

Exploring Dielectric Absorption: Data Collection System Development

Avery Ted Cashion IV

A thesis submitted to the faculty of the University of North Carolina at Chapel Hill in

partial fulfillment of the requirements for the degree of Master of Science in the

Department of Biomedical Engineering.

Chapel Hill

2010

Approved By:

Robert Dennis, PhD

Mark Tommerdahl, PhD

Oleg Favorov, PhD

 ii

©2010

Avery Ted Cashion IV

ALL RIGHTS RESERVED

 iii

ABSTRACT

Avery Ted Cashion IV: Exploring Dielectric Absorption: Data Collection System

Development

(Under the direction of Robert Dennis, PhD)

 Dielectric materials in capacitors restore charge to the capacitive plates following

a momentary short of the terminals by an effect known as dielectric absorption.

Characterizing materials based on their absorption behaviors may have applications in

material sensor technologies. A specific application in mind is in the creation of a probe

for generating a rapidly attainable oil yield metric in algal bio-fuel cultures. Detailed

here is the development of the data collection apparatus to be used in this research and

the systematic fulfillment of the requirements for measurement of dielectric absorption in

materials. This USB system provides software variable control of experiment parameters

including capacitor charge time, charge voltage, and measuring time, as well as real-time

digitization and storage of the analog signal on the computer. This system has been

tested successfully in the collection of absorption data on a variety of commercial

capacitors.

 iv

TABLE OF CONTENTS

List of Figures……………………………………………...………………….…………. v

Introduction………………………………………………...……………………….……. 1

Materials and Methods…………………………………………...……………….……… 5

Results………………………………………………………..…………………….…… 14

Discussion……………………………………………………..………………….…….. 15

Future Research…………………………………………………………..……………...17

Conclusions………………………………………………………………...……………17

Appendix...………………………………………………………………...…….………18

References………………………………………………………………………...…….45

 v

LIST OF FIGURES

Figure

1. Representation of a single data collection cycle….……………………………6

2. Image of the system hardware..………………………………………………..6

3. Circuit schematic for generation of charge signals and acquisition of data…...6

4. Program flow diagram for the USB intermediary chip (PICI)……...……......11

5. Program flow diagram for PICII, the microcontroller that

directly controls data collection parameters…….…………………………….12

6. Data collection software GUI……………………...…….…………………...13

7. Example data collected with this system on commercial

 capacitors with differing dielectric materials…………………………………15

Introduction

Dielectric absorption describes an intrinsic property of dielectric materials

wherein the charge on a capacitor returns to a certain degree after briefly shorting the

terminals. Dielectric theory suggests that this behavior stems from a gradual polarization

of the molecules of the dielectric material in the presence of an electric field [1]. After

the removal of the externally applied electric field (shorting), the remaining dipoles set up

in the dielectric still have an electric field of their own. This field in turn restores some

charge to the capacitive plates as the induced dipoles decay over time in the absence of

the initial electric field placed on the capacitor. The rate and final value of the returning

charge is dependent mainly on the molecular structure of the dielectric material involved.

The dielectric absorption effect is significant in modern-day capacitors, leading to

important non-linear behavior referred to in the electronics literature as “soakage.” This

non-linear effect on capacitance has been a thorn in the side of circuit designers since the

invention of capacitors over 100 years ago [1-2]. Soakage must be considered when

working with systems that rely heavily on precision analog signals that are stored as a

voltage in a capacitor because errors are often introduced over time as charge “soaks”

into and is released from the dielectric material. This behavior can cause very large

errors in many common analog signal conditioning and filtering circuits, including but

not limited to the ubiquitous sample-and-hold components found in virtually all analog-

to-digital conversion circuits. In addition to measurement accuracy and precision, safety

is another major concern related to charge soakage in capacitors. In the case of high

 2

voltage/high power systems, capacitors must often be discharged several times before

they can be safely handled.

To better understand this phenomenon, an absorption-compensating mathematical

model of a capacitor has been described using a succession of RC circuits connected in

parallel with the original capacitor [3]. The RC circuits mimic dielectric absorption

behavior by representing delayed release energy storage elements. The number of RC

components and the R and C values of each must be experimentally estimated in each

case.

Minimization of this effect is an important criterion in the selection of dielectric

materials by capacitor manufacturers. Some common dielectrics include mylar, silver

mica, and ceramic but for better absorption performance, polypropylene or PTFE

(Teflon) is used [2]. Nonetheless, these carefully chosen materials for industrial

capacitors still provide a readily measurable charge soakage signal with relatively simple

electronics. The system described here employs a method for measurement of this

property adapted from a design by Robert Pease wherein a strip chart recorder was used

to characterize some absorption behaviors of different dielectrics [1].

Sensor applications based on other dielectric behaviors have been applied

successfully in several ways. One common use for dielectric technology is in the design

of gauges for monitoring the fluid level in a container, such as diesel fuel, hydraulic fluid,

or motor oil. Two long parallel plates coated in a nonconductive material are placed

vertically into the container with a small gap between them to form a variable capacitor.

As the fluid fills the volume between the plates, it displaces the air and acts as a

dielectric. Air has a lower dielectric constant than the fluid being measured; therefore the

 3

capacitance between the plates rises as fluid is added to the container. This is a very

reliable method for measuring fluid level but it provides little information about the fluid

itself.

“Dielectric spectroscopy” generally refers to the observation of dielectric

behavior at carefully selected sinusoidal frequencies to determine specific dielectric

material properties. One use of dielectric spectroscopy relevant to biologically derived

fuels is a method of determining biomass concentration in suspended cultures of

microorganisms using a capacitive probe [4-5]. The process works by selecting a

capacitor charge frequency based on the dielectric dispersion principles of biological

cells [4-7]. Conductivity and permittivity data, obtained by monitoring conductance of

the sample and capacitance of the probe, can be used with a series of equations defined

by [Harris et. al] to determine the volume fraction of the sample that is inhabited by cells

[4]. Biomass concentration is the most established measurement with this technology but

some results suggest other capabilities through the use of harmonics derived from a

Fourier transform of the signal [5].

There are a few devices currently in use that monitor dielectric behavior when

driven by sinusoidal excitation, generally in the range of 1 KHz and higher. However,

the characteristic dielectric soakage behavior of materials can be observed without the

careful selection of a capacitor charging frequency. This soakage and relaxation

information can be obtained in the frequency range of around 10Hz to essentially an

approximate “DC” dielectric response. Although sinusoidal methods are well suited to

their specific purposes, data collected with the present system suggests a significant

amount of bulk information about samples present in their DC soakage response [8].

 4

Potential applications of a sensor based on dielectric absorption to provide rapid

determinations of bulk sample characteristics are widely varied. Preliminary experiments

suggest one possible application of this method in the rapid assessment of oil content in

cultures of algae.

Assessment of oil productivity (mass of oil per unit volume of algal broth) is of

critical importance to algae-derived bio-fuels research. The oil content of the cells is

both strain-specific and highly dependent on environmental growth conditions [10];

genetic and metabolic engineering are also likely to have a significant effect in the future

[13]. Metrics developed for this type of measurement are mainly limited to theoretical

yield calculations based on multiple efficiency assumptions [11, 12], and experimentally

determined weight percentage of algal lipids versus dried biomass [9-12]. Though

theoretical approaches provide a valuable means for qualitative estimation of algal oil

possibilities, actual oil productivity measurements must be collected to facilitate the

necessary incremental research in this field. Percent lipids by weight measurements are

currently energy intensive and require relatively large samples of algae. A capacitive

probe based on dielectric absorption may help to fill this technological void in bio-fuels

research.

Though dielectric absorption is an undesirable characteristic of real capacitors in

most electronic applications, details of this behavior will be exploited in the work

described in this thesis in order to gain deeper understanding and explore other possible

applications of the phenomenon. Data collected with this device is being used to

investigate the possibility of basing a material identification probe on this technology [8].

 5

Materials and Methods

System Overview

 According to the existing dielectric absorption model [3], the rebuilding voltage

on a capacitor induced by a saturated dielectric is a time-dependent function of the initial

charge voltage and the duration of the short. Conversely, in a briefly charged capacitor

the decaying voltage resulting from soakage into the dielectric is described as a function

of charge time and charge voltage.

 To enable low frequency and “DC” dielectric soakage measurements in

accordance with this model, we have selected five user defined parameters for data

collection settings in this system: charge voltage, charge time, short time, read time and

number of data cycles. See Figure 1 for a description of how these parameters relate to

the voltage signal being digitized. One data collection cycle includes three modes of data

collection. When the system is in charging mode the positive terminal of the subject

capacitor is connected to the charge voltage. The charge voltage is disconnected and the

capacitor is shorted during shorting mode. Finally, the system transitions into read mode

where the capacitor charge is building and is connected exclusively to the data collection

circuitry.

 The data collection settings are specified in the system software where they are

automatically logged at the top of the data file and sent to the system hardware (Fig. 2)

for execution. A green LED on the circuit indicates that the system is ready to start a

new dataset.

 6

Fig 1. Representation of a single data collection cycle. The graph displays an example voltage on a

capacitor over time in this system. All parameters are 16-bit values allowing user settings in the range of 0

to 65534. A charge voltage setting of 65534 will yield a 10v output in the circuit. Each time variable

signifies the amount of time in milliseconds that the system will be in that data collection mode during each

cycle (Charge time means time in charging mode etc.)

Fig 2. Image of the system hardware. The printed circuit board (PCB) was created using ExpressPCB

development software.

 7

Fig. 3. Circuit schematic for generation of charge signals and acquisition of data. Created using EAGLE

Layout Editor CAD software. Experimental parameters set in software control the behavior of the circuit.

Three 16-bit ADCs are used to provide options of reading the raw signal, the signal halved (for values in

excess of 5V), and/or a differentiated signal.

Charging/Shorting Circuitry

 This system is capable of generating DC dielectric soaking signals ranging from

zero to ten volts. A 16-bit digital-to-analog converter (DAC8411) is set using SPI

communication from a PIC18F4550 microcontroller (labeled II in Figure 1). The output

of the DAC is then amplified by a factor of two with a non-inverting operational

amplifier circuit (LF444CM) to significantly increase the available current of the

charging signal and to double the maximum charge voltage.

 8

 A set of three MOSFETs (IRF7341, IRF7343) and a relay (HE3621A051) are

used to set the circuit in charge, short, or read modes. The amplified charge signal is

connected to the source pin of a P-Channel MOSFET. The P-Ch is activated when the

voltage on the gate pin is at least one volt less than that of the source. This means that at

source voltages of six volts or more, the P-Ch cannot be controlled by a microcontroller

digital I/O pin directly. In light of this constraint, an N-Ch MOSFET serves as an open-

collector interface between the microcontroller and the gate of the P-Ch. Thus, activation

of the N-Ch (See B in Fig.1) grounds the P-Ch gate and connects the charge signal to the

relay. To short the capacitor, line B is pulled low and line A is pulled high. The relay

(line C in Fig.1) is in place to completely disconnect the capacitor from the

charging/shorting circuitry during data collection mode to eliminate data aberrations from

transistor switching noise. Data is digitized and collected during all modes of operation.

Data Collection Circuitry

 After a momentary short of the capacitor terminals, the system is transitioned into

reading mode. Depending nonexclusively on the dielectric material, charge voltage,

charge time, and short time the charge on the capacitor builds up over a period of several

seconds to a voltage value ranging from zero to around 7V. This signal is buffered with a

voltage follower op-amp circuit to isolate the reading circuitry with a very high input

impedance from the measured signal and thus minimize distortions.

The 16-bit ADCs (TLC4545) allow for three parallel options for signal

conditioning. All signal conditioning circuitries are electrically isolated from one another

using voltage followers. These ADCs work on the range from zero to five volts, allowing

 9

the raw signal to be collected with the first ADC for voltages five volts or lower. For

values up to ten volts, the second ADC has a one half voltage divider following the

buffer. The third acquisition option is an analog differentiated signal. This is in place to

offer a measurement of the signal current (first derivative of the voltage). In order to

make the differentiated signal comply with the input range of the ADC, a combination of

a summing amplifier and an inverting amplifier provides a +2.5V offset.

 The ADCs are interfaced via SPI communication from the microcontroller. All

three clock lines connect to one I/O pin and the chip select lines connect to another. This

allows for simultaneous reading of all three ADCs.

Microcontrollers

 Two PIC18F4550 microcontrollers (Labeled I and II in Fig. 1) were used in the

hardware design of this system; referred to as PICI and PICII henceforth. All

microcontroller code was written in a C compiler by Custom Computer Services (CCS).

PICI acts as an intermediary between PICII and the graphical user interface (GUI)

generated in VisualBasic 2010. USB communication on these PICs is relatively

demanding of microcontroller resources, resulting in undesirable design constraints when

attempting to implement all the necessary system firmware on a single chip.

Inter-Integrated Circuit (I2C) was selected as the communication protocol

between the PICs because of its speed, reliability, and modularity in adding multiple

slave devices to the same clock and data lines. In I2C communication, the master device

(PICII in this case) interrupts the slave device (PICI) whenever it has data to send. For

data transfers in the opposite direction however, slave to master, the master device has to

 10

request the data from the slave and generate the clock cycles to obtain it. In order to

achieve seamless bidirectional data flow in this system, the slave needs to be able to tell

the master when data is available to read. This need is addressed with the addition of

another connection between the PICs in which a digital I/O pin on PICI is linked to an

external interrupt pin on PICII to let it know when data is available to be read. This event

triggers the execution of code defined in the external interrupt subroutine on PICII to read

the slave device. I2C has a maximum data transfer rate of 3.4 Mbps, sufficient to

facilitate a suitable data sampling rate for digitizing and storing the signal of interest.

The design specifications require communication of 16-bit collected data and

settings. One limitation of many data transfer protocols, including I2C, is an 8-bit packet

size per transfer. Well established methods using binary rotations and software

implementations of logic gates accomplish the splitting and reassembling of the 16-bit

integers on each microcontroller.

Signal noise was significantly reduced with the introduction of a preconditioning

median filter on PICII. Five rapid reads of the ADC into an array comprises one data

point to be collected. The value recorded is the middle element of the bubble-sorted

array (median).

 11

Fig. 4. Program flow diagram for the USB intermediary chip (PICI). PICI acts as the I2C slave. The SSP

interrupt triggers when the master is sending data to the slave or requesting data from it. When data is

received from the master device, it is sent to the computer through USB under the Human Interface Device

(HID) protocol. Conversely, when USB data is received from the computer PICI triggers an external

interrupt on the I2C master device (PICII) to tell it to read the new settings. PICI source code available in

Appendix.

 12

Fig. 5. Program flow diagram for PICII, the microcontroller that directly controls data collection

parameters. This chip interfaces the ADCs, the DAC, and the set of transistors and relay that switch

between charging, shorting, and reading modes. Acting as the I2C master device, this chip interrupts the

slave device at each data interval for updates. The median of five rapid ADC reads constitutes a single data

point to be recorded. PICII source code available in Appendix.

 13

Graphical User Interface

 A text file is created in the user specified directory into which the collected data is

logged. The data is written to the first column of the text file and a second “label”

column specifies the data collection mode. A “1” indicates charging mode, a “2” for

shorting, and a “3” during data collection mode. The label column provides a simple

means for separation of collection modes in the Matlab analysis software as well as a way

to display specific sections of the data in real time.

Fig 6. Data collection software GUI. Generated in VisualBasic 2010 using a Human Interface Device

(HID) VisualBasic template by HelmPCB. Data is logged into a .txt file to be analyzed in Matlab. Charge

voltage, charge time, read time, short time, and number of cycles are 16-bit variables set by the user that are

sent to PICI via USB. The graph on the left displays the data while the circuit is in reading mode. The

graph on the right is a rolling real time display of the current ADC voltage value. Source code available in

Appendix.

 14

Results

The processor of the PIC18F4550 provides high-speed transfer rates and

mathematical functions in working with 16-bit data. Each microcontroller processor is

operating at 24.00 MHz in this system. At this clock speed, the system hardware is

capable of sampling at a rate of approximately 2.2 KHz. Each successive sample

includes reading the ADC five times and loading it into an array, sending the median of

the array via I2C, and sending that value to the computer using USB. The hardware

sampling rate could be increased by increasing the PIC CPU speed toward the maximum

of 48MHz but the limitation in this system is not the hardware, but the GUI sample rate

under the Human Interface Device (HID) USB protocol.

Based on experimental testing, the template used in development of the GUI can

only read values from a peripheral device at a maximum rate of 125Hz (See Figure 7).

This limitation introduces some ambiguity in the time scale of the data being collected at

high sample rates. Time between successive data points must be consistent and accurate

for analysis methods to work properly. In order to ensure operation in the range of

reliability, values are sent to the computer at a rate of once every ten milliseconds

(100Hz). The median filter on PICII lessens the deleterious effect of a lower sample rate

because each data point represents five ADC reads. Even with the severe sample rate

limitation, the greatest voltage jump between samples seen in any of the data collected

during read mode thus far has been less than 2mV, with most step sizes being

significantly smaller. 100Hz is a high enough sampling rate for the present requirements

of the system and provides manageable data file sizes.

 15

Fig 7. Example data collected with this system on commercial capacitors with differing dielectric

materials. The data was separated and rendered in this graph using software created in Matlab 2010 by

Devin Hubbard [8]. In this figure, the ceramic capacitor data was collected for 65 seconds at a sample rate

of 100Hz. The electrolytic and paper-in-oil (PIO) capacitors were sampled at rates higher than the GUI

software can accommodate for read times of 45000 ms and 65534 ms respectively. Dividing the read time

by the number of data points collected yields a sample rate of about 124 Hz in both cases.

Discussion

A particular advantage this DC dielectric sensor method has over sinusoidal

driven systems is overall simplicity of signal acquisition and analysis. Although

sinusoidal systems show potential in being very well catered to specific determinations

about a sample, assessment of aggregate characteristics is difficult and each application

requires a significant amount of detailed research. The signals generated in dielectric

soakage measurements however, provide bulk information about a sample and have been

suggested mathematically and supported experimentally to be an average of the

individual contributing components [8]. Novel applications of this type of probe can be

 16

created using similar processes and by simply collecting and referencing the necessary

database.

 The absorption data collection system described herein can be used to investigate

a variety of potential applications of dielectric sensors. Possibilities may include a tool

for improvement and testing of industrial capacitors, detection of concealed materials

within objects (drugs, explosives, etc), or even a food diagnostic tool for relative

determinations of fat content. It is our hope that collection of data with this system will

lead to better sensory technologies in the field of algae-derived bio-fuels.

 Capacitors that use paper in oil (PIO) as the dielectric material show the largest

absorption curves of any of the data collected thus far (Fig 7). This result suggests that

oil-based materials will require a relatively small sample size to produce a measureable

soakage signal using a DC charging voltage. Data can be collected using a parallel plate

probe with a slot for insertion of a disposable porous sample vehicle. A database can be

generated using sample vehicles saturated with varying concentrations of algal oil. Cross-

referencing this absorption curve database with established experimental methods for cell

count and determination of oil yield may lead to a very useful tool in bio-fuels research.

A probe like this would be perfectly suited for rapid field sample measurements of lipid

concentration. Oil content could also be cost-effectively tracked daily for selecting the

maximal yield harvest time.

 17

Future Work

 The greatest opportunity for improvement of this system is in the data sampling

rate. As the bottleneck occurs in the USB communication between PICI and the

computer, there are viable approaches to this challenge using either software or hardware.

Alternative USB techniques exist to the HID method used in this application. Much

higher data sampling rates could likely be achieved using a serial port emulation method

for example. Another option is adding a memory chip to the hardware that can be

interfaced by the microcontroller using a serial communication method. Data could be

logged into the memory chip at very high rates but still sent to the GUI in 10ms intervals

(100Hz) for real-time plotting. The full dataset could be transferred to the computer after

collection is complete.

 With a higher sampling rate, another GUI user setting could be created to set the

amount of time between samples. This would provide a level of control over the size of

the data files being created.

 Further design implementations will depend on specific research needs based

upon analyses of the data collected with the present system.

Conclusions

 This paper describes hardware and software methods for measuring dielectric

absorption properties of materials. Microcontrollers, analog-to-digital converters, and

fast switching transistors accomplish data logging and data mode settings. The

developed software displays real-time graphs of the capacitor voltage and generates text

files containing the data along with the current data mode.

 18

APPENDIX: Source Code for PICI, PICII, and the Graphical User Interface (GUI)

Source code for PICI:

#include <18F4550.h>

#fuses HSPLL, NOWDT, NOPROTECT, NOLVP, USBDIV, PLL5, CPUDIV3, VREGEN,

PUT

#use delay (clock=24000000)

#use i2c(Slave,sda=PIN_B0,scl=PIN_B1,address=0xB2,force_hw,no_stretch)

// PCB board pin defines

#define GREEN_LED PIN_C0

#define YELLOW_LED PIN_C1

#define RED_LED PIN_C2

/*

// setup USB endpoints //may not always be necessary

#define USB_EP1_TX_ENABLE USB_ENABLE_INTERRUPT

#define USB_EP1_TX_SIZE 32

#define USB_EP1_RX_ENABLE USB_ENABLE_INTERRUPT

#define USB_EP1_RX_SIZE 8

*/

// included headers and source code

#include <pic18_usb.h> //Select PIC for USB

#include <usb_desc_hid.h> //USB Application (in this case HID_IO)

#include <usb.c> //USB commands. Look through this to understand

specifics of commands.

//Special Function Registers/////////

#byte TRISB = 0xF93

#bit TrisB0 = TRISB.0

#bit TrisB1 = TRISB.1

#byte SSPBUF = 0xFC9

#byte SSPSTAT = 0xFC7

#bit BF = SSPSTAT.0

#byte SSPCON1 = 0xFC6

#bit CKP = SSPCON1.4

#bit SSPOV = SSPCON1.6

#bit WCOL = SSPCON1.7

/////////////////////////

//Define Globals//

int16 Charge_Time = 20000; //in ms

int16 Short_Time = 2000; //in ms

int16 Read_Time = 30000; //in ms

int16 Voltage = 65534;

int16 Cycles = 50;

int16 Status;

int8 in[3];

int16 out[2];

 19

int8 buffer_to_16[2];

int1 packet_count = 0;

int which_Var = 0;

typedef enum {NOTHING, CONTROL_READ,

 ADDRESS_READ, READ_COMMAND_READ} I2C_STATE;

I2C_STATE fState;

BYTE adress, buffer[0x10];

int1 New_Data_Flag = 0;

int16 Data;

//The following subroutine Takes a low and high byte and assembles them

into a

//single 16-bit number. It is used by first loading your 8-bit numbers

into an

//array called "buffer" and then call the command:

//Assemble_16(element number of Low_Byte, element number of High_Byte);

//The assembled 16-bit number is returned

int16 Assemble_16(int L_Byte_Add, int H_Byte_Add)

{

 int L_Byte_8;

 int H_Byte_8;

 int16 Assembled;

 int16 Shift;

 int16 L_Byte_16;

 int16 H_Byte_16;

 int16 H_Shifted;

 L_Byte_8 = buffer_to_16[L_Byte_Add];

 H_Byte_8 = buffer_to_16[H_Byte_Add];

 Shift = 256; //2^8 = 256 (Multiplying by 2^8 shifts 8 bits left)

 //Turning the 2 8-bit numbers into 16-bit numbers for PIC math

operations

 L_Byte_16 = L_Byte_8;

 H_Byte_16 = H_Byte_8;

 H_Shifted = H_Byte_16*Shift; //(Multiplying by 2^8 shifts 8 bits

left)

 Assembled = H_Shifted + L_Byte_16; //Adding the low byte to complete

operation

 return Assembled;

}

//The following subroutine splits a 16-bit number into its high and low

bytes

//It is used by calling "Split_16(16-bit number to split, 0 or 1)"

//0 will return Low_Byte and 1 will return High_Byte

 20

int Split_16(int16 To_Split, int1 H_or_L){

int16 Shift;

int16 AND16bit;

int16 H_Byte_16;

int16 L_Byte_16;

int H_Byte;

int L_Byte;

Shift = 256; //2^8 = 256 (Dividing by 2^8 shifts 8 bits right)

AND16bit = 255; //0b0000000011111111

H_Byte_16 = To_Split / Shift; //(Dividing by 2^8 shifts 8 bits right)

L_Byte_16 = To_Split & AND16bit; //ANDing with 255 gives you the low

byte

//Turning the numbers into 8-bit pieces

H_Byte = H_Byte_16;

L_Byte = L_Byte_16;

if (H_or_L ==1){return H_Byte;}

if (H_or_L ==0){return L_Byte;}

}

//The following subroutine sends a 16-bit number via USB. It actually

is sending

//2 individual bytes that you'll have to bring together in software.

void USB_Send(int16 Send)

{

 out[0]= Send;

 out[1] = 1007;

 usb_put_packet(1,out,2,USB_DTS_TOGGLE);

}

//This subroutine reads USB data if it is available.

void USB_Read()

{

if (usb_kbhit(1)) { //usb_kbhit is a status bit for available

data in input buffer.

usb_get_packet(1,in,4); //Reads the input buffer into array "in" and

clears the input buffer.

//2 received 16-bit packets (two updates of the "in" array represents

one transmission

//for updating a data setting

if(packet_count == 1) {

packet_count = 0;

if(which_Var == 2){ //New Voltage available

buffer_to_16[0] = in[0];

buffer_to_16[1] = in[1];

Voltage = Assemble_16(0,1);

}

 21

if(which_Var == 3){ //New Charge Time available

buffer_to_16[0] = in[0];

buffer_to_16[1] = in[1];

Charge_Time = Assemble_16(0,1);

}

if(which_Var == 4){ //New Read Time available

buffer_to_16[0] = in[0];

buffer_to_16[1] = in[1];

Read_Time = Assemble_16(0,1);

}

if(which_Var == 5){ //New Short Time available

buffer_to_16[0] = in[0];

buffer_to_16[1] = in[1];

Short_Time = Assemble_16(0,1);

}

if(which_Var == 6){ //New # of Cycles available (Also, Cycles is the

last update so I2C should be activated

buffer_to_16[0] = in[0];

buffer_to_16[1] = in[1];

Cycles = Assemble_16(0,1);

//Set the new values to be ready to send

buffer[2] = Split_16(Charge_Time,0);

buffer[3] = Split_16(Charge_Time,1);

buffer[4] = Split_16(Read_Time,0);

buffer[5] = Split_16(Read_Time,1);

buffer[6] = Split_16(Short_Time,0);

buffer[7] = Split_16(Short_Time,1);

buffer[8] = Split_16(Voltage,0);

buffer[9] = Split_16(Voltage,1);

buffer[10] = Split_16(Cycles,0);

buffer[11] = Split_16(Cycles,1);

//interrupt master and tell it to read in new values

output_high(PIN_B2);

delay_ms(1);

output_low(PIN_B2);

}

which_Var = 0;

}

if (packet_count == 0){

if (in[0]>1) {

packet_count = 1; //Set packet_counter flag to indicate that a setting

is being received.

which_Var = in[0];

//output_toggle(YELLOW_LED);

}

if (in[0]==1) {output_high(RED_LED);} //Turns red LED on

 22

if (in[0]==0) {output_low(RED_LED);} //Turns red LED off

}

}

}

#INT_SSP

void SSP_isr()

{

 BYTE incoming, state, clear;

 state = i2c_isr_state();

 if (state <= 0x80){

 incoming = i2c_read();

 if (state ==1){

 adress = incoming;

 //output_high(RED_LED);

 }

 if (state == 2){

 buffer[adress] = incoming;

 if (adress ==1){ //Second byte of 16-bit data point has been

received

 New_Data_Flag = 1;

 buffer_to_16[0] = buffer[0];

 buffer_to_16[1] = buffer[1];

 Data = Assemble_16(0,1);

 USB_Send(Data);

 }

 if (adress ==2){ //Status byte has been updated

 buffer_to_16[0] = buffer[2];

 buffer_to_16[1] = 0;

 Status = Assemble_16(0,1);

 USB_Send(Status);

 output_toggle(YELLOW_LED);

 }

 }

 }

 if (state == 0x80){

 //TrisB0 = 1;

 //clear = i2c_read();

 i2c_write(buffer[adress]);

 //SSPBUF = 0;

 //i2c_write(0b00000111);

 //BF = 0;

 // CKP = 0;

 // SSPBUF = buffer[adress];

 // CKP = 1;

 23

 //output_high(RED_LED);

 }

}

void main (void) {

 // initialize variables

 int i;

 int Test_H;

 int Test_L;

 fState = NOTHING;

 adress = 0x00;

 for (i=0;i<0x10;i++){

 buffer[i] = 0x00;}

 enable_interrupts(INT_SSP);

 enable_interrupts(GLOBAL);

 // initialize USB

 usb_init();

 //initialize ADC

 // adc_init();

 //output_high(Charge_Relay);

while (TRUE) {

if (usb_enumerated()) //USB must be enumerated (PC ack) for any USB

communications

{

output_high(GREEN_LED);

//output_low(YELLOW_LED);

USB_Read();

if(Voltage == 500 && Charge_Time == 1000 && Read_Time == 2000 &&

Short_Time == 4000 && Cycles == 8000){

output_toggle(YELLOW_LED);

delay_ms(250);

}

 if(New_Data_Flag ==1){

 New_Data_Flag = 0;

 //USB_Send(Data);

 // output_toggle(PIN_E0);

 }

}

else //USB not enumerated

{

output_low(GREEN_LED);

//output_high(YELLOW_LED); //yellow LED is on until USB is enumerated

 24

}

}

}

Source code for PICII:

#include <18F4550.h>

#fuses HSPLL, NOWDT, NOPROTECT, NOLVP, USBDIV, PLL5, CPUDIV3, VREGEN,

PUT

#use delay (clock=24000000)

#use i2c(Master,sda=PIN_B0,scl=PIN_B1,fast)

// included headers and source code

#include <pic18_usb.h> //Select PIC for USB

#include <usb_desc_hid.h> //USB Application (in this case HID_IO)

#include <usb.c> //USB commands. Look through this to understand

specifics of commands.

//Initialize Slave Addresses

//Initialize Variables

int8 Send_Byte = 8;

int8 Slave_One_Address_Write = 0xa0;

int8 Slave_Two_Address_Write = 0xb0;

int8 data;

int8 i2c_buffer[12];

int16 Charge_Time = 10000; //in ms

int16 Short_Time = 500; //in ms

int16 Read_Time = 10000; //in ms

int16 Voltage = 65000;

int16 Cycles = 10;

int16 USB_VARS[5]; //[charge_time, read_time, short_time, voltage,

cycles]

int16 Cyc_Num = 0;

int16 analog_in[5];

int H_Byte;

int L_Byte;

int1 Go = 0;

////////////////////////////

// PCB board pin defines

#define GREEN_LED PIN_C0

#define YELLOW_LED PIN_C1

#define RED_LED PIN_C2

#define ADC_CS PIN_A0

#define ADC_CLK PIN_A1

#define ADC_IN PIN_A4

 25

#define Charge_Cap PIN_D3

#define Short_Cap PIN_D4

#define Cap_Relay PIN_D5

#define DAC_SYNC PIN_D2

#define DAC_CLK PIN_D1

#define DAC_Data PIN_D0

// included headers and source code

#include <pic18_usb.h> //Select PIC for USB

#include <usb_desc_hid.h> //USB Application (in this case HID_IO)

#include <usb.c> //USB commands. Look through this to understand

specifics of commands.

//Special Function Registers

#byte T1CON = 0xFCD

#byte T3CON = 0xFB1

//Defining Globals

int8 in[2];

int16 out[2];

int16 ADC_Val;

 // initialize variables

 int16 analog_center = 0;

 int16 data_delay = 0;

 int16 charge_delay = 0;

 int16 read_delay = 0;

 int16 short_delay = 0;

 int16 timer = 0;

 int1 charging = 0;

 int1 reading = 0;

 int1 shorting = 0;

 int16 val;

 int16 val1 = 0;

 ////////////////////////////

void Write_Slave(int Slave_Address, int Buffer_Address, Write_Byte)

{

 i2c_start();

 i2c_write(Slave_Address); // Device address

 i2c_write(Buffer_Address); // address of the buffer that you are

writing to 'buffer[address]'

 i2c_write(Write_Byte); //data sent to the buffer(address) above

 i2c_stop();

 delay_us(5);

}

int Read_Slave(int Slave_Address, int Buffer_Address)

{

 i2c_start();

 i2c_write(Slave_Address);

 26

 i2c_write(Buffer_Address);

 //i2c_stop();

 delay_us(1);

 i2c_start();

 i2c_write(Slave_Address+1);

 delay_us(2);

 data = i2c_read(0);

 i2c_stop();

 return data;

}

void adc_init()

{

int i;

 output_high(ADC_CS); // Chip Select (active LOW)

 output_high(ADC_CLK); // Serial Clock (active on FALLING Edge)

 delay_us(1);

 // Select ADC Chip

 output_low(ADC_CS); // Chip Select (active LOW)

 output_high(ADC_CLK); // Serial Clock (active on FALLING Edge)

 delay_us(1);

 // Cycle Serial Clock 4 times with CS = LOW to reset ADC:

 for(i = 1; i<=4; ++i)

 {

 output_low(ADC_CLK); // Serial Clock (active on FALLING Edge)

 delay_us(1);

 output_high(ADC_CLK); // Serial Clock (active on FALLING Edge)

 delay_us(1);

 }

}

void Read_16()

{

int16 volts = 0b0000000000000000;

int bits, c;

 volts = 0b0000000000000000;

 // Start with ADC INACTIVE

 output_high(ADC_CS); // Chip Select (active LOW)

 output_high(ADC_CLK); // Serial Clock (active on FALLING Edge)

 //delay_us(1);

 // delay_cycles(2);

 // Run 24 cycles of SClk to complete the next conversion

 for (c = 1; c <=25; ++c)

 {

 output_high(ADC_CLK); // Serial Clock (active on FALLING Edge)

 // delay_cycles(2);

 27

 output_low(ADC_CLK); // Serial Clock (active on FALLING Edge)

 // delay_cycles(2);

 }

 // Convert and load data.

 // Conversion begins on 1st falling edge with MSB first

 // ... then add 8 falling edges on SClk to complete the next

conversion

 // Select ADC Chip: initiate conversion cycle

 output_low(ADC_CS); // Chip Select (active LOW)

 output_high(ADC_CLK); // Serial Clock (active on FALLING Edge)

 // delay_cycles(2);

 //The following loop gets a single reading from the adc

 for (bits=15; bits>0; bits = bits-1)

 {

 output_high(ADC_CLK); // Serial Clock (active on FALLING

Edge)

 // delay_cycles(2);

 output_low(ADC_CLK); // Serial Clock (active on FALLING Edge)

 // delay_cycles(2);

 if (INPUT(ADC_IN)) BIT_SET(volts, bits);

 }

 // add 8 falling edges on SCLK to complete the conversion for

the next cycle

 for (c = 1; c <=9; c = c + 1)

 {

 output_high(ADC_CLK); // Serial Clock (active on FALLING Edge)

 // delay_cycles(2);

 output_low(ADC_CLK); // Serial Clock (active on FALLING Edge)

 // delay_cycles(2);

 }

 //De-select the ADC chip

 OUTPUT_BIT(ADC_CS, 1); // Chip Select (active LOW)

 OUTPUT_BIT(ADC_CLK, 1); // Serial Clock (active on FALLING

Edge)

 // delay_cycles(2);

 ADC_Val = volts; // Set the analog_in value

}

void Get_Data()

{

int element;

 for (element=0; element <=4; ++element) //gets 5 values

 28

 {

 Read_16();

 analog_in[element] = ADC_Val; // Set the analog_in value

 }

}

//The following Subroutine gets the median of the analog_in array

int16 Median()

{

//Bubble sort Data Array

 int r,k;

 int16 c,Med;

 for (k=0; k <=4; ++k)

 {

 for (r=0; r <=4; ++r)

 {

 if (analog_in[r] < analog_in[r+1])

 {

 c=analog_in[r+1]; // next 3 statements swap 2

values

 analog_in[r+1] = analog_in[r];

 analog_in[r] = c;

 }

 }

 }

 Med = analog_in[2];

 return Med;

}

void DAC_16(int16 Volts)

{

int bits, c;

 // Start with DAC INACTIVE

 output_high(DAC_SYNC); // Sync (active LOW)

 output_high(DAC_CLK); // Serial Clock (active on FALLING Edge)

 delay_us(1);

 // Select DAC Chip: initiate conversion cycle

 output_low(DAC_SYNC); // Sync (active LOW)

 delay_us(1);

 output_high(DAC_CLK); // Serial Clock (active on FALLING Edge)

 delay_us(1);

 //Set Operation mode Normal Operation: (0,0)

 output_high(DAC_CLK); // Serial Clock (active on FALLING Edge)

 delay_us(1);

 OUTPUT_BIT(DAC_Data, 0); //Sets or clears the output bit in

accordance with Voltage variable

 29

 delay_us(1);

 output_low(DAC_CLK); // Serial Clock (active on FALLING Edge)

 delay_us(1);

 output_high(DAC_CLK); // Serial Clock (active on FALLING

Edge)

 delay_us(1);

 OUTPUT_BIT(DAC_Data, 0); //Sets or clears the output bit in

accordance with Voltage variable

 delay_us(1);

 output_low(DAC_CLK); // Serial Clock (active on FALLING Edge)

 delay_us(1);

 //The following loop sends a single 16-bit voltage value to the DAC

 for (bits=15; bits>0; bits = bits-1)

 {

 output_high(DAC_CLK); // Serial Clock (active on FALLING

Edge)

 delay_us(1);

 OUTPUT_BIT(DAC_Data, BIT_TEST(Voltage, bits)); //Sets or clears

the output bit in accordance with Voltage variable

 delay_us(1);

 output_low(DAC_CLK); // Serial Clock (active on FALLING Edge)

 delay_us(1);

 }

 // add 6 falling edges on SCLK to complete the conversion for

the next cycle

 for (c = 1; c <=7; c = c + 1)

 {

 output_high(DAC_CLK); // Serial Clock (active on FALLING Edge)

 delay_us(1);

 output_low(DAC_CLK); // Serial Clock (active on FALLING Edge)

 delay_us(1);

 }

 //De-select the DAC chip

 OUTPUT_BIT(DAC_SYNC, 1); // Sync (active LOW)

 OUTPUT_BIT(DAC_CLK, 1); // Serial Clock (active on FALLING

Edge)

 delay_us(1);

}

//The following subroutine Takes a low and high byte and assembles them

into a

//single 16-bit number. It is used by first loading your 8-bit numbers

into an

//array called "i2c_buffer" and then call the command:

//Assemble_16(element number of Low_Byte, element number of High_Byte);

//The assembled 16-bit number is returned

 30

int16 Assemble_16(int L_Byte_Add, int H_Byte_Add)

{

 int L_Byte_8;

 int H_Byte_8;

 int16 Assembled;

 int16 Shift;

 int16 L_Byte_16;

 int16 H_Byte_16;

 int16 H_Shifted;

 L_Byte_8 = i2c_buffer[L_Byte_Add];

 H_Byte_8 = i2c_buffer[H_Byte_Add];

 Shift = 256; //2^8 = 256 (Multiplying by 2^8 shifts 8 bits left)

 //Turning the 2 8-bit numbers into 16-bit numbers for PIC math

operations

 L_Byte_16 = L_Byte_8;

 H_Byte_16 = H_Byte_8;

 H_Shifted = H_Byte_16*Shift; //(Multiplying by 2^8 shifts 8 bits

left)

 Assembled = H_Shifted + L_Byte_16; //Adding the low byte to complete

operation

 return Assembled;

}

//The following subroutine splits a 16-bit number into its high and low

bytes

//It is used by calling "Split_16(16-bit number to split, 0 or 1)"

//0 will return Low_Byte and 1 will return High_Byte

void Split_16(int16 To_Split){

int16 Shift;

int16 AND16bit;

int16 H_Byte_16;

int16 L_Byte_16;

Shift = 256; //2^8 = 256 (Dividing by 2^8 shifts 8 bits right)

AND16bit = 255; //0b0000000011111111

H_Byte_16 = To_Split / Shift; //(Dividing by 2^8 shifts 8 bits right)

L_Byte_16 = To_Split & AND16bit; //ANDing with 255 gives you the low

byte

//Turning the numbers into 8-bit pieces

H_Byte = H_Byte_16;

L_Byte = L_Byte_16;

}

 31

//Interrupt subroutine will be triggered when new USB_Settings are

available

//External Interrupt on B2

#INT_EXT2

void ext2_isr() {

//i2c_buffer is filled

int c;

int i = 0;

int n;

int r = 0;

int j = 1;

for (c = 2; c <=11; c = c + 1){

i2c_buffer[i] = Read_Slave(0xB2, c);

i = i+1;

}

for (n = 0; n <= 5; n=n+1){

USB_VARS[n] = Assemble_16(r, j);

r = r+2;

j = j+2;

}

Charge_Time = USB_VARS[0];

Read_Time = USB_VARS[1];

Short_Time = USB_VARS[2];

Voltage = USB_VARS[3];

Cycles = USB_VARS[4];

DAC_16(Voltage);//Update DAC value

charge_delay = 0;

read_delay = 0;

short_delay = 0;

charging = 0;

shorting = 0;

reading = 0;

Go = 1;

Cyc_Num = 0;

output_high(RED_LED);

output_low(GREEN_LED);

output_low(YELLOW_LED);

if (Charge_Time == 5000 && Short_Time == 5001 && Read_Time == 5002 &&

Voltage == 65534 && Cycles == 4){output_high(GREEN_LED);}

}

 #int_CCP1 //interupts every 1ms

void CCP1_isr(void)

{

 if(Go == 1){

 if(charging == 1){

 charge_delay = charge_delay+2;

 }

 if(reading == 1){

 32

 read_delay = read_delay+2;

 }

 if(shorting == 1){

 short_delay = short_delay+2;

 }

 output_toggle(YELLOW_LED);

 //Read_16(); //reads ADC

 //Split_16(ADC_Val);

 Get_Data(); //Fills the Analog_in array to be median filtered

 //Split ADC value into separate bytes and send them via I2C

 val = Median();

 Split_16(val);

 Write_Slave(0xB2,0,L_Byte);

 Write_Slave(0xB2,1,H_Byte);

 }

 //val = val+1;

// val1 = val1 + 1;

 //if(val >= 5 && Go == 1){

// output_toggle(YELLOW_LED);

 //Take and send data

// Read_16(); //reads ADC

 //Split ADC value into separate bytes and send them via I2C

 //Split_16(ADC_Val);

 //Write_Slave(0xB2,0,L_Byte);

 //Write_Slave(0xB2,1,H_Byte);

// val = 0;

 //}

// if(val1>=500 && Go == 1){ //Update status

 // if(reading ==1){Write_Slave(0xB2,2,3);}

// if(charging ==1){Write_Slave(0xB2,2,1);}

// val1 = 0;

// }

}

#int_CCP2 //interupts every 100us

void CCP2_isr(void)

{

 //enable_interrupts(INT_CCP1);

// disable_interrupts(INT_CCP2);

 //enable_interrupts(GLOBAL);

 //Take and send data

 //Read_16(); //reads ADC

// if(Go == 1){

// output_toggle(YELLOW_LED);

 33

 //Read_16(); //reads ADC

 //Split_16(ADC_Val);

// Get_Data(); //Fills the Analog_in array to be median filtered

 //Split ADC value into separate bytes and send them via I2C

// Split_16(Median());

// Write_Slave(0xB2,0,L_Byte);

// Write_Slave(0xB2,1,H_Byte);

// }

 //enable_interrupts(INT_CCP2);

}

void main (void) {

ext_int_edge(2, L_TO_H); // Set up PIC18 EXT2 (PIN_B2)

enable_interrupts(INT_EXT2);

setup_ccp1(CCP_COMPARE_INT|CCP_COMPARE_RESET_TIMER);

setup_ccp2(CCP_COMPARE_INT|CCP_COMPARE_RESET_TIMER);

enable_interrupts(INT_CCP1);

//enable_interrupts(INT_CCP2);

enable_interrupts(global);

T1CON = 0b11100101; //Setup Timer1

T3CON = 0b10101101; //Setup Timer3 (use cpu clk, div_by_4, CCP1 =

Timer1, CCP2 = Timer3)

// 1/((24000000/4)/4) = .666667us per timer increment

CCP_1 = 1499;//CCP2*.667us = 1ms CCP2 = 1499 for a 1ms interrupt

//CCP_2 = 149; //CCP1*.667us = 100us

CCP_2 = 149; //CCP1*.667us = 100us

 //initialize ADC

 adc_init();

 delay_ms(250);

 //DAC_16(0b1111111111111111);

//USB_VARS[0] = 5000; //in ms

//USB_VARS[1] = 5000; //in ms

//USB_VARS[2] = 5; //in ms

//USB_VARS[3] = 65000;

//USB_VARS[4] = 5;

//Short_Time = USB_VARS[2];

output_high(GREEN_LED);

 while(TRUE){

//output_high(GREEN_LED);

//output_low(YELLOW_LED);

if(charging == 0 && reading == 0 && shorting == 0 && Go == 1){

 //Charge_Time = USB_VARS[0];

 //Read_Time = USB_VARS[1];

 // Short_Time = USB_VARS[2];

 34

 // Voltage = USB_VARS[3];

 // Cycles = USB_VARS[4];

 //DAC_16(Voltage);

 //disable_interrupts(GLOBAL);

 Go = 0;

 output_low(Charge_Cap);

 output_low(Short_Cap);

 output_high(Charge_Cap);

 output_high(Cap_Relay);

 charging =1; //Sets charging flag

 reading = 0;

 shorting = 0;

 delay_ms(10);

 Write_Slave(0xB2,2,1);//Tell Slave to tell VB that Status is

charging

 delay_ms(2);

 charge_delay = 0;

 // enable_interrupts(GLOBAL);

 Go = 1;

}

if(charging == 1 && Go == 1){

// output_high(GREEN_LED);

 //output_low(RED_LED);

// reading = 0;

 if(charge_delay >= Charge_Time){

// disable_interrupts(GLOBAL);

Go = 0;

 charging = 0;

 reading = 0;

 shorting = 0;

 charge_delay = 0;

 output_low(Charge_Cap); //

 delay_ms(10);

 Write_Slave(0xB2,2,2);//Tell Slave to tell VB that Status is shorted

 delay_ms(2);

 output_high(Short_Cap); // Short Cap

// delay_ms(10);

 shorting = 1;

 short_delay = 0;

// enable_interrupts(GLOBAL);

Go = 1;

 }

 35

 }

 if (shorting ==1 && Go == 1){

 if (short_delay >= Short_Time){

// disable_interrupts(GLOBAL);

Go = 0;

 shorting = 0;

 charging = 0;

 reading = 0;

 short_delay = 0;

 //delay_ms(Short_Time); // Short Time

 output_low(Cap_Relay);

 output_low(Short_Cap); //

 delay_ms(10);

 Write_Slave(0xB2,2,3); //Tell Slave to tell VB that Status is reading

 delay_ms(2);

 reading = 1;

 read_delay = 0;

 //enable_interrupts(GLOBAL);

 Go = 1;

 }

 }

 if(reading ==1 && Go == 1){

 //output_high(RED_LED);

 //output_low(GREEN_LED);

 if(read_delay >= Read_Time){

 // disable_interrupts(GLOBAL);

 Go = 0;

 reading = 0;

 shorting = 0;

 charging = 0;

 read_delay = 0;

 delay_ms(10);

 Write_Slave(0xB2,2,1);//Tell Slave to tell VB that Status is

charging

 delay_ms(2);

 output_low(Short_Cap);

 output_high(Charge_Cap);

 output_high(Cap_Relay);

 charging = 1;

 //delay_ms(10);

 charge_delay = 0;

 // enable_interrupts(GLOBAL);

 Go = 1;

 Cyc_Num = Cyc_Num + 1;

 if(Cyc_Num >= Cycles){

 Go = 0;

 Cyc_Num = 0;

 36

 output_high(GREEN_LED);

 output_low(RED_LED);

 output_low(YELLOW_LED);

 }

 else{output_high(RED_LED); output_low(GREEN_LED);}

 }

 }

 }

}

Source code for GUI:

Imports System
Imports System.IO
Imports System.Windows.Forms
Imports System.Security.Permissions

Public Class Data_Collect
 ' vendor and product IDs
 Private Const VendorID As Short = &H461 'Replace with your device's
 Private Const ProductID As Short = &H20 'product and vendor IDs

 ' read and write buffers
 Private Const BufferInSize As Short = 5 'Size of the data buffer coming IN to
the PC
 Private Const BufferOutSize As Short = 4 'Size of the data buffer going OUT
from the PC
 Dim BufferIn(BufferInSize) As Byte 'Received USB data will be stored
here - the first byte in the array is unused
 Dim BufferOut(BufferOutSize) As Byte 'Transmitted USB data is stored here -
the first item in the array must be 0

 ' Other Global Varables
 Dim Value_In As UInt16 'Concatanated bytes to make a 16 bit
value

 'Devin's House
 Dim DataFileName As String = "C:\Users\dhubbard\Desktop\Cap_Data\test.txt"

 'Phillips Computer
 'Dim DataFileName As String = "C:\Users\CASE\Desktop\Cap_Data\test.txt"

 Dim Take_Data As Boolean = False
 Dim Take_Data1 As Boolean = False
 Dim count As ULong = 0
 Dim count2 As ULong = 0
 Public maximumvalue As Integer = 0
 Public maximumvalue2 As Integer = 0
 Dim data_in(1) As UInt16
 Dim data_in2(1) As UInt16

 37

 Dim datafile As New System.IO.StreamWriter(DataFileName, True)

 Dim Volts As UInt16 = 50000
 Dim Charge_tim As UInt16 = 5000
 Dim Read_tim As UInt16 = 5000
 Dim Short_tim As UInt16 = 500
 Dim Cycs As UInt16 = 3
 Dim Zer As UInt16 = 0
 Dim Status As UInt16 = 0
 Dim Next_read As UInt16 = 0
 Dim Modflag As Boolean = False
 Dim value As UInt16 = 0
 Dim value1 As UInt16 = 0
 Dim maxholder As UInt16 = 0
 Dim minholder As UInt16 = 0
 Dim holder As UInt16 = 0
 Dim plot_count As Integer = 0
 Dim plot_count2 As Integer = 0
 Dim stat_flag As Boolean = False

 ' **
 ' when the form loads, connect to the HID controller - pass
 ' the form window handle so that you can receive notification
 ' events...
 '***
 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 ' do not remove!
 ConnectToHID(Me)

 currentLogFile.Text = DataFileName
 Voltage_16.Text = CStr(Volts)
 Charge_Time_16.Text = CStr(Charge_tim)
 Short_Time_16.Text = CStr(Short_tim)
 Read_Time_16.Text = CStr(Read_tim)
 Cycles_16.Text = CStr(Cycs)

 End Sub

 '***
 ' disconnect from the HID controller...
 '***
 Private Sub Form1_FormClosed(ByVal sender As Object, ByVal e As
System.Windows.Forms.FormClosedEventArgs) Handles Me.FormClosed
 DisconnectFromHID()
 End Sub

 '***
 ' a HID device has been plugged in...
 '***
 Public Sub OnPlugged(ByVal pHandle As Integer)
 'TextBox1.Text = "Yay"
 If hidGetVendorID(pHandle) = VendorID And hidGetProductID(pHandle) =
ProductID Then
 ' ** YOUR CODE HERE **
 USB_Label.Text = "Connected"
 End If

 38

 End Sub

 '***
 ' a HID device has been unplugged...
 '***
 Public Sub OnUnplugged(ByVal pHandle As Integer)
 If hidGetVendorID(pHandle) = VendorID And hidGetProductID(pHandle) =
ProductID Then
 hidSetReadNotify(hidGetHandle(VendorID, ProductID), False)
 ' ** YOUR CODE HERE **
 USB_Label.Text = "Disconnected"
 End If
 End Sub

 '***
 ' controller changed notification - called
 ' after ALL HID devices are plugged or unplugged
 '***
 Public Sub OnChanged()
 ' get the handle of the device we are interested in, then set
 ' its read notify flag to true - this ensures you get a read
 ' notification message when there is some data to read...
 Dim pHandle As Integer
 pHandle = hidGetHandle(VendorID, ProductID)
 hidSetReadNotify(hidGetHandle(VendorID, ProductID), True)
 End Sub

 '***
 ' on read event...
 '***
 Public Sub OnRead(ByVal pHandle As Integer)
 ' read the data (don't forget, pass the whole array)...
 If hidRead(pHandle, BufferIn(0)) Then
 ' ** YOUR CODE HERE **
 ' first byte is the report ID, e.g. BufferIn(0)
 ' the other bytes are the data from the microcontroller...

 'Bring two bytes into one 16-bit value, BufferIn(1) = HByte,
BufferIn(2) = LByte
 value = BitConverter.ToUInt16(BufferIn, 1)

 ADC_Val_textbox.Text = CStr(value)
 TextBox4.Text = CStr(Status)

 ' The following three if statements ensure help eliminate erroneous
data
 If Status = 0 Then Take_Data = False 'Fixes false starts

 minholder = Math.Min(value, value1)
 maxholder = Math.Max(value, value1)
 holder = maxholder - minholder
 If holder > 500 Then Take_Data1 = False 'Helps with data blips
 If holder < 500 Then Take_Data1 = True 'Helps with data blips

 39

 If value > 4 Then value1 = value

 'If stat_flag = False Then
 If value < 4 And value > 0 Then
 Take_Data = False
 Modflag = True
 plot_count = 10
 plot_count2 = 10
 stat_flag = True

 End If

 If Modflag = True Then
 Next_read = Next_read + 1
 End If

 If value = 1 Then
 BufferOut(1) = 16 'Tell the PIC that Charging indicator was
received
 hidWriteEx(VendorID, ProductID, BufferOut(0))
 Status = 1
 count = 0
 count2 = 0
 maximumvalue = 0
 maximumvalue2 = 0
 ReDim data_in(count)
 ReDim data_in2(count2)

 End If
 If value = 2 Then
 BufferOut(1) = 17 'Tell the PIC that a new Voltage value is
available
 hidWriteEx(VendorID, ProductID, BufferOut(0))
 Status = 2
 End If
 If value = 3 Then
 BufferOut(1) = 18 'Tell the PIC that a new Voltage value is
available
 hidWriteEx(VendorID, ProductID, BufferOut(0))
 Status = 3
 End If

 'End If

 If Take_Data = True And Take_Data1 = True Then
 Dim datafile As New System.IO.StreamWriter(DataFileName, True)
 datafile.WriteLine(ControlChars.Tab & value & ControlChars.Tab &
Status)
 datafile.Close()

 40

 If Status = 3 Then
 plot_count = plot_count + 1

 If plot_count > 10 Then
 data_in(count) = value
 If value > maximumvalue Then maximumvalue = value
 picDataPlot.Refresh()
 count = count + 1
 ReDim Preserve data_in(count)
 'ReDim data_in(count)
 plot_count = 0
 End If

 End If
 'End If

 plot_count2 = plot_count2 + 1
 If plot_count2 > 10 Then
 data_in2(count2) = value
 If value > maximumvalue2 Then maximumvalue2 = value
 picDataPlot2.Refresh()
 count2 = count2 + 1
 ReDim Preserve data_in2(count2)
 'ReDim data_in2(count2)
 plot_count2 = 0
 End If

 End If

 If Next_read > 2 Then
 Take_Data = True
 Next_read = 0
 Modflag = False
 End If

 End If
 End Sub

 'Red Led Toggle
 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click

 'BufferOut(1) = 1
 If BufferOut(1) >= 1 Then
 BufferOut(1) = 0
 Else : BufferOut(1) = 1
 End If

 hidWriteEx(VendorID, ProductID, BufferOut(0))

 41

 'TextBox1.Text = "Hello World"
 End Sub

 'Data Filename textbox
 Private Sub TextBox1_TextChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles newFilename.TextChanged
 'DataFileName = newFilename.Text
 End Sub

 Private Sub TextBox2_TextChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles currentLogFile.TextChanged

 End Sub

 Private Sub TextBox3_TextChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ADC_Val_textbox.TextChanged

 End Sub

 Private Sub TextBox4_TextChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles TextBox4.TextChanged

 End Sub

 Private Sub Label2_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles USB_Label.Click

 End Sub

 Public Sub Graph_paint(ByVal sender As Object, ByVal e As
System.Windows.Forms.PaintEventArgs) Handles picDataPlot.Paint
 Dim picturebox_height, picturebox_width As Double
 Dim gfx As System.Drawing.Graphics
 Dim points() As Point
 Dim Control() As Point
 Dim graph_1 As Pen
 Dim i As Integer = 0
 Dim x_centre As Double
 Dim y_centre As Double
 Dim x_offset As Double
 Dim y_offset As Double
 On Error Resume Next
 x_offset = 10
 On Error Resume Next
 y_offset = 10
 gfx = e.Graphics
 picturebox_width = picDataPlot.Width - x_offset
 picturebox_height = (picDataPlot.Height - y_offset)
 gfx.TranslateTransform(x_offset, picturebox_height)
 ReDim Preserve points(count)
 ReDim Preserve Control(count)
 For i = 0 To count
 Control(i).X = i * (picturebox_width / (count))
 Control(i).Y = (-1) * ((picturebox_height) / maximumvalue)
 points(i).X = i * (picturebox_width / (count))

 42

 points(i).Y = (-1) * data_in(i) * ((picturebox_height) / maximumvalue)

 Next
 gfx.DrawLines(Pens.Red, points)
 gfx.DrawLines(Pens.Blue, Control)
 End Sub
 Public Sub Graph_paint2(ByVal sender2 As Object, ByVal e As
System.Windows.Forms.PaintEventArgs) Handles picDataPlot2.Paint
 Dim picturebox_height2, picturebox_width2 As Double
 Dim gfx2 As System.Drawing.Graphics
 Dim points2() As Point
 Dim Control2() As Point
 Dim graph_12 As Pen
 Dim i2 As Integer = 0
 Dim x_centre2 As Double
 Dim y_centre2 As Double
 Dim x_offset2 As Double
 Dim y_offset2 As Double
 On Error Resume Next
 x_offset2 = 10
 On Error Resume Next
 y_offset2 = 10
 gfx2 = e.Graphics
 picturebox_width2 = picDataPlot2.Width - x_offset2
 picturebox_height2 = (picDataPlot2.Height - y_offset2)
 gfx2.TranslateTransform(x_offset2, picturebox_height2)
 ReDim Preserve points2(count2)
 ReDim Preserve Control2(count2)
 For i2 = 0 To count2
 Control2(i2).X = i2 * (picturebox_width2 / (count2))
 'Control2(i2).Y = (-1) * 5
 Control2(i2).Y = (-1) * ((picturebox_height2) / maximumvalue2)
 points2(i2).X = i2 * (picturebox_width2 / (count2))
 points2(i2).Y = (-1) * data_in2(i2) * ((picturebox_height2) /
maximumvalue2)

 Next
 gfx2.DrawLines(Pens.Red, points2)
 gfx2.DrawLines(Pens.Blue, Control2)
 End Sub

 'Set File Name
 Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles createFile.Click

 Take_Data = False
 Volts = Val(Voltage_16.Text)
 Charge_tim = Val(Charge_Time_16.Text)
 Read_tim = Val(Read_Time_16.Text)
 Short_tim = Val(Short_Time_16.Text)
 Cycs = Val(Cycles_16.Text)
 'DataFileName = "D:\Zack\Collected_Data\" + newFilename.Text
 DataFileName = newFilename.Text
 Dim datafile As New System.IO.StreamWriter(DataFileName, True)
 datafile.WriteLine(ControlChars.Tab & Volts & ControlChars.Tab & Zer)
 datafile.WriteLine(ControlChars.Tab & Charge_tim & ControlChars.Tab & Zer)
 datafile.WriteLine(ControlChars.Tab & Read_tim & ControlChars.Tab & Zer)
 datafile.WriteLine(ControlChars.Tab & Short_tim & ControlChars.Tab & Zer)

 43

 datafile.WriteLine(ControlChars.Tab & Cycs & ControlChars.Tab & Zer)
 datafile.Close()
 currentLogFile.Text = newFilename.Text
 End Sub

 Private Sub collectData_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles collectData.Click
 Take_Data = True
 End Sub

 Private Sub pauseCollect_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles pauseCollect.Click
 Take_Data = False
 End Sub

 Private Sub TextBox3_TextChanged_1(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ADC_Val_textbox.TextChanged

 End Sub

 Private Sub Load_Settings_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Load_Settings.Click

 count = 0
 count2 = 0
 ReDim data_in(1)
 ReDim data_in2(1)
 maximumvalue = 0
 maximumvalue2 = 0

 picDataPlot.Refresh()
 picDataPlot2.Refresh()

 value1 = 0

 currentLogFile.Text = DataFileName

 Status = 0
 Volts = Val(Voltage_16.Text)
 Charge_tim = Val(Charge_Time_16.Text)
 Read_tim = Val(Read_Time_16.Text)
 Short_tim = Val(Short_Time_16.Text)
 Cycs = Val(Cycles_16.Text)

 'Convert 16-bit numbers into separate bytes\
 Dim Volts_8 As Byte() = BitConverter.GetBytes(Volts)
 Dim C_tim_8 As Byte() = BitConverter.GetBytes(Charge_tim)
 Dim R_tim_8 As Byte() = BitConverter.GetBytes(Read_tim)
 Dim S_tim_8 As Byte() = BitConverter.GetBytes(Short_tim)
 Dim Cycs_8 As Byte() = BitConverter.GetBytes(Cycs)

 '''''''Load each individually into Bufferout and send via USB to the Slave
Pic'''''''''

 44

 BufferOut(1) = 22 'Tell the PIC that a new Voltage value is available
 hidWriteEx(VendorID, ProductID, BufferOut(0))
 BufferOut(1) = Volts_8(0)
 BufferOut(2) = Volts_8(1)
 hidWriteEx(VendorID, ProductID, BufferOut(0))

 BufferOut(1) = 23 'Tell the PIC that a new Charge time is available
 hidWriteEx(VendorID, ProductID, BufferOut(0))
 BufferOut(1) = C_tim_8(0)
 BufferOut(2) = C_tim_8(1)
 hidWriteEx(VendorID, ProductID, BufferOut(0))

 BufferOut(1) = 24 'Tell the PIC that a new Read time is available
 hidWriteEx(VendorID, ProductID, BufferOut(0))
 BufferOut(1) = R_tim_8(0)
 BufferOut(2) = R_tim_8(1)
 hidWriteEx(VendorID, ProductID, BufferOut(0))

 BufferOut(1) = 26 'Tell the PIC that a new Short time value is available
 hidWriteEx(VendorID, ProductID, BufferOut(0))
 BufferOut(1) = S_tim_8(0)
 BufferOut(2) = S_tim_8(1)
 hidWriteEx(VendorID, ProductID, BufferOut(0))

 BufferOut(1) = 27 'Tell the PIC that a new Cycles value is available
 hidWriteEx(VendorID, ProductID, BufferOut(0))
 BufferOut(1) = Cycs_8(0)
 BufferOut(2) = Cycs_8(1)
 hidWriteEx(VendorID, ProductID, BufferOut(0))

 Take_Data = True

 End Sub

 Private Sub picDataPlot_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles picDataPlot.Click
 Refresh()
 End Sub

End Class

 45

REFERENCES

[1] Pease, R. (1998) What’s All This Soakage Stuff, Anyhow?, Electronic Design

Magazine, 46(11), 125-128.

[2] Pease, R. (1982) Understanding Capacitor Soakage to Optimize Analog Systems.

Electronic Design Magazine , 27(20), 125-129.

[3] Iorga C. (2000)Compartmental Analysis of Dielectric Absorption in Capacitors,

IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 7 No. 2 April

2000.

[4] Harris CM, Todd RW, Bungart SJ, Lovitt RW, Morris JG, Kell DB (1987)

Dielectric permittivity of microbial suspensions at radio-frequencies: a novel

method for the real-time estimation of microbial biomass. Enzyme Microb.

Technol. 9: 181–186.

[5] Kell, D.B. (1987) The principles and potential of electrical admittance

spectroscopy: an introduction. In: Turner, A.P.F., Karube, I. and Wilson, G.S.

(Eds.), Biosensors: Fundamentals and Applications. Oxford University Press,

Oxford, pp. 427-468.

[6] Schwan HP (1957) Electrical properties of tissue and cell suspensions. Adv. Bio.

Med. Phys. 5: 147–209.

[7] Fehrenbach R, Comberbach M, Petre JO (1992) On-line biomass monitoring by

capacitance measurement. J Biotechnol. 23: 303–314.

[8] Hubbard, DK. (2010) The use of Dielectric Absorption as a Method for

Quantifying and Qualifying Dielectric Materials in Capacitors; MS Thesis,

University of North Carolina at Chapel Hill, Chapel Hill, NC

[9] Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294-306

[10] Schenk P, Thomas-Hall S, Stephens E, Marx U, Mussgnug J, Posten C et al

(2008) Second generation biofuels: high-efficiency microalgae for biodiesel

production. Bioenergy Res 1:20-43

[11] Goldman J (1979) Outdoor algal mass cultures-II. Photosynthetic yield

limitations. Water Res 13:119-136

[12] Weyer KM, Bush DR, Darzins A, Willson BD (2009) Theoretical Maximum

Algal Oil Production

 46

[13] Roessler PG, Brown LM, Dunahay TG, Heacox DA, Jarvis EE, Schneider JC, et

al. Genetic-engineering approaches for enhanced production of biodiesel fuel

from microalgae. ACS Symp Ser 1994;566:255-70

[14] Sheehan J, Dunahay T, Benemann J, Roessler P (1998) Look back at the U.S.

Department of Energy’s Aquatic Species Program: biodiesel from algae; Close-

Out Report. NREL Report No. TP-580-24190

