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ABSTRACT 

Noelle-Erin F. Romero: Biochemical activities and genetic functions of the Drosophila 
melanogaster Fancm helicase in DNA repair 

(Under the direction of Steve Matson and Jeff Sekelsky)  
 

 

The DNA damage response in eukaryotes involves multiple, complex, and often redundant 

pathways that respond to various types of DNA damage that affect one or both strands of DNA. One type 

of toxic DNA damage that can occur is a double-strand break (DSB). Repair of a DSB can lead to the 

formation of a recombination product known as a crossover (CO). Crossovers in mitotic cells can be 

deleterious and lead to chromosomal rearrangements or cell death. In order to limit crossing over during 

DSB repair, eukaryotes possess mechanisms to ensure crossovers do not occur. In this manner, several 

helicases function during repair of DSBs to promote accurate repair and prevent the formation of 

crossovers through homologous recombination.  

Among these helicases is the Fanconi anemia group M (FANCM) protein. FANCM is one of 17 

Fanconi anemia (FA) proteins and is one of the most broadly? conserved FA proteins. FANCM and its 

orthologs, Mph1 and Fml1, are DNA junction-specific helicases/translocases that process homologous 

recombination (HR) intermediates. Additionally, FANCM has been implicated in a number of DNA 

metabolic processes including activation of the S-phase checkpoint, trasversal of interstrand crosslinks, 

recruitment of the proteins such as the FA core complex and Blm to sites of DNA damage, and prevention 

of mitotic crossovers during double-strand break repair.  

The helicase activity of FANCM is believed to be important in crossover prevention, but no 

helicase activity has been detected in vitro. I report here a genetic and biochemical study of   
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Drosophila melanogaster Fancm. I show that purified Fancm is a 3ʹ to 5ʹ ATP-dependent helicase that can 

disassemble recombination intermediates, but only through limited lengths of duplex DNA. Using 

transgenic flies expressing full-length or truncated Fancm, each with either a wild-type or mutated 

helicase domain, I found that there are helicase-independent and C-terminus independent functions in 

responding to DNA damage and in preventing mitotic crossovers.  
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CHAPTER 1-INTRODUCTION 

Maintaining the structural integrity of DNA is essential to the health and vitality of a cell and 

organism as it serves as a permanent copy of the cell’s genome. Changes in its structure and/or 

sequence can have severe consequences as it can cause alterations in other cell components, such as 

proteins and structural RNAs. It is therefore critical that the integrity of DNA be maintained. While the 

duplex structure of DNA makes it a particularly stable repository of genetic information (1, 2), there are 

many times in which DNA molecules are more susceptible to damage. This includes periods of time in 

which the separation of the duplex DNA is necessary, such as replication during cell division (mitosis and 

meiosis), as well as during transcription of DNA into RNA. During these times the DNA can be altered by 

the proteins that act upon it or damaged by various factors. 

For instance, the incorporation of incorrect bases or deletion of bases during DNA replication can 

have a profound effect on an organism. Polymerases, proteins responsible for replication, can encounter 

regions of highly repetitive DNA where the (3, 4) polymerase becomes susceptible to slippage or 

misreads of the template sequence. This can greatly alter the DNA through insertions, deletions, or 

duplications of the genome. While not all changes to the DNA are as drastic as genomic deletions or 

insertions, they can still have severe consequences. A single base change, for example, can alter the 

protein product encoded by the DNA, for instance, mutation of a conserved residue can change the 

protein function, change the sequence to an early termination sequence or cause the deletion of a stop 

codon which can  alter the protein product, thus changing the ultimate structure of the protein or 

generating no protein at all (5). 

DNA can also be damaged or modified by chemicals or proteins in their environment, or through 

spontaneous endogenous metabolic processes. Endogenous damage, like free radicals that occur during 

normal cellular metabolism, can alter the helical conformation of DNA. The most common types of 

spontaneous damage to DNA are AP (apurinic) site damage that results through the loss of purine bases 
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(depurination) that occurs from the cleavage of the bond between the base and the deoxyribose, or 

through deamination of adenine, cytosine, or guanine (5–7). Exogenous exposure to environmental 

agents, such as toxins, UV radiation, and pollutants can cause breakage of DNA or toxic lesions. 

Covalent modifications to the sugar phosphate backbone (backbone modifications) or the nitrogenous 

bases of DNA (base modifications) can distort or break the helix. The type and frequency of the 

modification or lesion can vary depending on both the lesion type and the modifying agent. Induced or 

exogenous damage includes the formation of interstrand crosslinks (ICLs) generated by 

chemotherapeutic agents, and pyrimidine dimers, in which two adjacent pyrimidines are joined by a ring-

like structure, as seen in the case of damage induced by UV radiation.  Alkylation, or the addition of a 

methyl or ethyl group to various positions on the DNA base, is another form of induced damage(5, 8, 9). 

Modifications, such as oxidative base modifications, can be numerous and can distort the helix.  

A number of repair processes exist in order to ensure that detrimental modifications made to DNA 

are removed to ensure cell vitality and that any damage that occurs to the DNA is corrected efficiently and 

effectively. Repairing of DNA damage is essential as damage to DNA can block replication or 

transcription and can result in a high frequency of mutations, which can be detrimental to cell 

reproduction and viability (4, 5, 10). To maintain the integrity of their genomes, cells have therefore 

evolved a robust set of mechanisms to repair damaged DNA. These myriad DNA repair mechanisms can 

be classified as either pre-replicative repair or post-replicative repair depending on where in the cell cycle 

they take place (Figure 1.1). Pre-replicative repair includes reversal of chemical damage or modification 

(direct reversal) or removal of the damaged base and synthesis of new DNA (excision repair) (9, 11). 

These systems act to correct DNA damage before replication allowing DNA synthesis to proceed using 

an undamaged DNA strand as a template. If these systems fail to remove the damage, alternative 

mechanisms for dealing with damaged DNA are employed post-replication.   

PRE-REPLICATIVE REPAIR 

As the name suggests, pre-replicative repair occurs prior to DNA synthesis. Although most 

damage to DNA is repaired by the removal of the damaged base and subsequent synthesis of new DNA 

in the excised region, some lesions can be repaired by direct reversal of the damage. Direct reversal 
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results in the restoration of the original base in an unaltered state without synthesis or remodeling of the 

DNA. This method of repair is generally viewed as a highly efficient way of dealing with specific types of 

DNA damage that occur with a high frequency. For instance, UV light is a major source of DNA damage 

and can induce 6-4 photoproducts and pyrimidine dimers. The formation of pyrimidine dimers distorts the 

helical structure of the DNA and blocks transcription or replication past the site of damage. The direct 

reversal of this dimer occurs through a process known as photoreactivation. This process utilizes energy 

from visible light to break the ring structure that binds the pyrimidines together (12, 13). Although UV 

irradiation is the cause of almost all skin cancer in humans, photoreactivation is not a repair mechanism 

found in humans, although a variety of prokaryotic and eukaryotic cells employ photoreactivation as a 

means of repair (5, 9, 10).  

When direct reversal of the DNA lesion is not possible, excision of the damaged base is 

employed. Unlike direct reversal of DNA damage, excision of damage is a more general means to repair 

a broad range of alterations to DNA. Various types of excision repair mechanisms exist and are highly 

important DNA repair strategies in prokaryotic and eukaryotic cells. Excision repair involves the removal 

of the damage and synthesis of new DNA to fill the resulting gap. Types of excision repair include 

nucleotide-excision repair (NER), base excision repair (BER), and mismatch repair (MMR).  

NER, BER, and MMR, involve the use of specialized nucleases to cleave the phosphodiester 

backbone to remove the damaged base. A helicase is then responsible for displacing the damaged and 

soon to be excised strand and the resulting gap is filled in by a DNA polymerase and sealed by a ligase. 

The MMR, BER and NER repair pathways have been extensively studied in prokaryotes and eukaryotes 

(for reviews see (14–18).  

Mismatch repair involves the binding of the mismatched base and subsequent excision by the E. 

coli MMR proteins, MutS and MutL, and their homologs (14, 15, 19). Mismatched bases are generally 

recognized and removed by the proofreading activity of the replicating DNA polymerase. However, the 

DNA polymerase inevitably makes a mistake at a rate of 10–6 to 10–8 and inserts an incorrect base 

resulting in a mispair (20, 21). Bases that are missed by the proofreading exonuclease can later be 

corrected by the MMR system.  
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Similar to MMR, NER also involves the excision of DNA damage and restoration of the original 

sequence. In E. coli, NER is carried out by the UvrABC complex. UvrA recognizes damaged DNA, 

recruits UvrB and C, which are then responsible for cleaving on the 3ʹ and 5ʹ side of damage. Using 

mammalian cell lines and the identified genes that are involved in NER, the NER pathway in humans has 

been elucidated. Similar to the pathway in E. coli, XPA recognizes damaged DNA and recruits the 

heterodimer XPF/ERCC1 and XPG to the repair complex. XPG and XPF/ERCC1 are endonucleases that 

cleave DNA on the 3′ and 5′ sides of the damage. XPA also recruits XPB and XPD, which acts as a 

helicase to unwind the damaged DNA that was excised by XPF/ERCC1. The resulting gap is filled in by 

DNA polymerase and sealed by DNA ligase (18, 22).  

POST-REPLICATIVE REPAIR 

If damage persists post-replicative repair mechanisms are used to restore the integrity of the 

DNA. Pyrimidine dimers left unrepaired, ICLs, and many other types of lesions cannot be copied by DNA 

polymerases and block movement of the replication fork. One mechanism used to overcome these 

blockages is recombinational repair. Recombinational repair utilizes the undamaged homologous 

template to synthesize new, undamaged DNA (22–24). The damaged portion (e.g. a pyrimidine dimer or 

crosslink), can then subsequently be removed by one of the excision repair mechanisms. During the 

repair process of lesions that affect both strands, a combination of repair methods may be utilized. Repair 

of ICLs, explored later in this chapter, uses both excision and recombinational repair processes to restore 

DNA to its native state. Recombinational repair can also be used when damage occurs to the DNA 

phosphodiester sugar backbone. Strand modifications include single and double strand breaks, which can 

result from environmental and metabolic sources (10, 25–28).  

Double-strand breaks (DSBs) are among the most biologically hazardous types of DNA damage 

as a single unrepaired DSB can cause cell death. Moreover, inaccurate repair of a DSB can lead to 

deletions or chromosomal rearrangements, and thus poses a significant threat to genomic integrity (26, 

29–31). Mammalian cells use two mechanisms of recombinational repair to restore DNA after a DSB 

occurs: homologous recombination (HR) and non-homologous end-joining (NHEJ). Although both these 

methods are used to repair DNA, they differ in their requirements for template and their fidelity. NHEJ 
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operates during all phases of the cell cycle and is considered the predominant pathway in mammalian 

cells for DSB repair while HR is restricted to late-S and G2 phases. NHEJ is considered error-prone and 

eliminates DSBs through direct ligation of the broken ends (32). HR-directed repair is largely an error-free 

mechanism as it utilizes the undamaged sister chromatid, or homologous chromosome,  as a template 

(31, 33). The work in this thesis focuses on DSB repair via HR and will not focus on NHEJ as the primary 

mode for repair of DSBs in Drosophila melanogaster is HR.  

DOUBLE-STRAND BREAK REPAIR VIA HOMOLOGOUS RECOMBINATION 

The fact that identical information is held on the sister chromatid, and a duplicate copy is available in 

the homologous chromosome, makes repair via homologous recombination an essential pathway to 

ensure accurate repair of broken DNA. DSBs, which can be induced by radiation and select toxins, are 

repaired via recombinational mechanisms in which an intact DNA molecule is used. Our current 

knowledge regarding the mechanism of homologous repair derives largely from studies done in yeast. 

The process of double strand break repair via homologous recombination was first proposed by Robin 

Holliday. Holliday and colleagues postulated that, during meiosis, DNA repair gives rise to crossovers 

(COs), and gene conversions (30, 34). Current models for repair via homologous recombination are 

based on the model of double-strand break repair (DSBR) originally outlined by Szostak (34). Key to this 

model are several essential steps (Figure 1.2): 

A.) Initiation of recombination by a DSB; B.)  resection of the 5ʹ end at the strand break to generate a 

3’ single-stranded DNA tail; C.) invasion of the Rad51-coated 3ʹ ssDNA tail into the homologous 

sequence generating a displacement loop (D-loop); D.) DNA synthesis, primed from the invading 

3ʹ end; and finally E.) resolution into one of two classes of recombination product- crossovers 

(COs) or non-crossovers (NCOs).  

 

These key steps have been well established and supported in meiotic recombination in the budding 

yeast Saccharomyces cerevisiae. Many of the key intermediates formed have been visualized through 

the use of 2D gel analysis (35–37). Although yeast has been used to establish a model for meiotic 

recombination, the process is thought to be maintained and followed in other eukaryotes. Although little 
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evidence exists to support the direct assumption that double-strand break model of meiotic recombination 

accurately reflects mitotic recombination, core features, such as those outlined above, are believed to 

also hold true in mitotic DSB repair (38, 39).   

While the essential steps of recombination are maintained between both processes, one of the 

fundamental differences between meiotic and mitotic recombination is regulation and promotion of 

recombination products. In meiotic dividing cells, recombination products (COs) are actively promoted as 

they contribute to genetic diversity and ensure proper segregation of chromosomes during cell division 

(38). Meiotic recombination is indispensable for accurate chromosome segregation and is promoted by 

generation of a DSB by a meiosis-specific nuclease. The subsequent crossover formation occur at 

various frequencies depending on the organism, but generally require at least one CO per chromosome, 

and help facilitate proper chromosomal alignment and subsequent segregation (40). Disruption of this 

process can lead to a number of aberrations and deleterious effects, such as genomic deletions and 

improper segregation of chromosomes (nondisjunction) which can lead to aneuploidy (39).  

While homologous recombination through programed DSBs is essential in meiotic cells to ensure 

proper chromosomal segregation and promote genetic diversity, HR in mitotic cells is used to repair 

spontaneous and induced DSB damage. As mentioned above, repair of ICLs and other base 

modifications utilize specialized nucleases to generate nicks in the DNA backbone to facilitate removal of 

the offending lesion. Excision of the damaged base can result in DSBs as nucleases used to excise the 

damage can nick both strands of the sugar phosphate backbone. The generation of a DSB can lead to 

the use of HR as a repair mechanism. However, the formation of COs during HR via DSB repair in 

mitotically dividing cells can be hazardous as they can result in loss of heterozygosity and gross 

chromosomal rearrangements (39–42). Therefore, prevention of CO pathways through the activation and 

promotion of NCO pathways is favored in mitotic cells undergoing HR to ensure genomic stability. When 

HR is used to repair DSBs that occur as a result of induced damage, then repair is biased towards 

avoiding COs by promoting NCOs via Synthesis Dependent Strand Annealing (SDSA) and double 

Holliday Junction (dHJ) dissolution.  
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Repair of DSBs through HR requires multiple repair and recombination proteins. Processing of 

DSBs involves resection in which the 5ʹ ends on either side of the break are trimmed back to create 3ʹ 

single-stranded DNA overhangs. This process involves specialized proteins and protein complexes, 

namely Mre11-Rad50-Nbs1, and Exo1 exonuclease (27, 43). The single-stranded DNA tails are then 

coated by the single-stranded DNA binding protein RPA to remove secondary structures. RPA is 

subsequently displaced by Rad51 with the help of Rad51 mediator proteins (44) generating a single-

stranded DNA tail coated with Rad51. This Rad51 nucleoprotein filament executes homology-mediated 

search and invasion of the homologous template. In humans, this template is the sister chromatid, but in 

some cases and some species, like Drosophila, this template can be the homologous chromosome.  

Following invasion, DNA synthesis is carried out by a DNA polymerase (31) (Figure 1.2).  

Following invasion and subsequent DNA synthesis, one of two steps can occur: SDSA or HJ 

formation. If a Holliday junction is formed, cleavage by structure-specific endonucleases, such as 

Mus81/Eme1 or Slx1/Slx4, can result in a CO (31, 45). To prevent the formation of COs helicases can act 

on several DNA intermediates generated during DSB repair via HR. During HR an invading DNA strand 

from the homologous chromosome forms a D-loop as indicated in Figure 1.2. The invading strand can 

then be unwound from the template and annealed to the resected end, resulting in a NCO, a process 

known as synthesis-dependent strand annealing (SDSA) (46). Alternatively, the invading strand can 

undergo second-end capture, leading to the formation of an entwined structure referred to as a double-

Holliday junction (dHJ). The dHJ can be processed by structure-specific endonucleases, possibly giving 

rise to a CO, or acted upon by a helicase/topoisomerase complex in a process known as dissolution, 

generating a NCO (23).  Thus, helicases are essential in the promotion of NCO products either through 

promotion of D-loop disassembly through SDSA or the dissolution of the dHJ, thereby preventing the 

formation of potentially deleterious crossovers during HR-directed repair (23, 25, 31, 39).  

 

FANCONI ANEMIA AND DNA REPAIR 

Prevention of mitotic crossovers, either through SDSA or dHJ dissolution, can be achieved 

through the use of specialized motor proteins known as helicases. DNA helicases are proteins that utilize 



 

8 

the energy of nucleoside triphosphate hydrolysis to transiently convert duplex DNA to single-stranded 

DNA. One family of conserved DNA helicases/translocases, whose members are involved in HR 

mediated repair, are relatives of archaeal Hef (Helicase-associated endonuclease for fork-structured 

DNA) (47–50). The Hef protein from Pyrococcus furiosus contains a conserved  DEAD-box helicase motif 

toward the N-terminus and an endonuclease reminiscent of the nucleases ERCC4 endonuclease in its C-

terminus (51). Hef processes DNA intermediates that are generated during HR, such as forks and four-

way junctions (HJs) (52) either through its helicase activity or nuclease activity. Hef functions as a 

homodimer in cleaving DNA forks and processing Holliday junctions into splayed arms, indicating roles for 

this protein during DNA replication and repair (50, 52). These helicases are members of the SF2 helicase 

superfamily. Relatives of Hef are found as orthologs of the human Fanconi anemia group M (FANCM) 

protein. 

FANCM was first characterized as the yeast gene mph1 from Saccharomyces cerevisiae during a 

mutator screen to genetically characterizes genes of unknown function (53). This initial screen showed 

that deletion of MPH1 led to an increased spontaneous mutation rate. The impact of this protein was not 

fully examined until both the human ortholog, FANCM, and archael Hef were identified and the 

biochemical activity was examined (50, 54, 55). FANCM was identified as a 250 kDa component of the 

FA core complex and identified in an FA patient who carried a bi-allelic mutation. This identification of 

FANCM led to its classification as a new FA complementation group (55, 56).  

There are over 17 FA genes and associated genes classified as FA family members. Mutations in 

any of the FA complement group of genes are associated with the same disorder, Fanconi anemia. 

Fanconi anemia is a hereditary disorder characterized by an increased incidence of cancer, 

developmental abnormalities, and bone marrow failure (55). A classic hallmark of cells from FA patients is 

a heightened sensitivity to DNA interstrand crosslinking (ICL) agents, including the chemotherapeutic 

agents cisplatin and mitomycin C (57). The FA proteins are implicated in directing the activities of other 

repair proteins although the exact role for many of these proteins is still under investigation. For example, 

the mismatch repair protein MLH1 has been shown to be involved in ICL repair via interaction with 

FANCJ, an FA protein recruited to sites of damage by the core complex (58, 59). The core FA complex, 
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consisting of 8 different FA proteins, has also been found to interact with and direct proteins involved in 

HR, such as the BLM complex and BRCA1/2, to sites of DNA damage (60–63). Although still under 

investigation, the primary function for FA pathway is thought to be in repairing ICL damage (64, 65). 

However, the FA proteins are thought to function at various points during the repair of ICLs and can be 

separated into three groups: The FA core complex, the FANCD2/FANCI (ID) complex, and downstream 

targets (66). The downstream FA proteins are made up of FANCD1 (BRACA2), FANCJ (BRIP1/BACH1), 

FACNP (SLX4), and FANCN (PALB2) all of which are associated with recombinational repair (25, 59, 61) 

(Figure 1.3). 

Regulation of the FA pathway is dependent on the ubiquitylation of the ID complex. Upon 

ubiquitination, the ID complex localizes to chromatin during S phase and in response to DNA damage 

induced by mitomycin C (MMC), ionizing radiation, and UV exposure (67–69). Monoubiquitylation, and 

subsequent activation and regulation of the downstream components, occurs through the function of the 

FA core complex. The FA core complex consists of 8 FA proteins (FANC- A, -B, -C, -E, -F, -G, -L, and -M) 

as well as FA associated proteins (FAAP24, FAAP100) (57, 70–74). All members of the FA core complex 

are required for the catalytic subunit, FANCL (75), to function as an E3 ubiquitin ligase (76–79). FANCM, 

unlike the rest of the core complex, is distinctly different in the involvement of ubiquitylation of the ID 

complex. Inactivation of FANCM results in an intact core complex and the partial ubiquitylation of 

FANCD2 (80), leading to the idea that FANCM is partially redundant with another protein, has functions 

outside of the FA pathway (81, 82), or act as a signaling protein that targets the core complex to DNA (70, 

83, 84).  

Interstrand crosslinks (ICLs) are a form of cytotoxic DNA damage that consist of covalent 

linkages between the two strands of dsDNA. The formation of an ICL is typically generated by an 

alkylating agent, such as nitrogen mustard (HN2) or chemotherapeutics like cisplatin. The covalent links 

generated by ICLs prevents the separation of DNA strands and therefore represent a potentially toxic 

block to transcription and replication. Repair of such toxic blocks requires both excision and 

recombinational repair and the presence of repair proteins from multiple repair pathways, including HR. In 

repairing ICLs, the current model for repair proposes the generation of a DSB surrounding the site of ICL 



 

10 

(22). The ICL is then untethered by an endonuclease. Recombinational repair can then be used to correct 

the resulting gap (Figure 1.4).   

FANCM AND HOMOLOGOUS RECOMBINATION 

Although many of these FA proteins are unique to mammals, and to some extent metazoans, one 

protein, FANCM, is a constant in eukaryotic organisms. D. melanogaster, for instance, lacks the full 

complement of FA proteins (54), yet the FA proteins that are present in D. melanogaster are important for 

repair of ICLs. FANCM therefore plays a key role in damage repair and has been implicated in 

recombination. The S. cerevisiae FANCM ortholog, Mph1 (54, 66, 85, 86), has been shown to be involved 

in preventing crossovers (48), and mph1 mutants show hypersensitivity to DNA damaging agents such as 

ionizing radiation (IR) andmethyl methanesulfonate (MMS) (53). Biochemical studies using purified Mph1 

show that it is a DNA helicase capable of unwinding Rad51-coated D-loops (48, 87), and that it can 

process DNA intermediates that form later in repair, including HJs (48, 87, 88). Unwinding of HJs and D-

loops has also been observed using the S. pombe ortholog Fml1 (89). In contrast, no helicase unwinding 

activity has been detected for human FANCM (55, 90). Together, genetic and biochemical studies 

suggest roles for FANCM and its orthologs in HR that are dependent upon their ability to use ATP 

hydrolysis to unwind or remodel DNA structures so as to prevent COs (47, 48, 91–93). 

Biochemical and genetic studies on human FANCM and S. cerevisiae Mph1 suggest a role for 

FANCM in HR and regulation of recombination products. mph1 was originally identified in a mutator 

screen and cells deficient in Mph1 exhibit a hypersensitivity to genotoxins that product DNA adducts and 

stall replication, such as MMS and camptothecin (53). Additional evidence for the role of Mph1 in HR 

comes from DNA damage assays with Mph1 mutant proteins and the HR proteins Rad51, Rad52, and 

Rad55, showing the Mph1 is epistatic to these proteins (94). Deletion or helicase-dead mutants of Mph1 

also affect the rate of spontaneous sister chromatid exchange and DSB-induced crossovers suggesting 

that Mph1 functions in crossover prevention in a novel way independent of the DNA helicases Srs2 and 

Sgs1 (the Blm ortholog) (95, 96). Since Sgs1 and Srs2 suppress crossovers via dHJ dissolution, and in 

vitro evidence demonstrates Mph1 dissociating Rad51 made D-loops in an ATP dependent manner (48), 

it is predicted that Mph1 prevents crossovers during HR by promoting SDSA.  
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FANCM’s proposed role outside of the FA response, and the biochemical evidence that yeast 

FANCM (Mph1) is involved in HR, suggests that the primary role of FANCM is in promoting CO avoidance 

by processing DNA intermediates that occur during DSB repair via HR (48, 87, 97). While this does not 

negate the role for FANCM in ICL repair, it indicates that FANCM may function during various repair 

pathways and with multiple repair proteins to coordinate repair events. Additional evidence for FANCM 

functioning in multiple repair pathways comes from structural studies.  Various motifs and domains in 

FANCM have been suggested to have roles in recruiting additional repair proteins. For example, the C-

terminus of human FANCM, like its Hef ancestor, has an ERCC4-like endonuclease domain. Although a 

critical lysine residue within the endonuclease motif found in ERCC4 domain of FANCM is mutated, and 

no nuclease activity has been detected (55, 70), this domain is involved in protein-protein interactions (84, 

98, 99).  This domain also houses tandem helix-hairpin-helix (HhH)2
 domains that promote both DNA 

binding and protein dimerization with a second (HhH)2 domain found in FAAP24.  

While yeast Mph1 and Drosophila FANCM lack the ERCC4 domain, there are additional motifs 

that promote protein-protein interaction. Yeast Mph1 and human FANCM have several motifs in the C-

terminus that facilitate interaction with chromatin, additional FA proteins, and repair complexes (60, 100, 

101). In human FANCM, two specific motifs (MM1 and MM2) have been shown to allow for interaction 

with the FA complex and the Bloom syndrome helicase (BLM) complex, which is involved in DSB repair 

via HR (60). While these two motifs are not detected in yeastMph1 and Drosophila orthologs, there is still 

the potential for C-terminal interactions with other proteins involved in HR or DNA repair complexes. 

A previous genetic study in our lab has shown that Drosophila Fancm, like its orthologs, is 

involved in the prevention of COs (91). My work focuses on the biochemical role of Fancm in CO 

prevention through unwinding of HR intermediates and the response to DNA damaging agents. To better 

understand the role of the Fancm helicase activity in directing homologous recombination towards a non-

crossover product, I tested the ability of the purified Fancm helicase to act on HR repair intermediates in 

vitro. We generated Fancm ATP hydrolysis mutants in vivo to examine the role of the helicase in 

responding to DNA damage and CO prevention. I also sought to understand the role, if any, of the C-

terminus of Fancm in regulating repair events in Drosophila. To this end, I generated C-terminal 
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truncations of Fancm in vivo and analyzed how these mutants respond to various DNA damaging agents 

and their function in CO prevention. 

Here I show that purified Fancm can unwind duplex DNA in a 3ʹ to 5ʹ direction in an ATP-

dependent manner. Further, I provide evidence that Fancm can disassemble the HR D-loop intermediate. 

In vivo work used to study the role of the helicase activity and the C-terminal domain of Fancm reveals 

that Fancm lacking either helicase activity or the C-terminus is able to prevent some mitotic crossovers 

and respond to DNA damage. 
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FIGURES 

 

Figure 1.1- Pre and Post replication repair -  Red lines depict DNA. Dotted lines indicate leading 
strand synthesis. Long dashed lines depict lagging strand synthesis. Yellow diamonds indicated areas of 
DNA damage.  
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 Figure 1.2- Model for DSB repair Via Homologous Recombination - A.) Initiation of recombination by 
a DSB; B.)  resection of the 5ʹ end at the strand break to generate a 3’ single-stranded DNA tail;  C.) 
Invasion into the homologous chromosome or sister chromatid by one or both of the 3’ ssDNA tail coated 
by the Rad51 recombination protein which generates a displacement loop (D-loop); D.) DNA synthesis, 
primed from the invading 3ʹ end; E.) The other end of the break can anneal to the D-loop in a process 
called second-end capture. The formation of a dHJ can be cut by structure specific nucleases resulting in 
one of two classes of recombination product- crossovers (COs) or non-crossovers (NCOs) or F.) the two 
HJs are migrated together and then decatenated to produce a NCO. G.) Alternatively, the invading strand 
could be displaced through SDSA yielding a NCO. Red and blue lines represent DNA. Dotted lines 
indicated newly synthesized DNA. 
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Figure 1.3 - The Fanconi anemia family repair network - A.) FANCM/MHF/FAAP24 recognize ICL 
lesions. B.) Recruitment of the Core Complex, consisting of FANCA, B, C, D, E, F, G, L and accessory 
components FAAP20 and FAAP100, triggers C.) monoubiquitinate the FANCI and FANCD2 ID complex) 
which allows for localization of downstream effector proteins, such as FANCN, FANCJ, FANCD1 and 
SLX4. FANCM can also recruit the BRT complex (Blm/RMI1/2/Topo3α). 
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Figure 1.4 - Model for ICL removal - A. Prereplication repair of ICLs- A.) Incisions are made on either 
side of the crosslink by an endonuclease. B.) A gap is generated by an exonuclease on one side of the 
crosslink, allowing loading of a single-stranded DNA binding protein, such as Rad51, to load. C.) Rad51 
mediated strand invasion promotes homologous recombination and subsequent DNA synthesis on the 
opposite strand from the crosslink. D.) Incisions are made on either side of the crosslink again, releasing 
a small piece of crosslinked DNA. G.) DNA synthesis and ligation occurs in the gap generated from the 
removal of the crosslinked oligonucleotide. E.) Alternatively, translesion synthesis (TLS) is employed. F.) 
Following TLS, incisions are made on either side of the crosslink, releasing a small piece of crosslinked 
DNA. G.) DNA synthesis and ligation occurs in the gap generated from the removal of the crosslinked 
oligonucleotide. B. Postreplication repair of ICLs- A.) Two replication forks converge near the site of the 
ICL and replication pauses. B.) The replication forks move toward the ICL. C.) Nuclease(s) catalyze an 
incision on both sides of the ICL generating DSB. D.) TLS extends the parental strand across from the 
ICL. E. NER removes the crosslinked oligonucleotide and HR and DNA synthesis repairs the broken 
DNA. Red and blue lines depict DNA strands. Yellow bar indicates the site of a crosslink. Dotted lines 
indicted newly synthesized DNA. Models adapted from (102–105). 
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CHAPTER 2- BIOCHEMICAL ANALYSIS OF THE 

D. MELANOGASTER FANCM ORTHOLOG 
 

INTRODUCTION 

As discussed in Chapter 1, homologous recombination (HR) is critical in genome maintenance 

and is required for the accurate repair of DNA double-strand breaks (DSBs) as well as a variety of other 

lesions (1–3). When a DSB occurs, resection of the broken ends by an exonuclease generates a 3ʹ 

single-stranded DNA tail. Rad51 coated 3ʹ single-stranded DNA tail mediates strand pairing and invasion 

with the homologous chromosome. The process of strand invasion generates a displacement loop (D-

loop). DNA synthesis occurs using the homologous template, allowing for accurate repair of the broken 

and resected end. The repair process can then diverge into a number of potential pathways resulting in 

different recombinational products: Noncrossovers (NCOs) with the conservation of the original parental 

DNA molecules, or the reciprocal exchange of DNA flanking the break site generating a crossover (CO) 

product (see Figure 1.2) (1, 4).  

The formation and processing of D-loop-like structures is a key step in the formation of a 

noncrossover versus crossover production, as discussed in Chapter 1. In mitotic cells, the promotion of 

NCOs is preferred and can be achieved through synthesis-dependent strand annealing (SDSA) or double 

Holliday junction (dHJ) dissolution during DSB repair via HR (5). Important throughout this process are a 

class of specialized proteins known as DNA helicases/translocases.   

DNA helicases are specialized motor proteins that use the energy derived from hydrolysis of 

nucleotide triphosphates, usually ATP, to bind DNA and break the hydrogen bonds between the two 

strands of duplex DNA, thus facilitating remodeling of DNA and DNA-protein complexes  (6, 7). Helicases 

comprise the largest class of enzymes and are involved in virtually all biological processes involving 

nucleic acids (8). Sequence analysis conducted by Koonin and Gorbalenya, as well as 
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structural/functional analysis by Wigley, is used to classify helicases into one of six helicase superfamilies 

(SF) (6, 9). Helicases can be either be classified as toroidal, usually hexameric structures, or not. Toroidal 

enzymes, such as the MCM replicative helicases, belong to SF3 and SF6.  SF1 and SF2 house non-ring 

forming enzymes and will be the focus of the helicases discussed here. Helicases belonging to SF1 and 

SF2 share a highly similar catalytic core yet perform distinct functions and interact with a broad class of 

substrates. 

A distinct characteristic of SF1 and SF2 helicases is the conserved helicase core. This core 

contains several conserved sequence motifs (9). Some of the highest level of sequence conservation is 

within the motifs that coordinate binding and hydrolysis of the nucleoside triphosphate. This includes the 

Walker A motif, responsible for binding of the nucleoside triphosphate, and therefore essential for the 

hydrolysis of NTP. Mutations in helicases have been linked to multiple disease states such as cancer, 

developmental abnormalities, and degenerative diseases (10, 11). Various medical disorders result from 

defective helicases that impair DNA repair. The Bloom helicase (BLM), for instance, is a member of the 

RecQ SF2 helicase family. Mutations in BLM result in Bloom syndrome, a disorder characterized by short 

stature, developmental abnormalities, and a predisposition to cancer. BLM functions within a complex of 

TOP3A, RMI1, and RMI2 to migrate and dissolve D-loop intermediates that are formed during DSB repair. 

Mutations in BLM lead to an increased incidence of COs and, subsequently, gross chromosomal 

rearrangements. The prevention of COs in mitotically dividing cells is essential to ensure genomic 

stability. Various proteins, including helicases, act to promote the formation of NCOs and prevent COs.  

One such helicase involved in the promotion of NCOs is FANCM. FANCM is one member of a 

class of proteins that, when defective, is linked to the disease Fanconi Anemia (FA) (12). FA is 

characterized by bone marrow deficiency, developmental abnormalities, and a predisposition to cancer. In 

addition, cells from FA patients are hypersensitive to DNA crosslinking agents (13).  FANCM contains 

classic motifs related to DEAH box helicases and is known to be a component of the FA core complex 

responsible for catalyzing the monoubiqutination of FANCD2/I, an important step in the repair of 

interstrand crosslinks (ICLs) (13). 
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Although the primary repair response for which FANCM is known is in the repair of ICLs via 

recruitment the FA core components (13–15), there may be additional aspects of DNA repair in which it is 

involved. For instance, mutations in the Walker A box increase cell sensitivity to crosslinking agents but 

did not greatly affect the ubiquitination of FANCD2/I (13). This difference indicates that the ATPase 

activity of FANCM is not necessary for recruitment of additional components, but that the motor activity of 

the protein may be required during later steps of repair. 

One possibility for the involvement of FANCM in repair of ICLs coordinating SDSA during the 

repair of DSBs generated when excising the ICL (Figure 1.4). During the repair of an ICL, a DSB may be 

generated (16, 17). As discussed earlier, the DSB repair pathway generates a D-loop which can be 

processed through SDSA, producing a noncrossover product, favored during mitotic recombination. The 

S. cerevisiae FANCM ortholog, Mph1 (18–21), has been shown to be involved in preventing crossovers 

(22), and mph1 mutants show hypersensitivity to DNA damaging agents such as ionizing radiation (IR) 

and  methyl methanesulfonate (MMS) (23). Biochemical studies using purified Mph1 show that it is a DNA 

helicase capable of unwinding Rad51-coated D-loops (22, 24), and that it can process DNA intermediates 

that form later in the repair pathway, including HJs (22, 24, 25). Unwinding of HJs and D-loops has also 

been observed using the S. pombe ortholog Fml1 (26). In contrast, no helicase unwinding activity has 

been detected for human FANCM (27, 28). Together, genetic and biochemical studies suggest roles for 

FANCM and its orthologs in HR that are dependent upon their ability to use ATP hydrolysis to unwind or 

remodel DNA structures so as to prevent CO products (22, 29–32). 

A previous genetic study in our laboratory has shown that Drosophila Fancm, like its orthologs, is 

involved in the prevention of COs (29). This study tested the role of Fancm in CO prevention and 

response to DNA damaging agents. To better understand the role of the putative Fancm helicase activity 

in directing homologous recombination towards a non-crossover product, we tested the ability of the 

purified Fancm helicase to act on HR repair intermediates in vitro. Here we show that purified Fancm can 

unwind duplex DNA in a 3ʹ to 5ʹ direction in an ATP-dependent manner. Further, we provide evidence that 

Fancm can disassemble the HR D-loop intermediate.  
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MATERIALS AND METHODS 

Expression and purification of Drosophila FANCM 

Truncated FANCM, lacking 840 C-terminal residues (FANCMΔ), was cloned into pLIC-HisMBP 

using InFusion cloning (Clontech), with primers FAM1 and FAM2 (Table 2.1) and cDNA (DGRC). The 

K84M (FANCMΔKM) mutation was introduced into FANCMΔ using QuickChange Site-Directed 

Mutagenesis kit (Agilent Technologies) with the pLIC-HisMBP-FANCMΔ construct as the template and 

the KMQC primer (Table 2.1). The protein expression plasmid was maintained in E. coli BL21DE3/pLysS 

and protein expression was induced by auto induction (33, 34). Briefly, bacterial cultures were grown in 

three liters of ZYM5052 autoinduction media (34) at 25°C for 24 hours. Cells were harvested by 

centrifugation, washed with 20 mL of STE buffer (10 mM Tris-HCl (pH 8.0), 1 mM EDTA, and 100 mM 

NaCl), harvested again by centrifugation and stored as a cell pellet at −80°C until use. 

Drosophila FANCMΔ and FANCMΔKM were purified to near homogeneity (Figure 2.1) using Ni-

NTA resin (Qiagen) and Amylose resin (New England Biolabs) to take advantage of the two affinity tags 

present on the fusion protein. Cells were lysed in buffer L (500 mM NaCl, 50 mM Tris-HCl (pH 7.0), 10% 

glycerol) with 100 mM PMSF, EDTA-free protease inhibitor cocktail, 0.1% triton X-100 and 1 mg/mL 

lysozyme by incubation at 4oC for 45 minutes and then sonicated to reduce viscosity in 10 second bursts. 

Cleared lysate was collected by centrifugation, incubated with 3 mL Ni-NTA resin, and 12 column 

volumes of Buffer L were flowed through the column. Protein was eluted using 300 mM imidazole in 

buffer L and protein was detected using a Bradford assay (Biorad).  Peak fractions were concentrated 

and the buffer was exchanged with buffer M (200 mM NaCl, 20 mM Tris-HCl (pH 7.4), 1 mM EDTA) using 

Amicon Ultra, Ultracel 50K centrifugal filters (Millipore). The protein was then bound to a 1.5 mL Amylose 

column, washed with 10 column volumes of buffer M, and the protein was eluted in buffer M with 50 mM 

maltose and 10 mM dextrose. Protein was detected by Bradford assay and dialyzed against storage 

buffer (150 mM NaCl, 50 mM Tris-HCl (pH 7.0), 10% glycerol, 0.1 mM EDTA) and stored at -20°C. 

Protein purity was evaluated using SDS-PAGE. 
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DNA Substrates 

Synthetic oligonucleotides (Table 2.1) used for DNA substrate preparation were PAGE purified by 

the supplier (IDT). Radioactively labeled substrates were prepared by incubating 10 pmols 

oligonucleotide with 3 μM [γ-32P]ATP and T4 polynucleotide kinase (New England Biolabs) at 37°C for 50 

minutes followed by a 20 minute incubation at 70°C to inactivate the enzyme. Labeled oligonucleotide 

was then annealed to its complement oligonucleotide in a ratio of 1:1.3 labeled:unlabeled oligonucleotide 

for fork substrates or 1:1.3:1.3 labeled:unlabeled oligonucleotide for D-loop substrates. Annealing 

occurred in buffer A (50 mM NaCl, 10 mM Tris-HCl (pH 7.5), 1 mM MgCl2) by heating at 95°C for 5 

minutes and slowly cooling to room temperature. Hybridized DNA substrates were separated from 

unannealed oligonucleotide and free [γ32P]ATP using a Sephadex G-50 column (Pharmacia).  

ATPase assays 

ATPase reactions were conducted using 212 nM of either FANCMΔ or FANCMΔKM. Reaction 

mixtures (20 µL) contained buffer C (25 mM Tris-HCl (pH7.5), 20 mM NaCl, 5 mM 2-mercaptoethanol, 10 

μg/mL bovine serum albumin), M13mp18 ssDNA titrated from 0 to 120 nM (nucleotide phosphate) and 3 

mM MgCl2. All reagents except ATP were mixed and allowed to incubate on ice. 3 mM ATP with trace 

amounts (~60 nCi/μL) of [γ-32P] ATP was added to initiate the reaction and incubation was at 37°C for 5 

minutes.  Aliquots (5 μL) were removed, and stop solution (5 μL) was added to a final concentration of 17 

mM EDTA, 3.4 mM ATP, and 3.4 mM ADP.  Of this mixture, 2 μL were spotted onto a cellulose matrix 

TLC-PET plate (Sigma) and developed in a 0.8 M LiCl/1M Formic acid solution. Plates were allowed to 

dry, exposed on a phosphor storage screen, and imaged using a Phosphorimager (Amersham 

Biosciences). All images were quantified using ImageQuant software.   

Helicase Assays 

Steady-state helicase unwinding reaction mixtures (20 μL) contained 0.1 nM radiolabeled DNA 

substrate (Table 2.1), 25 mM Tris-HCl (pH 7.5), 3 mM MgCl2, 20 mM NaCl, 5 mM 2-mercaptoethanol 

(βME) and 10 μg/mL bovine serum albumin. Protein was titrated from a concentration of 0.5 nM to 212 

nM. Reactions were initiated by the addition of 3 mM ATP, incubated at 37oC for 15 minutes and stopped 

with the addition of 10 μL of helicase stop solution (37.5% glycerol, 50 mM EDTA, 0.3% SDS, 0.5x TBE 
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and 0.1% BPB.) All reactions were resolved on 7.5% non-denaturing polyacrylamide gels containing 0.5X 

TBE and 0.1% SDS, at room temperature for 2 hours at 180 v. Gels were transferred to Whatman paper, 

allowed to soak for 30 minutes in drying buffer (40% methanol, 10% acetic acid, 3% glygerol), and dried 

for 6 hours using a gel dryer. Dried gels were exposed on a phosphor storage screen and imaged using a 

Phosphorimager (Amersham Biosciences). All images were quantified using ImageQuant software. 

Fluorescence Anisotropy 

Reaction mixtures (50 μL) contained 10 nM fluorescently 5 labeled 6-FAM DNA substrate (Table 

2.1), 25 mM Tris-HCl (pH7.5), 3 mM MgCl2, 20 mM NaCl, 5 mM βME and 10 μg/mL bovine serum 

albumin. The fluorescence anisotropy was measured as a function of Fancm concentration from 1 nM to 

212 nM. Reactions were incubated at 25°C for 5 minutes. Fluorescence anisotropy was measured using 

a Jobin Yvon Horiba Fluorolog-3 fluorometer with a Wavelength Electronics temperature control box. 

Labeled dsDNA substrates were excited at 495 nm and emission was measured at 520 nm. Fluorescence 

anisotropy was calculated using the software provided by the instrument.  

RESULTS AND DISCUSSION 

Fancm is a ssDNA-dependent ATPase 

Previous genetic studies of Drosophila Fancm indicated a modest role for Fancm in SDSA and in 

preventing mitotic crossovers (29). This study used a gap repair assay in which SDSA can be 

distinguished from other types of repair, such as non-homologous end joining. In this assay a gap is 

generated by excision of a P element on the male X chromosome. This element carries an allele of white, 

apricot, that results in an orange eye color instead of the red wild-type color. Excision generates a 14 kb 

gap that is repaired using the sister chromatid with an intact P element as a template. Restoration of the 

white gene is the product if two-ended SDSA occurs. Aberrant SDSA disrupts the apricot allele and 

results in a white eye phenotype. In this way, involvement in SDSA can be measured. When Kuo et al. 

measured SDSA events (i.e. red eyes) Fancm mutants decreased SDSA by 50% compared to wild-type 

controls, indicating a reduced ability to complete repair by SDSA.  

This modest role of Fancm in SDSA led us to investigate the role for the Fancm helicase in 

directing homologous recombination towards a non-crossover product through D-loop displacement. 
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Human FANCM and its orthologs in yeast have been shown to dissociate D-loops (22, 26, 31, 35). To 

further understand the role(s) of Fancm in DNA repair, we investigated the biochemical properties of 

purified Fancm.  

We were unable to express and purify full-length Fancm so we overexpressed a truncated form, 

FancmΔ, and a form of this truncated protein with a mutation in the Walker A motif, FancmΔKM, as His6x-

MBP tagged proteins in E. coli and purified each to near homogeneity (Figure 2.1). The Walker A motif is 

a conserved motif characterizitic of SF2 helicases and binds the triphosphate tail of ATP and 

consequently plays a role in ATP hydrolysis (36, 37). This truncation was generated to encompass the 

helicase domain and is based off of purified truncations of the fission yeast ortholog, Fml1 (26). The 

plasmid for construction was made so that expression of the protein would include the amino-terminal 649 

amino acids of Fancm (Figure 2.2).  

We confirmed the ATPase activity of purified FancmΔ and measured several biochemical 

parameters to characterize this activity. FancmΔ was found to have 5X greater ATPase activity at 37°C 

than 25°C (Figure 2.3). The ATPase activity also increased with time (Figure 2.4) and NaCl concentration 

(Figure 2.5), although ATPase activity declined at NaCl concentrations above 100 nM. For the purposes 

of this study, we chose conditions under which the ATPase activity was in a linear range. To this end, 

activity of Fancm was measured at 37°C for 5 minutes in 35 mM NaCl.  

There was no detectable ATP hydrolysis in the absence of DNA whereas the ATPase activity of 

the purified protein was higher in the presence of circular M13 ssDNA compared to that of dsDNA, 

confirming that the protein is a DNA-dependent ATPase (Figure 2.6). In addition, we measured the Keff 

(2.8 µM) and the Vmax (65.3 pmols) for ssDNA and dsDNA, Keff (5.7 µM) Vmax (40.1 pmols), under these 

conditions, further confirming that ssDNA stimulates ATPase activity more strongly than dsDNA.  As 

expected, the FancmΔKM mutant lacked ATPase activity (Figure 2.6). Taken together, these results 

indicate that Fancm is a DNA-dependent ATPase and this activity is dependent on the lysine residue 

found in the canonical helicase motif I. ATPase activity stimulated by ssDNA as well as dsDNA has also 

been reported for human FANCM and yeast Fml1, while Mph1 only exhibits ssDNA-dependent ATPase 

activity (24, 27, 38). Fluorescence anisotropy was used to determine if differences in ATPase stimulation 
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were a result of DNA binding (Figure 2.7 A). No significant differences in binding of Fancm to ssDNA as 

compared to dsDNA were detected. 

Fancm is a 3ˈ to 5ˈ DNA helicase 

To determine if Drosophila Fancm is active as a helicase, unwinding assays were performed 

using partial duplex DNA substrates under steady-state conditions. Purified protein was incubated with 

DNA substrate and the reaction was initiated by the addition of ATP. The wild-type (FancmΔ) helicase 

completely unwound a 15 bp partial duplex substrate with a 25 bp 3ˈ-ssDNA tail (15/40) (Figure 2.8 A, 

lane 3). There was no detectable unwinding of the substrate at an equal concentration of mutant protein 

FancmΔKM (Figure 2.8 A, lane 4). When the same reaction was conducted with a 15 bp partial duplex with 

25 bp 5ˈ-ssDNA tail (-15/40), the wild-type helicase failed to unwind the substrate (Figure 2.8 B). This 

represents a directional bias for unwinding and classifies Fancm as a 3ˈ to 5ˈ helicase, consistent with 

previous work on the yeast ortholog Mph1 (24). In addition, these data support the conclusion that Fancm 

cannot unwind blunt-ended duplex DNA as no unwinding of the -15/40 substrate was detected even at 

longer incubation times.  

As shown in Figure 2.8 C, no unwinding of the 15/40 substrate was detected when either ATP or 

MgCl2 were omitted from the reaction. Moreover, unwinding was undetectable when the non-hydrolyzable 

ATP analogue AMP-PNP was substituted for ATP. Taken together, these data indicate that unwinding by 

the Fancm helicase is dependent upon the ability of the protein to hydrolyze ATP and the FancmΔKM 

mutant is a ‘helicase-dead’ protein. 

Fancm catalyzes limited unwinding reaction 

Further testing of the helicase activity of purified Fancm revealed a limit in unwinding longer 

regions of duplex DNA. A substantial decrease in unwinding activity was observed using a 20 bp partial 

duplex DNA substrate with a 20 bp 3ˈ-ssDNA tail (20/40). Only 60% of the DNA substrate was unwound 

by the wild-type helicase at a concentration of protein that unwound all of the 15/40 partial duplex 

substrate (Figure 2.9 A). To exclude the possibility that the reduced length of the free 3ˈ-tail was 

responsible for this result, we generated a 20 bp partial duplex substrate with a 25 bp 3ˈ-ssDNA tail 
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(20/45). As seen with the 20/40 substrate, Fancm was only able to unwind 60% of the 20/45 substrate 

(Figure 2.9 A). 

We also measured unwinding activity using two splayed-arm substrates, one with a 3ˈ-single 

stranded region of 25 bp, and one with a 3ˈ-singled stranded region of 20 bp; both substrates had a 15 bp 

duplex region. In each case the substrates were completely unwound, indicating that neither the length of 

the 3ˈ-tail nor the complexity of the substrate affects unwinding. An additional splayed arm substrate with 

a 25 bp duplex region and 25 nt 5ˈand 3ˈ-ssDNA arms was also tested (Figure 2.9 B), with no detectable 

unwinding. Although Fancm was able to unwind a 20 bp partial duplex, the increase from 20 bp to 25 bp 

reduced unwinding to undetectable levels under these conditions. It is possible that Fancm is able to 

unwind greater than 20 bp partial duplexes under different conditions as discussed later in this chapter.  

Based on in vivo data (29), we hypothesized that Fancm may be involved in SDSA with a role in 

displacing D-loops. Previous studies have shown that the yeast ortholog, Mph1, can unwind the D-loop 

structures generated during recombination (22). To test the ability of Fancm to unwind complex DNA 

structures we constructed substrates resembling a recombination D-loop intermediate. We incubated 

Fancm with a 40 nt bubble-like structure with 25 bp of duplex on either end. As expected from previous 

studies, Fancm does not unwind the bubble (Figure 2.10), as the duplex region on either end of the 

bubble is longer than 20 bps.  

We next tested if Fancm can unwind a D-loop by incubating Fancm with the bubble structure 

containing an ‘invading’ homologous strand in which the duplex region was limited to 15 bp. To determine 

whether the position of the invading strand had an effect on unwinding, the invading strand was 

positioned at the ‘front’, ‘middle’ and ‘end’ of the homologous template strand within the bubble (Figure 

2.11 A). Fancm catalyzed robust unwinding of substrates with the invading strand positioned in the 

“middle” and at the “end” of the bubble. However, Fancm unwound the substrate with the invading strand 

positioned at the “front” with much lower efficiency.  

The decrease in substrate unwound as the position of the duplex region is moved is most likely 

an inability of Fancm to access the duplex region rather than the length of the duplex. The reduced 

unwinding of the substrate with the invading strand in the ‘front’ position is likely due to the lack of ssDNA 
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region to which the helicase can bind to initiate unwinding. The “middle” and “end” substrate both have 

regions that mimic the partial duplex with a ssDNA 3ʹ tail.  However, the “front” position substrate does not 

have a partial duplex with a ssDNA 3ʹ tail, but instead has a 5ʹ ssDNA tail. As shown above, Fancm does 

not catalyze unwinding of a substrate with a 5ʹ -ssDNA tail (See Figure 2.8 B). However, in this more 

complex substrate there is an open ssDNA region on the opposite strand of the bubble. Fancm most 

likely unwinds enough of the duplex arm, generating a 3ʹ tail and thereby catalyzing reduced unwinding of 

the invading strand. When a 5ʹ-ssDNA tail was added to more closely mimic an “invading strand”, no 

difference in unwinding was detected (Figure 2.11 B). 

To test if the initial rate of the reaction or the duration of the reaction affected unwinding, the rate 

of unwinding for each substrate was determined using 10 nM and 150 nM protein at various time points 

for the 15/40 and 20/40 DNA substrates (Figure 2.12 A and B). At 10 nm protein concentration (Figure 

2.12 A), FancmΔ was able to fully unwind the 15/40 substrate over the course of the experiment. Under 

the same conditions FancmΔ was only able to partially unwind the 20/40 substrate. The same was 

observed for reactions using 150 nm protein (Figure 2.12 B). While the length of time did increase the 

amount of 20/40 substrate unwound -- 60% at 15 minutes to 78% at 40 minutes -- FancmΔ was unable to 

fully unwind the 20/40 substrate. There are many factors that might influence Fancm’s ability to catalyze 

unwinding of longer duplex regions. The structure of the protein, protein interactions, and even 

posttranslational modifications could influence unwinding of DNA by Fancm.   

To determine if the differences seen in unwinding were a result of DNA binding to the substrates, 

and if there was a difference in binding efficiency between FancmΔ and FancmΔKM, we used fluorescence 

anisotropy to measure the formation of DNA-protein complexes. As seen in Figure 2.7 A and B, FancmΔ 

and FancmΔKM are capable of binding DNA. However large deviations from the mean make it difficult to 

assess whether there is preference in DNA binding. At this time, it is not clear whether preference of 

Fancm for certain structures reflects the differences in unwinding. One potential area of development for 

studies of Fancm is to measure the binding of Fancm to the structures mentioned in this study, along with 

structures with longer duplex regions. If Fancm is indeed able to bind structures with long duplex regions 
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with the same efficiency, then the inability to unwind greater than 20 bp of duplex DNA could reflect some 

mechanistic response of Fancm to limit unwinding. 

The data presented here indicate that Fancm as a 3ˈto 5ˈ DNA helicase able to unwind up to 20 

bp of partial duplex DNA substrates in an ATP-dependent manner. In addition, the enzyme is able to 

dissociate short duplex regions in more complex D-loop like structures. The failure of the protein to 

unwind longer duplex regions may be the result of in vitro conditions or lack of an important accessory 

protein. Efforts to detect unwinding of longer duplex regions under other conditions (e.g., different salt 

concentration) or in the presence of a ssDNA binding protein were unsuccessful. 

Mph1 and Fml1 have both been shown to be active helicases unwinding up to 100 bp of duplex 

DNA (24). On the other hand, human FANCM has been shown to migrate D-loops and HJs, but no 

unwinding activity has been reported (24, 26–28, 35, 39). The data presented here suggest that 

Drosophila Fancm is similar to both the yeast and human orthologs but unique. Unlike the human 

ortholog, it is an active helicase, yet we could not detect unwinding of longer duplex regions like the yeast 

orthologs. Although we were not able to detect DNA unwinding by the protein of duplex regions greater 

than 20 bp, there may be other factors that can contribute to an increase in helicase activity. The 

unwinding activity of Mph1 was stimulated upon the addition of RPA, a heterotrimeric ssDNA binding 

factor (24), and it’s possible that other proteins may also stimulate the unwinding activity of Fancm. We 

cannot rule out the possibility that the C-terminal region of Fancm may regulate the helicase activity of the 

protein and that greater tracts of DNA can be unwound by full length Fancm. 
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FIGURES 

Table 2.1-List of oligonucleotides used in this study. 

NAME SEQUENCE 

FAM1 AGTGGATAcCGGATCATGGATGTGAATTGGATGGACG 

FAM2 GCTCGAATTCGGATCTCATCAGCTCATTTGGTAGGGTTTTATTC 

KMQC GGGAATGACCTTCATCGCCGCGGTGGTTATG 

40 GCTAGCAGTAGCCAGCATCGAACGTACGATCGGTAACGTA 

45 GCTAGCAGTAGCCAGCATCGAACGTACGATCGGTAACGTAATGCA 

15 CTGGCTACTGCTAGC 

20 CGATGCTGGCTACTGCTAGC 

-15 TACGTTACCGATCGT 

SA25 GACGCTGCCGAATTCTGGCGTTAGGAGATACCGATAAGCTTCGGCTTAAA 

SA25a ATCGATGTCTCTAGACAGCACGAGCCCTAACGCCAGAATTCGGCAGCGTC 

A1 
CATTGCATATTTAAAACATGTTGGAAGGCTCGATGCATGCTGATAGCCTACTAGTGCTGC
TGGCTTTCAAATGACCTCTTATCAAGTGAC 

A2 
GTCACTTGATAAGAGGTCATTTGAATTCATGGCTTAGAGCTTAATTGCTGAATCTGGTGC
TGGGATCCAACATGTTTTAAATATGCAATG 

Front TCCCAGCACCAGATT 

Middle CAGCAATTAAGCTCT 

End GCTCTAAGCCATGAA 

SAL TTGATAAGAGGTCATCTGGCTACTGCTAGC 

SAS TACGTTACCGATCGTTTGATAAGAGGTCAT 

56F GACGCTGCCGAATTCTGGCGTTAGGAGATACCGATAAGCTTCGGCTTAA 

DS TTAAGCCGAAGCTTATCGGTATCTCCTAACGCCAGAATTCGGCAGCGTC 

3OH CCTAACGCCAGAATTCGGCAGCGT 

5OH TTAAGCCGAAGCTTATCGGTATCT 
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Figure 2.1 - Purification of Fancm∆ and Fancm∆KM - Fancm∆ and Fancm∆KM were purified as 
described in “Materials and Methods”. A.) Fancm∆; B.) Fancm∆KM. 100 ng were loaded for each protein.  
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Figure 2.2 - Schematic of Fancm - Domains and motifs present in human FANCM are marked. 
Conserved domains or motifs in Drosophila melanogaster are noted. Truncated forms depicted are with 
an N-terminal MBP tag.  
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Figure 2.3 - ATP hydrolysis by Fancm as a function of temperature - Fancm ATPase activity was 
examined as a function of temperature using 212 nM Fancm∆ and M13mp18 ssDNA as the DNA co-
factor. All reactions were incubated at 37° (■) or 25° (●) for the time indicated. The average values from 
at least three independent experiments were plotted. Error bars represent standard error about the mean. 
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. 

Figure 2.4 - ATP hydrolysis by Fancm as a function of time - Fancm ATPase activity was examined 
as a function of time using 212 nM Fancm∆ and M13mp18 ssDNA as the DNA co-factor. All reactions 
were incubated at 37° for the time indicated. The average values from at least three independent 
experiments were plotted. Error bars represent standard error about the mean. 
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Figure 2.5 - ATP hydrolysis by Fancm as a function of NaCl concentration - (nM). Fancm ATPase 
activity was examined as a function of salt concentration using 212 nM Fancm∆ and M13mp18 ssDNA as 
the DNA co-factor. All reactions were incubated at 37° for 5 mins. The average values from at least three 
independent experiments were plotted. Error bars represent standard error about the mean. 
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Figure 2.6 - ATP hydrolysis by Fancm - Fancm ATPase activity was examined as a function of DNA 
concentration using either M13mp18 ssDNA (□◊) or dsDNA (■♦) as the DNA co-factor. All reactions were 
incubated at 37° for 5 minutes. □ ■ 212 nM Fancm∆ (∆) on ssDNA; ◊ ♦ 212 nM Fancm∆KM (∆KM). The 
average values from at least three independent experiments were plotted. Error bars represent standard 
error about the mean (ssDNA) or standard deviation about the mean (dsDNA). 
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Figure 2.7 - Fancm binding of DNA substrates as measured by fluorescence anisotropy - Binding 
reactions were performed as described under “Materials and Methods”. The indicated concentrations of 
Fancm were incubated with 10 nM of the indicated substrate. Colored strand on each substrate 
represents the 5’ fluorescent strand. Quantitative data from at least 3 experiments were plotted as the 
average for each protein concentration. Error bars represent the standard deviation about the mean. 
Oligonucleotides used to make these substrates can be found in Table 2.1. A.) Comparison of substrate 
bound between FancmΔ on dsDNA (■) (56F/DS), ssDNA (■)(56F); and FancmΔKM on dsDNA (□) 
(56F/DS), ssDNA (□)(56F);  B.) Comparison of substrate bound between FancmΔ on  a 25 bp duplex 
region with a 24 nt 5ʹ overhang (●)(56F/5OH);  25 bp duplex region with a 3ʹ 24 nt 3ʹ overhang (●) 
(56F/3OH); and a 24 bp duplex region with 25 nt 3ʹ and 5ʹ ssDNA arms (●); and FancmΔKM on  a 25 bp 
duplex region with a 24 nt 5ʹ overhang (○)(56F/5OH);  25 bp duplex region with a 3ʹ 24 nt 3ʹ overhang (○) 
(56F/3OH); and a 24 bp duplex region with 25 nt 3ʹ and 5ʹ ssDNA arms (○); 
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 Figure 2.8 - Fancm unwinds duplex DNA in an ATP dependent manner - A.) Protein (212 nM) was 
incubated with a 5' radiolabeled 15 bp partial duplex with a 25 nucleotide 3' overhang (15/40). B.) Fancm 
is a 3'-5' DNA helicase. Protein (212 nM) was incubated with a 5' radiolabeled 15 bp partial duplex with a 
25 nucleotide 5' overhang (-15/40). Lane 1 and 6 (S) are boiled loading controls indicating ssDNA. Lanes 
2 and 7 (0) are no protein controls. Fancm∆ (lane 3 and 8, ∆); Fancm∆KM (lane 4 and 9, ∆KM); maltose 
binding protein (MBP) (lane 5 and 10, MBP). C.) Protein (212 nM) was incubated with a 5' radiolabeled 15 
bp partial duplex with a 25 nucleotide 3' overhang (15/40). Lane 1 is a boiled loading control indicating 
ssDNA (S); Lanes 2, 6, 8, and 10 are no protein controls (0); Lanes 3, 7, 9, and 11, are Fancm∆ (∆); Lane 
4 is Fancm∆KM (∆KM); Lane 5, maltose binding protein (MBP) was used a negative control. Reactions 
were performed at 37° for 15 minutes in the presence (+) or absence (-) of ATP, AMP-PNP, and MgCl2. 
Colored strand represents radiolabeled strand. Substrate oligonucleotides are in Table 2.1. 
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Figure 2.9 - Unwinding of partial duplex DNA substrates by Fancm - Helicase reactions were 
performed as described under “Materials and Methods”. The indicated concentrations of Fancm were 
incubated with 0.1 nM of the indicated substrate for 15 minutes. Colored strand on each substrate 
represents radiolabeled 5’ strand. Quantitative data from at least 3 experiments were plotted as the 
average for each protein concentration. Error bars represent the standard error about the mean. 
Oligonucleotides used to make these substrates can be found in Table 2.1. A.) Comparison of the fraction 
of substrate unwound with partial duplex substrates of different duplex lengths. ● 15 bp duplex region with 
a 25 nt overhang. ● 20 bp duplex region with a 20 nt overhang; ○, 20 bp duplex region with a 25 nt 
overhang; ♦ 25 bp duplex region with 25 nt single stranded arms. B.) Unwinding of splayed arms by 
Fancm▼ 15 bp duplex region with 25 nt single stranded 3’arm and a 15 nt single stranded 5’ arm 
(SAL/40);  ▲15 bp duplex region with 15 nt single stranded 3’arm and a 20 nt single stranded 5’ arm 
(SAS/40). 
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Figure 2.10 -  Unwinding of bubble-like structure by Fancm - Bubble structure was made using a two 
90 nt oligonucleotides with 25 bp of complementary ends with a 40 nt non-complementary middle 
(A1/A2). Colored strand on each substrate represents radiolabeled 5’ strand. Quantitative data from at 
least 3 experiments were plotted as the average for each protein concentration. Error bars represent the 
standard error about the mean. Oligonucleotides used to make these substrates can be found in Table 
2.1. 
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Figure 2.11 - Unwinding of D-loop intermediate substrates by Fancm - ● Front; ■ Middle; ♦ End. 
Bubble structures were made using a two 90 nt oligonucleotides with 25 bp of complementary ends with a 
40 nt non-complementary middle (A1/A2). B.) Unwinding of D-loop intermediate substrates by Fancm. 
Bubble structures were made using a two 90 nt oligonucleotides with 25 bp of complementary ends with a 
40 nt non-complementary middle. ♦ End; ♦ End with a 15 nt  5’ -ssDNA tail. Colored strand on each 
substrate represents radiolabeled 5’ strand. Quantitative data from at least 3 experiments were plotted as 
the average for each protein concentration. Error bars represent the standard error about the mean. 
Oligonucleotides used to make these substrates can be found in Table 2.1. 
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 Figure 2.12 - Timecourse unwinding of partial duplex DNA substrates by Fancm - Helicase reactions 
were performed as described under “Materials and Methods”. The indicated concentrations of Fancm 
were incubated with 0.1 nM of the indicated substrate for indicated time. Colored strand on each 
substrate represents radiolabeled 5’ strand. Quantitative data from at least 3 experiments were plotted as 
the average for each protein concentration. Error bars represent the standard error about the mean. 
Oligonucleotides used to make these substrates can be found in Table 2.1. A.) Comparison of the fraction 
of substrate unwound with 10 nm FancmΔ on partial duplex substrates at the indicated time points of 
different duplex lengths. ■ 15 bp duplex region with a 25 nt overhang (15/40); ■ 20 bp duplex region with 
a 20 nt overhang (20/40). B.) Comparison of the fraction of substrate unwound with 150 nm FancmΔ on 
partial duplex substrates at the indicated time points of different duplex lengths. ●15 bp duplex region with 
a 25 nt overhang (15/40); ● 20 bp duplex region with a 20 nt overhang (20/40).   
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CHAPTER 3- GENETIC ANALYSIS OF D. MELANOGASTER FANCM 

INTRODUCTION 

DNA damage repair is essential to maintain both genome stability and integrity. As discussed in 

Chapter 1 and 2, helicases play an important role in facilitating repair. One network for repair is the 

Fanconi anemia (FA) family of repair proteins. Gene products in the FA repair pathway are involved in 

signaling and DNA-processing. Various DNA damage repair response networks are associated with the 

FA repair pathway. For instance, BRCA1, ATR, and BLM have all been shown to interact with one or 

more members of the FA response pathway (1–5). Key in the FA network is the FANCM helicase. 

FANCM is a conserved helicase with ATP-dependent DNA translocase activity. As a component of the FA 

repair pathway, FANCM has been shown to mediate the interaction of FA proteins with DNA (6, 7). 

The structure of FANCM lends support to the idea that the protein has a role in facilitating protein-

protein interaction. In addition to the conserved DEAH helicase domain, the C-terminus of FANCM 

contains several motifs that facilitate protein-protein interaction and an ERCC4-like endonuclease domain 

(8, 9), classifying FANCM as an XPF-ERCC1 family protein. The ERCC4-like domain, while catalytically 

inactive, helps facilitate interaction with FAAP24, an interaction that helps stabilize FANCM on chromatin 

and assists in targeting FANCM to single-stranded DNA (ssDNA) and Y-shaped DNA structures (10–14). 

Although FANCM contains both a helicase and ERCC4-like domain, neither helicase activity nor 

endonuclease activity has been detected for FANCM or the FANCM-FAAP24 heterodimer (10, 15). The 

lack of DNA-processing activities traditionally associated with a DEAH helicase domain or ERCC4-like 

nuclease domain suggest FANCM functions differently compared to other members of the XPF-ERCC1 

family.  

The involvement of FANCM in protein-protein interactions is well documented and fairly 

extensive. In addition to forming a heterodimer with FAAP24, FANCM also interacts with the FANCM-

associated histone-fold proteins 1 and 2 complex (MHF1-MHF2) (16, 17). Both FAAP24 and the MHF 
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complex interact with FANCM via the C-terminus to establish two stable complexes that bind different 

DNA structures. The binding and stabilization of FANCM on DNA is integral in facilitating repair (10, 16, 

18). The C-terminus also houses two specific motifs (MM1 and MM2) which have been shown to allow for 

interaction with the FA complex and the Bloom syndrome helicase (BLM) complex (7). The MM2 motif, 

which facilitates interaction with RMI1 in the RMI1-RMI2 complex to recruit the BLM-RMI1-Topo IIIα 

complex (1, 19), indicates a role for FANCM in directing repair via HR.  

As discussed in Chapter 1 and above, many different domains and motifs exists in the FANCM 

and its yeast ortholog (Mph1) that facilitate interaction with other repair proteins and promote DNA 

association. These motifs and domains also appear to be key in allowing FANCM to interact with 

additional proteins that help direct and coordinate DNA repair functions. In D. melanogaster Fancm many 

of these known motifs and domains are lacking. For instance, MM1 and MM2 are both missing in yeast 

Mph1 and Drosophila Fancm. The catalytically inactive C-terminus ERCC4-like endonuclease domain is 

involved in interaction with FAAP24 (11–13). While D. melanogaster and yeast lack this domain, both also 

lack FAAP24. In the C-terminus of the S. cerevisiae ortholog, Mph1, has two motifs that facilitate 

interaction with chromatin via SMC5/6 (20). While many of these motifs are not detected in Drosophila 

orthologs, there is still the potential for C-terminal interactions with other proteins involved in HR or DNA 

repair complexes. 

This chapter focuses on the role, if any, of the C-terminus and helicase domain of Fancm in 

regulating repair events in Drosophila. To this end, I generated C-terminal truncations of Fancm in vivo 

and analyzed how these mutants respond to various DNA damaging agents and their function in CO 

prevention. 

MATERIALS AND METHODS 

Drosophila stocks 

Fly stocks were maintained at 25° with standard medium. Fancm0693 is a nonsense mutation 

previously described in Kuo et al. (21). Deletion of endogenous Fancm (FancmDel) was generated using 

CRISPR/Cas9 technology (22, 23). Oligonucleotides (IDT) used for guide RNA (Del1 and Del2, Table 3.1) 

were cloned into pU6 Bbs1 chiRNA vector, and this was injected into Cas9(X) (BestGene). FancmDel 
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deletes 3R: 21480913 to 3R:21487017. In experiments reported here, Fancm mutants were st 

Fancm0693/Sb FancmDel, or st Fancm0693/w+transgene Sb FancmDel. Transformants were generated from a 

PCR-amplified genomic fragment (F1 and F2,) and expressed under the endogenous Fancm promoter. 

The K84M mutation was introduced using QuickChange Site-Directed Mutagenesis kit (Agilent 

Technologies) and Primer KMQC (Table 3.1). The truncated Fancm1-645 construct was generated from the 

FL construct using endogenous MfeI sites. InFusion reaction was used to add the C-terminus and 3ʹ UTR 

with a PCR reaction and primer FA (Table 3.1) from the original construct. Fancm1-645K84M was generated 

in the same way, using the FLKM construct.  

Mitotic crossover assay 

Mitotic crossovers were measured in the male germline as previously described (24), using the 

genetic markers st and Sb for each genotype indicated. At least 20 individual males were assayed for 

each genotype indicated. Statistical analyses and graphing were done in Prism 6 (GraphPad) using 

Kruskal–Wallace test. P-values reported are corrected for multiple comparisons.  

DNA damage sensitivity assays 

Sensitivity to DNA-damaging agents was determined as previously described (25). Briefly, an 

aqueous solution of either MMS or HN2 at the indicated concentrations was added to the food during 

larval feeding. Adults in untreated vials were allowed to mate and lay eggs for 3 days before being 

transferred into fresh vials, allowed to lay eggs for 2 days, and treated with DNA-damaging agents. For 

ionizing radiation (IR) damage, larvae were exposed to gamma rays in an irradiator at 1500 rad. At least 

10 individual, independent crosses were performed for each genotype indicated. Relative survival was 

calculated for each vial as the ratio between mutant:control flies in treated vials and normalized to the 

ratio of mutant:control flies in the untreated vial. Vials with less than 20 progeny were discarded. 

Statistical analyses were performed as described above. 

RESULTS AND DISCUSSION 

Helicase-dead and truncated Fancm are each able to prevent a subset of mitotic crossovers  

The C-terminal region of Fancm in yeast and human orthologues contains motifs that facilitate 

protein-protein interactions (Figure 3.1). Human FANCM has a helix-hairpin helix region in its ERCC4-like 
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domain that allows for association with FAAP24, an interaction that helps stabilize the protein on 

chromatin (11, 12).  The presence in human FANCM of motifs 1 and 2 (MM1 and MM2) allow the 

interaction of FANCM with the FA core complex and the Bloom Syndrome helicase (BLM) complex, 

respectively (1, 7). It should be noted that Drosophila Fancm has neither the ERCC4 domain nor MM1 or 

MM2. The lack of these sequences is consistent with the fact that the interacting protein partners 

associated with these domains, FAAP24, FANCA, and RMI1, are not present in Drosophila (FAAP24 

appears to be missing from all insects, FANCA from holometabolous insects, and RMI1 from 

Schizophoran flies; unpublished observations). Nonetheless, it is likely that the C-terminal region of 

Fancm may contribute to the regulation and function of the protein. 

To identify a potential role for the C-terminus in regulation of HR, I generated transgenic 

recombinant flies expressing either full length or truncated Fancm. The truncated transgenic recombinant 

flies are identical to the FancmΔ protein characterized in vitro in Chapter 2, except that it lacks the His 

and MBP tags used for protein purification (Figure 2.1). We refer to the transgenic truncated Fancm as tr 

to distinguish it from FancmΔ. To investigate the role of the helicase activity in CO prevention and DNA 

damage response, I generated transgenic recombinant flies that express either full-length or truncated 

Fancm with either a wild-type helicase domain or the helicase-dead mutation described and characterized 

in Chapter 2. RT-PCR was used to test for gene expression. All transgenes produce a gene product as 

shown in Figure 2.2 A. 

Previous reports on the function(s) of Drosophila Fancm (21) used the nonsense mutation 

Fancm0693 (L78ter) (21, 26) in trans to Df(3R)ED6058 (27). This 423.1 kb genomic deletion removes more 

than 50 genes (28). To ensure that any mutant phenotype described was due to the loss of Fancm and 

not the heterozygous deletion of surrounding genes, we used CRISPR technology to generate a partial 

deletion of Fancm (Fancmdel) that should result in no protein being produced. Expression, or lack of 

protein expression, could not be determined as the antibody for Fancm, generated from a synthetic 

peptide, is highly non specific and detection of Fancm by Western blot is inconclusive. Mutants used here 

were heteroallelic for Fancmdel and Fancm0693. In all assays preformed, no significant difference was 

observed between the previous results using Df(3R)ED6058 and the experiments using Fancmdel, 
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allowing me to conclude that Fancmdel is a null allele and the results obtained in the previous experiments 

with the Df were a result of a loss of Fancm. All experiments reported here used one copy of the 

transgene in a null background (FancmDel/Fancm0693). All comparisons are made in reference to this null 

genotype. 

As previously reported (21), Fancm mutants exhibit a significant increase in the number of 

spontaneous mitotic crossovers. Since meiotic crossovers do not occur in males, I assayed spontaneous 

mitotic crossovers in the male germline of the transgenic Fancm mutants. Crossovers were scored 

between the visible markers st and Sb (~20% of the genome) (Figure 3.2 B). No crossovers were 

detected in wild-type males or in Fancm null mutants with the full-length transgene (FL) (Figure 3.3, Table 

3.2), indicating that the transgenes used are fully functional and that Fancm is indeed involved in 

preventing mitotic crossovers. Flies with the truncated Walker A mutant (trKM) transgene showed an 

increase in crossovers similar to that of the null mutant. The presence of an active Fancm helicase 

domain without the C-terminus (tr) reduced the rate of spontaneous mitotic crossovers to near wild-type 

levels. Interestingly, the full-length Walker A mutant (FLKM) also reduced crossover levels (Figure 3.3, 

Table 3.2). The fact that tr and FLKM reduced crossover levels to near wild-type yet trKM did not 

suggests there are at least two partially independent functions of Fancm in preventing crossovers, one 

that requires the helicase activity but not the C-terminus and another that is dependent on the C-terminus 

but does not require helicase activity. 

Although both FLKM and the tr transgenes reduced the levels of spontaneous mitotic crossovers 

compared to the null mutant, crossovers were still detected above wild-type levels. The difference 

between these genotypes and WT does not cross the threshold typically considered to be statistically 

significant, but my lab has never detected a crossover in any wild-type male (21, 24, 29); hence, I believe 

the elevation is biologically significant.  These data indicate that Fancm must be both full length and 

catalytically active to prevent all mitotic crossovers. However, the presence of either the full-length 

helicase-dead protein, or the absence of the C-terminus but with retention of ATPase activity, is sufficient 

to prevent most mitotic crossovers.   



 

57 

Separation of function in Fancm’s roles in the response to DNA damage  

Since the mitotic crossover assay measures spontaneous germline crossovers detected in progeny, 

I cannot determine how or when crossovers are occurring.  I therefore cannot provide a mechanistic 

explanation for the difference between the crossovers seen in FLKM and the crossovers in tr.  The 

difference in crossover phenotype found among the transgenes of Fancm led me to investigate whether 

there was a difference in DNA damage response using the transgenes described above.  

Previous sensitivity studies using Drosophila Fancm (21) showed that Fancm mutants were 

sensitive to the crosslinking agent mechlorethamine (HN2), the alkylating agent methyl methanesulfonate 

(MMS), and strand breakage induced by ionizing radiation (IR). These types of damage engender a 

variety of DNA repair mechanisms. Since HN2 can induce mono-adducts, intrastrand cross-links, and 

ICLs, the alkylating agent MMS was tested to distinguish between the role of Fancm in repair of ICLs 

versus a broader role in damage repair. While both MMS and HN2 damage can involve replication fork 

impairment, the crosslinks induced by HN2 could lead to DSBs (30, 31). IR was therefore used to 

determine if Fancm is involved in repair of DSBs.  

As previously reported (32), Fancm null mutants were sensitive to all damaging agents tested. The 

sensitivities seen in the null mutants are rescued when the full length (FL) transgene is present (Table 

3.2). The full length mutant (FLKM) and truncated (tr) transgene both rescued sensitivity to HN2 and IR, 

but not MMS (Figure 3.4-3.6). The trKM transgene failed to rescue sensitivity to HN2 and IR, but did 

appear to rescue MMS sensitivity (Figure 3.4-3.6). However, progeny with the trKM transgene have 

delayed developmental timing (discussed further in Chapter 4). If MMS in unstable after addition to the 

culture medium, it is possible that control larvae ingested food immediately after addition of MMS, 

whereas trKM larvae ingested food at a later time, after a substantial fraction of MMS was already 

degraded. Because of this complication, we cannot be confident that the higher relative survival of trKM 

flies reflects functional capacity of the truncated, helicase-dead Fancm protein. 

The difference in rescue among the transgenes in response to damage by HN2 and IR compared to 

MMS may represent different functional roles of Fancm in various DNA damage response pathways. The 

ability of both the FLKM and tr transgene to rescue the sensitivity to HN2 and IR (Figure 3.4, 3.5), is 
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reminiscent of the role of these transgenes in crossover prevention (Figure 3.3), and again hints at 

separable functions of Fancm - one that is dependent on the helicase and one that is dependent on the 

C-terminus. Taken together, we propose that Fancm regulates or participates in multiple DNA damage 

responses.  

The ability to rescue sensitivity to MMS (and HN2), is representative of Fancm having more than 

one role in repair. The difference in response to HN2 and MMS in the FLKM and tr may be a result of 

whether Fancm is functioning with other proteins or independently. Kuo et al. investigated functions of 

Fancm that are independent of the FA pathway by comparing phenotypes of Fancm mutants to those of 

FancI mutants. Differences in sensitivity suggested a role for Fancm in DSB repair that is independent of 

the FA response.  

I hypothesize that Fancm not only acts separately from the FA repair response, but can act both 

directly, through the catalytic activity of the helicase, and indirectly, in a non-helicase, non-catalytic 

directed manner, in repair of DSBs. A catalytic role in the formation of NCO products might be to unwind 

short D-loops or to initiate D-loop unwinding. A non-catalytic function might be to recruit HR repair 

proteins that direct repair toward NCO products, perhaps by extending unwinding of longer D-loops. For 

instance, if a DSB occurs, Fancm could recruit HR repair proteins, such as Blm, and direct HR toward 

NCO products. This recruitment and interaction with Blm would be representative of a non-catalytic 

activity of Fancm, as the recruitment and interaction efforts of the protein do not require the helicase 

activity of the protein. These dual roles are seen in the FLKM and the tr genotypes. The lack of helicase 

activity in FLKM prevents it from unwinding D-loop HR intermediates, resulting in some COs being made 

after these progress to dHJ intermediates. The COs we see in the tr genotype could result from the lack 

of Fancm recruiting HR repair proteins, such as Blm.  Fancm’s proposed interaction with Blm and 

involvement with HR and D-loop displacement is supported by studies in humans and yeast (21, 33–36). 

Blm mutants have more spontaneous mitotic crossovers than Fancm mutants (24, 32). Interestingly, Blm 

Fancm double mutants have the lower number of mitotic crossovers seen in Fancm single mutants, 

consistent with the hypothesis that Fancm recruits Blm to prevent crossovers. 
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FANCM and its orthologs have been shown to dissociate D-loops (35, 37–39), leading to the 

suggestion that they promote synthesis-dependent strand annealing (SDSA) as. As shown in chapter 2, 

Drosophila Fancm is capable of unwinding D-loop like structures. A gap repair assay demonstrated that 

both Fancm and Blm mutants have defects in SDSA in Drosophila (21). Based on the data presented in 

chapter 2, I propose that one role of Fancm might be to unwind short D-loops, leaving Blm to unwind D-

loops that have been extended by additional synthesis or to continue unwinding those initiated by Fancm. 

In either case, it is possible that Fancm recruits Blm to D-loops.  Use of a gap repair assay directly 

demonstrated roles for both Fancm and Blm in SDSA in Drosophila (32, 40). Unfortunately, Kuo et al (32) 

were unable to conduct this assay in Blm Fancm double mutants and genetic complications prevented us 

from using our Fancm transgenes in the SDSA assay (discussed further in chapter 4), so these 

hypotheses cannot be tested with available reagents.  

Fancm’s role in catalytic repair and non-catalytic repair, as well as its function in coordinating and 

participating in repair pathways may be reflected in the structure of the C-terminus and the various motifs 

found in human FANCM. For instance, the C-terminus of FANCM has motifs that allow binding with 

proteins that are associated with repair. Motif 1 (MM1) allows binding between FANCM and FANCA, a FA 

core complex protein. Motif 2 (MM2), allows FANCM to interact with the Bloom Complex through RMI1. 

Although Drosophila Fancm lacks these motifs, neither RMI1 or FANCA are found in Drosophila. It is 

possible that these motifs are diverged beyond our ability to detect them and that interaction between 

Fancm and other HR proteins does occur in flies.   

Based on the findings presented here, I suggest that the C-terminus coordinates multiple repair 

efforts and is involved in the regulation of crossovers during HR, either through D-loop displacement 

(helicase function), or through recruitment of additional repair proteins via the C-terminus. While there are 

many similarities found between the orthologs of FANCM, there are also many differences in activity. These 

differences may indicate an evolutionary process that has diverged the function of these proteins to better 

maintain the fitness of the organism. Some of these differences can be reflected in the fact that conserved 

motifs present in some orthologs are not found in others, indicating that FANCM has co-evolved with other 
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proteins to fill a functional niche. Regardless, it’s clear through this study, as well as work done in other 

organisms, that FANCM has a broad and diverse role in DNA maintenance and repair.  
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FIGURES 

Table 3.1- Oligonucleotides used in this study 

NAME SEQUENCE 

F1 GGGGACAAGTTTGTACAAAAAAGCAGCCTGGGGCTTGACATTTCCGGGC 

F2 GGGGACAACTTTTGTATACAAAGTTGTTCTCATATGCGCGCCATCTGGCGGC 

KMQC GGGAATGACCTTCATCGCCGCGGTGGTTATG 

FA1 AGCTTCACAGCAATTGCTAGGTAAGGTGCC  

FA2 TATTAACAATCAATTGGACTTATAAAGATCTGTATCACG 

Del 1 CTTCGCGGACGATTCGAACCATAG 

Del1a AAACCTATGGTTCGAATCGTCCGC 

Del2 CTTCGCACATAT TTTCTCAGCCAG   

Del2a AAACCTGGCTGAGAAAATATGTGC 

 

Table 3.2- Comparison of all transgenic Fancm genotypes and null genotype. (-) mean no rescue of 
the null phenotype, (+) indicate rescue. 
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Figure 3.1 - Schematic of Fancm - Domains and motifs present in human FANCM are marked. 
Conserved domains or motifs in Drosophila melanogaster are noted. The Walker A motif is noted in white. 
Mutation of the Walker A motif is indicated in yellow.  
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A 

 

B 

 

 Figure 3.2 - Fancm transgenic flies - A. RT PCR was performed as described in material and 
methods from whole fly genomic preps. RT was either added (+) or omitted (-), to determine if the 
presence of a band was the result of genomic contamination. Genotypes represented here are Wildtype 
(wt) from yw1118; Fancm0693/Fancmdel (null); Fancm0693/Fancmdel Sb w+FancmFL (FL); 
Fancm0693/Fancmdel Sb w+FancmFLKM (FLKM); Fancm0693/Fancmdel Sb w+Fancmtr (tr); 
Fancm0693/Fancmdel Sb w+FancmtrKM (trKM); B. Map of genes used in Crossover assay. Fancm null 
allele, (Fancm0693); CRISPR deletion (FancmDel); transgene landing site (▼), and st and Sb genes. 
Schematic of transgenes generated are as seen in Figure 3.1.  
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Figure 3.3 - Spontaneous mitotic crossover rates - Spontaneous mitotic crossover rates were 
measured between st and Sb. ● Null; ● Full length (FL); ● Full length KM (FLKM); ● truncated (tr), ● 
truncated KM (trKM); ● Wild-type (WT). Each dot represents one vial, n measures number of vials. Mean 
percentage of progeny is represented by black horizontal bar. 95% confidence intervals are represented 
by colored error bars. Statistical comparisons were done for Fancm compared to each other genotype. 
Statistically significant comparisons are indicated above error bars; ****P<0.0001 by Kruskal-Wallace test, 
corrected for multiple comparisons. 



 

65 

  
Figure 3.4 - Sensitivity of Fancm to HN2 - Plots show the survival of the indicated phenotype relative 

to wildtype control flies in the same vial after exposure to 0.002% HN2 (0.1 M)  ● Null; ● Full length (FL); 
● Full length KM (FLKM); ● truncated (tr), ● truncated KM (trKM) Each dot represents one vial, n 
measures number of vials. Mean percentage of progeny is represented by black horizontal bar. 95% 
confidence intervals are represented by colored error bars. Statistical comparisons were done for Fancm 
compared to each other genotype. Statistically significant comparisons are indicated above error bars; 
****P<0.0001 by Kruskal-Wallace test, corrected for multiple comparisons. 
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Figure 3.5- Sensitivity of Fancm to IR - Plots show the survival of the indicated phenotype relative to 
wildtype control flies in the same vial after exposure to IR (1500 RAD). ● Null; ● Full length (FL); ● Full 
length KM (FLKM); ● truncated (tr), ● truncated KM (trKM); ● Wild-type (WT). Each dot represents one 
vial, n measures number of vials. Mean percentage of progeny is represented by black horizontal bar. 
95% confidence intervals are represented by colored error bars. Statistical comparisons were done for 
Fancm compared to each other genotype. Statistically significant comparisons are indicated above error 
bars; ****P<0.0001 by Kruskal-Wallace test, corrected for multiple comparisons. 
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Figure 3.6 - Sensitivity of Fancm to MMS - Plots show the survival of the indicated phenotype relative 

to wildtype control flies in the same vial after exposure to 0.05% MMS (3.23 mM) ● Null; ● Full length 
(FL); ● Full length KM (FLKM); ● truncated (tr), ● truncated KM (trKM). Each dot represents one vial, n 
measures number of vials. Mean percentage of progeny is represented by black horizontal bar. 95% 
confidence intervals are represented by colored error bars. Statistical comparisons were done for Fancm 
compared to each other genotype. Statistically significant comparisons are indicated above error bars; 
****P<0.0001 by Kruskal-Wallace test, corrected for multiple comparisons. 
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CHAPTER 4 CONCLUDING REMARKS 

Members of the FANCM family of DNA motor proteins are involved in the maintenance of 

genome stability. FANCM is involved in a number of processes that support the duplication and repair of 

DNA under a variety of conditions.  While much of the work to understand the function of FANCM has 

been conducted in human cell lines and yeast cell cultures, the work presented here represent a novel 

understanding of Fancm. This work shows that Fancm is a 3ʹ to 5ʹ ATP-dependent DNA helicase that is 

limited in unwinding. This work also shows that Fancm functions during HR most likely through D-Loop 

displacement. Fancm also functions in crossover prevention through catalytic and noncatalytic means. 

Here I propose a mechanism for Fancm to function both catalytically and noncatalytically in FA dependent 

and independent ways.  

FANCM, unlike many of the FA proteins, is highly conserved across species, although lower 

eukaryotes lack many other FA proteins. The simplicity of the FA pathway in organisms such as 

Drosophila melanogaster, is useful for understanding the broad and diverse roles for FANCM and provide 

a great model for determining how FANCM regulates repair. As discussed in chapter 1, FANCM and its 

orthologs are members of the SF2 helicase family and share homology in their helicase domain. The 

ability of FANCM and its orthologs to bind DNA is attributed to the conserved helicase domain at the N-

terminus of the protein. The C-terminus, although it shows some divergence in homology between 

species, confers the ability of FANCM to interact with other proteins (1–6) and many motifs can be found 

in FANCM and its orthologs that are essential for protein-protein interaction (see chapter 3 and (7) for 

review).  

The biochemical attributes of Fml1, Mph1, and human FANCM have been examined in detail, 

and these FANCM family members have been found to share several common features. All three proteins 

bind to ssDNA and structured DNA, with a clear preference for branched DNA structures, including the 

HJ, DNA fork, and D loop (8–13). As discussed in chapter 2, Fancm recognizes both single- and double-
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stranded DNA with the same affinity. No clear preference was detected for branched DNA structures such 

as the splayed armed that was used to measure DNA binding by fluorescence anisotrophy. It is important 

to note that the large standard deviations make it difficult to determine clear binding preference and more 

DNA binding trials might help clear some of the ambiguity. This assay is also limited by the amount of 

protein available. The low yield of protein from purification prevents greater concentration of protein from 

being used in this experiment, something that is necessary to determine binding capacity and helps 

differentiate between binding preferences. Additional studies would be needed to determine the binding 

preference of Fancm.  

It's important to note that DNA binding preferences for Fancm may be influenced by additional 

proteins. For instance, proteins that interact with FANCM and its orthologs, namely Mph1 and Fml1, also 

possess DNA binding capability and can influence the binding specificity of FANCM by targeting FANCM 

to specific DNA structures. FANCM associated with FAAP24, for instance, binds 3ʹ flap structures and 

splayed arm DNA (4). As mentioned above, the N-terminal helicase domain is responsible for DNA 

binding in FANCM and its orthologs. The biochemical analysis conducted here represent work done using 

a truncated form of the D. melanogaster Fancm protein. The C-terminus, while not directly responsible for 

DNA binding, could also influence DNA binding by Fancm if the C-terminus is responsible for protein-

protein interactions that affect DNA binding. Future binding studies with truncated Fancm and full length 

Fancm will need to be performed in order to understand Fancm’s role in interacting with DNA.  

As discussed in chapter 3, D. melanogaster Fancm appears to have catalytic and noncatalytic 

functions in crossover prevention. Similarly, FANCM has been shown to have diverse functions in DNA 

metabolism that are dependent on its translocase activity and functions that do not require this activity. 

FANCM’s role in the repair of interstrand crosslinks in conjunction with the FA pathway seems to be to 

recruit other FA proteins to the site of damage, a role that is independent of its helicase/translocase 

activity. However, transversal of ICLs, replication fork restart, crossover prevention, and checkpoint 

signaling by activation of ATR require the ATPase activity of FANCM.  

Kuo et al (14) examined the role of D. melanogaster Fancm and Fancl to determine if Fancm 

functioned independently of the D. melanogaster FA pathway. In testing Fancm and Fancl mutants to 
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DNA damaging agents, Kuo et al. found that Fancl mutants were only sensitive to the cross-linking agent 

HN2, while Fancm mutants were sensitive to a broader range of damaging agents, suggesting that there 

are FA-independent roles for Fancm (14). The potential for Fancm having roles outside of the FA pathway 

raises several interesting questions: What prompts Fancm to initiate repair via the FA pathway versus 

working independently of the FA pathway? Does Fancm recruit additional repair proteins and, if so, what 

signals Fancm to recruit additional proteins? Are mechanisms for repair determined by Fancm and how 

does Fancm coordinate repair events?  

The ability to function independently of the FA pathway response is not unique to FANCM as 

several other FA proteins function in an FA-independent manner during DNA replication (15–18). The 

events or signals that determine participation of FA proteins to function in the canonical FA dependent 

functions versus the FA independent functions are still under investigation.  

FANCM’s role outside of the FA pathway may be varied. FANCM has been implicated in different 

repair processes, replication, and recombination. As discussed in chapters 1 and 3, FANCM and FANCM 

orthologs function in genome maintenance through the regulation of recombination products by working 

to prevent mitotic crossovers, most likely through D-loop dissociation during DSB repair via HR. FANCM 

and the yeast orthologs Mph1 and Fml1 have also been shown to migrate Holliday junctions and dHJs (1, 

9, 12, 19). This ability to work on various HR DNA intermediates suggest that FANCM functions during 

various steps of the HR pathway in order to ensure recombination products are resolved in a 

noncrossover manner. 

FUNCTIONS OF FANCM IN SDSA 

As seen in chapter 3, Fancm, like FANCM, Fml1 and Mph1, functions in crossover prevention 

during HR (1, 12, 20). This ability most likely arises from the protein’s ability to dissociate D-loops 

(Chapter 1, (12, 19, 20)). Mazon and Symington and Kuo et al. (14, 21) proposed that Mph1 and Fancm 

promote noncrossover formation by acting on D-loop intermediates and directing HR down the SDSA 

pathway. Loss of Mph1 results in the formation of a dHJ and generates both crossover and noncrossover 

products through dHJ resolution (22, 23). Drosophila Fancm is active during SDSA, as discussed in 

chapter 3 (14).  
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Through the use of a transposable element excision-based assay, Kuo et al. (14) were able to 

measure Fancm’s involvement in SDSA. If, as proposed, Fancm functions in a catalytic manner and can 

dissociate D-loops, as shown in chapter 2, then the helicase function of Fancm would be enough to 

rescue the effects on SDSA in the null mutant. Although genetic complications make it difficult to use the 

Fancm transgenes in the SDSA assay, I was able to recover a small sampling of transgenes in the SDSA 

assay (Table 1). The data are inconclusive as the average number of flies per vial is just above the cutoff 

rate to avoid bias and the number of trials is extremely low. While the data are inconclusive to determine 

exactly how the helicase and C-terminus influence SDSA, there is an indication that there are differences 

among the transgenes and between the transgenes and wild type.  In order to understand the role of the 

helicase activity of Fancm, as well as the role of the C-terminus of Fancm in coordinating SDSA, this 

assay would need to be conducted using the same constructs in a different background, such as a 

background that doesn’t contain the w+ marker. Potentially, generating these constructs through CRISPR 

would eliminate the genetic interactions of the assay with the genetic background of transgenic flies and 

allow for examination of these mutations at the endogenous locus.  

While a direct role for FANCM and its orthologs in SDSA has not been examined directly outside 

of D. melanogaster, biochemical analysis of the protein’s role on SDSA intermediates, namely the D-loop, 

has been examined. The D-loop that forms during DSB repair via HR can either be extended through 

DNA synthesis or dissociated by unwinding of the invading strand after limited synthesis has been 

completed (24). The displacement of D-loops has been observed in FANCM, Mph1, Fml1, and D. 

melanogaster Fancm, (Chapter 2)(1, 9, 12). Dissociation of the D-loop indicates that these proteins may 

be using SDSA as a means of promoting noncrossover recombination products. FANCM functioning 

during SDSA is just one potential role for FANCM in DSB repair by HR. For instance, FANCM, Mph1 and 

Fml1 have been shown to regress DNA replication forks and catalyze branch migration (1, 9, 19, 25, 26), 

an action fueled by the hydrolysis of ATP, and loss of FANCM and its orthologs in human, mouse and 

chicken cells, leads to an increase in sister chromatid exchanges, indicating that FANCM functions to 

prevent crossovers, a function that requires the DNA ATPase activity of FANCM as well as FANCMs 

interaction with its partner proteins, namely FAAP24 and MHF(8, 27–29).  



 

76 

Drosophila Fancm is also implicated in having multiple roles during HR. Based on the crossovers 

that are seen in the tr and FLKM transgenic flies, there is a probability that Fancm interacts with Blm to 

prevent crossovers during HR, most likely during SDSA. Previous study (14) of Blm Fancm double 

mutants showed that spontaneous mitotic crossovers were slightly reduced compared to Blm single 

mutants. This indicates that a subset of repair intermediates requires Fancm’s presence to recruit and 

direct Blm toward NCO repair outcome. When Fancm is not present then repair occurs in a Fancm-

independent/Blm-independent manner, which may or may not be through HR. If this were the case, no 

NCO or CO product are formed, thus explaining the decrease in crossovers in the double mutant. 

Unfortunately, Kuo et al. (14) were unable to conduct the SDSA assay in Blm Fancm double mutants as 

they were unable to recover a Blm Fancm double mutant in the assays’ genetic background. It would be 

interesting to determine how Fancm and Blm interact during SDSA. One experiment of interest would be 

to see if the FL transgenic Fancm fly can rescue the apparent lethality of Blm Fancm mutant in this 

background. Rescue by FL Fancm would indicate that Blm and Fancm both function during SDSA and 

that the damage or breaks that are occurring by the transposase are toxic when Blm and Fancm are 

missing.  

 

PROTEIN-PROTEIN INTERACTIONS 

One aspect of crossover control in which Fancm may function is with the Blm complex. The 

human BTR complex is composed of BLM, Topo IIIα, and the heterodimer of RMI1 and RMI2. This 

protein complex catalyzes branch migration of HJs, leading to the decatenation of dHJ and results in a 

noncrossovers product (30–32). The BTR complex is part of the the BRAFT supercomplex, a higher-order 

complex between the BTR complex and the FA core complex.  Key in the recruitment of the BTR complex 

to ICLs is FANCM (6, 33). As discussed in chapter 1 and chapter 3, FANCM contains two motifs, MM1 

and MM2, that are responsible for FANCM’s interaction with the BTR complex (MM2) and the FA core 

complex (MM1). Deletion of either of these motifs increases levels of SCE (27, 34, 35).  

In Drosophila, Fancm and Blm share many similarities and in some cases, such as crossover 

control, Fancm is epistatic to Blm (14). In yeast the BTR complex, referred to as the STR complex, has an 

anti-crossover role that is different from the role of Mph1 or Fml1 in crossover prevention, and double 
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mutants of mph1 and SGS1, the Blm ortholog, are synthetically lethal (36–40). While D. melanogaster 

Fancm does not have MM1 or MM2 (Chapter 1,3), genetic interaction with Blm indicates potential for 

these two proteins to be interacting during repair processes. Further analysis of Fancm and Blm would be 

interesting in determining the mechanism for which the two proteins function to prevent mitotic 

crossovers. In vivo genetic analysis comparing crossover rates and sensitivity to DNA damaging agents 

between double mutants of Blm Fancm transgenic flies to a Blm Fancm null fly, would be useful in 

determining the relationship between Fancm and Blm in HR and whether the helicase function of Fancm 

is necessary for this interaction. Additionally, biochemical examination, discussed later in this chapter, of 

Fancm to determine proteins that it may interact with could provide insight into the role of Fancm in DNA 

metabolism.  

As mentioned above, the anticrossover role of FANCM is facilitated by its interaction with its 

partner proteins FAAP24 and MHF (8, 27–29). Additionally, this anticrossover feature is independent of 

other FA proteins (7, 28, 41, 42) and it has been proposed that FANCM, through its ATP hydrolysis 

activity,  acts in a FA-independent manner to directly regress a stalled or blocked replication fork (9, 25) 

allowing for the restart of the stalled fork (43), a process which is facilitated by the interaction of FANCM 

with MHF (7, 44–47).  

MHF is a histone fold complex that partners with FANCM and Fml1 to enhance FANCM’s DNA 

interaction and function. MHF is a dimer composed of the histone-fold proteins MHF1 and MHF2 (48–50). 

Mutations in MHF affect the stability of FANCM and recruitment of FA core complex members to 

damaged chromatin. Cells deficient in MHF are prone to chromosome rearrangements when exposed to 

damage. Human MHF binds to various DNA structures on its own and is believed to promote FANCM 

binding to various DNA structures to assist in replication fork reversal and branch migration (7, 47, 51) 

although the exact role of DNA binding regulation by MHF is still under investigation. MHF in S. pombe 

also displays DNA binding activity that is thought to aid Fml1 in ICL repair, replication fork repair, and 

crossover regulation (3, 7). S. cerevisiae MHF, unlike the orthologs in S. pombe and humans, has not 

been shown to have DNA binding ability nor does it affect the DNA binding capability of Mph1 (52).  



 

78 

Genetic interaction between S. cerevisiae MHF and Mph1 suggests that MHF assists Mph1 in 

DNA damage repair even though no DNA binding has been noted for MHF in S. cerevisiae (53). This 

interaction helps combat the regulation the Smc5/6 complex exhorts on Mph1. Smc5/6 is a conserved 

SMC family complex that functions in the regulation of recombination intermediates. Smc5/6 interacts with 

the C-terminal region of Mph1 to regulate Mph1’s recombinogenic activity (10, 54). For instance, Smc5/6 

inhibit Mph1’s replication fork regression in vitro without affecting Mph1’s function in D-loop dissociation 

(10). Such a response indicates that Mph1 is regulated to prevent fork regression which can lead to 

unnecessary recombination and only employs the fork reversal function of Mph1 in instances where 

template lesion cannot be overcome by other means, such as translesion synthesis during ICL repair. 

ICLs, which block the progression of the DNA replication fork, are removed during replication via 

the FA pathway. FANCM works with its two obligate protein partners, FAAP24 and MHF to recognizes 

different DNA structures and provides a platform for targeting other FA proteins to the site of the ICL (4, 

47, 55). It has been suggested the FANCM and MHF promote traversal across ICLs, a process that 

requires the DNA binding ability of both FANCM and MHF as well as the DNA motor activity of FANCM. 

This ability to traverse across ICLs suggest that DNA synthesis continues past ICLs, leaving the lesion to 

be removed by another repair mechanism post-replication (Figure 1.4). Although the FA pathway is 

believed to play a critical role in removal of ICLs, this mechanism of ICL transversal suggests that 

FANCM functions independently of the FA pathway and may function in multiple pathways. Although the 

exact mechanism for traversal of ICLs by FANCM is still unknown, this ability is preserved in several 

organisms (56).  

FANCM, Mph1, and Fml1 often depend on partner proteins to execute certain biological 

functions. This is best illustrated by the role of FANCM in the FA pathway. The FANCM/FAAP24/MHF 

complex interacts with FANCF to recruit additional members of the FA core complex to sites of DNA 

lesions in the form of ICLs (6, 27, 57–60).  Although Mph1, Fml1, and a number of other lower eukaryotic 

organisms lack members of the FA pathway aside from FANCM, multiple interactors have been identified 

for having a role in the function of FANCM. These interactions influence the function of FANCM family 
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members in a variety of ways and the differences in function and interactors between organisms likely 

indicate that there are specific maintenance needs.  

FANCM functioning in multiple processes is supported by the many attributes that FANCM 

possesses such as DNA binding ability, a conserved helicase domain, and protein interaction motifs. In 

addition to functioning in ICL removal and traversal, FANCM also has a role in DNA replication under both 

normal growth conditions and under periods of DNA stress and damage, such as exposure to UV and 

DNA damaging agents like MMS and cell culture studies of FANCM indicate that the ATPase activity of 

FANCM is essential for fork restart and to prevent replication fork stalling (28, 45, 46, 61, 62).  

Fml1 and Mph1, the yeast orthologs of FANCM, are also involved in DNA replication, a role that 

is highlighted under periods of DNA stress. These proteins have the ability to catalyze replication fork 

regression (1, 19) and have been proposed to regress blocked replication forks and funnel blocked 

replication forks into an HR repair pathway (54, 63, 64).  

The protein-protein interactions described above provide insights into the function of FANCM. 

The interaction between FANCM and proteins that are both associated with the FA complex and not part 

of the FA complex suggests that FANCM functions in both FA-dependent and FA-independent ways. The 

C-terminus of FANCM is key in facilitating many of these interactions. As detailed in chapter 1 and 

chapter 3, the C-terminus of D. melanogaster Fancm is highly divergent from human FANCM. Many of 

the motifs and domains that are essential for protein-protein interaction in FANCM are missing in D. 

melanogaster Fancm. In part, this might be a result of missing interacting partners. For instance, D. 

melanogaster Fancm is missing MM1 and MM2 motifs but Drosophila also lack Fancf and RMI1, the 

proteins that interact with FANCM through these domains (Chapter 1, 3). Determining the proteins that 

interact with Fancm will therefore enhance our understanding of the role of Fancm in DNA metabolism. 

Immunoprecipitation (IP) studies and peptide mass fingerprinting using MALDI-MS will help 

identify proteins that are associated with Fancm. If, as predicted, the C-terminus is essential to protein-

protein interactions, full length Fancm will be needed to identify any potential protein interactors. Using 

Drosophila S2 cells, truncated Fancm and full length Fancm can be expressed with an affinity tag, either 

through overexpression or through CRISPR mediated recombination. A major advantage of using S2 
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cells is that cells can be treated with DNA damaging agents such as HN2, which induces ICLs, and IR, 

which induces DSBs. Treatment of S2 cells with DNA damaging agents can help in determining proteins 

that interact with Fancm in response to different types of DNA damage and determine which proteins 

function with Fancm in an FA-dependent role and FA-independent role of Fancm. Comparison of 

truncated Fancm to full length Fancm will allow for the identification of proteins that specifically interact 

with Fancm through the C-terminus. Additionally, the use of ATPase mutants in these assays can provide 

insight into whether the helicase/translocase function of Fancm is essential to any protein interactions. 

CHECKPOINT SIGNALING  

Proteins involved in HR are just one set of proteins that are predicted to interact with Fancm. The 

biological function, regulation and collaboration with other proteins by FANCM and its orthologs have 

provided insights into various DNA metabolic processes in which FANCM functions. Functions of FANCM 

have been linked to ATR-mediated DNA damage checkpoint (15, 65, 66). Activation of this pathway helps 

stabilize replication forks and inhibits replication origin firing (67, 68). Once again this function of FANCM 

is independent of the FA pathway but does require FANCMs interaction with FAAP24 and association 

with other checkpoint factors, namely CHK2.  

FAAP24 assists in targeting the FA core complex to sites of ICLs and works with FANCM to 

engage ATR-mediated checkpoint signaling. FAAP24 and FANCM interact with HCLK2 kinase, an ATR-

ATRIP associated protein required for S-phase checkpoint activation. This interaction generates long 

stretches of ssDNA, recruits RPA, which is a DNA stress signal that triggers ATR activation, and helps 

stabilize Chk1 (46, 69–71). The molecular mechanisms through which FANCM/FAAP24 triggers ATR 

activation under cellular stress situations is still under investigation. While FAAP24 is not found in D. 

melanogaster, Fancm may still function in ATR signaling, discussed later in this chapter. 

Although FANCM works upstream of the ATR checkpoint, it is also dependent on ATR. ATR is 

responsible for FANCM phosphorylation in response to DNA stress. The phosphorylation of FANCM by 

ATR is important in the localization of FANCM to sites of ICLs and subsequent recruitment of the FA core 

components. The activation of the FA pathway results in the ubiquitination of FANCD2/I and leads to 

recruitment of repair proteins and the activation of the ATR checkpoint by CHK1 (72). The fact that 
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FANCM participates in ATR activation and is also acted upon by ATR suggest that there is a feedback 

loop between the two. Although the exact details of this connection is still unknown, it's an important 

connection in understanding the regulation of FANCM. Although FANCM is implicated in ATR checkpoint 

signaling, this may not be the case for all orthologs of FANCM. Loss of Mph1 for instance, does not 

reduce ATR checkpoint function like it’s human counterpart (73). Examination of a potential interaction 

between Fancm and the ATR checkpoint pathway in D. melanogaster would provide insights into 

regulation of the DNA damage response by Fancm. 

POSTTRANSLATIONAL MODIFICATIONS 

Not only is FANCM phosphorylated in response to DNA stressors, but it is also phosphorylated in 

the absence of genotoxic stress. A large impact on the phosphorylation of FANCM is a result of cell cycle 

regulation. FANCM phosphorylation rises as cells proceed from S phase into the mitotic cycle and 

declines after mitotic exit (74). Phosphorylation of FANCM is mediated by the Polo-like kinase, PLK1, and 

leads to degradation by the multi-protein containing E3 ubiquitin ligase, SCF (Skp-Cullin-Fbox) (75). This 

programed degradation of FANCM provides a level of regulation of FANCM and allows for release of 

FANCM/FA core complex from chromatin during mitosis.  

Cell cycle regulation of Fancm provides an interesting avenue of research. How D. melanogaster 

Fancm is regulated to coordinate repair, if it experiences any post translational modifications, and its’ 

response to genotoxic stress and interaction with ATR, are all potential areas of study. Cell cycle profiling 

for Fancm to measure its activation and degradation, whether or not PTMs are responsible for its role in 

cell cycle function, and determining what kinases are involved in regulation the activity of Fancm 

throughout the cell cycle.  

Based on known modified residues from human FANCM we can look for key residues that might 

susceptible to phosphorylation and generate phosphorylation mutants. One potential phospho-mutant to 

generate would be to target the ATR phosphorylation site. FANCM is phosphorylated by ATR at serine 

1045 (76). Using COBALT protein alignment, serine 946 shares similarities with FANCM S1045 (Figure 

4.1). By targeting this residue through CRISPR-mediated mutation we can measure the production and 

degradation of Fancm throughout the cell cycle, and using cell based immunoassays to measure protein 
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phosphorylation in the cell, we can determine when and if endogenous wild-type Fancm is 

phosphorylated and then compare that cell expression to potential phospho-mutants. Western blots using 

phospho-specific antibodies can help determine if Fancm is being phosphorylated or use of fluorometric 

detection or colorimetric detection systems could also be employed using the Drosophila S2 cell line.  

It will be interesting to test whether other kinases are also involved in regulating the presence and 

activity of Fancm throughout the cell cycle and also determine how dephosphorylation is achieved after 

mitotic exit. For instance, while the known serine target for PLK1 in human FANCM (DSGXXS) (77) is not 

found in D. melanogaster Fancm, another predicted target sequence (78, 79) provides a potential target 

for a phospho-mutant. Using a web based tool for identifying phosphorylation sites (80), we can identify 

potential residues of Fancm that may be modified by kinases. 

ROLE FOR FANCM DURING DNA REPLICATION  

In addition to FANCM’s regulation in the cell cycle by PLK1, the capability of FANCM to 

transverse ICLs suggests a role for FANCM during DNA replication (56, 81).  One potential area of 

exploration for D. melanogaster Fancm is in replication. In examining the transgenic flies of Fancm, it was 

noted that the truncated KM (trKM) exhibited a slight delayed growth phenotype (Chapter 3). The trKM, 

having neither helicase function, nor a C-terminus, does not act as a wildtype copy would. Presence of 

this protein on DNA would cause a delay in replication as the cellular machinery would need to find 

alternative means to proceed in a non Fancm dependent manner. This delay is not seen in the null 

mutant as no Fancm protein is present and therefore replication machinery would already be functioning 

in a non Fancm dependent manner. If, as predicted, Fancm functions during DNA replication and the 

trKM causes a delay in replication, then replication tracts in the null mutant should proceed as wild type 

while the trKM mutants would have shorter replication tracts for the same duration of time.  

The use of DNA combing analysis (82, 83) will allow for the visualization of how replication 

proceeds in these genetic backgrounds. Since this analysis can be conducted using whole flies, the 

genetic background describe here can be preserved. This analysis be performed in a ‘normal’ 

environment and in a ‘toxic’ environment. Treatment with DNA damaging agents, as described in Chapter 

3, prior to DNA combing will enable us to determine how Fancm influences replication during DNA stress. 
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This is especially important as defects in the development of the eye were seen in the FL, FLKM, and tr 

transgenic fly when treated with HN2 or IR (Figure 4.2 A and B). This defect was not detected in the null 

nor the trKM fly. The defect was more prevalent in the tr and FLKM genotype than the FL genotype; 3% 

compared to less than 1% of total progeny.  

As neither the tr or FLKM transgenic flies function as a true wild type, as seen in the level of 

crossover prevention in Chapter 3 (Figure 3.3), there’s a possibility that there is a delay in replication 

caused by the inability of the protein to function in both catalytic and noncatalytic means. The slight defect 

seen in the FL transgenic fly of the FL transgene indicates that the FL transgene may not being 

expressed at wildtype levels. The inability of the tr and FLKM to perform all functions of a wildtype Fancm 

result in an inability of the protein to either recruit additional proteins or function as helicase. When either 

mutant protein encounters damage that requires both the catalytic and noncatalytic functions of Fancm, a 

delay in repair and a slowing of mitotic division occurs. As the eye is a highly prolific tissue, a delay or 

defect in mitotic division would be more noticeable than in other tissues. The restart or redirection of 

repair down an alternate pathway is enough of a delay that development is affected. While the eye defect 

we see in the FL is most likely response to a delay in repair or just general lack of abundance of Fancm, 

and not an indicator that there’s a defect in DSB repair, the high incidence of defect found in FLKM and tr 

when treated with HN2 or IR, both of which can induce DSBs, is most likely because there is an inability 

to regulate repair via HR.  

Taken together with crossovers seen FLKM and the tr transgenic flies (Chapter 3), these data 

indicate that Fancm functions in multiple capacities to maintain genome stability. Fancm is able to 

recognize damage and facilitates the recruitment of other proteins to the site of damage. Depending on 

the type of damage, the pathway of repair, or the protein(s) recruited, the motor ability of the protein may 

or may not be required. The crossovers seen in the tr and FLKM transgene could indicate that the inability 

of the protein to either recruit additional proteins or function as helicase causes a delay in repair and a 

slowing of mitotic division. In this manner, Fancm may not be catalytically involved with the repair but 

serves to recruit other proteins to facilitate repair. If the damage is more severe or requires Fancm 

catalytic activity to proceed with repair, repair stalls or slows, as seen in the FLKM mutant when the 

ATPase activity of the protein is defective. Taken together with the crossovers seen in these mutants, the 
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data indicate that a subset of damage that can result in a crossover product are dependent on both the 

ATPase activity of Fancm, as well as the C-terminus. 

SUMMARY 

The data presented throughout this work describes Fancm as a 3ʹ to 5ʹ ATP-dependent DNA 

helicase that is capable of unwinding short tracts of DNA. Genetic analysis of mutants of Fancm show 

that the catalytic function of Fancm as well as C-terminus of Fancm, is essential for the crossover 

prevention and DNA damage repair response. The need for the catalytic function of Fancm in crossover 

prevention indicates that Fancm functions in unwinding of HR DNA intermediates, most likely in the form 

of D-loops. The need for the C-terminus in crossover prevention indicates that Fancm is involved in 

coordinating repair through the recruitment of repair proteins. Both of these functions are necessary for 

full function of Fancm in the diverse roles the protein has in DNA metabolism.  

The work described here provides a good framework for understanding the biochemical activities, of 

Fancm in DNA damage and repair via HR. Many important questions regarding this protein remain. Does 

Fancm function during replication? Is Fancm activated by checkpoint signals? Does Fancm influence 

checkpoint activation? How does Fancm coordinate repair and replication? What proteins does Fancm 

interact with? Ongoing studies examining the genetic, and biochemical activity of Fancm will provide 

insights into the role of Fancm in DNA metabolism. 
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FIGURES 

 

Table 4.1 - Percent progeny recovered from SDSA assay 

Genotype SDSA Precise/No Aberrant Avg/vial Vials 

Tr 6.1% 79.8% 10.5% 16 15 

trKM 2.0% 69.7% 27.1% 12 15 

FLKM 4.2% 64.5% 4.0% 12 11 

FL 3.5% 90.9% 2.6% 15 14 

Null 2.8% 88.2% 9.0% N/A N/A 

WT 5.4% 84.7% 9.9% N/A N/A 
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Figure 4.1 - COBALT alignment and predicted phosphorylation site - Protein sequence alignment of 

human FANCM (Q8IYD8) and D. melanogaster Fancm (AAF55897) by COBALT alignment program. 
Known phosphorylation sequence of FANCM, serine 1045, is highlighted in yellow. Predicted 
phosphorylation sequence of D. melanogaster Fancm is highlighted in orange.  
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Figure 4.2 - Development defects seen in transgenic flies when exposed to DNA damage - A.) 
Treatment with 0.002% HN2 (0.1 M). B.) Treatment with IR (1500 RAD). Defects in eye development 
seen in st Fancm0693/w+Fancmtransgene Sb FancmDel. Transgenic genotype is located under photos.   
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