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ABSTRACT

Quentin A. Robinson: SURFACE DISTURBANCES GENERATED BY
FLUID FLOW PAST AN OBSTACLE OR OVER TOPOGRAPHY AS
PREDICTED BY THE KORTEWEG-DE VRIES AND THE EULER

EQUATIONS
(Under the direction of Roberto Camassa, Jeremy Marzuola, and Richard

McLauglin)

The linearized Euler equations and the forced Korteweg-de Vries equation are investigated

analytically and numerically as models for the behavior of the surface of a fluid flowing over

topography and past an obstacle. Dispersionless and linearized variations of the fKdV equation are

compared with the full fKdV equation in various parameter regimes. Ways in which information

gained from various approximations to the forced Korteweg-de Vries (fKdV) equations predict the

behavior of the solution of the full equation are explored. A critical Froude number parameter value

above, which stationary solutions exist, is determined and the stability of the stationary solutions is

investigated.

The behavior of the dispersionless fKdV equation, which is equivalent to a forced, inviscid Burgers

equation, is investigated extensively using the method of characteristics. An exact, analytically

obtained solution to the dispersionless, nonlinear approximation to fKdV is derived as well as the

amplitude and propagation speed of the shocks obtained from the same approximation.

The behaviors of the fKdV equation and its variants are investigated and compared for forcing

constant in time and forcing with oscillating amplitude and position. A Wentzel, Kramers, Brillouin

approximation is given for dispersionless KdV with low frequency amplitude oscillation in the

forcing function. An averaging approximation is given for dispersionless KdV with high frequency

amplitude oscillation in the forcing function.

The Inverse Scattering Transform is investigated as a diagnostic tool for the behavior of the fKdV

equation. The numerical results indicate the emergence of negative eigenvalues of the Schrödinger

operator correspond with the emergence of solitons in the solution of the fKdV equation. WKB

analysis is used as an application of inverse scattering theory to determine a relationship between
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the amplitude of the shock in the dispersionless approximation to fKdV and the amplitude of the

upstream propagating solitary waves generated by the full equation. All of this information together

provides a means of predicting which combinations of parameter values will result in the generation

of upstream propagating solitons as well as a novel means of predicting the frequency of soliton

generation. Multiple numerical methods and their implementations for solving these equations are

discussed.

Experiments are carried out in a water recirculating flume and a wave tank. Phenomena predicted

by the equations are observed in the experiments and results are compared quantitatively.
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CHAPTER 1

Introduction

Studies of surface disturbances generated by fluid flow past obstacles or over topography of various

forms is a rather classical problem, and we attempt to give a broad overview of the history of the

problem here. Note that this reference list is by no means complete and that many articles included

in this discussion contain many other relevant citations to important works on the topics. The

linear response to a background current for water waves driven by gravity and surface tension was

studied long ago and is present in now classical texts including [16, 24]. We will derive and perform

the bulk of our analysis on the forced Korteweg-de Vries equation (fKdV) and approximations to

this equation. Flows in shallow water of variable bottoms have been studied in various contexts as

a forced Korteweg-de Vries equation in [2, 10, 22, 7, 6], with a greater focus on numerical studies

in [5, 13]. Analysis was done for flow past cylindrical obstacles using the method of successive

images in for instance Havelock [11, 12], and further nonlinear studies in the gravity wave case were

undertaken in works such as [23, 4, 21]. Here we will also derive a dispersion relation for water

waves that includes effects from surface tension. Capillary effects have been considered in [8, 18, 9]

and others.

1.1 The Dispersion Relation

To begin, we will define the material derivative D
Dt as follows:

DF

Dt
≡ ∂F

∂t
+ u · ∇F

where t is time and u is the velocity vector. Newton’s second law of motion for a fluid modeled as a

continuum, considering forces that arise from action at a distance without physical contact and

forces that are exerted on an area element by the surroundings through direct contact (body forces
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and surface forces, respectively), can be written as

ρ
Dui
Dt

= ρgi +
∂τij
∂xj

where ρ is density, g is gravity, and τij represent the force in the j direction on a surface with a

normal in the i direction. If we consider an inviscid, incompressible, constant density, Newtonian

fluid, the dominant surface force (the only force we will consider in this section) comes from pressure,

and
∂τij
∂xj

becomes −∇p. The negative sign arises because the normal is positive in the outward

direction, whereas positive pressure is generally regarded as a compression force pushing inward. So

now we have

ρ
Du

Dt
= −∇p+ ρg.

We now abandon our use of the material derivative notation and write

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ ρg.

We will consider small amplitude waves and assume that all nonlinear terms will be negligibly small,

so we disregard them and write

ρ
∂u

∂t
= −∇p+ ρg.

We define our coordinate system so that gravity acts only in the negative z direction and assuming

hydrostatic equilibrium we come to

ρ
∂u

∂t
= −∇p− ρgẑ.

We may also include our incompressible assumption as another equation

∇ · u = 0.
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We will call z = 0 the undisturbed surface height and z = h(x, t) will represent the position of the

free surface in two spatial dimensions. We will take the pressure at the free surface to be atmospheric

p
(
x, h(x, t), t

)
= patm.

Say that at the surface the velocity of the fluid is equal to the change in h with respect to time

for any fixed x, and that all movement is strictly in the vertical direction. This is equivalent to a

kinematic boundary condition, in which a fluid particle at the surface never leaves the surface,

usurface = htk̂ =

(
0

ht

)
= u|z=h(x,t)∀x.

It follows that at the surface

(htk̂) · n̂ =

(
u

w

)
· n̂.

The slope of the surface at a point is given by

(
1,
dh

dx

)
.

We normalize this vector quantity using a Euclidian norm so that the resulting magnitude is one,

(1, dhdx)√
1 + (dhdx)2

.

The unit vector normal to the fluid surface is thus given by

n̂ =
(−dh

dx , 1)√
1 + (dhdx)2

.

Given

(htk̂) · n̂ =

(
u

w

)
· n̂,

we find

∂h

∂t
= −u∂h

∂x
+ w.
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Therefore at the surface,

∂h

∂t
+ u

∂h

∂x
= w

(
x, h(t), t

)
,

and we now have the system


ρ∂u∂t = −∇p− ρgẑ,

∇ · u = 0,

∂h
∂t + u∂h∂x = w at z = h.

Here we introduce a velocity potential,

u =
∂ϕ

∂x
, w =

∂ϕ

∂z
.

Our incompressibility condition becomes Laplace’s equation,

∇2ϕ = 0,

and the surface condition becomes

∂h

∂t
+
∂ϕ

∂x

∂h

∂x

∣∣∣∣
z=h

=
∂ϕ

∂z

∣∣∣∣
z=h

.

Continuing with our small amplitude assumption, we drop the nonlinear term,

∂h

∂t
=
∂ϕ

∂z

∣∣∣∣
z=h

,

and evaluate this expression at z = 0. We now integrate over the depth of the fluid and obtain

Bernoulli’s equation,

ρϕt + p = −ρgh+ pa,
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where pa is atmospheric pressure. At the surface p = pa and for convenience we will say that pa = 0.

Here we will impose an infinite depth boundary condition. Our system is now given by



∇2ϕ = 0

∂h
∂t = ∂ϕ

∂z at z = 0

ϕt = −gh at z = 0

ϕ→ 0 z → −∞

We will solve this system by separation of variables. We begin by inserting the assumption that the

solution ϕ(x, z, t) can be written as the product of functions that depend on x, z, and t only,

ϕ = F (t)G(x)H(z),

and apply the Laplace operator,

∇2ϕ = F (t)H(z)G′′(x) + F (t)G(x)H ′′(z) = 0.

Seeking a nontrivial solution we assume F (t) 6= 0,

H(z)G′′(x) +G(x)H ′′(z) = 0,

and arrive at an equation in which a function of one variable is equal to a function of a single,

different variable. We conclude both functions must be equal to the same constant λ,

G′′(x)

G(x)
= −H

′′(z)

H(z)
= λ,

and solve the resulting equations separately

G′′(x)− λG(x) = 0, H ′′(z) + λH(z) = 0.

Beginning with G(x), we choose to let λ = −k2 and find

G(x) = A cos kx+B sin kx.
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We now solve for H(z):

H(z) = Cekz +De−kz.

The infinite depth boundary condition demands D = 0. Taking surface conditions into account gives

∂h

∂t
= kF (t)

[
A cos kx+B sin kx

]
Cekz (1.1)

and

F ′(t)Cekz
[
A cos kx+B sin kx

]
= −gh(x, z, t). (1.2)

Differentiating (1.2) with respect to t and combining it with (1.1) obtains

kF (t)
[
A cos kx+B sin kx

]
Cekz =

−Cekz

g
F ′′(t)

[
A cos kx+B sin kx

]
,

which simplifies to

F ′′(t) + kgF (t) = 0,

and has solution

F (t) = E cos
(
t
√
kg
)

+ I sin
(
t
√
kg
)
.

We now know ϕ(x, z, t) is given by

ϕ(x, z, t) =
(
E cos (

√
kgt) + I sin (

√
kgt)

)(
A cos kx+B sin kx

)
(Cekz),

which can be written as

ϕ(x, z, t) =
Cekz

2

(
Ã cos (kx−

√
kgt) + B̃ cos (kx+

√
kgt)

+ C̃ sin (kx−
√
kgt) + D̃ sin (kx+

√
kgt)

)
where

Ã = AE +BI, B̃ = AE −BI,

C̃ = BE −AI, D̃ = BE +AI.

We now have an expression for ϕ that satisfies Laplace’s equation and the infinite depth boundary
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condition. To find h and u we use our surface boundary condition and the definition of ϕ. Recall

that at z = 0

∂h

∂t
=
Ck

2

(
Ã cos(kx−

√
kgt) + B̃ cos (kx+

√
kgt)

+ C̃ sin (kx−
√
kgt) + D̃ sin (kx+

√
kgt)

)
,

which implies

h =
C

2

√
k

g

[
B̃ sin

(
kx+

√
kgt
)
− D̃ cos

(
kx+

√
kgt
)

− Ã sin
(
kx−

√
kgt
)

+ C̃ cos
(
kx−

√
kgt
)]
.

It follows from the definition of ϕ that

u =
Ckekz

2

[
C̃ cos(kx− ωt) + D̃ cos (kx+ ωt)

− Ã sin (kx− ωt)− B̃ sin (kx+ ωt)
]

and

w =
Ckekz

2

[
Ã cos(kx− ωt) + B̃ cos (kx+ ωt)

+ C̃ sin (kx− ωt) + D̃ sin (kx+ ωt)
]
,

where the dispersion relation for deep water gravity waves is ω(k) =
√
kg.

1.1.1 Surface Tension

In the previous section when deriving equations for fluid motion we considered only body forces

and surface forces. In this section we shall also consider forces that sometimes appear at the interface

between fluids and act along a line (line forces). To begin our discussion, let us consider a taught

string with some curvature. Near a point x, the tension in the string is given by T (x− δx) to the

left of the string and T (x+ δx) to the right of the point. The direction of the force is given by the

vector

±
(

1

f ′(x± δx)

)
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where f represents the position of the string. We normalize this and get a force vector

FT =
±1√

1 + f ′2

(
1

f ′(x± δx)

)
T (x± δx).

The sum of the forces a distance δx to the left and right of the point x is given by

∑
FT = T


−1√
1+f ′2

− δxf ′f ′′

(1+f ′2)3/2
+ · · ·

−f ′√
1+f ′2

+ δx

√
1+f ′2f ′′+f ′ 2f ′f ′′

2
√

1+f ′2

1+f ′2 + · · ·



+ T


1√

1+f ′2
− δxf ′f ′′

(1+f ′2)3/2
+ · · ·

f ′√
1+f ′2

+ δx

√
1+f ′2f ′′−f ′ 2f ′f ′′

2
√

1+f ′2

1+f ′2 + · · ·

 ,

which simplifies to ∑
FT ≈ 2T δx

f ′′

(1 + f ′2)3/2

(
−f ′

1

)
.

At this point we note that the function f is analogous to the position of our fluid surface and replace

it with h,

2T δx
∂2h
∂x2

(1 + (∂h∂x)2)3/2

(
−∂h
∂x

1

)
.

We dot the tension vector with the unit vector normal to the fluid surface,

n̂ =
(−dh

dx , 1)√
1 + (dhdx)2

,

and get

2T δx
hxx

1 + h2
x

.

We absorb the dimensionless denominator and the coefficient 2 into the term T , and our system

becomes 

∇2ϕ = 0

∂h
∂t = ∂ϕ

∂z at z = 0

ϕt = −gh+ T
ρ hxx at z = 0

ϕ→ 0 z → −∞
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We will again assume separability. Before taking into account the new boundary condition we

still have

ϕ(x, z, t) = F (t)G(x)H(z),

G(x) = A cos kx+B sin kx,

and

H(z) = Cekz.

We next incorporate the boundary condition affected by the inclusion of surface tension,

F ′(t)Cekz
[
A cos kx+B sin kx

]
= −gh(x, z, t) +

T

ρ

∂2h

∂x2
,

and solve for h:

h = − Cρ

gρ+ k2T
ekzF ′(t)

[
A cos kx+B sin kx

]
+ αe

√
gρ
T
x + βe−

√
gρ
T
x.

Applying the other surface boundary condition reveals

F (t) = γ cos

(
t

√
gk +

T

ρ
k3

)
+ ε sin

(
t

√
gk +

T

ρ
k3

)
,

and we have a solution

ϕ =
[
γ cos

(
t

√
gk +

T

ρ
k3

)
+ ε sin

(
t

√
gk +

T

ρ
k3

)]
·
[
A cos kx+B sin kx

]
·
[
Cekz

]
,

which we can write

ϕ =
Cekz

2

[
Ã cos (kx− ωt) + B̃ cos (kx+ ωt) + C̃ sin (kx− ωt) + D̃ sin (kx+ ωt)

]
.

This implies

u =
Ckekz

2

[
− Ã sin (kx− ωt)− B̃ sin (kx+ ωt) + C̃ cos (kx− ωt) + D̃ cos (kx+ ωt)

]
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and

w =
Ckekz

2

[
Ã cos (kx− ωt) + B̃ cos (kx+ ωt) + C̃ sin (kx− ωt) + D̃ sin (kx+ ωt)

]
,

where now

Ã = Aγ +Bε B̃ = Aγ −Bε

C̃ = Bγ −Aε D̃ = Bγ +Aε

and

ω(k) =

√
gk +

T

ρ
k3,

where ω(k) =
√
gk + T

ρ k
3 is our dispersion relation for gravity-capillary water waves [24].

1.2 Korteweg-de Vries

1.2.1 Derivation

Following work by Newell [20], let us consider a fluid in a coordinate system with a horizontal

(x) direction and a vertical (z) direction. We will assume flow to be irrotational and a velocity field

u(x, z, t) in a domain bounded by z = −h and a free surface z = ζ(x, t). We introduce a velocity

potential u = ∇φ.

We assume a typical wavelength λ is large when compared to the undisturbed fluid depth,

h2/λ2 = ε� 1. We also assume a typical wave amplitude a is small compared with the undisturbed

fluid depth i.e., a/h = α� 1. We rescale the following variables:

x = λx∗, z = hz∗, t =
λ√
gh
t∗, ζ = aζ∗, φ =

a

h
λ
√
ghφ∗, h = hh∗ (1.3)

where asterisks denote rescaled, dimensionless quantities. These asterisks will be dropped going

forward. With these scalings, the equations of continuity, the boundary condition on the normal

velocity at z = −h, the continuity of normal stress (pressure) at the free surface (Bernoulli’s

equation), and the free surface condition that equates the normal velocity of a particle at the surface

10



with the normal velocity of the surface are:

φzz + εφxx = 0, (1.4)

φz = 0, at z = −1, (1.5)

φt + ζ +
1

2
αφ2

x +
1

2

α

ε
φ2
z = 0 at z = αζ, (1.6)

ζt + αφxζx =
1

ε
φz at z = αζ (1.7)

The rescaled Laplace equation admits a power series solution. We will write φ as a power series in

(z + 1),

φ =

∞∑
n=0

(z + 1)nϕn(x, t).

Note here that ϕn(x, t) does not depend on z. Recall the boundary condition φz = 0 at z = −1.

With this in mind we consider

φz =
∞∑
n=1

n(z + 1)n−1ϕn(x, t),

and can conclude that ϕ1(x, t) = 0. We now plug this series into the Laplace equation,

∞∑
n=0

[
(n+ 2)(n+ 1)(z + h)nϕn+2 + ε(z + h)nϕnxx

]
= 0.

This equation implies the recursive relationship,

(n+ 2)(n+ 1)ϕn+2 + εϕnxx = 0,

which, together with our discovery that ϕ1 = 0, implies that all odd terms in the series are zero.

Using this relation we obtain

ϕ2 =
−εϕ0xx

(0 + 2)(0 + 1)
=
−εϕ0xx

2

and

ϕ4 =
−εϕ2xx

(2 + 2)(2 + 1)
=

ε2ϕ0xxxx

2(2 + 2)(2 + 1)
=
ε2ϕ0xxxx

24
.
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Now let

F (x, t) = ϕ0(x, t).

This gives us a series expression for φ,

φ(x, z, t) = F (x, t)− ε

2
(z + h)2Fxx(x, t) +

ε2

24
(z + h)4Fxxxx + · · · . (1.8)

Here we are interested in the limit in which nonlinearity (measured by α) and dispersion (measured

by ε) are both small and balance. First we expand φ about z = 0. The value of φ at the fluid

surface is given by

φ(x, z = αζ, t) = φ|z=0 + (αζ)φz|z=0 +
(αζ)2

2
φzz|z=0 + · · · .

Setting O(α) = O(ε), keeping in mind that ζ is O(1) and that α and ε are small, plugging this

expansion into (1.6) and (1.7), using (1.8) to substitute for φz in the first equation, and dropping

all terms O(ε2) or higher yields

φt + ζ +
1

2
αφ2

x = 0, z = 0 (1.9)

and

ζt + α(φxζ)x =
1

ε
φz, z = 0, (1.10)

where

1

ε
φz = −Fxx +

ε

6
Fxxxx.

In this limit the dispersion, which comes from the higher order derivatives on F occurs at a level

which can balance the tendency of the wave to break. Note from (1.8)

φx = Fx −
ε

2
(z + 1)2Fxxx +O(ε2).

Writing (1.10) in terms of F gives

ζt + α
((
Fx −

ε

2
Fxxx

)
ζ
)
x

= −Fxx +
ε

6
Fxxxx.
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Discarding terms of order ε2 obtains

ζt + α(ζFx)x = −Fxx +
ε

6
Fxxxx.

We next solve (1.9) for ζ

ζ = −φt −
1

2
αφ2

x,

insert (1.8), and discard terms of order ε2,

ζ = −
(
F − ε

2
Fxx

)
t
− 1

2
α
(
Fx −

ε

2
Fxxx

)2
= −Ft +

1

2

(
εFxxt − αF 2

x

)
.

Substituting this and (1.8) into (1.10) gives

(
− Ft +

1

2
(εFxxt − αF 2

x )
)
t
+ α

((
− Ft +

ε

2
(Fxxt − F 2

x )
)
Fx

)
x

= −Fxx +
ε

6
Fxxxx.

After applying derivatives we arrive at

−Ftt +
(ε

2
Fxxtt − αFxFxt

)
+ α

(
− FxFt +

ε

2

(
FxFxxt − F 3

x

))
x

= −Fxx +
ε

6
Fxxxx.

We drop higher order terms

−Ftt +
(ε

2
Fxxtt − αFxFxt

)
− α(FxFt)x = −Fxx +

ε

6
Fxxxx,

and simplify

Ftt − Fxx = −2αFxFxt − αFxxFt + ε
(1

2
Fxxtt −

1

6
Fxxxx

)
.

It is evident here that at first order F obeys the wave equation, and Fxx − Ftt = O(ε). To move

forward we use this to substitute Fxxxx for Fxxtt in the above equation and note that any resulting

error term would be of the same order as terms already discarded,

Ftt − Fxx = −2αFxFxt − αFxxFt + ε
1

3
Fxxxx. (1.11)

Now to derive the equation which describes the long time behavior of F , we seek unidirectional
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traveling wave solutions. Let F = f + εF1 + · · · where f = f(ξ = x− t, T = εt). We plug this in

and, keeping only terms up to O(ε) our equation becomes

ftt + εF1tt − fxx − εF1xx = −2αfxfxt − αfxxft + ε
1

3
fxxxx.

We next apply the chain rule

fξξ − 2εfξT + εF1tt − fξξ − εF1xx = 2αfξfξξ + αfξξfξ + ε
1

3
fξξξξ.

At leading order (1.11) is clearly satisfied. At O(ε) we have

εF1tt − εF1xx = 2εfξT + 3αfξfξξ +
ε

3
fξξξξ. (1.12)

In terms of the variables ξ = x− t and ξ− = t+ x,

∂

∂t
= − ∂

∂ξ
+

∂

∂ξ−

∂

∂x
=

∂

∂ξ
+

∂

∂ξ−
,

so

F1tt = F1ξξ − 2F1ξ−ξ + F1ξ−ξ− , F1xx = F1ξξ + 2F1ξ−ξ + F1ξ−ξ− ,

which imply

F1tt − F1xx = −4
∂2F1

∂ξ−ξ
.

We insert this into (1.12) to get

εF1tt − εF1xx = −4ε
∂2F1

∂ξ−∂ξ
= 2εfξT + 3αfξfξξ +

ε

3
fξξξξ.

Since the RHS of this equation does not depend on ξ−, to keep F1 from growing linearly with ξ−

(or growing linearly in time) we must insist that

2εfξT + 3αfξfξξ +
ε

3
fξξξξ = 0. (1.13)
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To leading order f = F and ζ = −Ft. Also to leading order −Ft = fξ. Thus fξ = ζ and we have

2εζT + 3αζζξ +
ε

3
ζξξξ = 0.

Switching back from slow time and returning to a stationary frame of reference yields the Korteweg-de

Vries equation

ζt +
(

1 +
3α

2
ζ
)
ζx +

ε

6
ζxxx = 0.

Here analysis of KdV will be in a frame of reference that moves at nondimensional speed F

ζt +
(
F − 1− 3α

2
ζ
)
ζx −

ε

6
ζxxx = 0, (1.14)

where we define the Froude number F = U√
gh

to be the ratio of velocity to the natural shallow water

wave speed. The case involving flow over a bottom topography, or (equivalently) topography moving

through the fluid at the speed of the frame of reference F , is described by forced problem [25],

ζt +
(
F − 1− 3α

2
ζ
)
ζx −

ε

6
ζxxx = fx(x), (1.15)

where the function f gives the non-dimensionalized height of the topography.

1.2.2 The Hydraulic Approximation

We insert the forcing function f(x) = f ′(x′) into equation (1.15), where x′ = κ′x. We next rescale

the equation in the variables x′ and t′ = κ′t,

κ′ζt′ + κ′
(
F − 1− 3α

2
ζ

)
ζx′ − κ′3

ε

6
ζx′x′x′ = κ′f ′x′(x

′).

Taking κ′ to be small, dropping the O(κ′2) term and dropping the primes obtains the hydraulic

(dispersionless) approximation to equation (1.15),

ζt +

(
F − 1− 3α

2
ζ

)
ζx = fx(x). (1.16)
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This equation can serve as a valid approximation of the fKdV equation for a fluid with an initially

smooth, flat surface flowing over a wide obstacle [10]. This is equivalent to the inviscid Burgers

equation with a forcing term. We will also consider the linearized fKdV equation,

ζt + (F − 1)ζx −
ε

6
ζxxx = fx(x). (1.17)
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CHAPTER 2

Soliton Generation in fKdV due to steady forcing

The case of resonant flow (F close to 1) was studied in [10] and in [22]. It is known that in this

case, the forced equation generates upstream propagating solitary waves [25, 17]. For large enough

F , equation 1.15 has stationary solutions, the stability of which has been studied in [2].

Here we will give a means for predicting the critical Froude number that defines the resonant

regime (semi-analytically), and the frequency of soliton generation (analytically). We will begin

with analysis of the hydraulic approximation studied in [10]. We will then examine stationary

solutions for super critical Froude values, use the eigenvalues of the Schrödinger operator to predict

the frequency of soliton generation, and finally look at the inverse scattering transform (IST) to

justify our prediction.

2.1 The Hydraulic Approximation

2.1.1 Exact Solution

Equation (1.16) can be solved by the method of characteristics, thus we consider the system

dx

dt
= F − 1− 3α

2
ζ,

dζ

dt
= fx(x),

(2.1)

on

x ∈ R, t ≥ 0

with initial conditions

x(t = 0) = ξ, u(t = 0) = 0.
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We can convert this system to a single second order equation,

d2x

dt2
= −3α

2

dζ

dt
= −3α

2
fx(x).

Notice here we have the second derivative of x with respect to time (analogous to acceleration)

equal to the negative of the derivative of some function with respect to position. We can think of

this as an equation relating force and potential in a closed system in which energy is conserved,

Force = ma = mẍ = − d

dx
Potential,

where the potential is some function of space, defined at every point in space, whose value is the

potential energy at the given point. Since energy is conserved, the change in total energy (kinetic

plus potential) will be zero. We seek to arrange the terms of the equation in a way that allows us to

use this. We multiply both sides by dx
dt and get

d2x

dt2
dx

dt
= −3α

2
fx(x)

dx

dt
.

We then rearrange the equation as follows:

d

dt

[
1

2

(
dx

dt

)2

+
3α

2
f(x)

]
= 0,

and integrate

1

2

(
dx

dt

)2

+
3α

2
f(x) = constant.

At this point we insert initial conditions to solve for the unknown constant

constant =
1

2
(F − 1)2 +

3α

2
f(ξ),

and next solve for ζ. Recall dx
dt = (F − 1)− 3α

2 ζ, so

1

2

(
(F − 1)− 3α

2
ζ

)2

+
3α

2
f(x) =

1

2
(F − 1)2 +

3α

2
f(ξ),
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and

3α

2
ζ = (F − 1)∓

√
(F − 1)2 + 3α

(
f(ξ)− f(x)

)
.

To choose between the positive and negative branches, again consider the initial conditions

x = ξ, ζ = 0 at t = 0.

Doing so we arrive at

0 = F − 1∓
√

(F − 1)2 = F − 1∓ |(F − 1)|.

To satisfy the initial conditions when (F − 1) is both positive and negative, we insert a signum

function in the solution. Also, since by convention sgn(0) = 0, we write the solution piecewise.

Considering the case (F − 1) = 0 along with a positive, even forcing function that is maximized at

x = 0, the sign of the rate of change of x with respect to time must depend on the sign of the initial

position ξ in order for the solution to remain well-defined. Therefore,

3α

2
ζ =

(F − 1)− sgn(F − 1)
√

(F − 1)2 − 3α
(
f(x)− f(ξ)

)
, F 6= 1

sgn(ξ)
√

3α
(
f(ξ)− f(x)

)
, F = 1.

(2.2)

Now to find x as a function of t, we must consider as separate cases when (F − 1) does and does

not equal zero. Beginning with the case in which (F − 1) = 0, we seek to solve the equation

dx

dt
= (F − 1)− 3α

2
ζ.

Inserting our expression for ζ with F = 1,

dx

dt
= sgn(ξ)

√
3α
(
f(ξ)− f(x)

)
, (2.3)

we then solve the separable ODE for t and use the initial condition x(0) = ξ to determine the

bounds of integration

t =
sgn(ξ)√

3α

ˆ x

ξ

1√
f(ξ)− f(y)

dy.
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We choose a forcing function f with compact support

f(x) =

pm(1− κ2x2), − 1
κ < x < 1

κ

0, |x| ≥ 1
κ .

(2.4)

Note that unless otherwise stated, numerical simulations were run using

f(x) = pm sech2(κx) (2.5)

as a forcing function. KdV solutions exhibit comparable behavior for a wide class of forcing functions

with similar shapes [10]. We take pm > 0 and κ > 0. With this choice of forcing function, when

− 1
κ < x < 1

κ we have

t =
sgn(ξ)√

3α

ˆ x

ξ

1√
pm(1− κ2ξ2 − 1 + κ2y2)

dy,

which simplifies to

t =
sgn(ξ)

κ
√

3αpm

ˆ x

ξ

dy

|ξ|
√

(y/ξ)2 − 1
.

We now introduce a change of variables,

z = y/ξ ⇒ dz =
dy

ξ
,

and drop the sgn(ξ) term. This is done without loss of generality, as in the case where ξ < 0, x will

decrease with time and, therefore x ≤ ξ will always be true. As a consequence of this inequality, the

bounds of integration should be switched, which must be accompanied by an overall sign change,

t =
1

κ
√

3αpm

ˆ x/ξ

1

dz√
z2 − 1

.

We now introduce a second change of variables. We choose hyperbolic cosine instead of cosine to

ensure that the argument of the square root is always nonnegative

z = coshw ⇒ dz = sinhw dw.
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Inserting the change of variables gives

t =
1

κ
√

3αpm

ˆ cosh−1(x/ξ)

0
dw,

which evaluates to

t =
w

κ
√

3αpm

∣∣∣∣cosh−1(x/ξ)

0

=
1

κ
√

3αpm
cosh−1(x/ξ).

The inverse function notation is inconvenient, so we consider the definition of the cosh function

coshx =
ex + e−x

2
.

Let t = ev, and let w = cosh v. Substituting these variables gives

cosh v = w =
t+ 1/t

2
.

We solve this expression for t

t = w ±
√
w2 − 1,

then rewrite t in terms of v and solve,

ev = w ±
√
w2 − 1 → v = ln(w ±

√
w2 − 1).

Thus

cosh−1 x = ln
(
x±

√
x2 − 1

)
,

and

t =
1

κ
√

3αpm
ln
(
x/ξ +

√
(x/ξ)2 − 1

)
. (2.6)

Note that we consider only positive values of t, so we choose the positive branch. Again, note that

this is valid for |x| < 1
κ . Solving for x gives

x = ξ cosh
(
κ
√

3αpm t
)
.

When |x| ≥ 1
κ , f(x) = 0. This implies that du

dt = 0, which implies that u is constant with respect to
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time t, and dx
dt is equal to a constant. Thus, the characteristic curves become straight lines. The

slopes of these lines are given by (2.3), where |x| ≥ 1
κ and f(x) = 0, i.e. dx

dt = sgn(ξ)
√

3αf(ξ), given

|ξ| < 1
κ . We now solve for the additive constant in order to define these lines.

t = sgn(ξ)
x√

3αf(ξ)
+ d1.

At the boundary of the forced region we substitute (2.6) evaluated at x = sgn(ξ)
κ and determine that

d1 =
1

κ
√

3αpm
ln

(
1

κ|ξ|
+
√

(1/κξ)2 − 1

)
− 1√

3αf(ξ)
.

If |ξ| > 1
κ , the characteristics are vertical lines. Figure (2.1.1) shows the characteristic curves plotted

for the case where pm = κ = 1, α = 4. Now we consider the case F 6= 1. For simplicity we will

Figure 2.1: Characteristic curves for the equation (1.16) for the case κ = F = 1

assume F > 1, but the case in which F < 1 follows similarly. We now have

3α

2
ζ = F − 1−

√
(F − 1)2 − 3α

(
f(x)− f(ξ)

)
,

and

dx

dt
= F − 1− 3α

2
ζ =

√
(F − 1)2 − 3α

(
f(x)− f(ξ)

)
.
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This system has as a solution

t =

ˆ x

ξ

dy√
(F − 1)2 − 3α

(
f(y)− f(ξ)

) . (2.7)

We again insert (2.4) into the integral

t =

ˆ x

ξ

dy√
(F − 1)2 − 3ακ2pm

(
ξ2 − y2

) ,
to now arrive at

t =

ˆ x

ξ

dy√
3ακ2pmy2 + (F − 1)2 − 3ακ2pmξ2

.

Let us first assume that (F − 1)2 > 3ακ2pmξ
2, which leads to

t =
1√

(F − 1)2 − 3ακ2pmξ2

ˆ x

ξ

dy√
3ακ2pmy2/

(
(F − 1)2 − 3ακ2pmξ2

)
+ 1

.

Now let

z = y

√
3ακ2pm

(F − 1)2 − 3ακ2pmξ2
⇒ dz = dy

√
3ακ2pm

(F − 1)2 − 3ακ2pmξ2
,

which gives

t =
1√

3ακ2pm

ˆ b

a

dz√
z2 + 1

.

We introduce

z = sinhu → dz = coshudu

and substitute the new variables into our expression, which ultimately yields

t =
1√

3ακ2pm
sinh−1

[
x

√
3ακ2pm

(F − 1)2 − 3ακ2pmξ2

]

− 1√
3ακ2pm

sinh−1

[
ξ

√
3ακ2pm

(F − 1)2 − 3ακ2pmξ2

]

in terms of the original variables. Note that if we take

sinh v = w =
ev − e−v

2
=
t− 1/t

2
,
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then

v = ln
(
w ±

√
w2 + 1

)
.

This is only defined for the positive branch, so we take

sinh−1 x = ln
(
x+

√
x2 + 1

)
,

and thus

t =
1

κ
√

3αpm
ln

[
x

√
3ακ2pm

(F − 1)2 − 3ακ2pmξ2
+

√
(F − 1)2 + 3ακ2pm(x2 − ξ2)

(F − 1)2 − 3ακ2pmξ2

]

− 1

κ
√

3αpm
ln

[
ξ

√
3ακ2pm

(F − 1)2 − 3ακ2pmξ2
+

√
(F − 1)2

(F − 1)2 − 3ακ2pmξ2

]
.

while |x| < 1
κ . Simplified we have

t =
1

κ
√

3αpm
ln

[
x

ξ
·
κ
√

3αpm +
√

(F − 1)2 + 3ακ2pm(x2 − ξ2)

κ
√

3αpm + F − 1

]
. (2.8)

We proceed to solve this expression for x,

x =

(
ξ +

F − 1

κ
√

3αpm

)
etκ
√

3αpm +

(
ξ − F − 1

κ
√

3αpm

)
e−tκ

√
3αpm ,

and from this we see that

dx

dt
=
(
ξκ
√

3αpm + F − 1
)
etκ
√

3αpm −
(
ξκ
√

3αpm − (F − 1)
)
e−tκ

√
3αpm . (2.9)

Substituting this into the first equation of (2.1) gives

3α

2
ζ = F − 1−

(
ξκ
√

3αpm + F − 1
)
etκ
√

3αpm +
(
ξκ
√

3αpm − (F − 1)
)
e−tκ

√
3αpm .

We next seek the solution outside of the forced region. For |ξ| < 1
κ and |x| > 1

κ , f(x) = 0 and (still

assuming F > 1), it follows from (2.1) and (2.2) that the constant slope of the characteristic curves
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is given by

dx

dt
=
√

(F − 1)2 + 3αf(ξ).

Writing it as such after plugging in the forcing function used (2.4) gives

t =
x√

(F − 1)2 + 3αpm(1− κ2ξ2)
+ d2.

Treating t as a function of x, we use the time value at the boundary of the forced region to solve for

the unknown constant using (2.8). Note that from (2.9) we can conclude that x always increases for

t > 0, so no characteristic curves with ξ > − 1
κ will reach x = − 1

κ . Thus we consider only x = 1
κ

t|x=1/κ =
1

κ
√

(F − 1)2 + 3αpm(1− κ2ξ2)
+ d2

=
1

κ
√

3αpm
ln

(
1

κξ
·
κ
√

3αpm +
√

(F − 1)2 + 3αpm(1− κ2ξ2)

κ
√

3αpm + F − 1

)
,

and find

d2 =
1

κ
√

3αpm
ln

(
κ
√

3αpm +
√

(F − 1)2 + 3αpm(1− κ2ξ2)

κξ(κ
√

3αpm + F − 1)

)

− 1

κ
√

(F − 1)2 + 3αpm(1− κ2ξ2)
.

For |ξ| > 1
κ and |x| > 1

κ , the characteristic curves are straight lines given by

t =
x− ξ
F − 1

. (2.10)

For ξ < − 1
κ and |x| < 1

κ , following steps similar to those given above, but solving on the interval

x ∈
(
− 1
κ ,

1
κ

)
for t > −1/κ−ξ

F−1 , treating x
(
−1/κ−ξ
F−1

)
= − 1

κ and ζ
(
− 1
κ
−ξ

F−1

)
= 0 as our new boundary

values, we find (2.1) has solution

t =

ˆ x

−1/κ

dy√
(F − 1)2 − 3αf(y)

−
1/κ + ξ

F − 1
,

which evaluates to

t =
1

κ
√

3αpm
ln

(
κx
√

3αpm +
√

(F − 1)2 + 3αpm(κ2x2 − 1)

F − 1−
√

3αpm

)
−

1/κ + ξ

F − 1
.
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This describes the characteristic curve until x = 1
κ , at which point

t|x=1/κ =
1

κ
√

3αpm
ln

(
F − 1 +

√
3αpm

F − 1−
√

3αpm

)
−

1/κ + ξ

F − 1
,

and the slope is given by

dt

dx

∣∣∣∣
x=1/κ

=
1

F − 1
.

Thus for ξ < − 1
κ and x > 1

κ

t =
x− 2/κ− ξ
F − 1

+
1

κ
√

3αpm
ln

(
F − 1 +

√
3αpm

F − 1−
√

3αpm

)
.

This analysis assumes (F − 1)2 > 3ακ2pmξ
2, which is true for all ξ values inside the forced region,

given (F − 1)2 > 3αpm. Thus we can conclude that all characteristics maintain a nonnegative

slope for all time. Characteristics originating in the forced region, upon exiting this region, have a

slope that depends on their initial positions ξ. The slopes of the characteristic curves originating

inside the forced region near 1
κ will have a slope less than that of the characteristics originating

downstream of the forced region, so these will intersect. Furthermore, for ξ ∈ (0, 1/κ) the slope of

the characteristics upon exiting the forced region is an increasing function of ξ. For ξ ∈ (−1/κ, 0),

the slope of the characteristics outside the forced region (x > 1/κ) is a decreasing function of ξ, so

the characteristics fan out. For large values of F , these differences in slope will be small, as things

are quickly swept out of the forced region and moved downstream. The slopes of the characteristics

originating upstream of the forced region do not depend on ξ. Each of these will have a slope equal

to that of its neighboring characteristic curves. The slope does, however, depend on x inside the

forced region. Inside this region the curves steepen around x = 0, resulting in a gap between these

characteristics and those originating inside and downstream of the forced region.

This likely corresponds with the depressed region immediately downstream of the forcing seen

in numerical solutions of the fKdV equation (1.15). For values of F closer to one that still satisfy

(F − 1)2 > 3αpm this gap can become large. Figure (2.1.1) shows the characteristic curves plotted

for the case where pm = κ = 1, α = 4, and F = 8.

From the above lines it is clear that this approach is rather cumbersome. It is considerably more

so for the case (F − 1)2 < 3ακ2pmξ
2. Looking back to the characteristic system of equations (2.1),
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Figure 2.2: Characteristic curves for the equation (1.16) plotted in space-time for pm = κ = 1,
α = 4, and F = 8.
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if we insert the forcing function (2.4) directly, then when |x| < 1
κ

dx

dt
= (F − 1)− 3α

2
ζ,

dζ

dt
= −2κ2pmx.

This is a system of linear first order equations. We can rewrite this system as a matrix equation of

the form ~x ′ = A~x+~b,

~x ′ =

 0 −3α
2

−2κ2pm 0

 ~x+

F − 1

0

 ,

where ~x =
(
x
ζ

)
. Let us begin by finding a particular solution

~xp =

(
a1

a2

)
~xp
′ =

(
0

0

)
.

Inserting this solution form into equation (2.1.1), we find

(
0

0

)
=

 0 −3α
2

−2κ2pm 0

(a1

a2

)
+

(
F − 1

0

)
,

and

~xp =

(
0

2(F − 1)/3α

)
.

The matrix A has eigenvalues ±κ
√

3αpm and eigenvectors

~v =

(
∓1√
3αpm

2κpm

)
,

so the solution is given by

~x = d3

(
−1√
3αpm

2κpm

)
etκ
√

3αpm + d4

(
1√

3αpm
2κpm

)
e−tκ

√
3αpm +

(
0

2(F − 1)/3α

)
.

We now insert initial conditions to solve for the unknown constants d3 and d4

(
ξ

0

)
= d3

(
−1√
3αpm

2κpm

)
+ d4

(
1√

3αpm
2κpm

)
+

(
0

2(F − 1)/3α

)
,
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and find

d3 =
2κ(1− F )

√
3αpm

9α2
− 1

2
ξ d4 =

2κ(F − 1)
√

3αpm
9α2

+
1

2
ξ.

Thus

x(t) =
1

2

(
F − 1

κ
√

3αpm
+ ξ

)
eκt
√

3αpm − 1

2

(
F − 1

κ
√

3αpm
− ξ
)
e−κt

√
3αpm , (2.11)

and

ζ(t) = −
(
F − 1

3α
+ κξ

√
pm
3α

)
eκt
√

3αpm −
(
F − 1

3α
− κξ

√
pm
3α

)
e−κt

√
3αpm +

2

3α
(F − 1).

Note this matches the results of integrating the separable equation in the case (F − 1)2 > 3ακ2pmξ
2.

Similarly, this is only valid when |ξ| < 1
κ and |x| < 1

κ .

To construct the characteristic curves outside of this region we solve the x equation for t. Let

x = −d5z +
d6

z
where z = etκ

√
3αpm .

Solving for z and then reinserting the original variables gives

etκ
√

3αpm =
x±
√
x2 + 4d5d6

−2d5
,

which we solve for t,

t =
1

2
√

3α
ln

(
x±
√
x2 + 4d5d6

−2d5

)
.

Inserting appropriate values for d5 and d6,

t =
1

2
√

3α
ln

[
x±

√
x2 + 4

(−(F−1)
√

3α
3αpm

− 1
2ξ
)(−(F−1)

√
3α

3αpm
+ 1

2ξ
)

−2
(−(F−1)

√
3α

3αpm
− 1

2ξ
)

]
,

and then simplifying leads to

t =
1

κ
√

3αpm
ln

(
x±

√
x2 + (F−1)2

κ23αpm
− ξ2

F−1
κ
√

3αpm
+ ξ

)
.
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Characteristic curves for −(F−1)

2
√

3α
< ξ < 1

κ exit the forced region at position x = 1
κ and at time

t =
1

2
√

3α
ln

( 1
κ +

√
(1/κ)2 + (F−1)2

3αpm
− ξ2

(F−1)
√

3α
6α + ξ

)
.

Note that in this case we take the positive branch of the square root so that everything is well-defined

for the entire range of ξ values. The curve is defined by the positive branch until reaching a turning

point (if the curve overturns), after which it follows the negative branch. Examining the derivative

of this time function with respect to x,

dt

dx
=

±1√
(F − 1)2 + 3ακ2pm(x2 − ξ2)

,

we find that within the region for which the above expression is valid, the slopes of the characteristic

curves become undefined when

x = −

√
ξ2 − (F − 1)2

3ακpm
,

given − 1
κ < ξ < 1−F

κ
√

3αpm
and F > 1 (The case in which F < 1 follows similarly). Here the

characteristic curves reach a turning point and change direction. Thus characteristic curves overturn

only when (F − 1)2 < 3αpm. At the left boundary of the forced region x = − 1
κ , the negative branch

of the square root gives a non-negative value for t,

t =
1

2
√

3α
ln

(
− 1
κ −

√
(1/κ)2 + (F−1)2

3αpm
− ξ2

(F−1)

2
√

3α
+ ξ

)
.

As in the previous case, the characteristic curves are straight lines outside the forced region. To

determine their slopes we plug the solution ζ(t) into the characteristic equation for dx
dt ,

dx

dt
= (F − 1)− 3α

2
ζ =

(
(F − 1)

2
+ ξ
√

3αpm

)
etκ
√

3αpm +

(
(F − 1)

2
− ξ
√

3αpm

)
e−2t

√
3α.

We can plug the above value of t into this expression to find the slope (and from that, the equation)
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of the characteristic curves for x ≤ − 1
κ ,

x = −
√

(F − 1)2 + 3αpm(1− κ2ξ2)

[
t− 1

κ
√

3αpm
ln

(−1±
√

1 + (F−1)2

3αpm
− κ2ξ2

F−1√
3αpm

+ κξ

)]
− 1

κ
.

For |x|, |ξ| > 1
κ the characteristics are given by

t =
x− ξ

(F − 1)
.

The characteristic curves for the case pm = κ = (F − 1) = 1 are plotted in Figure (2.1.1).

Figure 2.3: Characteristic curves for the equation (1.16) with parameter values pm = κ = 1, F = 2.

Figure 2.1.1 shows the fluid surface for various Froude values, given α = 2/3, pm = 3/4 and

compares results from the full KdV equation (1.15) with ε = 1 and the dispersionless equation.

2.1.2 Shocks

Characteristic curves for the system (2.1) cross both up and downstream of the forced region

when (F − 1)2 < 3αpm, and they cross downstream of the forced region when (F − 1)2 ≥ 3αpm.

Multiple characteristic curves occupying the same point in space-time (i.e. intersection of the

characteristic curves) corresponds to multivaluedness in the solution. To remedy this we insert

shocks. To determine when and where these shocks first appear, we consider the Jacobian of our

change of variables

J =

∣∣∣∣∣∣∣
∂x
∂ξ

∂x
∂τ

∂t
∂ξ

∂t
∂τ

∣∣∣∣∣∣∣ =
∂x

∂ξ

∂t

∂τ
− ∂x

∂τ

∂t

∂ξ
=
∂x

∂ξ
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Figure 2.4: Numerical solutions to equation (1.15) and (1.16) shown evolving in time for Froude
numbers F = 1.89103, F = 2.22474, and F = 2.55846; and parameter values α = 2/3, pm = 3/4, and
ε = 1, using (2.5) as a forcing function with κ = 0.3. The left column overlays the solutions at
time t = 100 for the full fKdV equation (1.15), the dispersionless approximation (1.16), and the
linearized equation (1.17).

where t = τ . Solving for when this is equal to zero or undefined also indicates the time and initial

value ξ for which breaking occurs. For − 1
κ < ξ < 1

κ

∂x

∂ξ
= cosh

[
κt
√

3αpm

]
.

This expression is never equal to zero, indicating characteristic curves originating within the forced

region do not intersect within the forced region. For ξ < − 1
κ , characteristic curves approach the

forced region with a constant slope. After entering the forced region, they are overturned and exit

from the same side they entered (for sufficiently small (F − 1) or sufficiently large forcing pm).

While inside the forced region, the characteristic curve is given by

x(ξ, t) =

(
(F − 1)

2κ
√

3αpm
− 1

2κ

)
e
κ
√

3αpm
(
t− − 1/κ−ξ

(F−1)

)
−
(

(F − 1)

2κ
√

3αpm
+

1

2κ

)
e
−κ
√

3αpm
(
t− − 1/κ−ξ

(F−1)

)
. (2.12)

We next find

∂x

∂ξ
=

(
1

2
−
√

3αpm
2(F − 1)

)
e
κ
√

3αpm
(
t− − 1/κ−ξ

(F−1)

)
+

(
1

2
+

√
3αpm

2(F − 1)

)
e
−κ
√

3αpm
(
t− − 1/κ−ξ

(F−1)

)
.
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Solving this expression for t when ∂x
∂ξ = 0 gives

t(ξ) =
1

2κ
√

3αpm
ln

(√
3αpm + (F − 1)√
3αpm − (F − 1)

)
+
− 1/κ− ξ
(F − 1)

. (2.13)

The infimum t value for which ∂x
∂ξ is equal to zero occurs when ξ = − 1

κ . Since ξ < − 1
κ for this

expression we consider ξ = − 1
κ − h, solve for t, and take the limit as h→ 0. Doing so gives the time

of initial upstream shock formation,

tB =
1

2κ
√

3αpm
ln

(√
3αpm + (F − 1)√
3αpm − (F − 1)

)
.

Plugging this time into the expression for x when ξ = − 1
κ gives

x
(−1

κ
, tB

)
=

1

2

(
F − 1

κ
√

3αpm
− 1

κ

)
eκtB

√
3αpm − 1

2

(
F − 1

κ
√

3αpm
+

1

κ

)
e−κtB

√
3αpm

x
(−1

κ
, tB

)
= −

√
1

κ2
− (F − 1)2

3ακ2pm

By plugging time tB into the characteristics solution for ξ = − 1
κ , one also finds that this is the

time at which the slope of the characteristic curve becomes vertical. For the downstream shock, we

consider characteristic curves for −(F−1)
κ
√

3αpm
< ξ < 1

κ after they have exited the forced region. These

are given by

x =
√

(F − 1)2 + 3αpm(1− κ2ξ2) ·

[
t− 1

κ
√

3αpm
ln

(−1 +
√

1 + (F−1)2

3αpm
− κ2ξ2

F−1√
3αpm

+ κξ

)]
+

1

κ
. (2.14)

We next find the Jacobian,

J =

κξ

(
ln

(√
−3αpm(κ2ξ2−1)+(F−1)2+

√
3αpm

κξ
√

3αpm+(F−1)

)
−
√

3αpmκt

)
√

1 + (F−1)2

3αpm
− κ2ξ2

+

(
3αpm

√
1 + (F−1)2

3αpm
− κ2ξ2 + F

(
κξ
√

3αpm + F − 2
)
− κξ

√
3αpm + 3αpm + 1

)
(
κξ
√

3αpm + F − 1
) (√

(F − 1)2 − 3αpm (κ2ξ2 − 1) +
√

3αpm

)
(2.15)

Similarly, the infimum t value for which this is equal to zero occurs when ξ = 1
κ . Since ξ < 1

κ for
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this expression, we consider ξ = 1
κ − h, solve for t, and again take the limit as h → 0. Doing so,

taking pm, κ, and (F − 1) all positive, gives

tB =
(F − 1)

3ακpm
.

Plugging this time into the expression for x when ξ = 1
κ gives the position of initial downstream

shock formation

x

(
1

κ
, tB

)
=

1

κ
+

(F − 1)2

3ακpm

Envelope Whitham, in [24], outlines a procedure for finding the envelope containing crossing

characteristic curves. We shall follow that procedure here. The condition that two neighboring

characteristics ξ, and ξ + h intersect at a point (x, t) is that

x = x(ξ, t)

and

x = x(ξ + h, t)

hold simultaneously. In the limit h→ 0 these give

x = x(ξ, t) and 0 = lim
h→0

x(ξ + h, t)− x(ξ, t)

h
=
∂x

∂ξ

as the implicit equations of an envelope. Note that the second equation here is equivalent to what

was done above utilizing the Jacobian determinant. In the present case there are a few ranges of ξ

that make sense to consider using this approach. If we consider applicable expressions for x on either

side of the upstream edge of the forced region, this limit is undefined unless you fix ξ = − 1
κ . Doing

so gives a single time value equal to the one given as the time of initial upstream breaking above. If

we consider the characteristic curves for values ξ < − 1
κ and |x| < 1

κ , we again have equation (2.12)

and (2.13). Eliminating ξ causes a cancellation of t and we’re left with the vertical line

x = −

√
1

κ2
− (F − 1)2

3ακ2pm
.
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This is consistent with the previous result. Since this expression applies when ξ < − 1
κ , the minimum

t value is given by

tmin =
1

2κ
√

3αpm
ln

(√
3αpm + (F − 1)√
3αpm − (F − 1)

)
.

and t→∞ as ξ → −∞.

We now consider the characteristic curves for values − 1
κ < ξ < −(F−1)

κ
√

3αpm
. These characteristics

cross after exiting the forced region upstream. Following Whitham we arrive at the equations

x = −
√

(F − 1)2 + 3αpm(1− κ2ξ2) ·

[
t− 1

κ
√

3αpm
ln

(−1±
√

1 + (F−1)2

3αpm
− κ2ξ2

F−1√
3αpm

+ κξ

)]
− 1

κ
.

and

t(ξ) =
1√

3αpm

[(√1− κ2ξ2 + (F−1)2

3αpm
+ κξ F−1√

3αpm
+ (F−1)2

3αpm
+ 1

)(
κ2(x2 − ξ2) + (F−1)2

3αpm

)
κξ
(
κξ + F−1√

3αpm

)√
1− κ2ξ2 + (F−1)2

3αpm

(√
1− κ2ξ2 + (F−1)2

3αpm
+ 1

)

+ ln

−1−
√

(F−1)2

3αpm
− κ2ξ2 + 1

F−1√
3αpm

+ κξ

].
These expressions are a bit messier than the previous, but we can parametrically plot t vs. x on

top of the characteristic curves. Similarly, downstream we have

x =
√

(F − 1)2 + 3αpm(1− κ2ξ2) ·

[
t− 1

κ
√

3αpm
ln

(−1 +
√

1 + (F−1)2

3αpm
− κ2ξ2

F−1√
3αpm

+ κξ

)]
+

1

κ
.

and

t =

ln

(√
3αpm(1−κ2ξ2)+(F−1)2+

√
3αpm

κξ
√

3αpm+(F−1)

)
κ
√

3αpm
− 1

κ
√

3αpm (1− κ2ξ2) + (F − 1)2
.

As an upper bound we take the line t =
x− 1

κ
(F−1) . The upstream and downstream shocks will travel

within these envelopes. Figure (2.1.2) shows the characteristic curves with the envelopes containing

intersecting curves and initial shock formation highlighted for the case pm = κ = (F − 1) = 1.

Consider again the integral equation (2.7) for the characteristics system (2.1). This expression holds

for an arbitrary forcing function f(x). If we take f to be positive when |x| < 1
κ and zero elsewhere,
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Figure 2.5: Characteristic curves for the system (2.1) with envelopes containing all crossings of
characteristic curves pictured in black and red dots highlighting the time and position of initial
shock formation. Curves were determined using parameter values pm = κ = 1, F = 2, α = 4.

characteristic curves x(t) for x, ξ < − 1
κ are given by (2.10). Here we shall assume f0, the maximum

value of f , occurs when x = 0. These characteristic curves for x, ξ < − 1
κ are straight lines, all with

the same slope for any x, ξ < − 1
κ . For ξ ≤ − 1

κ and − 1
κ < x the curves are given by

t =
1

F − 1

(
−1

κ
− ξ
)

+

ˆ x

− 1
κ

1√
(F − 1)2 − 3αf(y)

dy.

These curves have the same slope for all values x, given ξ ≤ − 1
κ , and thus will intersect only if

they overturn (assuming continuity). Characteristic curves overturn only if (F − 1)2 < 3αf0, [10].

As the characteristic curves in the case ξ ≤ − 1
κ all have the same slope for all x values, and it

can be shown that characteristic curves with |ξ| < 1
κ do not intersect inside the forced region for

a non-negative, symmetric forcing function with compact support that is continuous and concave

down, the characteristic curves all have a turning point at the same x value when (F − 1)2 < 3αf0

and this x value corresponds to one leg of the envelope containing all crossings of characteristic

curves for x < 0. The time of initial upstream shock formation is given by

tB =
1

2κ
√

3αpm
ln

(√
3αpm + (F − 1)√
3αpm − (F − 1)

)
. (2.16)

Thus for a non-negative, symmetric forcing function with compact support that is continuous

and concave down, one leg of the envelope containing all crossings of characteristic curves on the
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upstream side of the forcing region will be perfectly vertical.

Amplitude and Speed The velocity of shocks in the solution to (1.16) must be equal to

the average of the velocities (given by dx
dt ) of the solution just behind and ahead of the shock.

Recall that in the case (F − 1)2 < 3αpm, characteristics exit the forced region moving both up

and downstream. In this case a stationary solution us develops over the forced region and extends

outward at the speed of the up and downstream shocks. This stationary solution is determined by

the characteristic curve that is not swept downstream and does not reach a turning point in finite

time. This characteristic curve does not exit the forced region but asymptotically approaches the

line x = 0, and emanates from ξ = 1−F
κ
√

3αpm
. Plugging this into the solution of the characteristics

system, for long time outside of the forced region but still behind the shock, gives

Following the work outlined by Grimshaw and Smyth, we can find the long time limiting values

of the shock speeds up and downstream of the forced region. The shock velocity must be equal to

the average of the velocities (i.e. dx
dt ) of the solution just behind and just ahead of the shock. Recall

dx

dt
= F − 1− 3α

2
u.

Letting u1 and u2 be the values of the solution just upstream and downstream (respectively) of the

shock gives a shock speed ṡ of

ṡ = F − 1− 3α

4
(u1 + u2). (2.17)

The stationary solution that develops over the forced region and emanates outward is given by

us =
2

3α

(
F − 1− sgn(x)

√
3αpm

)
(2.18)

for long times, outside of the forced region where f(x) = 0, but still behind the shocks. Ahead of

the shocks we still have u = 0. Using this in equation (2.17) gives us the long time limiting values

of the shock speeds up and downstream of the forced region, where the plus and minus signs denote

evaluation at large positive and negative x values (respectively).

ṡ± =
1

2

[
(F − 1)±

√
3αpm

]
,
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Figure 2.6: Waterfall plot of the forced KdV equation (1.15) with black lines representing the limiting shock
speed prediction from the analysis in [10] and a red line representing a prediction from analysis presented here.
The numerical solution was computed using parameter values α = 2

3 , ε = 1, F = 1.25, pm = 0.5, κ = 0.3,
a time step dt = 5e-6, and spatial grid spacing dx = .0976562. Using the shock speed of the dispersionless
problem does reasonably well in predicting the position of the downstream dispersive shock wave, but a poor
job of predicting the position of the leading upstream traveling soliton.

α = 2/3 α = 5/3 α = 3 α = 4

F = 1 -0.49988 -0.79102 -1.06079 -1.22437

F = 1.25 -0.37476 -0.66589 -0.93567 -1.09985

F = 1.5 -0.25024 -0.54077 -0.81547 -0.97473

F = 1.75 -0.12878 -0.41565 -0.68542 -0.84961

Table 2.1: Shock speeds computed numerically by determining the change in location of the greatest increase
in surface elevation from time t = 40 to t = 50 for various values of the nonlinear parameter α and Froude
number F . For simulations the forcing function (2.5) was used with κ = 0.3 and pm = 1

2 , on a domain with
dx = 0.00610352 and dt = 2e− 5.

For example, given pm = 0.5, F = 1.25, and α = 2
3 , the value of the solution just behind the

shock moving upstream is 1.25. Expression (2.18) gives the amplitude of the shock formed by

equation (1.16), which we can use to determine its velocity. Lines corresponding to the propagation

speeds of upstream and downstream moving shocks for these parameter values are plotted in Figure

(2.6) along with the solution of the full forced KdV equation (1.15). We find the quantities that

describe the shocks are affected by the maximum amplitude of a wide class of forcing functions

which are localized such that f(x)→ 0 as x→ ±∞, and not only those with compact support [10].

Numerical simulations in this paper will use the forcing function

f̃(x) = pm sech2(κx). (2.19)

Exact stationary solutions to the forced KdV equation (1.15) for elements in this class of forcing

functions are reported in [2].

38



Figure 2.7: Numerically computed upstream shock propagation speeds for various Froude number values.
The analytically obtained long time limit prediction (2.20) of upstream shock propagation speed for equation
(1.16) is plotted as a solid line for comparison.

Figure 2.8: The maximum value of the x-derivative of the fluid surface in the simulations from Figure 2.7 is
plotted against time for Froude values 1, 1.25, 1.5, and 1.75. The inset shows the fluid surface at the time
of shock formation. The time of shock formation for simulations was taken to be the initial time at which
the x-derivative of the dispersionless solution at a point reached a magnitude of at least one twelfth of the
maximum of this value for the entire simulation. This seemed to correspond to the time value at which the
curve began its steep upward trend.
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α = 2/3 α = 5/3 α = 3 α = 4

F = 1 -0.50000 -0.79057 -1.06066 -1.22474

F = 1.25 -0.37500 -0.66557 -0.93566 -1.09974

F = 1.5 -0.25000 -0.54057 -0.81066 -0.97474

F = 1.75 -0.12500 -0.41557 -0.68566 -0.84974

Table 2.2: Upstream shock speeds for various values of the nonlinear parameter α and Froude number F as
predicted by (2.20)

Numerical simulations using a shock capturing method described by [15] with parameters listed

above give a solution with amplitude approximately equal to 1.5142 behind the upstream moving

shock for dt = 5e− 4 and dx = 0.048828125. Ahead of the shocks we still have u = 0. Using the

analytically obtained expression in our equation for shock speed ṡ gives the long time limiting values

of the shock speed. Upstream we have

ṡ =
(F − 1)−

√
3αpm

2
. (2.20)

For tested parameter values, the prediction in (2.20) appears to agree well with numerical results;

with percent differences ranging from 0.001% for F = 1.5 and α = 4, to 0.593% for F = 1.5 and

α = 3. Results are reported in Tables (2.1.2) and (2.1.2). The agreement is also clear from plotting

numerical shock speed against time in Figure 2.7. For numerical values the shock location at a

given time is taken to be the midpoint of the two discrete spatial points between which there is

the greatest increase in surface elevation in the computed solution. This position is stored every

0.5 time units and tracked over the duration of the simulation. The shock speed is taken to be the

difference in shock position divided by 0.5 time units, and stored as the speed at the time value that

is the midpoint between the two sample time values. Initially the surface begins to take the shape

of the forcing function, so the location of greatest increase is at the inflection point of its derivative.

This position is pushed downstream (faster for larger Froude numbers) until the amplitude of the

shock becomes large enough to overcome the background flow speed and it is able to propagate

upstream. Numerical simulation results pictured used forcing function (2.5), κ = 0.3, pm = 1
2 , α = 2

3 ,

dx = 0.00610352, dt = 2e-5. Equation (2.16) predicts that with these parameter values, using (2.4)

as a forcing function, the times of initial shock formation will be tB = 0 for F = 1, tB = 0.8514 for

F = 1.25, tB = 1.8310 for F = 1.5, and tB = 3.2432 for F = 1.75.
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2.1.3 Comparison with KdV

The downstream depressed region of the hydraulic approximation (1.16) agrees well with that of

the full, forced KdV equation (1.15). As one might expect, the agreement improves as ε→ 0. This

is demonstrated in figure (2.1.3). The upstream moving shock front does not accurately predict

Figure 2.9: The full fKdV equation (1.15) (left) is compared with the dispersionless approximation
(1.16) (middle) for varying values of the dispersion parameter ε. The solutions of (1.15), (1.16), and
the linearized equation (1.17) are overlayed at time t = 20.

the speed of the leading soliton generated in the forced problem. The downstream portion of the

solution is shaped like a rectangular potential well. The leading edge of the upstream portion of the

solution to the hydraulic approximation looks like the corner of a rectangular box, thus we insert a

rectangular box in the free KdV equation (1.14) as an initial condition and examine how well this
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predicts upstream behavior of the forced problem (1.15) with a zero initial condition.

A numerically computed solution of the unforced KdV equation (1.14) with a rectangular box

initial condition of length L compared with a solution of the forced problem (1.15) with a zero initial

condition is pictured in Figure 2.10. The box was of length L = 200 (Figure 2.10), with height equal

to the expected amplitude of the upstream shock formed by the hydraulic approximation (2.18). In

the simulation the left edge of the box was positioned at x = 0, and the solution was computed

using parameter values α = 2
3 , F = 1.25, and pm = 0.5. The corners of the rectangular box were

rounded using the function cos4 (βx) with β = 1. A time step and spatial grid point spacing 1e− 5

and dx = 0.0305176 for ε = 3, 1e− 5 and dx = 0.0488281 for ε = 1, 1e− 5 and dx = 0.0183105 for

ε = 0.3, and 2e− 6 with dx = 0.0061035 for ε = 0.06 were used in the computations.

The forced KdV Equation (1.15) with forcing function (2.5) and κ = 0.3 was solved using the

same values for α and F . A time step of dt = 5e-5 was used for ε = 3, 1; dt = 2e-5 for ε = 0.3; and

dt = 1e-5 for ε = 0.06. Spatial grid point spacing matched that of the corresponding epsilon values

in the case of a box initial condition. The agreement between the two cases highlights the fact

that useful information about the full forced KdV equation (1.15) can be gleaned from the study of

the dispersionless problem (1.16). The results show that as we decrease ε the number of leading

solitons within reasonable agreement seems to get a bit better, and suggest that a significantly

longer box initial condition might yield even better agreement with the long time behavior of the

solitons generated in the forced case.

2.2 Stationary Solutions

The hydraulic approximation gives insight into the dynamics of equation (1.15), but of course it

ignores the effects of dispersion. To learn more about the contributions made by dispersion, we

begin by looking for stationary solutions.

2.2.1 Linearized KdV Operator

Let us assume that we have an exact stationary solution to equation (1.15), φ(x). To linearize

about this solution, we insert it along with a perturbation,

ζ(x, t) = φ(x) + η(x, t), (2.21)
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Figure 2.10: Numerically computed solutions of the unforced KdV equation (1.14) with approximately
rectangular box initial conditions of length L = 200 compared with that of the forced KdV equation (1.15)
with a zero initial condition at time t = 50. The solutions were computed using values (from left to right)
ε = 3, ε = 1, ε = 0.3, ε = 0.06, where the ε parameter determines the strength of dispersion.

into equation (1.15),

(φ+ η)t + (F − 1)(φ+ η)x −
3α

2
(φ+ η)(φ+ η)x −

ε

6
(φ+ η)xxx = fx(x),

and solve for ηt,

ηt = (1− F )ηx +
3α

2
ηφx +

3α

2
φηx +

3α

2
ηηx +

ε

6
ηxxx

Assuming the perturbation to be small, we drop terms nonlinear in η

ηt =

(
1− F +

3α

2
φ

)
ηx +

3α

2
φxη +

ε

6
ηxxx,

and we can now write the linearized operator

Lφ(x) =

(
1− F +

3α

2
φ

)
∂x +

3α

2
φx +

ε

6
∂3
x. (2.22)

To examine the stability of this operator we consider solutions of the form

η(x, t) = eλtg(x),
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and apply (2.22)

Lφ(x)g = λg.

The stability of the operator (2.22) are indicated by its eigenvalues λ.

We can find the eigenvalues of (2.22) numerically. Doing so requires a stationary solution. To

find one we integrate equation (1.15) with respect to x, insisting that the solution and the forcing

function approach zero appropriately fast as |x| → ∞,

(1− F )ζ − 3α

4
ζ2 − ε

6
ζxx = f(x),

we can, assuming negligibly small dispersion ε→ 0, solve the resulting quadratic equation

ζ = 2
F − 1±

√
(1− F )2 − 3αf(x)

3α
.

Only the negative branch satisfies the boundary conditions. Furthermore we see that the strength

of the nonlinearity and the forcing must be small enough (or the Froude number large enough) to

ensure this expression produces a real value. We can then use this expression as an initial guess for

Newton’s method as we re-insert dispersion, beginning with some small value and iterating up to

the desired ε.

If the requirement to ensure that the use of the square root does not produce imaginary values

in generating an initial value for Newton’s method is too restrictive, we can similarly use Newton’s

method again to iterate to desired values for amplitude of the forcing function, Froude number, or

the nonlinear coefficient.

Running such a numerical method for parameter values ε = 1, α = 2
3 , κ = 0.3, and pm = 0.5

(with forcing function 2.5), the method finds stationary solutions for Froude values F > 1.761.

Equation (1.15) with a zero initial condition will generate upstream propagating solitary waves for

Froude numbers below this critical value. We call this the resonant regime. For the parameters

above, analysis of the dispersionless case (1.16) predicts that there will be no upstream propagation

for Froude numbers F > 2. This discrepancy suggests dispersion plays a role in determining the

critical Froude value for which we see solitons traveling upstream. For super critical Froude values,

we find two solution branches, as pictured in Figure 2.11. Stationary solutions to the forced KdV
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Figure 2.11: The norm of computed stationary solutions to (1.15) is plotted against the corresponding
Froude numbers for various values of the dispersion parameter ε. The dashed line depicts the predicted
minimum Froude value for which a stationary solution exists, obtained from analysis of the dispersionless
hydraulic approximation (1.16).

equation (1.15) are computed using this numerical continuation method. The nonlinear parameter

used in each computation is α = 2
3 and the forcing function used is given by (2.5). Derivatives

are computed spectrally, with a grid spacing dx = 0.390625. We see that the turning point in the

bifurcation diagram approaches the hydraulic approximation prediction as ε→ 0.

The numerically computed eigenvalues of the linearized operator (2.22) indicate that the branch

corresponding to solutions with the smaller norm is stable and the other branch is unstable. Solutions

on each branch of this curve for ε = 1 are perturbed and evolved according to (1.15) and the results

are plotting in Figure 2.12. The solutions were computed on a grid dx = 0.390625, dt = 1e-5 using

parameters α = 2
3 , ε = 1, pm = 1

2 , κ = 0.3. We see that the solution with the greater norm is indeed

unstable, as when perturbed it collapses back onto the stable solution. This is consistent with the

results reported in [2].

By numerically approximating and examining stationary solutions to equation (1.15) we are

able to determine a critical Froude value below which solitons will develop and travel upstream.

By examining the eigenvalues of the linearized KdV operator (2.22) we are able to determine the

stability of these stationary solutions. Comparing our findings from this analysis with what we

learned from the hydraulic approximation (1.16) we see that dispersion plays a role in determining

for what Froude values upstream propagating solitons are generated by (1.15), and that this critical

value approaches the prediction made using the (1.16) as the dispersion parameter ε→ 0.
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Figure 2.12: Perturbed stable and unstable stationary solutions computed via numerical continuation are
inserted as initial conditions and evolved to time t = 50 using the ETD-RK4 method described in [14].
Stationary solutions were selected for Froude values F ≈ 2.01042 (stable) and F ≈ 1.99140 (unstable). To
perturb the numerically computed stationary solutions they were multiplied by 1.1. Note the stable solution
is plotted on a z-axis that goes to two, and the unstable solution on a z-axis that goes to eight.

2.3 The Schrödinger Operator

Important to the inverse scattering theory to follow is some analysis of the Schrödinger operator

with a potential function evolved according to the KdV equation. The typical inverse scattering

technique for solving the KdV equation uses

ut − 6uux̃ + ux̃x̃x̃ = 0. (2.23)

Given the Schrödinger equation,

(
− ∂x̃x̃ + u(x̃, t)

)
ψ = λψ,

if u evolves according to the KdV equation (2.23), then λ is independent of time [24]. To arrive at

equation (2.23) we can rescale the variables ζ and x

u = −α
4

(
6

ε

)1/3

ζ, and x̃ = −
(

6

ε

)1/3(
x− (F − 1)t

)
. (2.24)

From this we see that the appropriate Schrödinger operator is

(∂x̃x̃ − 6u) =

[
−
(ε

6

)2/3
∂xx −

α

4

(6

ε

)1/3
ζ

]
. (2.25)
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Figure 2.13: The plot on the left shows an initial soliton evolved according to (1.14). The plot on the right
shows the numerically computed eigenvalue of (2.25) versus time, using the KdV soliton pictured on the left
as its potential function. The spacing of grid points is 0.012207, the time step is 2e-5, ε = 6, F = 1, and
α = 4.

Inserting parameters F = 1, α = 4, and ε = −6 also gives the ‘typical’ KdV equation (2.23). The

KdV equation (1.14) has an exact traveling wave solution [24],

ζ = sech2

(√
3α

4ε
(x+ 2t)

)
.

To test our numerical method we can use this as an initial condition and evolve the KdV equation

(1.14) using an exponential time differencing fourth order Runge-Kutta method (ETD-RK4) [14]. To

determine the eigenvalues of the Schrödinger operator with the KdV solution for a potential function

we can use the Matlab function ‘eigs’. We expect to find a single eigenvalue that remains constant in

time. Our numerical method producing these results provides evidence that the ETD-RK4 method

and the ‘eigs’ function are working as expected. The result is shown in Figure 2.13. For an initial

soliton of unit amplitude we expect a single constant negative eigenvalue λ = −1
2 . The solution on

a grid with points spaced 0.195313 units apart was input into the ‘eigs’ function to calculate the

eigenvalues of the Schrödinger operator (2.25).

Next, with the shock solution of the hydraulic approximation (1.16) in mind, we consider a

rectangular box potential of length L, i.e. ζ equal to a constant value u0 when x ∈
[
−L

2 ,
L
2

]
and zero

elsewhere. We know from WKB theory that Schrödinger’s equation has nontrivial solutions only if

ˆ L

0

√
λ+

α

4

(
6

ε

)1/3

u0 dx =

(
n+

1

2

)
π
(ε

6

)1/3
, (2.26)

47



Figure 2.14: Eigenvalues of the Schrödinger operator with a rectangular box potential function versus the
length of the box. Numerically coputed eigenvalues are marked x. The curves represent the analytically
obtained predictions of the eigenvalues as functions of L. The plotted black, horizontal line represents the
limit of this prediction as L→∞

λ =
π2

L2

(ε
6

)2/3
(
n+

1

2

)2

− α

4

(
6

ε

)1/3

u0, (2.27)

to first order [1]. It is clear from this analytically obtained expression that the eigenvalues approach

a limiting quantity λ = α
4

(
6
ε

)1/3
u0 as L → ∞. Multiplying ε1/3 across the expression to account

for the variable transformation (2.24), it becomes clear that the eigenvalues approach the limiting

quantity as ε → 0 in the same way as when L → ∞. This agrees with the numerical findings

presented in Figure 2.10, and again suggests that the solution of of the unforced problem (1.14)

with a box initial condition will approach the solution of the forced problem (1.15) as L→∞.

For α = 2
3 , ε = 1, F = 1.25, and pm = 0.5 we can numerically find the eigenvalues with this

square well potential plugged into the appropriate Schrödinger operator on a grid x ∈ [−525, 525]

with grid points spaced dx ≈ 0.5068. We allow L to take 25 evenly spaced values from 1 to 205,

find the 10 eigenvalues of the operator with the most negative real part, and plot the negative ones

against L in Figure 2.14 (On finer grids or for larger values of L, fewer than 10 eigenvalues converge

using the Matlab function ‘eigs’).

We also plot the analytically predicted eigenvalues as a function of L for n = 1, 2, . . . , 10.

Here we take the value from the hydraulic approximation prediction of shock amplitude (2.18)

u0 = 2
3α(F − 1 +

√
3αpm). For chosen parameter values we expect the eigenvalues to approach

−0.378567 as L approaches infinity. This limit is also plotted.

We see in the Figure 2.14 and in the WKB expression for the eigenvalues of the Schrödinger
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Figure 2.15: Numerically computed eigenvalues of the Schrödinger operator with an approximately rectangular
box initial potential functions of various lengths evolved according to KdV plotted versus time. A time step
2e-5 was used, along with spatial grid point spacing dx ≈ 0.048828, α = 2

3 , ε = 1, F = 1.25, β = 1.75. The
height of the initial box was u0 = 1.25.

operator that as L increases, all eigenvalues converge toward the expected quantity λ = α
4

(
6
ε

)1/3
u0 ≈

−0.378567. If we use a rectangular well, rounded using the function cos4(βx) where β represents

a smoothing factor, of length L as an initial condition and evolve it according to equation (1.14),

we expect the eigenvalues to remain constant in time. The results of doing so numerically are

plotted in Figure 2.15. The potential used to calculate the eigenvalues of the Schrödinger operator

was the numerical KdV solution evaluated on the center half of the full grid, using points spaced

dx = 0.78125, evaluated every dt = 1 nondimensional time unit. For a box of length L = 25 the

‘eigs’ function only computed 9 eigenvalues (consistent with the prediction in equation (2.33)). In

all other cases the 10 eigenvalues with the most negative real part are plotted. We also expect the

eigenvalues to converge to the value above as L grows.

In simulations, for a rounded square potential well of length 200 initial condition evolved according

to the KdV equation, the Matlab function ‘eigs’ fails to calculate eigenvalues when the surface

elevation is calculated on 211 or more points.

Exact solutions to the unforced KdV equation in the form of solitons are known,

ζs = a sech2

{(
3αa

4ε

)1/2

x

}
,
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where the amplitude a is a free parameter. In the absence of forcing, this profile translates without

changing its shape when evolved according to the KdV equation (1.14). Numerical results have

demonstrated that the amplitudes of solitons that advance upstream in the time evolution of

equation (1.15) are typically approximately double the amplitude of the upstream advancing shock

generated in the hydraulic approximation to the equation, all parameters other than dispersion

equal. The amplitude of the shock can be obtained analytically (as demonstrated above).

The area under an exact soliton solution to equation (1.14) is

ˆ ∞
−∞

ζs dx =
8

3α

√
ε
(
F − 1 +

√
3αpm

)
(2.28)

We can use the analytically determined speed of the shock along with its amplitude to find the

approximate area under the curve of the shock profile as a function of time. Setting this equal to the

area under the curve of an exact soliton solution, the amplitude of which is double the amplitude

of the upstream advancing shock, we can predict the time it takes for each new soliton to form in

equation (1.15)

Ts =
8
√
ε
(
F − 1 +

√
3αpm

)
3αpm − (F − 1)2

. (2.29)

This prediction is compared with numerical results in Figure 2.16. While it does not provide a

precisely accurate count across all parameter combinations that produce upstream traveling solitons

in the forced KdV equation (1.15), the expression in (2.29) is easily calculable and shows reasonable

agreement with numerical results.

Equation (2.29) can also be used to predict the position of the leading upstream propagating

soliton as a function of time. Expecting soliton spacing to be equal to some constant times the

expression (2.28) divided by the amplitude of the solitons,

spacing = 2

(
4ε

3αa

)1/2

constant, (2.30)

we compare the results of several numerical simulations for parameter values α = 2
3 , pm = 1

2 ,

F = 1.25, and ε = 3, 1, 0.3, 0.06. The spacing between all soliton peaks located to the left of

x = −10 (where the value of the forcing function was less than one percent of its maximum value)

was averaged and compared with (2.30) at time t = 100 when ε = 1 and at time t = 50 for all other
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Figure 2.16: Numerically computed solutions of equation (1.15) for various values of ε. In each computation
the forcing function (2.4) is used with parameters α = 2

3 , F = 1.25, pm = 0.5, κ = 0.3 and a zero initial
condition. A time step of (from left to right, top to bottom) dt = 5e-5, 5e-5, 2e-5, 1e-5 and grid point spacing
dx = 0.0305176, 0.0488281, 0.0183105, 0.00610352 was used for the computations. For the values of ε shown,
equation (2.29) predicts the formation of 2, 5, 10, 17 solitons.

values of ε. The constant was found to be 3.0053 (approximately 3). We expect the speed of the

leading upstream propagating soliton to then be this soliton spacing divided by Ts,

3

4

(√
3αpm − (F − 1)

)
.

2.4 Inverse Scattering Transform

The inverse scattering transform solution of the KdV equation (2.23) is [24]

u = −2
d2

dx̃2
log |P | (2.31)

where

|P | ∝

∣∣∣∣∣∣
γm exp

[
−2µm −

(
6
ε

)1/3 (
x− (F − 1)t

)
+ 8µ3

mt
]

µm + µn

∣∣∣∣∣∣ ,
normalization constants

γn =

{ˆ ∞
−∞

u2 dx̃

}−1

=
8ε

3α2

{ˆ ∞
−∞

ζ2 dx

}−1

,
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and we use the negative eigenvalues of the Schrödinger operator (2.25) with the KdV initial condition

as a potential function,

λ = −µ2
n.

In terms of our variables, (2.31) can be written as

ζ = − 4ε

3α

d2

dx2
log |P |. (2.32)

We can compute this solution to KdV (1.14) numerically for a rectangular box initial condition.

We take F = 1.25, ε = 1 and α = 2
3 . Using the chosen solution form, for an initial box of length

L = 15 and height from (2.18) u0 = 2
3α

(
F − 1 +

√
3αpm

)
solved on a domain x ∈ [−74.25, 65.75]

with 806 grid points, peaks formed in the solution are nearest to uniform (the standard deviation of

the values of local maxima in the solution) at time t ≈ −1.844994704. There are six peaks in the

solution, consistent with the prediction in [24],

N = largest integer ≤ u
1/2
0 L

π
+ 1. (2.33)

By comparing the IST and ETD-RK4 solutions, shown in Figure 2.17, we see excellent agreement

in the solitary waves traveling upstream. For the ETD-RK4 solution the corners of the rectangular

box were rounded using a sech2 (κx) function with κ = 0.7, which minimized the 2-norm of the

difference between this initial profile and that obtained from the IST, and equation (1.15) was

solved using a time step 2e-6 and spatial grid point spacing dx = 0.0244141. The IST solution was

evolved according to (2.32) in which |P |, γn, and λ were computed numerically. Time values in the

IST solution were uniformly shifted so that the time at which solution peaks were most uniform

was used as the starting time t = 0. Both box heights were set by (2.18) using parameter values

α = 2
3 , ε = 1, pm = 0.5 and F = 1.25. Matlab failed to produce a smooth solution for a significantly

longer initial box on the grid used and, using the Matlab function ‘eigs’, the expected number of

eigenvalues failed to converge on finer grids.

Note that here our IST solution ignores any contributions from the continuous spectrum of the

operator, so we may conclude that such contributions are small and do not significantly affect the

behavior of the solitons traveling upstream.
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Figure 2.17: Numerically computed solutions to equation (1.14) for an approximately rectangular box initial
condition are shown evolving over 10 nondimensional time units in the top two plots in the figure. The
left solution is obtained using the inverse scattering transform, and the right solution using the ETD-RK4
method from [14].

One might expect this, in combination with results from analysis of the inviscid equation (1.16),

presents a way to predict the frequency of soliton generation in the full forced problem (1.15). If we

treat the upstream or downstream traveling shock as a potential function of constant amplitude

that grows in length at the speed of shock propagation, (2.33) can be used to predict a period for

soliton emission. For solitons traveling upstream this prediction would be given by

Ts =

∣∣∣∣∣∣ 2π

(F − 1−
√

3αpm)
√

2
3α(F − 1 +

√
3αpm)

∣∣∣∣∣∣ .
As this method does not include dispersion, one might expect this estimate becomes more accurate

as ε decreases. In actuality, the number of upstream propagating solitons generated in a given

amount of time increases as ε decreases (all other paramters held constant), and is not bounded by

this method of prediction. For the parameter values α = 2
3 , F = 1.25, and pm = 1

2 , this method

predicts approximately seven solitons will form in 50 nondimensional time units regardless of the

value of ε. It is clear from Figure 2.16 that the number of solitons produced by (1.15) does not

approach the prediction obtained using this method as ε→ 0.
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2.5 Numerical Methods

2.5.1 Integrating Factor, Fourth Order Runge-Kutta

To numerically solve the KdV equation

−ζt +
(

1− F +
3α

2
ζ
)
ζx +

ε

6
ζxxx = 0, x ∈ [xmin, xmax], t ∈ (t0, tmax], (2.34)

we utilize an integrating factor method as described in [14]. For our problem we make use of the

Fourier transform, which allows us to evaluate derivatives via multiplication with the imaginary

unit and the frequency variable k. We will denote the Fourier transformed variable ζ̂(k, t). Our

equation becomes

ζ̂t = ik(1− F )ζ̂ − ik3 ε

6
ζ̂ + ik

3α

4
(̂ζ2), (2.35)

At this point we can define a linear operator L = ik(1 − F ) − ik3 ε
6 and a nonlinear operator

N(ζ) = ik 3α
4 (̂ζ2), and write our equation

ζ̂t = Lζ̂ + N(ζ). (2.36)

Multiplication by an integrating factor e−Lt gives

e−Ltζ̂t = Le−Ltζ̂ + e−LtN(ζ). (2.37)

Use the integrating factor to define a new variable

v(k, t) = e−Ltζ̂(k, t). (2.38)

And we find

vt = e−LtN(eLtv). (2.39)
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We use a standard fourth-order Runge-Kutta time stepping method to solve this equation. Let

tn = t0 + n · dt and let vn = v(k, tn)

a = dt e−Ltn N
(
eLtn vn

)
(2.40)

b = dt e−L(tn+dt/2)N
(
eL(tn+dt/2) (vn + a/2)

)
(2.41)

c = dt e−L(tn+dt/2)N
(
eL(tn+dt/2) (vn + b/2)

)
(2.42)

d = dt e−Ltn+1 N
(
eLtn+1 (vn + c)

)
(2.43)

vn+1 = vn +
1

6
(a+ 2b+ 2c+ d) (2.44)

2.5.2 Exponential Time Differencing Fourth-Order Runge-Kutta

The solution to the Kortewig de-Vries equation is approximated using a method developed by

Kassam and Trefethen in a 2005 paper [14]. The method evaluates the spatial derivatives pseudo

spectrally and uses an exponential time-differencing fourth-order Runge Kutta (ETD-RK4) time

stepping method. Pseudo spectral methods to evaluate derivatives make use of the Fourier transform

F{u(x)} = û(k) =

ˆ ∞
−∞

u(x)e−ikx dx.

If we consider the inverse Fourier transform,

F−1{û(k)} = u(x) =

ˆ ∞
−∞

û(k)eikx dk,

along with the Fourier transform of the derivative of the function u, we find that

F
{
∂

∂x
u(x)

}
=

ˆ ∞
−∞

ik

[ˆ ∞
−∞

û(k)eikx dk

]
e−ikx dx = ik û(k).

Thus, using the Fast Fourier Transform (FFT) and operating in Fourier space can allow us to do

calculation quickly and easily. The ETD-RK4 time stepping method is well suited for evolution

equations with both linear and nonlinear terms, making it a natural choice for evaluating the KdV
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equation. Consider an equation of the form

ut = Lu+ N(u, t) (2.45)

where L and N are discretized forms of linear and nonlinear operators (respectively). Define

v = e−Ltu

and differentiate the equation with respect to t to obtain

vt = −e−LtLu+ e−Ltut.

Notice that if we multiply Equation (2.45) by e−Lt we obtain

e−Ltut = e−LtLu+ e−LtN(u, t).

This allows us to substitute vt into the result, yielding

vt = e−LtN(eLtv, t).

If we now integrate over a single time step of length h we arrive at

vn+1 = vn +

ˆ h

0
e−L(tn+τ)N(eL(tn+τ)v(tn + τ), tn + τ) dτ.

Re-writing the equation in terms of u gives

e−Ltn+1un+1 = e−Ltnun +

ˆ h

0
e−L(tn+τ)N(u(tn + τ), tn + τ) dτ.

We may now multiply by eLtn+1 to reach

un+1 = eLhun + eLh
ˆ h

0
e−LτN(u(tn + τ), tn + τ) dτ.

The exponential time differencing described in [3] is similar to the integrating factor method.
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re-write the equation in terms of and solve for ζ̂

ζ̂n+1 = eLdtζ̂n + eLdt
ˆ dt

0
e−LτN

(
ζ̂
(
tn + τ

)
, tn + τ

)
dτ (2.46)

In [3] authors Cox and Matthews give a set of fourth-order Runge-Kutta time stepping formulae.

Following Kassam & Trefethen, for a time step of length h we can write these formulae in terms of

the coefficients

α = h−2L−3
[
− 4− Lh+ eLh

(
4− 3Lh+ (Lh)2

)]
(2.47)

β = h−2L−3
[
2 + Lh+ eLh(−2 + Lh)

]
(2.48)

γ = h−2L−3
[
− 4− 3Lh− (Lh)2 + eLh(4− Lh)

]
(2.49)

for a dependent variable u

an = eLh/2un + L−1
(
eLh/2 − I

)
N(un, tn), (2.50)

bn = eLh/2un + L−1
(
eLh/2 − I

)
N(an, tn + h/2), (2.51)

cn = eLh/2an + L−1
(
eLh/2 − I

)(
2N(bn, tn + h/2)−N(un, tn)

)
, (2.52)

un+1 = eLhun + h−2L−3

{
αN(un, tn) + 2β

[
N(an, tn + h/2) + N(bn, tn + h/2)

]
+ γN(cn, tn + h)

}
.

(2.53)

To circumvent numerical instability, we evaluate elements of this expression via an integral over a

circle of unit radius in the complex plane centered at the L using the Cauchy integral formula for a

diagonal matrix L

f(L) =
1

2πi

˛
C
f(z)(zI− L)−1 dz. (2.54)

Numerically, for our purposes, the contour integral reduces to a mean of the function prone to

numerical error over the contour. Functions evaluated in this way include the expressions for α, β,

γ, and

f(L) = L−1
(
eLh/2 − I

)
. (2.55)
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Either this or the previous method may be used to solve the linearized problem

ζt = (1− F )ζx +
ε

6
ζxxx.

2.5.3 Shock Capturing

To numerically solve the dispersionless, hydraulic approximation to KdV (1.16), we employ a

method discussed in [15] by authors Kurganov and Tadmor. We begin by writing this in the form

of a nonlinear conservation law

∂

∂t
ζ +

∂

∂x
g
(
ζ(x, t)

)
= 0, (2.56)

where the flux function

g
(
ζ(x, t)

)
= (F − 1)ζ − 3

4
αζ2. (2.57)

The Kurganov-Tadmor scheme we seek to use here is given by

d

dt
uj(t) =−

(
g
(
u+
j+1/2(t)

)
+ g
(
u−j+1/2(t)

))
−
(
g
(
u+
j−1/2(t)

)
+ g
(
u−j−1/2(t)

))
2∆x

+
1

2∆x

{
aj+1/2(t)

[
u+
j+1/2(t)− u−j+1/2(t)

]
− aj−1/2(t)

[
u+
j−1/2(t)− u−j−1/2(t)

]}
,

(2.58)

for a dependent variable u where, in the generic case, one may take

aj+1/2(t) := max

{∣∣∣∂g
∂u

(
u+
j+1/2(t)

)∣∣∣, ∣∣∣∂g
∂u

(
u−j+1/2(t)

)∣∣∣}. (2.59)

Note that u+
j+1/2 := unj+1 − ∆x

2 (ux)nj+1, u−j+1/2 := unj + ∆x
2 (ux)nj , and unj = u(xj , tn); where ux is

given by

(ux)nj = minmod

(
unj − unj−1

∆x
,
unj+1 − unj

∆x

)
, (2.60)

and minmod(a, b) := 1
2 [sgn(a) + sgn(b)] · min(|a|, |b|). The equation is evolved in time using a

standard fourth-order Runge-Kutta scheme. We can evolve the forced KdV equation (1.15) and

the dispersionless approximation to forced KdV (1.16) from a zero initial condition numerically

and observe how time dependence in the forcing function affects the behavior of the solutions. The

solution to equation (1.15) is approximated using the method described by Kassam and Trefethen

in [14]. The solution to equation (1.16) is approximated using the method described by Kurganov
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and Tadmor in [15].

2.6 Conclusions

In summary, we have presented an exact solution to the hydraulic approximation to the forced

Korteweg-de Vries equation for a special forcing function. We use numerical continuation to

numerically approximate stationary solutions (one stable and one unstable) to (1.15) and a critical

Froude value above which stationary solutions exist. We demonstrate that the eigenvalues of the

Schrödinger operator with a rectangular box potential function converge to a value that we predict

analytically as the length of the box increases.

We use analysis of the dispersionless approximation to KdV (1.16) the results of WKB analysis

to predict the frequency of soliton generation and demonstrate that this method is accurate. This

method for analytically predicting the rate of soliton generation gives a frequency around which

we can tune oscillation in a time dependent forcing function to create interesting and surprising

resonant behavior in the solution. Study of the case of time dependent forcing is currently underway.
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CHAPTER 3

Time Dependent Forcing

Here we present an anlytic study of time dependent oscillations in the dispersionless approximation

to KdV (1.16) studied in [10] and a numerical study of the resonant regime as well as the asymptotic

high and low frequency limits.

3.1 Forcing Amplitude Modulation

Suppose now we consider forcing whose amplitude oscillates in time. Our system becomes

dx

dt
= F − 1− 3α

2
ζ

dζ

dt
= Ω2(ωt)fx(x)

(3.1)

Where f(x) = pm(1− κ2x2) where |x| < 1
κ and zero elsewhere, and Ω2(ωt) = 1− ε2

F sin(ωt). We

will assume εF < 1. We can re-write this system as a single second order equation

d2x

dt2
= −3α

2
Ω2(ωt)fx(x).

Inserting our chosen function definitions we get

d2x

dt2
= 3ακ2pm

(
1− ε2

F sin(ωt)
)
x. (3.2)

Consider the Mathieu equation

d2x

dt2
+
(
a− 2q cos(2t)

)
x = 0,

which has solutions,

x(z) = c1C(a, q, z) + c2S(a, q, z),
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where C and S are the Mathieu cosine and sine functions (respectively). We can determine an exact

solution to (3.2) in terms of Mathieu functions by introducing a change of variables

ωt =
π

2
− 2z ⇔ z =

π

4
− ωt

2
,

under which (3.2) becomes

d2x

dz2
+

[
−12ακ2pm

ω2
− 2

(
−6αε2κ2pm

ω2

)
cos(2z)

]
x = 0.

This equation has solutions

x(z) = c1C

(
−12ακ2pm

ω2
,
−6αε2

Fκ
2pm

ω2
, z

)
+ c2S

(
−12ακ2pm

ω2
,
−6αε2

Fκ
2pm

ω2
, z

)

Inserting our initial conditions gives

c2 =
2(F − 1)C∗ + ωξC ′∗

ω(S∗C ′∗ − C∗S′∗)
,

c1 =
2(F − 1)S∗ + ωξS′∗

ω(C∗S′∗ − S∗C ′∗)
,

where a star superscript denote the evaluation of a Mathieu function or its derivative at z = π/4 for

parameter values a = − 12ακ2pm/ω2 and q = − 6αε2Fκ
2pm/ω2.

3.1.1 Low Frequency Modulation

To generate approximate solutions to (3.2) we can introduce the change of variables τ = ωt,

which yields the expression

ω2 d2x

dτ2
= 3αpmκ

2(1− ε2
F sin τ)x

ω2x′′ = 3αpmκ
2Ω2(τ)x.
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For small omega, 0 < ω � 1, we can find a WKB approximation to the solution of the equation.

We assume an exponential power series expansion for x

x(τ) ∼ exp

[
1

δ

∞∑
n=0

δnSn(τ)

]
, δ → 0.

We now find the first derivative,

x′ ∼

(
1

δ

∞∑
n=0

δnS′n

)
exp

(
1

δ

∞∑
n=0

δnSn

)
,

and the second,

x′′ ∼

[
1

δ2

( ∞∑
n=0

δnS′n

)2

+
1

δ

∞∑
n=0

δnS′′n

]
exp

(
1

δ

∞∑
n=0

δnSn

)
,

and substitute the series expressions for x and x′′ into the equation

ω2

[
1

δ2

( ∞∑
n=0

δnS′n

)2

+
1

δ

∞∑
n=0

δnS′′n

]
exp

(
1

δ

∞∑
n=0

δnSn

)

= 3ακ2pmΩ2(τ) exp

(
1

δ

∞∑
n=0

δnSn(τ)

)
.

We next simplify and expand the summations. The first several equations are:

ω2

δ2
S′20 +

2ω2

δ
S′0S

′
1 + ω2S′21 + 2ω2S′0S

′
2 + 2ω2δS′1S

′
2 + 2ω2δS′0S

′
3

+
ω2

δ
S′′0 + ω2S′′1 + ω2δS′′2 + · · · = 3ακ2pmΩ2(τ).

Here we choose δ = ω and match powers of ω,

S′20 = 3ακ2pmΩ2(τ)

2S′0S
′
1 + S′′0 = 0

S′21 + 2S′0S
′
2 + S′′1 = 0

· · ·
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We now solve these equations. From the zeroeth order equation,

S′0 = ±κ
√

3αpmΩ(τ),

we obtain

S0 = ±κ
√

3αpm

ˆ τ

Ω(y)dy.

We find the second derivative of this expression,

S′′0 = ∓
ε2
Fκ
√

3αpm
2

(
1− ε2

F sin τ
)− 1/2

cos τ,

and insert the result into the first order equation,

±2κ
√

3αpmΩ(τ)S′1 ± κ
√

3αpmΩ′(τ) = 0.

We solve for S1 and find

S1 = −1

2
ln
[
Ω(τ)

]
Neglecting higher order terms for now we combine S0 and S1 to get

x(τ) ∼ c1 exp

[
κ
√

3αpm
ω

ˆ τ

Ω(y)dy − 1

2
ln Ω(τ)

]

+ c2 exp

[
−κ
√

3αpm
ω

ˆ τ

Ω(y)dy − 1

2
ln Ω(τ)

]
,

which simplifies to

x(τ) ∼ c1Ω−
1/2(τ) exp

[
κ
√

3αpm
ω

ˆ τ

Ω(y)dy

]
+ c2Ω−

1/2(τ) exp

[
−κ
√

3αpm
ω

ˆ τ

Ω(y)dy

]
.

We now consider the derivative of our WKB solution

x′(τ) ∼ c1

[
−1

2
Ω−

3/2(τ)Ω′(τ) +
κ
√

3αpm
ω

Ω
1/2(τ)

]
exp

[
κ
√

3αpm
ω

ˆ τ

Ω(y)dy

]

+ c2

[
−1

2
Ω−

3/2(τ)Ω′(τ)− κ
√

3αpm
ω

Ω
1/2(τ)

]
exp

[
−κ
√

3αpm
ω

ˆ τ

Ω(y)dy

]
.
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Inserting initial conditions yields the system

x(0) = ξ = c1 + c2

x′(0) =
F − 1

ω
= c1

(
ε2
F

4
+
κ
√

3αpm
ω

)
+ c2

(
ε2
F

4
− κ
√

3αpm
ω

)
,

and we find our coefficients to be

c1 =
4κ
√

3αpm − ε2
Fω

8κ
√

3αpm
ξ +

F − 1

2κ
√

3αpm

and

c2 =
4κ
√

3αpm + ε2
Fω

8κ
√

3αpm
ξ − F − 1

2κ
√

3αpm
.

Thus,

x(τ) ∼

(
8
√

3pmκ2 − ε2
Fω

8
√
κ2

ξ +
F − 1√
ακ2

)
Ω−1/2(τ)

2
√

3pm
exp

[√
3αpmκ2

ω

ˆ τ

Ω(y)dy

]

+

(
8
√

3pmκ2 + ε2
Fω

8
√
κ2

ξ − F − 1√
ακ2

)
Ω−1/2(τ)

2
√

3pm
exp

[
−
√

3αpmκ2

ω

ˆ τ

Ω(y)dy

]

for |x|, |ξ| < 1
κ . In the limit as εF → 0 and Ω2(ωt) =

(
1 − ε2

F sin(ωt)
)
→ 1, the above expression

simplifies to the exact solution of the case with steady forcing.

Outside the range − 1
κ < x < 1

κ the characteristics continue as lines with constant slope. We can

use numerical root finding to approximate the value t∗ at which the WKB solution approximation

xWKB(t∗) = ± 1
κ . The solutions continue with slope equal to that at xWKB(t∗) and for t > t∗, the

characteristic curves are given by

x(t) = x′WKB(t∗)(t− t∗) + sgn
(
xWKB(t∗)

)1

κ
.

The resulting characteristic curves for parameter values pm = κ = 1, F = 2, εF = 0.8, ω = 0.15 are

shown in Figure 3.1.1

Turning points in the characteristic curves occur when the derivative of the solution with respect
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Figure 3.1: Characteristic curves for the system (3.1) for parameter values pm = κ = 1, F = 2,
εF = 0.8, ω = 0.15. For small values of ω and εF , the curves look very similar to those for the case
of steady forcing

to time is equal to zero,

dx

dt
=

Ω1/2(τ)

2
√

3α

[(24− ε2Fω
√

3
κ
√
pm

4
√

3
ξ +

F − 1

κ
√
pm

)(
ε2
F cos τ

4Ω3(τ)
+
κ
√

3αpm
ω

)
e
κ
√
3αpm
ω

´ τ Ω(y)dy+

+

(24 +
ε2Fω
√

3
κ
√
pm

4
√

3
ξ − F − 1

κ
√
pm

)(
ε2
F cos τ

4Ω3(τ)
− κ
√

3αpm
ω

)
e
−κ
√
3αpm
ω

´ τ Ω(y)dy

]
= 0

(note that for 0 < εF < 1, the function Ω(τ) is positive and bounded for all time). We solve the

equation above for ξ and arrive at

ξ =

 ε2
Fκ
√

3pm

(
2 cos τ
Ω(τ) −

√
αΩ2(τ)

)
cosh

[
κ
√

3αpm
ω

´ τ
Ω(y) dy

]
4(F − 1)

(
2
√

3pmκ2

ω Ω2(τ)− ε2F cos τ

4Ω(τ)

)
sinh

[
κ
√

3αpm
ω

´ τ
Ω(y) dy

]

+

(
24κ2pm

√
α

ω Ω2(τ)− ε4Fω cos τ

4Ω(τ)

)
4(F − 1)

(
2
√

3pmκ2

ω Ω2(τ)− ε2F cos τ

4Ω(τ)

)

−1

Seeking the critical ξ value which reaches its turning point as τ →∞, we seek the long time limit of

this expression. The integrands in the exponential functions are strictly positive, thus the arguments

of the exponential functions monotonically increase in magnitude, and long time behavior will be
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Figure 3.2: Waterfall plots of solutions to the fKdV equation (1.15) (left), and the dispersionless approximation
to the fKdV equation (1.16) (right) for steady forcing (2.5) (top), and a forcing function with modulating
amplitude (3.3) (bottom). Parameter values are F = 2.6, ε = 0.2, α = 2/3, dx = 0.0305176, dt = 1e-5,
pm = 1.4, κ = 0.3, εF = 1, and ω = 2π/50.

dominated by the exponentials with positive arguments

lim
τ→∞

4(F − 1)
(
ωΩ′(τ)− 2κΩ2(τ)

√
3αpm

)
exp [B(τ)]((

24ακ2pmΩ2(τ) + ε2
Fω

2Ω′(τ)
)
− 2κω

√
3αpm

(
ε2
FΩ2(τ) + 2Ω′(τ)

))
exp[B(τ)]

,

where

B(τ) =
κ
√

3αpm
ω

ˆ τ

Ω(y) dy,

and we ultimately find

ξc =
−(F − 1)√

3αpmκ2 − ω ε
2
F
4

The critical ξ value is shifted from the time independent case by a small amount that depends on

both ω and εF .

For numerical comparisons in Figures (3.1.1) and (3.1.1) the forcing function

f(x) =
(
1− εF sin(ωt)

)
pm sech2 (κx) , εF ≤ 1 (3.3)

was used. The frequency of forcing modulation was set so that the forcing would undergo one

complete cycle in the simulation time. Solution behavior seems to agree well for short times, but for

long times at points where the effective magnitude of the forcing function is significantly different

from that in the steady case the solution exhibits drastically different behavior.
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Figure 3.3: Numerical solutions to fKdV (1.15) (left) and the dispersionless approximation to fKdV (1.16)
(right) at time t = 50. The solution obtained from a steady forcing function (2.5) is shown in the top two
plots. The bottom two plots were generated using (3.3) as a forcing function. Parameter values are F = 2.6,
ε = 0.2, α = 2/3, dx = 0.030517, dt = 1e-5, pm = 1.4, κ = 0.3, εF = 1, and ω = 2π/50.

3.1.2 High Frequency Modulation

To find an averaging approximation to the solution of (3.2) in the case of large ω, we consider a

vector equation in the form

ẋ = εf(x, t) x ∈ Rn, t ∈ T1, (3.4)

and make a near identity transformation

x = y + εg(y, t).

We insert this transformation into (3.4),

ẋ =
dy

dt
+ ε

(
∂g

∂t
+Dyg ·

dy

dt

)
= εf(y + εg, t),

and expand f in its Taylor series

dy

dt
+ ε

(
∂g

∂t
+Dyg ·

dy

dt

)
= ε

[
f(y, t) + εDyf · g +O(ε2)

]
.

We next group terms

(1 + εDyg) · dy

dt
= ε

[
f(y, t)− ∂g

∂t
+ εDyf · g

]
+O(ε3).
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Note that

(1− εA)(1 + εA) = 1−O(ε2) ⇒ (1 + εA)−1 = (1− εA) +O(ε2)

which allows us to approximately invert the operator acting on dy
dt ,

ẏ = ε(1− εDyg)
[
f(y, t)− ∂g

∂t
+ εDyf · g

]
+O(ε3).

We add and subtract εf̄ = ε 1
T

´ T
0 f(y, s) ds,

ẏ = εf̄(y) + ε
[
f(y, t)− f̄(y)− εDyg · f + εDyf · g − (1− εDyg) · ∂g

∂t

]
+O(ε3),

and set

∂g

∂t
= f(y, t)− f̄(y) ⇒ g(y, t) =

ˆ t

0

(
f(y, s)− f̄(y)

)
ds,

which leaves

ẏ = εf̄ + ε2

[
Dyf · g −Dyg ·

(
f − ∂g

∂t

)]
+O(ε3),

or

ẏ = εf̄ + ε2

[
Dyf · g −Dyg · f̄

]
+O(ε3).

Now introduce

h(y, t) = Dyf(y, t) · g(y, t)−Dyg(y, t) · f̄(y)

so that

ẏ = εf̄ + ε2h(y, t) +O(ε3).

We now consider the related equation

v̇ = εf̄(v) + ε2h(v, t),

and the corresponding transformation

v = z + ε2J(z, t),
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where J is yet unknown. We substitute this into our equation for v̇,

dz

dt
+ ε2

(∂J
∂t

+DzJ ·
dz

dt

)
= εf̄(z + ε2J) + ε2h(z + ε2J, t)

We again expand the RHS in its Taylor series and rearrange the terms

(1 + ε2DzJ) · dz

dt
= εf̄ + ε3Dz f̄ · J + ε2h− ε2∂J

∂t
+O(ε4),

invert the operator on ż,

ż = ε(1− ε2DzJ)
[
f̄ − ε∂J

∂t
+ εh+ ε2Dz f̄ · J

]
+O(ε4),

distribute the operator on the RHS, and add and subtract ε2h̄,

ż = ε
[
f̄ + εh̄− ε∂J

∂t
+ εh− εh̄+ ε2(Dz f̄ · J −DzJ · f̄)

]
+O(ε4).

We next define J so that we have an expression for ż given in increasing powers of the small

parameter ε,

∂

∂t
J(z, t) = h(z, t)− h̄(z) J(z, t) =

ˆ t

0

(
h(z, s)− h̄(z)

)
ds,

which we can now write as

ż = εf̄ + ε2h̄+ ε3(Dz f̄ · J −DzJ · f̄) +O(ε4).

Now consider

u̇ = εf̄(u) + ε2h̄(u),

and insert the solution to this equation into the near identity transformation of x

x ≈ u+ εg(u, t).
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For the initial value problem (3.2) with large ω � 1, we will again proceed by writing in terms of

τ = ωt, and letting a dot represent differentiation w.r.t. the new variable τ

ω2ẍ = 3αpmκ
2(1− ε2

F sin τ)x.

Now insert a new small parameter δ = 1
ω2 � 1,

ẍ = δ3αpmκ
2(1− ε2

F sin τ)x.

We write this as a system of two first order equations

ẋ1 = x2,

ẋ2 = δ3αpmκ
2(1− ε2

F sin τ)x1,

and then as a vector equation,

ẋ = δ

 0 1/δ

3ακ2pm(1− ε2
F sin τ) 0

(x1

x2

)
, x =

(
x1

x2

)
.

Here the vector function f is given by

f(x, τ) =

 0 1/δ

3ακ2pm
(
1− ε2

F sin(τ)
)

0

(x1

x2

)
,

and our initial value problem is written as

ẋ = δf(x, τ), x(τ = 0) =

(
ξ

(F − 1)
√
δ

)
.

For the next order term we need f̄ , a time average of the function f ,

f̄(x) =

 0 1/δ

3ακ2pm 0

(x1

x2

)
.
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The vector function g is then given by the integral of f − f̄ ,

g(y, τ) =

 0 0

3αpmκ
2ε2
F

(
cos(τ)− 1

)
0

(y1

y2

)
,

and h by

h(y, τ) =
1

δ

3αpmκ
2ε2
F

(
cos(τ)− 1

)
0

0 3αpmκ
2ε2
F

(
1− cos(τ)

)
(y1

y2

)
.

The average of h is then

h̄(u) =
12αε2

δ

−1 0

0 1

(u1

u2

)
,

which allows us to write the equation

u̇ =

−12αδε2 1

12αδ 12αδε2

(u1

u2

)
, u(τ = 0) =

(
ξ

c0

√
δ

)
,

which defines u

u = exp

(−3αpmκ
2δε2 1

3αpmκ
2δ 3αpmκ

2δε2

 τ

)(
ξ

(F − 1)
√
δ

)
.

Our approximate solution is then

1+ δ

 0 0

3αpmκ
2ε2(cos τ − 1) 0




· exp


−3αpmκ

2δε2 1

3αpmκ
2δ 3αpmκ

2δε2

 τ

( ξ

(F − 1)
√
δ

)
,

and the next order of accuracy is given by

x ≈ u + δg(u, τ) + δ2J(u, τ),
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Figure 3.4: Waterfall plots of solutions to the fKdV equation (1.15) (left), and the dispersionless approximation
to the fKdV equation (1.16) (right) for steady forcing (2.19) (top), and a forcing function with modulating
amplitude (3.3) (bottom). Parameter values are F = 2.6, ε = 0.2, α = 2/3, dx = 0.0305176, dt = 1e-5,
pm = 1.4, κ = 0.3, εF = 1, and ω = 2.32966.

Figure 3.5: Numerical solutions to fKdV (1.15) (left) and the dispersionless approximation to fKdV (1.16)
(right) at time t = 50. The solution obtained from a steady forcing function (2.5) is shown in the top plots.
The bottom plots were generated using forcing function (3.3). Oscillations in this simulation are fast relative
to the resonant oscillation frequency predicted by (2.29). Parameter values are F = 2.6, ε = 0.2, α = 2/3,
dx = 0.0305176, dt = 1e-5, pm = 1.4, κ = 0.3, εF = 1, and ω = 2.32966.

where

J(z, t) =

ˆ t

0

(
h(z, s)− h̄(z)

)
ds.

High frequency oscillations in amplitude seem to offer the closest agreement with the case of steady

forcing, as shown in Figures (3.1.2) and (3.1.2). An oscillation frequency of only ω = 2.32986 (ten

times the resonant frequency predicted by equation (2.29)) is qualitatively the same as the case of

steady forcing.

3.1.3 Resonant Modulation

By oscillating the amplitude of the forcing function at a frequency such that the period of

oscillation is equal to the expected period of soliton generation given by (2.29), the behaviors of

the solutions of the forced KdV equation (1.15) and the dispersionless approximation (1.16) are

significantly altered. In the dispersionless approximation the forming shock is prevented from
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Figure 3.6: Waterfall plots of solutions to the fKdV equation (1.15) (left), and the dispersionless approximation
to the fKdV equation (1.16) (right) for steady forcing (2.5) (top), and a forcing function with modulating
amplitude (3.3). The frequency of modulation is such that the period of the oscillation of the forcing function
is equal to the period of soliton generation as predicted by (2.29). Parameter values are F = 2.6, ε = 0.2,
α = 2/3, dx = 0.030517, dt = 1e-5, pm = 1.4, κ = 0.3, εF = 1, and ω = 0.232966.

Figure 3.7: Numerical solutions to fKdV (1.15) (left) and the dispersionless approximation to fKdV (1.16)
(right) at time t = 44. The solution obtained using a steady forcing function (2.5) is shown in the top plots.
The bottom plots were generated using a forcing function with modulating amplitude (3.3). Parameter values
are F = 2.6, ε = 0.2, α = 2/3, dx = 0.030517, dt = 1e-5, pm = 1.4, κ = 0.3, εF = 1, and ω = 0.232966.

propagating upstream and appears to be forced downstream for a period of time as it decreases

in amplitude. The full fKdV equation generates more upstream propagating waves when forcing

amplitude is modulated at what we expect to be a resonant frequency.

3.2 Position Modulation

We can also oscillate the position of the forcing function, which can also be thought of as

modulating the speed of the fluid flow over the obstacle or of the obstacle moving through the fluid.

We expect approaches similar to those employed in the previous section will yield analogous results.

To explore the problem numerically we us the forcing function

f(x) = pm sech2
(
κ
(
x− εF sin(ωt)

))
. (3.5)
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Figure 3.8: Waterfall plots of surface elevation from the fKdV equation (1.15) from time t = 0 to time t = 50
are shown in the left plots. The plots on the right show solutions to the dispersionless approximation to the
fKdV equation (1.16). The top plots were generated using the forcing fucntion (2.5). Plots generated using
the forcing function (3.5) are shown on the bottom. The forcing modulation frequency was set to ω = 2π

Ts
with Ts from equation (2.29). Parameter values F = εF = 2.6, ε = 0.2, α = 2/3, dx = 0.0305176, dt = 2e-5,
pm = 1.4, κ = 0.3, and ω = 0.232966.

Figure 3.9: Surface elevation from fKdV (1.15) (left) and the dispersionless approximation to fKdV (1.16)
(right) at time t = 50. The plots at the top of the figure were generated using (2.5), and bottom plots were
generated using the forcing function (3.5). The forcing modulation frequency was set to ω = 2π

Ts
with Ts from

equation (2.29). Parameter values F = εF = 2.6, ε = 0.2, α = 2/3, dx = 0.0305176, dt = 2e-5, pm = 1.4,
κ = 0.3, and ω = 0.232966.

Figures (3.2) and (3.2) show numerical solutions of equations (1.15) and (1.16) with time dependent

forcing function (3.5). As is clear from figure (3.2), it is possible to prevent upstream shock

propagation in (1.16) by oscillating the position of the forcing function at an amplitude equal to

the Froude number and a resonant frequency 2π
Ts

, with Ts given by equation (2.29). However, the

same forcing function applied to the full forced KdV equation (1.15) does not prevent the upstream

propagation of solitons.
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CHAPTER 4

Experiments

4.1 Flume Experiments

In a recirculating flume with a test section that is six inches wide, six inches tall, and 17.0625

inches long, an aluminum cylinder capped on the ends was partially submerged in flow moving at

various rates. Linear wave theory agreed well with experimental observations.

4.1.1 Linear Wave Theory

Figure 4.1: The surface of constant background fluid flow is disturbed by a partially submerged
cyllinder. Relatively short wavelength capillary waves are shown upstream (to the left) of the
obstacle. Experimental observations agree well with predictions from linear wave theory.

In figure (4.1.1), as flow moves from left to right, the capillary waves upstream of the cylinder

were measured at 5.5 millimeters. Linear wave theory predicts waves of 5.72 millimeters, at the

given flow speed. Linear wave theory also predicts that longer wavelength stationary gravity waves

will appear downstream of the obstacle. In figure (4.1.1), the gravity waves downstream of the

cylinder were measured at 10.583 centimeters. Linear wave theory predicts a wavelength of 4.871
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Figure 4.2: The surface of constant background fluid flow is disturbed by a partially submerged
cyllinder. Relatively long wavelength gravity waves are shown downstream (to the right) of the
obstacle. Due to the larger amplitude, experimental observations do not agree well with predictions
from linear wave theory.

centimeters. It is clear in the images that the amplitudes of the downstream stationary gravity

waves are much larger than those of the upstream capillary waves. Linear wave theory depends on

a small-amplitude assumption. Here it is likely that nonlinearity plays a much greater role because

of the larger amplitudes of the waves.

4.1.2 Capillary Accordions

Another fascinating phenomenon was observed for a range of flow speeds and a circular cylinder

submerged just below the fluid surface or only partially submerged. The train of solitary waves that

appears upstream of the obstacle appears to expand and contract, much like an accordion. The

phenomenon can easily be observed with the naked eye, but is much more striking when recorded

using a high speed camera and observed in slow motion. The accordion behavior is pictured in

Figure (4.1.2). The images in Figure (4.1.2) are different frames from the same high speed video

taken with the recirculating flume set to a constant flow rate. To make the wave forms more

apparent, light was directed onto blue and yellow colored paper at an angle that would reflect onto

the fluid surface and then into the camera. Color contrast was enhanced using Adobe Photoshop.

4.1.3 Upstream Propagating Solitary Waves

The forced KdV equation predicts upstream propagating solitary waves in certain parameter

regimes. We seek to demonstrate this experimentally. In the recirculating flume described above, a

semi-elliptic cylinder was attached to the bottom of the test section. The obstacle had a rectangular
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Figure 4.3: Color enhanced images of a fluid surface at two times showing expansion and contraction
of capillary waves excited by a cylindrical obstacle placed just below the surface of the fluid, which
moved with a constant background flow speed.

base 150 mm wide and 72 mm across. At its highest point the topography was 12 mm tall. The

recirculating flume was run at settings 3.7 Hertz to 3.9 Hertz. The depth of the water was 3.6

centimeters. A random dot pattern was attached to the transparent bottom of the flume in order to

utilize the surface Schlieren technique described in [19]. A zoomed out top view of the test section

is pictured in Figure (4.1.3). Though all upstream disturbances were of very small amplitude and

barely visible to the naked eye, using this technique we are able to visualize the shape and estimate

the dimensions of the apparent waves as they travel upstream. Results are pictured in Figure (4.1.3).

4.2 Wave Tank Experiments

Equivalently to generating fluid flow past a fixed obstacle, we can tow an obstacle through a

stationary fluid. Figure (4.6) shows the tank.
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Figure 4.4: Experimental image of a top view of a fluid recirculating flume with water moving from
top to bottom in the image and a transparent bottom with a random do pattern attached below for
use with the surface Schlieren technique described in [19].

Figure 4.5: Experimental images of a random dot pattern viewed through a moving fluid, upstream
of a semielliptical topography displayed with the reconstructed fluid surface using the surface
Schlieren technique described in [19].
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4.2.1 Upstream Propagating Solitary Waves

A two dimensional topography that spanned the width of the tank in the shape of a circular

segment with a chord of 4.5 cm was towed along the length of the tank very near the bottom at

various speeds between 48 and 114 cm per second in a water depth of 5.3 cm. The topography was

rigidly fastened to a towing carriage by two thin vertical bars adjacent to the channel inner side

walls. The apparatus is visible in Figure (4.6). Our setup was very similar to that of Lee et. al.

When towed at appropriate speeds disturbances that resemble solitons can be seen propagating

ahead of the topography. A train of these disturbances are visible in Figure (4.6), and Figure (4.2.1)

shows a blown up image of one such wave.

We can compare our analytically obtained prediction and out numerical prediction with experi-

mental data. A two dimensional topography that spanned the width of a tank 0.75 meters wide in

the shape of a circular segment with a chord of 4.5 cm and a maximum height of 0.6 cm was towed

along approximately 15 meters of the 27 meter length of the tank very near the bottom at 48.61 cm

per second in a water depth of 5.3 cm. A high speed camera was positioned to track the position

(and determine the speed) of the towing carriage used to move the topography. The topography

was rigidly fastened to the towing carriage by two thin vertical bars adjacent to the channel inner

side walls. Our setup was very similar to that of Lee et. al. in [17]. Image of the experiment are

displayed in Figures 4.6 and 4.8. Disturbances that resemble solitons were observed propagating

ahead of the topography.

In this experimental setup, two observed upstream propagating solitons travel at speeds of

approximately 0.65 and 0.58 meters per second and maintain a spacing of approximately 1.0 meter

over a time span of three seconds. The frequency of soliton generation could not be determined

from collected data.

We can compare experimental results with the numerical solution of the forced KdV equation

(1.15) using parameters to match the physical quantities of the experiment, i.e. α = 0.12, ε = 1.4,

F = 0.67, and a forcing function to match the obstacle fexp(x) =
√

4.52 − x2 − 3.9. We evolve a

zero initial condition according to (1.15) with spatial grid point spacing dx = 0.0457764 and a time

step dt = 5e-4. From nondimensional time values t = 150 to t = 300 (a change in dimensional time

of 9.4 seconds), the leading upstream propagating soliton travels at a speed (after converting back
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Figure 4.6: A frame of video taken of the experimental setup described in this section. An obstacle 0.6
cm in height and 4.5 cm wide is towed at the bottom of 5.3 cm of water at a rate of 48.61 cm per second.
Disturbances in the shape of solitary waves were observed propagating ahead of the obstacle.

to dimensional units) of 0.32 meters per second and the second soliton at a speed of 0.30 meters

per second. At these time values the spacing of the solitons (in dimensional units) is 0.64 meters

and 0.78 meters (respectively). From nondimensional time values t = 252 to t = 300 (a change

in dimensional time of approximately 3 seconds) the distance between the leading two solitons

corresponds to 74 cm and 78 cm.

Using the prediction in (2.29), we expect a new soliton to be generated every 6.3 seconds, with

amplitude 3.7 cm (double the expected shock amplitude (2.18) in the hydraulic approximation

(1.16)). An exact soliton solution to the free KdV equation (1.14) of this amplitude would travel at

25 cm per second. Thus we might expect solitons to be 160 cm apart.

Figure 4.7: Zoomed in image of a single solitary wave. Wave generated in the experiment were of small
amplitude but clearly observable through distortions in the image reflected off of the surface of the fluid.
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Figure 4.8: Zoomed in images of a single panel of the wave tank. Moving down the column shows the
passage of a single solitary wave across the entire panel.
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APPENDIX A

ETD-RK4 KdV SOURCE CODE

// #inc lude ”DTSource . h”

#inc lude ”DTSaveError . h”

#inc lude ”DTArguments . h”

#inc lude ”DTDataFile . h”

#inc lude ”DTDictionary . h”

#inc lude ”DTPlot1D . h”

#inc lude ”DTProgress . h”

#inc lude ”DTSeriesGroup . h”

///////////////////////////////////////

// DT RetGroup

///////////////////////////////////////

s t r u c t DT RetGroup {

DTPlot1D f u l l ;

DTPlot1D l i n ;

DTPlot1D burg ;

void p in f o ( void ) const ;

void p in fo Indent ( s t r i n g ) const ;

s t a t i c void WriteStructure ( DTDataStorage &, s t r i n g ) ;

} ;

void DT RetGroup : : p in f o ( void ) const

{
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p in fo Indent ( ” ” ) ;

}

void DT RetGroup : : p in fo Indent ( s t r i n g pad ) const

{

c e r r << pad << ” f u l l = ” ; f u l l . p in f o ( ) ;

c e r r << pad << ” l i n = ” ; l i n . p in f o ( ) ;

c e r r << pad << ”burg = ” ; burg . p in f o ( ) ;

}

void DT RetGroup : : WriteStructure ( DTDataStorage &output , s t r i n g name)

{

output . Save (” f u l l ” ,name+” 1N ” ) ;

output . Save (” Plot1D ” ,name+” 1T ” ) ;

output . Save (” l i n ” ,name+” 2N ” ) ;

output . Save (” Plot1D ” ,name+” 2T ” ) ;

output . Save (” burg ” ,name+” 3N ” ) ;

output . Save (” Plot1D ” ,name+” 3T ” ) ;

output . Save (3 , name+” N ” ) ;

output . Save (” Group ” ,name ) ;

}

extern void Write ( DTDataStorage &, s t r i n g name , const DT RetGroup &);

void Write ( DTDataStorage &output , s t r i n g name , const DT RetGroup &var )

{
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Write ( output , name+” f u l l ” , var . f u l l ) ;

Write ( output , name+” l i n ” , var . l i n ) ;

Write ( output , name+” burg ” , var . burg ) ;

Write ( output , name , DTDoubleArray ( ) ) ;

// So that DataTank can see the v a r i a b l e .

}

///////////////////////////////////////

// Main rout in e

///////////////////////////////////////

void Computation ( i n t M, i n t N, double dt , double tmax , i n t s t r i d e ,

DTSeriesGroup<DT RetGroup> &computed ) ;

i n t main ( i n t argc , const char ∗argv [ ] )

{

DTSetArguments ( argc , argv ) ;

DTDataFile i n p u t F i l e (” Input . dtbin ” , DTFile : : ReadOnly ) ;

DTDataFile outputF i l e (” Output . dtbin ” , DTFile : : NewReadWrite ) ;

// Input v a r i a b l e s .

i n t M = i n t ( i n p u t F i l e . ReadNumber(”M” ) ) ;

i n t N = i n t ( i n p u t F i l e . ReadNumber(”N” ) ) ;

double dt = i n p u t F i l e . ReadNumber(” dt ” ) ;

double tmax = i n p u t F i l e . ReadNumber(” tmax ” ) ;

i n t s t r i d e = i n t ( i n p u t F i l e . ReadNumber(” s t r i d e ” ) ) ;

// Output s e r i e s .

DTSeriesGroup<DT RetGroup> computed ( outputFi le , ” Var ” ) ;
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i f ( DTArgumentIncludesFlag (” saveInput ” ) )

{ // Add −saveInput to the argument l i s t to

// save the input in the output f i l e .

WriteOne ( outputFi le , ”M” ,M) ;

WriteOne ( outputFi le , ”N” ,N) ;

WriteOne ( outputFi le , ” dt ” , dt ) ;

WriteOne ( outputFi le , ” tmax” , tmax ) ;

WriteOne ( outputFi le , ” s t r i d e ” , s t r i d e ) ;

}

// The computation .

c l o c k t t b e f o r e = c lock ( ) ;

Computation (M,N, dt , tmax , s t r i d e , computed ) ;

c l o c k t t a f t e r = c lo ck ( ) ;

double exec t ime = double ( t a f t e r−t b e f o r e )/ double (CLOCKS PER SEC ) ;

// The execut ion time .

outputF i l e . Save ( exec t ime , ” ExecutionTime ” ) ;

outputF i l e . Save (” Real Number” ,” Seq ExecutionTime ” ) ;

// The e r r o r s .

DTSaveError ( outputFi le , ” Execut ionErrors ” ) ;

outputF i l e . Save (” S t r i n g L i s t ” ,” Seq Execut ionErrors ” ) ;

outputF i l e . SaveIndex ( ) ;

r e turn 0 ;

}
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///////////////////////////////////////

// Computational r ou t in e

///////////////////////////////////////

void Computation ( i n t M, i n t N, double dt , double tmax , i n t s t r i d e ,

DTSeriesGroup<DT RetGroup> &computed ) ;

///////////////////////////////////////

// Computational r ou t in e

///////////////////////////////////////

#inc lude <cmath>

#inc lude <iostream>

#inc lude <complex>

#inc lude < i t e r a t o r>

#inc lude <vector>

#inc lude <fstream>

#inc lude <s t r i ng>

#inc lude <c s td io>

#inc lude <ctime>

#inc lude <sstream>

us ing namespace std ;

typede f complex<double> cx ;
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void KCfft ( cx [ ] , cx [ ] ) ;

void KCi f f t ( cx [ ] , cx [ ] ) ;

void f l u x ( double [ ] , double [ ] ) ;

void dFlux ( double [ ] , double [ ] ) ;

void KurgTadm( double , double [ ] , cx [ ] , double [ ] ) ;

void minmod( double [ ] , double [ ] , double [ ] ) ;

const i n t N = 512 ;

const i n t m = log2 (N) ;

const i n t np lo t s = 50 ;

const cx J = cx ( 0 , 1 ) ;

// Forc ing parameters

double pm = 0 . 2 5 ; // f o r c i n g amplitude

double x i = 0 . 3 ;

// KdV equat ion parameters

double alpha = alphaIn . 0 ∗ 0 . 0 0 1 ; // n o n l i n e a r i t y

double eps = epsIn . 0 ∗ 0 . 0 0 1 ; // d i s p e r s i o n

double Fr = froudeIn . 0 ∗ 0 . 0 1 ; // Froude number

#inc lude ”DTDoubleComplexArray . h”

#inc lude ”DTArray . h”

i n l i n e DTDoubleComplex conj ( const DTDoubleComplex &c )

{ re turn DTDoubleComplex ( c . r ea l ,−c . imag ) ; }

DTPlot1D ConvertToPlot ( const double ∗x , const cx ∗y , i n t N) ;

DTPlot1D ConvertToPlot ( const double ∗x , const double ∗y , i n t N) ;
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DTPlot1D ConvertToPlot ( const double ∗x , const cx ∗y , i n t N)

{

DTMutableDoubleArray returnArray (2 ,N+1);

returnArray (0 , 0 ) = 0 ;

returnArray (1 , 0 ) = N;

i n t i ;

f o r ( i =0; i<N; i++) {

returnArray (0 , i +1) = x [ i ] ;

returnArray (1 , i +1) = r e a l ( y [ i ] ) ;

}

re turn DTPlot1D( returnArray ) ;

}

DTPlot1D ConvertToPlot ( const double ∗x , const double ∗y , i n t N)

{

DTMutableDoubleArray returnArray (2 ,N+1);

returnArray (0 , 0 ) = 0 ;

returnArray (1 , 0 ) = N;

i n t i ;

f o r ( i =0; i<N; i++) {

returnArray (0 , i +1) = x [ i ] ;

returnArray (1 , i +1) = y [ i ] ;

}

re turn DTPlot1D( returnArray ) ;

}
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void Computation ( i n t M, i n t N, double dt , double tmax , i n t s t r i d e ,

DTSeriesGroup<DT RetGroup> &computed )

{

DTProgress p rog r e s s ;

s td : : c l o c k t s t a r t ;

double durat ion ;

s t a r t = c lo ck ( ) ;

// s p a t i a l domain i n f o

double xmax = 4 0 0 . 0 ; // domain l ength

double dx = xmax/N; // s p a t i a l s tep s i z e

double x [N ] ; // s p a t i a l domain

// loop to a s s i g n va lue s to s p a t i a l domain

f o r ( i n t i =0; i<N; ++i )

x [ i ] = ( i +1)∗dx − xmax/2 ;

// f requency domain i n f o

cx ∗k = new cx [N ] ; // f requency domain

// loops to a s s i g n va lue s to f requency domain

f o r ( i n t i =0; i <= N/2 ; i++)

k [ i ] = i ∗(2∗M PI/xmax ) ;

f o r ( i n t i=−N/2+1; i <= −1; i++)

k [ i+N] = i ∗(2∗M PI/xmax ) ;

// time i n f o

double t = 0 . 0 ; // i n i t i a l time value
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// d e c l a r e v a r i a b l e s f o r s u r f a c e e l e v a t i o n

// and f o r c i n g with t h e i r Four i e r t rans forms

cx ∗u = new cx [N ] ;

cx ∗ u hat = new cx [N ] ;

cx ∗ f o r c i n g = new cx [N ] ;

cx ∗ f h a t = new cx [N ] ;

cx ∗ u l i n = new cx [N ] ;

cx ∗ u l i n h a t = new cx [N ] ;

double u burg [N ] ;

DT RetGroup s t a t e ;

// zero i n i t i a l cond i t i on

f o r ( i n t i =0; i<N; i ++){

u [ i ] = 0 . 0 ;

u l i n [ i ] = 0 . 0 ;

u burg [ i ] = 0 . 0 ;

}

s t a t e . f u l l = ConvertToPlot (x , u ,N) ;

s t a t e . l i n = ConvertToPlot (x , u l i n ,N) ;

s t a t e . burg = ConvertToPlot (x , u burg ,N) ;

computed . Add( s tate , 0 ) ;

// f f t o f i n i t i a l cond i t i on

KCfft (u , u hat ) ;

KCfft ( u l i n , u l i n h a t ) ;
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// loop to a s s i g n va lue s to d e r i v a t i v e o f f o r c i n g func t i on f

f o r ( i n t i =0; i<N; i++) {

f o r c i n g [ i ] = −2.0∗pm∗ x i ∗pow(1/ cosh ( x i ∗x [ i ] ) , 2 ) ∗ tanh ( x i ∗x [ i ] ) ;

}

KCfft ( f o r c ing , f h a t ) ; // f f t o f d e r i v a t i v e o f f o r c i n g func t i on

cout << ” alpha = ” << alpha << ” , e p s i l o n = ” << eps

<< ” , Froude = ” << Fr << ” , dt = ” << dt ;

cout << ” , pm = ” << pm << ” , x i = ” << x i ; //

<< ” , osc amp = ” << osc amp << ” , omega = ” << omega ;

cout <<

” , f x ( x ) = −2.0∗pm∗ x i ∗pow(1/ cosh ( x i ∗x [ i ] ) , 2 ) ∗ tanh ( x i ∗x [ i ] ) \ n\n ” ;

cx L [N] , E [N] , E2 [N ] ;

f o r ( i n t i =0; i<N; i++) {

L [ i ] = J∗k [ i ]∗(1−Fr ) − eps /6∗J∗pow( k [ i ] , 3 ) ;

E [ i ] = exp ( dt∗L [ i ] ) ;

E2 [ i ] = exp ( dt∗L [ i ] / 2 . ) ;

}

const i n t M = 64 ; // no . o f po in t s f o r complex means

cx r [M] , mean , f 1 [N] , f 2 [N] , f 3 [N ] ;

double Q[N ] ;

DTMutableArray<cx> LR(N,M) ;

f o r ( i n t i =0; i<M; i++) {
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// roo t s o f unity

r [ i ] = exp ( J∗M PI∗ ( ( double ) ( i +1.)− .5)/( double )M) ;

f o r ( i n t j =0; j<N; j++) {

LR( j , i ) = dt∗ conj (L [ j ] ) + r [ i ] ;

}

}

cx LRj i i ;

double s c a l e = 1 . 0 / ( double )M;

f o r ( i n t j =0; j<N; j++) {

mean = 0 ;

f o r ( i n t i i =0; i i <M; i i ++)

mean += ( exp (LR( j , i i )/2 .0) −1 .0)/LR( j , i i ) ;

mean = mean/( double )M;

Q[ j ] = dt ∗ r e a l (mean ) ;

mean = 0 ;

f o r ( i n t i i =0; i i <M; i i ++) {

LRj i i = LR( j , i i ) ;

mean += (−4.−LRj i i+exp ( LRj i i )∗ (4 . −3 .∗ LRj i i+LRj i i ∗ LRj i i ) )

/pow( LRji i , 3 )∗ s c a l e ;

}

f 1 [ j ] = dt ∗ r e a l (mean ) ;

mean = 0 ;

f o r ( i n t i i =0; i i <M; i i ++) {
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LRj i i = LR( j , i i ) ;

mean += (2.+ LRj i i+exp ( LRj i i )∗(−2.+ LRj i i ) )

/pow( LRji i , 3 )∗ s c a l e ;

}

f 2 [ j ] = dt ∗ r e a l (mean ) ;

mean = 0 ;

f o r ( i n t i i =0; i i <M; i i ++) {

LRj i i = LR( j , i i ) ;

mean += (−4.−3.∗ LRji i−pow( LRji i ,2)+ exp ( LRj i i )∗(4.− LRj i i ) )

/pow( LRji i , 3 )∗ s c a l e ;

}

f 3 [ j ] = dt ∗ r e a l (mean ) ;

}

// data f o r y a x i s o f w a t e r f a l l p l o t

double tdata [ np lo t s +1] ;

tdata [ 0 ] = t ;

// d e c l a r e v a r i a b l e s to c a l c u l a t e and s t o r e

// r e s u l t o f f u l l and l i n e a r i z e d KdV

cx uu [ np lo t s +1] [N] , g [N] , non [N] , a [N] , b [N] , c [N] , Na [N] , Nb [N ] ;

cx u u l i n [ np lo t s +1] [N] , Nc [N ] ;

// d e c l a r e v a r i a b l e s to c a l c u l a t e and

// s t o r e r e s u l t o f d i s p e r s i o n l e s s case

double uu burg [ np lo t s +1] [N ] ;

double e f f 1 [N] , e f f 2 [N] , e f f 3 [N] , e f f 4 [N] , p l a c e h o l d [N ] ;

f o r ( i n t i =0; i<N; i++) {
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g [ i ] = 3 . 0/ 4 . 0∗ alpha ∗J∗k [ i ] ;

}

double f i l t e r = f l o o r (N/ 3 ) ;

i f ( fmod ( f i l t e r ,2)==0)

f i l t e r = f i l t e r − 1 ;

// Main time stepp ing loop

i n t i t e r a t i o n = 0 ;

whi l e ( t<tmax){

t = t + dt ; // update time v a r i a b l e

i t e r a t i o n ++;

// F i l t e r

f o r ( i n t j=N/2+1−( f i l t e r −1)/2−1; j<=N/2+( f i l t e r −1)/2; j++)

u hat [ j ] = 0 ;

KCi f f t ( u hat , u ) ;

f o r ( i n t j =0; j<N; j++)

u [ j ] = pow( r e a l (u [ j ] ) , 2 ) ;

KCfft (u , non ) ;

f o r ( i n t j =0; j<N; j++)

non [ j ] = g [ j ] ∗ non [ j ] + f h a t [ j ] ;

f o r ( i n t j =0; j<N; j++)

a [ j ] = E2 [ j ] ∗ u hat [ j ] + Q[ j ] ∗ non [ j ] ;
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KCif f t ( a , u ) ;

f o r ( i n t j =0; j<N; j++)

u [ j ] = pow( r e a l (u [ j ] ) , 2 ) ;

KCfft (u , Na ) ;

f o r ( i n t j =0; j<N; j++)

Na [ j ] = g [ j ] ∗ Na [ j ] + f h a t [ j ] ;

f o r ( i n t j =0; j<N; j++)

b [ j ] = E2 [ j ]∗ u hat [ j ] + Q[ j ]∗Na [ j ] ;

KCi f f t (b , u ) ;

f o r ( i n t j =0; j<N; j++)

u [ j ] = pow( r e a l (u [ j ] ) , 2 ) ;

KCfft (u ,Nb ) ;

f o r ( i n t j =0; j<N; j++)

Nb[ j ] = g [ j ]∗Nb[ j ] + f h a t [ j ] ;

f o r ( i n t j =0; j<N; j++)

c [ j ] = E2 [ j ]∗ a [ j ] + Q[ j ] ∗ ( 2 . 0 ∗Nb[ j ]−non [ j ] ) ;

KCi f f t ( c , u ) ;

f o r ( i n t j =0; j<N; j++)

u [ j ] = pow( r e a l (u [ j ] ) , 2 ) ;

KCfft (u , Nc ) ;

f o r ( i n t j =0; j<N; j++)

Nc [ j ] = g [ j ]∗Nc [ j ] + f h a t [ j ] ;

f o r ( i n t j =0; j<N; j++)

u hat [ j ] = E[ j ]∗ u hat [ j ] + non [ j ]∗ f 1 [ j ]

+ 2 . 0∗ (Na [ j ]+Nb[ j ] ) ∗ f 2 [ j ] + Nc [ j ]∗ f 3 [ j ] ;

95



KCif f t ( u hat , u ) ;

// So lv ing the l i n e a r problem ( i . e . g = 0)

// f i l t e r

f o r ( i n t j=N/2+1−( f i l t e r −1)/2−1; j<=N/2+( f i l t e r −1)/2; j++)

u l i n h a t [ j ] = 0 ;

KCi f f t ( u l i n h a t , u l i n ) ;

f o r ( i n t j =0; j<N; j ++){

u l i n [ j ] = pow( r e a l ( u l i n [ j ] ) , 2 ) ;

non [ j ] = f h a t [ j ] ;

}

f o r ( i n t j =0; j<N; j++)

a [ j ] = E2 [ j ] ∗ u l i n h a t [ j ] + Q[ j ] ∗ non [ j ] ;

KCi f f t ( a , u l i n ) ;

f o r ( i n t j =0; j<N; j ++){

u l i n [ j ] = pow( r e a l ( u l i n [ j ] ) , 2 ) ;

Na [ j ] = f h a t [ j ] ;

}

f o r ( i n t j =0; j<N; j++)

b [ j ] = E2 [ j ]∗ u l i n h a t [ j ] + Q[ j ]∗Na [ j ] ;

KCi f f t (b , u l i n ) ;

f o r ( i n t j =0; j<N; j ++){

u l i n [ j ] = pow( r e a l ( u l i n [ j ] ) , 2 ) ;

Nb [ j ] = f h a t [ j ] ;
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}

f o r ( i n t j =0; j<N; j++)

c [ j ] = E2 [ j ]∗ a [ j ] + Q[ j ] ∗ ( 2 . 0 ∗Nb[ j ]−non [ j ] ) ;

KCi f f t ( c , u l i n ) ;

f o r ( i n t j =0; j<N; j ++){

u l i n [ j ] = pow( r e a l ( u l i n [ j ] ) , 2 ) ;

Nc [ j ] = f h a t [ j ] ;

}

f o r ( i n t j =0; j<N; j++)

u l i n h a t [ j ] = E[ j ]∗ u l i n h a t [ j ]

+ non [ j ]∗ f 1 [ j ] + 2 . 0∗ (Na [ j ]+Nb[ j ] ) ∗ f 2 [ j ] + Nc [ j ]∗ f 3 [ j ] ;

KCi f f t ( u l i n h a t , u l i n ) ;

// So lv ing the d i s p e r s i o n l e s s problem

KurgTadm(dx , u burg , f o r c ing , e f f 1 ) ;

f o r ( i n t j =0; j<N; j++)

p l a c e h o l d [ j ] = u burg [ j ] + dt /2 .0 ∗ e f f 1 [ j ] ;

KurgTadm(dx , p lace ho ld , f o r c ing , e f f 2 ) ;

f o r ( i n t j =0; j<N; j++)

p l a c e h o l d [ j ] = u burg [ j ] + dt /2 .0 ∗ e f f 2 [ j ] ;

KurgTadm(dx , p lace ho ld , f o r c ing , e f f 3 ) ;

f o r ( i n t j =0; j<N; j++)

p l a c e h o l d [ j ] = u burg [ j ] + dt∗ e f f 3 [ j ] ;

KurgTadm(dx , p lace ho ld , f o r c ing , e f f 4 ) ;
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f o r ( i n t j =0; j<N; j++)

u burg [ j ] = u burg [ j ]

+ dt /6 .0 ∗ ( e f f 1 [ j ] + 2 .0∗ e f f 2 [ j ]

+ 2 .0∗ e f f 3 [ j ] + e f f 4 [ j ] ) ;

i f ( i t e r a t i o n%s t r i d e ==0) {

s t a t e . f u l l = ConvertToPlot (x , u ,N) ;

s t a t e . l i n = ConvertToPlot (x , u l i n ,N) ;

s t a t e . burg = ConvertToPlot (x , u burg ,N) ;

computed . Add( s tate , t ) ;

}

}

durat ion = ( std : : c l o ck ( ) − s t a r t ) / ( double ) CLOCKS PER SEC;

std : : cout<<”p r i n t f : ”<< durat ion <<’\n ’ ;

}

// Kincaid & Cheney f f t

void KCfft ( cx zeta [ ] , cx z e ta ha t [ ] )

{

cx u , v , w = exp(−2∗M PI∗J/ ( double )N) ;

cx Z [N] , D[N ] ;

f o r ( i n t k=0; k<N; k++)
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{

Z [ k ] = pow(w, k ) ;

z e ta ha t [ k ] = zeta [ k ] ;

}

f o r ( i n t n=0; n<m; n++)

{

f o r ( i n t k=0; k<pow ( 2 . 0 ,m−n−1); k++)

{

f o r ( i n t j =0; j<pow ( 2 . 0 , n ) ; j++)

{

u = ze ta ha t [ ( i n t )pow ( 2 . 0 , n)∗k+j ] ;

v = Z [ j ∗( i n t )pow ( 2 . 0 ,m−n−1)]

∗ z e ta ha t [ ( i n t )pow ( 2 . 0 , n)∗k+( i n t )pow ( 2 . 0 ,m−1)+ j ] ;

D[ ( i n t )pow ( 2 . 0 , n+1)∗k+j ] = (u+v ) / 2 . ;

D[ ( i n t )pow ( 2 . 0 , n+1)∗k+j +( i n t )pow ( 2 . 0 , n ) ] = (u−v ) / 2 . ;

}

}

f o r ( i n t j =0; j<N; j++)

ze ta ha t [ j ] = D[ j ] ;

}

f o r ( i n t n=0; n<N; n++)

ze ta ha t [ n ] ∗= N;

}
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// Inve r s e f f t

void KCi f f t ( cx z e ta ha t [ ] , cx zeta [ ] )

{

cx u , v , w = exp (2∗M PI∗J/ ( double )N) ;

cx Z [N] , D[N ] ;

f o r ( i n t k=0; k<N; k++)

{

Z [ k ] = pow(w, k ) ;

ze ta [ k ] = ze ta ha t [ k ] ;

}

f o r ( i n t n=0; n<m; n++)

{

f o r ( i n t k=0; k<pow ( 2 . 0 ,m−n−1); k++)

{

f o r ( i n t j =0; j<pow ( 2 . 0 , n ) ; j++)

{

u = zeta [ ( i n t )pow ( 2 . 0 , n)∗k+j ] ;

v = Z [ j ∗( i n t )pow ( 2 . 0 ,m−n−1)]

∗ ze ta [ ( i n t )pow ( 2 . 0 , n)∗k+( i n t )pow ( 2 . 0 ,m−1)+ j ] ;

D[ ( i n t )pow ( 2 . 0 , n+1)∗k+j ] = (u+v ) / 2 . ;

D[ ( i n t )pow ( 2 . 0 , n+1)∗k+j +( i n t )pow ( 2 . 0 , n ) ] = (u−v ) / 2 . ;

}

}

f o r ( i n t j =0; j<N; j++)

zeta [ j ] = D[ j ] ;

}
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}

// Kurganov Tadmor scheme f o r numer i ca l ly captur ing propagat ing shocks

void KurgTadm( double dx , double u [ ] , cx f o r c e [ ] , double kt [ ] )

{

double a [N] , b [N] , c [N] , dm[N] , dp [N] , u x [N] , u p lus [N ] ;

double u minus [N] , x ;

a [ 0 ] = (u [ 0 ] − u [N−1])/dx ;

b [N−1] = (u [ 0 ] − u [N−1])/dx ;

f o r ( i n t i =1; i<N; i ++){

a [ i ] = (u [ i ] − u [ i −1])/dx ;

b [ i −1] = (u [ i ]−u [ i −1])/dx ;

}

minmod(a , b , u x ) ;

f o r ( i n t i =0; i<N; i ++){

u p lus [ i ] = u [ i ] − dx /2 .0∗ u x [ i ] ;

u minus [ i ] = u [ i ]+dx /2 .0∗ u x [ i ] ;

}

x = u minus [N−1] ;

f o r ( i n t i=N−1; i >0; i−−)

u minus [ i ] = u minus [ i −1] ;
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u minus [ 0 ] = x ;

dFlux ( u minus , dm) ;

dFlux ( u plus , dp ) ;

// s p e c t r a l r ad iu s o f the Jacobian o f F(u)

f o r ( i n t i =0; i<N; i++)

a [ i ] = ! ( abs (dm[ i ])> abs (dp [ i ] ) ) ? abs (dp [ i ] ) : abs (dm[ i ] ) ;

b [N−1] = u p lus [ 0 ] ;

f o r ( i n t i =0; i<N−1; i++)

b [ i ] = u p lus [ i +1] ;

f l u x (b , u x ) ;

b [N−1] = u minus [ 0 ] ;

f o r ( i n t i =0; i<N−1; i++)

b [ i ] = u minus [ i +1] ;

f l u x (b , c ) ;

f o r ( i n t i =0; i<N; i++)

u x [ i ] = u x [ i ] + c [ i ] ;

f l u x ( u plus , c ) ;

f o r ( i n t i =0; i<N; i++)

u x [ i ] = u x [ i ] − c [ i ] ;
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f l u x ( u minus , c ) ;

f o r ( i n t i =0; i<N; i ++){

u x [ i ] = u x [ i ] − c [ i ] ;

u x [ i ] = −u x [ i ] / ( 2 . 0 ∗ dx ) ;

}

b [N−1] = u minus [ 0 ] ;

c [N−1] = u p lus [ 0 ] ;

b [N−1] = c [N−1] − b [N−1] ;

f o r ( i n t i =0; i<N−1; i ++){

b [ i ] = u minus [ i +1] ;

c [ i ] = u p lus [ i +1] ;

b [ i ] = c [ i ] − b [ i ] ;

}

c [N−1] = a [ 0 ] ;

b [N−1] = b [N−1]∗ c [N−1] ;

f o r ( i n t i =0; i<N−1; i ++){

c [ i ] = a [ i +1] ;

b [ i ] = b [ i ]∗ c [ i ] ;

}

f o r ( i n t i =0; i<N; i ++){

a [ i ] = a [ i ] ∗ ( u p lus [ i ] − u minus [ i ] ) ;

b [ i ] = (b [ i ] − a [ i ] ) / ( 2 . 0 ∗ dx ) ;

kt [ i ] = u x [ i ] + b [ i ] + r e a l ( f o r c e [ i ] ) ;

}

}
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// Minmod

void minmod( double a [ ] , double b [ ] , double u [ ] )

{

double c , d ;

f o r ( i n t i =0; i<N; i ++){

i f ( a [ i ] == 0)

c = 0 ;

e l s e

c = a [ i ] / abs ( a [ i ] ) ;

i f (b [ i ] == 0)

d = 0 ;

e l s e

d = b [ i ] / abs (b [ i ] ) ;

u [ i ] = ( ( c )+(d ) ) / 2 . 0

∗ ( ! ( abs (b [ i ])< abs ( a [ i ] ) ) ? abs ( a [ i ] ) : abs (b [ i ] ) ) ;

}

}

// Flux
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void f l u x ( double f [ ] , double y [ ] )

{

f o r ( i n t i =0; i<N; i++)

y [ i ] = ( Fr − 1)∗ f [ i ] − 3 .0∗ alpha ∗pow( f [ i ] , 2 ) / 4 . 0 ;

}

// dFlux

void dFlux ( double f [ ] , double y [ ] )

{

f o r ( i n t i =0; i<N; i++)

y [ i ] = ( Fr − 1) − 3 .0∗ alpha ∗ f [ i ] / 2 . 0 ;

}
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