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ABSTRACT

James Matthew Holt: Using the Multi-String Burrow-Wheeler Transform
for High-Throughput Sequence Analysis

(Under the direction of Leonard McMillan)

The throughput of sequencing technologies has created a bottleneck where raw sequence files

are stored in an un-indexed format on disk. Alignment to a reference genome is the most common

pre-processing method for indexing this data, but alignment requires a priori knowledge of a reference

sequence, and often loses a significant amount of sequencing data due to biases. Sequencing data can

instead be stored in a lossless, compressed, indexed format using the multi-string Burrows Wheeler

Transform (BWT).

This dissertation introduces three algorithms that enable faster construction of the BWT for

sequencing datasets. The first two algorithms are a merge algorithm for merging two or more BWTs

into a single BWT and a merge-based divide-and-conquer algorithm that will construct a BWT

from any sequencing dataset. The third algorithm is an induced sorting algorithm that constructs

the BWT from any string collection and is well-suited for building BWTs of long-read sequencing

datasets. These algorithms are evaluated based on their efficiency and utility in constructing BWTs

of different types of sequencing data. This dissertation also introduces two applications of the BWT:

long-read error correction and a set of biologically motivated sequence search tools. The long-read

error correction is evaluated based on accuracy and efficiency of the correction.

Our analyses show that the BWT of almost all sequencing datasets can now be efficiently

constructed. Once constructed, we show that the BWT offers significant utility in performing fast

searches as well as fast and accurate long read corrections. Additionally, we highlight several use

cases of the BWT-based web tools in answering biologically motivated problems.
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CHAPTER 1

INTRODUCTION

1.1 The computational bottleneck in bioinformatics

The throughput of next generation sequencing (NGS) technologies has increased at such a rate

that it is now on the cusp of outpacing downstream computational and analysis pipelines [Kahn,

2011]. The result is a bottleneck where huge datasets are held on secondary storage (disk) while

awaiting processing. Raw sequence (ex. FASTQ) files, composed of sequence and quality strings, are

the most common intermediate piling up at this bottleneck. Moreover, the rapid development of new

analysis tools has led to a culture of archiving raw sequence files for reanalysis in the future. This

hoarding tradition reflects an entrenched notion that the costs of data generation far exceeds the

costs of analysis. The storage overhead of this bottleneck can be somewhat alleviated through the

use of compression. However, most analyses require additional computational stages to decompress

datasets prior to their use, which further impacts the throughput of subsequent analyses. This, in

turn, has led to the need for algorithms which can operate directly on compressed data [Loh et al.,

2012].

The goal of next generation sequencing is to read in sequences of DNA, RNA, or processed DNA

such that they can be analyzed. Generally speaking, these sequences are composed of long chains of

four different nucleotides that are commonly represented by four characters: A, C, G, and T. In

complex organisms, the strands of DNA (called chromosomes) can be millions of nucleotides long

leading to whole genomes that are billions of nucleotides long. Currently, NGS technologies are

not capable of directly reading these long strands of DNA. Instead, they rely on fragmenting the

sequence into smaller pieces and reading those smaller pieces using the sequencing technology. These

smaller reads are usually hundreds or thousands of nucleotides long and have an expected error

rate from the sequencing technology. A typical raw sequence file will include both the nucleotide

sequence read by the technology and a quality score indicating the confidence in each nucleotide in

the sequence.



Others have previously proposed representing the raw sequencing data using the Burrows Wheeler

Transform (BWT) and FM-index [Mantaci et al., 2005, Bauer et al., 2011, Cox et al., 2012a]. The

BWT is more compressible than raw sequencing data, and the FM-index is created in a way that is

suitable for direct queries by downstream tools even when the BWT is compressed. Furthermore,

the BWT is a lossless transform of the sequences that only needs to be computed once for any given

dataset. Once computed, the FM-index enables arbitrary, exact matching searches for k length

strings in O(k) steps. These searches can be used to count the frequency of the k length string

and/or extract all sequenced reads that contain the k length string as a substring.

Despite the benefits of compression and arbitrary searches, there are relatively few efficient

algorithms for constructing the BWT of raw sequencing data. While many algorithms exist for

constructing the BWT of a single, long string, only a handful exist for constructing the BWT

of a string collection such as a sequencing dataset. The ones that do exist also tend to work

well for only a particular type of dataset. For example, the BCR algorithms [Bauer et al., 2011,

2013] work well for short, uniform length reads like those produced by an Illumina1 sequencer.

Unfortunately, the algorithm requires more computation time as the reads become longer, leading to

lengthy computations for long read sequencing datasets like those produced by PacBio2 or nanopore3

sequencers. This has created a barrier of entry for researchers who do not have efficient ways to

compute the BWT and FM-index for their datasets.

Once a BWT and FM-index are constructed, they can be applied as the underlying data structures

for accessing raw sequencing data, enabling methods that solve biological problems like de novo

assembly [Simpson and Durbin, 2010] or splice junction detection [Cox et al., 2012b]. Unfortunately,

it is not immediately obvious how to use the structures unless one is first familiar with the subroutines

used to compute FM-index queries. As a result, there is a second barrier of entry where researchers

are unsure how to query the data stored in a BWT and use it in a biologically meaningful way.

In this dissertation, three new algorithms for the multi-string BWT are introduced: a multi-string

BWT merge algorithm, a merge-based multi-string BWT construction algorithm, and an induced

1http://www.illumina.com
2http://www.pacb.com
3https://nanoporetech.com
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sorting based multi-string BWT construction algorithm. These three methods are primarily geared

towards addressing the problem of efficiently computing BWTs of long read sequencing datasets.

This dissertation also describes two applications of the BWT and FM-index to addressing biological

problems: long-read sequence correction and sequence visualizations. Long-read sequence correction

is an automated process that reduces the noise caused by sequencing errors in long-read datasets,

enabling downstream analyses such as de novo assembly and alignment to operate on a cleaner set

of inputs. The sequence visualizations enable researchers to directly access raw sequence datasets

stored on a remote server while masking the complexities of the BWT and FM-index queries. These

tools provide a direct interface to the sequenced reads without losing information from a preprocess

like alignment or assembly. Since the BWT is a lossless transform that only need to be computed

and indexed once for a dataset, it enables researchers to focus their efforts on designing biologically

informative queries instead of repeatedly preprocessing the data.

1.2 Thesis statement

The multi-string Burrows-Wheeler Transform and associated FM-index are efficient data struc-

tures for storing and indexing raw sequencing data. By developing methods to build these structures

for different types of sequencing data, we enable alternate methods for solving biologically relevant

problems without loss of the underlying, raw sequence data.

1.3 Contributions

This dissertation introduces three main BWT algorithms: an algorithm for merging multiple

BWTs into a single BWT, a merge-based multi-string BWT construction algorithm, and an induced-

sorting based multi-string BWT construction algorithm. Both construction algorithms tend to be

better suited for long read sequencing datasets than other construction algorithms. This dissertation

also introduces two methods that use the BWT as an underlying data structure for querying a

sequence dataset: a long-read error correction method that uses the BWT and FM-index of a

short-read sequencing dataset and a collection of sequence-centric visualization tools for directly

accessing raw sequencing data through a BWT and FM-index.

1.4 Structure

Chapter 2 provides an overview and background of the BWT and FM-index. Chapter 3 describes

an algorithm for merging one or more BWTs together into a single BWT. Chapters 4 and 5 describe
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two algorithms for constructing multi-string BWTs of long-read sequencing datasets that respectively

use a merge-based approach and an induced sorting approach. Chapter 6 describes a method for

long-read error correction using the BWT of short-read sequencing datasets. Chapter 7 describes how

to use the BWT to create sequence-centric web tools for accessing and visualizing raw sequencing

data. Chapter 8 provides a summary of this dissertation and possible areas of future work.
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CHAPTER 2

BACKGROUND

2.1 The suffix array

The suffix array is a data structure that enables searches for substrings in a single string [Manber

and Myers, 1993]. Let T be a string of length N that is terminated by a unique end-of-string

character, ‘$’, that is lexicographically smaller than all other symbols in T . One can naïvely

construct the suffix array of T by first enumerating all of its suffixes, S0 = T [0 : N ], S1 = T [1 : N ],

..., SN−2 = T [N − 2 : N ], and SN−1 = T [N − 1 : N ], and then sorting them lexicographically.

The suffix indices after the sort is the suffix array of T . While the suffix array is defined as the

list of suffix indices, it is often visually represented as the actual suffixes. Table 2.1 illustrates the

construction of the suffix array for the string “ALABAMA$".

The suffix array is a useful data structure primarily because it organizes similar substrings so

that they are adjacent to each other in the structure. Since suffix arrays represent a sorted list,

a standard binary search can be used to search for exact matching substrings within the text T .

Manber and Myers [1993] show that this binary search can be performed in O(k + log(N)) time for

a text of length N and a substring of length k.

The main disadvantage of a suffix array is the memory cost for storing the structure. The

array stores N values that are at most (N − 1). As a result, the total storage cost of the array is

O(N ∗ log(N)) bits. For any long text, the size of the structure may be too large to fit in main

memory. For example, the human genome is approximately three billion basepairs long, so the

suffix array for the human genome requires approximately 12 GB of memory. While this may not

be prohibitively large for modern computers, there are smaller structures that can perform faster

searches.

2.2 The Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT) was originally introduced as a method for permuting

the symbols in a string to improve its compressibility [Burrows and Wheeler, 1994]. Interestingly,



Index Suffix Sorted Suffixes Suffix Array
0 ALABAMA$ $ 7
1 LABAMA$ A$ 6
2 ABAMA$ ABAMA$ 2
3 BAMA$ ALABAMA$ 0
4 AMA$ AMA$ 4
5 MA$ BAMA$ 3
6 A$ LABAMA$ 1
7 $ MA$ 5

Table 2.1: Suffix array example. This table demonstrates how to naïvely construct the suffix array
for a string “ALABAMA$". First, list every suffix of the input string in the “Suffix" column. Then,
lexicographically sort those suffixes in the “Sorted Suffixes" column. In the “Suffix Array" column,
each sorted suffix is paired with its corresponding start index in our original string. For example,
the suffix “$" starts at index 7 in “ALABAMA$", so the first value in the suffix array is 7. The array
of numerical values forming this column is the suffix array for “ALABAMA$".

Index Rotations Sorted Rotations Suffix Array BWT
0 ALABAMA$ $ALABAMA 7 A
1 LABAMA$A A$ALABAM 6 M
2 ABAMA$AL ABAMA$AL 2 L
3 BAMA$ALA ALABAMA$ 0 $
4 AMA$ALAB AMA$ALAB 4 B
5 MA$ALABA BAMA$ALA 3 A
6 A$ALABAM LABAMA$A 1 A
7 $ALABAMA MA$ALABA 5 A

Table 2.2: BWT example. This table demonstrates how to naïvely construct the BWT for a string
“ALABAMA$". First, list every rotation of the input string in the “Rotations" column. Then,
lexicographically sort those rotations in the “Sorted Rotations" column. The values in the “BWT"
column are generated by taking the corresponding sorted rotation and storing the symbol preceding
that rotation (this is also the last symbol in the rotation, bolded for visual aid). Note that changing
the suffixes to rotations has no effect on the values stored in the suffix array.

the permutation is directly related to a suffix array for the same string. Given a single string and its

suffix array, the BWT is a concatenation of the symbols preceding each suffix represented by the

suffix array. Alternatively, by representing the suffixes as rotations (cyclic suffixes), the BWT can be

thought of as a concatenation of the last characters in each rotation represented by the suffix array.

Thus the BWT implicitly represents a suffix array. Table 2.2 demonstrates how to construct the

BWT for the string “ALABAMA$".

The BWT enables compression because it tends to create long substrings of the same symbol

called runs [Burrows and Wheeler, 1994]. This tendency to create long runs is largely due to its

relationship to the suffix array. Since the suffix array represents the sorted order of all rotations of
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the input, rotations that start with similar substrings will be adjacent in the array. Additionally, the

expectation is that similar substrings are preceded by the same symbol. Since the BWT is defined

as the concatenation of these predecessor symbols, the expectation is that long runs will occur in

the BWT when the same substring is repeated multiple times in the original string. For example,

consider a typical English text document. Words such as “the" will occur many times through the

document. In the suffix array, this will appear as suffixes starting with “he " and whose rotations end

with symbol ‘t’. As a result, there will likely be long runs of ‘t’ symbols caused by the prevalence of

the substring “the" in the text.

Given a BWT of a text, it can be compressed using run-length encoding [Burrows and Wheeler,

1994]. Wherever a run occurs in the BWT, the run can be replaced with a numerical value and

a single occurrence of the symbol that makes the run. For example, the string “ALABAMA$"

becomes BWT “AML$BAAA" which can be stored using run-length encoding as “AML$B3A". As

the length of runs in the BWT increases, the relative compression gained from run-length encoding

also increases.

2.3 The Full-text Minute-space index

While the BWT is an interesting data structure for compressing long texts, it is not inherently

searchable like the suffix array. However, the suffix array that is implicitly represented by the

BWT can be accessed through an auxiliary data structure called the Full-text Minute-space index

(FM-index) [Ferragina and Manzini, 2001]. The FM-index takes advantage of a relationship between

the BWT and suffix array called the Last-to-First Mapping (LF-mapping) property [Ferragina

and Manzini, 2001]. The LF-mapping property states that j-th occurrence of a symbol c in the

BWT (the Last column in a sorted rotation) corresponds in a 1-to-1 manner with the j-th suffix

that begins with symbol c in the suffix array (the First column in a sorted rotation). For example,

in Table 2.3, the first ‘B’ in the BWT occurs at index 0 and corresponds to the first suffix starting

with ‘B’ at index 4. Similarly, the second ‘B’ in the BWT occurs at index 1 and corresponds to

the second suffix starting with ‘B’ at index 5. The FM-index pre-calculates and stores these 1-to-1

relationships to enable fast access to the implicit suffix array.

Given a BWT, B, of length N and an alphabet, Σ, of length σ, the FM-index, F , is defined as a

two-dimensional matrix of values with length (N + 1) and width σ. For an index i and symbol c,

F [i][c] is the total number of occurrences of c before index i in the BWT. Given this definition, the
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Index Suffix Array BWT FM-index
$ A B

0 $ABABAB B 0 0 0
1 AB$ABAB B 0 0 1
2 ABAB$AB B 0 0 2
3 ABABAB$ $ 0 0 3
4 B$ABABA A 1 0 3
5 BAB$ABA A 1 1 3
6 BABAB$A A 1 2 3

Total — — 1 3 3
Offsets — — 0 1 4

Table 2.3: FM-index example. A sample BWT and FM-index for the string “ABABAB$". The
sorted rotations from the suffix array are shown for visual aid. The FM-index, F , is shown on the
far right. For index i and symbol c, F [i][c] is the number of occurrences of c before i in the BWT.
Additionally, the last entry in the FM-index (labeled “Total") is the total number of times each
symbol occurs in the BWT. These totals are used to derive an “Offsets" array, O, such that O[c] is
the index of the first suffix in the suffix array that begins with c.

entire FM-index can be constructed in a linear pass over the BWT. Initialize F [0] to all zeros. For

all i from 0 to N , copy F [i] into F [i+ 1] and increment only F [i+ 1][c] where c = B[i]. Given this

definition, the last entry in the FM-index is the total number of occurrences of all characters in the

BWT. These total counts are used to trivially calculate Offsets array, O, of length σ such that for

all c ∈ Σ, O[c] is the first suffix in the implicit suffix array that begins with c. Table 2.3 shows the

BWT, FM-index, and Offsets for string “ABABAB$".

Given a BWT and FM-index, the corresponding suffix array can be implicitly accessed by

applying the LF-mapping property. Recall that the LF-mapping property relates the predecessor

symbol stored in the BWT to a particular suffix in the suffix array. As a result, substrings that are

contained within the suffix array can be accessed without explicitly storing the suffix array. There

are two key functions that use the FM-index to access the implicit suffix array in this way.

2.3.1 Retrieving a suffix

The first function is recoverSuffix(...) shown in Algorithm 1. The main idea behind this

algorithm is to repeatedly calculate the predecessor at a particular index in the BWT by using the

FM-index. Given an index i, lines 1-3 find the symbol preceding the implicit suffix at index i and

the corresponding index of that suffix the BWT. In lines 4-7, the process of finding predecessor

symbols and suffixes is repeated until it returns to the original index i. Since this calculation is done

in reverse by finding predecessor symbols, the final step is to reverse the order of the predecessor
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symbols to obtain the actual suffix. A full example of this method is show in Table 2.4.

The time to find any given predecessor symbol and corresponding index in the BWT is O(1).

Since this method recovers the entire suffix as a rotation, it will require a total of O(N) steps to

recover the suffix of length N . Note that when this method is called on index 0 (the only suffix

starting with the end-of-string symbol ‘$’), the method returns a suffix that can be trivially shifted

to obtain the original text used to construct the BWT.

Data: BWT B, FM-index F , Offsets O, index i
Result: The rotational suffix located at index i in the implicit suffix array
Function recoverSuffix(B, F, O, i)

1 c← B[i];
2 j ← O[c] + F [i][c];
3 ret← c ;
4 while i 6= j do
5 c← B[j];
6 j ← O[c] + F [j][c];
7 ret.append(c) ;

end
8 return reverse(ret) ;
Algorithm 1: Given a BWT and FM-index, this function accesses the implicit suffix array through
a reverse traversal of the BWT. Line 1 retrieves the symbol preceding the suffix at index i in
the implicit suffix array. Line 2 calculates the index of the suffix corresponding to that symbol
and stores it in j. Line 3 saves the symbol as part of a string. Since the suffixes are cyclic (i.e.
rotations) by the BWT definition, lines 4-7 repeats the retrieval of predecessors until it reaches the
original index i, at which point the algorithm has cycled through the entire suffix in reverse order.
Since the symbols are discovered in reverse order, the final step is to reverse the entire string in
line 8 before it is returned. An example execution of this process is shown in Table 2.4.

Variable Lines 1-3 Loop 1 Loop 2 Loop 3 Loop 4 Loop 5 Loop 6
c B A B A B A $
j 4 1 5 2 6 3 0
ret B BA BAB BABA BABAB BABABA BABABA$

Table 2.4: recoverSuffix(...) example. This table shows the state of variables in the
recoverSuffix(...) function of Algorithm 1 when called using the BWT, FM-index, and Offset
array from Table 2.3 and i = 0. Lines 1-3 calculate the symbol and suffix preceding the suffix at
index 0 in the BWT. Each iteration of the loop calculates the next symbol and suffix preceding the
current index j. At the end of loop 6, j = i, so the function returns the reverse of ret, “$ABABAB".
In addition to being the correct suffix at index 0 in the BWT, this result can be used to trivially
derive the original text for creating the BWT.
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2.3.2 Calculating suffix ranges

The second function is getRange(...) shown in Algorithm 2. Given a substring p of length k

(called a k-mer), this method solves for a range in the implicit suffix array such that all suffixes in

the range share the k-mer prefix p. The base case is the empty string range defined as [0, N) for

a BWT of length N (lines 1-3). In the loop, symbols from the substring are retrieved in reverse

order (lines 4-5). For iteration i ∈ [1, k], the symbol is used to calculate a new range corresponding

to the i-mer suffix of p. At the end of iteration i, the values [l, h) store the range of suffixes in

the implicit suffix array that are prefixed by the i-mer substring p[k − i : k). In other words, the

algorithm implicitly pre-pends symbols to the empty string range until it obtains the substring p. A

full example of this method is show in Table 2.5.

As with recoverSuffix(...), this method traverses the values stored in the BWT in reverse

order. For any given range, a symbol can be implicitly pre-pended to that range in O(1) steps (lines

5-7). Thus, the range for any arbitrary k-mer can be solved in O(k) steps. Additionally, the count

or frequency of a k-mer can be derived trivially as the length of the range, (h− l).

Data: BWT B, FM-index F , Offsets O, Prefix p
Result: The range of suffixes [l, h) in the suffix array that have the prefix p
Function getRange(B, F, O, p)

1 k ←len(p);
2 l← 0;
3 h←len(B);
4 for i ∈ [1..k] do
5 c← p[k − i];
6 l← O[c] + F [l][c];
7 h← O[c] + F [h][c];

end
8 return (l, h);
Algorithm 2: Given a BWT of length N and FM-index, this function calculates the range of
indices in the BWT corresponding to suffixes in the implicit suffix array that have a particular
prefix p of length k. It starts with the full range [0, N) and implicitly prepends characters from
p in reverse order. In other words, the method calculates the range corresponding to suffixes
p[k−1 : k), p[k−2 : k), ..., p[1 : k), and finally p. This method takes advantage of the LF-mapping
property stored in the FM-index to solve for any given k-length substring (or k-mer) in O(k) steps.
An example execution of this process is shown in Table 2.5.

2.3.3 Sampling the FM-index

While the FM-index is useful for the methods described above, it requires a significant amount

of memory to store the entire structure. For an alphabet of length σ and a BWT of length N , the
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Variable Lines 1-2 Loop 1 Loop 2 Loop 3 Loop 4
c — B A B A
l 0 4 1 5 2
h 7 7 4 7 4

partial substring “" B AB BAB ABAB

Table 2.5: getRange(...) example. This table shows the state of variables in the getRange(...)
function of Algorithm 2 when called using the BWT, FM-index, and Offset array from Table 2.3
and p =“ABAB". The algorithm starts with the full range (l, h = [0, 7)) corresponding to the empty
string. The range is modified such that symbols are implicitly prepended to the substring (shown in
the partial substring row) with each execution of the main loop. The correct range for suffixes of the
substring p are solved in reverse order, and the final execution of the loop solves the range [2, 4) for
the full substring “ABAB".

FM-index requires O(Nσ) integer values. Even for a restricted genomic alphabet, this is too large to

be practical.

Fortunately, there is a relatively easy way to sample the FM-index to reduce storage costs by

sampling the FM-index [Ferragina and Manzini, 2001]. Given BWT B and FM-index F , recall

that the values in F [i + 1] were defined earlier based on the values stored at F [i] and B[i]. As a

result, given an FM-index entry at index i < j, the BWT can be linearly traversed to calculate the

FM-index entry at index j. If the FM-index is sampled such that every s-th entry is stored, the

total memory requirements of the FM-index reduces to O(Nσs ). Note that this comes at a cost of

increasing the time to get any particular FM-index to O(s) due to the linear traversal of B.

2.3.4 Application to bioinformatics

One of the most common ways to index short-read datasets is through a process called alignment.

In alignment, the goal is to match a sequencing read (a short string) to a reference genome (a

much longer string) such that the edit distance (number of symbol changes, insertions, or deletions)

between the read and the reference are minimized. In this way, each read is indexed by a position in

the reference genome. In DNA-seq alignment, there are often millions or billions of reads that need

to be aligned to the reference genome.

Two prominent alignment tools, BWA [Li and Durbin, 2009] and Bowtie [Langmead et al., 2009],

use the BWT and FM-index to quickly align reads. Both methods first construct a BWT and

FM-index of the reference genome. Additionally, there is some amount of bookkeeping (i.e. a suffix

array) required to store the location of some or all of the suffixes in the original reference genome.

Each read is split into short k-mer seeds (e.g. a 100 basepair read may be split into four 25-mer
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seeds). The tools then search for exact matches to the k-mer seeds in the BWT. If a seed is found,

the methods identify the location of the seed in the original reference genome and perform a more

extensive local alignment that allows for inexact matching of the full read to the reference. In general,

these methods are quite fast because they use the O(k) search algorithm made possible by the BWT

and FM-index. Additionally, the method has been adapted for RNA-seq alignment in at least one

publicly available tool, Tophat [Trapnell et al., 2009].

2.4 The Multi-String Burrows-Wheeler Transform

Thus far, the BWT has only been discussed in the context of a single input string. However, there

are many reasons one might wish to encode a string collection. For example, a reference genome for

a complex organism often has multiple strings where each string represents a chromosome for the

organism. The BWT of a single string was well-defined because there was only one end-of-string

symbol. However, with multiple strings, the relative ordering of the symbols can be permuted leading

to many different (and conflicting) orderings of the strings.

While there are many definitions, we adopt the multi-string BWT definition used by Bauer

et al. [2011]. In general, this version defines the lexicographic order of end-of-string characters

as the lexicographic order of the strings in the collection. In other words, for two strings si

and sj in the collection that are terminated with end-of-string symbols $i and $j respectively,

(si < sj) ⇐⇒ ($i < $j). This defines an unambiguous order of all suffixes represented by the BWT.

Given the above definition, one can naïvely construct the BWT of a string collection in a method

very similar to the naïve construction method for a single string. First, all rotations of all strings

are generated. Then, all rotations are sorted lexicographically. Finally, the predecessor symbols to

each sorted rotation are concatenated and stored as the BWT for the collection. Additionally, the

FM-index for a multi-string BWT is calculated in the exact same way as a single-string BWT. A

simple example of a BWT and FM-index for a string collection is shown in Table 2.6.

2.4.1 BWT functions on a string collection

Both recoverSuffix(...) and getRange(...) functions can be used unchanged on the BWT

and FM-index of a string collection. Additionally, the chosen definition of a multi-string BWT enables

the extraction of individual strings in the collection using the recoverSuffix(...) function. Recall

that the definition orders the ‘$’ character by lexicographic order of the strings in the collection. As a

result, if the algorithm starts with a suffix from string si, all suffixes that are found through a reverse

12



Index Suffix Array BWT FM-index
$ A B

0 $ABAB B 0 0 0
1 $BBAB B 0 0 1
2 AB$AB B 0 0 2
3 AB$BB B 0 0 3
4 ABAB$ $ 0 0 4
5 B$ABA A 1 0 4
6 B$BBA A 1 1 4
7 BAB$A A 1 2 4
8 BAB$B B 1 3 4
9 BBAB$ $ 1 3 5

Total — — 2 3 5
Offsets — — 0 2 5

Table 2.6: Multi-string BWT example. A sample BWT and FM-index for the string collection,
ABAB$, BBAB$. The rotations of each string in the collection are sorted to create the suffix array.
The BWT is the concatenation of predecessor symbols (bolded). The FM-index F is defined as
before for index i and symbols c such that F [i][c] is the number of occurrences of c before i in the
BWT. Note that the order of suffixes beginning with ‘$’ corresponds exactly to the lexicographic
ordering of the strings in the collection.

Variable Lines 1-3 Loop 1 Loop 2 Loop 3 Loop 4
c B A B A $
j 5 2 7 4 0
ret B BA BAB BABA BABA$

Table 2.7: recoverSuffix(...) string collection example. This table shows the state of variables
in the recoverSuffix(...) function of Algorithm 1 when called using the BWT, FM-index, and
Offset array from Table 2.6 and i = 0. Note that this traversal never “jumps" into the suffixes created
by other strings in the collection. After the final loop, ret is reversed and the lexicographically
smallest rotation (“$ABAB") corresponding to the lexicographically smallest string in the collection
(“ABAB$") is returned.

traversal are guaranteed to be from string si. In other words, in a correct traversal, it is impossible

to “jump" from one string in the collection to a different string in the collection. Given this result,

calling recoverSuffix(...) will only return the rotation for a specific string. An example of the

recoverSuffix(...) method run on a BWT of a string collection is shown in Table 2.7.

The getRange(...) functionality is largely the same as before. However, instead of searching for

occurrences of a substring in one string, this function will solve for all occurrences of the substring in

all strings in the collection. Again, the count or frequency of a particular substring in the collection

is trivially derived as the length of the range returned by this function.
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2.4.2 Representing De Bruijn graphs

One way of traversing the information in a string collection is to use an auxiliary data structure

called the de Bruijn graph. In a de Bruijn graph, every k-length substring from the collection is

represented as a single node [Bruijn, 1946]. The graph also has directed edges drawn between nodes

such that the (k − 1) suffix of the source node is identical to the (k − 1) prefix of the destination

node [Bruijn, 1946]. This graph representation reduces the long strings into shorter substrings of a

fixed length, allowing for algorithms to then intelligently traverse the graph to perform tasks like

de novo assembly [Simpson and Durbin, 2010] or read correction [Salmela and Rivals, 2014]. An

example de Bruijn graph containing two strings is shown in Figure 2.1.

Generally speaking, de Bruijn graphs are usually explicitly stored for a fixed, small k using either

a hash based method or a bloom filter [Chikhi and Rizk, 2013]. Additionally, these graphs are often

pruned such that k-mers with low frequency are removed from the graph. The BWT and FM-index

can actually be used to implicitly represent a de Bruijn for all sizes of k up to the length of the

stored strings. When a node in the graph needs to be accessed, the getRange(...) function (see

Section 2.3.2) can be used to retrieve the k-mer frequency. If the k-mer frequency is above the

pruning threshold, then the k-mer node is considered present in the de Bruijn graph, otherwise it is

absent. Additionally, since the getRange(...) function is not constrained to a particular k size,

this method can be used to represent all de Bruijn graphs for a string collection without needing to

explicitly calculate or store the graph.

2.4.3 Application to bioinformatics

A multi-string BWT can be used to replace the concatenation method for building a BWT of

the reference genome. However, when built for a reference genome, these two structures are actually

very similar simply because the number of strings in a reference genome is relatively small. Most of

the implicit suffixes will be in the same order and the ones that are not will likely have little to no

effect on the alignment process. Instead, others have previously proposed storing raw sequencing

data in a BWT [Mantaci et al., 2005, Bauer et al., 2011, Cox et al., 2012a]. There are two main

benefits to applying the BWT to raw sequencing data: compression and indexing.

First, recall that BWTs achieve compression through the process of run-length encoding and that

those runs are formed due to repeated substrings within the text. In sequencing data, one source

of repeated substrings is true repeated sequence in the genome. Additionally, sequencing runs are
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Figure 2.1: Example de Bruijn graph. This figure shows the 3-mer de Bruijn graph for two strings:
“CAGACTGCAGT" and “CAGTCTGAAGT". Every 3-mer from the two strings is a node in the
graph. An edge indicates that the 2-mer suffix of the source 3-mer is the same as the 2-mer prefix of
the destination 3-mer. For example, node “AGA" has suffix “GA", so it has edges to both “GAC"
and “GAA".
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typically amplified prior to sequencing leading to many copies of the genome that is often referred

to as the coverage. However, sequencing technologies are not perfect and generate errors during

the sequencing process. These errors work against the compression of BWTs essentially by creating

random noise that can break runs apart and reduce the compression ratio.

The second main benefit is that by building an FM-index, the sequencing data becomes searchable.

In the context of functions already discussed, this means that there are methods to count the frequency

of any given k-mer and to extract every read from a sequencing data that contains a particular

substring for further analysis. Additionally, the FM-index of genomic strings is relatively small

because the alphabet is generally limited to six characters (‘$’, ‘A’, ‘C’, ‘G’, ‘N’, and ‘T’). BWTs of

sequencing datasets have been used by other authors for splice junction detection [Cox et al., 2012b]

and de novo assembly [Simpson and Durbin, 2010].
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CHAPTER 3

MERGING BURROWS-WHEELER TRANSFORMS

The BWT and FM-index are useful data structures for analyzing genomic sequencing data. They

enable compression of the data while simultaneously indexing it for downstream analysis. While

there are several methods for constructing the BWT of single strings or string collections, there

are few methods for incrementally adding strings to a BWT without recalculating the entire data

structure.

In this chapter, we address the problem of merging two or more BWTs such that the result is a

BWT containing the combined string collections from each input BWT [Holt and McMillan, 2014a].

Additionally, we require the strings in the resulting BWT to be annotated such that the origin of

each string (in terms of which input it came from) can be identified later. The reasons for merging

include adding new information to an existing dataset (more data from a sequencer), combining

different datasets for comparative analysis, and improving compression.

3.1 Related work

Other researchers have addressed problems related to merging BWTs, and three of these are

of particular interest. The first is actually a BWT construction algorithm which incrementally

constructs a BWT in blocks and then merges those blocks together [Ferragina et al., 2012]. The

algorithm creates partial BWTs in memory. These partial BWTs are not truly independent BWTs

because they reference suffixes not included in the partial BWT (they either were processed previously

or will be processed later). The partial BWTs are then merged into a final BWT on disk by comparing

the suffixes either implicitly or explicitly depending on the location of the suffixes in the partial

BWTs. Their algorithm is primarily applicable to constructing a BWT of very long strings. However,

it could be adapted for merging by inserting one string at a time as if the string collection were

one long string. The memory overhead of the modified algorithm requires reconstituting the string

collections for all but one of the inputs (the one used as the starting point), and then iteratively

going through each string one at a time until the merged result was constructed.



The second algorithm is also a BWT construction algorithm that creates a multi-string BWT by

incrementally inserting a single symbol from each string “columnwise" until all symbols are added to

the multi-string BWT [Bauer et al., 2011, 2013]. Given a finished BWT, they also describe how to

add new strings to the BWT using this algorithm. This algorithm could be adapted to solve the

proposed BWT merging problem by keeping one input in the BWT format and decoding all of the

other inputs into their original string collections. Then, their construction algorithm would merge

each collection into the BWT in this “columnwise" manner. As with the first algorithm, the main

issue with this approach is storage overhead of decoding each BWT into its original string collection.

The third algorithm is a suffix array merge algorithm which computes the combined suffix array

for two inputs [Sirén, 2009]. These suffix arrays are actually represented as two multi-string BWTs.

The algorithm searches for the strings of one collection in the other BWT to determine a proper

interleave of the first suffix array into the second. Once the interleave is calculated, the merged BWT

is trivially assembled. The algorithm requires an auxiliary index (such as the FM-index) to support

searching. As discussed in Section 2.3, the memory overhead of an unsampled FM-index is O(N)

where N is length of the BWT. While sub-sampling of the FM-index reduces this memory cost, it

will also impact search performance. Moreover, this algorithm is ill-suited to multiple datasets (more

than two) to merge. In this case, the algorithm performs multiple merges until only one dataset

remains.

Our algorithm merges two or more BWTs directly without any search index or the need to

reconstitute any string or suffix of the input BWTs. The only auxiliary data structures required

are two interleave arrays which identify the input source of each symbol in the final result, so the

only auxiliary data structures used by the algorithm are stored as part of the result. The merging is

accomplished by permuting the interleaves of the input BWTs, which is proven to be equivalent to a

radix sort [Knuth, 1998] over the suffixes of the string collections.

3.2 Approach

Similar to previous approaches [Bauer et al., 2011, 2013, Ferragina et al., 2012, Sirén, 2009],

our approach also takes advantage of the fact that a BWT implicitly represents a suffix array (see

Section 2.2). Intuitively, when two or more BWTs are merged, the relative orders of the suffixes

within each original BWT do not change because they must maintain a stable sort order in the

output [Sirén, 2009, Ferragina et al., 2012]. This means that the merged BWT can be defined as an
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interleaving of the original input BWTs such that the result implicitly represents a combined, fully

sorted suffix array [Sirén, 2009].

Our merging algorithm is an iterative method that converges to the correct interleave of two or

more BWTs [Holt and McMillan, 2014a]. It starts by assuming the interleave is just a concatenation

of BWTs. Then, in each iteration, it adjusts the current interleave during a pass through the BWT

inputs. Each iteration acts as a single pass of an implicit radix-sort [Knuth, 1998] that corrects

the interleave. After the first iteration, the first symbols of each suffix (‘A’, ‘C’, ‘G’, etc.) are

grouped. After the second iteration, all identical di-mer suffixes (‘AA’, ‘AC’, ‘AG’, etc.) are grouped.

Eventually, the interleave converges to the correct solution, which is detected by two consecutive

iterations resulting in identical interleaves (in other words, the interleave did not change). Finally,

the two BWTs are merged based on the converged interleave and the result is stored as a single BWT.

This method can be extended to merge any number of BWTs simultaneously in O(LCS ∗N) time

where LCS is the longest common substring between any two BWTs and N is the total combined

length of the merged output.

3.3 The merge algorithm

3.3.1 Merge variables

Let two input BWTs, B0 and B1, be defined over a finite alphabet, Σ, with lexicographically

ordered symbols $ < c1 < c2 < ... < cσ. A string is defined as a series of k symbols from this

alphabet terminated with a special end-of-string symbol, ‘$’. Let S be a collection of such strings,

S = {s1, s2, ..., sm}. All BWTs are assumed to be in the form described in Section 2.4 such that any

string can be reconstituted by prepending the predecessors repeatedly until the starting index is

reached (each string forms a cycle in the BWT). In a single pass through all input BWTs, the total

number of occurrences of each symbol is counted and used to calculate a list of offsets into the final

BWT indicating the first suffix in the output starting with each symbol. These counts and offsets

are a tiny subset of the FM-index (see Section 2.3), but for the unknown output BWT, rather than

the known input BWTs.

Overall, the goal of the algorithm is to construct an interleave of the two input BWTs such

that the implicit, combined suffix array is in sorted order. We call this interleave the “correct"

interleave because it defines how to merge the BWTs such that no BWT properties are violated
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in the merged output. It begins by constructing an initial interleave of the input BWTs that is

simply a concatenation of the inputs. Then, a series of iterations are performed on the interleave.

Each iteration acts like one pass of a most-significant-symbol radix sort over the implicit suffix array

represented by the interleaved BWTs. After one iteration, the interleave will be such that all suffixes

are lexicographically sorted by their first symbol. After two iterations, the interleave will be such

that all suffixes are lexicographically sorted by their first two symbols. The third is the first three

symbols. These iterations will continue until there is no change in the interleave, indicating that the

implicit suffix array has converged to a correct interleave.

Given two BWTs, B0 = bwt(S0) and B1 = bwt(S1), of length m and n respectively, note that

the target result, B2 = bwt({S0, S1}), can be trivially constructed if the interleave of B0 and B1

is known. As such, the primary goal of our proposed method is to calculate this interleave. Let I

be auxiliary array called the interleave that is a series of zeroes and ones of length (m + n) such

that a zero corresponds to a symbol in B2 originating from B0 and a one corresponds to a symbol

originating from B1. There are exactly m zeroes and exactly n ones in I. As the merge algorithm

progresses, this interleave will be corrected until it converges to the final interleave. This I array is

similar to the interleave array described in Sirén [2009].

Let totals array T be a list of numbers such that for each symbol c in Σ, T [c] = count(c,B0) +

count(c,B1). In short, T is a total combined count of each symbol in the two BWTs. Additionally,

let offsets array O be defined for each symbol c such that O[c] is the position of the first suffix in the

merged BWT, B2, that starts with c, which can be calculated by adding the T values for all symbols

lexicographically before c. Note that this is equivalent to the offsets component of the FM-index for

the final merged BWT (see Section 2.3).

3.3.2 Iterations of the merge

The main iteration function of the merge algorithm, mergeIter(...), is defined in Algorithm 3.

Repeated calls to this procedure converge to the correct interleaving of B0 and B1 resulting in B2.

To prove this claim, we first show that a correct interleave will not change as a result of this function.

Lemma 3.3.1. Given a correct interleave I, of two BWTs, B0 and B1, into a single BWT B2, and

the offsets array O, for each symbol c ∈ Σ into B2, then mergeIter(I,B0, B1, O) will return the

same interleave, I, as was passed into it.
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Data: I - the current interleave of B0 and B1; B0 - the first BWT to merge; B1 - the second
BWT to merge; O - for each c ∈ Σ, O[c] is the position of the first suffix starting with c
in the merged BWT

Result: INext - the new interleave
Function mergeIter(I, B0, B1, O)

// initial conditions
1 INext ← [null]∗len(I);
2 currentPos0← 0;
3 currentPos1← 0;
4 tempIndex← O;

// iterate through each bit value in I
5 forall the b ∈ I do

// b is a bit representing the input BWT
6 if b = 0 then
7 c← B0[currentPos0];
8 currentPos0← currentPos0 + 1;

else
9 c← B1[currentPos1];
10 currentPos1← currentPos1 + 1;

end
// copy b into the next position for symbol c

11 INextPos← tempIndex[c];
12 INext[INextPos]← b;

// update the tempIndex to match the FM-index
13 tempIndex[c]← tempIndex[c] + 1;

end
return INext;

Algorithm 3: Each call to this function performs one iteration of the merge algorithm. Additionally,
this function can be used to verify that an interleave has converged to the correct final interleave.
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Proof: This lemma follows from the properties of a BWT. The lemma assumes that the ordering

of interleave I results in a correct BWT B2, for a collection of strings S2 = {S0, S1}. In the initial

condition, the current positions are both 0 and the tempIndex value corresponds to the offsets

into the merged BWT array. First, it’s easily noted that after each iteration, i = 1..(m + n),

currentPos0 + currentPos1 = i. This is because as i increments, one of the currentPos values

is also incremented at the end of the loop. Additionally, if given an FM-index F and offsets O

for the BWT represented by I, note that tempIndex = O + F [i] after each iteration. Before any

iterations, the tempIndex is set to O and F [0] is all zeros, so the initial condition holds. With each

iteration i, a symbol c is determined by the interleave and used to identify the index tempIndex[c]

to increment such that the condition tempIndex = O + F [i] holds at each iteration. Finally, after

each iteration, one value of INext is changed corresponding to the current tempIndex[c]. Since

tempIndex[c] = O + F [i], this implies that the LF-mapping property (see Section 2.3) of the

FM-index also holds, so each iteration is effectively setting INext[tempIndex[c]] = I[tempIndex[c]].

After doing this for all values b in I, the algorithm has set every value in INext to its corresponding

value in I. Alternatively, if there exists a position, j, such that INext[j] 6= I[j], then the original

assumption that I is a correct interleave must be false because there is at least one position where

the implied FM-index causes a suffix originating from B0 to have a predecessor symbol originating

from B1 (or vice-versa) which cannot happen in a correct BWT. �

The point of Lemma 3.3.1 is that given an interleave Ii, its covergence can be verified by executing

mergeIter(...) once and comparing the resulting interleave Ii+1 with the original input interleave

Ii. If Ii = Ii+1, then the interleave has converged on the correct solution.

3.3.3 Convergence in the merge algorithm

The function, mergeIter(...), is also a convenient subroutine that performs one iteration in the

merge of two BWTs. To apply this function for a full merge requires simple setup and an outer-loop

to test for convergence. The pseudocode for the bwtMerge(...) operation is presented in Algorithm

4.

As described in Section 2.2, the BWT implicitly represents a sorted suffix array. The BWT can

also generate partial suffixes or the first i symbols (i-mer prefix) of the suffix. We will refer to these

as i-suffixes. Given a BWT, the symbols of the BWT can be sorted using a radix sort to recover

all 1-suffixes in lexicographic order. Then, if the BWT is prepended to the sorted 1-suffixes and
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Data: B0 - the first BWT to merge; B1 - the second BWT to merge; Σ - lexicographically
ordered valid symbols in the BWTs

Result: The correct interleave of B0 and B1 to form a new BWT
Function bwtMerge(B0, B1, Σ)

// initial pass to calculate offsets O
1 off ← 0;
2 forall the c ∈ Σ do
3 T [c]←count(c,B0)+count(c,B1);
4 O[c]← off ;
5 off ← off + T [c];

end
// initialize the ret array to zeroes followed by ones

6 I ← null;
7 ret← [0]∗len(B0) + [1]∗len(B1);
8 while I 6= ret do

// copy the old interleave and re-iterate
9 I ← ret;
10 ret← mergeIter(I,B0, B1, O);

end
return ret;

Algorithm 4: This function will calculate the interleave for merging two BWTs into a single
output BWT. The algorithm repeatedly calls mergeIter(...) until it detects convergence in the
interleave. Once converged, the resulting BWT can be trivially created using the output interleave.

sorted again using only the prepended BWT characters, all 2-suffixes in the BWT are recovered in

lexicographic ordering. If this process is repeated for i iterations, all i-suffixes in the BWT can be

recovered. This is equivalent to doing a least significant symbol radix sort of all i-suffixes in the

suffix array. Since the algorithm is sorting the prefixes of the suffixes by increasing the prefix length

i, it is really performing a most-significant-symbol radix sort on the full suffixes in the suffix array.

Each iteration of the while loop in bwtMerge(...) is equivalent to performing an iteration

of the most-significant-symbol radix sort on the full suffixes. The I array indicates the current

interleave of symbols at the start of an iteration. Then, the interleave bits are copied into the next

available location for their corresponding symbol using the FM-index values stored in tempIndex.

With each iteration in the loop, the sorting of suffixes is extended by one symbol until I converges to

a correct interleave. Note that the actual suffixes are never explicitly reconstructed or stored. In the

example executions in Tables 3.1 and 3.2, the suffixes are shown after each iteration for illustration

only. The final merged BWT is created trivially using the interleave from bwtMerge(...).

Lemma 3.3.2. Given an initial interleaving, I0, of two BWTs, B0 and B1, such that all zeroes
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come before all ones, after i executions of mergeIter(...), all corresponding suffixes in the suffix

array implied by Ii are stably sorted up to their first i symbols.

Proof: Using induction, consider the initial condition, i = 0. In this base case, all 0-suffixes

are identical (empty string) and the ordering is all zeros followed by all ones. Now, consider

iteration (i+ 1) where the interleaving, Ii, is a stable sort of the first i symbols of the suffixes of the

corresponding BWTs. In the next iteration, the algorithm performs a pass over Ii retrieving the

corresponding predecessor symbol for each bit in Ii. If two suffixes have different start symbols, then

those suffixes are automatically ordered correctly because each will be placed into the appropriate bin

for that symbol. As a property of the radix sort, all (i+ 1)-suffixes starting with the same symbol, c,

are placed sequentially in the output in lexicographical ordering. Given that the i-suffixes are already

stably sorted, if the symbol c is found at two indices, x and y where x < y, then the corresponding

(i+ 1)-suffixes must be of the form cX and cY where X is an i-suffix that lexicographically precedes

the other i-suffix Y . This implies that the corresponding (i+ 1)-suffixes are also in sorted order in

the new interleave Ii+1. �

Theorem 3.3.3. Given that the longest common substring of two string collections stored in separate

BWTs, B0 and B1, is of length k, and that the initial interleave, I0, is a single series of zeros followed

by ones, then the bwtMerge(...) algorithm will converge in k + 1 or fewer iterations. Additionally,

this convergence can be detected by iterating until interleave Ii stops changing.

Proof: Using Lemma 3.3.2, it’s known that after k + 1 iterations, all (k + 1)-suffixes will be

lexicographically sorted. If the longest common substring (LCS) is of length k, then it follows that

after k + 1 iterations the suffixes will be sorted up to their first (k + 1) symbols. This means that

further iterations will not change the sort order of the suffixes and that the interleave has converged.

Additionally, we know from Lemma 3.3.1 that convergence can be detected (i.e. the interleave can

be verified as correct) through an additional iteration. �

Given that the combined size of the two input BWTs is N = n+m, this algorithm uses O(N)

bits of additional memory due to the creation of two interleave arrays I and INext. Assuming a

fixed alphabet, all other variables are constant sized. For practical purposes, all large arrays (B0,

B1) are actually stored on disk due to their size.

The algorithm detects convergence after at most (LCS + 1) iterations. If all strings are of length
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L, the algorithm will converge after at most (L+ 1) iterations. Additionally, this algorithm does

allow for variable length strings. In fact, it is completely unaware of the string lengths present in

either BWT. However, the one caveat to Theorem 3.3.3 is the determination of LCS when the

input strings are of variable length. In some instances, there are string collections that can result in

iterations up to (2 ∗ L+ 1) iterations due to the contents of the strings. The reason for this is the

cyclic nature of strings in the BWT and the similarity between two BWTs. Consider two strings

‘AA$’ and ‘AAA$’. At first glance, the LCS = 3, ‘AA$’. However, because of the cyclic nature of

the strings when represented in a BWT, the true LCS = 5, ‘AA$AA’, which can be generated by

starting from the first symbol in the first string and the second symbol in the second string and

cycling back through when there are no more symbols. For the real-data experiments presented in

this chapter, all strings were of identical length, so this caveat wasn’t an issue even in the presence

of identical strings in each input BWT.

An example of an entire execution of bwtMerge(...) is shown in Table 3.1. For this basic

example, only two single-string BWTs were used in the merge. Iteration 0 represents the initial

condition and all subsequent iterations are the result from executing the mergeIter(...) function

once. After three iterations, the algorithm has converged and verified the convergence.

3.3.4 Generalizing the merge algorithm for more than two BWTs

Until now, the algorithm has only been discussed and demonstrated using exactly two input

BWTs and a bit-vector to distinguish the originating BWT for each position in the merged BWT.

A basic extension of this technique repeatedly merges f input BWTs according to any binary tree

resulting in a single merged BWT at the tree’s root. This requires f − 1 merges. However, the faster

way is to extend the I array to multiple bits allowing for multiple BWTs to be merged simultaneously.

For example, a byte array supports the merging of up to 256 multi-string BWTs simultaneously.

Given f input BWTs, the above proofs can be extended by starting with an initial I0 consisted

of a series of 0’s, series of 1’s, ..., series of f − 1’s as the initial condition and an initial offsets

calculated in a pass over all f inputs. Additionally, variables corresponding to a specific BWT (such

as B0, currentPos1, etc.) can be condensed into arrays of length f that can be indexed by the

interleave value, b, at each position. Then, the algorithm can iterate as before until convergence

is reached. This algorithm extension allows for an arbitrary number of multi-string BWTs to be

merged simultaneously by using O(N ∗ log(f)) bits of storage for interleave Ii. An example execution
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initial state iteration 1 iteration 2 iteration 3
I S B I S B I S B I S B

0 A 0 $ A 0 $A A 0 $AC A
0 C 1 $ A 1 $C A 1 $CA A
0 $ 0 A C 0 A$ C 0 A$A C
0 C 0 A $ 1 A$ A 1 A$C A
0 A 1 A A 1 AA A 1 AA$ A
1 A 1 A A 1 AA C 1 AAA C
1 A 1 A C 0 AC $ 0 ACC $
1 A 0 C C 0 CA C 0 CA$ C
1 C 0 C A 1 CA $ 1 CAA $
1 $ 1 C $ 0 CC A 0 CCA A

Table 3.1: Two-way merge example. The above table shows the state after each iteration, i, for
merging two BWTs each containing one string, “ACCA$" and “CAAA$" respectively. Their respective
starting BWT strings are “AC$CA" and “AAAC$" which are shown in their concatenated initial
state in the left most columns. At each iteration, the table shows the interleave, I, the i-suffixes, S,
and what the merged BWT, B, is with that interleave. After the first iteration, there are three bins
of zeroes followed by ones representing the three i-suffixes of length one: ‘$’, ‘A’, and ‘C’. The second
iteration puts all 2-suffixes in their correct bins. After iteration 2, the algorithm has converged to
the correct solution early. Iteration 3 will detect no change in the interleave, and the merged BWT
in bold is stored as the final solution. Note that in each iteration i, the i-suffixes are in sorted order
and all i-suffix bins containing both zeroes and ones have all zeros before all ones.

of this extension is shown in Table 3.2.

The merged BWT is a complete interleave of the multiple BWTs into a single dataset. Since

distinguishing the source of a particular BWT symbol may be important, the final interleave array

Ii can be stored as an auxiliary component to the merged BWT. Alternatively, if only the source of

a particular string (as opposed to each individual suffix) is required, the length of the I array can be

truncated as described in Section 3.4.3. This allows for a merged BWT to differentiate the original

source BWT for a particular string in later analyses.

3.3.5 Asymptotic performance

We summarize the algorithmic complexities for merging two BWTs in Table 3.3. Notice that the

performance of this algorithm is not directly affected by string length or the number of strings in

either BWT. For a constant N , increasing string length and decreasing the number of strings will

not affect run time unless there is also an increase in the LCS between the two BWTs. Furthermore,

the memory and disk requirements for this algorithm are relatively low. In memory, the algorithm

requires only O(N) bits for each interleave. Assuming all BWTs are uncompressed, the algorithm

requires O(LCS ∗N ∗ log(σ)) bits read from disk. Since the final merged BWT is only written once,

26



initial state iteration 1 iteration 2 iteration 3 iteration 4
I S B I S B I S B I S B I S B

0 C 0 $ C 0 $A C 0 $AC C 0 $ACA C
0 C 1 $ C 2 $A A 2 $AC A 2 $ACC A
0 $ 2 $ A 1 $C C 1 $CA C 1 $CAA C
0 A 0 A C 2 A$ C 2 A$A C 2 A$AC C
0 A 0 A $ 1 AA C 1 AAC C 1 AAC$ C
1 C 1 A C 0 AC C 0 AC$ C 0 AC$A C
1 C 1 A A 0 AC $ 1 AC$ A 1 AC$C A
1 A 2 A C 1 AC A 0 ACA $ 0 ACAC $
1 A 2 A $ 2 AC $ 2 ACC $ 2 ACCA $
1 $ 0 C A 0 C$ A 0 C$A A 0 C$AC A
2 A 0 C A 1 C$ A 1 C$C A 1 C$CA A
2 C 1 C A 0 CA A 2 CA$ C 2 CA$A C
2 $ 1 C $ 1 CA $ 1 CAA $ 1 CAAC $
2 C 2 C C 2 CA C 0 CAC A 0 CAC$ A
2 A 2 C A 2 CC A 2 CCA A 2 CCA$ A

Table 3.2: Three way merge example. The above table shows the state after each iteration, i, for
merging three BWTs, each containing one string: “ACAC$", “CAAC$", and “ACCA$" respectively.
Their respective starting BWT strings are “CC$AA", “CCAA$", and “AC$CA". At each iteration,
the table shows the interleave, I, the i-suffix, S, and what the merged BWT, B, is with that
interleave. Each iteration corrects the suffixes by one symbol which can be seen in the S columns of
each iteration. After three iterations, the ordering is correct. Iteration 4 detects convergence of the
interleave and the resulting BWT is shown in bold on the far right.

CPU time O(LCS ∗N)

Max Memory bits O(N) - Two Interleaves

Disk I/O bits
O(LCS ∗N ∗ log(σ)) - Input BWTs
O(N ∗ log(σ)) - Output Merged BWT

O(N) - Output Final Interleave

Table 3.3: Merge asymptotic performance. The asymptotic run time, maximum memory use, and
disk I/O for the merge algorithm of two BWTs. LCS is the longest common substring between
the two input BWTs, N is the total number of symbols from both inputs, and σ is the number of
symbols in the alphabet (including ‘$’).
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it only writes O(N ∗ log(σ)) bits to disk.

3.4 Results

3.4.1 Merge times

The asymptotic runtime for the merge algorithm is O(LCS ∗ N). We developed a Cython

implementation of the merge algorithm to test the actual performance on genomic datasets. First,

we performed an experiment using real reads from mouse data provided by the Sanger Institute1.

We chose two samples, WSB/EiJ and CAST/EiJ, to use for the merge. From these samples, we

extracted all reads from each dataset that were aligned to the mitochondria (the reason for this

choice becomes apparent in Section 3.4.2). The annotated mouse mitochondria is approximately

16,299 base pairs long. Between the two samples, there were over 1.6 million reads where each

read was 100 basepairs long (over 10,000x coverage combined). We sampled reads from each set

proportionally, created separate BWTs (one for WSB/EiJ, one for CAST/EiJ), and performed a

merge of the two BWTs. The results of the merge execution times with respect to the total number

of input sequences (reads) are shown in Figure 3.1. In these sampled datasets, the LCS term of

the expected run-time is essentially constant at LCS = 101, the read length. As a result, there is a

linear relationship between the total number of sequences that are merged and the total wall clock

time to perform the merge.

3.4.2 Compression

One motivation for merging BWTs is to improve the compression. As discussed in Section 2.2,

the BWT was proposed as a method for data compression because it tends to create long runs of

repeated symbols that can be used by many compression schemes [Burrows and Wheeler, 1994]. The

reason long runs form is that the BWT has a tendency to cluster similar suffixes together, and there

is an expectation that those patterns have the same predecessor symbol (the value actually stored

in the BWT). Therefore, if the two input BWTs to a merge contain similar substrings, then the

compression should increase due to the ability to form longer runs. The redundancy of genomic

sequencing data results from two factors: the datasets themselves are individually over-sampled and

the genomes of distinct organisms tend to share genomic features reflecting a common origin.

1ftp://ftp-mouse.sanger.ac.uk/REL-1302-BAM-GRCm38
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Figure 3.1: Merge execution times. This plot shows the relationship between the total size of the
input BWTs being merged and the wall-clock time to execute the merge. Each data point is a merge
between two BWTs (CAST/EiJ and WSB/EiJ) where each BWT contains a randomly sampled
collection of read sequences that were aligned to the mouse mitochondria. In general, the wall-clock
execution time follows a linear trend with the total size of the two inputs.
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We define an average run-length (RL) metric in order to measure compressibility of the BWT.

RL is defined as N
R where N is the total number of symbols in the BWT and R is the number of

contiguous symbol runs in that BWT (including runs of length 1). This metric basically represents

the compression potential of a BWT where it is better to have a larger average run length. This

metric emphasizes the impact of merging on compressibility rather than a particular subsequent

compression method (ex. run-length encoding, move-to-front transforms, variable-length coding,

Lempel-Ziv [Ziv and Lempel, 1978], etc.).

To demonstrate compressibility, we used the high coverage mitochondria data described in Section

3.4.1. Each dataset was sampled at lower coverages, merged into a single BWT, and then analyzed

to identify the impact on average RL. The results of this experiment are shown in Figure 3.2. In

general, there is a faster growth in average RL at lower coverages that becomes more constant at

higher coverages.

We also performed three other merge experiments using full RNA-seq datasets from Crowley

et al. [2015]. The first combined two mouse biological replicates, which were both WSB/EiJ inbred

samples. The second was performed on two samples from diverse mouse subspecies CAST/EiJ inbred

and PWK/PhJ inbred mouse samples. The final experiment merged eight biological replicates, all of

type CAST/EiJ. In all three experiments, the strings were 100 basepair paired-end reads.

Each BWT file was analyzed both separately and as a merged BWT file as shown in Table 3.4. In

all three scenarios, the compressibility was improved. The first and third experiments demonstrated

that merging biological replicates leads to increased compressibility primarily due to an increase in

coverage (the genomes are expected to be the same). The second experiment demonstrated that

even with divergent samples of the same species, there is still enough shared sequence to improve

the overall compressibility.

Given that average RL is defined as N
R , the total number of bases, N , before and after a merge

is constant. If average RL is increasing, then it must be the case that the number of runs, R, is

decreasing. The main reason for this is the combining of pre-existing runs as datasets are merged

together. To show this, the distributions of run-lengths for the eight-way merge experiment is shown

in Figure 3.3 both before and after the merge. In this plot, there are fewer “short" runs and more

“long" runs in the merged file, indicating an increase in average run length.
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Figure 3.2: Average run length by coverage. This plot shows the average length of runs in the merged
BWT at different levels of coverage. Note that as the coverage is increasing, the average run-length
increases with it. This effectively means greater compressibility with respect to the original data size.
Note that there is faster growth at lower coverages before it eventually settles into a more linear
growth at higher coverages.
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BWT(s) Symbols RLE Entries Average RL
HH1361 individual 6.68 ∗ 109 1.13 ∗ 109 5.902
HH1380 individual 6.32 ∗ 109 .926 ∗ 109 6.825
HH1361 + HH1380 13.00 ∗ 109 2.05 ∗ 109 6.317

HH’s Merged 13.00 ∗ 109 1.83 ∗ 109 7.086
FF0683 individual 8.94 ∗ 109 1.11 ∗ 109 8.000
GG1240 individual 14.20 ∗ 109 1.36 ∗ 109 10.401
FF0683 + GG1240 23.14 ∗ 109 2.48 ∗ 109 9.320
FF merged with GG 23.14 ∗ 109 2.20 ∗ 109 10.475
FF0683 individual 8.94 ∗ 109 1.11 ∗ 109 8.000
FF0684 individual 7.97 ∗ 109 1.48 ∗ 109 5.361
FF0685 individual 13.11 ∗ 109 1.47 ∗ 109 8.890
FF0727 individual 7.98 ∗ 109 1.58 ∗ 109 5.019
FF0728 individual 13.64 ∗ 109 1.65 ∗ 109 8.267
FF0754 individual 18.36 ∗ 109 2.04 ∗ 109 8.957
FF0758 individual 13.13 ∗ 109 1.92 ∗ 109 6.816
FF6136 individual 10.34 ∗ 109 2.00 ∗ 109 5.146
FF total individuals 93.46 ∗ 109 13.3 ∗ 109 7.026

FF’s Merged 93.46 ∗ 109 9.47 ∗ 109 9.865

Table 3.4: Compressibility of merges. This table shows the average run-length (RL) metrics for RNA
samples before and after merging. The datasets are all inbred mouse datasets of type CAST/EiJ
(FF), PWK/PhJ (GG), or WSB/EiJ (HH). Experiments are grouped into blocks. Each experiment
compares the merged results (in bold) to the totals for separate files. Note that in all experiments
there is a decrease in the number of run length entries and increase in average run-length when
moving from individual files to a single merged file indicating that the merged version is more
compressible than separate files.
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Figure 3.3: Run-length distribution in a merge. This plot shows the distribution of run-lengths for
eight separate CAST/EiJ (FF) RNA-seq BWT files (blue) and a single merged BWT file containing
all eight samples (green) from the third experiment in Table 3.4. Note that for the merged file, there
are more runs of longer length and fewer runs of shorter length. This is because the merged BWT
has brought the similar components of each BWT together leading to longer runs.
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3.4.3 Interleave storage

Thus far, we have ignored the storage requirements for the interleave vector. The interleave

can be naïvely stored as the final interleave array Ii from the merging algorithm which requires

O(N ∗ log2(f)) bits of space, where N is the number of symbols and f the number of input BWTs.

After the merge finishes, the portion of the interleave array corresponding to suffixes starting

with the ‘$’ is the only thing necessary to associate every read with its origin. In other words, you

only need one interleave value per string. A particular symbol’s origin can be recovered by tracing

backwards through the BWT until the ‘$’ symbol is found, so the tradeoff to reduce the I size is

run-time speed. Using this smaller index means that the space for the I array will be O(R ∗ log2(f))

where R is the number of strings in the merged BWT. Finding the origin of a symbol will take O(L)

time instead of O(1) where L is the length of the string. While only one value per read is required,

this is still a relatively large array in practice, and it is unknown whether it is well-suited to any

particular compression scheme.

3.5 Potential applications of merged BWTs

One motivation for merging BWTs is to improve upon the compression achieved by separate

BWTs. Depending on the types of data being merged, the merged BWT and its associated interleave

are also useful for asking certain biological questions. The most basic benefit is performing a single

query in place of multiple queries to separate datasets. For example, the comparison algorithm

proposed by Cox et al. [2012b] performs two queries to separate BWTs to find splice junctions.

In their method, one dataset contained DNA and the other contained RNA for the same sample.

Since the sequences in each dataset are naturally similar, the combined version should compress

well. Furthermore, as separate files, the algorithm needs O(f ∗ k) time to search f BWTs for a given

k-mer which is reduced to O(k) when a merged BWT is used instead. In this regard, the merging

provides a speedup in downstream analyses in addition to the compression.

BWTs in general can also be applied to de novo sequence assembly. In fact, some existing

assemblers already use a BWT as their underlying indexing data structure [Simpson and Durbin,

2010, 2012]. Several de novo assembly techniques currently use the De Bruijn graph as the underlying

data structure [Pevzner et al., 2001, Zerbino and Birney, 2008, Butler et al., 2008, Simpson et al., 2009,

Salikhov et al., 2014]. BWTs can be used as efficient and compact De Bruijn graph representations

with enhanced functionality. The presence, count, and sample origin of individual k-mers is
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determined using the BWT’s FM-index. The k-mer size can be varied without any modifications

to the BWT, and the surrounding context (i.e. the containing read fragment) of each k-mer is

accessible. A De Bruijn graph constructed from a merged BWT for a species would include separate

paths for haplotypes, thus representing a pan genome of the merged population [Rasko et al., 2008].

Merging datasets into a single BWT constructed from biological replicates can be used to increase

statistical power in de novo assembly and other analyses as well. Such datasets can also be used to

examine the consistency between replicates as well as the variants between diverse samples without

the overhead of aligning. Robasky et al. [2014] discuss the advantages of using replicates to help

reduce errors and biases in experiments. With the eight-way merge of biological replicates from

Table 3.4, the merged BWT and the corresponding interleave can be used to calculate the abundance

and variance of a given k-mer for all replicates simultaneously. Robasky et al. [2014] also mention

how using replicates from different platforms can be useful to reduce bias. In addition to this benefit,

combining different datasets in de novo assembly is useful for extending contigs. For example, a

BWT consisting of short reads (such as Illumina) could be merged with long reads (such as PacBio)

to produce a merged BWT with the ability to query both datasets.

Alignment is another common use for reads. Given a reference genome, a BWT can be used to

search for evidence of genome subsequences in the reads. In this situation, the counts from the query

would be similar to pileup heights from an alignment. Regions with lower-than-expected counts

can be re-examined by selecting reads from nearby regions and generating a consensus, and thereby

detecting variants including SNPs and indels, as if we were aligning the genome to the reads instead

of the reads to the genome. Additionally, there’s potential for algorithms that merge BWTs from

raw sequencing files with a BWT of the reference genome. Ideally, this merged BWT would cluster

the read suffixes near genome suffixes and allow the interleave to be a starting point for alignment.

Finally, this algorithm can be used as the basis for a multi-string BWT construction algorithm.

Given a string collection, small BWTs can be constructed in parallel and then merged together

to form the final BWT. The next chapter discusses one such implementation of a merge-based

construction algorithm.
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CHAPTER 4

MULTI-STRING BWT CONSTRUCTION VIA MERGING

In Chapter 2, we introduced methods for constructing the BWT from a string collection or suffix

array. However, these methods are not practical as they involve an expensive sorting of all suffixes

of all strings. There are more efficient methods for BWT construction [Mantaci et al., 2005, Sirén,

2009, Bauer et al., 2011, Cox et al., 2012a, Bauer et al., 2013, Li, 2014], but their performance is

subject to various constraints. In particular, the first construction algorithms [Bauer et al., 2011,

2013] focused on building the BWT for short, uniform length strings such as the reads from an

Illumina sequencer. As a result, datasets with long or variable length strings such as the reads from a

long-read sequencer (i.e. PacBio or nanopore) were either incompatible with the BWT construction

method or required significant computation time.

In this chapter, we describe an alternative BWT construction algorithm [Holt and McMillan,

2014b] that is based on the BWT merging algorithm described in Chapter 3 [Holt and McMillan,

2014a]. The algorithm’s performance is not directly affected by read length and is one of the first to

build BWTs for long-read datasets. For a collection of m reads totaling N bases, this algorithm

runs in O(N ∗ LCPavg ∗ log(m)) time where LCPavg is the average Longest Common Prefix (LCP)

for the suffixes in the implicit suffix array. Given an alphabet with σ symbols, the I/O volume for

this algorithm is O(N ∗ LCPavg ∗ log(m) ∗ log(σ)) bits.

4.1 Related work

Many researchers have focused on how to accelerate the construction of BWTs for genomic

datasets [Mantaci et al., 2005, Sirén, 2009, Bauer et al., 2011, Cox et al., 2012a, Bauer et al., 2013,

Li, 2014]. Bauer et al. [2013] provide a comparison of several methods including their own: BCR,

BCRext, and BCRext++. While there are slight differences between the three BCR algorithms,

they all leverage the same general idea. Given a string collection with m strings (i.e. reads in a

sequencing dataset) that are all k symbols long, one can imagine stacking the strings such that

each string is a row and each column is a group of symbols that are all at the same index in the



strings. The BCR algorithms then insert symbols in a “column-wise" manner [Bauer et al., 2013]. In

other words, the algorithm inserts all symbols from the string collection at column index (k − 1), at

column index (k − 2), ... at column index 1, and finally at column index 0. In total, it performs k

insertion iterations and inserts exactly m symbols during each iteration for O(mk) steps to calculate

the BWT.

This algorithm works well for uniform, short-read datasets, like those generated by Illumina

sequencers. However, for an alphabet, Σ, containing σ unique symbols, the I/O volume of the

BCR algorithms is O(mk2 ∗ log(σ)) meaning that “the length of the longest string in the collection

dominates the I/O complexity" [Bauer et al., 2013]. In practice, they reported a 29-69% increase in

run-time when the read lengths were doubled, but total number of bases stayed constant [Bauer

et al., 2013]. In short, the BCR algorithms do not scale well as the length of reads grows, a property

that is problematic for datasets that consist of long strings. For example, PacBio reads can be

thousands of base pairs long and significantly vary in length [Eid et al., 2009]. Ropebwt2 is a recent

adaptation of the BCR algorithms that uses B+ trees as the underlying storage container instead

of arrays [Li, 2014]. This helps alleviate some of the I/O tradeoffs by removing the reallocation of

arrays at the cost of O(log(N)) insertions for a tree with N nodes. In practice, ropebwt2 is much

faster than other implementations of BCR [Li, 2014]. However, like the other BCR algorithms, the

performance of ropebwt2 decays as the length of reads in the dataset increases.

4.2 Approach

The main idea of the BWT merge algorithm is to divide-and-conquer over the entire string

collection. Given a string collection, a BWT of each individual string can be calculated using

any single-string construction algorithm. Then, the BWTs are repeatedly merged using the merge

algorithm described in Chapter 3 [Holt and McMillan, 2014a]. Eventually, only one BWT remains

that contains all of the strings from the string collection.

In addition to applying the divide-and-conquer strategy, we modified the merge algorithm itself to

reduce the amount of work required for any particular merge. In general, the BWT merge algorithm

acts like a most significant symbol radix sort on the implicit suffix array (see Section 3.3.3). In a

most significant symbol radix sort, local sub-regions converge on the correct ordering of strings, and

these local convergences eventually lead to a global convergence of the radix sort. Similarly, the

interleave array of the merge algorithm has areas of local convergence that appear prior to global
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convergence. By tracking intervals of local convergence, the merge algorithm can reduce the amount

of work necessary to reach global convergence by ignoring the intervals that have already converged.

4.3 Construction via merging

This BWT merge construction algorithm is based on the BWT merge algorithm that was

previously described in Chapter 3. The merge algorithm merges two or more BWTs into a single

BWT through an implicit most-significant-symbol-first radix sort on the suffixes represented by

the BWT [Holt and McMillan, 2014a]. Recall that it takes advantage of the fact that the suffixes

contained within each input BWT are already sorted. The algorithm finds an interleave of the input

BWTs such that all of the combined suffixes will be in sorted order in the output BWT.

One can naïvely adapt the merging algorithm to constructing large BWTs by first computing

the single-string BWT for each read string individually. Then, use the merge algorithm in one step

to combine all of the single string BWTs into a single BWT. The main issues that arise using this

approach are that the length of the largest LCP bounds the computation time, and the storage

requirement for the interleave vector (O(N ∗ log(m)) bits for m reads) can become prohibitively

large. Instead, there are two major changes made to the merge algorithm to support the construction

of BWTs.

4.3.1 Tracking buckets

The first main change is to add bookkeeping to the merge algorithm to track which intervals of

the interleave vector have already converged to the correct solution. The original merge algorithm

relies on global convergence of the interleave to complete the merge [Holt and McMillan, 2014a].

However, the main insight of the first change is that local convergence of the interleave leads to

global convergence. Intuitively, this happens because the merge is implicitly calculating a most-

significant-symbol-first radix sort on the BWT’s implicit suffix array. Once a given suffix has been

sorted past its longest common prefix (LCP), it is in the correct, final position in the merged BWT.

Theorem 4.3.1. Given a suffix string, R, with longest common prefix, LCPR, the suffix will be in

its correct, final position in the merged BWT after (LCPR + 1) iterations.

Proof: Lemma 3.3.2 states that after i iterations, all suffixes are sorted up to their first i symbols.

After iteration (LCPR+1), the given suffix R must be in its correct position in the interleave because

it does not share (LCPR + 1) symbols with any other suffix. If R is not in its correct position, then
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it violates the original assumption by implying that LCPR is not the longest common prefix of R. �

The goal of this first change is to identify which regions of the interleave actually need to be

processed (regions which have not converged) and only process those regions of the interleave in the

next iteration. Note that after an iteration i, the interleave can be broken into buckets corresponding

to i-mers. Then, only buckets which changed in the previous iteration need to be scanned in the

next iteration. These i-mer buckets are conceptually similar to the LCP-intervals used to cluster

regions of the BWT that have an LCP of length i [Ohlebusch et al., 2010].

Given an alphabet, Σ, with σ unique symbols, one property of the merge is that a bucket

representing some i-mer, α, will sort all suffixes starting with cα for every c ∈ Σ. This means a

given bucket can create up to σ new buckets corresponding to (i+ 1)-mers. While iterating through

bucket α, the algorithm updates the interleave for each possible new bucket cα. If this update causes

the interleave or the symbols represented by that interleave to change, then the new bucket cα needs

to be processed in the next iteration. Otherwise, it can be ignored in the next iteration because

those values were already processed and no changes were made from the current iteration. If the

new bucket cα needs to be processed, then an offset into each input BWT and a total length for the

bucket (for a two-way merge, this is a total of three integer values) are stored for the next iteration.

Once an iteration is reached with no uncoverged buckets, the merge is complete.

Table 4.1 shows the initial state of the modified merge algorithm. For a merge with N total

symbols, the initial state is always a single bucket corresponding to the empty string (“") with the

bucket range [0, N). This initial range is always processed and creates a new bucket for each 1-mer

in the dataset. The interleave and list of buckets after iteration 1 is shown in Table 4.2. After

iteration 1, there are three buckets corresponding to the 1-mers “$", “A", and “C". Additionally, the

interleave corresponding to each range was modified from the initial state to the end of iteration

1. For example, the range corresponding to “$" ([0, 2)) went from [0, 0] to [0, 1], so the bucket is

marked as changed.

Iteration 2 shows an example where not all buckets change from iteration 1. In Table 4.2,

consider the bucket representing α =“$" at the end of iteration 1. This bucket corresponds to indices

[0, 2) of the current interleave. Those indices have interleave bits 0 and 1 with symbols ‘C’ and ‘A’

respectively, so the two possible new buckets generated from “$" in iteration 2 (see Table 4.3) are

“C$" and “A$". For “C$", the algorithm writes a 0 bit to index 6 (this is from the normal merge
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Initial State

Index I0 BWT Suffix
0 0 C $AAC
1 0 $ AAC$
2 0 A AC$A
3 0 A C$AA
4 1 A $CAA
5 1 A A$CA
6 1 C AA$C
7 1 $ CAA$

i-mer Bucket Range
“" [0, 8)

Table 4.1: Bucket example - initial state. These tables show the initial state of the merge of two
strings “AAC$" and “CAA$" with BWTs “C$AA" and “AAC$" respectively. The initial interleave,
I0, is assumed to be a concatenation of the two BWTs. The initial interleave, BWT, and implicit
suffixes corresponding to the BWT are shown in the left table. The right table shows the initial
buckets to be processed in iteration 1 of the merge algorithm. There is only one bucket representing
the empty string. This initial bucket covers the entire merged BWT with range [0, 8).

method). Since index 6 is already a 0 bit, the “C$" bucket does not need to be processed in iteration

3. For “A$", the algorithm writes a 1 bit to index 2. Since this causes a change, the “A$" bucket

must be processed in iteration 3.

Tables 4.1-4.4 show a full example for this modified merge algorithm. In the example, the buckets

are defined purely on the range in the merged BWT for brevity. In practice, the bucket for a two-way

merge is actually defined by a tuple containing three values: two offsets (one into each input BWT)

and a total length for the bucket. For example, for a merge of N total symbols, the initial tuple

for the empty string will always be (0, 0, N). During each iteration, the buckets are processed in

lexicographical order based on the i-mer they represent (this is derived from the sum of the offset

values).

The original merge algorithm calculates the FM-index on the fly while linearly traversing the

BWTs. However, the buckets allow the merge algorithm to skip over section of the BWT, so the

FM-index cannot be calculated on the fly anymore. Instead, a sampled FM-index for each BWT

is calculated beforehand (this can be trivially done in O(N) time), and the FM-index entries are

accessed as needed for each bucket. As discussed in Section 2.3.3, the extra memory cost for storing

an FM-index that is sampled every B values is O(NσB ). Additionally, each lookup for a sampled

FM-index is O(B) instead of O(1).

The original merge algorithm (Chapter 3) has a time complexity of O(N ∗ LCPmax) where N

40



Iteration 1

Index I0 I1 BWT Suffix
0 0 0 C $AAC
1 0 1 A $CAA
2 0 0 $ AAC$
3 0 0 A AC$A
4 1 1 A A$CA
5 1 1 C AA$C
6 1 0 A C$AA
7 1 1 $ CAA$

i-mer Bucket Range Changed
$ [0, 2) Yes
A [2, 6) Yes
C [6, 8) Yes

Table 4.2: Bucket example - iteration 1. These tables show the conditions of the merge at the
end of iteration 1. I0 is the initial interleave and I1 is the state of the interleave after the first
iteration. In this first pass, only one bucket corresponding to the empty string and the full BWT was
processed. Inside that range, there were three symbols, ‘$’, ‘A’, and ‘C’, that occurred 2, 4, and 2
times respectively. As a result, the algorithm creates three new buckets corresponding to the 1-mers
“$", “A", and “C" with the ranges shown above. Additionally, the interleave and corresponding BWT
symbols for each bucket changed from iteration 1, so they will all be processed in iteration 2. Note
that the algorithm stores additional information for each bucket corresponding to FM-index related
values that are not shown here for brevity.

Iteration 2

Index I1 I2 MSBWT Suffix
0 0 0 C $AAC
1 1 1 A $CAA
2 0 1 A A$CA
3 0 0 $ AAC$
4 1 1 C AA$C
5 1 0 A AC$A
6 0 0 A C$AA
7 1 1 $ CAA$

i-mer Bucket Range Changed
$A [0, 1) No
$C [1, 2) No
A$ [2, 3) Yes
AA [3, 5) Yes
AC [5, 6) Yes
C$ [6, 7) No
CA [7, 8) No

Table 4.3: Bucket example - iteration 2. These tables show the conditions of the merge at the end of
iteration 2. I1 is the interleave at the end of iteration 1 and I2 is the interleave at the end of iteration
2. In the second pass, the three buckets from iteration 1 are processed. The bucket correspond to “$"
is scanned and leads to the creation of two new buckets corresponding to “A$" and “C$". The “A$"
bucket corresponds to the range [2, 3). Note that after iteration 1 at index 2, the interleave and
BWT were 0 and ‘$’. In contrast, the values after iteration 2 at index 2 are 1 and ‘A’, indicating
that a change has occurred. The second created bucket corresponding to “C$" and range [6, 7) did
not show any change from iteration 1 to 2 (interleave and BWT were 0 and ‘A’ in both). As a result,
the “A$" bucket will be processed in iteration 3 but the “C$" bucket will not be. The full list of
buckets generated is shown in the right table. Note that out of the seven 2-mers in this merge, only
three of them will be processed in iteration 3.
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Iteration 3

Index I2 I3 MSBWT Suffix
0 0 0 C $AAC
1 1 1 A $CAA
2 1 1 A A$CA
3 0 1 C AA$C
4 1 0 $ AAC$
5 0 0 A AC$A
6 0 0 A C$AA
7 1 1 $ CAA$

i-mer Bucket Range Changed
$AA [0, 1) No
AA$ [3, 4) Yes
AAC [4, 5) Yes
CAA [7, 8) No

Table 4.4: Bucket example - iteration 3. These tables show the conditions of the merge at the end of
iteration 3. I2 is the interleave at the end of iteration 2 and I3 is the interleave at the end of iteration
3. Note that the interleave at the end of iteration is correct and the suffixes are now correctly sorted.
However, the algorithm has not yet detected convergence. At the end of iteration 3, two buckets
have changed. When processed in iteration 4 (not shown), they will create two new buckets that will
not change. Since no buckets changed at the end of iteration 4, the algorithm will save the BWT
using the interleave and terminate.

is the total number of symbols in the merge and LCPmax is the maximum LCP between any two

suffixes of the merge. With bucket tracking, the algorithm only checks unconverged i-mer buckets at

each iteration. A unique suffix, α, and its associated bucket will converge once i = LCPα + 1, so the

computation time for the tracked merge is ΣN
x=1(LCPx + 1). This is equivalent to O(N ∗ LCPavg)

where LCPavg is the average LCP across all suffixes.

One problem with tracking this way is that the number of unconverged i-mer buckets can be

very large and may lead to performance problems if the size of the structure for tracking buckets

exceeds the amount of available memory. Given Σ = ($, A,C,G,N, T ) and σ = 6, there are up to 6i

possible i-mer buckets in a given iteration. In our specific datasets, we found that the number of

unconverged i-mer buckets followed this exponential growth curve until approximately iteration 13,

decayed rapidly until about iteration 20, and then decayed steadily in subsequent iterations until

convergence was achieved. After iteration 20, there were relatively few unconverged i-mers which

actually needed to be processed by the merge algorithm. In other words, significant portions of the

interleave were already converged to the correct answer after only 20 iterations.

To avoid the exponential memory growth of bucket tracking, the tracking method was further

modified by delaying its start until iteration 20, so only later iterations (i > 20) track which

(i − 20)-mer buckets are not converged. The intuition behind this change is that the number of
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unconverged (i− 20)-mers at iteration i is always less than or equal to the number of unconverged

i-mers at that same iteration. By delaying the tracking to a later iteration, the memory consumption

peak is avoided. The selection of iteration 20 is a heuristic derived from observing our particular

datasets. This optimal delay is likely related to the number of expected k-mer in the datasets. In

other words, the optimal delay can be written as a function of genome length and sequencing error.

In a genome of length G, the expected number of k-mers is log4(G), so after log4(G) iterations we

expect the buckets to quickly converge to the correct solution.

This final algorithm performs 20 standard iterations over the entire interleave followed by

(LCPmax − 20) partial iterations (buckets are generated only for unconverged regions). The time

complexity of this algorithm is therefore N ∗ (20 +LCPavg) or O(N ∗LCPavg). The only additional

memory cost is the tracking of unconverged i-mer buckets where i > 20. Assuming there is a constant

decay in unconverged buckets after iteration 20 (as it is with our datasets), the additional memory

cost is O(s) where s is the number of shared 20-mers in the two input MSBWTs. In general, s << N

because there are usually duplicate 20-mers in the MSBWTs. In our presented results, the maximum

size of this bucket tracker never exceeded 1.5 GB of memory.

4.3.2 Divide-and-conquer merge

If the original merge algorithm is naïvely used, the interleave vectors require O(N ∗ log(m)) bits

of storage for m strings composed of a total of N bases. The merge algorithm iterates over the

interleave vector several times in order to reach convergence. As a result, the algorithm needs to

keep the interleave in main memory or risk a significant performance penalty as a result of disk I/O.

Unfortunately, we found that using O(N ∗ log(m)) bits of space was typically too large to fit even

on machines with 32 GB of RAM. The is primarily due to the fact that there are often millions of

strings in any given dataset, so the log(m) term becomes quite large.

To address this issue, the second major change made to the merge algorithm was to apply a

divide-and-conquer approach in order to reduce the size of the interleave vector at any given time.

At each level, pairs of BWTs are merged into larger BWTs at the next level. In other words, at

each level the number of BWTs is cut in half but each BWT contains double the number of strings

from the previous level. Using this approach, only two inputs are given to each merge, so the

interleave vector requires only one bit per base. This reduced the maximum amount of memory

needed for the interleaves to O(N) instead of O(N ∗ log(m)). Furthermore, each merge can be
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computed independently by separate processes allowing for trivial multi-processing at low levels in

the divide-and-conquer. After O(log(m)) levels, one BWT contains every string from the original

set. We allowed the BWT to perform merges of 256 and 2 BWTs simultaneously. Merging 256

BWTs requires using 1 byte per interleave value (O(N) bytes) and merging 2 BWTs requires 1 bit

per interleave value (O(N) bits). Even if the interleave cannot be kept in main memory, it can be

stored on disk and accessed in a non-random manner to compute the BWT. Figure 4.1 shows the

theory behind which merge can be used as a function of the amount of available memory.

The divide-and-conquer approach changed both the time and memory requirements of the

algorithm. As stated earlier, the memory cost was reduced from O(N ∗ log(m)) bits to O(N) bits.

In practice, we found the divide-and-conquer approach is much faster because the interleave vector

can be kept entirely in memory even on memory limited machines. However, this comes at the cost

of changing the time complexity from O(N ∗ LCPavg) to O(N ∗ LCPavg ∗ log(m)).

4.4 Results

4.4.1 Dataset description

We performed all tests on a single machine running Ubuntu 14.04 with 32 GB memory and an

Intel Xeon E5-2620 6-core 2.00 GHz processor. We limited each test to at most four processors

during the construction. The machine is connected to a 1 TB HDD for reading and writing any

necessary input or output files.

We selected six datasets to use as test data for the construction algorithm. Two of the datasets

are PacBio Circular Consensus Sequencing (CCS) and Continuous Long Read (CLR) reads for E.

coli K12 MG16551. We also used another PacBio CLR dataset for D. melanogaster2. In addition

to PacBio datasets, we selected two Illumina datasets, SRR027520 (Human) and SRR065390 (C.

elegans), that are datasets from the 1000 Genomes project [Consortium et al., 2010]. The final

dataset is an African male dataset from the Sequence Read Archive ERA0157433 used in previous

studies of BWT construction [Bauer et al., 2011, 2013]. The ERA015743 is separated into multiple

SRF files that we used to create paired-end FASTQ files. The first test is one FASTQ file, the

1https://github.com/PacificBiosciences/DevNet/wiki/Datasets
2http://blog.pacificbiosciences.com/2014/01/data-release-preliminary-de-novo.html
3ftp://ftp.sra.ebi.ac.uk/vol1/ERA015/ERA015743/srf/
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Figure 4.1: Divide-and-conquer merge. This figure visualizes the memory requirements for the
divide-and-conquer merge as a function of the number of symbols being merged simultaneously, N ,
and the amount of memory, M , available on the machine. If N < M , then 256 BWTs can be merged
simultaneously using an interleave that requires 1 byte per value (a total of N bytes). If N8 < M ,
then two BWTs can be merged using an interleave that requires 1 bit per value (a total of N bits).
If N8 > M , then the interleave will not fit in main memory, and an out-of-core interleave must be
used. The lowest levels of merging can use byte interleaves because there are relatively few symbols
in the merge. Eventually, this has to transition to bit interleaves as the number of symbols increases.
Finally, the highest levels of merging may require out-of-core allocation of the interleave because it
is simply too large even with 1 bit per symbol.
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Figure 4.2: Divide-and-conquer merge implementation. This figure shows the layout of divide-and-
conquer merges for a string collection containing 512 strings. First, each input string is transformed
into a single-string BWT. Then, groups of 256 BWTs are merged using the original merge algorithm
into multi-string BWTs containing 256 strings. In all subsequent levels, two BWTs are merged into
one larger BWT using the delayed tracking algorithm. The merging terminates when only one BWT
remains. In this example, only one two-way delayed tracking merge is necessary. Note that at each
level, all BWT creations or BWT merges can be handled by separate processes in parallel.

second two files, and the third test is four files. All datasets were transformed into FASTQ format

for testing.

4.4.2 Divide-and-conquer application

To build the merged BWT, the algorithm started by constructing the BWT for each string

individually. Then, it merged those single-string BWTs into multi-string BWTs of 256 strings using

the basic, unmodified BWT merge algorithm. These small merges required one byte per base in the

interleave vector. Since only 256 strings were merged at the first stage, the size of the interleave

vector for each merge was relatively small. After merging the strings into BWTs containing 256

strings, the algorithm used the two-way merge described in this chapter for subsequent merges.

Figure 4.2 shows the layout of the merge implementation for a collection of 512 strings. All results

presented in this chapter follow this divide-and-conquer approach to BWT construction.
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4.4.3 Delayed tracking benefits

To demonstrate the benefits of delayed tracking, we ran the E. coli CLR dataset with three

different types of convergence tracking: no tracking, full tracking, and delayed tracking. No tracking

is just using the merge algorithm as described in Chapter 3 [Holt and McMillan, 2014a]. Full tracking

monitors unconverged buckets from the first iteration such that it is tracking all unconverged i-mers

at iteration i. Delayed tracking does not start tracking buckets until iteration 20 such that it is only

tracking unconverged (i− 20)-mers at iteration i. We plotted cumulative iteration times for the final

merge in Figure 4.3. As expected, the cumulative time for no tracking grows linearly because each

iteration requires a constant amount of work. The overhead from full tracking leads to longer early

iterations followed by very short iterations later. Since delayed tracking does not start until iteration

20, the algorithm bypasses the peak quantity of unconverged buckets during early iterations while

still benefiting from the speedups of tracking in later iterations.

A comparison of the quantity of unconverged buckets for both the full tracking and delayed

tracking is shown in Figure 4.4. For this dataset, the peak quantity of unconverged buckets with full

tracking is approximately 23 million. With delayed tracking, the peak quantity is significantly lower

at approximately 25 thousand buckets. After peaking, the delayed tracking roughly follows the full

tracking but with fewer buckets. The difference in buckets is caused by the fact that full tracking

is monitoring all i-mer buckets whereas delayed tracking is monitoring (i− 20)-mer buckets. As a

result, some of the i-mer buckets are combined into one (i− 20)-mer bucket, leading to overall fewer

buckets to track with the delayed merging.

4.4.4 Full construction times

The timings and efficiencies for the merge-based construction algorithm on each dataset are

summarized in Table 4.5. Both wall clock and efficiency were measured using Ubuntu’s built-in

/usr/bin/time command. The measured time includes reading FASTQ inputs, creating BWTs from

each input, and performing all merges to the final result. Wall clock time is reported as microseconds

per base to allow for easier comparison between datasets. For four processes, the maximum efficiency

is 400% (each process at 100%).

These results demonstrate the effect of LCPavg on the run time for the algorithm. Several factors

influence LCPavg including coverage, read length, and the error rate of the sequencing technology.

The fastest results are for PacBio CLR data (long reads, high error rate). This is most likely because

47



Figure 4.3: Tracking run-time comparison. This figure shows the time to execute the final merge
of an E. coli CLR dataset with three different types of tracking: no tracking, full tracking, and
delayed tracking. Along the x-axis is the iteration of the merge. The y-axis is the cumulative time
to perform the iterations up to that point. No tracking is the basic merge algorithm as described
in Chapter 3 [Holt and McMillan, 2014a]. As expected, it requires a constant amount of time for
each iteration. Full tracking monitors all unconverged buckets from the first iteration such that at
iteration i, the buckets represent i-mers. This causes slower early iterations when there are a large
number of unconverged buckets followed by fast iterations when the number of buckets becomes
small. Delayed tracking does not start tracking buckets until after 20 iterations, allowing it to avoid
the overhead caused by tracking a large quantity of buckets while still benefiting from the speedup
that full tracking achieves in later iterations.
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Figure 4.4: Tracking memory comparison. This is a plot of the number of tracked, unconverged
buckets during each iteration of the final merge of an E. coli CLR dataset. The full tracking method
tracks buckets from the very first iteration which leads to a peak quantity of 23 million buckets after
iteration 13. The delayed tracking begins tracking at iteration 20 and has a significantly smaller
peak quantity of 25 thousand buckets after iteration 30. Delayed tracking then follows the same
decaying trend as full tracking until the merge is complete.

49



Dataset Type Reads Bases Avg. Len. Wall clock Efficiency
E. coli K12 MG1655 PacBio - CCS 231,629 217,871,193 940.6 5.26 252%
E. coli K12 MG1655 PacBio - CLR 50,765 98,213,822 1934.6 1.57 227%

D. melanogaster PacBio - CLR 1,514,730 15,208,567,933 10,040.4 2.68 261%
SRR027520 - Human Illumina 24,246,685 1,842,748,060 76 4.00 310%

SRR065390 - C. elegans Illumina 33,808,546 3,380,854,600 100 4.52 292%
ERA015743 - Human 26M Illumina 26,520,387 2,678,559,087 101 5.52 208%
ERA015743 - Human 53M Illumina 53,040,774 5,357,118,174 101 3.95 303%
ERA015743 - Human 104M Illumina 104,830,294 10,587,859,694 101 4.29 300%

Table 4.5: Merge-based construction performance. This table shows the time and efficiency of the
merge-based construction algorithm for several datasets. The type of data, number of reads, number
of bases, and average read length for each dataset are shown for comparison. For each dataset, the
merge-based construction algorithm is timed using the built-in /usr/bin/time function. Wall clock
time is reported as microseconds per base to allow for comparison between different data types.
Each test is allowed four processes so the maximum achievable efficiency is 400%. In these results,
most Illumina datasets require 4 or more microseconds per base. In contrast, the largest dataset
(15 billion base D. melanogaster PacBio CLR) required only 2.68 microseconds per base despite
having significantly longer reads and more total bases. For the PacBio CCS dataset, this algorithm
achieved similar levels of performance as it did for the Illumina datasets even though the reads
are approximately nine times longer. None of the tests achieved maximum efficiency with the best
utilizing 310%.

CLR data has a relatively high sequencing error rate leading to a smaller average LCP. In contrast,

Illumina datasets (short reads, low error rate) required more time per base despite having fewer total

bases than the D. melanogaster PacBio CLR dataset. Finally, the one PacBio CCS dataset (long

reads, low error rate) required about one microsecond per base more time than the Illumina datasets.

This is due to the high LCPavg resulting from the combination of long reads and low error rates.

Each test case fell short of achieving maximum efficiency. Some of this can be attributed to disk

I/O, but the majority is inefficiency in the multi-processing. In the final stages of the construction,

not every process is utilized since there are fewer merges than available processes (the final merge

uses only one of the four processors). This leads to slower merges in the final stages since the work

is no longer distributed evenly amongst all available processors.

4.5 Final notes

The merge-based BWT construction algorithm described is one of the earliest to directly address

the problem of constructing the BWT from a string collection of long sequencing reads. While

methods existed for uniform-length, short reads, they did not scale well as the read length increased.

The asymptotic performance of the merge-based algorithm is not directly dependent on read length.

Additionally, the strings do not need to be of uniform length for the algorithm to work correctly.

In these particular tests, a 20-iteration tracking delay was chosen heuristically. The delay tended
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to work well for these particular tests to avoid the peak memory caused by storing millions of i-mers

in iteration i. However, a 20-iteration delay is likely not the optimal choice for all datasets. Datasets

with a high number of repeated substrings may need to delay the tracking further in order to keep

the list in memory. In contrast, datasets with a low number of repeated substrings may actually

be able to begin tracking much earlier and converge on the correct solution faster. Furthermore,

dynamically selecting the tracking method based on a fixed number of allowed buckets may enable

the algorithm to select the optimal tracking delay while computing the BWT instead of a hard-coded

delay.

As seen in the results, there are certain types of sequencing data that this algorithm performs

better on. In particular, the long, noisy reads generated by some sequencers (such as PacBio CLR)

are likely the best case scenario for the merge-based algorithm. The reasons for this are two fold:

there is a low LCPavg due to sequencing error and there are fewer reads with respect to the total

number of sequenced bases. In contrast, datasets with a high LCPavg and a high number of reads

have the worst performance. As a result, this method is likely ill-suited for high-coverage sequencing

runs that report billions of reads or long-read sequencers with low error rates.

Subsequently, additional modifications to the BCR algorithms led to the newer ropebwt2 im-

plementation [Li, 2014]. While the performance of ropebwt2 decays as the read length increases, it

outperforms both previous BCR algorithms and the merge-based BWT construction algorithm for

most datasets. The next chapter introduces another BWT construction method that also works with

long-read datasets but is less influenced by the error rate or the number of reads in the dataset.

51



CHAPTER 5

MULTI-STRING BWT CONSTRUCTION VIA INDUCED SORTING

Up to this point, three methods of constructing BWTs from a string collection have been

introduced. The first method naïvely constructs the BWT from a suffix array which requires an

expensive sort of all suffixes in the entire string collection (see Section 2.4). The second method

is the “BCR" class of algorithms that build the BWT in a “column-wise" manner [Bauer et al.,

2011, 2013]. This class of algorithms tends to work well for short, uniform length strings, but their

performance falls off as the length of the strings increases. The third method is the merge-based

construction algorithm from Chapter 4 [Holt and McMillan, 2014b]. While this method is one of the

first to build BWTs of long reads, its performance decays as the number of strings in the collection

grows and as the self-consistency (longest common substrings) of the strings increases.

In this chapter, we introduce a fourth method of multi-string BWT construction called MSBWT-

IS that is based on the concept of induced sorting. The main idea of induced sorting is to compute a

partial order of a subset of suffixes and to use that partial order to solve for a complete order of all

suffixes. Induced sorting methods for both suffix arrays [Nong et al., 2009] and single-string BWTs

[Okanohara and Sadakane, 2009] have been previously developed by other researchers. MSBWT-IS

method is the natural extension of induced sorting to building BWTs of string collections. For a

string collection with a total of N symbols, this algorithm requires O(N) steps to compute the BWT.

MSBWT-IS requires less CPU time than other algorithms for long-read sequencing datasets, and it

is trivially adapted to constructing BWTs for any input alphabet.

5.1 Related work

In Section 4.1, we first introduced a class of algorithms called “BCR" [Bauer et al., 2011, 2013].

These algorithms all follow the same general approach to BWT construction. Given a string collection

with m strings that are all k symbols long, the strings can be stacked such that each string is a

row and each column is a group of symbols that are all at the same index in the strings. The BCR

algorithms then insert symbols in a “column-wise" manner [Bauer et al., 2011, 2013], such that all



symbols in a given column are inserted in one iteration of construction. With k insertion iterations

that insert exactly m symbols, there are O(mk) steps. However, the major drawback of this approach

is the O(mk2) disk I/O [Bauer et al., 2013]. This is caused by performing full writes of the partial

BWT to disk at the end of each iteration. Additionally, the algorithm requires pre-sorting the

strings prior to construction. This class of algorithm tends to perform well on uniform, short-length

strings such as reads from an Illumina sequencing run. However, these implementations of the BCR

algorithm do not scale well as the length of the strings in the collection increases.

In Chapter 4, we described an alternate approach to BWT construction that repeatedly merges

BWTs created from subsets of the entire string collection [Holt and McMillan, 2014a]. Given m

strings with a combined length of N (note that N = mk for m reads of uniform length k) and an

average longest common prefix of LCPavg, the run-time for this algorithm is O(N ∗LCPavg ∗ log(m)).

This algorithm tends to perform well when the length of shared substrings is relatively short and

there are few strings in the collection. In particular, tests showed that this method worked well for

long, noisy sequencing reads such as those generated by PacBio CLR sequencing. However, datasets

with a large number of strings required many merges, and highly redundant datasets caused each

individual merge to require more computation. As a result, this method does not scale well to large,

high coverage sequencing datasets.

A recently developed algorithm, called “ropebwt2", is an adaptation of the BCR algorithm

that uses in-memory B+-trees instead of arrays [Li, 2014]. The primary drawback of the other

BCR algorithms was keeping the partial BWTs as arrays either in-memory or on-disk. As a result,

each iteration of the algorithm required re-allocation of the array in order to make insertions. The

“ropebwt2" algorithm instead keeps the partial BWTs in a run length encoded form inside a B+-tree.

For a string collection with N total symbols, this reportedly requires O(N ∗ log(N)) steps to construct

the BWT in the B+-tree format [Li, 2014]. However, in our results we identified that the length of

strings in the collection still impacts performance as it does in previous versions of the BCR algorithm.

However, the ropebwt2 implementation is much faster than previous BCR implementations [Li, 2014].

Additionally, this method outperforms the merge-based BWT construction algorithm even when

given an ideal dataset for the merge algorithm (few reads and a low LCPavg).

The publicly available implementation of “ropebwt2" can build the BWT in many different

formats [Li, 2014]. In order to build the BWT in the format described in Chapter 2, the input strings
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must all be sorted lexicographically prior to running the algorithm. For large string collections, this

can be a major drawback. The implementation can also build the BWT in a reverse-lexicographic

order without pre-sorting the strings [Li, 2014]. Reverse-lexicographic order (RLO) reorders the

strings in the collection such that they are stored in reverse lexicographic order with the primary

benefit of increasing the length of runs in the BWT [Cox et al., 2012a]. Unfortunately, this method

breaks the cyclic property of suffixes in the implicit suffix array. In other words, repeatedly finding

predecessor symbols will likely lead to traversal of many strings instead of just one, so additional

storage overhead is required to correctly traverse through the end-of-string characters of the strings.

There is a third ordering of the strings called reverse-complement lexicographic ordering (RCLO)

that encodes both forward and reverse-complemented strings in the BWT. When both the forward

and reverse complement of every string in the collection are stored in reverse lexicographic order,

every string forms a cycle with its reverse complement, alleviating the need for the additional

overhead caused by RLO and the need for sorting the input prior to construction [Li, 2014]. A

BWT that is RCLO-encoded stores twice as many symbols and any search finds both forward and

reverse-complement sequence simultaneously. However, this method loses information about the

original sequence since it cannot distinguish between forward and reverse-complemented strings

without storing additional metadata for each string.

Two other algorithms, SA-IS [Nong et al., 2009] and BWT-IS [Okanohara and Sadakane, 2009],

build the suffix array and BWT respectively for single strings using induced sorting. Given a single

long string, induced sorting breaks the string into many substrings and replaces each substring with

a new symbol from a new alphabet. This new alphabet preserves the lexicographic ordering of the

substrings and each symbol in the new alphabet encodes at least two symbols from the previous

alphabet. As a result, the new string is guaranteed to be at most half the size of the original at

the cost of a larger alphabet. The algorithm is then recursively called on the new, shorter string

until the BWT of the string can be trivially computed. When exiting the recursion, the BWT of

the shorter string represents a partial ordering of the suffixes from the longer string. This partial

ordering is then used to “induce" the full ordering and the BWT of the longer string. For a string

of length M , BWT-IS requires O(M) steps to compute the BWT of the string [Okanohara and

Sadakane, 2009]. Our approach adapts the induced sorting method to build the BWT of a string

collection instead of a single string by explicitly storing the substring alphabet at each step and
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modifying the recursion termination condition for a string collection.

5.2 Approach

MSBWT-IS is based on a single-string BWT construction algorithm called BWT-IS [Okanohara

and Sadakane, 2009]. The main concept is to use induced sorting to recursively solve for the BWT.

Initially, the BWT-IS algorithm splits a single long string, Ti, of length M into several much smaller

“S* substrings". These substrings are then implicitly sorted (using an O(M) method) and each is

assigned a new integer symbol corresponding to its order in the implicit sort. Conceptually, these

symbols represent a new alphabet that is not explicitly stored. Then, every S* substring is replaced

with its new symbol to form a new, shorter string, Ti+1, composed of symbols from the new alphabet

[Okanohara and Sadakane, 2009]. With each recursive call, the new string is guaranteed to be at

most one half the size of the previous string [Okanohara and Sadakane, 2009]. Eventually, the string

becomes small enough that the BWT can be trivially computed. The short BWT, Bi+1, represents

a partial sort of the suffixes from Ti. Specifically, it is a sort of only the S* substrings from Ti. This

partial sort is then used to “induce" the solution of the longer BWT, Bi. This step is repeated

until the BWT for the original string is computed. Figure 5.1 shows an example of one level of the

BWT-IS algorithm.

Our algorithm, MSBWT-IS, modifies this induced sorting algorithm to handle a collection of

unsorted strings σi. In particular, the algorithm is adapted to explicitly sort the S* substrings of

a string collection and save the newly created alphabet for use while exiting the recursion. In a

linear pass over σi, it goes through each string and adds all S* substrings from all strings to an

S* substring collection such that each S* substring is only represented once in the collection. In

contrast, the BWT-IS algorithm does not remove duplicate strings during the sorting process. Then,

these S* substrings are sorted against each other and assigned an integer value corresponding to

its position in the sort. This new alphabet is explicitly stored for use during the inductive step.

Finally, it constructs a new string collection, σi+1, by replacing each S* substring in each string with

its corresponding symbol from the new alphabet. The algorithm recursively performs this set of

operations until every string in the collection is one symbol long. Given that every string is one

symbol long, the BWT of the collection can be trivially calculated with a one-pass radix sort of the

symbols in the collection. Given a BWT, Bi+1, that is constructed from a higher level of recursion,

the algorithm then induces the solution to Bi. Since Bi+1 represents the lexicographic order of
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Figure 5.1: BWT-IS example. This figure shows one level of the BWT-IS induced sorting method
on a single string “$BABABAB". First, the algorithm identifies S* substrings (see Section 5.3.1 for
details). Second, the S* substrings are sorted and assigned a new symbol in a new alphabet such
that the lexicographic ordering of the substrings is preserved. Note that one S* substring, “ABA",
occurs twice and is assigned the same symbol, ‘D’, in the new alphabet. Third, the S* substrings are
replaced with their new symbol in the new alphabet to create a new string. In this example, the
new string is “#DDC". Fourth, this new, shorter string is passed into a recursive call of BWT-IS
to compute the BWT. Note that the recursion eventually terminates because each recursive call
generates a string that is at most half as long as the previous string. Eventually, computing the BWT
of the string becomes trivial because it is relatively short. Finally, the resulting BWT, “CDD#" in
this example, represents a partial ordering of the suffixes of “$BABABAB". The induce step uses
this partial ordering to sort the remaining suffixes. For example, the smallest suffix in the shorter
string begins with ‘#’ and is preceded by ‘C’ according to the BWT. This forms the partial suffix
“C#" corresponding to partial suffix “AB$BA" in the original string. Thus, the symbols preceding
partial suffixes “B$BA" and “AB$BA" are filled in the output BWT. This is repeated for every
symbol from the shorter BWT until the entire resulting BWT for the long string is computed.
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all S* substrings from Bi, the induce step needs to solve for the lexicographic order of all non-S*

substrings in Bi. To do this, our algorithm pre-computes offsets into the BWT for each suffix of

each S* substring in the alphabet such that the offset indicates the first suffix represented by the

BWT that starts with the S* substring suffix. These offsets are calculated using an algorithm similar

to the Induce(...) method of BWT-IS [Okanohara and Sadakane, 2009]. However, MSBWT-IS

performs this Induce(...) subroutine on only the S* substrings in the alphabet (as opposed to

the entire string as in BWT-IS), so it requires less space and time to compute the BWT. Finally, a

linear traversal of Bi+1 combined with the offsets allows the algorithm to induce the solution to Bi.

A visual overview of this process is shown in Figure 5.2.

5.3 Construction via induced sorting

Given an alphabet Σi of length ki, each symbol in the alphabet is represented as integers [0..ki−1].

Additionally, assume that there are ti initializer/terminal symbols that are the lexicographically

smallest symbols in Σi. In other words, any symbol, si, such that si < ti is a initializer symbol in

Σi. A string collection, σi, contains strings that are composed of symbols from Σi. Each string has

exactly one terminal symbol that is always rotated to index 0 to become an initializer symbol.

We also define a series of properties for the initial string collection of the recursion. Let the

initial string collection, σ0, be composed of symbols from Σ0, an alphabet with exactly one initializer

symbol, t0 = 1 (this single terminal symbol is commonly represented as ‘$’). Additionally, let each

string in this collection start with ‘$’, the only initializer symbol. Throughout our methods, we will

be using an example with σ0 = {“$TAGCT", “$GAGCG"} and Σ0 = [$, A, C, G, T] which can be

represented by integer values [0, 1, 2, 3, 4].

5.3.1 Computing the S* substring alphabet

The algorithm begins by classifying each symbol in each string in the collection using the same

classification scheme of BWT-IS [Okanohara and Sadakane, 2009]. In any string T of length M , it

assigns each symbol in T as being S-type or L-type. A symbol T [x] is considered S-type if the suffix

T [x : M ] < T [x+ 1 : M ]. In other words, the suffix starting at index x lexicographically precedes

the one starting at (x+ 1). Otherwise, it is considered L-type. Additionally, in any run of S-type

symbols, the left-most S-type symbol is defined as S*-type. If T [x] is S*-type, it is a local minimum

in the string because T [x : M ] < T [x + 1 : M ] and T [x − 1 : M ] > T [x : M ]. By the alphabet

definition, all initializer symbols must be S*-type since they will always be the absolute minimum in
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Figure 5.2: MSBWT-IS overview. This figure shows the outline for the induced sorting of MSBWT-IS.
Starting at level i, the algorithm extract all S* substrings from the string collection. Then, it sorts
the S* substrings and assigns each a new symbol in a new alphabet. Then, each S* substring from
level i is replaced with its corresponding symbol from the new alphabet to create the new string
collection at level (i+ 1). If the calculation of the BWT of this new string collection is trivial, the
algorithm will simply compute it. Otherwise, it will perform a recursive call on the new string
collection. Once the BWT is obtained through either recursion or a trivial computation, all suffixes
from the S* substrings are sorted against each other and used to assign an offset into the BWT at
level i. Finally, these offsets and the BWT from level (i+ 1) are used to induce the solution to the
BWT at level i.

58



String Index c (integer[c]) Type S* Substring (integer[S*])
0 $ (0) S* $TA (041)
1 T (4) L
2 A (1) S* AGC (132)
3 G (3) L
4 C (2) S* CT$ (240)
5 T (4) L
0 $ (0) S* $GA (031)
1 G (3) L
2 A (1) S* AGC (132)
3 G (3) L
4 C (2) S* CG$ (230)
5 G (3) L

Table 5.1: S* substring example - level 0. This table shows the process for identifying S* substrings
in string collection σ0 = {“$TAGCT", “$GAGCG"}. All symbols that are local minima (based on
integer[c]) are classified as S* type. The S* substrings are the strings from one S*-type up to and
including the next S*-type symbol. All initializer symbols (‘$’) are S*-type because an initializer
symbol will always be an absolute minimum in the string.

any given string, so the first symbol in every string is S*-type. Table 5.1 shows how each symbol is

labeled for the example collection containing two strings. Note that finding all S*-type symbols can

be done for any string of length M in O(M) steps [Okanohara and Sadakane, 2009]. To find the

S*-type symbols in a string collection, the algorithm simply applies the same method on each string

one at a time until all S*-type symbols are known. For a string collection of combined string length

Ni, the algorithm can find the S* substrings in the entire collection in O(Ni) steps.

Let an S* substring be defined as the substring from one S*-type symbol up to and including the

next S*-type symbol [Okanohara and Sadakane, 2009]. Thus, the S* substrings for “$TAGCT" are

“$TA", “AGC", and “CT$" (see Table 5.1). In our algorithm, whenever an S* substring is found, it is

explicitly stored in a collection. For our implementation, we used a hash map as the collection, so

all S* substrings can be identified and stored in the collection in O(Ni) steps.

Once all S* substrings are in the collection, the collection is sorted and each S* substring is

assigned an integer symbol corresponding to its order in the sort. Thus, each S* substring has a

one-to-one correspondence with a symbol in a new alphabet. For example, in Table 5.1, there are

five S* substrings with sorted order [“$GA", “$TA", “AGC", “CG$", “CT$"] that corresponds to

symbols [0, 1, 2, 3, 4] in Σ1. It’s also worth noting that at this point, Σ1 has five total symbols

(k1 = 5), two of which correspond to initializer symbols (t1 = 2). This is trivially found by counting
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String Index c Type S* Substring
0 1 S* 1241
1 2 S
2 4 L
0 0 S* 0230
1 2 S
2 3 L

Table 5.2: S* substring example - level 1. This table shows the process for identifying S* substrings
in σ1 = {124, 023}. All symbols that are local minima are classified as S* type. The S* substrings
are the strings from one S*-type up to and including the next S*-type symbol. In this case, each
string is entirely contained within one S* substring each.

the number of S* substrings in the collection that begin with an initializer symbol. In this example,

both “$GA" and “$TA" start with ‘$’, so ‘0’ and ‘1’ must be initializer symbols in Σ1.

Using the new alphabet Σi+1 and the input string collection σi, the algorithm then creates a

new string collection σi+1. For each string T in σi, it replaces each S* substring in T with its

corresponding value in the S* substring collection. For example, in Table 5.1, the string “$TAGCT"

is composed of three S* substrings: “$TA", “AGC", and “CT$". Using the sorted alphabet, these S*

substrings correspond to 1, 2, and 4 from Σ1, so string “124" is added to σ1. Similarly, the second

string “$GAGCG" is added as “023" to σ1.

5.3.2 Recursion

At each level of recursion, a new alphabet and string collection are computed. For each string T

of length M , the new string in the collection is guaranteed to be at most M
2 symbols long [Okanohara

and Sadakane, 2009]. Thus, for a string collection of combined string length Ni, it is known that

Ni+1 ≤ Ni
2 . In contrast, the change in alphabet size is entirely data dependent. Datasets that are

highly repetitive tend to have smaller alphabets because the S* substrings are repeated. In our

experience, the alphabet size tends to grow rapidly at early stages to compensate for the shortening

of the strings. As the strings become shorter, the alphabet size tends to shrink simply because there

are fewer symbols in the entire collection.

In BWT-IS, the recursion terminates when every symbol in the single string is unique [Okanohara

and Sadakane, 2009]. However, with a string collection, this terminating condition is not sufficient as

identical strings can exist in the collection, meaning it may be impossible to ever reach the unique

symbol state. Instead, the terminating condition for the recursion is when all symbols in the alphabet
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are initializer symbols. Since a string can only have one initializer symbol, this condition implies

that each string is only one symbol long. This termination condition is guaranteed to be reached

eventually because the strings are always shortened with each level of recursion. Additionally, for a

given string collection of m one-symbol-long strings, construction of a BWT can be accomplished in

O(m) steps using a one pass radix sort.

In our example, we previously solved for an alphabet Σ1 with five symbols and string collection

σ1 = {124, 023}. After extracting and sorting all S* substrings from Σ1, we get another alphabet

Σ2 with two symbols (k2 = 2) that are both initializer symbols (t2 = 2) and a string collection

σ2 = {1, 0} (see Table 5.2 for the S* substrings). Since each string is only one symbol long, the

predecessor symbol for any symbol in the BWT is itself, thus the BWT can be trivially constructed

by simply sorting the symbols with a one pass radix sort. In our example, radix sorting σ2 will get

its BWT, B2 = [0, 1].

5.3.3 Inducing the BWT

Given a BWT for level (i+ 1), Bi+1, all that remains is to induce the BWT Bi. First, note that

each symbol in Bi+1 corresponds to an S* substring at level i. Thus, each symbol in Bi+1 provides

information about the ordering of all suffixes from the corresponding S* substring at level i. In our

example, B2[0] = 0 indicating that the smallest suffix in σ2 is preceded by a ‘0’. This ‘0’ corresponds

to S* substring “0230" in σ1. The algorithm then uses this information to induce the location of

three symbols in B1. Namely, the first suffix in B1 starting with “30" is preceded by “02", starting

with “230" is preceded by “0", and starting with “0230" is preceded by “3" (derived from B2 and Σ1).

In other words, the single symbol from B2 informs multiple symbols in B1. However, the algorithm

still needs to know where suffixes starting with “30", “230", and “0230" are located as offsets into the

BWT (and implicit suffix array). In other words, it needs to know an offset value into Bi for each

suffix of each S* substring from σi.

To compute the offsets, the algorithm needs to know both the lexicographic order of the S*

substring suffixes and the number of times each S* substring suffix occurs in the entire string

collection. Given the sorted order of the S* substring suffixes, the offset for a suffix is the sum of the

frequencies of all suffixes that lexicographically precede it. For example, the S* substring suffixes of

σ1 are shown in sorted order in Table 5.3. In this example, each suffix occurs once, so the offsets

start at 0 and increase by 1 for each offset.
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S* substring suffix Frequency Offset into B1

0230 1 0
1241 1 1
230 1 2
241 1 3
30 1 4
41 1 5

Table 5.3: S* substring suffixes - level 1. This table shows the sorted list of S* substring suffixes
for σ1 = {124, 023}. Note that all suffixes of length 1 are excluded because they are represented
elsewhere in the suffix list. In this particular example, each suffix occurs once. The offsets are
calculated by starting with 0 for the first S* substring suffix and adding the frequency to get the
next offset. Since each suffix occurs once, the offsets are only increasing by one each time.

While the sorted order of the S* substring suffixes can be explicitly computed with a sort

subroutine, we instead use a modified version of the Induce(...) subroutine of Okanohara and

Sadakane [2009]. To summarize, the original Induce(...) subroutine computes the sorted order of

all S* substring suffixes in the whole input string. In general, it does this by first solving for the

sorted order of the L-type suffixes and then by solving for the reverse sorted order of all the S-type

suffixes. The two sorts can then be trivially combined for a complete ordering of all S* substring

suffixes. This algorithm runs in O(M) steps for a string of length M .

Instead of computing the order of every S* substring suffix in the string collection, our method

only computes the order of the S* substring suffixes in the stored alphabet. In other words, duplicated

S* substring suffixes are removed prior to performing the sort. Then, it uses the computed order and

the S* substring suffix frequencies to calculate offsets into the BWT. In short, MSBWT-IS only sorts

ki suffixes where ki is the combined length of all S* substrings instead of M suffixes as in BWT-IS.

This requires less memory than the original Induce(...) method because there are no repeated S*

substrings in the computation. Additionally, since the alphabet already allows for the possibility of

multiple terminal symbols, this adaptation enables the algorithm to run on string collections instead

of just a single string.

The final step is to linearly traverse the BWT Bi+1 and fill in Bi using the computed offsets.

For each symbol c in Bi+1, the algorithm gets the corresponding S* substring in σ1. Then, the

offset for each S* substring suffix in the S* substring is extracted. Every time an offset is used, it is

then incremented by one so that the next time the S* substring suffix is used, it is pointing to the

next entry. Given the offset value, the character stored at the offset is the symbol preceding the S*
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Index, x B2[x] B1

init – [?, ?, ?, ?, ?, ?]
0 0 [3, ?, 0, ?, 2, ?]
1 1 [3, 4, 0, 1, 2, 2]

Table 5.4: Induced BWT - level 1. This table shows the state of BWT B1 as the values for the BWT
B2 are filled in. During each iteration x, the S* substring corresponding to symbol B2[x] and the
offsets for each S* substring suffix are extracted and stored. Then, the corresponding predecessor
symbol for each offset is written to output BWT B1. Initially, the entire BWT is unknown. The
first symbol encountered in B2 is ‘0’, corresponding to S* substring “0230" in σ1. This S* substring
has three suffixes [“30", “230", “0230"] corresponding to offsets [4, 2, 0] in Table 5.3. Thus, index 4
gets set to ‘2’ (the symbol preceding “30"), index 2 gets set to ‘0’, and index 0 gets set to ‘3’. This
process is repeated for B2[1] = 1 to finish solving for B1.

substring suffix, which can be computed from the stored alphabet. In our example, the computed

BWT B2 = [0, 1]. The first symbol is B2[0] = 0, corresponding to the S* substring “0230". This S*

substring has three suffixes [“30", “230", “0230"] corresponding to offsets [4, 2, 0]. Thus, index 4 gets

set to ‘2’ (the symbol preceding “30"), index 2 gets set to ‘0’, and index 0 gets set to ‘3’. We show

the partial result in row 0 of Table 5.4. We then repeat the process for B2[1] = 1 for S* substring

“1231" to retrieve offsets [5, 3, 1] and symbols [‘2’, ‘1’, ‘4’]. The final result is shown in row 1 of

Table 5.4.

At this point, the BWT for σ1 = [124, 023] has been solved as B1 = [3, 4, 0, 1, 2, 2]. The final

step is to exit the recursion to solve for B0 = BWT (σ0). The algorithm uses the same method as

before but with the alphabets from levels 0 and 1. The S* substring suffixes, frequencies, and offsets

are shown in Table 5.5. Then each symbol from B1 is processed one at a time, showing the state of

B0 after each symbol in Table 5.6.

5.3.4 Asymptotic performance

The algorithm can be summarized as a three step process. The initial step requires two linear

passes over a string collection σi of total size Ni, which can be done in O(Ni) steps. While performing

these linear passes, the S* substrings are stored in a collection to create Σi+1 of size ki+1. These

substrings are then sorted in O(ki+1 ∗ log(ki+1)) steps prior to performing the second linear pass.

The second step is to recursively compute the BWT for a string collection that is at most half the

size of the current collection, Ni+1 ≤ Ni
2 . The third step is to calculate the offsets into the BWT for

each S* substring suffix. Using the modified Induce(...) method, this requires O(ki+1) steps (note

that ki+1 ≤ Ni). Finally, a linear pass using Bi+1 and the offsets allows the output BWT Bi to be
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S* substring suffix Frequency Offset into B0

$GA 1 0
$TA 1 1
AGC 2 2
CG$ 1 4
CT$ 1 5
G$ 1 6
GA 1 7
GC 2 8
T$ 1 10
TA 1 11

Table 5.5: S* substring suffixes - level 0. This table shows the sorted list of S* substring suffixes
for σ0 = {$TAGCT, $GAGCG}. Note that all suffixes of length 1 are excluded because they are
represented elsewhere in the suffix list. The offset for a suffix is calculated as the sum of all frequencies
of S* substring suffixes that lexicographically precede it. Most suffixes in this example occur once,
but the S* substring suffixes “AGC" and “GC" both occur twice, once in each string.

Index, x B1[x] B0

init – [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?]
0 3 [?, ?, ?, ?, G, ?, C, ?, ?, ?, ?, ?]
1 4 [?, ?, ?, ?, G, G, C, ?, ?, ?, C, ?]
2 0 [G, ?, ?, ?, G, G, C, $, ?, ?, C, ?]
3 1 [G, T, ?, ?, G, G, C, $, ?, ?, C, $]
4 2 [G, T, G, ?, G, G, C, $, A, ?, C, $]
5 2 [G, T, G, T, G, G, C, $, A, A, C, $]

Table 5.6: Induced BWT - level 0. This table shows how each symbol in B1 is used to induce multiple
symbols in B0. During each iteration x, the S* substring corresponding to symbol B1[x] and the
offsets for each S* substring suffix are extracted and stored. Then, the corresponding predecessor
symbol for each offset is written to output BWT B0. Initially, the entire BWT is unknown. The
first symbol encountered in B1 is ‘3’, corresponding to S* substring “CG$" in σ1. This S* substring
has two suffixes [“G$", “CG$"] corresponding to offsets [6, 4] in Table 5.5. Thus, index 6 gets set to
‘C’ (the symbol preceding “G$") and index 4 gets set to ‘G’ (the symbol preceding “CG$"). This
process is repeated for x = [1..5] to finish solving for B0.
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written in O(Ni) steps.

In summary, the total cost for level i is T (Ni) = Ni + ki+1 ∗ log(ki+1) + T (Ni
2 ). However, the

modifed Induce(...) function can actually be used to perform an implicit sort of the S* substrings.

This subroutine requires O(Ni) steps in the worst case (every substring is unique), leading to a total

runtime of T (Ni) = Ni +T (Ni
2 ) which is O(Ni). Note that in practice, we found the time to perform

the explicit sort of the S* substrings (using a built-in C++ std::sort) was much faster than the

implicit sort calculation performed by the modified Induce(...) function because ki+1 tends to be

much smaller than Ni for the test datasets.

5.4 Results

5.4.1 BWT construction tools

Our implementation of MSBWT-IS is in C++ and is publicly available1. It currently does

not rely on any external libraries. We compiled the program using g++ with options g++ -O3

-std=c++11.

We compare MSBWT-IS to the ropebwt2 tool first mentioned in Section 5.1 [Li, 2014]. Recall

that this method is a variant of the BCR algorithm that performs “column-wise" insertions. While

the algorithm is reported as O(N ∗ log(N)) for a string collection with N symbols, the BCR class of

algorithm performs worse as the length of reads increases simply because the number of “columns"

increases with it. The ropebwt2 implementation tackles this issue by keeping the partial BWT

in memory as a B+-tree, allowing for faster modification of the structure and reducing the cost

from repeatedly allocation of space for the BWT arrays. In general, this method is quite fast,

outperforming both earlier BCR implementations and the merge-based construction algorithm of

Chapter 4. Ropebwt2 is implemented in C and was compiled using the instructions available online.

For ropebwt2, we actually tested two versions of their output. The first version requires a pre-sort

of the strings in the collection, but builds a BWT that is functionally identical to the one produced

by MSBWT-IS. In our results, this version is labeled as ropebwt2 -LR + sort to reflect the options

and that the cost of running the sort is included. The second version does not require a pre-sort,

but it stores both the forward and reverse-complement of all strings in the collection. This allows

1https://github.com/holtjma/msbwt-is
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downstream analyses to perform single queries to retrieve both forward and reverse counts as a

single value. However, the forward and reverse-complements are joined together in the implicit suffix

array such that it is impossible to tell which string was the original without additional information.

Additionally, this BWT can require twice as much space because it is storing twice as many strings.

The second version is labeled as ropebwt2 -Lr. In general, both versions of the ropebwt2 algorithm

are expected to get slower as the length of the strings increases due to its “column-wise" insertion.

Additionally, the added time caused by sorting the strings is expected to increase with both the

number and length of the strings in the collection. The ropebwt2 tool also calculates the BWT in

parallel. In our experience, it utilizes approximately 2-3 threads on average using this parallelization.

All tests were run on a machine running Ubuntu 14.04 with 32 GB memory and an Intel Xeon

E5-2620 6-core 2.00 GHz processor. The machine is connected to a 1 TB HDD for reading and writing

any necessary input or output files. For measuring performance, we used the built-in /usr/bin/time

function to extract real time, user time, memory usage, and CPU utilization. For performing the

pre-sort required by ropebwt2, we used the built-in /usr/bin/sort function.

5.4.2 Simulated datasets

For simulated datasets, we tested the effect of read length on each method. To do this, we

generated random “genome" strings and then sampled reads from those strings at approximately

100x coverage with a 1% error rate. To maintain a constant number of input bases, the read length

was varied through repeated doublings while simultaneously halving the number of reads. Our first,

smaller batch of datasets started with 220 100-basepair reads and went to 211 51200-basepair reads,

so each dataset had approximately 104 megabases of simulated data. Our second, larger batch of

datasets started with 224 100-basepair reads and went to 215 51200-basepair reads, so each dataset

had approximately 1.7 gigabases of simulated data. For each dataset, we ran MSBWT-IS and both

versions of ropebwt2.

The CPU and wall clock times for the smaller batch of datasets are shown in Figure 5.3. As

expected, the CPU time required by ropebwt2 grows with the read length. Since the ropebwt2 -Lr

version encodes both forward and reverse-complement strings, it requires approximately twice as

much CPU time as ropebwt2 -LR. In contrast to both ropebwt2 types, the CPU time required by

the MSBWT-IS algorithm is actually decaying slightly as the read length increases because there are

fewer end-of-string symbols (‘$’) to encode. As a result, MSBWT-IS requires far less CPU time for
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Figure 5.3: Performance - small simulated datasets. These figures show the CPU time (top) and
wall clock time (bottom) as measured by /usr/bin/time for the three different methods of BWT
construction for long reads. Datasets were generated by first randomly generating a “genome" string
and then sampling reads from that string at approximately 100x coverage with a 1% mismatch rate.
Multiple datasets were generated by varying the read length while keeping a constant number of
genomic bases across all datasets (approximately 104 mega-bases per dataset). Each consecutive
dataset has half the number of reads but double the read length. In general, the CPU time for
MSBWT-IS decays slightly as the read length increases. This is caused by a reduction in total
symbols because there are fewer end-of-string characters as the number of reads decreases. In
contrast, both versions of ropebwt2 require increasing CPU time as the length of the reads increases.
This performance pattern is reflected in the wall clock time. However, the ropebwt2 wall clock times
are shifted downward relative to the MSBWT-IS times due to parallelization. Finally, the ropebwt2
-Lr option is almost always slower than ropebwt2 -LR because it is encoding twice as many symbols
(both forward and reverse complement strings).
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long reads than both versions of ropebwt2. The CPU usage of all three methods is reflected in the

wall clock time. The wall clock time of MSBWT-IS is roughly the same as the CPU time because

it is not parallelized. In contrast, the wall clock times of ropebwt2 tend to be 2-3x faster due to

multi-processing.

The CPU and wall clock times for the larger batch of datasets are shown in Figure 5.4. In

general, the same trends from the small datasets are evident in the large datasets. The CPU time of

MSBWT-IS is decaying slightly as read length increases while both versions of ropebwt2 require

more CPU time. Additionally, the ropebwt2 wall clock times are roughly 2-3x less than their CPU

times due to multi-processing. Given these initial tests, the expectation is for MSBWT-IS to require

less CPU time than ropebwt2 when the read length is relatively long.

5.4.3 Long-read datasets

The next tests were performed on several publicly available PacBio datasets. In general, PacBio

reads are thousands of basepairs long but have a relatively high error rate. The selected datasets

include three E. coli K12 MG1655 datasets2,3, one P. falciparum 3d7 dataset4, one N. crassa OR74A

dataset5, one S. cerevisiae dataset6, one C. elegans dataset7, and one A. thaliana P5C3 dataset8.

Table 5.7 shows the CPU and wall clock time for all tested long-read datasets for both MSBWT-IS

and the two methods of ropebwt2. In all tests, MSBWT-IS required less CPU time than both versions

of ropebwt2. Additionally, ropebwt2 -Lr used approximately double the amount of CPU time

as ropebwt2 -LR + sort because it encodes both the forward and reverse-complement sequences.

In general, ropebwt2 -LR required less wall clock time than MSBWT-IS due to parallelization.

However, MSBWT-IS required less wall clock time than ropebwt2 -LR for the two test cases with

the longest average read lengths (C. elegans and Arabidopsis P5C3). Additionally, these two datasets

had large differences in CPU time, again suggesting that MSBWT-IS is less affected by long reads

than ropebwt2.

2https://github.com/PacificBiosciences/DevNet/wiki/Datasets
3https://github.com/PacificBiosciences/DevNet/wiki/E-coli-K12-MG1655-Resequencing
4https://figshare.com/articles/Plasmodium_3D7_Genome_Assembly_With_PacBio_Data_and_CLEAR_/712587
5https://github.com/PacificBiosciences/DevNet/wiki/Neurospora-Crassa-(Fungus)-Genome,-Epigenome,-and-
Transcriptome

6https://github.com/PacificBiosciences/DevNet/wiki/Saccharomyces-cerevisiae-W303-Assembly-Contigs
7https://github.com/PacificBiosciences/DevNet/wiki/C.-elegans-data-set
8https://github.com/PacificBiosciences/DevNet/wiki/Arabidopsis-P5C3
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Figure 5.4: Performance - large simulated datasets. These figures show the CPU time (top) and
wall clock time (bottom) as measured by /usr/bin/time for the three different methods of BWT
construction for long reads. Datasets were generated by first randomly generating a “genome" string
and then sampling reads from that string at approximately 100x coverage with a 1% mismatch rate.
Multiple datasets were generated by varying the read length while keeping a constant number of
genomic bases across all datasets (approximately 1677 mega-bases per dataset). Each consecutive
dataset has half the number of reads but double the read length. The same patterns from the small
datasets (see Figure 5.3) persist in these larger simulations. Both CPU and wall clock time required
by both versions of ropebwt2 is growing with read length whereas they are decaying slightly with
MSBWT-IS.
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Dataset Bases Average length MSBWT-IS ropebwt2 -LR + sort ropebwt2 -Lr
E. coli MG1655 CLR 98213822 1934 71.48 (87.54) 151.44 (65.39) 316.97 (119.84)
E. coli MG1655 CCS 217871193 940 63.48 (67.68) 237.48 (93.5) 452.25 (160.5)
E. coli k12 re-seq. 436994771 5278 323.51 (349.63) 392.89 (152.51) 1048.34 (327.48)
P. falciparum 3d7 630045976 2595 437.29 (455.77) 485.0 (197.36) 1422.0 (503.53)
N. crassa OR74A 981884113 5581 813.35 (863.34) 922.52 (345.35) 2008.75 (677.26)
S. cerevisiae W303 1307390784 6030 1025.7 (1091.48) 1153.83 (467.61) 3658.49 (1379.77)

C. elegans 2586974111 13127 844.81 (911.96) 2138.94 (921.28) 4333.18 (1653.7)
A. thaliana P5C3 2692706178 14609 791.62 (823.13) 2205.07 (948.18) 4379.72 (1649.87)

Table 5.7: Long-read dataset performance. This table shows the performance of MSBWT-IS and
the two versions of ropebwt2 on long-read sequencing datasets ordered by their total number of
bases. For each method, the CPU and wall clock time was measured using /usr/bin/time. The
CPU time in seconds is shown for each test with the wall clock time in seconds in parentheses. In all
test cases, MSBWT-IS requires less CPU time than ropebwt2 -LR. However, ropebwt2 -LR tend to
beat MSBWT-IS in wall clock time because the implementation is parallelized. However, for the two
datasets with the longest reads, MSBWT-IS requires less than 40% of the CPU time of ropebwt2
-LR and uses less wall clock time despite ropebwt2’s parallelization. ropebwt2 -Lr uses more CPU
time than the others because it is encoding twice as many symbols.

Dataset Average length MSBWT-IS ropebwt2 -LR + sort ropebwt2 -Lr
Mouse transcriptome b38 1707 75.01 (96.47) 132.35 (60.87) 260.06 (102.06)

Human genome b38 7053376 1439.61 (1642.67) 2971.04 (3096.37) 8467.9 (8660.0)
Mouse genome b38 123888075 2059.48 (2206.4) 3023.82 (3128.13) 6817.27 (6965.0)

Table 5.8: Genome dataset performance. This table shows the performance of MSBWT-IS and the
two version of ropebwt2 on genome sized datasets. For each method, the CPU and wall clock time
was measured using /usr/bin/time. The CPU time in seconds is shown for each test with the wall
clock time in seconds in parentheses. In all three test cases, MSBWT-IS requires less CPU time than
both versions of ropebwt2. Additionally, ropebwt2 does not parallelize when there are few strings as
in the genome datasets. As a result, MSBWT-IS requires less wall clock time than ropebwt2 for
both genome datasets.

5.4.4 Genome and transcriptome datasets

The last set of tests were run on genome sized datasets. Specifically, we ran tests on the mouse

transcriptome, mouse genome, and human genome. In contrast to sequencing datasets, these datasets

are expected to have less redundancy and the strings tend to be millions of basepairs long. As

expected, MSBWT-IS outperforms both versions of ropebwt2 in CPU time. Additionally, since there

are few strings in the genome datasets, ropebwt2 does not parallelize the computation. As a result,

MSBWT-IS requires less wall clock time than ropebwt2 for the genome datasets.

5.5 Final notes

MSBWT-IS is an induced sorting based algorithm intended to compute the BWT of a string

collection. The asymptotic run time of the algorithm for a dataset with Ni bases is O(Ni). In our

current implementation, the run time is instead represented recursively as T (Ni) = Ni + ki+1 ∗

log(ki+1) + T (Ni
2 ) because we explicit sort the S* substrings, indicating that the run-time is affected
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by the total number of bases in the dataset and the number of different S* substrings in the dataset.

In our experience, Ni is the driving term of this function. However, our tests show some evidence

that ki+1 (the size of the next alphabet) can affect run-time. For example, the two E. coli datasets

represent two different types of PacBio sequencing. CLR has approximately a 15% error rate, so ki+1

is relatively large. In contrast, CCS has approximately a 1% error rate, so ki+1 is relatively small.

For these small datasets, this difference has a major impact on performance. In our MSBWT-IS

tests, the E. coli CCS dataset required less CPU time than the E. coli CLR dataset despite the fact

that this particular CCS dataset had twice the number of bases as the CLR dataset, indicating that

the ki+1 term is impacting performance.

While MSBWT-IS tends to require less CPU time than ropebwt2, it does not always outperform

it in wall clock time. This is primarily due to a lack of parallelization in the implementation of the

algorithm. Fortunately, many parts of the algorithm can be adapted for parallelization. There are

already C++ implementations of hash maps and sorting algorithms that operate in parallel with

some amount of blocking when necessary. The main issue with parallelization is the calculation of

the BWT while exiting the recursion. While sections of the BWT Bi+1 can be linearly traversed in

parallel, it is not obvious how to pre-calculate offsets for each individual section such that there are

no collisions in the writing of Bi. Additionally, further optimization may be possible by exploring

alternative methods for storing the S* substring collection or making more adaptations to the

Induce(...) subroutine of Okanohara and Sadakane [2009].

MSBWT-IS tends to perform better on long strings than other BWT construction algorithms.

In particular, BCR class implementations such ropebwt2 do not scale well with read length. Paral-

lelization helps to improve their performance in practice, but fails to outperform MSBWT-IS when

the reads become sufficiently long. In addition to working on strings of variable length, MSBWT-IS

is not restricted to any particular type of string. In our test cases, we restricted the algorithm to

an initial genomic alphabet with six symbols, one of which was the end-of-string symbol. However,

adapting the implementation to allow for larger initial alphabets is trivial since the implementation

already has to handle different alphabets at higher levels of recursion. Thus MSBWT-IS is a general

algorithm for constructing BWTs of string collections with any type of alphabet.

71



CHAPTER 6

LONG READ CORRECTION VIA FM-INDEX QUERIES

While there are many sequencing technologies, most sequencing datasets can be categorized as

either a short-read dataset or a long-read dataset. The reads in a short-read dataset (i.e. Illumina)

are usually hundreds of basepairs long, of uniform lengths, and have a relatively low error rate

(1%). In constrast, the reads in a long-read dataset (i.e. PacBio, nanopore) are usually thousands of

basepairs, of variable length, and have a relatively high error rate (15%). Despite the high error

rate, long-read DNA-seq datasets are useful because they provide evidence for contiguous sequence

that spans low complexity or repeat regions of the genome. These repeat regions are too difficult to

assemble through with short reads because the length of the region is usually longer than the length

of the read, leading to ambiguities in the assembly. As a result, many researchers have looked into

correcting the sequencing errors in long reads prior to their use in downstream analysis [Chin et al.,

2013, Au et al., 2012, Koren et al., 2012, Salmela and Rivals, 2014].

In this chapter, we introduce a new method called FM-index Long Read Corrector (FMLRC)

that corrects long reads using the BWT and FM-index of a short-read sequencing dataset as an

implicit de Bruijn graph [Bruijn, 1946]. Since the FM-index can search for substrings of any length,

our method is not constrained to a single fixed k-mer size, so it represents all possible de Bruijn

graphs for the short-read sequencing data up to the read length. Additionally, the BWT is a lossless

encoding of the short reads, allowing any pruning threshold to be dynamically adjusted without

needing to reconstruct an entire de Bruijn graph. Our method is unique in that it applies both a

short k-mer and long K-mer de Bruijn graph to the correction process, allowing for the correction

algorithm to correct through low complexity regions up to the size of the long K-mer.

6.1 Related work

Long read correction algorithms can be broadly classified as self-correcting algorithms or hybrid

correction algorithms. Self-correcting algorithms correct long reads using only the long read

sequencing. Self-correcting algorithms, like HGAP [Chin et al., 2013], align the long reads to



each other and generate a consensus sequence to perform the correction. In order to generate an

accurate consensus, this method requires high-coverage sequencing of the long reads to overcome

the high error rate. Unfortunately, the cost per basepair sequenced is relatively high for long-read

sequencing technologies.

Hybrid correction algorithms instead use short-read sequencing to correct the long reads. The

two main benefits of hybrid correction are that the short-read sequencing has fewer sequencing

errors and the cost per basepair sequenced is lower than long-read sequencing technologies. Some

example hybrid correction algorithms are LSC [Au et al., 2012], PacBioToCA [Koren et al., 2012],

and LoRDEC [Salmela and Rivals, 2014]. Of these three methods, LoRDEC is the most recent,

achieving comparable or better results than LSC and PacBioToCA while using less computational

resources [Salmela and Rivals, 2014].

LoRDEC is a method for correcting long reads individually using a low-error, short-read sequencing

dataset [Salmela and Rivals, 2014]. LoRDEC first generates a de Bruijn graph composed of k-mers

(k length substrings) from the short reads [Salmela and Rivals, 2014]. Then, the graph is pruned

such that any low-frequency k-mers (specified by a user-defined threshold) are removed from the

graph. Long reads are then compared against this graph and broken into regions that are labeled as

either solid or weak. All k-mers from the long read that are within solid regions are contained in the

pruned short-read de Bruijn graph. All k-mers within weak regions are not in the de Bruijn graph.

In general, the assumption of LoRDEC is that weak regions are caused by errors in sequencing and

should be replaced with the closest series of solid, overlapping k-mers from the de Bruijn graph.

When weak inner regions are identified in a long read, the flanking solid k-mers are used as endpoints

for finding a bridge (or path) in the de Bruijn graph to connect the two solid regions. In the event of

multiple supported bridges, the one with the closest edit distance to the original sequence is chosen.

The head and tail of the graph are symmetrical special cases where there is only one flanking solid

region. In either case, LoRDEC searches for the best extension of the single solid region with the

smallest edit distance to the weak head or tail sequence. Since each long read is corrected individually

(no comparison to other long reads is performed), LoRDEC trivially parallelizes by distributing the

reads amongst all available processors.

LoRDEC has been shown to be one of the fastest and most accurate methods for performing

long read correction using a short-read sequencing dataset [Salmela and Rivals, 2014]. However,
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during the de Bruijn graph construction, the user must select a fixed, short k-mer size and a fixed

threshold for pruning. These options are often chosen heuristically and changing them requires

re-computing the entire de Bruijn graph prior to re-running the correction algorithm. Additionally,

when k-mers are relatively short, fixed-size de Bruijn graph methods often fail to correct regions of

low complexity or repeated sequence that are longer than k basepairs. In the de Bruijn graph, low

complexity sequences tend to look like “hairballs" of interconnected nodes where there are too many

possible paths to explore. When LoRDEC enters a low complexity region, it will usually fail to find

a path because it reaches a self-imposed limit on the graph exploration [Salmela and Rivals, 2014].

FMRC is a method for self-correcting short-read datasets using the BWT and FM-index [Green-

stein et al., 2015]. First, FMRC builds the BWT and FM-index of the short-read dataset. Then, it

corrects each short-read individually and in parallel. The k-mer frequency for each k-mer in the read

is counted using the FM-index. If a low-frequency, “untrusted" k-mer is discovered, it greedily looks

for an alternate “trusted" k-mer [Greenstein et al., 2015]. If an alternate k-mer is found, it replaces

it in the read and re-calculates the k-mer frequencies. This is done repeatedly until all k-mers are

considered “trusted" or until no more changes can be made. While this method works fairly well for

short reads, the greedy approach does not scale well to long reads because of the repeated k-mer

frequency recalculation and the increased error rate in the reads (there are more k-mers to modify).

FMRC does allow for the k-mer size to be adjusted by the user without needing to recalculate the

BWT and FM-index, but it uses a fixed, user-defined threshold for marking k-mers as “trusted".

6.2 Approach

The FM-index Long Read Corrector (FMLRC) is a hybrid correction method that uses the BWT

and FM-index of a short-read sequencing dataset to correct a long-read sequencing dataset. FMLRC

can be broken down into a two-pass algorithm. The first pass traverses an implicit k-mer de Bruijn

graph constructed from the short reads and corrects the long reads using that graph. The second

pass is computationally identical to the first pass, but it uses a longer K-mer de Bruijn graph for its

correction method.

Prior to either pass, FMLRC builds a BWT and FM-index of the short reads to be used as an

implicit de Bruijn graph [Bruijn, 1946]. Note that these data structures are used in both passes of

the algorithm because they are not fixed to a particular k-mer length or threshold. Each long read

is individually broken into solid and weak regions. Solid regions are composed of k-mers supported
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by the implicit de Bruijn graph at a threshold and weak regions are not supported at that threshold.

Given two solid regions with a single weak region in between, the algorithm searches for solid bridges

in the de Bruijn graph that connect the solid regions and span the weak regions. If no bridges are

found, no change is made to the long read. If one or more bridges are found, they are aligned to the

original weak region, and the one with the smallest edit distance is chosen to replace it. Weak regions

at the beginning or end of the long read are treated similarly, but with a single-ended assembly

as opposed to a bridging method. This first pass at correction is almost identical to the method

described by LoRDEC [Salmela and Rivals, 2014]. In our results, we demonstrate the performance

using our short k-mer pass and using LoRDEC as a pre-process instead.

The key difference in FMLRC is a second pass over each long read using a longer K-mer. The

main reason FMLRC can use a long K-mer is because the BWT and FM-index implicitly represents

all de Bruijn graphs for the short-read sequencing dataset. The identification of solid and weak

regions is repeated as before, but with the long K and a different pruning threshold. Finally, weak

regions are replaced with solid bridges or paths from the K-mer de Bruijn graph.

6.3 Correction of long read sequences using BWTs

The key difference in FMLRC is that the correction is performed using both a short k-mer

and a long K-mer. Our method assumes that a BWT and FM-index of the short reads has been

constructed. Since a BWT and FM-index is not restricted to any particular k-mer length, it acts as

an implicit un-pruned de Bruijn graph for both k and K such that the frequency of any k-mer or

K-mer in the dataset can be looked up in respectively O(k) or O(K) steps (see Section 2.3.2).

For our method, the two passes are programmatically identical with the value of k or K passed

in as a parameter. For brevity, we describe the FMLRC correction using parameter k noting that

replacing k with K describes the second pass of our method. Additionally, all thresholds and

parameters are described as functions of k and the implicit k-mer de Bruijn graph.

6.3.1 The BWT and implicit De Bruijn graph

As described in Section 2.4.2, the BWT and FM-index can be used to implicitly represent all

de Bruijn graphs for a string collection. When a node in any of the graphs is accessed, it performs

a k-mer search in O(k) steps using the getRange(...) function of Section 2.3.2. This informs

FMLRC of the k-mer frequency in the dataset. FMLRC then compares the k-mer frequency to a

threshold and classifies as weak if it is below the threshold and strong if it is above the threshold.
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In this regard, the BWT and FM-index are advantageous data structures because values such as

k-mer size and the threshold distinguishing solid and weak can be dynamically adjusted before or

during the correction process without needing to explicitly recompute the full de Bruijn graph. Our

method constructs the BWT once for short read sequencing data and uses the property of the BWT

de Bruijn graph to allow for any value of k, K, or the pruning threshold t.

6.3.2 Identification of weak regions

Given a long read and a BWT of the short reads, the first step is to identify weak regions of the

long read. To do this, our method uses a hybrid threshold that is a function of k-mer length and

k-mer frequency in surrounding solid k-mers. First, the method retrieves k-mer counts for every

k-mer in the long read. For most long reads, the majority of k-mer counts are at or near zero due

to the high error rate from the sequencing technology. Second, every k-mer with a count that is

less than a user-defined, absolute minimum threshold, T , is removed from the list of counts. Next,

the median, m, of the remaining counts (that are all ≥ T ) is calculated. A second user-defined

parameter, F , is the fraction of the median m that is required for a path to be consider solid. Finally,

the solid threshold t for a particular read is calculated as t = max(T, F ∗m). In other words, the

method calculates a dynamic threshold based on k-mer counts from that particular read. However,

if that dynamic threshold is below an absolute, user-defined minimum, the absolute minimum is

used as the threshold instead. For low-coverage short-read datasets, it is often the case that t = T

because F ∗m < T . For high-coverage short-read datasets, this dynamic threshold alleviates the

need to select a fixed threshold beforehand, and it instead uses counts from the implicit de Bruijn

graph to derive an expected count for k-mers in the read. Given the read-specific threshold t, weak

regions are identified as contiguous weak k-mers (the frequency of each k-mer is < t). Similarly,

solid regions are contiguous solid k-mers (the frequency of each k-mer is ≥ t).

6.3.3 Correction of weak regions

Weak regions can be flanked by zero, one, or two solid regions. If a weak region has no flanking

solid regions, the entire read is one large weak region with no solid k-mers to initialize a traversal of

the de Bruijn graph. As a result, these reads are simply written to the output with no changes.

If a weak region has one flanking solid region, then it is either the head or tail weak region for

the read. In either case, the solid k-mer closest to the weak region is used as the initializer k-mer

for traversing the de Bruijn graph. The de Bruijn graph is explored from this start k-mer using
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a depth-first traversal and an expected path length based on the distance to the end of the read.

Additionally, our method enforces a limit on the amount of branching that is allowed to reduce

computation time. This branch limit is usually only reached if the algorithm is traversing a complex

section of the de Bruijn graph where many interconnected nodes lead to an exponential number of

graph traversals. If no paths are found or the branch limit is reached, then no change is made to

the read. If one or more paths are found, then they are each aligned to the original weak head/tail

region and the one with the smallest edit distance replaces the original.

Finally, the most common case is a weak region flanked by two solid regions. In this case, an

initial starting k-mer is selected from the first solid region and a target k-mer is selected from the

second. The de Bruijn graph is explored in a depth-first traversal from the starting k-mer. Thus,

the algorithm attempts to find a path in the de Bruijn graph that bridges the two solid regions and

spans the weak region. Each bridge is extended so long as it is shorter than an expected length

that is estimated from the distance between the two solid k-mers in the long read. Whenever a

bridge is found that ends with the target k-mer, it is added to a list of discovered bridges. Similar to

the head and tail traversal, the bridge traversals also have a branch limit to reduce the amount of

computation. If no bridges are found or the branch limit is reached, then no change is made to the

weak region. If one or more bridges are found, they are each aligned to the original weak region and

the one with the smallest edit distance is used to replace the original.

6.3.4 Differences in the short and long passes

FMLRC is a two pass algorithm using first a short k-mer followed by a second longer K-mer. In

general, the short k-mer pass does the majority of the correction for the method. While the k-mers

are described as “short", they are still long enough to uniquely identify most regions of the genome.

If a region can be uniquely identified using short k-mers, then correction is often a relatively easy

process and a longer K-mer is not required. This is why many other k-mer based methods are able

to correct the majority of errors in long reads.

In our method, the short k-mer pass is similar to other previously described methods, specifically

LoRDEC [Salmela and Rivals, 2014]. The main differences are that we dynamically choose the

pruning threshold t and the branch limit based on k/K. Additionally, there are some cases where

we use different starting and target k-mers in the de Bruijn graph traversal. One disadvantage of

the previously described methods is that they are restricted to a single k value associated with their
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de Bruijn graph. Additionally, some de Bruijn graphs are limited to short k-mers because of the

underlying implementation. However, these other correction methods can be used in place of the

first k-mer based pass of the algorithm. Thus, the full pipeline could be described as a short k-mer

correction method (such as LoRDEC) followed by our long K-mer correction pass. In our results, we

test FMLRC as both a two-pass method and as a one-pass long K-mer method following a different

short k-mer correction method.

To the best of our knowledge, the long K-mer pass is unique to our method. To provide

some intuition behind why it improves the results, we focus on the differences in de Bruijn graphs

representing the same data but with two distinct k-mer lengths. In general, two distinct paths will

be merged in a k-mer de Bruijn graph if they share a pattern that is at least k long. This is because

the nodes along that shared region will be identical. At the ends of the shared region, there will

be two paths emerging representing the differences at the edge of the shared regions. For example,

Figure 6.1 shows an example de Bruijn graph using short 3-mers to represent two strings.

When the same sequences are viewed through a longer K-mer de Bruijn graph, the number of

merged, ambiguous paths strictly decreases because an increasing amount of similarity is required

for the paths to become merged in the graph. To demonstrate this idea, Figure 6.2 shows the 5-mer

de Bruijn graph for the same two strings from Figure 6.1. Note that while traversal of the graph

for 3-mers was relatively difficult due to branching and cycles, the 5-mer graph is easily traversed

because it is two disjoint linear paths. In practice, the short k-mer is still long enough to uniquely

identify most areas of the genome. However, genomic characteristics such as low-complexity sequence,

gene families, or repeat regions are difficult to traverse using short k-mers. Thus, our method uses

the larger K-mer to bridge weak regions composed of repeated or low-complexity sequences that are

too difficult to traverse using a small k-mer.

Since our method uses two passes with different sizes of k and K, it allows for less branching

when k is small and more branching when K is large. As we just described, a small k-mer de Bruijn

graph will have more branches and may require more computation to do a full depth-first traversal

in repeat regions. To avoid this, we place more restrictions on the short k-mer graph traversals

such that it primarily fixes the “easy" errors caused by sequencing. As a result, the “harder" graph

traversals are pushed off to the long K-mer de Bruijn graph. The longer K-mer de Bruijn graph is

less likely to have many branches and more likely to have a single pass connecting a start and target
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Figure 6.1: Example k-mer graph. This figure shows the 3-mer de Bruijn graph for two strings:
“CAGACTGCAG" and “CAGTCTGAAG". Every 3-mer from the two strings is a node in the graph.
An edge indicates that the 2-mer suffix of the source 3-mer is the same as the 2-mer prefix of the
destination 3-mer. In this graph, the two distinct strings are not obvious because the k-mer is
relatively small. The graph contains many cycles, and the start and end k-mers for each string are
obfuscated because of the structure. Algorithms that traverse this graph would need to explore every
path in hopes of finding a bridge connecting two specific k-mers. This can lead to long computations
or failure to find bridges if a branching limit is imposed on the traversal method.
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Figure 6.2: Example K-mer graph. This figure shows the 5-mer de Bruijn graph for two strings:
“CAGACTGCAG" and “CAGTCTGAAG". Every 5-mer from the two strings is a node in the graph.
An edge indicates that the 4-mer suffix of the source 5-mer is the same as the 4-mer prefix of the
destination 5-mer. In contrast to the 3-mer graph of Figure 6.1, the two distinct paths in this 5-mer
graph are obvious because there are no shared 5-mers between the two strings. Algorithms that
traverse this graph would find connecting K-mers to be a comparatively simple operation because
there is no branching or cycles in the graph.
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K-mer. In order to enable this approach, our method calculates a branch limit that scales linearly

with the selected k/K value for the pass.

6.4 Results

6.4.1 Correction and alignment tools

For all test cases, we used FMLRC v0.1.2 which is a publicly available C++ program1. The

implementation assumes that a BWT of the short-read dataset is constructed as a pre-process, and

that it is in the run-length encoded format of the msbwt package2 (see Appendix A). FMLRC includes

two FM-index implementations. The default FM-index implementation is a highly sampled FM-index

that enables fast k-mer lookups at the cost of a larger memory footprint. The second FM-index

implementation is a traditional sampled FM-index that allows users to set the sampling rate, leading

to longer computations with a smaller memory footprint. The two FM-index implementations

produce identical corrected read results.

We compare FMLRC to the LoRDEC v0.6 hybrid correction method [Salmela and Rivals, 2014]

first described in Section 6.1. Recall that this method corrects reads using a short k-mer, pruned

de Bruijn graph. For all tests, we ran LoRDEC with the options -k 21 -s 5 indicating a k-mer of

length 21 and that any k-mer with frequency less than 5 is pruned from the de Bruijn graph. We

also compared to a combined approach where LoRDEC is used for the short k-mer correction and

FMLRC is used for the long K-mer correction.

After running each correction method, we aligned the resulting FASTA file to the corresponding

reference genome for the organism using BLASR v2.0.0 [Chaisson and Tesler, 2012]. For BLASR, the

only extra parameter we used was -hitPolicy randombest to force the alignment to keep only the

best mapping for each read. Note that BLASR will also split reads into multiple subreads if it detects

multiple subreads that best align to different genomic locations. All corrections and alignments were

executed on the Killdevil computing cluster located at University of North Carolina at Chapel Hill.

1https://github.com/holtjma/fmlrc
2https://github.com/holtjma/msbwt
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Dataset Illumina PacBio
Average Length Median Length Total Bases Average Length Median Length Total Bases

E. coli k12 100 100 2842864800 5279 4578 436994771
P. falciparum 3d7 135 135 10549043505 2596 2262 630045976
S. cerevisiae W303 300 300 15113671800 6030 5112 1307390784
D. melanogaster 75 75 5204863650 9310 8005 15744118797
A. thaliana P5C3 213 150 11034657110 3068 1528 11529818309

Table 6.1: Data summary. Summary of the data used for the experiments in this chapter.

6.4.2 Data description

We tested the correction algorithms on five publicly available PacBio datasets. The PacBio

datasets were downloaded for one E. coli K12 MG1655 datasets3, one P. falciparum 3d7 dataset4, one

S. cerevisiae dataset5, one A. thaliana P5C3 dataset6, and one D. melanogaster dataset7. For each

dataset, we also downloaded a publicly available short-read sequencing dataset (many from GenBank

[Benson et al., 2008]): a publicly available dataset8 for E. coli, SRR1503358 for P. falciparum, a

publicly available dataset9 for S. cerevisiae, SRR1652473 for A. thaliana, and SRR1104304 for D.

melanogaster. Note that the short-read sequencing datasets are from the same strain as its long-read

sequencing dataset, but they are not necessarily from the same sample. However, this does not

impact the results since we only compared hybrid correction methods.

6.4.3 FMLRC parameter selection

FMLRC allows for four main parameters to be defined by the user. The first two are the T and

F parameters described in Section 6.3.2. T is the absolute minimum frequency required for a k-mer

to be considered solid in the de Bruijn graph. F is the fraction of the median counts required for a

k-mer to be considered solid in the de Bruijn graph. For all test cases, we heuristically chose T = 5

and F = .10.

The second two parameters are the choice of k and K for the short and long correction passes. If

a k size is too long, it will be difficult to find due to the increased likelihood of an error in the k-mer,

but if it is too short, the k-mer may occur in multiple contexts and lead to complex graph traversals.

3https://github.com/PacificBiosciences/DevNet/wiki/E-coli-K12-MG1655-Resequencing
4https://figshare.com/articles/Plasmodium_3D7_Genome_Assembly_With_PacBio_Data_and_CLEAR_/712587
5https://github.com/PacificBiosciences/DevNet/wiki/Saccharomyces-cerevisiae-W303-Assembly-Contigs
6https://github.com/PacificBiosciences/DevNet/wiki/Arabidopsis-P5C3
7https://github.com/PacificBiosciences/DevNet/wiki/Drosophila-sequence-and-assembly
8http://spades.bioinf.spbau.ru/spades_test_datasets/ecoli_mc/
9http://labshare.cshl.edu/shares/schatzlab/www-data/nanocorr/2015.07.07
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Matching Bases
K

k – 49 59 69 79 89
17 357689915 364261034 365911374 366756300 366397703 364348529
19 360879691 371679728 372242631 372053470 371238554 369385323
21 364324790 373222105 373389445 373122774 372396464 370679046
23 365894380 373163803 373345702 373138050 372519218 371088777
25 366929792 373126530 373247984 373037934 372565125 371123308

Edit Distance
K

k – 49 59 69 79 89
17 16988141 7368593 6323839 5722348 5509356 6120257
19 8012854 4341121 4145344 4071010 4091550 4446711
21 6341729 3685543 3596552 3577941 3626889 3952585
23 5940344 3523463 3439920 3443619 3536317 3886421
25 5977754 3532665 3455707 3490784 3629262 4041437

Percent Matching
K

k – 49 59 69 79 89
17 96.2561% 98.3792% 98.5830% 98.7011% 98.7337% 98.5771%
19 98.1107% 99.0143% 99.0575% 99.0710% 99.0633% 98.9746%
21 98.5083% 99.1579% 99.1812% 99.1854% 99.1742% 99.0935%
23 98.6225% 99.1967% 99.2180% 99.2169% 99.1959% 99.1129%
25 98.6340% 99.1991% 99.2193% 99.2109% 99.1798% 99.0845%

Table 6.2: Choosing k and K. This table shows the result of running FMLRC using many different
values for k and K for an E. coli dataset. The test cases with K = − indicate that no second pass
of correction using the long K-mer was performed, so those test cases use a single pass short k-mer
only. After correcting the reads, we aligned the results using BLASR and gathered statistics on
the alignments. Matching bases indicates the number of matching bases across all mappings. Edit
distance indicates the total number of mismatches, insertions, and deletions across all mappings.
Percent matching is calculated as the total number of matching bases divided by the total number of
bases that aligned. For each statistic, the best result is bolded in the above table. To summarize, a
K = 59 is the column containing the test cases with the largest matching bases, lowest edit distance,
and highest percent matching. Additionally, all tested values of K for a long K-mer pass improves
the results over a single k-mer pass.

To gain some insight into what values of k and K are optimal, we ran multiple tests using the E. coli

K12 MG1655 dataset. We allowed k = [17, 19, 21, 23, 25] and K = [−, 49, 59, 69, 79, 89], leading to a

total of 30 test cases. The test cases with K = − indicate that no second K-mer pass was performed

(it is only using a one-pass, short k-mer for correction). For each test case, we ran FMLRC, aligned

the corrected reads to the reference genome, and then gathered statistics on the resulting alignment.

We counted the the total number of bases that matched the reference genome and the total edit

distance of the mappings. We also calculated the percentage of bases that matched the reference

genome by taking the total number of matching bases and dividing by the total number of bases in

the corrected reads. The results of this experiment are shown in Table 6.2.

For each statistic measured, the best result used K = 59, but three different values for k. In
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all of our tests, performing a second pass with the long K-mer always improved all three statistics.

Additionally, these results show that using a K-mer that is too large can have a negative impact on

the performance of the correction. If the size of the K-mer relative to the read is too large, then

the number of nodes in the de Bruijn graph will be reduced leading to difficulties during graph

traversal. In our tests, while K = 59 is usually the best, K = 49 or K = 69 generally have similar

performances. In contrast, the difference in edit distance from 69 to 79 and from 79 to 89 is more

dramatic, indicating that there may be too few 79-mers and 89-mers with enough coverage to correct

the reads. It is worth noting that the “best" k and K is likely data-dependent because differences in

coverage, sequencing quality, and sequencing content will impact the ability of FMLRC to find solid

k-mers and perform corrections.

6.4.4 Alignment-based results

For each dataset, we selected k and K based on the length and coverage of reads in the short-read

sequencing datasets. For all test cases, we used k = 21 for both LoRDEC and FMLRC. For K,

we used 59 for the three organisms with smaller genomes (< 25 million basepairs) and 69 for the

two datasets with larger genomes (> 100 million basepairs). We tested LoRDEC(k), LoRDEC(k)

combined with FMLRC(K), and FMLRC(k, K) correction methods. For each corrected read

collection, we aligned the reads using BLASR [Chaisson and Tesler, 2012] to the corresponding

reference genome for the organism. We also aligned the uncorrected sequence data to the reference

genome for comparison. Finally, we gathered the following statistics on each alignment: number of

bases that match the reference, edit distance of the read mappings to the reference genome, and the

percentage of matching bases out of the total number of aligned bases. A summary of the results is

shown in Table 6.3.

In all test cases, either LoRDEC(k)+FMLRC(K) or FMLRC(k, K) had the lowest edit dis-

tance and highest percent matching. With the exception of the D. melanogaster test cases,

LoRDEC(k)+FMLRC(K) or FMLRC(k, K) also had the most matching bases. With the exception

of D. melanogaster, the second pass of FMLRC(K) strictly improved the results of LoRDEC(k)

by increasing the number of matching bases, decreasing the edit distance of aligned subreads, and

increasing the percent matching. This suggests that performing the second large K-mer pass is

improving the results.
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Dataset Method (k) Matching Bases Edit Distance Percent Matching

E. coli k12

Uncorrected 336443541 54379832 89.54
LoRDEC (21) 345874813 11273571 97.16

LoRDEC (21) + FMLRC (59) 370965658 3947279 99.07
FMLRC(21, 59) 373389445 3596552 99.18

P. falciparum 3d7

Uncorrected 52606809 13240402 82.05
LoRDEC (21) 54026517 11107774 84.89

LoRDEC (21) + FMLRC (59) 68239267 8203978 90.64
FMLRC(21, 59) 72308728 8582093 90.87

S. cerevisiae W303

Uncorrected 1036918138 166258621 89.93
LoRDEC (21) 1093308817 48999753 96.55

LoRDEC (21) + FMLRC (59) 1123474843 24007596 98.35
FMLRC(21, 59) 1121693505 22675840 98.56

D. melanogaster

Uncorrected 12634631139 1954342890 90.06
LoRDEC (21) 13129572976 777750172 95.86

LoRDEC (21) + FMLRC (59) 13055410406 755524218 95.98
FMLRC(21, 59) 12877419670 963162596 95.04

A. thaliana P5C3

Uncorrected 15365943113 17587675791 87.37
LoRDEC (21) 16446004357 1856138182 92.44

LoRDEC (21) + FMLRC (59) 16943619873 1646252130 93.50
FMLRC(21, 59) 17187480187 1816781841 93.09

Table 6.3: Long read correction results. This table shows the alignment statistics for the long read
correction methods. We gathered statistics on the uncorrected reads, reads corrected using only
LoRDEC, reads corrected using a combination of LoRDEC and FMLRC, and reads corrected using
only FMLRC. For each set of reads, we aligned the results using BLASR to the corresponding
reference genome for the dataset. For each alignment, we counted the total number of mapped bases
that match the reference genome, the total edit distance of all mapped reads, and the percentage of
matching bases out of the total number of mapped bases. In all test cases, either LoRDEC+FMLRC
or FMLRC had the lowest edit distance and highest percent matching. Additionally, with the
exception of the D. melanogaster tests, LoRDEC+FMLRC or FMLRC had the most matching bases
as well.
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6.4.5 Performance

We selected the three smallest datasets for performance tests on a single machine. These tests

were run on a machine running Ubuntu 14.04 with 32 GB memory and an Intel Xeon E5-2620 6-core

2.00 GHz processor. The machine is connected to a 1 TB HDD for reading and writing any necessary

input or output files. For measuring performance, we used the built-in /usr/bin/time function

to extract real time, user time, memory usage, and CPU utilization. Each correction method was

allowed eight processes for computing the results.

We collected real time, CPU time, and maximum memory consumption for LoRDEC(k),

FMLRC(K), FMLRC(k, K), and FMLRC-mem(k, K). FMLRC(K) is a single pass using only a

long K-mer that is run on the result of LoRDEC(k). FMLRC(k, K) is the default implementation

of the two-pass algorithm described in this chapter. FMLRC-mem(k, K) is a second implementation

of FMLRC that is designed to have a smaller memory footprint than the default FMLRC, but at

the cost of longer run-time. Note that FMLRC and FMLRC-mem produce identical results. For

FMLRC-mem, we used extra parameters fmlrc -i -F 8 to enable the alternate indexing scheme.

The results of these tests are shown in Table 6.4.

In all test cases, FMLRC(k, K) requires much less CPU time than LoRDEC(k) but much more

memory. FMLRC-mem(k, K) requires more CPU than either FMLRC(k, K) or LoRDEC(K), but

also has a much smaller memory footprint than FMLRC(k, K). FMLRC(K) requires less wall clock

and CPU time than any other test case because it is only executing a single K-mer correction pass.

Note that the maximum memory usage of FMLRC(k, K) and FMLRC(K) are essentially identical

because the vast majority of the memory is used for storing the short-read BWT and FM-index

structures and those structures do not change with the size of k or K.

6.5 Final notes

In this chapter, we introduced FMLRC, a long read correction method that uses the BWT and

FM-index as an implicit de Bruijn graph. The method uses two passes to perform the correction:

one with a relatively short k-mer and one with a longer K-mer. In each pass, the method searches

for weak, unsupported regions in the reads and uses the implicit de Bruijn graph to identify alternate

solid paths to correct the reads. We compared the results of FMLRC to a similar algorithm LoRDEC

for a variety of PacBio datasets. Additionally, we tested the combination of LoRDEC for the

short k-mer and FMLRC for the long K-mer pass to see how FMLRC improves the results of

86



Dataset Method (k) Real time (h:mm:ss) CPU time (seconds) Max Memory (GB)

E. coli k12

LoRDEC (21) 1:10:41 32169.27 1.250
FMLRC(59) 10:40 4996.62 3.851

FMLRC(21, 59) 32:58 15685.06 3.851
FMLRC-mem(21, 59) 5:04:07 145666.26 1.046

P. falciparum 3d7

LoRDEC (21) 1:29:09 38706.87 2.288
FMLRC(59) 29:51 13972.41 13.412

FMLRC(21, 59) 1:22:39 39300.30 13.412
FMLRC-mem(21, 59) 7:08:23 205122.77 2.768

S. cerevisiae W303

LoRDEC (21) 5:58:32 162536.71 2.442
FMLRC(59) 2:36:31 74303.81 19.874

FMLRC(21, 59) 3:27:08 98394.55 19.593
FMLRC-mem(21, 59) 26:02:58 748559.43 4.698

Table 6.4: Long read correction performance. This table shows the real time, CPU time, and
maximum memory usage of the correction methods on three datasets that were run on a single
machine and measured using /usr/bin/time. Each method was allowed eight processes for correction.
LoRDEC was run once using a single k-mer. FMLRC was run once using a single long K-mer.
FMLRC was run twice using a short k-mer and a long K-mer, but with different underlying FM-index
implementations. The default implementation is designed to use less CPU time at the cost of a
higher memory footprint. The second implementation is labeled with “FMLRC-mem" because it is
designed to use less memory at the cost of longer run-times. FMLRC requires less CPU usage than
LoRDEC but much more memory. FMLRC-mem tends to require more CPU than either FMLRC or
LoRDEC, but also has a much lower memory footprint when compared to FMLRC.

LoRDEC. In all test cases, we showed that using a long K-mer pass improved the results of LoRDEC.

Additionally, there were some test cases where FMLRC(k, K) outperformed the combination of

LoRDEC(k)+FMLRC(K).

We introduced two different implementations of FMRLC that use different underlying indexing

structures. The default implementation requires far less CPU and wall clock time than LoRDEC at

the cost of a larger memory footprint. The second implementation is slower but requires less memory.

One area for future research is changing the indexing structure of FMLRC either by improving the

existing implementations or using an entirely new indexing structure that may be faster and/or more

memory efficient. Additionally, there is some evidence that the short k-mer pass of FMLRC does

not correct as well as LoRDEC. This is likely caused by our use of a simpler, less comprehensive

bridging algorithm. Future work will seek to enhance the performance of this bridging algorithm to

improve the result.

Another area of future work is to further explore the choice of k and K in FMLRC. In our results,

we chose the values for k and K heuristically based on tests run on a single dataset. However, the

optimal k and K for a particular dataset likely depends on several data-dependent factors such

as genome size, coverage of the short-read sequencing, and error rate of both short and long-read
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sequencing datasets. Additionally, the optimal k and K may vary from read to read within a single

dataset due to genomic events like duplicated sequence. In such cases, a dynamically chosen k or K

value may lead to better results than selecting two static values.
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CHAPTER 7

BWT-BASED WEB TOOLS

In Chapter 4 and 5, we described algorithms that efficiently construct BWTs for short and long

read sequencing datasets. The BWT data structure stores the sequencing data in a compressed

format, and the FM-index enables fast k-mer searches into a BWT. For genomic data, this means

there are methods to calculate k-mer frequencies and extract specific reads from the BWT. Despite

the utility of the BWT, there are few interfaces for accessing the stored information. Most of the

BWT-based tools available require extensive knowledge of BWTs through an API or are command

line tools that provide limited and specific functionality. In either case, the results are usually

difficult to interpret without additional processing. Additionally, we are unaware of any visualization

tools that retrieve individual raw sequence data from the BWT.

In this chapter, we discuss several web tools that bridge this gap through web-based visualizations.

The primary purpose of these tools is to provide access to and search in the raw sequence data in

order to identify and highlight biologically significant patterns. The tools hide the details of BWTs

and FM-index based queries while still enabling the users to access and explore the data in a way

that other sequence analysis approaches (such as alignment) do not allow.

7.1 Related work

There are many online and offline tools specifically for visualizing sequencing data. Many of

these tools are require the data to be pre-processed prior to visualization. Tools like the Integrative

Genomic Viewer (IGV) [Thorvaldsdóttir et al., 2013] or Savant [Fiume et al., 2010] visualize reads

that have been aligned to a reference sequence. Once aligned, the user can navigate to regions of the

alignment to see read mappings, pileup counts (the number of reads that mapped to a particular

location), sequencing errors/genomic variants, etc. As a result, these tools help highlight features of

the alignment that are not easily noticed through the SAM alignment format.

Tablet [Milne et al., 2010] offers similar navigational visualization, but for sequence assembly

formats instead of alignments. The tool visualizes the assembly by displaying the reads against the



assembled contigs. Note that this is conceptually similar to displaying the aligned reads against a

reference genome.

For both the alignment and assembly based methods, the data is indexed into a new format such

that any accesses are performed by knowing the location in the new format (i.e. chromosome and

position in an alignment). As a result, any data that did not get indexed (i.e. did not align) is simply

not included in the visualization. Depending on the accuracy of the pre-processing method, this can

lead to large amounts of data that are simply lost to the user. Additionally, genomic variants that

exist in the data but not in the reference genome can be more difficult to align. In the presence of

multiple alleles, the allele included in the reference will be easier to align, and alleles not included in

the reference will be biased against due to the difficulty of aligning it.

While not a sequencing dataset visualizer, BLAT [Kent, 2002] is worth mentioning because

of its sequence-centric approach to visualizing a sequence alignment. The actual BLAT tool was

created for alignment, but there is a web tool associated with BLAT for querying long sequences in

a reference genome. The tool returns a list of candidate alignment locations that allow for some

error in the alignment. Once a candidate is selected, the tool will then visualize the alignment along

with some auxiliary information for the user. While BLAT does not visualize sequencing data like

IGV or Tablet, it does provide a fast, sequence-centric approach for searching one or more reference

genomes.

7.2 Approach

The BWT web tools described in this chapter take a sequence-centric approach to accessing the

sequencing data. The BWTs and FM-indices of sequencing datasets are pre-computed and stored

on a web server. Since the data is stored as a BWT, there is no loss of sequenced reads like in

alignment-based approachs. Instead, any biases come from the selection of the query sequence used

during a lookup with the FM-index.

When a user requests information from a web tool, the request is sent to the server. Even when

compressed, the BWTs can be very large on the server’s local disk. To return results quickly, it

memory maps the BWT and FM-index such that only pages necessary for the query are loaded into

memory. Once the query has been processed, the server returns any relevant information the client

needs to display the results. The information is then visualized using a combination of HTML for

static interfaces and Javascript for dynamic interfaces.
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There are four classes of tool discussed below. The first class retrieves all reads with a specific

k-mer and then displays that data on screen. The second class searches for batches of k-mers and

primarily retrieves k-mer frequency information. The third class incorporates annotated reference

genome information to generate k-mer pileups for specific genes or sections of the reference genome.

The fourth class visualizes the data as a collapsed de Bruijn graph, enabling users to perform

targeted, user-guided assemblies.

7.3 Data description

Throughout this chapter, we will make reference to many mouse sequencing datasets generated

by other studies. Each set of raw sequence data was used to generate a BWT and FM-index to

be accessed by the web tools. Mice are diploid organisms, meaning they have two copies of each

chromosome. Many of these datasets are inbred mice, meaning that the two copies are nearly

identical. Because they are inbred, we generally expect only one version of each allele (genetic

variation such as a single nucleotide polymorphism, insertion, or deletion) to occur within each

dataset. Some of the sequencing datasets are of F1 hybrid mice resulting from a cross between two

inbred mice. As a result, we expect to see two different alleles for these mice in areas where the

the two parental inbreds differ from each other. For this chapter, we primarily use mouse DNA-seq

datasets from Keane et al. [2011] and mouse RNA-seq datasets from Crowley et al. [2015].

7.4 k-mer based query tools

The BWT and FM-index allow for arbitrary length k-mers to be queried in O(k) steps. Addi-

tionally, a string can be retrieved from the BWT in O(L) steps where L is the length of the read

being retrieved. The first two web tools are based on using these two functions to search for a user

provided k-mer and then retrieve all reads containing that k-mer.

With either k-mer tool, the user selects one or more datasets and provides the k-mer to search

for. The server then opens the BWT for each dataset and performs the k-mer search. This returns a

range of indices in the BWT that can then be used to retrieve each read containing the particular

k-mer. Once all of the reads for a dataset are extracted, they are then sent back to the client for

visualization.

The first tool simply displays the results of the k-mer query for the user. In Figure 7.1, an example

query on an inbred mouse DNA-seq dataset is shown. Each retrieved read is shown as a row in the
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Figure 7.1: K-mer lookup tool. This is a visualization of all reads with a particular k-mer in an
inbred mouse DNA-seq dataset. Every read is shown as a row with the exact matching k-mer shown
in either red or blue. A red k-mer indicates that the k-mer was found exactly on a read. A blue
k-mer indicates that the reverse complement sequence of the k-mer was found exactly on the read,
so the entire read was reverse-complemented prior to displaying it. The reads are aligned such
that the shared exact matching k-mers are in the same position horizontally. At the bottom is a
bold sequence with the shared k-mer in green that represents the consensus sequence of all the
reads. A base in this consensus is chosen programmatically by selecting the base with the highest
frequency in the column. Any bases that do not match the consensus are highlighted in yellow. In
this way, random errors show up as sporadic highlighted bases. In contrast, heterozygosity shows up
as consistent highlighted bases in a column.

visualization. These reads have been horizontally shifted such that the shared k-mer from every read

is aligned. If the k-mer is red, it indicates that the read contained the k-mer exactly on the forward

version of read. If the k-mer is blue, it indicates that the read contained the reverse-complement

k-mer, so the entire read was reverse-complemented for visualization. At the bottom of the display

is a bolded sequence representing the consensus sequence of all retrieved reads. The consensus

is generated by selecting the most prevalent base at each position. Bases from individual reads

that do not match the consensus sequence are highlighted in yellow for easier identification by the

user. Using this approach, random sequencing errors appears as sporadic highlighted bases whereas

homologous sequences appear as consistent highlighted bases in a column in which consensus and

alternate states are typically found at similar frequencies. Finally, the interface allows the user to

select any contiguous sequence present in the results and then perform the query on that new k-mer.

The second tool is an adaptation of the first modified to aid in identifying the different sequence

versions or alleles sharing a k-mer query. Figure 7.2 shows a single k-mer query where there is

evidence of multiple alleles in the bases both before and after the query. This suggests that the

chosen query is part of two distinct sequences that both occur within the inbred organism.
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Figure 7.2: K-mer lookup tool with multiple alleles. This is a visualization of all reads with a
particular k-mer in an inbred mouse DNA-seq dataset. Every read is shown as a row with the exact
matching k-mer shown in either red or blue. A red k-mer indicates that the k-mer was found exactly
on a read. A blue k-mer indicates that the reverse complement sequence of the k-mer was found
exactly on the read, so the entire read was reverse-complemented prior to displaying it. The reads
are aligned such that the shared exact matching k-mers are in the same position horizontally. At the
bottom is a bold sequence with the shared k-mer in green that represents the consensus sequence of
all the reads. A base in this consensus is chosen programmatically by selecting the base with the
highest frequency in the column. Any bases that do not match the consensus are highlighted in
yellow. In this way, random errors show up as sporadic highlighted bases. In contrast, heterozygosity
shows up as consistent highlighted bases in a column. In this example, there are many consistently
highlighted bases in several reads near the bottom of the visualization, suggesting that this k-mer
occurs in two distinct sequences from the inbred organism.
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Figure 7.3 demonstrates the output of the allele-finding tool on the same dataset and k-mer query

from Figure 7.2. After retrieving the reads, pairs of reads are scored against each other based on

sequence overlap and number of matching bases. The closest pairs are then repeatedly merged into

larger clusters such that all reads in a cluster exactly match their consensus. In other words, there

is no disagreement on what the consensus should be for a particular cluster of reads. All clusters

that have few reads are then merged into a remainder cluster where the reads vote on the consensus

but are not required to match it. At the top of the visualization, a summary of the consensus

sequences are displayed along with the number of reads in the corresponding cluster. Differences in

each consensus from the largest cluster’s consensus are highlighted in yellow. Below the summary,

the reads of each cluster are displayed using the same visualization style of the original k-mer search.

These two tools enable arbitrary k-mer searches into multiple datasets and present the results to

the user. By highlighting differences in the consensus sequence, the tools enable identification of

random sequencing errors and/or consistent inconsistencies that may indicate genomic variation.

Additionally, the allele-based tool helps the user to identify these alleles by clustering the reads prior

to visualization. In both tools, the user has to know something about the sequence content of the

datasets before performing the search. In particular, the choice of k-mer query is important because

it requires the sequence to exactly match the query. As a result, variants may result in difficulties

finding reads for a dataset.

In order to account for these off-target variants, there is another available tool that allow for

k-mer searches with a user-specified edit distance, e. When an edit distance based query is requested,

the server uses a branch-and-bound search routine to find any k-mers that are within e base changes,

insertions, or deletions from the target sequence. Since this is a branch-and-bound search with an

alphabet of length 4, the time to find all the k-mers with a particular edit distance O(4e ∗ k). Once

identified, the tool returns the k-mers and the reads corresponding to the k-mer. As with the first

tool, these reads are then visually organized and a consensus sequence is generated for each edited

k-mer.

7.5 Batch query tools

The k-mer based visualizations are useful for accessing raw sequence data surrounding a specific

k-mer. However, there are often cases where the actual read context is not required. Instead, the

user may only be concerned with the k-mer frequencies associated with a batch of queries. Typically,
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Figure 7.3: K-mer allele tool. This is a visualization of the allele based visualization of the same
k-mer from Figure 7.2 in an inbred mouse DNA-seq dataset. After retrieving all reads with an exact
matching k-mer, each entire read is compared against each other read and exact matching clusters
are formed from the reads. Each cluster has a consensus sequence that every read in the cluster
matches. Any reads that don’t exactly match a cluster with at least five reads are allocated to
the remainder consensus for the query. All consensus sequences and the remained consensus are
shown as a summary table at the top of the visualization. Differences in the consensus sequences are
highlighted in yellow. Additionally, each consensus has a numerical value indicating the number of
reads that exactly match that consensus. Below the summary, each cluster of reads is shown with
its matching consensus in the same visualization style of Figure 7.2.
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these queries are pre-annotated and represent biologically relevant sequences such as single nucleotide

polymorphisms, insertions, deletions, splice junctions, or copy number.

The batch query tools are designed to provide easy methods input a batch of k-mers and query

all of them simultaneously through the web interface. The first version of this tool allows users to

select a single dataset to query. Users then upload a CSV file (or manually type the queries into the

web client), specify which column of the CSV file contains the k-mers, and tell the client to execute

the queries. The client then requests k-mer counts from the server for each of the k-mers provided

by the user. The output is another CSV file where all columns from the input are preserved and two

new columns are added corresponding to forward and reverse-complement k-mer frequencies. The

user can then copy this information or download the output to a CSV file for analysis. An example

input and output for this tool is shown in Figure 7.4. As a final note, this tool also has a version

that allows for querying k-mers within an edit distance. Any discovered k-mers within the specified

edit distance are returned as extra columns in the output.

The second version of this tool allows for multiple datasets to be queried and saved to the output

file. After selecting which datasets to query, the users again upload a CSV file, specify a column

with labels and a column with queries, and tell the client to execute the queries. For each selected

dataset, the client then requests k-mer counts from the server. Then, the output is formatted as

a new CSV table where columns are the queries and rows are the datasets. For each dataset and

k-mer, the corresponding cell stores the frequency of the k-mer in that dataset. An example output

for this tool is shown in Figure 7.5.

In contrast to the k-mer based visualizations, these tools are better suited to gathering count

statistics for many different k-mer patterns rather than to exploring the sequencing surrounding

a particular pattern. In particular, this class of tool enables users to gather k-mer frequency

information in multiple datasets without needing to download the datasets and count them using

a locally installed program. Most use cases for these tools involve first identifying k-mer patterns

that specifically target a biologically meaningful sequence. For example, the pattern may uniquely

identify a particular splice junction or genomic variant within an organism. In either case, the

sequence must be known beforehand and off-target variants may affect the results.
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Figure 7.4: Mass query tool. These images are screenshots of the mass query tool when run on a
small set of short k-mers. The top image shows a CSV input for a selection of k-mer queries where
the input has an identifier, a k-mer query, and some metadata associated with the query. The user
informs the client that a header line is present and that the k-mer queries are in second column of
the input. The client then requests the specific k-mer counts from the server. In the output, the
original CSV input is copied and two new columns are added corresponding to the forward and
reverse-complement counts for the k-mer queries. This output can then be copied or downloaded in
CSV format for more analysis. In this example, the chosen sample is an inbred organism, so only
one version (either “ref" or “alt") of each allele has counts greater than zero in the output.
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Figure 7.5: Batch query tool. This image is a screenshot of the batch query tool when run on a
two probe k-mers for multiple datasets. For this example, eight different datasets were selected by
the user. The client requests k-mer counts for each dataset and outputs the result in a new CSV
file format where columns represent k-mer queries and rows are the datasets being queried. The
resulting CSV file can be copied or downloaded for future analysis. In this example, all eight datasets
are inbred datasets, so only one of the two alleles has counts greater than zero for each dataset.

7.6 Reference based tools

In all the tools presented thus far, the user is required to provide k-mers relevant to the tool.

Instead of specifying a particular query k-mer beforehand, the reference based tool requires that

users specify a particular region from a reference genome. The tool will then automatically perform

k-mer queries to search for in the BWT for a particular dataset. As a result, the server must have

access to some auxiliary information to generate the queries. First, it must have access to a reference

genome to pull k-mer queries from. Secondly, if lookups are done using gene name, there must be a

database of gene annotations that can translate a particular gene ID into coordinates in the reference

genome. Our particular tool uses the mouse reference genome build 37 and a list of gene annotations

from BioMart [Smedley et al., 2015].

Given a region of the genome, the server splits the whole region into 40-mers that overlap by

20 bases. In general, a 40-mer is long enough to uniquely identify most genomic sequences in

the reference genome and overlapping by 20 allows the tool to cover each base twice. If a gene

ID is entered, the server first looks in a gene annotation database for the exons boundaries and

uses the region from the start of the first exon to the end of the last exon. Each k-mer in the
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region is then queried against the user-selected dataset to retrieve counts for both the forward and

reverse-complement of the k-mer. The output is a plot where the x-axis is the genomic coordinates

of the region and the y-axis is the k-mer count for that region. Additionally, the specific k-mers

from the region are displayed below the plot. Figure 7.6 shows an example plot generated from a

mouse RNA-seq dataset for the region corresponding to gene Egr3.

One of the issues with using a reference genome is that there are often many differences between

the reference and the given organism’s genome. As a result, k-mer counts may drop to zero due

to a variant in the genome (and the sequencing reads) that does not match the k-mer from the

reference. To help combat this reference bias, the reference-based tool allows for minor corrections

to the sequence to better match the sequencing dataset. In particular, when two overlapping, low

count k-mers are identified, the tool hypothesizes that the shared overlapping area contains a variant

that is not included in the reference genome. It then attempts to perform a small de novo assembly

that is conceptually similar to the correction algorithms described in Section 6.3.3. If an alternate

path exists to span the low count region, it is replaced and the new counts are report in the output

along with the corrections made to the path. In Figure 7.7, the top plot shows the counts from an

uncorrected reference genome for gene Igf2 in a mouse DNA-seq dataset, and the bottom plot shows

the counts for the same region after modifying the reference genome to better match the sequencing

dataset. While there are still some areas with drops in the k-mer counts, many of the sudden drops

have been corrected leading to a smoother graph overall.

This reference based tool is similar to the pileup counts produced by alignment based visualization

tools like IGV [Thorvaldsdóttir et al., 2013]. However, reads can be double counted if the same

k-mer occurs multiple times in the reference or read. Additionally, while the k-mer from a read must

exactly match the reference query for it to be counted, there is no requirement that the remaining

bases in the read match the reference at all. For sufficiently large k-mers, the k-mer frequencies from

the BWT queries are expected to have a linear relationship with the pileup counts from an alignment.

However, genomic characteristics such as duplications, gene families, or low complexity queries can

lead to inconsistent k-mer frequencies because the query is not unique to a single genomic position.

These inconsistencies may appear as sudden spikes for low complexity queries or as elevated plateaus

in the event of duplication.

For example, Figure 7.8 shows the reference k-mer counts for a WSB/EiJ DNA-seq mouse
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Figure 7.6: Reference based tool. This figure shows the plot generated by the reference based web
tool for gene Egr3 when run on a mouse RNA-seq dataset. The server uses a gene annotation
database to extract all transcripts and exons corresponding to the gene. The coordinates of the
first and last exon defined the boundaries of the region to query. Then, the server splits the region
into 40-mers that are overlapping by 20 bases. Each 40-mer is queried against the BWT to retrieve
counts. Finally, the counts are plotted such that the x-axis represents genomic coordinates and the
y-axis represents the 40-mer count. Below each plot are the annotated transcripts from the database.
Each transcript is shown as a series of red bars where each bar corresponds to an exon. In this
example, 40-mers that are within an exon region have a count of approximately 150. In contrast,
40-mers that are within intron regions have much lower counts that are more likely noise from
sequencing. In general, this is because intronic regions should not be captured by RNA sequencing,
so the expectation is for those 40-mers to be absent from the RNA-seq dataset.
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Figure 7.7: Reference based correction. The top figure shows the plot generated by the reference
based web tool for gene Igf2 when run on a mouse DNA-seq dataset. In general, we expect the
counts from a DNA-seq dataset to be uniform. Within this dataset, there are many drops in the
counts that may be caused by variants in the dataset from the reference genome. When adjacent,
overlapping 40-mers both have low counts, the server attempts to change the shared 20-mer sequence
to a sequence supported by the data using small de novo assemblies. If a new sequence is discovered,
it replaces the old one and the counts for that sequence is saved. The bottom figure shows the same
genomic region (Igf2 ) using the correction option of the tool. The number of low frequency k-mers
is significantly reduced from the unmodified reference leading to a smoother overall plot.
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dataset [Keane et al., 2011] near the boundary of a known duplication event on chromosome 2 at

77.7MB [Didion et al., 2015]. In the plot, k-mer frequencies near 25 represent the normal expected

k-mer frequency in the dataset. However, there is an obvious plateau of high k-mer counts starting

near 27.5kb in the plot that represents a duplicate sequence within the organism. This duplicated

sequence, known as R2d, occurs in two forms: R2d1 and R2d2. The R2d1 sequence in this organism

occurs once, and the start of this sequence has been previously mapped to the position shown in

Figure 7.8 [Didion et al., 2015]. In contrast, the R2d2 version occurs approximately 30 times within

this dataset and has been previously mapped elsewhere on chromosome 2 [Didion et al., 2015]. In

the plot, k-mers that occur with a normal frequency (≈ 25) are unique to the R2d1 sequence. In

contrast, k-mers that occur with the much higher frequency (≈ 210) are shared by both versions of

R2d.

7.7 Targeted assembly tool

One common use of sequencing data is de novo assembly of multiple reads into longer sequences.

One way to perform sequence assembly is to use a de Bruijn graph [Bruijn, 1946, Simpson and

Durbin, 2010, 2012]. In a de Bruijn graph, every k-mer for a fixed size k is extracted from a dataset,

and each one is stored as a node in the graph. Edges in a de Bruijn graph indicate that the (k − 1)

suffix of the source node is the same as the (k−1) prefix of the destination node. In other words, they

overlap by (k − 1) symbols. Typically, de Bruijn graphs are “pruned" by removing k-mers from the

graph that have a low frequency in the dataset because these nodes are more likely sequencing errors

than true sequence. The BWT of a sequencing dataset can be used to represent a pruned de Bruijn

graph for that same sequencing dataset [Simpson and Durbin, 2010, 2012]. In this representation,

k-mer frequencies from a BWT query are used to determine if a node is “present" in the de Bruijn

graph.

The targeted assembly tool allows users to access this pruned de Bruijn graph by exploring

a dynamically graph from a user-selected “seed" k-mer. The tool displays the graph as a series

of nodes connected by directed edges. In order to reduce clutter, adjacent nodes from the de

Bruijn graph with one incoming edge and one outbound edge are collapsed into a single node for

visualization. In this way, a visual node actually represents an unambiguous path through multiple

connected nodes in the pruned de Bruijn graph. Branches (nodes with multiple outbound edges)

are preserved in the visualization as these are likely interesting characteristics of the dataset. As
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Figure 7.8: WSB/EiJ duplication example. This image shows the reference k-mer counts for a
DNA-seq WSB/EiJ mouse dataset [Keane et al., 2011] near the boundary of a known duplication
event on chromosome 2 at 77.7MB [Didion et al., 2015]. The left side of the plot represents sequence
with normal coverage where most k-mers have a frequency of ≈ 25. Starting at approximately 27.5kb
on the x-axis, the frequencies change to have two modes: one centered around 25 and one centered
around 210. This change represents the boundary of the duplicated sequence, labeled R2d, that is
present in two forms in this datasets: R2d1 and R2d2 [Didion et al., 2015]. The R2d1 sequence
occurs one time in this dataset and has been previously mapped to this position in the reference
genome [Didion et al., 2015]. Since it is a single copy, the k-mers with counts at ≈ 25 correspond to
k-mers that are specific to R2d1. In contrast, the R2d2 sequence occurs approximately 30 times
within this dataset and has been previously mapped elsewhere on chromosome 2. For k-mers shared
between the two versions of R2d, the frequency of the k-mers jumps to approximately 210 because it
picks up additional k-mers from the 30 copies of R2d2.
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the tool dynamically assembles nodes in the graph, auxiliary information is stored in a table below

the graph including the sequence corresponding to the node, the length of that sequence, and the

forward and reverse-complement k-mer counts for each k-mer in the sequence.

This visualization can be useful for highlighting variation within a sequencing dataset. For

example, Figure 7.9 shows the pruned, collapsed de Bruijn graph for gene Egr3 generated from

the BWT of an RNA-seq dataset for an F1 hybrid mouse derived from crosses between two inbred

mouse strains CAST/EiJ and PWK/PhJ. Since this is an F1 organism, branch points can be caused

by either genomic variation or alternate splicing. For the branch point at node “n1", the de Bruijn

graph splits into two nodes: “n2" and “n3". The sequences corresponding to nodes “n2" and “n3"

are shown at the bottom of Figure 7.9. These nodes have identical sequence except for a single

nucleotide at position 50, “n2" has an ‘A’ whereas “n3" has a ‘G’. Additionally, once the different

nucleotide is no longer included in the k-mers in the separate paths, the two paths merge together

at node “n4".

In addition to highlighting variants, the graph can also provide insights into the structure of a

sequence. Figure 7.10 shows the graph for mitochondrial sequence in a CAST/EiJ DNA-seq datasets

from Keane et al. [2011]. One interesting characteristic of mammalian mitochondria is that they

are circular pieces of DNA. In this example, the nodes in the graph also form a cycle that reflects

the structure of the mitochondria. A second interesting characteristic is derived from the branch

point at node “n3" that indicates possible heteroplasmy, the presence of more than one type of

mitochondria. In general, this is not expected because mitochondria are inherited strictly from the

mother. Inspection of the sequences in the bottom half of Figure 7.10 reveals the difference to be a

single C/T polymorphism that causes the branch.

Finally, the targeted assembly tool allows users to piece together a path through the visual

graph to form a long sequence. The user selects a node to start from and then repeatedly selects

successor nodes in the graph. The sequences from each node are joined together using the overlapping

sequences to form a single long string representing a path through the de Bruijn graph. This string

can then be downloaded and saved in FASTA format for future use.

7.8 Final notes

The BWT and FM-index are powerful data structures for storing and quickly accessing raw

sequence data. The BWT is a lossless transform, so all sequencing reads are contained within the
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Figure 7.9: Egr3 de Bruijn graph. The top image shows the pruned, collapsed de Bruijn graph
for gene Egr3 generated from the BWT of an RNA-seq dataset for an F1 mouse organism. For
this graph, we used the FG0125_F dataset from Crowley et al. [2015], an initial 50-mer seed
of “CGGGCCACAAGCCCTTCCAGTGTCGGATCTGCATGCGCAGCTTCAGCCGC", and a
pruning threshold of 20. The start point is the green node “n0" which corresponds to the initial
50-mer seed. End points are represented as red nodes in the graph. Each edge in the graph has a
symbol and numerical value corresponding to the last symbol of the first 50-mer in the destination
node and the frequency of that 50-mer in the dataset. Since this is an F1 organism, the graph has
multiple branch points generated by genomic variants within the sample. For example, the first
branch is located at node “n1" leading to two new nodes “n2" and “n3". The bottom image shows
the sequences corresponding to nodes “n2" and “n3". In this particular example, the 50-th symbol
(the last symbol on the first row of each sequence) is different between the two sequences: “n2" has
an ‘A’ and “n3" has a ‘G’. Once the different symbol is cycled out of the 50-mer, the two paths
merge together into node “n4".
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Figure 7.10: CAST/EiJ mitochondria graph. The top image shows the pruned, collapsed de Bruijn
graph for the mitochondria generated from the BWT of a DNA-seq dataset for a CAST/EiJ mouse
Keane et al. [2011]. The graph was generated using an initial 50-mer seed of “GTTAATGTAGCT-
TAATAACAAAGCAAAGCACTGAAAATGCTTAGATGGAT" and a pruning threshold of 400.
The mitochondria is interesting because it is an abundant piece of circular DNA that is inherited only
from the mother. The circular structure of the mitochondria is reflected by the graph. Additionally,
there appears to be a single branch point in the graph between nodes “n4" and “n5". Closer inspection
of the sequences and k-mer counts (shown the bottom image) reveal that this is caused by a single
C/T polymorphism. This difference indicates possible heteroplasmy (the presence of more than one
type of mitochondria) in the dataset.
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data structure. Additionally, the FM-index enables both arbitrary k-mer queries and extraction of

individual reads from the dataset without needing to reconstruct the entire string collection. However,

there is often a learning curve to using APIs associated with BWTs and FM-indices. The web tools

discussed in this chapter allow users to access the raw sequence data through sequence-centered

queries while masking the complexities of the BWT and FM-index.

In this chapter, we presented several web tools designed to address different types of sequence-

centered queries. The first set of tools provides a lot of information about a user-selected k-mer

including forward counts, reverse-complement counts, every read with the k-mer, and a consensus

sequence of the reads. The main advantage of the tool is that it provides a lot of information about

a single k-mer. However, it does not generalize to multiple k-mers because the output becomes

excessively large for the servers to compute. In particular, extracting the reads for a given k-mer

is computationally expensive, so performing this operation for multiple k-mers can lead to server

timeouts.

The second set of tools attempts to address this issue by reducing the amount of information

retrieved for each k-mer. These batch query tools allows the user to simply retrieve forward and

reverse-complement counts for one or more k-mers from one or more datasets. While this is a reduced

set of information, the counts alone are informative for detecting the presence of specific k-mers.

Typically, observing a particular k-mer reflects the occurrence of some biologically event (i.e. a

probe) such as a SNP, indel, or splice junction. The raw k-mer counts can then be downloaded and

incorporated into downstream analyses.

The reference based tool allows users to retrieve k-mer queries for a large region of a reference

genome. One downside of this tool is the bias introduced by using a reference genome. In particular,

if the sequenced organism has an off-target variant (a variant not included in the reference genome),

k-mers from the reference genome that do not have that variant will likely have no counts. While

there is an option to correct minor variants, the online correction method is relatively simple. As a

result, multiple variants or large structural variations are usually not corrected with the reference

based tool.

The targeted assembly tool works well for unbiased assembly of short sequences. It provides

users accessed to a compressed, pruned de Bruijn graph of their data starting from a particular

k-mer. However, selection of the k-mer and pruning threshold can drastically impact the output
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graph in ways users may not expect. Additionally, it can be tedious to perform assemblies through

areas with a large number of branches. To address these issues, future work may include assisting

users with the choice of threshold or using a dynamic threshold that is based on the counts thus far.

Furthermore, an option to automatically build the graph in a depth-first or breadth-first manner

could help alleviate some of the tedious aspects of the graph construction.

One consistent problem with these tools is figuring out how to select k-mer queries and interpret

the results. By default the FM-index counts only exact matching k-mers, so any off-target sequence

can cause misleading k-mer counts. This can be caused by true off-target variants (SNPs, indels),

RNA editing, sequencing error, or even technical sequencing bias. As a result, users have to be

careful when interpreting the k-mer counts to make sure that the results are not convoluted by

off-target sequences. One way to try to detect off-target sequences is by using the tools that allow

for an edit distance in the search. This enables users to capture exact matching k-mer counts and

the counts for k-mers that are close to the original query.

All of the tools discussed in this chapter are publicly accessible through the MSBWT Tools

splash page for a selection of mouse datasets1. Additionally, biologists have used many of these tools

for preliminary analysis of their datasets [Didion et al., 2015]. A subset of the tools have been ported

into a publicly available Python package that runs on a Flask server2. This package allows anyone

to set up a local BWT server for their own datasets.

1http://www.csbio.unc.edu/CEGSseq/index.py?run=MsbwtTools
2https://github.com/holtjma/msbwtWebTools
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CHAPTER 8

CONCLUSION

8.1 Summary

In this dissertation, three algorithms that operate directly on the BWT were introduced. The

first algorithm merges two or more BWTs into a single BWT containing all the strings from all inputs.

For two BWTs with N total symbols and a longest common substring of length LCS, the algorithm

requires a total of O(N ∗ LCS) steps to compute the merge BWT. The algorithm enables BWTs to

be combined without needing to reconstruct the original string collections, allowing downstream

analyses to perform a single FM-index query across all merged datasets simultaneously.

The second algorithm applies the merge algorithm to create a merge-based BWT construction

algorithm. The construction algorithm has two key improvements over the original merge algorithm:

divide-and-conquer merge and bucket tracking. For a string collection with m strings composed of

N symbols and an average longest common prefix of LCPavg, these changes led to a construction

algorithm requiring O(N ∗ LCPavg ∗ log(m)) steps to compute the BWT. In practice, this algorithm

works relatively well for long read sequencing datasets. In particular, it performs well on PacBio

CLR dataset that have long reads with low LCPavg. Unfortunately, the algorithm does not scale

well to datasets with a large number of reads or datasets where the LCPavg is large.

The third algorithm, MSBWT-IS, is another BWT construction algorithm that uses induced

sorting to calculate the BWT. First, the algorithm calculates a new alphabet to represent substrings

from the input string collection. The alphabet is used to generate a new string collection that is

guaranteed to have strings that are at most half as long as the original strings. This process is

repeated recursively until the BWT of the string collection can be trivially calculated. While exiting

the recursion, the BWT of the short collection represents a partial order of the BWT of the long

collection that allows the total order to be induced. This algorithm is a BWT construction algorithm

that constructs the BWT of a string collection with N symbols in O(N) steps. Additionally, while

many BWT construction algorithms are generalizable to different alphabets, this implementation is



trivially adapted because it must already handle large alphabets during the recursion. For long-read

sequencing datasets, MSBWT-IS was shown to require less CPU time than other BWT construction

algorithms. However, it is not obvious how to parallelize the algorithm. Additionally, while this

algorithm computes the BWT for short-read datasets relatively quickly, it does not outperform other

implementations that are specifically designed for short-read datasets.

This dissertation also introduced a long-read correction method that uses the BWT of a short-read

dataset to perform the correction. The method calculates the BWT of the short reads once, and

then uses it as both a short k-mer de Bruijn graph and a long K-mer de Bruijn graph. It then uses

these graphs to identify k-mers from the long reads that are weakly support by the short reads.

Finally, these weak regions are replaced with strong paths that are assembled form the de Bruijn

graph of the short reads. This method is unique in that it uses a long K-mer to perform a second

pass of correction, allowing for low-complexity sequences or repeated sequences smaller than K to

be corrected in the output. In the results, we showed that this method reduced the number of errors

in the alignment of the reads. Additionally, the long K-mer correction method can be used as a

post-process to other short k-mer correction algorithms to improve their results.

Finally, this dissertation described several web tools that use the BWT as an underlying storage

scheme for raw sequence datasets and the FM-index for performing arbitrary k-mer queries. One set

of tools retrieves all reads containing a particular k-mer, generates a surrounding consensus sequence,

and displays the results highlighting variations in the sequence. The second set of tools can perform

a batch of k-mer queries and report the results as summary counts that can be downloaded for

analysis by the user. The third tool uses the reference genome as a source of k-mer queries and can

visualize the output in a manner similar to a pileup count from an alignment. The fourth tool allows

users access to the de Bruijn graph of a dataset and enables targeted assemblies of the reads into

much longer sequences. The tools help mask the complexities of using a BWT and FM-index while

simultaneously providing lossless interfaces to the raw sequence data that other data formats cannot

provide.

8.2 Future work

Improving the performance of BWT construction algorithms for string collection is one area

of ongoing research. MSBWT-IS requires less CPU time for long reads than the main competitor,

ropebwt2, but tends to be slower by wall clock time because it is not parallelized. While some
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components of the MSBWT-IS algorithm can be trivially parallelized (S* substring discovery and

replacement), it is not immediately obvious how to parallelize other parts of the algorithm that

currently require a sequential execution. Future work will involve exploring both algorithmic and

engineering solutions to this problem in order to make MSBWT-IS more competitive in terms of

wall clock time. Additionally, MSBWT-IS performs well for long reads and ropebwt2 performs well

for short reads, but there is still not a single algorithm that performs well for any type of string

collection. Therefore, it is possible that an undiscovered BWT construction algorithm exists that

works well on all types of sequencing datasets.

In addition to constructing BWTs quickly and more efficiently, there is actually a large amount

of metadata associated with each read that is usually ignored during the construction such as paired

end information or the quality strings. The main issues with quality strings is that they do not

compress as well as the BWT because there is a larger alphabet and it is not obvious how to do

random lookups of a particular quality score. Paired end information can actually be stored in an

auxiliary lookup table that pairs reads based on their unique ‘$’ symbol in the BWT. However,

this requires additional overhead in both the storage and computation of the pairs because the

information is only associated with the ‘$’. There is the possibility of creating paired-end strings

that are a concatenation of the two paired end reads with a delimiter character in between. This

will have an impact on both the compression of the BWT data structure and possibly the size of the

FM-index table. While not discussed in this dissertation, the FM-index queries can also be sped up

using an auxiliary data structure called the longest common prefix array (LCP array). Unfortunately,

the LCP array is a large data structure that does not compress very well. Future work may involve

researching alternate methods for storing the LCP array such that the memory usage of the array is

small and random accesses are quick.

The implementation of the BWT-based correction method, FMLRC, also has room for improve-

ment. In particular, we showed that the performance of FMLRC drastically changes depending on

the implementation of the indexing structure, suggesting that there may be modification or alternate

implementations that are faster and/or more memory efficient than the current implementation.

Secondly, there is some evidence that the actual bridging algorithm is not as thorough as the one

in LoRDEC. Additionally, many of the k-mer sizes were chosen based on the results of limited

experimentation. Further experimentation may reveal that dynamically choosing k and K based on
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the k-mer frequencies may yield better results than a static, user-defined value.

The web tools presented in the dissertation represent only a small set of possible tools that can

be generated using the BWT and FM-index. These web tools are relatively generic and mostly rely

on information that is contained solely within the raw sequencing data. The one exception is the

reference-based tool that incorporates other expectations about the organism into the queries for

the user. There are many other possible tools that can incorporate other outside information in a

similar manner. For example, a tool that automatically performs a set of pre-defined probe queries

on a BWT or a tool that performs sequence correction on a user defined input sequence. Many of

the tools created thus far were made at the request of collaborators in order to suit a specific need.

Thus, future research on BWT-based web tools will likely be driven by the needs of researchers to

ask specific questions of the sequencing datasets.

In summary, the BWT and FM-index are efficient data structures for compressing and accessing

raw sequencing data. The algorithm implementations that are currently available allow for the

efficient construction of BWTs for most types of sequencing datasets. This representation is a lossless,

unbiased representation of the sequencing dataset that enables access to the raw reads through k-mer

queries. Since the BWT and FM-index can now be constructed efficiently, tools and interfaces have

been created to assist in solving biologically relevant problems such as de novo assembly [Simpson

and Durbin, 2010], splice junction detection [Cox et al., 2012b], short-read correction [Greenstein

et al., 2015], long-read correction, probe searches, and targeted genomic assembly.
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APPENDIX A

MULTI-STRING BWT UTILITY SUITE

The Multi-String BWT Utility Suite is a publicly available Python/Cython package for interfacing

with BWTs of genomic sequencing data. The package includes a command line interface for

constructing BWTs and a Python/Cython API for developing custom scripts to query the resulting

BWTs. Both the command line interface and API are available through PyPI1 and GitHub2.

Additionally, wiki pages3 are available describing various use cases of the package along with more

detail on the CLI and API. In the following sections, we briefly discuss some of these use cases and

functionality included in the package.

A.1 Command line interface

The Command Line Interface (CLI) is primarily for the creation of BWTs from raw sequencing

files (i.e. FASTQ). This interface provides access to two implementations of BWT creation algorithm:

a BCR style algorithm and a merge-based construction algorithm. The BCR-style algorithm is

basically a Cython re-implementation of the methods first described by Bauer et al. [2011]. In short,

the algorithm uses a “column-wise" approach to construction that inserts all bases at a particular

index in the strings simultaneously. The method works best for short, uniform length reads primarily

due to increased run-times caused by longer strings (there are more “columns" to insert). The second

algorithm is the merge-based construction algorithm described in Chapter 4. This algorithm creates

many smaller BWTs and repeatedly merges them until only one BWT remains. This method works

best on relatively small datasets, but allows for variable length, long reads to be included in the

dataset. Both construction implementations are parallelized versions of their respective algorithms.

In addition to construction, the CLI allows for merging two or more BWTs into one larger BWT.

This is an implementation of the algorithm described in Chapter 3. The output is a BWT containing

the combined string collections from both inputs.

The CLI also has a function to enable converting a text string to one of the BWT formats

supported by the API. This allows one to use an alternate BWT construction implementation, such

1https://pypi.python.org/pypi/msbwt
2https://github.com/holtjma/msbwt
3https://github.com/holtjma/msbwt/wiki



as ropebwt2 [Li, 2014], provided it constructs the BWT using the definitions from Chapter 2. The

conversion command will then take a plain text input and convert it to the Run-Length Encoded

format described in Section A.3.

Finally, the CLI enables some rudimentary queries of a constructed BWT. When queried, the

tool automatically generates and saves an FM-index to disk for future use. This FM-index is then

used as described in Section 2.3 to enable k-mer searches in the BWT. When a k-mer is found, the

CLI will output the reads containing the k-mer. Additionally, a mass query option allows the user

to retrieve k-mer counts for many different k-mer simultaneously using the CLI. For more complex

queries, the Python/Cython API is recommended.

A.2 Python/Cython API

While the CLI makes BWT construction relatively easy, the types of queries that can be performed

through it are somewhat limited by design. In most applications, the k-mers are usually not static

search values where only one query is necessary. For example, methods like de novo assembly or

read correction typically require many queries selected based on the results of previous queries, so

the k-mer queries that will be needed are not necessarily known prior to the program execution. The

Python/Cython API helps enable these dynamic query cases.

The API is basically a collection of query functions for accessing the BWT and FM-index of a

genomic dataset. The API is written in Cython so that it can be easily imported into a Python

script while benefiting from the speed of compiled C code. At a high level, the main function of

the API is to search for k-mers in a BWT. Usually, a k-mer is returned as a range in the BWT

corresponding to the indices of suffixes in the implicit suffix array that start with the queried k-mer

(see Section 2.4 for more on this relationship). In the API, this range can be used to retrieve all

reads with the k-mer, count the k-mer frequency, or extend the k-mer to a larger (k + 1)-mer search.

The API also enables access to in-exact matching k-mer searches. The exact match algorithm is

an O(k) search for an arbitrary k-mer. With in-exact matching, the search is basically a branch-

and-bound k-mer search. Given an edit distance, e, and that we allow for all five non-‘$’ characters

(‘A’, ‘C’, ‘G’, ‘N’, and ‘T’), this algorithm would search for O(k ∗ 5e) k-mers if left unbounded. The

bounding portion of the algorithm requires that a minimum frequency threshold, t, is required to

continue exploring the branch. This helps reduce the run-time of an inexact k-mer search in practice,

but it does not reduce the asymptotic performance of the method in the worst case. The specific
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Python API for the BWT class can be found on the BasicBWT API wiki page4.

A.3 BWT formats

Included in the package is code support two different BWT formats. In both formats, the valid

characters ([$, A, C, G, N, T]) are re-mapped to integer values ([0, 1, 2, 3, 4, 5]). In the first format,

the BWT is stored in an uncompressed manner such that there is one byte per symbol. In other

words, it is a plain text format where each symbol has been remapped to its corresponding integer

value.

The second format is a Run-Length Encoded (RLE) format. In this format, the BWT is broken

into runs of adjacent symbols. The encoding separates each byte into the low 3 bits for the symbol

and high 5 bits for the run length. For example, a run of ‘A’s of length 10 would be encoded as (10,

1) = 01010 001. If a run is longer than 31 symbols, the next byte is used to extend the run into a 10

bit value. For example, encoding a run of ‘T’s of length 47 requires more than 5 bits, so it is extended

to two 5-bit values 0b00001 and 0b01111 that are encoded as the five most significant bits in two

adjacent bytes. The three least significant bits in each byte are then set to 0b110 (corresponding

to ‘T’), so the resulting bytes are 0b01111110 and 0b00001110. The approach can be extended to

encode a run of length, R, in ceil(log32(R)) bytes.

In general, the RLE BWT is recommended for two reasons: compression and speed. In most

short-read sequencing datasets, an RLE BWT requires 1.0-1.25 bits per base as opposed to 8 bits

per base in the uncompressed version. Additionally, since the BWT uses a sampled FM-index, each

query requires a linear traversal of a section of the BWT. In a RLE BWT, each page on disk contains

more information due to compression. As a result, fewer pages need to be read from disk because

the structure is smaller and contains more symbols per page than the uncompressed version.

Regardless of the format chosen, the BWT classes all inherit from a parent class with the core

query functions. This means that implementation of alternate storage schemes need to only develop a

few subroutines to work with the rest of the API. Once these subroutines are correctly implemented,

k-mer queries and string recovery functions will work with the new format. This allows future testing

of alternate compression methods without need to re-engineer all of the BWT query functions.

4https://github.com/holtjma/msbwt/wiki/BasicBWT-API
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