH-A-v1 is still better than ProxSARAH-v1. ProxSVRG

is slow since its theoretical step-size 1
3nL is too small.

Experiment 2 (The effect of mini-batch sizes on ProxSARAH): In this experiment, we

evaluate the effect of mini-batch sizes on the performance of ProxSARAH by running Prox-

SARAH on these data sets with different mini-batch sizes. We choose b̂ among 6 values

{n1/2, 0.75n1/2, 0.5n1/2, 0.25n1/2, 0.1n1/2, 0.05n1/2}. The results are shown in Figure 2.2.

As we can see from Figure 2.2 that the performance of each particular batch-size varies

between data sets. Variants with larger mini-batch sizes work well in the mnist data set while

variants with smaller mini-batch sizes are better in rcv1 train.binary and real-sim. It is

unclear for our methods to show that a larger mini-batch size leads to a better performance

or vice versa. Therefore, to achieve the best performance, a search over mini-batch size is

recommended for each particular data set.

37

0 5 10 15 20

10
-15

10
-10

10
-5

Training Loss: mnist

0 5 10 15 20

10
-15

10
-10

10
-5

Training Loss: rcv1_train.binary

0 5 10 15 20

10
-15

10
-10

10
-5

Training Loss: real-sim

0 5 10 15 20

10
-15

10
-10

10
-5

10
0

Norm of Gradient Mapping: mnist

0 5 10 15 20

10
-10

10
-5

Norm of Gradient Mapping: rcv1_train.binary

0 5 10 15 20
10

-15

10
-10

10
-5

Norm of Gradient Mapping: real-sim

Figure 2.2: The relative objective residuals and the norms of gradient mappings of Prox-
SARAH algorithms with different mini-batch sizes for solving (2.42) on three data sets: mnist,
rcv1-binary, and real-sim.

Experiment 3 (Mini-batch comparison): Next, we run all the mini-batch variants of the

methods described above to solve (2.42). The relative objective residuals and the norms of

gradient mapping are plotted in Figure 2.3.

From Figure 2.3, we observe that ProxSpiderBoost works well since it has a large step-

size η = 1
2L , and it is comparable with ProxSARAH-A-v2. The variants with b̂ = O

(
n

1
3

)
of ProxSARAH and ProxSARAH-A perform well for mnist data set while the variants with

b̂ = O
(
n

1
2

)
are better for the other two data sets. Although ProxSVRG takes η = 1

3L , its choice

of batch-size and epoch length also affects the performance resulting in a slower convergence.

ProxSGD has good progress at early stage but then its relative objective residual is saturated

around 10−5 accuracy. Also, its gradient mapping norms do not significantly decrease as in

ProxSARAH variants or ProxSpiderBoost. Note that ProxSARAH variants with large step-size

γ (e.g., γ = 0.99) are very similar to ProxSpiderBoost which results in resemblance in their

performance.

38

0 5 10 15 20

10
-15

10
-10

10
-5

Training Loss: mnist

0 5 10 15 20

10
-10

10
-8

10
-6

10
-4

Training Loss: rcv1_train.binary

0 5 10 15 20

10
-10

10
-5

Training Loss: real-sim

0 5 10 15 20

10
-15

10
-10

10
-5

10
0

Norm of Gradient Mapping: mnist

0 5 10 15 20

10
-6

10
-5

10
-4

10
-3

10
-2

Norm of Gradient Mapping: rcv1_train.binary

0 5 10 15 20

10
-6

10
-4

Norm of Gradient Mapping: real-sim

Figure 2.3: The relative objective residuals and the norms of gradient mappings of 5 algorithms
for solving (2.42) on three data sets: mnist, rcv1-binary, and real-sim.

(b) Large data sets: Now, we test these algorithms on larger data sets: url combined

(n = 2, 396, 130; d = 3, 231, 961), news20.binary (n = 19, 996; d = 1, 355, 191), and avazu-app

(n = 14, 596, 137; d = 999, 990). The relative objective residuals and the absolute norms of

gradient mapping of this experiment are depicted in Figure 2.4.

Experiment 4 (Mini-batch comparison on large data sets): Figure 2.4 shows that ProxSARAH

variants still work well and depend on the data set in which ProxSARAH-A-v2 or the variants

with b̂ = O(n
1
3) dominates other algorithms. In this experiment, ProxSpiderBoost gives

smaller gradient mapping norms for url combined and avazu-app in the last epochs than the

others. However, these algorithms have achieved up to 10−13 accuracy in absolute values, the

improvement of ProxSpiderBoost may not be necessary. With the same step-size as in the

previous test, ProxSGD performs quite poorly on these three data sets, and we did not report

its performance here.

39

0 5 10 15 20

1e-15

1e-12

1e-9

1e-6

Training Loss: url_combined

0 5 10 15 20

1e-15

1e-12

1e-9

1e-6

1e-3

Training Loss: news20.binary

0 5 10 15 20

1e-15

1e-12

1e-9

1e-6

Training Loss: avazu-app

0 5 10 15 20

1e-15

1e-12

1e-9

1e-6

1e-3

Norm of Gradient Mapping: url_combined

0 5 10 15 20

1e-12

1e-9

1e-6

1e-3

1e-2

Norm of Gradient Mapping: news20.binary

0 5 10 15 20

1e-15

1e-12

1e-9

1e-6

1e-3

Norm of Gradient Mapping: avazu-app

Figure 2.4: The relative objective residuals and the absolute gradient mapping norms of 4
algorithms for solving (2.42) on three data sets: url combined, news20.binary, and avazu-app.

2.5.2 Sparse binary classification with nonconvex losses

We consider the following sparse binary classification involving nonconvex loss function:

min
w∈Rd

{
F (w) :=

1

n

n∑
i=1

`(a>i w, bi) + λ‖w‖1

}
, (2.43)

where {(ai, bi)}ni=1 ⊂ Rd × {−1, 1}n is a given training data set, λ > 0 is a regularization

parameter, and `(·, ·) is a given smooth and nonconvex loss function as studied in Zhao et al.

(2010). By setting fi(w) := `(a>i w, bi) and ψ(w) := λ‖w‖1 for i ∈ [n], we obtain (FS-OPT).

The loss function ` is chosen from one of the following three cases (Zhao et al., 2010):

• Normalized sigmoid loss: `1(s, τ) := 1−tanh(ωτs) for a given ω > 0. Since
∣∣∣d2`1(s,τ)

ds2

∣∣∣ ≤
8(2+

√
3)(1+

√
3)ω2τ2

(3+
√

3)2
and |τ | = 1, we can show that `1(·, τ) is L-smooth with respect to s,

where L := 8(2+
√

3)(1+
√

3)ω2

(3+
√

3)2
≈ 0.7698ω2.

• Nonconvex loss in 2-layer neural networks: `2(s, τ) :=
(

1− 1
1+exp(−τs)

)2
. For this

function, we have
∣∣∣d2`2(s,τ)

ds2

∣∣∣ ≤ 0.15405τ2. If |τ | = 1, then this function is also L-smooth

with L = 0.15405.

40

• Logistic difference loss: `3(s, τ) := ln(1 + exp(−τs))− ln(1 + exp(−τs− ω)) for some

ω > 0. With ω = 1, we have |d
2`3(s,τ)
ds2

| ≤ 0.092372τ2. Therefore, if |τ | = 1, then this

function is also L-smooth with L = 0.092372.

We set the regularization parameter λ := 1
n in all the tests, which gives us relatively sparse

solutions. We test the above algorithms on different scenarios ranging from small to large data

sets, where we use 6 different data sets from LIBSVM.

(a) Small and medium data sets: We consider three small to medium data sets: rcv1.binary

(n = 20, 242, d = 47, 236), real-sim (n = 72, 309, d = 20, 958), and epsilon (n = 400, 000,

d = 2, 000).

Number of effective passes
0 5 10 15 20 25 30

T
ra
in
in
g
L
os
s:

F
(w̃

T
)−

F
⋆

|F
⋆
|

10
-2

10
-1

10
0

Training Loss: rcv1_train.binary

ProxSARAH-v1
ProxSARAH-A-v1
ProxSVRG
ProxSGD
ProxGD

Number of effective passes
0 5 10 15 20 25 30

T
ra
in
in
g
L
os
s:

F
(w̃

T
)−

F
⋆

|F
⋆
|

10
-2

10
-1

10
0

Training Loss: real-sim

ProxSARAH-v1
ProxSARAH-A-v1
ProxSVRG
ProxSGD
ProxGD

Number of effective passes
0 5 10 15 20 25 30

T
ra
in
in
g
L
os
s:

F
(w̃

T
)−

F
⋆

|F
⋆
|

10
-2

10
-1

10
0

Training Loss: epsilon

ProxSARAH-v1
ProxSARAH-A-v1
ProxSVRG
ProxSGD
ProxGD

Number of effective passes
0 5 10 15 20 25 30

N
or
m

of
G
ra
d
ie
n
t
M
ap

p
in
g
‖G

η
(w̃

T
)‖

10
-3

10
-2

Norm of Gradient Mapping: rcv1_train.binary

ProxSARAH-v1
ProxSARAH-A-v1
ProxSVRG
ProxSGD
ProxGD

Number of effective passes
0 5 10 15 20 25 30

N
or
m

of
G
ra
d
ie
n
t
M
ap

p
in
g
‖G

η
(w̃

T
)‖

10
-3

10
-2

Norm of Gradient Mapping: real-sim

ProxSARAH-v1
ProxSARAH-A-v1
ProxSVRG
ProxSGD
ProxGD

Number of effective passes
0 5 10 15 20 25 30

N
or
m

o
f
G
ra
d
ie
n
t
M
ap

p
in
g
‖G

η
(w̃

T
)‖

10
-3

10
-2

Norm of Gradient Mapping: epsilon

ProxSARAH-v1

ProxSARAH-A-v1

ProxSVRG

ProxSGD

ProxGD

Figure 2.5: The relative objective residuals and gradient mapping norms of (2.43) on three data
sets using the loss `2(s, τ) - The single sample case.

Experiment 5 (Singe sample comparison on (2.43)): Figure 2.5 shows the relative objective

residuals and the gradient mapping norms on these three data sets for the loss function `2(·) in

the single sample case. Similar to the first example, ProxSARAH-v1 and its dynamic variant

work well, whereas ProxSARAH-A-v1 is better. ProxSVRG is still slow due to small step-size.

ProxSGD appears to be better than ProxSVRG and ProxGD within 30 epochs.

41

Now, we test the loss function `2(·) with the mini-batch variants using the same three data

sets. Figure 2.6 shows the results on these data sets.

0 5 10 15 20 25 30

1e-2

1e-1

Training Loss: rcv1_train.binary

0 5 10 15 20 25 30

10
-2

10
-1

Training Loss: real-sim

0 5 10 15 20 25 30

10
-2

10
-1

Training Loss: epsilon

0 5 10 15 20 25 30

2e-3

5e-3

1e-2

Norm of Gradient Mapping: rcv1_train.binary

0 5 10 15 20 25 30

1e-3

5e-3

1e-2

Norm of Gradient Mapping: real-sim

0 5 10 15 20 25 30

1e-3

5e-3

1e-2
Norm of Gradient Mapping: epsilon

Figure 2.6: The relative objective residuals and gradient mapping norms of (2.43) on three data
sets using the loss `2(s, τ) - The mini-batch case.

We can see that ProxSARAH-A-v2 is the most effective algorithm whereas ProxSpiderBoost

also performs well due to large step-size as discussed. ProxSVRG remains slow in this test.

Notice that ProxSARAH dynamic variants normally perform better than their corresponding

fixed step-size variants in this experiment. Additionally, ProxSARAH-A-v2 still preserves the

best-known complexity O
(
n+ n1/2ε−2

)
.

Experiment 6 (Mini-batch comparison on (2.43)): To further illustrate the advantage of the

increasing step-size, we run ProxSARAH and ProxSARAH-A with different mini-batch sizes

and select the top two variants of each for comparison when applying to solve (2.43) using the

loss function `2. Their results along with the chosen mini-batch sizes are depicted in Figure 2.7.

We can see that ProxSARAH-A performs better than ProxSARAH in all three data sets which

confirms the advantage of the dynamic step-size scheme.

42

0 5 10 15 20
10

-3

10
-2

10
-1

Training Loss: w8a

0 5 10 15 20
10

-2

10
-1

Training Loss: rcv1_train.binary

0 5 10 15 20

10
-2

10
-1

Training Loss: real-sim

0 5 10 15 20

10
-3

10
-2

10
-1

Norm of Gradient Mapping: w8a

0 5 10 15 20

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018
Norm of Gradient Mapping: rcv1_train.binary

0 5 10 15 20

10
-2

Norm of Gradient Mapping: real-sim

Figure 2.7: The relative objective residuals and gradient mapping norms of (2.43) on three data
sets using the loss `2(s, τ).

(b) Large data sets: Next, we test these algorithms on three large data sets: url combined

(n = 2, 396, 130, d = 3, 231, 961), avazu-app (n = 14, 596, 137, d = 999, 990), and kddb-raw

(n = 19, 264, 097, d = 3, 231, 961).

Experiment 7 (Mini-batch comparison on large data sets): Since we use large data sets, we

only test the mini-batch variants. Figure 2.8 presents the results on these data sets.

Again, we can observe from Figure 2.8 that, ProxSARAH-A-v2 achieves the best performance.

ProxSpiderBoost also works well in this experiment while ProxSVRG are comparable with

ProxSARAH-v1 and ProxSARAH-v2. ProxSGD also has good performance but is not as good

as ProxSpiderBoost and ProxSARAH variants.

The complete results on these three data sets with three loss functions are presented in

Table 2.2. Apart from the relative objective residuals and gradient mapping norms, the table

consists of both training and test accuracies where we use 10% of the data set to evaluate the

testing accuracy.

Among three loss functions, the loss `2 gives the best training and testing accuracy. The

accuracy is consistent with the result reported in Zhao et al. (2010). ProxSGD seems to give

43

0 5 10 15 20 25 30

10
-3

10
-2

10
-1

Training Loss: url_combined

0 5 10 15 20 25 30

10
-2

10
-1

Training Loss: kddb-raw

0 5 10 15 20 25 30

10
-5

10
-4

10
-3

10
-2

10
-1

Training Loss: avazu-app

0 5 10 15 20 25 30

10
-3

10
-2

10
-1

Norm of Gradient Mapping: url_combined

0 5 10 15 20 25 30

10
-4

10
-3

10
-2

10
-1

Norm of Gradient Mapping: kddb-raw

0 5 10 15 20 25 30
10

-5

10
-4

10
-3

10
-2

10
-1

Norm of Gradient Mapping: avazu-app

Figure 2.8: The relative objective residuals and gradient mapping norms of (2.43) on three large
data sets using the loss `2(s, τ) - The mini-batch case.

Algorithms
‖Gη(w̃T)‖2 (F (wT)− F ∗)/|F ∗| Training Accuracy Test Accuracy

`1-Loss `2-Loss `3-Loss `1-Loss `2-Loss `3-Loss `1-Loss `2-Loss `3-Loss `1-Loss `2-Loss `3-Loss

url combined (n = 2, 396, 130, d = 3, 231, 961)

ProxSARAH-v2 2.534e-06 5.827e-08 1.181e-07 1.941e-01 1.397e-02 8.092e-02 0.965 0.9684 0.9657 0.9636 0.9672 0.9646
ProxSARAH-v3 2.772e-06 5.515e-08 1.110e-07 2.065e-01 9.149e-03 7.399e-02 0.965 0.9685 0.9658 0.9635 0.9673 0.9647
ProxSARAH-v4 1.252e-05 6.003e-06 1.433e-05 4.749e-01 8.210e-01 1.597e+00 0.962 0.9617 0.9558 0.9614 0.9607 0.9528
ProxSARAH-v5 1.182e-05 5.595e-06 1.346e-05 4.617e-01 7.931e-01 1.546e+00 0.962 0.9617 0.9568 0.9615 0.9609 0.9537
ProxSARAH-A-v2 1.115e-06 4.969e-08 5.215e-08 9.225e-02 1.076e-05 1.268e-05 0.966 0.9687 0.9672 0.9645 0.9676 0.9662
ProxSARAH-A-v3 1.034e-05 3.639e-07 4.555e-07 4.325e-01 1.946e-01 2.619e-01 0.962 0.9644 0.9634 0.9616 0.9631 0.9625
ProxSpiderBoost 1.375e-06 6.454e-08 7.158e-08 1.178e-01 2.274e-02 2.947e-02 0.965 0.9681 0.9664 0.9641 0.9669 0.9653
ProxSVRG 7.391e-03 2.043e-04 2.697e-04 2.196e+00 1.091e+00 1.490e+00 0.958 0.9601 0.9595 0.9570 0.9585 0.9579
ProxSGD 5.005e-07 2.340e-07 5.963e-07 4.446e-03 1.406e-01 3.062e-01 0.968 0.9651 0.9633 0.9667 0.9637 0.9624

avazu-app (n = 14, 596, 137, d = 999, 990)

ProxSARAH-v2 8.647e-09 1.053e-08 5.074e-10 4.354e-04 1.958e-03 1.687e-04 0.883 0.8843 0.8834 0.8615 0.8617 0.8615
ProxSARAH-v3 9.757e-09 9.792e-09 4.776e-10 4.615e-04 1.397e-03 1.554e-04 0.883 0.8844 0.8834 0.8615 0.8617 0.8615
ProxSARAH-v4 9.087e-08 3.179e-07 1.841e-07 1.738e-03 5.102e-02 9.816e-03 0.883 0.8834 0.8834 0.8615 0.8615 0.8615
ProxSARAH-v5 8.568e-08 3.029e-07 1.702e-07 1.675e-03 5.036e-02 9.433e-03 0.883 0.8834 0.8834 0.8615 0.8615 0.8615
ProxSARAH-A-v2 3.062e-09 8.724e-09 1.814e-10 2.046e-04 5.467e-07 1.388e-08 0.883 0.8844 0.8834 0.8615 0.8617 0.8615
ProxSARAH-A-v3 7.784e-08 5.124e-08 4.405e-09 1.604e-03 2.499e-02 1.223e-03 0.883 0.8834 0.8834 0.8615 0.8615 0.8615
ProxSpiderBoost 4.050e-09 1.152e-08 2.579e-10 2.626e-04 3.090e-03 5.073e-05 0.883 0.8842 0.8834 0.8615 0.8617 0.8615
ProxSVRG 4.218e-03 1.309e-03 1.202e-04 3.137e-01 4.287e-01 2.031e-01 0.883 0.8648 0.8834 0.8615 0.8146 0.8615
ProxSGD 9.063e-10 2.839e-08 3.150e-09 6.449e-06 1.595e-02 9.536e-04 0.883 0.8835 0.8834 0.8615 0.8616 0.8615

kddb-raw (n = 19, 264, 097, d = 3, 231, 961)

ProxSARAH-v2 2.013e-08 1.770e-08 5.688e-09 7.235e-04 3.455e-03 4.295e-03 0.862 0.8654 0.8619 0.8531 0.8560 0.8534
ProxSARAH-v3 2.168e-08 1.669e-08 6.105e-09 7.903e-04 2.275e-03 3.741e-03 0.862 0.8655 0.8619 0.8530 0.8561 0.8534
ProxSARAH-v4 2.265e-07 4.066e-07 2.796e-07 3.862e-03 9.196e-02 2.203e-02 0.862 0.8617 0.8615 0.8530 0.8533 0.8531
ProxSARAH-v5 2.127e-07 3.943e-07 2.600e-07 3.725e-03 9.098e-02 2.152e-02 0.862 0.8617 0.8615 0.8530 0.8533 0.8531
ProxSARAH-A-v2 7.955e-09 1.490e-08 2.830e-09 2.106e-04 8.502e-07 2.829e-03 0.862 0.8656 0.8621 0.8531 0.8562 0.8536
ProxSARAH-A-v3 1.951e-07 1.036e-07 9.293e-09 3.539e-03 4.887e-02 9.223e-03 0.862 0.8627 0.8616 0.8530 0.8544 0.8531
ProxSpiderBoost 9.867e-09 1.906e-08 6.889e-09 3.082e-04 5.249e-03 5.026e-07 0.862 0.8652 0.8619 0.8531 0.8559 0.8534
ProxSVRG 1.225e-02 1.105e-03 5.040e-04 3.541e-01 3.471e-01 2.780e-01 0.860 0.8611 0.8599 0.8518 0.8529 0.8519
ProxSGD 6.027e-09 8.899e-08 1.331e-08 2.593e-05 4.320e-02 9.937e-03 0.862 0.8629 0.8616 0.8530 0.8546 0.8531

Table 2.2: The results of 9 algorithms on three data sets: url combined, avazu-app, and kddb-raw.

44

good results on the `1-loss, but ProxSARAH-A-v2 is the best for the `2 and `3-losses in the

majority of the test.

2.5.3 Feedforward neural network training

We consider the following composite nonconvex optimization model arising from a feedforward

neural network configuration:

min
w∈Rd

{
F (w) :=

1

n

n∑
i=1

`
(
h(w, ai), bi

)
+ ψ(w)

}
, (2.44)

where we concatenate all the weight matrices and bias vectors of the neural network in one vector

of variable w, {(ai, bi)}ni=1 is a training data set, h(·) is a composition between all linear transforms

and activation functions as h(w, a) := σl(Wlσl−1(Wl−1σl−2(· · ·σ0(W0a+ µ0) · · ·) + µl−1) + µl),

where Wi is a weight matrix, µi is a bias vector, σi is an activation function, l is the number of

layers, `(·) is the soft-max cross-entropy loss, and ψ is a convex regularizer (e.g., ψ(w) := λ‖w‖1

for some λ > 0 to obtain sparse weights). Again, by defining fi(w) := `(h(w, ai), bi) for i ∈ [n],

we can bring (2.44) into the same composite finite-sum setting (FS-OPT).

We implement our algorithms and other methods in TensorFlow (Abadi et al., 2016) and use

two data sets mnist and fashion mnist to evaluate their performance. In the first experiment,

we use a one-hidden-layer fully connected neural network: 784× 100× 10 for both mnist and

fashion mnist. The activation function σi of the hidden layer is ReLU and the loss function is

soft-max cross-entropy. To estimate the Lipschitz constant L, we normalize the input data. The

regularization parameter λ is set at λ := 1
n and ψ(·) := λ ‖·‖1.

Experiment 8 (784 × 100 × 10 network): We first test ProxSARAH, ProxSVRG, Prox-

SpiderBoost, and ProxSGD using mini-batch. For ProxSGD, we use the mini-batch b̂ = 245,

η0 = 0.1, and η̃ = 0.5 for both data sets. For the mnist data set, we tune L = 1 then follow the

configuration in Section 2.3.4 to choose η, γ, m, and b̂ for ProxSARAH variants. We also tune

the learning rate for ProxSVRG at η = 0.2, and for ProxSpiderBoost at η = 0.12. However, for

the fashion mnist data set, it requires a smaller learning rate. Therefore, we choose L = 4 for

ProxSARAH and follow the theory in Section 2.3.4 to set η, γ, m, and b̂. We also tune the

45

learning rate for ProxSVRG and ProxSpiderBoost until they are stabilized to obtain the best

possible step-size in this example as ηProxSVRG = 0.11 and ηProxSpiderBoost = 0.15, respectively.

Figure 2.9 shows the convergence of different variants of ProxSARAH, ProxSpiderBoost,

ProxSVRG, and ProxSGD on three criteria for mnist and fashion mnist: training loss values,

the absolute norm of gradient mapping, and the test accuracy. For ProxSARAH, we find that

two variants with b̂ = O
(
n

1
2

)
and b̂ = O

(
n

1
3

)
perform well among other choices.

0 50 100 150

0.25

0.5

1

2

3
Training Loss: mnist

0 50 100 150

10
-4

10
-3

10
-2

10
-1

Norm of Gradient Mapping: mnist

0 50 100 150

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

Test Accuracy: mnist

0 50 100 150

0.5

1

1.5

2

2.5

3
Training Loss: fashion_mnist

0 50 100 150

10
-4

10
-3

10
-2

10
-1

Norm of Gradient Mapping: fashion_mnist

0 50 100 150

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
Test Accuracy: fashion_mnist

Figure 2.9: The training loss, gradient mapping, and test accuracy on mnist (top line) and
fashion mnist (bottom line) of 5 algorithms.

In this example, ProxSGD appears to be the best in terms of training loss and test accuracy.

However, the norm of gradient mapping is rather different from others, relatively large, and

oscillated. ProxSVRG is clearly slower than ProxSpiderBoost due to smaller learning rate. The

two variants of ProxSARAH perform relatively well, but the variants with b̂ = O (
√
n) seem

to be slightly better. Note that the norm of gradient mapping tends to be decreasing but still

oscillated since perhaps we are taking the last iterate instead of a random choice of intermediate

iterates as stated in the theory.

46

Experiment 9 (784× 800× 10 network): Finally, we test the above algorithm on mnist using

a 784× 800× 10 network as known to give a better test accuracy. We run all algorithms for 300

epochs and the results are given in Figure 2.10.

0 50 100 150 200 250 300

1

1.5

2

2.5

3

3.5

4

4.5

Training Loss: mnist

0 50 100 150 200 250 300
10

-4

10
-3

10
-2

10
-1

10
0

Norm of Gradient Mapping: mnist

0 50 100 150 200 250 300

0.8

0.85

0.9

0.95

Test Accuracy: mnist

Figure 2.10: The training loss, gradient mapping, and test accuracy on mnist of 5 algorithms
on a 784× 800× 10 neural network (See http://yann.lecun.com/exdb/mnist/).

As we can see from Figure 2.10 that ProxSARAH-v2, ProxSARAH-v3, and ProxSGD

performs really well in terms of training loss and test accuracy. However, our method can achieve

lower as well as less oscillated gradient mapping norm than ProxSGD. Also, ProxSpiderBoost

has similar performance to ProxSARAH-v4 and ProxSARAH-v5. ProxSVRG again does not

have a good performance in this example in terms of loss and test accuracy but is slightly better

than ProxSGD regarding gradient mapping norm.

2.6 Proofs of technical results

Before moving to the proofs of main results, we first introduce a technical lemma that is

useful to prove the convergence of ProxSARAH with dynamic step-size. We also provide the

proof for the properties of stochastic estimators presented in Lemma 2.2.

2.6.1 Technical lemma

This section provides the missing proofs of Lemma 2.2 and one elementary result, Lemma 2.5,

used in our analysis in the sequel.

47

http://yann.lecun.com/exdb/mnist/

Lemma 2.5. Given three positive constants ν, δ, and L, let {γt}mt=0 be a positive sequence

satisfying the following conditions:

Lγm − δ ≤ 0,

νL2γt
∑m

j=t+1 γj − δ + Lγt ≤ 0, t = 0, · · · ,m− 1.

(2.45)

Then, the following statements hold:

(a) The sequence {γt}mt=0 computed recursively in a backward mode as

γm :=
δ

L
, and γt :=

δ

L
[
1 + νL

∑m
j=t+1 γj

] , t = 0, · · · ,m− 1, (2.46)

tightly satisfies (2.45). Moreover, we have δ
L(1+δνm) < γ0 < γ1 < · · · < γm and

Σm :=
m∑
t=0

γt ≥
2δ(m+ 1)

L
[√

1 + 2δνm+ 1
] . (2.47)

(b) The constant sequence {γt}mt=0 with γt := 2δ
L(
√

1+4δνm+1)
satisfies (2.45).

Proof. (a) The sequence {γt}mt=0 given by (2.46) is in fact computed from (2.45) by setting all

the inequalities “≤” to equalities “=”. Hence, it automatically satisfies (2.45). Moreover, it is

obvious that γ0 < γ1 < · · · < γm. Since
∑m

t=1 γt < mγm = mδ
L , we have γ0 >

δ
L(1+δνm) .

Let Σm :=
∑m

t=0 γt. Using Σm into (2.45) with all equalities, we can rewrite it as

νL2γmΣm = δ − Lγm + νL2(γ2
m + γmγm−1 + γmγm−2 + · · ·+ γmγ0)

νL2γm−1Σm = δ − Lγm−1 + νL2(γ2
m−1 + γm−1γm−2 + γm−1γm−3 + · · ·+ γm−1γ0)

· · · · · · · · ·

νL2γ1Σm = δ − Lγ1 + νL2(γ2
1 + γ1γ0)

νL2γ0Σm = δ − Lγ0 + νL2γ2
0 .

Summing up both sides of these equations, and using the definition of Σm and S2
m :=

∑m
t=0 η̂

2
t ,

we obtain

νL2Σ2
m = (m+ 1)δ − LΣm +

νL2

2
(Σ2

m + S2
m).

48

Since (m+ 1)S2
m ≥ Σ2

m by the Cauchy-Schwarz inequality, the last expression leads to

νL2Σ2
m + 2LΣm − 2δ(m+ 1) = νL2S2

m ≥
νL2Σ2

m

m+ 1
.

Therefore, by solving the quadratic inequation νmL2Σ2
m + 2(m+ 1)LΣm − 2δ(m+ 1)2 ≥ 0 in

Σm with Σm > 0, we obtain

Σm ≥
2δ(m+ 1)

L
[
1 +
√

1 + 2δνm
] ,

which is exactly (2.47).

(b) Let γt := γ > 0 for t = 0, · · · ,m. Then (2.45) holds if νL2γ2m− δ + Lγ = 0. Solving this

quadratic equation in γ and noting that γ > 0, we obtain γ = 2δ
L(
√

1+4δνm+1)
.

The proof of Lemma 2.2: Properties of stochastic estimators

Proof. We only prove (2.20), since other statements were proved in Harikandeh et al. (2015);

Lohr (2009); Nguyen et al. (2017b, 2020). The proof of (2.20) for the finite-sum case (FS-OPT)

was also given in Nguyen et al. (2020) but under the L-smoothness of each fi, we conduct this

proof here by following the same path as in Nguyen et al. (2020) for completeness.

Our goal is to prove (2.21) by upper bounding the following quantity:

At := E
[
‖vt − vt−1‖2 | Ft

]
− ‖∇f(wt)−∇f(wt−1)‖2. (2.48)

Let Ft := σ(w
(s)
0 ,B1, · · · ,Bt−1) be the σ-field generated by w

(s)
0 and mini-batches B1, · · · ,Bt−1,

and F0 = F1 = σ(w
(s)
0). If we define Ξi := ∇fi(wt) − ∇fi(wt−1), then using the update rule

49

(2.14), we can upper bound At in (2.48) as

At = E
[
‖ 1
bt

∑
i∈Bt Ξi‖2 | Ft

]
− ‖ 1

n

∑n
i=1 Ξi‖2

= 1
b2t
E
[∑

i∈Bt
∑

j∈Bt〈Ξi,Ξj〉 | Ft
]
− 1

n2

∑n
i=1

∑n
j=1〈Ξi,Ξj〉

= 1
b2t
E
[∑

i,j∈Bt,i 6=j〈Ξi,Ξj〉+
∑

i∈Bt ‖Ξi‖
2 | Ft

]
− 1

n2

∑n
i=1

∑n
j=1〈Ξi,Ξj〉

= 1
b2t

[
bt(bt−1)
n(n−1)

∑n
i,j=1,i 6=j〈Ξi,Ξj〉+ bt

n

∑n
i=1 ‖Ξi‖2

]
− 1

n2

∑n
i=1

∑n
j=1〈Ξi,Ξj〉

= (bt−1)
btn(n−1)

∑n
i,j=1〈Ξi,Ξj〉+ (n−bt)

btn(n−1)

∑n
i=1 ‖Ξi‖2 −

1
n2

∑n
i=1

∑n
j=1〈Ξi,Ξj〉

= (n−bt)
btn(n−1)

∑n
i=1 ‖Ξi‖2 −

(n−bt)
(n−1)bt

‖ 1
n

∑n
i=1 Ξi‖2

= (n−bt)
bt(n−1)

1
n

∑n
i=1 ‖∇fi(wt)−∇fi(wt−1)‖2 − (n−bt)

(n−1)bt
‖∇f(wt)−∇f(wt−1)‖2,

where we use the facts that

E
[∑

i,j∈Bt,i 6=j〈Ξi,Ξj〉 | Ft
]

= bt(bt−1)
n(n−1)

∑n
i,j=1,i 6=j〈Ξi,Ξj〉

and E
[∑

i∈Bt ‖Ξi‖
2 | Ft

]
= bt

n

∑n
i=1 ‖Ξi‖2

in the third line of the above derivation. Rearranging the estimate At, we obtain (2.20).

To prove (2.21), we define Ξi := ∇wf(wt; ξi)−∇wf(wt−1; ξi). Clearly, E [Ξi | Ft] = ∇f(wt)−

∇f(wt−1) and vt − vt−1 = 1
bt

∑
i∈Bt Ξi. Similar to (2.17), we have

E
[
‖(vt − vt−1)− E [Ξi | Ft] ‖2 | Ft

]
= 1

bt
E
[
‖Ξi − E [Ξi | Ft] ‖2 | Ft

]
.

Using the fact that E
[
‖X − E [X] ‖2

]
= E

[
‖X‖2

]
−‖E [X] ‖2, after rearranging, we obtain from

the last expression that

E
[
‖vt − vt−1‖2 | Ft

]
=

(
1− 1

bt

)
‖∇f(wt)−∇f(wt−1)‖2

+ 1
bt
E
[
‖∇wf(wt; ξ)−∇wf(wt−1; ξ)‖2 | Ft

]
,

which is indeed (2.21).

2.6.2 The proof of technical results in Section 2.3

We provide the full proof of the results in Section 2.3.

50

2.6.2.1 The proof of Lemma 2.3: The analysis of the inner loop

Proof. From the update w
(s)
t+1 := (1− γt)w(s)

t + γtŵ
(s)
t+1, we have w

(s)
t+1 − w

(s)
t = γt(ŵ

(s)
t+1 − w

(s)
t).

Firstly, using the L-smoothness of f from (2.4) of Assumption 2.2, we can derive

f(w
(s)
t+1) ≤ f(w

(s)
t) + 〈∇f(w

(s)
t), w

(s)
t+1 − w

(s)
t 〉+ L

2 ‖w
(s)
t+1 − w

(s)
t ‖2

= f(w
(s)
t) + γt〈∇f(w

(s)
t), ŵ

(s)
t+1 − w

(s)
t 〉+

Lγ2t
2 ‖ŵ

(s)
t+1 − w

(s)
t ‖2.

(2.49)

Next, using the convexity of ψ, one can show that

ψ(w
(s)
t+1) ≤ (1− γt)ψ(w

(s)
t) + γtψ(ŵ

(s)
t+1) ≤ ψ(w

(s)
t) + γt〈∇ψ(ŵ

(s)
t+1), ŵ

(s)
t+1 − w

(s)
t 〉, (2.50)

where ∇ψ(ŵ
(s)
t+1) ∈ ∂ψ(ŵ

(s)
t+1).

By the optimality condition of ŵ
(s)
t+1 := proxηtψ(w

(s)
t − ηtv

(s)
t), we have ∇ψ(ŵ

(s)
t+1) = −v(s)

t −
1
ηt

(ŵ
(s)
t+1 − w

(s)
t) for some ∇ψ(ŵ

(s)
t+1) ∈ ∂ψ(ŵ

(s)
t+1). Substituting this expression into (2.50) yields

ψ(w
(s)
t+1) ≤ ψ(w

(s)
t) + γt〈v(s)

t , w
(s)
t − ŵ

(s)
t+1〉 −

γt
ηt
‖ŵ(s)

t+1 − w
(s)
t ‖2. (2.51)

Combining (2.49) and (2.51), and then using F (w) := f(w) + ψ(w) yields

F (w
(s)
t+1) ≤ F (w

(s)
t) + γt〈∇f(w

(s)
t)− v(s)

t , ŵ
(s)
t+1 − w

(s)
t 〉 −

(γt
ηt
− Lγ2

t

2

)
‖ŵ(s)

t+1 − w
(s)
t ‖2. (2.52)

Also, the following expression holds

〈∇f(w
(s)
t)− v(s)

t , ŵ
(s)
t+1 − w

(s)
t 〉 = 1

2‖∇f(w
(s)
t)− v(s)

t ‖2 + 1
2‖ŵ

(s)
t+1 − w

(s)
t ‖2

− 1
2‖∇f(w

(s)
t)− v(s)

t − (ŵ
(s)
t+1 − w

(s)
t)‖2.

From this expression, we can rewrite (2.52) as

F (w
(s)
t+1) ≤ F (w

(s)
t) +

γt
2
‖∇f(w

(s)
t)− v(s)

t ‖2 −
(γt
ηt
− Lγ2

t

2
− γt

2

)
‖ŵ(s)

t+1 − w
(s)
t ‖2 − σ

(s)
t ,

where σ
(s)
t := γt

2 ‖∇f(w
(s)
t)− v(s)

t − (ŵ
(s)
t+1 − w

(s)
t)‖2 ≥ 0.

51

Taking expectation both sides of this inequality over the entire history, we obtain

E
[
F (w

(s)
t+1)

]
≤ E

[
F (w

(s)
t)
]

+ γt
2 E
[
‖∇f(w

(s)
t)− v(s)

t ‖2
]

−
(
γt
ηt
− Lγ2t

2 −
γt
2

)
E
[
‖ŵ(s)

t+1 − w
(s)
t ‖2

]
− E

[
σ

(s)
t

]
.

(2.53)

Next, recall from (1.5) that Gη(w) := 1
η

(
w − proxηψ(w − η∇f(w))

)
is the gradient mapping of

F . In this case, it is obvious that

ηt‖Gηt(w
(s)
t)‖ = ‖w(s)

t − proxηtψ(w
(s)
t − ηt∇f(w

(s)
t))‖.

Using this definition, the triangle inequality, and the nonexpansive property ‖proxηψ(z) −

proxηψ(w)‖ ≤ ‖z − w‖ of proxηψ, we can derive that

ηt‖Gηt(w
(s)
t)‖ ≤ ‖ŵ(s)

t+1 − w
(s)
t ‖+ ‖proxηtψ(w

(s)
t − ηt∇f(w

(s)
t))− ŵ(s)

t+1‖

= ‖ŵ(s)
t+1 − w

(s)
t ‖+ ‖proxηtψ(w

(s)
t − ηt∇f(w

(s)
t))− proxηtψ(w

(s)
t − ηtv

(s)
t)‖

≤ ‖ŵ(s)
t+1 − w

(s)
t ‖+ ηt‖∇f(w

(s)
t)− v(s)

t ‖.

Now, the last estimate leads to

η2
tE
[
‖Gηt(w

(s)
t)‖2

]
≤ 2E

[
‖ŵ(s)

t+1 − w
(s)
t ‖2

]
+ 2η2

tE
[
‖∇f(w

(s)
t)− v(s)

t ‖2
]
.

Multiplying this inequality by γt
2 > 0 and adding the result to (2.53), we finally get

E
[
F (w

(s)
t+1)

]
≤ E

[
F (w

(s)
t)
]
− γtη2t

2 E
[
‖Gηt(w

(s)
t)‖2

]
+ γt

2

(
1 + 2η2

t

)
E
[
‖∇f(w

(s)
t)− v(s)

t ‖2
]

− γt
2

(
2
ηt
− Lγt − 3

)
E
[
‖ŵ(s)

t+1 − w
(s)
t ‖2

]
−E

[
σ

(s)
t

]
.

52

Summing up this inequality from t = 0 to t = m, we obtain

E
[
F (w

(s)
m+1)

]
≤ E

[
F (w

(s)
0)
]

+
1

2

m∑
t=0

γt
(
1 + 2η2

t

)
E
[
‖∇f(w

(s)
t)− v(s)

t ‖2
]

− 1

2

m∑
t=0

γt

(2

ηt
− Lγt − 3

)
E
[
‖ŵ(s)

t+1 − w
(s)
t ‖2

]
−

m∑
t=0

γtη
2
t

2
E
[
‖Gηt(w

(s)
t)‖2

]
−

m∑
t=0

E
[
σ

(s)
t

]
.

(2.54)

We consider two cases:

Case 1: In the finite-sum setting (FS-OPT), i.e., Algorithm 1 solves (FS-OPT), then from

(2.20) of Lemma 2.2, the L-smoothness condition (2.2) in Assumption 2.2, the choice b̂
(s)
t = b̂ ≥ 1,

and w
(s)
j − w

(s)
j−1 = γj−1(ŵ

(s)
j − w

(s)
j−1), we can estimate

E
[
‖v(s)
j − v

(s)
j−1‖2 | Fj

]
(2.20)

= n(b̂−1)

b̂(n−1)
‖∇f(wj)−∇f(wj−1)‖2

+ n−b̂
b̂(n−1)

1
n

∑n
i=1 ‖∇fi(w

(s)
j)−∇fi(w(s)

j−1)‖2.

Using (2.2), we can further bound

E
[
‖v(s)
j − v

(s)
j−1‖2 | Fj

] (2.2)

≤ ‖∇f(wj)−∇f(wj−1)‖2 + (n−b̂)L2

b̂(n−1)
‖w(s)

j − w
(s)
j−1‖2

= ‖∇f(wj)−∇f(wj−1)‖2 +
(n−b̂)L2γ2j−1

b̂(n−1)
‖ŵ(s)

j − w
(s)
j−1‖2.

where the equality comes from the fact that w
(s)
j − w

(s)
j−1 = γj−1(ŵ

(s)
j − w

(s)
j−1).

Case 2: In the expectation setting (St-OPT), i.e., Algorithm 1 solves (St-OPT), then from

(2.21) of Lemma 2.2, we have

E
[
‖v(s)
j − v

(s)
j−1‖2 | Fj

]
(2.21)

=
(

1− 1
b̂

)
‖∇f(wj)−∇f(wj−1)‖2

+ 1
b̂
E
[
‖∇wf(wj ; ξ)−∇wf(wj−1; ξ)‖2 | Fj

]
(2.1)

≤ ‖∇f(wj)−∇f(wj−1)‖2 + L2

b̂
‖w(s)

j − w
(s)
j−1‖2

= ‖∇f(wj)−∇f(wj−1)‖2 +
L2γ2j−1

b̂
‖ŵ(s)

j − w
(s)
j−1‖2.

53

Using either one of the two last inequalities and (2.16), then taking the full expectation yields

E
[
‖∇f(w

(s)
t)− v(s)

t ‖2
]

= E
[
‖∇f(w

(s)
0)− v(s)

0 ‖2
]∑t

j=1 E
[
‖v(s)
j − v

(s)
j−1‖2

]
−
∑t

j=1 E
[
‖∇f(wj)−∇f(wj−1)‖2

]
≤ E

[
‖∇f(w

(s)
0)− v(s)

0 ‖2
]

+ ρL2
∑t

j=1 γ
2
j−1E

[
‖ŵ(s)

j − w
(s)
j−1‖2

]
= σ̄(s) + ρL2

∑t
j=1 γ

2
j−1E

[
‖ŵ(s)

j − w
(s)
j−1‖2

]
,

(2.55)

where σ̄(s) := E
[
‖∇f(w

(s)
0)− v(s)

0 ‖2
]
≥ 0, and ρ := 1

b̂
if Algorithm 1 solves (St-OPT), and

ρ := n−b̂
b̂(n−1)

if Algorithm 1 solves (FS-OPT).

Substituting (2.55) into (2.54) and dropping the term −
m∑
t=0

E
[
σ

(s)
t

]
(≤ 0), we finally arrive at

E
[
F (w

(s)
m+1)

]
≤ E

[
F (w

(s)
0)
]

+ ρL2

2

m∑
t=0

γt
(
1 + 2η2

t

) t∑
j=1

γ2
j−1E

[
‖ŵ(s)

j − w
(s)
j−1‖

2
]

− 1

2

m∑
t=0

γt

(
2

ηt
− Lγt − 3

)
E
[
‖ŵ(s)

t+1 − w
(s)
t ‖2

]
−

m∑
t=0

γtη
2
t

2
E
[
‖Gηt(w

(s)
t)‖2

]
+

1

2

m∑
t=0

γt
(
1 + 2η2

t

)
σ̄(s),

which is exactly (2.23).

2.6.2.2 The Proof of lemma 2.4: The selection of constant step-sizes

Proof. Let us first fix all the step-sizes of Algorithm 1 as constants as follows:

γt := γ ∈ (0, 1] and ηt := η > 0.

We also denote a
(s)
t := E

[
‖ŵ(s)

t+1 − w
(s)
t ‖2

]
≥ 0.

54

Let ρ := 1
b̂

if Algorithm 1 solves (St-OPT) and ρ := n−b̂
b̂(n−1)

if Algorithm 1 solves (FS-OPT).

Using these expressions into (2.23), we can easily show that

E
[
F (w

(s)
m+1)

]
≤ E

[
F (w

(s)
0)
]

+ ρL2γ3

2

(
1 + 2η2

) m∑
t=0

t∑
j=1

a
(s)
j−1

− γ
2

(
2
η − Lγ − 3

) m∑
t=0

a
(s)
t −

γη2

2

m∑
t=0

E
[
‖Gηt(w

(s)
t)‖2

]
+ γ

2

(
1 + 2η2

)
(m+ 1)σ̄(s)

= E
[
F (w

(s)
0)
]
− γη2

2

m∑
t=0

E
[
‖Gηt(w

(s)
t)‖2

]
+ γ

2

(
1 + 2η2

)
(m+ 1)σ̄(s) + Tm,

(2.56)

where Tm is defined as

Tm :=
ρL2γ3

(
1 + 2η2

)
2

m∑
t=0

t∑
j=1

a
(s)
j−1 −

γ

2

(
2

η
− Lγ − 3

) m∑
t=0

a
(s)
t .

Our goal is to choose η > 0, and γ ∈ (0, 1] such that Tm ≤ 0. We first rewrite Tm as follows:

Tm =
ρL2γ3(1+2η2)

2

[
ma

(s)
0 + (m− 1)a

(s)
1 + · · ·+ 2a

(s)
m−2 + a

(s)
m−1

]
− γ

2

(
2
η − Lγ − 3

) [
a

(s)
0 + a

(s)
1 + · · ·+ a

(s)
m

]
.

By synchronizing the coefficients of the terms a
(s)
0 , a

(s)
1 , · · · , a(s)

m , to guarantee Tm ≤ 0, we need

to satisfy
ρ
(
1 + 2η2

)
L2γ2m−

(
2
η − Lγ − 3

)
≤ 0,

2
η − Lγ − 3 ≥ 0.

(2.57)

Assume that 2
η − Lγ − 3 = 1 > 0. This implies that η = 2

Lγ+4 . Next, since Lγ > 0, we have

η ≤ 1
2 . Therefore, we can upper bound

ρL2γ2m(1 + 2η2)−
(

2

η
− Lγ − 3

)
≤ 3ρL2γ2m

2
− 1 = 0.

55

The last equation and η = 2
Lγ+4 lead to

γ :=
1

L
√
ωm

and η :=
2
√
ωm

4
√
ωm+ 1

,

which is exactly (2.24), where ω := 3(n−b̂)
2b̂(n−1)

for (FS-OPT) and ω := 3
2b̂

for (St-OPT).

Finally, using this choice (2.24) of the step-sizes, we can derive that

E
[
F (w

(s)
m+1

]
≤ E

[
F (w

(s)
0)
]
− γη2

2

m∑
t=0

E
[
‖Gη(w(s)

t)‖2
]

+
γθ

2
(m+ 1)σ̄(s), (2.58)

which is exactly (2.25), where θ := 1 + 2η2 ≤ 3
2 .

2.6.2.3 The proof of Theorem 2.1: The dynamic step-size case

Proof. Let βt := γt
(
1 + 2η2

t

)
and κt := γt

(
2
ηt
− Lγt − 3

)
. From (2.23) of Lemma 2.3 we have

E
[
F (w

(s)
m+1)

]
≤ E

[
F (w

(s)
0)
]
−

m∑
t=0

γtη
2
t

2
E
[
‖Gηt(w

(s)
t)‖2

]
+

1

2
σ̄(s)

(m∑
t=0

βt

)
+ Tm, (2.59)

where we define

Tm :=
L2(n− b̂)
2b̂(n− 1)

m∑
t=0

βt

t∑
j=1

γ2
j−1E

[
‖ŵ(s)

j − w
(s)
j−1‖

2
]
− 1

2

m∑
t=0

κtE
[
‖ŵ(s)

t+1 − w
(s)
t ‖2

]
.

Now, to guarantee Tm ≤ 0, let us choose all the parameters such that

κm = 0,

(n−b̂)
b̂(n−1)

L2γ2
t

∑m
j=t+1 βj − κt = 0, t = 0, · · · ,m− 1.

(2.60)

Then, (2.59) becomes

E
[
F (w

(s)
m+1)

]
≤ E

[
F (w

(s)
0)
]
−

m∑
t=0

stη
2
t

2
E
[
‖Gηt(w

(s)
t)‖2

]
+

1

2

m∑
t=0

βtσ̄
(s). (2.61)

56

If we fix ηt = η ∈ (0, 2
3), and define δ := 2

η − 3 > 0, then (2.60) reduces to

δ − Lγm = 0,

L2(n−b̂)(1+2η2)

b̂(n−1)
γt
∑m

j=t+1 γj − δ + Lγt = 0, t = 0, · · · ,m− 1.

(2.62)

Applying Lemma 2.5(a) with ν = ωη := (n−b̂)(1+2η2)

b̂(n−1)
, we obtain from (2.62) that

γm :=
δ

L
, and γt :=

δ

L
[
1 + ωηL

∑m
j=t+1 γj

] , t = 0, · · · ,m− 1. (2.63)

Moreover, we have

δ

L(1 + ωηδm)
< γ0 < γ1 < · · · < γm, and Σm :=

m∑
t=0

γt ≥
2δ(m+ 1)

L(
√

2ωηδm+ 1 + 1)
,

which proves (2.28).

On the other hand, since σ̄(s) := E
[
‖∇f(w

(s)
0)− v(s)

0 ‖2
]

= E
[
‖∇̃fBs(w̃s−1)−∇f(w̃s−1)‖2

]
,

by using (2.18), we have σ̄(s) ≤
(
n−bs
nbs

)
σ2
n(w̃s−1). Using this upper bound and βt := γt(1+2η2) ≤

3γt
2 ≤

3
2 (since γt ∈ [0, 1]), into the estimate (2.61), we can arrive at

1

SΣm

S∑
s=1

m∑
t=0

γtE
[
‖Gη(w(s)

t)‖2
]
≤ 2

η2SΣm

[
F (w̃0)− F ?

]
+

3

2η2S

S∑
s=1

(n− bs)σ2
n(w̃s−1)

nbs
,

which is exactly (2.29). Now, let us choose η := 1
2 ∈ (0, 2

3). Then, we have δ = 1, ωη = 3(n−b̂)
2b̂(n−1)

,

and Σm ≥ 2δ(m+1)

L(
√

2ωηm+1+1)
.

Using these facts, w̃T ∼ Up

(
{w(s)

t }s=1→S
t=0→m

)
with Prob

(
w̃T = w

(s)
t

)
= p(s−1)m+t := γt

SΣm
,

and bs = n, we obtain from (2.29) that

E
[
‖Gη(w̃T)‖2

]
=

1

SΣm

S∑
s=1

m∑
t=0

γtE
[
‖Gη(w(s)

t)‖2
]
≤ 4L(

√
2ωm+ 1 + 1)

S(m+ 1)

[
F (w̃0)− F ?

]
.

Next, using m = bn
b̂
c and ω := ωη = 3(n−b̂)

2b̂(n−1)
, if b̂ ≤

√
n, then we can bound

√
2ωm+ 1 + 1

m+ 1
≤ 2

√
ω√

m+ 1
≤
√

6√
n
.

57

Using this bound, we can further bound the above estimate obtained from (2.29) as

E
[
‖Gη(w̃T)‖2

]
≤ 4
√

6L [F (w̃0)− F ?]
S
√
n

,

which is (2.30).

To achieve E
[
‖Gη(w̃T)‖2

]
≤ ε2, we impose 4

√
6L[F (w̃0)−F ?]

S
√
n

= ε2, which shows that the num-

ber of outer iterations S := 4
√

6L[F (w̃0)−F ?]√
nε2

. To guarantee S ≥ 1, we need n ≤ 96L2[F (w̃0)−F ?]2

ε4
.

Hence, we can estimate the number of gradient evaluations Tgrad by

Tgrad = Sn+ 2S(m+ 1)b̂ ≤ 5Sn =
20
√

6L
√
n [F (w̃0)− F ?]
ε2

.

We can conclude that the number of stochastic gradient evaluations does not exceed Tgrad =

O
(
L
√
n[F (w̃0)−F ?]

ε2

)
. The number of proximal operations proxηψ does not exceed Tprox :=

S(m+ 1) ≤ 4
√

6(
√
n+1)L[F (w̃0)−F ?]

b̂ε2
.

2.6.2.4 The proof of Theorem 2.2: The constant step-size case

Proof. If we choose (γt, ηt) = (γ, η) > 0 for all t = 0, · · · ,m, then, by applying Lemma 2.4, we

can update

γ :=
1

L
√
ωm

and η :=
2
√
ωm

4
√
ωm+ 1

,

which is exactly (2.31), where ω := 3(n−b̂)
2(n−1)b̂

. With this update, we can simplify (2.25) as

E
[
F (w

(s)
m+1)

]
≤ E

[
F (w

(s)
0)
]
− γη2

2

m∑
t=0

E
[
‖Gη(w(s)

t)‖2
]

+
3γ

4
(m+ 1)σ̄(s).

With the same argument as above, we obtain

1

(m+ 1)S

S∑
s=1

m∑
t=0

E
[
‖Gη(w(s)

t)‖2
]
≤ 2

γη2(m+ 1)S

[
F (w̃0)− F ?

]
+

3

2η2S

S∑
s=1

(n− bs)σ2
n(w̃s−1)

nbs
.

For w̃T ∼ U
(
{w(s)

t }s=1→S
t=0→m

)
with T := (m+ 1)S and bs = n, the last estimate implies

E
[
‖Gη(w̃T)‖2

]
=

1

(m+ 1)S

S∑
s=1

m∑
t=0

E
[
‖Gη(w(s)

t)‖2
]
≤ 2

γη2(m+ 1)S

[
F (w̃0)− F ?

]
.

58

By the update rule of η and γ, we can easily show that γη2 ≥ 4
√
ωm

L(4
√
ωm+1)2

. Therefore, using

m := bn
b̂
c, we can overestimate

1

γη2(m+ 1)
≤ L(4

√
ωm+ 1)2

4
√
ωm(m+ 1)

≤ 8L
√
ω√

m
≤ 8
√

3L√
2n

.

Using this upper bound, to guarantee E
[
‖Gη(w̃T)‖2

]
≤ ε2, we choose S and m such that

16
√

3L
S
√

2n

[
F (w̃0) − F ?

]
= ε2, which leads to S := 16

√
3L√

2nε2

[
F (w̃0) − F ?

]
as the number of outer

iterations. To guarantee S ≥ 1, we need to choose n ≤ 384L2

ε4

[
F (w̃0)− F ?

]2
.

Finally, we can estimate the number of stochastic gradient evaluations Tgrad as

Tgrad = Sn+ 2S(m+ 1) ≤ 5Sn =
16
√

3L
√
n√

2ε2

[
F (w̃0)− F ?

]
= O

(
L
√
n

ε2

[
F (w̃0)− F ?

])
.

The number of proxηψ is Tprox = S(m+ 1) ≤ 16
√

3L(
√
n+1)

b̂
√

2ε2

[
F (w̃0)− F ?

]
.

2.6.2.5 The proof of Theorem 2.3: The expectation problem

Proof. Summing up (2.25) from s = 1 to s = S, and then using w
(0)
0 = w̃0, we obtain

γη2

2

S∑
s=1

m∑
t=0

E
[
‖Gη(w(s)

t)‖2
]
≤ F (w̃0)− E

[
F (w

(S)
m+1)

]
+
γθ(m+ 1)

2

S∑
s=1

σ̄(s). (2.64)

Note that E
[
F (w

(S)
m+1)

]
≥ F ? by Assumption 2.1. Moreover, by (2.17), we have

σ̄(s) := E
[
‖v(s)

0 −∇f(w
(s)
0)‖2

]
= E

[
‖∇̃fBs(w

(s)
0)−∇f(w

(s)
0)‖2

]
≤ σ2

bs
=
σ2

b
.

Recall that ρ := 1
b̂

for (St-OPT). Therefore, we have θ = 1 + 8ω̄m
(1+4

√
ω̄m)2

< 3
2 , where ω̄ := 3

2b̂
.

Using these estimates into (2.64), we obtain (2.36).

Now, since w̃T ∼ U
(
{w(s)

t }s=1→S
t=0→m

)
for T := S(m+ 1), we have

E
[
‖Gη(w̃T)‖2

]
=

1

(m+ 1)S

S∑
s=1

m∑
t=0

E
[
‖Gη(w(s)

t)‖2
]

≤ 2

γη2(m+ 1)S
[F (w̃0)− F ?] +

3σ2

2η2b
.

59

Since η = 2
√
ω̄m

4
√
ω̄m+1

≥ 2
5 and 1

γη2(m+1)
≤ 25L

√
ω̄m

4(m+1) ≤
8L√
b̂m

as proved above, to guarantee

E
[
‖Gη(w̃T)‖2

]
≤ ε2, we need to set

16L

S
√
b̂m

[F (w̃0)− F ?] +
75σ2

8b
= ε2.

Let us choose b such that 75σ2

8b = ε2

2 , which leads to b := 75σ2

8ε2
. We also choose m := σ2

b̂ε2
. To

guarantee m ≥ 1, we have b̂ ≤ σ2

ε2
. Then, since 1√

b̂m
= ε

σ , the above condition is equivalent to

16Lε
Sσ [F (w̃0)− F ?] = ε2

2 , which leads to

S :=
32L

σε
[F (w̃0)− F ?].

To guarantee S ≥ 1, we need to choose ε ≤ 32L
σ [F (w̃0)− F ?] if σ is sufficiently large.

Now, we estimate the total number of stochastic gradient evaluations as

Tgrad =
∑S

s=1 bs + 2mb̂S = (b+ 2mb̂)S = 32L
σε [F (w̃0)− F ?]

(
75σ2

ε2
+ 2σ2

b̂ε2
b̂
)

= 2464Lσ
ε3

[F (w̃0)− F ?].

Hence, the number of gradient evaluations is O
(
Lσ[F (w̃0)−F ?]

ε3

)
, and the number of proximal

operator calls is also Tprox := S(m+ 1) = 32σL
b̂ε2

[F (w̃0)− F ?].

2.6.2.6 The proof of Theorem 2.4: The non-composite cases

Proof. Since ψ = 0, we have ŵ
(s)
t+1 = w

(s)
t − ηtv

(s)
t . Therefore, ŵ

(s)
t+1 − w

(s)
t = −ηtv(s)

t and

w
(s)
t+1 = (1 − γt)w(s)

t + γtŵ
(s)
t+1 = w

(s)
t − γtηtv

(s)
t = w

(s)
t − η̂tv

(s)
t , where η̂t := γtηt. Using these

relations and choose ct = 1
ηt

, we can easily show that

E
[
‖ŵ(s)

t+1 − w
(s)
t ‖2

]
= η2

tE
[
‖v(s)
t ‖2

]
,

σ
(s)
t := γt

2ct
‖∇f(w

(s)
t)− v(s)

t − ct(ŵ
(s)
t+1 − w

(s)
t)‖2 = η̂t

2 ‖∇f(w
(s)
t)‖2.

60

Substituting these estimates into (2.53) and noting that f = F and η̂t := γtηt, we obtain

E
[
f(w

(s)
t+1)

]
≤ E

[
f(w

(s)
t)
]

+ η̂t
2 E
[
‖∇f(w

(s)
t)− v(s)

t ‖2
]

− η̂t
2

(
1− Lη̂t

)
E
[
‖v(s)
t ‖2

]
− η̂t

2 E
[
‖∇f(w

(s)
t)‖2

]
.

(2.65)

On the other hand, from (2.16), by Assumption 2.2, (2.13), and w
(s)
t+1 := w

(s)
t − η̂tv

(s)
t , we can

derive

E
[
‖∇f(w

(s)
t)− v(s)

t ‖2
]
≤ E

[
‖∇f(w

(s)
0)− v(s)

0 ‖2
]

+
∑t

j=1 E
[
‖v(s)
j − v

(s)
j−1‖2

]
≤ E

[
‖∇f(w

(s)
0)− v(s)

0 ‖2
]

+ ρ
∑t

j=1 E
[
‖∇wf(w

(s)
j ; ξ

(s)
j)−∇wf(w

(s)
j−1; ξ

(s)
j)‖2

]
≤ E

[
‖∇f(w

(s)
0)− v(s)

0 ‖2
]

+ ρL2
∑t

j=1 E
[
‖w(s)

j − w
(s)
j−1‖2

]
≤ E

[
‖∇f(w

(s)
0)− v(s)

0 ‖2
]

+ ρL2
∑t

j=1 η̂
2
j−1E

[
‖v(s)
j−1‖2

]
,

where ρ := 1
b̂

if Algorithm 1 solves (St-OPT) and ρ := n−b̂
b̂(n−1)

if Algorithm 1 solves (FS-OPT).

Substituting this estimate into (2.65), and summing up the result from t = 0 to t = m, we

eventually get

E
[
f(w

(s)
m+1)

]
≤ E

[
f(w

(s)
0)
]
−

m∑
t=0

η̂t
2
E
[
‖∇f(w

(s)
t)‖2

]
+

1

2

(m∑
t=0

η̂t

)
E
[
‖∇f(w

(s)
0)− v(s)

0 ‖
2
]

+
ρL2

2

m∑
t=0

η̂t

t∑
j=1

η̂2
j−1E

[
‖v(s)
j−1‖

2
]
−

m∑
t=0

η̂t(1− Lη̂t)
2

E
[
‖v(s)
t ‖2

]
. (2.66)

Our next step is to choose η̂t such that

ρL2
m∑
t=0

η̂t

t∑
j=1

η̂2
j−1E

[
‖v(s)
j−1‖

2
]
−

m∑
t=0

η̂t(1− Lη̂t)E
[
‖v(s)
t ‖2

]
≤ 0.

61

This condition can be rewritten explicitly as

[
ρL2η̂2

0(η̂1 + · · ·+ η̂m)− η̂0(1− Lη̂0)
]
E
[
‖v(s)

0 ‖2
]

+
[
ρL2η̂2

1(η̂2 + · · ·+ η̂m)− η̂1(1− Lη̂1)
]
E
[
‖v(s)

1 ‖2
]

+ · · ·

+
[
ρL2η̂2

m−1η̂m − η̂m−1(1− Lη̂m−1)
]
E
[
‖v(s)
m−1‖2

]
− η̂m(1− Lη̂m)E

[
‖v(s)
m ‖2

]
≤ 0.

Similar to (2.45), to guarantee the last inequality, we impose the following conditions

−η̂m(1− Lη̂m) ≤ 0,

ρL2η̂2
t

∑m
j=t+1 η̂j − η̂0(1− Lη̂0) ≤ 0.

(2.67)

Applying Lemma 2.45 (a) with ν = ρ and δ = 1, we obtain

η̂m =
1

L
, and η̂m−t :=

1

L
(
1 + ρL

∑t
j=1 η̂m−j+1

) , ∀t = 1, · · · ,m,

which is exactly (2.38). With this update rule, we have 1
L(1+ρm) < η̂0 < η̂1 < · · · < η̂m and

Σm ≥ 2(m+1)
L(
√

2ρm+1+1)
.

Using the update (2.38), we can simplify (2.66) as follows:

E
[
f(w

(s)
m+1)

]
≤ E

[
f(w

(s)
0)
]
−

m∑
t=0

η̂t
2
E
[
‖∇f(w

(s)
t)‖2

]
+

∑m
t=0 η̂t
2

E
[
‖∇f(w

(s)
0)− v(s)

0 ‖
2
]
.

Let us define σ̂s := E
[
‖∇f(w

(s)
0)− v(s)

0 ‖2
]

and noting that f? := F ? ≤ E
[
f(w

(S)
m+1)

]
and

w̃0 := w
(0)
0 . Summing up the last inequality from s = 1 to S and using these relations, we can

further derive

S∑
s=1

m∑
t=0

η̂tE
[
‖∇f(w

(s)
t)‖2

]
≤ 2
[
f(w̃0)− f?

]
+
(m∑
t=0

η̂t

) S∑
s=1

σ̂s.

Using the lower bound of Σm as Σm ≥ 2(m+1)
L(
√

2ρm+1+1)
, the above inequality leads to

1

SΣm

S∑
s=1

m∑
t=0

η̂tE
[
‖∇f(w

(s)
t)‖2

]
≤ (
√

2ρm+ 1 + 1)L

S(m+ 1)

[
f(w̃0)− f?

]
+

1

S

S∑
s=1

σ̂s. (2.68)

62

Since Prob
(
w̃T = w

(s)
t

)
= p(s−1)m+t with p(s−1)m+t = η̂t

SΣm
for s = 1, · · · , S and t = 0, · · · ,m,

we have

E
[
‖∇f(w̃T)‖2

]
=

1

SΣm

S∑
s=1

m∑
t=0

η̂tE
[
‖∇f(w

(s)
t)‖2

]
.

Substituting this estimate into (2.68), we obtain (2.39).

Now, we consider two cases:

Case (a): If we apply this algorithm variant to solve the non-composite finite-sum problem

of (FS-OPT) (i.e., ψ = 0) using the full-gradient snapshot for the outer-loop with bs = n, then

v
(s)
0 = ∇f(w

(s)
0), which leads to σ̂s = 0. By the choice of epoch length m = bn

b̂
c and b̂ ≤

√
n, we

have
√

2ρm+1+1
m+1 ≤ 2√

n
. Using these facts into (2.39), we obtain

E
[
‖∇f(w̃T)‖2

]
≤ 2L

S
√
n

[
f(w̃0)− f?

]
,

which is exactly (2.40).

To achieve E
[
‖∇f(w̃T)‖2

]
≤ ε2, we impose 2L

S
√
n

[
f(w̃0)− f?

]
= ε2. Hence, the maximum

number of outer iterations is at most S = 2L√
nε2

[f(w̃0)− f?]. The number of gradient evaluations

∇fi is at most Tgrad := nS + 2(m+ 1)b̂S ≤ 5nS = 10L
√
n

ε2
[f(w̃0)− f?].

Case (b): Let us apply this algorithm variant to solve the non-composite expectation problem

of (St-OPT) (i.e., ψ = 0). Then, by using ρ := 1
b̂

and σ̂s := E
[
‖∇f(w

(s)
0)− v(s)

0 ‖2
]
≤ σ2

bs
= σ2

b ,

we have from (2.39) that

E
[
‖∇f(w̃T)‖2

]
≤ 2L

S
√
b̂m

[
f(w̃0)− f?

]
+
σ2

b
.

This is exactly (2.41). Using the mini-batch b := 2σ2

ε2
for the outer-loop and m := σ2

b̂ε2
, we

can show that the number of outer iterations S := 4L
σε

[
f(w̃0)− f?

]
. The number of stochastic

gradient evaluations is at most Tgrad := Sb+ 2S(m+ 1)b̂ = 4Sσ2

ε2
= 16Lσ

ε3

[
f(w̃0)− f?

]
. This holds

if 2σ2

ε2
≤ 4Sσ2

ε2
= 16Lσ

ε3

[
f(w̃0)− f?

]
leading to σ ≤ 8L

ε

[
f(w̃0)− f?

]
.

63

CHAPTER 3

A Hybrid Stochastic Policy Gradient Algorithm for Reinforcement Learning

3.1 Introduction

Recently, research on reinforcement learning (RL) (Sutton and Barto, 2018), an area of

machine learning to learn how to make a series of decisions while interacting with the underlying

environment, has been immensely active. Unlike supervised learning, reinforcement learning

agents often have limited or no knowledge about the environment and the rewards of taking

certain actions might not be immediately observed, making these problems more challenging to

solve. Over the past decade, there has been a large number of research works developing and

using reinforcement learning to solve emerging problems. Notable reinforcement learning agents

include, but not limited to, AlphaGo and AlphaZero (Silver et al., 2016, 2018), OpenAIFive

(OpenAI, 2018), and AlphaStar (DeepMind, 2019).

In modern RL tasks, the environment is often not known beforehand so the agent has to

simultaneously learn the environment while making appropriate decisions. One approach is to

estimate the value function or the state-value function such as Q-learning (Watkins and Dayan,

1992) and its variants including Deep Q-learning (DQN) (Mnih et al., 2013, 2015), Dueling DQN

(Wang et al., 2016), and double Q-learning (Hasselt et al., 2016).

In this chapter, we take a closer look into a popular method in reinforcement learning, i.e.

the policy gradient method, and propose a new algorithm that is able to solve the stochastic

composite policy optimization problem.

64

3.1.1 Problem of interest

Classical policy gradient methods: Policy gradient methods seek a differentiable pa-

rameterized policy πθ that maximizes the expected cumulative discounted rewards as

max
θ∈Rq

{
J(θ) := Eτ∼pθ [R(τ)]

}
. (3.1)

where q is the parameter dimension and pθ is the probability density induced by the policy πθ

(see Section 1.2.3). The policy gradient theorem (Sutton et al., 1999) shows that

∇J(θ) = Eτ∼pθ [∇ log pθ(τ)R(τ)] , (3.2)

where the policy gradient does not depend on the gradient of the state distribution despite the

fact that the state distribution depends on the policy parameters (Silver et al., 2014).

This policy gradient can be used in gradient ascent algorithms to update the parameter θ.

However, we cannot calculate the full gradient at each update as we only get a finite number of

samples at each iteration. Consequently, the policy gradient is often estimated by its sample

average. At each iteration, a batch of trajectories B = {τi}i=1,··· ,N will be sampled from the

environment to estimate the policy gradient as

∇̃J(θ) :=
1

N

N∑
i=1

g(τi|θ),

where g(τi|θ) is a sample estimator of Eτi∼pθ [∇ log pθ(τi)R(τi)]. We call ∇̃J(θ) a stochastic

policy gradient (SPG) estimator. This estimator has been exploited in the two well-known

REINFORCE (Williams, 1992) and GPOMDP (Baxter and Bartlett, 2001) methods. The main

step of policy gradient ascent methods is to update the parameters as

θt+1 := θt + η∇J(θt), t = 0, 1, · · · ,

65

where η > 0 is some appropriate learning rate, which can be fixed or varied over t. Since the

policy changes after each update, the density pθ(·) also changes and creates non-stationarity in

the problem which will be handled by importance weight in Section 3.2.

While the objective function in (3.1) is standard in most policy gradient methods, it is

natural to have some constraints or regularizers on the policy parameters. In addition, adding

constraints can prevent the explosion of parameters in highly nonlinear models as often seen in

deep learning (Srivastava et al., 2014). Adopting the idea of composite nonconvex optimization

(Pham et al., 2020b), we are interested in a more general optimization problem in reinforcement

learning as follow:

max
θ∈Rq

{
J(θ)−Q(θ) = Eτ∼pθ [R(τ)]−Q(θ)

}
, (CP-OPT)

where Q(θ) is a proper, closed, and convex function acting as a regularizer which can be the

indicator function of a convex set representing the constraints on the parameters or some

standard regularizers such as `1-norm or `2-norm. If there is no regularizer Q(θ), the problem

(CP-OPT) reduces to the standard one in (3.1).

3.1.2 Related work

It has been observed that learning the state-value function is not efficient when the action

space is large or even infinite. In that case, policy gradient methods learn the policy directly

with a parameterized function. Silver et al. (2014) present a framework for deterministic policy

gradient algorithms which can be estimated more efficiently than their stochastic counterparts

whereas Lillicrap et al. (2016) adapt the idea of deep Q-learning into continuous action tasks in

RL. TRPO (Schulman et al., 2015) uses a constraint on the KL divergence between the new

and old policies to improve the robustness of each update. PPO (Schulman et al., 2017) is an

extension of TRPO which uses a clipped surrogate objective resulting a simpler implementation.

Other policy gradient methods utilize the actor-critic paradigm including ACER (Wang et al.,

2017), A3C (Mnih et al., 2016) and its synchronous variant A2C, ACKTR (Wu et al., 2017),

and SAC (Haarnoja et al., 2018).

REINFORCE (Williams, 1992) is perhaps one classical method closely related to our work

here. It first computes an estimator of the policy gradient in (3.2) and applies a gradient ascent

66

step to update the policy. Nevertheless, the REINFORCE estimator is known to have high

variance leading to several weaknesses. Other improvements to reduce the variance such as

adding baselines (Sutton and Barto, 2018; Zhao et al., 2011), discarding some rewards in the

so-called GPOMDP estimator (Baxter and Bartlett, 2001) were proposed. While REINFORCE

estimator is an unbiased policy gradient estimator, GPOMDP is shown to be biased (Baxter

and Bartlett, 2001) making theoretical analysis harder.

The nature of REINFORCE algorithm appears to be closely related to stochastic gradient

descent (SGD) (Robbins and Monro, 1951) in stochastic nonconvex optimization. In particular,

the standard SGD estimator is also known to often have fixed variance, which is often high. On

the one hand, there are algorithms trying to reduce the oscillation (Tieleman and Hinton, 2012)

or introduce momentums or adaptive updates (Allen-Zhu, 2017a, 2018; Kingma and Ba, 2014)

for SGD methods to accelerate performance. On the other hand, other researchers are searching

for new gradient estimators. One approach is the SAGA estimator proposed by Defazio et al.

(2014). Another well-known estimator is the SVRG estimator (Johnson and Zhang, 2013) which

has been intensively studied in recent works, e.g., in Allen-Zhu and Yuan (2016); Li and Li

(2018); Reddi et al. (2016a); Zhou et al. (2018b). This estimator not only overcomes the storage

issue of SAGA but also possesses variance reduced property, i.e., the variance of the estimator

decreases over epochs. Methods based on SVRG estimators have recently been developed for

reinforcement learning, e.g., SVRPG (Papini et al., 2018). Xu et al. (2019a) refine the analysis

of SVRPG to achieve an improved trajectory complexity of O
(
ε−10/3

)
. Shen et al. (2019) also

adopt the SVRG estimator into policy gradient and achieve the trajectory oracle complexity of

O
(
ε−3
)

with the use of a second-order estimator.

While SGD, SAGA, and SVRG estimators are unbiased, there have been algorithms developed

based on a biased gradient estimator named SARAH (Nguyen et al., 2017a). Such algorithms

include SARAH (Nguyen et al., 2017b, 2019), SPIDER (Fang et al., 2018), SpiderBoost (Wang

et al., 2019), and ProxSARAH (Pham et al., 2020b). Similar to SVRG, all these methods

can potentially be extended to reinforcement learning. A recent attempt is SARAPO (Yuan

et al., 2019) which combines SARAH (Nguyen et al., 2019) with TRPO (Schulman et al.,

2015) algorithm but no theoretical guarantee is provided. Yang and Zhang (2019) propose

Mirror Policy Optimization (MPO) algorithm which covers the classical policy gradient and the

67

natural policy gradient as special cases. They also introduce a variance reduction variant, called

VRMPO, which achieves O
(
ε−3
)

trajectory complexity. Another notable work is SRVR-PG (Xu

et al., 2019b) where the policy gradient estimator is the adapted version of SARAH estimator

for reinforcement learning. Note that Yang and Zhang (2019) and Xu et al. (2019b) achieve the

same trajectory complexity of O
(
ε−3
)

as ours. However, our algorithm is essentially different.

Xu et al. (2019b) and Yang and Zhang (2019) use two different adaptation of the SARAH

estimator for policy gradient. Xu et al. (2019b) use the importance weight in their estimator to

handle distribution shift while Yang and Zhang (2019) remove it as seen in Shen et al. (2019).

Meanwhile, we introduce a new policy gradient estimator which can also be calculated recursively.

The new estimator is fundamentally different from the other two since it combines the adapted

SARAH estimator as in Xu et al. (2019b) with the classical REINFORCE estimator. In addition,

our analysis shows that the best-known convergence rate and complexity can be achieved by

our single-loop algorithm (Algorithm 2) while SRVR-PG and VRMPO require double loops to

achieve the same oracle complexity. Moreover, Xu et al. (2019b); Yang and Zhang (2019) do not

consider the composite setting that considers both constraints and regularizers on the policy

parameters as we do.

3.1.3 Our approach and contribution

Our approach lies in the stochastic variance reduction avenue, but using a completely new

hybrid approach, leading to a novel estimator compared to existing methods in reinforcement

learning. We construct our estimator by taking a convex combination of two estimators: the

adapted SARAH (Nguyen et al., 2017a) and REINFORCE (Williams, 1992), a classical unbiased

policy gradient estimator. This hybrid estimator not only allows us to trade-off the bias

and variance between these two estimators but also possesses useful properties for developing

new algorithms. Note that the idea of combining stochastic estimators was first proposed for

stochastic optimization in our recent works (Tran-Dinh et al., 2019a,b). Unlike existing policy

gradient methods, our algorithm first samples a large batch of trajectories to establish a good

search direction. After that, it iteratively updates the policy parameters using our hybrid

estimator leading to a single-loop method without any snapshot loop as in SVRG or SARAH

variants. In addition, as regularization techniques have shown their effectiveness in deep learning

68

(Neyshabur et al., 2017; Zhang et al., 2017), they possibly have great potential in reinforcement

learning algorithms too. A recent study (Liu et al., 2019) shows that regularizations on the policy

parameters can greatly improve the performance of policy gradient algorithms. Motivated by

these facts, we directly consider a new composite setting (CP-OPT) as presented in Section 3.2.

For this new composite model, it is not clear if existing algorithms remain convergent by simply

adding a projection step on the constraint set, while our method does guarantee convergence.

To this end, our contribution can be summarized as follows:

(a) We introduce a novel hybrid stochastic policy gradient estimator by combining exist-

ing REINFORCE estimator with the adapted SARAH estimator for policy gradient.

We investigate some key properties of our estimator that can be used for algorithmic

development.

(b) We propose a new algorithm to solve a composite maximization problem for policy

optimization in reinforcement learning. Our model not only covers existing settings but

also handles constraints and convex regularizers on policy parameters.

(c) We provide convergence analysis as the first theoretical result for composite optimization

in reinforcement learning and estimate the trajectory complexity of our algorithm and

show that our algorithm can achieve the best-known complexity over existing first-order

methods (see Table 3.1).

Our algorithm only has one loop as REINFORCE or GPOMDP, which is fundamentally different

from SVRPG, SVRG-adapted, and other SARAH-based algorithms for RL. It can work with

single sample or mini-batch and has two steps: proximal gradient step and averaging step with

different step-sizes. This makes the algorithm more flexible to use different step-sizes without

sacrificing the overall complexity.

3.1.4 Chapter outline

The rest of this chapter is organized as follows. Section 3.2 introduces our new hybrid

estimator for policy gradient and develops the main algorithm. Section 3.3 presents a key

property of the new hybrid policy gradient estimator then provide the complexity analysis of our

proposed algorithms. Multiple numerical experiments in both discrete and continuous control

tasks are illustrated in Section 3.4. The proofs of some technical results are given in Section 3.5.

69

Algorithms Complexity Composite Single-loop

REINFORCE (Williams, 1992) O
(
ε−4
)

�7 �3

GPOMDP (Baxter and Bartlett, 2001) O
(
ε−4
)

�7 �3

SVRPG (Papini et al., 2018) O
(
ε−4
)

�7 �7
SVRPG (Xu et al., 2019a) O

(
ε−10/3

)
�7 �7

HAPG (Shen et al., 2019) O
(
ε−3
)

�7 �7

VRMPO (Yang and Zhang, 2019) O
(
ε−3
)

�7 �7

SRVR-PG (Xu et al., 2019b) O
(
ε−3
)

�7 �7

ProxHSPGA (this work) O
(
ε−3
)

�3 �3

Table 3.1: A summary of various methods for the non-composite setting (3.1) of (CP-OPT).

3.2 A new hybrid stochastic policy gradient algorithm

In this section, we first present the standard assumptions used to analyze the convergence

of our algorithms and discuss the optimality condition of (CP-OPT). After that, we show how

to extend the hybrid gradient idea from Tran-Dinh et al. (2019b) to form a new policy gradient

estimator. We then develop a new proximal policy gradient algorithm and its restart variant to

solve the composite policy optimization problem and analyze their trajectory complexity.

3.2.1 Assumptions

Let F (θ) := J(θ)−Q(θ) be the total objective function. We impose the following assumptions

for our convergence analysis, which are often used in practice.

Assumption 3.1. The regularizer Q : Rq → R∪{+∞} is a proper, closed, and convex function.

We also assume that the domain of F is nonempty and there exists a finite upper bound

F ∗ := sup
θ∈Rq
{F (θ) := J(θ)−Q(θ)} < +∞.

Assumption 3.2. The immediate reward function is bounded, i.e., there exists R > 0 such

that for all a ∈ A, s ∈ S, |R(s, a)| ≤ R.

70

Assumption 3.3. Let πθ(s, a) be the policy for a given state-action pair (s, a). Then, there

exist two positive constants G and M such that

‖∇ log πθ(s, a)‖ ≤ G and ‖∇2 log πθ(s, a)‖ ≤M,

for any a ∈ A, s ∈ S where ‖·‖ is the `2-norm.

This assumption leads to useful results about the smoothness of J(θ) and g(τ |θ) and the

upper bound on the variance of the policy gradient estimator.

Remark 4. Assumption 3.3 holds for Gaussian policy, a common policy used for continuous

action tasks, where the probability to take action a given current state s is define as.

πθ(s, a) :=
1√

2πσ(s)
e
− (a−µ(s))2

2σ2(s) ,

where µ(s) = Φθ(s) is the mean approximated by a parametrized function Φθ and σ(s) is the

standard deviation which can be fixed or parametrized.

Lemma 3.1 (Papini et al. (2018); Shen et al. (2019); Xu et al. (2019a)). Under Assumption 3.2

and 3.3, for all θ, θ1, θ2 ∈ Rq, we have

• ‖∇J(θ1)−∇J(θ2)‖ ≤ L‖θ1 − θ2‖;

• ‖g(τ |θ1)− g(τ |θ2)‖ ≤ Lg ‖θ1 − θ2‖;

• ‖g(τ, θ)‖ ≤ Cg; and

• ‖g(τ |θ)−∇J(θ)‖2 ≤ σ2,

where g(·) is the REINFORCE estimator and L, Lg, Cg, and σ2 are constants depending only

on R, G, M , H, γ, and the baseline b.

For more details about the constants and the proofs of Lemma 3.1 we refer to, e.g. Papini

et al. (2018); Shen et al. (2019); Xu et al. (2019a).

Assumption 3.4. There exists a constant W > 0 such that, for each pair of policies encountered

in our algorithms the following holds

Var [ω(τ |θ1, θ2)] ≤W, θ1, θ2 ∈ Rq, τ ∼ pθ1 ,

71

where ω(τ |θ1, θ2) =
pθ2 (τ)

pθ1 (τ) is the importance weight between pθ2(·) and pθ1(·).

Since the importance weight ω introduces another source of variance, we require this

assumption for our convergence analysis as used in previous works, e.g., in Papini et al. (2018);

Xu et al. (2019a).

Remark 5. Cortes et al. (2010) show that if σQ, σP are variances of two Gaussian distributions P

and Q, and σQ >
1√
2
σP then the variance of the importance weights is bounded, i.e. Assumption

3.4 holds for Gaussian policies which are commonly used to represent the policy in continuous

control tasks.

3.2.2 Optimality condition

Associated with problem (CP-OPT), we define

Gη(θ) :=
1

η

[
proxηQ (θ + η∇J(θ))− θ)

]
, (3.3)

for some η > 0 as the gradient mapping of F (θ) (Nesterov, 2013), where proxQ(θ) denotes the

proximal operator of Q as in (1.3).

A point θ∗ is called a stationary point of (CP-OPT) if

E
[
‖Gη(θ∗)‖2

]
= 0.

Our goal is to design an iterative method to produce an ε-approximate stationary point θ̃T

of (CP-OPT) after at most T iterations defined as

E
[
‖Gη(θ̃T)‖2

]
≤ ε2,

where ε > 0 is a desired tolerance, and the expectation is taken over all the randomness up to

the T -th iteration.

72

3.2.3 Novel hybrid stochastic policy gradient estimator

We first provide a brief summary of the REINFORCE estimator then introduce a new

stochastic policy gradient (SPG) estimator.

3.2.3.1 REINFORCE - an unbiased estimator:

Recall that given a trajectory τ := {s0, a0, · · · , sH−1, aH−1}, the REINFORCE SPG estima-

tor is defined as

g(τ |θ) :=

[
H−1∑
t=0

∇ log πθ(at|st)

]
R(τ),

where R(τ) :=
∑H−1

t=0 γtR(st, at).

Note that the REINFORCE estimator is unbiased, i.e. Eτ∼pθ [g(τ |θ)] = ∇J(θ). In order

to reduce the variance of these estimators, a baseline is normally added while maintaining the

unbiasedness of the estimators (Sutton and Barto, 2018; Zhao et al., 2011). From now on, we

will refer to g(τ |θ) as the baseline-added version defined as

g(τ |θ) :=
∑T−1

t=0 ∇ log πθ(at|st)At,

where At := R(τ)− bt with bt being a baseline and possibly depending only on st.

3.2.3.2 New stochastic policy gradient estimator:

In order to reduce the number of trajectories sampled, we extend the idea in Tran-Dinh

et al. (2019b) for stochastic optimization to develop a new hybrid stochastic policy gradient

(HSPG) estimator that helps balance the bias-variance trade-off. The estimator is formed by

taking a convex combination of two other estimators: one is an unbiased estimator which can

be REINFORCE estimator, and another is the adapted SARAH estimator (Nguyen et al., 2019)

for policy gradient which is biased.

More precisely, if Bt and B̂t are two random batches of trajectories with sizes B and B̂,

respectively, sampled from pθt(·), the hybrid stochastic policy gradient estimator at t-th iteration

73

can be expressed as

vt := βvt−1 + β
B

∑
τ∈Bt

[g(τ |θt)− ω(τ |θt, θt−1)g(τ |θt−1)] +
(1− β)

B̂

∑
τ̂∈B̂t

g(τ̂ |θt), (3.4)

and

v0 :=
1

N

∑
τ∈B̃

g(τ |θ0),

where B̃ is a batch of trajectories collected at the beginning. Note that ω(τ |θt, θt−1) is an

importance weight added to account for the distribution shift since the trajectories τ ∈ Bt are

sampled from pθt(·) but not from pθt−1(·). Note also that vt in (3.4) is also different from the

momentum SARAH estimator recently proposed in Cutkosky and Orabona (2019).

3.2.4 The complete algorithm

The novel Proximal Hybrid Stochastic Policy Gradient Algorithm (abbreviated by ProxH-

SPGA) to solve (CP-OPT) is presented in Algorithm 2.

Algorithm 2 (ProxHSPGA)

1: Initialization: An initial point θ0 ∈ Rq, and positive parameters m, N , B, B̂, β, α, and η (specified
later).

2: Sample a batch of trajectories B̃ of size N from pθ0(·).
3: Calculate v0 :=

1

N

∑
τ∈B̃

g(τ |θ0).

4: Update {
θ̂1 := proxηQ(θ0 + ηv0)

θ1 := (1− α)θ0 + αθ̂1.

5: For t := 1, · · · ,m do
6: Generate 2 independent batches of trajectories Bt and B̂t with size B and B̂ from pθt(·).
7: Evaluate the hybrid estimator vt as in (3.4).
8: Update {

θ̂t+1 := proxηQ(θt + ηvt)

θt+1 := (1− α)θt + αθ̂t+1.

9: EndFor
10: Choose θ̃T from {θt}mt=1 uniformly randomly.

Unlike SVRPG (Papini et al., 2018; Xu et al., 2019a) and HAPG (Shen et al., 2019),

Algorithm 2 only has one loop as REINFORCE or GPOMDP. Moreover, Algorithm 2 does not

use the estimator for the policy Hessian as in HAPG. At the initial stage, a batch of trajectories

74

is sampled using pθ0 to estimate an initial policy gradient estimator which provides a good initial

search direction. At the t-th iteration, two independent batches of trajectories are sampled from

pθt to evaluate the hybrid stochastic policy gradient estimator. After that, a proximal step

followed by an averaging step are performed which are inspired by Pham et al. (2020b). Note

that the batches of trajectories at each iteration are sampled from the current distribution which

will change after each update. Therefore, the importance weight ω(τ |θt, θt−1) is introduced

to account for the non-stationarity of the sampling distribution. As a result, we still have

Eτ∼pθt [ω(τ |θt, θt−1)g(τ |θt−1)] = ∇J(θt−1).

3.2.5 Restarting variant

While Algorithm 2 has the best-known theoretical complexity as shown in Section 3.3, its

practical performance may be affected by the constant step-size α depending on m. As will

be shown later, the step-size α ∈ [0, 1] is inversely proportional to the number of iterations m

and it is natural to have α close to 1 to take advantage of the newly computed information.

To increase the practical performance of our algorithm without sacrificing its complexity, we

propose to inject a simple restarting strategy by repeatedly running Algorithm 2 for multiple

stages as in Algorithm 3.

Algorithm 3 (Restarting ProxHSPGA)

1: Initialization: Input an initial point θ
(0)
0 .

2: For s := 0, · · · , S − 1 do

3: Run Algorithm 2 with θ0 := θ
(s)
0 .

4: Output θ
(s+1)
0 := θm+1.

5: EndFor
6: Choose θ̃T uniformly randomly from {θ(s)t }s=0→S−1

t=0→m .

We emphasize that without this restarting strategy, Algorithm 2 still converges and the

restarting loop in Algorithm 3 does not sacrifice the best-known complexity as stated in the

next section.

3.3 Convergence analysis

This section presents key properties of the hybrid stochastic policy gradient estimators as

well as the theoretical convergence analysis and complexity estimate.

75

3.3.1 Properties of the hybrid SPG estimator

Let Ft := σ
(
B̃,B1, B̂1, · · · ,Bt−1, B̂t−1

)
be the σ-field generated by all trajectories sampled

up to the t-th iteration. For the sake of simplicity, we assume that B = B̂ but our analysis can

be easily extended for the case B 6= B̂. Consequently, the hybrid SPG estimator vt has the

following properties

Lemma 3.2 (Key properties). Let vt be defined as in (3.4) and ∆vt := vt −∇J(θt). Then

Eτ,τ̂∼pθt [vt] = ∇J(θt) + β∆vt−1. (3.5)

If β 6= 0, then vt is an biased estimator. In addition, we have

Eτ,τ̂∼pθt
[
‖∆vt‖2

]
≤ β2‖∆vt−1‖2 + β2C

B ‖θt − θt−1‖2 + (1−β)2σ2

B , (3.6)

where C > 0 is a given constant.

The proof of Lemma 3.2 and definition of the constants are given in Section 3.5.1.

3.3.2 Complexity estimates

The following lemma presents a key estimate for our convergence results whose proof is

given in Section 3.5.2.

Lemma 3.3 (One-iteration analysis). Under Assumptions 3.2, 3.3, and 3.4, let {θ̂t, θt}mt=0 be

the sequence generated by Algorithm 2 and Gη be the gradient mapping defined in (3.3). Then

E [F (θt+1)] ≥ E [F (θt)] + η2α
2 E

[
‖Gη(θt)‖2

]
− ξ

2E
[
‖vt−∇J(θt)‖2

]
+ ζ

2E
[
‖θ̂t+1−θt‖2

]
, (3.7)

where ξ := α(1 + 2η2) and ζ := α
(

2
η − Lα− 3

)
> 0 provided that α ∈ (0, 1] and 2

η − Lα− 3 > 0.

Using Lemma 3.2 and 3.3, we can show the convergence analysis of Algorithm 2 as follows.

76

Theorem 3.1. Under Assumptions 3.1, 3.2, 3.3, and 3.4, let {θt}mt=0 be the sequence generated

by Algorithm 2 with
β := 1−

√
B√

N(m+1)

α := ĉ
√

2B3/4√
3CN1/4(m+1)1/4

η := 2
4+Lα ,

, (3.8)

where B, ĉ, L, and C are given constants. If θ̃T is chosen uniformly at random from {θt}mt=0,

then the following estimate holds

E
[
‖Gη(θ̃T)‖2

]
≤ 3(4 + L)2σ2

4[BN(m+ 1)]1/2
+

(4 + L)2
√

3CN1/4

4ĉ
√

2[B(m+ 1)]3/4
[F ∗ − F (θ0)] . (3.9)

The proof of Theorem 3.1 is given in Section 3.5.3. Consequently, the trajectory complexity

is presented in the following corollary whose proof can be found in Section 3.5.4.

Corollary 3.1. For both Algorithm 2 and Algorithm 3, let us fix B ∈ N+ and set N :=

c̃σ8/3[B(m+ 1)]1/3 for some c̃ > 0 in Theorem 3.1. If we also choose m in Algorithm 2 such that

m+ 1 =
Ψ

3/2
0 σ

Bε3
and choose m,S in Algorithm 3 such that S(m+ 1) =

Ψ
3/2
0 σ

Bε3
for some constant

Ψ0, then the number of trajectories Ttraj to achieve θ̃T such that E
[
‖Gη(θ̃T)‖2

]
≤ ε2 for any

ε > 0 is at most

Ttraj = O
(
ε−3
)
.

where θ̃T is chosen uniformly at random from {θ(s)
t }

s=0,··· ,S−1
t=0,··· ,m if using Algorithm 3.

Comparing our complexity bound with other existing methods in Table 3.1, we can see that

we improve a factor of ε−1/3 over SVRPG in Xu et al. (2019a) while matching the best-known

complexity without the need of using the policy Hessian estimator as HAPG from Shen et al.

(2019).

3.4 Numerical experiments

In this section, we present three examples to provide comparison between the performance

of HSPGA and other related policy gradient methods. We also provide an example to illustrate

77

the effect of the regularizer Q(·) in the composite problem (CP-OPT). All experiments are run

on a Macbook Pro with 2.3 GHz Quad-Core, 8GB RAM. The source code is available at

https://github.com/unc-optimization/ProxHSPGA.

0 500 1000 1500 2000 2500 3000 3500
Episodes

25

50

75

100

125

150

175

200

M
ea

n
re

wa
rd

s

CartPole-v0

HSPGA
SVRPG
GPOMDP

(a)

0 500 1000 1500 2000 2500 3000 3500
Episodes

−350

−300

−250

−200

−150

−100

M
ea

n
re

wa
rd

s

Acrobot-v1

HSPGA
SVRPG
GPOMDP

(b)

Figure 3.1: Performance of three algorithms on Carpole-v0 and Acrobot-v1 environments.

We implement our restarting algorithm, Algorithm 3, on top of the rllab1 library (Duan

et al., 2016). We compare our algorithm with two other methods: SVPRG (Papini et al., 2018;

Xu et al., 2019a) and GPOMDP (Baxter and Bartlett, 2001). Although REINFORCE and

GPOMDP have the same trajectory complexity, as observed in Papini et al. (2018), GPOMDP

often performs better than REINFORCE, so we only choose to implement GPOMDP in our

experiments. Since SVRPG and GPOMDP solves the non-composite problems (3.1), we set

Q(θ) = 0 in the first three examples and adjust our algorithm, denoted as HSPGA, accordingly.

We compare our algorithm with the fixed epoch length variant of SVRPG as reported in Papini

et al. (2018); Xu et al. (2019a). For the implementation of SVRPG and GPOMDP, we reuse the

implementation of Papini et al.2. We test these algorithms on three well-studied reinforcement

learning tasks: Cart Pole, Acrobot, and Moutain Car which are available in OpenAI gym

(Brockman et al., 2016), a well-known toolkit for developing and comparing reinforcement

learning algorithms. We also test these algorithms on continuous control tasks using other

simulators such as Roboschool (Klimov and Schulman, 2017) and Mujoco (Todorov et al., 2012).

1Available at https://github.com/rll/rllab

2Available at https://github.com/Dam930/rllab

78

https://github.com/unc-optimization/ProxHSPGA
https://github.com/rll/rllab
https://github.com/Dam930/rllab

Environment Algorithm
Policy Discount Trajectory Minibatch Snapshot Learning Epoch

Network Factor γ Length H Size Batchsize Rate Length m

CartPole-v0
GPOMDP

4× 8× 2 0.99 200
10 10−3

SVRPG 10 25 5× 10−3 3
HSPGA 5 25 5× 10−3 3

Acrobot-v1
GPOMDP

6× 16× 3 0.999 500
10 2.5× 10−3

SVRPG 5 10 5× 10−3 3
HSPGA 3 10 5× 10−3 3

MoutainCar-v0
GPOMDP

2× 8× 1 0.999 1000
25 5× 10−3

SVRPG 10 50 7.5× 10−3 3
HSPGA 5 50 7.5× 10−3 3

RoboschoolInvertedPendulum-v1

GPOMDP

5× 16× 1 0.999 1000

20 7.5× 10−4

SVRPG 10 50 10−3 3
HSPGA 5 50 10−3 3
ProxHSPGA 5 50 10−3 3

Swimmer-v2

GPOMDP

8× 32× 32× 2 0.99 500

50 5× 10−4

SVRPG 5 50 5× 10−4 3
HSPGA 5 50 5× 10−4 3
ProxHSPGA 5 50 5× 10−4 3

Hopper-v2

GPOMDP

11× 32× 32× 3 0.99 500

50 5× 10−4

SVRPG 5 50 5× 10−4 3
HSPGA 5 50 5× 10−4 3
ProxHSPGA 5 50 5× 10−4 3

Walker2d-v2

GPOMDP

17× 32× 32× 6 0.99 500

50 5× 10−4

SVRPG 5 50 5× 10−4 3
HSPGA 5 50 5× 10−4 3
ProxHSPGA 5 50 5× 10−4 3

Table 3.2: All algorithms’ configurations on discrete and continuous control environments.

For each environment, we initialize the policy randomly and use it as initial policies for all 10

runs of all algorithms. The performance measure, i.e., mean rewards, is computed by averaging

the final rewards of 50 trajectories sampled by the current policy. We then compute the mean

and 90% confidence interval across 10 runs of these performance measures at different time

point. In all plots, the solid lines represent the mean and the shaded areas are the confidence

band of the mean rewards.

The configurations of all algorithms considered in this section are chosen as follows. We

set β := 0.99 for HSPGA and α := 0.99 for ProxHSPGA in all experiments. To choose

the learning rate, we conduct a grid search over different choices. For Acrobot-v1, Cart

pole-v0, and Mountain Car-v0 environments, we consider different values ranging from 0.0005

to 0.01. Meanwhile, we use values from 0.0005 to 0.005 for the remaining environments. The

snapshot batch-sizes are also chosen from {10, 25, 50, 100} while the mini-batch sizes are selected

from {3, 5, 10, 15, 20, 25}. More details about the selected parameters for each experiment

are shown in Table 3.2. We note that the architecture of the neural network is denoted as

[observation space]× [hidden layers]× [action space].

Cart Pole-v0 environment: For the Cart pole environment, we use a deep soft-max

policy network (Bridle, 1990; Levine, 2017; Sutton and Barto, 2018) with one hidden layer of 8

79

neurons. Figure 3.1a depicts the results where we run each algorithm for 10 trials where the solid

lines represent the mean rewards and shaded regions represent the 90% confidence intervals.

From Figure 3.1a, we can see that HSPGA outperforms the other 2 algorithms while SVRPG

works better than GPOMDP as expected. HSPGA is able to reach the maximum reward of 200

in less than 4000 episodes.

0 2500 5000 7500 10000 12500 15000 17500 20000
Episodes

−60

−40

−20

0

20

40

60

M
ea

n
re

wa
rd

s

MountainCar-v0
HSPGA
GPOMDP
SVRPG

(a)

0 2000 4000 6000 8000 10000
Episodes

200

400

600

800

1000

M
ea

n
re

wa
rd

s

RoboschoolInvertedPendulum-v1

HSPGA
SVRPG
GPOMDP

(b)

Figure 3.2: Performance of three non-composite algorithms on the MountainCar-v0 environment
and the Roboschool Inverted Pendulum-v1 environments.

Acrobot environment: Next, we evaluate three algorithms on the Acrobot-v1 environ-

ment. Here, we use a deep soft-max policy with one hidden layer of 16 neurons. The performance

of these 3 algorithms are illustrated in Figure 3.1b.

We observe similar results as in the previous example where HSPGA has the best performance

over three candidates. SVRPG is still better than GPOMDP in this example.

Mountain Car environment: For the MountainCar-v0 environment, we use a deep

Gaussian policy (Sutton and Barto, 2018) where the mean is the output of a neural network

containing one hidden layer of 8 neurons and the standard deviation is fixed at 1. The results of

three algorithms are presented in Figure 3.2a.

Figure 3.2a shows that HSPGA highly outperforms the other two algorithms. Again, SVRPG

remains better than GPOMDP as expected.

Inverted Pendulum environment: We also test these three algorithms on the Inverted

Pendulum-v0 environment. The results of three algorithms are presented in Figure 3.2a.

From Figure 3.2b, HSPGA also shows better performance than SVRPG and while GPOMDP

appears to be not as effective as SVRPG.

80

The effect of regularizers: We test the effect of the regularizer Q(·) by adding a Tikhonov

one as

max
θ∈Rq

{
J(θ)− λ ‖θ‖22

}
.

This model was intensively studied in Liu et al. (2019).

We also compare all non-composite algorithms with ProxHSPGA in two continuous control

tasks in Mujoco: Swimmer-v2 and Walker2d-v2. In this experiment, we set the penalty

parameter λ = 0.001 for ProxHSPGA. The performance of four algorithms running on these

environments are illustrated in Figure 3.3.

0 2000 4000 6000 8000 10000
Episodes

0

50

100

150

200

M
ea

n
re

wa
rd

s

Swimmer-v2

HSPGA
SVRPG
GPOMDP
ProxHSPGA

(a)

0 2000 4000 6000 8000 10000
Episodes

0

50

100

150

200

M
ea

n
re

wa
rd

s

Walker2d-v2
HSPGA
SVRPG
GPOMDP
ProxHSPGA

(b)

Figure 3.3: Performance of composite vs. non-composite algorithms on the Swimmer-v2 and
Walker2d-v2 environments.

Again, Figure 3.3 shows similar pattern for non-composite algorithms while HSPGA works

better than SVRPG and GPOMDP is the slowest. It also reveals the benefit of adding a

regularizer, which potentially gains more reward than without using regularizer as ProxHSPGA

seems to achieve higher mean rewards than HSPGA. We believe that the choice of regularizer

is also critical and may lead to different performance. We refer to Liu et al. (2019) for more

evidence of using regularizers in reinforcement learning.

3.5 Proofs of technical results

This section presents the missing proofs of technical results presented in Section 3.3.

81

3.5.1 Proof of Lemma 3.2

Proof. Part of this proof comes from the proof of Lemma 1 in Tran-Dinh et al. (2019b). Let

EB,B̂ [·] := Eτ,τ̂∼pθt [·] be the total expectation. Using the independence of τ and τ̂ , taking the

total expectation on (3.4), we obtain

EB,B̂ [vt] = βvt−1 + β [∇J(θt)−∇J(θt−1)] + (1− β)∇J(θt) = ∇J(θt) + β [vt−1 −∇J(θt−1] ,

which is the same as (3.5).

To prove (3.6), we first define ut := 1
B

∑
τ̂∈B̂t

g(τ̂ |θt) and ∆ut := ut −∇J(θt). We have

‖∆vt‖2 = β2‖∆vt−1‖2 + β2

B2

∥∥∥ ∑
τ∈Bt

∆g(τ |θt)
∥∥∥2

+ (1− β)2‖∆ut‖2 + β2‖∇J(θt−1)−∇J(θt)‖2

+ 2β2

B

∑
τ∈Bt

(∆vt−1)>[∆g(τ |θt)] + 2β2(∆vt−1)>[∇J(θt−1)−∇J(θt)]

+ 2β(1− β)(∆vt−1)>[ut −∇J(θt)] + 2β(1−β)
B

∑
τ∈Bt

[∆g(τ |θt)]>(∆ut)

+ 2β2

B

∑
τ∈Bt

(∆g(τ |θt))>[∇J(θt−1)−∇J(θt)]

+ 2β(1− β)(∆ut)
>[∇J(θt−1)−∇J(θt)].

Taking the total expectation and note that

EB̂ [ut] := Eτ̂∼pθt [ut] = ∇J(θt) and

EB̂
[
‖ut −∇J(θt)‖2

]
≤ 1

B2

∑
τ̂∈B̂

E
[
‖g(τ̂ |θt)−∇J(θt)‖2

]
≤ σ2

B
,

we get

EB,B̂
[
‖∆vt‖2

]
= β2‖∆vt−1‖2 + β2

B2EB

[∥∥∥ ∑
τ∈Bt

∆g(τ |θt)
∥∥∥2
]

+ (1− β)2EB̂
[
‖∆ut‖2

]
− β2‖∇J(θt−1)−∇J(θt)‖2.

82

Using triangle inequality, we obtain

EB,B̂
[
‖∆vt‖2

]
≤ β2‖∆vt−1‖2 + β2

B2

∑
τ∈Bt

EB
[
‖∆g(τ |θt)‖2

]
− β2‖∇J(θt−1)−∇J(θt)‖2 + (1−β)2σ2

B

≤ β2‖∆vt−1‖2 + β2

B2

∑
τ∈Bt

EB
[
‖∆g(τ |θt)‖2

]
+

(1− β)2

B
σ2,

(3.10)

where we ignore the non-negative terms to arrive at the second inequality.

Additionally, Lemma 6.1 in Xu et al. (2019a) shows that

Var [ω(τ |θt, θt−1)] ≤ Cω ‖θt − θt−1‖2 , (3.11)

where Cω := H(2HG2 +M)(W + 1).

Using (3.11) we can bound EB
[
‖∆g(τ |θt)‖2

]
as

EB
[
‖∆g(τ |θt)‖2

]
= EB

[
‖g(τ |θt)− ω(τ |θt, θt−1)g(τ |θt−1)‖2

]
= EB

[
‖[1− ω(τ |θt, θt−1)]g(τ |θt−1) + (g(τ |θt)− g(τ |θt−1)‖2

]
≤ EB

[
‖[1− ω(τ |θt, θt−1)]g(τ |θt−1)‖2

]
+ EB

[
‖g(τ |θt)− g(τ |θt−1)‖2

]
(?)

≤ C2
gEB

[
‖1− ω(τ |θt, θt−1)‖2

]
+ L2

g ‖θt − θt−1‖2

(??)
= C2

gVar [ω(τ |θt, θt−1)] + L2
g ‖θt − θt−1‖2

(3.11)

≤
(
C2
gCω + L2

g

)
‖θt − θt−1‖2 ,

where Lg := HM(R+|b|)
(1−γ) , Cg := HG(R+|b|)

(1−γ) , and b is a baseline reward. Here, (?) comes from

Lemma 3.1 and (??) is from Cortes et al. (2010, Lemma 1).

Plugging the last estimate into (3.10) yields

EB,B̂
[
‖∆vt‖2

]
≤ β2‖∆vt−1‖2 +

β2(C2
gCω + L2

g)

B
‖θt − θt−1‖2 +

(1− β)2

B
σ2,

which is (3.6), where C := C2
gCω + L2

g.

83

3.5.2 Proof of Lemma 3.3

Proof. Similar to the proof of Lemma 5 in Tran-Dinh et al. (2019b) , from the update in

Algorithm 2, we have θt+1 = (1 − γ)θt + γθ̂t+1, which leads to θt+1 − θt = γ(θ̂t+1 − θt).

Combining this expression and the L-smoothness of J(θ) in Lemma 3.1, we have

J(θt+1) ≥ J(θt) + [∇J(θt)]
> (θt+1 − θt)− L

2 ‖θt+1 − θt‖2

= J(θt) + α [∇J(θt)]
> (θ̂t+1 − θt)− Lα2

2 ‖θ̂t+1 − θt‖2.
(3.12)

From the convexity of Q, we have

Q(θt+1) ≤ (1− α)Q(θt) + αQ(θ̂t+1) ≤ Q(θt) + α∇Q(θ̂t+1)>(θ̂t+1 − θt), (3.13)

where ∇Q(θ̂t+1) is a subgradient of Q at θ̂t+1.

By the optimality condition of θ̂t+1 = proxηQ(θt + ηvt), we can show that ∇Q(θ̂t+1) =

vt − 1
η (θ̂t+1 − θt) for some ∇Q(θ̂t+1) ∈ ∂Q(θ̂t+1) where ∂Q is the subdifferential of Q at θ̂t+1.

Plugging this into (3.13), we get

Q(θt+1) ≤ Q(θt) + αv>t (θ̂t+1 − θt)−
α

η
‖θ̂t+1 − θt‖2. (3.14)

Subtracting (3.14) from (3.12), we obtain

F (θt+1) ≥ F (θt) + α [∇J(θt)− vt]> (θ̂t+1 − θt) +
(
α
η −

Lα2

2

)
‖θ̂t+1 − θt‖2

= F (θt)− α [vt −∇J(θt)]
> (θ̂t+1 − θt) +

(
α
η −

Lα2

2

)
‖θ̂t+1 − θt‖.

(3.15)

Using the fact that

[vt −∇J(θt)]
> (θ̂t+1 − θt) = 1

2 ‖vt −∇J(θt)‖2 + 1
2‖θ̂t+1 − θt‖2

− 1
2‖vt −∇J(θt)− (θ̂t+1 − θt)‖2,

84

and ignoring the non-negative term 1
2‖vt −∇J(θt)− (θ̂t+1 − θt)‖2, we can rewrite (3.15) as

F (θt+1) ≥ F (θt)−
α

2
‖∇J(θt)− vt‖2 +

(
α

η
− Lα2

2
− α

2

)
‖θ̂t+1 − θt‖2.

Taking the total expectation over the entire history Ft+1, we obtain

E [F (θt+1)] ≥ E [F (θt)]−
α

2
E
[
‖∇J(θt)− vt‖2

]
+

(
α

η
− Lα2

2
− α

2

)
E
[
‖θ̂t+1 − θt‖2

]
. (3.16)

From the definition of the gradient mapping (3.3), we have

η‖Gη(θt)‖ = ‖proxηQ(θt + η∇J(θt))− θt‖.

Applying the triangle inequality, we can derive

η ‖Gη(θt)‖ ≤ ‖θ̂t+1 − θt‖+ ‖proxηQ(θt + η∇J(θt))− θ̂t+1‖

= ‖θ̂t+1 − θt‖+ ‖proxηQ(θt + η∇J(θt))− proxηQ(θt + ηvt)‖

≤ ‖θ̂t+1 − θt‖+ η‖vt −∇J(θt)‖.

Taking the full expectation over the entire history Ft+1 yields

η2E [Gη(θt)]2 ≤ 2E
[
‖θ̂t+1 − θt‖2

]
+ 2η2E

[
‖vt −∇J(θt)‖2

]
.

Multiply this inequality by −α
2 and add to (3.16), we arrive at

E [F (θt+1)] ≥ E [F (θt)] + η2α
2 E

[
‖Gη(θt)‖2

]
− α

2

(
1 + 2η2

)
E
[
‖vt −∇J(θt)‖2

]
+ α

2

(
2
η − Lα− 3

)
E
[
‖θ̂t+1 − θt‖2

]
,

which can be rewritten as

E [F (θt+1)] ≥ E [F (θt)] + η2α
2 E

[
‖Gη(θt)‖2

]
− ξ

2E
[
‖vt −∇J(θt)‖2

]
+ ζ

2E
[
‖θ̂t+1 − θt‖2

]
,

where ξ := α(1 + 2η2) and ζ := α
(

2
η − Lα− 3

)
which is exactly (3.7).

85

3.5.3 Proof of Theorem 3.1: Key bound on the gradient mapping

Proof. Firstly, using the identity θt+1 − θt = γ(θ̂t+1 − θt), taking the total expectation over the

entire history Ft+1, we can rewrite (3.6) as

E
[
‖vt+1 −∇J(θt+1)‖2

]
≤ β2E

[
‖vt −∇J(θt)‖2

]
+ β2C

B E
[
‖θt+1 − θt‖2

]
+ (1−β)2

B σ2

= β2E
[
‖vt −∇J(θt)‖2

]
+ β2Cα2

B E
[
‖θ̂t+1 − θt‖2

]
+ (1−β)2

B σ2.

(3.17)

Multiply (3.17) by −κ
2

for some κ > 0, then add to (3.7), we have

E [F (θt+1)]− κ
2E
[
‖vt+1 −∇J(θt+1)‖2

]
≥ E [F (θt)]− (κβ2+ξ)

2 E
[
‖vt −∇J(θt)‖2

]
+ η2α

2 E
[
‖Gη(θt)‖2

]
+ 1

2

(
ζ − κβ2Cα2

B

)
E
[
‖θ̂t+1 − θt‖2

]
−κ(1−β2)σ2

2B

= E [F (θt)]− κ
2E
[
‖vt −∇J(θt)‖2

]
+ η2α

2 E
[
‖Gη(θt)‖2

]
− [ξ−κ(1−β2)]

2 E
[
‖vt −∇J(θt)‖2

]
+1

2

(
ζ − κβ2Cα2

B

)
E
[
‖θ̂t+1 − θt‖2

]
− κ(1−β2)σ2

2B .

Let us define F (θt) := E [F (θt)] − κ
2E
[
‖vt −∇J(θt+1)‖2

]
. Then, the last inequality can be

written as

F (θt+1) ≥ F (θt) + η2α
2 E

[
‖Gη(θt)‖2

]
− [ξ−κ(1−β2)]

2 E
[
‖vt −∇J(θt)‖2

]
− κ(1−β2)σ2

2B + 1
2

(
ζ − κβ2Cα2

B

)
E
[
‖θ̂t+1 − θt‖2

]
.

(3.18)

Suppose that η, α, β are chosen such that

2

η
− Lα− 3 ≥ κβ2Cα

B
> 0 and α(1 + 2η2) ≤ κ(1− β2). (3.19)

Then, we have ζ ≥ κβ2Cα2

B
and ξ ≤ κ(1− β2). By ignoring the non-negative terms in (3.18),

we can rewrite it as

F (θt+1) ≥ F (θt) +
η2α

2
E
[
‖Gη(θt)‖2

]
− κ(1− β2)σ2

2B
.

86

Summing the above inequality for t = 0, · · · ,m, we obtain

F (θm+1) ≥ F (θ0) +
η2α

2

m∑
t=0

E
[
‖Gη(θt)‖2

]
− κ(m+ 1)(1− β2)σ2

2B
. (3.20)

Rearranging terms and multiply both sides by
2

η2α
, (3.20) becomes

m∑
t=0

E
[
‖Gη(θt)‖2

]
≤ 2

η2α

[
F (θm+1)− F (θ0)

]
+
κ(m+ 1)(1− β2)σ2

η2αB
. (3.21)

Note that

F (θ0) = F (θ0)− κ

2
E
[
‖v0 −∇J(θ0)‖2

]
≥ F (θ0)− κσ2

2N
,

and F (θm+1) = F (θm+1) − κ
2E
[
‖vm+1 −∇J(θm+1)‖2

]
≤ F (θm+1). Using these estimate in

(3.21), we obtain

m∑
t=0

E
[
‖Gη(θt)‖2

]
≤ 2

η2α
[F (θm+1)− F (θ0)] +

κσ2

η2αN
+
κ(m+ 1)(1− β2)σ2

η2αB

=
2

η2α
[F (θm+1)− F (θ0)] +

(m+ 1)κσ2

η2α

[
1

N(m+ 1)
+

(1− β2)

B

]
.

Multiplying both sides by 1
m+1 , we have

1
m+1

m∑
t=0

E
[
‖Gη(θt)‖2

]
≤ 2

η2α(m+1)
[F (θm+1)− F (θ0)]

+ κσ2

η2α

[
1

N(m+1) + (1−β2)
B

]
.

(3.22)

Now we choose β := 1−
√
B√

N(m+1)
so that the right-hand side of (3.22) is minimized. Note that

if 1 ≤ B ≤ N(m+ 1), then β ∈ [0, 1).

Let us choose η := 2
4+Lα ≤

1
2 which means ζ := 2

η − Lα − 3 = 1. We can satisfy the first

condition of (3.19) by choosing 0 < α ≤ B
κC

.

Besides, the second condition in (3.19) holds if 0 < α ≤ κ(1−β2)
1+2η2

. Since we have η ≤ 1
2 which

leads to 1 + 2η2 ≤ 3
2 and using 1− β2 ≥ 1− β = B1/2

N1/2(m+1)1/2
we derive the condition for α as

0 < α ≤ 2κ
√
B

3
√
N(m+ 1)

.

87

Therefore, the overall condition for α is given as

0 < α ≤ min

{
1,

B

κC
,

2κ
√
B

3
√
N(m+ 1)

}
.

If we choose κ :=
√

3[NB(m+1)]1/4√
2C

, then we can update α as

α :=
ĉ
√

2B3/4

√
3C[N(m+ 1)]1/4

. (3.23)

Using 1 ≤ B ≤ N(m+ 1), we can bound α ≤ ĉ
√

2B
3C

then we can choose ĉ ∈
(

0,

√
3C
2B

]
so that

γ ∈ (0, 1].

With all the choices of β, η, α, and κ above, if we let the output θ̃T be selected uniformly

at random from {θt}mt=0, then we have

E
[
‖Gη(θ̃T)‖2

]
=

1

m+ 1

m∑
t=0

E
[
‖Gη(θt)‖2

]
≤

√
3CN1/4

η2ĉ
√

2[B(m+ 1)]3/4
[F (θm+1)− F (θ0)] +

3σ2

η2[BN(m+ 1)]1/2
.

(3.24)

Note that η = 2
4+Lα and since α ≤ 1 we have 1

η2
≤ (4+L)2

4 . Plugging these into (3.24) yields

E
[
‖Gη(θ̃T)‖2

]
=

1

m+ 1

m∑
t=0

E
[
‖Gη(θt)‖2

]
≤ (4 + L)2

√
3CN1/4

4ĉ
√

2[B(m+ 1)]3/4
[F (θm+1)− F (θ0)] +

3(4 + L)2σ2

4[BN(m+ 1)]1/2

≤ (4 + L)2
√

3CN1/4

4ĉ
√

2[B(m+ 1)]3/4
[F ∗ − F (θ0)] +

3(4 + L)2σ2

4[BN(m+ 1)]1/2
,

where we use the fact that F (θm+1) ≤ F ∗.

88

3.5.4 Proof of Corollary 3.1: trajectory complexity of Algorithms 2 and 3

Proof. If we fix a batch size B ∈ N+ and choose N := c̃σ8/3 [B(m+ 1)]1/3 for some c̃ > 0, (3.5.3)

is equivalent to

E
[
‖Gη(θ̃T)‖2

]
≤ (4 + L)2

√
3Cc̃1/4σ2/3

4ĉ
√

2[B(m+ 1)]2/3

[
F ∗ − F (θ

(0)
)
]

+
3(4 + L)2σ2/3

4c̃1/2[B(m+ 1)]2/3

=

[
(4 + L)2

√
3Cc̃1/4

4ĉ
√

2

[
F ∗ − F (θ

(0)
)
]

+
3(4 + L)2

4c̃1/2

]
σ2/3

[B(m+1)]2/3

=
Ψ0σ

2/3

[B(m+ 1)]2/3
,

where we define

Ψ0 :=

[
(4 + L)2

√
3Cc̃1/4

4ĉ
√

2

[
F ∗ − F (θ

(0)
)
]

+
3(4 + L)2

4c̃1/2

]
. (3.25)

Therefore, for any ε > 0, to guarantee E
[
‖Gη(θ̃T)‖2

]
≤ ε2, we need Ψ0σ2/3

[B(m+1)]2/3
= ε2 which leads

to the total number of iterations

T = m+ 1 =
Ψ

3/2
0 σ

Bε3
= O

(
1

ε3

)
.

The total number of proximal operations proxηQ is also O
(

1
ε3

)
. In addition, the total number

of trajectories is at most

N + 2B(m+ 1) = c̃σ8/3 [B(m+ 1)]1/3 +
2Ψ0σ

ε3

= c̃σ8/3 Ψ
1/3
0 σ1/3

ε
+

2Ψ0σ

ε3

= O
(

1

ε
+

1

ε3

)
= O

(
1

ε3

)
.

This proves our the complexity of Algorithm 2.

Next, let us denote the superscript (s) when the current stage is s for s = 0, · · · , S − 1. Note

that from the first inequality of (3.5.3), for any stage s = 0, . . . , S − 1, the following holds

1

m+ 1

m∑
t=0

E
[
‖Gη(θ(s)

t)‖2
]
≤ (4 + L)2

√
3CN1/4

4ĉ
√

2[B(m+ 1)]3/4

[
F (θ

(s)
m+1)− F (θ

(s)
0)
]

+
3(4 + L)2σ2

4[BN(m+ 1)]1/2
.

89

Summing for s = 0, · · · , S − 1 and multiply both sides by
1

S
yields

1
S(m+1)

S−1∑
s=0

m∑
t=0

E
[
‖Gη(θ(s)

t)‖2
]
≤ (4+L)2

√
3CN1/4

4ĉ
√

2[B(m+1)]3/4S

[
F (θ

(S−1)
m+1)− F (θ

(0)
0)
]

+ 3(4+L)2σ2

4[BN(m+1)]1/2S

≤ (4+L)2
√

3CN1/4

4ĉ
√

2[B(m+1)]3/4S

[
F ∗ − F (θ

(0)
0)
]

+ 3(4+L)2σ2

4[BN(m+1)]1/2S
,

(3.26)

where we use F (θ
(S−1)
m+1) ≤ F ∗ again.

If we also fix a batch size B ∈ N+ and choose N := c̃σ8/3 [B(m+ 1)]1/3 for some c̃ > 0, and

select θ̃T uniformly random from {θ(s)
t }

s=1,··· ,S
t=0,··· ,m, then, similar to (3.5.4), (3.26) can be written as

E
[
‖Gη(θ̃T)‖2

]
=

1

S(m+ 1)

S−1∑
s=0

m∑
t=0

E
[
‖Gη(θ(s)

t)‖2
]

≤ (4 + L)2
√

3Cc̃1/4σ2/3

4ĉ
√

2[B(m+ 1)]2/3S

[
F ∗ − F (θ

(0)
0)
]

+
3(4 + L)2σ2/3

4c̃1/2[B(m+ 1)]2/3S

=

[
(4 + L)2

√
3Cc̃1/4

4ĉ
√

2

[
F ∗ − F (θ

(0)
0)
]

+
3(4 + L)2

4c̃1/2

]
σ2/3

[B(m+ 1)]2/3S

≤ Ψ0σ
2/3

[SB(m+ 1)]2/3
,

where we use Ψ0 defined in (3.25) and 1
S ≤

1
S2/3 for any S ≥ 1.

Therefore, to guarantee E
[
‖Gη(θ̃T)‖2

]
≤ ε2 for any ε > 0, we need Ψ0σ2/3

[SB(m+1)]2/3
= ε2 which

leads to the total number of iterations

T = S(m+ 1) =
Ψ

3/2
0 σ

Bε3
= O

(
1

ε3

)
.

The total number of proximal operations proxηQ is also O
(

1
ε3

)
. In addition, the total number

of trajectories is at most

S [N + 2B(m+ 1)] = S

[
c̃σ8/3 [B(m+ 1)]1/3 +

2Ψ0σ

ε3

]
= S

[
c̃σ8/3 Ψ

1/3
0 σ1/3

ε
+

2Ψ0σ

ε3

]

= O
(

1

ε
+

1

ε3

)
= O

(
1

ε3

)
, for any S ≥ 1.

Therefore, we obtain the conclusion of Corollary 3.1.

90

CHAPTER 4

FedDR - Douglas-Rachford Splitting Methods for Federated Learning

4.1 Introduction

Since first introduced in Konečnỳ et al. (2016); McMahan and Ramage (2017), federated

learning (FL) has received tremendous attention in the past few years. As the size of datasets

and models grow larger, training machine learning model in a centralized fashion becomes more

challenging and somewhat inaccessible for a large number of workers. Consequently, training

machine learning models using distributed approach comes in as a natural replacement. As

the mobile devices have been getting more powerful, they can act as workers to participate in

training machine learning models.

In FL, a central server coordinate updates across local workers then perform global model

update by averaging models return from local workers. When the number of workers may

get extremely large, it creates communication bottleneck between the server and workers

which eventually slows down the training process. Moreover, the local data stored in each local

agent may be different in terms of sizes and distribution which poses another challenge: data

heterogeneity. Another challenge in FL is the variety of workers with different local storage,

computational power, and network connectivity participating into the system also creates a

major challenge, as known as system heterogeneity. This challenge also causes unstable

connection between server and local workers, where worker devices may be disconnected from

the server during training so we expect that only a subset of the workers can participate in one

round of communication.

Another aspect to consider in FL is the data privacy, distributed methods often communicate

the gradient of the local workers whereas private data can be exposed from the shared gradient

(Zhu et al., 2019). Therefore, FL methods normally send the global model to each worker at the

91

start of each communication round, each worker will perform its local update and send back the

newly updated local model for aggregation.

4.1.1 Problem of interest

The finite-sum structure is one of the most commonly used to formulate the optimization

problem in federated learning which can be written as

min
x∈Rp

{
f(x) =

1

n

n∑
i=1

fi(x)
}
. (4.1)

We additionally consider another convex function in the objective which can represent constraints

or regularizers on the model parameters. In particular, we want to solve the following problem

min
x∈Rp

{
F (x) := f(x) + g(x) =

1

n

n∑
i=1

fi(x) + g(x)
}
, (4.2)

where n is the number of workers, each fi is a local loss of the i-th worker, which is assumed to

be nonconvex and L-smooth (see Assumptions 4.1 and 4.2 below), and g is a proper, closed, and

convex regularizer. Apart from these assumptions, we will not make any additional assumption

on (4.2). We emphasize that the use of regularizers g has been motivated in several works,

including Yuan et al. (2021).

Let dom(F) := {x ∈ Rp : F (x) < +∞} be the domain of F and ∂g be the subdifferential of

g (Bauschke and Combettes, 2017). Since (4.2) is nonconvex, we only expect to find a stationary

point, which is characterized by the following optimality condition.

Definition 4.1.1. If 0 ∈ ∇f(x∗) + ∂g(x∗), then x∗ is called a stationary point of (4.2).

The algorithms for solving (4.2) developed in this chapter will rely on the following assumptions.

Assumption 4.1 (Boundedness from below). dom(F) 6= ∅ and F ? := infx∈Rp F (x) > −∞.

Assumption 4.2 (L-smoothness). All functions fi(·) for i ∈ [n] := {1, · · · , n} are L-smooth,

i.e., fi is continuously differentiable and there exists L ∈ (0,+∞) such that

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖, ∀x, y ∈ dom(fi). (4.3)

92

Assumptions 4.1 and 4.2 are very standard in nonconvex optimization. Assumption 4.1

guarantees the well-definedness of (4.2) and is independent of algorithms. Assuming the same

Lipschitz constant L for all fi is not restrictive since if fi is Li-smooth, then by scaling variables

of its constrained formulation (see (4.4) in Supp. Doc.), we can get the same Lipschitz constant

L of all fi.

Let us recall the definition of gradient mapping in (1.5). Then, the optimality condition

0 ∈ ∇f(x∗) + ∂g(x∗) of (4.2) is equivalent to Gη(x∗) = 0. However, in practice, we often wish to

find an ε-approximate stationary point to (4.2) defined as follows.

Definition 4.1.2. If x̃ ∈ dom(F) satisfies E
[
‖Gη(x̃)‖2

]
≤ ε2, x̃ is called an ε-stationary point of

(4.2), where the expectation is taken over all randomness generated by the underlying algorithm.

4.1.2 Related work

On one hand, there are research that focus on the system level to discuss suitable infrastruc-

ture design for federated learning systems (Bonawitz et al., 2019; Li et al., 2019a). On the other

hand, other researchers also consider FL in specific communication setting (Chen et al., 2020;

Amiri and Gündüz, 2020). Zhang et al. (2019); Niknam et al. (2020) provide comprehensive

surveys of FL for mobile edge and wireless settings.

Meanwhile, there have been extensive research on developing numerical methods to solve

(4.1) to reduce the communication cost. One of the first and well-known method to solve

(4.1) is Federated Averaging (FedAvg) or LocalSGD. FedAvg’s practical performance has been

shown in many early works, e.g., Konečnỳ et al. (2016); McMahan et al. (2017); Zhang et al.

(2016).Lin et al. (2018) show that local SGD where local workers perform a number of updates

before global communication takes place as in FedAvg may offer benefit over minibatch SGD.

Similar comparisons between minibatch SGD and local SGD have been done in Woodworth

et al. (2020a,b).

Analyzing convergence of FedAvg was very challenging at its early time due to the complexity

in its update as well as data heterogeneity. One of the early attempt to show the convergence of

FedAvg is Stich (2018) for convex problems under the iid data setting and a set of assumptions.

Yu et al. (2019) also consider local SGD in the nonconvex setting. Without using an additional

93

bounded gradient assumption as in Stich (2018); Yu et al. (2019), Wang and Joshi (2018)

improve the complexity for the general nonconvex setting while Haddadpour et al. (2019) use a

Polyak- Lojasiewicz (PL) condition to improve FedAvg’s convergence results. In heterogeneous

data settings, Khaled et al. (2019) analyze local GD, where workers performs gradient descent

(GD) updates instead of SGD. The analysis of FedAvg for non-iid data is given in Li et al.

(2019b). The analysis of local GD/SGD for nonconvex problems has been studied in Haddadpour

and Mahdavi (2019). However, FedAvg might not converge with non-iid data as shown in

Pathak and Wainwright (2020); Zhang et al. (2020); Zhao et al. (2018).

FedProx (Li et al., 2020b) is an extension of FedAvg, which deals with heterogeneity in

federated networks by introducing a proximal term to the objective in local updates to improve

stability. FedProx has been shown to achieve better performance than FedAvg in heterogeneous

setting. Another method to deal with data heterogeneity is SCAFFOLD (Karimireddy et al.,

2020b) using a control variate to correct the “client-drift” in local update of FedAvg. MIME

(Karimireddy et al., 2020a) is another framework that uses control variate to improve FedAvg

for heterogeneous settings. However, SCAFFOLD and MIME require to communicate extra

information apart from local models. Compared to aforementioned works, our methods deal

with nonconvex problems under standard assumptions and with composite settings.

FedSplit (Pathak and Wainwright, 2020) instead employs a Peaceman-Rachford splitting

scheme to solve a constrained reformulation of the original problem. In fact, FedSplit can be

viewed as a variant of Tseng’s splitting scheme (Bauschke and Combettes, 2017) applied to FL.

Pathak and Wainwright (2020) show that FedSplit can find a solution of the FL problem under

only convexity without imposing any additional assumptions on system or data homogeneity.

Zhang et al. (2020) propose FedPD, which is essentially a variant of the standard augmented

Lagrangian method in nonlinear optimization. Other algorithms for FL can be found, e.g., in

Charles and Konečnỳ (2021); Gorbunov et al. (2021); Haddadpour et al. (2021); Hanzely et al.

(2020); Li et al. (2021); Yu et al. (2020).

4.1.3 Our approach and contribution

Our approach relies on nonconvex DR splitting method, which can handle data heterogeneity

as discussed in Pathak and Wainwright (2020). While the DR method is classical, its nonconvex

94

variants have been recently studied e.g., in Dao and Tam (2019); Li and Pong (2016); Themelis

and Patrinos (2020). However, the combination of DR and randomized block-coordinate strategy

remains limited (Combettes and Eckstein, 2018; Combettes and Pesquet, 2015) even in the

convex settings. Alternatively, asynchronous algorithms have been extensively studied in the

literature, also for FL, see, e.g., Bertsekas and Tsitsiklis (1989); Peng et al. (2016); Recht et al.

(2011). For instance, a recent work (Xie et al., 2019) analyzes an asynchronous variant of

FedAvg under bounded delay assumption and constraint on the number of local updates. Stich

(2018) propose an asynchronous local SGD to solve convex problems under iid data. However,

to our best knowledge, there exists no asynchronous method using DR splitting techniques with

convergence guarantee for FL. In addition, most existing algorithms only focus on non-composite

settings. Hence, our work here appears to be the first.

Our contribution can be summarized as follows.

(a) We develop a new FL algorithm, called FedDR (Federated Douglas-Rachford), by

combining the well-known DR splitting technique and randomized block-coordinate strategy

for the common nonconvex composite optimization problem in FL. Our algorithm can

handle nonsmooth convex regularizers and allows inexact evaluation of the underlying

proximal operators as in FedProx or FedPD. It also achieves the best known O
(
ε−2
)

communication complexity for finding a stationary point under standard assumptions

(Assumptions 4.1-4.2), where ε is a given accuracy. More importantly, unlike FedSplit

(Pathak and Wainwright, 2020) and FedPD (Zhang et al., 2020), which require full user

participation to achieve convergence, our analysis does allow partial participation by

selecting a subset of users to perform update at each communication round.

(b) Next, we propose an asynchronous algorithm, asyncFedDR, where each worker can

asynchronously perform local update and periodically send the update to the server for

proximal aggregation. We show that asyncFedDR achieves the same communication

complexity O
(
ε−2
)

as FedDR (up to a constant factor) under the same standard assump-

tions. Our experiments verify that asyncFedDR is more advantageous than FedDR

when workers have heterogeneous computing power.

95

4.1.4 Outline

The rest of this chapter is organized as follows. Section 4.2 provides procedure to reformulate

(4.1) into a constrained optimization problem and introduce our FedDR algorithm along with

its convergence guarantee. Section 4.3 introduces asyncFedDR, an asynchronous variant of

FedDR, and presents its convergence results. Section 4.4 illustrates the performance of our

proposed algorithms compared with existing methods using various synthetic and real datasets.

Finally, Section 4.5 presents intermediate results and missing proofs for convergence guarantee

of FedDR and asyncFedDR algorithms in Section 4.2 and 4.3.

4.2 FedDR algorithm and its convergence analysis

FedSplit (Pathak and Wainwright, 2020) is a related method which uses the Peaceman-

Rachford splitting method (Bauschke and Combettes, 2017) to to solve the convex non-composite

problem (4.1). FedSplit is able to address the communication bottleneck and data heterogeneity

challenges in federated learning. Following this direction, we first derive a new variant of the

Douglas-Rachford splitting method, called FedDR, to solve the nonconvex composite problem

(4.2). Unlike FedSplit, FedDR is a randomized block-coordinate method and consider a more

general problem (4.2) instead of (4.1).

4.2.1 The derivation of FedDR

Our first step is to recast (4.2) into a constrained reformulation. After that, we apply the

classical Douglas-Rachford (DR) splitting scheme to this reformulation. Finally, we randomize

its updates to obtain a randomized block-coordinate DR variant.

(a) Constrained reformulation. We can equivalently write (4.2) into the following

constrained minimization problem:

min

x1,··· ,xn

{
F (x) := f(x) + g(x) ≡ 1

n

n∑
i=1

fi(xi) + g(x1)
}

s.t. x2 = x1, x3 = x1, · · · , xn = x1.

(4.4)

96

where x := [x1, x2, · · · , xn] concatenates n copies of x ∈ Rp in (4.2) such that it forms a column

vector in Rnp. Such duplications are characterized by x2 = x1, x3 = x1, · · · , xn = x1, which

define a consensus set C := {x ∈ Rnp : x1 = x2 = · · · = xn}.

(b) Unconstrained reformulation. Let δC be the indicator function of the consensus set

C, i.e. δC(x) = 0 if x ∈ C, and δC(x) = +∞, otherwise. Then, we can rewrite (4.4) into the

following unconstrained setting:

min
x∈Rnp

{
F (x) := f(x) + g(x) + δC(x) ≡ 1

n

n∑
i=1

fi(xi) + g(x1) + δC(x)
}
. (4.5)

Note that (4.5) can be viewed as a composite nonconvex minimization problem of f(x) and

g(x) + δC(x). The first-order optimality condition of (4.5) can be written as

0 ∈ ∇f(x?) + ∂g(x?) + ∂δC(x
?), (4.6)

where ∂δC is the subdifferential of δC , which is the normal cone of C (or, equivalently, ∂δC(x) = C⊥

if x ∈ C, the orthogonal subspace of C, and ∂δC(x) = ∅, otherwise), and ∂g is the subdifferential of

g. Note that since f is nonconvex, (4.6) only provides a necessary condition for x? := [x?1, · · · , x?n]

to be a local minimizer. Any x? satisfying (4.6) is called a (first-order) stationary point of (4.5).

In this case, we have x?i = x?1 for all i ∈ [n]. Hence, using (4.6), we have 0 ∈ ∇f(x?)+∂g(x?)+C⊥.

This condition is equivalent to 0 ∈ 1
n

∑n
i=1∇fi(x?i) + ∂g(x?1). However, since x? ∈ C, x?i = x?1

for all i ∈ [n], then the last inclusion becomes 0 ∈ 1
n

∑n
i=1∇fi(x?1) + ∂g(x?1). Equivalently, we

have x? := x?1 to be a stationary point of (4.2).

(c) Full parallel DR variant. Let us apply the DR splitting method to (4.6), which can

be written explicitly as follows:

yk+1 := xk + α(x̄k − xk),

xk+1 := proxnηf (yk+1),

x̄k+1 := proxnη(g+δC)(2xk+1 − yk+1),

(4.7)

where η > 0 is a given such that nη is a step-size and α ∈ (0, 2] is a relaxation parameter

(Themelis and Patrinos, 2020). If α = 1, we recover the classical Douglas-Rachford scheme

97

(Lions and Mercier, 1979) and if α = 2, we recover the Peaceman-Rachford splitting scheme

(Bauschke and Combettes, 2017). Note that the classical DR scheme studied in Lions and

Mercier (1979) was developed to solve monotone inclusions, and in our context, convex problems.

Recently, it has been extended to solve nonconvex optimization problems, see, e.g., Li and Pong

(2015); Themelis and Patrinos (2020).

Let us further take advantage of the special structure of f and δC in (4.5) to obtain a special

parallel DR variant.

• First, since f(x) = 1
n

∑n
i=1 fi(xi), we have

min
x

{
f(x) + 1

2nη‖x− yk+1‖2
}

= min
x

{
1
n

n∑
i=1

[
fi(xi) + 1

2η‖xi − y
k+1
i ‖2

]}
= 1

n

n∑
i=1

min
xi

{
fi(xi) + 1

2η‖xi − y
k+1
i ‖2

}
.

Hence, we can decompose the computation of xk+1 := proxnηf (yk+1) from (4.7) as

xk+1
i := proxηfi(y

k+1
i) for all i ∈ [n].

• Next, we denote x̂k+1 := 2xk+1 − yk+1, or equivalently, in component-wise x̂k+1
i :=

2xk+1
i − yk+1

i for all i ∈ [n].

• Finally, the third line of (4.7) x̄k+1 := proxnη(g+δC)(x̂
k+1) can be rewritten as

x̄k+1 := proxnη(g+δC)(x̂
k+1) =

argmin

[x1,··· ,xn]

{
g(x1) + 1

2nη

∑n
i=1 ‖xi − x̂

k+1
i ‖2

}
s.t. xi = x1, for all i = 2, · · · , n.

(4.8)

Let us solve(4.8) explicitly. First, we define a Lagrange function associated with (4.8) as

C(x, z) = g(x1) +
1

2nη

n∑
i=1

‖xi − x̂k+1
i ‖2 +

n−1∑
i=1

z>i (xi+1 − x1),

98

where zi (i = 1, · · · , n − 1) are the corresponding Lagrange multipliers. Hence, the KKT

condition of (4.8) can be written as

∂g(x̄k+1

1) + 1
nη (x̄k+1

1 − x̂k+1
1)−

∑n−1
i=1 zi = 0,

1
nη (x̄k+1

i+1 − x̂
k+1
i+1) + zi = 0, for all i = 1, · · · , n− 1,

x̄k+1
i+1 = x̄k+1

1 , for all i = 1, · · · , n− 1.

Summing up the second line from i = 1 to i = n− 1 and combining the result with the last line

of this KKT condition, we have

nη

n−1∑
i=1

zi =
n−1∑
i=1

(x̂k+1
i+1 − x̄

k+1
i+1) =

n∑
i=2

x̂k+1
i − (n− 1)x̄k+1

1 .

Substituting this expression into the first line of the KKT condition, we get

n∑
i=1

x̂k+1
i − (n− 1)x̄k+1

1 = x̂k+1
1 + nη

n−1∑
i=1

zi ∈ x̄k+1
1 + nη∂g(x̄k+1

1). (4.9)

This condition is equivalent to
∑n

i=1 x̂
k+1
i ∈ nx̄k+1

1 +nη∂g(x̄k+1
1). By introducing a new notation

x̄k+1 := x̄k+1
1 , we eventually obtain from the last inclusion that

x̄k+1 := [x̄k+1, · · · , x̄k+1] ∈ Rnp, where x̄k+1 := proxηg

(
1
n

∑n
i=1 x̂

k+1
i

)
.

If we introduce a new variable x̃k+1 := 1
n

∑n
i=1 x̂

k+1
i , then x̄k+1 := proxηg

(
x̃k+1

)
.

Putting the above steps together, we obtain the following parallel DR variant for solving

(4.2):

yk+1
i := yki + α(x̄k − xki), ∀i ∈ [n]

xk+1
i := proxηfi(y

k+1
i), ∀i ∈ [n]

x̂k+1
i := 2xk+1

i − yk+1
i , ∀i ∈ [n]

x̃k+1 := 1
n

∑n
i=1 x̂

k+1
i ,

x̄k+1 := proxηg
(
x̃k+1

)
.

(4.10)

99

This variant can be implemented in parallel. It is also known as a special variant of Tseng’s

splitting method (Bauschke and Combettes, 2017) in the convex case. We note that our

algorithms are similar to FedSplit (Pathak and Wainwright, 2020) except that they use α = 2

instead of α < 2 as in our algorithms. In particular, FedSplit is a variant of the Peaceman-

Rachford splitting method and it considers a special case of (4.2) when g = 0 and fi is convex for

all i ∈ [n]. If g = 0 (i.e., without regularizer), then the last line of (4.10) reduces to x̄k+1 = x̃k+1.

(d) Inexact block-coordinate DR variant. Instead of performing update for all workers

i ∈ [n] as in (4.10), we propose a new block-coordinate DR variant, called FedDR, where only

a subset of workers Sk ⊆ [n] performs local update then send its local model to server for

aggregation. For worker i /∈ Sk, the local model is unchanged, i.e., for all i /∈ Sk: yk+1
i = yki ,

xk+1
i = xki , and x̂k+1

i = x̂ki . Hence, no communication with the server is needed for these workers.

Furthermore, we assume that we can only approximate the proximal operator proxηfi up to a

given accuracy for all i ∈ [n]. In this case, we replace the exact proximal step xki := proxηfi(y
k
i)

by its approximation xki :≈ proxηfi(y
k
i) up to a given accuracy εi,k ≥ 0 such that

‖xki − proxηfi(y
k
i)‖ ≤ εi,k. (4.11)

Since xki is approximately computed from proxηfi(y
k
i) as in (4.11), we have

xki = zki + eki , where zki := proxηfi(y
k
i) and ‖eki ‖ ≤ εi,k. (4.12)

We will use this representation of xki and xk+1
i in our analysis in the sequel.

More specifically, the update of our inexact block-coordinate DR variant can be described

as follows.

• Initialization: Given an initial vector x0 ∈ dom(F) and accuracies εi,0 ≥ 0.

Initialize the server with x̄0 := x0.

Initialize all workers i ∈ [n] with y0
i := x0, x0

i :≈ proxηfi(y
0
i), and x̂0

i := 2x0
i − y0

i .

• The k-th iteration (k ≥ 0): Sample a proper subset Sk ⊆ [n] so that Sk presents as the

subset of active workers.

• (Communication) Each worker i ∈ Sk receives x̄k from the server.

100

• (Local/worker update) For each worker i ∈ Sk, given εi,k+1 ≥ 0, it updates

yk+1
i := yki + α(x̄k − xki)

xk+1
i :≈ proxηfi(y

k+1
i)

x̂k+1
i := 2xk+1

i − yk+1
i .

Each worker i /∈ Sk does nothing, i.e.:

yk+1
i := yki

xk+1
i := xki

x̂k+1
i := x̂ki .

• (Communication) Each worker i ∈ Sk sends only x̂k+1
i to the server.

• (Global/Server update) The server aggregates x̃k+1 := 1
n

∑n
i=1 x̂

k+1
i , and then compute

x̄k+1 := proxηg(x̃
k+1).

Note that the global update on x̃k+1 can be rewritten as

x̃k+1 := 1
n

∑n
i=1 x̂

k+1
i = 1

n

∑n
i∈Sk x̂

k+1
i + 1

n

∑n
i 6∈Sk x̂

k
i

= 1
n

∑n
i=1 x̂

k
i + 1

n

∑n
i∈Sk(x̂k+1

i − x̂ki)

= x̃k + 1
n

∑
i∈Sk ∆x̂ki

to see that only workers in Sk participate in the global model update.

The complete algorithm is presented in Algorithm 4. Let us make the following remarks.

Firstly, FedDR mainly updates of three sequences {x̄k}, {xki } and {yki }. While x̄k is an

averaged model to approximately minimize the global objective function F , xki act as local

models trying to optimize a regularized local loss function w.r.t. its local data distribution,

and yki keeps track of the residuals from the local models to the global one. Secondly, we allow

xki to be an approximation of proxηfi(y
k
i) up to an accuracy εi,k ≥ 0 as defined in (1.4), i.e.,

‖xki − proxηfi(y
k
i)‖ ≤ εi,k for all i ∈ [n] if k = 0 and for all i ∈ Sk−1 if k > 0. If εi,k = 0, then we

get the exact evaluation xki := proxηfi(y
k
i). Approximately evaluating proxηfi can be done, e.g.,

by local SGD as in FedAvg. Thirdly, Algorithm 4 is different from existing randomized proximal

101

gradient-based methods since we rely on a DR splitting scheme and can handle composite

settings. Here, three iterates yki , xki , and x̂ki at Step 5 are updated sequentially, making it

challenging to analyze convergence. Lastly, the subset of active users Sk is sampled from a

random set-valued mapping Ŝ. As specified in Assumption 4.3, this sampling mechanism covers

a wide range of sampling strategies. Clearly, if Sk = [n] and g = 0, then Algorithm 4 reduces

to FedSplit, but for the nonconvex case. Hence, our convergence guarantee below remains

applicable, and the guarantee is sure. Note that both our model (4.2) and Algorithm 4 are

completely different from Yuan and Ma (2020).

Algorithm 4 (FedDR - FL with Randomized DR)

1: Initialization: Take x0 ∈ dom(F). Choose η > 0 and α > 0, and accuracies εi,0 ≥ 0
(i ∈ [n]).

Initialize the server with x̄0 := x0 and x̃0 := x0.
Initialize each worker i ∈ [n] with y0

i := x0, x0
i :≈ proxηfi(y

0
i), and x̂0

i := 2x0
i − y0

i .
2: For k := 0, · · · ,K do

3: [Active workers] Generate a proper realization Sk ⊆ [n] of Ŝ (see Assumption 4.3).

4: [Communication] Each worker i ∈ Sk receives x̄k from the server.
5: [Local update] For each worker i ∈ Sk do: Choose εi,k+1 ≥ 0 and update

yk+1
i := yki + α(x̄k − xki), xk+1

i :≈ proxηfi(y
k+1
i), and x̂k+1

i := 2xk+1
i − yk+1

i .

6: [Communication] Each worker i ∈ Sk sends ∆x̂ki := x̂k+1
i − x̂ki back to the server.

7: [Sever aggregation] The server aggregates x̃k+1 := x̃k + 1
n

∑
i∈Sk ∆x̂ki .

8: [Sever update] Then, the sever updates x̄k+1 := proxηg
(
x̃k+1

)
.

9: End For

4.2.2 Convergence analysis of FedDR

To analyze convergence of Algorithm 4, we conceptually introduce z0
i and zk+1

i for i ∈ [n] as

follows:

z0
i := proxηfi(y

0
i), zk+1

i :=

proxηfi(x

k+1
i) if i ∈ Sk

zki if i /∈ Sk,
and xki := zki + eki . (4.13)

Here, eki is the vector of errors. Note that z0
i and zk+1

i do not exist in actual implementation of

Algorithm 4, and we only have their approximations x0
i and xk+1

i , respectively. For any k ≥ 0,

102

since xk+1
i = xki and zk+1

i = zki for i /∈ Sk, we have ‖xk+1
i − zk+1

i ‖ = ‖ek+1
i ‖ = ‖xki − zki ‖ = ‖eki ‖

for i /∈ Sk. To guarantee ‖ek+1
i ‖ = ‖eki ‖ for i /∈ Sk, we just choose εi,k+1 := εi,k for i /∈ Sk.

Note that in Algorithm 4, we have not specified the choice of Sk. The subset Sk is an iid

realization of a random set-valued mapping Ŝ from [n] to 2[n], the collection of all subsets of [n].

We first impose the following assumption about the distribution of our sampling scheme Ŝ.

Assumption 4.3. There exist p1, · · · ,pn > 0 such that P
(
i ∈ Ŝ

)
= pi > 0 for all i ∈ [n].

This assumption covers a large class of sampling schemes as discussed in Richtárik and Takáč

(2016), including non-overlapping uniform and doubly uniform. This assumption guarantees

that every worker has a non-negligible probability to be updated. Note that pi =
∑
S:i∈S P(S)

due to Assumption 4.3. For the sake of notation, we also denote p̂ := min{pi : i ∈ [n]} > 0.

From Assumption 4.3, Ŝ is a proper sampling scheme in the sense that pi := P(i ∈ Ŝ) > 0

for all i ∈ [n]. By specifying this probability distribution p := (p1, · · · ,pn), we obtain different

sampling strategies ranging from uniform to non-uniform as discussed in Richtárik and Takáč

(2016). Our analysis does hold for arbitrary sampling scheme that satisfies Assumption 4.3.

Given a proper sampling scheme Ŝ of [n], let Sk be an iid realization of Ŝ and Fk := σ(S0, · · · ,Sk)

be the σ-algebra generated by S0, · · · ,Sk.

To analyze convergence of Algorithm 4, we introduce the following Lyapunov function:

V k
η (x̄k) := g(x̄k) +

1

n

n∑
i=1

[
fi(x

k
i) + 〈∇fi(xki), x̄k − xki 〉+

1

2η
‖x̄k − xki ‖2

]
. (4.14)

The following descent lemma which holds surely for any subset Sk of [n] is key to achieve

convergence of FedDR.

Lemma 4.1 (Sure descent lemma). Suppose that Assumptions 4.1, 4.2, and 4.3 hold. Let

{(xki , yki , zki , x̂ki , x̄k)} be generated by Algorithm 4 and (4.13), and V k
η (·) be defined by (4.14).

Then, the following estimate holds:

V k+1
η (x̄k+1) ≤ V k

η (x̄k)− [2−α(Lη+1)−2L2η2−4αγ4(1+L2η2)]
2αηn

∑
i∈Sk ‖x

k+1
i − xki ‖2

− (1−γ3)
2η ‖x̄

k+1 − x̄k‖2 + (1+η2L2)
ηγ3

E2
k+1

+ 2(1+ηL)2

γ4ηα2n

∑
i∈Sk [‖eki ‖2 + ‖ek+1

i ‖2],

(4.15)

103

where E2
k+1 := 1

n

∑
i/∈Sk ‖e

k
i ‖2 + 1

n

∑
i∈Sk ‖e

k+1
i ‖2, and γ3, γ4 > 0. In particular, if E2

k+1 = 0,

then we allow γ3 = 0, and if eki = ek+1
i = 0 for all i ∈ Sk, then we allow γ4 = 0.

The proof of this lemma is presented in Section 4.5.1.2 which uses several useful lemmas

in Section 4.5.1.1. The following lemma specifies the choice of parameters to obtain a descent

property on V k
η when proxηfi is evaluated approximately. The proof of this lemma is in

Section 4.5.1.3.

Lemma 4.2. Suppose that Assumptions 4.1, 4.2, and 4.3 hold. Let V k
η (·) be defined by (4.14)

and γ1, γ2, γ4 > 0 be given. Let {(xki , yki , x̂ki , x̄k)} be generated by Algorithm 4 using

0 < α <
min{8,

√
17 + 64γ4 − 1}

4(1 + 4γ4)
and 0 < η <

√
(4− α)2 − 16α2γ4(1 + 4γ4)− α

4L(1 + 2αγ4)
. (4.16)

Then, V k
η is bounded from bellow by F ?, i.e. V k

η ≥ F ? and the following estimate holds:

β

2n

n∑
i=1

‖x̄k − xki ‖2 ≤ V k
η (x̄k)− E

[
V k+1
η (x̄k+1) | Fk−1

]
+

1

n

n∑
i=1

(ρ1ε
2
i,k + ρ2ε

2
i,k+1), (4.17)

where
β := p̂α[2−α(Lη+1)−2L2η2−4γ4α(1+L2η2)]

2η(1+γ1)(1+L2η2)
> 0,

ρ2 := 2(1+ηL)2

γ4ηα2 + (1+η2L2)
η + α[2−α(Lη+1)−2L2η2−4αγ4(1+L2η2)]

2η(1+L2η2)γ1
,

ρ1 := ρ2 + (1+η2L2)
η .

(4.18)

Here, if εi,k = 0 for all i ∈ [n] and k ≥ 0, then we allow γ1 = γ2 = γ4 = ρ1 = ρ2 = 0.

We are ready to present the convergence of Algorithm 4.

Theorem 4.1. Suppose that Assumptions 4.1, 4.2, and 4.3 hold. Let {(xki , yki , x̂ki , x̄k)} be

generated by Algorithm 4 using stepsizes α and η as in (4.16). Then, we have

1

K + 1

K∑
k=0

E
[
‖Gη(x̄k)‖2

]
≤ C1[F (x0)− F ?]

K + 1
+

1

n(K + 1)

K∑
k=0

n∑
i=1

(
C2ε

2
i,k + C3ε

2
i,k+1

)
, (4.19)

where β, ρ1, and ρ2 are defined by (4.18), and

C1 := 2(1+ηL)2(1+γ2)
η2β

, C2 := ρ1C1, and C3 := ρ2C1 + (1+ηL)2(1+γ2)
η2γ2

.

104

Let x̃K be selected uniformly at random from {x̄0, · · · , x̄K} as the output of Algorithm 4. Let

the accuracies εi,k for all i ∈ [n] and k ≥ 0 be chosen such that 1
n

∑n
i=1

∑K+1
k=0 ε2i,k ≤M for all

K ≥ 0. Then, if we run Algorithm 4 for at most

K :=

⌊
C1[F (x0)− F ?] + (C2 + C3)M

ε2

⌋
≡ O

(
ε−2
)

iterations, then x̃K is an ε-stationary point of (4.2) as in Definition 4.1.2.

The proof of Theorem 4.1 can be found in Section 4.5.1.4.

Remark 6 (Comparison). Since (4.2) is nonconvex, our O
(
ε−2
)

communication complexity

is the state-of-the-art, matching the lower bound complexity (up to a constant factor) (Zhang

et al., 2020). However, unlike FedSplit and FedPD (Zhang et al., 2020), our flexible sampling

scheme allows us to update a subset of workers at each round. This can potentially further

resolve the communication bottleneck (Li et al., 2020a). We note that FedSplit is a variant

of the Peaceman-Rachford splitting method. However, since α < 2 in Algorithm 4, we cannot

recover FedSplit even in the convex case with full update on all workers.

Remark 7. [Choice of accuracies εki] To guarantee 1
n

∑n
i=1

∑K+1
k=0 ε2i,k ≤ M in Theorem 4.1

for a given constant M > 0 and for all K ≥ 0, one can choose, e.g., ε2i,k := M
2(k+1)2

for all i ∈ [n]

and k ≥ 0. In this case, we can easily show that 1
n

∑n
i=1

∑K+1
k=0 ε2i,k = M

2

∑K+1
k=0

1
(k+1)2

≤M .

Note that, instead of using decreasing accuracies as in Remark 7, one can also use relative

accuracies as in the bounded relative error condition defined as follows.

Definition 4.2.1. For any i ∈ Sk, given xki and yk+1
i , we say that xk+1

i approximates

proxηfi(y
k+1
i) up to a bounded relative error if there is a constant θi > 0 (independent

of k) such that

‖xk+1
i − proxηfi(y

k+1
i)‖2 ≤ ε2

i,k+1 := θi‖xk+1
i − xki ‖2 (4.20)

The condition in Definition 4.2.1 is more practical as it allows solving proxηfi for a fixed

number of iterations. Such an idea has been widely used in the literature, including Liu et al.

(2021). The following theorem specifies convergence of Algorithm 4 under the relative bounded

error condition (4.20), whose proof can be found in Section 4.5.2.

105

Theorem 4.2. Suppose that Assumptions 4.1, 4.2, and 4.3 hold, and the bounded relative

error condition (4.20) in Definition 4.2.1 holds with θi := θ̂pi for a fixed constant θ̂ > 0. Let

{(xki , yki , x̂ki , x̄k)} be generated by Algorithm 4 using a relaxation stepsize α = 1 and x0
i :=

proxηfi(y
0
i) for i ∈ [n]. If γ4 and θ̂ are chosen such that 1− 4γ4 − 8Ĉθ̂ > 0 and η is chosen by

0 < η < η̄ :=

√
1+8(1+2γ4)(1−4γ4−8Ĉθ̂)−1

4L(1+2γ4) , (4.21)

where Ĉ := max
{

1 + η2L2, 2(1+ηL)2

γ4

}
, then the following bound holds

1

K + 1

K∑
k=0

E
[
‖Gη(x̄k)‖2

]
≤
C̃
[
F (x0)− F ?

]
(K + 1)

, (4.22)

where C̃ > 0 is computed by

C̃ :=
p̂2η[1− Lη − 2L2η2 − 4γ4(1 + L2η2)− 8Ĉθ̂]

4
[
4(1 + L2η2 + 2θ̂) + p̂θ̂

]
(1 + ηL)2

. (4.23)

The remaining conclusions of this theorem are similar to Theorem 4.1, and we omit them here.

4.3 AsyncFedDR and its convergence guarantee

Although FedDR has been shown to converge, it is more practical to account for the system

heterogeneity of local workers. Requiring synchronous aggregation at the end of each commu-

nication round may lead to slow down in training. It is natural to have asynchronous update

from local workers as seen, e.g., in Recht et al. (2011); Stich (2018). However, asynchronous

implementation remains limited in FL. Here, we propose asyncFedDR, an asynchronous variant

of FedDR, and analyze its convergence guarantee. For the sake of our analysis, we only consider

Sk := {ik} with exact evaluation of proxηfi and bounded delay, but extensions to general Sk

and inexact proxηfi are similar to Algorithm 4.

4.3.1 Derivation of asyncFedDR

Let us first explain the main idea of asyncFedDR. At each iteration k, each worker receives

a delay copy x̄
k−dkik of x̄k from the server with a delay dkik . The active worker ik will update its

106

own local model (yki , x
k
i , x̂

k
i) in an asynchronous mode without waiting for others to complete.

Once completing its update, worker ik just sends an increment ∆x̂kik to the server to update the

global model, while others may be reading. Overall, the complete asyncFedDR is presented in

Algorithm 5.

Algorithm 5 (Asynchronous FedDR (asyncFedDR))

1: Initialization: Take x0∈dom(F) and choose η > 0 and α > 0.
Initialize the server with x̄0 := x0 and x̃0 := 0.
Initialize each worker i ∈ [n] with y0

i := x0, x0
i := proxηfi(y

0
i), and x̂0

i := 2x0
i − y0

i .
2: For k := 0, · · · ,K do
3: Select ik such that (ik, d

k) is a realization of (̂ik, d̂
k).

4: [Communication] User ik receives x̄
k−dkik , a delayed version of x̄k with the delay dkik .

5: [Local update] User ik updates

yk+1
ik

:= ykik + α(x̄
k−dkik − xkik), xk+1

ik
:= proxηfik

(yk+1
ik

), and x̂k+1
ik

:= 2xk+1
ik
− yk+1

ik
.

Other workers maintain yk+1
i := yki , xk+1

i := xki , and x̂k+1
i := x̂ki for i 6= ik.

6: [Communication] User ik sends ∆k
ik

:= x̂k+1
ik
− x̂kik back to the server.

7: [Sever aggregation] The server aggregates x̃k+1 := x̃k + 1
n∆k

ik
.

8: [Sever update] Then, the sever updates x̄k+1 := proxηg
(
x̃k+1

)
.

9: End For

In our analysis below, a transition of iteration from k to k + 1 is triggered whenever a

worker completes its update. Moreover, at Step 3, active worker ik is chosen from a realization

(ik, d
k) of a joint random vector (̂ik, d̂

k) at the k-th iteration. Here, we do not assume ik to

be uniformly random or independent of the delay dk. This allows Algorithm 5 to capture the

variety of asynchronous implementations and architectures. Note that x̄
k−dkik at Step 4 is a

delayed version of x̄k, which only exists on the server when worker ik is reading. However, right

after, x̄k may be updated by another worker.

Illustrative example. To better understand the update of asyncFedDR, Figure 4.1

depicts a simple scenario where there are 4 workers (C1 - C4) asynchronously perform updates

and with g(·) = 0. At iteration k = 4, worker C4 finishes its update so that the server performs

updates. During this process, worker C1 starts its update by receiving a global model x̄
4−d4i4 from

server which is the average of (x̂4
1, x̂

4
2, x̂

4
3, x̂

4
4). At iteration t = 7, C1 finishes its update. Although

x̂1 and x̂4 do not change during this time, i.e. x̂6
1 = x̂4

1 and x̂6
4 = x̂4

4, x̂2 and x̂3 have been

updated at k = 5, 6 from worker C2 and C3, respectively. Therefore, the global model x̄k used

107

to perform the update at k = 7 is actually aggregated from (x̂6
1, x̂

4
2, x̂

5
3, x̂

6
4) not (x̂6

1, x̂
6
2, x̂

6
3, x̂

6
4).

In other words, each worker receives a delay estimate x̄k−d
k

where dk = (dk1, · · · , dkn) is a delay

vector and dki = max{t ∈ [k] : it = i}, i.e. the last time x̂i gets updated up to iteration k. Note

that when dki = 0 for all i, Algorithm 5 reduces to its synchronous variant, i.e. a special variant

of Algorithm 4 with Sk = {ik}.

Figure 4.1: Asynchronous update with 4 workers. Here, “A” blocks represent server process and
“UP” blocks represent worker process; C1-C4 are communication rounds.

Dual-memory approach. Let us provide more details on the implementation of our

asynchronous algorithm. When a worker finishes its local update, the updated model (or model

difference) is sent to the server for a proximal aggregation step. When the server is performing

a proximal aggregation step, other workers might need to read from the global model. To allow

concurrent read/write operations, one easy method is to have two models stored on the server,

denoted as model 1 and model 2. At any given time, one model is on “read” state (it is supposed

to be read from) and the other will be on “write” state (it will be written on when the server

finishes aggregation). Suppose model 1 is on a “read” state and model 2 is on a “write” state,

then all workers can read from model 1. When the server completes the proximal aggregation,

model 2 becomes the latest model and it will change to a “read” state while model 1 is on a

“write” state. This implementation detail is also discussed in Peng et al. (2016), which is termed

by a dual-memory approach.

4.3.2 Probabilistic model

Let ξk := (ik, d
k) be a realization of a joint random vector ξ̂k := (̂ik, d̂

k) of the worker index

îk ∈ [n] and the delay vector d̂k = (d̂k1, · · · , d̂kn) ∈ D := {0, 1, · · · , τ}n presented at the current

108

iteration k. We consider k + 1 random vectors ξ̂l (0 ≤ l ≤ k) that form a concatenate random

vector ξ̂0:k := (ξ̂0, · · · , ξ̂k). We also use ξ0:k = (ξ0, ξ1, · · · , ξk) for k + 1 possible values of the

random vector ξ̂0:k. Let Ω be the sample space of all sequences ω := {(ik, dk)}k≥0 ≡ {ξk}k≥0.

We define a cylinder Ck(ξ0:k) := {ω ∈ Ω : (ω0, · · · , ωk) = ξ0:k} as a subset in Ω and Ck is the set

of all possible subsets Ck(ξ0:k) when ξt, t = 0, · · · , k, take all possible values, where ωl is the l-th

coordinate of ω. Note that {Ck}k≥0 forms a partition of Ω and measurable. Let Fk := σ(Ck) be

the σ-algebra generated by Ck and F := σ(∪∞k=0Ck). Clearly, {Fk}k≥0 forms a filtration such

that Fk ⊆ Fk+1 ⊆ · · · ⊆ F for k ≥ 0 that is sufficient to cope with the evolution of Algorithm 5.

For each Ck(ξ0:k) we also equip with a probability p(ξ0:k) := P(Ck(ξ0:k)). Then, (Ω,F ,P)

forms a probability space. Our conditional probability is defined as

p((i, d) | ξ0:k) := P(Ck+1(ξ0:k+1))/P(Ck(ξ0:k)),

where we set p((i, d) | ξ0:k) := 0 if p(ξ0:k) = 0. We do not need to know these probabilities in

advance. They are determined based on the particular system such as hardware architecture,

software implementation, asynchrony, and our strategy for selecting active worker.

Now, if X is a random variable defined on Ω, as shown in Cannelli et al. (2019), we have

E[X | Fk] =
∑

(i,d)∈[n]×D

p((i, d) | ξ0:k)X(ξ0:k, (i, d)). (4.24)

Note from Assumption 4.4 that

p(i | ξ0:k) :=
∑
d∈D

p((i, d) | ξ0:k) ≥ p̂. (4.25)

Our probability model described above allows us to handle a variety class of asynchronous

algorithms derived from the DR splitting scheme. Here, we do not make independent assumption

between the active worker îk and the delay vector d̂k.

109

4.3.3 Convergence analysis

Since we treat the active worker ik and the delay vector dk jointly at each iteration k as a

realization of a joint random vector (̂ik, d̂
k), we adopt the probabilistic model from Cannelli

et al. (2019) to analyze Algorithm 5. This new model allows us to cope with a more general

class of asynchronous variants of our method.

To analyze Algorithm 5, we impose Assumption 4.4 on the implementation below.

Assumption 4.4. For all i ∈ [n] and ω ∈ Ω, there exists at least one t ∈ {0, 1, · · · , T} with

T > 0, such that ∑
d∈D

p((i, d) | ξ0:k+t−1) ≥ p̂ if p(ξ0:k) > 0, (4.26)

for a given p̂ > 0 and any k ≥ 0. Assume also that dki ≤ τ and dkik = 0 for all k ≥ 0 and

i, ik ∈ [n].

Assumption 4.4 implies that during an interval of T iterations, every worker has a non-

negligible positive probability to be updated. Note that if the worker ik is active, then it uses

recent value with no delay, i.e., dkik = 0 as in Assumption 4.4. Moreover, the bounded delay

assumption dki ≤ τ is standard to analyze convergence of asynchronous algorithms, see e.g.,

Cannelli et al. (2019); Nguyen et al. (2018); Peng et al. (2016); Recht et al. (2011); Xie et al.

(2019).

Let us present the following lemma which is key to establish a sure-descent property. The

proof of this lemma can be found in Section 4.5.3.1

Lemma 4.3 (Sure descent). Suppose that Assumptions 4.1, 4.2, and 4.4 hold for (4.2). Let

{(xki , yki , x̂ki , x̃k, x̄k)} be generated by Algorithm 5 and V k
η (·) be defined as in (4.14). Then, for

all k ≥ 0, the following estimate holds:

V k+1
η (x̄k+1) + τ

nη

∑k
l=k+1−τ (l − k + τ)‖x̄l+1 − x̄l‖2 ≤ V k

η (x̄k)− ρ
2‖x

k+1
ik
− xkik‖

2

+ τ
nη

∑k−1
l=k−τ (l − (k − 1) + τ)‖x̄l+1 − x̄l‖2,

(4.27)

110

where

ρ :=

2(1−α)−(2+α)L2η2−Lαη

αηn if 2τ2 ≤ n,

n2[2(1−α)−(2+α)L2η2−Lαη]−α(1+η2L2)(2τ2−n)
αηn3 otherwise.

As a result, we have the following key lemma whose proof is in Section 4.5.3.2.

Lemma 4.4 (Sure descent lemma). Suppose that Assumptions 4.1, 4.2, and 4.4 hold. Let{
(xki , y

k
i , x̂

k
i , x̃

k, x̄k)
}

be generated by Algorithm 5 and V k
η be defined as in (4.14). Let

Ṽ k
η (x̄k) := V k

η (x̄k) + 1
nη

∑k−1
l=k−τ [l − (k − τ) + 1]‖x̄l+1 − x̄l‖2. (4.28)

Suppose that we choose 0 < α < ᾱ and 0 < η < η̄, where c := 2τ2−n
n2 ,

ᾱ :=

1 if 2τ2 ≤ n,

2
2+c otherwise,

and η̄ :=

√

16−8α−7α2−α
2L(2+α) if 2τ2 ≤ n,

√
16−8α−(7+4c+4c2)α2−α

2L[2+(1+c)α] otherwise.

(4.29)

Then, the following statement holds:

ρ

2
‖xk+1

ik
− xkik‖

2 ≤ Ṽ k
η (x̄k)− Ṽ k+1

η (x̄k+1), (4.30)

where

ρ :=

2(1−α)−(2+α)L2η2−Lαη

αηn if 2τ2 ≤ n,

n2[2(1−α)−(2+α)L2η2−Lαη]−α(1+η2L2)(2τ2−n)
αηn3 otherwise.

Moreover, ρ is positive.

The next lemma, whose proof is in Section 4.5.3.3, bounds the term
∑n

i=1 E
[
‖x̄k − xki ‖2

]
in

oredr to connect with the gradient mapping E
[
‖Gη(x̄k)‖2

]
.

111

Lemma 4.5. Suppose that Assumptions 4.1, 4.2, and 4.4 hold. Let
{

(xki , y
k
i , x̂

k
i , x̄

k)
}

be gener-

ated by Algorithm 5. Then, we have

n∑
i=1

E
[
‖x̄k − xki ‖2

]
≤ D

k+T∑
t=k−τ

E
[
‖xt+1

it
− xtit‖

2
]
, (4.31)

where D := 8α2(1+L2η2)(τ2+2Tnp̂) + 8n2(1+L2η2+Tα2p̂)
p̂α2n2 .

Theorem 4.3 presents the convergence of Algorithm 5, whose analysis is in Section 4.5.3.4.

Theorem 4.3. Suppose that Assumptions 4.1, 4.2, and 4.4 hold for (4.2). Let ᾱ, η̄, ρ, and D be

given by Lemma 4.4 and Lemma 4.5, respectively. Let {(xki , yki , x̄k)} be generated by Algorithm 5

with stepsizes α ∈ (0, ᾱ) and η ∈ (0, η̄). Then, the following bound holds:

1

K + 1

K∑
k=0

E
[
‖Gη(x̄k)‖2

]
≤
Ĉ
[
F (x0)− F ?

]
K + 1

, (4.32)

where Ĉ := 2(1+ηL)2D
nη2ρ

> 0 depending on n,L, η, α, τ, T, and p̂.

Let x̃K be selected uniformly at random from {x̄0, · · · , x̄K} as the output of Algorithm 5.

Then, after at most K := O
(
ε−2
)

iterations, x̃K is an ε-stationary point of (4.2) as in

Definition 4.1.2.

Remark 8. From Theorem 4.3, we can see that asyncFedDR achieves the same worst-case

communication complexity O
(
ε−2
)

(up to a constant factor) as FedDR, but with smaller range

of α and η.

4.4 Numerical Experiments

In this section, we first provide details about experiment settings then present numerous

results on synthetic and real dataset when comparing with other related methods.

4.4.1 Experiment setup

To evaluate the performance of FedDR and asyncFedDR, we conduct multiple experiments

using both synthetic and real datasets. Since most existing methods are developed for non-

composite problems, we also implement three other methods: FedAvg, FedProx, and FedPD

112

to compare with in this setting. We use training loss, training accuracy, and test accuracy as

our performance metrics. The source code is available at

https://github.com/unc-optimization/FedDR.

Implementation. To compare synchronous algorithms, we reuse the implementation of

FedAvg and FedProx in Li et al. (2020b) and implement FedDR and FedPD on top of it. To

conduct the asynchronous examples, we implement our algorithms based on the asynchronous

framework in Cai (2018). All experiments are run on a Linux-based server with multiple nodes

and configuration: 24-core 2.50GHz Intel processors, 30M cache, and 256GB RAM.

Parameter selection. We use the learning rate for local solver (SGD) as reported in

Li et al. (2020b) to approximately evaluate proxηfi(y
k
i) at each worker i ∈ [n]. The learning

rates are 0.01 for all synthetic datasets, 0.01 for MNIST, and 0.003 for FEMNIST. We also

perform a grid-search over multiple values to select the parameter and stepsizes for FedProx,

FedPD and FedDR. In particular, we choose µ ∈ [0.001, 1] for FedProx, η ∈ [1, 1000] for FedPD,

and η ∈ [1, 1000], α ∈ [0, 1.99] for FedDR. All algorithms perform local SGD updates with 20

epochs to approximately evaluate proxηfi(y
k
i) before sending the results to server for [proximal]

aggregation. For each dataset, we pick the parameters that achieve the best test accuracy for

each algorithm and plot their performance on the chosen parameters.

Training model selection. For all datasets, we use fully-connected neural network as

training models. For all synthetic datasets, we use a neural network of size 60× 32× 10 where

we use the format input size× hidden layer× output size. For MNIST, we use a network of size

784× 128× 10. For FEMNIST used in the main text, we reuse the dataset from Li et al. (2020b)

and a 784× 128× 26 model.

Composite examples. We test our algorithm under composite setting where we set

g(x) = 0.01 ‖x‖1. In the first test, we choose η = 500, α = 1.95 and select the local learning rate

(lr) for SGD to approximately evaluate proxηfi(y
k
i) from the set {0.0025, 0.005, 0.0075, 0.01, 0.025}

for synthetic-(0,0) and {0.001, 0.003, 0.005, 0.008, 0.01} for FEMNIST. Next, we fix the local

learning rate at 0.01 for synthetic-(0,0) and 0.003 for FEMNIST then adjust the number of

local epochs in the set {5, 10, 15, 20, 30} to evaluate proxηfi(y
k
i). Finally, we test our algorithm

when changing the total number of workers participating at each communication round |Sk|.

113

https://github.com/unc-optimization/FedDR

For synthetic-(0,0) dataset, we set |Sk| ∈ {5, 10, 15, 20, 25}. For FEMNIST dataset, we set

|Sk| ∈ {10, 25, 50, 75, 100}.

Asynchronous example. To make the sample size larger for each worker, we generate

the FEMNIST dataset using Leaf (Caldas et al., 2018). In the new dataset, there are actually

62 classes instead of 26 classes as used in Li et al. (2020b). Therefore, we denote this dataset

as FEMNIST - 62 classes. In this new dataset, each worker has sample size ranging from

97 to 356. We implement the communication between server and worker using the distributed

package in Pytorch 1 as in Cai (2018). There are 21 threads created, one acts as server and

20 others are workers. To simulate the case when workers have different computing power, we

add a certain amount of delay at the end of each worker’s local update such that the total

update time varies between all workers. For FEMNIST - 62 classes dataset, the model is a

fully-connected neural network of the size 784× 128× 62.

4.4.2 Results on non-composite example

0 50 100 150
Comm. Rounds

0.5

1.0

1.5

2.0

Tr
ai

nL
os

s

0 50 100 150
Comm. Rounds

0.2

0.4

0.6

0.8

Tr
ai

nA
cc

0 50 100 150
Comm. Rounds

0.2

0.4

0.6

0.8

Te
st

Ac
c

FedAvg
FedProx
FedPD
FedDR

synthetic-iid

Figure 4.2: The performance of 4 algorithms on iid synthetic dataset without user sampling
scheme.

Results on synthetic datasets. We compare four algorithms using synthetic dataset

in both iid and non-iid settings. We follow the data generation procedures described in Li

et al. (2020b); Shamir et al. (2014) to generate one iid dataset synthetic-iid and three

non-iid datasets: synthetic-(r,s) for (r, s) = {(0, 0), (0.5, 0.5), (1, 1)}. We first compare these

1see https://pytorch.org/tutorials/beginner/dist_overview.html for more details.

114

https://pytorch.org/tutorials/beginner/dist_overview.html

algorithms without using the worker sampling scheme, i.e. all workers perform update at each

communication round, and for non-composite model of (4.2).

Figure 4.2 illustrates the performance of four algorithms using iid synthetic dataset. From

Figure 4.2, FedAvg appears to perform best while the other three algorithms are comparable in

the iid setting. Similar behavior is also observed in Li et al. (2020b).

Figure 4.3 depicts the performance of these algorithms using three non-iid synthetic datasets.

From Figure 4.3, we observe that the more non-iid the dataset is, the more unstable these algo-

rithms behave. FedDR and FedPD are comparable in these datasets and they both outperform

FedProx and FedAvg. FedProx works better than FedAvg which aligns with the results in Li

et al. (2020b).

0 50 100 150
Comm. Rounds

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

nL
os

s

0 50 100 150
Comm. Rounds

0.0

0.2

0.4

0.6

0.8

Tr
ai

nA
cc

0 50 100 150
Comm. Rounds

0.0

0.2

0.4

0.6

0.8

Te
st

Ac
c

FedAvg
FedProx
FedPD
FedDR

synthetic-(0,0)

0 50 100 150
Comm. Rounds

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Tr
ai

nL
os

s

0 50 100 150
Comm. Rounds

0.2

0.4

0.6

0.8

Tr
ai

nA
cc

0 50 100 150
Comm. Rounds

0.2

0.4

0.6

0.8

Te
st

Ac
c

FedAvg
FedProx
FedPD
FedDR

synthetic-(0.5,0.5)

0 50 100 150
Comm. Rounds

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

nL
os

s

0 50 100 150
Comm. Rounds

0.3

0.4

0.5

0.6

0.7

0.8

Tr
ai

nA
cc

0 50 100 150
Comm. Rounds

0.3

0.4

0.5

0.6

0.7

Te
st

Ac
c

FedAvg
FedProx
FedPD
FedDR

synthetic-(1,1)

Figure 4.3: The performance of 4 algorithms on non-iid synthetic datasets without worker
sampling scheme.

115

Now we compare these algorithms where we sample 10 workers out of 30 to perform update

at each communication round for FedAvg, FedProx, and FedDR while we use all workers for

FedPD since FedPD only has convergence guarantee for this setting. In this test, the evaluation

metric is plotted in terms of the number of bytes communicated between workers and server

at each communication round. Note that using worker sampling scheme in this case can save

one-third of communication cost each round. Figure 4.4 depicts the performance of 4 algorithms

on one dataset.

0 1 2 3 4
Bytes 1e6

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

nL
os

s

0 1 2 3 4
Bytes 1e6

0.0

0.2

0.4

0.6

0.8
Tr

ai
nA

cc

0 1 2 3 4
Bytes 1e6

0.0

0.2

0.4

0.6

0.8

Te
st

Ac
c

FedAvg
FedProx
FedPD
FedDR

synthetic-(0,0)

0 1 2 3 4
Bytes 1e6

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Tr
ai

nL
os

s

0 1 2 3 4
Bytes 1e6

0.2

0.4

0.6

0.8

Tr
ai

nA
cc

0 1 2 3 4
Bytes 1e6

0.2

0.4

0.6

0.8

Te
st

Ac
c

FedAvg
FedProx
FedPD
FedDR

synthetic-(0.5,0.5)

0 1 2 3 4
Bytes 1e6

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Tr
ai

nL
os

s

0 1 2 3 4
Bytes 1e6

0.2

0.4

0.6

0.8

Tr
ai

nA
cc

0 1 2 3 4
Bytes 1e6

0.2

0.4

0.6

0.8

Te
st

Ac
c

FedAvg
FedProx
FedPD
FedDR

synthetic-(1,1)

Figure 4.4: The performance of 4 algorithms with worker sampling scheme on non-iid synthetic
datasets.

From Figure 4.4, FedDR performs well compared to others. FedProx using worker sampling

scheme performs better and is slightly behind FedPD while FedDR, FedPD, and FedProx

outperform FedAvg.

116

Results on FEMNIST datasets. FEMNIST (Caldas et al., 2018) is an extended version

of the MNIST dataset (LeCun et al., 1998) where the data is partitioned by the writer of the

digit/character. It has a total of 62 classes (10 digits, 26 upper-case and 26 lower-case letters)

with over 800,000 samples. In this example, there are total of 200 workers and we sample 50

workers to perform update at each round of communication for FedAvg, FedProx, and FedDR

while we use all workers to perform update for FedPD. Figure 4.5 depicts the performance

of 4 algorithms in terms of communication cost. From Figure 4.5, FedDR achieves lower loss

value and higher training accuracy than other algorithms while FedPD can reach the same test

accuracy as ours at the end. Overall, FedDR appears to be better than other algorithms in this

test.

0 2 4 6 8
Bytes 1e8

1

2

3

4

Tr
ai

nL
os

s

0 2 4 6 8
Bytes 1e8

0.0

0.2

0.4

0.6

0.8

Tr
ai

nA
cc

0 2 4 6 8
Bytes 1e8

0.0

0.2

0.4

0.6

0.8

Te
st

Ac
c

FedAvg
FedProx
FedPD
FedDR

FEMNIST

Figure 4.5: The performance of 4 algorithms on the FEMNIST dataset.

4.4.3 Results on composite example using `1-norm regularizer

We now consider the composite setting with g(x) := 0.01 ‖x‖1 to evaluate the performance

of Algorithm 4 on different inexactness levels εi,k by varying the learning rate (lr) and the

number of local SGD epochs to approximately evaluate proxηfi(y
k
i). We run Algorithm 4 on

two datasets: synthetic-(0,0) and FEMNIST dataset. The results are shown in Figures 4.6

and 4.7.

From Figure 4.6, we observe that the learning rate (lr) of SGD needs to be tuned for each

dataset and the local iteration should be selected carefully to trade-off between local computation

cost and inexactness of the evaluation of proxηfi(y
k
i). From Figure 4.7, Algorithm 4 works best

when local learning rate is 0.003 which aligns with Li et al. (2020b) for the non-composite case.

117

0 50 100 150 200
Comm. Rounds

0.1

0.2

0.3

0.4

0.5

0.6
Tr

ai
nL

os
s

0 50 100 150 200
Comm. Rounds

0.75

0.80

0.85

0.90

0.95

Tr
ai

nA
cc

0 50 100 150 200
Comm. Rounds

0.70

0.75

0.80

0.85

0.90

Te
st

Ac
c

lr = 0.0025
lr = 0.005
lr = 0.0075
lr = 0.01
lr = 0.025

synthetic-(0,0), g = || ||1

0 50 100 150 200
Comm. Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

nL
os

s

0 50 100 150 200
Comm. Rounds

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Tr
ai

nA
cc

0 50 100 150 200
Comm. Rounds

0.70

0.75

0.80

0.85

0.90

Te
st

Ac
c

epoch = 5
epoch = 10
epoch = 15
epoch = 20
epoch = 30

synthetic-(0,0), g = || ||1

Figure 4.6: The performance of FedDR on synthetic dataset in composite setting.

0 50 100 150 200
Comm. Rounds

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

nL
os

s

0 50 100 150 200
Comm. Rounds

0.6

0.7

0.8

0.9

1.0

Tr
ai

nA
cc

0 50 100 150 200
Comm. Rounds

0.5

0.6

0.7

0.8

0.9
Te

st
Ac

c

lr = 0.001
lr = 0.003
lr = 0.005
lr = 0.008
lr = 0.01

FEMNIST, g = || ||1

0 50 100 150 200
Comm. Rounds

0

1

2

3

4

5

Tr
ai

nL
os

s

0 50 100 150 200
Comm. Rounds

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Tr
ai

nA
cc

0 50 100 150 200
Comm. Rounds

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Te
st

Ac
c

epoch = 5
epoch = 10
epoch = 15
epoch = 20
epoch = 30

FEMNIST, g = || ||1

Figure 4.7: The performance of FedDR on FEMNIST dataset in composite setting.

In addition, it performs better when we decrease εi,k by increasing the number of epochs when

evaluating proxηfi .

118

0 50 100 150 200
Comm. Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Tr

ai
nL

os
s

0 50 100 150 200
Comm. Rounds

0.75

0.80

0.85

0.90

0.95

Tr
ai

nA
cc

0 50 100 150 200
Comm. Rounds

0.70

0.75

0.80

0.85

0.90

Te
st

Ac
c

| k| = 10
| k| = 25
| k| = 50
| k| = 75
| k| = 100

synthetic-(0,0), g = || ||1

0 50 100 150 200
Comm. Rounds

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

nL
os

s

0 50 100 150 200
Comm. Rounds

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Tr
ai

nA
cc

0 50 100 150 200
Comm. Rounds

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Te
st

Ac
c

| k| = 10
| k| = 25
| k| = 50
| k| = 75
| k| = 100

FEMNIST, g = || ||1

Figure 4.8: The performance of FedDR in composite setting in terms of communication rounds.

We also vary the number of users sampled at each communication round. The results are

depicted in Figure 4.8 for two datasets. We observe that the performance when we sample

smaller number of user per round is not as good as larger ones in terms of communication rounds.

However, this might not be a fair comparison since fewer clients also require less communication

cost. Therefore, we plot these results in terms of number of bytes communicated. The results

are depicted in Figure 4.9. From Figure 4.9, FedDR performs very similarly under different

choices of Sk.

4.4.4 Results using asynchronous update

To illustrate the advantage of asyncFedDR over FedDR, we conduct another example to

train two datasets: MNIST and FEMNIST using 16 workers. Since we run these experiments

on computing nodes with identical configurations, we simulate the case with computing power

discrepancy between workers by adding variable delay to each worker’s update process such that

the difference between the fastest worker may be up to twice as fast as the slowest one.

119

0 2 4 6 8
Bytes 1e6

0.20

0.25

0.30

0.35

0.40

0.45

0.50
Tr

ai
nL

os
s

0 2 4 6 8
Bytes 1e6

0.75

0.80

0.85

0.90

0.95

Tr
ai

nA
cc

0 2 4 6 8
Bytes 1e6

0.70

0.75

0.80

0.85

0.90

Te
st

Ac
c

| k| = 10
| k| = 25
| k| = 50
| k| = 75
| k| = 100

synthetic-(0,0), g = || ||1

0 2 4 6 8
Bytes 1e8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

nL
os

s

0 2 4 6 8
Bytes 1e8

0.5

0.6

0.7

0.8

0.9

Tr
ai

nA
cc

0 2 4 6 8
Bytes 1e8

0.5

0.6

0.7

0.8

Te
st

Ac
c

| k| = 10
| k| = 25
| k| = 50
| k| = 75
| k| = 100

FEMNIST, g = || ||1

Figure 4.9: The performance of FedDR in composite setting in terms of number of bytes.

0 1500 3000 4500 6000
Time in seconds

0.00

0.15

0.30

0.45

0.60

Tr
ai

nL
os

s

0 1500 3000 4500 6000
Time in seconds

0.80

0.84

0.88

0.92

0.96

1.00

Tr
ai

nA
cc

0 1500 3000 4500 6000
Time in seconds

0.80

0.84

0.88

0.92

0.96

1.00
Te

st
Ac

c

FedDR
asyncFedDR

MNIST

Figure 4.10: The performance of FedDR and asyncFedDR on the MNIST dataset.

The results of two variants are presented in Figures 4.10 and 4.11. We can see that

asyncFedDR can achieve better performance than FedDR in terms of training time which

illustrate the advantage of asynchronous update in heterogeneous computing power.

4.5 Appendix

In this appendix, we present intermediate results and missing proof for achieve convergence

guarantee of FedDR and asyncFedDR algorithms in Sections 4.2 and 4.3.

120

0 1500 3000 4500 6000 7500
Time in seconds

1.8

2.4

3.0

3.6

4.2
Tr

ai
nL

os
s

0 1500 3000 4500 6000 7500
Time in seconds

0.00

0.15

0.30

0.45

0.60

Tr
ai

nA
cc

0 1500 3000 4500 6000 7500
Time in seconds

0.15

0.30

0.45

Te
st

Ac
c

FedDR
asyncFedDR

FEMNIST - 62 classes

Figure 4.11: The performance of FedDR and asyncFedDR on FEMNIST - 62 classes dataset.

4.5.1 Convergence analysis of FedDR

In this section, we introduce several useful lemmas and provide the missing proofs of key

results in Section 4.2.

4.5.1.1 Useful lemmas

We provide useful lemmas to show the convergence of FedDR. We first present a useful

lemma to characterize the relationship between xki and yki for all iteration k.

Lemma 4.6. Let {(yki , xki , zki)} be generated by Algorithm 4 and (4.13) starting from z0
i :=

proxηfi(y
0
i) for all i ∈ [n] as in (4.13). Then, for all i ∈ [n] and k ≥ 0, we have

yki = zki + η∇fi(zki), and x̂ki = 2xki − yki . (4.33)

Proof. We prove (4.33) by induction. For k = 0, due to the initialization step, Step 1 of

Algorithm 4 and (4.13) with z0
i := proxηfi(y

0
i), we have y0

i = z0
i + η∇fi(z0

i) and x̂0
i = 2x0

i − y0
i

as in (4.33).

Suppose that (4.33) holds for all k ≥ 0, i.e., yki = zki + η∇fi(zki) and x̂ki = 2xki − yki . We will

show that (4.33) holds for k+ 1, i.e. yk+1
i = zk+1

i + η∇fi(zk+1
i) and x̂k+1

i = 2xk+1
i − yk+1

i for all

i ∈ [n], respectively. We have two cases:

• For any worker i ∈ Sk, from the optimality condition of (4.13), we have

∇fi(zk+1
i) + 1

η (zk+1
i − yk+1

i) = 0 ⇒ yk+1
i = zk+1

i + η∇fi(zk+1
i).

121

Moreover, x̂k+1
i = 2xk+1

i − yk+1
i due to Step 5 of Algoritihm 4.

• For any worker i /∈ Sk, since zk+1
i := zki due to (4.13), xk+1

i = xki , and yk+1
i = yki , we can

also write yk+1
i as

yk+1
i = yki

(∗)
= zki + η∇fi(zki) = zk+1

i + η∇fi(zk+1
i).

Here, (∗) follows from our induction assumption. Moreover, for i /∈ Sk, we maintain

x̂k+1
i = x̂ki in Algoritihm 4. By our induction assumption, and xk+1

i = xki and yk+1
i = yki ,

we have x̂k+1
i = x̂ki = 2xki − yki = 2xk+1

i − yk+1
i .

In summary, both cases above imply that yk+1
i = zk+1

i + η∇fi(zk+1
i) and x̂ki = 2xki − yki hold for

all i ∈ [n], which proves (4.33).

Our next lemma is to bound ‖x̄k − xki ‖2 in terms of ‖xk+1
i − xki ‖2.

Lemma 4.7. Let {(x̄ki , zki , xki)} be generated by Algorithm 4 and (4.13), and α > 0. Then, for

all i ∈ Sk and any γ1 > 0, we have

‖x̄k − xki ‖2 ≤
2(1+η2L2)

α2

[
(1 + γ1)‖xk+1

i − xki ‖2 + 2(1+γ1)
γ1

(
‖ek+1
i ‖2 + ‖eki ‖2

)]
. (4.34)

In particular, if eki = ek+1
i = 0, then ‖x̄k − xki ‖2 ≤

2(1+η2L2)
α2 ‖xk+1

i − xki ‖2.

Proof. From the update of yk+1
i and Lemma 4.6, for i ∈ Sk, we have

x̄k − xki =
1

α
(yk+1
i − yki)

(4.33)
=

1

α
(zk+1
i − zki) +

η

α
(∇fi(zk+1

i)−∇fi(zki)).

Using this expression and ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2, we can bound ‖x̄k − xki ‖2 for all i ∈ Sk as

‖x̄k − xki ‖2 = ‖ 1
α(zki − z

k+1
i) + η

α(∇fi(zki)−∇fi(zk+1
i)‖2

≤ 2
α2 ‖zki − z

k+1
i ‖2 + 2η2

α2 ‖∇fi(zki)−∇fi(zk+1
i)‖2

≤ 2
α2 ‖zk+1

i − zki ‖2 + 2η2L2

α2 ‖zk+1
i − zki ‖2 (by the L-smoothness of fi)

= 2(1+η2L2)
α2 ‖xk+1

i − xki − e
k+1
i + eki ‖2 (by (4.13))

≤ 2(1+η2L2)
α2

[
(1 + γ1)‖xk+1

i − xki ‖2 + 2(1+γ1)
γ1

(
‖ek+1
i ‖2 + ‖eki ‖2

)]
.

122

Here, we have used Young’s inequality twice in the last inequality. This proves (4.34). When

eki = ek+1
i = 0, we can set γ1 = 0 in the above estimate to obtain the last statement.

We still need to link the norm
∑n

i=1 ‖xki − x̄k‖2 to the norm of gradient mapping ‖Gη(x̄k)‖2

as in the following lemma.

Lemma 4.8. Let {(x̄ki , xki , zki)} be generated by Algorithm 4 and (4.13), and α > 0 and Gη be

defined by (1.5). Then, for any γ2 > 0, we have

‖Gη(x̄k)‖2 ≤
1

nη2

{
(1 + ηL)2

n∑
i=1

[
(1 + γ2)‖xki − x̄k‖2 +

(1 + γ2)

γ2
‖eki ‖2

]}
. (4.35)

In particular, if eki = 0 for all i ∈ [n], then we have ‖Gη(x̄k)‖2 ≤ (1+ηL)2

nη2
∑n

i=1 ‖xki − x̄k‖2.

Proof. From Step 7 of Algorithm 4 and (4.33), we have

x̃k
Step 7

= 1
n

∑n
i=1 x̂

k
i

(4.33)
= 1

n

∑n
i=1(2xki − yki)

(4.33)
= 1

n

∑n
i=1(2xki − zki − η∇fi(zki)). (4.36)

From the definition (1.5) of Gη and the update of x̄k, we have

η‖Gη(x̄k)‖
(1.5)
= ‖x̄k − proxηg(x̄

k − η∇f(x̄k))‖

= ‖proxηg
(
x̃k
)
− proxηg(x̄

k − η∇f(x̄k))‖

≤ ‖x̃k − x̄k + η∇f(x̄k)‖

(4.36)
= 1

n‖
∑n

i=1[(2xki − zki − x̄k) + η(∇fi(x̄k)−∇fi(zki)]‖,

where we have used the non-expansive property of proxg in the first inequality and ∇f(x̄k) =

1
n

∑n
i=1∇fi(x̄k) in the last line.

Finally, using the L-smoothness of fi, we can derive from the last inequality that

η2‖Gη(x̄k)‖2 ≤ 1
n2

[∑n
i=1

(
‖2xki − zki − x̄k‖+ ηL‖zki − x̄k‖

)]2

≤ 1
n

∑n
i=1

(
‖2xki − zki − x̄k‖+ ηL‖zki − x̄k‖

)2
≤ 1

n

∑n
i=1

[
(1 + ηL)‖xki − x̄k‖+ (1 + ηL)‖eki ‖

]2
≤ 1

n(1 + ηL)2
∑n

i=1

[
(1 + γ2)‖xki − x̄k‖2 + (1+γ2)

γ2
‖eki ‖2

]
,

123

which proves (4.35), where γ2 > 0. Here, we have used Young’s inequality in the second and the

last inequalities, and xki = zki + eki from (4.13) in the third line.

The following lemma is key to proof Lemma 4.10.

Lemma 4.9. Suppose that Assumption 4.1, 4.2, and 4.3 hold. Let {(zki , xki , yki , x̂ki , x̄k)} be

generated by Algorithm 4 and (4.13). Let V k
η be defined by (4.14). Then, for any γ3 > 0, we

have

V k+1
η (x̄k+1) ≤ g(x̄k) + 1

n

∑n
i=1

[
fi(x

k+1
i) + 〈∇fi(xk+1

i), x̄k − xk+1
i 〉+ 1

2η‖x̄
k − xk+1

i ‖2
]

− (1−γ3)
2η ‖x̄

k+1 − x̄k‖2 + (1+η2L2)
γ3η

E2
k+1,

(4.37)

where E2
k+1 := 1

n

∑
i/∈Sk ‖e

k
i ‖2 + 1

n

∑
i∈Sk ‖e

k+1
i ‖2. If Ek+1 = 0, then we allow γ3 = 0.

Proof. First, from x̄k+1 = proxηg
(
x̃k+1

)
at Step 7 of Algorithm 4, we have 1

η (x̃k+1 − x̄k+1) ∈

∂g(x̄k+1). Using this expression and the convexity of g, we obtain

g(x̄k+1) ≤ g(x̄k) + 1
η 〈x̃

k+1 − x̄k, x̄k+1 − x̄k〉 − 1
η‖x̄

k+1 − x̄k‖2. (4.38)

Next, since yk+1
i = zk+1

i + η∇fi(zk+1
i) due to (4.33) and xk+1

i = zk+1
i + ek+1

i due to (4.13), we

have

xk+1
i + η∇fi(xk+1

i)
(4.13)

= zk+1
i + η∇fi(zk+1

i) + ek+1
i + η(∇fi(xk+1

i)−∇fi(zk+1
i))

(4.33)
= yk+1

i + ek+1
i + ηξk+1

i ,

(4.39)

where ξk+1
i := ∇fi(xk+1

i)−∇fi(zk+1
i). Using this relation, we can derive

∆k+1 := 1
n

∑n
i=1

[
fi(x

k+1
i) + 〈∇fi(xk+1

i), x̄k+1 − xk+1
i 〉+ 1

2η‖x̄
k+1 − xk+1

i ‖2
]

= 1
n

∑n
i=1

[
fi(x

k+1
i) + 〈∇fi(xk+1

i), x̄k − xk+1
i 〉+ 1

2η‖x̄
k − xk+1

i ‖2
]

+ 1
nη

∑n
i=1〈x̄k − 2xk+1

i + (xk+1
i + η∇fi(xk+1

i)), x̄k+1 − x̄k〉+ 1
2η‖x̄

k+1 − x̄k‖2.

124

Next, using (4.39), we have

∆k+1
(4.39)

= 1
n

∑n
i=1

[
fi(x

k+1
i) + 〈∇fi(xk+1

i), x̄k − xk+1
i 〉+ 1

2η‖x̄
k − xk+1

i ‖2
]

+ 1
nη

∑n
i=1〈x̄k − 2xk+1

i + yk+1
i , x̄k+1 − x̄k〉+ 1

2η‖x̄
k+1 − x̄k‖2

+ 1
nη

∑n
i=1〈e

k+1
i + ηξk+1

i , x̄k+1 − x̄k〉
Step 7

= 1
n

∑n
i=1

[
fi(x

k+1
i) + 〈∇fi(xk+1

i), x̄k − xk+1
i 〉+ 1

2η‖x̄
k − xk+1

i ‖2
]

+ 1
η 〈x̄

k − x̃k+1, x̄k+1 − x̄k〉+ 1
2η‖x̄

k+1 − x̄k‖2

+ 1
nη

∑n
i=1〈e

k+1
i + ηξk+1

i , x̄k+1 − x̄k〉.

Summing up this expression and (4.38), and using the definition of V k
η in (4.14), we get

V k+1
η (x̄k+1) = 1

n

∑n
i=1

[
fi(x

k+1
i) + 〈∇fi(xk+1

i), x̄k+1 − xk+1
i 〉+ 1

2η‖x̄
k+1 − xk+1

i ‖2
]

+ g(x̄k+1)

≤ g(x̄k) + 1
n

∑n
i=1

[
fi(x

k+1
i) + 〈∇fi(xk+1

i), x̄k − xk+1
i 〉+ 1

2η‖x̄
k − xk+1

i ‖2
]

− 1
2η‖x̄

k+1 − x̄k‖2 + 1
nη

∑n
i=1〈e

k+1
i + ηξk+1

i , x̄k+1 − x̄k〉.

By Young’s inequality and ek+1
i = eki for i /∈ Sk due to (4.13), for any γ3 > 0, we can estimate

T[1] := 1
nη

∑n
i=1〈e

k+1
i + ηξk+1

i , x̄k+1 − x̄k〉

≤ 1
2nη

∑n
i=1

[
1
γ3
‖ek+1
i + ηξk+1

i ‖2 + γ3‖x̄k+1 − x̄k‖2
]

≤ γ3
2η‖x̄

k+1 − x̄k‖2 + 1
nηγ3

∑n
i=1 ‖e

k+1
i ‖2 + η

nγ3

∑n
i=1 ‖∇fi(x

k+1
i)−∇fi(zk+1

i)‖2

(4.3)

≤ γ3
2η‖x̄

k+1 − x̄k‖2 + (1+η2L2)
nηγ3

[∑
i∈Sk ‖e

k+1
i ‖2 +

∑
i/∈Sk ‖e

k
i ‖2
]
.

Substituting this inequality into the last estimate, we eventually obtain (4.37). However, if

E2
k+1 = 0, then we can deduce from the above inequality that γ3 can be set to zero.

4.5.1.2 Proof of Lemma 4.10

First, using (4.37), we can further derive

V k+1
η (x̄k+1)

(4.37)

≤ 1
n

∑n
i=1

[
fi(x

k+1
i) + 〈∇fi(xk+1

i), x̄k − xk+1
i 〉+ 1

2η‖x̄
k − xk+1

i ‖2
]

+ g(x̄k)− (1−γ3)
2η ‖x̄

k+1 − x̄k‖2 + (1+η2L2)
ηγ3

E2
k+1.

125

Using the fact that only users in Sk perform update and adding/subtracting xki in the term

〈∇fi(xk+1
i), x̄k − xk+1

i 〉, we have

V k+1
η (x̄k+1) = 1

n

∑
i∈Sk fi(x

k+1
i) + 1

n

∑
i∈Sk〈∇fi(x

k+1
i), xki − x

k+1
i 〉

+ 1
n

∑
i∈Sk〈∇fi(x

k+1
i), x̄k − xki 〉+ 1

2ηn

∑
i∈Sk ‖x̄

k − xk+1
i ‖2

+ 1
n

∑
i/∈Sk fi(x

k
i) + 1

n

∑
i/∈Sk〈∇fi(x

k
i), x̄

k − xki 〉+ 1
2ηn

∑
i/∈Sk ‖x̄

k − xki ‖2

+ g(x̄k)− (1−γ3)
2η ‖x̄

k+1 − x̄k‖2 + (1+η2L2)
ηγ3

E2
k+1,

(4.40)

On the other hand, from the L-smoothness of fi, we have

fi(x
k+1
i) + 〈∇f(xk+1

i), xki − xk+1
i 〉 ≤ fi(xki) +

L

2
‖xk+1

i − xki ‖2.

Substituting this inequality into (4.40), we can further bound it as

V k+1
η (x̄k+1) ≤ 1

n

∑
i∈Sk fi(x

k
i) + L

2n

∑
i∈Sk ‖x

k+1
i − xki ‖2 + 1

n

∑
i∈Sk〈∇fi(x

k+1
i), x̄k − xki 〉

+ 1
2ηn

∑
i∈Sk ‖x̄

k − xk+1
i ‖2 + 1

n

∑
i/∈Sk fi(x

k
i) + 1

n

∑
i/∈Sk〈∇fi(x

k
i), x̄

k − xki 〉

+ 1
2ηn

∑
i/∈Sk ‖x̄

k − xki ‖2 + g(x̄k)

− (1−γ3)
2η ‖x̄

k+1 − x̄k‖2 + (1+η2L2)
ηγ3

E2
k+1

= 1
n

∑n
i=1 fi(x

k
i) + 1

n

∑n
i=1〈∇fi(xki), x̄k − xki 〉+ L

2n

∑
i∈Sk ‖x

k+1
i − xki ‖2

+ 1
2ηn

∑
i∈Sk ‖x̄

k − xk+1
i ‖2 + 1

n

∑
i∈Sk〈∇fi(x

k+1
i)−∇fi(xki), x̄k − xki 〉

+ 1
2ηn

∑
i/∈Sk ‖x̄

k − xki ‖2 + g(x̄k)

− (1−γ3)
2η ‖x̄

k+1 − x̄k‖2 + (1+η2L2)
ηγ3

E2
k+1,

(4.41)

where we have added and subtracted 1
n

∑
i∈Sk〈∇fi(x

k
i), x̄

k − xki 〉 to obtain the last equality.

Note that

‖x̄k − xk+1
i ‖2 = ‖x̄k − xki ‖2 + 2〈x̄k − xki , xki − xk+1

i 〉+ ‖xki − xk+1
i ‖2.

126

Using the previous expression in (4.41), we can further derive

V k+1
η (x̄k+1) ≤ g(x̄k) + 1

n

∑n
i=1

[
fi(x

k
i) + 〈∇fi(xki), x̄k − xki 〉+ 1

2η‖x̄
k − xki ‖2

]
+ 1

2ηn

∑
i∈Sk ‖x

k+1
i − xki ‖2 + 1

ηn

∑
i∈Sk〈x

k+1
i − xki , xki − x̄k〉

+ 1
n

∑
i∈Sk〈∇fi(x

k+1
i)−∇fi(xki), x̄k − xki 〉+ L

2n

∑
i∈Sk ‖x

k+1
i − xki ‖2

− (1−γ3)
2η ‖x̄

k+1 − x̄k‖2 + (1+η2L2)
ηγ3

E2
k+1

= V k
η (x̄k) + 1+ηL

2ηn

∑
i∈Sk ‖x

k+1
i − xki ‖2 + 1

ηn

∑
i∈Sk〈x

k+1
i − xki , xki − x̄k〉

− (1−γ3)
2η ‖x̄

k+1 − x̄k‖2 + (1+η2L2)
ηγ3

E2
k+1

+ 1
n

∑
i∈Sk〈∇fi(x

k+1
i)−∇fi(xki), x̄k − xki 〉.

(4.42)

From the update of yk+1
i , for i ∈ Sk, and similar to the proof of (4.39), we have

xki − x̄k = 1
α(yki − y

k+1
i)

(4.39)
= 1

α(zki − z
k+1
i) + η

α(∇fi(zki)−∇fi(zk+1
i))

= 1
α(xki − x

k+1
i) + η

α(∇fi(xki)−∇fi(x
k+1
i)) + 1

α [(ek+1
i + ηξk+1

i)− (eki + ηξki)]

= 1
α(xki − x

k+1
i) + η

α(∇fi(xki)−∇fi(x
k+1
i)) + ski ,

where ski := 1
α [ek+1

i + ηξk+1
i − (eki + ηξki)) with ξki := ∇fi(xki)−∇fi(zki).

Consequently, using the last expression and the L-smoothness of fi, we can further bound

(4.42) as

V k+1
η (x̄k+1) ≤ V k

η (x̄k) + (1+ηL)
2ηn

∑
i∈Sk ‖x

k+1
i − xki ‖2 − 1

αηn

∑
i∈Sk ‖x

k+1
i − xki ‖2

− 1
αn

∑
i∈Sk〈x

k+1
i − xki ,∇fi(x

k+1
i)−∇fi(xki)〉+ 1

ηn

∑
i∈Sk〈s

k
i , x

k+1
i − xki 〉

+ 1
αn

∑
i∈Sk〈∇fi(x

k+1
i)−∇fi(xki), x

k+1
i − xki 〉

+ η
αn

∑
i∈Sk ‖∇fi(x

k+1
i)−∇fi(xki)‖2 + 1

n

∑
i∈Sk〈s

k
i ,∇fi(x

k+1
i)−∇fi(xki)〉

− (1−γ3)
2η ‖x̄

k+1 − x̄k‖2 + (1+η2L2)
ηγ3

E2
k+1.

127

Simplifying gives

V k+1
η (x̄k+1) ≤ V k

η (x̄k) + η
αn

∑
i∈Sk ‖∇fi(x

k+1
i)−∇fi(xki)‖2 + [α(Lη+1)−2]

2αηn

∑
i∈Sk ‖x

k+1
i − xki ‖2

+ 1
ηn

∑
i∈Sk〈s

k
i , (x

k+1
i − xki) + η(∇fi(xk+1

i)−∇fi(xki))〉

− (1−γ3)
2η ‖x̄

k+1 − x̄k‖2 + (1+η2L2)
ηγ3

E2
k+1.

Using (4.3), we obtain

V k+1
η (x̄k+1)

(4.3)

≤ V k
η (x̄k) + ηL2

αn

∑
i∈Sk ‖x

k+1
i − xki ‖2 + [α(Lη+1)−2]

2αηn

∑
i∈Sk ‖x

k+1
i − xki ‖2

− (1−γ3)
2η ‖x̄

k+1 − x̄k‖2 + (1+η2L2)
ηγ3

E2
k+1

+ 1
nη

∑
i∈S
[

1
γ4
‖ski ‖2 + 2γ4‖xki − x

k+1
i ‖2 + 2γ4η

2‖∇fi(xki)−∇fi(x
k+1
i)‖2

]
= V k

η (x̄k)− [2−α(Lη+1)−2L2η2]
2αηn

∑
i∈Sk ‖x

k+1
i − xki ‖2

+ 1
nγ4η

∑
i∈S ‖ski ‖2 + 2γ4(1+L2η2)

nη

∑
i∈Sk ‖x

k+1
i − xki ‖2

− (1−γ3)
2η ‖x̄

k+1 − x̄k‖2 + (1+η2L2)
ηγ3

E2
k+1.

Finally, we bound ‖ski ‖2 as follows:

‖ski ‖2 = 1
α2 ‖ek+1

i + ηξk+1
i − (eki + ηξki)‖2

≤ 1
α2

[
‖eki ‖+ ‖ek+1

i ‖+ η‖∇fi(xki)−∇fi(zki)‖+ η‖∇fi(xk+1
i)−∇fi(zk+1

i)‖
]2

≤ 2(1+ηL)2

α2 (‖eki ‖2 + ‖ek+1
i ‖2).

Substituting this inequality into the last estimate, we obtain (4.43). The last statement follows

from the last statement of Lemmas 4.8 and 4.9. �

Now, we prove the following key result, which holds surely for any subset Sk of [n].

Lemma 4.10 (Sure descent lemma). Suppose that Assumption 4.1, 4.2, and 4.3 hold. Let

{(xki , yki , zki , x̂ki , x̄k)} be generated by Algorithm 4 and (4.13), and V k
η (·) be defined by (4.14).

128

Then, the following estimate holds:

V k+1
η (x̄k+1) ≤ V k

η (x̄k)− [2−α(Lη+1)−2L2η2−4αγ4(1+L2η2)]
2αηn

∑
i∈Sk ‖x

k+1
i − xki ‖2

− (1−γ3)
2η ‖x̄

k+1 − x̄k‖2 + (1+η2L2)
ηγ3

E2
k+1

+ 2(1+ηL)2

γ4ηα2n

∑
i∈Sk [‖eki ‖2 + ‖ek+1

i ‖2],

(4.43)

where E2
k+1 := 1

n

∑
i/∈Sk ‖e

k
i ‖2 + 1

n

∑
i∈Sk ‖e

k+1
i ‖2, and γ3, γ4 > 0. In particular, if E2

k+1 = 0,

then we allow γ3 = 0, and if eki = ek+1
i = 0 for all i ∈ Sk, then we allow γ4 = 0.

Proof. First, to guarantee a descent property in (4.43), we need to choose η > 0 and α > 0 such

that 2 − α(Lη + 1) − 2L2η2 − 4γ4α(1 + L2η2) > 0. We first need α such that 0 < α < 2
1+4γ4

,

the condition for η is

0 < η < η̄ :=

√
(4−α)2+16α2γ4(1+4γ4)−α

4L(1+2αγ4) .

To guarantee η̄ > 0, we need to choose 0 < α <
√

17+64γ4−1
4(1+4γ4) . Combining both conditions on α,

we obtain the first condition for α in (4.16).

Now, to show the boundedness of V k
η (x̄k) from below, we have

V k
η (x̄k) = g(x̄k) + 1

n

∑n
i=1

[
fi(x

k
i) + 〈∇fi(xki), x̄k − xki 〉+ 1

2η‖x̄
k − xki ‖2

]
≥ g(x̄k) + 1

n

∑n
i=1

[
fi(x̄

k)− L
2 ‖x̄

k − xki ‖2 + 1
2η‖x̄

k − xki ‖2
]

(the L-smoothness of fi)

≥ f(x̄k) + g(x̄k) +
(

1
η − L

)
1

2n

∑n
i=1 ‖x̄k − xki ‖2

≥ F ? (since η ≤ 1
L and Assumption 4.1).

Next, from (4.34), we have

α2

2(1 + L2η2)(1 + γ1)

∑
i∈Sk

‖x̄k − xki ‖2 ≤
∑
i∈Sk

[
‖xk+1

i − xki ‖2 +
α2

(1 + L2η2)γ1

(
‖ek+1
i ‖2 + ‖eki ‖2

)]
.

Moreover, from Assumption 4.3, for a nonnegative random variable W k
i with i ∈ Sk, by taking

expectation of this random variable w.r.t. Sk conditioned on Fk−1, we have

E
[∑

i∈SkW
k
i | Fk−1

]
=
∑
S P(Sk = S)

∑
i∈SW

k
i =

∑n
i=1

∑
S:i∈S P(S)W k

i

Ass. (4.3)
=

∑n
i=1 piW

k
i .

129

Using this relation with W k
i := ‖xki − x̄k‖2, W k

i := ‖eki ‖2, and W k
i := ‖ek+1

i ‖2, and then

combining the results with the last inequality, we can derive that

E
[∑

i∈Sk ‖x
k+1
i − xki ‖2 | Fk−1

]
≥ α2

2(1+L2η2)(1+γ1)

∑n
i=1 pi‖x̄k − xki ‖2

− α2

(1+L2η2)γ1

∑n
i=1 pi

(
‖ek+1
i ‖2 + ‖eki ‖2

)
≥ p̂α2

2(1+L2η2)(1+γ1)

∑n
i=1 ‖x̄k − xki ‖2

− α2

(1+L2η2)γ1

∑n
i=1

(
‖ek+1
i ‖2 + ‖eki ‖2

)
,

(4.44)

where we have used p̂ := mini∈[n] pi > 0 in Assumption 4.3 and pi ≤ 1 for all i ∈ [n].

Taking expectation both sides of (4.43) w.r.t. Sk conditioned on Fk−1, and letting γ3 := 1,

we get

E
[
V k+1
η (x̄k+1) | Fk−1

]
≤ V k

η (x̄k) + (1+η2L2)
ηn

∑n
i=1

[
(1 + pi)‖eki ‖2 + pi‖ek+1

i ‖2)
]

+ 2(1+ηL)2

γ4ηα2n

∑n
i=1 pi

[
‖eki ‖2 + ‖ek+1

i ‖2
]

− [2−α(Lη+1)−2L2η2−4αγ4(1+L2η2)]
2ηαn E

[∑
i∈Sk ‖x

k
i − x̄k‖2 | Fk−1

]
.

(4.45)

Here, we have written E2
k+1 = 1

n

∑n
i=1 ‖eki ‖2 + 1

n

∑
i∈Sk

[
‖eki ‖2 + ‖ek+1

i ‖2
]

and used the fact that

E
[∑

i∈Sk
[
‖eki ‖2 + ‖ek+1

i ‖2
]
| Fk−1

]
=
∑n

i=1 pi
[
‖eki ‖2 + ‖ek+1

i ‖2
]
.

Combining (4.47) and (4.48) we obtain

E
[
V k+1
η (x̄k+1) | Fk−1

]
≤ V k

η (x̄k) + (1+η2L2)
η(n+1)

∑n
i=1 ‖eki ‖2

+
[

2(1+ηL)2

γ4ηα2n
+ (1+η2L2)

ηn

]∑n
i=1 pi

[
‖eki ‖2 + ‖ek+1

i ‖2
]

+ α[2−α(Lη+1)−2L2η2−4αγ4(1+L2η2)]
2η(1+L2η2)γ1n

∑n
i=1

[
‖eki ‖2 + ‖ek+1

i ‖2
]

− p̂α[2−α(Lη+1)−2L2η2−4αγ4(1+L2η2)]
4η(1+L2η2)(1+γ1)n

∑n
i=1 ‖x̄k − xki ‖2.

Rearranging terms in the last inequality and using pi ≤ 1 and ‖eki ‖2 ≤ ε2i,k for all i ∈ [n] and

k ≥ 0 from (4.12), we obtain (4.17). Note that if εi,k = 0 for all i ∈ [n] and k ≥ 0, then we

allow to set γ1 = γ2 = γ4 = ρ1 = ρ2 = 0 as a consequence of the last statement in Lemma 4.7,

Lemma 4.8, and Lemma 4.10.

130

4.5.1.3 Proof of Lemma 4.2

First, to guarantee a descent property in (4.43), we need to choose η > 0 and α > 0 such

that 2 − α(Lη + 1) − 2L2η2 − 4γ4α(1 + L2η2) > 0. We first need α such that 0 < α < 2
1+4γ4

,

the condition for η is

0 < η < η̄ :=

√
(4−α)2+16α2γ4(1+4γ4)−α

4L(1+2αγ4) .

To guarantee η̄ > 0, we need to choose 0 < α <
√

17+64γ4−1
4(1+4γ4) . Combining both conditions on α,

we obtain the first condition for α in (4.16).

Now, to show the boundedness of V k
η (x̄k) from below, we have

V k
η (x̄k) = g(x̄k) + 1

n

∑n
i=1

[
fi(x

k
i) + 〈∇fi(xki), x̄k − xki 〉+ 1

2η‖x̄
k − xki ‖2

]
≥ g(x̄k) + 1

n

∑n
i=1

[
fi(x̄

k)− L
2 ‖x̄

k − xki ‖2 + 1
2η‖x̄

k − xki ‖2
]

(L-smoothness of fi)

≥ f(x̄k) + g(x̄k) +
(

1
η − L

)
1

2n

∑n
i=1 ‖x̄k − xki ‖2

≥ F ? (since η ≤ 1
L and Assumption 4.1).

(4.46)

Next, from (4.34), we have

α2

2(1 + L2η2)(1 + γ1)

∑
i∈Sk

‖x̄k − xki ‖2 ≤
∑
i∈Sk

[
‖xk+1

i − xki ‖2 +
α2

(1 + L2η2)γ1

(
‖ek+1
i ‖2 + ‖eki ‖2

)]
.

Moreover, from Assumption 4.3, for a nonnegative random variable W k
i with i ∈ Sk, by taking

expectation of this random variable w.r.t. Sk conditioned on Fk−1, we have

E
[∑

i∈SkW
k
i | Fk−1

]
=

∑
S P(Sk = S)

∑
i∈SW

k
i =

∑n
i=1

∑
S:i∈S P(S)W k

i

Ass. (4.3)
=

∑n
i=1 piW

k
i .

Using this relation with W k
i := ‖xki − x̄k‖2, W k

i := ‖eki ‖2, and W k
i := ‖ek+1

i ‖2, and then

combining the results with the last inequality, we can derive that

E
[∑

i∈Sk ‖x
k+1
i − xki ‖2 | Fk−1

]
≥ α2

2(1+L2η2)(1+γ1)

∑n
i=1 pi‖x̄k − xki ‖2

− α2

(1+L2η2)γ1

∑n
i=1 pi

(
‖ek+1
i ‖2 + ‖eki ‖2

)
.

131

Using p̂ := mini∈[n] pi > 0 in Assumption 4.3 and pi ≤ 1 for all i ∈ [n], we have

E
[∑

i∈Sk ‖x
k+1
i − xki ‖2 | Fk−1

]
≥ p̂α2

2(1+L2η2)(1+γ1)

∑n
i=1 ‖x̄k − xki ‖2

− α2

(1+L2η2)γ1

∑n
i=1

(
‖ek+1
i ‖2 + ‖eki ‖2

)
,

(4.47)

Taking expectation both sides of (4.43) w.r.t. Sk conditioned on Fk−1, and letting γ3 := 1,

we obtain

E
[
V k+1
η (x̄k+1) | Fk−1

]
≤ V k

η (x̄k) + (1+η2L2)
ηn

∑n
i=1

[
(1 + pi)‖eki ‖2 + pi‖ek+1

i ‖2)
]

+ 2(1+ηL)2

γ4ηα2n

∑n
i=1 pi

[
‖eki ‖2 + ‖ek+1

i ‖2
]

− [2−α(Lη+1)−2L2η2−4αγ4(1+L2η2)]
2ηαn E

[∑
i∈Sk ‖x

k
i − x̄k‖2 | Fk−1

]
.

(4.48)

Here, we have written E2
k+1 ≤

1
n

∑n
i=1 ‖eki ‖2 + 1

n

∑
i∈Sk

[
‖eki ‖2 + ‖ek+1

i ‖2
]

and used the fact that

E
[∑

i∈Sk
[
‖eki ‖2 + ‖ek+1

i ‖2
]
| Fk−1

]
=
∑n

i=1 pi
[
‖eki ‖2 + ‖ek+1

i ‖2
]
.

Combining (4.47) and (4.48) yields

E
[
V k+1
η (x̄k+1) | Fk−1

]
≤ V k

η (x̄k) + (1+η2L2)
η(n+1)

∑n
i=1 ‖eki ‖2

+
[

2(1+ηL)2

γ4ηα2n
+ (1+η2L2)

ηn

]∑n
i=1 pi

[
‖eki ‖2 + ‖ek+1

i ‖2
]

+ α[2−α(Lη+1)−2L2η2−4αγ4(1+L2η2)]
2η(1+L2η2)γ1n

∑n
i=1

[
‖eki ‖2 + ‖ek+1

i ‖2
]

− p̂α[2−α(Lη+1)−2L2η2−4αγ4(1+L2η2)]
4η(1+L2η2)(1+γ1)n

∑n
i=1 ‖x̄k − xki ‖2.

Rearranging terms in the last inequality and using pi ≤ 1 and ‖eki ‖2 ≤ ε2i,k for all i ∈ [n] and

k ≥ 0 from (4.12), we obtain (4.17).

Note that if εi,k = 0 for all i ∈ [n] and k ≥ 0, then we allow to set γ1 = γ2 = γ4 = ρ1 = ρ2 = 0

as a consequence of the last statement in Lemma 4.7, Lemma 4.8, and Lemma 4.10. �

132

4.5.1.4 Proof of Theorem 4.1

First, from (4.17), we have

(1+ηL)2(1+γ2)
nη2

n∑
i=1

‖xki − x̄k‖2 ≤
2(1+ηL)2(1+γ2)

η2β

[
V k
η (x̄k)− E

[
V k+1
η (x̄k+1) | Fk−1

]]
,

+ 2(1+ηL)2(1+γ2)
nη2β

n∑
i=1

(ρ1ε
2
i,k + ρ2ε

2
i,k+1).

Substituting these estimates into (4.35) of Lemma 4.8, we have

‖Gη(x̄k)‖2 ≤ 2(1+ηL)2(1+γ2)
η2β

[
V k
η (x̄k)− E

[
V k+1
η (x̄k+1) | Fk−1

]]
+ 2(1+ηL)2(1+γ2)

nη2β

∑n
i=1(ρ1ε

2
i,k + ρ2ε

2
i,k+1) + (1+ηL)2(1+γ2)

nη2γ2

∑n
i=1 ε

2
i,k.

Let us introduce three constants

C1 := 2(1+ηL)2(1+γ2)
η2β

, C2 := ρ1C1, and C3 := ρ2C1 + (1+ηL)2(1+γ2)
η2γ2

.

Now, taking the total expectation of the last estimate w.r.t. Fk and using the definition of Ci

(i = 1, 2, 3), we have

E
[
‖Gη(x̄k)‖2

]
≤ C1

(
E
[
V k
η (x̄k)

]
− E

[
V k+1
η (x̄k+1)

])
+
C2

n

n∑
i=1

ε2i,k +
C3

n

n∑
i=1

ε2i,k+1.

Summing up this inequality from k := 0 to k := K, and multiplying the result by 1
K+1 , we get

1
K+1

∑K
k=0 E

[
‖Gη(x̄k)‖2

]
≤ C1

(
E
[
V 0
η (x̄0)

]
− E

[
V K+1
η (x̄K+1)

])
+ 1

n(K+1)

∑K
k=0

∑n
i=1

(
C2ε

2
i,k + C3ε

2
i,k+1

)
.

Furthermore, from the initial condition x0
i := x0 and x̄0 := x0, we have V 0

η (x̄0) = g(x0) +

1
n

∑n
i=1 fi(x

0) = F (x0). In addition, E
[
V K+1
η (x̄K+1)

]
≥ F ? due to (4.46). Consequently, the

last estimate becomes

1

K + 1

K∑
k=0

E
[
‖Gη(x̄k)‖2

]
≤ C1

K + 1

[
F (x0)− F ?

]
+

1

n(K + 1)

K∑
k=0

n∑
i=1

(
C2ε

2
i,k + C3ε

2
i,k+1

)
,

133

which proves (4.19).

Finally, let x̃K be selected uniformly at random from {x̄0, · · · , x̄K} as the output of Algo-

rithm 4. Then, from (4.19) and 1
n

∑n
i=1

∑K+1
k=0 ε2i,k ≤M for all K ≥ 0, we have

E
[
‖Gη(x̃K)‖2

]
=

1

K + 1

K∑
k=0

E
[
‖Gη(x̄k)‖2

]
≤
C1

[
F (x0)− F ?

]
+ (C2 + C3)M

K + 1
.

Consequently, to guarantee E
[
‖Gη(x̃K)‖2

]
≤ ε2, from the last estimate we need to choose K

such that C1[F (x0)−F ?]+(C2+C3)M
K+1 ≤ ε2. This condition leads to

K + 1 ≥ C1[F (x0)− F ?] + (C2 + C3)M

ε2
.

Hence, we can take K :=
⌊
C1[F (x0)−F ?]+(C2+C3)M

ε2

⌋
≡ O

(
1
ε2

)
as its lower bound. �

4.5.2 Proof of Theorem 4.2

Firstly, starting from (4.43), using α = 1, choosing γ3 = 1, and noting that E2
k+1 :=

1
n

∑
i/∈Sk ‖e

k
i ‖2 + 1

n

∑
i∈Sk ‖e

k+1
i ‖2, we have

V k+1
η (x̄k+1) ≤ V k

η (x̄k)− [1−Lη−2L2η2−4γ4(1+L2η2)]
2ηn

∑
i∈Sk ‖x

k+1
i − xki ‖2

+ (1+η2L2)
ηn

(∑
i/∈Sk ‖e

k
i ‖2 +

∑
i∈Sk ‖e

k+1
i ‖2

)
+ 2(1+ηL)2

γ4ηn

∑
i∈Sk [‖eki ‖2 + ‖ek+1

i ‖2].

If we define Ĉ := max
{

1 + η2L2, 2(1+ηL)2

γ4

}
, then we can further upper bound this estimate as

V k+1
η (x̄k+1) ≤ V k

η (x̄k)− [1−Lη−2L2η2−4γ4(1+L2η2)]
2ηn

∑
i∈Sk ‖x

k+1
i − xki ‖2

+ Ĉ
nη

(∑
i/∈Sk ‖e

k
i ‖2 +

∑
i∈Sk ‖e

k+1
i ‖2

)
+ Ĉ

nη

∑
i∈Sk [‖eki ‖2 + ‖ek+1

i ‖2]

= V k
η (x̄k)− [1−Lη−2L2η2−4γ4(1+L2η2)]

2ηn

∑
i∈Sk ‖x

k+1
i − xki ‖2

+ Ĉ
nη

(∑n
i=1 ‖eki ‖2 + 2

∑
i∈Sk ‖e

k+1
i ‖2

)
.

134

Note that
∑

i∈Sk ‖e
k+1
i ‖2 ≤

∑n
i=1 ‖e

k+1
i ‖2, we can further bound

V k+1
η (x̄k+1) ≤ V k

η (x̄k)− [1−Lη−2L2η2−4γ4(1+L2η2)]
2ηn

∑
i∈Sk ‖x

k+1
i − xki ‖2

+ Ĉ
nη

(∑n
i=1 ‖eki ‖2 + 2

∑n
i=1 ‖e

k+1
i ‖2

)
≤ V k

η (x̄k)− [1−Lη−2L2η2−4γ4(1+L2η2)]
2ηn

∑
i∈Sk ‖x

k+1
i − xki ‖2

+ 2Ĉ
nη

∑n
i=1

(
‖eki ‖2 + ‖ek+1

i ‖2
)
.

Rearranging terms and noting that E
[∑

i∈Sk ‖x
k+1
i − xki ‖2 | Fk−1

]
=
∑n

i=1 pi‖xk+1
i − xki ‖2, we

obtain from the last estimate that

[1−Lη−2L2η2−4γ4(1+L2η2)]
2ηn

∑n
i=1 pi‖xk+1

i − xki ‖2 ≤ V k
η (x̄k)− V k+1

η (x̄k+1)

+ 2Ĉ
nη

∑n
i=1

(
‖eki ‖2 + ‖ek+1

i ‖2
)
.

Now, taking the total expectation of the last inequality w.r.t. Fk, we have

[1−Lη−2L2η2−4γ4(1+L2η2)]
2ηn

∑n
i=1 piE

[
‖xk+1

i − xki ‖2
]

≤ E
[
V k
η (x̄k)

]
− E

[
V k+1
η (x̄k+1)

]
+ 2Ĉ

nη

∑n
i=1 E

[
‖eki ‖2 + ‖ek+1

i ‖2
]
.

Summing this inequality from k = 0 to k = K, we get

[1−Lη−2L2η2−4γ4(1+L2η2)]
2ηn

∑K
k=0

∑n
i=1 piE

[
‖xk+1

i − xki ‖2
]
≤ E

[
V 0
η (x̄0)

]
− E

[
V K+1
η (x̄K+1)

]
+ 2Ĉ

nη

∑K
k=0

∑n
i=1 E

[
‖eki ‖2 + ‖ek+1

i ‖2
]
.

If we choose εi,0 = 0 for i ∈ [n], then the last estimate reduces to

[1−Lη−2L2η2−4γ4(1+L2η2)]
2ηn

K∑
k=0

n∑
i=1

piE
[
‖xk+1

i − xki ‖2
]
≤ E

[
V 0
η (x̄0)

]
− E

[
V K+1
η (x̄K+1)

]
+ 4Ĉ

nη

K∑
k=0

n∑
i=1

E
[
‖ek+1
i ‖2

]
.

(4.49)

135

From (4.20) in Definition 4.2.1, we have ‖ek+1
i ‖2 = ‖xk+1

i −proxηfi(y
k+1
i)‖2 ≤ ε2

i,k+1 := θi‖xk+1
i −

xki ‖2. Using this condition in (4.49), we have

[1−Lη−2L2η2−4γ4(1+L2η2)]
2ηn

K∑
k=0

n∑
i=1

piE
[
‖xk+1

i − xki ‖2
]
≤ E

[
V 0
η (x̄0)

]
− E

[
V K+1
η (x̄K+1)

]
+ 4Ĉ

nη

K∑
k=0

n∑
i=1

θiE
[
‖xk+1

i − xki ‖2
]
.

Now, we can choose θi such that θi = θ̂pi for given θ̂ > 0. Plugging this choice of θi into the

last estimate, we have

[1−Lη−2L2η2−4γ4(1+L2η2)]
2ηn

K∑
k=0

n∑
i=1

piE
[
‖xk+1

i − xki ‖2
]
≤ E

[
V 0
η (x̄0)

]
− E

[
V K+1
η (x̄K+1)

]
+ 4Ĉθ̂

nη

K∑
k=0

n∑
i=1

piE
[
‖xk+1

i − xki ‖2
]
.

Rearranging terms in the above estimate, we arrive at

[1−Lη−2L2η2−4γ4(1+L2η2)−8Ĉθ̂]
2ηn

K∑
k=0

n∑
i=1

piE
[
‖xk+1

i − xki ‖2
]
≤ E

[
V 0
η (x̄0)

]
− E

[
V K+1
η (x̄K+1)

]
.

From the initial condition x0
i := x0 and x̄0 := x0, we have V 0

η (x̄0) = g(x0) + 1
n

∑n
i=1 fi(x

0) =

F (x0). In addition, E
[
V K+1
η (x̄K+1)

]
≥ F ? due to (4.46). Using these conditions, the last

estimate can be further upper bounded by

p̂[1− Lη − 2L2η2 − 4γ4(1 + L2η2)− 8Ĉθ̂]

2ηn

K∑
k=0

n∑
i=1

E
[
‖xk+1

i − xki ‖2
]
≤ F (x0)− F ?, (4.50)

where we have used pi ≥ p̂ for all i ∈ [n].

Now, we need to choose η and θ̂ such that 1−Lη− 2L2η2− 4γ4(1 +L2η2)− 8Ĉθ̂ > 0. First,

we need to choose γ4 > 0 and θ̂ > 0 such that 1− 4γ4 − 8Ĉθ̂ > 0. Then, the condition for η is

0 < η < η̄ :=

√
1+8(1+2γ4)(1−4γ4−8Ĉθ̂)−1

4L(1+2γ4) .

136

Next, we connect the term ‖xk+1
i − xki ‖2 with ‖Gη(x̄k)‖2 as follows. From (4.34) with α = 1 and

γ1 = 1, we have

1

4(1 + L2η2)

∑
i∈Sk

‖x̄k − xki ‖2 ≤
∑
i∈Sk

[
‖xk+1

i − xki ‖2 +
1

(1 + L2η2)

(
‖ek+1
i ‖2 + ‖eki ‖2

)]
.

Taking expecatation w.r.t. Sk given Fk−1, and then taking full expectation, we obtain

1
4(1+L2η2)

∑n
i=1 piE

[
‖x̄k − xki ‖2

]
≤

∑n
i=1 piE

[
‖xk+1

i − xki ‖2
]

+ 1
(1+L2η2)

∑n
i=1 piE

[
‖ek+1
i ‖2 + ‖eki ‖2

]
≤

∑n
i=1 piE

[
‖xk+1

i − xki ‖2
]

+ 1
(1+L2η2)

∑n
i=1 E

[
‖ek+1
i ‖2 + ‖eki ‖2

]
.

Summing this inequality from k = 0 to k = K, we get

1
4(1+L2η2)

∑K
k=0

∑n
i=1 piE

[
‖x̄k − xki ‖2

]
≤
∑K

k=0

∑n
i=1 piE

[
‖xk+1

i − xki ‖2
]

+ 1
(1+L2η2)

∑K
k=0

∑n
i=1 E

[
‖ek+1
i ‖2 + ‖eki ‖2

]
.

Using the condition that εi,0 = 0, similar to (4.49), we have

1
4(1+L2η2)

∑K
k=0

∑n
i=1 piE

[
‖x̄k − xki ‖2

]
≤

∑K
k=0

∑n
i=1 piE

[
‖xk+1

i − xki ‖2
]

+ 2
(1+L2η2)

∑K
k=0

∑n
i=1 E

[
‖ek+1
i ‖2

]
≤

∑K
k=0

∑n
i=1 piE

[
‖xk+1

i − xki ‖2
]

+ 2
(1+L2η2)

∑K
k=0

∑n
i=1 θiE

[
‖xk+1

i − xki ‖2
]

≤ 1+L2η2+2θ̂
(1+L2η2)

∑K
k=0

∑n
i=1 piE

[
‖xk+1

i − xki ‖2
]
.

In fact, we can further bound this estimate as

p̂

4(1 + L2η2)

K∑
k=0

n∑
i=1

E
[
‖x̄k − xki ‖2

]
≤ 1 + L2η2 + 2θ̂

(1 + L2η2)

K∑
k=0

n∑
i=1

E
[
‖xk+1

i − xki ‖2
]
,

137

where we have used p̂ ≤ pi ≤ 1. Next, multiply both sides of this inequality by 8(1+L2η2)(1+ηL)2

p̂η2n
,

we obtain

2(1 + ηL)2

nη2

K∑
k=0

n∑
i=1

E
[
‖x̄k − xki ‖2

]
≤ 8(1 + L2η2 + 2θ̂)(1 + ηL)2

p̂η2n

K∑
k=0

n∑
i=1

E
[
‖xk+1

i − x
k
i ‖2
]
. (4.51)

Furthermore, from (4.35), choosing γ2 = 1 and summing the result from k = 0 to k = K, we get

∑K
k=0 E

[
‖Gη(x̄k)‖2

]
≤ 2(1+ηL)2

nη2
∑K

k=0

∑n
i=1 E

[
‖xki − x̄k‖2

]
+ 2(1+ηL)2

nη2
∑K

k=0

∑n
i=1 E

[
‖eki ‖2

]
≤ 2(1+ηL)2

nη2
∑K

k=0

∑n
i=1 E

[
‖xki − x̄k‖2

]
+ 2(1+ηL)2

nη2
∑K

k=0

∑n
i=1 θiE

[
‖xk+1

i − xki ‖2
]

= 2(1+ηL)2

nη2
∑K

k=0

∑n
i=1 E

[
‖xki − x̄k‖2

]
+ 2(1+ηL)2θ̂

nη2
∑K

k=0

∑n
i=1 piE

[
‖xk+1

i − xki ‖2
]

(4.52)

where the last equality comes from the fact that θi = θ̂pi.

Now, plugging (4.51) into (4.52) and using pi ≤ 1, we can get

∑K
k=0 E

[
‖Gη(x̄k)‖2

]
≤
[

8[1+L2η2+2θ̂](1+ηL)2

p̂η2n
+ 2(1+ηL)2θ̂

nη2

]∑K
k=0

∑n
i=1 E

[
‖xk+1

i − xki ‖2
]

=
2[4(1+L2η2+2θ̂)+p̂θ̂](1+ηL)2

p̂nη2
∑K

k=0

∑n
i=1 E

[
‖xk+1

i − xki ‖2
]
.

(4.53)

From the definition of C̃ in (4.23), we can verify that

p̂[1− Lη − 2L2η2 − 4γ4(1 + L2η2)− 8Ĉθ̂]

2ηnC̃
=

2
[
4(1 + L2η2 + 2θ̂) + p̂θ̂

]
(1 + ηL)2

p̂nη2
.

Next, multiplying both sides of (4.50) by 1

C̃
, and then using (4.53), we obtain

∑K
k=0 E

[
‖Gη(x̄k)‖2

]
≤ 2[4(1+L2η2+θ̂)+p̂θ̂](1+ηL)2

p̂nη2
∑K

k=0

∑n
i=1 E

[
‖xk+1

i − xki ‖2
]

(4.50)

≤ C̃
[
F (x0)− F ?

]
.

Finally, multiplying both sides of this inequality by 1
K+1 , we obtain (4.22).

138

�

4.5.3 Convergence analysis of asyncFedDR

For the asynchronous algorithm, Algorithm 5, the following facts hold.

• For xki and yki updated by Algorithm 5, since Sk = {ik} and the update of yki and xki

remain the same as in Algorithm 4 when the error eki = 0, the relation (4.33) remains true,

i.e. yki = xki + η∇fi(xki) and x̂ki = 2xki − yki for all i ∈ [n] and k ≥ 0.

• Let x̄k−d
k

:= [x̄k−d
k
1 , x̄k−d

k
2 , · · · , x̄k−dkn] be a delayed copy of the vector x̄k := [x̄k, · · · , x̄k] ∈

Rnp. Since at each iteration k, there is only one block ik being updated, as shown in

Cannelli et al. (2019); Peng et al. (2016), for all i ∈ [n], we can write

x̄k−d
k
i = x̄k +

∑
l∈Jki

(x̄l − x̄l+1), (4.54)

where Jki := {k − dki , k − dki + 1, · · · , k − 1} ⊆ {k − τ, · · · , k − 1}.

These facts will be repeatedly used in the sequel.

4.5.3.1 Proof of Lemma 4.3

Let V k
η be defined by (4.14). For (xki , x̂

k
i , y

k
i) updated as in Algorithm 5, the results of

Lemma 4.6 still hold true. Hence, (4.37) still holds for Algorithm 5 with γ3 = 0 and E2
k+1 = 0,

i.e.:

V k+1
η (x̄k+1) ≤ g(x̄k) + 1

n

∑n
i=1

[
fi(x

k+1
i) + 〈∇fi(xk+1

i), x̄k − xk+1
i 〉+ 1

2η‖x̄
k − xk+1

i ‖2
]

− 1
2η‖x̄

k+1 − x̄k‖2.

Using this inequality, the update of xk+1
ik

for i = ik, and xk+1
i = xki for i 6= ik, we can expand

V k+1
η (x̄k+1) ≤ g(x̄k) + 1

n

∑
i 6=ik

[
fi(x

k
i) + 〈∇fi(xki), x̄k − xki 〉+ 1

2η‖x̄
k − xki ‖2

]
+ 1

n

[
fik(xk+1

ik
) + 〈∇fik(xk+1

ik
), xkik − x

k+1
ik
〉
]

+ 1
n〈∇fik(xk+1

ik
), x̄k − xkik〉

+ 1
2ηn‖x̄

k − xkik + xkik − x
k+1
ik
‖2 − 1

2η‖x̄
k+1 − x̄k‖2.

(4.55)

139

Now, by the L-smoothness of fik , we have

fik(xk+1
ik

) + 〈∇fik(xk+1
ik

), xkik − x
k+1
ik
〉 ≤ fik(xkik) +

L

2
‖xkik − x

k+1
ik
‖2.

Plugging this inequality into (4.55) and expanding the third last term of (4.55), we obtain

V k+1
η (x̄k+1) ≤ g(x̄k) + 1

n

∑
i 6=ik

[
fi(x

k
i) + 〈∇fi(xki), x̄k − xki 〉+ 1

2η‖x̄
k − xki ‖2

]
+ 1

nfik(xkik) + L
2n‖x

k+1
ik
− xkik‖

2 + 1
n〈∇fik(xk+1

ik
), x̄k − xkik〉

+ 1
2ηn‖x̄

k − xkik‖
2 + 1

2ηn‖x
k+1
ik
− xkik‖

2 + 1
ηn〈x

k+1
ik
− xkik , x

k
ik
− x̄k〉

− 1
2η‖x̄

k+1 − x̄k‖2

= g(x̄k) + 1
n

∑n
i=1

[
fi(x

k
i) + 〈∇fi(xki), x̄k − xki 〉+ 1

2η‖x̄
k − xki ‖2

]
+ (1+ηL)

2nη ‖x
k+1
ik
− xkik‖

2 + 1
n〈∇fik(xk+1

ik
)−∇fik(xkik), x̄k − xkik〉

+ 1
ηn〈x

k+1
ik
− xkik , x

k
ik
− x̄k〉 − 1

2η‖x̄
k+1 − x̄k‖2

(4.14)
= V k

η (x̄k) + 1
n〈∇fik(xk+1

ik
)−∇fik(xkik), x̄

k−dkik − xkik〉

+ 1
n〈∇fik(xk+1

ik
)−∇fik(xkik), x̄k − x̄k−d

k
ik 〉+ (1+Lη)

2ηn ‖x
k+1
ik
− xkik‖

2

+ 1
ηn〈x

k+1
ik
− xkik , x

k
ik
− x̄k−d

k
ik 〉+ 1

ηn〈x
k+1
ik
− xkik , x̄

k−dkik − x̄k〉

− 1
2η‖x̄

k+1 − x̄k‖2.

(4.56)

From yk+1
ik

:= ykik + α(x̄
k−dkik − xkik) at Step 5 of Algorithm 5 and the relation (4.33), we have

x̄
k−dkik − xkik =

1

α
(yk+1
ik
− ykik)

(4.33)
=

1

α
(xk+1
ik
− xkik) +

η

α
(∇fik(xk+1

ik
)−∇fik(xkik)). (4.57)

This relation leads to

1
n〈∇fik(xk+1

ik
)−∇fik(xkik), x̄

k−dkik − xkik〉 = 1
αn〈∇fik(xk+1

ik
)−∇fik(xkik), xk+1

ik
− xkik〉

+ η
αn‖∇fik(xk+1

ik
)−∇fik(xkik)‖2,

(4.58)

140

and

1
ηn〈x

k+1
ik
− xkik , x

k
ik
− x̄k−d

k
ik 〉 = − 1

αn〈∇fik(xk+1
ik

)−∇fik(xkik), xk+1
ik
− xkik〉

− 1
ηαn‖x

k+1
ik
− xkik‖

2.

(4.59)

Substituting (4.58) and (4.59) into (4.56), we obtain

V k+1
η (x̄k+1) ≤ V k

η (x̄k) + (1+Lη)
2ηn ‖x

k+1
ik
− xkik‖

2 + η
αn‖∇fik(xk+1

ik
)−∇fik(xkik)‖2

+ 1
n〈∇fik(xk+1

ik
)−∇fik(xkik), x̄k − x̄k−d

k
ik 〉+ 1

ηn〈x
k+1
ik
− xkik , x̄

k−dkik − x̄k〉

− 1
ηαn‖x

k+1
ik
− xkik‖

2 − 1
2η‖x̄

k+1 − x̄k‖2

(4.3)

≤ V k
η (x̄k) + α(Lη+1)−2

2ηαn ‖xk+1
ik
− xkik‖

2 + ηL2

αn ‖x
k+1
ik
− xkik‖

2

+ 1
n〈∇fik(xk+1

ik
)−∇fik(xkik), x̄k − x̄k−d

k
ik 〉+ 1

ηn〈x
k+1
ik
− xkik , x̄

k−dkik − x̄k〉

− 1
2η‖x̄

k+1 − x̄k‖2.

Next, using Young’s inequality twice in the above estimate, we can further expand

V k+1
η (x̄k+1) ≤ V k

η (x̄k) + α(Lη+1)+2L2η2−2
2ηαn ‖xk+1

ik
− xkik‖

2 + η
2n‖∇fik(xk+1

ik
)−∇fik(xkik)‖2

+ 1
2ηn‖x̄

k − x̄k−d
k
ik‖2 + 1

2ηn‖x
k+1
ik
− xkik‖

2 + 1
2ηn‖x̄

k − x̄k−d
k
ik‖2

− 1
2η‖x̄

k+1 − x̄k‖2

(4.3)

≤ V k
η (x̄k) + [α(Lη+2)+2L2η2−2]

2αηn ‖xk+1
ik
− xkik‖

2 + L2η
2n ‖x

k+1
ik
− xkik‖

2

+ 1
ηn‖x̄

k − x̄k−d
k
ik‖2 − 1

2η‖x̄
k+1 − x̄k‖2

= V k
η (x̄k) + [α(L2η2+Lη+2)+2L2η2−2]

2αηn ‖xk+1
ik
− xkik‖

2 − 1
2η‖x̄

k+1 − x̄k‖2

+ 1
nη‖x̄

k−dkik − x̄k‖2.

(4.60)

141

Using (4.54), we can bound ‖x̄k−d
k
ik − x̄k‖2 as follows:

‖x̄k−d
k
ik − x̄k‖2(4.54)

=
∥∥∑

l∈Jkik
(x̄l − x̄l+1)

∥∥2

≤ dkik
∑k−1

l=k−dkik
‖x̄l+1 − x̄l‖2 (Young’s inequality and the definition of Jkik)

≤ τ
∑k−1

l=k−τ ‖x̄l+1 − x̄l‖2 (since dkik ≤ τ in Assumption 4.4)

= τ
[k−1∑
l=k−τ

[l − (k − τ) + 1]‖x̄l+1 − x̄l‖2 −
k∑

l=k−τ+1

(l − (k − τ))‖x̄l+1 − x̄l‖2
]

+ τ2‖x̄k+1 − x̄k‖2.

(4.61)

Now, we consider two cases as follows.

Case 1: If n ≥ 2τ2, then by plugging (4.61) into (4.60), we finally arrive at

V k+1
η (x̄k+1) + τ

nη

∑k
l=k−τ+1[l − (k − τ)]‖x̄l+1 − x̄l‖2 ≤ V k

η (x̄k)

+ τ
nη

∑k−1
l=k−τ [l − (k − τ) + 1]‖x̄l+1 − x̄l‖2

− [2(1−α)−(2+α)η2L2−αηL]
2αηn ‖xk+1

ik
− xkik‖

2 − (n−2τ2)
2nη ‖x̄

k+1 − x̄k‖2.

Rearranging the last estimate, we finally arrive at (4.27).

Case 2: if 2τ2 > n, then using (4.33), we can show that

‖x̄k+1 − x̄k‖2 =
∥∥proxηg

(
x̃k+1

)
− proxηg

(
x̃k
)∥∥2 ≤ ‖x̃k+1 − x̃k‖2

= ‖ 1
n

∑n
i=1(x̂k+1

i − x̂ki)‖2

= 1
n2 ‖x̂k+1

ik
− x̂kik‖

2 (since only block ik is updated)

(4.33)
= 1

n2 ‖(xk+1
ik
− xkik)− η(∇fik(xk+1

ik
)−∇fik(xkik))‖2

≤ 2
n2 ‖xk+1

ik
− xkik‖

2 + 2η2

n2 ‖∇fik(xk+1
ik

)−∇fik(xkik)‖2

≤ 2(1+η2L2)
n2 ‖xk+1

ik
− xkik‖

2.

(4.62)

142

Substituting this inequality into the previous one, we can get

V k+1
η (x̄k+1) + τ

nη

∑k
l=k−τ+1[l − (k − τ)]‖x̄l+1 − x̄l‖2 ≤ V k

η (x̄k)

+ τ
nη

∑k−1
l=k−τ [l − (k − τ) + 1]‖x̄l+1 − x̄l‖2

−
[

2(1−α)−(2+α)η2L2−αηL
2αηn − (1+η2L2)(2τ2−n)

2n3η

]
‖xk+1

ik
− xkik‖

2.

Simplifying the coefficients of this estimate, we finally arrive at (4.27). �

4.5.3.2 Proof of Lemma 4.4

If we define Ṽ k
η as in (4.28) of Lemma 4.4, i.e.:

Ṽ k
η (x̄k) := V k

η (x̄k) +
τ

ηn2

k−1∑
l=k−τ

[l − (k − τ) + 1]‖x̄l+1 − x̄l‖2,

then from (4.27), we have

Ṽ k+1
η (x̄k+1) ≤ Ṽ k(x̄k)− ρ

2
‖xk+1

ik
− xkik‖

2,

which is equivalent to (4.30).

Now, we find conditions of α and η such that ρ and θ are positive. We consider two cases as

follows.

Case 1: If 2τ2 ≤ n, then

ρ := 2(1−α)−(2+α)L2η2−Lαη
αηn .

Let us choose 0 < α < 1. To guarantee ρ > 0, we require 2(1 − α) > (2 + α)L2η2 + Lαη. In

this case, we need to choose 0 < η <

√
L2α2+8(1−α)(2+α)L2−Lα

2L2(2+α)
=
√

16−8α−7α2−α
2L(2+α) . These are the

choices in (4.29) when 2τ2 ≤ n.

Case 2: If 2τ2 > n, then

ρ := n2[2(1−α)−(2+α)L2η2−Lαη]−α(1+η2L2)(2τ2−n)
αηn3 .

143

Let c := 2τ2−n
n2 > 0. In order to guarantee that ρ > 0, we need to choose 0 < α < 1 and η > 0

such that

2− 2α− α(2τ2−n)
n2 >

[
2 + α+ α(2τ2−n)

n2

]
L2η2 + Lαη,

and 0 < α < 2n2

2n2+(2τ2−n)
= 2

2+c .

Using the definition of c, the first condition becomes 2− 2α − cα > Lαη + (2 + α + cα)L2η2.

First, we need to impose 2− 2α − cα > 0, leading to 0 < α < 2
2+c . Next, we solve the above

inequality w.r.t. η > 0 to get

0 < η < η̄ :=

√
16−8α−(7+4c+4c2)α2−α

2L[2+(1+c)α] .

These are the choices in (4.29) when 2τ2 > n. To guarantee η̄ > 0, we need to choose

α < 4

1+
√

1+4(2+c+c2)
. Combining four conditions of α, we get 0 < α < 2

2+c . Finally, we conclude

that under the choice of α and η as in (4.29), we have ρ > 0 and θ > 0. �

4.5.3.3 Proof of Lemma 4.5

Let tk(i) := min
{
t ∈ {0, · · · , T} : p(i | ξ0:k+t−1) ≥ p̂

}
. In fact, tk(i) is the first time in the

iteration window [k, k + T], worker i is active, i.e. gets updated. For any γ ∈ (0, 1), we have

∑k+T
t=k E

[
‖x̄t − xt

ît
‖2 | Ft−1

]
(ω) =

∑k+T
t=k

∑n
i=1 p(i | ξ0:t−1)‖x̄t − xti‖2

(4.25)

≥
∑n

i=1 p̂‖x̄k+tk(i) − xk+tk(i)
i ‖2

(∗)
≥ p̂

∑n
i=1

[
‖x̄k − xki ‖ − ‖x̄k+tk(i) − xk+tk(i)

i − (x̄k − xki)‖
]2

≥ −2p̂
∑n

i=1 ‖x̄k − xki ‖‖x̄k+tk(i) − xk+tk(i)
i − (x̄k − xki)‖

+ p̂
∑n

i=1 ‖x̄k − xki ‖2

(∗∗)
≥ p̂

∑n
i=1

[
‖x̄k − xki ‖2 − 1

2‖x̄
k − xki ‖2

]
− 4p̂

∑n
i=1 ‖x̄k+tk(i) − x̄k‖2 − 4p̂

∑n
i=1 ‖x

k+tk(i)
i − xki ‖2,

where (*) comes from the reverse triangle inequality ‖a− b‖2 ≥ (‖a‖ − ‖b‖)2 and (**) is due to

4‖v‖2 + 4‖s‖2 + 1
2‖u‖

2 ≥ 2‖u‖‖v+ s‖. Note that the conditional expectation above is only taken

w.r.t. îk, which is σ(dk,Fk−1)-measurable. For simplicity of notation, we drop (ω) in the sequel.

144

Rearranging the last inequality, we obtain

p̂
2

∑n
i=1 ‖x̄k − xki ‖2 ≤

∑k+T
t=k E

[
‖x̄t − xt

ît
‖2 | Ft−1

]
+ 4p̂

∑n
i=1 ‖x̄k+tk(i) − x̄k‖2

+ 4p̂
∑n

i=1 ‖x
k+tk(i)
i − xki ‖2.

(4.63)

Next, we bound the term
∑n

i=1 ‖x̄k+tk(i) − x̄k‖2 as follows:

∑n
i=1 ‖x̄k+tk(i) − x̄k‖2 =

∑n
i=1 ‖

∑k+tk(i)−1
t=k (x̄t+1 − x̄t)‖2

≤
∑n

i=1 tk(i)
∑k+tk(i)−1

t=k ‖x̄t+1 − x̄t‖2 (Young’s inequality)

≤ T
∑n

i=1

∑k+tk(i)−1
t=k ‖x̄t+1 − x̄t‖2 (since tk(i) ≤ T)

= nT
∑k+T

t=k ‖x̄t+1 − x̄t‖2

(4.62)

≤ 2T (1+η2L2)
n

∑k+T
t=k ‖x

t+1
it
− xtit‖

2.

(4.64)

We can also bound
∑n

i=1 ‖x
k+tk(i)
i − xki ‖2 as follows:

∑n
i=1 ‖x

k+tk(i)
i − xki ‖2 =

∑n
i=1 ‖

∑k+tk(i)−1
t=k (xt+1

i − xti)‖2

≤
∑n

i=1 tk(i)
∑k+tk(i)−1

t=k ‖xt+1
i − xti‖2 (Young’s inequality)

≤ T
∑k+T−1

t=k

∑n
i=1 ‖x

t+1
i − xti‖2 (since tk(i) ≤ T)

= T
∑k+T

t=k ‖x
t+1
it
− xtit‖

2 (since only worker it is updated).

(4.65)

Let us bound the first term on the right-hand side of (4.63) as follows:

∑k+T
t=k E

[
‖x̄t − xt

ît
‖2 | Ft−1

]
≤ 2

∑k+T
t=k E

[
‖x̄t−d

t
ît − xt

ît
‖2 | Ft−1

]
+ 2

∑k+T
t=k E

[
‖x̄t − x̄t−d

t
ît‖2 | Ft−1

]
.

(4.66)

However, similar to the proof of (4.61) and (4.62), we can show that

∑k+T
t=k ‖x̄t − x̄

t−dt
ît‖2

(4.61)

≤ τ
∑k+T

t=k

∑t−1
l=t−τ ‖x̄l+1 − x̄l‖2

≤ τ2
∑k+T

t=k−τ ‖x̄t+1 − x̄t‖2

(4.62)

≤
∑k+T

t=k−τ
2τ2(1+η2L2)

n2 ‖xt+1
it
− xtit‖

2.

(4.67)

145

On the other hand, by using (4.57), we have

‖x̄t−d
t
ît − xt

ît
‖2 = ‖yt+1

ît
− yt

ît
‖2 (by the update of yk

îk
in Algorithm 5)

(4.57)
=

∥∥ 1
α(xt+1

ît
− xt

ît
) + η

α(∇fît(x
t+1
ît

)−∇fît(x
t
ît

))
∥∥2

≤ 2
α2 ‖xt+1

ît
− xt

ît
‖2 + 2η2

α2 ‖∇fît(x
t+1
ît

)−∇fît(x
t
ît

)‖2

≤ 2(1+η2L2)
α2 ‖xt+1

ît
− xt

ît
‖2.

(4.68)

Therefore, plugging (4.67) and (4.68) into (4.66), we have

∑k+T
t=k E

[
‖x̄t − xt

ît
‖2 | Ft−1

]
≤ 4τ2(1+η2L2)

n2

∑k+T
t=k−τ E

[
‖xt+1

ît
− xt

ît
‖2 | Ft−1

]
+ 4(1+η2L2)

α2

∑k+T
t=k−τ E

[
‖xt+1

ît
− xt

ît
‖2 | Ft−1

]
= 4(1+η2L2)[τ2α2+n2]

n2α2

∑k+T
t=k−τ E

[
‖xt+1

ît
− xt

ît
‖2 | Ft−1

]
.

(4.69)

Substituting (4.64), (4.65), and (4.69) into (4.63), we obtain

p̂
2

∑n
i=1 ‖x̄k − xki ‖2 ≤

4(1+η2L2)[τ2α2+n2]
n2α2

∑k+T
t=k−τ E

[
‖xt+1

ît
− xt

ît
‖2 | Ft−1

]
+8p̂T (1+η2L2)

n

∑k+T
t=k ‖x

t+1
it
− xtit‖

2 + 4p̂T
∑k+T

t=k ‖x
t+1
it
− xtit‖

2

≤ 4(1+η2L2)[τ2α2+n2]
n2α2

∑k+T
t=k−τ E

[
‖xt+1

ît
− xt

ît
‖2 | Ft−1

]
+ 4p̂T [2(1+η2L2)+n]

n

∑k+T
t=k−τ ‖x

t+1
it
− xtit‖

2.

Finally, taking full expectation both sides of the last inequality w.r.t. σ(dk,Fk−1), and multiply-

ing the result by 2
p̂ , we arrive at

n∑
i=1

E
[
‖x̄k − xki ‖2

]
≤ D

k+T∑
t=k−τ

E
[
‖xt+1

it
− xtit‖

2
]
,

where D := 8(1+η2L2)(τ2α2+n2)
p̂n2α2 + 8T [2(1+η2L2)+n]

n . This inequality is exactly (4.31). �

4.5.3.4 Proof of Theorem 4.3

By Assumption 4.4, for each T iterations, the probability of each worker i getting updated

is at least p̂ > 0. Hence, from (4.30) of Lemma 4.4, we sum up from t := k − τ to t := k + T ,

146

and have

ρ

2

k+T∑
t=k−τ

‖xt+1
it
− xtit‖

2 ≤
k+T∑
t=k−τ

[
Ṽ t
η (x̄t)− Ṽ t+1

η (x̄t+1)
]
,

where ρ > 0 is given in Lemma 4.4. Now, take full expectation both sides of this inequality

w.r.t. Fk, we obtain

ρ

2

k+T∑
t=k−τ

E
[
‖xt+1

it
− xtit‖

2
]
≤

k+T∑
t=k−τ

[
E
[
Ṽ t
η (x̄t)

]
− E

[
Ṽ t+1
η (x̄t+1)

]]
. (4.70)

Next, using (4.35) from Lemma 4.8 with γ2 = 0, we have

‖Gη(x̄k)‖2 ≤
(1 + ηL)2

nη2

n∑
i=1

‖xki − x̄k‖2.

Taking full expectation both sides of this inequality, and then combining the result and (4.31),

we obtain

E
[
‖Gη(x̄k)‖2

]
≤ (1+ηL)2D

nη2
∑k+T

t=k−τ E
[
‖xt+1

it
− xtit‖

2
]
,

where D is given in Lemma 4.5.

Combining the last inequality and (4.70), we arrive at

E
[
‖Gη(x̄k)‖2

]
≤ 2(1+ηL)2D

nη2ρ

∑k+T
t=k−τ

(
E
[
Ṽ t
η (x̄t)

]
− E

[
Ṽ t+1
η (x̄t+1)

])
.

Averaging this inequality from k := 0 to k := K, we get

1
K+1

∑K
k=0 E

[
‖Gη(x̄k)‖2

]
≤ Ĉ

K+1

∑K
k=0

∑k+T
t=k−τ

[
E
[
Ṽ t
η (x̄t)

]
− E

[
Ṽ t+1
η (x̄t+1)

]]
≤ Ĉ

K+1

[
Ṽ 0
η (x̄0)− E

[
Ṽ K+T+1
η (x̄K+T+1)

]]
,

(4.71)

where Ĉ := 2(1+ηL)2D
nρη2

. Here, we have used the monotonicity of {E
[
Ṽ k
η (x̄k)

]
}k≥0 and E

[
Ṽ 0
η (x̄0)] =

Ṽ 0
η (x̄0) in the last equality.

Now, recall from the definition of Ṽ k
η (·) and V k

η (·) that

Ṽ 0
η (x̄0) = V 0

η (x̄0) = F (x0) and E
[
Ṽ k
η (x̄k)

]
≥ E

[
V k
η (x̄k)

] (4.46)

≥ F ?.

147

Substituting these relations into (4.71), we eventually get

1

K + 1

K∑
k=0

E
[
‖Gη(x̄k)‖2

]
≤ Ĉ

(K + 1)

[
F (x0)− F ?

]
,

which is exactly (4.32). Using the definition of ρ, θ, and D into Ĉ, we obtain its simplified

formula as in Theorem 4.3. The final conclusion of the theorem is a direct consequence of (4.32).

�

148

CHAPTER 5

Conclusions and Future Research

5.1 Conclusions

In this dissertation, we have proposed new stochastic and randomized algorithms to solve

three common classes of nonconvex optimization problems in machine learning. These algorithms

are shown to achieve the best-known convergence rate while exhibiting advantageous performance

compared to existing methods using common numerical examples.

Firstly, we propose ProxSARAH, a stochastic proximal gradient framework using the SARAH

estimator, to solve the composite expectation or finite sum problems which cover many problems

in supervised learning. Our algorithm is different from existing stochastic proximal gradient

methods in which we have an additional averaging step right after the proximal gradient step.

Our algorithm also allows using single sample or mini-batch when estimating the SARAH

estimator. Our convergence analysis not only works with constant step-size but also increasing

step-size which is different from diminishing stepsize schedule in ProxSGD. Our algorithms are

shown to not only achieve the best-known convergence rate but also match existing complexity

lower bound for both expectation and finite-sum cases. We have also demonstrated that our

methods are comparable or even outperform existing methods in various numerical experiments

using real datasets.

Secondly, we study the policy optimization problem in reinforcement learning and consider

a more general model with convex regularizer. In particular, we propose a new proximal hybrid

stochastic policy gradient algorithm (ProxHSPGA) that uses a novel policy gradient estimator

by combining an unbiased policy gradient estimator with a biased one. Theoretical results show

that our algorithm achieves the best-known trajectory complexity to attain an approximate

first-order solution under standard assumptions. In addition, our numerical experiments not

149

only help confirm the benefit of our algorithm compared to other closely related policy gradient

methods but also verify the effectiveness of regularization in policy gradient methods.

Finally, we explore the composite finite sum problem in federated learning, a distributed

training framework that has received tremendous attention in the past few years. We combine

the classical Douglas-Rachford splitting technique with randomized strategy and asynchronous

implementation to develop two new algorithms, called FedDR and asyncFedDR, which achieve

the best-known communication complexity under standard assumptions. Different from existing

methods including FedSplit and FedDR, our methods allow partial participation which selects a

subset of workers to perform local update at each communication round. The asynchronous

variant, asyncFedDR, can handle heterogeneity in workers’ computing power which further

improves the practicality of our methods. Numerical experiments on both synthetic and real

datasets illustrate that our algorithms are not only communication-efficient by also able to

handle heterogeneous data setting.

5.2 Ongoing and Future Research

Ongoing research. Following the success of FedDR for composite nonconvex problems, we

further investigate whether we can improve the convergence rate of FedDR using acceleration

techniques. Acceleration techniques have been used to improve the convergence rate of many

existing methods resulting new accelerated algorithms in different areas. Acceleration has been

applied to full gradient methods to obtain its accelerated variants such as Nesterov (1983); Beck

and Teboulle (2009); Tseng (2008). In addition, acceleration is also extended to other settings

such as stochastic gradient methods (Deng et al., 2018; Nitanda, 2014; Allen-Zhu, 2017b),

coordinate gradient method (Lin et al., 2014; Shalev-Shwartz and Zhang, 2014), saddle-point

problems (Chen et al., 2014; Mokhtari et al., 2020), monotone inclusion problems (Boţ and

Csetnek, 2016; Rosasco et al., 2015), variational inequalities (Chen et al., 2017). Recently,

there has been an active line of research of using the Halpern iteration (Halpern, 1967) to

achieve acceleration. In federated learning, there are not many methods using acceleration

techniques. Recent works include Yuan and Ma (2020); Ozfatura et al. (2021); Hanzely et al.

(2020) where they mostly apply acceleration on the well-known FedAvg or LocalSGD algorithm

150

(McMahan et al., 2017; Zhou and Cong, 2017). Motivated by this fact, our goal is to to develop

a new accelerated variant of FedDR, called Acc-FedDR, to solve convex problems in federated

learning. The new method is expected to achieve faster convergence rate compared to its

non-accelerated variant.

Moreover, similar to FedDR, we also aim at developing an asynchronous variant of Acc-

FedDR for federated learning to deal with system heterogeneity, when there is large variance

in workers computational power. Apart from AsyncFedDR, there are only two other works

(Stich, 2018; Xie et al., 2019) that consider asynchronous algorithms for federated learning with

convergence guarantee. The success of the asynchronous variant of Acc-FedDR will make

significant contribution to this line of research.

In addition, our convergence analysis should allow inexact proximal evaluation when per-

forming local update as FedDR. In practice, it is preferable to run the local update for a fixed

number of iterations, establishing convergence with inexact evaluation of proximal operators as

in Theorem 4.1 and 4.2 will further improve the practicality of Acc-FedDR.

Future research. As a continuation of my Ph.D. research projects in stochastic optimization

methods and federated learning, the following ideas are promising to consider in the near future.

Similar to Mishchenko et al. (2019), we analyze the case where we can apply compression to

our new algorithm to further reduce the communication cost. There have been many recent

works discussing different type of compression (see Beznosikov et al., 2020; Albasyoni et al.,

2020). We plan to study the results in Khaled and Richtárik (2019); Chraibi et al. (2019);

Albasyoni et al. (2020) for our convergence analysis. We expect to achieve the same rate

of convergence of our algorithm with compression as in the non-compressed case under mild

additional assumptions.

Among these directions, we are also interested in perturbation techinques (Mania et al.,

2015, 2017; Lu et al., 2019; Li, 2019; Chen et al., 2021) in order to obtain second-order optimality

by only using first-order oracles. Gradient noise plays an importance role for stochastic gradient

methods to escape saddle-point to reach second-order optimality (Vlaski and Sayed, 2019). While

our proposed methods in earlier chapters only guarantee first-order stationarity, incorporating

151

perturbed stochastic gradient into our algorithms might further improve the convergence

guarantee to a local optimum.

152

BIBLIOGRAPHY

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A.,
Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia,
Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore,
S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K.,
Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg,
M., Wicke, M., Yu, Y., and Zheng, X. (2016). Tensorflow: Large-scale machine learning
on heterogeneous distributed systems. In 12th USENIX symposium on operating systems
design and implementation (OSDI 16), pages 265–283.

Agarwal, A., Bartlett, P. L., Ravikumar, P., and Wainwright, M. J. (2012). Information-theoretic
lower bounds on the oracle complexity of stochastic convex optimization. IEEE Transactions
on Information Theory, 58(5):3235–3249.

Albasyoni, A., Safaryan, M., Condat, L., and Richtárik, P. (2020). Optimal gradient compression
for distributed and federated learning. arXiv preprint arXiv:2010.03246.

Allen-Zhu, Z. (2017a). Katyusha: The first direct acceleration of stochastic gradient methods.
In Proceedings of the 49th Annual Symposium on Theory of Computing, pages 1200–1205,
New York, NY, USA.

Allen-Zhu, Z. (2017b). Katyusha: The first direct acceleration of stochastic gradient methods.
The Journal of Machine Learning Research, 18(1):8194–8244.

Allen-Zhu, Z. (2018). Natasha 2: Faster non-convex optimization than SGD. In Advances in
Neural Information Processing Systems, pages 2675–2686.

Allen-Zhu, Z. and Li, Y. (2018). Neon2: Finding local minima via first-order oracles. In Bengio,
S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R., editors,
Advances in Neural Information Processing Systems 31, pages 3716–3726. Curran Associates,
Inc.

Allen-Zhu, Z. and Yuan, Y. (2016). Improved svrg for non-strongly-convex or sum-of-non-convex
objectives. In Proceedings of the 33rd International Conference on International Conference
on Machine Learning - Volume 48, pages 1080–1089.

Amiri, M. M. and Gündüz, D. (2020). Federated learning over wireless fading channels. IEEE
Transactions on Wireless Communications, 19(5):3546–3557.

Arjevani, Y., Carmon, Y., Duchi, J. C., Foster, D. J., Srebro, N., and Woodworth, B. (2019).
Lower bounds for non-convex stochastic optimization. arXiv preprint arXiv:1912.02365.

Bauschke, H. H. and Combettes, P. (2011). Convex analysis and monotone operator theory in
Hilbert spaces, volume 408. Springer.

Bauschke, H. H. and Combettes, P. (2017). Convex analysis and monotone operators theory in
Hilbert spaces. Springer-Verlag, 2nd edition.

Baxter, J. and Bartlett, P. L. (2001). Infinite-horizon policy-gradient estimation. J. Artif. Int.
Res., 15(1):319–350.

153

Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sciences, 2(1):183–202.

Bertsekas, D. and Tsitsiklis, J. N. (1989). Parallel and distributed computation: Numerical
methods. Prentice Hall.

Beznosikov, A., Horváth, S., Richtárik, P., and Safaryan, M. (2020). On biased compression for
distributed learning. arXiv preprint arXiv:2002.12410.

Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V., Kiddon, C.,
Konečný, J., Mazzocchi, S., McMahan, H. B., Overveldt, T. V., Petrou, D., Ramage, D.,
and Roselander, J. (2019). Towards federated learning at scale: System design.

Boţ, R. I. and Csetnek, E. R. (2016). An inertial forward-backward-forward primal-dual splitting
algorithm for solving monotone inclusion problems. Numerical Algorithms, 71(3):519–540.

Bridle, J. S. (1990). Training stochastic model recognition algorithms as networks can lead to
maximum mutual information estimation of parameters. In Advances in Neural Information
Processing Systems, pages 211–217. Morgan-Kaufmann.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba,
W. (2016). OpenAI Gym. arXiv preprint arXiv:1606.01540.

Cai, J. (2018). Implementing DistBelief. https://jcaip.github.io/Distbelief/.

Caldas, S., Duddu, S. M. K., Wu, P., Li, T., Konečnỳ, J., McMahan, H. B., Smith, V.,
and Talwalkar, A. (2018). LEAF: A benchmark for federated settings. arXiv preprint
arXiv:1812.01097.

Cannelli, L., Facchinei, F., Kungurtsev, V., and Scutari, G. (2019). Asynchronous parallel
algorithms for nonconvex optimization. Mathematical Programming, pages 1–34.

Chambolle, A., Ehrhardt, M. J., Richtárik, P., and Schönlieb, C.-B. (2018). Stochastic primal-
dual hybrid gradient algorithm with arbitrary sampling and imaging applications. SIAM
Journal on Optimization, 28(4):2783–2808.

Chang, C. C. and Lin, C. J. (2011). LIBSVM: A library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3):1–27.

Charles, Z. and Konečnỳ, J. (2021). Convergence and accuracy trade-offs in federated learning
and meta-learning. In International Conference on Artificial Intelligence and Statistics,
pages 2575–2583. PMLR.

Chen, M., Yang, Z., Saad, W., Yin, C., Poor, H. V., and Cui, S. (2020). A joint learning and
communications framework for federated learning over wireless networks.

Chen, Y., Lan, G., and Ouyang, Y. (2014). Optimal primal-dual methods for a class of saddle
point problems. SIAM Journal on Optimization, 24(4):1779–1814.

Chen, Y., Lan, G., and Ouyang, Y. (2017). Accelerated schemes for a class of variational
inequalities. Mathematical Programming, 165(1):113–149.

Chen, Z., Zhou, D., and Gu, Q. (2021). Faster perturbed stochastic gradient methods for finding
local minima. arXiv preprint arXiv:2110.13144.

154

https://jcaip.github.io/Distbelief/

Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B., and LeCun, Y. (2015). The loss
surfaces of multilayer networks. In Artificial intelligence and statistics, pages 192–204.

Chraibi, S., Khaled, A., Kovalev, D., Richtárik, P., Salim, A., and Takáč, M. (2019). Distributed
fixed point methods with compressed iterates. arXiv preprint arXiv:1912.09925.

Combettes, P. L. and Eckstein, J. (2018). Asynchronous block-iterative primal-dual decomposi-
tion methods for monotone inclusions. Mathematical Programming, 168(1):645–672.

Combettes, P. L. and Pesquet, J.-C. (2015). Stochastic quasi-Fejér block-coordinate fixed point
iterations with random sweeping. SIAM Journal on Optimization, 25(2):1221–1248.

Cortes, C., Mansour, Y., and Mohri, M. (2010). Learning bounds for importance weighting. In
Advances in Neural Information Processing Systems, pages 442–450.

Cutkosky, A. and Orabona, F. (2019). Momentum-based variance reduction in non-convex sgd.
In Advances in Neural Information Processing Systems, pages 15210–15219.

Dao, M. N. and Tam, M. K. (2019). A Lyapunov-type approach to convergence of the Douglas-
Rachford algorithm for a nonconvex setting. Journal of Global Optimization, 73(1):83–112.

DeepMind (2019). AlphaStar: Mastering the Real-Time Strategy Game StarCraft II.
https://deepmind.com/blog.

Defazio, A., Bach, F., and Lacoste-Julien, S. (2014). SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives. In Advances in neural
information processing systems, pages 1646–1654.

Deng, Q., Cheng, Y., and Lan, G. (2018). Optimal adaptive and accelerated stochastic gradient
descent. arXiv preprint arXiv:1810.00553.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and Abbeel, P. (2016). Benchmarking deep
reinforcement learning for continuous control. In Proceedings of the 33rd International
Conference on International Conference on Machine Learning - Volume 48, pages 1329–1338.

Fang, C., Li, C. J., Lin, Z., and Zhang, T. (2018). Spider: Near-optimal non-convex optimization
via stochastic path integrated differential estimator. arXiv preprint arXiv:1807.01695.

Frostig, R., Ge, R., Kakade, S. M., , and Sidford, A. (2015). Competing with the empirical risk
minimizer in a single pass. In Conference on learning theory, pages 728–763.

Ghadimi, S. and Lan, G. (2012). Optimal stochastic approximation algorithms for strongly
convex stochastic composite optimization I: A generic algorithmic framework. SIAM Journal
on Optimization, 22(4):1469–1492.

Ghadimi, S. and Lan, G. (2013). Stochastic first-and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368.

Ghadimi, S., Lan, G., and Zhang, H. (2016). Mini-batch stochastic approximation methods for
nonconvex stochastic composite optimization. Mathematical Programming, 155(1-2):267–
305.

155

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

Gorbunov, E., Hanzely, F., and Richtárik, P. (2021). Local SGD: Unified theory and new
efficient methods. In International Conference on Artificial Intelligence and Statistics, pages
3556–3564. PMLR.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 1861–1870, Stockholmsmässan, Stockholm Sweden. PMLR.

Haddadpour, F., Kamani, M. M., Mahdavi, M., and Cadambe, V. (2019). Local SGD with
periodic averaging: Tighter analysis and adaptive synchronization. In Advances in Neural
Information Processing Systems, pages 11082–11094.

Haddadpour, F., Kamani, M. M., Mokhtari, A., and Mahdavi, M. (2021). Federated learning
with compression: Unified analysis and sharp guarantees. In International Conference on
Artificial Intelligence and Statistics, pages 2350–2358. PMLR.

Haddadpour, F. and Mahdavi, M. (2019). On the convergence of local descent methods in
federated learning. arXiv preprint arXiv:1910.14425.

Halpern, B. (1967). Fixed points of nonexpanding maps. Bulletin of the American Mathematical
Society, 73(6):957–961.

Hanzely, F., Hanzely, S., Horváth, S., and Richtárik, P. (2020). Lower bounds and optimal
algorithms for personalized federated learning. arXiv preprint arXiv:2010.02372.

Harikandeh, R., Ahmed, M. O., Virani, A., M. Schmidt, J. K., and Sallinen, S. (2015). Stopwast-
ing my gradients: Practical SVRG. In Advances in Neural Information Processing Systems,
pages 2251–2259.

Hasselt, H. v., Guez, A., and Silver, D. (2016). Deep reinforcement learning with Double Q-
learning. In Proceedings of the 30th Conference on Artificial Intelligence, pages 2094–2100.

Johnson, R. and Zhang, T. (2013). Accelerating stochastic gradient descent using predictive
variance reduction. In Advances in Neural Information Processing Systems, pages 315–323.

Karimi, H., Nutini, J., and Schmidt, M. (2016). Linear convergence of gradient and proximal-
gradient methods under the polyak- lojasiewicz condition. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pages 795–811. Springer.

Karimireddy, S. P., Jaggi, M., Kale, S., Mohri, M., Reddi, S. J., Stich, S. U., and Suresh, A. T.
(2020a). Mime: Mimicking centralized stochastic algorithms in federated learning. arXiv
preprint arXiv:2008.03606.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich, S., and Suresh, A. T. (2020b). Scaffold:
Stochastic controlled averaging for federated learning. In International Conference on
Machine Learning, pages 5132–5143. PMLR.

Khaled, A., Mishchenko, K., and Richtárik, P. (2019). First analysis of local GD on heterogeneous
data. arXiv preprint arXiv:1909.04715.

Khaled, A. and Richtárik, P. (2019). Gradient descent with compressed iterates. arXiv preprint
arXiv:1909.04716.

156

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Klimov, O. and Schulman, J. (2017). Roboschool. https://openai.com/blog/roboschool/.

Konečnỳ, J., McMahan, H. B., Ramage, D., and Richtárik, P. (2016). Federated optimization:
Distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Lei, L. and Jordan, M. (2017). Less than a single pass: Stochastically controlled stochastic
gradient. In International Conference on Artificial Intelligence and Statistics, pages 148–156.

Levine, S. (2017). CS 294-112: Deep reinforcement learning lecture notes.

Li, G. and Pong, T. K. (2015). Global convergence of splitting methods for nonconvex composite
optimization. SIAM Journal on Optimization, 25(4):2434–2460.

Li, G. and Pong, T. K. (2016). Douglas-Rachford splitting for nonconvex optimization with
application to nonconvex feasibility problems. Mathematical programming, 159(1-2):371–401.

Li, Q., Wen, Z., Wu, Z., Hu, S., Wang, N., Li, Y., Liu, X., and He, B. (2019a). A survey on
federated learning systems: vision, hype and reality for data privacy and protection. arXiv
preprint arXiv:1907.09693.

Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. (2020a). Federated learning: Challenges,
methods, and future directions. IEEE Signal Processing Magazine, 37(3):50–60.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., and Smith, V. (2020b). Federated
optimization in heterogeneous networks. In Dhillon, I., Papailiopoulos, D., and Sze, V.,
editors, Proceedings of Machine Learning and Systems, volume 2, pages 429–450.

Li, X., Huang, K., Yang, W., Wang, S., and Zhang, Z. (2019b). On the convergence of FedAvg
on non-iid data. arXiv preprint arXiv:1907.02189.

Li, X., Jiang, M., Zhang, X., Kamp, M., and Dou, Q. (2021). FedBN: Federated learning on
non-iid features via local batch normalization. arXiv preprint arXiv:2102.07623.

Li, Z. (2019). SSRGD: Simple stochastic recursive gradient descent for escaping saddle points.
arXiv preprint arXiv:1904.09265.

Li, Z. and Li, J. (2018). A simple proximal stochastic gradient method for nonsmooth nonconvex
optimization. In Proceedings of the 32Nd International Conference on Neural Information
Processing Systems, pages 5569–5579, USA.

Lihua, L., Ju, C., Chen, J., , and Jordan, M. (2017). Non-convex finite-sum optimization via
scsg methods. In Advances in Neural Information Processing Systems, pages 2348–2358.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D.
(2016). Continuous control with deep reinforcement learning. In 4th International Conference
on Learning Representations, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings.

157

https://openai.com/blog/roboschool/

Lin, H., Mairal, J., and Harchaoui, Z. (2015). A universal catalyst for first-order optimization.
In Advances in Neural Information Processing Systems, pages 3384–3392.

Lin, Q., Lu, Z., and Xiao, L. (2014). An accelerated proximal coordinate gradient method.
Advances in Neural Information Processing Systems, 27:3059–3067.

Lin, T., Stich, S. U., Patel, K. K., and Jaggi, M. (2018). Don’t use large mini-batches, use local
SGD. arXiv preprint arXiv:1808.07217.

Lions, P. L. and Mercier, B. (1979). Splitting algorithms for the sum of two nonlinear operators.
SIAM Journal on Numerical Analysis, 16:964–979.

Liu, Y., Xu, Y., and Yin, W. (2021). Acceleration of primal–dual methods by preconditioning
and simple subproblem procedures. Journal of Scientific Computing, 86(2):1–34.

Liu, Z., Li, X., Kang, B., and Darrell, T. (2019). Regularization matters in policy optimization.
arXiv preprint arXiv:1910.09191.

Lohr, S. L. (2009). Sampling: design and analysis. Nelson Education.

Lu, S., Hong, M., and Wang, Z. (2019). PA-GD: On the convergence of perturbed alternating
gradient descent to second-order stationary points for structured nonconvex optimization.
In International Conference on Machine Learning, pages 4134–4143. PMLR.

Mania, H., Pan, X., Papailiopoulos, D., Recht, B., Ramchandran, K., and Jordan, M. I.
(2015). Perturbed iterate analysis for asynchronous stochastic optimization. arXiv preprint
arXiv:1507.06970.

Mania, H., Pan, X., Papailiopoulos, D., Recht, B., Ramchandran, K., and Jordan, M. I. (2017).
Perturbed iterate analysis for asynchronous stochastic optimization. SIAM Journal on
Optimization, 27(4):2202–2229.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. (2017). Communication-
efficient learning of deep networks from decentralized data. In Artificial Intelligence and
Statistics, pages 1273–1282. PMLR.

McMahan, B. and Ramage, D. (2017). Federated learning: Collaborative machine learning
without centralized training data.

Mishchenko, K., Gorbunov, E., Takáč, M., and Richtárik, P. (2019). Distributed learning with
compressed gradient differences. arXiv preprint arXiv:1901.09269.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and
Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. In
Proceedings of The 33rd International Conference on Machine Learning, volume 48, pages
1928–1937.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Ried-
miller, M. A. (2013). Playing Atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

158

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,
A., Riedmiller, M. A., Fidjeland, A., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A.,
Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D. (2015).
Human-level control through deep reinforcement learning. Nature, 518:529–533.

Mokhtari, A., Ozdaglar, A., and Pattathil, S. (2020). A unified analysis of extra-gradient
and optimistic gradient methods for saddle point problems: Proximal point approach. In
International Conference on Artificial Intelligence and Statistics, pages 1497–1507. PMLR.

Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A. (2009). Robust stochastic approximation
approach to stochastic programming. SIAM Journal on optimization, 19(4):1574–1609.

Nemirovskii, A. and Yudin, D. (1983). Problem complexity and method efficiency in optimization.

Nesterov, Y. (2013). Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media.

Nesterov, Y. and Polyak, B. (2006). Cubic regularization of Newton method and its global
performance. Mathematical Programming, 108(1):177–205.

Nesterov, Y. E. (1983). A method for solving the convex programming problem with convergence
rate o (1/kˆ 2). In Dokl. akad. nauk Sssr, volume 269, pages 543–547.

Neyshabur, B., Bhojanapalli, S., Mcallester, D., and Srebro, N. (2017). Exploring generalization
in deep learning. In Advances in Neural Information Processing Systems, pages 5947–5956.

Nguyen, L., Nguyen, P. H., Dijk, M., Richtárik, P., Scheinberg, K., and Takác, M. (2018). SGD
and Hogwild! convergence without the bounded gradients assumption. In International
Conference on Machine Learning, pages 3750–3758. PMLR.

Nguyen, L. M., Liu, J., Scheinberg, K., and Takáč, M. (2017a). SARAH: A novel method for
machine learning problems using stochastic recursive gradient. In Proceedings of the 34th
International Conference on Machine Learning, pages 2613–2621.

Nguyen, L. M., Liu, J., Scheinberg, K., and Takáč, M. (2017b). Stochastic recursive gradient
algorithm for nonconvex optimization. arXiv preprint arXiv:1705.07261.

Nguyen, L. M., Scheinberg, K., and Takáč, M. (2020). Inexact SARAH algorithm for stochastic
optimization. Optimization Methods and Software, pages 1–22.

Nguyen, L. M., van Dijk, M., Phan, D. T., Nguyen, P. H., Weng, T.-W., and Kalagnanam, J. R.
(2019). Finite-sum smooth optimization with SARAH. arXiv preprint arXiv:1901.07648.

Niknam, S., Dhillon, H. S., and Reed, J. (2020). Federated learning for wireless communications:
Motivation, opportunities, and challenges. IEEE Communications Magazine, 58:46–51.

Nitanda, A. (2014). Stochastic proximal gradient descent with acceleration techniques. In
Advances in Neural Information Processing Systems, pages 1574–1582.

OpenAI (2018). OpenAI Five. https://blog.openai.com/openai-sfive/.

Ozfatura, E., Ozfatura, K., and Gündüz, D. (2021). FedADC: Accelerated federated learning
with drift control. In 2021 IEEE International Symposium on Information Theory (ISIT),
pages 467–472. IEEE.

159

https://blog.openai.com/openai-five/

Papini, M., Binaghi, D., Canonaco, G., Pirotta, M., and Restelli, M. (2018). Stochastic variance-
reduced policy gradient. In Proceedings of the 35th International Conference on Machine
Learning, volume 80, pages 4026–4035.

Parikh, N. and Boyd, S. (2014). Proximal algorithms. Found. Trends Optim., 1(3):127–239.

Pathak, R. and Wainwright, M. J. (2020). FedSplit: An algorithmic framework for fast federated
optimization. arXiv preprint arXiv:2005.05238.

Peng, Z., Xu, Y., Yan, M., and Yin, W. (2016). ARock: an algorithmic framework for asyn-
chronous parallel coordinate updates. SIAM Journal on Scientific Computing, 38(5):2851–
2879.

Pham, N., Nguyen, L., Phan, D., Nguyen, P. H., van Dijk, M., and Tran-Dinh, Q. (2020a).
A hybrid stochastic policy gradient algorithm for reinforcement learning. volume 108 of
Proceedings of Machine Learning Research, pages 374–385. PMLR.

Pham, N. H., Nguyen, L. M., Phan, D. T., and Tran-Dinh, Q. (2020b). ProxSARAH: An
efficient algorithmic framework for stochastic composite nonconvex optimization. Journal
of Machine Learning Research, 21(110):1–48.

Recht, B., Re, C., Wright, S., and Niu, F. (2011). Hogwild!: A lock-free approach to parallelizing
stochastic gradient descent. In Shawe-Taylor, J., Zemel, R. S., Bartlett, P. L., Pereira, F.,
and Weinberger, K. Q., editors, Advances in Neural Information Processing Systems 24,
pages 693–701. Curran Associates, Inc.

Reddi, S. J., Hefny, A., Sra, S., Póczós, B., and Smola, A. (2016a). Stochastic variance
reduction for nonconvex optimization. In Proceedings of the 33rd International Conference
on International Conference on Machine Learning - Volume 48, pages 314–323.

Reddi, S. J., Sra, S., Póczos, B., and Smola, A. J. (2016b). Proximal stochastic methods
for nonsmooth nonconvex finite-sum optimization. In Advances in Neural Information
Processing Systems, pages 1145–1153.

Reddi, S. J., Sra, S., Póczos, B., and Smola, A. J. (2016c). Stochastic Frank-Wolfe methods
for nonconvex optimization. In 2016 54th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pages 1244–1251. IEEE.

Richtárik, P. and Takáč, M. (2016). Parallel coordinate descent methods for big data optimization.
Mathematical Programming, 156(1-2):433–484.

Robbins, H. and Monro, S. (1951). A stochastic approximation method. The annals of
mathematical statistics, pages 400–407.

Rosasco, L., Villa, S., and Vu, B. C. (2015). Stochastic inertial primal-dual algorithms. arXiv
preprint arXiv:1507.00852.

Schmidt, M., Roux, N. L., and Bach, F. (2017). Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162(1-2):83–112.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust region policy
optimization. In Proceedings of the 32nd International Conference on Machine Learning,
volume 37, pages 1889–1897, Lille, France.

160

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347.

Shalev-Shwartz, S. and Zhang, T. (2013). Stochastic dual coordinate ascent methods for
regularized loss minimization. Journal of Machine Learning Research, 14(Feb):567–599.

Shalev-Shwartz, S. and Zhang, T. (2014). Accelerated proximal stochastic dual coordinate
ascent for regularized loss minimization. In International conference on machine learning,
pages 64–72.

Shamir, O., Srebro, N., and Zhang, T. (2014). Communication-efficient distributed optimization
using an approximate newton-type method. In International conference on machine learning,
pages 1000–1008.

Shapiro, A., Dentcheva, D., and Ruszczynski, A. (2014). Lectures on stochastic programming:
modeling and theory. SIAM.

Shen, Z., Ribeiro, A., Hassani, H., Qian, H., and Mi, C. (2019). Hessian aided policy gradient.
In Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 5729–5738, Long Beach, California, USA.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., v. d. Driessche, G., Schrittwieser,
J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J.,
Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., and
Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree search.
Nature, 529:484–503.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre,
L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., and Hassabis, D. (2018). A
general reinforcement learning algorithm that masters chess, shogi, and go through self-play.
Science, 362(6419):1140–1144.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014). Determin-
istic policy gradient algorithms. In Proceedings of the 31st International Conference on
International Conference on Machine Learning - Volume 32, pages I–387–I–395.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout:
a simple way to prevent neural networks from overfitting. The journal of machine learning
research, 15(1):1929–1958.

Stich, S. U. (2018). Local SGD converges fast and communicates little. arXiv preprint
arXiv:1805.09767.

Sutton, R. S. and Barto, A. G. (2018). Introduction to Reinforcement Learning, 2nd Edition.
MIT Press.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. (1999). Policy gradient methods for
reinforcement learning with function approximation. In Proceedings of the 12th International
Conference on Neural Information Processing Systems, pages 1057–1063.

Themelis, A. and Patrinos, P. (2020). Douglas-Rachford splitting and ADMM for nonconvex
optimization: Tight convergence results. SIAM Journal on Optimization, 30(1):149–181.

161

Tieleman, T. and Hinton, G. (2012). Lecture 6.5—RmsProp: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Networks for Machine Learning.

Todorov, E., Erez, T., and Tassa, Y. (2012). MuJoCo: A physics engine for model-based
control. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033.

Tran-Dinh, Q., Pham, N. H., Phan, D. T., and Nguyen, L. M. (2019a). Hybrid stochastic gradient
descent algorithms for stochastic nonconvex optimization. arXiv preprint arXiv:1905.05920.

Tran-Dinh, Q., Pham, N. H., Phan, D. T., and Nguyen, L. M. (2019b). A hybrid stochastic
optimization framework for stochastic composite nonconvex optimization. arXiv preprint
arXiv:1907.03793.

Tran-Dinh, Q., Pham, N. H., Phan, D. T., and Nguyen, L. M. (2021). FedDR–randomized
Douglas-Rachford splitting algorithms for nonconvex federated composite optimization.
arXiv preprint arXiv:2103.03452.

Tseng, P. (2008). On accelerated proximal gradient methods for convex-concave optimization.
submitted to SIAM Journal on Optimization, 2(3).

Tziotis, I., Caramanis, C., and Mokhtari, A. (2020). Second-order optimality in non-convex
decentralized optimization via perturbed gradient tracking. Advances in Neural Information
Processing Systems.

Vlaski, S. and Sayed, A. H. (2019). Second-order guarantees of stochastic gradient descent in
non-convex optimization. arXiv preprint arXiv:1908.07023.

Wang, J. and Joshi, G. (2018). Cooperative SGD: A unified framework for the design and
analysis of communication-efficient SGD algorithms. arXiv preprint arXiv:1808.07576.

Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R., Kavukcuoglu, K., and d. Freitas, N. (2017).
Sample efficient actor-critic with experience replay. In 5th International Conference on
Learning Representations, Toulon, France, April 24-26, 2017, Conference Track Proceedings.

Wang, Z., Ji, K., Zhou, Y., Liang, Y., and Tarokh, V. (2019). Spiderboost and momentum: Faster
variance reduction algorithms. In Advances in Neural Information Processing Systems,
pages 2406–2416. Curran Associates, Inc.

Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M., and De Freitas, N. (2016).
Dueling network architectures for deep reinforcement learning. In Proceedings of the 33rd
International Conference on International Conference on Machine Learning - Volume 48,
pages 1995–2003.

Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning. Machine Learning, 8(3):279–292.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine Learning, 8(3):229–256.

Woodworth, B., Patel, K. K., and Srebro, N. (2020a). Minibatch vs local SGD for heterogeneous
distributed learning. arXiv preprint arXiv:2006.04735.

162

Woodworth, B., Patel, K. K., Stich, S. U., Dai, Z., Bullins, B., McMahan, H. B., Shamir,
O., and Srebro, N. (2020b). Is local SGD better than minibatch SGD? arXiv preprint
arXiv:2002.07839.

Wu, Y., Mansimov, E., Liao, S., Grosse, R., and Ba, J. (2017). Scalable trust-region method for
deep reinforcement learning using kronecker-factored approximation. In Proceedings of the
31st International Conference on Neural Information Processing Systems, pages 5285–5294,
USA.

Xiao, L. and Zhang, T. (2014). A proximal stochastic gradient method with progressive variance
reduction. SIAM Journal on Optimization, 24(4):2057–2075.

Xie, C., Koyejo, S., and Gupta, I. (2019). Asynchronous federated optimization. arXiv preprint
arXiv:1903.03934.

Xu, P., Gao, F., and Gu, Q. (2019a). An improved convergence analysis of stochastic variance-
reduced policy gradient. Conference on Uncertainty in Artificial Intelligence.

Xu, P., Gao, F., and Gu, Q. (2019b). Sample efficient policy gradient methods with recursive
variance reduction. arXiv preprint arXiv:1909.08610.

Yang, L. and Zhang, Y. (2019). Policy optimization with stochastic mirror descent. arXiv
preprint arXiv:1906.10462.

Yu, H., Yang, S., and Zhu, S. (2019). Parallel restarted SGD with faster convergence and less
communication: Demystifying why model averaging works for deep learning. In Proceedings
of the Conference on Artificial Intelligence, volume 33, pages 5693–5700.

Yu, P., Kundu, A., Wynter, L., and Lim, S. H. (2020). Fed+: A unified approach to robust
personalized federated learning. arXiv preprint arXiv:2009.06303.

Yuan, H., Li, C. J., Tang, Y., and Zhou, Y. (2019). Policy optimization via stochastic recursive
gradient algorithm.

Yuan, H. and Ma, T. (2020). Federated accelerated stochastic gradient descent. arXiv preprint
arXiv:2006.08950.

Yuan, H., Zaheer, M., and Reddi, S. (2021). Federated composite optimization. In International
Conference on Machine Learning, pages 12253–12266. PMLR.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2017). Understanding deep
learning requires rethinking generalization.

Zhang, C., Patras, P., and Haddadi, H. (2019). Deep learning in mobile and wireless networking:
A survey. IEEE Communications Surveys & Tutorials, 21(3):2224–2287.

Zhang, J., De Sa, C., Mitliagkas, I., and Ré, C. (2016). Parallel SGD: When does averaging
help? arXiv preprint arXiv:1606.07365.

Zhang, X., Hong, M., Dhople, S., Yin, W., and Liu, Y. (2020). FedPD: A federated learning frame-
work with optimal rates and adaptivity to non-iid data. arXiv preprint arXiv:2005.11418.

163

Zhao, L., Mammadov, M., and Yearwood, J. (2010). From convex to nonconvex: A loss function
analysis for binary classification. In 2010 IEEE International Conference on Data Mining
Workshops, pages 1281–1288.

Zhao, T., Hachiya, H., Niu, G., and Sugiyama, M. (2011). Analysis and improvement of policy
gradient estimation. In Advances in Neural Information Processing Systems, pages 262–270.

Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., and Chandra, V. (2018). Federated learning with
non-iid data. arXiv preprint arXiv:1806.00582.

Zhou, D. and Gu, Q. (2019). Lower bounds for smooth nonconvex finite-sum optimization.
volume 97 of Proceedings of Machine Learning Research, pages 7574–7583, Long Beach,
California, USA. PMLR.

Zhou, D., Xu, P., and Gu, Q. (2018a). Stochastic nested variance reduction for nonconvex
optimization. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, page 3925–3936, Red Hook, NY, USA. Curran Associates Inc.

Zhou, D., Xu, P., and Gu, Q. (2018b). Stochastic nested variance reduction for nonconvex
optimization. arXiv preprint arXiv:1806.07811.

Zhou, F. and Cong, G. (2017). On the convergence properties of a k-step averaging stochastic
gradient descent algorithm for nonconvex optimization. arXiv preprint arXiv:1708.01012.

Zhou, Y., Wang, Z., Ji, K., Liang, Y., and Tarokh, V. (2019). Momentum schemes with stochastic
variance reduction for nonconvex composite optimization. arXiv preprint arXiv:1902.02715.

Zhu, L., Liu, Z., and Han, S. (2019). Deep leakage from gradients. In Advances in Neural
Information Processing Systems, pages 14774–14784.

164

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Overview
	Problems of interest
	Challenges
	The goals of this research

	Background and mathematical tools
	Basic concepts
	Tools from convex analysis
	Other mathematical tools

	The outline of dissertation

	An Efficient Framework for Stochastic Composite Nonconvex Optimization
	Introduction
	Problem of interest
	Related work
	Our approach
	Our contribution
	Overview and chapter outline

	Mathematical tools and preliminary results
	Notation
	Fundamental assumptions
	Optimality conditions
	Stochastic gradient estimators
	Single sample estimators
	Mini-batch estimators

	Basic properties of stochastic and SARAH estimators

	ProxSARAH framework and convergence analysis
	Analysis of the inner-loop: Key estimates
	Convergence analysis for the Problem (FS-OPT)
	Lower-bound complexity for the Problem (FS-OPT)
	Mini-batch size and learning rate trade-offs
	Convergence analysis for the Problem (St-OPT)

	Dynamic step-sizes for non-composite problems
	Numerical experiments
	Nonnegative principal component analysis
	Sparse binary classification with nonconvex losses
	Feedforward neural network training

	Proofs of technical results
	Technical lemma
	The proof of technical results in Section 2.3
	The proof of Lemma 2.3: The analysis of the inner loop
	The Proof of lemma 2.4: The selection of constant step-sizes
	The proof of Theorem 2.1: The dynamic step-size case
	The proof of Theorem 2.2: The constant step-size case
	The proof of Theorem 2.3: The expectation problem
	The proof of Theorem 2.4: The non-composite cases

	A Hybrid Stochastic Policy Gradient Algorithm for Reinforcement Learning
	Introduction
	Problem of interest
	Related work
	Our approach and contribution
	Chapter outline

	A new hybrid stochastic policy gradient algorithm
	Assumptions
	Optimality condition
	Novel hybrid stochastic policy gradient estimator
	REINFORCE - an unbiased estimator:
	New stochastic policy gradient estimator:

	The complete algorithm
	Restarting variant

	Convergence analysis
	Properties of the hybrid SPG estimator
	Complexity estimates

	Numerical experiments
	Proofs of technical results
	Proof of Lemma 3.2
	Proof of Lemma 3.3
	Proof of Theorem 3.1: Key bound on the gradient mapping
	Proof of Corollary 3.1: trajectory complexity of Algorithms 2 and 3

	FedDR - Douglas-Rachford Splitting Methods for Federated Learning
	Introduction
	Problem of interest
	Related work
	Our approach and contribution
	Outline

	FedDR algorithm and its convergence analysis
	The derivation of FedDR
	Convergence analysis of FedDR

	AsyncFedDR and its convergence guarantee
	Derivation of asyncFedDR
	Probabilistic model
	Convergence analysis

	Numerical Experiments
	Experiment setup
	Results on non-composite example
	Results on composite example using 1-norm regularizer
	Results using asynchronous update

	Appendix
	Convergence analysis of FedDR
	Useful lemmas
	Proof of Lemma 4.10
	Proof of Lemma 4.2
	Proof of Theorem 4.1

	Proof of Theorem 4.2
	Convergence analysis of asyncFedDR
	Proof of Lemma 4.3
	Proof of Lemma 4.4
	Proof of Lemma 4.5
	Proof of Theorem 4.3

	Conclusions and Future Research
	Conclusions
	Ongoing and Future Research

	BIBLIOGRAPHY

