KIRBY N. SMITH: Computer Modeling of Contaminant Jet Flow into Local Exhaust Hoods. (Under the direction of Assistant Professor, Michael R. Flynn, Sc.D.).

A computer model was developed and coded in BASIC to predict the streamline that a jet of gaseous sulfur hexafluoride will follow in the flow field of a flanged circular exhaust hood (FCH). This approximate solution is based on the vector addition of a modified potential flow solution for the FCH , and a jet flow solution. The assumptions underlying the equations describing jet flow are those of the Prandtl mixing length hypothesis. The computer program generates streamlines for the combined flow by means of iterative vector addition. The interactive program prompts the user for the hood and jet diameters and flows, and the distance from the hood at which the jet is placed. A graphic plot of the predicted streamline followed by the gas jet is displayed.

The program is used to predict the critical distance $[Z / D]_{50}$, the distance along the hood centerline (Z), as a fraction of the hood diameter (D), where the jet can be placed such that 50% of the jet contaminant flow is captured. A series of such $[Z / D]_{50}$ values was generated for twenty-one hood and jet flow combinations.

The program was validated in the laboratory. A probe was placed in the duct of a flanged circular exhaust hood and was connected to an electron-capture gas chromatograph, to determine the concentration of SF_{6} in the hood. Capture efficiencies (ratios of "captured" gas concentrations at various jet-hood distances to concentrations in the duct when the jet flow is fully captured) were determined for jet positions at intervals along the hood centerline. Five replicate measurements were collected per position, for all combinations of jet and hood flow.

Results indicate that the model is quite accurate when crossdrafts are accounted for, except for predicted $[Z / D]_{50}$ values of less than 0.7 , which occur quite close to the hood face. The approximate model errs in this region because it neglects the effects on the jet of the static pressure gradient created by the flow of the exhaust hood, and the shear turbulence of the interacting streamlines of jet and hood flow.

The model may be expanded in the future to include definitive crossdraft variations, other jet locations or directions, hoods of other shapes, or heat and gas buoyancy effects.

Key Words: Critical distance, flanged circular exhaust hood, capture efficiency, ventilation.
TABLE OF CONTENTS
Page
LIST OF FIGURES iv
LIST OF TABLES v
LIST OF APPENDICES vi
ACKNOWLEDGEMENTS vii
I. INTRODUCTION 1
II. LOCAL EXHAUST VENTILATION DESIGN
A. CAPTURE VELOCITY CONCEPTS 5
B. CAPTURE EFFICIENCY CONCEPTS 18
III. BACKGROUND TO THE COMPUTER MODEL
A. ELEMENTS OF POTENTIAL THEORY 27
B. POTENTIAL FLOW SOLUTIONS FOR FLANGED CIRCULAR HOODS 31
C. CIRCULAR JET FLOW AND THE SCHLICHTING EQUATIONS 36
IV. PURPOSE AND OBJECTIVES 49
V. METHODS
A. COMPUTER MODEL 52
B. LABORATORY VALIDATION 58
C. STATISTICAL EVALUATION 62
VI. RESULTS AND DISCUSSION
A. LOGIT CAPTURE EFFICIENCY REGRESSION ON [2/D] RATIOS 64
B. PREDICTED VS. EXPERIMENTAL [$2 / \mathrm{D}]_{50}$ CRITICAL DISTANCES 67
C. HOOD TO JET FLOW RATIOS VS. $[Z / D]_{50}$: PREDICTIONS AND CROSSDRAFT EFFECTS 73
D. THE ROLE OF ϵ_{O}, THE APPARENT KINEMATIC (EDDY) VISCOSITY 80
VII. CONCLUSIONS AND RECOMMENDATIONS 82
VIII. REFERENCES 86APPENDICES

LIST OF FIGURES

Page

1. EXHAUST AIR SYSTEM 4
2. HOOD DESIGN TYPES 6
3. EQUAL VELOCITY CONTOURS 9
4. HOOD FLOW NOMOGRAM 13
5. POTENTIAL LINES AND STREAMLINES FOR AN FCH,
DISTURBED BY A CROSSDRAFT
6. IDEALIZED CONTAMINANT STREAMLINES 24
7. STREAMLINES IN A FREE CIRCULAR TURBULENT JET 37
8. VELOCITY PROFILES FOR AN AXISYMMETRIC JET 38
9. AXISYMMETRIC JET DIAGRAM 40
10. THE MIXING LENGTH CONCEPT 42
11. VELOCITY DISTRIBUTION IN A CIRCULAR TURBULENT JET 48
12. EXPERIMENTAL DESIGN 57
13. EXPERIMENTAL vs. PREDICTED $[2 / D]_{50}$'s 68
14. EXPERIMENTAL AND PREDICTED [Z/D] 50 's vs. [Qh/Qj], 74
at 25 fpm CROSSDRAFT
15. EXPERIMENTAL AND PREDICTED $[\mathrm{Z} / \mathrm{D}]_{50}$'s vs. [Qh/Qj], 75
at no CROSSDRAFT
16. EXPERIMENTAL AND PREDICTED $[2 / D]_{50}$'s vs. [Qh/Qj], at 5 fpm CROSSDRAFT
Page
17. CAPTURE VELOCITIES 7
18. EMPIRICAL DESIGN DATA FOR NON-DIMENSIONAL CENTERLINE VELOCITY GRADIENTS 16
19. SUMMARY OF INITIAL RESULTS 65
20. VALUES OF ϵ_{O}, AND OF CROSSDRAFT, REQUIRED TOMATCH PREDICTED [Z/D] 50 WITH EXPERIMENTAL(MODIFIED LOGIT) $[Z / D]_{50}$79
A. RESEARCH COMPUTER PROGRAM.
B. COMPUTER PREDICTIONS OF $[Z / D]_{50}$'s AT CROSSDRAFT=25fpm (3 EXAMPLES)
C. EXPERIMENTAL DATA, CALIBRATION THEREOF, AND EFFICIENCY CALCULATIONS
D. DATA FOR REGRESSION OF LOGIT-TRANSFORMED EFFICIENCY ON [$Z / D]$; CALCULATION OF ω AND μ
E. LOGIT CAPTURE EFFICIENCY REGRESSION ON [Z/D]
F. EXPERIMENTAL DATA: RESULTS SUMMARY
G. "EPSILON" MODIFICATION OF RESEARCH COMPUTER PROGRAM

My sincere thanks are due to Dr. Michael R. Flynn for his direction and enthusiasm for this research project. His occasional suggestions were helpful, as was the freedom he allowed me in pursing my intellectual curiosity regarding adjunct issues. Appreciation is also extended gratefully to my committee members Drs. Cass T. Miller and David Leith. Dr. Leith provided the cyclone and Venturi meter, without which this project would not have been possible.

I. INTRODUCTION

Industrial hygienists typically use a variety of control measures to abate the danger to workers of inhaling toxic materials. These may include engineering or administrative controls, and possibly the use of personal protective equipment. Because inhaled toxic materials may give rise to a variety of deleterious health effects, it is important to minimize such exposures.

Engineering controls are easily the more desirable of protective measures because they ensure that the worker is actually exposed to the toxin or otherwise hazardous material as little as possible. Engineering controls in general do not require active participation on the part of the worker to be effective (controls are "designed in"), and are therefore recommended over measures requiring considerable training and, especially, supervision, such as personal protective equipment or even administrative rotation [1].

Ventilation is a desirable and useful engineering control. Dilution ventilation reduces the air concentration of toxin in the entire work area by bringing in uncontaminated air with which it is diluted. Dilution ventilation is useful when the contaminant concentration or toxicity is fairly low, if the contaminant is released reasonably uniformly in the workroom, and if the worker(s) are somewhat removed in location from the process.

Otherwise, dilution ventilation is insufficient. Local exhaust ventilation is particularly necessary for close work with concentrated toxic materials.

Local exhaust ventilation (LEV) is most usefully designed so the contaminant does not have a chance to escape in quantity into the room air. When LEV is properly designed, other forms of protection, such as masks and/or respirators may not be necessary. The basic elements of LEV consist of a hood or hoods, ductwork, fan(s) and an air cleaning system [2].

Hoods preferably are designed to be enclosures encompassing the exhaust from the entire process. When this is not possible, the hood may be placed to receive or capture the bulk of the air flow from a process, and should be placed as close to the process as possible. Receiving hoods are placed so that the contaminant material will flow into them. Grinding wheel hoods and canopies over hot processes are receiving hoods. "Capture" hoods on the other hand must be designed so the ventilation system creates a strong enough flow field to entrain and capture the contaminant. LEV hood design will be reviewed in the next section.

The contaminant in air is removed through the ductwork to the air cleaning device by the fan. By creating in the ductwork a static pressure differential negative to the atmosphere, the specifically-chosen fan moves a quantity of air with a certain velocity. Ductwork and air cleaner
design depend on the process employed, its temperature, the particle size and density of the material expelled, the toxicity thereof, and the cleaning efficiency required [Figure 1].

The air cleaning device removes the contaminant from the airstream brought to it by the ventilation system described above. Air is usually exhausted to the outside atmosphere through an exhaust stack once the particulates and toxins have been largely removed. Under certain circumstances, e.g., where atmospheric air would have to be excessively heated or otherwise conditioned, some proportion of exhaust air may be recirculated.

Designs of the LEV systems have remained fairly stagnant since World War II, partially because the older methods were seen as "adequate." Until the 1980s a relative lack of theoretical work was available which would affect system design concepts. The goal of such theoretical work is not only to understand better the fundamentals, but is also to provide workers with better protection for the engineering dollar spent.

FIGURE 1.
EXHAUST AIR SYSTEM

SOURCE: REFERENCE 3

II. LOCAL EXHAUST VENTILATION DESIGN

A. CAPTURE VELOCITY CONCEPTS

Many different configurations of hood designs are possible for control of the exhaust of every conceivable industrial process. Nonetheless there are a few standard designs that are used routinely, and which have been tested widely. Slots, rectangular and round openings are the most common; cabinets and booths are used to enclose whole processes, and canopies are placed over evaporative processes [Figure 2]. Traditionally, local exhaust ventilation designs relied on a single unifying concept, that of "capture velocity." The design equations developed by Dalla Valle and Silverman in the 1930s all rely on this design parameter, and it is the primary focus of designs still promulgated by the ACGIH, in their Industrial Ventilation Manual [3].

Velocity must be sufficient to entrain the contaminant in the airflow toward the hood so it does not disperse or settle out before being "captured" by the exhaust system. Particular processes generate contaminants of different characteristics (gaseous vs. particulate; light vs. heavy or dense particles; contaminants released with low or very high initial velocity). Each characteristic should contribute to the evaluation of the capture velocity necessary [Table 1]. Then the volumetric flow (Q) necessary may be calculated

FIGURE 2.
HOOD DESIGN TYPES
COSCRIPTION

SOURCE: REFERENCE 3

TABLE 1.

CAPIURE VELOCITIES

Condition of Dispersion of Contaminant	Examples	Capture Velocity, fpm
Released with practically no velocity Into quiet alr.	Evaporation from tanks; degreasing. etc.	50-100
Released at low velocity into moderately stll alr.	Spray booths; Intermittent contalner tilling: low speed conveyor transfers; welding: plating: pickding	100-200
Acuve generation Into zone of rapld alr motion	Spray palating in shallow booths; barrel fllling: conveyor loading: crushers	200-500
Released at high Intial velocity into zone of very rapld alr motion.	Grinding; abrasive blasting, tumbling	500-2000
In each eategory above, a range of capture veloctity is shown. The proper cholce of values depends on several factors: Lower End of Range Upper End of Range		
1. Room air currents minimal or favorable to capture. 2. Contaminants of low toxicity or of nulsance value only. 3. Intermittent, tow production. 4. Large hood-large alr mass In motion. 1. Disturblag room alr currents. 2. Contaminants of high toxicity. 3. High production, heavy use. 4. Small hood-local control only.		

easily, in conjunction with the use of a "VS Print" (a plan of a ventilation system typical for the process) taken from or adapted from the ACGIH Manual.

For standard hood configurations such as round or rectangular, flanged or unflanged hoods, Dalla Valle [4] developed the original "rule-of-thumb" equations. He mathematically related several variables he found to be characteristic of hood velocity values he measured at various locations in front of LEV hoods. In general Dalla Valle established the concept of the centerline velocity gradient as a function of distance from the hood (X), volume airflow (Q), and hood shape and flanging. He showed that the surfaces of equal velocity into an exhaust hood were of the same shape and relative position for all similarly shaped hoods. While he mistakenly equated equal velocity contours with equipotential surfaces, in alluding to potential theory as a possible basis for description of streamlines of airflow, he not only formed the basis for the capture velocity concept, but also paved the way for the theory which superceded it.

The use of a modified Pitot tube allowed Dalla Valle to map the equal velocity contours of various exhaust hoods [Figure 3]. A general equation was the result of his studies:

$$
\begin{equation*}
f(Y)=m /\left(X^{n}\right), \tag{1}
\end{equation*}
$$

where: $\quad \mathrm{n}=\mathrm{a}$ constant: -1.91;

Fia 3 Vibett Contotm ron J-Ince st Q-Inca Orexixa

```
X = the horizontal distance from the hood
    along its centerline;
m = bA
```

 where: \(b\) depends on the aspect ratio of \(a\)
 rectangular hood, or \(=0.0825\) for
 round hoods;
 \(A=\) the hood face area;
 \(\mathrm{k}=\mathrm{a}\) constant: 1.04 ; and
 \(f(Y)=\) the point velocity at \(X\), as fraction
 of \(\mathrm{Y}=\) the average face velocity.
 Dalla Valle later simplified this model for round hoods, or rectangular hoods with aspect ratio ($A R=$ width/length) greater than 0.2 . This simplification has been rearranged in the Ventilation Manual as:

$$
\begin{equation*}
V=Q /\left(10 X^{2}+A\right) \tag{2}
\end{equation*}
$$

where: $\quad X \leq 3 / 2 \mathrm{D}$;
$D=$ the hood diameter or side length;
$V=$ the air velocity in feet per minute (fpm);
$Q=$ volume flow in cubic feet per minute (cfm).

Dalle Valle believed that flanges reduce the volume flow required by about 33% for the same required capture velocity, so the simplified (ACGIH) equation for flanged hoods became:

$$
\begin{equation*}
V=Q /\left[.75\left(10 X^{2}+A\right)\right], \tag{3}
\end{equation*}
$$

which Garrison [10] says is good for the region beyond about .4D away from the hood face.

Several years after Dalla Valle's work Silverman continued his investigations [5]. While he was unable to improve upon Dalla Valle's simple equations for round hoods and rectangular hoods of aspect ratios of >0.2, Silverman was able to provide handy equations for slots (defined as having $\mathrm{AR} \leq 0.2$). His empirical solutions were:
for unflanged: $\quad V=23.8 Q[(W+1) / W] / X L ;$ and
for flanged: $\quad V=55.4 \mathrm{Q} / \mathrm{XL}$,

```
where: \(L=\) the length of the slot hood;
\(\mathrm{W}=\) the width of the slot hood; and
\(X\) is defined as in the Dalla Valle equations.
```

These equations have been reduced and corrected in the ACGIH Ventilation Manual to the following:
for unflanged: $\quad V=Q /(3.7 L X)$; and
for flanged: $\quad V=Q /(2.6 L X)$.

A much more extensive investigation of the effect of aspect ratio on the centerline velocity gradient was conducted by Fletcher [6]. For fixed volume flows and hood areas, the velocity at any given point X on the hood
centerline increased as the AR decreased (became more slotlike). Fletcher developed an equation for unflanged slot hoods of AR's from 1:1 to 1:16 relating these variables, and then constructed a convenient nomogram [Figure 4]. Fletcher's equation is:

$$
\begin{equation*}
v / v_{0}=1 /\left(0.93+8.58 a^{2}\right) \tag{8}
\end{equation*}
$$

where: $\quad a=\left[X / A \cdot{ }^{5}\right][W / L]^{-B}$; and $B=0.2\left[X / A^{-5}\right]^{-1 / 3}$; and $\mathrm{V}_{\mathrm{O}}=$ hood face velocity; and
other variables are defined as before.

The effects of flanging on the centerline velocity were studied subsequently by Fletcher [7]. Because flanges cut down significantly on the volume flow necessary to produce a given centerline velocity, they increase the efficiency and decrease the cost of ventilation systems which use them [8]. He was able to demonstrate that the optimum flange width equalled the square root of the hood opening area, and the effect of the flange increases as the aspect ratio decreases (becomes more slot-like). An adjacent surface [9] likewise increases the centerline velocity of an exhaust hood by cutting down the air volume from which flow is drawn into the hood. Equal centerline velocities may be obtained in either case with the use of lower total volume flows.

FIGURE 4.
HOOD FLON NOMDGRAM
(FLETCHER)
SOURCE: REFERENCE 6

More recently, Garrison [10] has studied high velocitylow volume (HVLV) systems and compared the results to the work of Dalla Valle and followers. Generally, he found that the ACGIH Ventilation Manual equations were suitable, but disagreed that flanging added 33% to centerline velocity gradient values. He suggested that the actual increase is probably between 10 to 30%. Silverman's equations cannot be used very near the hood face, because as X approaches zero, V at X becomes indeterminate; Garrison suggests that a limit of accuracy of Silverman's equations (or their simplifications in the ACGIH Manual) is reached when centerline distance X to hood diameter or width ratios X / D or $X / W=0.4$.

Garrison subsequently [11] conducted analyses of the relationship of non-dimensional velocity ratios to nondimensional distance ratios for circular, rectangular and slot hoods, for flanged and unflanged cases, and for various aspect ratios. V, the centerline velocity at any given X distance, may be related in a ratio to the hood face velocity $\mathrm{V}_{\mathrm{O}}: \mathrm{Y}=\mathrm{V} / \mathrm{V}_{\mathrm{O}}$. Likewise, the centerline distance X may be related in a ratio to hood diameter D, rectangular hood width W, or slot hood length $L: X_{D W}=X / D$ or X / W or X / L. Then non-dimensional ratios Y and $X_{D W}$ may be related to one another through empirically derived equations:

$$
\begin{align*}
& Y_{(\text {"near" })}=a(b) X_{D W} ; \text { and } \tag{9}\\
& Y_{(\text {"far" })}=a\left(X_{D W}\right)^{b} \tag{10}
\end{align*}
$$

where:
a and b are empirical constants, which vary depending on hood characteristics.

Later, Garrison expanded his explorations to include other practice design concepts using various graphical techniques for a number of "real-world" situations [12]. Obstacles and surfaces frequently block ideal airflow streamlines, and methods such as sketching, conformal mapping, and velocity vector addition may assist in the evaluation of two-dimensional velocity gradients on the hood centerline [Table 2].

A great deal of work has been done, summarized briefly above, using capture velocity as the core theoretical concept upon which practical design of exhaust hoods, and analysis of exhaust hood flow, has been built. However, there are significant deficiencies therein.

Recently, a number of investigators have criticized the capture velocity concept. Heinson and Choi [13] have provided a good summary of the problems associated with this design method. It is as follows:

1) Contaminant concentration in the vicinity of the source cannot be predicted;
2) The effect of changes in design (such as system dimensions or volumetric flow) on the performance of a system cannot be estimated;

TABLE 2.
Empirical Design Data for Nondimensional Centerline Velocity Gradients

Nozzle End Shape	Nozzle Profile Shape	Y = atb) ${ }^{\mathrm{K}_{0}=}$				$Y=a\left(X_{0-1}\right)^{*}$					Spacilic Y Values at $X_{0=}=$	
		$0 \leq \mathrm{X}_{00}<0.5$		$0.5 \leq X_{0}=1.0$				$1.0 \leq \mathrm{X}_{000} \leq \mathrm{X}_{0 \text {-2.. }}$				
		*	b	*	b	*	b	*	b	$\mathrm{X}_{0} \mathrm{za}_{4}$	0.5	1.0
Cireular	Plain	110	0.06	*	*	8	-1.7	8	-1.7	1.5	26	8
	Flanged	110	0.07	\cdots	*	10	-1.6	10	-1.6	1.5	30	10
	Flared*	90	0.20	90	0.20	*-	-*	18	-1.7	2.0	40	18
	Rounded	38	0.50	145	0.23	33	-2.2	2.5	69	33
Squate (WLR=1.0)	Plain	107	0.09	**	**	10	-1.7	10	-1.7	1.5	32	10
	Flanged	107	0.11	**	**	12	-1.6	12	-1.6	1.5	36	12
Rectangular (WLR $\mathbf{0} 0.50$)	Plain	107	0.14	-*	**	18	-1.2	18	-1.7	2.0	41	18
	Flanged	107	0.17	*-	**	21	-1.1	21	-1.6	2.0	45	21
Rectangular (WLRㅇ.25)	Plain	107	0.18	**	**	23	-1.0	23	-1.5	2.5	46	23
	Flanged	107	0.22	--	-	27	-0.9	27	-1.4	3.0	50	27
Narrow slot [WLA土0.10]	Plain	107	0.19	**	-	$24^{\text {, }}$	-1.0	24	-1.2	3.5	48	24
	Flanged	107	0.22	**	**	, 29	-0.8	29	-1.1	4.0	50	29

SOURCE: REFERENCE 12
3) Even though the performance of a particular system is known, the effect of geometrically scaling it up or down is unpredictable;
4) An engineer designing a system for a new process (one for which an LEV design does not appear in published literature) is left to design basically from scratch with little knowledge of the effectiveness of the resulting system;
5) The idea of providing a certain velocity to capture contaminants is inconsistent with the laws of fluid mechanics.

For example, Fletcher and Johnson [14] show that traditional design methods are adequate for gases and micron-sized particles released on the centerline of an LEV hood at low velocities. But, especially if the direction of release is away from the hood, if the release velocity is higher than a certain low amount $(0.21 \mathrm{~m} / \mathrm{sec}$ in a certain set of cases), higher "capture velocities" are required. Moreover, as Ellenbecker et al. [16] point out, crossdrafts and other air disturbances cannot be accounted for, energy expenditure optimization is difficult, and there are significant uncertainties in shaping the hood to distribute velocity contours for efficient capture in three dimensions. Only qualitative predictions of hood performance can be obtained using capture velocity concepts as the theoretical foundation.
B. CAPTURE EFFICIENCY CONCEPTS

Capture efficiency is a notion which may be used to evaluate hood performance comprehensively. It is useful because hood and system designs of all types may be compared effectively to one another, and the effects of changes in any design parameter may be evaluated along a single scale.

Dalla valle was quite aware of the inadequacies of the theoretical approach in use at the time he was doing his original work. He states [4]: "Without attempting to minimize the importance of experience in engineering design, it seems proper to point out that most of the past experience in the design of local exhaust hoods has not been associated with quantitative studies of the actual efficiency of dust removal."

The first study using capture efficiency as the central concept for the evaluation of hoods was conducted by Burgess and Murrow [15]. Field conditions of contaminant generation from machining operations were modeled in the laboratory, and hood shape was demonstrated by the authors to be a primary factor in the efficiency of contaminant control.

Once the central concept underlying hood design changed, a new era in ventilation research began. However, a careful definition of the new parameter was required.

Capture efficiency, η, is defined by Ellenbecker, et al. [16] as "the fraction of the airborne contaminants
generated by a source that is captured by the LEV system controlling it," or mathematically as:

$$
\begin{equation*}
\eta=\mathrm{G}^{\prime} / \mathrm{G} \tag{11}
\end{equation*}
$$

where: G'= the exhaust contaminant capture rate in grams per second (g/s), and $G=$ the contaminant generation rate, g / s.

The capture efficiency is a function of at least five variables: $\quad Q$, the volume flow of the hood;
A, the hood face area;
x, the centerline distance of the hood to the source;
V_{C}, the crossdraft velocity; and
T, the temperature of the source.
When the temperature variable can be ignored, the others may be analysed more easily. It is found by application of the Buckingham π Theorem (see the relevant discussion later in this section) that the capture efficiency is related to a function of two (dimensionless) ratios: the crossdraft velocity to hood face velocity; and the centerline distance of source to hood divided by the square root of the hood area:

$$
\begin{equation*}
\eta=K\left(\mathrm{~V}_{\mathrm{c}} / \mathrm{V}_{\mathrm{O}}\right)^{\mathrm{a}}(\mathrm{X} / \sqrt{\mathrm{A}})^{\mathrm{b}} \tag{12}
\end{equation*}
$$

The specific functional variable (K) and exponents (a, b) defining the relationship are determined by experiment.

The limiting conditions which apply are:

$$
\begin{align*}
& \eta=0 \text { when } \mathrm{x} \rightarrow \infty ; \tag{13}\\
& \eta=0 \text { when } \mathrm{v}_{\mathrm{o}}=0 ; \tag{14}\\
& \eta=0 \text { when } \mathrm{v}_{\mathrm{c}} \rightarrow \infty \tag{15}\\
& \eta=1 \text { when } \mathrm{x}=0 ; \tag{16}\\
& \eta=1 \text { when } \mathrm{v}_{\mathrm{c}}=0 \tag{17}
\end{align*}
$$

Actual measurement of capture efficiency in the laboratory entails direct measurement of contaminant concentrations in the duct of the exhaust hood. One must assure good mixing within the hood's duct. Direct measurement is made in the duct of the exhaust hood for the contaminant concentration. The source is placed just within the hood itself, to obtain the " 100% " value. Then, the source is placed at various distances X away from the hood. The latter contaminant concentration values are compared at every time interval measured with the 100% value, and the ratio of the two is capture efficiency.

A subsequent paper by Flynn and Ellenbecker [17] offered an analytically detailed approach to capture efficiency, specifically to flanged circular exhaust hoods (FCH) . Their approach was based on the intuitive idea that capture efficiency depends upon the interaction of three
flow fields: 1) that generated by the hood; 2) the flow field generated by the contaminant source; and 3) the flow field due to perturbing crossdrafts [Figure 5]. It is the interactions of these flow fields that ultimately determine whether a contaminant enters the exhaust hood. Velocity vector average values were determined for each field by mathematical functions; in addition they accounted for some degree of variability about these averages due to turbulence.

In their model, Flynn and Ellenbecker calculated by vector addition the path of streamlines of a contaminant issuing in all directions from a point source, as they were affected by the flow fields of the hood, and by a crossdraft. They based their model on the modified potential flow solution for airflow into flanged circular hoods [18].

The cylindrical coordinate system is assumed in this model such that the FCH centerline is the Z-axis. The crossdraft is assumed to blow at velocity v_{c} perpendicular to the Z-axis, from the $\theta=180^{\circ}$ to the $\theta=0^{\circ}$ half-planes. The model assumes irrotational incompressible air flow, Q. A series of point sources of isothermal nonbouyant gas release at flow volume Q_{S}, at some point (at distance 2) from the FCH. Flynn and Ellenbecker developed a computer model for the IBM XT personal computer [17] which maps the streamlines for the contaminant flow. It displays a visual plot of a semicircle of point-source streamlines, as they

Figure 5 - Theoretical potential lines and streamlines for a flanged circular hood operating in the presence of a crossdraft perpendicular to the hood centerline.

SOURCE: REFERENCE 18
exist in the plane of the 2 axis, and shows whether or not, When under the combined influence of the hood flow and crossdraft flow, they enter the FCH [Figure 6].

Previously developed similar models include Fialkovskaya's simplified point-sink model in which he described equations for the streamline which would just enter a hood in the presence of a cross-draft [19], and Strauss' modified n-sinks model allowing iterative processing [20]. Empirical studies have validated Flynn and Ellenbecker's "Final Model" [21]; their work recently has been extended to mathematical analysis and quantitative evaluation of potential flow modeling for hoods of other configurations [22].

To calculate capture efficiencies in such systems, one must apply the Buckingham π theorem. The π stands for the Product of variables. Each π is a dimensionless group of variables formed by application of the theorem. The theorem assures that for a process depending on n dimensional variables, then a reduction to k dimensionless variables is possible, where $n-k=j$, where j is the maximum number of variables which do not form a π among themselves. The reduction number j is always less than or equal to the number of dimensions (time, length, mass, temperature), m, in the n descriptive variables. The choice of the n dimensional variables is critical; if one is inadvertently omitted, then the analysis will be incorrect.

FIGURE 6.
IDEALIZED CONTAMINANT STREAMLINES

In the capture efficiency analysis, each of the following variables:
$D=$ diameter of the hood;
$Z=$ distance to the point of origin;
$Q=$ the volume flow of the hood in cfm; and
$V_{C}=$ the velocity of the crossdraft,
must be considered. Application of the Buckingham π theorem suggests that one dimensionless group will be [Z/D], and the second will be $\left[V_{f} / V_{c}\right]$, where the hood face velocity is extracted from the hood flow variable. A third dimensionless group, $\left[Q_{S} / Q\right]$ will appear when the contaminant source flow $\left[Q_{S}\right]$ is considered with the other variables.

However, the functional relationship between the $\pi^{\prime} s$ cannot be specified explicitly without experiment. The [Z/D] is the ratio of the hood-source distance to the diameter of the hood. It will have a profound effect on capture efficiency. Near the hood, most of the source of flow will be captured by the hood's flow field; if the source is far away the hood's field is weak. The second group $\left[\mathrm{V}_{\mathrm{f}} / \mathrm{V}_{\mathrm{c}}\right]$ is the ratio of face velocity to that of the crossdraft. The weaker the crossdraft, the less distorted are the effects of the hood and its flow field. Similarly with $\left[Q_{S} / Q\right]$, the hood flow field will have predominance over a contaminant source with a low flow rate.

The use of plotted streamlines from the source to the hood is important; each streamline either does or does not enter the hood. Thus whatever proportion of multiple
streamlines enter the hood defines the capture efficiency for that particular set of conditions [Figure 6].

Alternatively, when a single streamline is calculated from a point source, it may be seen statistically as the first moment of distribution of the flow from that source; turbulence and dispersion are assumed to be equally distributed around such a streamline. When such a streamline hits the edge of the hood, half the flow is assumed captured and half is not. The distance Z from the hood to the contaminant source then forms a dimensionless ratio with the hood diameter D; and at the point of probable 50\% capture, is designated $[Z / D]_{50}$, the "critical distance." It is assumed that turbulence is primarily accounted for by the $\left[\mathrm{V}_{\mathrm{f}} / \mathrm{V}_{\mathrm{c}}\right]$ ratio; it is used as a predictor for the effects of turbulent diffusion on contaminant dispersion around the streamline. The computer model can be used iteratively to obtain the $[Z / D]_{50}$ for any given combination of other variables. Then one determines the regression between the π groups.
III. BACKGROUND TO THE COMPUTER MODEL
A. ELEMENTS OF POTENTIAL THEORY

Since Flynn and Ellenbecker's model [17, 21] is based on the potential flow solution [18], they are assuming that the airflow into the exhaust hood is incompressible and irrotational. Moreover, in potential flow, frictional forces are negligible, so that inviscid flow is assumed. Laplace's equation:

$$
\begin{equation*}
\nabla^{2} \Phi=0 \tag{18}
\end{equation*}
$$

is used to describe such a flow field.
Laplace's equation is derived from the continuity equation:

$$
\begin{equation*}
[\partial \rho / \partial t]+\nabla \cdot(\rho \vec{v})=0 \tag{19}
\end{equation*}
$$

where: $\quad \Gamma=$ the fluid density;
$\mathrm{t}=\mathrm{the}$ elapsed time;
$\nabla=$ del, the gradient operator; and
$\vec{v}=$ the velocity vector.
The continuity equation is the summary of conservation of mass requirements in fluid mechanics. Continuity is said to exist wherever the volume flow, Q, equals the area of any hypothetical velocity contour surface times the velocity magnitude through that surface.

Incompressibility of a fluid means that density changes are negligible, so the first term drops out, and the continuity equation becomes:

$$
\begin{equation*}
\nabla \cdot \vec{v}=0 \tag{20}
\end{equation*}
$$

and it is said that the "divergence" of the velocity field is zero. "Divergence" is a measure comparing flow into and out of a defined differentially small control volume in space. When it is zero, all fluid flowing into such a volume leaves at the same rate. The velocity field then is neither converging (volume shrinking with increasing density) nor diverging (getting larger with decreasing density). About $330 \mathrm{ft} / \mathrm{sec}$ is the upper velocity limit for incompressible flow of standard air.

The gradient operator, ∇, can be written out as:

$$
\begin{equation*}
\nabla()=[\partial() / \partial x] \vec{i}+[\partial() / \partial y] \vec{j}+[\partial() / \partial z] \vec{k} \tag{21}
\end{equation*}
$$

in a three dimensional (x, y, z) coordinate system. The gradient operator converts a scalar to a vector function, and when solved gives the direction and maximum rate of increase of the function.

An irrotational fluid flow has no vorticity or "curl." In the mathematical description of an irrotational fluid, the cross-product of the gradient operator and the velocity vector function must always equal zero:

$$
\begin{equation*}
\nabla \times \overrightarrow{\mathrm{v}}=0 \tag{22}
\end{equation*}
$$

because the angular momentum of an irrotational flow is zero.

From this it follows directly (partly by definition) that the velocity vector function is the gradient of a "potential" function:

$$
\begin{equation*}
\vec{v}=\nabla \$ \tag{23}
\end{equation*}
$$

where Φ is the (scalar) potential function. Substituting equation (23) into equation (20) yields Laplace's equation (18).

The "potential" function, §, is defined for every point in space (x, y, z) as "the sum of the potential of the extraneous impulsive forces by which the actual motion at any instant could be produced instantaneously from rest" [27]. The potential function may be analysed as the product of time and force, divided by area and density: tF/A ; simplified, the units are usually $\mathrm{cm}^{2} / \mathrm{sec}$.

Viscous forces are negligible in potential flow. Inviscid flow occurs where no solid surfaces exist over which boundary layers would form. It is assumed in the strict potential flow model for FCH's that all hood flow is potential flow. This simplifying assumption yields results which are inaccurate only at points close to the hood face.

Using the assumptions of potential flow, and within certain boundary conditions, one can use Laplace's equation

B. POTENTIAL FLOW SOLUTIONS FOR FLANGED CIRCULAR HOODS

The potential flow solution is described in detail in Flynn and Ellenbecker's original papers [18, 21]. The potential flow model for the FCH was developed because it is amenable to practical application, in contrast to the more accurate, but difficult, constant velocity analytic solutions of Lamb [27] and Drkal [28].

In contrast to centerline velocity gradient studies, potential flow solutions describe the velocity field of airflow into the hood in three dimensions. This is particularly useful and important where sources are not on the centerline, where there is significant dispersion, where the direction of contaminant generation is not directly toward the hood face, or where there is a crossdraft.

Boundary conditions and simplifying assumptions for the potential flow model for the FCH are:

1) an infinite flange;
2) no flow through the flange: $\partial \Phi / \partial z=0$, for the conditions $z=0, r>a$, where $a=$ the hood radius;
3) constant potential, \uparrow, at the hood face; and 4) $\& \rightarrow 0$, as $x \rightarrow \infty$.

The strict potential flow solution however, is not entirely adequate. The assumptions of inviscid, irrotational flow begin to break down in the region near the flange and the hood face, because of the increasing
importance of shear stress due to turbulence of the boundary layer, and vena contracta formation. Real centerline velocities at the hood face are about twice the predicted value. Additionally, the strict potential flow solution predicts infinite velocity along the edge of the hood. However, turbulence there considerably reduces actual air velocity.

To address these anomalies in the theory, Flynn and Ellenbecker noted that Dalla Valle's equal velocity contours are elliptical. They make the assumption that the velocity vector field is uniform everywhere along each confocal ellipsoid equipotential surface provided by the theory. (In reality, the velocity field is the gradient of the potential.) For their modified potential flow solutions, a set of conditions, similar to the boundary conditions for the strict solution, apply, with the exception that in addition the hood face velocity is constant. The derived expression for velocity at every point in the field is then reasonably consistent with experiment. Additionally, because Laplace's equation is linear, other potential flows may be added vectorially at any given point. Thus, crossdraft effects and source vectors can be added to affect the velocity vector field of the hood.

In the validation of their solution [21], Flynn and Ellenbecker considered three versions of their model. The first was the strict potential flow solution. The second was the modification just discussed. They distinguish
between an "inconsistent" model and one which contains a singularity. While "an inconsistent model is one that is not exact mathematically, a singularity refers to a region where unrealistic fluid behavior occurs." Thus while Model 1 is a consistent model, it is also a singular one. Model 2, however, is inconsistent due to the "inexact" approximation made to obtain it. The modified velocity field equation cannot be integrated to give the true Q; for example, the theoretical (Model 2) average face velocity is 87% of the true value.

Flynn and Ellenbecker's Final Model employed a radial correction factor C_{r}, a strong function of the eccentricity, where: $C_{r}=2.6 \epsilon^{18}+0.853$. The eccentricity, ϵ, is the ratio of the hood diameter to the sum of the distances from the edges of the hood opening to the point in question:

$$
\begin{equation*}
\epsilon=\frac{2 a}{\left(\Gamma_{1}+\Gamma_{2}\right)} \tag{24}
\end{equation*}
$$

Here, $\Gamma_{1}=\sqrt{\left[z^{2}+\left(a^{2}+r^{2}\right)\right]}$, and $\Gamma_{2}=\sqrt{\left[z^{2}+\left(a^{2}-r^{2}\right)\right]}$. The radial correction was necessary because the radial velocity as measured increased more rapidly than predicted as the eccentricity approached 1 (i.e. near the hood face).

Additionally, the theoretical axial velocity calculations were also adjusted, by a factor of 0.9 , based on the graphical results of the validation experiments. These empirical corrections were an attempt to overcome the mathematical inconsistency previously discussed.

The modified potential flow solution calculates the velocity at any point in the hood coordinate system ($\mathrm{R}, \mathrm{e}^{\prime}, \mathrm{Z}$) as:

$$
\begin{equation*}
V_{T 2}=\frac{\sqrt{3} Q \epsilon^{2}}{2 \pi a^{2} \sqrt{\left(3-2 \epsilon^{2}\right)}} \tag{25}
\end{equation*}
$$

The Final Model component velocity vectors are:

$$
\begin{align*}
& \mathrm{V}_{\mathrm{R}}=-\mathrm{C}_{\mathrm{r}} \mathrm{~V}_{\mathrm{T} 2}(\sin \beta) ; \text { and } \tag{26}\\
& \mathrm{V}_{2}=-0.9 \mathrm{~V}_{\mathrm{T} 2}(\cos \beta) ; \tag{27}
\end{align*}
$$

where:

$$
\begin{equation*}
\beta=\tan ^{-1}\left(\mathrm{~V}_{\mathrm{R} 1} / \mathrm{V}_{21}\right), \text { and } \tag{28}
\end{equation*}
$$

where $\mathrm{V}_{\mathrm{R} 1}$ and V_{21} are calculated as defined in both papers [18, 21].

The Final Model was incorporated into an interactive BASIC program, which required the input of three variables:
$D=$ the hood diameter in inches;
$Q=$ the hood flow in cubic feet per minute, cfm;
$\mathrm{V}_{\mathrm{C}}=$ the crossdraft velocity, feet per minute, fpm.

The output for one of the possible combinations of these variables is seen in [Figure 6]. Through this program it is possible to "define the regions under control of the hood, and those that are dominated by the crossdraft." Some level of control will be exerted over contaminant processes
located in those regions from which the streamlines are drawn into the hood. The program just described forms the basis of both the experiments and program modifications this thesis; the contaminant source will be a jet.

C. CIRCULAR JET FLOW AND THE SCHLICHTING EQUATIONS

An ideal circular jet of fluid, flowing into a still medium, maintains constant static pressure throughout itself. However, the flow, Q, the area, A, and the jet width, b, are not at all constant; they are continually increasing with the entrainment of the surrounding air [Figure 7]. Its energy losses are likewise proportional to jet length, almost entirely in kinetic energy (i.e. in velocity) [Figure 8]. The momenta of external forces on a jet entering still air sum to zero, so the momentum of the mass flow of air (kinematic momentum) throughout such a jet remains constant [19].

The kinematic momentum, K , can be calculated for a jet of known flow. Since, in cylindrical coordinates

$$
\begin{equation*}
K=2 \pi \int_{0}^{\infty} V_{z}^{2} r d r, \tag{29}
\end{equation*}
$$

where: $v_{z}=$ velocity in the axial direction of the jet, and $r=$ the radius of the jet flow at z; and
since at $z=0, V_{z}$ is not a function of r, then simple integration will yield:

$$
\begin{equation*}
\mathrm{K}=\pi \mathrm{r}^{2} \mathrm{~V}_{\mathrm{Z}}^{2}=\mathrm{QV}_{\mathrm{Z}} \tag{30}
\end{equation*}
$$

> Fig. 7. Pattern of streamlines in a circular, turbulent free jet

SOURCE: REFERENCE 23

Fig. 8. Velocity profiles for axisymmetric jet.

SOURCE: REFERENCE 23

Fig. 8. Velocity profiles for axisymmetric jet.

SOURCE: REFERENCE 23
since flow equals the product of area and velocity. For any given jet flow, Q, and starting velocity, V, we can thus calculate K .

The spread of a circular jet can be described [23] as beginning at a single point ("pole" or "virtual point") [Figure 9]. Experimentally, it has been discovered that for a cylindrical jet the virtual point is located 1.86 times the jet opening diameter, inside its opening [19]. It is there that the flow calculations must begin. See the program, located in the Appendix.

Lines drawn from the virtual point through the orifice edges then extend outward such that they form the boundary of the mixing zone. With increasing distance from the origin, the material in the jet core becomes diffused by mixture with the surrounding air. In the core (in the "initial section"), the velocity profile remains square, and the temperature and concentration remain constant. The core tapers. In the "main section," the velocity profile widens and flattens. Throughout, the velocity profiles are symmetric, and similar.

Turbulent jet flow is characterized by a cross-transfer of vortices, and as these move beyond the limits of the jet, impart their momentum to surrounding layers of air. Successive cone-shaped layers of air are entrained in the jet motion. This incorporation retards the boundary layer. The thickness of the turbulent boundary zone increases with the increasing distance from the jet source, until from the

Fig. 9. Axisymmetric jet.

SOURCE: REFERENGE 19
entire periphery it "meets itself" on the axis of the jet [Figure 9]. In the main section of the jet, the entire flow is turbulent.

In a circular jet, the amount of turbulent shear stress associated with the boundary layer can be analyzed by Prandtl's modified mixing length theory. To visualize a physical interpretation of "mixing length" one must use a simple model of turbulent flow of a jet along a wall [Figure 10]. This is the simplest case of parallel flow, in which velocity is assumed to vary only from streamline to streamline. As the flow progresses and turbulent mixing zones move longitudinally, they also may move transversely, while retaining their momentum.

Prandtl's mixing length, 1 , is defined as "that (transverse) distance which must be covered by an agglomeration of fluid particles, travelling with its original velocity, in order to make the difference between its velocity and the velocity in the new lamina equal to the mean transverse fluctuation in turbulent flow" [23].

The overall variations in the velocity contours of the jet are controlled by this transverse movement of turbulence eddies. The thickness and rate of motion of the mixing layers is a critical determinant in the calculation of the magnitude and direction of the velocity vectors at any given point in the jet.

The difference in forward velocity, between the laminae defining lateral movement, is related quantitatively to the

Fig. 10. Explanation of the mixing-length concept SOURCE: REFERENCE 23
extent of lateral movement. Prandtl's mixing length hypothesis combines the equation describing this relation, with the equation for the shearing stress of the turbulent flow, and obtains an equation hypothetically describing the turbulent shear stress, τ_{t}, in terms of:
$\Upsilon=$ the density of the flowing medium;
$1=$ the thickness of the laminae defining lateral movement; and
$d u / d y=$ the rate of change of mean velocity between laminae:

$$
\begin{equation*}
\tau_{t}=\int 1^{2}|\mathrm{du} / \mathrm{dy}| \mathrm{d} \alpha / \mathrm{dy}, \tag{31}
\end{equation*}
$$

where the absolute value operator is to ensure the proper sign of the result. Equation 31 is the formal definition of Prandtl's mixing length hypothesis.

Turbulent flow contains both time-average (mean) motions, and fluctuating (eddying) motions, in all three directions. Over a sufficient length of time, the timeaverage of all the eddying motions sum to zero. However, these fluctuations influence the mean motion such that the mean motion exhibits an apparent increase in resistance to deformation: the apparent (or virtual) viscosity, or "eddy viscosity." A mixing coefficient has been introduced in the fluid dynamics literature, A_{τ}, for this Reynolds stress of turbulent flow. It is analogous to the Stokes coefficient of viscosity for laminar flow, μ_{1}, and it likewise relates the (turbulent) shear stress to the velocity gradient:
$\tau_{t}=A_{T} d \bar{l} / d y$. It is not, however, a fluid property like the coefficient of viscosity, and its value depends on the mean fluid velocity. The apparent kinematic viscosity, ϵ_{τ}, is likewise analogous to the derivation of kinematic viscosity of laminar flow, v_{1}, and is defined as the mixing coefficient divided by the fluid density.

In order to cure a theoretical defect in the calculation of the apparent kinematic viscosity, ϵ_{τ}, based on Equation 31 and its assumptions, Prandtl modified its derivation. The modification is valid only in free turbulent flow, and is derived from extensive experimental data. The original hypothesis had assumed that the volumes of fluid moving transversely during turbulent mixing had diameters very small compared to the transverse dimensions of the movement. The modified hypothesis [23] assumes the diameters of the transversely-moving volumes of fluid are of the same order of magnitude as that of the mixing zone. "The virtual kinematic (eddy) viscosity, ϵ_{τ}, is now formed by multiplying the maximum difference in the time-mean flow velocity with a length which is assumed to be proportional to the width, b, of the mixing zone":

$$
\begin{equation*}
\epsilon_{\tau}=\mathrm{x}_{1} \mathrm{~b}\left(\bar{u}_{\max }-\tilde{\mathrm{u}}_{\min }\right), \tag{32}
\end{equation*}
$$

where x_{1} is a dimensionless experimentally-derived constant; with this treatment, ϵ_{τ} remains constant throughout the width of every cross-section of flow. Due to the direct
proportionality of length and width of the jet, and the simple inverse proportionality thereof to velocity, the virtual kinematic viscosity of turbulent flow, ϵ_{τ}, becomes a constant, ϵ_{o}, over the entire length of the jet.

As a result, the velocity distribution differential equations become formally similar to those of laminar jets; only the term therein for kinematic viscosity of laminar flow (v_{1}) needs to be replaced by that for the virtual kinematic viscosity (ϵ_{0}) of turbulent flow.

To calculate the vector equations, one must know how to calculate ϵ_{0}. According to measurements by Reichardt [referenced in 23], the half-width, $b_{\frac{1}{2}}$, of a circular turbulent jet at the point where $\mathrm{V}_{z}=$ one-half the maximum centerline velocity, is given by:

$$
\begin{equation*}
b_{\frac{1}{2}}=0.0848 \mathrm{z} \tag{33}
\end{equation*}
$$

where: $\quad z=$ the distance from the nozzle.
Reichardt's measurements also yielded an equation:

$$
b_{\frac{1}{2}}=\left(\begin{array}{lll}
5.27 & 2 & \epsilon_{0} \tag{34}
\end{array}\right) / \sqrt{K}
$$

that can be used in conjunction with the previous one, such that for any given value of z, and with K determined as previously discussed, ϵ_{o}, the virtual or apparent kinematic ("eddy") viscosity can. be directly calculated.

In summary, given a few fairly reasonable simplifying assumptions, it is possible to calculate two critical characteristics of the flow of a circular turbulent jet. The kinematic momentum, K, and the eddy viscosity, ϵ_{o}, are calculated by knowing: 1) the flow, Q, and initial velocity, v; and 2) the axial distance, z, of any particular point in the jet.

As alluded to earlier, there is formal similarity of the equations for the velocity vectors of turbulent flow with those of laminar flow. For a turbulent jet, V_{z} is the magnitude of the velocity vector in the direction of the jet axis (z) :

$$
\begin{equation*}
\mathrm{V}_{z}=\frac{3 \mathrm{~K}}{8 \pi \epsilon_{0} z\left[1+.25 \eta^{2}\right]^{2}} \text {, and } \tag{35}
\end{equation*}
$$

V_{r} is the magnitude of the velocity vector in the radial direction (r):

$$
\begin{equation*}
\mathrm{v}_{\mathrm{r}}=\frac{\sqrt{3 \mathrm{~K}}\left[\eta-.25 \eta^{3}\right]}{4 \sqrt{\pi} z\left[1+.25 \eta^{2}\right]^{2}}, \tag{36}
\end{equation*}
$$

where in either case:

$$
\begin{equation*}
\eta=\frac{r \sqrt{3 K}}{4 \sqrt{\pi} \epsilon_{0} z} \tag{37}
\end{equation*}
$$

Reichardt evaluated this model by comparing the predicted velocity distribution of a circular turbulent jet
with the distribution of experimentally-determined velocity values, for three different axial distances. [Figure 11]. The axes of Figure 11 are in dimensionless ratios. There is impressive correspondence between the experimental findings and the model predictions.

Fig. 11. Velocity distribution in a circular, turbulent jet. Measurements due to Reichardt SOURCE: REFERENCE 23
IV. PURPOSE AND OBJECTIVES

The purpose of this work is to validate a computer model that predicts the streamline that a jet of gaseous contaminant will follow in the flow field of a flanged circular hood. These studies will assist in developing reliable estimates of breathing zone concentrations of gaseous or other jets of workplace contaminants.

The objectives of this research are:

1. To write a new interactive computer program to describe the flow of a circular turbulent contaminant jet within the flow field of a flanged circular exhaust hood. This is accomplished by combining a modified BASIC computer program from Flynn and Ellenbecker [21], for the validated potential flow solution for airflow into a flanged circular hood, with the appropriate expressions for the velocity vectors of the flow of a circular jet;
2. To run the program for a matrix of hood and jet flows, and distance values of the jet from the hood face, to create predictions of the specific hood centerline locations of the jet, $[2 / D]_{50}$, at which half of the jet flow would be captured by the exhaust hood; and
3. To perform replicate laboratory experiments for each combination of hood and jet flows and distances, to determine actual $[Z / D]_{50}$ values for each, and to compare the results statistically with the predictions.

A basic premise of potential theory is that of a free field, in which there is unbounded, unobstructed flow. Inviscid flow may be assumed, and this assumption allows the neglect of friction. The use of strict potential theory in the description of hood flow yields an analysis in which the gradient of potential (the magnitude of velocity vectors) varies strongly along the confocal ellipsoids of equal potential. For the modified potential flow solution, a simplifying assumption is made [18], equivalent to Dalle Valle's original error. It is that the equal velocity contours found in experimental work are equivalent to the equipotential confocal ellipsoidal surfaces described in potential flow field theory. This simplification, with appropriate correction factors [21], yields a quite accurate descriptive model of an unobstructed FCH flow field.

When plumes of jet contaminant are introduced, an appropriate jet-flow theory must be used. The Prandtl mixing-length hypothesis for turbulent jet flow, which assumes a constant virtual kinematic viscosity, and yields a constant kinematic momentum, seems to be applicable; viscosity is an important consideration in its derivation. The Schlichting equations calculate the velocity vectors of any given point in the flow field of the jet. It is assumed that each of these vector components can be added to those velocity vector
quantities calculated for each corresponding point along streamlines of the flow field of the hood. Vector additions are made iteratively at desired increments, to obtain the entire combined streamline.

This model of combined flow is validated experimentally. Computer predictions are made of the specific locations along the hood centerline of the jet, such that a 50% capture efficiency is achieved by the hood. This is necessary to determine if the velocity vectors of the two parts of this model, one (for the hood flow) which ignores viscosity, and the other (for the jet) which assumes its significance, can be added together to predict jetstream trajectory while in the flow field of the hood. If so, then the entire field of points of actual jet location can be mapped such that the capture efficiency of the hood is at least 50%.

A. COMPUTER MODEL

The computer model is composed of the union of two parts, with accompanying reminders, explanatory notes, and instructions for graphic display and printouts. The two parts of the computer model are: 1) those that describe and calculate the flow field of the flanged circular exhaust hood; and 2) those that describe and calculate the flow of a free turbulent gas jet. Each of these parts of the overall program calculates the vector magnitude and direction of velocity in its own cylindrical coordinate system. These are denoted as (r, θ, z) for the jet, and (R, θ^{\prime}, Z) for the hood.

The jet is arranged in relation to the hood such that its tip is in front of the hood on the hood centerline, and the jet centerline (z) axis is perpendicular to the centerline (Z) axis of the hood. The "base plane," in which all calculations are done, is the plane of the two (hood and jet) centerlines.

Vector transformations are contingent upon the original orientation of the jet to the hood. The hood's R directional axis for calculation purposes was in the halfplane of the base plane in the direction of original jet flow. Additionally, only the r-vector of the jet in the base plane was considered for calculation purposes. Due to
the specific arrangement of jet to hood axes chosen, therc was no θ component (rotation out of the base plane) to be considered for either jet or hood. In the base plane, rand z-direction vector magnitudes of the jet were transformed into the coordinate system of the hood, prior to the calculation of their combined magnitude. They were also calculated to account for the distance of the virtual point, within the tip of the jet tube, from the tip of the jet nozzle.

In order to account for the effects of the flange of the hood on the flow of the jet, use is made in the computer program of an image jet located "behind" the flange, the vector calculations for which are assumed to be equal and opposite to its real counterpart. It is necessary for the proper calculation of the velocity vectors of jet flow. Any given velocity vector for the real jet equals the scalar sum of the corresponding velocity vectors of both the real and imaginary jets. Thus, when combined, jet velocity vectors will be calculated to yield streamlines which follow a path which "sees" the barrier the flange presents.

The velocity vectors of the hood and jet flows are iteratively calculated and added (once transformed to the same coordinate system) for the entire length of the centerline flow of the jet within the flow field of the hood. The program directs the display of the jet's calculated centerline in relation to a cross section of the hood, and the hood centerline. Each time the program is
run, it may be used to calculate the jet trajectory for any given hood flow $\left(Q_{h}\right)$, jet flow $\left(Q_{j}\right)$, jet-to-hood distance (z), and crossdraft velocity (V_{C}) parallel to the axis of the jet.

The program can be run, using the given assumptions, with the jet pointing along any quadrant line. The jet could be placed pointing away from the hood ---0* to the hood z axis--- or toward the hood (180*) along its axis. In contrast, the arrangement tested for the experiments reported in this thesis is placement of the jet axis perpendicular to the hood axis. Note that, without a crossdraft, a 270° placement is equivalent to 90°.

The program displays, for each run, the following variables:
a) $\quad Q_{h} / Q_{j}=$ Ratio of hood to jet flows;
b) $\quad \mathrm{V}_{\mathrm{h}} / \mathrm{V}_{\mathrm{j}}=$ Ratio of hood to jet velocities;
c) $D_{h} / D_{j}=$ Ratio of hood to jet diameter;
d) $2 / D=$ Ratio of the distance of the jet from the hood face, to the hood diameter;
e) $\quad Q_{h}=$ Hood flow, cfm;
f) $\quad \mathrm{V}_{\mathrm{h}}=$ Hood face velocity, fpm;
g) $\quad R_{h}=$ Hood radius, ft.;
h) $\quad Q_{j}=$ Jet flow, cfm;
i) $\quad v_{j}=$ Jet face velocity, fpm;
j) "Jet X" (Hood Z) = Distance along hood centerline of jet tip, in.;
k) "Jet Y " (Hood R) $=$ Hood radial distance of the jet tip from the centerline, in.;

1) Ang $=$ Angle of jet from hood centerline;
m) Jet Orig = Distance inside jet tip from which spread of jet begins, in.
n) Jet $D=$ Jet diameter, in.;
o) Xdrft $=$ Crossdraft velocity (in the base plane of the jet and hood centerlines), fpm;
p) Xdf Ang $=$ Angle of the crossdraft from the hood axis.

The hood-to-jet distance, such that the jet trajectory loops over to just reach the edge of the hood opening, is called the "critical distance." See the computer program printouts in the Appendix.

It is assumed that the spread of the jet is symmetrical around its centerline. Therefore, when the jet begins at the critical distance, it is predicted that 50% of the jet flow is captured, while 50% of the jet flow escapes capture. The escaping contaminant potentially endangers nearby workers by entering their breathing zones.

Computer-predicted critical distances, $[z / D]_{50}{ }^{\prime} s$, for any given (operator-entered) set of hood and jet flows can be determined by use of the program. This was done for a set of 21 combinations of hood and jet flow. The matrix of experimental design conditions, all [Z/D] distance ratios

tested for each of the $21 \quad\left[Q_{h} / Q_{j}\right]$ values comprising the sin experiment，is shown［Figure 12］．，
The 4
\square

\qquad

 \qquad

Flow Ratios vs. Jet-Hood Distances

FIGURE 12. EXPERIMENTAL DESIGN

B. LABORATORY VALIDATION

The experimental set-up consisted of the jet and gas source, the FCH and fan, devices to control flow through each, and the calibration apparatus.

The jet was made of a machined steel cylinder 0.25 inches diameter, and eight inches long, connected to tubing, rotameters, and a laboratory air pump. Sulfur hexafluoride $\left(\mathrm{SF}_{6}\right)$ tracer gas at 900 ppm was drawn into the jet by the flow-induced vacuum created by the force of a laboratory air source. The individual flows were monitored carefully. Sulfur hexafluoride $\left(\mathrm{SF}_{6}\right)$ was used as the tracer primarily because of its low toxicity and low flammability and its relative ease of detection.

The jet axis was placed perpendicular to the hood centerline, and so that its tip was on the hood centerline. This created a geometrical plane, the "base plane," in which all flow calculations were made.

A machined flanged circular exhaust hood, 3.875 inches in inside diameter, with a 4 inch wide flange, was used as the primary opening. It was connected to a flexible duct, through which air was drawn at various flow rates by an industrial fan. Flows were measured by means of a manometer which measured the pressure drop across a venturi constriction in the intake pipe of the fan.

The detector probe consisted of a steel cylinder six inches long, $0.125^{\prime \prime}$ in diameter, with a handle through which the passage continued, connected to a flexible tube. The probe was placed well behind the hood face opening, through and into the hood's flexible duct, so that its tip reached the duct centerline. The probe was placed about 15 hood diameters back of the hood face, two 90° bends away, so there was complete mixing of the captured contaminant jet gases with the hood flow. The probe drew samples of duct air to an ITI gas chromatograph (GC), to be analyzed for the concentration of indicator gas, SF_{6}, being drawn into the exhaust hood. Peak heights were displayed on a chart recorder.

The GC generated a current proportional to the concentration of tracer gas being used. Quantitation was possible by calibrating concentration vs. peak height, which, over suitable ranges, is linear. The calibration equipment consisted of the exponential dilution flask, a gas-tight syringe, the SF_{6} gas source, a chart recorder, and a stopwatch or its equivalent. The exponential dilution flask had a volume of 3.7 liters, and was stirred with paddle blades to achieve to achieve gas concentrations of

$$
\begin{equation*}
c_{t}=c_{0} \exp [-Q t / V] \tag{38}
\end{equation*}
$$

$$
\text { Where: } \quad \begin{aligned}
& t=\text { the elapsed time; } \\
& c_{0}=\text { the initial concentration; }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Q}=\text { the flow through the flask; and } \\
& \mathrm{V}=\text { the flask volume. }
\end{aligned}
$$

The initial flask concentration can be determined from the concentration of the SF_{6} source gas (900 ppm), the flask volume, and the amount injected.

Capture efficiency is a relative measurement and therefore actual concentrations are not as important as the relative changes in peak height. The calibrations were least squares regressions of peak height with concentration. Calibrations were performed before every run of measurements.

Capture efficiency measurements were made with the GC. It was calculated as the relative concentration of SF_{6} in the hood duct when the jet source was located at some hood centerline position 2 , to the concentration in the hood duct when the jet source was located at the hood face.

$$
\begin{equation*}
\eta=c_{z} / c_{f} \tag{39}
\end{equation*}
$$

The experimental design consisted of twenty-one combinations (ratios) of hood to jet flows. Three hood flows were used (220,145 and 75 cfm), by setting the fan volume flows with a damper, and reading the calibrated manometer settings.

The actual laboratory source air jet flow was carefully regulated. First, the known hood flow was divided by the desired experimental ratio, and the desired total jet flow
was obtained. From this was subtracted the value in cfm of the SF_{6} flow necessary to obtain a preliminary 100% reading in the calibration procedure. The SF_{6} and laboratory air source flows both were set by carefully calibrated rotameters, so that the total jet flow just equaled the desired value.

A large laboratory exhaust hood was located above the experimental set-up, and was used primarily to draw off any excess SF_{6} escaping into the room. The essentially vertical crossdraft periodically was measured, but was so apparently low (average 25 fpm) that it was not expected originally to have an effect on the results.

For each of the the twenty-one hood to jet flow ratios tested, the jet was moved incrementally out along the hood centerline away from the hood. At each position, five or more measurements of SF_{6} concentration in the hood duct were taken. The capture efficiencies for each were calculated; then for every jet location, for each hood-to-jet flow combination $\left[Q_{h} / Q_{j}\right]$, the capture efficiency (η) averages and standard deviations were calculated.
c. STATISTICAL EVALUATION

At each incremental position of the jet along the hood centerline, for 21 experimental hood-to-jet flow [$\mathrm{S}_{\mathrm{h}} / \mathrm{Q}_{\mathrm{j}}$] ratios, the average of five or more capture efficiencies was calculated. It has been found previously [17] that logit transformation is a useful treatment of capture efficiency data. Each of the calculated average capture efficiency values, η, was treated with the logistic transform:

$$
\begin{equation*}
y=\ln [\eta / 1-\eta], \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
x=z / D \tag{41}
\end{equation*}
$$

where y is the natural logarithm of the odds of being captured, and x is the dimensionless centerline distance.

These values may be related to one another by simple linear (least squares) regression procedures, the form of which is:

$$
\begin{equation*}
y=\alpha x+\beta \tag{42}
\end{equation*}
$$

A consistent strong relationship would suggest that capture efficiency is described by a cumulative logistic function with the form:

$$
\begin{equation*}
\eta=1 /(1+\exp [(x-\mu) / \omega]), \tag{43}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \mathrm{w}=-1 / \alpha ; \text { and } \\
& \mu=w \beta
\end{aligned}
$$

The values of α and β are taken from the slope and intercept, respectively, of the regression of y on x.

For the logistic model, the parameter w is analogous to a standard deviation in a normal distribution. However, the distribution of the logistic model is much narrower (leptokurtic, or more peaked) than a normal distribution; 92.4% of the logistic distribution lies between $-w$ to $+\omega$. The probability distribution function is, of course, readily obtainable from the cumulative distribution.

The experimentally estimated "true" $[Z / D]_{50}=\mu$. In the logistic function, $\mu=\omega \beta$. Restated,

$$
\begin{equation*}
\mu=-\beta / \alpha . \tag{44}
\end{equation*}
$$

VI. RESULTS AND DISCUSSION

A. LOGIT CAPTURE EFFICIENCY, y, REGRESSION ON JET DISTANCE TO HOOD DIAMETER RATIO, x

1. Summary of Equations:
a) $Y=\ln [\eta /(1-\eta)]$,
where: $\eta=$ capture efficiency.
b) $x=2 / D$,
where: $D=$ hood diameter; and
$z=$ jet to hood distance.
c) Regression: $y=\alpha x+\beta$,
where: α is the regression slope; and β is the y-intercept value.
d) Predicted $[Z / D]_{50}: \mu=-\beta / \alpha$.
2. Results and Analysis

The raw data tables and graphs, including regressions, are in the Appendix.

The summary results of the regressions are tabulated [Table 3] for each of the $\left[Q_{h} / Q_{j}\right]$ ratios employed experimentally. Logistic function estimates, μ, of each $[Z / D]_{50}$ may or may not fall within the range between the two neighboring hood axial distances actually experimentally determined. Therefore, μ can be modified to do so, and is

Logit C. E. vs. (Z/D)
Regression p- Experimental $y=a x+b$ value (Z/D) 50

R^2 CorrCoeff modlogit

Vc=0 fpm:	Vc=25fpm:
Predicted	Predicted
$(Z / D) 50$	$(Z / D) 50$

Qh/Qj
(Z/D) 50 (Z/D) 50

76	0.932	0.000	0.87	0.548	0.484
77	0.925	0.001	1.11	0.548	0.484
78	0.892	0.005	1.03	0.548	0.484
95	0.859	0.023	0.75	0.677	0.548
97	0.918	0.003	0.94	0.677	0.613
98	0.860	0.023	0.92	0.677	0.677
126	1.000	0.000	0.86	0.937	0.842
129	0.953	0.024	0.82	0.939	0.871
130	0.905	0.013	0.84	0.948	0.935
189	0.948	0.005	1.14	1.388	1.129
193	0.928	0.037	1.15	1.413	1.194
195	0.919	0.010	1.03	2.452	1.258
316	0.830	0.004	1.41	2.199	1.710
322	0.765	0.023	1.41	2.243	1.323
326	0.960	0.001	1.69	2.252	1.645
379	0.973	0.000	1.43	2.529	1.903
387	0.945	0.000	1.59	2.568	1.387
391	0.882	0.000	2.07	2.613	1.839
475	0.775	0.021	1.52	2.987	2.097

denoted $\mu_{\text {mod }}$. The predicted $[Z / D]_{50}$, determined by this modified logit transformation of the capture efficiency data, may be referred to as "modified logit" or even "modlogit." Computer program predictions of the $[2 / D]_{50}$'s are also displayed, for comparison, at two crossdraft velocity values.

Regressions of the true logit of capture efficiency, y, on the jet distance to hood diameter ratios, x, yield R^{2} values of which two-thirds are greater than 0.9 , and none is less than 0.75 . In addition, p-values for the significance of the correlation coefficient in the regression equations are uniformly less than 0.05 , and two-thirds are equal to or less than 0.01 .

These results suggest that the logit transformation is a useful treatment, and that estimates of critical distances, $[2 / D]_{50}$'s, can be made with validity from capture efficiency data with this statistical procedure.
B. PREDICTED vS. EXPERIMENTAL $[Z / D]_{50}$ CRITICAL DISTANCES

Actual conditions may differ from those specified or assumed in the model. They do so appreciably near the hood face. There, the hood flow creates a strong static pressure gradient; there is shear turbulence between the flows of jet and hood; and frictional forces in the hood boundary layer become important. Predictions made for a jet entering a uniform flow field may not be borne out in this region.

The experimental findings near the hood face are consistent with this evaluation. See the graph of experimental vs. predicted $[Z / D]_{50}$ [Figure 13$]$, and the tabulated values [Table 3]. The strong static pressure gradient, shear turbulence, and the turbulence (frictional) effects of viscous flow near the hood face create conditions of increased capture efficiency (longer $[2 / D]_{50}$'s) there compared to predicted values. This is true where the predicted critical distance of the jet from the hood is less than about seven-tenths of a hood diameter, i.e. where the predicted hood-to-jet flow ratios, $\left[Q_{h} / Q_{j}\right]$, necessary to capture 50% or more of the jet flow are less than 100.
 (Z/D)50
(Experim.
Motit
Modified)

Turbulence may be classified in a number of ways. A useful set of distinctions is between shear turbulence (turbulence generated in free space between interacting streams of fluid) ; and wall turbulence (generated by fluid interactions with solid surfaces and characterized by boundary layers).

Both types of turbulence are occurring in this case; shear turbulence between a) the jet streams with each other: b) jet and hood streams; c) hood flow streams with each other; and d) each of the above with any crossdraft streams. Wall turbulence is occurring near the hood face along the entire reach of the flanges, and at the corners of the flanges with the duct.

Flynn and Ellenbecker [17] could assume that the characteristics of turbulence were primarily determined by the interaction of hood flow with crossdraft flow. They had no velocity component from their point contaminant source(s), let alone a jet, with which to contend. See [Figure 6], a depiction of the trajectories of single idealized contaminant streamlines (ICS) in a flow field of interacting hood and crossdraft effects.

Therefore, in their analysis, the $\left[\mathrm{V}_{\mathrm{f}} / \mathrm{V}_{\mathrm{C}}\right]$ ratio (hood face velocity to crossdraft velocity) serves them as a suitably predictive dimensionless variable for the effects of turbulent diffusion around each ICS. Thus Flynn and Ellenbecker rationalize the use of ω, the spread parameter in the logistic function, to describe in probabilistic terms
the likely distribution of the turbulent diffusion of single streamlines. They therefore can relate mathematically predictions of the spread parameter, ω, to the dimensionless velocity ratio $\left[v_{f} / V_{c}\right]$. From this they can simplify their model so that capture efficiency, η, may be predicted directly as a function of the actual, x, and experimentally estimated, μ, ratios of centerline distances of the source from the hood face to the hood diameter.

However, a spreading turbulent jet creates a flow field very different indeed from that of Flynn and Ellenbecker's idealized contaminant streamlines (ICS), primarily by imparting significant turbulence to the hood flow field, and thus creating strong velocity gradients within it [Figure 10]. They acknowledged [17] that the velocity field into the hood (without a jet) already shows considerable gradients both in the direction of mean flow, as well as perpendicular to the streamlines, and that this indicates a non-homogenous turbulent field.

There is evidence [24] that the turbulence intensity in shear flows is quite large, and that the bulk of the transport by turbulent diffusion occurs both quickly and near the source. This suggests [17] that "the effects of turbulent diffusion may be largely determined by conditions at the source."

One might therefore suspect that the turbulence intensity near a jet source may be sufficient to cause contaminant gas dispersion into the hood flow field near the
jet source. Thus, when the jet is within a short distance of the hood face, these effects are combined with those of a strong static pressure gradient across the jet created by the hood flow, so that more than predicted amounts of contaminant are captured, even at hood jet flow ratios of less than 100.

Where the predicted critical distance for the jet is farther than 0.7 hood diameters from the hood face (where the required hood-to-jet flow ratios are higher than 100), the predicted $[Z / D]_{50}$ and the experimentally estimated (modified logit procedure) $\mu_{\text {mod }}=[2 / D]_{50}$ are very close. If the crossdraft is nominally assumed to be 25 fpm (about the average of laboratory measurements), regression of all $\mu_{\text {mod }}$ on all predicted $[Z / D]_{50}$ values yields:

$$
\begin{equation*}
\mu_{\text {mod }}=0.713[\mathrm{Z} / \mathrm{D}]_{50}+0.451 \tag{45}
\end{equation*}
$$

with an $\mathrm{R}^{2}=0.852$.
For those values of the predicted $[Z / D]_{50}>0.7$ (i.e. where $\left[\mathrm{Q}_{\mathrm{h}} / \mathrm{Q}_{\mathrm{j}}\right]>100$), under the same conditions, this regression yields:

$$
\begin{equation*}
\mu_{\text {mod }}=0.915[\mathrm{Z} / \mathrm{D}]_{50}+0.139 \tag{46}
\end{equation*}
$$

with an $\mathrm{R}^{2}=0.924$.
This is excellent agreement in the outer region between predicted and experimental critical distances. There is,
however, no discernible relationship between ω with the hood face to assumed average crossdraft velocity ratio, $\left[\mathrm{V}_{\mathrm{f}} / \mathrm{V}_{\mathrm{C}}\right.$], probably because, while the statistical concept of ω, the spread parameter, was useful for a single ICS from a point source, it is irrelevant in turbulent spreading jet flow.
C. HOOD TO JET FLOW RATIOS VS. $[Z / D]_{50}$'s: PREDICTIONS AND CROSSDRAFT EFFECTS

The effects of the crossdraft were apparent in the relationships of the dimensionless predictor variables [Z/D] and $\left[\Omega_{h} / Q_{j}\right]$. Regressions of $\mu_{\bmod }$ (modified logit estimated experimental $[Z / D]_{50}$) on the computer program prediction of $[Z / D]_{50}$ are more significant at $V_{C}=25 \mathrm{fpm}$ than they are, for example, at 0 fpm (no) crossdraft.

Moreover, in the graphical representation [Figure 14] of $\mu_{\bmod }$ vs. $\left[Q_{h} / Q_{j}\right]$, and predicted $[2 / D]_{50}$ also vs. $\left[Q_{h} / Q_{j}\right]$, there is complete overlap (except for a single data point) of the modified logit-transformed experimental $[Z / D]_{50}$ with the computer program-predicted values, for all predicted $[Z / D]_{50}{ }^{\prime} s>0.7$, when the crossdraft is set at 25 fpm . (When the program crossdraft value was fixed at 0 fpm , or at 5 fpm , however, there is no meaningful overlap [Figures 15 and 16].) There is a significant spreading of the predictions of $[Z / D]_{50}$ in proportion to the $[Q h / Q j]$ ratio in the presence of a crossdraft. As the programmed crossdraft gets larger, that predicted spread becomes wider until, at 25 fpm, the experimental findings are nearly completely encompassed.

The three lines in Figures 14 and 16 represent the predictions of the $[Z / D]_{50}$ for each $\left[Q_{h} / Q_{j}\right]$, for each of three $\left[\mathrm{V}_{\mathrm{f}} / \mathrm{V}_{\mathrm{C}}\right]$ ratios tested. There are three $\left[\mathrm{V}_{\mathrm{f}} / \mathrm{V}_{\mathrm{C}}\right]$ ratios

because there were three hood face velocities in the experiments (three Q_{h} 's tested). It is assumed that a nonzero crossdraft is constant. In Figure 15, for no (0 fpm) crossdraft, these three prediction lines simply overlap.

With the crossdraft fixed at 25 fpm , power regression analysis was conducted for values of $\mu_{\text {mod }}$, modified experimental estimates of $[2 / D]_{50}$, upon values of the corresponding $\left[Q_{h} / Q_{j}\right]$ ratios, for each of the $\left[V_{f} / V_{c}\right]$ ratios. The results are:

For $\left[\mathrm{V}_{\mathrm{f}} / \mathrm{V}_{\mathrm{C}}\right]=36.64$:

$$
\begin{equation*}
\mu_{\mathrm{mod}}=.144\left[Q_{\mathrm{h}} / Q_{j}\right]^{0.387} \tag{47}
\end{equation*}
$$

with $\mathrm{R}^{2}=0.922$.

For $\left[\mathrm{V}_{\mathrm{f}} / \mathrm{V}_{\mathrm{C}}\right]=70.82$:

$$
\begin{equation*}
\mu_{\text {mod }}=.211\left[Q_{\mathrm{h}} / \mathrm{Q}_{\mathrm{j}}\right]^{0.331} \tag{48}
\end{equation*}
$$

with $R^{2}=0.729$.

For $\left[\mathrm{V}_{\mathrm{f}} / \mathrm{V}_{\mathrm{C}}\right]=107.44$:

$$
\begin{equation*}
\mu_{\text {mod }}=.107\left[\mathrm{Q}_{\mathrm{h}} / \mathrm{Q}_{\mathrm{j}}\right]^{0.471} \tag{49}
\end{equation*}
$$

with $\mathrm{R}^{2}=0.804$.

To confirm the validity of the program when incorporating the average measured value of the crossdraft
velocity (25 fpm), the computer program was re-run. This time, the variables were set such that for every $\left[Q_{h} / Q_{j}\right]$ ratio tested, the program [Z/D] (jet location) ratio was set at the best statistically evaluated laboratory value for each experiment. Then the program crossdraft velocity, V_{C}, was sequentially altered until the predicted jet trajectory within the hood flow curved until it just hit the edge of the computer-displayed hood opening, i.e. until that particular $[2 / D]$ became the critical distance, the $[2 / D]_{50}$. For all $\left[Q_{h} / Q_{j}\right]$ ratios over 100 , the average value of the crossdrafts necessary in the computer program to cause the predicted $[Z / D]_{50}$ to match the real one was 24.33 fpm [Table 4].

VALUES REQUIRED TO MATCH COMPUTER
MODEL PREDICTIONS OF [Z/D]50 WITH
EXPERIMENTAL (mod. logit) [Z/D]50

---EXPERIMENTAL CRITERIA---
 modlogit modlogit
 Qh/Qj [Z]50,in. [Z/D]50

Eddy Viscosity, epsilon-sub-0, Required:

---------------- at | at |
| :---: |
| fpm |

$\mathrm{Vc}=0 \mathrm{fpm} \mathrm{Vc}=25 \mathrm{fpm}$
Required:

76	3.35	0.87
77	4.32	1.11
78	3.99	1.03
95	2.91	0.75
97	3.65	0.94
98	3.57	0.92
126	3.33	0.86
129	3.18	0.82
130	3.26	0.84
189	4.43	1.14
193	4.46	1.15
195	3.99	1.03
316	5.43	1.40
322	5.43	1.40
326	6.58	1.70
379	5.52	1.43
387	6.19	1.60
391	8.04	2.07
475	5.89	1.52
483	6.81	1.76
489	7.67	1.98

$4.3 \mathrm{E}+00$	$6.9 \mathrm{E}+00$	N/A
$1.2 \mathrm{E}+01$	$2.1 \mathrm{E}+01$	N/A
$1.7 \mathrm{E}+01$	$1.9 \mathrm{E}+01$	N/A
$2.1 \mathrm{E}+00$	$2.7 \mathrm{E}+00$	N/A
$3.9 \mathrm{E}+00$	$6.5 \mathrm{E}+00$	$\mathrm{~N} / \mathrm{A}$
$5.9 \mathrm{E}+00$	$7.8 \mathrm{E}+00$	$\mathrm{~N} / \mathrm{A}$
$5.0 \mathrm{E}-01$	$1.6 \mathrm{E}+00$	5
$7.0 \mathrm{E}-01$	$2.0 \mathrm{E}+00$	24
$1.0 \mathrm{E}+00$	$1.3 \mathrm{E}+00$	32
$2.0 \mathrm{E}-01$	$1.4 \mathrm{E}+00$	10
$2.0 \mathrm{E}-01$	$1.3 \mathrm{E}+00$	21
$5.0 \mathrm{E}-05$	$1.0 \mathrm{E}-02$	59
$1.0 \mathrm{E}-06$	$1.0 \mathrm{E}+00$	16
$2.0 \mathrm{E}-06$	$4.0 \mathrm{E}-03$	33
$2.0 \mathrm{E}-05$	$5.0 \mathrm{E}-01$	25
$5.0 \mathrm{E}-07$	$6.9 \mathrm{E}-01$	19
$3.0 \mathrm{E}-06$	$1.3 \mathrm{E}-01$	28
$1.0 \mathrm{E}-05$	$1.5 \mathrm{E}+00$	17
$4.0 \mathrm{E}-07$	$5.5 \mathrm{E}-01$	20
$2.0 \mathrm{E}-06$	$1.1 \mathrm{E}-01$	27
$3.0 \mathrm{E}-06$	$2.0 \mathrm{E}-02$	29

D. THE ROLE OF ϵ_{0}, THE VIRTUAL OR APPARENT KINEMATIC ("EDDY") VISCOSITY

To clarify a little the events occurring when the jet location is set within one hood diameter's distance of the hood face, and additional effects of the crossdraft on the system, a new program was written, EPSILON. This program is a modification of the original, constructed to change iteratively the value of ϵ_{0}, the eddy (apparent kinematic) viscosity of the jet flow.

Viscosity is a natural property of fluids and is a measure of resistance to shear forces. Kinematic viscosity is calculated as the viscosity divided by the fluid density. The apparent kinematic viscosity of a fluid is an analytic concept useful in helping account for the retarding effects on flow due to the excess frictional forces of turbulence.

The program was written to assist in the determination of the approximate value of ϵ_{0} such that when inserted into the original program, the computer program would actually predict the best statistically evaluated $[Z / D]_{50}$ values determined experimentally for all sets of trial conditions. The incorporation of a nominal crossdraft was critical in this determination, and had its most significant effect on the value of the necessary ϵ_{0} at the higher hood to jet flow $\left[Q_{h} / Q_{j}\right]$ ratios, where the $[Z / D]_{50}$ distances are large, i.e. where real crossdrafts would have the most relative effect [Table 4].

Moreover, where the $\left[\Omega_{h} / \Omega_{j}\right]$ ratios are less than 100 , the crossdraft seems to have no relative effect on the ϵ_{0} values required at all; this is expected because the jet is located within one hood diameter of the hood opening. In this region, the value of the required eddy viscosity value, ϵ_{o}, of the jet flow is generally much greater than it is with the jet further away from the hood face. Since viscous forces in turbulent flow are approximately proportional to the square of the mean velocity, the fact that the eddy viscosity rises when the jet is near the hood face is expected.
VII. CONCLUSIONS AND RECOMMENDATIONS

The object of local exhaust ventilation is to reduce of workers' breathing zone concentrations of toxic materials. Industrial hygiene has developed rapidly in recent years in the analysis of the mechanisms of operation of local exhaust outlets, after a fallow period in the 1950's and 1960's. From the core concept of centerline velocity gradients as the basis of evaluation (and installation - it is still used by the ACGIH), the profession has recently moved to analytic and numerical solutions based in fluid mechanics theory, and to the concept of capture efficiency. These analyses have yielded promising results, and may be even more productive than the past "practical" approach. This thesis is a piece of a larger body of ongoing research work in the field. Analytic evaluations of capture efficiency concepts, hood flows in various configurations, and experimental validations of applied potential flow theory have formed some of the background to this paper. Although frictional forces are ignored in the potential flow solution, in its modified form it has been found to be highly predictive in evaluating flows into both flanged round and rectangular hoods, both with and without crossdrafts.

Jets of contaminant gases are commonly found in industrial settings. They may include gas jets of
various kinds, intentionally occurring and accidental; spray paint jets; jets of welding fume, and many other examples. It is important to remove these dangerous materials as efficiently as possible from the industrial workers' environment; where they contaminate the breathing zone of a stationary worker, local exhaust ventilation is a critical need.

This thesis describes a computer program written to address this problem and act as a first step in its solution. Schlichting's derivation of velocity vectors for a circular free jet was used as the basis of the jet flow in the program. The assumptions used were those inherent in the mixing length hypothesis of Prandtl. Viscous forces are of importance in the theoretical derivations. (In contrast, viscous forces are neglected in the potential theory model of hood flow.) The program adds iteratively the vectors of hood and jet flow at every point along the jet's hypothetical centerline. The computer program calculates the velocity vector values for any diameter flanged circular hood of any specified flow, if the jet tip is perpendicular to and on the centerline of the hood. A crossdraft parallel to the jet (either direction) can be programmed in.

The program, by predicting the critical distance of the jet from the hood, where 50% of the contaminant will be captured by the hood, forms a basis for future work. outside of the zone within about seven-tenths of one hood
diameter of the hood face, the program quite accurately predicts the critical distance. Within that short region, the critical distance is found experimentally to be longer than expected (the error is in a hypothetical worker's favor). The discrepancy near the hood face is due to: 1) the steep static pressure gradient created by the hood flow upon a jet placed within it; 2) turbulent eddies propagating from the shear between interacting streamlines of hood and jet flow; and 3) turbulence effects near the flange not accounted for in the potential flow solution. Values of the apparent or virtual kinematic (eddy) viscosity of the jetstream are high when the jet is located near the hood face. The jet is circular, and is flowing freely in a conical dispersion pattern. This, and the real turbulence effects described above, are the reason that ω, the spread parameter of a single idealized streamline, when analyzed in a logistic function, does not describe either statistically or analytically the distribution of jet flow in the hood velocity field.

Even very weak crossdrafts have strong effects outside about one hood diameter away from the hood face. It is recommended that systematic experimental variations be made of the crossdraft velocity in a wind tunnel to confirm the strong probable effect demonstrated here of the average crossdraft velocity on the $[Z / D]_{50}$ and, thus
on the capture efficiency of flanged circular exhaust hoods for a jet of contaminant.

The described computer model adds the vectors for the potential flow field into a local exhaust hood with those of a free turbulent jet model in which viscous forces are important. The program does not attempt to solve Navier-Stokes or any of the energy equations of accurate fluid mechanics models. Numerical simulations of such problems are very expensive in time, computer power and code development. Recently, investigators have evaluated the interactions of crossdraft and jets using such methods [25, 26]. The program is, however, useful as an approximate model, for building upon in the design of effective local exhaust ventilation systems, and for further research work into the interactions of hood, jet and crossdraft flow fields.

1. National Institute for Occupational Safety and Health (1973). The Industrial Environment - Its Evaluation and Control. U. S. Government Printing office, Washington, D. C.
2. McDermott, H.J. (1976). Handbook of Ventilation for Contaminant Control. Ann Arbor Science, Ann Arbor, MI.
3. American Conference of Governmental Industrial Hygienists (1986). Industrial Ventilation - A Manual of Recommended Practice, 19th Edition. ACGIH, Cincinnati, OH .
4. Dalla Valle, J.M. and Hatch, T. "Studies in the Design of Local Exhaust Hoods," presented at the 6th Annual Wood-Industries Meeting of the American Society of Mechanical Engineers, Winston-Salem, North Carolina. Oct. 15-16, 1931.
5. Silverman, L. (1942). "Centerline Velocity Characteristics of Narrow Exhaust Slots," Journal of Industrial Hygiene and Toxicology, Vol. 24, No. 9, pp. 267-276.
6. Fletcher, B. (1977). "Centerline Velocity Characteristics of Rectangular Unflanged Hoods and Slots Under Suction," Annals of Occupational Hygiene, Vol. 20, pp. 141-146.
7. Fletcher, B. (1978). "Effects of Flanges on the Velocity in Front of Exhaust Ventilation Hoods," Annals of Occupational Hygiene, Vol. 21, pp. 265-269.
8. National Safety Council (1979). Fundamentals of Industrial Hygiene, 2nd Edition, New York, N.Y.
9. Fletcher, B. and Johnson, A.E. (1982). "Velocity Profiles Around Hoods and Slots and the Effects of an Adjacent Plane," Annals of Occupational Hygiene, Vol. 25, pp. 365-372.
10. Garrison, R. (1981). "Centerline Velocity Gradients for Plain and Flanged Local Exhaust Inlets," American Industrial Hygiene Association Journal, Vol. 42, No. 10, pp. 739-746.
11. Garrison, R. (1983). "Velocity Calculation for Local Exhaust Inlets - Empirical Design Equations," American Industrial Hygiene Association Journal, Vol. 44, No. 12, pp. 937-940.
12. Garrison, R. (1983). "Velocity Calculation for Local Exhaust Inlets - Graphical Design Concepts," American Industrial Hygiene Association Journal, Vol. 44, No. 12, pp. 941-947.
13. Heinson, R.J. and Choi, M.S. "Advanced Design Methods in Industrial Ventilation', Ventilation '85Proceedings of the 1st International Symposium on Ventilation for Contaminant Control, Toronto, Canada, oct. 1-3, 1985.
14. Fletcher, B. and Johnson, A. E. "The Capture Efficiency of Local Exhaust Ventilation Hoods and the Role of Capture Velocity", Ventilation '85-Proceedings of the 1st International Symposium on Ventilation for Contaminant Control, Toronto, Canada, oct. 1-3, 1985.
15. Burgess, W.A. and Murrow, J. (1976). "Evaluation of Hoods for Low Volume - High Velocity Exhaust Systems", American Industrial Hygiene Association Journal, Vol. 37, No. 9, pp. 546-549.
16. Ellenbecker, M. J., Gempel, R. F., and Burgess W.A. (1983). "Capture Efficiency of Local Exhaust Ventilation Systems", American Industrial Hygiene Association Journal, Vol. 44, No. 10, pp. 752-755.
17. Flynn, M.R. and Ellenbecker, M.J. (1986). "Capture Efficiency of Flanged Circular Local Exhaust Hoods," Annals of Occupational Hygiene, Vol. 30, No. 4, pp. 497-513.
18. Flynn, M.R. and Ellenbecker, M.J. (1985). "The Potential Flow Solution for Air Flow into a Flanged Circular Hood," American Industrial Hygiene Association Journal, Vol. 46, No. 6, pp. 318-322.
19. Baturin, V. V. (1972). Fundamentals of Industrial Ventilation. Pergamon Press, Elmsford, N.Y.
20. Strauss, H.J. (1973). "On an Approximation to the Determination of Flow Fields for Exhaust Hoods", Staub Reinhaltung der Luft in English, Vol. 33, No. 3, pp. 142-146.
21. Flynn, M.R. and Ellenbecker, M.J. (1987). "Empirical Validation of Theoretical Velocity Fields into Flanged Circular Hoods", American Industrial Hygiene Association Journal, Vol. 48, No. 4, pp. 380-389.
22. Conroy, L.M., Ellenbecker, M.J., and Flynn, M.R. (1988). "Prediction and Measurement of Velocity into Flanged Slot Hoods", American-Industrial Hygiene Association Journal, Vol. 49, No. 5, pp. 226-234.
23. Schlichting, H. (1979). Boundary-Layer Theory, translated by J. Kestin, 4 th English edition. McGrawHill Book Co., New York, N.Y.
24. Hinze. J. O. (1959). Turbulence. An Introduction to its Mechanism and Theory. McGraw-Hill Book Co., New York, N. Y.
25. Patankar, S. V., Basu, D. K., and Alpay, S. A. (1977). "Prediction of the Three-Dimensional Velocity Field of a Deflected Turbulent Jet." Journal of Fluids Engineering. Transactions of the American Society of Mechanical Engineers, pp. 758-762.
26. Sykes, R. I., Lewellen, W. S., and Parker, S. F. (1986). "On the Vorticity Dynamics of a Turbulent Jet in a Crossflow," Journal of Fluid Mechanics, Vol. 168, pp. 393-413.
27. Lamb, Sir H. (1945). Hydrodynamics, 6th edition. Dover, New York, N.Y.
28. Drkal, F. (1970). Theoretical Solution--Flow Conditions for Round Suction Openings with a Flange. HLH--Heizung, Luftung, Klimatechnik, Haustechnik, Vol. 21, No. 8, p. 271.

APPENDIX A
RESEARCH COMPUTER PROGRAM

\therefore 为
 梅这元

10 CL 5

20 DIM P(1600, 2)
30 PI $=3.14159271$
40 PRINT "WELCOME"
S0 'Author: This program was predared by Kirby N. Smith.
$60^{\text {, Date: }}$ This program was finalized in Oetober, 1987.
70 'Purposezto describe the contaminant jet flow near a flanged circular hood, from a jet pointing in any axial or radial direction ($0,90,180,270,360$ degrees) in the base plane of the hood.
30 , Method: The flow field into the hood is described with the equations $100^{\text {, }}$ of potential theory, which assumes inviscid, irrotational and in* compressible flow. The equations of the Prandtl mixing lenpth hyoothenis, which takes viscosity into account, describe the jet flow.
110 : These two typers of aquations are added vectorially at every point in the base ($R-Z$) plane of the hood. The jet flow is oortrayed graphically in the printout.
120. The line of 50% Capture Efficiency can be deternined with a funetion of the dimensionlesn variables $(\mathrm{Qh} / \mathrm{Q} j)$ and $(Z / D) S U$, and e-o.
130 " Initial Variables: Variables contajning "J" are for the jet. Jet direction is in hood coordinates. Initial inquiries are self-explanatory.
140, Constants in the propram and/or input variables, or even whether a certain value mhould be a constant or an input variable, any be altered at the user' a careful discretion.
1SO SCREEN O
160 PRINT "THE HODD DIAMETER IS $37 / B$ IN."
$170 \mathrm{DH}=3.875$
$180 \quad \mathrm{RH}=\mathrm{DH} / 2$
$190 \mathrm{AmRH} / 12 \quad$ ", Note: A is the hood radius in feet.
2OO INPUT "WHAT IS THE HODD FLOW IN CFM";
210 VH=Q/ (PI * A~2)
22O PRINT "THE JET DIAMETER JD". 25 INCHES."
$230 \mathrm{JU}=.25$
240 D $J=3 \mathrm{D} / 12$
2SO RJ=DJ/2
260 AJ=PI * (RJ) ~2
2.70 INPUT "WHAT IS THE JET FLDW IN CFM";QJ

2aO VJ=QJ/AJ
E90 INPUT "WHERE 15 THE JET FACE IN HDOD AXIAL CODRD. (OtoI2in.)" : XJFIN
300 PRINT "THE RADIAL COQRD. ($-12 t \circ+12$ IN) OF JET FACE. YJFIN $=0$. "
310 YJFIN=0
$320 \times J F=X J F I N / 1 巳$
330 YJF=YJFIN/12
340 , Note: $(+Z)$ is to the right. Negative Z is into the hood. Ponitive R
is up on the seroen. The $R-Z$ plane is the base plane.
350 PRINT "JE'T DIRECTION DIR=90 DEG. FROM THE HOQD ($+Z$) AXIG"
360 DIR=90
370 RADI RNS=PI*DIR/180
$3 B 0$ PRINT "THE CROSSDRAFT ANGLE XDFA=90 DEG."
390 XDFA $=90$
400 VC=25
410 ","INPUT"WHAT IS THE CRDSSDRAFT VELDCITY";VE
42O PRINT ${ }^{\text {T THE }}$ CROSEDIRAFT VELOCITY IS" 7 VC"FPM. "
430 RDXDF $=1$ I $* \times D F A / 1 B 0$
440 PRINT "THE INCREMENT TO RECALCULATION IS - OS FT."
450 INC= 03
$4 G 0$, Note: The virtual point in the Prandtl mixing length hypothesis of jet flow is taken as the actual origin of the jet.
470 PRINT "THE JET ORIGIN IS"1. $66 * J D " I N . ~ I N S I D E ~ T H E ~ J E T ~ T I P . " ~ " ~$
480 PRINT "THE JET VELOCITY IS";VJ; "FPM."
490 PRINT "THE HDDD VELDCITY IS";VH"FPM."
SOO INPUT "ENTRIES OK (Y / N) " A / F

S10 IF At＝＂N＂OR Atw＂n＂THEN GDTO 1SO ELSE SRO
520 CLS
530 CULOR 5
S40 PRINT＂PLEASE STRND BY．＂
550 ＇Note：The following three equations set the angle of the inane jet．
560 IF RADIANS＝O THEN RADIMMPI
570 IF 0 ＜RADIIANS $\&=P I$ THEN RADIM＝PI－RADIANS
589 IF PI（RADIANS（2＊PI THEN RADIM＝（3＊PI）－RADIANS
590 ，Note：The following nquations set the angle of the imane crossdraft．
600 IF RDXDF＝O THEN XDFIM＝PI
610 IF O SRDXDF $\angle O P I$ THEN XDFIM＝PI－RDXDF
620 IF PI（RDXDF（2×PI THEN XDFIMm（3＊PI）－RDXDF
530 ＇Note：The following equations calculate the vectors for each inerement of hood flow．
640 ＇Note：Hood coordinates Z and R are named in hood flow calculations as X and Y ，respectively．
6SO $X=X J F$
$660 \mathrm{Y}=\mathrm{YJF}$
670 FOR $I=1$ TO 1600
680 GAMMA1＝SQR $\left(X^{\wedge} 2+(A+Y)^{\wedge} 2\right)$
690 GAMM\＆ $2=5 Q R\left(X^{\wedge} 2+(A-Y) \cdots 2\right)$
700 ECC＝（2＊A）／（GAMMA $1+$ GAMMAZ）
710 ECCZ＝ECC＾2
720 T1mA＋Y
730 T2пY－А
740 TЗ $=$ GAMMA1＋GAMMAE
750 T4＝GAMMA1＊GAMMAE
$760 \mathrm{~T}=\mathrm{m} 4 * \mathrm{~A}^{\wedge} 2$
770 T6＝SQR（7゙3＾ᄅーTS）
7B0 T7＝－Q／PI
790 TB＝（T1＊GAMMAE）＋（T2＊GAMMA1）
B00 TSmT3＊T4＊T5
B10 VR1 $=(T B / T 9) * T 7$
日e0 VZ1＝（T7＊X）／（T4＊T6）
$830 \quad V=S Q R$（VR1＾2＋VZ1＾そ）
B40 VTF＝（Q＊ECCZ＊SUR（3））／（2＊PI＊A＾2＊SQR（3－2＊ECCZ））
BSO VRさ＝（VRI／V）＊VTF
860 VZ2＝（VZ1／V）＊VTF
870 VRC $=(2.6 * E C C \wedge 18+.853) * V R 2$
B8O VZC＝． 9 ＊VZ2
890 ＇Note：The following equations transform the coordinates of the jet and its image to the coordinatos of the hood．
900 IF DIM＝0 OR DIRr360 THEN GOTD 910 ELSE 960
$910 \mathrm{Z}=\mathrm{X}-\mathrm{XJF}+(1.86 * \mathrm{DJ})$
$920 \mathrm{R}=\mathrm{YJF}-\mathrm{Y}$
$930 \mathrm{ZI}=2 *(1.86 * D J)-(2 * X J F)-Z$
940 RI＝－R
950 GDTO 1140
960 IF DIR＝90 THEN GOTO 970 ELSE GDTD 1020
$970 \mathrm{Z}=\mathrm{Y}-\mathrm{YJF}+(1.86 * \mathrm{DJ})$
$980 \mathrm{R}=\mathrm{X}-\mathrm{XJF}$
$990 \mathrm{ZI}=\mathrm{Z}$
$1000 \mathrm{RI}=(2 * \mathrm{XJF})+\mathrm{R}$
1010 GOTD 1140
1020 IF DIRW1日O THEN GOTD 1030 ELSF GOTO 1080
$1030 \mathrm{Z}=\mathrm{X} . \mathrm{JF}-\mathrm{X}+(1.86 * \mathrm{DJ})$
$1040 \mathrm{R}=\mathrm{Y}-\mathrm{YJF}$
$1050 \mathrm{ZIm}=$（（ $1.86 * D J)+X J F)-Z$
1060 RI＝－R
1070 GOTO 114，0
1080 IF DIR $=270$ THEN GOTO 1090 ELSE GOTO 350
$1090 \mathrm{Z}=\mathrm{YJF}-\mathrm{Y}+(1.86 * D J)$
1100 RwXJF－X
$1110 \mathrm{ZI}=\mathrm{Z}$
$1120 \mathrm{RI}=\mathrm{R}-(2 * X \mathrm{JF})$
i：30＇Note：The－following－equations calculate－the vectors．，Hon－any given R and
Z points of the jet flow．
1140 K はAJ＊（VJ）へ2
1150 ED＂． 0161 ＊SQR（K）
1160 ETA＊（R＊SQR $(3 * K)) /(4 *(E Q) * 7 * S Q R(P I))$
1170 ETA1 $=$ ETA－$\left(\left(E T A^{\wedge} 3\right) / 4\right)$
1180 ETAE＊（L＋（（ETA＾2）／4））＾R
1150 1F－． 00001 （ETA AND ETAR． 00001 OR－2． 00001 （ETA AND ETAR－1． 99999 OR
1． 39939 人ETA AND ETA（2． 00001 THEN GOTO 1200 ELSE 1220
1200 VRJ＝0
1210 GOTO 1230
1220 VRJ $=(S Q R(3 * K) * E T A 1) /(4 *(E T A 2) * Z * S Q R(P 1))$
1230 V7．J $=3 * K /(B * P I *(E Q)$＊Z＊ETAZ）
1240 TF UZJ 60 THEN UZJ＝O AND URJ＝0
1250 ＇Note：The following calculations are for the effects of tho imape jet： field on the flow of the actual jet into the hood．Note that K and edsilon－sub－zoro have already been calculated for the ，fet．
1260 ETAI＝（RI＊SQR（3＊K））／（A＊ED＊ZI＊gQR（DI））
1 E70 ETA1 1－ETAI－（（ETAI＾3）／4）
$12 B 0$ ETAI2w（1＋（（ETAI＾2）／4））へ己
1290 IF－． 00001 SETAI AND ETAI $<.00001$ OR－2．00001（ETAI AND ETA1 <-1.99999 OR 1.99999 （ETAI AND ETAT 22.00001 THEN GOTO 1300 ELSE 1320

1300 VRIM＝0
1310 GOTO 1330
1320 VRIM $=(S Q R(3 * K) * E T A I 1) /(4 * E T A I 2 * Z I * S Q R(P I))$
$1330 \mathrm{VZIM}=3 * K /(B * P I * E O * 2 I * E T A I S)$
1340 IF UZIM 60 THEN VZIMFO AND URIM＝0
1350 ＇Note：The following equations add the vectors and then determine the noxt point for vactor calculation basod on the corabined values and the destred inerement of calculation．
1360 VRTOT＝URC $+(\operatorname{COS}$（RADIANS）＊VRJ）$+(\operatorname{COS}($ RADIM $) * V R I M)+(S I N(R A D I A N S) * V Z J)+$
（SIN（RADIM）＊VZIM）＋（SIN（RDXDF）＊VC）＋（SIN（XDFIM）＊VC）
1370 VZ＇TOT＝VZC $+(\operatorname{COS}$（RADIANS）＊VZJ）$+(\operatorname{COS}$（RADIM）＊VZIM）＋（SIN（RADIANS）＊VRJ）+ （SIN（RADIM）＊VRIM）＋（COS（RDXDF）＊VC ）＋（COS（XDFIM）＊VC）
13AO IF VZ＇OT $=-$ ．OOOO1 THEN GOTD 1390 EL．SE TGOTO 1410
1390 ANGI＿E＝AT＇N（URTOT／VZTOT）＋ PI
1400 GUTO 1490
1410 IF VZTUT $=$ ．OOOO THEN GOTO 1420 ELSE GUTO 1440
1／220 ANGLEWATN（URTUT／VZTOT）
1430 GロTロ 1490
1440 JF -.00001 SVZTOT AND VZTOT $6 . O 0001$ AND VRTOT $\angle O$ THEN EOTO $14 S O$ ELSE 1470
1450 ANGLEm3＊PI／2
1460 GUTO 1490
1470 IF－． 00001 （YZTOT AND VZTOT $\& .00001$ AND VRTOT）$=0$ THEN GOTC 1480
1480 ANGLE＝PI／2
$1490 \mathrm{X}=\mathrm{X}+(\operatorname{COS}$（ANGLE）＊INC）
$1500 \mathrm{Y}=\mathrm{Y}+($ SIN（ANGLE）\sim INE）
$1510 \mathrm{P}(1,1)=\mathrm{X}$
1520 P（T，ᄅ）\quad Y
1530 IF $X(m \oint$ OR $X) \&$ OR $Y(m-1$ UR $Y) m 1$ THEN $I=1600$ ELSE COUNT $m+1$
1540 ＇Note：A repetitive cycle is prograntaed to ealeulate the new
magnitude and direction of flow at each subsequent inereaent．
1550 NEXT I
1560 ＇Notes The following section is the instructions to the computer
to draw the hood，and to diaplay the flow into it．
1570 Cl．S
$15 B O$ SCREEN 1
1590 COLOR 16,9
1600 WINDDW $(-1.6,-1.1)-(1.6,1.1)$
$1610 \operatorname{LINE}(0, A)-(0,1), 2$
1620 LINE $(0, A)-(-, O S, A), 2$
1630 LINE $(-.05,0)-(1,0), 3$
1640 LINE $(0,-A)-(0,-1)$ ， 2
$16 S O$ LINE $(0,-A)-(-.05,-A)$, ，
$16 G 0$ FOR $J=1$ TO COUNT
$1670 \mathrm{G}=\mathrm{P}(\mathrm{J}, 1)$
$1680 \mathrm{H}=\mathrm{P}(\mathrm{J}, 2)$

```
1640 PSET (G,H), 1
1700 NEXT J
1710 KEY OFF
1720 LUCATE 4, 4:PRINT "QH/QJm";Q/QJ
1730 LOCATE S,4:PRINT "VH/VJm";VH/VJ
1740 LOCATE 6,4:PRINT "DH/DJ=";苂A/DJ
1750 LOCATE 7, 4:PRINT "(Z/D)=";XJF/(2*A)
1760 LOCATE 9, 4:PRINT "QH=";Q"CFM"
1770 L.OCATE 10, 4:PRINT "VH=";VH"FPM"
1780 LOCATE 11,4:PRINT "RH=";A"FT"
1790 LOCATE 13,4:PRINT "QJ=";QJ"CFM"
1800 LDCATE 14,4:PRINT "VJ=";VJ"FPM"
1810 LOCATE 15, {IPRINT "JETX=";XJFIN" YN"
1820 LOCATE 16,4:PRINT "JETY=";YJFIN"IN"
1830 LOCATE 17,4:PRINT "ANG"";DIR"DEG"
1840 LOCATE 1B, & &PRINT "JET ORIG=";-1.86*JD"IN"
1850 LOCATE 19,42PRINT "JETD=";JD"IN"
1B60 LOCATE 21,4:PRINT "XDRFTm";VC"FPM"
1870 LOCATE 2巳,4:PRINT "XDFANG=";XDFA"DEE5"
18B0 LOCATE 24,1:PRINT "PRINT"
1890 INPUT "ANOTHER(Y/N) ";ANN%
1900 IF ANN&="Y" OR ANNक="Y" THEN GOTO 1910 FLLSE GOTO 19%30
1910 CLS
1920 GOTO 150
1930 CLS
1940 PRINT "END OF JET-HOOD FLOW ANALYSIS RUNS"
1950 SYSTEM
Ok
```


$\begin{aligned} & 04 / 8 J= \\ & 4 H y= \end{aligned}$	
DH/DJ=	
($2 /$ D) $=$	-
$\frac{8 \mathrm{Q}}{\mathrm{Q}}=\frac{1}{1}$	5 FPM
RH三	14583 FT

$9 \mathrm{~d}=\frac{1}{5} .875 \mathrm{CFM}$
Uu = 5502.394 FPM JETX $=1.875 \mathrm{M}$ JETY=
ANG= 90 DEG
SET ORIGE- 465 IN
ปETD $=.25 \mathrm{IN}$
XDRFT $=25 \mathrm{~F}={ }^{25 \mathrm{DEH}}$

PRINT

OTHER(Y/N)?
04 $/ 0.4=193.3333$
$\mathrm{DH} / \mathrm{DJ}=15.5$ ($2 / \mathrm{D}$) $=1.109679$

Qu= 75 CFM U $\mathfrak{J}=22 \mathrm{Ca} .159$ FPM JETX=4.3 IN JETY= 0 IN ANG= 90 DEG JET ORIG=-465 IN ひETD $=.25$ IN XDRFT
XDFANG
$=25 \mathrm{FPM}$
DEG

PRINT
OTHER($4 / \mathrm{M}$)? 뿔

APPENDIX C
EXPERIMENTAL DATA, CALIERATION THEREOF, AND EFFICIENCY CALCULATIONS

Calibration of Exeorisental Data \& Efficiency Calculation

Calibration of Experisental Data \& Efficiency Calculation

2	$d \begin{gathered} \text { regress } \\ y \end{gathered}$	\pm	$\underset{x}{\text { exp.peak }}$	b	theoret. nir	efzy/aix avg.eff. stdereff	run
4	221.8951		61			61.37041	
	254.1271		70			70.28694	
	232.6391		64			64.34192	
	232.6391		6			64.34192	
	232.6391		64			64.3419259 .983715 .962791	77
	203.9885		56			55.41790	
	243.3831		67			67.31343	
	221.8951		61			61.37041	
	182.5005		50			50.47489	
4.5	146.6872		40			40.5698645 .522375 .241246	77
	153.8499		42			42.55087	
	150.2685		41			41.56036	
	196.8258		54			54.43690	
	175.3578		48			48.49388	
5	175.3378		48			48.4938836 .211658 .230115	7 q
	157.4312		43			43.54137	
	114.4552		31			31.65534	
	103.7112		28			28.68385	
	103.7112		28			28.6838J	
2	163.1203	1.73623	93	1.651	175.274	93.05595 92.86782 0.741282	76 a
	164.8566		94			94.0565!	
	163.1203		93			93.06593	
	161.3841		92			92.07535	
	161.3841		92			92.07535	
2.5	157.9117		90			90.0941989 .898074 .491602	760
	163.1203		93			93.05593	
	169.3290		96			96.03767	
	145.7590		83			83.16013	
	152.7030		87			87.12245	
3	119.7145		68			68.3014265 .320265 .352802	76 c
	119.7146		68			68.30142	
	104.0865		59			59.38620	
	130.1320		74			74.24490	
	107.5610		61			61.36736	
3.25	123.1871		70			70.2825858 .989967 .159642	760
	90.19873		51			51.46155	
	112.7697		64			64.35910	
	97.14365		55			55.42387	
	93.67119		53			53.44271	
3.5	69.36397		39			39.5745941 .753865 .582516	76 e
	79.78135		45			45.51807	
	67.62774		38			38.58401	
	88.4625		50			50.47097	
	60.68282		34			34.62168	
4	46.79298		26			26.6970439 .5745918 .37253	76
	114.5059		65			65.32968	
	43. 32052		24			24.71588	
	39.84806		22			22.73472	
	102.3523		58			58.39562	
4.5	38.11185		21			21.7441426 .697049 .186265	769
	24.22199		13			13.81949	

Calibration of Experizental Data : Efficiency Calculation

Calibration of Experiantal Data \& Efficiency Calculation

Calibration of Experisental Data \& Efficiency Calcelation

Calibration of Experisental Data \& Efficiency Calculation

Calibration of Experisental Data \& Efficiency Calculation

Calibration of Experisental Data \ddagger Efficiency Calculation

Calibration of Experinental Data \& Efficiency Calculation

	116.6323		100			99.99769	
	116.6323		100			99.99769	
	116.6323		100			99.99769	
5.5	116.6323		100			99.99769 97.93095 2.614247	4896
	109.4005		94			93.79746	
	116.6323		100			99.99769	
	111.8112		96			95.86420	
	116.6323		100			99.99769	
6	116.6323		100			99.99769 97.72427 4.548837	489\%
	116.6323		100			99.99769	
	116.6323		100			99.99769	
	103.3743		89			88,6J060	
	116.6323		100			99.99769	
6.5	81.67957		71			70.0299079 .3302511 .14893	4898
	81.67937		71			70.02990	
	116.6323		100			99.99769	
	87.70574		76			75.19676	
	94.97739		82			81.39699	
7	63.60027		56			54.5295269 .20320 21.61107	489e
	89.91102		71			76.23015	
	116.6323		100			99.99769	
	91.32155		79			78.29688	
	43.11062		39			36.96199	
7.5	65.01082		58			56.5960660 .1095314 .60824	489 f
	70.83191		62			60.72955	
	67.21609		59			57.62943	
	99.75018		86			65.53048	
	46.72644		42			40.06211	
8	46.7264		42			40.0621133 .655208 .068248	4899
	25.03151		24			21.46141	
	51.54753		46			44.19559	
-	33.46843		31			28.69501	
	39.49480		36			33.86187	
8.5	26.23579		25			22.4947823 .941506 .423553	489
	29.85261		28			25.59490	
	40.70007		37			34.89525	
	17.79987		18			15.26117	
	25.03151		24			21.46141	
5.5	94.94	1.05	92	-1.66	103.34	91.8714991 .465067 .853579	4832
	85.39		81			80.69479	
	103.34		100			100	
	87.59		85			84.75904	
	103.34		100			100	
6	63.44		62			61.3895873 .7855612 .85972	4835
	63.44		62			61.38958	
	99.14		96			95.95574	
	81.29		79			78.66266	
	73.94		12			71.55022	
6.5	52.94		52			51.22895 59.357468 .051942	483 c
	76.04		74			73.58234	
	55.04		54			53.26107	

Calibration of Experiaental Data \& Efficiency Calculation

	135.4095	70		70.01420	
	150.8745	78		78.01043	
	152.8076	79		79.00996	
	154.7407	80		80.00949	
6	147.0082	76		76.0113759 .419209 .042280	387 e
	94.81410	49		49.02411	
	105.4128	55		55.02128	
	116.0784	60		60.01892	
	110.2790	57		57.02055	
6.5	50.35238	26		26.0349536 .230149 .616274	3876
	98.680 JJ	51		51.02316	
	60.01797	31		31.03259	
	85.14851	44		44.02646	
	56.15174	29		29.03354	
7	15.55626	8		8.04344520 .637506 .796793	3879
	46.48615	24		24.03590	
	54.21862	28		28.03401	
	44.55303	23		23.03637	
	38.75368	20		20.03778	
4	100.74421 .069988	913.3753	110.373	91.2761391 .663902 .572186	379a
	101.8141	92		92.24556	
	106.0941	96		96.12328	
	99.67422	90		90.30670	
	97.53424	88		88.36784	
4.5	95.39426	86		86.4289886 .235106 .019834	3796
	107.1641	97		97.09270	
	95.39426	86		85.42898	
	88.97434	80		80.61241	
	88.97434	80		80.61241	
5	94.32428	85		85.4595575 .5713812 .28385	3796
	63.29462	56		57.34611	
	68.97434	80		80.61241	
	98.60423	89		69.33727	
	71.85453	64		65.10154	
5.5	29.05501	24		26.3243839 .7025016 .27255	379d
	71.85453	64		65.10154	
	46.17482	40		41.83524	
	51.52476	45	-	45.68239 .	
	20.49510	16		$18.5689{ }^{\circ}$	
6	24.77506	20		22.4466633 .8859310 .51998	379e
	45.17482	40		41.83524	
	41.89486	J6		37.95753	
	51.52476	45		46.68239	
	22.63508	18		20.50780	
6.5	10.86521	7		9.84408817 .405536 .643242	3797
	10.86521	7		9.844088	
	29.05501	24		26.52438	
	20.49510	16		18.56895	
	24.77505	20		22.44656	
5	116.65251 .205273	$100-3.89505$	116.655	99.9976999 .99769	4892
	116.6323	100		99.99769	

Calitration of Experiantal Data \& Efficiency Calcalation

6	112.5296	100			97.1443789 .357846 .423527	3916
	99.33001	88			85.7494	
	112.5296	100			97.14457	
	96.03011	85			82.90071	
	97.13007	85			83.85028	
6.5	96.03011	85			82.90071 64.09906 9.74694	391d
	70.73086	62			61.06041	
	70.73086	62			61.063:1	
	70.73086	62			61.06041	
	63.03109	55			54.41537	
7	66.33099	58			57.2621068 .277219 .430986	391 e
	75.13073	66	.		64.85875	
	76.23069	67			65.80850	
	99.33001	88			85.74944	
	78.43063	69			67.70746	
7.5	66.33099	58			57.2621052 .514213 .343808	3919
	61.93112	54			53.46379	
	60.83115	53			52.51421	
	60.83115	53			52.51421	
	54.23135	47			16.81675	
8	68.53092	60			59.1612651 .374729 .503572	3919
	55.35132	48			47.76632	
	64.13105	56			55.36295	
	39.95177	34			34.47223	
	69.63059	61			60.11084	
8.5	48.73151	42			42.06886 46.24700 9.080268	391h
	35.53190	30			30.67392	
	57.53125	50			49.66548	
	65.23102	57			56.31252	
	60.85115	53			52.51421	
9	41.03174	35			35.4218134 .282523 .769716	3911
	36.65187	31			31.62350	
	35.53190	30			30.67592	
	47.63154	41			41.11928	
	37.73184	32			32,57308	
4	172.13881 .933118	89	0.09132	193.403	89.0052492 .60555 2.351280	3872
	177.9381	92			92,00583	
	185.6706	96			96.00194	
	177.9381	92			92,00385	
	181.8044	94			94.00289	
4.5	189.5368	98			98.0010095 .002414 .193257	3876
	185.6705	96			96.00194	
	193.4031	100			100.0000	
	170.2057	88			88.00572	
	179.8712	93			95.00376	
5	155.4095	70			70.0142088 .207517 .436921	3876
	176.0050	91			91.00430	
	170.2057	88			88.00572	
	170.2057	88			88.00572	
	162.4752	84			84,00760	
5.5	170.2057	88			88.00572 79.00996 5.72427	387d

Calibration of Experiaental Data \& Efficiency Calculation

Data for Regression of Logit Efficiency on [1/D]

efficien	$\stackrel{Y}{\text { ogit eff }}$	0/05	$\begin{gathered} x \\ 2 / D \end{gathered}$	logitefiregressiogredicted (2/0)50 spread		
0.929	2.567	76	0.516	-5.919	5.539	2.4840 .9357990 .168947
0.899	2.186	76	0.645	-5.919	5.539	1.720
0.653	0.678	76	0.774	-5.919	5.539	0.957
0.590	0.354	76	0.839	-5.919	5.539	0.575
0.418	-0.335	76	0.903	-5.919	5.539	0.193
0.396	-0.423	76	1.032	-5.919	5.539	-0.571
0.267	-1.010	76	1.161	-5.919	5.539	-1.335
						0.000
0.980	3.902	77	0.516	-5. 407	6.027	3.2361 .1146660 .184945
0.921	2.453	77	0.645	-5.407	6.027	2.539
0.780	1.266	77	0.774	-5.407	6.027	1.841
0.675	0.731	77	0.903	-5.407	6.027	1.143
0.800	0.405	77	1.032	-5.407	6.027	0.446
0.455	-0.180	77	1.161	-5.407	6.027	-0.252
0.362	-0.566	77	1.290	-5.407	6.027	-0.950
						0.000
0.950	3.172	78	0.645	-5.705	6.144	2.4631 .0767610 .175254
0.793	1.343	78	0.714	-5.706	6.144	1.725
0.610	0.447	78	0.903	-5.706	6.144	0.990
0.499	-0.003	78	1.032	-5.706	6.144	0.254
0.417	-0.335	78	1.161	-5.706	6.144	-0.482
0.292	-0.884	78	1.290	-5.706	6.144	-1.219
						0.000
0.996	5.539	95	0.516	-12.836	10.874	4.2490 .8471480 .077905
0.856	1.626	95	0.645	-12.836	10.874	2.593
0.468	-0.129	95	0.774	-12.856	10.874	0.976
0.305	-0.822	95	0.903	-12.836	10.874	-0.720
0.180	-1.516	95	1.032	-12.875	10.874	-2.376
						0.000
0.839	1.649	97	0.645	-4.231	3.983	1.2530 .9413850 .236350
0.595	0.365	97	0.774	-4.231	\$.983	0.707
0.512	0.048	97	0.903	-4.231	3.985 *	0.161
0.351	-0.705	97	1.032	-4.231	3.983	-0.384
0.347	-0.634	97	1.161	-4.231	3.983	-0.930
0.196	-1.410	97	1.290	-4.231	3.983	-1.476
						0.000
1.000	12.295	98	0.714			0.000
0.730	0.994	98	0.839	-4.472	4.33	0.5790 .9682460 .223613
0.514	0.054	98	0.903	-4.472	4.35	0.291
0.329	-0.713	98	1.032	-4.472	4.35	-0.286
0.321	-0.749	98	1.161	-4.472	4.35	-0.863
0.214	-1.303	98	1.290	-4.472	4.35	-1.440
						0.000
1.000	16.237	125	0.645			0.000
0.722	0.955	126	0.774	-11.178	9.593	0.9390 .8582030 .089451
0.549	0.196	126	0.859	-11.178	9.593	0.215
0.378	-0.498	125	0.903	-11.178	9.595	-0.503
0.125	-1.940	126	1.032	-11.178	9.593	-1.948
						0.000
1.000	11.488	129	0.645			0.600
0.670	0.706	129	0.774	-7.633	6.579	0.6700 .8519150 .131010
0.493	-0.070	129	0.839	-7.635	6.579	0.177
0.481	-0.077	129	0.903	-7.633	6.579	-0.315

Data for Regression of Logit Efficiency on [7/D]

0.203	-1.365	129	1.032	-7.633	6.579	-1.300
						0.000
0.978	3.793	130	0.645	-12.606	11.298	3.1550 .8954460 .079327
0.768	1.195	130	0.774	-12.605	11.288	1.529
0.505	0.021	130	0.839	-12.606	11.288	0.715
0.425	-0.302	130	0.903	-12.606	11.288	-0.098
0.245	-1.127	138	1.032	-12.306	11.288	-1.725
						0.000
0.968	3.401	189	0.903	-13.07	14.958	3.1531 .1444520 .076511
0.841	1.664	189	1.032	-13.07	14.958	1.466
0.557	0.227	189	1.097	-13.07	14.958	0.623
0.321	-0.751	189	1.161	-13.07	14.958	-0.220
0.196	-1.413	189	1.290	-13.07	14.958	-1.907
						0.000
1.000	11.610	193	0.903			0.000
0.774	1.230	193	1.052	-5.716	6.911	1.0111 .2090620 .174947
0.473	-0.109	193	1.161	-5.716	6.911	0.273
0.414	-0.348	193	1.290	-5.716	6.911	-0.464
0.241	-1.148	193	1.419	-5.716	6.911	-1.202
						0.000
0.939	2.728	195	0.774	-7.578	8.294	2.4271 .0944840 .131960
0.830	1.585	195	0.903	-7.578	8.294	1.449
0.442	-0.233	195	1.032	-7.578	8.294	0.472
0.335	-0.684	195	1.151	-7.578	8.294	-0.506
0.264	-1.025	195	1.290	-7.578	8.294	-1.484
						0.000
0.996	5.576	316	1.032	-8.139	12.548	4.1451 .5417120 .122865
0.962	3.239	316	1.161	-8.139	12.548	3.096
0.640	0.574	316	1.290	-8.139	12.548	2.048
0.488	-0.046	316	1.419	-8.139	12.548	0.996
0.427	-0.295	316	1.518	-8.139	12.548	-0.051
0.302	-0.837	316	1.677	-8.139	12.548	-1.105
0.229	-1.216	316	1.8006	-8.139	12.548	-2.155
						0.000
1.000	16.118	322	1.052			0.000
0.986	4.257	322	1.161	-8.71	13.963	3.8481 .6030990 .114810
0.982	4.007	322	1.290	-8.71	13.963	2.724
0.454	-0.186	322	1.419	-8.71	13.953	1.600
0.385	-0.469	322	1.548	-8.71	13.963	0.477
0.372	-0.522	322	1.677	-8.71	13.963	-0.647
0.305	-0.834	322	1.806	-8.71	13.963	-1.771
						0.000
0.962	3.228	326	1.290	-6.709	11.384	2.7271 .6988250 .149053
0.815	1.485	326	1.419	-6.709	11.384	1.852
0.667	0.694	326	1.548	-6.769	11.384	0.996
0.530	0.122	326	1.677	-6.709	11.384	0.130
0.314	-0.780	526	1.806	-6.709	11.384	-0.735
0.205	-1.357	326	1.935	-6.709	11.384	-1.601
						0.000
0.917	2.398	379	1.032	-6.396	9.102	2.5101 .4253050 .156592
0.862	1.835	379	1.161	-6.386	9.102	1.686
0.75b	1.129	379	1. 290	-6.396	9.102	0.862
0.397	-0.418	379	1.419	-6.386	9.102	0.058
0.339	-0.688	379	1.548	-6.386	9.102	-0.786
0.174	-1.557	379	1.677	-6.386	9.102	-1.610
						0.000

Data for Regression of Logit Efficiency on [2/D]

0.926	2.527	387	1.032	-5.519	8.823	3.1261 .5986590 .181192
0.950	2.945	387	1.161	-5.519	8.823	2.414
0.842	1.674	387	1.290	-5.519	8.823	1.702
0.790	1.326	387	1.419	-5.519	8.823	0.990
0.594	0.381	387	1.518	-5.519	8.823	0.277
0.562	-0.565	387	1.677	-5.519	8.823	-0.435
0.206	-1.347	387	1.806	-5.519	8.823	-1.147
						0.000
0.937	2.704	391	1.290	-3.598	7.463	2.8202 .0742070 .277952
0.958	3.131	391	1.419	-J.598	7.463	2.356
0.894	2.128	391	1.548	-3.598	7.463	1.892
0.641	0.580	391	1.677	-3.598	7.463	1.428
0.683	0.767	391	1.806	-3.598	7.463	0.963
0.525	0.101	391	1.935	-3.598	7.463	0.499
0.514	0.055	391	2.055	- 3.598	7.463	0.035
0.452	-0.150	391	2.194	-J.598	7.463	-0.429
0.343	-0.651	391	2.323	-3.598	7.463	-0.894
						0.000
0.993	4.952	475	1.290	-9.16	14.964	3.1451 .6336240 .109170
0.674	0.724	475	1.419	-9.16	14.954	1.963
0.471	-0.116	475	1.548	-9.16	14.964	0.781
0.240	-1.155	475	1.677	-9.16	14.964	-0.401
0.194	-1.422	475	1.806	-9.16	14.964	-1.583
0.139	-1.824	475	1.935	-9.16	14.964	-2.765
						0.000
0.915	2.372	483	1.419	-6.113	10.739	2.0621 .7567470 .163585
0.738	1.035	483	1.548	-6.113	10.739	1.274
0.594	0.579	485	1.677	-6.113	10.739	0.485
0.425	-0.303	483	1.005	-6.113	10.739	-0.304
0.207	-1.340	483	1.935	-6.113	10.739	-1.093
0.169	-1.594	483	2.055	-6.113	10.739	-1.881
						0.000
1.000	10.679	489	1.290			0.000
0.979	3.857	489	1.419	-6.87	13.602	3.8511 .9799120 .145560
0.977	3.760	489	1.548	-6.87	13.602	2.965
0.793	1.345	489	1.677	-6.87	13.602	2.078
0.692	0.810	489	1.606	-6.87	13.602	1.192
0.601	0.410	489	1.935	-6.87	13.602	0.305
0.337	-0.679	489	2.065	-6.87	13.602	-0.581
0.239	-1.155	489	2.194	-6.87	13.602	-1.468

Logit Capt.Effic. vs. Jet-Hood Distance

Logit Capt.Effic. vs. Jet-Hood Distance

Logit Capt.Effic. vs. Jet-Hood Distance Qh/Qj $=7 / \mathrm{B}$

Logit Capt.Effic. vs. Jet-Hood Distance Qh/Qj=9:

Logit Capt.Effic. vs. Jet-Hood Distance $Q h / Q j=129$

4ach- 4

510
Hanero 0
xitw ExpERRMEMTAL DMA: RESUUSS SUMORR

Experimental Results Data Summary

Qh／Qj ratio	Qh cfm	Vh fpm	Vh／25	ProjectedVh／ideal Crossdraf or／25	$\begin{array}{r} \text { (Z/D)50 } \\ \text { logit mu } \end{array}$	$\begin{aligned} & \text { (z)50, } \\ & \text { inches } \end{aligned}$
76	75	916	36.64	$25 \quad 36.64$	0.7358	3.626
77	145	1770.5	70.82	$25 \quad 70.82$	1.1147	4.319
78	220	26日6	107.44	25107.44	1.0768	4.173
95	75	916	36．64	$25 \quad 36.64$	0.8742	3.388
97	145	1770.5	70.82	$25 \quad 70.82$	0.9414	3.648
98	220	2686	107．44	$25 \quad 107.44$	0.9683	3.752
126	75	916	36.64	5183.2	0.8582	3.326
129	145	1770.5	70.82	2473.77093	0.8619	3.340
130	220	26日6	107.44	$32 \mathrm{B3} .9375$	0.8955	3.470
189	75	916	36.64	1091.6	1．1445	4.435
193	145	1770.5	70.82	2184.30952	1.2091	4.685
195	220	26日6	107.44	5945.52542	1.0945	4.241
316	75	916	36.64	$16 \quad 57.25$	1.5417	5.974
322	145	1770.5	70.82	3353.65151	1.6031	6.212
326	220	2686	.107 .44	$25 \quad 107.44$	1.6968	6.575
379	75	916	36.64	19 48．21052	1.4253	5.523
387	145	1770.5	70.82	2863.23214	1.5987	6． 195
391	220	2686	107.44	17 158	2.0742	8.038
475	75	916	36.64	20 45．8	1.6336	6.330
483	145	1770.5	70.82	27 65．57407	1．756日	6． 808
489	220	2686	107.44	29 92．6206日	1.9799	7.672

Experimental Results Data Summary

$w=-1 / m$ spread	$\begin{array}{r} \text { (Z/D)SO } \\ \text { modlogit } \end{array}$	$\begin{aligned} & \text { (Z) } 50, \\ & \text { modl ogt" } \end{aligned}$	25fpmPred 2 inches	25fpmPred5 （ Z / D ） 50	5fpmPred Z，inches	5fpmPred （ Z / D ） 50	$\begin{aligned} & \text { Qh/Qj } \\ & \text { ratio } \end{aligned}$
0.168947	0.865	3.352	1.875	0.484	2.125	0.548	76
0.184945	1.1147	4.319	1.875	0.484	2.125	0.548	77
0.175254	1.03	3.991	1.875	0.484	2.125	0.548	78
0.077905	0.75	2.906	2.125	0.548	2.625	0.677	95
0.23635	0.9414	3.648	2.375	0.613	2.625	0.677	97
0.223613	0.92	3.565	2.625	0.677	2.625	0.677	98
0．089461	0.8582	3.326	2.675	0.742	3.625	0.935	126
0.13101	0.82	3.178	3． 125	0.806	3.625	0.935	129
0.079327	0.84	3.255	3.375	0.871	3.625	0.935	130
0.076511	1.1445	4.435	3.625	0.935	5． 125	1.323	189
0.174947	1.15	4.456	4.375	1.129	5． 375	1.387	193
0.13196	1.03	3.991	4.625	1.194	5． 375	1． 387	195
0.122865	1.4	5.425	4.875	1.258	7.625	1.96 日	316
0.11481	1.4	S． 425	5.875	1.516	B． 125	2.097	322
0.149053	1.6968	6.575	6.625	1.710	B． 375	2.161	326
0.156592	1．4253	5.523	5.125	1.323	8.375	2.161	379
0．181192	1.5987	6.195	6.375	1.645	9.125	2.355	387
0.277932	2.0742	8.038	7.375	1.903	9.625	2.484	391
0.10917	1.52	5.890	5.375	1.387	9.625	2.484	475
0.163585	1.7568	6.808	7.125	1.839	10.875	2.806	483
0.14556	1.9799	7.672	8.125	2.097	11.125	2.871	489

OfpmPred Z,inches	OfpmPred (Z/D)50	Projected CrossdrafP	Vh/Ve PojectedP	$\begin{aligned} & z " f \text { for } \\ & \text { redXdrft } \end{aligned}$	$\begin{aligned} & \text { (Z/D)50 } \\ & \text { fromXdrft } \end{aligned}$	Qh/Qj ratio
2.125	0.548	25	36.640	1.875	0.484	76
2.125	0.548	25	70.820	1.875	0.484	77
2.125	0.548	25	107.440	1.875	0.484	78
2.625	0.677	25	36.640	2.125	0.548	95
2.625	0.677	25	70.820	2.375	0.613	97
2.625	0.677	25	107.440	2.625	0.677	98
3.63	0.937	5	183.200	3.325	0.858	126
3.64	0.939	24	73.771	3.18	0.821	129
3.675	0.948	32	83.938	3.255	0.840	130
5.38	1.388	10	91.600	4.43	1.143	189
5.475	1.413	21	84.310	4.46	1.151	193
5.625	1.452	59	45.525	3.991	1.030	195
8.52	2.199	16	57.250	5.425	1.400	316
8.69	2.243	33	53.652	5.425	1.400	322
8.725	2.252	25	107.440	6.575	1.697	326
9.8	2.529	19	48.211	5.52	1.425	379
9.95	2.568	28	63.232	6.195	1.599	387
10.125	2.613	17	158.000	8.04	2.075	391
11.575	2.987	20	45.800	5.89	1.520	475
11.625	3.000	27	65.574	6.81	1.757	483
11.875	3.065	29	92.621	7.67	1.979	489

YEPSILONH MODIFICAIION OF COMPUTER PROGRAM
Na

$$
\begin{aligned}
& \text { 保 }
\end{aligned}
$$

1u ?Tatie: Eprsilun
20 'Author: This program was prepared by Kirby N. Smith.
30 'Date: This program was finalized in March, 1989.
40 ' Purpoeesto evaluate the effect of sequential changes in posilon sub-zero on the calculation of jet flow.
50 'Noter The equations of the Prandtl mixing length hypothesiz, which takes viscesity into account, describe the jet flow.
60 Note: The line of 50% Capture Efficiency can be determined as a function of the dimensionless variables (Gh/Qj) and (Z/D)50, and of a-o.
70 CLS
80 SCREEN 0
90 COLOR 5
100 PRINT "EPSILDN RUNNING--PLEASE STAND BY."
110 DIM P $(600,2)$
120 PI=3.1415927\#
$130 \mathrm{DH}=3.875$
$140 \quad \mathrm{RH}=\mathrm{DH} / 2$
$150 \mathrm{~A}=\mathrm{RH} / 12$
$150 \mathrm{AH}=\mathrm{PI} *\left(\mathrm{~A}^{-2}\right)$
$170 \mathrm{JD}=$. 2 S
$180 \mathrm{DJ}=\mathrm{JD} / 12$
$190 \mathrm{RJ}=\mathrm{DJ} / 2$
$200 \mathrm{AJ}=P \mathrm{~F} *(R J) \wedge 2$
211 FOR MMi=1 ro 21
220 IF MM=1 THEN $\mathrm{Q}=220$
230 IF MMme THEN Qmi45
240 IF MMm THEN $2=75$
250 IF MM=4 THEN Qme2o
260 IF MM=5 THEN Q=14S
270 IF MM=6 THEN $Q=75$
2BO IF MM $=7$ THEN $Q=220$
290 IF $M M=8$ THEN $Q=145$
300 IF MM=9 THEN Q $=75$
310 IF $M M=10$ THEN $Q=220$
320 IF MM=11 THEN $Q=145$
330 IF $M M=12$ THEN $0=75$
340 IF MM=13 THEN $Q=220$
350 IF MM=14 THEN $U=145$
360 IF MN=15 THEN Q='75
370 1F $\mathrm{M} \|=16$ THEN $\mathrm{Q}=220$
380 IF $\mathrm{MM}=17$ THEN $\mathrm{Q}=145$
390 IF MMr=18 THEN $Q=75$
400 IF MDIm 19 THEN $\mathrm{Q}=220$
410 IF MNI 20 THEN Q $=145$
420 IF MIV=21 THEN $2=75$
430 IF $\mathrm{MPI}=1$ THEN $\mathrm{QJ}=\mathrm{Q} / 489$
$440 \mathrm{IF} \mathrm{MN}=\mathrm{D}$ THEN QJ=Q/483
450 IF $M M=3$ THEN QJ $=\mathrm{D} / 475$
460 IF $\mathrm{MM}=4$ THEN QJmQ/391
470 IF MWFS THEN QJ $=\mathrm{Q} / 387$
480 IF $M M=6$ THEN $Q . J=Q / 379$
490 IF MIdm7 THEN QJ=[2/326
500 IF MM=8 THEN $Q J=Q / 32 己$
310 IF $M M=9$ THEN $Q J=Q / 316$
520 IF MM=10 THEN QJ $=Q / 195$
S30 IF MM=11 THEN QJ=Q/2/193
S40 IF MM=12 THEN QJ=Q/189
SSO IF $M M=13$ THEN $Q J=Q / 130$
560 IF $\mathrm{MM}=14$ THEN QJ=Q/129
570 IF $M M=15$ THEN QJ $=Q / 126$
S80 IF MM=16 THEN QJ=Q/9B
590 IF $M M=17$ THEN QJ=Q/97
600 IF $M M=18$ THEN QJ $=Q / 95$
610 IF MM $=19$ THEN QJ $=\mathrm{Q} / 7 \mathrm{~B}$
620 IF MM=2O THEN QJea/2/77


```
\(1080 \mathrm{VJ}=\mathrm{QJ} / \mathrm{AJ}\)
1090 RATIQ=Q/QJ
1100 YJFTNEO ", "radial coord of the jet face (tto-1己in)
1110 YJFaYJFIN/12
1120 XJF \(=X J F I N / 12 \quad\), \(\because, j o t\) tip location on \(Z a x i s\), in .ft
1130 DIR=90 \(\quad\), 11, jet direction \(\langle 0,90,100\), 270) from \(Z\). meis
1140 RADIANS 1 PI *DIR/ 1 BO
\(1150 \times D F A=90\)
1160 RDXDFのPI *XDFA/180
1171 VC=2S ", Merossisdraft velocity
1180 INC . 03 ", "incroment to recalculationg in feet
1190 'Note: The following three equations set the angle of the imape jet.
1200 IF RODIANS \(=0\) THEN RADIM=PI
1210 IF O SRADIANS \(\{P I\) THEN RADIMmPI-RADIANS.
1220 IF PI (RADIANS (2*PI THEN RADIM= (3NPI)-RADIANS
1230 , Note: The following equations set the angle of the image erossaraft.
1240 IF RDXDF=O THEN XDFIM=PI
1250 IF O \(\langle R D X D F \leqslant=P I\) THEN XDFIM=PI-RDXDF
1260 IF PI (RDXDF (2*PI THEN XDFIM= (3*PI)-RDXDF
1270 'Note: The following equations calculate the vectorn for each increment
of hood flow.
\(12 B 0\) 'Note: Hood coordinates \(Z\) and \(R\) aro named in hood flow calculations
\(a s X\) and \(Y\), respectively.
\(12900 \mathrm{X}=\mathrm{XJF}\)
\(1300 \mathrm{Y}=\mathrm{YJF}\)
1310 FOR II=1 TO 600 , "'points of the jet flow in tho hood's field
1320 GAMMA \(1=\operatorname{SUR}\left(X^{\wedge} 2+(A+Y) \wedge 2\right)\)
1330 GAMMA己=SQR \(\left(X^{\wedge} 2+(A-Y)\right.\) ^2 \()\)
1340 ECC= (2*A) / (GAMMA1+GAMM\&2)
1350 ECCこ=ECC^』
\(1360 \mathrm{~T} 1=\mathrm{A}+\mathrm{Y}\)
1370 T2= \(\mathrm{Y}-ค\)
1380 T3=GAMMA1+GAMMA2
1390 T4 \(=\) GAMMA \(1 * G A M M A 2\)
\(1400 \mathrm{TS}=4\) *か~2
1410 T6=SQR(T3^2-T5)
\(1420 \mathrm{~T} 7=-\mathrm{Q} / \mathrm{PT}\)
\(1430 \mathrm{~TB}=(\mathrm{T} 1 * G A\) MMA2) + (T2*(GAMMA1)
1440 T9*T3* \(14 *\) 「 6
1450 VR \(1=(\mathrm{T} 8 / \mathrm{T} 9) * T 7\)
\(1460 \mathrm{~V} 1=(\mathrm{T} 7 * \mathrm{X}) /(T 4 * T 6)\)
\(1470 \mathrm{VmSQR}(V R 1 \wedge 2+V Z 1 \wedge 2)\)
\(1480 \mathrm{VTF}=(\mathrm{Q} * E C C 2 * S Q R(3)) /\left(2 * P I * A^{\wedge} 2 * S Q R(3-2 * E C C R)\right)\)
1490 URE= (VR1 N) *VTF
1500 VZE= (VZ1/V) *VTF
1510 VRC \(=\left(2.6 * E C C C^{\wedge} 18+.853\right) * V R 2\)
1520 VZCw. 9*VZ2
1530 'Note: The following equations transform the coordinaten of the jet and
its image to the coordinates of the hood.
1540 'Note: The virtual point in the Prandtl mixing length hypothesis of jet
flow is taken as the actual origin of the jet.
1550 IF DIR=O OR DIR \(=360\) THEN GOTO 1560 ELSE 1610
\(1560 \mathrm{Z}=\mathrm{X}-\mathrm{X} J F+(1.86 * D J)\)
\(1570 \mathrm{R}=\mathrm{Y}, \mathrm{JF}-\mathrm{Y}\)
\(158021=2 *(1.86 * D J)-(2 * X J F)-Z\)
1590 RIm-R
1600 GOTO 1790
1610 IF DIRrGO THEN GOTO 1620 ELSE GOTO 1670
\(1620 \mathrm{Z}=\mathrm{Y}-\mathrm{YJF}+(1.86 * D J)\)
\(1630 \mathrm{R}=\mathrm{X}-\mathrm{XJF}\)
\(1640 \quad \mathrm{ZI}=\mathrm{Z}\)
\(1650 \mathrm{RI}=(2 * \mathrm{XJF})+\mathrm{R}\)
1660 GOTO 1790
1670 IF DIR \(=180\) THEN GUTO 1680 ELSE GOTD 1730
\(1680 \mathrm{Z}=\mathrm{XJF}-\mathrm{X}+(1.86 * \mathrm{DJ})\)
\(1690 \mathrm{Rm}=\mathrm{Y}-\mathrm{YJF}\)
```

1／00 21•24（（1．HG＊DJ）＋XJF）－Z
1710 RI＝－R
1720 GロTO 1790
1730 IF DIR＝270 THEN GOTO 1740 ELSE PRINT＂DIRECTION＂
$1740 \mathrm{Z}=\mathrm{YJF}-\mathrm{Y}+(1.86 * D J)$
$1750 \mathrm{R}=\mathrm{XJF}-\mathrm{X}$
$1760 \mathrm{ZI}=\mathrm{Z}$
$1770 \mathrm{RI}=\mathrm{R}-\left(\mathrm{E} * \mathrm{x}_{\mathrm{J}} \mathrm{JF}\right)$
1780 ＂Note：The following equations ealculate the vectore for any given R and z pointin of the jet flow．
$1790 \mathrm{KmAJ*}\left(\mathrm{VJJ}^{2}\right)$ へ己
$1800 E D=.0151 * S Q R(K) *(F F-1+D D) * 10^{\circ} G G$
$1910 \mathrm{~F}=(\mathrm{FF}-1+\mathrm{DD})+10^{\wedge} \mathrm{GG}$
1820 ETA $=(R+S Q R(3 * K)) /(4 *(E D) * Z * S Q R(P I))$
1830 ETA $1=E T A-((E T A \wedge 3) / 4)$
1840 ETAR＝（1＋（（ETANと）／4））へこ
1850 IF－． 00001 （ETA AND ETA 6.00001 OR－2． 00001 亿ETA AND ETA -1.99999 UR 1.99999 ＜ETA AND ETA く3．00001 THEN GUTO 1360 ELSE $18 B 0$

1860 URJ $=0$
1870 GOTD 1890
1 HBO VRJ＝（SQR（3＊K）＊ETA1）／（4＊（ETAZ）＊Z＊SQR（PI））
$1890 \mathrm{VZJ}=3 * \mathrm{~K} /(\mathrm{B} * \mathrm{PI} *(E O)$＊Z＊ETAC）
1900 IF VZJ（O THEN VZJ＝0 AND URJmO
1910 Notet The following calculations are for the effect of the inage jot． field on the flow of the actual jet into the hood．Note that K and opsilon－sub－zero have alroady been calculated for the jet．
1920 ETAI $=(R I * S Q R(3 * K)) /(4 * E Q * Z I * S Q R(P I))$
1930 ETAI $1=$ ETAI $-(($ ETAI～ 3$) / 4)$
1940 ETAIされ（1＋（（ETAI＾己）／4））へ己
1950 IF－． 00001 SETAI AND ETAI K． 00001 UR－2． 00001 （ETAI AND ETAI＜-1.99999 QR 1.99999 （ETAI AND ETAI 〈2． 00001 THEN GOTO 1960 ELSE 1980

1950 URIM＝0
1970 GOTO 1990
1980 VRIM $=(S Q R(3 * K) * E T A I 1) /(4 * E T A I 2 * Z I * S Q R(P I))$

2006 IF VZIMSO THEN VZIM＝O AND URIM＝0
2010 ＇Note：The Following equations add the vectors and then determing the next point for vector calculation based on the combined values and the desired increntent of calculation．
2020 VRTOT $=$ VAC $+($ COS（RADIANS $) * V R J)+(C O S(R A D I M) * V R I M)+(S I N(R A D I A N S) * V Z J)+$ （SIN（RADIM）＊VZIM）＋（SIN（RDXDF）＊VC）＋（SIN（XDFIM）＊VC）
2030 VZ＇TOT $=V Z C+(C O S(R A D I A N S) ~=V Z J)+\langle C O S$（RADIM $)+V Z I M)+(S I N($ RADIANS $) * V R J)+$ $(S I N(R A D I M) * V R I M)+(C O S(R D X D F)=V C)+(C O S(X D F I M) * V C)$
2040 IF VZTOT $<\approx-00001$ THEN GQTO 2050 ELSE GOTD 2070
2050 ANGLE＝ATN（VRTQT／VZTOT）＋PI
2050 जロTO 2150
2070 IF VZTOT $=00001$ THEN EDTO ZOBO ELSE GOTO 2100
2OBO ANGLE＝ATN（VRTOT／VZTOT）
20so GOTO 2150
2100 IF－．OOOO1 SVZTOT AND VZTOT K .00001 AND URTOT 10 THEN GOTD 2110 ELSE Z13O
2110 ANGLEm3＊PT／2
2120 GOTO 2150

2140 ANGLEmPI／2
$3150 \mathrm{XaX}+(\mathrm{COS}$（ANGLE）＊INC）
$2160 \mathrm{Y}=\mathrm{Y}+($ SIN（ANGLE）＊INC）
$2170 \mathrm{P}(I I, 1)=X$
21B0 P（II，2）$=Y$
2190 IF $X\{=.01$ QR $X)=1$ OR $Y(=-1$ OR $Y)=1$ THEN I $I=600$ ELSE CUUNT $=1 I+1$
2a00＇Note：A repetitive cycle in programmed to caleulate the now tagnitude and diroction of flow at each subsequent inerement．
2210 NEXT II
2ᄅe0，Note：The following section is the instructions to the computer to draw the hood，and to dinplay the flow into ite．
2230 CLS
E2．40 SCREEN 1

```
2e30 EULUH 16,0
2260 WINDDW (-1.6,-1.1)-(1.6,1.1)
己己70 LINE (0, A)-(0, 1), こ
22B0 LINE (0,A)-(-.05,A), ᄅ
2290 LINE (-.05,0)-(1,0),3
2300 LINE (O,-H)-(0,-1),2
2310 LTNE (0,-6))-(-.05,-A), 2
2320 FOR JJ=1 TO COUNT
8330 GwP(JJ, 1)
2340 HaP(JJ, 2)
23S0 PSET (G,H),1
2360 NEXT J.J
2370 KEY OFF
2380 LOCATE B,4:PRINT "QH/QJ=";RATIO
2390 LOCATE 9, 4:PRINT "QH"";Q"CFM"
2400 LOCATE 10, 4:PRINT "JETX=";XJFIN"IN"
2410 LOCATE 17,4;PRINT "VZJ=";VZJ"FPM"
2420 LOCATE 16,4:PRINT "V,Jm";VJ"FPM"
2430 LOCATE 15, 4:PRINT " (Z/D)=";XJF/(2*A)
2440 LOCATE 19,4:PRINT "epsilon-0=";EO
2450 I_OCATE 19, 4:PRINT "Fm";F
2460 PRINT
24%0 PRINT
248O INPUT "BREAKPY?(Y/N)";ANt
2490 IF ANS "Y" OR AN#=" " T" THEN GOTO 2S10 ELSE GOTO 2630
2SOO PRINT "BREAKPT FILE"
2510 DPEN "EPSICALC.DAT" FOR APPEND AS ## 
2520 WRITE #1, RATIO, Q, VJ, VZJ, XJFIN, XJF/(2*A), ED, F
2530 CLUSE |1
2S40 LPRINT "QH/QJm";RATIO
2550 LPRINT "QHm";Q"CFM"
2560 LPRINT "VJ=";VJ"FPM"
2570 LPRINT "VZJ=";VZJ"FPM"
2SBO LPRINT "JETX=";X.IFIN"IN"
2590 LPRINT "(Z/D)SO##;XJF/(こ*A)
2600 LPRINT "ROEilor-O#"{EO
2610 LPRINT "egFACTOR=";F
```



```
2630 CLS
2640 ,",
2650 ,11 COLOR 4
2660 w" INPUT "ANOTHER? (Y/N) "; ANN%
2670 "M, IF ANN%="Y" OR ANN$m"Y" THEN GOTO 1977 ELSE GOTO 1970
2680 ,:1% PRINT "END OF PROGRAM"
2690 ,M SYSTEM
2700 , END
2710 SCREEN O
2720 COLOR 5
2730 PRIN'T "FPSILON LOUPS RUNNING--PLEASE STAND BY."
2741 NEXT DD
2750 NEXT PEN
2760 Cl_S
2770 COLUR 3
2780 PRINT "END OF EPSILON LOOPS."
2790 DPEN "EPSICALC. DAT" FOR INPUT AS ##
```



```
2810 LPRYN1'"
```



```
2830 LPRINT "QH/QJ", "QH", "VJ", "VZJ", "XJFIN", "ZDSO", "E-[", "eoFACTQR"
```



```
2B50 IF EOF (2) THEN CLOSE #2:SYSTEM
2&60 INPUT #己, RATIO, Q, VJ, VZJ, XJFIN, XJF/(2*A), ED, F
2970 LPRINT RATIO, Q, VJ, VZJ, XJFIN, XJF/(2*A), ED, F
2880 GOTO 285O
OK
system
```

