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ABSTRACT 

DALE JOSEPH WILGER: Position-Dependent Energy Transfer Between Ruthenium(II) and 
Osmium(II) Modified Coiled-coil -Helical Peptides & Oligoproline Recognition by a -

Hairpin Peptide 
 

 Two different research projects are discussed throughout this dissertation. The first 

project relates to the study of position-dependent energy transfer between specially 

synthesized metallopeptides that contain RuII and OsII bipyridyl complexes. The second 

project relates to the measurement of aromatic-prolyl interactions in a model peptide system. 

 The study of excited-state energy transfer processes is of interest due to its 

implications in natural and artificial photosynthesis. In this work, a series of coiled-coil -

helical metallopeptides were designed, synthesized, and characterized. The metallopeptides 

contain RuII and OsII bipyridyl complexes that serve as excited-state energy donors and 

acceptors, respectively. 

Rates for energy transfer between the metallopeptides are position dependent and 

intimately linked with the structure of the peptide scaffold itself. The results indicate that 

energy transfer phenomena can be fine-tuned using peptide primary sequence and secondary 

structure. The metallopeptide system could be used to better understand the mechanisms of 

RuII to OsII excited-state energy transfer, and may potentially be applied to the construction 

of synthetic light-harvesting antenna, or as a sensitizer for dye-sensitized solar cells. 

As a second project, aromatic-prolyl interactions were studied in a model peptide 

system composed of a -hairpin peptide motif known as a tryptophan zipper (trpzip). 

Interactions between the amino acid proline and aromatic amino acids are of importance in 
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the context of both protein folding and protein-protein interactions. The intermolecular 

recognition of the polyproline type II (PPII) helix peptide secondary structure by aromatic 

residues is important in a large number of cellular signaling events. Also, the cis-trans 

isomerization of amide bonds containing proline is often rate-limiting during protein folding. 

A disulfide exchange system was designed for studying aromatic-prolyl interactions between 

a trpzip peptide and a series of oligoproline peptides which adopt the PPII helix 

conformation. Favorable aromatic-prolyl interactions with energies up to 2.3 kcal·mol-1 were 

measured. A -hairpin peptide which also contains tryptophan, WKWK, does not have 

favorable interactions with the oligoproline peptides. The WKWK -hairpin peptide contains 

a different configuration of tryptophan residues and demonstrates the importance of structure 

when considering aromatic-prolyl interactions in the context of complex peptide 

environments. 
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Chapter I 

INTRODUCTION: 
POSITION-DEPENDENT ENERGY TRANSFER BETWEEN RUTHENIUM(II) AND 

OSMIUM(II) MODIFIED COILED-COIL -HELICAL PEPTIDES 
  

A. Significance 

 Mankind currently faces the overwhelming task of meeting the ever-increasing 

energy demands of our developing global community.1 The expanding energy requirements 

of our developing world, coupled with worsening environmental and political issues related 

to energy use have animated new endeavors in the study of light absorption and energy 

transfer processes.1 These studies have been inspired by the simple observation that the vast 

majority of the energy required to sustain all life on earth is essentially supplied by solar 

radiation. Natural sunlight is diffuse and intermittent. Photosynthetic life forms have adapted 

to this by evolving complex light-harvesting antennae systems that absorb multiple photons 

at different chromophore sites and couple them to localized reactive centers through a series 

of highly synchronized excited-state energy transfer and electron transfer steps (Figure 1.1).2 

These processes have been optimized within photosynthetic organisms in order to increase 

effective molar absorptivity, broaden the spectral window for light absorption, and to couple 

multielectron redox processes to single-photon absorption processes. The basic mechanisms 

by which these energy transfer and electron transfer events occur are of interest if mankind is 

to ever mimic the complex energy conversion systems developed within natural 

photosynthetic organisms.3 
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Figure 1.1 The crystal structure for the light-harvesting complex II LH2 from Rhodobacter 
sphaeroides (pdb code: 2FKW).2a The peptide segments of the light-harvesting complex are 
shown in green. The protein complex has 27 different bacteriochlorophyll molecules (red) 
bound tightly along with 9 different carotenoid chromophores (rhodopsin glucoside, blue) 
that serve as primary and secondary light absorbing units, respectively. The peptide 
architecture of the complex holds many of the bacteriochlorophyll molecules within less than 
9 angstroms of each other. The distance between chromophore molecules has been optimized 
through evolution and allows for the rapid transfer of excited-state energy within the 
complex, and then ultimately to a photosynthetic reaction center (not shown). 

B. Background 

i. Covalent and noncovalent scaffolds for studying energy transfer 

A large number of covalent linkages, assemblies, and scaffolds have been used in 

order to study energy transfer phenomenon. These scaffolds vary in complexity from simple 

alkyl chains,4 to high molecular weight synthetic polymers,5 and extremely complex 

oligonucleotide molecules including duplex DNA.6 These synthetic architectures are all used 

to spatially preorganize excited-state energy donors and acceptors in order to facilitate, 

expedite, and in most cases study energy transfer. 
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The constant obsession for studying excited-state energy transfer between spatially 

preorganized partners has been motivated by a number of interwoven factors. The first 

consideration is practical in nature. Energy transfer is, fundamentally, always a distance-

dependent behavior. Energy transfer will in many cases occur more efficiently when excited-

state donors and acceptors are held in close proximity. Although this is not strictly true for all 

energy transfer processes, we have only to look at natural light-harvesting structures to see 

the concept at work. Natural light-harvesting protein complexes never rely on diffusion 

controlled energy transfer in order to couple light absorption and photosynthetic reactions.2 

Instead, chromophores are held in intimate contact with both spacing and orientation 

optimized for the vectoral transfer of excited-state energy (Figure 1.1). This elaborate energy 

transfer organization is certainly a design feature many researchers would like to mimic 

synthetically.3 

Another primary consideration for studying preorganized energy transfer is more 

academic in pursuit. While energy transfer is always distance-dependent to some extent, the 

exact mechanism of energy transfer has a pronounced effect on the degree of the observed 

distance-dependence. Indeed, the study of distance-dependent energy transfer for many 

systems has led to the general acceptance of the current excited-state energy transfer models. 

Excited-state energy transfer has historically been analyzed according to two distinct 

models (Figure 1.2). The dipole-dipole mechanism was originally described by Theodor 

Förster,7 while the electron exchange mechanism was originally described by David Dexter.8  
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Figure 1.2 Diagram representing the dipole-dipole mechanism (Förster, left) and the electron 
exchange mechanism (Dexter, right) for excited-state energy transfer. The Förster 
mechanism relies on a through space dipole-dipole coupling and typically occurs over greater 
distances than the Dexter mechanism. The Dexter mechanism relies on orbital overlap 
between the donor and acceptor and is typically operative over extremely short distances. 

The dipole-dipole mechanism of energy transfer describes a process where an 

excited-state electron can relax back to the ground state while simultaneously elevating an 

electron in another molecule to an electronically excited state through a nonradiative process. 

The coupled excitation/relaxation event occurs through the interaction of induced electronic 

dipoles on the donor and acceptor. Energy transfer through a Förster mechanism can occur 

over distances up to several nanometers (~10 nm), but requires an overlap of emission 

wavelengths for the donor molecule and absorption (excitation) wavelengths for the acceptor 

molecule. The extent of this overlap is measured by a spectral overlap integral (J) that 

determines the relative efficiency of energy transfer. The efficiency of energy transfer by the 

Förster mechanism also depends on the relative orientation of the donor and acceptor 

molecules (), the fluorescence quantum yield of the donor (D, the refractive index of the 

medium (n), and the distance between the donor and acceptor (r). The rate of energy transfer 

predicted by the Förster mechanism (kF) will vary with the distance (r) to the inverse sixth 

power according to Equation 1:9,10 

 
0.592   

         1 
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where N is the Avogadro number. The orientational factor and is often taken to be 2/3, 

assuming the donor and acceptor undergo isotropic reorientation on a time scale shorter than 

the excited-state lifetime of the donor. The distance dependence of energy transfer by the 

Förster mechanism is often expressed as an efficiency quotient according to Equation 2:9,10 

 
1

1     
         2 

where R0 is the distance at which energy transfer efficiency is 50%. This distance is known 

as the Förster radius and is specific for a donor/acceptor pair. If the spectroscopic parameters 

(Equation 1) are known for a desired donor, acceptor, and medium then the Förster radius 

(R0) can also be directly calculated. One consequence of Förster’s predicted energy transfer 

mechanism is the requirement that both donor and acceptor transitions be optically allowed 

in order for energy transfer to manifest. For example, singlet-singlet transitions are allowed 

by the Förster mechanism, while triplet-triplet transitions are typically forbidden. 

The electron exchange mechanism (Dexter) for energy transfer describes a process 

where an excited electron and hole (orbital vacancy) are simultaneously transferred from the 

donor molecule to the acceptor molecule. The movement of a combined electron and hole is 

often referred to as an exciton. The Dexter mechanism for energy transfer relies on orbital 

(wave function) overlap between the donor and acceptor molecules and occurs over much 

shorter distances compared to the Förster mechanism. The rate of energy transfer predicted 

by the Dexter mechanism (kD) will vary with the distance (r) according to Equation 3:10 

 
2
ħ

exp
2

        3 
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where L is the average van der Waals radius for the initial and final molecular orbitals of the 

donor/acceptor system and  is a parameter that depends on spectral overlap between the 

donor emission and acceptor absorbance spectra, similar to the Förster model. Unlike 

Förster’s predicted mechanism, the rate of energy transfer cannot be calculated directly from 

measured spectroscopic data, and the preexponential factor () must be experimentally 

determined. Another consequence of Dexter’s predicted mechanism is that energy transfer 

efficiency by electron exchange will decrease exponentially with the donor/acceptor distance 

(r). The Dexter theory of energy transfer can also be applied to formally forbidden processes, 

including triplet-triplet transitions.10 If the donor and acceptor molecules in question are 

covalently linked then Dexter energy transfer can also occur with a significant through-bond 

electronic coupling component in a process known as superexchange.10 

 Experimental studies on the distance dependence for energy transfer have long been 

the proving ground for the previously described mechanistic interpretations. The predicted 

distance dependence (r-6) for the Förster mechanism of energy transfer was experimentally 

confirmed by Stryer and Haugland using a series of oligoprolines as molecular spacers.11 The 

oligoproline bridges acted as rigid spacers that held the donor (naphthyl) and acceptor 

(dansyl) groups at known fixed distances (Figure 1.3a). These experiments confirmed the use 

of Förster energy transfer as a “spectroscopic ruler” for measuring distances on the 

nanometer scale.11 Similarly, Speiser and Katriel were able to show that the distance 

dependence for excited-state energy transfer in a series of covalently linked benzyl-biacetyl 

molecules followed an inverse exponential trend as predicted by Dexter (Figure 1.3b).12 In 

Speiser’s studies, aryl moieties served as energy donors, while biacetyl moieties served as the 
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energy acceptors. Both these examples serve to emphasize the intertwined roles that the 

theoretical and experimental disciplines have played in the field of energy transfer study. 

 

 

 

 

 

 

 

Figure 1.3. (a) The oligoproline system used by Stryer and Haugland to confirm the distance 
dependence (r-6) for the Förster mechanism of energy transfer. The naphthyl moiety (C 
terminus) served as the energy donor, while the dansyl moiety (N terminus) served as the 
energy acceptor. (b) Two molecular systems used by Speiser and Katriel to determine the 
distance dependence (exponential) for the Dexter mechanism of energy transfer (n = 1, 2, 3). 
The benzyl moiety served as the energy donor, while the biacetyl moiety served as the energy 
acceptor. 

ii. Photophysical properties of RuII and OsII bipyridyl complexes 

 The polypyridyl complexes of ruthenium (RuII), and to a lesser extent osmium (OsII), 

have been central to the study of excited-state energy transfer and solar energy conversion for 

many researchers due to a number of combined favorable properties including their: (a) 

relative chemical inertness in the ground state; (b) relatively long-lived excited state 

lifetimes; (b) useful redox properties in the excited sate; and (d) ease of synthesis with an 

often modular design.3a,b 

 

 

 

(a) 

 

(b) 
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Figure 1.4. (a) The chemical structure of Ru(bpy)3
2+, the tris(bipyridyl) ruthenium dication. 

(b) The ground-state electronic structure of Ru(bpy)3
2+, including the filled t2g orbitals (dxy, 

dxz, and dyz) and empty eg orbitals (dz2 and dx
2-y

2). The electronic transition corresponding to 
the excitation of a t2g electron to a * orbital on the bipyridyl ligand (MLCT) is shown in 
blue. 

The tris(bipyridyl) ruthenium cation (Ru(bpy)3
2+) has served as the prototypical 

model for the study of excited-state energy transfer (Figure 1.4a).13 Being a third row 

octahedral d6 transition metal complex, with chelating ligands, Ru(bpy)3
2+ is quite stable in 

the ground state. The crystal structure of Ru(bpy)3
2+ shows a decreased Ru-N bond length 

(2.06 Å) when compared to the Ru-N bond length (2.10 Å) in Ru(NH3)6
3+.14 Since the RuII 

ionic radius is expected to be larger than the RuIII ionic radius, the apparent decrease in the 

Ru-N bond length indicates significant -bonding between the filled Ru t2g orbitals and the 

empty bipyridyl * orbitals. The complex is kinetically stable towards racemization and 

ligand exchange, even at elevated temperatures, a property not similar to polypyridyl 

complexes of Fe.15 

The excited state of interest for the Ru(bpy)3
2+ dication arises through a metal-to-

ligand charge transfer  (MLCT) process whereby an electron occupying a t2g orbital on Ru is 

transferred to a * orbital localized on one of the bipyridyl ligands (Figure 1.4b). This MLCT 

(a) 

 

(b) 
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transition renders the complex a strong absorber of light in the visible region (max = ~450 

nm,  = 13,000 in acetonitrile,  = 14,600 in water).13 The strong absorbance of light over a 

range of wavelengths in the blue region of the visible spectrum gives Ru(bpy)3
2+ a 

characteristic red color. The MLCT band (max) is slightly sensitive to solvent polarity, 

indicating some instantaneous shielding of the dipolar excited state by solvent molecules.16 

The initial absorption of a photon at 450 nm leads to a 1MLCT state that undergoes 

intersystem crossing to the 3MLCT state (Figure 1.5). Intersystem crossing is extremely 

rapid, requiring approximately 300 fs, and proceeding with a quantum yield (ISC) that is 

essentially unity.17 Intersystem crossing occurs concomitantly with spin-allowed processes 

including vibrational relaxation and relaxation/reorientation of the solvent shell. Experiments 

using ultrafast absorption anisotropy measurements have shown that, while the Ru(bpy)3
2+ 

excited-state electron is initially delocalized over all three bipyridyl ligands, localization of 

this electron on one of the bipyridyl ligands occurs within several hundred femtoseconds.18 

The 3MLCT state for Ru(bpy)3
2+ may be the most extensively studied electronically 

excited molecule to date. The 3MLCT excited state contains about 2.1 eV (~ 48 kcal·mol-1) 

excess energy relative to the ground state, and actually exists as a manifold of triplet exited 

states that are mixed with higher-lying singlet excited states. An attractive feature for 

studying the Ru(bpy)3
2+ (3MLCT) excited state is its persistent lifetime, which is several 

hundred nanoseconds in water, and more than a microsecond in acetonitrile.19 This slow 

decay back to the ground state has allowed for any number of  energy and electron transfer 

phenomena to be studied. The excited-state lifetime of the molecular ion can be monitored 

using its phosphorescent emission (max = ~630 nm). 
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Figure 1.5 Jablonksi diagram showing all of the relevant photophysical events for 
Ru(bpy)3

2+ excitation. Initial absorption of light at 450 nm produces a short lived 1MLCT 
state. Intersystem crossing to the 3MLCT state occurs within several hundred femtoseconds 
and has a quantum yield (ISC) close to unity. The 3MLCT configuration can last several 
hundred nanoseconds and is the excited state of interest for many chemists. Relaxation from 
the 3MLCT state occurs via a combination of phosphorescence (max = ~630 nm) and 
radiationless transitions. The quantum yield for phosphorescence is typically less than 10% at 
room temperature, regardless of solvent.  

The excess energy contained within the electronic configuration of the 3MLCT state 

manifests as an increased willingness to undergo redox chemistry (Figure 1.6). Oxidation and 

reduction are disfavored for Ru(bpy)3
2+ in the ground-state, but reducing and oxidizing 

potentials are both enhanced in the excited-state complex (Figure 1.6).3b The excited-state 

redox potentials for the Ru(bpy)3
2+ molecular ion imply the thermodynamic ability to oxidize 

water (E° (pH = 8) = -0.76 V), a property that has pushed the molecular ion into the artificial 

photosynthesis limelight.3a Also of high interest is the fact that the excited-state Ru(bpy)3
2+ 

molecular ion has an energy appropriate for electron injection into wide-bandgap oxide 

semiconductors, including titanium dioxide (TiO2).
20 
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Figure 1.6. Latimer diagram showing the redox properties for the excited- and ground-state 
Ru(bpy)3

2+ molecular ion. Values are reported for acetonitrile at 25 °C. The complex does 
not have a potent oxidizing or reducing potential in the ground state, but excitation to the 
3MLCT state results in favorable potentials for both oxidation and reduction. 

 The excited-state Ru(bpy)3
2+ molecular ion is capable of not only electron transfer 

reactions, but also energy transfer phenomena if an appropriate acceptor is selected. A full 

account of energy transfer and electron transfer partners studied for Ru(bpy)3
2+ would be 

needlessly long, but the tris(bipyridyl) osmium cation (Os(bpy)3
2+) used throughout the 

current study deserves mention. The Os(bpy)3
2+ molecular ion also absorbs light strongly in 

the visible region (max = ~480 nm,  = 12,000 in water) due to a 1MLCT excitation band.19 

Unlike the ruthenium analog, Os(bpy)3
2+ has a significant absorbance above 600 nm 

associated with the direct  excitation to a triplet (3MLCT) state. This normally optically 

forbidden transition is allowed for Os due to spin-orbit coupling in the heavier metal. The 

initial excited state dynamics of Os(bpy)3
2+ are similar to Ru(bpy)3

2+, with vibrational 

relaxation, solvent shell relaxation, and excited-state localization all occurring in a matter of 

femtoseconds.21 The 3MLCT state for Os(bpy)3
2+ is, however, considerably lower in energy 

compared to ruthenium, and an increased Stokes shift for the complex (max = ~730 nm) is 

apparent in the emission spectrum. The Os(bpy)3
2+ molecular ion also has a much shorter 

excited-state lifetime ( = 19 ns in water).19 The 3MLCT state for Os(bpy)3
2+ is roughly 0.40 
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eV lower in energy compared to Ru(bpy)3
2+ and can serve as an efficient energy transfer 

acceptor for the complex. Both Dexter and Förster energy transfer mechanisms are 

theoretically possible for RuII to OsII energy transfer. Emission spectra for Ru(bpy)3
2+ 

overlap with absorption spectra for Os(bpy)3
2+ from 550-690 nm, a requirement for both 

mechanisms of energy transfer.19 While the relaxation of the RuII 3MLCT requires a spin flip 

that would normally be forbidden by Förster’s predicted mechanism, spin-orbit coupling in 

the heavier Os atom could allow for triplet-triplet energy transfer to occur. 

   iii. Previous studies on energy transfer between RuII and OsII bipyridyl 

complexes 

Researchers have previously studied energy transfer between RuII and OsII bipyridyl 

complexes attached to short covalent tethers,4 high molecular weight polymers,5 and complex 

oligonucleotides.6 The coiled-coil peptide scaffold employed throughout this work has not 

been previously studied, and represents a very different chemical environment for studying 

energy transfer processes. 

Furue and coworkers studied RuII to OsII energy transfer by linking a series of 

bipyridyl complexes through short covalent tethers (Figure 1.7).4 All of the heterobinuclear 

complexes exhibited intramolecular energy transfer based on a quenching of RuII emission at 

610 nm that was accompanied by an enhancement in OsII emission at 800 nm. Time-

correlated single-photon counting (TCSPC) measurements indicated that RuII to OsII energy 

transfer in these bridged complexes occurred with first-order rate constants varying from 1.2 

x 108 to 1.2 x 109 s-1 in water ( = 0.86 to 8.1 ns). Furue attributed energy transfer to a 

Förster-type mechanism based on the distance-dependence (to the inverse sixth power) 

observed for the quenching rates. 
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Figure 1.7 Covalently linked binuclear RuII and OsII complexes used by Furue to study 
energy transfer. Excitation of the RuII center results in energy transfer to OsII, as indicated by 
TCSPC experiments. The binuclear complexes exhibit first-order rate constants varying from 
1.2 x 108 s-1 (n = 7) to 1.2 x 109 s-1 (n = 2) in water. 

 Meyer and coworkers have used a series of polystyrene-based polymers derivatized 

with bipyridyl complexes of RuII and OsII to study energy transfer and light-harvesting 

phenomena (Figure 1.8).5 The polymers typically contained 16 to 30 repeat units and were 

synthesized using specialized techniques. After polymerization, RuII and OsII bipyridyl 

complexes were conjugated to the polystyrene molecules using different chemical methods. 

The authors showed that polystyrene molecules derivatized with ether linkages were efficient 

promoters of RuII to OsII energy transfer with first-order rate constants greater than 2 x 108 s-1 

( < 5 ns) (Figure 1.8a).23a While RuII to OsII excited-state energy transfer was fast in the 

ether-linked polymers, energy migration from RuII to RuII (G = 0) was comparably slow 

with measured rate constants less than 1 x 106 s-1( > 1 s). Polystyrene molecules 

derivatized with amide linkages had similar RuII to OsII energy transfer rates, but vastly 

improved RuII to RuII energy migration rates (Figure 1.8b).23c The marked increase of the 

RuII to RuII energy migration rates (greater than 2 x 108 s-1, similar to energy transfer rates) 

was attributed to the fact that in these amide-linked systems the charge transfer electron 

resides on the bipyridyl-amide ligand. In contrast to the ether-linked systems where the 

excited-state electron resides on an exterior bipyridyl ligand, the amide substituent orients the 

excited-state dipole towards the polymer backbone. Later generation polystyrene molecules 
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with mixed ligand designs were studied using ultrafast spectroscopy techniques (Figure 

1.8c).5e The average rate of RuII to RuII energy migration in these systems was measured as 

2.5 x 108 to 1.0 x 109 s-1 ( = 1-4 ns), with RuII to OsII energy transfer rates averaging to 2.5 x 

109 s-1 ( = 400 ps). Although this analysis indicated an efficient energy transfer to OsII from 

a number of RuII donors, interpretation was difficult due to the statistical composition of the 

polymers. Specialized polymerization techniques were used to control the polydispersity 

(PDI = 1.08) of the samples, but some degree of nonhomogeneity for polymer length, 

donor/acceptor loading, and acceptor distribution were still typical. The authors use Monte 

Carlo simulations in order to rationalize donor/acceptor spacing and the energy transfer 

kinetics. A Dexter mechanism for energy transfer was discussed for these polymer systems 

based on the close donor/acceptor spacing predicted by molecular modeling. Any 

contribution from a through-bond superexchange mechanism was considered negligible due 

to the large number of intervening saturated bonds between donor/acceptor complexes. A 

Förster mechanism for energy transfer was also generally discounted due to the low degree of 

singlet character in the phosphorescent MLCT states for RuII (~11) and OsII (~30%). 
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Figure 1.8. Polystyrene-based systems used to study energy transfer between RuII and OsII 
(MII = RuII and OsII). (a) The ether-linked polymers are efficient promoters of RuII to OsII 

energy transfer, but were less efficient at promoting RuII to RuII energy migration. (b) 
Second-generation amide-linked polymers were more efficient promoters of RuII to RuII 
energy migration. (c) RuII and OsII derivatized polystyrenes with mixed bipyridyl ligand 
designs were later used to study energy migration/transfer dynamics using ultrafast time-
resolved emission spectroscopy (ps-ns). 

 Tor and coworkers studied RuII to OsII energy transfer in a series of modified 

oligonucleotides.6 A series of ethynyl-linked and ethylene-linked bipyridyl complexes 

containing RuII and OsII were developed for incorporation into DNA during standard solid-

phase oligonucleotide synthesis (Figure 1.9). Tor performed a systematic study of RuII to OsII 

energy transfer in a series of DNA duplexes in order to define the relationship between 

donor/acceptor distance and energy transfer efficiency. The donor/acceptor separation 

(a) 

 

(b) 

 

(c)
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distances were determined based on the helical model for B-form DNA. The ethynyl-linked 

bipyridyl complexes were designed to project the donor/acceptor complexes away from the 

DNA base stack (Figure 1.9a) since intercalation phenomena have a dramatic affect on 

energy transfer rates in similar systems.22 The DNA duplexes incorporating the ethynyl-

linked donor/acceptor complexes displayed a shallower distance dependence than would be 

expected for a Förster-type mechanism. As previously mentioned (Section B), the orientation 

factor for Förster energy transfer (2) is typically assumed to be 2/3, although it has been 

shown that this approximation can lead to gross misinterpretation of energy transfer rates.9 A 

series of DNA duplexes incorporating the ethylene-linked RuII donor were studied in an 

attempt to ameliorate any undesired orientation effects. Duplexes incorporating the more 

flexibly linked donor gave similar results however, and the observed distance dependence 

was again shallower than would be expected based on a Förster-type mechanism. The authors 

conclude that a Förster-type mechanism could account for a significant component of the 

observed energy transfer, with some contribution of “Dexter-like behavior” under certain 

circumstances. The simple helical model used to interpret the donor/acceptor distances in 

these systems may have provided a significant source of error, and the authors admit that end 

fraying, conformational changes, or other nondescript duplex dynamics may be the source of 

the anomalous distance-dependent behaviors. Tor excluded any role of the DNA duplex in 

mediating energy transfer beyond providing the structurally defined spatial organization. 

This conclusion was based on the observation that the ethynyl-linked and ethylene-linked 

bipyridyl complexes gave similar distance dependences. This conclusion is in contrast to the 

results of Barton and coworkers who demonstrated a significant role for the DNA duplex 

during energy transfer processes.22 
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Figure 1.9 (a) Ethynyl-linked nucleosides containing RuII and OsII bipyridyl complexes. The 
rigid alkyne bridge was designed to project the bipyridyl complexes away from the DNA 
base stack. (b) The ethylene-linked nucleoside containing RuII was designed to allow 
isotropic motion of the donor moiety prior to energy transfer.  

 C. Purpose of this work 

 We have studied RuII to OsII energy transfer using a designed coiled-coil -helical 

peptide scaffold. The positional dependence for energy transfer in these systems has been 

established and corroborated with the appropriate control experiments. The design of the 

coiled-coil scaffold used throughout this work is described in Chapter II. The synthetic 

techniques required to access these metallopeptides are described in Chapter III. The physical 

characterization of these metallopeptides, including binding constants required for 

interpretation during energy transfer studies, is described in Chapter IV. A full evaluation of 

the RuII to OsII energy transfer behaviors for these coiled-coil metallopeptides, including the 

positional dependence, is described in Chapter V. A new strategy for attaching RuII-

containing metallopeptides to nanocrystalline semiconductors, including TiO2, is described in 

Chapter VI. 

The ultimate goal for the development and study of these coiled-coil metallopeptides 

is to provide a new platform for the study of energy transfer. The coiled-coil peptide scaffold 

represents a new chemical environment for the study of RuII to OsII energy transfer 

processes. We hope that this metallopeptide system will be used to further the understanding 

(a) 

 

(b) 
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of energy transfer mechanisms between RuII and OsII bipyridyl complexes. The individual 

roles of synthetic chemists, spectroscopists, and theoreticians have never been truly discrete 

within the field of energy transfer study. We hope that our coiled-coil metallopeptide system 

will contribute to the field of energy transfer study in the same manner the research discussed 

throughout Chapter I already has. 
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Chapter II 

DESIGN OF -HELICAL COILED-COILS FOR THE STUDY OF ENERGY TRANSFER 
BETWEEN RUII AND OSII BIPYRIDYL COMPLEXES 

  

 A. General design principles for coiled-coil peptides 

The coiled-coil structural motif is comprised of multiple -helical peptides wrapped 

around each other in a left-handed supercoiled arrangement.1 Coiled-coil domains typically 

contain between two and seven -helical peptide segments and are perhaps the most widely 

studied group of protein structural units (Figure 1.1). A significant portion of what we know 

about natural protein folding behavior has been established based on the exhaustive study of 

thermodynamic driving forces and structure-determining elements for coiled-coil 

association.2 Coiled-coil assemblies now represent arguably the most complex class of de 

novo designed proteins.3 Different coiled-coil motifs hold promise for application in affinity 

tagging, surface functionalization, supramolecular chemistry, and biotechnology applications 

including tissue engineering.4,5 

The coiled-coil motif was originally identified by Francis Crick to be the primary 

structural element of -keratin, the well known scleroprotein .6 At the time, several 

researchers had identified that -helices, the common secondary structural element 

discovered by Linus Pauling only one year earlier,7 constituted an important part of -

keratin. Crick realized that certain X-ray diffraction patterns for -keratin could only be 
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rationalized if the -helical segments present in -keratin were tilted and wrapped around 

each other in a tangled arrangement.6 Crick also put forth a simple model for coiled-coil 

sidechain packing arrangements known as the “knobs-into-holes” rationale that is still the 

currently accepted model. Since that initial discovery, coiled-coil structures have been 

identified in any number of proteins including transcription factors that regulate gene 

expression,8 chaperone proteins that promote the correct folding of other proteins,9 and actin-

binding proteins that regulate muscle contraction.10 

   (a)                                        (b)                                           (c)  

  

 

 

 

 
 

Figure 2.1. Crystal structures are shown for several coiled-coil peptides indicating the 
variety of oligomerization states available. (a) A dimeric coiled-coil structure (pdb code: 
1A93). (b) A trimeric coiled-coil structure (pdb code: 3GJP). (c) A heptameric coiled-coil 
structure (pdb code: 2HY6). A single -helical subunit in each structure is highlighted in 
blue for clarity. 

All of the coiled-coil structures described to date, both natural and synthetically 

designed, contain a common seven residue repeating sequence known as a heptad unit.1 The 

amino acid positions of the heptad unit are typically designated with the letters a, b, c, d, e, f, 

and g. This common heptad repeat sequence is a consequence of the -helical structures 

found within coiled-coil subunits. Since -helices have approximately 3.6 residues per turn, 

an amino acid residue will repeat along the vertical axis of the helix every seven residues. 
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Placing hydrophobic residues at the a and d positions (first and fourth within the heptad) 

creates a highly nonpolar surface that provides the primary driving force for association via 

solvent exclusion. Ile and Leu residues are often specifically chosen for the a and d sites, 

respectively, when a parallel dimeric coiled-coil structure is desired.11 -Branched aliphatic 

residues at the a positions (typically Val or Ile), in combination with Leu residues at the d 

positions, are superior promoters for parallel dimeric structures due to geometric packing 

requirements.11 The intermolecular interactions that commonly stabilize the coiled-coil 

structure can be schematically represented using a helical wheel diagram (Figure 1.2a). 

Amino acids corresponding to the e and g positions are directly adjacent to the coiled-

coil interface and are capable of making secondary interactions during folding (Figure 

1.2a,c). These positions are typically designed (or evolved) with oppositely charged residues, 

most often Lys and Glu, in order to provide complementary charge-charge interactions.12 

These residue positions not only serve to positively reinforce a desired folding pattern, but 

additionally serve as negative control elements since many undesired folding arrangements 

may be disfavored by charge-charge repulsions.12 The remaining b, c, and f positions within 

a coiled-coil structure do not typically provide favorable interhelix interactions (Figure 1.2a). 

These residues are typically hydrophilic in nature and serve to reinforce the general 

amphipathic nature of the coiled-coil. High helical propensity is quite common, but not 

absolutely required, for most amino acids in coiled-coil structures. Based on the previously 

described design principles, it is of no surprise that Gly, Cys, and Pro occur much less 

frequently the coiled-coil secondary structure when compared to protein sequences in 

general.2  
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Figure 2.2. (a) A typical helical wheel diagram used to represent the stabilizing forces 
present in a dimeric coiled-coil. Hydrophobic contacts (between a and d positions) are shown 
as solid black lines. Salt bridges between charged residues (e and g) are shown as dashed 
lines. The single solid red line represents the Asn-Asn hydrogen bond present within a single 
a layer of the coiled-coil. (b) Crystal structure (pdb code: 2ZTA) showing the hydrophobic 
packing arrangement of the a and d positions (blue spheres). The hydrogen bonded Asn-Asn 
pair is also shown (red stick model). Amino acid sidechains are only shown for a and d 
position amino acids in order to improve clarity. (c) Two heptads of the crystal structure 
(structure was truncated and rotated 90° along the longitudinal axis of the coiled-coil) are 
shown in order to highlight four distinct salt bridges. All four ionic interactions are made 
between Lys (blue) and Glu (red). 

Perhaps the most important negative design principle that has been established for 

coiled-coil sequences is the selective inclusion of buried polar residues within the 

hydrophobic interface. Like most coiled-coil design principles, the strategy is based on 

(a)  

 

(b) 

(c) 
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observations of natural coiled-coil domains in proteins.13 Polar residues, such as Asn, when 

included at two complementary a positions must satisfy their hydrogen bonding potential, 

and impart folding specificity through mutual alignment (Figure 1.2a,b). Although the 

incorporation of two asparagine residues within the hydrophobic core of a parallel coiled-coil 

dimer interface is slightly destabilizing, alternative arrangements required for the undesired 

structures including trimers, tetramers, antiparallel dimers, and misaligned dimers are far 

more destabilizing. 13 Oakley and Kim were able to measure an energetic cost of 2.3 

kcal·mol-1 for the antiparallel alignment of two sequences including Asn at complementary a 

positions. 

B. Previous work of interest using coiled-coil peptides 

A coiled-coil structure has not previously been used to study the mechanism or 

distance dependence of energy transfer between RuII and OsII bipyridyl complexes. Ogawa 

and coworkers studied both ground state and photoexcited state electron transfer in a series of 

dimeric coiled-coil peptides.14 These designed metallopeptides were typically constructed 

using ruthenium pentaammine [Ru(NH3)5-] derivatized His residues as electron donors and 

ruthenium polypyridyl ([Ru(bpy)(Im)-], [Ru(trpy)(bpy)-], or [Ru(bpy)2(phen)-]) derivatized 

His residues as electron acceptors. Ogawa’s work demonstrated that peptide primary 

sequence and secondary structure can be used to direct intermolecular electron transfer 

between dimers.14c Ogawa also showed that biomimetic electron transfer could be directed 

across the hydrophobic interface within a single coiled-coil metallopeptide.14b Ogawa used 

similarly designed coiled-coil metallopeptides to probe the effects of -helix dipole on 

intramolecular electron transfer, but was unable to determine an effect on rate due to the 

coiled-coil macrodipole.14e 
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Ogawa’s examples of intradimer electron transfer all employed nonspecific 

homodimeric coiled-coil sequences. The peptides were chemically derivatized differentially, 

but peptide primary sequence was identical and was not designed to favor donor/acceptor 

assembly. As a result, these donor/acceptor mixtures contained statistical quantities of the 

desired donor/acceptor partners along with undesired partners (donor/donor and 

acceptor/acceptor) incapable of electron transfer behavior. 

Ogawa investigated a heterodimer metallopeptide system, presumably in order to 

induce a more specific donor/acceptor interaction.14c The designed heterodimer contained 

Glu residues at all of the e and g positions within one peptide sequence, and Lys residues 

within all of the e and g positions of the complementary sequence. As previously described, 

this arrangement favors a partnering of the heterodimer with complementary charge-charge 

interactions, but disfavors homodimers where significant repulsions between like charges 

will result. Interestingly, electron transfer in this designed heterodimer did not occur across 

the coiled-coil scaffold, but instead occurred between coiled-coil heterodimers in solution. 

This drastic change in behavior was attributed to complementary charges surrounding the 

donor/acceptor complexes on the exterior surfaces of the heterodimer. None of Ogawa’s 

coiled-coil sequences included an Asn-Asn interaction as a negative control feature. 

C. Current system design 

 A designed heterodimeric coiled-coil structure was selected as the scaffold for 

studying energy transfer in the current system. The primary sequences were adopted and 

modified from the heterodimeric self-assembled fiber (SAF) system originally reported by 

Woolfson and coworkers (Figure 1.3a).15 Woolfson’s SAF peptides were designed with a 

primary sequence meant to provide complementary interactions that promote a staggered 
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heterodimer structure referred to as the “sticky-ends” design (Figure 1.3b).15 These staggered 

interactions, or “sticky ends”, promote dimer-dimer association and subsequent fiber 

formation. The P1 and P2 peptides are both 28 residue sequences, and the P2 peptide remains 

unchanged from several of Woolfson’s publications.15b-e Both peptide sequences contain two 

positively charged heptad repeat units (Lys at all e and g positions) and two negatively 

charged heptad repeat units (Glu at every e and g position). The P1 peptide has these charged 

heptads rearranged from Woolfson’s sequence in order to discourage longitudinal 

association, and therefore fiber formation (Figure 1.3a). Natural coiled-coil peptides all share 

this “blunt” end assembly. Woolfson demonstrated that this simple permutation fails to 

oligomerize beyond the dimer state, and therefore does not form fibers.15a As previously 

described, Asn substitutions at a positions play a critical role within both systems. These 

substitutions prevent the two peptides from associating in an antiparallel fashion, an 

undesired arrangement where charge-charge interactions would remain favorable. 
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Figure 2.3 (a) The primary sequences for the P1 and P2 peptides are given using single letter 
amino acid codes in capitals. The letter designations for the heptad positions are labeled 
(lower case) for the first heptad only. Hydrophobic contacts made by Ile and Leu residues are 
represented as solid black lines. The hydrogen bonded Asn-Asn brace is represented as a red 
line. The complementary charge-charge interactions between Lys and Glu residues are 
represented as dashed lines. For a schematic representation of these interactions see Figure 
1.2a. The “blunt” ends assembly pattern that the P1 and P2 peptide sequences produces is 
also represented as a simple diagram below the primary sequences. (b) The “sticky-ends” 
assembly produced by Woolfson’s original sequence is schematically represented. 

 D. Conclusions for the system design 

The P1 and P2 sequences were selected in order to form the most desirable coiled-coil 

structures suitable for the study of energy transfer. The heterodimeric design was chosen to 

favor conditions where donor/acceptor structures can be easily examined with minimal 

influence due to homodimer formation. The sequences contain both positively charged and 

negatively charged heptad repeat units, so no single electrostatic potential dominates the 

surfaces of either peptide. Because studying the mechanisms, including any observable 

(a) 

 

 
(b) 
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position dependence, was the governing intent of this research, two Asn residues are included 

in order to enforce the alignment of the two peptides. This strict conformational preference 

should make the identification of any position dependence simpler, since subtle yet undesired 

conformational isomers will be strongly discouraged. 

Woolfson’s established route towards micro-feature protein fibers served as further 

encouragement for the selection of this sequence. It was anticipated that if an efficient energy 

transfer system were developed on the molecular level, it could potentially be expanded 

towards functional materials for use as light harvesting antennae in solar cells and artificial 

photosynthetic constructs.15e 

The coiled-coil peptide structure represents an interesting, and previously 

uninvestigated, scaffold for studying energy transfer between RuII and OsII containing 

bipyridyl complexes. A multitude of positions could have potentially been modified for the 

study of energy transfer. The P1 peptide was ultimately modified with an OsII bipyridyl 

complex at the 2c, 2f, and 2g positions in order to study energy transfer. The OsII-containing 

metallopeptides are referred to as 2c-Os, 2f-Os, and 2g-Os throughout the rest of the report. 

The P2 peptide was similarly modified with a RuII bipyridyl complex at the 2b, 2e, and 2f 

positions in order to produce the 2b-Ru, 2e-Ru, and 2f-Ru metallopeptides. The development 

of the chemistry used to modify the coiled-coil scaffold and synthesize the metallopeptides is 

described in Chapter III. The choice of substitution positions and how they relate to both 

coiled-coil structure and the study of energy transfer is described in Chapter IV. The 

metallopeptides exhibit position-dependent energy transfer behavior that is related to their 

design and structure. The full characterization of this position-dependent energy transfer is 

described in detail within Chapter V. 
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Chapter III 

SYNTHESIS OF METALLOPEPTIDES 

  

 A. Synthesis of [Ru(bpy)3]
2+- and [Os(bpy)3]

2+-containing metallopeptides 

 i. Background for [Ru(bpy)3]
2+- and [Os(bpy)3]

2+-containing amino acids 

A number of redox-active amino acids containing RuII and OsII bipyridyl complexes 

have previously been reported.1 Meyer and coworkers developed a method for the acylation 

of lysine at the -N using bipyridyl-4-carboxylic acid complexes of RuII and OsII (Figure 

3.1a).1a The [Ru(bpy)3]
2+-modified lysine complex could be incorporated into polyalanine -

helices and other simple peptides for the study of photoinduced electron transfer. Geisser and 

coworkers extended this method to prepare shorter chemical analogs with fewer methylene 

spacers (Figure 3.1b).1b Kise and Bowler developed a method for synthesizing a 

[Ru(bpy)3]
2+-containing amino acid with a single methylene group linking the bipyridyl 

complex to the amino acid -carbon (Figure 3.1c).1c,d Their method relied on a 

cinchonidinium bromide catalyst under phase-transfer conditions. The [Ru(bpy)3]
2+-

containing amino acid developed by Kise and Bowler could also be incorporated into -

helices, although specialized coupling conditions were required. Meyer and coworkers also 

prepared several [Ru(bpy)3]
2+-containing proline derivatives for incorporation in polyproline 

helices, another common type of protein secondary structure.1e All of the amino acid 

derivatives discussed are convenient because they can be incorporated into metallopeptides 
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in a site-specific manner using routine solid-phase peptide synthesis (SPPS) protocols. 

Common drawbacks for these amino acid derivatives include the need for longer coupling 

times, more exotic coupling reagents, and often diminished yields relative to standard amino 

acids. All of these redox-active amino acids suffer from the fundamental drawback that they 

can only be used in the context of linear synthetic approaches. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Previously reported redox-active amino acids. (a) Meyer and coworkers 
developed procedures for preparing [Ru(bpy)3]

2+- and [Os(bpy)3]
2+-containing lysine 

derivatives (MII = RuII or OsII). (b) Geisser and coworkers prepared similar (RuII only) amino 
acids with shorter linkers (n = 1, 2, and 3). (c) Kise and Bowler developed a [Ru(bpy)3]

2+-
containing amino acid with a single methylene group as the linker to the amino acid 
backbone. (d) Meyer and coworkers also developed a [Ru(bpy)3]

2+-containing proline 
derivative. 
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Meyer’s method of employing -N derivatized lysine amino acids was anticipated to 

be the most amenable for incorporating RuII and OsII bipyridyl complexes in coiled-coil 

peptide structures. As discussed in Chapter II, a [Ru(bpy)3]
2+-containing proline would 

almost certainly be destabilizing towards a coiled-coil peptide structure due to the inherently 

low helix propensity of the amino acid proline. The shorter amino acids (Figure 3.1b,c) were 

also initially disregarded due to the potentially destabilizing effect they may have on the 

coiled-coil peptide structure. To the best of our knowledge, all reported [Ru(bpy)3]
2+-

containing amino acids are Boc-protected at the -N for use with Boc/benzyl synthetic 

strategies. 

 ii. Synthesis of [Ru(bpy)3]
2+- and [Os(bpy)3]

2+-containing Fmoc-lysine derivatives 

 RuII- and OsII-containing Fmoc-protected amino acids were developed for use with 

Fmoc-based synthetic strategies. Fmoc-based SPPS does not require the use of anhydrous 

hydrofluoric acid, or the specialized equipment associated with it, in order to cleave peptide 

products from the solid support,.2 Fmoc-based chemistry is generally considered safer 

compared to Boc-based SPPS chemistry for these reasons.  

The developed synthetic strategy started with the commercially available ligand, 4,4’-

dimethyl-2,2’-dipyridine (1) (Figure 3.2). Selective oxidation of 1 to the monoaldehyde (2) 

using selenium dioxide, has been reported by Bergstrom and by Peek.3a,b Oxidation to the 

carboxylic acid (3) can be affected using silver oxide.3b The succinimidyl ester can be 

produced using standard coupling conditions (4).3c Diisopropylcarbodiimide was typically 

the coupling reagent of choice, although DCC or EDC could both be used as well. The 

succinimidyl ester could subsequently be reacted with -N-Fmoc-L-lysine in order to 

produce the desired bipyridyl ligand (5). Reaction of 5 with either Ru(bpy)2Cl2 or 
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Os(bpy)2Cl2 by heating at reflux in H2O/EtOH (1:1, v:v) yielded the desired RuII- and OsII-

containing Fmoc-protected amino acids 6a and 6b, respectively.4 The amino acids were 

typically isolated as the hexafluorophosphate salts in good yield. 

 

Figure 3.2 Synthesis of Fmoc-protected amino acids containing both RuII and OsII bipyridyl 
complexes (6a, 6b). Conditions: (a) SeO2 (1.01 equiv), 1,4-dioxane, 100 °C, 24 hours. (b) 
AgNO3 (1.1 equiv), NaOH, H2O/EtOH, RT, 15 hours. (c) N-Hydroxysuccinimide (1.0 
equiv), DIC (1.2 equiv), DMF, 8 hours. (d) -N-Fmoc-L-Lysine (1.1 equiv), N-
methylmorpholine (2.5 equiv), DMF, RT, 6 hours (77%). (e) Ru(bpy)2Cl2 or Os(bpy)2Cl2, 
H2O/EtOH, 90 °C, HPF6 (6a 70%, 6b 60%). 

The amino acids 6a and 6b could be incorporated into metallopeptides during 

standard SPPS using procedures typical for Fmoc-protected amino acids. Yields for 

metallopeptides synthesized in this manner were somewhat lower compared to peptides 

containing only the canonical amino acids. Multiple attempts were made to couple the redox-

active Fmoc-protected amino acids using HATU at 50 °C. Although this procedure had been 
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useful for other researchers trying to couple large [Ru(bpy)3]
2+-containing amino acids, in the 

authors hands it produced no noticeable improvement in peptide yield.1c Fmoc-deprotection 

reactions are typically performed under highly basic conditions in the presence of 

nucleophilic scavenger for dibenzofulvene.2 Piperidine can serve as both base and scavenger 

in these reactions. After the coupling of 6b, washing the SPPS resin did not lead to any 

coloring of the wash solvent after several wash aliquots. However, it was observed that 

solutions used for the deprotection reactions became slightly colored in a manner 

characteristic to OsII bipyridyl complexes. This observation was apparent whether 

deprotection reactions were performed using 20% piperidine or 2% piperidine/2% DBU. 

Despite the high level of kinetic stability reported for RuII and OsII bipyridyl compounds 

(Chapter I),5 it is not unreasonable to conclude that inefficiencies observed when trying to 

incorporate 6a or 6b during SPPS resulted from an intolerance to the deprotection reaction 

conditions, and not from incomplete coupling reactions. This conclusion is supported by 

reports from other researchers who employed similar coupling condition for the 

incorporation of sterically hindered [Ru(bpy)3]
2+-containing amino acids, but did not require 

Fmoc-deprotection during synthesis.1c 

 The metallopeptides 2f-Os* and 2f-Ru* were synthesized by incorporating 6b and 6a, 

at the 2f positions within P1 and P2, respectively. The asterisk label is used to differentiate 

these metallopeptides from those described below which contain different linkers to the 

peptide scaffold. Although the 2f-Os* and 2f-Ru* peptides did form stable coiled-coil 

structures, this approach towards synthesizing metallopeptides was abandoned for the more 

convergent synthetic strategy described below. 
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iii. Development of the CuAAC reaction for synthesizing metallopeptides  

A convergent synthetic strategy allows peptide, chemical linker, and bipyridyl 

complex to be easily varied for systematic optimization and study. The criteria for a 

convergent synthetic strategy were considered as follows: (1) is the synthetic process high 

yielding?; (2) is the process orthogonal to the chemistry normally used to synthesize peptides 

(e.g. SPPS conditions)?; (3) can the byproducts of the process be removed from the product 

easily?; and (4) can the reactants and materials needed throughout the process be easily 

synthesized or obtained commercially? 

There were a number of conjugation reactions that could have met the criteria for a 

more convergent synthesis of [Ru(bpy)3]
2+- and [Os(bpy)3]

2+-containing metallopeptides. The 

Staudinger reaction, nucleophilic addition to a Michael acceptor, and palladium catalyzed 

coupling reactions were all considered possible routes for the attachment of [Ru(bpy)3]
2+ and 

[Os(bpy)3]
2+ complexes convergent with traditional SPPS.6 The Cu(I)-catalyzed azide-alkyne 

1,3-dipolar cycloaddition (the CuAAC, or “click” reaction) provides general and robust 

conditions for bioconjugation.7 The CuAAC reaction typically yields one exclusive 

regioisomer (1,4-triazole) in an extremely high yield with no resultant stereocenters. Both the 

alkyne and azide functional groups are tolerant to all of the chemical conditions used during 

routine SPPS, as is the triazole product. It was known from the outset that introducing azide 

functionality into amino acids was quite general,8 and that several alkyne-functionalized RuII 

and OsII bipyridyl complexes had previously been reported.9 It was also anticipated that Cu(I) 

and other reagents used for the CuAAC could be easily removed using purification 

techniques typical for peptide isolation. 
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 -Fmoc--azido-L-lysine (8) was chosen as the azido amino acid for the CuAAC 

reaction based on the desire to maintain a flexible four methylene linker (Figure 3.3).10 The 

azido amino acid (8) could be easily synthesized by the Cu(II)-catalyzed diazotransfer 

reaction with the -amino acid (7). Imidazole-1-sulfonyl azide (9) was typically employed as 

the diazotransfer reagent,11 although triflyl azide could also be used to affect the same 

transformation. The diazotransfer reagent (9) provided the advantage that it could be stored 

for months without losing potency, while triflyl azide must be prepared and used within a 

short a period of time. Both reagent have the potential for highly exothermic reactions and 

must be treated as detonation hazards.12 

 

Figure 3.3 Synthesis of -Fmoc--azido-L-lysine (8) by diazotransfer from sulfonyl-
imidazole-azide (9). Conditions: (a) sulfonyl-1-imidazole azide (9) (1.2 equiv), potassium 
carbonate (2.0 equiv), copper(II) sulfate pentahydrate (0.01 equiv), MeOH, RT, 18 hours 
(81%). 

 The alkyne functionalized ligand (10) could be easily synthesized from the previously 

described monocarboxylic acid (3) using standard coupling conditions. Reaction of 10 with 

either Ru(bpy)2Cl2 or Os(bpy)2Cl2 by heating at reflux in H2O/EtOH yielded the desired 

alkyne functionalized bipyridyl complexes 11a and 11b, respectively (Figure 3.4). Bipyridyl 

complexes of RuII and OsII containing the propargyl amide group (10) have spectroscopic 

properties very similar to those of the parent compounds, [Ru(bpy)3]
2+ and [Os(bpy)3]

2+.9f 
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Figure 3.4 Synthesis of the alkyne-containing bipyridyl complexes 11a and 11b using the 
propargyl amide ligand 10. Conditions: (a) N-Hydroxysuccinimide (1 equiv), EDC (1.1 
equiv), ACN, 4 hours, propargyl amine (1.1 equiv), 12 hours. (b) Ru(bpy)2Cl2 or 
Os(bpy)2Cl2, H2O/EtOH, 90 °C, HPF6 (11a 98%, 11b 84%). 

Metallopeptides could be easily prepared by first synthesizing azidopeptides with -

Fmoc--azido-L-lysine incorporated at the desired point of (11a/11b) attachment during 

SPPS (Figure 3.5). The azido group is completely orthogonal to both the extremely basic 

(piperidine, DBU, DIPEA) and extremely acidic conditions (TFA) used during SPPS. 

Azidopeptides could be cleaved from the solid-phase support using standard procedures. 

Purification was performed using RP-HPLC. Yields for azidopeptides were comparable to 

yields for peptides containing only the standard amino acids. 
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Figure 3.5 Convergent synthesis of metallopeptides starting with the synthesis of 
azidopeptides using -Fmoc--azido-L-lysine (8). Conditions: (a) Standard SPPS with m 
residues; Coupling steps: Fmoc-amino acid (5 equiv), HBTU (4 equiv), HOBt (4 equiv), 
DIPEA (5 equiv), DMF/NMP, 2 x 1 hour; Deprotection steps: 20% piperidine, DMF, 2 x 15 
minutes; -Fmoc--azido-L-lysine (8) (1.5-2 equiv), HBTU (2 equiv), HOBt (2 equiv), 
DIPEA (4 equiv), DMF, 1 x 3 hours; Standard SPPS with n residues. (b) Cleavage from the 
SPPS support: TFA:TIPS:water (95:2.5:2.5), 3 hours; purification: RP-HPLC. (c) CuAAC 
reaction: 11a or 11b (2 equiv), [Cu(CH3CN)4]PF6 (2 equiv), tris(triazolyl)methylamine 
ligand (12) (1 equiv), buffer (10 mM phosphate buffer, pH 8.5)/DMF (1:1; v:v), 24-48 hours; 
purification: size exclusion chromatography, RP-HPLC. (d) The tris(triazolyl)methylamine 
ligand (12) could be prepared from tripropargylamine by reaction with methyl azidoacetate 
(4 equiv), DIPEA (3 equiv), [Cu(CH3CN)4]PF6 (0.3 equiv), 24 hours, 83%. 

Conjugation of 11a and 11b to the azidopeptides required optimization of the CuAAC 

reaction (Figure 3.5). The CuAAC reaction can proceed under acidic or neutral conditions, 

but is typically promoted by the addition of an exogenous base, or by the use of alkaline 
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buffered media.7 Reaction pH was critical in the developed metallopeptide system. The 

CuAAC reaction proceeded much more quickly when a basic (pH 8.5) phosphate buffer was 

used compared to neutral (pH 7) buffered solutions. The parent peptide sequences and the 

azidopeptides had solubility properties that varied considerably with pH. Under acidic 

conditions the peptides were readily soluble in water, methanol, and acetonitrile to a lesser 

extent. Purification by RP-HPLC under acidic conditions was not met with difficulty. 

However, attempts to determine the azidopeptide concentration using the molar absorptivity 

of tyrosine in 5M guanidinium hydrochloride (pH 7) failed to give reliable results, 

presumably due to insolubility of the azidopeptides in the highly concentrated stock 

solutions. Alternatively, CuAAC reactions could be performed simply by massing out 

azidopeptide solids, or by solution transfer to a tared vial using methanol as the transfer 

solvent. Azidopeptides were considerably less soluble in the basic aqueous media required 

for the CuAAC reaction. Cosolvents such as DMF were typically employed in order to 

solubilize the azidopeptides. The cosolvents DMSO and tBuOH could also be used to 

solubilize the azidopeptides in water. Interestingly, while methanol and acetonitrile were 

good solvents for the azidopeptides under acidic conditions, these solvents were extremely 

inept under the basic reaction conditions. 

Any number of copper(I)-catalysts have been shown competent in the CuAAC 

reaction.7c The in situ reduction of copper(II) sulfate to copper(I) using sodium ascorbate has 

perhaps been the most widely employed catalysts system. Tetrakis(acetonitrile)copper(I) 

hexafluorophosphate was typically employed as the precatalyst in the metallopeptide 

syntheses, and therefore did not require any in situ reduction process, although the 

copper(II)/ascorbate system has been employed by other researchers within the laboratory for 
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similar CuAAC reactions. It was commonly observed that reaction mixtures containing a 

tris-(triazolylmethyl)amine ligand (12) demonstrated shorter reaction times, and increased 

yields compared to reaction mixtures lacking the ligand.13 The reaction will proceed without 

the ligand (12) if higher equivalents of the copper(I)-catalysts are used (~ 10 equiv of 

copper(I)), but byproducts of peptide oxidation were observed under these conditions. 

Tetravalent ligands such as the tris-(triazolylmethyl)amines have been proposed to protect 

the copper(I)-catalyst metal center from oxidation and therefore maintain higher 

concentrations of active catalyst during reaction.13 Indeed, cyclic voltammetry studies 

showed that tris-(triazolylmethyl)amine ligands can increases the Cu(I)/Cu(II) redox couple 

by close to 0.3 V.13 Other researchers have proposed the effect of these ligands is not on the 

copper oxidation state, but on the copper aggregation state.7c In the absence of accelerating 

ligands the CuAAC reaction, under certain circumstances, demonstrates kinetics that are 

second order in Cu(I) and sometimes higher than first order in alkyne.14 Many copper(I) 

compounds exist as assortments of aggregates in solution. For example, CuI in acetonitrile 

exists as number of aggregated species, ranging from Cu2I2 to Cu7I7 .7c Complexes of 

copper(I) and tris-(triazolylmethyl)amine ligands crystallize as bimetallic dimers where each 

copper center shares one triazole ring with the other.15 The concept that bimetallic (or higher 

order) copper(I) aggregates are the true catalytic species in the CuAAC reaction would help 

to explain many of the observations made regarding the reaction. The optimized CuAAC 

conditions for metallopeptide synthesis employed one equivalent of the tris-

(triazolylmethyl)amine ligand, while two equivalents of the copper(I) catalyst and alkyne 

were used (11a or 11b). This was done to prevent the accidental addition of excess tris-

(triazolylmethyl)amine ligand, since this has been shown to inhibit other CuAAC reactions,16 
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and also because one equivalent of the ligand was sufficient to promote the desired reaction. 

The CuAAC reactions between the azidopeptides and 11a or 11b were often complete in 

several hours, although reaction times of at least one day were typically employed. After the 

conjugation reactions were complete, the reaction mixtures were diluted tenfold with water, 

frozen, and lyophilized. The desired metallopeptides could be purified using a combination 

of size-exclusion chromatography and RP-HPLC as described in the experimental section. 

iv. Conclusions 

Several methods for synthesizing [Ru(bpy)3]
2+- and [Os(bpy)3]

2+-containing 

metallopeptides have been presented throughout this chapter. Methods for the synthesis of 

Ru(bpy)3]
2+- and [Os(bpy)3]

2+-containing amino acids have been presented, along with 

techniques for their incorporation during SPPS. Also presented in this chapter is a convergent 

method for metallopeptide synthesis where alkyne functionalized RuII (11a) and OsII (11b) 

complexes could be conjugated to azidopeptides by way of a CuAAC reaction. The use of a 

tris-(triazolylmethyl)amine ligand (12) to accelerate the conjugation reaction was also 

described. As mentioned in Chapter II, the 2b, 2e, and 2f positions within the P2 peptide 

sequence were selected for the incorporation of -Fmoc--azido-L-lysine and modification 

with 11a in order to produce metallopeptides that could serve as excited-state energy donors. 

These donor metallopeptides are from here on out referred to as the 2b-Ru, 2e-Ru, and 2f-Ru 

metallopeptides. The P2 designation corresponding to the original parent sequence that was 

modified is implied, but not explicitly listed. The 2c, 2f, and 2g positions within the P1 

peptide sequence were similarly modified with 11b in order to produce metallopeptides that 

could serve as excited-state energy acceptors. These acceptor metallopeptides are from here 

on out referred to as the 2c-Os, 2f-Os, and 2g-Os metallopeptides. The synthetic procedures 
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required to synthesize the parent peptides (P1 and P2), azidopeptides, metallopeptides, and 

all needed precursors described throughout Chapter III are presented within the following 

experimental section. 

The spectroscopic properties of the synthetic metallopeptides were similar to those of 

Ru(bpy)3
2+ and Os(bpy)3

2+ (Figure 3.6a). Absorbance bands due to the -*, 1MLCT, and 

3MLCT transitions of the bipyridyl complexes dominate the spectra. The metallopeptide 

steady-state emission spectra also resemble those of the parent complexes (Figure 3.6b). The 

emission maxima for the RuII- and OsII-containing metallopeptides, approximately 660 and 

800nm, respectively, are both hypsochromically shifted relative to Ru(bpy)3
2+ and 

Os(bpy)3
2+. The photophysical properties of mixtures of the metallopeptides indicate a 

position-dependent energy transfer between the donor (RuII) and acceptor (OsII) 

metallopeptides. The study of this energy transfer is reported later in Chapter V. The physical 

characterization of the coiled-coil metallopeptides is described beforehand in Chapter IV. 
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Figure 3.6 (a) Absorbance spectra for the 2f-Ru metallopeptide show -* and 1MLCT 
transitions characteristic to RuII bipyridyl complexes. Absorbance spectra for the 2f-Os 
metallopeptide show -*, 1MLCT, and also 3MLCT transitions characteristic only to OsII 
bipyridyl complexes. Absorbance spectra were recorded at 25°C in 10 mM PO4

3-, pH 7, 
buffer. (b) Normalized steady-state emission spectra for the 2e-Ru and 2g-Os metallopeptides 
with emission maxima at approximately 660 and 800 nm. Emission spectra were recorded at 
25°C in 10 mM PO4

3-, pH 7, buffer that was deoxygenated with Ar for 30 minutes. 

 B. Experimental section 

i. Materials and general methods 

Solvents were purchased from Fisher Scientific and were used as received unless 

noted otherwise. cis-Dichlorobis(2,2’-bipyridine)ruthenium(II) dihydrate was purchased from 

Strem Chemicals. All -N-Fmoc-amino acids, including -N-Fmoc-lysine, were purchased 

from Novabiochem. Tetrakis(acetonitrile)copper(I) hexafluorophosphate, 2,2’-bipyridine, 

(a) 

 
(b)
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and 4,4’-dimethyl-2,2’-bipyridine were purchased from Aldrich. The compounds 4’-methyl-

2,2’-bipyridine-4-carboxaldehyde, 4’-methyl-2,2’-bipyridine-4-carboxylic acid, and 

succinimidyl-4-carboxy-4’-methyl-2,2’-bipyridine were synthesized according to reported 

procedures.3 cis-Dichlorobis(2,2’-bipyridine)osmium(II) was synthesized using the procedure 

reported by Meyer.4 Deuterated solvents were purchased from Cambridge Isotope 

Laboratories. 1H and 13C NMR spectra were recorded at 400 and 100 MHz, respectively, on 

Bruker spectrometers. Chemical shifts were given in ppm relative to solvent peaks 

corresponding to residual protons for the deuterated solvents. These values were taken as δ 

7.26, 1.93, 2.49, 5.32 and 4.67 for CDCl3, CD3CN, (CD3)2SO, CD2Cl2, and D2O, 

respectively. Coupling constants are given in hertz. The details for peptide synthesis and 

purification are provided below. High-resolution and low-resolution mass spectra were 

obtained using a Bruker Biotof instrument.  

ii. Synthesis of [Ru(bpy)3]
2+- and [Os(bpy)3]

2+-containing Fmoc-lysine derivatives 

4'-Methyl-2,2'-bipyridine-4-carboxylic acid (3). The bipyridyl monocarboxylic acid 

was prepared according to the literature procedure by Peek and Erickson.3b 

Succinimidyl-4-carboxy-4'-Methyl-2,2'-bipyridine (4). The succinimidyl ester was 

prepared according to the literature procedure by Telser and Netzel.3c 

 -Fmoc--(4'-methyl-2,2'-bipyridine-4-carboxamido-)-L-Lysine (5). A suspension of 

succinimidyl-4-carboxy-4’-methyl-2,2’-bipyridine (.767 g, 2.5 mmol), N-methylmorpholine 

(0.75 mL, 6.8 mmol, 2.7 equiv), and -N-Fmoc-lysine (1.00 g, 2.7 mmol, 1.1 equiv) was 

stirred in 25 mL of anhydrous DMF for 8 hours. The solvent was removed in vacuo and the 

remaining solid residue was suspended in 0.1 M ammonium chloride and extracted into ethyl 

acetate (4 x 100 mL). The organic fractions were freed of solvent and recrystallized from 
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hexanes/diethyl ether (1:1, v:v) to give the product as a white solid (1.07 g, 1.9 mmol, 77 %). 

1H NMR (400 MHz, (CD3)2SO): δ 8.96 (s, 1H), δ 8.76 (s, 1H), δ 8.57 (s, 1H), δ 8.25 (s, 1H), 

δ 7.99-7.85 (m, 3H), δ 7.81 (s, 1H), δ 7.80-7.60 (m, 3H), δ 7.40-7.35 (m, 2H),  δ 7.32 (m, 

3H), δ 5.76 (s, 1H), δ 4.25 (m, 3H), δ 3.78 (m, 1H), δ 2.74 (m, 2H), 2.43 (s, 3H), δ 1.70-1.30 

(m, 6H); 13C NMR (150 MHz, CDCl3/CD3OD) δ 174.8, 166.0, 156.1, 155.6, 154.5, 150.2, 

150.0, 148.1, 143.8, 143.7, 143.1, 141.2, 127.6, 127.0, 125.5, 125.0, 123.0, 122.2, 119.9, 

118.0, 77.21 + 77.0 + 76.8 (CDCl3), 66.8, 53.6, 53.4, 50.4 (CD3OD), 47.1, 38.9, 31.2, 29.6, 

27.6, 26.4, 25.5, 21.6, 21.3. High-resolution ESI-MS: m/z calculated for C33H33N4O5 (M + 

H+), 565.2478; found 565.2478. 

Bis-(2,2’bipyridine)(-Fmoc--(4’-Methyl-2,2’-bipyridine-4-carboxamido-)-L-

lysine)ruthenium(II) bis(hexafluorophosphate) (6a). A small round bottom, equipped with a 

condenser, was charged with cis-dichlorobis(2,2’-bipyridine)ruthenium(II) dihydrate (0.793 

g, 1.52 mmol), and -Fmoc--(4'-methyl-2,2'-bipyridine-4-carboxamido-)-L-Lysine (5) (1.03 

g, 1.82 mmol, 1.2 equiv), and then heated at reflux in 70% aqueous ethanol for 24 h. The 

mixture was allowed to cool to room temperature, filtered, and then acidified with several 

drops of 60% aqueous HPF6. The mixture was placed in a freezer or 1 hour while a turbid 

orange precipitate formed. The solid orange product was collected on a medium frit. The 

collected product was dissolved in a minimum amount of ACN, and then added drop wise to 

a round bottom cooled in an ice bath and containing 150 mL IPA. The orange precipitate 

reformed, and was collected on a medium frit to afford the title product (1.42 g, 1.12 mmol, 

74%). TLC (n-BuOH/EtOAc/AcOH/water, 1:1:1:1); Rf: 0.48. 1H NMR (400 MHz, CD3CN): 

δ 8.91 (m, 1H), δ 8.55 (s, 1H), δ 8.48-8.40 (m, 5H), δ 8.06-8.03 (m, 5H), δ 7.91-7.74 (m, 

3H), δ 7.74-7.64 (m, 5H), δ 7.64-7.51 (m, 3H), δ 7.39-7.33 (m, 6H), δ 7.26-7.22 (m, 2H),  δ 



47 
 

6.17 (m, 1H), δ 4.23 (m, 2H), δ 4.15 (m, 1H), δ 4.08 (m, 1H), δ 3.40 (m, 2H), 2.31 (m, 3H), 

1.62 (m, 2H), 1.45 (m, 2H), 1.26 (m, 2H); UV-vis (CH3CN) max (): 235 (28,000), 255 

(31,000), 288 (70,000), 456 (14,000); High-resolution ESI-MS: m/z calculated for 

C53H48N8O5Ru (M2+), 489.1396; found 489.1333. 

Bis-(2,2’bipyridine)(-Fmoc--(4’-Methyl-2,2’-bipyridine-4-carboxamido-)-L-

lysine)osmium(II) bis(hexafluorophosphate) (6b). A small round bottom, equipped with a 

condenser, was charged with cis-dichlorobis(2,2’-bipyridine)osmium(II) (0.026 g, 0.046 

mmol), and -Fmoc--(4'-methyl-2,2'-bipyridine-4-carboxamido-)-L-Lysine (5) (0.045 g, 

0.080 mmol, 1.73 equiv), and then heated at reflux in 50% aqueous ethanol for 24 h. The 

mixture was allowed to cool to room temperature, filtered, and then acidified by several 

drops of 60% aqueous HPF6. The green mixture was extracted with EtOAc (50 mL). The 

EtOAc fraction was dried with anhydrous magnesium sulfate and freed of solvent. The solid 

product was reconstituted in a minimum volume of ACN and added drop wise to a stirring 

solution of 10 mM NH4PF6 that was cooled in an ice bath.  The green precipitate was 

collected on a medium frit to afford the title product (0.037 g, 0.027 mmol, 60%). TLC (n-

BuOH/EtOAc/AcOH/water, 1:1:1:1); Rf: 0.48. 1H NMR (400 MHz, CD3CN): δ 8.76 (s, 1H), 

δ 8.51-8.44 (m, 5H), δ 7.91-7.83 (m, 6H), δ 7.77 (d, J = 6.4, 1H), 7.67-7.62 (m, 6H), 7.58 (s, 

1H), 7.48 (d, J = 6.4, 1H), 7.41-7.38 (m, 2H), 7.34-7.29 (m, 6H), 7.22-7.29 (m, 1H), 6.10 (d, 

J = 8.4, 1H), 4.32 (d, J = 6.8, 1H), 4.22 (m, 1H), 4.14 (m, 1H), 3.57 (m, 1H), 3.45 (m, 2H), 

3.31 (m, 1H), 2.63 (s, 1.5H), 2.54 (s, 1.5 H), 1.6 (m, 3H), 1.47 (m, 3H). UV-vis (CH3CN) 

max (): 255 (29,000), 291 (60,000), 440, (10,000), 483 (10,000); High-resolution ESI-MS: 

m/z calculated for C53H48N8O5Os (M2+), 533.6642; found 534.1480. 
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iii. Synthesis of -Fmoc--azido-L-lysine 

-Fmoc--azido-L-lysine (8). A 100 mL round bottom was charged with α-N-Fmoc-

L-lysine (4.547 g, 12.3 mmol), imidazole-1-sulfonyl azide (9) (3.104 g, 14.81 mmol, 1.20 

equiv), and potassium carbonate (3.411 g, 24.68 mmol, 2.0 equiv). The mixture was stirred in 

MeOH (60 mL) while copper(II) sulfate pentahydrate (30.8 mgs, 123.4 μmol, 1 mol %) was 

added. A precautionary blast shield was employed while the mixture stirred under N2 for 18 

h. The reaction mixture was concentrated under vacuum, diluted with H2O (400 mL), and 

acidified via the addition of 6M aqueous HCl. The precipitate that formed was extracted with 

EtOAc (3 x 400 mL). The combined organic fractions were washed with H2O (1 L), dried 

over anhydrous Na2SO4, and concentrated under vacuum.  The product 8 was obtained as a 

white solid after chromatography on silica gel using 5% (v/v) MeOH in CH2Cl2 (3.96 g, 10.0 

mmol, 82%).  1H NMR (400 MHz, CD3OD): δ 7.69 (d, J = 7.6, 2H), δ 7.60 (t, J = 8.0, 2H), δ 

7.31 (t, J = 7.2, 2H), δ 7.24 (t, J = 7.2, 2H), δ 4.30 (d, J = 6.8, 2H), δ 4.19 (m, 1H), δ 4.13 (t, 

J = 6.8, 1H), δ 3.17 (m, 2H),  δ 1.90-1.35 (m, 6H); 13C NMR (100 MHz, CD3OD) δ 174.4, 

157.3, 143.8, 141.2, 127.4, 126.8, 124.8, 119.5, 66.6, 55.1, 53.8, 50.9, 30.9, 28.0, 22.8. High-

resolution ESI-MS: m/z calculated for C53H48N8O5Os (M2+), 533.6642; found 534.1480. 

Imidazole-1-sulfonyl azide hydrochloride (9). Imidazole-1-sulfonyl azide 

hydrochloride was synthesized according to the procedure by Goddard-Borger and Stick.11 

Warning: Potentially explosive intermediates formed during reaction.12 Synthetic operations 

were conducted behind a blast shield whenever possible. A 100 mL round bottom charged 

with sodium azide (5.47 g, 84.1 mmol) and ACN (85 mL) was cooled in an ice bath and 

stirred magnetically while sulfuryl chloride (6.81 mL, 1 equiv) was added drop wise. The 

addition was performed behind a blast shield where the reaction remained while it was stirred 
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overnight (18 h) and slowly returned to room temperature. The mixture was again cooled in 

an ice bath with stirring while imidazole (11.45 g, 168.4 mmol, 2 equiv) was added in small 

portions over the course of 20 minutes. Behind a blast shield, the mixture was allowed to 

slowly warm to room temperature while stirring for 4.5 hours. The mixture was transferred to 

a 500 mL separatory funnel and diluted with EtOAc (170 mL). The organic solution was 

washed using water (2 x 170 mL) and then saturated sodium bicarbonate (2 x 170 mL). After 

drying with anhydrous sodium sulfate, the organic portion was filtered through a cotton plug. 

An acidic solution was prepared by adding acetyl chloride (22 mL) to anhydrous EtOH (75 

mL). The addition was performed slowly (over 20 minutes) under a nitrogen atmosphere 

while the alcoholic solution was cooled in an ice bath. The filtered EtOAc solution was 

cooled in an ice bath while a portion of the acidic EtOH solution (40 mL) was added slowly. 

A white precipitate formed and the mixture was placed in a freezer (1 h) before the solid was 

collected. Drying the solid under vacuum overnight provided the title compound (10.4 g, 

49.7 mmol, 59%). 1H NMR (400 MHz, D20): δ 9.31 (s, 1H), δ 7.89 (s, 1H), δ 7.49 (s, 1H). 

iv. Synthesis of RuII and OsII bipyridyl alkyne complexes and the tris-

(triazolylmethyl)amine ligand 

4’-Methyl-2,2’-bipyridine-4-propargylamide (10). The bipyridyl propargyl amide was 

prepared according to the procedure by Khan and Grinstaff.9d The monocarboxylic acid 3 

(189 mg, 0.881 mmol) was suspended in acetonitrile (ACN) (5 mL) along with N-

hydroxysuccinimide (101 mg, 0.881 mmol).  EDC (185.9 mg, 0.9697 mmol, 1.10 equiv) was 

added. The mixture was sonicated and became more translucent while stirring for 4 h.  The 

addition of propargyl amine completely homogenized the reaction which was allowed to stir 

overnight.  The reaction was concentrated under vacuum.  The oily residue was suspended in 
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20 mL of 1 M aqueous Na2CO3, and extracted with 3 x 20 mL of ethyl acetate. The combined 

organic portions were washed with saturated aqueous NaHCO3, dried over anhydrous 

Na2SO4, filtered, and freed of solvents under vacuum. The product 10 was obtained as a 

white solid after chromatography on silica gel using 10% (v/v) MeOH in CH2Cl2 (178 mg, 

80%).  1H NMR (400 MHz, CDCl3): δ 8.79 (d, J = 4.8, 1H), δ 8.63 (s, 1H), δ 8.53 (d, J = 4.8, 

1H), δ 8.26 (s, 1H), δ 7.77 (dd, J = 4.8, 1.4, 1H), δ 7.17 (d, J = 4.8, 1H), δ 6.85 (br s, 1H), δ 

4.29 (m, 2H),  δ 2.45 (s, 3H), δ 2.30 (t, 1H); 13C NMR (100 MHz, CDCl3) δ 165.3, 157.1, 

155.0, 150.1, 149.0, 148.4, 141.9, 125.2, 122.2, 121.7, 117.4, 72.3, 29.87, 21.2.  High-

resolution ESI-MS: m/z calculated for C15H13N3O (M + H+), 252.1137; found 252.1137. 

Bis-(2,2’bipyridine)(4’-Methyl-2,2’-bipyridine-4-propargylamide)-ruthenium(II) 

bis(hexafluorophosphate) (11a). The propargyl amide derivatized RuII complex was prepared 

according to the procedure by Khan and Grinstaff.9d A small round bottom, equipped with a 

condenser, was charged with cis-dichlorobis(2,2’-bipyridine)ruthenium(II) dihydrate (101.0 

mg, 0.1941 mmol), and bipyridyl ligand 2 (55.5 mg, 0.2209 mmol, 1.14 equiv). The reagents 

were heated at reflux in 70% aqueous ethanol for 7 h, and then concentrated in vacuo. The 

residue was dissolved in water (25 mL), and then washed with EtOAc (50 mL). The aqueous 

portion was treated with several drops of concentrated aqueous NH4PF6. The microcrystalline 

product that formed was extracted into CH2Cl2 (50 mL), and washed with 10 mM aqueous 

NH4PF6. Concentration afforded the product as dark red solid (180.8 mg, 98%). 1H NMR 

(400 MHz, CD3CN): δ 8.79 (s, 1H), δ 8.54-8.52 (m, 5H), δ 8.10-8.06 (m, 4H), δ 7.90 (d, J = 

5.6 Hz, 1H), δ 7.75 (m, 5H), δ 7.66 (dd, J = 6.0, 1.6 Hz, 1H), δ 7.60 (d, J = 5.6 Hz, 1H), δ 

7.44-7.41 (m, 4H),  δ 7.31 (d, J = 5.6 Hz, 1H), δ 4.19 (m, 2H), δ 2.57 (s, 3H), δ 2.54 (m, 1H); 
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UV-vis (CH3CN) max (): 246 (26,000), 288 (60,000), 455 (13,400); High-resolution ESI-

MS: m/z calculated for C35H29N7ORu (M2+), 332.5738; found 332.5716. 

Bis-(2,2’bipyridine)(4’-Methyl-2,2’-bipyridine-4-propargylamide)-osmium(II) 

bis(hexafluorophosphate) (11b). The propargyl amide derivatized OsII complex was prepared 

according to the procedure by Khan and Grinstaff.9d A small round bottom, equipped with a 

condenser, was charged with cis-dichlorobis(2,2’-bipyridine)osmium(II) (39.7 mg, 0.069 

mmol), and bipyridyl ligand 10 (19.1 mg, 0.076 mmol, 1.1 equiv). The reagents were heated 

at reflux in 50% aqueous EtOH for 24 h, and then concentrated under vacuum. The residue 

was suspended in H2O (100 mL), and filtered to remove unreacted cis-dichlorobis(2,2’-

bipyridine)osmium(II). The aqueous filtrate was washed with DCM (2 x 100 mL). A portion 

of saturated NH4PF6 was added to the aqueous solution and a green precipitate formed. The 

precipitate was extracted into EtOAc and then concentrated to a solid under vacuum. The 

solid was partially dissolved in DCM, filtered, and then concentrated to provide the product 

as a dark green solid (18.4 mg, 26%). 1H NMR (400 MHz, CD2Cl2): δ 8.80 (d, J = 1.2 Hz, 

1H), δ 8.48 (s, 1H), δ 8.43-8.40 (m, 4H), δ 7.90-7.84 (m, 4H), δ 7.78 (t, J = 5.6 Hz, 1H), δ 

7.70-7.65 (m, 4H), δ 7.63-7.59 (m, 4H), δ 7.41-7.34 (m, 4H), δ 7.44-7.41 (m, 4H),  δ 7.21 

(dd, J = 5.8, 1.0 Hz, 1H), δ 4.20 (dd, J = 5.6, 2.4 Hz, 2H), δ 2.69 (s, 3H), δ 2.28 (t, J = 2.4 Hz 

, 1H); UV-vis (CH3CN) max (): 247 (22,000), 291 (50,000), 485 (10,000), 593 (3,000); 

High-resolution ESI-MS: m/z calculated for C35H29N7OOs (M2+), 337.6024; found 337.5952. 

tris-(triazolylmethyl)amine ligand (12). A solution of tripropargylamine (233.0 mg, 

1.777 mmol), methyl azidoacetate (805.4 mg, 6.998 mmol, 3.94 equiv), and 

tetrakis(acetonitrile)copper(I) hexafluorophosphate (21.9 mg, 58.8 μmol), and DIPEA (1 mL, 

5.741 mmol, ~3 equiv to alkyne) in ACN (4 mL) was stirred under N2 for 24 h. The reaction 
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warmed considerably when DIPEA was added and was cooled in an ice bath. The reaction 

was concentrated in vacuo, and the residue was suspended in saturated aqueous NaHCO3 (50 

mL), extracted with CH2Cl2 (3 x 50 mL), dried over anhydrous Na2SO4, filtered, and 

concentrated. The product (5) was obtained as an off white solid after chromatography on 

silica gel using 5% (v/v) MeOH in CH2Cl2.  Yield, 701 mg (83%).  1H NMR (400 MHz, 

CDCl3): δ 7.84 (s, 1H), δ 5.18 (s, 2H), δ 3.79 (s, 2H), δ 3.78 (s, 3H); 13C NMR (100 MHz, 

CDCl3) δ 166.8, 144.6, 125.2, 52.9, 50.7, 47.4. High-resolution ESI-MS: m/z calculated for 

C18H24N10O6 (M + Cs+), 609.0935; found 609.0920. 

Bis-(2,2’bipyridine)(4’-Methyl-2,2’-bipyridine-4-methyl-aceto-1,2,3-triazolo-

methylacetamide)-osmium(II) bis(trifluoroacetate) (13). A solution of 11b (6.95 mgs, 8 

mol), methyl azidoacetate (1.42 mg, 10 mol, 1.7 equiv) and DIPEA (3 L) in ACN (1.5 

mL) was stirred in a round bottom and cooled in an ice bath before tetrakis 

(acetonitrile)copper(I) hexafluorophosphate (0.56 mgs, 1.5 mol, 20 mol %) was added. The 

solution was allowed to warm to room temperature slowly and stirred for 2 days under inert 

atmosphere. The OsII complex was purified by RP-HPLC using methods identical to those 

described below for the metallopeptides. ESI-MS: m/z calculated for C38H34N10O3Os (M2+), 

435.12; found 435.1. The complex is discussed briefly in Chapter V during the description of 

a control experiment. 

 v. Synthesis of peptides and metallopeptides 

SPPS of the peptide parent sequences P1 and P2. Peptides were typically synthesized 

by standard automated SPPS using a Thuramed tetras synthesizer. Fmoc-protected amino 

acids were used along with a CLEAR-Amide resin from Peptides International, Inc.  Amino 

acid residues were activated with HBTU, HOBt, and DIPEA in DMF. Amino acids were 
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deprotected twice with 2% DBU and 2% piperidine in DMF for 15 minutes each step. 

Commercially available amino acids were coupled using double coupling cycles of 30-60 

minutes each. Couplings for the unnatural amino acids 6a, 6b, and 8 have specific procedures 

described below. The N-terminus of each peptide was acetylated using 5% acetic anhydride 

and 6% lutidine in DMF for 30 minutes. Cleavage of the peptides from the resin was 

performed in 95.0% TFA, 2.5% water, and 2.5% TIPS. TFA was evaporated with a stream of 

nitrogen and diethyl ether was added to precipitate the cleavage products. The peptides were 

extracted with water or collected as solids by centrifugation and lyophilized to dryness. 

Peptides were purified by RP-HPLC using an Atlantis Prep OBD dC-18 semi-preparative 

column, with a gradient of 0-100% solvent B over 40 minutes, where solvent A was 95:5 

water:ACN, 0.1% TFA, and solvent B was 95:5 ACN:water, 0.1% TFA. Purified samples 

were lyophilized and the peptide sequence was confirmed by ESI-MS. M was calculated as 

3212.73 (exact) for P1 (C142H237N37O47). MS m/z observed: 1608.4 ([M + 2H+]2+), 1072.6 

([M + 3H+]3+), 804.7 ([M + 4H+]4+); M was calculated as 3363.95 (exact) for P2 

(C149H258N46O42). MS m/z observed: 1123.0 ([M + 3H+]3+), 842.5 ([M + 4H+]4+), 674.0 ([M + 

5H+]5+). 

Synthesis of the metallopeptides 2f-Os* (P1) and 2f-Ru* (P2). Metallopeptides were 

typically synthesized according to the primarily automated procedures described above. At 

times the metallopeptides were synthesized by hand. The [Ru(bpy)3]
2+- and [Os(bpy)3]

2+-

containing Fmoc-protected amino acids 6a and 6b were typically coupled by hand using one 

of two sets of conditions: (a) 2 equiv of HBTU, 2 equiv of HOBt, 3 equiv of DIPEA, 3-5 h. 

(b) 2 equiv of HATU, 3 equiv of DIPEA, 50 °C, 24 hours. Amino acid deprotection reactions 

were performed using two sets of conditions: (a) 2% DBU, 2% piperidine, DMF, 15 minutes. 
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(b) 20% piperidine, DMF, 15 minutes. Traditional Kaiser tests using ninhydrin were useful 

for estimating the extent coupling and deprotection for metallopeptides containing 6a, but 

were often more ambiguous for metallopeptides containing 6b due to the high molar 

absorptivity of the [Os(bpy)3]
2+-containing amino acid. M was calculated as 3912.93 (exact) 

for 2f-Os*-P1 (C175H265N43O47Os). MS m/z observed: 1304.7 ([M2+ + H+]3+), 978.9 ([M2+ + 

2H+]4+), 783.2 ([M2+ + 3H+]5+); M was calculated as 3974.09 (exact) for 2f-Ru*-P2 

(C182H286N52O42Ru). MS m/z observed: 1325.3 ([M2+ + H+]3+), 994.2 ([M2+ + 2H+]4+), 795.8 

([M2+ + 3H+]5+). 

Synthesis of azidopeptides using -Fmoc--azido-L-lysine. Peptides containing 

azidolysine residues at desired positions were synthesized using an automated synthesizer as 

described above. -Fmoc--azido-L-lysine 8 was injected manually and a single 3 hour 

coupling reaction was performed. The azidopeptides were cleaved from the resin, and 

purified in an identical fashion. Azidopeptide identities were confirmed by ESI-MS. M was 

calculated as 3238.76 (exact) for 2f-N3-P1 (C143H239N39O46). MS m/z observed: 1620.9 ([M + 

2H+]2+), 1081.0 ([M + 3H+]3+), 811.0 ([M + 4H+]4+); M was calculated as 3295.78 (exact) for 

2c-N3-P1 (C145H242N40O47). MS m/z observed: 1649.3 ([M + 2H+]2+), 1099.9 ([M + 3H+]3+), 

825.2 ([M + 4H+]4+); M was calculated as 3237.77 (exact) for 2g-N3-P1 (C143H240N40O45). 

MS m/z observed: 1620.3 ([M + 2H+]2+), 1080.6 ([M + 3H+]3+), 810.7 ([M + 4H+]4+); M was 

calculated as 3389.97 (exact) for 2f-N3-P2 (C150H260N48O41). MS m/z observed: 1131.0 ([M + 

3H+]3+), 848.5 ([M + 4H+]4+), 679.1 ([M + 5H+]5+); M was calculated as 3447.00 (exact) for 

2b-N3-P2 (C152H263N49O42). MS m/z observed: 1150.3 ([M + 3H+]3+), 863.0 ([M + 4H+]4+), 

690.6 ([M + 5H+]5+); M was calculated as 3389.94 (exact) for 2e-N3-P2 (C149H256N48O42). 

MS m/z observed: 1131.0 ([M + 3H+]3+), 848.5 ([M + 4H+]4+),  679.0 ([M + 5H+]5+). 
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Synthesis of metallopeptides using the CuAAC reaction. In a typical procedure 8-15 

mgs (~2-4 µmol) of azidopeptide would be partially dissolved in 1-3 mL 50% (v/v) DMF in 

10 mM PO4
3-, pH 8.5, buffer that was deoxygenated with N2 for 30 minutes. The peptide was 

reacted with (2 equiv) either the RuII complex 11a or the OsII complex 11b in the presence of 

tetrakis(acetonitrile)copper(I) hexafluorophosphate (2 equiv), and tris-(triazolylmethyl)amine 

ligand (12, 1 equiv). The mixtures were allowed to stir overnight for at least 12 h, typically 

longer, and then diluted with water (10 mL).  The aqueous solution was frozen and 

lyophilized.  The fully lyophilized residue was dissolved in water and filtered through a 0.22 

µm PVDF syringe filter.  The final metallopeptide was obtained after purification by 

reversed-phase HPLC using the conditions listed above.  The molecular weight was 

confirmed by LC-MS. M2+ was calculated as 3993.96 (exact) for 2f-Os (C178H268N46O47Os). 

MS m/z observed: 1997.0 ([M2+]2+), 1331.8 ([M2+ + H+]3+), 999.0 ([M2+ + 2H+]4+), 799.4 

([M2+ + 3H+]5+), 666.4 ([M2+ + 4H+]6+); M2+ was calculated as 4050.98 (exact) for 2c-Os 

(C180H271N47O48Os). MS m/z observed: 2025.8 ([M2+]2+), 1350.7 ([M2+ + H+]3+), 1013.2 

([M2+ + 2H+]4+), 810.8 ([M2+ + 3H+]5+), 679.5 ([M2+ + 4H+]6+); M2+ was calculated as 

3992.98 (exact) for 2g-Os (C178H269N47O46Os). MS m/z observed: 1996.5 ([M2+]), 1131.3 

([M2+ + H+]3+), 998.7 ([M2+ + 2H+]4+), 799.2 ([M2+ + 3H+]5+), 666.2 ([M2+ + 4H+]4+); M2+ 

was calculated as 4055.12 (exact) for 2f-Ru (C185H289N55O42Ru). MS m/z observed: 1352.0 

([M2+ + H+]3+), 1014.1 ([M2+ + 2H+]4+), 811.6 ([M2+ + 3H+]5+), 676.5 ([M2+ + 4H+]6+), 580.0 

([M2+ + 5H+]7+); M2+ was calculated as 4112.14 (exact) for 2b-Ru (C187H292N56O43Ru); MS 

m/z observed: 1371.7 ([M2+ + H+]3+), 1029.0 ([M2+ + 2H+]4+), 823.6 ([M2+ + 3H+]5+); M2+ 

was calculated as 4055.09 (exact) for 2e-Ru (C184H285N55O43Ru). MS m/z observed: 1352.6 

([M2+ + H+]3+), 1014.5 ([M2+ + 2H+]+4). 
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vi. 1H and 13C NMR spectra. 
 

 

 
Figure 3.7. -Fmoc--azido-L-lysine (8). 1H: CD3OD, 400 MHz; 13C CD3OD, 100 MHz. 
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Figure 3.8  4’-Methyl-2,2’-bipyridine-4-propargylamide (10). 1H CDCl3, 400 MHz 13C 
CDCl3, 100 MHz. 
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Figure 3.9 Bis-(2,2’bipyridine)(4’-Methyl-2,2’-bipyridine-4-propargylamide)-ruthenium(II) 
bis(hexafluorophosphate) (11a). 1H CD3CN, 400 MHz. 
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Figure 3.10 Bis-(2,2’bipyridine)(4’-Methyl-2,2’-bipyridine-4-propargylamide)-osmium(II) 
bis(hexafluorophosphate) (11b). 1H CD2Cl2, 400 MHz. 
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Figure 3.11 tris-(triazolylmethyl)amine ligand (12).1H CDCl3, 400 MHz. 13C CDCl3, 100 
MHz. 
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Chapter IV 

PHYSICAL CHARACTERIZATION OF THE 
METALLOPEPTIDE DIMERS INCLUDING THE DETERMINATION OF  

 DISSOCIATION CONSTANTS 

 

A. Introduction 

i. Choice of RuII and OsII donor/acceptor positions for the metallopeptides 

The importance of, and general considerations for, studying RuII to OsII energy 

transfer were described in detail in Chapter I. The use of a dimeric coiled-coil peptide motif 

as a scaffold for studying RuII to OsII energy transfer was introduced within Chapter II, along 

with the relevant design principles used for the selection of the parent sequences. The 

synthetic manipulations required for the preparation of the 2b-Ru, 2e-Ru, 2f-Ru, 2c-Os, 2f-

Os, and 2g-Os metallopeptides were described in Chapter III. The specific substitution 

positions were chosen to provide a range of distances for the study of energy transfer, while 

not disrupting the coiled-coil structure of interest. The substitutions were made within the 

second heptad repeat unit of each coiled-coil parent sequence (Figure 4.1a). Substitutions 

near the peptide termini were avoided in order to prevent further disruption of the secondary 

structure due to end fraying (Chapter II). Avoiding RuII- and OsII-substitution at the termini 

was also expected to provide more reliable donor/acceptor displacements during the energy 

transfer studies. The choices for the second heptad repeat unit versus the third heptad repeat 

unit were arbitrary. The choice to use the P2 parent sequence for the donor (RuII) 
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metallopeptides and the P1 parent sequence for the acceptor (OsII) metallopeptides was also 

arbitrary. 

ii. Choice of metallopeptide pairs for analysis 

Throughout the energy transfer studies discussed in Chapter V, the metallopeptides 

are examined as specific coiled-coil pairs. In this chapter the folding and association of the 

metallopeptides is examined for the same pairs in order to facilitate direct comparisons. 

Coiled-coil association and intermolecular energy transfer were studied for the 2f-Ru/2f-Os, 

2b-Ru/2c-Os, and 2e-Ru/2g-Os metallopeptide pairs (Figure 4.1b). Although other 

metallopeptide partners could have potentially associated and facilitated energy transfer 

between the RuII and OsII bipyridyl complexes, they were not specifically studied within this 

work. 

The relative two-dimensional positioning of the different metallopeptide pairs is 

represented as a helical wheel diagram (Figure 4.1b). The relative three-dimensional 

positioning of the donor/acceptor bipyridyl complexes involves there longitudinal 

displacement as well, and may be roughly estimated from crystal structures of similar coiled-

coil peptides (Figure 4.2). The 2f-Ru/2f-Os metallopeptide pair could be expected to provide 

the greatest donor/acceptor displacement with an approximate distance of 14.3 Å measured 

between the respective -carbons. Distance measurements made between -carbons could 

however be misleading due to the individual bond vectors (-) linking the bipyridyl 

complexes to the coiled-coil structure. For example, the 2f-Ru/2f-Os C-C bonds would 

project the donor/acceptor pairs even further apart. The expected distance between the 2f-

Ru/2f-Os -carbon atoms would increase to roughly 16.2 Å.  
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Figure 4.1 (a) The primary sequences for the P1 and P2 parent peptides showing the 
positions of modification for the 2g-Os, 2c-Os, 2f-Os, 2b-Ru, 2e-Ru, and 2f-Ru 
metallopeptides. Natural amino acids are designated using single letter codes. These 
positions are substituted with azidolysine in the azidopeptides, and in the metallopeptides 
they have been altered by attachment of either RuII (P2) or OsII (P1) bipyridyl complexes as 
described in Chapter III. (b) A helical wheel diagram for the metallopeptide partners 
examined throughout the study. The 2f-Ru/2f-Os (blue), 2b-Ru/2c-Os (red), and 2e-Ru/2g-Os 
(green) metallopeptide pairs are shown, although the two-dimensional diagram is not 
necessarily representative of the actual donor/acceptor positions within the three-dimensional 
coiled-coil peptide scaffold. 

 

(a) 

 

(b) 
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Figure 4.2 Crystal structure of a similar coiled-coil dimer (pdb code: 2ZTA). The relative 
positions corresponding to the 2f-Ru/2f-Os (blue), 2b-Ru/2c-Os (red), and 2e-Ru/2g-Os 
(green) metallopeptide pairs are shown. 

The 2b-Ru/2c-Os metallopeptide pair could be expected to have a donor/acceptor 

displacement ranging from 12.7 to 14 Å, depending on whether the distance was measured 

from the - or -carbons. In the case of the 2e-Ru/2g-Os metallopeptide pair, the relative 

donor/acceptor displacement could be expected to decreases from 9.9 Å measured between 

the -carbons to 9.1 Å measured between the -carbons. This is due to the 2g-Os C-C bond 

directing the side chain towards the helical interface. 

The -azido-L-lysine linker described in Chapter III was designed to provide a 

flexible four methylene tether for the RuII and OsII bipyridyl complexes. The length and 

conformational freedom of the linker was predicted to prevent destabilization of the coiled-

coil peptide structure, but also introduces a greater extent of ambiguity in determining precise 

donor/acceptor distances. For this reason the relative distances discussed above could not be 

assumed entirely representative of the donor/acceptor distances provided by the coiled-coil 

peptide scaffold until further analysis was performed. 

The specific attachment points for the different metallopeptide pairs all have subtle 

effects on their observed structural stabilities. Circular dichroism spectroscopy and chemical 

denaturation analysis experiments are described throughout Chapter IV, in order to provide 

an understanding of the structural differences between the metallopeptide pairs. 
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Also described within this chapter is the computational modeling of the 

conformational states for the coiled-coil peptide backbones, the attached bipyridyl 

complexes, and the azido-L-lysine linkers for all three metallopeptide pairs using high-level 

molecular dynamics simulations. This work was performed in collaboration by Dr. 

Christopher Materese under the advisement of Professor Garyk Papoian. 

B. Circular dichroism analysis of the metallopeptide pairs 

Since the folding behavior of the coiled-coil metallopeptides is bimolecular, each pair 

has a related dissociation (Kd) constant that can be used to quantify and predict equilibrium 

concentrations of folded coiled-coil dimer and unfolded peptide monomer for any given 

preequilibrium concentration. Determination of a Kd for each metallopeptide pair is required 

to interpret the energy transfer behavior described in Chapter V. 

Circular dichroism (CD) is a spectroscopic technique where the differential 

absorption of right and left circularly polarized light is measured for a sample.1 Since right 

and left circularly polarized light are chiral, many biomolecules including peptides and 

oligonucleotides, interact differently with the polarized forms of light. These interactions 

lead to characteristic CD features that are typically expressed in terms of concentration 

corrected molar ellipticity values at specific wavelengths (θx).
1 For peptides these ellipticity 

measurements are also corrected for the number of amino acid residues and the measurement 

is referred to as the mean molar residue ellipticity ([θ]x). The standard ellipticity designation 

is bracketed to express this quantity with the units deg·cm2·dmol-1. 
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Figure 4.3. Circular dichroism (CD) spectra for all three metallopeptide pairs. (a) CD spectra 
for the 2f-Os (green) and 2f-Ru (red) peptides at 50 M concentrations. A 1:1 mixture of the 
two peptides (black, 50 M combined peptide concentration) shows a more intense negative 
signal at 222 nm indicating an increase in the -helicity for the two peptides. (b) A similar 
analysis for the 2c-Os (green) and 2b-Ru (red) peptides at 50 M concentrations. (c) A 
similar analysis for the 2g-Os (green) and 2e-Ru (red) peptides at 50 M concentrations. All 
spectra were recorded at 25°C in 10 mM PO4

3-, pH 7, buffer. 

(a) 

(b)  

(c)  
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The CD spectra for all three heterodimeric metallopeptide pairs display features 

characteristic of -helices, and more specifically to -helical coiled-coils (Figure 4.3). These 

features include maxima below 200 nm, and pairs of minima at 208 and 222 nm.1,2 The CD 

signals associated with the -helical peptide secondary structure are concentration dependent 

for the metallopeptide pairs since folding and dimerization are coupled in these peptide 

structures. This concentration dependence qualitatively indicates that the metallopeptide pairs 

form coiled-coil structures when mixed in low M concentrations. The ellipticity at 222 nm 

([θ]222) corresponds to an n-* transition and can be used as a quantitative measure of -

helicity, and therefore dimerization.2 The ratio of the CD signals at 208 and 222 nm 

([θ]222/[θ]208) also gives evidence for dimeric coiled-coil structures. The CD signal at 208 nm 

([θ]208) is due to a -* transition parallel to the helix axis and is sensitive to whether the 

helix is single stranded or is part of a greater helical bundle.2 The ellipticity ratio [θ]222/[θ]208 

for the 2f-Os/2f-Ru metallopeptide pair is equal to 1.00. The 2c-Os/2b-Ru and 2g-Os/2e-Ru 

peptide pairs both have [θ]222/[θ]208 ratios equal to 1.03. Ratios of 1.0 or greater are 

characteristic of dimeric coil coil peptides, as single-stranded -helices typically have values 

closer to 0.85.3 

All three metallopeptide pairs were analyzed using continuous variation experiments. 

The different metallopeptides all display maximum -helicity (minimum at [θ]222) when 

equimolar mixtures of the donor/acceptor metallopeptides are examined, indicating that 

heterodimeric coiled-coil structures are being formed in a 1:1 ratio (Figure 4.4). This is not 

unexpected since the sequences were designed to form dimeric species, but still important to 

confirm since trimeric species are often the default structure for -helical coiled-coils when 

design features favoring the dimeric structure are not strongly reinforcing.4 
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Figure 4.4 Continuous variation experiments (Job plot) for the metallopeptide pairs 
measured using the [θ]222 CD signal. (a) The 2f-Ru/2f-Os metallopeptide pair examined at a 
continuous concentration of 50 M with variations made in the 2f-Os mole fraction. (b)  The 
2b-Ru/2c-Os metallopeptide pair examined at a continuous concentration of 50 M with 
variations made in the 2c-Os mole fraction. (c) The 2e-Ru/2g-Os metallopeptide pair 
examined at a continuous concentration of 50 M with variations made in the 2g-Os mole 
fraction. All spectra were recorded at 25°C in 10 mM PO4

3-, pH 7, buffer. 

(a)

(b)

(c)
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C. Guanidinium chloride denaturation of the metallopeptide pairs 

Chemical denaturation using guanidinium chloride (GndHCl) provides a reliable tool 

for measuring coiled-coil dissociation constants.5 The method has been used to compare 

minute structural changes within families of similarly designed coiled-coils.5c Dissociation 

constants can also be measured directly from the concentration dependence of the [θ]222 

signal,6 however measuring dissociation constants by this method does have several 

disadvantages. Firstly, the ellipticity ([θ]222) must be accurately measured over a broad range 

of concentrations both above and below the dissociation constant. This requirement 

introduces technical complications since extremely high or low concentrations of peptides 

may not have the same solubility and/or may require cuvettes of different path lengths. 

Secondly, the method assumes that the individual monomers have a very low helical content 

and contribute only minimally to the [θ]222 signal. This assumption may not necessarily be 

true since many of the relevant amino acid residues may have a high helical propensity 

outside of the context of a coiled-coil peptide structure.4 Alternatively, chemical denaturation 

experiments using GndHCl are performed at a single peptide concentration that is well above 

the dissociation constant for the coiled-coil pair. The assumption made during a GndHCl 

denaturation experiment is that at high peptide concentrations the coiled-coil is entirely 

associated and -helical monomer concentrations are well below the detectable limit. 

Additionally, any peptide monomers that are not associated within a coiled-coil structure will 

be fully unfolded in the denaturing medium and will not contribute significantly to the 

observed [θ]222 signal. 
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 Performed as a titration, GndHCl denaturation experiments track the unfolding of the 

coiled-coil structure as a function of the denaturant concentration. The fraction folded (FF) at 

any denaturant concentration can be calculated using Equation 1 (Figure 4.5a):5c 

/          1       

where [θ] is the observed CD signal, [θ]F is the CD signal for the fully folded coiled-coil at a 

denaturant concentration of zero, and [θ]D is the CD signal for the fully denatured mixture. 

The fraction unfolded (FU) can be calculated using Equation 2:5c 

1          2 

Once the fraction folded and fraction unfolded have been calculated, the free energy of 

unfolding (GD) can be measured for all denaturant concentrations using Equation 3:5c 

 
2

         3 

where PT is the total peptide concentration, R is the molar gas constant in units of cal·mol-

1·K-1 (1.986), and T is the temperature in Kelvin (298). The method of linear extrapolation is 

used to calculate the free energy of unfolding in the absence of denaturant (GH20), using 

Equation 4:5c 

Δ  Δ            4 

where [GdnHCl] is the GndHCl denaturant concentration in units of molarity, m is the slope, 

and GH20 is the y-intercept. The method of linear extrapolation is used to measure the y-

intercept (GH20).
5a The method assumes that the dependence of GD on the denaturant 

concentration observed throughout the transition period continues to be linear at denaturant 
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concentrations approaching zero. The GndHCl denaturation midpoint (Cm) is included in the 

linear extrapolation, along with adjacent points which produce a reliable linear fit (R2 values 

close to unity). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 (a) GndHCl denaturation curves at 25 C in 20 mM PO4
3-, 100 mM NaCl, pH 7.4 

buffer. Data shown for the 2f-Ru/2f-Os pair (black circles, 300 M), the 2b-Ru /2c-Os pair 
(red squares, 200 M), and the 2e-Ru/2g-Os pair (blue diamonds, 200 M). The fraction 
folded (FF) values were calculated using Equation 1. (b) Gibbs free energy of unfolding 
(GD) was calculated using Equation 3. Linear extrapolation using Equation 4 gives the 
value of the free energy of unfolding at zero denaturant concentration (GH20). Data shown 
for the 2f-Ru/2f-Os pair (black circles, m = -1.7 kcal·mol-1·M-1, R2 =0.997), the 2b-Ru /2c-Os 
pair (red squares, m = -1.5 kcal·mol-1·M-1, R2 =0.999), and the 2e-Ru/2g-Os pair (blue 
diamonds, m = -1.7 kcal·mol-1·M-1, R2 =0.997). 

 

(a)

 

(b)
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Dissociation constants (Table 4.1.) for all three metallopeptide pairs were determined 

using the GH20 values and Equation 5: 

  10           5  

Dissociation constants could not be determined for the coiled-coil parent sequences due to 

solubility issues during the analysis. The 2f-Ru/2f-Os metallopeptide pair appeared to form 

the most thermodynamically stable coiled-coil peptide structure. The value of GH20 

measured for the 2f-Ru/2f-Os pair (8.6 ± 0.10 kcal·mol-1) corresponds to a Kd of 0.49 ± 0.09 

M (Table 4.1). 

Table 4.1. Folding parameters obtained from guanidinium denaturation experiments 

Peptide 
Pair 

ΔGH2O 
(kcal·mol-1)a 

Kd 
(M)b 

Cm 
(M)c 

% 
-helicityd 

2f-Ru/2f-Os 8.6 0.49 ± 0.09 2.2 80% 

2b-Ru/2c-Os 8.2 0.97 ± 0.2 2.0 74% 

2e-Ru/2g-Os 8.0 1.4 ± 0.3 1.8 72% 
aValues for GH20 were calculated by the method of linear extrapolation using Equation 4. 
The error in the measurement of GH20 was estimated to be less than 0.10 kcal·mol-1 for all. 
bThe Kd values were calculated using Equation 5. Error estimates are included with the 
values and were calculated based on the observed error for GH20. 

cThe GndHCl denaturation 
midpoints (Cm) were calculated based on the linear relationship between folded (FF) and 
denaturant concentration ([GndHCl]) within the transition region and typically had an error 
of less than 0.05 M. dThe percent -helicity values are based on a value of -35,900 
deg·cm2·dmol-1 calculated for all three pairs using Equation 6. 

The calculation of -helical content has previously been described for similar de novo 

designed coiled-coils. The -helical content can be estimated based on the theoretical 

maximum -helicity for a 28-residue peptide. The maximum -helicity for a peptide of any 

chain length can be calculated using Equation 6:7  

∞ 1         6 
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where n is the number of amino acid residues, [θ]222
∞ is the mean molar residue ellipticity of 

an -helix of infinite length taken to be -39,500 deg·cm2·dmol-1, and k is a wavelength-

dependent factor taken to be 2.57 at 222 nm. Based on Equation 6, the maximum -helicity 

for all three metallopeptide pairs would be -35,900 deg·cm2·dmol-1. The fully folded 2f-

Ru/2f-Os dimer was calculated to be 80% -helical based on the observed [θ]222 (-28,600 ± 

800 deg·cm2·dmol-1). These values were measured at peptide concentrations where the 

fraction folded closely approaches unity. Measured values less than 100% do not imply the 

presence of monomeric species, but instead imply that the peptides within the coiled-coil 

dimer adopt nonideal -helical conformations. The -helical content reported for the 2f-

Ru/2f-Os dimer falls within the range reported for peptides of similar length and sequence 

structure with values from 69-96% being common in the literature.6,8  

The 2b-Ru/2c-Os peptide pair displays minor destabilization when compared to the 

2f-Ru/2f-Os pair. The difference in GH20 measured (8.2 ± 0.10 kcal·mol-1) for the 2b-Ru/2c-

Os dimer corresponds to an increase in the extrapolated Kd (0.97 ± 0.2 M). The maximum 

ellipticity for the 2b-Ru/2c-Os peptide pair (-26,400 ± 700 deg·cm2·dmol-1) corresponded to 

74% -helicity, indicating slightly less -helical character when compared to the 2f-Ru/2f-Os 

pair. The 2e-Ru/2g-Os peptide pair was found to be the most destabilized heterodimer, 

although the magnitude of the destabilization was again quite minimal. The extrapolated 

GH20 (8.0 ± 0.10 kcal·mol-1) value for the 2e-Ru/2g-Os peptide pair was within error of that 

reported for the 2b-Ru/2c-Os pair. The calculated Kd (1.4 ± 0.3 M) value for 2e-Ru/2g-Os 

peptide pair was therefore also within error. The maximum ellipticity (-25,900 ± 300 

deg·cm2·dmol-1) for the 2e-Ru/2g-Os peptide pair corresponded to 72% -helicity. Although 

the thermodynamic parameters (GH20, Kd, and % -helicity) for the 2b-Ru/2c-Os and 2e-
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Ru/2g-Os metallopeptide pairs are all within error, the GndHCl denaturation midpoints (Cm = 

2.0 M for the 2b-Ru/2c-Os and 1.8 M for the 2e-Ru/2g-Os) for the two pairs analyzed at the 

same total peptide concentrations are well outside of error. Chemical denaturation midpoints 

are often used to compare structurally similar peptide sequences since GH20 values are 

extrapolated and inherently prone to large errors.5c The difference in free energy of unfolding 

between two peptides (ΔGD) can be calculate using Equation 7:9 

Δ 0.5         7 

where Cm
A and Cm

B are the GndHCl denaturation midpoints for two peptides A and B, and 

mA and mB are the slope values from Equation 4 applied to peptide A and B, respectively. 

The value of ΔGD calculated for the 2b-Ru/2c-Os and 2e-Ru/2g-Os metallopeptide pairs is 

0.3 kcal·mol-1. This observation does indicate that the 2e-Ru/2g-Os peptide pair is somewhat 

destabilized when compared to the 2b-Ru/2c-Os pair. This result is not entirely unsurprising 

since the 2e-Ru and 2g-Os metallopeptides are substituted with bipyridyl complexes at the e 

and g positions, respectively. As discussed in Chapter II, amino acid residues at these 

positions are typically close to the hydrophobic core and are designed to provide attractive 

charge-charge interactions,10 while the RuII and OsII bipyridyl complexes may behave 

repulsively due to their identical positive charges. 

 The determination of Kd values for all three metallopeptide pairs is important for 

accurately measuring energy transfer in these systems since only the properties of 

donor/acceptor dimers are of interest. The energy transfer studies (Chapter V) for the 

different metallopeptide pairs were typically performed as titrations with the RuII peptide 

concentration fixed at 25 M. The OsII peptide concentrations employed were 6.25, 12.5, 

18.75, 25.0, and 50.0 M corresponding to 0.25, 0.5, 0.75, 1.0 and 2.0 equivalents compared 
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to the RuII peptide. Given the extinction coefficients of the bipyridyl complexes (~14,600 at 

452 nm for Ru(bpy)3
2+, and ~12,000 at 480 nm for Os(bpy)3

2+) in water,11,12 this 

concentration regime was appropriate for emission studies using a 0.2 cm optical path length 

cell. The Kd values allow for percent dimer and percent monomer to be calculated for each 

metallopeptide pair at the concentrations used during the energy transfer studies (Table 4.2). 

These values will be used later for comparison during the energy transfer studies. 

Table 4.2. Percent dimer for the analyzed metallopeptides 

OsII Peptide 
Equivalents 

OsII Peptide 
Concentrationa 

(M) 

2f-Ru/2f-Os 
Percent 
Dimerb 

2b-Ru/2c-Os 
Percent 
Dimerc 

2e-Ru/2g-Os 
Percent 
Dimerd 

0.00 0.00 0 0 0 
0.25 6.25 24 24 23 
0.50 12.5 48 47 45 
0.75 18.75 70 66 65 
1.00 25.0 87 82 79 
2.00 50.0 98 96 95 

aThe RuII peptide concentration is 25 M for all three metallopeptide pairs. bThe dimer 
concentration was calculated based on a Kd value of 0.49 M for the 2f-Ru/2f-Os peptide 
pair. cThe dimer concentration was calculated based on a Kd value of 0.97 M for the 2b-
Ru/2c-Os peptide pair. dThe dimer concentration was calculated based on a Kd value of 1.4 
M for the 2e-Ru/2g-Os peptide pair. The percent dimer for each metallopeptide pair is 
calculated relative to the total RuII peptide concentration (25 M). 

 Any equilibrium that can be described using a dissociation constant (Kd) can also be 

described as a ratio of association and  dissociation rates as shown in equation 8:6 

           8 

where kon is the rate of association to form the complex and koff is the rate of dissociation that 

destroys the peptide-peptide complex. Although we have not directly measured the rates of 

kon or koff, comparison to other coiled-coil systems with low M Kd values would imply that 

association occurs on the microsecond timescale and dissociation most likely occurs on the 
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millisecond to second timescale.6 Since the decay of the Ru(bpy)3
2+ 3MLCT excited state 

(discussed in Chapter I) decays on the time scale of several hundred nanosecond in water,11 

one can tentatively conclude that coiled-coil strand exchange is unlikely to affect any energy 

transfer studies. 

 D. All-atom molecular dynamics simulations 

 As mentioned in the introductory section, the -azido-L-lysine amino acid residue 

used to incorporate the RuII and OsII bipyridyl complexes is quite flexible. The length and 

flexibility of the linker may allow the metallopeptides to adopt a number of different 

conformational states in solution. A general trend may be anticipated based on the crystal 

structure analysis presented above (Figure 4.2), but an accurate depiction of metal complex 

displacement distances is certainly missing. All-atom molecular dynamics simulations were 

performed to better understand the possible solution-phase behaviors of the synthetic 

metallopeptide pairs. This work was performed by Dr. Christopher Materese under the 

advisement of Professor Garyk Papoian. 

 Similar to the structural analysis, the theoretical analysis was performed separately 

for the 2f-Ru/2f-Os, 2b-Ru/2c-Os, and 2e-Ru/2g-Os metallopeptide pairs. Both bipyridyl 

complexes were modeled as RuII in order to save computing space, and also because 

metallopeptide dynamics were of interest and energy transfer itself was not modeled. The 

designation for the metal identity is dropped throughout this section, and the metallopeptide 

pairs 2f-Ru/2f-Os, 2b-Ru/2c-Os, and 2e-Ru/2g-Os are instead referred to as the 2f/2f, 2b/2c, 

and 2e/2g pairs. The exact details for the simulations are provided within the experimental 

section. 
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The different simulations did indeed demonstrate dynamic behaviors for the 

metallopeptides, with many small local perturbations in the coiled-coil structure occurring at 

a very fast rate. These localized structural changes occur within the coiled-coil peptide 

scaffold, and also within the -azido-L-lysine linker. The vast majority of the dynamic 

movements did not lead to substantial displacement of the bipyridyl complexes, and would 

not be expected to affect energy transfer rates. In addition to the small structural changes the 

metallopeptide dimers experience, there are large scale movements of the bipyridyl 

complexes that do result in substantial changes in the displacements of the bipyridyl 

complexes. These larger scale movements allowed the metallopeptide pairs to occupy 

specific conformational states for extended periods of time during the simulation experiment. 

Histograms representing the relative time that the different metallopeptide pairs occupy 

different conformational states are presented below (Figure 4.6). 

 The simulation for the 2f/2f metallopeptide pair shows a relatively large metal-center 

displacement throughout the experiment. The metal-center distance distributions are very 

broad and non-Gaussian. The 2f/2f peptide pair exhibits the broadest range of metal-center 

distance distributions when compared to the 2b/2c and 2e/2g pairs (Figure 4.6a). Most of the 

conformations for the 2f/2f peptide pair place the bipyridyl complexes at distances greater 

than 2 nm. The relatively large metal-center displacements would imply that the 2f/2f peptide 

pair would be inefficient at promoting energy transfer compared to the 2b/2c and 2e/2g pairs, 

although it is possible that conformations with smaller metal-center displacements could 

exist and were simply not observed during the simulated time frame. One observation 

involving metallopeptide stability was made for the 2f/2f peptide pair. During the simulation 

experiment, conformations that brought the bipyridyl complexes and peptide termini in 



80 
 

proximity appeared to destabilize the coiled-coil structure. The interaction between the 

bipyridyl complexes and peptide scaffold would imply that the two have complementary 

attractive forces. Whether those interactions are hydrophobic, dipole-dipole, Van der Waals, 

Coulombic, or other in nature is difficult to determine but they do seem to affect coiled-coil 

stability near the peptide termini were the propensity for fraying is already increased. 

 The 2b/2c and 2e/2g metallopeptide pairs both exhibited conformations with 

significantly shorter metal-center displacements, demonstrating that some degree of 

positional control is exerted by the coiled-coil scaffold. The simulation for the 2b/2c pair 

shows the metallopeptides persistently occupying a conformation where the bipyridyl 

complexes are in close contact (Figure 4.6b). This conformation is characterized by a small 

metal-center displacement, close to 0.8 nm, and a close stacking of the bipyridyl ligands 

placing them in Van der Waals contact with each other (Figure 4.7a). The simulation for the 

2e/2g pair shows the metallopeptide persistently occupying a conformation with a metal-

center displacement closer to 1.2 nm (Figure 4.6c). This conformation is also characterized 

by fewer Van der Waals contacts between bipyridyl ligands coordinated to the metal centers 

(Figure 4.7b). The 2e/2g pair certainly is capable of accessing conformations similar to those 

observed almost exclusively for the 2b/2c pair, so it is unclear whether the preference for the 

conformation with the larger metal-center displacement would persist over longer periods of 

simulation. Both the 2b/2c and 2e/2g metallopeptide pairs occupy conformational states that 

allow the donor/acceptor bipyridyl complexes to access each other in solution, and are most 

likely both sufficient promoters of energy transfer when compared to the 2f/2f peptide pair. 
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Figure 4.6. (a) Histogram showing the simulated metal-center distance distribution for the 
2f-Ru/2f-Os peptide pair. (b) Histogram showing the simulated metal-center distance 
distribution for the 2b-Ru/2c-Os peptide pair. (c) Histogram showing the simulated metal-
center distance distribution for the 2e-Ru/2g-Os peptide pair. The x-axis is the distance 
between the metal centers for the two metallopeptides for all. The y-axis is normalized for all 
and represents relative amounts of time that metal-center distances exist within the 
simulation. 

(a) 

(b) 

(c) 
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Figure 4.7 (a) The conformation that is a persistent arrangement in the 2c/2b metallopeptide 
pair only. The conformation is characterized by a small metal-center displacement (0.8 nm) 
and close contacts between bipyridyl ligands. The conformation appears only briefly in the 
simulation of the 2g/2e metallopeptide pair. (b) The conformation that is a persistent 
arrangement in the 2g/2e metallopeptide pair. The conformation is characterized by a slightly 
larger metal-center displacement (1.2 nm) and fewer contacts between bipyridyl ligands. 

 The simulations for the 2b/2c and 2e/2g metallopeptide pairs displayed an increasing 

destabilization of the coiled-coil structure, respectively, when compare to the 2f/2f peptide 

pair. This result is interesting when compared to the stability measurements made in section 

D, and probably relates to the attachment of the bipyridyl complexes closer to the termini of 

the metallopeptides. The observed trend for coiled-coil destabilization: 2e/2g > 2b/2c > 2f/2f 

matches the trend observed for all of the thermodynamic parameters measured previously 

(GH20, Kd, and % -helicity) and implies that interactions between the bipyridyl complexes 

and the coiled-coil scaffold itself are most destabilizing, while steric interactions between 

bipyridyl complexes are less important in determining coiled-coil stability. 

 

(a) 

(b) 
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 E. Conclusions 

 The selection of metallopeptides for energy transfer studies was discussed within 

Chapter IV. These selections, designed to provide a range of distances for energy transfer 

studies, were related to the current understanding of coiled-coil structure. The effects of RuII 

and OsII substitution on coiled-coil structure was evaluated for the 2f-Ru/2f-Os, 2b-Ru/2c-Os, 

and 2e-Ru/2g-Os metallopeptide pairs using CD spectroscopy and chemical denaturant 

techniques. The flexible -azido-L-lysine amino acid residue used to incorporate the RuII and 

OsII bipyridyl complexes was shown to allow coiled-coil formation for all three 

metallopeptide pairs, with only minor degrees of destabilization between them. A theoretical 

approach for understanding metallopeptide stability and dynamics is also presented in 

Chapter IV, performed by Dr. Christopher Materese. The RuII to OsII energy transfer 

behaviors for the 2f-Ru/2f-Os, 2b-Ru/2c-Os, and 2e-Ru/2g-Os metallopeptide pairs is fully 

evaluated in Chapter V, using the structural analysis detailed within Chapter IV to reinforce 

the conclusions. 

 F. Experimental section 

 i. Circular dichroism and guanidinium denaturation experiments 

CD spectra were recorded on a chirascan circular dichroism spectrometer. CD spectra 

were recorded from 185 to 260 nm using 10 mM sodium phosphate buffer, pH 7. CD spectra 

taken for GndHCl denaturation experiments were taken from 200 to 260 nm. All spectra 

were recorded at 25 C (298.15 K) with an optical path length of 0.1 cm. All scans were 

corrected by subtracting the spectrum of the respective buffer used in the experiment. The 

results are expressed as mean molar residue ellipticity [] values with units of 

degrees·cm2·dmol-1 as calculated using Equation 9: 
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10

         9    

where θobs is the observed ellipticity at a specific wavelength in millidegrees, l is the path 

length in cm, c is the concentration in mol·L-1, and n is the number of amino acid residues. 

 GndHCl denaturation experiments were conducted by monitoring [θ]222 as a function 

of GndHCl concentration. Samples were prepared from stock peptide solutions, buffer (20 

mM sodium phosphate, 100 mM sodium chloride, pH 7.4), and 8M stock solutions of 

GndHCl. The GndHCl stock solution was prepared in the same buffer and adjusted to pH 7.4 

before use. The GndHCl stock solution concentration was determined by mass using 

volumetric glassware. The concentrations for the RuII peptide stock solutions (2b-Ru, 2e-Ru, 

and 2f-Ru) were determined using the extinction coefficient for Ru(bpy)3
2+ in water (14,600 

at 452 nm).11 The concentrations for the OsII peptide stock solutions were determined using 

the extinction coefficient for Os(bpy)3
2+ in water (12,000 at 480 nm).12 All buffers and 

peptide stock solutions were prepared using MilliQ water. Metallopeptides used for the 

GndHCl denaturation experiments could typically be purified and used again after the 

removal of salts using polyacrylamide size-exclusion columns and separation using RP-

HPLC. 

The values for fraction folded (FF) were calculated using Equation 1. The values for 

fraction unfolded (FU) were calculated using Equation 2. The values for the free energy of 

unfolding (GD) were calculated using Equation 3. The values for the free energy of 

unfolding in the absence of denaturant (GH20) were extrapolated using Equation 4.  

ii. All-atom molecular dynamics simulations 

 The computational details for the all-atom molecular dynamics simulations were 

provided by Dr. Christopher Materese. Since no crystal structure was available for the 
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system, the initial structure was generated using PyMOL,13 which is a molecular 

visualization tool capable of constructing simple peptides. The P1 and P2 peptides were 

initially generated independently using PyMOL's helical parameters and were then manually 

aligned with care taken to avoid steric clashes and satisfy the hydrophobic interface. The -

triazolo-L-lysine linker segment was constructed using Gaussview, part of the Gaussian 03 

suite.14 Ruthenium and osmium are very similar from an MD perspective. Since the primary 

focus of these simulations is peptide dynamics, ruthenium was used as the central atom in 

both chromophores and osmium was not explicitly included. In order to examine the effect of 

linker positioning on the chromophores, the following three systems were created: System 1, 

which corresponds to the 2f-Ru/2f-Os metallopeptide pair, System 2 which corresponds to 

the 2b-Ru/2c-Os metallopeptide pair, and System 3 which corresponds to the 2e-Ru/2g-Os 

metallopeptide pair. 

 The simulations were prepared using we use the AMBER15 force field with the 

ff99SB16 parameter set. Since the AMBER libraries do not possess parameters for the 

artificial amino acids used as tethers, or for the chromophores themselves, these values 

needed to be collected from literature or obtained through quantum calculations. Partial 

charges for the linker and chromophores were obtained from Gaussian calculations using 

restricted B3LYP17 with the LANL2DZ18 basis set. Charges derived using the restricted 

electrostatic potential (RESP) technique19 gave spurious results for Ruthenium and the 

chelating nitrogen atoms in the bipyridyl ligands. RESP has difficulty predicting the correct 

charge for buried atoms since the charges are assigned in an effort to reproduce the external 

electrostatic potential.19 Because of this, Mulliken charges were used in lieu of RESP 

charges. In general, Mulliken charges tend to be slightly more exaggerated than RESP 
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charges with an average difference in predicted charge of 0.1(0.1)e for all atom excluding 

from the Ruthenium and those atoms immediately surrounding it. There was insufficient 

memory to compute partial charges for the entire linker and chromophore. In order to deal 

with this issue, the partial charges for the base of the peptide up to the -carbon of the side 

chain were extracted from the standard lysine amino acid residue. Force constants for Ru-N 

stretches, N-Ru-N (cis/trans) bends, C-C-N-Ru dihedrals, H-C-N-Ru dihedrals and van der 

Waals parameters were obtained from Brandt et al.20 Since AMBER does not explicitly 

support Octahedral geometry, chelating nitrogen atoms were divided into three distinctly 

named but chemically identical types in order to establish different bending force constants 

for cis and trans positions. Each of the three simulations were performed with ~13000 

explicit TIP3P water molecules in a box with the dimensions ~ 75  75  75 Å under 

periodic boundary conditions. The charge of each system was neutralized by the addition of 

sodium counter ions, followed by the subsequent introduction of an additional 10mM NaCl. 

Each system was held at constant volume, and the peptides were frozen in place while the 

water and ions were minimized for 200,000 steps. Subsequently, all constraints were 

removed from the systems and they were minimized for an additional 200,000 steps. The 

systems were gradually heated via Langevin temperature control to 300 K in incremental 

steps of 5 K every 50 ps. The production runs proceeded under the constant pressure, 

moderated by Langevin piston (set to 1 atm), with 2 fs time steps using the SHAKE 

algorithm and Ewald summation for long-range interactions. Short-range non-bonded 

interactions were calculated at each step, long-range interactions were only calculated on 

even steps and the pair list was updated every 10 steps. System coordinates were saved every 

1000 steps (2 ps) for analysis for a total simulation length of 500 ns. 
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 The individual trajectories of the RuII bipyridyl complexes for each simulation are 

shown (Figure 4.7). The trajectories serve only as an oversimplified report of the peptide 

dynamics. They represent the relatively metal-center displacements but do represent other 

dynamic portions of the metallopeptide scaffolds. The histograms shown in Figure 4.6 were 

generated from these trajectories, with the first 20 ns being discarded as relaxation time for 

the system. 
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Figure 4.8 (a) Metal-center displacement distance for the 2f/2f metallopeptide pair as a 
function of time. (b) Metal-center displacement distance for the 2b/2c metallopeptide pair as 
a function of time. (c) Metal-center displacement distance for the 2e/2g metallopeptide pair 
as a function of time. The red lines signify the cutoff point before which data is discarded as 
part of the system relaxation. 
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Chapter V 

THE STUDY OF POSITION-DEPENDENT ENERGY TRANSFER 
WITHIN COILED-COIL METALLOPEPTIDE HETERODIMERS 

  

 A. Introduction 

 As mentioned in Chapter 1, the phenomena of RuII to OsII energy transfer has been 

studied using a number of covalent linkages,1 high molecular weight polymers,2 and DNA 

scaffolds.3 The coiled-coil peptide motif has not previously been used as an organizational 

structure for RuII to OsII energy transfer. The general structure and dynamic monomer-dimer 

equilibrium behavior of these novel coiled-coil metallopeptides were presented in Chapter IV 

using a combination of CD spectroscopy and GndHCl denaturation experiments. General 

trends that may be expected for the displacement distances of RuII and OsII bipyridyl 

complexes attached at different positions within the coiled-coil peptide scaffold were also 

discussed. The discussion was based on reported crystal structures for similar coiled-coil 

dimers, and on existing knowledge within the field of de novo protein design.4 Another 

interpretation of the coiled-coil peptide structure was provided by Dr. Christpher Materese 

using all-atom molecular dynamics simulations under the advisement of professor Garyk 

Papoian. 

Despite the extensive characterization provided within Chapter IV, the exact energy 

transfer behavior that should have been expected for the coiled-coil metallopeptides was not 

intuitively obvious at the outset. The metallopeptides that form the 
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focus of the preceding chapter do indeed exhibit position-dependent RuII to OsII energy 

transfer. The steps taken to determine and fully characterize this energy transfer are described 

throughout Chapter V. This work was performed in collaboration with Stephanie Bettis under 

the advisement of Professor John Papanikolas. All time-resolved emission measurements 

were collected by Stephanie Bettis. 

 B. General energy transfer behavior and control experiments 
 
 Similar to the measurements of thermodynamic stability made in Chapter IV, energy 

transfer studies were performed specifically on the 2f-Ru/2f-Os, 2b-Ru/2c-Os, and 2e-Ru/2g-

Os coiled-coil metallopeptide heterodimers (Figure 5.1). Based on the equilibrium behavior 

described in Chapter IV, energy transfer within the coiled-coil metallopeptides would be 

expected to be concentration dependent. Energy transfer from the RuII-containing 

metallopeptides was expected to vary with the concentration of the OsII-containing 

metallopeptide. For this reason, all of the energy transfer experiments were performed as 

titrations where the RuII metallopeptide concentration was held constant and the lifetime of 

RuII excited-state emission was examined as a function of both substoichiometric and 

superstoichiometric concentrations of the OsII metallopeptide. Time-resolved measurements 

of the RuII metallopeptide emission allowed correlations to be made with the physical model 

of the coiled-coil system that would have been more difficult using steady-state emission 

techniques alone. The emissive lifetimes were measured using time-correlated single photon 

counting (TCSPC)2e experiments. The metallopeptide samples were excited at 450 nm and 

emission data was collected at 660 nm. The general spectroscopy setup used to make the 

TCSPC measurements is diagramed in the experimental section. 
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Figure 5.1. A helical wheel diagram for the metallopeptide partners examined throughout the 
study. The 2f-Ru/2f-Os (blue), 2b-Ru/2c-Os (red), and 2e-Ru/2g-Os (green) metallopeptide 
pairs are shown. The approximate distances between attachment points based on crystal 
structures (pdb code: 2ZTA) measured between the the respective -carbons are 14.3,  12.7, 
and 9.9  Å for the 2f-Ru/2f-Os, 2b-Ru/2c-Os, and 2e-Ru/2g-Os metallopeptide pairs, 
respectively. 

 

 When considering potential energy transfer behaviors, the 2b-Ru/2c-Os and 2e-

Ru/2g-Os metallopeptide pairs were expected to provide the most favorable energy transfer if 

any were observed at all. Indeed, titration of the 2b-Ru or 2e-Ru metallopeptides with the 2c-

Os or 2g-Os peptides, respectively, resulted in a significant decrease in the observed lifetime 

of RuII emission. Quenching of the Ru(bpy)3
2+ excited-state emission by Os(bpy)3

2+ was 

reported by Cruetz and coworkers, although the bimolecular rate constant (1.5 x 109 M-1·s-1) 

would imply that diffusional quenching would be inefficient at the concentrations the 2b-Ru 

and 2e-Ru peptides were titrated at (low M for both donor and acceptor).5 Although it was 

believed that diffusion controlled quenching was unlikely in the absence of the peptide 

scaffold, a control experiment was designed to test such an occurrence. The 2b-Ru peptide 

was titrated with an OsII complex (13) designed to mimic the attachment linker, while not 

providing any strong noncovalent interactions that would encourage association with the 

peptide scaffold (Figure 5.2a). The addition of OsII complex 13 to the 2b-Ru peptide had no 

 



94 
 

measurable effect on the RuII excited-state lifetime at concentrations greater than those 

required for measurable quenching compared to the 2c-Os metallopeptide (Figure 5.2b). This 

result indicates that noncovalent association is required for quenching and is in contrast to the 

report by Tor and coworkers where the addition of Os(bpy)2(phen)2+ to solutions containing a 

RuII-modified oligonucleotide resulted is subtle quenching of the RuII-based 

phosphorescence, even at much lower concentrations.3c Tor’s result could be due to the 

longer emissive lifetime of the RuII-modified oligonucleotide used in the study. The result 

could also be attributed to the fact that, while oligonucleotides are polyanionic molecules, the 

2b-Ru peptide contained a net positive (+5) charge at pH 7. The 2b-Ru peptide may have had 

repulsive charge-charge interactions with 13 that were less important or even attractive when 

compared to Tor’s oligonucleotide system. It is also possible that the Os(bpy)2(phen)2+ 

complex used as a control in Tor’s study interacted with the DNA scaffold via classical 

intercalation or surface binding, both phenomena known for RuII complexes that contain 

phenanthroline ligands.6 
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Figure 5.2 (a) The chemical structure of the osmium complex 13 is shown. (b) The time-
resolved emission experiment showing that the 2b-Ru monoexponential lifetime  (red: 25 
M 2b-Ru peptide and 50 M P1 peptide) at 660 nm is not measurably affected by either one 
(blue: 25 M 2b-Ru peptide and 25 M 13), or two (black: 25 M 2b-Ru peptide and 50 M 
13) equivalents of 13. 
  

 A second control experiment was designed to demonstrate that the coiled-coil 

structure was directly responsible for promoting the observed quenching behavior in the 

manner predicted. The GndHCl denaturation experiments used to determine dissociation 

constants within Chapter IV provided a convenient strategy for disrupting the structure of the 

coiled-coil scaffold, even when the complementary OsII-containing peptide was present in 

excess. The emissive lifetimes for both the 2b-Ru and 2e-Ru metallopeptides increased 

considerably when examined in buffered media containing 5 M GndHCl (Figure 5.3). 

However, the lifetimes for RuII decay in both the 2b-Ru/2c-Os or 2e-Ru/2g-Os 

(a) 

 

(b) 
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metallopeptide heterodimers were identical to those for the 2b-Ru and 2e-Ru peptides, 

respectively, when examined in the denaturing media. Both experiments were good 

indicators of the role the coiled-coil scaffold performed during energy transfer. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 5.3 (a) Time-resolved emission trace for the 2b-Ru/2c-Os GndHCl denaturation 
experiment (blue: 25 M 2b-Ru peptide and 50 M 2c-Os peptide in 10 mM sodium 
phosphate buffer, pH 7, red: 25 M 2b-Ru peptide and 50 M 2c-Os peptide in 5 M GndHCl 
buffer, pH 7). The emission lifetime of the 2b-Ru peptide is longer in the denaturing buffer 
(black: 25 M 2b-Ru peptide only in 5 M GndHCl buffer, pH 7), but is unaffected by the 
presence of the 2c-Os peptide. (b) Time-resolved emission trace for the 2e-Ru/2g-Os 
GndHCl denaturation experiment (blue: 25 M 2e-Ru peptide and 50 M 2g-Os peptide in 
10 mM sodium phosphate buffer, pH 7, red: 25 M 2e-Ru peptide and 50 M 2g-Os peptide 
in 5 M GndHCl buffer, pH 7). The emission lifetime of the 2e-Ru peptide is longer in the 
denaturing buffer (black: 25 M 2e-Ru peptide only in 5 M GndHCl buffer, pH 7), but is 
unaffected by the presence of the 2g-Os peptide. 
  

 

(a) 

 
(b) 
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C. Titration experiments 

 Once control experiments had confirmed that the observed RuII-based emission 

quenching was due to coiled-coil formation with the OsII-containing metallopeptides, 

detailed analyses of the different heterodimers were performed. Interestingly, all three RuII 

metallopeptides have excited-state lifetimes that differ slightly when measured in isolation 

from the OsII-containing peptides. This fact demonstrates the sensitivity of the RuII excited-

state lifetime to environment, a phenomenon typically observed in the context of 

solvatochromism.7 The lifetimes of the 2b-Ru, 2e-Ru, and 2f-Ru metallopeptides are, 

however, unaffected by the presence of the P1 parent peptide, even in an excess. This too is 

in contrast to the reports by Tor and coworkers who observed a significant change in the 

emissive lifetime of RuII-containing oligonucleotides when duplexed with complementary 

DNA oligonucleotides which did not contain OsII bipyridyl complexes.3c This observation 

was attributed to the fact that DNA oligonucleotides are highly disordered in isolation and go 

through a considerable degree of structural reorganization when they are duplexed with 

complementary oligonucleotides. In contrast, peptides designed to form coiled-coil structures 

can contain a considerable degree of -helical character in the monomeric state, and may 

also be bound to a small extent as -helical homodimers in the absence of the 

complementary unit. Both characteristics could explain why the 2b-Ru, 2e-Ru, and 2f-Ru 

metallopeptides are insensitive to complementary peptide sequences which did not contain 

OsII.  

 The excited state decay of the 2b-Ru, 2e-Ru, and 2f-Ru metallopeptides are all 

monoexponential in isolation, but became biexponential when the complementary 2c-Os, 2g-
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Os, or 2f-Os metallopeptides are added (Figure 5.3). In all cases, the biexponential behavior 

can be described using Equation 1: 

               1 

where   is the weighted average lifetime observed for the mixture, 1 is the lifetime of the 

slower component, 2 is the lifetime of the faster component, and A1 and A2 are the 

amplitudes of the slower lifetime and faster lifetime components, respectively. The slower 

lifetime component for each metallopeptide pair corresponds to the lifetime of the RuII 

peptide in isolation. For example, the 2e-Ru/2g-Os metallopeptide pair has a slower excited-

state decay component (1) that corresponds to the lifetime of the 2e-Ru peptide measured in 

isolation. By implication, the amplitude (A1) of this slower component is found to be unity 

when no 2g-Os metallopeptide was added. While the 1 component measured for the different 

RuII-containing peptides vary by less than 10%, the 2 components measured for the different 

metallopeptide pairs vary to a greater extent. The amplitude of the faster lifetime component 

(A2) varies with the concentration of the OsII-containing peptide and was assigned as RuII to 

OsII energy transfer. The results of the time-resolved emission experiments are shown 

(Figure5.4). 
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Figure 5.4 (a) The time-resolved emission trace at 660 nm for the 2e-Ru/2g-Os 
metallopeptide pair. (b) The time-resolved emission trace at 660 nm for the 2b-Ru/2c-Os 
metallopeptide pair. (c) The time-resolved emission trace at 660 nm for the 2f-Ru/2f-Os 
metallopeptide pair. The concentration of the RuII-containing peptide was 25 M for each. 
The following titration experiments are shown for each: 0 M (black), 6.25 M (blue, 0.25 
equiv), 12.5 M (red, 0.5 equiv), 18.75 M (green, 0.75 equiv), 25 M (grey, 1.0 equiv), and 
50 M (violet, 2.0 equiv) OsII-containing peptide concentration. All samples analyzed at 
25°C in 10 mM PO4

3-, pH 7, buffer. The computer generated fit is shown as a solid line in 
each. 

(a) 

 
(b) 

 
(c) 
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The concentration-dependence of the faster lifetime component can be described 

using a dissociation constant (Kd) similar to that measured for the metallopeptide pairs by 

GndHCl denaturation (Chapter IV). The dissociation constants for the different 

metallopeptide pairs can all be expressed using Equation 2: 

 

           2 

 

where [Ru] is the concentration of the RuII-containing peptide at equilibrium, [Os] is the 

concentration of the OsII-containing peptide at equilibrium, and [Ru·Os] is the concentration 

of the coiled-coil metallopeptide dimer at equilibrium. The quantities, [Ru] and [Os], can be 

expressed in terms of the dimer concentration [Ru·Os] using Equation 3 and Equation 4: 

 

        3 

         4 

 

where [Ru]0 is the total RuII-containing peptide concentration and [Os]0 is the total OsII-

containing peptide concentration. Substitution of Equation 3 and Equation 4 into Equation 2 

gives Equation 5: 

 

           5 
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where the dissociation constant (Kd) is expressed in terms of the known quantities [Ru]0 and 

[Os]0. Equation 5 was rearranged to express the metallopeptide heterodimer concentration 

([Ru·Os]) in terms of the Kd, [Ru]0, and [Os]0 resulting in Equation 6: 

 

  4
2

     6 

 

The relative emission intensity (I) measured for the emission experiments can be expressed 

as a time-dependent function using Equation 7: 

 

         7 

 

where kRu is the emission lifetime for the RuII-containing peptide in isolation, kEnT is the rate 

of energy transfer to the OsII-containing peptide, and t is time. Since the preexponential terms 

[Ru·Os]/[Ru]0 and ([Ru]0-[Ru·Os])/[Ru]0 represent the fractions of the RuII peptide contained 

in the heterodimer and monomer states (FF and FU), respectively, they can be used to 

calculate the Kd values of interest. The lifetimes and dissociation constants derived from 

these titration experiments are given in Table 5.1. The Kd values determined for the 

metallopeptides by time-resolved emission (Table 5.1) agree extremely well with the Kd 

values determined by chemical denaturation (Chapter IV). The correlation between the 

values is important to our hypothesis that the structure of the coiled-coil peptide scaffold is 

responsible for promoting the observed energy transfer since chemical denaturation is 

monitored by CD signal ([θ]222) and is dependent only on the peptide secondary structure.  
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Table 5.1. Lifetimes and amplitudes generated from the titration experiments 

 2e-Ru/2g-Os 2b-Ru/2c-Os 2f-Ru/2f-Os 
1

a (ns) 468.2 ± 0.4 450.0 ± 0.5 478.7 ± 0.5 
EnT

b (ns) 42.0 ± 0.2 304 ± 2 816 ± 14 
Kd

c (M) 1.127 ± 0.001 1.088 ± 0.002 1.101 ±0.006 
Kd (GndHCl)d (M) 1.4 ± 0.3 0.97 ± 0.2 0.49 ± 0.09 

aThe slower excited-state decay component 1 is attributed to RuII emission in the absence of 
quenching. bThe rates of energy transfer for the metallopeptide heterodimers are reported as 
lifetimes (EnT = 1/kEnT) for comparison. cThe dissociation constants were calculated using 
Equation 6 and Equation 7. dThe dissociation constants were measured in Chapter IV. 
  

 D. Results and discussion 

The 2e-Ru/2g-Os metallopeptide pair is predicted to be the best promoter of RuII to 

OsII energy transfer based on the discussion of coiled-coil structure presented in Chapter IV. 

Indeed, the lifetime of energy transfer (EnT) measured for the 2e-Ru/2g-Os metallopeptide 

pair is 42 ns. This value was considerably faster than that for either the 2b-Ru/2c-Os or 2f-

Ru/2f-Os pairs. The molecular dynamics simulations of the 2e-Ru/2g-Os pair presented in 

Chapter IV showed a number of conformations where the bipyridyl complexes were able to 

come in close contact with each other. 

Comparing EnT for the 2e-Ru/2g-Os metallopeptide pair to the subnanosecond rates 

observed within the RuII- and OsII-modified polystyrene systems studied by Fleming and 

coworkers indicated that the metallopeptide system is a less efficient promoter of RuII to OsII 

energy transfer.2e This is almost certainly due to the RuII and OsII bipyridyl complexes 

occupying, on average, conformations that are less conducive (greater metal complex 

displacement) to excited-state energy transfer compared to the polystyrene-based systems 

where the donor and acceptor complexes are forced into van der Waals contact with each 

other.2e There is also the possibility that the effect is due to the different chemical structure of 

the RuII-bipyridyl complexes used within the polystyrene-based system. 
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 Based on the discussion presented in Chapter IV, a number of results could be 

expected for the 2b-Ru/2c-Os metallopeptide system. The 2b-Ru/2c-Os pair could be 

expected to promote energy transfer less efficiently than the 2e-Ru/2g-Os pair based on an 

analysis of the helical positions within similar coiled-coil peptide structures (Figure 5.1). 

Conversely, the molecular dynamics simulation of the 2b-Ru/2c-Os metallopeptide pair 

implies that it could promote energy transfer in a manner very similar to the 2e-Ru/2g-Os 

pair. The titration experiments using time-resolved emission indicated that the 2b-Ru/2c-Os 

metallopeptide pair give an energy transfer lifetime of 304 ns. Although the 2b-Ru/2c-Os 

metallopeptide pair is less efficient at promoting energy transfer compared to the 2e-Ru/2g-

Os pair, the structural differences between the two metallopeptide heterodimers may not be 

that great.  As described in Chapter I, the efficiency of Dexter energy transfer decreases 

exponentially with distance and the displacement between metal centers in the two 

metallopeptide systems may therefore be similar.8 It is reasonable to assume a Dexter 

mechanism is operative in both the 2b-Ru/2c-Os and 2e-Ru/2g-Os metallopeptide systems 

since the analysis of coiled-coil crystal structures presented in Chapter IV indicate that the 

attachment positions for the two scaffolds are very similar in distance to the radius of the 

metal complexes themselves and would likely allow for the RuII and OsII bipyridyl 

complexes to come in van der Waals contact.9 Tor and coworkers concluded that RuII to OsII 

energy transfer in the oligonucleotide-based system was primarily due to a Förster 

mechanism with contributions from the Dexter mechanism being important at smaller 

donor/acceptor separations. A similar conclusion could likely be made for the 2b-Ru/2c-Os 

and 2e-Ru/2g-Os metallopeptide sytems where both Dexter and Förster mechanisms may 

play a role in determining energy transfer rates, but to different extents.3c  
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 The 2f-Ru/2f-Os metallopeptide pair was, not surprisingly, the least efficient promoter 

of RuII to OsII energy transfer energy. At the outset it was difficult to even predict that the 2f-

Ru/2f-Os metallopeptide pair would promote energy transfer. The different analyses of the 

coiled-coil structures presented in Chapter IV all imply that the attachment positions on the 

peptide scaffold are sufficiently displaced to prevent any contact between the bipyridyl 

complexes. The energy transfer lifetime for the 2f-Ru/2f-Os metallopeptide system (816 ns) 

is fairly long compared to the 2b-Ru/2c-Os and 2e-Ru/2g-Os systems, but the fact that energy 

transfer is observed at all is likely an indicator that a Förster mechanism is involved. Again, 

this would agree with the conclusion reached both by Tor and by other researchers where a 

Förster mechanism is operative at greater donor/acceptor distances, but a Dexter mechanism 

is possible for the same energy transfer pair at closer distances.1,3 

 E. Conclusions 

 The coiled-coil peptide scaffold presented throughout this report has been shown to 

be an efficient promoter of RuII to OsII energy transfer. The 2e-Ru/2g-Os, 2b-Ru/2c-Os, and 

2f-Ru/2f-Os metallopeptide systems exhibit different energy transfer rates that correlate with 

the structural model presented for the coiled-coil peptide scaffold. Control experiments 

performed on the systems indicate the peptide scaffold is critical for promoting energy 

transfer. Equilibrium constants for the metallopeptides, measured by time-ressolved emission 

titration experiments, agree extremely well with those measured by chemical denaturation 

(Chapter IV), and reinforce the importance of the peptide scaffold for promoting RuII to OsII 

energy transfer. Although the mechanism of energy transfer could not be assigned exactly, 

the analyses of the metallopeptide system would imply that both Dexter and Förster 

components may play a role in determining the observed energy transfer rates. The exact 
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mechanism may be identified if additional metallopeptides representing a wider range of 

donor-acceptor displacements were examined. It is important to recognize that the position-

dependent energy transfer observed for the different metallopeptide pairs most likely does 

not represent a static displacement of bipyridyl complexes but instead is a measure of the 

average distances observed for the systems as a result of dynamic solution conformations. 

Inspired by the widespread use of the coiled-coil peptide scaffold throughout natural systems, 

a number of researchers have already investigated them for potential materials applications.10 

The metallopeptide systems described throughout this report could be applied to a number of 

productive applications including the construction of synthetic light-harvesting antenna,11 or 

as a sensitizer for dye-sensitized solar cells.12 It is the latter that forms the focus of Chapter 

VI where the initial efforts for developing RuII-containing peptides capable of performing 

excited-state electron injection with metal-oxide semiconductors is described.  

 F. Time-resolved emission experimental section 

 Ground state absorbance measurements were conducted with a Hewlett Packard 8453 

UV-VIS-NIR absorption spectrophotometer. Steady state emission (SSE) data were collected 

using an Edinburgh Instruments FLS920 equipped with a 450 W Xenon lamp and 

photomultiplier tube (Hamamatsu 2658P). SSE data were collected using a bandwidth no 

larger than 4.0 nm and, once collected, were corrected for the emission spectrophotometer’s 

spectral response.  The FLS920 was also used for time-resolved measurements by the time-

correlated single photon counting (TCSPC) technique with an instrument response of <100 

ps.  TCSPC excitation came from a 444.2 nm diode laser (Edinburgh Instruments EPL- 445, 

73 ps FWHM pulsewidth) operated at 200 kHz. A 495 nm long pass color filter was used for 

emission experiments. A diagram showing the basic experimental set up for time-resolved 
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emission measurements by time-correlated sinlge photon counting (TCSPC) is shown (Figure 

5.5). 

 The samples were placed in a 2.0 mm cuvette and placed at 45 degree angle from the 

incident laser beam. The samples were purged in Argon for >25 minutes prior to emission 

experiments. All experiments were performed with Abs444 nm< 0.2 OD. The solvent for each 

sample was 10 mM phosphate buffer at pH 7.  

 

Figure 5.5. Diagram showing the experimental set up for time-resolved emission 
measurements by time-correlated sinlge photon counting (TCSPC). 
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Chapter VI 

THE STUDY OF METALLOPEPTIDE SENSITIZERS 
FOR NANOCRYSTALLINE SEMICONDUCTORS 

  

 A. Introduction 

 Chapter I described the importance and general considerations for studying excited-

state energy transfer phenomena. The chemistry required to synthesize RuII-containing 

metallopeptides for the study of RuII to OsII energy transfer was described within Chapter III. 

Chapter VI will now describe the utilization of that synthetic chemistry to developed a series 

of metallopeptide-based sensitizers for nanocrystalline semiconductors. This work focused 

on synthesis, surface attachment, photophysics and excited-state electron transfer dynamics 

of these metallopeptide-based sensitizers on nanocrystalline semiconductor surfaces. This 

work was performed in close collaboration with Dr. Kenneth Hanson using the EFRC 

spectroscopy facility under the advisement of Professor Thomas J. Meyer. 

 B. Background 

Interest in excited-state electron transfer across heterogeneous surfaces has 

accelerated since the invention of the dye-sensitized solar cell (DSSC).1 Although the exact 

mechanisms of action for DSSCs differ, several key steps are generally involved (Figure 

6.1).2 These elementary steps include: (a) the absorption of light which creates an 

electronically-excited state localized on the sensitizer molecule; (b) electron injection from 

the excited state molecule into the semiconductor conduction band known as photoinjection;
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(c) the reduction of the oxidized sensitizer molecule by a charge-transporting electrolyte; and 

(d) the return of the injected electron through an external circuit, performing useful work on a 

load, with reduction of oxidized electrolyte occuring at a counter electrode. In addition to the 

processes described above that are required for efficient DSSC performance there are 

competitive detrimental processes that include but are not limited to back electron transfer 

(BET, e). BET is the process of charge recombination between the oxidized sensitizer and 

electrons localized in the semiconductor. The process described above is, as a whole, 

completely regenerative, meaning no net chemical reaction occurs. The general process of 

creating an interfacial charge-separated state from a photoexcited state can be thought of as 

biomimetic, as excited-state electron transfer drives the generation of useful redox 

equivalents in natural photosynthetic systems as well.3 Although early studies indicated 

sensitizers dissolved in the electrolyte solution could be used, it was quickly realized that the 

direct attachment of sensitizers to semiconductor surfaces was a more practical approach.2 
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Figure 6.1 A schematic representation of a DSSC is given. The elementary processes 
involved: (a) absorption of light by a sensitizer (filled black sphere); (b) electron transfer into 
the semiconductor conduction band; (c) reduction of the oxidized sensitizer by a charge-
transporting electrolyte (empty sphere); (d) current traveling through the external circuit and 
successively reducing the oxidized electrolyte; and (e) nonproductive BET from the 
semiconductor to the oxidized sensitizer. 
 

DSSCs are distinguished from other semiconductor-based solar cells by the 

separation of light absorption and charge transport functions between two different molecular 

components. DSSCs of the design presented above are typically referred to as Grätzel cells, 

since Michael Grätzel made significant contributions to their design by employing high 

surface area colloidal TiO2 films as the semiconductor component.1 Grätzel’s use of a high 

surface area semiconductor allowed for increased surface loading of sensitizer molecules and 

therefore higher absorbance of incident light, an absolute requirement for increased solar 

harvesting efficiency. A general description of the monochromatic current yield (ηi) possible 

for a DSSC is given by Equation 1:1 
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η η          1 

where LHE is the light harvesting efficiency of the cell at a specific wavelength (λ), Φinj is 

the quantum yield for charge injection into the semiconductor, and ηe is the charge collection 

efficiency. The LHE is the fraction of the incident photons that are absorbed by the 

sensitizer, also commonly referred to as the absorptance (α (λ)). The LHE of a DSSC is 

related to transmittance and absorbance by Equation 2:2 

 1 1 10          2 

where I0 is the intensity of incident light, I is the intensity of light transmitted through the 

sample, and A is the absorbance of light at a specific wavelength (λ). The efficiency of light 

absorption, and therefore the DSSC as a whole, will depend directly on the extinction 

coefficient of the sensitizer, and on the ability to adsorb high local concentrations of 

sensitizer molecules on the surface. The surface area required to bind a sensitizer is known as 

the footprint (AS).  

 Polypyridyl complexes of the transition metals FeII, RuII, OsII, and ReI have properties 

well equipped for use in DSSCs.4 As described in Chapter I, the MLCT absorbance bands for 

Ru(bpy)3
2+ and the related MII bipyridyl complexes have relatively high extinction 

coefficients over broad ranges of the visible spectrum. While the Ru(bpy)3
2+ ground state is 

relatively inert, photoexcitation produces a 3MLCT state sufficiently reducing compared to 

the conduction band of TiO2.
5 Photoinjection into TiO2 typically occurs on the 

subnanosecond timescale.4 The excited-state lifetimes of the bipyridyl complexes can be tens 

or even hundreds of nanoseconds, and result in photoinjection yields that are quite high when 

sensitizer molecules are attached close to the semiconductor surface.4 
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 Any number of functional groups have been used to anchor RuII polypyridyl 

complexes to semiconductor surfaces including carboxylic acids, esters, amides, alcohols, 

and silyl chlorides.4 Carboxylic acid and phosphonic acid groups are typically considered 

superior attachment groups (Figure 6.2).4 RuII complexes containing bipyridyl ligands with 

two carboxylic acid groups serving as anchors have been the most commonly employed in 

DSSCs, and are known to exhibit high device performances (Figure 6.2a).5 Bipyridyl ligands 

containing multiple phosphonic acid groups have more recently been shown to provide 

greater surface attachment stability under conditions of irradiance in aqueous environments 

(Figure 6.2b,c).6 The phosphonic acid group also provides better surface stability over a 

broader range of pH values. 

 

 

 

 

Figure 6.2 (a) A bipyridyl ligand with two carboxylic acid groups. (b) A bipyridyl ligand 
with two phosphonic acid groups attached directly to the pyridine ring. (c) A bipyridyl ligand 
with two phosphonic acid groups attached to the pyridine ring through a methylene group. 

 C. System design 

 Phosphoserine is a naturally occurring amino acid in proteins, although it is a post-

translational modification and is not synthesized during normal translation of the genetic 

code (Figure 6.3).7 The post-translational phosphorylation of amino acids such as serine, 

threonine, and tyrosine by protien kinases is one of the most important regulatory 

mechanisms within cellular signaling pathways.7 Similar to the phosphonic acid groups used 

within the bipyridyl ligands discussed above, phosphoserine is known to provide 

coordinative binding to TiO2 surfaces when included in short peptide sequences.8 An 

(a) 

 

(b) 

 

(c) 
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attachment strategy for RuII-based sensitizers and TiO2 surfaces based on phosphoserine 

anchoring groups was designed and tested. To the best of our knowledge phosphoserine has 

not been used for the anchoring of sensitizers to semiconductor surfaces. 

Several possible advantages were anticipated with RuII-containing phosphopeptides 

as compared to traditional polypyridyl RuII complexes as sensitizers. The possible advantages 

include: (1) the ease of system redesign due to the high throughput nature of solid-phase 

peptide synthesis; (2) the ability to incorporate a number of phosphoserine groups in 

sequence in order to provide high-affinity anchoring of the RuII sensitizer; (3) the attachment 

of the RuII complexes to the phosphopeptides through a single bipyridyl ligand; (4) the ability 

to attach multiple RuII complexes to a single anchoring motif; and also (5) the tunable 

distance between the RuII bipyridyl complexes and the semiconductor surface. More 

explicitly, the ability to attach multiple RuII complexes to a single anchoring motif would 

allow for high extinction coefficient sensitizers with relatively small footprints, and would 

also allow for systematic distance dependence studies. 
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Figure 6.3 System design for the RuII-containing phosphopeptides 2pS (n = 2) and 3pS (n = 
3). The structure of both phosphoserine and azidolysine are shown. 

 

A phosphopeptide system was designed based on a single heptad repeat unit 

(KIASLKQ) from the P1 peptide sequence in Chapter II (Figure 6.3). The initial system 

design contained either two (2pS) or three (3pS) phosphoserine residues for surface 

anchoring, and a RuII bipyridyl complex (11a) attached using an azidolysine residue. The 

synthesis of and conjugation strategies for using -Fmoc--azido-L-lysine (8) are presented 

in Chapter III. RuII complexes typically gain high affinity for semiconductor surfaces when 

multiple ligands are derivatized with anchoring groups.2,4 It was hoped that using only one 

alkyne-functionalized ligand for the attachment of the phosphopeptide anchoring group to the 

RuII bipyridyl complex would allow for the chromophoric and electrochemical properties of 

the other two bipyridyl ligands to be varied more easily. 

The relative anchoring stability of the 2pS and 3pS phosphopeptides was tested by 

first adsorbing the phospopeptides onto high surface area TiO2 films, and then tracking the 

surface coverage over time using absorbance measurements. Thin-film TiO2 slides were 
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soaked for 48 hours in solutions containg 100 M phosphopeptide at pH 4 and 7 (phosphate 

buffer). The TiO2 adsorption of RuII bipyridyl complexes derivatized with phosphonic acid 

groups is known to be highly pH dependent, with more acidic media favoring higher 

adsorption levels.6c The surface coverages of the different slides were measured by 

absorbance at 452 nm. The slides were stored in identical buffers that did not contain the 

phosphopeptides so that the surface stabilities could be monitored periodically. Since the 

thickness of the TiO2 slides was somewhat nonhomogeneous, the absorbance of the 

individual uncoated slides was subtracted from the measurements and A values were 

reported (Figure 6.4). The 3pS phosphopeptide anchoring group was found to be superior to 

the 2pS anchoring group both with regard to initial loading and also long term surface 

stability. As expected the lower pH buffer provided better surface anchoring stability for the 

3pS phosphopeptide.  
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Figure 6.4 Relative surface stability of the 2pS and 3pS phosphopeptides on TiO2. Slides 
were coated for 48 hours in 100 M phosphopeptide solutions in 10 mM phosphate buffer, 
pH 4 or pH 7, and surface stability was evaluated in buffers that did not contain the 
phosphopeptides. 
 

 D. Photophysical measurements 

Once the 3pS phosphopeptide design had been established as a platform for attaching 

RuII-containing sensitizers, the length of the phosphopeptide anchor was investigated. It was 

unknown from the outset whether the phosphopeptide anchor would provide the intimate 

contact with the TiO2 surface required for excited-state electron transfer to occur. It was 

anticipated that if photoinjection from the phosphopeptides did occur, the length of the 

peptide structure could be used to tune both photoinjection (Figure 6.1, b) and BET (Figure 

6.1, e) rates. A second generation of phosphopeptide anchors was designed in order to test 

the influence that peptide structure had (Figure 6.5). Compared to the 3pS phosphopeptide, 

the 3pS-P3 and 3pS-P0 phosphopetides contain fewer amino acid residues between the 

phosphoserine anchor motif and the azidolysine residue used for RuII attachment. The 

general peptide sequence remains the same throughout in order to provide similar solubillity 

properties and aid in purification. A RuII complex containing a bis-phosphonated bipyridyl 
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ligand (14) was used for comparison. The complex 14 has previously been used by the Meyer 

group to study interfacial electron transfer dynamics.9  

 

Figure 6.5 Structure of the phosphopeptides used to test the effects of anchor length on 
photoinjection with TiO2. The 3pS peptide was optimized for surface coverage and stabillity. 
The second-generation phosphopeptides 3pS-P3 and 3pS-P0 have shorter peptide linkers 
between the phosphoserine anchoring motif and the RuII-containing sensitizer complex. The 
phosphonate-based complex [Ru(bpy)2((4,4’-PO3H2)2bpy)]2+ (14) was used for comparison 
when photoinjection was examined. 
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Figure 6.6 (a) Absorbance spectra are shown for the phosphopeptides 3pS (black), the bis-
phosphonated complex 14 (red), and Ru(bpy)3

2+ (blue). (b) Normalized emission spectra are 
shown for the phosphopeptides 3pS (black), 3pS-P0 (green), 3pS-P3 (violet). Also shown for 
comparison are the normalized emission spectra for the bis-phosphonated complex 14 (red), 
and Ru(bpy)3

2+ (blue). 

The RuII-containing phosphopeptides have photophysical properties very similar to 

the bis-phosphonated complex 14 when measured in solution. The absorbance spectra for the 

three phosphopeptides and 14 are typical of RuII bipyridyl complexes (Figure 6.6), displaying 

intense bands due to the -* (ligand-centered) and MLCT transitions.10 The electron 

withdrawing character of the amide substituent in the 3pS, 3pS-P0, and 3pS-P3 

phosphopeptides results in a hypsochromic shift in their emission spectra (max = 674 nm) 

(a) 

 

(b) 
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relative to Ru(bpy)3
2+ (max = 626 nm). The shift is similar to that observed for the bis-

phosphonated complex 14 (max = 675 nm). The three phosphopeptides also have excited-

state lifetimes () that are similar to 14 when measured in 0.1 M aqueous HClO4 (Table 6.1). 

Table 6.1. Photophysical properties of the phosphopeptides 3pS, 3pS-P0, and 3pS-P3. 

 
Absorbance 

(MLCT) 
max (nm)a 

Emission 
max (nm)b 

Lifetime 
(ns)b 

3pS 459 674 302 

3pS-P3 459 674 282 

3pS-P0 459 674 280 

14 453 675 306 

Ru(bpy)3
2+ 454 626 554 

aMeasured in 0.1 M HClO4. 
bMeasured in 0.1 M HClO4 after degassing with Ar for 30 

minutes. 

The lowest conduction band of zirconium dioxide (ZrO2) semiconductors is 

considerably higher in energy than the excited state reduction potential of most RuII bipyridyl 

complexes and therefore precludes photoinjection.11 For this reason ZrO2 films have been 

used for comparative studies where the surface-bound photophysical properties of potenitial 

sensitizers are examined in the absence of quenching due to electron injection. While the the 

solution-phase emission lifetimes for the three phosphopeptides were single exponential in 

character, their surface-bound excited-state lifetimes are biexponential (Table 6.2). The time-

resolved emission traces for each phosphopeptide displayed one component that was similar 

in lifetime to that observed in the solution phase (1) and one component that was of 

considerably longer lifetime (2). The longer lifetime component (2) had a greater amplitude 

for all three phosphopeptides. 
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Table 6.2. Photophysical properties of the phosphopeptides on ZrO2. 

 
Emission 
max (nm)a 

1 (A1) 
ns (%)a 

2 (A2) 
ns (%)a 

˂ ˃ 
nsa 

3pS 665 280 (19) 630 (81) 470 
3pS-P3 665 290 (23) 600 (77) 410 
3pS-P0 665 280 (23) 560 (77) 380 

14 665 150 (13) 400 (87) 370 
aMeasured in 0.1 M HClO4 after degassing with Ar for 30 minutes. 

The surface-bound excited-state lifetimes of the phosphopeptides became 

triexponential after adsorption on TiO2 films (Table 6.3). Again, the emission spectra for 

each phosphopeptide displayed one component that was similar in lifetime to that observed 

in the solution-phase (1) and one component that was of considerably longer lifetime (2). 

The time-resolved emission traces for the phosphopeptides adsorbed on TiO2 displayed an 

additional component that was of considerably shorter lifetime (3) when compared to that 

observed in the solution phase. The short lifetime (3) component could be related to 

photoinjection from the RuII phosphopeptide excited state into TiO2. The relative amplitude 

of this component was less than 10% for all three phosphopeptides. The decrease in the 

average lifetimes of the phosphopeptides adsorbed on TiO2 indicate emission quenching due 

to photoinjection, although the degree of this quenching is minimal. Transient absorption 

analysis, to be reported elsewhere, indicate that the quantum yields for photoinjection (inj) 

do not exceed 12% for the phosphopeptides adsorbed onto TiO2. 
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Table 3. Photophysical properties of the phosphopeptides on TiO2. 

 
Emission 
max (nm)a 

1 (A1) 
ns (%)a 

2 (A2) 
ns (%)a 

3 (A3) 
ns (%)a 

˂ ˃ 
nsa 

3pS 664 290 (23) 590 (76) 40 (1) 400 
3pS-P3 664 280 (35) 550 (61) 50 (3) 280 
3pS-P0 664 230 (54) 490 (37) 50 (9) 160 

14 676 b b b b 
aMeasured in 0.1 M HClO4 after degassing with Ar for 30 minutes. bValues were not 
obtained due to the instrument response. 

E. Conclusions 

The phosphopeptides designed and tested throughout Chapter VI were shown to be 

efficient anchoring modules for RuII bipyridyl complexes. The 3pS, 3pS-P0, and 3pS-P3 

phosphopeptides were compared to the previously studied bis-phosphonated complex 14 

using a number spectroscopic techniques. The complex 14 is intimately bound to the TiO2 

surface after adsorption and provides efficient photoinjection (inj = 1). The phosphopeptides 

described in Chapter VI do not provide efficient photoinjection and are unlikely to be useful 

as primary sensitizers for nanocrystalline semiconductors.  It is likely that the distance 

between the TiO2 surface and the RuII bipyridyl complexes is too large for the 

phosphopeptides to exhibit photoinjection on a timescale comparable to 14. There does 

appear to be a subtle distance dependence for the photoinjection observed in the 

phosphopeptides. The decrease in the average lifetime for each phosphopeptide roughly 

correlates with the number of amino acid residues between the RuII complex and the 

phosphoserine motif. Photoinjection yields measured by transient absorption also roughly 

correlate with this parameter. Although the 3pS, 3pS-P0, and 3pS-P3 phosphopeptides do not 

provide photoinjection yields that would make them attractive for use as primary sensitizers, 

they may be useful as secondary sensitizers capable of slowing BET (Figure 6.1, e) rates. 
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F. Experimental section 

Synthesis of phosphopeptides using -Fmoc--azido-L-lysine and -Fmoc-O-benzyl-

L-serine. Standard procedures for synthesizing peptides and azidopeptides using an 

automated synthesizer are described in detail in Chapter III. -Fmoc--azido-L-lysine (8) was 

synthesized and employed in automated coupling reactions by manual injection. -Fmoc-O-

benzyl-L-serine was purchased from Novabiochem and was also manually injected during 

automated peptide synthesis. The phosphopeptides were cleaved from the resin, and purified 

as described in Chapter III. Azidopeptide identities were confirmed by ESI-MS. M was 

calculated as 1315.61 (exact) for 2pS-N3 (C49H91N17O21P2). MS m/z observed: 1316.4 ([M + 

H+]+), 658.8 ([M + 2H+]2+); M was calculated as 1482.60 (exact) for 3pS-N3 

(C52H97N18O26P3). MS m/z observed: 1483.5 ([M + H+]+), 742.3 ([M + 2H+]2+); M was 

calculated as 1482.60 (exact) for 3pS-P3-N3 (C52H97N18O26P3). MS m/z observed: 1483.3 

([M + H+]+), 742.2 ([M + 2H+]2+); M was calculated as 1482.60 (exact) for 3pS-P0-N3 

(C52H97N18O26P3). MS m/z observed: 1483.4 ([M + H+]+), 742.2 ([M + 2H+]2+). 

Synthesis of RuII-containing phosphopeptides using the CuAAC reaction. Standard 

procedures for synthesizing RuII-containing peptides  by way of the CuAAC reaction are 

described in detail in Chapter III. RuII-containing phosphopeptides were synthesized and 

purified using identical procedures. M2+ was calculated as 1980.75 (exact) for 2pS 

(C84H120N24O22P2Ru). MS m/z observed: 990.2 ([M2+]), 660.5 ([M2+ + H+]3+); M2+ was 

calculated as 2147.75 (exact) for 3pS (C87H126N25O27P3Ru). MS m/z observed: 1073.8 

([M2+]), 716.2 ([M2+ + H+]3+); M2+ was calculated as 2147.75 (exact) for 3pS-P3 

(C87H126N25O27P3Ru). MS m/z observed: 1073.7 ([M2+]), 716.2 ([M2+ + H+]3+); M2+ was 
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calculated as 2147.75 (exact) for 3pS-P0 (C87H126N25O27P3Ru). MS m/z observed: 1073.8 

([M2+]), 716.2 ([M2+ + H+]3+). 
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Chapter VII 

OLIGOPROLINE RECOGNITION BY A -HAIRPIN PEPTIDE 
  

A. Introduction and significance 

i. Proline is a structurally unique amino acid 

 Amongst the canonical amino acids, proline holds a distinguished position. Proline is 

the only amino acid that contains a cyclic side chain attached directly to its -amino group. 

This property makes proline the most conformationally restricted amino acid and renders it 

incapable of donating hydrogen bonds when it forms tertiary amide linkages within peptide 

structures. Proline occupies a very narrow region of the Ramachandran plot as a direct 

consequence of the pyrrolidine-containing side chain, and the conformational constraints that 

it imposes on the peptide backbone (Φ = -75º, Ψ = +145º, approximately).1 Proline typically 

plays a highly specialized role in proteins, whether it is incorporated in polyproline 

structures, or within structures containing the other proteinogenic amino acids. 

 The unique chemical properties of proline allow it to interact with the other amino 

acids in very distinctive ways. One of these distinct interactions is the aromatic-prolyl 

interaction.2 Interactions between proline and the aromatic amino acids have been well 

studied in the context of both protein folding and protein-protein interactions.2 An important 

manifestation of the aromatic-prolyl interaction is its effect on determining the cis-trans 

isomerisation state for amide bonds in many proteins. 
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Figure 7.1 (a) The s-trans and s-cis amide bond conformations for peptides are shown. Steric 
repulsions between the C substituents lead to destabilization of the s-cis amide bond 
conformation. (b) The s-trans and s-cis conformations for Xaa-Pro amide bonds are closer in 
energy due to competing steric repulsions from the C and C substituents (Xaa is any 
nonproline amino acid). 
 

 There is a significant degree of electron delocalization in amide bonds which results 

in considerable double-bond character (Figure 7.1a). This double-bond character results in a 

roughly 20 kcal·mol-1 barrier to rotation around the C-N amide bond.2a In the majority of 

amino acid peptides the s-trans conformation ( = 180°) is favored by roughly 2.5 kcal·mol-1 

relative to the s-cis conformation ( = 0°) due to the steric restrictions present in secondary 

amides (Figure 7.1a). In peptides containing Xaa-Pro tertiary amide bonds the preference for 

the s-trans conformation is considerably decreased since steric restrictions presented by the 

C and C substituents are more similar. The s-trans conformation is closer to 0.5 kcal·mol-1 

more stable compared to the s-cis conformation in these amide bonds containing proline. The 

barrier to rotation in proline-containing amide bonds is also decreased to roughly 13 

(a) 

 
(b) 
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kcal·mol-1.2a The relatively low barrier to rotation and increased energy in the s-trans 

conformation results in Xaa-Pro amide bonds adopting an s-cis conformation in more than 5% 

occurrence in natural proteins.2d This is significantly more often than any of the other 

proteinogenic amino acids which on average occupy the s-cis conformation in less than 1% 

of amide bonds. Aromatic residues directly preceding proline confer stability to the s-cis 

conformation due to favorable aromatic-prolyl interactions, with tryptophan being the most s-

cis-stabilizing non-proline residue. These interactions were first recognized through the 

analysis of protein data banks in which many aromatic residues stack against proline side 

chains. Most often, the proline H, H, or Hshow the shortest contact distances (roughly 4 

Å) with the aromatic ring (Figure 7.2a). 

 

 

 

 

 

Figure 7.2 (a) A tryptophan-proline amide bond is shown. The s-cis conformation is 
stabilized by an aromatic-prolyl interaction. (b) An aromatic-prolyl interaction between 
tryptophan and proline residues located within different protein domains. Many aromatic-
prolyl interactions are important in protein-protein recognition events. 

ii. Proline-rich motifs 

 The aromatic-prolyl interaction has also been recognized in the context of the 

interdomain contacts made between proteins (Figure 7.2b). There are many protein domains 

that recognize proline-rich motifs (PRMs) during complex signaling events (Figure 7.3).2e,f 

PRM-binding domains all contain highly conserved clusters of surface-exposed aromatic 

residues, referred to as “aromatic cradles”. PRM-binding domains typically recognize ligands 

(a) 

 

(b) 
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that are peptide segments 5-10 amino acids in length. PRM-binding domains recognize 

specific 3-6 amino acid residue “core motifs” within these ligand peptides. The core motifs 

often repeat in tandem within the ligand peptides. Currently, six distinct families of PRM-

binding domains have been distinguished based on their respective structure and ligand 

binding preferences. The SH3 domains,3 the WW domains,4 the EVH1 domains,5 the GYF 

domains,6 the UEV domains,7 and the single-domain profilin proteins8 all interact with 

specific “core motifs”. The different families recognize their respective PRMs with Kd values 

that typically range from 1 to 500 µM. Interactions of non-proline residues within the motifs 

provide specificity. PRM-binding domains are typically found in larger multidomain proteins 

and are involved in a number of cellular processes including cytoskeletal rearrangement, cell 

growth, postsynaptic signaling, and transcription.2e,f There are more than 400 PRM-binding 

domains found in the human genome, and PRMs are the most common sequence motifs in 

many simple organisms including Drosophila melanogaster and Caenorhabditis elegans.2f It 

is believed that many PRMs are associated with multiple PRM-binding domains with varying 

affinities, a property that would allow them to perform multiple signaling functions 

orthogonally.2e 
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Figure 7.3 The PRM-binding EVH1 domain from Homer 1a is shown (green) bound to its 
natural ligand peptide (red) which has the sequence TPPSPF (pdb: 1DDV).  The “aromatic 
cradle” that is required for binding is also highlighted (blue) within the EVH1 domain. The 
two aromatic residues, tryptophan and tyrosine, are shown making close contacts with 
proline residues in the ligand.  

 iii. The polyproline type II (PPII) helix 

 It is widely believed that the ubiquitous use of proline as a recognition element for 

signaling modules is a the result of the unique polyproline type II (PPII) helix structure that 

repetitive proline-rich sequences adopt in an aqueous environment (Figure 7.4). The PPII 

helix is a left-handed helical structure that lacks the intramolecular hydrogen bonds that 

stabilize the more common peptide secondary structures including α-helices and β-sheets. 

The PPII helix has a pitch greater than 9 Å and contains 3 residues per turn making it 

considerably more extended than the α-helix which has a pitch of only 5.4 Å and 3.6 residues 

per turn. The structure of the PPII helix is the result of previously mentioned conformational 

constraints imposed by the annular side chain. All amide bonds within PPII helices are in the 

s-trans conformation. The PPII helix is typically considered rigid and it is believed that the 

preorganization of recognition elements within the PPII helix reduces the entropic cost of 

binding PRM ligands.2e Since PRMs all share the PPII helix as their conserved secondary 

structure, it is not surprising that the different families of PRM-binding domains exhibit 
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structural homology as well. The previously mentioned aromatic cradles are most commonly 

found on the surface of a β-sheet and consist of two diagonal (i, j+2) aromatic residues. The 

overall shape of the PPII helix resembles that of a triangular prism, and most PRM-binding 

domains have a cleft arrangement that is complementary to this shape.2f The absence of 

intramolecular hydrogen bonding within PPII helices leaves the electron-rich proline 

carbonyl groups free to accept hydrogen bonds donated from amino acids present within 

PRM-binding domains. Hydrogen bonds to PRMs are typically donated from aromatic 

residues such as Trp or Tyr, although Asn, Thr, Ser, Gln, and His can also contribute in this 

fashion.2e,f 

 

 

 

 

 

 

Figure 7.4 The conformation of the polyproline type II (PPII) helix viewed both 
perpendicular (left) and parallel (right) to the helical axis. The helix has a pseudo C3 
rotational axis and contains three residues per turn with torsion angles that are dictated by the 
pyrrolidine-containing side chain (Φ = -78º, Ψ = +146º). The tertiary amide groups are very 
good hydrogen-bond acceptors and serve as an additional recognition element in addition to 
the aromatic-prolyl interaction.  
 

The aromatic-prolyl interactions that stabilize s-cis amide bond conformations in 

many proteins and allow PRMs to coordinate multiprotein signalling cascades are thought to 

be driven by a combination of enthalpic C-H-π interactions and the classical hydrophobic 

effect.9 Zondlo and co-workers have helped elucidate the enthalpic contribution to aromatic-
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prolyl interactions from studies on peptide model systems using 1H NMR.10 They were able 

to modulate the preference for the s-cis versus s-trans amide bond conformation in a simple 

tetrapeptide model system. The results indicated that more electron rich aromatic amino acids 

favored the s-cis conformation for enthalpic reasons and showed that tryptophan and 

deprotonated tyrosine were the most efficient in this regard. This result is interesting since 

tryptophan and tyrosine are the residues selected most often by evolutionary processes for 

binding PRMs. 

B. The tryptophan zipper peptides as models for aromatic-prolyl interactions 

i. The tryptophan zipper peptides 

 The tryptophan zipper peptides were originally reported by Cochran and coworkers 

(Figure 7.5a).11a The tryptophan zipper (trpzip) structural motif greatly stabilizes the -

hairpin conformation and was first demonstrated for a series of 12 to 16 residue peptides with 

different turn sequences. Cochran and coworkers determined an experimental energy scale 

for the stabilizing contributions of amino acid residues as nonhydrogen-bonded positions 

within -hairpin peptides.11b,c There results indicated that cross-strand tryptophan residues 

were the most stabilizing pair at nonhydrogen bonding positions and went on to develop the 

trpzip peptides as stable monomeric -structure mimics. The trpzip -hairpins all exhibit 

cooperative thermal unfolding transitions and nonzero changes in heat capacity. The Gibbs 

free energy change of unfolding (ΔGF = 0.6-1.7 kcal·mol-1) for the -hairpins are comparable 

as per-residue values to those measured for large natural proteins. NMR structures deposited 

for the trpzip peptides show an interdigitating pattern for the tryptophan side chains (Figure 

7.5b). The nearly perpendicular conformation of the side chains is not unlike that of the 

aromatic cradles discussed for PRM-binding domains. The three-dimensional disposition of 
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the aromatic residues led to the hypothesis that the trpzip peptides may serve as good model 

systems for studying aromatic-prolyl interactions. Indeed, overlay images of trpzip NMR 

structures and crystal structures of the aromatic cradles located within natural PRM-binding 

domains show a close concordance. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.5 (a) The structure of a trpzip -hairpin peptide is rendered in a two-dimensional 
fashion. (b) The three-dimensional NMR structure generated for the trpzip -hairpin peptide 
is shown (pdb: 1LE1). The two tryptophan residues that form a cleft arrangement similar to 
that observed within natural PRM-binding domains are highlighted (blue) in each structural 
representation. 
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Figure 7.6 The aromatic binding residues (tryptophan and tyrosine, gray) from the Homer 1a 
EVH1 domain bound to the natural ligand sequence (green) (pdb: 1DDV) overlaid with a 
trpzip peptide (yellow) containing a type II’ turn sequence (pdb: 1LE0). The aromatic 
residues from each structure occupy very similar conformations. 
 

ii. System design 

 It was hypothesized that the trpzip peptide scaffold originally reported by Cochran 

could be modified so that thermodynamic measurements of aromatic-prolyl interactions 

could be made via disulfide exchange experiments. Exchange reactions under 

thermodynamic equilibrium conditions have previously been employed in measuring the 

strength of non-covalent interactions between peptide segments.12 Thiol-disulfide exchange 

has proven particularly advantageous in defining important, but subtle, structural features 

during de novo protein design.12a-c When performing exchange reactions, favorable 

interactions manifest themselves as perturbations in the observed equilibrium constant (KEQ 

differs from the value expected for a statistical distribution with G = 0). Essentially a 

competition experiment, analysis is performed under “native” conditions and is highly 

beneficial for assessing relatively weak non-covalent interactions since they are measured as 

a ratio of covalent species. Other methods for assessing binding strength such as ITC or 
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fluorescence anisotropy may be too insensitive or otherwise less suited for measuring weaker 

attractive forces like the aromatic-prolyl interaction. 

 The trpzip -hairpin peptide motif was ultimately redesigned so as to be compatible 

with disulfide exchange conditions (Figure 7.7a). 12a-c The addition of Cys-Gly-Gly to the N 

terminus provides a flexible tether for thiol-disulfide exchange. The Gly-Asn turn sequence 

in Cochran’s peptide was replaced with a D-Pro-Gly sequence in order to provide the peptide 

with greater chemical stability under the experimental conditions which require equilibration 

for several days in neutral to basic media. The D-Pro-Gly sequence has been shown a 

superior promoter for -turn structures when compared to sequences containing only L amino 

acids.11b,13 Two additional Lys residues were appended to the C terminus of the -hairpin to 

encourage solubility of all disulfide species and discourage aggregation. A series of 

oligoproline peptides were designed, varying in length from five to seven Pro residues 

(Figure 7.7b). The oligoproline peptide contained a tryptophan residue for concentration 

determinations, and a flexible Cys-Gly-Gly tether for disulfide exchange measurements. 
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Figure 7.7 (a) The trpzip -hairpin peptide redesigned for disulfide exchange experiments is 
shown. The residues that have been changed from the original design are shown in red. (b) 
The oligoproline peptides used for the disulfide exchange experiments are shown. The length 
of the oligoproline segment ranges from five to seven Pro residues. (c) A simple schematic 
representation of the designed disulfide exchange experiments. 
 

(a) 
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 It was anticipated that, by mixing the trpzip peptide with an appropriate oligoproline 

peptide, a number of disulfide species could be produced (Figure 7.7c). The oxidized mixture 

would contain oligoproline homodimers, -hairpin homodimers, and heterodimers composed 

of each peptide. At equilibrium the relative concentration of the heterodimer would be twice 

that of either homodimer if a statistical mixture were produced (G = 0). The equilibrium 

constant (KEQ) for a statistical mixture would therefore be equal to 4 using Equation 1: 

 

 
   

 
2
1 1

4         1 

 

where [Heterodimer] is the equilibrium concentration of the heterodimer containing both an 

oligoproline peptide and a -hairpin peptide, [Pro Homodimer] is the equilibrium 

concentration of the homodimer containing two oligoproline peptides, and [Hairpin 

Homodimer] is the equilibrium concentration of the homodimer containing two -hairpin 

peptides. Any attractive or repulsive interactions between the -hairpin peptide and/or the 

oligoproline peptide would manifest as an equilibrium constant deviating from 4. The 

magnitude of the net thermodynamic driving force for the interactions (ΔG[HP]) can be 

measured using Equation 2: 

   
4

         2 

 

where KEQ is the equilibrium constant calculated using Equation 1, R is the molar gas 

constant in units of cal·mol-1·K-1 (1.986), and T is the temperature in Kelvin (298). 
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Since the distinctive shape of the trpzip -hairpin peptide motif was hypothesized to 

be favorable for providing aromatic-prolyl interactions, a negative control was designed 

based on another -hairpin peptide motif used for molecular recognition. The WKWK -

hairpin peptide was designed as a synthetic receptor for ATP and has a binding cleft 

comprised of two tryptophan residues (Figure 7.8a).14 The NMR structure of the WKWK 

peptide indicates that the tryptophan residues present a much flatter surface when compared 

to natural PRM binding domains and the trpzip peptides (Figure 7.8b).15 The turn sequence 

for the WKWK peptide was also converted to D-Pro-Gly in order to provide greater chemical 

stability. The sequences for the peptides used throughout the disulfide exchange experiments 

are shown in Table 1. 
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Figure 7.8 (a) The WKWK -hairpin peptide redesigned for disulfide exchange experiments 
is shown. (b) The NMR structure for the WKWK peptides shows the aromatic residues 
adopts a much flatter conformation when compared to the trpzip -hairpin peptide motif. 
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Table 7.1. Primary sequences for the peptides used in disulfide exchange experiments 

Peptide Name Sequencea 
Trpzip Ac-Cys-Gly-Gly-Ser-Trp-Thr-Trp-Glu- 

D-Pro-Gly-Lys-Trp-Thr-Trp-Lys-Lys- 
Lys-NH2 

CW-Pro5 Ac-Cys-Trp-Gly-Gly-Pro-Pro-Pro-Pro- Pro-NH2 
CW-Pro6 Ac-Cys-Trp-Gly-Gly-Pro-Pro-Pro-Pro- Pro-Pro-NH2 
CW-Pro7 Ac-Cys-Trp-Gly-Gly-Pro-Pro-Pro-Pro- Pro-Pro-Pro-NH2 
CWGG Ac-Cys-Trp-Gly-Gly 
C-Pro7-W Ac-Cys-Gly-Gly-Gly-Pro-Pro-Pro-Pro-Pro-Pro-Pro-Trp-

NH2 
WC-Pro7 Ac-Trp-Cys-Gly-Gly-Gly-Pro-Pro-Pro-Pro-Pro-Pro-Pro-

NH2 
WKWK Ac-Cys-Gly-Gly-Arg-Trp-Val-Lys-Val- 

D-Pro-Gly-Orn-Trp-Ile-Lys-Gln-NH2 
aPrimary sequences for all peptides are designated by the standard three letter amino acid 
code. Orn is ornithine. All amino acids are L amino acids, except D-Pro. 

 iii. CD analysis of trpzip -hairpin and oligoproline peptides 

 The trpzip -hairpin, oligoproline peptides, and WKWK -hairpin were analyzed 

using CD spectroscopy before disulfide exchange analysis. As desired, the oligoproline 

peptides all form PPII helices in buffer (Figure 7.9a) as indicated by intense minima at 205 

nm, with less intense maxima at 228 nm. Both spectral features are closely associated with 

the PPII helix secondary structure.16 Decreasing the number of residues within the 

oligoproline series results in a hypsochromic shift of the maxima which is likely indicative of 

a subtle decrease in the PPII helical content of the peptide (Figure 7.9a).16b 

 The CD spectrum for the trpzip peptide displays strong exciton-coupled bands at 215 

and 230 nm that are characteristic for the tryptophan zipper motif (7.9b).11a,17 CD spectra for 

the trpzip peptide were taken under reducing conditions to prevent the formation of 

homodimers. When the trpzip peptide is allowed to oxidize in the standard phosphate buffers 

used for CD analysis, the spectra show an approximately 30% decrease in the intensity of the 

exciton-coupled CD bands compared to the monomeric peptide (not shown). This 
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observation indicates that the trpzip peptide is probably distorted from the structure reported 

by Cochran when bound in the homodimer state, and also implies some interaction between 

the two trpzip peptides that compose the homodimer. The CD spectrum for the WKWK 

peptide has a minimum between 210 and 220 nm and a positive signal below 200 nm. Both 

spectral features can be attributed to an antiparallel β-structure,18 and indicate the D-Pro-Gly 

sequence is a competent nucleator of a -turn structure in this sequence.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.9 (a) CD spectra of the oligoproline peptides at 100 M are shown. All three 
oligoproline peptides show signals at approximately 205 and 228 nm characteristic to the 
PPII helix secondary structure. Spectra were recorded at 25°C in 10 mM PO4

3-, pH 7, buffer. 
(b) CD spectra of the trpzip and WKWK -hairpin peptides at 50 M are shown. The 
spectrum for the trpzip peptide was taken at 25°C in 10 mM PO4

3-, 2 mM TCEP, pH 7, 
buffer, and shows signals at 215 and 230 nm characteristic to structural motif. The spectrum 
for the WKWK peptide was taken at 25°C in 10 mM PO4

3-, pH 7, buffer, and shows a 
minimum at 210 nm characteristic to -structures. 

(a)

(b) 
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iv. Analysis of the disulfide exchange experiments 

 Disulfide exchange experiments were performed by mixing approximately equal 

proportions of an oligoproline peptide and the trpzip -hairpin peptide in basic aqueous 

buffer with no effort made to exclude oxygen. The presence of molecular oxygen oxidized all 

of the thiol-containing peptides to disulfide species within a matter of hours or days. As 

previously mentioned, once all of the peptide thiols were oxidized, the mixture contained a 

number of homodimer and heterodimer species. The equilibration of those species was 

monitored for several days by HPLC analysis (Figure 7.10). Although reactions were 

monitored at multiple wavelengths during the equilibration period, the absorbance at 280 nm 

was used for quantification since all of the designed peptides contained a tryptophan residue. 

 

 

 

 

 

Figure 7.10 An HPLC chromatogram at 280 nm is shown for the analysis of a typical 
disulfide exchange reaction. The equilibrated mixture contains a trpzip -hairpin homodimer 
(blue), an oligoproline homodimer (red), and a heterodimer (blue and red) containing both a 
trpzip -hairpin and oligoproline motif. 

 All three of the oligoproline peptides equilibrated with the trpzip -hairpin to give 

nonstatistical distributions of species. The CW-Pro7 peptide gave the largest relative 

concentration of heterodimer at equilibrium, implying a substantial stabilizing interaction 

between the trpzip -hairpin and the oligoproline. Likewise, the CW-Pro5 peptide gave the 

 



142 
 

smallest relative concentration of heterodimer species, with the concentration still being well 

above that predicted for a statistical mixture. The WKWK peptide was equilibrated with the 

CW-Pro7 peptide only, and gave a heterodimer concentration above that expected for a 

statistical mixture as well. The equilibrium constants (KEQ) calculated for the different 

disulfide exchange experiments according to Equation 1 are given in Table 2. 

Table 7.2. Equilibrium constants generated from the disulfide exchange experiments 

-hairpin Oligoproline KEQ
a 

Trpzip CW-Pro5 18 ± 1 
Trpzip CW-Pro6 47 ± 2 
Trpzip CW-Pro7 68 ± 3 

WKWK CW-Pro7 15 ± 2 
aEquilibrium constants (KEQ) are averaged from at least two separate trials. Error estimates 
provided are based on the peak resolution for the different trials. 

Based on the results of the disulfide exchange experiments it seemed likely that 

favorable aromatic-prolyl interactions could be measured through disulfide exchange 

experiments. It was, however, observed that during sample preparation the trpzip peptide 

formed homodimer species at an accelerated rate relative to the oligoproline and WKWK 

peptides. Coupled with the previously mentioned CD analysis, the observation of the 

accelerated homodimer formation led to the hypothesis that the trpzip peptide has a favorable 

homodimer interactions. Cochran reported no intermolecular aggregation for the trpzip 

peptides based on concentration-dependent NMR experiments and analytical 

ultracentrifugation (AUC), but a favorable intramolecular trpzip-trpzip interaction in the 

homodimer is not unreasonable given the number of tryptophan residues that could 

contribute -stacking interactions when covalently linked. These interactions could be too 

weak to manifest as an intermolecular association, while still easily being measured during a 

disulfide exchange experiment. 
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A favorable trpzip-trpzip homodimer interaction would manifest itself as a decrease 

in the observed KEQ values measured by disulfide exchange since heterodimer formation 

would have to overcome an energetic penalty corresponding to the disruption of the trpzip-

trpzip interactions. In order to test this hypothesis, the two -hairpin peptides were both 

subjected to disulfide exchange experiments with a short peptide comprised only of the linker 

sequence (CWGG) used for the oligoproline peptides. Both the trpzip and WKWK peptides 

exhibited nonstatisitcal values for KEQ when equilibrated with CWGG. For WKWK, the KEQ 

values (14 ± 1) were within error of that reported for the interaction with CW-Pro7. This 

implies that the WKWK peptide does not have any favorable aromatic-prolyl interactions. 

The nonstatisitical KEQ value measured for the -hairpin and the CW-Pro7 peptide (15 ± 2) 

are most likely due to interactions between amino acid residues in WKWK and on the tether 

sequence (CWGG).  

 The disulfide exchange experiments with the trpzip peptide and the linker sequence 

CWGG display KEQ values below 4, a result that would be expected if homodimer formation 

were thermodynamically favorable. The KEQ values for the trpzip-CWGG exchange 

experiments (1.3 ± 0.15) corresponds to a free energy change (ΔG[HP]) of 0.67 ± 0.07 

kcal·mol-1. Equation 2 was modified using the average KEQ value measured for the trpzip-

CWGG exchange experiments. The modification provides the corrected free energy change 

for heterodimer formation between the trpzip and the oligoproline peptides (ΔG*[HP]) in the 

form of Equation 3: 

   
1.3

         3 
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 The corrected ΔG*[HP] values for the trpzip, WKWK, and oligoproline peptides are 

given in Table 3. The ΔG*[HP] value calculated for the exchange reaction between WKWK 

and CW-Pro7 was zero since the KEQ value reported for the pair was within error of that 

reported for the WKWK-CWGG exchange reaction (14 ±1). The value (ΔG**[HP]) was 

calculated using the similarly modified Equation 4: 

   
14

         4 

 

Table 7.3. Corrected values for Gibb’s free energy change of heterodimer formation 

-hairpin Oligoproline KEQ
a 

ΔG*[HP]
b 

(kcal·mol-1) 
Trpzip CW-Pro5 18 ± 1 -1.6 
Trpzip CW-Pro6 47 ± 2 -2.1 
Trpzip CW-Pro7 68 ± 3 -2.3 

WKWK CW-Pro7 15 ± 2 0 
aEquilibrium constants (KEQ) and error estimates are the same as those reported in Table 2. 
bThe corrected Gibbs free energy change for the disulfide exchange reactions (ΔG*[HP]) were 
calculated using Equation 3. The error estimated for each was less than 0.07 kcal·mol-1 based 
on the error reported for the KEQ value measured for CWGG and the trpzip peptide. 

 The corrected ΔG*[HP] values given in Table 3 are representative of the aromatic-

prolyl interactions in these systems if the assumption is made that no other attractive forces 

are cooperatively contributing to heterodimer formation during the exchange reactions. The 

oligoproline peptides used within the experiments all contain a single tryptophan residue 

used for concentration determination and quantitation during the disulfide exchange 

experiments. Since an aromatic-aromatic interaction could contribute to heterodimer 

formation in the trpzip-CWGG exchange reaction control experiments were designed to 

probe this possibility. Based on the observation that increasing the length of the oligoproline 

peptides from CW-Pro5 to CW-Pro7 resulted in an increase in heterodimer formation, it was 

hypothesized that the trpzip peptide primarily interacts with the oligoproline peptides near 
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their C termini. The peptide C-Pro7-W has a tryptophan residue at the C terminus where 

interactions between the trpzip -hairpin and the oligoproline peptides were thought to occur 

(Table 7.1). Indeed, when the C-Pro7-W peptide is subjected to disulfide exchange 

experiments with the trpzip peptide, the observed KEQ value was extremely large and difficult 

to measure by HPLC integration (KEQ > 150). This result suggested strongly that moving the 

tryptophan residue closer to the C terminus allows binding of the residue to the -hairpin 

moiety through aromatic-aromatic interactions. The peptide WC-Pro7 has a tryptophan 

residue included on the N terminal side of the cysteine residue, displaced two residue 

positions relative to the CW-Pro7 peptide (Table 7.1). When the WC-Pro7 peptide is 

equilibrated with the trpzip -hairpin the measured KEQ value (69 ± 3) was within error of 

that reported for CW-Pro7. If the tryptophan residue in either the CW-Pro7 or WC-Pro7 

peptides significantly contributed to binding it would be highly unlikely that the peptides 

would have identical KEQ values. Therefore this suggests that the attractive interactions 

measured for the oligoproline peptides (ΔG*[HP]) are due to aromatic-prolyl interactions and 

are not due to interactions between the linker sequence and the trpzip -hairpin motif. 2D 

NMR experiments performed on the CW-Pro7-trpzip heterodimer indicated that NOE signals 

were present between Trp residues in the -hairpin structure and Pro residues in the 

oligoproline moiety. There were, however, no NOE signals present between the Trp residue 

on the oligoproline (CWGG linker) and the -hairpin. 

C. Conclusions 

The tryptophan-zipper peptide motif reported by Cochran and coworkers was shown 

to provide favorable interactions with a series of oligoproline peptides. To the best of our 

knowledge, this is the first example of a small -hairpin peptide demonstrating affinity for 
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peptides which adopt the PPII helix secondary structure. The energetics of the aromatic-

prolyl interactions in the system were measured, with the most favorable reaching -2.3 

kcal·mol-1. A related -hairpin peptide, WKWK, does not show affinity for oligoproline 

helices. This subtlety demonstrates the importance of structure when examining aromatic-

prolyl interactions in peptide model systems. Due to the structural similarities between the 

trpzip peptide family and natural PRM-binding domains, the disulfide exchange system 

described herein could be used to further understanding of how natural recognition domains 

bind to their ligand core motifs.  

D. Experimental Section 

 i. Peptide synthesis and purification 

Peptides were typically synthesized by standard automated SPPS using a Thuramed 

tetras synthesizer. Fmoc-protected amino acids were used along with a CLEAR-Amide resin 

from Peptides International, Inc.  Amino acid residues were activated with HBTU, HOBt, 

and DIPEA in DMF. Amino acids were deprotected twice with 2% DBU and 2% piperidine 

in DMF for 15 minutes each step. Amino acids were coupled using double coupling cycles of 

30-60 minutes each. The N-terminus of each peptide was acetylated using 5% acetic 

anhydride and 6% lutidine in DMF for 30 minutes. Cleavage of the peptides from the resin 

was performed in 95.0% TFA, 2.5% water, and 2.5% TIPS. TFA was evaporated with a 

stream of nitrogen and diethyl ether was added to precipitate the cleavage products. The 

peptides were extracted with water or collected as solids by centrifugation and lyophilized to 

dryness. Peptides were purified by RP-HPLC using an Atlantis Prep OBD dC-18 semi-

preparative column, with a gradient of 0-100% solvent B over 40 minutes, where solvent A 
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was 95:5 water:ACN, 0.1% TFA, and solvent B was 95:5 ACN:water, 0.1% TFA. Purified 

samples were lyophilized and the peptide sequence was confirmed by ESI-MS. 

ii. Circular dichroism measurements 

CD measurements were performed on an Aviv 62DS Circular Dichroism 

Spectrometer, using quartz cells with a path length of 0.1 cm. CD data was obtained for the 

trpzip and WKWK peptides at 50 µM concentrations in 10 mM sodium phosphate buffer, 2 

mM TCEP, pH 7. Wavelength scans were performed in triplicate and averaged. Scans were 

typically performed from 260-190 nm, although spectra for trpzip were collected up to 330 

nm at times. CD data was obtained for the oligoproline sequences at 100 μM concentration in 

10 mM sodium phosphate buffer (no TCEP), pH 7. All spectra were recorded at 25ºC (298 

K), and a 30 second averaging time was used for all scans. All scans were corrected by 

subtracting the spectrum of the respective buffer used in the experiment. The results of the 

CD experiments are reported as mean molar residue ellipticity [] with the units of 

degrees·cm2·dmol-1 and were calculated using Equation 5: 

 
10

         5    

where θobs is the observed ellipticity in millidegrees, c is concentration in mol·L-1, l is the 

path length in cm, and n is the number of amino acid residues in the peptide. 

 iii. Disulfide exchange experiments 

 Disulfide exchange experiments were typically initiated by mixing an oligoproline 

peptide (CW-Pro5, CW-Pro6, CW-Pro7, C-Pro7-W, or WC-Pro7) with either the trpzip or 

WKWK peptide in approximately equal proportions in 10 mM sodium phosphate buffer (pH 

8.1-8.5) with no effort made to exclude oxygen. The total peptide concnetrations were 
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typically 250 M. Peptide concentrations were determined prior to sample preparation by 

recording the absorbance of Trp at 280 nm (ε = 5690 M-1 cm-1) in 5 M GndHCl dilutions. 

LC-MS analysis of the exchange reactions was accomplished using an Agilent Series 1200 

instrument, equipped with an Agilent Zorbax Eclipse XDB-C18 column (4.6 x 50 mm, 1.8 

µm). Various gradient methods were employed (water/methanol containing 0.2% formic 

acid), ranging from 15-30 minutes at a flow rates of 0.8-1.0 mL/min (column temperature, 

35ºC). The injection volumes were typically 2.0-4.0 μL for both 100 µM and 250 µM 

exchange reactions. The reactions were monitored at 280 nm, and integrated areas were 

adjusted for the number of Trp residues. Equilibrium constants (KEQ), reported in Table 2 and 

Table 3, were calculated using Equation 1: 

 

 
   

         1 

 

where [Heterodimer] is the equilibrium concentration of the heterodimer containing both an 

oligoproline peptide and a -hairpin peptide, [Pro Homodimer] is the equilibrium 

concentration of the homodimer containing two oligoproline peptides, and [Hairpin 

Homodimer] is the equilibrium concentration of the homodimer containing two -hairpin 

peptides. The values for ΔG[HP], ΔG*[HP], and ΔG**[HP] reported in Table 7.2 and Table 7.3 

were calculated using Equation 2, Equation 3, and Equation 4: 
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where KEQ is the equilibrium constant calculated using Equation 1, R is the molar gas 

constant in units of cal·mol-1·K-1 (1.986), and T is the temperature in Kelvin (298.15). A 

sample set of data and provided in Table 4. A sample calculation of ΔG[HP] for the exchange 

experiment with CWGG and the trpzip -hairpin is presented below. 

Table 7.4. Sample data set for trpzip/CWGG exchange experiment 
 

 
Retention 

Time (min) 
Area 

(mAU*sec) 
Number of 

Trp Residues 
Corrected 

Area 
trpzip 
Homodimer 

14.415 328 8 41 

trpzip-CWGG 
Heterodimer 

15.872 255 5 51 

CWGG 
Homodimer 

19.902 109 2 55 

 

 
51

55 41
         1  

1.15         1  

 1.3  0.15         1  

The values reported in Table 2 and Table 3 are the average for many trials with error 

describing the absolute range of values observed, not the standard deviation of the set 

(Equation 1d). 

   
1.3
4

         2  
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    0.5921
1.3
4

         2  

   0.67   0.07            2  

iv. Sample chromatograms 

  

 

Figure 7.11 Sample chromatogram at 280 nm for the disulfide exchange experiment with the 
trpzip -hairpin and the CW-Pro5 peptide. 
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Figure 7.12 Sample chromatogram at 280 nm for the disulfide exchange experiment with the 
trpzip -hairpin and the CW-Pro6 peptide. 
 

 

Figure 7.13 Sample chromatogram at 280 nm for the disulfide exchange experiment with the 
trpzip -hairpin and the CW-Pro7 peptide. 
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Figure 7.14 Sample chromatogram at 280 nm for the disulfide exchange experiment with the 
WKWK -hairpin and the CW-Pro7 peptide. 

 

Figure 7.15 Sample chromatogram at 280 nm for the disulfide exchange experiment with the 
WKWK -hairpin and the CWGG linker sequence. 
 



153 
 

 

Figure 7.16 Sample chromatogram at 280 nm for the disulfide exchange experiment with the 
trpzip -hairpin and the CWGG linker sequence. 

 

Figure 7.17 Sample chromatogram at 280 nm for the disulfide exchange experiment with the 
trpzip -hairpin and the WC-Pro7 peptide. 
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 v. TOCSY and NOESY NMR experiments 

 TOCSY and NOESY NMR experiments were performed by Jes Park (Waters 

laboratory) using either a Varian Inova 600 MHz or Bruker Ultrashield 600 MHz Plus 

spectrometer.  2D TOCSY data were acquired between 1-5 mM peptide concentration in 50 

mM NaOAc and 0.5 mM DSS in deuterium oxide or 90% H2O and 10% D2O, adjusted in pD 

4.0 with AcOD.  TOCSY spectra were acquiered using 32 scans per increment and 128 

increments in the indirect dimension.  2D NOESY data were acquired using 64 scans per 

increment and 256 scans in the indirect dimension.  Solvent suppression was applied with the 

Varian or Bruker software.  Peptide proton assignments of the TrpZip and TrpZip-Pro7 

peptides were determined using standard methods.19   
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