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ABSTRACT

GUANHUA CHEN: Statistical Learning for Biomedical Data under
Various Forms of Heterogeneity

(Under the direction of Dr. Michael R. Kosorok)

In modern biomedical research, an emerging challenge is data heterogeneity. Ignor-

ing such heterogeneity can lead to poor modeling results.

In cancer research, clustering methods are applied to �nd subgroups of homogeneous

individuals based on genetic pro�les together with heuristic clinical analysis. A notable

drawback of existing clustering methods is that they ignore the possibility that the vari-

ance of gene expression pro�le measurements can be heterogeneous across subgroups,

leading to inaccurate subgroup prediction. In Chapter 2, we present a statistical ap-

proach that can capture both mean and variance structure in gene expression data. We

demonstrate the strength of our method in both synthetic data and two cancer data

sets.

For a binary classi�cation problem, there can be potential subclasses within the two

classes of interest. These subclasses are latent and usually heterogeneous. We propose

the Composite Large Margin Classi�er (CLM) to address the issue of classi�cation

with latent subclasses in Chapter 3. The CLM aims to �nd three linear functions

simultaneously: one linear function to split the data into two parts, with each part

being classi�ed by a di�erent linear classi�er. Our method has comparable prediction

accuracy to a general nonlinear kernel classi�er without over�tting the training data

while at the same time maintaining the interpretability of traditional linear classi�ers.

There is a growing recognition of the importance of considering individual level
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heterogeneity when searching for optimal treatment doses. Such optimal individual-

ized treatment rules (ITRs) for dosing should maximize the expected clinical bene�t.

In Chapter 4, we consider a randomized trial design where the candidate dose levels

are continuous. To �nd the optimal ITR under such a design, we propose an outcome

weighted learning method which directly maximizes the expected bene�cial clinical out-

come. This method converts the individualized dose selection problem into a nonstan-

dard weighted regression problem. A di�erence of convex functions (DC) algorithm

is adopted to e�ciently solve the associated non-convex optimization problem. The

consistency and convergence rates for the estimated ITR are derived and small-sample

performance is evaluated via simulation studies. We illustrate the method using data

from a clinical trial for Warfarin dosing.
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CHAPTER1: INTRODUCTION

With the revolutions in technology and science, we are now entering the era of Big

Data. The enrichment of data promises achievement of many biological, medical, and

public health goals. However, reaching these goals is challenging due to the increasing

magnitude and complexity of the data. An important aspect of the complexity is data

heterogeneity. Ignoring data heterogeneity can cause bias in making decisions. This is

a common problem in modern biological and biomedical research, e.g. the one-size-�t-

all treatment strategy can fail due to heterogeneous response to drugs among patients.

To deal with data heterogeneity, I have developed statistical learning and data mining

methods under various heterogeneity settings. These methods are applicable for a wide

range of problems�potentially high dimensional�with direct interest to clinicians and

biomedical investigators.

In this dissertation, we investigate three data heterogeneity problems: (1) Bicluster-

ing a data matrix when no label information is given. Such problems are also referred

to as unsupervised learning. We are interested in the problem where the variances for

data entries are not homogeneous (see Chapter 2). (2) When there exists label informa-

tion or there are dependent variables, the problem is supervised learning. We focus on

studying binary classi�cation and further we assume that within the class of interest,

there exists heterogenous subclasses (see Chapter 3). (3) Most e�ective Dosage identi-

�cation is a common task in modern clinical trials. The traditional dose �nding trial

only attempts to identify a single best dose, which may not be enough for a number of

situations, including, for example, insulin dosing. Our goal is to identify a personalized
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rule using training data where patients are potentially treated with sub-optimal doses.

Information such as patient characteristics and outcome after receiving the dose are

used as tailoring variables. This kind of problem can be viewed as a semi-supervised

learning problem. Unlike the traditional semi-supervised learning problem where some

observations have accurate labels and others have no labels, all observations are pro-

vided with the label information (observed dose). However, such label information is

not precise since the observed dose is generally suboptimal. Our proposed approach at-

tempts to directly identify the dose rule which takes patient heterogeneity of response

to treatment into account (see Chapter 4). All of our methods connect to existing

statistical learning methods (Hastie et al. 2009) and are problem oriented.

In each of Chapters 2 to 4, I will review the background of the problems, the existing

methods and their limitations. Our proposed methods will then be described in detail,

followed by theoretical proof or basis for methodological intuition. Simulations and real

data will be used to demonstrate the use of our methods. Lastly, I will describe future

research in Chapter 5.
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CHAPTER2: BICLUSTERING WITH HETEROGENEOUS
VARIANCE

In cancer research, as in all of medicine, it is important to classify patients into

etiologically and therapeutically relevant subtypes to improve diagnosis and treatment.

One way to do this is to use clustering methods to �nd subgroups of homogeneous

individuals based on genetic pro�les together with heuristic clinical analysis. A notable

drawback of existing clustering methods is that they ignore the possibility that the vari-

ance of gene expression pro�le measurements can be heterogeneous across subgroups,

and methods that do not consider heterogeneity of variance can lead to inaccurate sub-

group prediction. Research has shown that hypervariability is a common feature among

cancer subtypes. In this chapter, we present a statistical approach that can capture

both mean and variance structure in genetic data. We demonstrate the strength of our

method in both synthetic data and in two cancer data sets. In particular, our method

con�rms the hypervariability of methylation level in cancer patients, and it detects

clearer subgroup patterns in lung cancer data (see Chen et al. (2013)).

2.1 Introduction

Clustering is an important type of unsupervised learning algorithm for data explo-

ration. Successful examples include K-mean clustering and hierarchical clustering, both

of which are widely used in biological research to �nd cancer subtypes and to stratify

patients. These and other traditional clustering algorithms depend on the distances

calculated using all of the features. For example, individuals can be clustered into
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homogeneous groups by minimizing the summation of within clusters sum of squares

(the Euclidean distances) of their gene expression pro�les. Unfortunately, this strategy

is ine�ective when only a subset of features are informative. This phenomenon can be

demonstrated by K-means clustering (Hastie et al. 2009) results for a toy example using

only the variables which determine the underlying true cluster compared to using all

variables (which includes many uninformative variables). As can be seen in Figure 2.1,

clustering performance is poor when all variables are used in the clustering algorithm

(Witten and Tibshirani 2010).

Figure 2.1: The data set contains two clusters determined by two variables X1 and
X2 such that points around (1, 1) and (−1,−1) naturally form clusters. There are 200
observations (100 for each cluster) and 1002 variables (X1, X2 and 1000 random noise
variables). We plot the data in the 2D space of X1 and X2. The graphs with true
cluster labels and predicted cluster labels obtained by clustering using only X1 and X2

and clustering by using all variables are laid from left to right. The predicted labels
are the same as the true labels only when X1 and X2 are used for clustering; however,
the performance is much worse when all variables are used.

To solve this problem, sparse clustering methods have been proposed to allow clus-

tering decisions to depend on only a subset of feature variables (the property of spar-

sity). Prominent sparse clustering methods include Sparse PCA (Ma 2013, Shen and
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Huang 2008, Zou et al. 2006) and Sparse K-means (Witten and Tibshirani 2010), among

others (Kriegel et al. 2009). However, sparse clustering still fails if the true sparsity

is a local rather than a global phenomenon (Kriegel et al. 2009). More speci�cally,

di�erent subsets of features can be informative for some samples but not all samples,

or, in other words, sparsity exists in both features and samples jointly. Biclustering

methods are a potential solution to this problem, and further generalize the sparsity

principle by considering samples and features as exchangeable concepts to handle local

sparsity (Cheng and Church 2000, Kriegel et al. 2009). For example, gene expression

data can be represented as a matrix with genes as columns, and subjects as rows (with

various and possibly unknown diseases or tissue types). Traditional methods will either

cluster the rows�as done, for example, in microarray research, where researchers want

to �nd subpopulation structure among subjects to identify possible common disease

status�or cluster the columns, as done, for example, in gene clustering research, where

genes are of interest and the goal is to predict the biological function of novel genes

from the function of other well studied genes within the same clusters. In contrast,

biclustering involves clustering rows and columns simultaneously in order to account

for the interaction of row and column sparsity. This local sparsity perspective provides

an intuition for using sparse singular value decomposition algorithms (SSVD) for bi-

clustering Busygin et al. (2002), Lee et al. (2010), Yang et al. (2014), Witten et al.

(2009). SSVD assumes that the signal in the data matrix can be represented by a low

rank matrix X ≈ UDVT =
∑r

i=1 diuiv
T
i with X ∈ ℜn×p. U = [u1,u2, . . . ,ur] ∈ ℜn×r

and V = [v1, v2, . . . ,vr] ∈ ℜr×p contain left and right sparse singular vectors and

are orthonormal with only a few non-zero elements (corresponding to local sparsity).

D ∈ ℜr×r is diagonal (with diagonal elements d1, d2, . . . , dr) with r << rank(X). The

outer product of each pair of sparse singular vectors (uiv
T
i , i = 1, 2, . . . , r) will designate

two biclusters corresponding to positive and negative elements respectively.
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A common assumption of existing SSVD biclustering methods is that the observed

data can be decomposed into a signal matrix plus a fully exchangeable random noise

matrix:

X = Ξ+Φ, (2.1)

where X is the observed data, Ξ = (ξij) is an n× p matrix representing the signal, and

Φ = (ϕij) is an n×p random noise/residual matrix with i.i.d. entries (Yang et al. 2014,

Ho� 2010, Johnstone and Lu 2009). A method based on model (2.1) is proposed in Lee

et al. (2010) which minimizes the sum of the Frobenius norm of X−Ξ̂ and a penalty

function with variable selection, such as the ℓ1−norm (Tibshirani 1994) or SCAD

(Fan and Li 2001). A similar Loss plus Penalty minimization approach can be seen

in Witten et al. (2009). A di�erent method for SSVD employs iterative thresholding

QR decomposition to estimate Ξ̂ in Yang et al. (2014). We refer to Lee et al. (2010)

as LSHM and Yang et al. (2014) as FIT-SSVD, and compare these approaches to our

method. An alternative approach, which is more direct, is based on a mixture model

(Lazzeroni and Owen 2002, Shabalin et al. 2009). For example, Shabalin et al. (2009)

de�nes the bicluster as a submatrix with a large positive or negative mean. Although

these approaches have proven successful in some settings, they are limited by their

focus on only the mean signal approximation. In addition, the explicit homogeneous

residual variance assumption is too restrictive in many applications.

To our knowledge, the only extension of the traditional model given in (2.1) is

the generalized PCA approach (Allen et al. 2014) which assumes that if the random

noise matrix were stacked into a vector, vec(Φ), it would have mean 0 and variance

R−1 ⊗ Q−1, where R−1 is the common covariance structure of the random variables

within the same column, and Q−1 is the common covariance structure of the random

variables within the same row. This approach is especially suited to denoising nuclear

magnetic resonance data for which there is a natural covariance structure of the form
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given above (Allen et al. 2014). Drawbacks of the generalized PCA method, however,

are that it remains focused on mean signal approximation and the structure of R−1

and Q−1 must be explicitly known in advance.

In this chapter, we present a new biclustering framework based on sparse sin-

gular value decomposition called heterogeneous sparse singular value decomposition

(HSSVD). This method can detect both mean biclusters and variance biclusters in the

presence of unknown heterogeneous residual variance. To our knowledge, both the

heterogeneous residual variance and variance only bicluster detection aspects are com-

pletely novel. We also apply our method, as well as competing approaches, to two

cancer data sets, one with methylation data and the other with gene expression data.

Our method delivers better pattern detection and is able to con�rm the biological �nd-

ings originally made for each of the data sets. We also apply our method to synthetic

data to demonstrate its superior performance over competing approaches quantitative-

ly. We demonstrate that our proposed method is robust, location and scale invariant,

and computationally feasible.

2.2 Model Assumptions for HSSVD

We de�ne biclusters as subsets of the data matrix which have the same mean and

variance. We assume that there exists a dominate null cluster in which all elements have

a common mean and variance and that all other biclusters are restricted to rectangular

structures which have either a distinct mean or variance compared to the null cluster.

We can also express our model in the framework of a random e�ect model wherein

X = Ξ+ ρ2Σ×Φ+ bJ, (2.2)
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where X and Ξ are the same structures given in the traditional model (2.1), and where

we require Φ, an n×p matrix, to have i.i.d. random components with mean 0 and

variance 1. Moreover, the × in (2.2) is de�ned element wisely: see the next section for

details. New components in the model include Σ = (σij), an n× p matrix representing

the heterogeneous variance signal; Jn×p, an n×p matrix with all values equal to 1; ρ, a

�nite positive number serving as a common scale factor; and b, a �nite number serving

as a common location factor. We also make the sparsity assumption that the majority

of (ξij) values are 0 and the majority of (σij) values are 1. Further, just as we assumed

for the mean structure Ξ, we also assume that the variance structure Φ is low rank.

From the de�nitions, the traditional model (2.1) is a special case of our model (2.2),

with b = 0, Σ = J, and ρ = 1. The presence of b and ρ in the model allows the

new method to be scale invariant, while the presence of Σ enables the new method to

incorporate heterogeneous variance signals.

2.3 HSSVD method

We propose HSSVD based on the model (2.2) with a hierarchical structure for signal

recovery. First, we properly scale the matrix elements to minimize false detection of

pseudo mean biclusters which can arise as artifacts of high-variance clusters. This

motivates us to add the quadratic rescaling step in the procedure. Then we can detect

mean biclusters based on the scaled data and later detect variance biclusters based on

the logarithm of the squared residual data after subtracting out the mean biclusters.

The quadratic rescaling step works well in practice, as shown in the simulation studies

and data analysis. The pseudo code for the algorithm is provided as follows:

1. Input Step: Input the raw data matrix Xorigin. Standardize Xorigin (treat each

cell as i.i.d.) to have mean 0 and variance 1. Denote the overall mean of Xorigin

as µ̂ and the overall standard deviation as σ̂, and let the standardized matrix be
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de�ned as X = (Xorigin −µ̂J)/σ̂.

2. Quadratic Rescaling: Apply SSVD on X2−J to obtain the approximation matrix

U.

3. Mean Search: Let Y = X /
√
U+J− cJ, where c is a small nonpositive con-

stant to ensure that
√
U+J− cJ exists. Then apply SSVD on Y to obtain the

approximation matrix Ỹ.

4. Variance Search: Let Zorigin = log(X−Ỹ×
√
U+J− cJ)2, center Zorigin to have

mean 0, and denote the centered version as Z. Perform SSVD on Z to obtain the

approximation matrix Z̃.

5. Background Estimation: Let P = {pij} denote the n × p matrix of indicators of

whether the corresponding cells belong to the background cluster, with pij = 1

if both Ỹij = 0 and Z̃ij = 0, and pij = 0 otherwise. Based on the assumption

that most elements in the matrix should be in the null cluster, we can estimate

b̂ with
1
′
(Xorigin ×P)1

1
′
P1

and ρ̂ with
1
′
(Xorigin ×P−b̂P)2 1

1
′
P1−1

, where 1 is a vector with all

elements equal to one.

6. Scale Back: De�ne P1 = {pij}, with pij = 1 if Ỹij = 0, pij = 0 otherwise.

Similarly, de�ne P2 = {pij}, with pij = 1 if Z̃ij = 0, pij = 0 otherwise. The mean

(Ξ+bJ) approximation is computed with σ̂(Ỹ×
√
U+J− cJ)+ µ̂(J−P1)+ b̂P1,

and the variance (ρ2Φ) approximation is computed with [ρ̂2 P2 +σ̂2(J − P2)] ×

exp(Z̃).

The operators �×�,�/�, �exp()�,� log()�, �exp()�, �min()� and �
√

()� used above are

de�ned element wisely when they are applied to the matrix, e.g. Un×p ×Vn×p =

(uijvij). In all steps involving sparse singular value decomposition, we implement the

FIT-SSVD method Yang et al. (2014). We use FIT-SSVD since it is computational fast
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and has similar or superior performance compared to other competing methods under

the homogeneous variance assumption Yang et al. (2014). The matrix
√
U+J− cJ

provides a working variance level estimate of the data and makes our method more

robust. Note that the reason for working on the log scale for the variance detection is

two fold. First, working on the log scale makes the detection of the de�ated variance

(less than 1) bicluster possible. Intuitively, as variance measures deviance from the

mean, we can work on the squared residuals to �nd the variance structure. For the

de�ated variance bicluster setting, if the mean structure is estimated correctly, the

residuals within the bicluster are close to zero. The SSVD based methods shrink the

small non-zero elements to zero to achieve sparsity. As a result, if we work on the

squared residuals directly, the SSVD based methods will fail to detect the low variance

structure. Second, to use the well-established SSVD method in the variance detection

steps we need to work on the log scale. To see this, we can rewrite the equation in

(2.2) as log(X−Ξ − bJ)2 = log(Σ2) + log(ρ2Φ2), which is similar to the model in

(2.1). Consequently, we can apply any methods which are applicable to (2.1) in our

variance detection step if we work on the log scale and Φ is low rank. We also want

to point out that results obtained directly from FIT-SSVD are relative to the location

and scale of the background cluster. In addition, we have scaled the data in the �Input

Step�. To provide a correct mean and variance approximation of the original data, we

need the �Scale Back� step. Assuming that the detection of null clusters is close to

the truth, then the pooled mean and variance estimates based on elements exclusively

from the identi�ed null cluster (b̂ and ρ̂) are more accurate than estimates based on

all elements of the matrix (µ̂ and σ̂). As a result, we need to use the comprehensive

formula proposed in the �Scale Back� step.
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The FIT-SSVD method, as well as any other SVD based method, requires an ap-

proximation of the rank of the matrix (which is essentially the number of true biclus-

ters) as input. We adapt the bi-cross validation method (BCV) by Owen and Perry

(2009) for rank estimation, and we notice that in some cases the rank is underestimat-

ed. For this reason, we introduce additional steps following a BCV rank estimation

of rank k: First, we approximate the data with a sparse matrix X̂k+1 (rank = k + 1),

where X̂k+1 =
∑k+1

j=1 d̂jûjv̂
T
j . De�ne the proportion of variance explained by the top

i rank sparse matrix as Ri =
∑i

j=1 d̂
2
j/
∑k+1

j=1 d̂
2
j (Allen and Maletic-Savatic 2011). Ri

is between 0 and 1 and is increasing with i, and we believe that the redundant com-

ponents of the sparse matrix should not contribute much to the total variance. The

�nal rank estimation for HSSVD is the smallest integer r which satis�es Rr > 0.95, and

1 ≤ r ≤ k+1. Note that FIT-SSVD (Yang et al. 2014) used the modi�ed BCV method

for rank estimation, however, the authors require that most rows (the whole row) and

most columns (the whole column) are sparse, which appears to be too restrictive. In

practice, this assumption is violated if the data is block diagonal or has certain other

commonly assumed data structures. For this reason, we use the original BCV method

as our starting point.

2.4 Application to cancer data

2.4.1 Hypervariability of methylation in cancer

We demonstrate the capability of variance bicluster detection with methylation

data in cancer versus normal patients (Hansen et al. 2011). The experiments were

conducted by a custom nucleotide-speci�c Illumina bead array to increase the precision

of DNA methylation measurements on previously identi�ed cancer-speci�c di�erentially

methylated regions (cDMRs) in colon cancer (Irizarry et al. 2009). The data set (GEO

accession: GSE29505) consists of 290 samples including cancer samples (colon, breast,
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lung, thyroid and Wilms' tumor cancers) and matched normal samples. Each sample

had 384 methylation probes which covered 151 cDMRs. The authors of the primary

report concluded that cancer samples had hypervariability in these cDMRs across all

cancer types (Hansen et al. 2011).

First, we wish to verify that HSSVD can provide a good mean signal approximation

of methylation. In this data set, all the probes measuring the methylation are placed in

the cDMRs identi�ed in colon cancer patients. As a result, we would expect that mean

methylation levels di�er between colon cancer samples and the matched normal sam-

ples. Under this assumption, we require the biclustering methods to capture this mean

structure before investigating the information gained from variance structure estima-

tion. Note that the numerical range of methylation level is between 0 and 1. Hence we

applied the logit transformation on the original data for further biclustering analysis.

We compare three methods, HSSVD, FIT-SSVD and LSHM; all based on SVD. Only

colon cancer samples and their matched normal samples are used for this particular

analysis. In Figure 2.2, we can see from the hierarchical clustering analysis that the

majority of colon cancer samples (labeled blue in the side bar) are grouped together and

most of the cDMRs are di�erentially expressed in colon tumor samples compared to

normal samples. The conclusion is the same for all three methods compared, including

our proposed HSSVD method.

Second, our proposed HSSVD method con�rms the most important �nding in

Hansen et al. (2011) that cancer samples tended to have hypervariability in methy-

lation level regardless of tumor subtype. We compared the mean approximation and

variance approximation results of HSSVD. All samples were used in this analysis. The

variance approximation of HSSVD (see Figure 2.3(a)) shows that nearly all normal

samples have low variance compared to cancer samples, and this pattern is consistent

across all cDMRs. Notably, our method provides additional information beyond the
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Figure 2.2: Mean Approximation of colon cancer and the normal matched samples.
From left to right the methods are HSSVD, FIT-SSVD and LSHM. The colon cancer
samples are labeled in blue, and the normal matched samples are labeled in pink in
the sidebar. The genes and samples are ordered by hierarchical clustering. The colon
cancer patients are clustered together which indicates the mean approximations for
these three methods achieves the expected signal structure.

conclusion from Hansen et al. (2011). Speci�cally, our variance approximation suggest-

s that some cancer samples are not characterized by hypervariability in methylation

level for certain cDMRs. More precisely, some cDMRs for a few cancer samples (sur-

rounded by normal samples) are predicted to have low variance (see lower left part of

Figure 2.3(a)). Our method also highlights cDMRs with the greatest contrast variance

between cancer and normal samples. This is new information and the corresponding

cDMRs with high contrast variance (especially some of the �rst and middle columns

of Figure 2.3(a)) warrant further study for biological and clinical relevance. We also

want to emphasize that the analysis in Hansen et al. (2011) relies on the disease status

information, while for HSSVD, the disease status is only used for result interpreta-

tion. Note that most cancer patients cluster together by hierarchical clustering of the

variance approximation from HSSVD. In contrast, clustering the mean approximation

from HSSVD in Figure 2.3(b) fails to reveal such a pattern. This indicates that most

cancer samples may have hypervariability of methylation as a common feature while
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their mean level methylation varies from sample to sample. Hence, identifying variance

biclusters can provide potential new insight for cancer epigenesis.

Figure 2.3: HSSVD approximation result for all samples. The variance approximation
is in panel (a) and the mean approximation is in panel (b). Blue represents cancer
samples, and pink represents normal samples in the sidebar. The genes and samples are
ordered by hierarchical clustering. Red color represents large values, and green color
represents small values. Only the variance approximation can discriminate between
cancer and normal samples. More importantly, within the same gene, the heatmap for
the variance approximation indicates that cancer patients have larger variance than
normal individuals. This result matches the conclusion in Hansen et al. (2011). In
addition, the cDMRs with the greatest contrast variance across cancer and normal
samples are highlighted by the variance approximation, while the original paper does
not provide such information.

2.4.2 Gene expression in lung cancer

Some biological settings, in contrast to the methylation example above, do not

express variance heterogeneity. Usually, the presence or absence of such heterogeneity

is not known in advance for a given research data set. Thus it is important to verify

that the proposed approach remains e�ective in either case for discovering mean-only

biclusters. We now demonstrate that even in settings without variance heterogeneity,

HSSVD can outperform other methods, including FIT-SSVD (Yang et al. 2014), LSHM

(Lee et al. 2010) and traditional SVD. We utilize a lung cancer data set which has been
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studied in the statistics literature (Lee et al. 2010, Shabalin et al. 2009, Yang et al. 2014).

The samples are a subset of patients (Liu et al. 2008) having lung cancer with gene

expression measured by the A�ymetrix 95av2 GeneChip (Bhattacharjee et al. 2001).

The data set contains the expression levels of 12, 625 genes for 56 patients, each having

one of four disease subtypes: normal lung (20 samples), pulmonary carcinoid tumors

(13 samples), colon metastases (17 samples), and small cell carcinoma (6 samples).

The performance of di�erent methods is evaluated based on the pattern di�erence

of subtypes based on the mean approximations. For all methods, we set the rank

of the mean signal matrix equal to 3 to maintain consistency with the ranks used

in FIT-SSVD (Yang et al. 2014) and LSHM (Lee et al. 2010). Further, we use the

measurement �support� to evaluate the sparsity of the estimated gene signal (Yang

et al. 2014). �Support� is the cardinality of the non-zero elements in the right and left

singular vectors across the three layers (i.e., �support� is an integer that cannot exceed

the data dimension). Smaller �support� values suggest a sparser model. Table 2.1 shows

that HSSVD, FIT-SSVD and LSHM yield similar levels of sparsity in the gene signal,

while SVD is not sparse, as expected. Figure 2.4 shows checkerboard plots of rank-three

approximations by the four methods. Patients are placed on the vertical axis, and the

patient order is the same for all images. Patients within the same subtype are stacked

together and di�erent subtypes are separated by white lines. Within each image, genes

are laid on the horizontal axis and are ordered by the value of v̂2 (Yang et al. 2014). We

can see a clear block structure in both the FIT-SSVD and HSSVD methods, indicating

biclustering. The block structure suggests we can discriminate the four cancer subtypes

using either the FIT-SSVD or HSSVD methods, while LSHM and SVD are unable to

achieve such separation among subtypes.
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Table 2.1: Lung cancer: summary of cardinality of union support of the �rst three
singular vectors for di�erent methods

HSSVD FIT-SSVD LSHM SVD
∪3

i=1∥ui∥0 4689 4686 4655 12625
∪3

i=1∥vi∥0 56 56 56 56

2.5 Simulation study

To evaluate the performance of HSSVD quantitatively, we conducted a simulation

study. We compared HSSVD with the most relevant existing biclustering methods,

FIT-SSVD and LSHM Yang et al. (2014), Lee et al. (2010). HSSVD includes a rank

estimation component, while the other methods do not automatically include this.

For this reason, we will use a �xed oracle rank (at the true value) for the non-HSSVD

methods. For comparison, we also evaluate HSSVD with �xed oracle rank (HSSVD-O).

The performance of these methods on simulated data was evaluated on four criteria.

The �rst criterion is �sparsity of estimation�, de�ned as the ratio between the size of the

correctly identi�ed background cluster and the size of the true background cluster. The

second criterion is �biclustering detection rate�, de�ned as the ratio of the intersection

of the estimated bicluster and the true bicluster over their union (also known as the

Jaccard index). For the �rst two criteria, larger values indicate better performance.

The third and fourth criteria are �overall matrix approximation errors� for mean and

variance biclusters, consisting of the scaled recovery error for the low-rank mean signal

matrix Ξ̃ = Ξ+bJ, computed via

Lmean(Ξ̃, Ξ̂) = ∥Ξ̂− Ξ̃∥2F/∥Ξ ∥2F ;

and the scaled recovery error for the low-rank variance signal matrix log(Σ̃) = log(Σ)+
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Figure 2.4: Checkerboard plots for four methods. We plot the rank-three approximation
for each method. Within each image, samples are laid in rows, and genes are in columns.
We order the samples by subtype for all images (top to bottom: Carcinoid, Colon,
Normal, and Smallcell), and di�erent subtypes are separated by white lines. Genes are
sorted by the estimated second right singular vector (û2), and we only included genes
that are in the support (de�ned in Table 2.1). Across all methods, the HSSVD and
FIT-SSVD methods provide the clearest block structure re�ecting biclusters.

log(ρ2J), computed via

Lvar(log(Σ̃), log(Σ̂)) = ∥ log(Σ̂
1/2

)− log(Σ̃
1/2

)∥2F/∥ log(Σ1/2)∥2F ,

with ∥.∥F being the Frobenius norm.

The simulated data comprise a 1000 × 100 matrix with independent entries. The

background entries follow a normal distribution with mean 1 and standard deviation

2. We denote the distribution as N(1, 22), where N(a, b2) represents a normal random

variable with mean a and standard deviation b. There are �ve non-overlapping rect-

angularly shaped biclusters: bicluster 1, bicluster 2, and bicluster 5 are mean clusters,

17



bicluster 3 is a mean and small variance cluster, and bicluster 4 is a large variance

cluster. More precisely, bicluster 1 (size 100× 20) is generated from N(7, 22), bicluster

2 (size 100 × 10) is generated from N(−5, 22), bicluster 3 (size 100 × 10) is generated

from N(7, 0.42), bicluster 4 (size 100 × 20) is generated from N(1, 82), and bicluster

5 (size 100 × 20) is generated from N(6.8, 22). The biclustering results are shown in

Table 2.2: HSSVD and HSSVD-O can detect both mean and variance biclusters, while

FIT-SSVD-O and LSHM-O can only detect mean biclusters. For mean bicluster detec-

tion, all methods performed well since the �biclustering detection rates� are all greater

than 0.7. For variance bicluster detection, HSSVD and HSSVD-O deliver a similar

�biclustering detection rate�. On average, the computation time of LSHM-O is about

30 times that of HSSVD and 60 times that of FIT-SSVD-O.

Both FIT-SSVD and LSHM are provided with the oracle rank as input. We also

evaluated an automated rank version for these methods, but determined the perfor-

mance was worse than the corresponding oracle rank version (results not shown). Note

that the input data are standardized to mean 0 and standard deviation 1 element-wise

for FIT-SSVD-O and LSHM-O. Although this step is not mentioned in the original pa-

pers Lee et al. (2010), Yang et al. (2014), this simple procedure is critical for accurate

mean bicluster detection. From Table 2.2, we can see that HSSVD-O provides the best

overall performance, while HSSVD is close to the best; however, in practice, the oracle

rank is unknown. For this reason, HSSVD is clearly the best method and is the only

fully automated approach which delivers robust mean and variance detection in the

present of unknown heterogeneous residual variance among those considered.
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Table 2.2: Comparison of four methods in the simulation study. The Lmean and Lvar is
measuring the di�erence between the approximated signal and the true signal, and so
smaller is better. For the other measures of accuracy of bicluster detection, the larger
the better. The rows �BLK1� to �BLK5� represent the �biclustering detection rate� for
each bicluster.�-O� indicates that the oracle rank is provided.

HSSVD HSSVD-O FITSSVD-O LSHM-O

Lmean 0.013 (0.01) 0.013 (0.01) 0.081 (0.01) 0.019 (0.01)
Lvar 0.157 (0.03) 0.156 (0.03) NA NA
Sparsity 0.950 (0.04) 0.950 (0.03) 0.988 (0.02) 0.997 (0.01)
BLK1 (mean) 0.861 (0.10) 0.862 (0.10) 0.818 (0.08) 0.872 (0.08)
BLK2 (mean) 0.934 (0.18) 0.936 (0.17) 0.939 (0.18) 0.976 (0.01)
BLK3 (mean) 0.972 (0.10) 0.974 (0.10) 0.971 (0.11) 0.987 (0.01)
BLK5 (mean) 0.977 (0.11) 0.948 (0.11) 0.977 (0.11) 0.996 (0.01)
BLK3 (var) 0.977 (0.02) 0.977 (0.02) NA NA
BLK4 (var) 0.628 (0.25) 0.633 (0.24) NA NA

2.6 Properties of HSSVD

2.6.1 HSSVD as a denoising procedure

We study overlapped mean bicluster detection through a simulated example. The

plaid model is usually preferred to SVD based methods for overlapped mean bicluster

detection, although the plaid model (Lazzeroni and Owen 2002, Turner et al. 2005)

can be sensitive to variance heterogeneity. We want to show that our method as an

SVD based method is still useful for overlapped mean bicluster detection as a denois-

ing step. First, we represent the data in a 200 × 100 matrix. The elements in the

null cluster follow N(0, 12). At the same time, we have two overlapping biclusters with

their sizes both equal to 20 × 20. The elements in the two biclusters follow N(7, 22)

and N(−5, 32), respectively, and the overlapped block size is 10× 10. Hence, under the

additive assumption, the elements in the overlapped block follow N(2,
√
13

2
). Here,

we only focus on mean bicluster detection since this is the traditional purpose of bi-

clustering methods. For comparison, we could directly apply the plaid model or the

HSSVD method on the raw data to detect mean biclusters. Alternatively, we could
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�rst apply HSSVD to obtain a mean approximation of the raw data and then apply the

plaid model to the mean approximation to detect biclusters. We utilize the �BCPlaid�

function in the R package �biclust� (http://CRAN.R-project.org/package=biclust) as

the implementation of the plaid model (Lazzeroni and Owen 2002, Turner et al. 2005).

The graphical results are presented in Figure 2.5. The detected biclusters are highlight-

ed by a black frame. From Figure 2.5 (b), we see that although sparse singular value

decomposition is good at mean signal approximation for non-overlapping bi-clusters,

it cannot recover the true overlapped bicluster structure. Meanwhile, we can see that

after applying HSSVD, the plaid model (Figure 2.5 (c)) successfully picks out the un-

derlying true structure, while applying the plaid model alone (Figure 2.5 (a)) was not

successful. This result implies that for overlapped mean bicluster detection, the plaid

model is generally better, but when there is variance heterogeneity present, the HSSVD

can be quite helpful as a denoising process.

2.6.2 The necessity of the variance detection step in HSSVD

As we assume a low rank structure in both mean signal and variance signal, a natural

question to ask is whether such a structure can be approximated well by a higher-rank

matrix for the mean structure only. In other words, can we represent the variance

biclusters by using pseudo-mean biclusters. Our conclusion is that it is improper to

use mean biclusters for variance bicluster detection. Pseudo-mean biclusters cannot

recover the small variance biclusters at all, due to the natural shrinkage inherent in

sparse singular value decomposition methods. Further, we will show that pseudo-

mean biclusters can reveal some structure for the large variance biclusters, however

the approximation is rough. Consider the simulation data in Example 1 (see Figure 2.6

for graphical display).

Here, we can compare the bicluster detection results of FIT-SSVD (in Figure 2.7)
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Figure 2.5: Overlapped bicluster detection by the plaid model and HSSVD. In panel
(a), we draw the original data and the plaid model detection result is highlighted with
a black frame. In panel (b), the HSSVD detection result is highlighted with a black
frame. In panel (c), we obtain the mean approximation by HSSVD �rst and then apply
the plaid model detection result onto the mean approximation data.

Figure 2.6: The image of raw data for Example 1. There are �ve biclusters. Red is for
positive values and green is for negative values.
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with input rank equal to 6 versus HSSVD with an estimated rank (in Figure 2.9).

We can see that there are four mean biclusters from Figure 2.6. As the input rank is

greater than the mean bicluster number, there will be several pseudo-mean biclusters

(layer 5 and layer 6) in the FIT-SSVD result. For HSSVD, there will be both mean

biclusters and variance biclusters. In Figure 2.7, it appears that the pseudo mean

biclusters can detect part of the variance biclusters, however, this is because we know

the �correct� order to display the graph. However, in practice, we would not know this

order. Moreover, we can see that the pseudo-mean structure can be confounded with

a type of true bicluster.

Figure 2.7: FIT-SSVD for Example 1. Each layer represents one bicluster. Layer 5 and
6 are pseudo mean biclusters.

For example, let X0 = uvT + Φ ,u = (rep(1, 50), rep(1, 50), rep(0, 900)), v =

(rep(1, 5), rep(−1, 5), rep(0, 90)), where rep(1, 5) = (1, 1, 1, 1, 1) and Φ is a 1000 ma-

trix with entries follow i.i.d N(0,1). There is only a mean bicluster for X0, and we can

apply FIT-SSVD with input rank = 1. When we compare the mean bicluster result
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for X0 and the pseudo-mean biclusters, layer 5 or layer 6 for Example 1, graphically,

the resulting heatmaps, given in Figure 2.8 (rows and columns are reordered by hier-

archical clustering), are very similar. This indicates that pseudo-mean biclusters can

be confounded with certain true mean biclusters. This issue is probably even more

complicated for real data settings.

Figure 2.8: Heatmaps of two pseudo mean biclusters and a true mean bicluster. The
rows and columns are reorders by hieratical clustering. Only the �rst 200 rows (original
order) are shown for better display (the remaining rows are all 0).

In contrast, HSSVD can provide more accurate large variance bicluster detection

(layer 1 for variance) and small variance bicluster detection (layer 2 for variance), as

shown in Figure 2.9. Lastly, we want to emphasize that the BCV method (Owen and

Perry 2009) can be quite helpful for preventing the type of pseudo-mean detection

which can weaken variance detection in the latter steps.

2.7 Conclusion and Discussion

In this chapter, we introduced HSSVD, a statistical framework and its implementa-

tion to detect biclusters with potentially heterogeneous variances. Compared to existing

methods, HSSVD is both scale invariant and rotation invariant (as the quantity for scal-

ing is the same for all matrix entries and does not vary by row or column). HSSVD also
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Figure 2.9: HSSVD results for Example 1. Each layer represents one bicluster. There
are four mean biclusters and two variance biclusters.

has the advantage of working on the log scale in estimating the variance components:

the log scale makes detection of low variance (less than 1) biclusters possible, and any

traditional sparse singular value decomposition method can be naturally utilized in our

variance detection steps. The new method con�rms the existence of methylation hy-

pervariability in the methylation data example, something which cannot be done with

other existing biclustering methods. Although we use the FIT-SSVD method in our im-

plementation, other low rank matrix approximation methods are applicable. Moreover,

the software implementing our proposed approach was computationally comparable to

the other approaches we evaluated.

A potential shortcoming of SVD based methods is their inability to detect over-

lapping biclusters. We show that our method can serve as a denoising process for

overlapping bicluster detection. In particular, we can �rst apply the HSSVD method
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on the raw data to obtain the mean approximation. Then we can apply a suitable ap-

proach, such as the widely used plaid model (Lazzeroni and Owen 2002, Turner et al.

2005), on the mean approximation to detect overlapping biclusters. This combined

procedure improves on the performance of the plaid model when the overlapping bi-

clusters have heterogeneous variance. Hence our method remains useful in the present

of overlapping biclusters.

Another potential issue for HSSVD is the question of whether a low rank mean ap-

proximation plus a low rank variance approximation could be alternatively represented

by a higher rank mean approximation. In another words, is it possible to detect variance

biclusters through mean biclusters only, even though the mean clusters which form the

variance clusters would be pseudo-mean clusters. Our conclusion is that the variance

detection step in HSSVD is necessary for the following two reasons: First, pseudo-mean

biclusters are completely unable to capture small variance biclusters. Second, although

pseudo-mean biclusters are able to capture some structure from large variance biclus-

ters, such structure is much less accurate than that provided by HSSVD, and can be

confounded with one or more true mean biclusters.

Although HSSVD works well in practice, there are a number of open questions that

are important to address in future studies. For example, it would be worthwhile to

modify the method to allow non-negative matrix approximations in order to better

handle count data such as next-generation sequencing data (RNA-seq). Additionally,

the ability to incorporate data from multiple �omic� platforms is becoming increasingly

important in current biomedical research, and it would be useful to extend this work

to simultaneous analysis of methylation, gene expression, and miRNA data.
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CHAPTER3: COMPOSITE LARGE MARGIN CLASSIFIERS WITH
LATENT SUBCLASSES

High dimensional classi�cation problems are prevalent in a wide range of modern

scienti�c applications. Despite a large number of candidate classi�cation techniques

available to use, practitioners often face a dilemma of the choice between linear and gen-

eral nonlinear classi�ers. Speci�cally, simple linear classi�ers have good interpretability,

but may have limitations in handling data with complex structures. In contrast, gen-

eral nonlinear kernel classi�ers are more �exible but may lose interpretability and have

higher tendency for over�tting. In this chapter, we consider data with potential latent

subgroups in the classes of interest. We propose a new group of methods, namely the

Composite Large Margin Classi�er (CLM) to address the issue of classi�cation with

latent subclasses. The CLM aims to �nd three linear functions simultaneously: one

linear function to split the data into two parts, with each part being classi�ed by a

di�erent linear classi�er. Our method has comparable prediction accuracy to a gen-

eral nonlinear kernel classi�er without over�tting the training data, at the same time

maintaining the interpretability of traditional linear classi�ers. We demonstrate the

competitive performance of the CLM through comparisons with several existing linear

and nonlinear classi�ers and through the analysis of Monte Carlo experiments. Finally,

applications to Alzheimer's disease classi�cation and cancer subtype prediction further

demonstrate the usefulness of our proposed CLM.
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3.1 Introduction

In biomedical research, it can be useful to discriminate the patients with high-risk

of disease from the patients with low-risk of disease using biomarkers. Obtaining accu-

rate prediction is very important, as the follow-up treatment plan can largely depend

on such diagnosis. For example, Alzheimer's disease (AD) is one of the most com-

mon mental diseases which causes memory, thinking and behavior problems. Between

normal aging and Alzheimer's disease, there exists a transitional stage, amnestic mid

cognitive impairment (MCI). Although AD cannot be cured currently, proper early

therapy can slow down the progress and alleviate symptoms. Thus, it is vitally im-

portant to accurately diagnose AD, especially for MCI. The classi�cation task can be

achieved by building classi�ers and the biomarkers can come from various resources

such as microarray or imaging data (fMRI). There are a large number of classi�ers

available in the literature, for example linear discriminative analysis (LDA) (Fisher

1936), Support Vector Machines (SVM) (Vapnik 1995), Distance Weighted Discrimi-

nation (DWD) (Marron et al. 2007), Random Forests (RF) (Breiman 2001), and the

Large Margin Uni�ed Machines (LUM) (Liu et al. 2011). Hastie et al. (2009) provide a

comprehensive review of many machine learning techniques mentioned above. Among

various classi�cation tools, linear classi�ers are popular especially for high dimensional

problems, due to their simplicity and good interpretability. While widely used, linear

classi�ers can be improved upon for an important collection of problems (Huang et al.

2012). The problem we are interested in is classi�cation in the presence of latent sub-

groups. In the AD example, patients with MCI at the �rst clinical visit potentially

contain latent subgroups with di�erent rates of disease progression. Another impor-

tant biological application area is in cancer classi�cation. It is known that cancer can

be very heterogeneous and many types of cancer have distinct subtypes (Soslow 2008,

Verhaak et al. 2010). Accurate classi�cation of cancer subtypes can be very important
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since di�erent cancer subtypes can have heterogenous response to treatment (Liu et al.

2010, Lehmann et al. 2011). In general, complex examples with data heterogeneity

such as AD and cancer subtype classi�cation can pose challenges for linear classi�ers

because of their insu�cient �exibility for capturing potential data heterogeneity.

To further illustrate the problem of interest, we show a simple two dimensional toy

example in Figure 3.1. This is a binary classi�cation problem with X1 and X2 as pre-

dictors, and two classes are labeled in grey plus and black cross signs. As we can see

from the plots, each class has two latent subclasses. A linear SVM model is �tted to

the data and its decision boundary is shown in the solid line in Figure 3.1(a). Note

that although linear methods for classi�cation are not able to e�ectively capture the

di�erence between classes in this example, the classi�cation task becomes much easier

if we divide the data by the line X2 = 0. In practice, when in-class heterogeneity is ig-

nored, traditional procedure may have poor classi�cation performance. This motivates

us to introduce the idea of a splitting function to divide the data into two parts so that

we can handle the classi�cation task with two separate linear classi�ers.

As brie�y mentioned earlier, despite good properties such as simplicity and inter-

pretability of linear classi�ers, they can be insu�cient for problems with nonlinear

decision boundaries. Using the kernel trick with a nonlinear kernel function (see Hastie

et al. (2009) for details), one can extend a linear large margin classi�er to a non-linear

classi�er to gain more �exible classi�cation boundaries. However, the corresponding

functional space can be much larger and consequently control of over�tting becomes

more challenging. Although regularization is commonly used to control over�tting,

�nding the optimal tuning parameters can be di�cult for nonlinear kernel classi�ers, e-

specially for high dimensional data. Furthermore, compared to simple linear classi�ers,

results from non-linear classi�ers are more di�cult to interpret in general. As shown in

Figure 3.1, two non-linear classi�ers, quadratic (panel b) and Gaussian (panel c) kernel
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SVMs work reasonably well. However, their decision boundaries are quite complicat-

ed. Moreover, we will show in Section 3.4 that the performance of kernel SVMs can

deteriorate rapidly when the dimension of covariates increases.

To solve the classi�cation problem for complex structures, we propose a new group

of methods, namely the Composite Large Margin Classi�er (CLM). The CLM aims to

�nd three linear functions simultaneously: one linear function to split the data into

two parts, with each part being classi�ed by a di�erent linear classi�er. We denote

these three linear functions as f1(x), f2(x), f3(x), respectively. Because of the split

function, the CLM method provides a natural solution to the classi�cation problem

with latent subgroups. In Figure 3.1(d), we plot the decision boundary of the CLM

with f̂1(x) = 0 using a solid line, and both f̂2(x) = 0 and f̂3(x) = 0 using dashed lines.

The function f̂1(x) helps capture the hidden structure and divide the data into two

parts, one part with f̂1(x) > 0 and the other part with f̂1(x) < 0. With this division,

we can use two separate linear classi�ers on each part. In particular, we predict the

label ŷ = sign(f̂2(x)) for the part on the top, and ŷ = sign(f̂3(x)) for the part on the

bottom. Thus, our CLM method makes use of three linear functions simultaneously to

classify the data and capture the latent subclasses.

The CLM method has some advantages over both traditional linear and nonlinear

methods. Compared to linear methods, the CLM is more �exible for classifying data

with complex structure. On the other hand, unlike general nonlinear methods, the

CLM only depends on the linear combination of the features and thus retains most of

the simplicity and interpretability of linear methods. Furthermore, the functional space

of interest for the CLM can be much smaller than is the case for general kernel methods.

As a consequence of its relative simplicity, the CLM can perform better than the kernel

based method in high dimensions, as we will show below in Section 3.4. In addition, the

splitting function for the CLM has a natural latent variable interpretation, and it can
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(d) CLM solution: Toy Example
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Figure 3.1: Illustration of a two dimensional toy example. Grey (+ and ×) represents the

positive class and black (∇ and △) represents the negative class. In panels (a), (b) and (c),

the decision boundaries are drawn with wide grey lines. In panel (d) for the CLM method, the

wide grey line splits the data into two parts and in each part the dashed line is the separating

hyperplane for the corresponding classi�er.

be viewed as a change-plane problem � an extension of the well studied change-point

problem (Carlstein et al. 1994) and the recent change-line problem (Kang 2011). The

latent variable identi�ed by our methods in the AD and cancer data examples turn out

to be scienti�cally meaningful and can be used for disease prognosis predication and

treatment selection.
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Although our CLM method is motivated by large margin classi�ers, the funda-

mental concept is more general and can be applied to many other linear classi�ers as

well. Furthermore, besides classi�cation, we can also generalize the CLM method to

regression. In this article, we only focus on the implementation of the LUM loss and

the logistic loss for classi�cation and use them as examples to illustrate how the CLM

method works.

The rest of chapter is organized as follows. In Section 3.2.1, we brie�y review

binary classi�cation methods. The CLM framework is introduced in Section 3.2.2 and

the properties of the CLM and its connection to existing methods are discussed in

Section 3.2.3. In Section 3.3, we present a principal component analysis (PCA) based

computational strategy for non-sparse solutions and a re�tting procedure for sparse

solutions. We demonstrate the e�ectiveness of our method with simulated data and the

apply the method to the analysis of Alzheimer's disease and cancer data in Sections 3.4

and 3.6, respectively. Concluding comments are given in Section 3.7.

3.2 Methodology

We �rst review binary classi�cation and large margin classi�ers in Section 3.2.1.

Due to the limitation of existing large margin classi�ers for classi�cation with latent

subclasses, we propose the Composite Large Margin (CLM) classi�er in Section 3.2.2.

Furthermore, we discuss the properties of the CLM with two particular loss functions,

the LUM and logistic losses, in Section 3.2.3.

3.2.1 Review of Binary Classi�cation

Suppose we have a training data set {(xi, yi); i = 1, 2, . . . n} available. The class

label y ∈ {±1}, and the predictor x is a p-dimensional vector. Our goal is to build a

classi�er based on the training data for prediction of data points with x only. For a
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given binary classi�cation problem, there are many techniques available in the literature

and our focus in this chapter is on large margin classi�ers (Hastie et al. 2009). Given

the training data set, a large margin classi�er is trained to obtain f(x) : ℜk → ℜ,

such that the predicted class label is assigned using the sign of f(x). Note that we

correctly predict the class label of x when yf(x) is positive. The term yf(x) is known

as the functional margin. In general, the objective function of a large margin classi�er

can be written in the regularization framework of a loss plus a penalty. The loss is a

measure of the goodness of �t between the model and data, and the penalty controls

the complexity of the model to avoid over�tting. Speci�cally, the optimization problem

of a large margin classi�er can be expressed as follows:

min
f∈F

J(f) + λ
n∑

i=1

L(yif(xi)),

where F is the function class that all candidate solution functions belong to, J(f) is

a regularization term penalizing the complexity of f , L(·) is the loss function, and λ

is a tuning parameter balancing the two terms. When the function f(x) is linear with

the form wT x, a common choice of J(f) is the ℓ2 penalty, i.e. ∥w∥22. A natural loss

function is the so called 0 − 1 loss with value 1 if yf(x) ≤ 0, and 0 otherwise, i.e.

L0−1(yf(x)) = I{yf(x) ≤ 0}. However, the 0 − 1 loss is di�cult for optimization

due to its nonconvexity. Consequently, various convex surrogate loss functions have

been proposed in the literature to alleviate the computational problem (Zhang 2004).

For example, SVM uses hinge loss, penalized logistic regression uses logistic loss, and

AdaBoost uses exponential loss (Friedman et al. 2000).

Recently, Liu et al. (2011) proposed a uni�ed large margin machine (LUM) with

a family of convex loss functions which contains DWD and SVM as special cases.

The LUM loss function is di�erentiable everywhere, hence it has some computational

advantage. As an important component of our proposed method, we will describe the
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LUM loss function in detail. The LUM loss is indexed by two parameters a and c with

the following explicit form:

V (u) =


1− u if u ≤ c

1+c
,

1
1+c

( a
(1+c)u−c+a

)a if u > c
1+c

.

(3.1)

The left piece of V (u) with u ≤ c
1+c

is the same as the hinge loss used in the SVM.

The right piece is a convex curve whose shape is controlled by c with rate of decay

controlled by a. With a > 0 and c → ∞, LUM is equivalent to standard SVM. With

a → ∞ and �xed c, LUM loss is a hybrid of SVM and AdaBoost.

The techniques discussed above work well in many traditional classi�cation prob-

lems. For large margin classi�ers, it is common to use linear learning. One advantage of

linear learning is its simple interpretation. Once the function f(x) = xT w is obtained,

one can examine the importance of each dimension in x through its corresponding coef-

�cients w. When a linear function is insu�cient, one can map the original linear space

to a higher dimensional nonlinear space using kernel methods (Hastie et al. 2009). De-

spite its �exibility, it is typically more di�cult to interpret. Our goal is to propose a

class of classi�ers which maintain su�cient �exibility to incorporate latent subclasses

without losing the interpretability of linear classi�ers.

3.2.2 The Composite Large Margin (CLM) framework

In this section, we describe the CLM framework for binary classi�cation with latent

subclasses in detail. We assume there does not exist a global single linear classi�er

that can well separate the positive and the negative classes due to the existence of

heterogenous subclasses. However, the data can be divided by a simple function (e.g.

a linear function) into two parts, and each part can be classi�ed relatively easily.

Next, we describe our proposed CLM method. To that end, we �rst de�ne the
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generalized 0 − 1 latent classi�cation loss as W0−1(y,x) = I(f1(x) ≤ 0)I(yf2(x) ≤

0) + I(f1(x) > 0)I(yf3(x) ≤ 0), where f1(x) is the splitting function, f2(x) is the

classi�er for data points with f1(x) ≤ 0, and f3(x) is the classi�er for data points with

f1(x) > 0.

The generalized 0−1 latent classi�cation loss is the composition of two 0−1 standard

binary classi�cation loss functions with weights I(f1(x) ≤ 0) and I(f1(x) > 0). Similar

to the standard 0 − 1 loss, it is hard to optimize the generalized 0 − 1 loss due to

its discontinuity. In practice, a surrogate loss function is often used instead. For

illustration, we use logistic and LUM losses as surrogate loss functions for the indicators

I(yf2(x) ≤ 0) and I(yf3(x) ≤ 0). For weight functions I(f1(x) ≤ 0) and I(f1(x) > 0),

we use G(−f1(x)) and G(f1(x)) as their corresponding smooth approximations, where

G(u) is de�ned as:

G(u) =



1 if u ≥ ϵ,

1− 0.5(1− u/ϵ)2 0 ≤ u ≤ ϵ

0.5(1 + u/ϵ)2 −ϵ ≤ u ≤ 0

0 u ≤ −ϵ.

(3.2)

ϵ is tuning parameter, but we can set it to be small. Note that G(u)+G(−u) = 1, also

as ϵ → 0, G(u) converges to I(u > 0) pointwisely. Note that this choice is not unique,

and there are many other possible approximations such as sigmoid functions.

The loss functions Wlog and Wlum for the latent classi�cation problem are de�ned

as follows:

Wlum(yi,xi) = αiV
(
yif2(xi)

)
+ (1− αi)V

(
yif3(xi)

)
, (3.3)

Wlog(yi,xi) = αi log(1 + e−yif2(xi)) + (1− αi) log(1 + e−yif3(xi)), (3.4)
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where αi = G(−f1(xi)). Note that the Wlog and Wlum losses are the compositions of

two logistic and LUM loss functions, respectively. The αi and 1 − αi are the weights.

Furthermore, We assume that f1, f2, f3 are all linear, i.e. fj(x) = xwT
j + bj, j = 1, 2, 3,

to maintain the interpretability of linear classi�ers.

With the loss function L(y,x) de�ned, we can express the optimization problem

for CLM as minw,bQ(w,b|Y,X) = 1
2

∑3
j=1 ||wj ||22 + λ

∑n
i=1 L(yi,xi), where λ is the

tuning parameter, and (w,b) = (w1,w2,w3, b1, b2, b3). We will discuss the algorithm

for obtaining the CLM solution in Section 3.3. Next, we brie�y describe the properties

of the CLM method.

3.2.3 Connections with existing literature

To handle the data heterogeneity and identify the potential subtypes, there are two

main categories of methods in the literature. One is tree-based methods (Breiman et al.

1984), and the other is likelihood based mixture models (Fraley and Raftery 2002).

For tree-based methods, several techniques (Kim and Loh 2001, Loh 2010) were pro-

posed to overcome the potential problems of splitting variables with only local e�ects.

For example, GUIDE allows searching for linear splits using two variables at one time

when the marginal e�ects of both covariates are weak, while the pairwise interaction

e�ect is strong (Loh 2010). Both GUIDE and CLM can work well for certain problems

as illustrated in Section 3.4, while traditional tree-based methods cannot. Unlike the

tree-based GUIDE, CLM is a composite large margin classi�er motivated by latent

variables. Furthermore, with the use of three linear functions, the interpretation of

CLM is relatively simple. Lastly, our numerical examples indicate that CLM is more

competitive for high dimensional data.

The likelihood based mixture models assume that the data are coming from several

mixture components (with the number of components known) and the model usually
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has a hierarchical structure. The hierarchical mixture of experts (HME) introduced by

Jordan and Jacobs (1994) is one such example described as follows. Assume that there

are two layers and four components. Then, the parametric likelihood of Y given X can

be written as:

P (Y |X, θ) =
2∑

i=1

g(i)
2∑

j=1

g(j|i)µI(y=1)
ij (1− µij)

I(y=−1),

where g(i) = exp(qi(x, θ))/(exp(q1(x, θ)) + exp(q2(x, θ))),

g(j|i) = exp(qj|i(x))/(exp(q1|i(x, θ)) + exp(q2|i(x, θ))), µij = E(I(Y = 1)|i, j,X, θ).

The g(i) and g(j|i) are the proportions for the four components, and µij is the model

for a given component. The task is to calculate the MLE for θ, and techniques such

as the EM algorithm can be employed. If we consider a speci�c form of CLM without

the penalty term, i.e. we use logistic loss function for f2(x) and f3(x), and approx-

imate I(f1(x) > 0) with exp(f1(x))/(exp(f1(x)) + exp(f1(−x))), then the one layer

HME model has the same objective function as that of CLM. Despite the interesting

connection, the motivations of CLM and HME are di�erent. In particular, the CLM

method is motivated from the perspective of latent subclasses and is a generalization of

change-point models to the change-plane, while the HME is a likelihood based mixture

model. When making a decision, CLM can be viewed as a �hard� classi�er in the sense

that it targets directly on estimating the decision boundary of the latent classi�cation

problem represented by I(f1(x) > 0). In contrast, HME is similar to a �soft� classi�er

which �rst estimates the conditional class probability and then converts the probability

into the decision. More details about �hard� and �soft� classi�ers can be found in Wahba

(2002). In addition, the CLM is broader than likelihood-based methods and allows for

more general loss functions. In particular, a general loss function for CLM may provide
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better classi�cation performance for complex problems as shown in Section 3.4. We

show that CLM with LUM delivers smaller classi�cation errors than CLM with logistic

loss in both of our application settings studied in Section 5.

3.3 Computational Algorithms for CLM

In this section, we discuss implementation of CLM. In particular, we describe a

gradient based algorithm in Section 3.3.1. To tackle the di�culty of high dimensional

problems, a PCA based algorithm is given in Section 3.3.2. Based on this algorithm,

we further describe a re�tting procedure to achieve variable selection in Section 3.3.3.

3.3.1 Gradient based algorithm for the CLM

To describe the algorithm, we use CLM with logistic loss as an example. The

corresponding objective function can be written as:

Qλ
1(w,b) =

1

2

3∑
j=1

∥ wj ∥22 +λ
n∑

i=1

[αi log(1+e−yif2(xi))+(1−αi) log(1+e−yif3(xi))], (3.5)

where λ, αi and fj(x) are as de�ned in (3.4). Since the objective function is continuously

di�erentiable, many general optimization algorithms such as the conjugate gradient

method or the quasi-Newton method (Nocedal and Wright 1999) are applicable.

To apply these algorithms, we �rst need to derive the corresponding gradient func-

tions. Once the gradient is given, we can iteratively update the solution. For example,

for the gradient descent algorithm, the (t+1)-th step solution (wt+1,bt+1) based on the

t-th step solution (wt+1,bt+1) is given bywt+1
i = wt

i −γ
∂Qλ

1 (w
t,bt)

∂wi
, bt+1

i = bti−γ
∂Qλ

1 (w
t,bt)

∂bi
,

i = 1 . . . 3, where γ is a small positive number known as the learning rate. Similar cal-

culations can be done for other loss functions such as the Wlum loss in (3.3).
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3.3.2 PCA algorithm for the CLM

The direct optimization strategy in Section 3.3.1 works well for low or moderate-size

dimensional problems. However, direct optimization encounters signi�cant challenges

for high dimensional data since the computational burden of most general optimiza-

tion methods increases dramatically with dimension. To alleviate the severity of this

problem, we incorporate the principal component idea, i.e., we predict the class label

using the CLM method by a reduced rank design matrix instead of the original design

matrix. The reduced rank matrix comprises the �rst k principal component scores of

the original design matrix with k < d. The steps of this PCA-based algorithm for CLM

are given in Algorithm 1 below.

We now describe the algorithm in detail. Denote the design matrix as X =

[x1, . . . ,xn]
T = [X1, . . . ,Xd], which is an n× d matrix. The eigen-decomposition of X

can be written as XT X = PΛPT , where the P is a matrix with orthonormal columns

([P1, ....,Pd]) and Λ is the diagonal matrix with the eigenvalues as the diagonal ele-

ments. Furthermore, we de�ne Pk = [P1, ....,Pk], and Xk = XPk = [xk
1, . . . ,x

k
n]

T .

Our idea is to work with the k-dimensional space spanned by the �rst k principal com-

ponent dimensions. In particular, instead of working with d-dimensional x, we work

with k-dimensional xk. If we replace the corresponding elements in Qλ
1 in (3.5) with

the new linear functions f̃j(xi) = xk
i w̃

T
j + b̃j (j = 1, 2, 3), then we can obtain a new

objective function Q̃k,λ
1 :

Q̃k,λ
1 (w̃, b̃) =

1

2

3∑
j=1

∥ w̃j ∥22 +λ

n∑
i=1

Wlog(yi,x
k
i ). (3.6)

We minimize Q̃k,λ
1 instead of Qλ

1 and get the minimizer (w̃∗, b̃∗). Consequently, we

can calculate the solution for the original problem (w∗,b∗) by setting w∗ = w̃∗[Pk]T ,

b∗ = b̃∗. This strategy reduces the dimension of the problem from 3d to 3k. If k ≪ d,
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then we can handle high dimensional data relatively e�ciently.

We would like to point out that although reducing the dimension greatly helps the

computational e�ciency, we may lose important classi�cation information. Thus the

choice of k is very important. We assume that the important classi�cation informa-

tion is mostly contained in the space spanned by the �rst k PC dimensions. Under

this assumption, �nding the right k helps to eliminate noise dimensions and improve

computational e�ciency as well as accuracy of the resulting classi�er. Therefore, we

need to measure the information of Y contained in Xk for various k. The traditional

Pearson correlation is not appropriate for this purpose, since it restricts the two random

vectors to be one dimensional and only measures the linear dependence. To address

this problem, we make use of a recently proposed �distance correlation� (dcor) (Székely

et al. 2008) for choosing the number of leading principal components k. The dcor mea-

sures arbitrary types of dependence between two random vectors. In particular, the

distance covariance (dcov) between two random vectors u and v with �nite �rst mo-

ments is written as dcov(u,v) =
√´

Rdu+dv ∥ϕu,v(t, s)− ϕu(t)ϕv(s)∥2w(t, s) dt ds, where

ϕ(.) represents the characteristic function, du and dv are the dimensions of u and v,

and w(t, s) is a properly de�ned weight function. The distance correlation between

u and v is de�ned as dcor(u,v) = dcov(u,v)/
√
dcov(u,u)dcov(v,v). Unlike Pearson

correlation, dcor is 0 if and only if the two random vectors are independent and it does

not restrict the dimensions of the two random vectors (Székely et al. 2008). From its

properties, the dcor is feasible and robust for screening information for classi�cation

problems (Li et al. 2012). We measure the information of Y contained in the leading

k-PCs of X as dcor(Y,Xk). Consequently, the optimal kopt = argmax
k=1,2,...,d

dcor(Y,Xk). In

practice, we �nd that using Xkopt as the predictor may not always yield the lowest

classi�cation error, so in the implementation, we treat k as a tuning parameter from

the set {kopt, kopt + 1, kopt + 2}. This strategy appears to work well in practice.
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PCA algorithm for the CLM method

(0) Initialization: Denote the training data set as {Y1,X} and the tuning data set

{Y2,U}. Let kopt = argmax
k=1,2,...,d

dcor(Y1,X
k).

(1) Model Training: For �xed k and λ, solve (w̃k,λ, b̃k,λ) = argmin
w̃,b̃

Qk,λ
1 (w̃, b̃|Y1,X

k).

(2) Solution Reconstruction: Calculate wk,λ = w̃k,λ[Pk]T ,bk,λ = b̃k,λ.

(3) Prediction: The tuning error ξ(k, λ) is the classi�cation error on predicting Y2

using U by the model from Step 2.

(4) Iteration: Repeat Steps 1−3 for all k ∈ {kopt, kopt+1, kopt+2} and λ ∈ {λ1, . . . , λn}.

(5) Output: The �nal solution (w∗,b∗) is (wk,λ,bk,λ) from the model with the lowest

ξ(k, λ). For the choice of λ, we use a warm-start strategy such that for the sequence of

model �ttings from λ1 to λn (λ1 > λ2 > . . . > λn), the solution based on λi is provided

as the starting point for λi+1. This approach helps to improve the convergence of the

algorithm.

3.3.3 Re�tting algorithm for sparse CLM

Variable selection can be important for the analysis of high dimensional data. The

PCA algorithm we proposed above does not have variable selection capability due to

the choice of the ℓ2 penalty and the solution reconstruction step. As Pk is full rank,

w = w̃[Pk]T is not sparse in general, even if w̃ is. Consequently, we can not achieve

sparsity on w by simply replacing the ℓ2 penalty with the lasso penalty in Q̃k,λ
1 in (3.6).

To achieve variable selection, we propose a re�tting procedure. We �rst identify

the informative variables from the output of the PCA algorithm with all variables as

predictors. Then, we re�t the PCA algorithm using the informative variables only. The

key step is to identify the informative variables. For this purpose, we �t three penalized

logistic regression (PLR) models with the elastic net penalty (Zou and Hastie 2005, Park

and Hastie 2007, Friedman et al. 2010) separately for f1, f2 and f3. The details are
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given in Algorithm 2:

Re�tting algorithm for the CLM method

(0) Initialization: Denote the training data set as {Y,X} and the solution from Al-

gorithm 1 as f̂1,f̂2, f̂3. Let PLR(Y,X) be the solution of the PLR �tting, and let the

initial value of the active variable index set be A = {1, 2, . . . , p}.

(1) Approximate f1: Let Zi = sign(f̂1(x
A
i )). Then obtain (ws

1, b
s
1) = PLR(Z,XA),

where �s� represents the sparse solution.

(2) Approximate f2 and f3: The samples in {Y,XA} are divided into Set 1 and Set

2 by the sign of f s
1 (X). Using Set 1 data, we have (ws

2, b
s
2) = PLR(YSet1,X

A
Set1), and

similarly (ws
3, b

s
3) = PLR(YSet2,X

A
Set2).

(3) Select active variables: Let A = I1 ∪ I2 ∪ I3, where I1 = {j : ws
1j ̸= 0}, I2 = {j :

ws
2j ̸= 0}, I3 = {j : ws

3j ̸= 0}.

(4) Re�t: Re�t Algorithm 1 using XA as predictors.

(5) Iteration: Repeat Steps 1− 4 until the active variable index set A stabilizes.

(6) Output: The �nal solution is obtained from the most recent Step 4. Based on our

experience, the algorithm converges within several steps of re�tting. In our simulation

studies and application settings, we observe that the re�tting procedure performs well

overall. Depending on the computational budget, one may also couple our algorithm

with the stability selection procedure proposed by Meinshausen and Bühlmann (2010)

to select the active variables.

3.4 Simulation Studies

We now investigate the performance of the proposed methods on two synthetic

examples. We simulate both low- and high-dimensional situations. The training and

testing data are generated from the same distributions with sample sizes 200 and 20000,

respectively. For each example, there are several scenarios with di�erent Bayes errors
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(the error rate of the optimal Bayes rule) and di�erent numbers of noise variables.

In both examples, the data contain four clusters of equal sizes. To re�ect the latent

subclass structure, two clusters are �+� class and the others are �−� class. We compare

our CLM methods with linear SVM, quadratic and Gaussian kernel SVM, Random

Forest, HME and ℓ1−penalized logistic regression. In addition, we also include an

enhanced tree-based method GUIDE (Loh 2010) for comparison. We select tuning

parameters for all methods via �ve-fold cross validation.

Example 1 (Twisted Case): The four clusters are sampled from four bi-variate

normal distributions with corresponding means (µ, µ) and (−µ,−µ) for the �+� class,

(µ,−µ) and (−µ, µ) for the �−� class, and the identity covariance matrix. In addition to

the two informative variables, we generate random noise variables from N(0, 0.52). We

present the scenarios with µ = 2.24 or 1.2, where larger µ makes the classi�cation task

easier with smaller Bayes error. We also compare the performance of di�erent methods

on the scenarios with the same µ but di�erent numbers of noise variables. Note that

although the Bayes error only depends on µ in our example, the classi�cation problem

becomes more challenging when more noise variables are added. The scatter plot for

the no noise variables scenario (µ = 2.24) with the CLM solution boundary is shown

in Figure 3.2(a).

Example 2 (Parallel Case): The four clusters are sampled from four bi-variate

normal distributions whose means are (µ, 0), (−µ, 0) for the �+� class, and (0, 0), (2µ, 0)

for the �−� class. The covariance matrix is Σ = 0.6I2×2 + 0.4J2×2, where I is the

identity matrix, J is a matrix with all elements equal to 1. We set µ = 3.90 or 2 and

the additional random noise variables follow i.i.d N(0, 0.52). As in Example 1, a similar

scatter plot (µ = 3.90, no noise variables) is shown in Figure 3.2(b), where the four

clusters are parallel to each other. The testing errors of the CLM and other methods
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in both examples are reported in Table 3.1.

Table 3.1: Average testing errors in the simulation data with standard deviations in
parentheses

Twisted Case

Bayes Error (ε) µ = 2.24, ε = 0.025 µ = 1.2, ε = 0.204

Dimension p = 2 p = 100 p = 1000 p = 2 p = 100 p = 1000

LSVM .363 (.073) .499 (.007) .499 (.006) .444 (.034) .499 (.007) .499 (.007)

KSVM(quadratic) .035 (.006) .040 (.008) .072 (.020) .221 (.010) .270 (.012) .390 (.024)

KSVM(Gaussian) .032 (.004) .120 (.011) .454 (.004) .232 (.010) .409 (.012) .496 (.002)

Random Forest .033 (.004) .491 (.004) .500 (.001) .231 (.012) .495 (.003) .500 (.001)

PLR .500 (.001) .500 (.001) .500 (.002) .500 (.002) .500 (.001) .500 (.002)

GUIDE .031 (.003) .039 (.020) .496 (.004) .220 (.008) .308 (.021) .498 (.002)

HME .034 (.004) .042 (.018) .091 (.024) .220 (.019) .254 (.024) .332 (.036)

CLMlog .028 (.002) .028 (.003) .033 (.003) .218 (.009) .219 (.008) .251 (.011)

CLMlum .028 (.002) .029 (.003) .033 (.003) .215 (.006) .220 (.008) .249 (.009)

CLMlog Sparse .028 (.002) .029 (.003) .030 (.004) .218 (.009) .220 (.010) .221 (.011)

CLMlum Sparse .028 (.002) .028 (.003) .028 (.003) .215 (.006) .219 (.009) .220 (.011)

Parallel Case

Bayes Error(ε) µ = 3.9, ε = 0.024 µ = 2, ε = 0.206

Dimension p = 2 p = 100 p = 1000 p = 2 p = 100 p = 1000

LSVM .487 (.006) .428 (.013) .382 (.004) .423 (.008) .437 (.013) .397 (.007)

KSVM(quadratic) .377 (.048) .435 (.013) .342 (.016) .378 (.018) .421 (.008) .395 (.013)

KSVM(Gaussian) .035 (.004) .258 (.010) .385 (.003) .286 (.029) .401 (.008) .380 (.003)

Random Forest .040 (.006) .289 (.065) .333 (.082) .259 (.041) .372 (.034) .415 (.051)

PLR .332 (.012) .352 (.025) .405 (.040) .378 (.027) .401 (.032) .405 (.032)

GUIDE .042 (.003) .047 (.006) .052 (.006) .238 (.009) .281 (.027) .304 (.030)

HME .055 (.004) .063 (.007) .072 (.012) .236 (.012) .284 (.032) .310 (.033)

CLMlog .032 (.003) .032 (.003) .041 (.004) .233 (.025) .234 (.014) .260 (.013)

CLMlum .031 (.003) .032 (.004) .041 (.004) .225 (.014) .227 (.011) .257 (.010)

CLMlog Sparse .032 (.003) .034 (.005) .037 (.008) .233 (.025) .241 (.019) .260 (.024)

CLMlum Sparse .031 (.003) .034 (.003) .039 (.003) .225 (.014) .242 (.009) .263 (.012)

The results of Examples 1 and 2 show that our methods outperform the competitors

in most scenarios. Both examples have latent subclasses and our method is well suited

for these problems. The results show that our method is very e�ective in detecting the

true latent structure.
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In the twisted case, linear SVM and PLR methods fail to detect the pattern. Al-

though the quadratic kernel method works, it still has larger testing errors than the

CLM methods. In Example 1, we can divide the samples into four clusters by lines

X1 = 0 and X2 = 0. Since these lines can be approximated by a quadratic function,

the quadratic kernel can work well in the twisted case. For the parallel case, we need

three parallel lines to separate the four clusters, so methods such as quadratic kernel

SVM, linear SVM, and PLR do not perform well. For both examples, the Gaussian

kernel SVM and Random Forest work well under the low dimensional setting. When

the dimension is high, Random Forest fails to choose the right covariate to split among

all covariates. In addition, the Random Forest method will only split variables with

strong marginal e�ect, hence the performance of Random Forest is better in the parallel

case than in the twisted case. The model structure of Gaussian kernel SVM is �exible

enough to separate the two classes for low dimensions. However, its performance decays

rapidly in the high dimensional setting, possibly due to over�tting. In contrast, the

results of the CLM method under the high dimensional setting are still comparable to

those under the low dimensional setting. The CLM method uses linear classi�ers, and

hence it may alleviate the over�tting problem compared to kernel based methods.

When there are no latent subclasses or only one class has subclasses, we show our

method is still comparable to the competitors (see Section 3.5 for details). Note that

for the parallel example, X2 carries most information about Y . As a result, GUIDE

performs well for the parallel case in general due to its ability to generate unbiased

splits regardless of whether it searches for pairwise interactions or not. In the twisted

example, the marginal e�ect of X1 and X2 is weak, while the interaction e�ect is

strong. However, when the dimension is high, due to the high computational demand,

the implementation of GUIDE does not perform interaction tests for determining which

covariates to split. Hence, GUIDE does not perform very well in the twisted case with
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p = 1000. In both example, HME performs worse than CLM when the dimension

is high or the classi�cation is challenging, as the CLM can better identify the latent

variable (see Section 3.5). Overall, the performance of CLM is the best among all

methods.
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Figure 3.2: Plots for CLM methods in twisted and parallel cases. Black color (+ and
×) represents the positive class and grey color (∇ and △ represents the negative class.
Di�erent symbols in the same class indicates the latent subclasses. In both panels (a)
and (b), the boundary of f̂1 is shown as a solid line and the boundaries of f̂2 and f̂3
are given as dashed lines. In panels (c) and (d), we show projections onto the space
spanned by the �rst 2 principle components for the twisted and parallel cases. We
apply PCA on the data which contains the informative variables X1 and X2 as well as
an additional 998 noise variables. The four-clusters structure in the original space (as
observed in panels (a) and (b)) is preserved in the PC space.
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Note that we do not lose much information by applying the PCA strategy. This

can be seen by comparing the data projections in the space spanned by X1 and X2 in

Figures 3.2(a) and 3.2(b) with those in the space spanned by the �rst two principal

components in Figures 3.2(c) and 3.2(d). The structure of the four clusters is preserved

after applying the PCA strategy.

3.5 Additional Examples

Example 3: The two equal size clusters are sampled from two bi-variate normal

distributions with corresponding means (1, 1) for the �+� class, (−1, 1) for the �−� class,

and the identity covariance matrix. In addition to the two informative variables, we

generate random noise variables from N(0, 0.52). We report the results with p = 1000.

The training and testing sample sizes are 200 and 20000 respectively. In principle, one

linear function is su�cient for classifying the data. In this case, there does not exist

latent subclasses, and we show that the CLM methods still gives competitive perfor-

mance in Table 3.2.

Example 4: Three equal sized clusters are sampled from three bivariate normal

distributions with means (1, 1) and (−1,−1) for the �+� class, and (1,−1) for the �−�

class. The training and testing sample sizes are 150 and 20000 respectively. Other

settings for this example are the same as that of Example 1. The numerical results of

di�erent methods are presented in the right side of Table 3.2. In this example, only

the �+� class has latent subclasses. Similar to the results in Section 4, we can see that

sparse CLM with LUM loss and logistic loss deliver the lowest classi�cation errors.

In addition, we compare the performance of CLM and HME in terms of identifying

the latent structure. As both methods identify a linear function of X as surrogate for

46



Table 3.2: Average testing error rates in additional examples with standard errors in
parentheses

Methods Example 3: p = 1000 Example 4: p = 1000

LSVM .245 (.011) .302 (.011)
KSVM(quadratic) .341 (.008) .333 (.002)
KSVM(Gaussian) .220 (.008) .293 (.009)
Random Forest .299 (.114) .333 (.001)
PLR .161 (.003) .230 (.008)
GUIDE .166 (.005) .284 (.005)
HME .197 (.008) .264 (.025)
Wlog .191 (.007) .250 (.018)
Wlum .191 (.008) .246 (.017)
Wlog Sparse .166 (.008) .206 (.015)
Wlum Sparse .166 (.006) .207 (.015)

the latent class variable that can be used to separate the data into two parts, we can

calculate the angle between the oracle linear function and the estimated function by

CLM and HME. Consider the twisted case with p = 1000 and µ = 1.2 as an example

(results given in Table 3.3). In this setting, the oracle linear function is either X1 = 0

or X2 = 0. In each simulation, if the angle between X1 = 0 and the estimated line is

small, then we use X1 = 0 as the truth, otherwise we use X2 = 0. We also calculate the

classi�cation error for the latent class variable. We can see that CLM better identi�es

the latent structure.

Table 3.3: Average testing errors in angle and classi�cation with standard deviations
in parentheses

Method sin(angle) Error

HME .201 (.08) .197 (.05)

CLMlog .134 (.04) .121 (.02)

CLMlum .122 (.04) .112 (.02)

CLMlog Sparse .098 (.03) .093 (.01)

CLMlum Sparse .093 (.03) .082 (.01)
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3.6 Applications

In this section, we apply our methods to the analysis of Alzheimer's disease and

ovarian carcinoma data. The �rst data set involves imaging data while the second

involves gene expression data. We are interesting in the ability of our method to detec-

t meaningful latent heterogenous groups while simultaneously delivering competitive

classi�cation accuracy. The performance of di�erent methods is evaluated by cross

validation (CV) errors of 100 random divisions of the data. We use 75% of data for

training and 25% for testing. We also keep the original class proportions within both

the training and testing sets. In the training steps, tuning parameters are selected

by 5-fold CV. We compare the same methods evaluated in Section 3.4 and report the

average testing errors with the corresponding standard deviations in Table 3.4.

3.6.1 Alzheimer's disease

Our �rst application is to a longitudinal study designed for Alzheimer's disease de-

tection and tracking, the Alzheimer's Disease Neuroimaging Initiative (ADNI) (Mueller

et al. 2005). See www.adni-info.org for additional details. There are 226 normal con-

trols and 393 MCI patients in total. The primary goal of our analysis is to discriminate

between MCI samples and normal control samples using imaging data collected at their

�rst visit. As mentioned previously, such a discrimination tool could help physicians

know when to begin intervention. Each sample is characterized by features extracted

from structural MR imaging (MRI) which measure brain atrophy (a known AD re-

lated factor). The image pre-processing and feature extraction follow the procedure

described in Wang et al. (2011) and Zhang et al. (2011). Basically, each processed

image is divided into 93 regions-of-interest (ROI) and then the volume of grey matter

tissue in each ROI region is computed as a feature (Zhang et al. 2011). The results

of classifying MCI versus normal controls using the 93 MRI features are shown in the
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left panel of Table 3.4. We can see that sparse CLM with the LUM loss provides the

smallest average testing error among all methods.

Table 3.4: Testing errors on classifying Alzheimer's disease and ovarian cancer data
with standard deviations in parentheses

Alzheimer Disease Ovarian Cancer

LSVM .322 (.028) .075 (.018)

KSVM (quadratic) .384 (.032) .148 (.021)

KSVM (Gaussian) .333 (.033) .065 (.017)

Random Forest .323 (.027) .080 (.022)

PLR .323 (.030) .078 (.019)

GUIDE .323 (.029) .083 (.021)

HME .331 (.031) .066 (.022)

CLMlog .330 (.030) .054 (.020)

CLMlum .314 (.030) .042 (.014)

CLMlog Sparse .315 (.025) .071 (.021)

CLMlum Sparse .297 (.024) .058 (.017)

Beside accurate diagnosis of AD/MCI, another important quest in AD research

is predicting whether MCI patients will convert to AD. Clinically, AD and MCI are

de�ned according to certain severity measures of symptoms of dementia at the baseline

based on the Clinical Dementia Rating (CDR) scale (Misra et al. 2009). In particular,

CDR = 0 is considered normal, CDR = 0.5 is considered MCI, and CDR = 1, 2, 3 is

considered AD with di�erent levels of severity. If an MCI patient's condition is getting

worse during the follow-up (i.e., they receive a CDR higher than 1), then he/she is

considered a converter (to AD), otherwise they are considered nonconverters. For the

data set we are analyzing, there are 167 converters and 226 nonconverters. We found

that if we predict MCI patients with f̂1(x) < 0 as converters, and the other MCI

patients as nonconverters, then the average prediction accuracy among 100 replications

is 0.799 (sd=0.14). This prediction result is greater than the accuracy of directly

predicting MCI subclasses using the same baseline MRI data. In particular, the linear

classi�er constructed from l1-penalized logistic regression has a ten fold cross validation
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error value of 0.69. This result indicates that heterogeneity among MCI patients can

be characterized by MRI data, and this result provides new insights for prognosis of

MCI. Therefore, besides successfully classifying MCI versus normal control patients,

the proposed CLM also provides a good prognostic tool for MCI patients in terms

of separating converters from nonconverters. Our method discovers meaningful latent

subclasses of MCI without using the follow-up clinical information.

3.6.2 Ovarian Carcinoma

The second application is to an ovarian carcinoma data set containing 11, 864 genes

from three di�erent platforms (TCGA, 2011). There are four cancer subtypes: im-

munoreactive (sample size is 107), di�erentiated (135), proliferative (138) and mes-

enchymal (109). We focus on classifying the proliferative samples (�+� class) versus

non-proliferative samples (�−� class). We select 3520 genes with the largest median ab-

solute deviance (MAD) value for further classi�cation analysis. From the testing errors

shown in the right part of Table 3.4, we can see that CLM with LUM loss performs the

best, followed by CLM with logistic loss. Both methods perform better than the other

competitors.

To better understand the results, we can visualize the results of the CLM method by

projecting the samples onto the space spanned by f̂1, f̂2 if f̂1(x) < 0, and onto the space

spanned by f̂1, f̂3 otherwise. Figure 3.3 suggests that there may exist subgroups within

the proliferative samples (Pro(A) and Pro(B)). Additionally, the �−� class samples are

grouped into two parts: one consists of some immunoreactive samples (Imm(B)) and

all di�erentiated samples, the other consists of the remaining immunoreactive samples

(Imm(A)) and almost all mesenchymal samples.

To con�rm statistical stability of the subgroups found in proliferative and immunore-

active samples, the Sigclust method proposed by Liu et al. (2008) is applied for testing
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Figure 3.3: Visualization of latent subclasses in the ovarian cancer dataset. The x-axis
is the f̂1 value, the y-axis displays the f̂2 value of the points for which f̂1 is less than 0,
otherwise it displays the f̂3 value. The plot indicates that there exist subclasses within
both the proliferative and immunoreactive types of ovarian cancer.

whether the di�erence between the two subgroups is signi�cant. The subgroups are

determined by the average of the sign of f̂1 in the 100 simulations given by the CLM

method with the LUM loss. The p-value for the subclasses within the immunoreactive

subtype is very signi�cant, i.e., < 0.001, while the p-value for the subclasses within the

proliferative samples is not.

The detected subgroups can also be visualized from the heatmap of gene expression

of a subset of genes (size = 153) in Figure 3.4. These genes were selected more than 15

times as �active variables� by sparse CLM with LUM loss among the 100 random splits.

The genes are displayed in rows, and samples are shown in columns where the red line

separates samples by the sign of f̂1 (positive on the left). The plot shows that there

exists a clear distinction between Imm(A) and Imm(B), as well as between Pro(A) and

Pro(B) in the gene expression level, which suggests our latent subclass �ndings are

not random. Additionally, the plot indicates that the sign of f̂1 is driven by 20 genes.
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We apply a gene functional enrichment analysis using DAVID (Huang et al. 2009) on

these 20 genes, and we �nd that most of them (17 with adjusted p-value ≤ 3 × 10−4)

are related to glycoprotein and secreted protein. These �ndings suggest that further

biological investigation may be worth pursuing. Note that the selected active genes

only consist of 5 percent of the genes in the training data set, so our methods not only

decrease classi�cation error and detect new subclass structure, but they also facilitate

variable selection.
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Figure 3.4: Heatmap of ovarian cancer data using 153 active genes selected by sparse
CLM with LUM loss. Samples are displayed in columns by subtypes. Genes are ordered
by hierarchical clustering. Nearly all samples on the left of the red line have average
f1 greater than 0, and the remaining samples have average f1 less than 0. We can
see a clear distinction between Imm(A) and Imm(B), and a mild di�erence between
Pro(A) and Pro(B), which suggests that subclasses exist in the immunoreactive and
di�erentiated subtypes.
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3.7 Discussion

In this article, we propose Composite Large Margin classi�ers to address the classi-

�cation problem with latent subclasses by splitting the data and classifying the subsets

using separate linear classi�ers. Our approach inherits the nice interpretability of the

standard linear approach while maintaining �exibility to handle complex data struc-

tures. At the same time, our classi�er is simpler than more complex methods such as

kernel techniques and tree based methods. Consequently, it may have less tendency for

over�tting. In addition, the CLM method not only detects latent subclasses but also

enables visualization of high dimensional data using low dimensional plots.

To achieve feature selection, we also propose a re�tting algorithm for CLM. One

future direction is to explore variable selection consistency. Another direction is to

make use of other penalties such as the group-lasso penalty (Yuan and Lin 2006) in

CLM besides the ℓ2 penalty for selecting groups of variables.

Although our focus is on the CLM with the LUM and logistic losses, the basic

idea can be implemented with other linear classi�ers as well. Currently, our method

is designed for binary classi�cation with up to two latent subclasses in each class, so

only one splitting function is needed. We can also extend the CLM method to permit

multiple cuts to handle data with potentially multiple latent subclasses.

53



CHAPTER4: PERSONALIZED DOSE FINDING USING OUTCOME
WEIGHTED LEARNING

In dose-�nding clinical trials, there is a growing recognition of the importance to

consider individual level heterogeneity when searching for optimal treatment doses.

Such an optimal individualized treatment rule (ITR) for dosing should maximize the

expected clinical bene�t. In this chapter, we consider a randomized trial design where

the candidate dose levels are continuous. To �nd the optimal ITR under such a design,

we propose an outcome weighted learning method which directly maximizes the expect-

ed clinical bene�cial outcome. This method converts the individualized dose selection

problem into a penalized weighted regression with a truncated ℓ1 loss. A di�erence

of convex functions (DC) algorithm is adopted to e�ciently solve the associated non-

convex optimization problem. The consistency and convergence rate for the estimated

ITR are derived and small-sample performance is evaluated via simulation studies. We

demonstrate that the proposed method outperforms competing approaches. We illus-

trate the method using data from a clinical trial for Warfarin (an anti-thrombotic drug)

dosing.

4.1 Introduction

Dose �nding plays an important role in modern clinical trials aiming to assess the

toxicity of drugs, to identify the maximum tolerated dose for safety usage, and to

determine the e�ciency of the drug. For example, a double-blinded Phase II trial for

dose-�nding is usually conducted to identify the no-e�ect, the mean e�ective and the
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maximal e�ective dosages (Chevret 2006). Optimal treatment dose identi�cation is

essential for the drug use for patients, since an over-dose can increase the occurrence

of side e�ects, while an under-dose can weaken the therapeutic e�ect of the drug.

In a traditional randomized dose trial, patients are randomized to several �xed safe

dose levels, and the single optimal dose level is typically determined by comparing the

average outcomes across each dose level. However, such one-size-�t-all therapy can be

ine�cient when the responses of a medicine are heterogenous among the patients, i.e.

what works for some patients may not work for others. Hence, personalized medicine,

which tailors the treatment according to individual health condition and disease prog-

nosis, is necessary. Taking the breast cancer treatment as an example, research suggests

that individualized treatment can be more bene�cial for young women with early-stage

(lymph-nodenegative) breast cancer, such that surgery and localized radiation treat-

ment can lead to a lower rate of recurrence than the traditional adjuvant chemotherapy

(Van't Veer and Bernards 2008). On the other hand, continuous individualized dose

levels are needed for practical dosing problem. For example, it is known that vari-

ous dose levels for warfarin (a commonly used medicine for preventing thrombosis and

thromboembolism) are needed for treating individuals with di�erent clinical and genet-

ical conditions (Klein et al. 2009) and the optimal dose can vary from 10mg to 80mg

per day.

To achieve personalized interventions, many methods have been developed to group

patients into subgroups according to their risk levels as estimated by some paramet-

ric or semiparametric models (Cai et al. 2010). However, these methods require prior

knowledge on the optimal treatment, which is usually not available in typical random-

ized clinical trials. For estimating an optimal individualize treatment rule (ITR) with

binary candidate treatment (denoted as A) of a single decision problem, recently, t-

wo main methods have been proposed: namely indirect methods and direct methods.
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The indirect methods �rst model the reward (denoted as R) as a parametric or semi-

parametric function of the treatment and predictive covariates (denoted as X), and

then the treatment is determined by the sign of the estimated treatment di�erence for

E(R|X,A = 1) − E(R|X,A = −1) (Robins 2004, Moodie et al. 2009, Qian and Mur-

phy 2011). In particular, Qian and Murphy (2011) used ℓ1 penalized least square, and

Robins (2004) employed g-estimation. These indirect methods have drawbacks due to

the di�erent goals between the reward modeling and optimal treatment rule �nding.

For example, if the model of the reward is misspeci�ed or over�tted, the two-step proce-

dure may yield a suboptimal treatment decision. Instead, Zhao et al. (2012) introduced

the framework of outcome weighted learning (O-Learning) for �nding the optimal bi-

nary treatments directly. Speci�cally, Zhao et al. (2012) formulated the problem as a

weighted binary classi�cation with the rewards as weights. The authors demonstrated

the superior performance of O-Learning over the indirect methods especially when the

sample size is small, which is not uncommon in clinical trials. In another work, Zhang,

Tsiatis, Davidian, Zhang and Laber (2012), Zhang, Tsiatis, Laber and Davidian (2012)

proposed a robust semiparametric regression functions for maximization to infer the op-

timal rule; however, the learning approach in Zhao et al. (2012) is nonparametric and

robust and can handle high-dimensional X commonly seen in practice. For estimating

ITR with continuous dose, Rich et al. (2013) proposed a structured nested mean model

for multiple decision problem. The method is still indirect method. Furthermore, Zhao

et al. (2012) cannot directly be applied to the dose �nding problem we are interested

in. This is because the treatment option A is continuous so P (A = a) = 0.

In this chapter, we consider a single-stage trial where treatment is provided once.

Our goal is to propose a trial for personalized dose �nding and provide a robust analysis

method based on the outcome weighted learning method. We assume the data is from
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randomized clinical trial with continuous dose level, and our method estimate a treat-

ment policy for dosage based on patient's information such as age, gender, and genetic

information. Our proposed method is a non-trivial extension of O-Learning for binary

candidate treatments proposed by Zhao et al. (2012). The background information for

the individual treatment rule and O-Learning are introduced in Section 4.2.1. Under

the O-Learning framework, we demonstrate that the dose �nding problem is a weight-

ed regression with random treatment as the outcome, prognosis factors as predictors

and the individual responses as weights in Section 4.2.2. We propose a nonconvex loss

function for the weighted regression model, and provide a di�erence convex (DC) algo-

rithm to solve the corresponding optimization problem in Section 4.3. The theoretical

property of our method is provided in Section 4.4. In particular, we show that our

loss function can lead to consistent estimation of the optimal dose. In addition, we

derive the convergence rates for the estimated treatment rule. We demonstrate that

our proposed method can identify individual treatment rule with better predicted re-

wards than the indirect methods through simulation studies in Section 4.5. A real data

application is given in Section 4.6. Lastly, some future work including dose �nding for

a multi-stage treatment setting is discussed.

4.2 Methodology

4.2.1 Individualized Treatment Rule

We assume that the data are collected from a randomized trial with treatment

assignment A. The traditional dose �nding trial is usually designed to identify the best

dose level among some small number of �xed dose levels. In contrast, we allow A to

be continuous and within a bounded interval (the safe dose range). For simplicity we

assume that A = [0, 1] and are independent of any patient's prognostic variables which

is a d-dimensional vector X = (X1, X2, ..., Xd)
T ∈ X . We de�ne the observed clinical
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bene�cial outcome as R, which is also known as �reward�. We assume that reward is

bounded and a large reward value is desired. Hence, an individualized treatment rule

(ITR) is a map f : X → A, and the optimal ITR is a rule that maximizes the expected

reward if implemented.

Following the similar notation in Qian and Murphy (2011) and also Zhao et al.

(2012), we denote the distribution of (X,A,R) as P and the expectation with respect

to P as E. We denote the expected reward under the ITR f as V(f), which is also

called value function. Furthermore, we de�ne potential outcomes R∗(a) representing

the outcome that would be observed if treatment a is given to a subject. Under the

Stable Unite Treatment Value Assumption (SUTVA) as in Rubin (1978): R =
´
I(A =

a)R∗(a)p(a|x)da, so that the observed outcome is the potential outcome that would be

seen under the treatment actually received and noting that R∗(a), a ∈ A is independent

of A given X due to the randomization, for any rule f(X), we obtain

V(f) = E(R∗(f))

= EX [E{R∗(f)|X}] = EX [E{R∗(f)|A = f(X), X}]

= EX [E{R|A = f(X), X}], (4.1)

where the �rst equation follows from the randomization and (4.1) follows from the SUT-

VA assumption. As a result, the optimal rule fopt = argmaxf V(f) = argmaxf E(R|A =

f(X)). Note that fopt does not change if R is placed by R + c for any constant c, also

the fopt is invariant of the scale of R. Thus, without loss of generality, we assume that

R is positive by subtracting R from its lower bound.

4.2.2 Outcome Weighted Learning
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Since A is continuous, the chance of observing A = f(x) is zero so V(f) cannot be

obtained directly form data. This is the key challenge for the dose �nding as compared

to the situation when the treatment takes discrete values (c.f. Zhao et al. (2012)). To

handle this, we propose the following approximation to estimate V(f). First, we note

V(f) = E(R|A = f(X))

= lim
ϕ→0+

EX

(´
a∈(f(X)−ϕ,f(X)+ϕ)

E(R|a, x)p(a,X)da´
a∈(f(X)−ϕ,f(X)+ϕ)

p(a,X)da

)

= lim
ϕ→0+

EX

(´
E[RI(a ∈ (f(X)− ϕn, f(X) + ϕn))|a,X]p(a|X)da´

a∈(f(X)−ϕ,f(X)+ϕ)
p(a|X)da

)

= lim
ϕ→0+

E

(
RI[A ∈ (f(X)− ϕ, f(X) + ϕ)]

2ϕp(A|X)

)
,

where p(a|x) is the density of A = a given X = x which is known in the randomized

design and assumed to be bounded by a positive constant from below.

Thus, if we let Ṽ(f) = E
(

RI[A∈(f(X)−ϕ,f(X)+ϕ)]
2ϕp(A|X)

)
, we may consider to maximize Ṽ(f)

to obtain an approximate optimal ITR. Equivalently, we aim to minimize E[RI(|A −

f(X)| > ϕ)/(2ϕp(A|X))]. However, the 0 − 1 loss I(|A − f(X)| > ϕ) is di�cult to

optimize due to its discontinuity in f (Zhang 2004). In contrast, in machine learning

context, one usually chooses a continuous surrogate loss for optimization. For our

purpose, we choose the surrogate loss to be

ℓϕ(A− f(X)) = min(|A− f(X)|/ϕ, 1).

Its corresponding objective function for minimization is then Rϕ(f) = E
(

Rℓϕ(A−f(X))

ϕnp(A|X)

)
and the counterpart to Ṽ(f) is 1−Rϕ(f), which is denoted as

Vϕ(f) = E [Rmax(1− |A− f(X)|/ϕ, 0)/(ϕp(A|X))]
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. The graphical presentation of ℓϕ can be found in the right panel of Figure 1, which

can also be written as the di�erence of the two convex functions shown in the left panel.

When ϕ = 1, then the corresponding ℓϕ loss is also called truncated L1 penalty, which

Shen et al. (2012) used as a surrogate for l0-penalty in a variable selection problem.

On the other hand, it can also be treated as a kernel estimator of 0− 1 loss using the

triangular kernel. The theoretical justi�cation for using such a loss function will be

further given in Section 4.4.

Using n observed data (Ai, Xi, Ri), i = 1, ..., n, given a �xed ϕ = ϕn which may vary

with n, we attempt to minimize

n∑
i=1

Riℓϕ[Ai − f(Xi)]

ϕnp(Ai|Xi)
.

To prevent over�tting, we penalize the complexity of f(X). Hence, our O-learning

framework have a loss plus penalty form as follows:

min
f

{
1

n

n∑
i=1

Riℓϕ(Ai − f(Xi))

2ϕnp(Ai|Xi)
+ λn∥f∥2

}
. (4.2)

where ∥f∥ is some norm for f , and λn controls the severity of the penalty on f . For ex-

ample, if we assume a linear decision rule: f(X) = XT w+b, then ∥f∥ is the Euclidean

norm of w.

4.3 Computation Algorithm

The objective function (4.2) is nonconvex, and the nonconvex optimization is known

to be di�cult. In the following section, we adopt the DC algorithm (An and Tao 1997,

Wu and Liu 2007) to tackle this nonconvex optimization. We �rst discuss the algorithm

for the linear learning rule, where f(x) is a linear function of x, and then extend it to

the nonlinear learning where f(x) is chosen from a reproducing kernel Hilbert space.
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Figure 4.1: Loss function of ℓϕ for dose �nding in ITR

4.3.1 Linear Learning

Considering f(x) = xT w+b. We can formulate the objective function as follows:

S =
λn

2
||w ||22 +

1

ϕn

n∑
i=1

Rimin(
| Ai −D(Xi) |

ϕn

, 1).

where λn is the tuning parameter that balances the bias and variance. Denote that

Θ = (w, b). The objective function S can be expressed as the di�erence of two

convex functions: S(Θ) = S1(Θ) − S2(Θ) =
(
λn

2
||w ||22 + 1

ϕn

∑n
i=1Ri

|Ai−D(Xi)|
ϕn

)
−

1
ϕn

∑n
i=1Ri

( |Ai−D(Xi)|
ϕn

− 1
)
+
. Then the DC algorithm minimizes a sequence of con-

vex subproblems to solve the original nonconvex minimization problem: initialize Θ0

then repeat updating Θ by Θt+1 = argminΘ(S1(Θ) − ⟨∇S2(Θ
t),Θ − Θt⟩) until the

convergence of Θ. For the initial value of Θ, we use observations with large reward

assuming that the observations with large reward are more likely to receive treatment

doses close to the optimal ones. Speci�cally, we use least square estimator to predict A
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with X as predictors if R is large, e.g. observations with R in the upper 50 percentile

of the training data.

De�ne Q
(t)
i = I(|ai − xT

i wt −bt| ≤ ϕn), where xT
i wt +bt is the temporary predict-

ed optimal dose with wt and bt as the solution from the t-th iteration. After some

algebra manipulations, the objective function of t + 1-th iteration S(t+1)(Θ) equals to

λn

2
||w ||22 + 1

ϕ2
n

∑n
i=1RiQ

(t)
i |ai − xT

i w−b|. Consequently, the convex subproblem is a

weighted penalized median regression problem. Note that the t-th iterations' result

only impacts the St+1 through Qt
i. Thus, if the observation receive a dose that is close

to the surrogate optimal dose (Q
(t)
i = 1), then the observation will contribute to the

objection function of the t + 1 step subproblem otherwise it will not contribute. Let

T = {i : Q(t)
i = 1}. Divide the objective function by λn and plug slack variables into

S(t+1)(Θ) to get rid of the absolute function, then the primary optimization problem of

t+ 1-th iteration is

min
w,b,ξ,ξ̃

1

2
||w ||22 +

1

λnϕ2
n

∑
i∈T

(ξi + ξ̃i)Ri, (4.3)

subject to ξi, ξ̃i ≥ 0 , ai − xT
i w−b ≤ ξi , −(ai − xT

i w−b) ≤ ξ̃i , ∀i ∈ T . After using

the Lagrangian multiplies and some algebra, we have

min
w,b,ξ,ξ̃

L =
1

2
||w ||22 +

1

λnϕ2
n

∑
i∈T

(ξi + ξ̃i)Ri −
∑
i∈T

αi(ξi − ai + xT
i w+b)

−
∑
i∈T

α̃i(ξ̃i + ai − xT
i w−b)−

∑
i∈T

uiξi −
∑
i∈T

ũiξ̃i

subject to

∂L

∂w
= w −

∑
i∈T

αi xi+
∑
i∈T

α̃i xi = 0;
∂L

∂b
= −

∑
i∈T

αi +
∑
i∈T

α̃i = 0;

∂L

∂ξi
=

Ri

λnϕ2
n

− αi − ui = 0;
∂L

∂ξi
=

Ri

λnϕ2
n

− α̃i − ũi = 0.
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By plugging the equations got from the above constraint, we obtain a convex dual

problem as follows:

min
α,α̃

1

2

∑
i∈T

∑
j∈T

(αi − α̃i) < xi, xj > (αj − α̃j)−
∑
i∈T

(αi − α̃i)ai

subject to

∑
i∈T

(αi − α̃i) = 0; 0 ≤ αi ≤
Ri

λnϕ2
n

, 0 ≤ α̃i ≤
Ri

λnϕ2
n

, ∀i ∈ T

The < . > denotes the inner product. This dual problem is a quadratic programming

(QP) problem and can be solved by many standard optimization packages. Once its

solution is obtained, the coe�cients w can be recovered by the relation that w =∑
i∈T (αi− α̃i)xi. After the solution of w is derived, b can be obtained by solving either

a sequence of Karush-Kuhn-Tucker conditions or a linear programming (LP) problem

(Boyd and Vandenberghe 2004), i.e.

min
b,η

∑
i∈T

ηiRi,

subject to ηi > 0 , ai − xT
i w−b ≤ ηi , ai − xT

i w−b ≥ −ηi , ∀i ∈ T .

The algorithm would stop when ||wt+1−wt || is smaller than a pre-speci�ed small

constant (10−8 in our simulations). Note that as the convex function S2 is replaced by

its a�ne majorization, the DC algorithm can be also regarded as a special case of the

minorize-maximize or majorize-minimize (MM) algorithm (Hunter and Lange 2004).

As the objective function S is bounded below by 0 and S(t) is descending after each

iteration, it guaranteed that the DC algorithm converges to an local minimizer in �nite

steps (An and Tao 1997, Wu and Liu 2007).
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4.3.2 Nonlinear Learning

For nonlinear learning, the decision function f(X) = wT Φ(X), where Φ(.) is an

unknown transformation onX. We further de�ne the kernelK(·, ·) as a positive de�nite

function mapping from Rd × Rd to R such that < Φ(xi),Φ(xj) >= K(xi, xj). At each

iteration in the previous section, since the QP problem depends on the inner products

between xi, similar derivation as in the linear learning leads to the following dual

problem for nonlinear learning

min
α,α̃

1

2

∑
i∈T

∑
j∈T

(αi − α̃i)K(xi, xj)(αj − α̃j)−
∑
i∈T

(αi − α̃i)ai

subject to

∑
i∈T

(αi − α̃i) = 0; 0 ≤ αi ≤
Ri

λnϕ2
n

, 0 ≤ α̃i ≤
Ri

λnϕ2
n

, ∀i ∈ T .

After solving the above QP problem, we can recover the coe�cients w,

w =
n∑

i=1

I(i ∈ T )(αi − α̃i).

The intercepts b can be solved using LP as in the linear learning. Due to the repre-

sentation theorem of Kimeldorf and Wahba (1971) and the derivation from above, we

obtain f(X) =
∑n

i=1 I(i ∈ T )(αi − α̃i)K(X, xi) + b. In this chapter, we focus on the

implementation of using the Gaussian kernel, i.e. K(xi, xj) = exp(−γ−2||xi − xj||22),

where γ > 0 and is known as bandwidth. We denote the RKHS induced by Gaussian

kernel as Hγ. In our subsequent implementation, the bandwidth parameter γ for the

Gaussian kernel is tuned between the �rst quartile, the median, and the third quartile

of all pairwise Euclidean distances of training inputs. Note that the resulting function

may not always generate a dose within the target range. If out of range, we can either
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do a truncation afterwards or do logarithm transformation of dose level before model

�tting.

4.3.3 Tuning Parameter

For the tuning parameter, we choose them by cross validation. Speci�cally, we utilize

the loss function Lf(X),ϕn to help tune the parameter, the strategy are as follows:

(a) Divide the data into training, tuning sets. (b) Denote candidate values of ϕn as

Φ = {0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1, 0.05}. (c) ϕn, �nd optimal rule f̂ϕ(X) by cross

validation with a pair of (λn, γ) such that the criterion Lf,ϕn(Rtrain, Atrain) is minimized

using the training data. (d) ϕopt = argminϕn∈Φ Lf̂ϕ(X),0.01(Rtune, Atune). (e) Given ϕopt,

identify the best (λn, γ) by cross validation.

4.4 Theoretical Results

In this section, we study the asymptotic behavior of the minimizer (f̂n) of the

optimization problem proposed in Section 4.3. In particular, we will show that V(f̂n)

converge to V(fopt) with certain rate. Our �rst result shows the approximation of the

value function is valid.

Theorem 4.4.1. For any measurable function f : X → R and any probability distri-

bution P , if sup(a,x)∈A×X | ∂
∂a
E(R|A = a,X = x)| ≤ C for a bounded constant C, then

|Vϕ(f)− V(f)| ≤ (C + 1)ϕn.

Proof: Clearly,

Vϕn(f) = E

(
Rmax(1− |A− f(x)|

ϕn

, 0)/ϕnp(A|X)

)
=

ˆ {
1

ϕ2
n

ˆ
|f(x)−a|≤ϕn

[ϕn − |a− f(x)|]E(R|a, x)da
}
p(x)dx

=
1

ϕ2
n

ˆ
|z|≤ϕn

[ϕn − |z|]E(R|z + f(x), x)dz.
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By Taylor expansion, we obtain

|Vϕn(f)− V(f)| ≤ 1

ϕ2
n

ˆ ϕn

0

2zdz ≤ Cϕn.

Our main result concerns about the convergence rate of V(f̂n)− V(fopt).

Theorem 4.4.2. Assume that the Bayes decision rule fopt ∈ Bα
1,∞(Rd), a Besov space.

Then, for any ϵ > 0, d/(d + τ) < p < 1, the tail component τ > 0, and the bandwidth

γn for the Gaussian kernel, the following inequality holds:

V(fopt)− V(f̂n) ≤ c1

[
1

γ
(1−p)(1+ϵ)d
n λp

nn

] 1
2−p

+ c2(τ/n)
1
2 + c3(τ/n) + c4λnγ

−d
n + c5

γα
n

ϕn

+ c6ϕn

with probability Pn not less than 1− 3e−τ .

With properly chosen parameters γn, λn, ϕn, the right hand side of the inequality will

go to 0 as n goes to in�nity. The sixth term is due to the usage of Vϕ to approximate V .

Others terms are from approximation error due to using Hk and stochastic error due to

�nite sample size. Choose p close to 0, and (1−p)(1+ϵ) = 1, and we can further choose

λn, γn, and ϕn to balance the approximation accuracy and the stochastic variability as

follows:

λn =

(
1

n

) d+0.5α
d+α

, γn =

(
1

n

) 1
d+α

, ϕn =

(
1

n

) α
2(d+α)

Then, the optimal rate for the value function is

V(fopt)− V(f̂n) = Op

((
1

n

) α
2(d+α)

)

Theorem 2 implies that the value of estimated rule f̂n from O-learning converges to

the optimal value function. Clearly, the convergence rate decreases as the dimension

66



of prognostic variables increases. Furthermore, if α goes to in�nity and d stays con-

stant, the optimal convergence rate of O-learning with Gaussian kernel is close to the

parametric rate n−1/2. Note that the rate can not be close to n−1 as the rate proved

by Zhao et al. (2012) for binary treatment option problem. The reason is due to the

continuous nature of the dose, i.e. the data are not complete separated.

4.5 Simulation Study

We have conducted extensive simulations to access the performance of the pro-

posed method with various training sample sizes. In these simulations, we generate

30−dimensional vectors of prognostic variables, X1, . . . , X30, consisting of indepen-

dent U [−1, 1] covariates, where U represent the uniform distribution. The treatment A

is generated from U [0, 2] independently of X. The response R is normally distributed

in N(Q0(X, A), 1) with mean Q0(X, A) and standard deviation 1, where Q0(X,A) re-

�ects the interaction between treatment and prognostic variables and is chosen to vary

according to the following scenarios:

(1)Q0(X, A) = 8 + 4X1 − 2X2 − 2X3 − 25× (fopt(X)− A)2,

fopt(X) = 1 + 0.5X1 + 0.5X2.

(2)Q0(X, A) = 8 + 4X2 − 2X4 − 8X3
5 − 15× |fopt(X)− A|,

fopt(X) =
1

3
|(X2

1 −X3
7 + exp(X3

3 −X6 − 2 + sin(X2))|.

In Example 1, the optimal dose is a linear function of X, and in Example 2, the optimal

dose is a non-linear function of X.

We evaluate the performance of the proposed method by comparing the expected

value function. The empirical expected optimal value function is calculated from the

average value functions estimation of 200 simulations, where each estimation is based
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on the mean estimated reward of testing sets with 5000 samples. For Each sample, the

estimated reward is calculated by plug in the estimated optimal dose and the observed

diagnosis value into the true underline value function. The tuning parameter is selection

by �ve fold cross validation.

Two competitive methods are considered in this chapter. One is a modi�ed LASSO

based method proposed by Qian and Murphy (2011). It is a two-stage procedure that

it �rst build a model for E(R|A,X), the conditional expected reward given treatment

and other covariates. Given the model, for each individual, the estimated optimal dose

is determined individually such that the dose maximizes the estimated reward. The

design matrix used in the LASSO model for both examples is (X,A,X2, XA,A,A2). In

other words, we assume that given the diagnosis variables the treatment dose and the

reward have a quadratic relationship. This assumption is di�erent from of the original

two-stage method by Qian and Murphy (2011) for binary treatment problem which

assumed that E(R|A,X) is linear in A and X. The reason is that if we also assume

the linear relation for dose �nding problem then the predicted optimal dose will only

be the two extreme value of the feasible treatment dose. Hence, to prevent such trivial

result, we need to assume a higher order relation between dose and reward. Note

that maximizing the predicted reward is also more complicated than that for binary

treatment. We suggest a grid search procedure to �nd the optimal treatment dose for

the two-stage procedure. In particular, if the feasible dose level is (0, 2), we can choose

400 equally spaced grids within the interval (0, 2) as candidate doses. Given patient

diagnosis variables, we can comparing the predicted rewards by plugging the candidate

doses into the model. As a result, the grid that maximizes the predicted reward is

recorded as the optimal dose for that patient. In the same spirit of the two stage

methods, we can model E(R|A,X) by nonparametric function instead of parametric

function. For example, we can use the supporting vector regression (SVR) with the
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gaussian kernel to re�ect the potential non-linear relation between R and A as well as

the interaction between A and X. A similar grid search for optimal dose can be done

for the two-stage method based on SVR as well. For both LASSO and SVR, the tuning

parameters are selected by �ve fold cross validation.

Table 4.1: Average V̂(f) across 200 simulations under di�erent treatment rules

n K-O-Learning L-O-Learning SVR LASSO
Example 1 50 3.58 (0.80) 3.47 (0.82) -6.01 (2.39) -5.87 (2.41)
V(fopt) = 8 100 3.98 (0.62) 3.99 (0.67) -0.24 (1.41) -0.12 (1.45)

V(A = 1) = 3.8 200 4.80 (0.47) 4.69 (0.45) 3.05 (0.91) 3.87 (0.71)
400 5.58 (0.35) 5.61 (0.33) 3.64 (0.71) 4.91 (0.48)
800 7.03 (0.27) 7.10 (0.23) 5.84 (0.49) 6.65 (0.40)

Example 2 50 3.04 (0.90) 3.02 (0.95) -4.02 (1.48) -5.67 (1.41)
V(fopt) = 8 100 3.69 (0.61) 3.48 (0.65) 0.28 (0.89) -1.12 (0.92)

V(A = 0.8) = 2.6 200 4.50 (0.45) 4.09 (0.51) 3.05 (0.81) 2.67 (0.64)
400 5.38 (0.30) 4.76 (0.35) 4.14 (0.73) 3.71 (0.48)
800 6.69 (0.21) 5.85 (0.26) 5.32 (0.62) 4.40 (0.23)

We can see that in both examples, our method works well especially in the low

dimensional case. In example 1, L-O-Learning and K-O-Learning perform equally well,

and in example 2, K-O-Learning perform better especially when sample size is large.

In both cases, our methods outperform the two stage methods, such di�erent is more

signi�cant for small sample size situations. In practice, the sample size for clinical trial

is usually small, hence our method can be more useful than the two-stage method. Note

that although LASSO model in example 1 correctly specify the quadratic relationship

between the reward and the treatment, but it still su�ers from over�tting the data

when the sample size is not large enough. As a result, it performs worse than our

method when the sample size is small and comparable to our method when the sample

size is large. The optimal value functions for both examples are 8. As the sample size

increases, the value functions of estimated rules from all methods increase. Moreover,

for example 1 and example 2, the respective optimal �xed dose is 1 and 0.8 with the

value function equal to 3.8 and 2.6 (the value is independent of the training sample
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size). When sample size is greater than 100, our methods yield a larger value function

than the optimal value of �xed dose. The result indicates that our proposed randomized

trial design with our proposed O-learning method can yield a better rule than the �xed

dose rule identi�ed by the traditional dose �nding trial. For scenarios similar to the

simulations, the personalized treatment may be bene�cial and worth consideration.

4.6 Warfarin Dosage

Warfarin is commonly used medicine for preventing thrombosis and thromboem-

bolism. Proper dosage of warfarin is vitally important, as overdose predisposes to a

high risk of bleeding, while underdose is insu�cient to protect against thrombosis. In-

ternational normalized ratio (INR) is a measure of how fast the blood can clot, and

is used to monitor whether the dose of warfarin is safe. For normal people, the INR

is referred as 1, and for patient taking warfarin, the targeted INR range is typically

between 2 to 3 (Klein et al. 2009). Predicting the optimal dose for warfarin is still an

open problem in the medical community and a lot of methods are have been proposed

to re�ne the optimal dose rule (Klein et al. 2009, Hu et al. 2012). Klein et al. (2009)

compared three methods for predicting warfarin dose: models by clinical data, models

by pharmacogenetic data or a single �xed dose rule. The paper concluded that phar-

macogenetic data had better performance in predicting the optimal dose. In the Klein

et al. (2009), samples are used for training the prediction model only if their INR are

stable and between 2 to 3 after receiving the Warfarin treatment. The authors �tted a

linear model with the received dose as response and pharmacogenetic data as predic-

tor. Such steps are valid when the doses received by the patients in the training data

are optimal (optimal dose assumption). Later studies found that the pharmacogenetic

model for optimal Warfarin dose identi�cation by Klein et al. (2009) can be suboptimal

for elder patients. Hence, it is reasonable to assume that optimal dose assumption may
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be violated in practice.

To estimate the optimal dose, we utilize both the pharmacogenetic and clinical vari-

ables including age, height, weight, race, CYP2C9 genotype, and VKORC1 genotype,

and the usage of two types of medicines: Cytochrome P450 enzyme (including pheny-

toin, carbamazepine, and rifampin) and Amiodarone (Cordarone)). After removing

observations with missing data in these covariates, there are total 1744 patients with

400 patients with INR not in range 2 to 3. Instead of using patients with INR between

2 to 3 after treatment and making the optimal dose assumption, we include all these

1744 patients for analysis. To convert the INR to direct measure of reward, we code

Ri = −|INRi − 2.5| for i-th individual, as INR = 2.5 is ideal. Note that the study

is a observational rather than randomized trial, so we need to address the potential

sampling bias of the dose assignment. We estimate the propensity score and use the

estimated propensity score to scale the reward for each patient. We �rst �t a linear

model with the assumption that given the covariates the assigned dose follows lognor-

mal distribution. Then the propensity score can be calculated by plugging the �tted

value into the normal density formula (Imai and Van Dyk 2004). We randomly split the

data into training and testing sets 100 times independently. We consider the scenario

that the training set contains 800 samples and the testing set contains the rest. The

performances of di�erent methods are evaluated by the value functions estimated from

the testing set averaged across these 100 splits.

For the real data, the true relationship between dose and reward is unknown, hence

we need to estimate the value function for a given treatment rule. A potential cri-

terion is using Vϕ(.) as criterion, however as our method directly maximize the ap-

proximated value function, it is unfair to compare di�erent methods under such cri-

terion. For binary treatment problems, the value function is unbiasedly estimated by

P∗
n[I(A = f(X))R/P (A)]/P∗

n[I(A = f(X))/P (A)] (Murphy 2003), where P ∗
n denotes
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the empirical average using the validation data and P (A) is the probability of be-

ing assigned treatment A. We dichotomize the observed and predicted treatment into

sign(A − c) and sign(f(X) − c), then the method for value function estimation with

binary treatment can be applied. We choose di�erent cuto� point c, and if one method

have larger values than the other methods under most of c value, then such method is

better than the others. In the Warfarin example, the c is chosen to be 20,40 and 60.

The Table 4.2 re�ects the performance of di�erence methods. From the Table 4.2, we

can see that our method is competitive to the two stage methods with the di�erent

choice of c.

Table 4.2: Numerical comparison of V̂(D(X)) average across 100 random splits

c K-O-Learning L-O-Learning SVR LASSO
20 -0.34 (0.06) -0.35 (0.07) -0.39 (0.09) -0.40 (0.10)
40 -0.23 (0.05) -0.25 (0.06) -0.30 (0.08) -0.33 (0.08)
60 -0.31 (0.06) -0.30 (0.06) -0.38 (0.09) -0.38 (0.09)

4.7 Discussion

The proposed O-Learning method appears to be more e�ective in both simulations

and real data, especially when the training sample size is small, which is not uncommon

in clinical trial. Our method has advantages over two stage methods through directly

estimating the optimal dose. As a result, our method is more robust to the model

speci�cation of the reward. Unlike O-Learning, to successfully identify the optimal

dose for two-stage methods, one needs to correctly specify the model between reward

(outcome) and treatment together with diagnosis variables (covariates). In practice, it

is possible that variables that can a�ect the outcome are not observed. When these

variables have no interaction with the treatment, O-Learning can be una�ected, while

the two stage method can perform badly. Moreover, it is di�cult to convert the reward-

treatment model for the two stage method to �nd the optimal treatment for the dose
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�nding problem. Under the binary treatment setting, one can compare the contrast

between the reward given treatment A versus treatment B to �nd the better treatment.

For dose �nding, one can only enumerate the possible reward by plugging into a �ne

grid dose levels into the reward-treatment model, which can be computational intensive.

In contrast, our method can �nd the optimal rule directly. Note that the loss function

proposed in the paper can be further generalized to |A− f(X)|ϕ1 − |A− f(X)|ϕ2 with

0 ≤ ϕ1 < ϕ2. The current loss function is a special case of the generalized one with

ϕ1 = 0. In practice, such a generalization can provide further robustness to our methods

with the expense of adding another tuning parameters.

In practice, the reward can be censored as happens, for example, with the survival

time of cancer patients. Techniques such as inverse probability of censoring weighting

can be estimated to weight the observations, however such a procedure can yield a

less e�cient rule. Similar problems can occur when the training data comes from an

observational study. For both situations, we need to develop doubly robust estimators

for ITR. In addition, the toxicity of the drug may need to be considered when identifying

the optimal treatment dose (Thall and Russell 1998, Laber et al. 2014).

Another future extension of our method is to have variable selection for the im-

plementation of our method especially for linear learning. For some complex diseases,

sequential treatments are needed, hence dynamic treatment regimes instead of opti-

mal single stage treatment is more useful. For warfarin dosing, patients need to take

medicine on a regular basis, and the optimal doses may vary over time. Recently, Rich

et al. (2013) proposed an adaptive strategy under the framework of a structured nested

mean model. On the other hand, other methods for estimating dynamic treatment

regimes under a reinforcement learning framework (Sutton and Barto 1998) have been

proposed in several papers including Murphy (2003), Zhao et al. (2009) to solve multi-

ple stage therapy problems. Extensions of our proposed method for dynamic treatment

73



regimes could be of great interest.
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CHAPTER5: CONCLUSION AND FUTURE RESEARCH PLAN

In the dissertation, I proposed three statistical learning methods: HSSVD for bi-

clustering with heterogeneity of variance, Composite Large Margin Classi�er for latent

subclasses and O-learning for personalized dose �nding. All three methods deal with

various forms of data heterogeneity and are proven to be useful either empirically or

theoretically. In the immediate future, I would like to explore the following additional

topics:

Personalized Medicine and Dynamic Treatment Regimens: Treatments tai-

lored for individuals have great potential to improve patient outcome and can bring new

insight to drug evaluation. My future research on personalized medicine involves both

designing ethical and e�cient clinical trials to identify optimal personalized treatment,

as well as developing estimation and inference methods using data from traditional and

new trial data for personalized medicine. As many diseases require time-varying treat-

ment, it will be of great interest to construct customized sequential decision rules. While

I have focused on estimating optimal single-stage decisions, the O-learning framework

can be generalized to the multi-stage or even continuous-stage decision settings setup

with customized adaptive treatments according to the prognosis of the disease. Estima-

tion and inference for dynamic treatment regimes is challenging as it is a non-regular

estimation problem. I plan to combine empirical process methods, semiparametric

inference tools and resampling methods to solve the problem. There are also other

interesting subproblems for dynamic treatment regimes, e.g. dimension reduction and

variable selection.
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Supervised learning for data with complex structure: Due to the complex na-

ture of big data, the outcome we are interested in can be multivariate or functional data

like imaging data. In addition, the predictors may be no longer vectors but matrices or

curves. It would be of great interest to develop supervised learning techniques to ana-

lyze these more complex data structures. This requires more comprehensive statistical

modeling, while maintaining ease of interpretation. One potential solution is extending

the latent supervised learning method to data with complex structure. Currently, the

latent supervised learning method assumes there exists only one latent variable, hence

one splitting function is enough. We need to allow multiple splitting functions for more

complex data. Moreover, after dividing the data by splitting functions, we rely on

existing statistical models, e.g., the CLM can use logistic regression with vectors as

predictors. For problems with matrixes as predictors like imaging data, we need to de-

velop new matrix regression method or incorporate existing matrix regression methods

(Zhou et al. 2013) into the latent supervised learning framework.

Network data: Studying network data can help us understand some fundamental

problems in biological and clinical science, e.g. how the gene is regulated. In partic-

ular, I plan to work on two subareas. One is constructing directed graphs from inter-

vention data for casual inference. Directed acyclic graphs (DAGs) under the Gaussian

assumption have been intensively studied in the literature, however, estimating DAGs

under non-Gaussian assumptions is still open question. Beyond the estimation, I am

also interested in testing and inference for DAGs. The other is clustering network

data, also known as community/module detection. One interesting question to ask is

that if we start with gene expression data, what is the best strategy to detect the gene

communities? I plan to systemically study the combination of network structure extrac-

tion methods and module detection methods empirically, and provide some theoretical

insights using random matrix theory.
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APPENDIX : Asymptotic Results

A.1 Proofs of Theorem 4.4.2

Let f ∗
ϕ is the minimizer of Rϕ(f) and by de�nition Rϕ(f) = E(R/ϕn)− Vϕ(f).

V(fopt)− V(f̂n) = E(R|A = fopt)− E(R|A = f̂n)

≤ Vϕ(fopt)− Vϕ(f̂n) + 2Cϕn ≤ Rϕ(f̂n)−Rϕ(fopt) + 2Cϕn

≤ Rϕ(f̂n)−Rϕ(f
∗
ϕ) + c6ϕn (5.1)

The �rst inequality is due to Theorem 4.4.1, and the second follows by the de�nition

of Rϕ. C is the same constant as in Theorem 4.4.1 and c6 = 2C. Denote that R∗
ϕ =

Rϕ(f
∗
ϕ), then we can see that: Rϕ(f̂n)−R∗

ϕ ≤ λn||f̂n||2k +Rϕ(f̂n)−R∗
ϕ = LHS.

In the following context, let f̂n = fD,λn , andRL,P corresponds toRϕ in our problem.

To bound the LHS, we rely on the theorem proved by Steinwart and Christmann

(2008), which is displayed as follows:

Theorem 7.23 (Oracle inequality for SVMs, Steinwart and Christmann 2008

Let L : X×Y ×R → [0,∞) be a loss function. Also let H be a separable RKHS of a

measurable kernel over X and P be a distribution on X×Y . If the following conditions

are satis�ed: (A1) L is a locally Lipschitz continuous loss that can be clipped at M > 0.

(A2) L satis�es the superemum bound L(x, y, t) ≤ B for a B > 0. (A3) The variance

bound EP (L◦f̃−L◦f ∗
L,P )

2 ≤ V ·(EP (L◦f̃−L◦f ∗
L,P ))

υ is satis�ed for constants υ ∈ [0, 1],

V ≥ B2−υ, and all f ∈ H. (A4) For �xed n ≥ 1, there exist constants p ∈ (0, 1) and

a ≥ B such that the entropy number EDX∼Pn
X
ei(id : H → L2(DX)) ≤ ai−

1
2p , i ≥ 1.

(A5) Fix an f0 ∈ H and a constant B0 ≥ B such that Lf0 ≤ B0.
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Then, for all �xed τ > 0 and λn > 0, the SVM using H and L satis�es:

λn||fD,λn||2H +RL,P (f̃D,λn)−R∗
L,P ≤ 9

(
λn||f0||2H +RL,P (f0)−R∗

L,P

)
+K0

( a2p
λp
nn

) 1
2−p−υ+υp + 3

(72V τ

n

) 1
2−υ +

15B0τ

n

with probability P n not less than 1− 3e−τ , where K0 ≥ 1 is a constant only depending

on p, M , B, υ, and V .

We will verify the conditions (A1) - (A5) as follows:

Note that f̃ is a clipped version of f (Winsorization) for some value M , such that

t̃ = I(|t| ≤ M)t + I(|t| > M)sign(t)M . It is easy to check that risks of Lϕ(.) loss

satisfy that R(f̃) ≤ R(f), if we set M to be some large value, i.e. larger than the

range of the dose. Hence, Lϕ(.) can be clipped. That implies we can investigate the

clipped version of loss instead of the origin loss function without loss of generality

(Steinwart and Christmann 2008). The loss function we use is Lipschitz continuous

with Lipschitz constant equal to 1/ϕn hence it is also locally Lipschitz continuous. As

a result, condition (A1) is satis�ed.

For our problem, it is reasonable to assume the rewards are bounded such that R ∈

[0, B], where B is some constant. Hence, we have L(x, y, t) ≤ B for (A2). Furthermore,

(A3) is true since EP (L◦ f̃ −L◦f ∗
L,P )

2 ≤ 2EP [(L◦ f̃)2+(L◦f ∗
L,P )

2] ≤ 4B2. The benign

kernel we implement in the algorithm is the Gaussian kernel. By theorem 7.34 of

Steinwart and Christmann (2008), we have for the constant a is equal to cϵ,pγ
− (1−p)(1+ϵ)d

2p
n

for (A4). By far, all conditions needed for Theorem 7.23 are satis�ed, hence plug in

a = cϵ,pγ
− (1−p)(1+ϵ)d

2p
n , υ = 0, V = 4B2, and B0 = B, we have

LHS ≤ 9A(λn) +K[
1

γ
(1−p)(1+ϵ)d
n λp

nn
]

1
2−p + 36

√
2B(τ/n)

1
2 + 15B(τ/n), (5.2)

where A(λn) = λn||f0||2Hγn
+RL,P (f0)−R∗

L,P .
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The next step is to bound the approximation error A(λn). Since any f0 ∈ Hγ is

valid, we discuss a speci�c choice of f0 and the corresponding bound for A(λn). To

construct this f0, we de�ne that for r ∈ N and γ > 0, the function K : Rd → R Let us

assume that there exists a function f ∗
L,P is a Bayes decision function, i.e. and such that

f ∗
L,P ∈ L2(Rd)

∩
L∞(Rd). Then we de�ne f0 by convolving K with this Bayes decision

function, that is

f0 := K ∗ f ∗
L,P =

ˆ
Rd

K(X − t)f ∗
L,P (t)dt, x ∈ Rd. (5.3)

With the help of two theorems in Eberts and Steinwart (2013), we can show that f0 is

contained in Hγ, and it is a suitable function to bound A(λn).

By the construction of f0, the approximation error for our problem can be written

as:

A(λn) = λn||f0||2Hγn
+RL,P (f0)−R∗

L,P = λn||K ∗ f ∗
L,P ||2Hγn

+RL,P (K ∗ f ∗
L,P )−R∗

L,P

By theorem 2.3 of Eberts and Steinwart (2013), we have:

A(λn) ≤ λn(γn
√
π)−d(2r − 1)2||f ||2L2(Rd) +RL,P (K ∗ f ∗

L,P )−R∗
L,P

By the Lipschitz continuity property of the loss function Lϕ:

A(λn) ≤ λn(γn
√
π)−d(2r − 1)2||f ||2L2(Rd) +

B

ϕn

|K ∗ f ∗
L,P − f ∗

L,P |L1(PX)

By theorem 2.2 of Eberts and Steinwart (2013) with q = 1:

A(λn) ≤ λn(γn
√
π)−d(2r − 1)2||f ||2L2(Rd) +

B

ϕn

Cr,1||g||Lp(PX)ωr,L1(Rd)(f
∗
L,P , γn/2) (5.4)
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If we further assume f ∗
L,P ∈ Bα

1,∞(Rd), a Besov space, i.e. Bα
1,∞(Rd) = {f ∈ L∞((Rd)) :

supt>0(t
−αωr,L1((Rd))(f, t)) < ∞}. Then ωr,L1(Rd)(f

∗
L,P , γn/2) < c0γ

α
n , c0 is a constant.

Plug it into the inequality 5.4 and merge the constant, we have:

A(λn) ≤ c1λnγ
−d
n + c2γ

α
nϕ

−1
n (5.5)

Combine Equation (5.1), Equation (5.2) and Equation (5.5), we get the theorem proved.

A.2 Theoretical Results with other losses in Chapter 4

The following lemma proves that the theoretical minimizer for the problem with

absolute deviation loss (a special case for ϵ-insensitive loss) is not consistent, i.e. not

the same function that maximizes V(f).

Lemma 1

Let fabs(X) = argminf E(R|A−f(X)|
p(A|X)

), then fabs(X) ̸= fopt(X).

Proof: By de�nition: E(R|A−f(X)|
p(A|X)

) =
´
E(R|a, x)|a − f(x)|p(x)dadx. Let p̃(a|x) ∝

E(R|a, x)p(x), then for any given x, fabs(x) is the median of a with respect to density

p̃(a|x). On the other side, we have proved that V (f) = E(R|A = f) = EX [E(R|A =

f(x), x)] =
´
E(R|A = f(x), x)p(x)dx. That implies, for any given x, fopt(x) is the

mode of a with respect to density p̃(a|x). If the p̃(a|x) is not symmetric, then fabs(x) ̸=

fopt(x). As a result, fabs(X) ̸= fopt(X) almost surely. Hence, it is not proper to use the

absolute deviance loss in our O-learning for dose �nding. In addition, it demonstrates

that the trivial extension of Zhao et al. (2012) (weighted supporting vector regression)

does not work for the dose �nding. By the similar argument, we can show that the

quadratic loss function also does not work. This follows by the argument that fabs(X) =

argminf E(R(A−f(X))2

p(A|X)
), and for given x, fabs(x) is the mean of a with respect to density
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p̃(a|x).

A.3 Other theorems for Proving Theorem 4.4.2

For completeness, we includes the theoretical results used for the proof of Theo-

rem 4.4.2 as follows:

Theorem 7.34 (Steinwart and Christmann 2008)

Let µ be a distribution on Rd having tail exponent τ ∈ (0,∞]. Then, for all ϵ > 0

and d/(d+ τ) < p < 1, there exists a constant cϵ,p ≥ 1 such that

ei(id : Hγ(Rd) → L2(µ)) ≤ cϵ,pγ
− (1−p)(1+ϵ)d

2p i−
1
2p .

for all i ≥ 1 and γ ∈ (0, 1].

Theorem 2.2 (Eberts and Steinwart 2013)

Let us �x some q ∈ [1,∞). Furthermore, assume that PX is a distribution on Rd

that has a Lebesgue density g ∈ Lp(Rd) for some p ∈ [1,∞). Let f : Rd → R be such

that f ∈ Lp(Rd)
∩

L∞(Rd). Then, for r ∈ N, γ > 0, and s ≥ 1 with 1 = 1/s+ 1/p, we

have

||K ∗ f − f ||qLq(PX) ≤ Cr,q||g||Lp(PX)ω
q
r,Lqs (Rd)

(f, γ/2),

where Cr,q is a constant only depending on r and q and ωq
r,Lqs (Rd)

(f, γ/2) is the r-th

modulus of smoothness of f (see De�nition 2.1 in Eberts and Steinwart (2013) for

detailed de�nition).
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Theorem 2.3 (Eberts and Steinwart 2013)

Let f ∈ L2(Rd), Hγ be the RKHS of the Gaussian RBF kernel kγ over X ⊂ Rd

with γ > 0 and K : be the same as in Equation 5.3 for a �xed r ∈ N. Then we have

K ∗ f ∈ Hγ with

||K ∗ f(x)||Hγ ≤ (γ
√
π)−

d
2 (2r − 1)||f ||L2(Rd)

Moreover, if f ∈ L∞(Rd), we have

|K ∗ f(x)| ≤ (2r − 1)||f ||L∞(Rd)
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