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ABSTRACT 

Jarod Waybright: A Chemical Biology Approach to Phosphoinositide Metabolic Analysis 
(Under the direction of Qisheng Zhang) 

 

 Lipids serve a diverse array of functions including maintaining cellular structure and 

compartmentalization, regulating post-translational modifications of proteins, and as members of 

complex signaling networks. Despite their importance there is minimal understanding of how 

bioactive lipids and lipid pathways systematically regulate biological processes. 

Phosphoinositides (PIPs) are a diverse class of lipid signaling molecule implicated in nearly all 

facets of cell signaling including migration, proliferation, and apoptosis. Mutations in numerous 

PIP modifying enzymes occur frequently in human disease, especially cancers, though the 

effects of these mutations on the global metabolic system have been poorly defined. Likewise, 

heterogeneous protein expression and undefined feedback loops further complicate obtaining a 

global view of metabolism and understanding the PIP metabolic pathway’s role in disease. 

Current approaches have been unsuccessful in obtaining a systems-wide analysis due to various 

technical challenges including low sensitivity, use of indirect measurements of activity, and a lack 

of validated reporters and delivery methods.  

 We have developed a new approach to systematic PIP analysis including synthesis and 

validation of fluorescent reporters, novel PIP delivery methods, and applying these methods to 

analyze PIP metabolism in breast cancer cell lines. We have shown that hydrophobicity is a key 

determinant in the ability of fluorescent reporters to serve as substrates for phosphoinositides 

modifying enzymes, which proceed via interfacial catalysis, through chemical synthesis of 

fluorescent phosphoinositides with varied hydrophobicity in the diacylglycerol (DAG) side chain 

and examined their propensity to serve as substrates towards various enzymes. We used these 
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findings to develop a suite of fluorescent reporters that could subsequently be used as standards 

and reporters in future experimentation.  

 To achieve our goal of systematically analyzing cellular metabolism, we examined a 

variety of delivery methods for fluorescent PIPs as previously reported techniques have failed to 

achieve a level of delivery sufficient for metabolic analysis. We further developed a fluorescent 

model phospholipid that allowed us to explore novel delivery techniques including intramolecular 

charge masking and photocaging methods while simultaneously exploring previously published 

methods including liposomes and charge altering releasable transporters (CARTs) for the 

delivery of PIPs. 

  A PIP2:CART complex was demonstrated to efficiently deliver fluorescent PIP2 to cells, 

which were then analyzed for their metabolite distribution. This method was effective in achieving 

conversion of the fluorescent reporter to a variety of PIP substrates as judged by comparison 

with synthetic standards. We further applied this system to preliminary studies on breast cancer 

cell lines possessing unique mutations in PIP modifying enzymes. We have thus far been 

successful in demonstrating a platform using fluorescent PIP reporters, novel delivery techniques 

that lead to a variety of metabolites than can be analyzed by capillary electrophoresis (CE) or 

thin layer chromatography (TLC). This system could be a powerful tool in future studies of PIP 

metabolism in human disease with potential diagnostic applications.  

  



	 v	

 
 

 

 
For my parents, who encouraged me to always ask ‘why’ and remind me that ‘if you’re 

going to be stupid, you better be strong.. and you aren’t very big.’ 
 

  



	 vi	

 
 
 
 
 

ACKNOWLEDGEMENTS 

The best journeys answer questions 
that in the beginning, 

you didn’t even think to ask 
-Jeff Johnson (180° South) 

 
 In the words of Hunter/Weir: what a long strange trip it’s been. I would first like to 

thank Dr. Qisheng Zhang for allowing me to join his lab and help me grow as a scientist 

and an individual. Members of the research team: Manish K. Singh, Huanyao Guao, and 

Weigang Wang were also a pleasure to work with and were also eager to help and offer 

their scientific expertise. It was a more than pleasurable experience scientifically and I 

enjoyed expanding my cultural horizons throughout our time together.  

 Thank you to my committee members Dr. Mike Jarstfer (Dr. J), Dr. David 

Lawrence, Dr. Nancy Allbritton and Dr. John Sondek for their scientific guidance. I would 

also like to extend a special than you to Dr. J who was a continued positive presence 

throughout my graduate work in both scientific and personal endeavors.  I would also like 

to thank the entire faculty and staff of CBMC. The people in this program lead me to 

choosing UNC to pursue my graduate studies and is a large part keeping me here for my 

future scientific studies. I would also like to acknowledge Dr. Angie Proctor for her 

assistance throughout my project and always lending a helping hand and a good joke.  

 I would like to extend the biggest thanks to all of my friends that made this 

experience both memorable and enjoyable. I cannot describe in words the importance of 

the camaraderie of friends and fellow students throughout the process. I would like to 



	 vii	

give a personal acknowledgment to Carla Coste Sánchez who was a motivating force 

throughout a crucial time in my graduate studies. Thank you for sticking by me things 

were hard and the enthusiasm you shared when they were great. I am excited to see 

where you will go on your journey and enjoyed immensely our time journeying together.  

 I would also like to extend an acknowledgement to Dr. Kimberly Barnash. I could 

write an immeasurable amount of great things about Kim the person and scientist, but 

she would want me to keep it short: you are delightful and a social butterfly. I cannot wait 

to see where your drive and witty nature take you.  

 Finally I would like to extend my thanks to the Fantasy Football Focus Podcast 

(The 06010) crew of Matthew Berry, Stephania Bell, and Field Yates for providing me 

with mediocre fantasy advice throughout my leagues in graduate school. The pod was a 

constant source of enjoyment that always made getting through the day a little easier. 

Put it on the board! 

 

  



	 viii	

 

 

 

PREFACE 

Parts of Chapter 2 of this dissertation are adapted from Waybright, J., Huang, W., 
Proctor, A. et al. Required Hydrophobicity of Fluorescent Reporters for 
Phosphatidylinositiol Family of Enzymes Anal Bioanal Chem (2017). 
https://doi.org/10.1007/s00216-017-0633-y 

 

Parts of Chapter 3 of this dissertation are adapted from Singh, M.K., J. Waybright, and 
Q. Zhang. A facile method to enable a model phospholipid cell-permeable and 
photoactivatable. Tetrahedron, 2017. 73(26): p. 3677-3683 

 
  



	 ix	

 

 

 

TABLE OF CONTENTS 

ABSTRACT…………………………………………………………………………………..….iii 

DEDICATION…………………………………………………………………………………...v 

ACKNOWLEDGEMENTS……………………………………………………………………..vi 

PREFACE………………………………………………………………………………...…….ix 

TABLE OF CONTENTS………………………………………………………………………..x 

LIST OF TABLES……………………………………………………………………………..xiv 

LIST OF SCHEMES…………………………………………………………………………..xv 

LIST OF FIGURES……………..…………………………………………………………….xvi 

LIST OF ABBREVATIONS………………………………………………………………....xviii 

CHAPTER 1. INTRODUCTION AND IMPORTANCE OF SYSTEMATIC  
ANALYSIS OF BIOACTIVE LIPIDS……..……………………………………………………........1 
 

1.1 Importance of Bioactive Lipids………………………………………………………………….....1 

1.2 Importance of Systematic Analysis of Lipid metabolites………………………………………..2 

1.3 Importance of Phosphoinositides………………………………………………………………....3 

1.3.1 Background on Phosphoinositides…………………………………………………….3 

1.3.2 Cellular Distribution of PIPs…………………………………………………………….5  

1.3.3 Cellular Functions of Phosphoinositides………………………………………………6 

1.4 The PI3K Metabolic Pathway……………………………………………………………………...7 

 1.4.1 Background……………………………………………………………………………….7 

1.4.2 The Importance of PI3K in Human Disease…………………………………………..11 

1.4.3 Pharmaceutical Targeting of PI3K Pathway…………………………………………..11  



	 x	

1.5 Measurement of Lipid Metabolites....……………………………………………………………..13 

1.5.1 Background……………………………………………………………………………….13  

1.5.2 Radiolabeled Substrate …………………………………………………………………13 

1.5.3 Mass Spectrometry………………………………………………………………………14 

1.5.4 Fluorescent Protein Domains   .………………………………………………………..15 

1.6 Synthetic Tools for Studying PIP Metabolism……………………………………………………15 

1.6.1 Fluorescent Substrates………………………………………………………………….15 

1.6.2 Chemical Cytometry coupled with Fluorescent Substrates …………………………16 

CHAPTER 2. THE IMPORTANCE OF HYDROPHOBICITY IN LIPID     
SIGNALING REPORTERS: SYNTHESIS AND EVALUATION OF         
FLUORESCENT LIPID REPORTERS………..………………..…………………...………. 18 
 
2.1 Introduction to Interfacial Catalysis by PIP Modifying Enzymes……………………………….18 

2.2 Results and Discussion…………………………………………………………………………….19 

2.2.1 Design and synthesis of fluorescent PIP2 derivatives……………………………….19 

2.2.2 Biophysical and Biochemical Evaluation of Fluorescent PIP2 Reporters………….21 

2.2.3 In vitro Membrane Association of Fluorescent PIP2 Reporters…………………….23 

2.2.4 Vesicle Based PI3K Analysis…………………………………………………………...25 

 2.2.5 Required Hydrophobicity for PI4K Substrate PtdIns…………………………………26 

2.2.6 Synthesis of BODIPY-DAG-C15 and BODIPY-PA-C15 …………………………….27 

2.3 Conclusions and Future Directions …………………………………………………………........29 

2.4 Experimental…………………………………………………………......………………………....31 

2.4.1 Soluble PI3K Assay Conditions………………………………………………………...32  

2.4.2 Soluble PI4K Assay Conditions………………………………………………………...32 

2.4.3 Vesicle Based PI3K Assay Conditions………………………………………………...32 

2.4.4 TLC Analysis of Fluorescent Lipid Metabolites  ..…………………………………....33 

2.4.5 CE Analysis of Fluorescent Lipid Metabolite..……………………….….…………....33 



	 xi	

2.4.6 Fluorescent lipids/liposome interaction ………………….........................................34 

2.4.7 Chemical Synthesis …………………......................................................................35  

CHAPTER 3. CELLULAR DELIVERY OF SYNTHETIC  
PIP REPORTERS…….………………………………………………………………………...55 
 

3.1 Introduction…………………......…………………......…………………......…………………… 55 

3.2 Results and Discussion……………......…………………......………………………………….. 59 

3.2.1 Delivery of BODIPY-DAG-C15, BODIPY-PIP2-C15, and model         
phospholipid 36 to Cells………….…......……………………………………………….……  59 

 
3.2.2 Photocaging for the Delivery of Model Phospholipid 36…………………………… 61 

3.2.3 Histone Delivery of PIPs……………......…………………......……………………… 64 

3.2.4 Cationic Liposomes for the Delivery of PIPs……………......………………………. 65 

3.2.5 Fusogenic Liposomes for the Delivery of PIPs……………......……………………. 66 

3.2.6 Intramolecular Charge Masking Strategy with Guanidine for the                  
Delivery of Phospholipids……………......……………………......……………………….…..70 
 
3.2.7 Charge Altering Releasable Transporters (CARTs)  
for the Delivery of PIPs………………………………………………………………….…….. 74 

 
3.3 Conclusions and Future Directions……………......…………………………………………... 78 

3.4 Experimental……………......…………………………………......…………………………….. 80 

3.4.1 Confocal Microscopy ……………......………………………………………………. 82 

3.4.2 Preparation of Cationic Liposomes……......……………………………………….. 82 

3.4.3 Preparation of Fusogenic Liposomes……......…………………………………….. 82 

3.4.4 Extraction of Lipid Metabolites……......…………………………………………….. 82 

3.4.5 TLC analysis of Lipid Metabolites……......…………………………………………. 83 

3.4.6 CE Analysis of Lipid Analytes……......……………………………………………… 83 

3.4.7 Chemical Synthesis……......…………………………………………………………. 84 

CHAPTER 4. INVESTIGATION OF CELLULAR PHOSPHOLIPID  
METABOLISM WITH FLUOURESCENT REPORTERS…………….…..………………...... 94 
 
4.1 Introduction……......………………………………………………………………………….…….  94 



	 xii	

4.2 Results and Discussion……......………………………………………………………….…….  96 

4.2.1 Concentration Dependent Production of PA using BODIPY-DAG-C15…….…..  96 

4.2.2 Delivery of BODIPY-PIP2-C15:CART Complex to Breast Cancer Cells……..…  97  

4.2.3 Cellular Analysis of BODIPY-PIP2-C15 Metabolites in MDA-MB-436 Cells …... 98 

4.2.4 Cellular Analysis of BODIPY-PIP2-C15 Metabolites in MDA-MB-453 Cells……102 

4.3 Conclusions and Future Directions……......……………………………………………………103 

4.4 Experimental……......……………………………………………………………………………..108 

4.4.1 Cell Culture….…………………………………………………………………………..108 

4.4.2 Delivery of BODIPY-PIP2-C15 to Breast Cancer Cells…………………………….108 

4.4.3 Extraction of Lipids from Cell Pellet……………………………………………….….109 

4.4.4 TLC Analysis of Lipid Metabolites………………………………………………..…..109 

Appendix………………………………………………………………………………………………..111 

References……………………………………………………………………………………………..127 

	 	



	 xiii	

LIST OF TABLES 

Table 1.1 Table 1.1 Summary of Interactions Within Lipid  
Signaling Networks……..……………………………………………………………………………..…3 

Table 1.2 Cellular Distribution of PIPs……..…………………………………………………………6 

Table 1.3 Summary of Frequency of PIK3CA Alterations in Human Cancer………………...10 

Table 3.1 Cationic Liposome Formulations for BODIPY-PIP2-C15 Cellular 
Delivery…………………….…………………………………………………………………………......66 
 
Table 3.2	Fusogenic Liposome Formulations for BODIPY-PIP2-C15  
Cellular Delivery..………………………………………………………………………………..…..….68 
 

  



	 xiv	

LIST OF SCHEMES 

Scheme 2.1 Synthesis of Fluorescent PIP2 Derivatives with                    
Varied Hydrophobicity……………………………………………………..……..……………………20 

 
Scheme 2.2 Synthesis of Fluorescent PtdIns Reporter…………..…...…………..……....…….21 
 
Scheme 2.3 Synthesis of PIP Metabolites…………................……….…………………………..29 
 
Scheme 3.1 Synthesis of Fluorescent Model Phospholipid 36…....….…...……….…….……60 
 
Scheme 3.2 Synthesis of Intramolecular Charge Masking  
Model Compound 54….………………..…………….……..……….………..……………………….73 
	
	 	



	 xv	

LIST OF FIGURES 

Figure 1.1. Structure and Metabolic Pathway of Phosphoinositides………..………………….5 
 
Figure 1.2. PIP Binding Effector Protein Domains…………....………..…………………………..7 
 
Figure 1.3. The PI3K Metabolic Pathway……………..………..………….…………………………8 
 
Figure 1.4. Systematic Analysis of Cellular PIP Generation…..…………………….………….17 
 
Figure 2.1. Critical Micelle Concentration (CMC)  
and Kinetic Constants of PIP2 Derivatives……..………….……………………………………….22 
 
Figure 2.2. Fluorescent PI(4,5)P2 Substrate Competition……………………….……..………...23 

 
Figure 2.3. In-vitro Membrane Association of Fluorescent PIP2 
Reporters………………………………….……………………………………………………………...25 

 
Figure 2.4. Competition with Endogenous PI(4,5)P2 in Liposome Based 
Assay……………………………………………………………………………………………………...26 
 
Figure 2.5. Biophysical and Kinetic Analysis of Fluorescent PtdIns 
Analogs………………………………………………………………………………….…………..……27 
 
Figure 3.1. Common Chemical Moieties in Photocaging of 
Phospholipids…………………………………………………………………………………...…..…..56 
 
Figure 3.2. Common Lipids Used in Liposome Formulation for Cellular 
Transfection,……………………………………………………………………………………….…....58 
 
Figure 3.3. Carrier Free Delivery of Fluorescent Lipid Reporters……..……….……..…….…61 

Figure 3.4. Generation and Uncaging of Compound 54 with MKS-1….....……..………….....62 

Figure 3.5. Delivery of uncaged 36 and caged 54 to Cells……….…….….………………….…63  
 
Figure 3.6. Histone Delivery of BODIPY-PtdIns-C15 to Cells…………………..……...………..64 

Figure 3.7. Cationic Liposme Delivery of BODIPY-PtdIns-C15 to Cells………..….………….66 

Figure 3.8. Fusogenic Liposome Delivery of BODIPY-PtdIns-C15 to Cells……..……...…....68 

Figure 3.9. CE Analysis of Metabolites Generated using  
Fusogenic Liposome Delivery of BODIPY-PtdIns-C15…………………………………………..69 
 
Figure 3.10. Bidentite interaction between guanidine and phosphate…….…………..…..….70 

Figure 3.11. CARTs for the Delivery of BODIPY-PIP2-C15…..……………...............................75 

 
 



	 xvi	

Figure 3.12. Delivery of BODIPY-PIP2-C15 to cells via CART  
systems A11 and G7……………………………………………………………………..………....….76 
 
Figure 3.13. TLC analysis of Fluorescent Metabolites Generated from  
BODIPY-PIP2-C15 in Cells using the CART System…………..................................................77 

 
Figure 4.1. Suite of Fluorescent Reporters to Probe 
Various PIP Metabolic Pathways….……………………………………………...…………..……...95 
 
Figure 4.2. Breast Cancer Cell Lines for PI3K Pathway Metabolic Analysis……….….…….96 

Figure 4.3. Concentration Dependent Increase of PA Production with             
BODIPY-DAG-C15.………………………………………………………………………………………97 
 
Figure 4.4. Delivery of BODIPY-PIP2-C15 into MDA-MB-453 cells with CARTs………..….…98 

Figure 4.5. Analysis of Fluorescent Metabolite Distribution in  
MDA-MB-436 Cells………….……………..………………………………………………….…….…100 
 
Figure 4.6. Method to ‘Capture’ Fluorescent PIP3 Produced in  
MDA-MB-436 Cells…………...……………………………………………………………….….……101 
 
Figure 4.7. Analysis of Fluorescent Metabolite Distribution in 
MDA-MB-453 Cells…….….……………….…………………………………………...……………..102 
 
Figure 4.8. Structure of AK-PtdIns-C15 and Fluorophore  
Addition via ‘Click-Chemistry’.…………………………………………….………………..………106 
 

  



	 xvii	

LIST OF ABBREVIATIONS 

PIPs   Phosphoinositides 

DAG   Diacylglycerol 

PtdIns   Phosphatidylinositol 

PI(4,5)P2; PIP2 Phosphoinositide 4,5-bisphosphate  

PI(4)P   Phosphoinositide 4-phosphate 

PI(3,4,5)P3; PIP3 Phosphoinositide 3,4,5-trisphosphate 

PI3K   Phosphoinositide 3-kinase 

PI4K   Phospoinositide 4-kinase 

PH   Pleckstrin Homology Domain 

PTEN   Phosphatase and tensin homolog 

PLC   Phospholipase C 

DAGK   Diacylglycerol kinase 

INPP4   Inositol-3,4-bisphosphate 4-phosphatase 

PM   Plasma Membrane 

GPCR   G-Protein Coupled Receptor 

RTK   Receptor Tyrosine Kinase 

EGF   Epidermal Growth Factor 

EGFR   Epidermal Growth Factor Receptor  

PDGFR  Platelet derived growth factor receptor 

HGF   Hepatocyte Growth Factor 

HGFR   Hepatocyte Growth Factor Receptor 

FOX01  Forkhead Box 01 



	 xviii	

NfKb   Nuclear Factor Kb 

mTOR   Mammalian target of rapamycin 

PA   Phosphatidic acid 

fMLP   N-Formylmethionyl-leucyl-phenylalanine 

MS   Mass spectrometry 

GFP   Green fluorescent protein 

TLC   Thin layer chromatography 

CE-LIF  Capillary Electrophoresis with laser induced fluorescence 

DCC   N,N'-Dicyclohexylcarbodiimide  
 
DMAP   Dimethylaminopyridine 
 
DCM   Dichloromethane 
 
DTT   Dithiothreitol 

MOPS   3-(N-morpholino)propanesulfonic acid 

ATP   Adenosine triphosphate 

BODIPY  4,4-Difluoro-5,7-Dimethyl-4-Bora-3a,4a-Diaza-s-Indacene 

Cbz   Carboxybenzyl 

Bn   Benzyl 

Pd/C   Palladium on carbon 

MOM   methoxymethyl 
 
NHS   N-Hydroxysuccinimide  
 
FMOC   Fluorenylmethyloxycarbonyl 
 
BOC   tert-butyloxycarbonyl 
 
PC   Phosphatidylcholine 
 



	 xix	

PE   Phosphatidylethanolamine 
 
PS   Phosphatidylserine 
 
Chol   Cholesterol 
 
DOPE   1,2-dioleoylphosphatidylethanolamine 
 
DOTAP  1,2-dioleoyl-3-trimethylammonium-propane 
 
EDMPC  1,2-dimyristoyl-sn-glycero-3-phosphocholine 
 
EDPPC  1,2-dipalmitoyl-sn-glycero-3-ethylphosphocholine 
 
EDOPC  1,2-dioleoyl-sn-glycero-3-ethylphosphocholine 
 
di-C14 DAB   N,N-Dimethyltetradecylamine 
 
DMTAP  1,2-dimyristoyl-3-trimethylammonium-propane 
 
CART   Charge altering releasable transporter 

 

 



	1	

 
 
 
 
 

CHAPTER 1. INTRODUCTION AND IMPORTANCE OF SYSTEMATIC ANALYSIS OF 
BIOACTIVE LIPIDS 

 
1.1		Importance	of	Bioactive	Lipids	

Lipids are responsible for diverse and vital cellular processes with variations in 

lipid head groups and aliphatic chains allowing for the existence of >1,000 different lipid 

species [1, 2]. While largely recognized as being important structural components of the 

cell allowing for compartmentalization of cellular tasks, lipids also serve as critical 

regulators of a wide array of biological outcomes. Lipids can serve as an energy 

sources in times of glucose depletion. Fatty acids can be hydrolyzed from phospholipids 

that enter a stepwise pathway leading to the generation of acetyl CoA, that provides 

needed carbon atoms to the Kreb’s cycle where they can be oxidized for energy 

production [3]. Lipids can also serve as post-translational modifications of proteins such 

as the addition of myristoyl group to the N-terminal of the protein leading to membrane 

association, subcellular localization, and protein-protein interactions [4].  

Lipid metabolites are also important signaling metabolites that control a wide 

array of cellular processes including cell proliferation, migration, and apoptosis [5]. 

Signaling lipids, such as sphingolipids and phosphoinositides (PIPs), are large networks 

of metabolites and enzymes that respond uniquely to various extracellular and 

intracellular stimuli that lead to specific cellular functions [3, 5]. For instance 

phosphoinositides metabolic enzymes respond to both extracellular stimulation of 

receptor tyrosine kinases such epidermal growth factor receptor (EGFR) and platelet 
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derived growth factor receptor (PDGFR) that lead to downstream signaling cascades 

generally promoting cell survival and growth [6-8]. Likewise, a separate subset of PIP 

modifying enzymes can also be stimulated by Wnt leading to activation of a separate 

signaling cascade Wnt [9, 10]. Interestingly, PIP pathways also respond to intracellular 

production of lipid metabolites possibly as a feedback mechanism to control the ratios of 

the various metabolites which will be highlighted in the future sections and summarized 

in Table 1.1 [11]. 

1.2  Importance of Systematic Analysis of Lipid metabolites 
Because of the broad role of lipid signaling molecules, various enzymes within 

different pathways control the levels of various lipid metabolites very tightly to maintain 

cellular homeostasis. Imbalances of these metabolites contribute to a wide variety of 

human diseases including neuro-degeneration and cancers [5]. For example, mutations 

in the lipid modifying enzyme phosphoinositides 3-kinase (PI3K) leads to an increase 

production of signaling metabolite phosphoinositide 3,4,5-trisphosphate (PIP3). This 

increased production of PIP3 is important in cancer onset and progression [12]. 

Likewise, imbalances resulting from the increased production of another lipid metabolite 

phosphoinsitide 4-phosphate (PI(4)P) by aberrant phosphoinositide 4-kinase (PI4K) has 

implications in mental health diseases such as bi-polar disorder highlighting the 

complexity and reach of lipid metabolism in disease [13]. However, due to the 

complexity of the lipid signaling pathways, areas of aberrant activity have been studied 

in isolation focusing on a single node of activity separate from the rest of the metabolic 

network [14-16]. This has most commonly been done using methods such as dominant 

negative enzymes, siRNA interference, as well as through the development of small 

molecule chemical probes for biological analysis [15-19]. However, this method of 
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analysis has raised many questions about the contributions of the total metabolic 

pathway versus that of just a single metabolite because of the interconnected lipid 

pathways [20]. Indeed, there are crosstalk and feedback mechanisms among various 

lipid metabolites within a single pathway as well as interactions between various classes 

of bioactive lipids [21, 22].  For instance, the sphingolipid and phosphoinositides 

metabolic pathways have shown to interact through stimulation of diacylglycerol kinase 

(DAGK) activity. Cells treated with increasing concentrations of sphingosine lead to an 

increase in phosphatidic acid (PA) production suggesting the pathways are intertwined 

[21]. Therefore understanding the systems contributions of the various classes of 

bioactive lipids would be invaluable to understanding their importance in biological 

processes and diseases [20]. Despite the importance of the lipid signaling metabolic 

networks, little is known about the interplay between metabolites in cellular processes 

due to the difficulty in studying multiple metabolic events systematically within the cell 

[20]. 

 

Substrate	 Interacting	Enzyme	 Result	
DAG	 DAGK	 	Stimulated	
DAG	 PKC	 	Stimulated	

Sphingosine	 DAGK	 	Stimulated	
PI(3,4,5)P3	(Increase)	 DAGK	 	Stimulated	
PI(3,4,5)P3	(Depleted)	 DAGK	 	Increased	Expression	

PI(4,5)P2	 PLC	 	Stimulated	

PI(4)P	 PI4P5K	 Stimulated	
Table	1.1	Summary	of	Interactions	Within	Lipid	Signaling	Networks21,	22,	

23,	59,	60,	61		
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1.3 Importance of Phosphoinositides 
1.3.1 Background on Phosphoinositides  

Phosphoinositides (PIPs) are a vital class of signaling lipids that also play critical 

roles in a variety of cellular processes and human diseases, especially cancers [5, 12, 

13, 16, 23-28]. PIPs constitute approximately 1% of the phospholipids in the cell 

membranes and as one of the most versatile family of signaling molecules, PIPs play 

important roles in numerous facets of cell signaling, cell motility, vesicle transport and 

development [19, 29-33]. All PIPs are derived from phosphatidylnositol (PtdIns), which 

can be reversibly phosphorylated on the hydroxyl groups at the C3, C4, and C5 

positions to generate seven endogenous PIPs as illustrated in Figure 1.1A [34, 35]. 

PIPs contain a diacylglycerol (DAG) side chain most commonly containing stearic and 

the polyunsaturated arachiadonic acid that anchors them to various subcellular 

membranes. Because of wide variety of roles that PIPs play in cellular metabolism, 

there is stringent temporal and spatial control over metabolite generation. 

Consequently, abnormal levels of PIPs have been associated with development of a 

wide range of diseases including cancers and neurodegenerative disorders [36-38] 
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1.3.2 Cellular Distribution of PIPs 

PIPs are found distributed on specific membranes and the abundance of each 

lipid is tightly controlled giving great spatial and temporal control of the pathway [2].  As 

shown in Figure 1.1B, PtdIns is modified to generate a pool of 7 PIPs through 

reversible phosphorylation of the C3, C4, and C5 hydroxyl groups that are distributed 

A.	

	
	

B.	

	
Figure 1.1 Structure and Metabolic Pathway of 
Phosphoinositides: A. General Structure of Phosphonisositides 
(PIPs). Phosphoinositides are composed of a myo-inositol head 
group that can be selectively phosphorylated at the 3,4, and 5 
position. It is linked to a DAG chain via a phosphodiester bond 
with the sn-1 position. The DAG chain most commonly contains 
arachidonic acid and stearic acid at the sn-2 and sn-3 positions, 
respectively. B. The PIP Metabolic Network. The PIP metabolic 
network is a collective of kinases and phosphatases responsible 
for the generation of 7 distinct phosphorylated PIPs.  
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throughout various cell membranes [34, 35]. These lipid metabolites are distributed 

throughout various membranes as summarized in Table 1.2. The most abundant of the 

PIPs in cells are phosphoinositides 4,5-bisphosphate (PI(4,5)P2; PIP2) and 

phosphoinositide 4-phosphate (PI(4)P) which are important precursors to generate 

second messenger PI(3,4,5)P3. Because of the potent signaling functions of PIP3 it is 

generally found at only ~2—5% of the levels of PIP2 at basal conditions [20, 34, 39]. 

PIP2 Other low abundance PIPs, such as PI(3)P and PI(3,5)P2 are found primarily in 

various endosomes and lysosomes while PI(5)P has been shown to be both a nuclear 

and cytosolic signaling molecule underscoring the vast diversity amongst distribution 

and function of PIPs [33, 39]. 

 

1.3.3 Cellular Functions of Phosphoinositides 
The various PIPs are generated from a collective of kinases and phosphatases 

that make up the PIP metabolic network. PIP modifying enzymes can be stimulated 

through a variety of receptors including G-Protein coupled receptors (GPCRs) and 

receptor tyrosine kinases (RTKs) by corresponding ligands allowing for temporal control 

	

Metabolite Location 
PI(4)P Golgi/Vesicles 

PI(4,5)P2 
Plasma 

Membrane 

PI(3,4,5)P3 
Plasma 

Membrane 
PI(3,4)P2 Vesicles 

PI(3)P 
Early 

Endosome 
Table 1.2 Cellular Distribution of PIPs38: 
Metabolites of the PIP metabolic pathway 
are distributed amongst specific organelles. 
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over the generation of metabolites [33, 35]. PIPs have a wide range of downstream 

targets and cellular functions through interacting with targets at or recruited to the 

membrane [34, 35]. Effector proteins are recruited to cellular membranes via 

stereospecific binding to the phosphorylated inositol head groups enabling spatial 

organization and control [39]. One such example is the pleckstrin homology (PH) 

domain, the most abundant lipid-binding domain, which binds to numerous 

phosphorylated metabolites as seen in Figure 1.2 [13, 40]. Effector proteins, such as 

Akt (PKB), contain PH domains that localize the protein to the membrane allowing for 

activation and downstream signaling effects. This further highlights the importance of 

stringent control over production of secondary signaling metabolites [33, 34]. 

 

1.4 The PI3K Metabolic Pathway 
1.4.1 Background  

 

The PI3K pathway is a localized metabolic pathway of 4 enzymes and 4 

metabolites within the larger PIP metabolic network  and is illustrated in Figure 1.3 [41, 

42]. The central enzyme phosphoinositide 3-kinase (PI3K) is responsible for generation 

	
Figure 1.2 PIP Binding Effector Protein Domains: Various 
protein domains and their PIP target. Effector proteins 
recognize phosphorylation patterns of PIPs and are recruited 
to cellular membranes for activation.  
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of potent second messenger PI(3,4,5)P3 (PIP3) from the most abundant PIP metabolite 

PI(4,5)P2.  In addition to PI3K, the pathway contains 3 phosphatases responsible for 

diminishing the pool of PIP3: phosphatase and tensin homolog (PTEN), Phosphoinostol-

3,4,5-trisphosphate 5-phosphatase 1 (SHIP1), as well as the inositol polyphosphate 4-

phosphatase type II (INPP4B) [14, 25, 38]. While the resulting reaction does not 

generate a PIP, phospholipase C (PLC) is also an important enzyme that is relevant to 

the PI3K pathway as PLC and PI3K share PI(4,5)P2 as a substrate and respond to 

many of the same stimuli [33]. Other signaling metabolites DAG and inositol 1,4,5-

triphosphate (IP3) that are generated by PLC also serve as important regulators of the 

PIP metabolic pathway and cellular functions as second messengers [5]. 

 

1.4.2 The Importance of PI3K in Human Disease 
Genes encoding for the PIP modifying enzyme PI3K are found frequently 

mutated in a variety of cancers summarized in Table 1.3 [12, 13, 23, 43-45]. Class 1A 

	

	
Figure 1.3The PI3K Metabolic Pathway: The enzymes and metabolites 
that make up the PI3K metabolic pathway with PI(4,5)P2 supplied from 
PtdIns via PI(4)P. 
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PI3Ks are heterodimers composed of a p110 catalytic subunit responsible for 

generation of PIP3, and a p85 regulatory subunit responsible for auto-inhibition of the 

enzyme [46, 47]. Mutations in the helical and kinase domains of the protein result in 

increased enzymatic activity through both increased lipid binding and relief of p85 auto-

inhibition resulting in a increase in PIP3 production [23, 46, 47]. Increases in PIP3 levels 

drive tumorigenesis due to an increased activation of the PH domain containing effector 

protein Akt (PKB), which is activated following binding to PIP3  [25, 38, 48]. The increase 

in Akt activation results in misregulated downstream signaling of effector proteins 

including inhibition of transcription factor forkhead box 01 (FOX01) and increased 

activity of anti-apoptotic proteins such as nuclear factor kB (NFkB) and mammalian 

target of rapamaycin (mTOR), all important in tumorigenesis [14, 49, 50]. Interestingly the 

conversion of PI(3,4,5)P3 to PI(3,4)P2 by the SHIP family of phosphatases does not 

reduce Akt activation and it has been shown that both metabolites are capable of PH 

domain binding and Akt activation[40]. Therefore, both PTEN and INPP4B are 

responsible for direct termination of PI3K/Akt signaling through depletion of both 

PI(3,4,5)P3 and PI(3,4)P2 respectively, suggesting tumor suppressor potential for both of 

these enzymes. Indeed, knockdowns of both PTEN and INPP4B results in increased 

Akt activation leading to increased anchorage independent growth and cell motility. 

Likewise, deletion of PTEN or INPP4B in mice leads to an increase in tumor size in 

various xenograft models, further validating the tumor suppressor function of these 

enzymes [24, 28, 40, 45, 51, 52]. Not surprisingly, loss of PTEN expression or activity is 

common in human cancers and is the second most mutated tumor suppressor gene in 
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human cancer behind p53[52]. Collectively, these findings have made the PI3K pathway 

an attractive target for pharmaceutical development [14, 16, 38, 49, 50, 53]. 

 

Highlighting this need of expanded analytical techniques, a study6 of MCF10A 

cell populations using flow cytometry revealed heterogeneity in PI3K activity that was 

previously unknown due to measurement of population averages. In this study, a 

bimodal distribution of Akt activity was observed following EGF stimulation that 

correlates with PI3K protein production. Interestingly, the same distribution of PI3K was 

observed on a single cell level for both wild type and mutant PI3KH1047R suggesting that 

only a subset of cells classified as having a high levels of PI3K can activate Akt [7]. 

Because cell-to-cell variability has been demonstrated in multiple systems can lead to 

unique cellular fates and understanding how this is maintained and regulated could be a 

powerful tool in basic biology and pharmaceutical targeting of PI3K [54, 55]. For 

instance, targeting a population of cells are expressing low quantities of mutant PI3K 

with low Akt activation may be unsuitable for achieving a positive therapeutic effect [16]. 

Therefore, a simple and effective diagnostic tool to better understand this heterogeneity 

and PI3K activity in a patient could be effective in better determining a method and time 

of treatment.  

Disease	 Frequency	(%)	
Head	and	Neck	Cancer	 42	

Breast	Cancer	 25	
Lung	Cancer	(Squamous	

Cell)	 53	
Colorectal	Cancer	 37	

Lung	Cancer	(Small	Cell)	 27	
Table	 1.3	 Summary	 of	 Frequency	 of	PIK3CA	
Alterations	in	Human	Cancer6,10,12,	30		
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1.4.3 Pharmaceutical Targeting of PI3K Pathway  
 Attempts at therapeutic intervention against the PI3K pathway have been made 

by targeting PI3K directly as well as downstream effectors of the pathway. Indeed, the 

PI3K-d selective inhibitor, idelalisib, has been approved by the FDA to treat chronic 

lympocytic leukemia in combination with rituximab though only as a third line treatment 

following multiple treatment failures [56]. Likewise, the drug was pulled from multiple 

clinical trials in 2016 due to lack of efficacy.  Pan PI3K inhibitors represent the largest 

class of agents used to regulate aberrant PI3K activity [14, 16, 49, 57, 58]. 

Unfortunately, such a strategy has proven to be difficult in achieving clinical success 

and raises questions regarding the possible off-target effects of inhibiting all isoforms of 

PI3K versus the oncogenic PI3Kα mutant [49]. Akt inhibition is the second most 

common target of pharmacological agent for PI3K aberrant cancers, but this too has 

seen little positive clinical outcomes [14, 16, 34, 49]. Such failures in the clinic have 

raised numerous interesting and important biological questions that are essential in 

understanding the complex nature of the PI3K signaling network, as well as the PI 

metabolic pathway as a whole. One such goal is understanding the roles of various 

metabolites within the pathway and possible feedback loops across various cancer 

types [14, 16, 49, 57]. Likewise, it places an emphasis on achieving a systems 

understanding of PIP biology within a tumor microenvironment, especially with the 

previously described cell-to-cell variability of PI3K and Akt activation [3, 7]. It is 

hypothesized that inhibition of PI3K or Akt is overcome by compensatory lipid signaling 

pathways over time allowing for the cell to evade deleterious effects of inhibition.  

 Supporting this hypothesis of compensatory pathways, products of the PI3K 

pathway have been shown to alter levels of other PI modifying enzymes including 



	12	

DAGK, which converts DAG to PA [59]. In this study, increased DAGK activity was 

observed following an increase in PI(3,4,5)P3 and PI(3,4)P2 both in vitro and in vivo. 

This was an interesting result as it was the first instance of DAGK activation in the 

absence of receptor-regulated calcium release. Further, it showed that DAGK can be 

activated and recruited to the plasma membrane as a direct consequence of PI3K 

activation highlighting the interconnectivity of lipid metabolic pathways [59].  

 Interestingly, another study showed extended inhibition of PI3K resulted in 

increased expression level of DAGK, contradictory to the previously described study. 

DAGK has been shown to activate tyrosine kinase SRC, which canonically is activated 

through PIP3/Akt [22, 60]. Dual inhibition of both DAGK and PI3K leads to a decrease in 

cell growth versus a single agent inhibition alone. These results suggest that 

understanding pathway heterogeneity and the changes oncogenic mutations confer as 

well as the relationship between the other enzymes and metabolites within the PI3K 

pathway are essential to achieving clinical success targeting the PI3K pathway or other 

members of the PI metabolic network [6, 22, 61]. Likewise, the seemingly contradictory 

actions of the pathway under different cell stimuli and in different cell types could be 

vital to understanding the pathway’s contributions to disease progression. Thus, an 

improved understanding of the direct role of PIs in disease progression would further 

validate this pathway as a drug target and lead to improved understanding of the 

interplay between the pathway’s metabolites, lead to biomarker identification, and serve 

as a powerful tool in achieving clinical success targeting the pathway.  
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1.5 Measurement of Lipid Metabolites 
1.5.1 Background  
 To better understand the systems biology of PIP metabolism, sensitive detection 

methods are needed to analyze the changes of both major and minor metabolites. Such 

sensitivity is necessary to discern the roles of low-level metabolites in the system and to 

extend the analysis to a single cell level to in order to paint a clear picture of the tumor 

microenvironment[34]. PIPs represent less than 1% of total phospholipid content in the 

cell and at a concentration of 10 mM PIP2 is 25-fold more abundant than other 

phosphorylated PI metabolites [21, 23]. Sensitive and robust detection methods are 

needed for analysis, especially when only a maximum of 10% of this pool of PIP2 is 

converted to PIP3 following stimulation and the metabolite has a short life span [25, 62-

64].   

1.5.2 Radiolabeled Substrate 
 Current methods aimed at quantifying PI metabolism is done using radioactivity-

based methods through the metabolic labeling of living cells with radiolabeled inorganic 

phosphate (32Pi or 33Pi) or [2-3H]myo-inositol. A major downfall of this method is that 

labeling time and conditions greatly affects signal output and can therefore result in 

improper analysis of metabolic activity. This method also suffers from the inability to 

distinguish phosphorylation isomers such as PI(4,5)P2 vs. PI(3,4)P2 and requires a large 

number of cells for analysis and therefore is ineffective at analysis of tumor 

microenvironment heterogeneity through single cell analysis [20, 34, 62, 63]. These 

methods have been effective at quantifying the average basal levels of multiple 

metabolites, though such a method takes long incubation (up to >24 h) and again lacks 
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sensitivity to effectively measure systematic metabolism. Likewise, while it is acceptable 

for studying steady-state metabolism of PIs it is not effective in accurately capturing 

short lived metabolic products such as PIP3 [34]. Because of the drawbacks of this 

method, it would not be effective in achieving a detailed view of PI metabolism 

necessary for use in diagnostic applications. 

1.5.3 Mass Spectrometry 
 Mass spectrometry (MS) can also be used to analyze complex mixtures of 

PtdIns metabolites. Unfortunately MS relies on a large number of cells and can be 

problematic in identifying low level and highly phosphorylated phospholipid species 

such as PI(4,5)P2 and PI(3,4,5)P3 [64-68]. A promising MS method requires chemical 

manipulation of isolated phospholipids in a reaction with TMS-diazomethane to 

generate a pool of methylated phosphate esters [64, 67]. This neutralizes the negative 

charge of the lipid and allows for a more sensitive detection on MS. Following parent ion 

identification, a MS/MS experiment can be performed to determine the phosphorylation 

state of the selected mass by fragmentation and analyzing for the mass of the now 

neutral inositol head group. While this method is successful in determining the relative 

concentration of lipid metabolites in a cell population, it is unable to distinguish isomers 

of phosphorylation states and using the endogenous pool of lipids results in a large 

number of mass signals that must be analyzed. Likewise, the PIs can contain various 

fatty acids at the sn-1 and 2 positions further complicating analysis, though such 

detailed information may be useful when further analyzing the role of PI metabolites in 

biological processes [64, 66, 67]. This method is also very technically demanding with 

complex data analysis following the use of specialized MS equipment and methods [65, 

69].   
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1.5.4 Fluorescent Protein Domains 
 Another method of studying PI metabolism is the use of engineered fluorescent 

proteins such as tagged PH domains to analyze enzymatic activities via microscopy and 

the translocation of the fluorescent domains following cell stimulation. PH domains, 

such as that from Akt, are engineered to contain a green fluorescent protein (GFP) that 

can be monitored via fluorescence microscopy. Following a cell stimulation event, the 

fluorescent domains can be analyzed translocating form the cytosol to the membrane 

where the lipid messenger is present [70]. Such methods, however, are indirect 

measurements of enzymatic activity and suffer from the inability to analyze multiple 

metabolites simultaneously [34, 62, 71, 72]. Likewise, it has been demonstrated that PH 

domains can bind to multiple lipid metabolites again complicating biological conclusions 

that could be discerned from using this method. Further, this method cannot be used as 

diagnostic tool because of the necessity to engineer and express fluorescent-tagged 

protein domains is not compatible with clinical samples [20, 62, 63].  

1.6 Synthetic Tools for Studying PIP Metabolism 
1.6.1 Fluorescent Substrates 
 A promising tool for the advancement of PIs analysis are synthesized reporters 

that share the core structure of specific PI metabolites while containing unique chemical 

moieties that allows for sensitive and specific quantification of metabolites [20]. Such an 

approach is powerful because the reporters can be manipulated to contain various 

moieties specific to the desired biological question. One of the most widely used 

chemical biology methods that have been increasingly applied to synthetic PIs is the 

use of a fluorescent-tagged substrate. This technology allows for visualization of the PI 

metabolic network by both microscopy as well as monitoring biochemical reactions via 
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thin layer choromatography (TLC) separation and fluorescent scanning [71]. Such a 

technology is more advantageous than radiolabeling due to increased sensitivity of 

fluorescence based analytical platforms. Likewise, a known concentration of a specific 

metabolite reporter could be loaded into cells versus relying on the steady-state 

metabolic incorporation of the labeled unit into the pool of phospholipids allowing for the 

direct dissection of specific nodes of the metabolic pathway and possibly systematic 

metabolic analysis. Fluorescent PIP reporters have been shown to serve as substrates 

for various PI modifying enzymes in-vitro, but due to the difficulty in their chemical 

synthesis, there has been little analysis on the effects of reporter structure on enzymatic 

turnover or cellular localization[62, 63, 71, 73]. 

1.6.2 Chemical Cytometry coupled with Fluorescent Substrates 
 Another trend in PIP systems biology is the use of microanalytical chemical 

separation, known as chemical cytometry, to separate and analyze complex cellular 

mixtures. One such technique, capillary electrophoresis with laser-induced fluorescence 

(CE-LIF), has been validated as an effective platform for analyzing multiple classes of 

lipid kinases and phosphatase reporters and is capable of single cell metabolic analysis 

[62, 74-78]. Further, this method has been validated for the separation of the various 

metabolites found within the PIP metabolic network, including isomers of the same 

phosphorylation state [62, 63]. In this method, cells are loaded with fluorescent 

reporters followed by lysis of the cells and the contents are loaded into a capillary and 

separation is achieved via capillary electrophoresis. This method holds great promise 

for PIP metabolic analysis as a known concentration of reporter can be delivered to the 

cell to minimize perturbation of the endogenous pool of metabolites. The level of 

sensitivity, as low as 10-20 mol, and the capability of single-cell analysis also makes this 



	17	

a powerful technique for developing a lipid profile and could also be applied to patient 

samples for possible diagnostic applications [62, 63, 77]. Such technology could be 

applied to PI metabolic analysis and provide a detailed profile of PIP metabolites in 

various disease states and provide a powerful system to better understand the systems 

contributions to biology. Ideally, a fluorescent reporter could be delivered to cells where 

it could undergo in-cell mixture synthesis through the metabolic network followed by 

analysis of the collective of lipid metabolites by CE-LIF as shown in Figure 1.5. In this 

dissertation, I will describe our efforts in validating a platform utilizing fluorescent lipid 

reporters for PIP metabolic analysis.  

 

  

	
Figure 1.4 Systematic Analysis of Cellular PIP Generation: A system 
using a validated fluourescent PIP2 reporter coupled with non-invasive 
delivery techniques would allow for generation of a variety of fluorescent 
metabolites that can then be measure via CE-LIF and TLC 
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CHAPTER 2. THE IMPORTANCE OF HYDROPHOBICITY IN LIPID SIGNALING 

REPORTERS: SYNTHESIS AND EVALUATION OF FLUORESCENT LIPID 
REPORTERS 

	
2.1	Introduction	to	Interfacial	Catalysis	by	PIP	Modifying	Enzymes	
 

PI3K and other PIP modifying enzymes catalyze reactions at the lipid/water 

interface in a process known as interfacial catalysis wherein hydrophobic contact 

between the enzyme and substrate as well as enzyme and membrane are of critical 

importance to catalytic turnover [46, 79, 80]. Likewise, various cancer causing mutations 

in the PIP family of enzymes have been shown to cause increased activity through 

required hydrophobic interaction with the membrane [46, 80] Consequently, the 

hydrophobic side chains in fluorescent PIP derivatives will likely play important roles in 

their capacity as enzyme substrates. Consequently, reporters that cannot undergo 

efficient metabolism like that of their endogenous counterparts will not be useful tools in 

monitoring cellular PIP metabolism [20]. 

  Unfortunately PIP synthesis is labor intensive and consequently short chain 

soluble PIPs are more frequently utilized as they are easier to synthesize, purify and 

analyze in biochemical assays [81, 82]. However, the effects of the acyl chain in these 

fluorescent PIPs on their capacity as enzyme substrates have been ignored. The roles 

of the side chains in non-fluorescent substrates have been previously demonstrated. 

For example, a study of B. cereus phospholipase C (PLC) activity on 

phosphatidylcholine substrates revealed changes in the kinetic constants for the various 

substrates with a preference for long acyl chains [83].  
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With the goal of using fluorescent PIP reporters to profile cellular metabolism we 

synthesized fluorescent PIP2 and PtdIns derivatives that contain varied degrees of 

hydrophobicity and investigated their ability to serve as reporters of PI3KIα and PI4KIIα 

activity, respectively. This chapter describes the synthesis and biochemical evaluation 

of various PIPs with different degrees of hydrophobicity in their side chains for selection 

of a suitable reporter for cellular studies. We describe a set of assays that prove useful 

in reporter selection for lipid signaling enzymes and could be applied to various classes 

of signaling phospholipids. We further describe the synthesis of various other PIP 

metabolites based on our finings in these studies to be used as both standards and 

reporters in future cellular experiments. 

2.2 Results and Discussion 
2.2.1 Design and synthesis of fluorescent PIP2 derivatives 

To investigate the effects of hydrophobicity on the capacity of fluorescent PIP2 

derivatives as enzyme substrates, we synthesized four PIP2 analogs PIP2-C6, PIP2-C9, 

PIP2-C12 and PIP2-C15 with different alkyl groups C6H13, C9H19, C12H25, and C15H31, 

respectively, at the sn-2 position according to Scheme 2.1.  Fluorescein was chosen as 

the fluorophore for evaluation of multiple PIP2 derivatives because of our prior success 

in separating fluorescein-tagged PIPs by both thin layer chromatography (TLC) and 

capillary electrophoresis (CE) [62, 71, 76]. A BODIPY tagged C15 PIP2 was (BODIPY-

C15-PIP2) also synthesized as the fluorophore possesses some chemical 

characteristics that may make it a more suitable for cellular analysis [84]. Briefly, 

carboxylic acids 1 with various length of alkyl chain coupled with the alcohol 2. 

Subsequently, the p-methoxybenzyl (PMB) group was removed to form 3. The primary 

alcohol in 3 was then converted to a phosphoramidite, which was coupled to the 
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protected inositol 4 previously synthesized according to literature protocols [81]. After 

oxidation with t-butyl hydroperoxide, compound 5 was formed and the carboxybenzyl 

(Cbz) and benzyl (Bn) groups were removed by hydrogenolysis. Deprotection of the 

methoxymethyl (MOM) groups then provided the primary amine 6, which reacted with 

the NHS ester of fluorescein 7 or BODIPY 9 to yield fluorescent PIP2 derivatives [81, 82, 

85, 86]. 

 

BODIPY-PtdIns-C15 was synthesized in a similar manner according to 

according to Scheme 2.2 [81]. Briefly, DAG phosphoramidite 12 containing palmitic acid 

at the sn-2 position was synthesized as described in Scheme 2.1 and was coupled with 

protected inositol derivative 11 followed by oxidation with t-BuOOH to generate 

	
Scheme	2.1:	Synthesis	of	Fluorescent	PIP2	Derivatives	with	Varied	

Hydrophobicity	
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compound 13. Removal of all the protective groups resulted in 14, which reacted with 

BODIPY-NHS to provide fluorescent 15 (BODIPY-PtdIns-C15).  

 

 

2.2.2 Biophysical and Biochemical Evaluation of Fluorescent PIP2 Reporters 
The critical micelle concentration (CMC) of the fluorescent PIP2 derivatives was 

calculated by measuring light scattering of various concentrations of the reporters in 

H2O at 25 °C [71]. As expected, the PIP2 derivative with a longer acyl chain, and 

thereby higher hydrophobicity, has lower CMC value than that with a shorter acyl chain 

In comparison, the endogenous PI(4,5)P2 has a reported CMC of 10 µM [71].  

A mixed micelle assay was utilized to compare the kinetic parameters of the 

substrates [71]. The assay was initiated by the addition of purified PI3K enzyme to 

assay buffer containing individual fluorescent PIP2 derivative and ATP and stopped by 

the addition of a mixture of CHCl3/MeOH (1:1 v:v). The reaction mixture was analyzed 

	
Scheme	2.2:	Synthesis	of	Fluorescent	PtdIns	Reporter		
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by TLC or CE for production of fluorescent PI(3,4,5)P3 as previously described [71]. The 

concentration of substrate was varied to give a set of initial velocity values and this data 

was fit to the Michaelis-Menten equation to calculate the relative Km and Vmax values of 

the reporters summarized in Figure 2.1. Under these conditions, no detectable amount 

of the corresponding PIP3 was formed for the PIP2-C6 reporter, suggesting that short 

chain PIP2-C6 was not an effective substrate for PI3KIα under the assay conditions 

examined. Unsurprisingly, the most hydrophobic PIP2-C15 was the most efficiently 

metabolized substrate.  

 

To further assess the ability of fluorescent PIP2 probes as PI3KIα substrates, a 

1:1 (mol:mol) mixture of PIP2-C9 and PIP2-C15 was used in a mixture in a soluble PI3K 

assay, with reactions of equimolar PIP2-C9 or PIP2-C15 alone under the same assay 

conditions as controls. PIP2-C9, PIP2-C15 and their corresponding PI(3,4,5)P3 products 

were efficiently separated by CE (Fig. 2.2 B). As shown in Figure 2.2, the conversion of 

PIP2-C9 in the presence of PIP2-C15 was decreased by approximately 5-fold compared 

	
Figure 2.1: Critical Micelle Concentration (CMC) and Kinetic 
Constants of PIP2 Derivatives. The CMC was measured in water using 
dynamic light scattering (DLS). Mixed micelle PI3K assays were used to 
calculate the kinetic constant of the various fluorescent derivatives. Kinetic 
constants for the C6 reporter were not obtained due to the lack of 
production of the corresponding PIP3. 
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to when it was the only PI3K substrate. In contrast, the conversion of PIP2-C15 

remained consistent with or without the presence of PIP2-C9. These results again 

highlight the importance of hydrophobicity in fluorescent PIP2 probes, especially when 

competing substrates were present- a scenario when the probe was used as a reporter 

in live cells. 

 

A.	

	
B	

	
Figure 2.2 Fluorescent PI(4,5)P2 Substrate Competition. (A) Mixed 
micelle PI3K assay conditions were used to analyze the effects of 
multiple reporters in solution. Production of PIP3 was monitored from 
reactions that contained a single fluorescent PIP2 derivative (20 µM), 
short chain C9 or long chain C15, as well as production of each product 
in reactions that contained both reporter in equimolar (20 µM) 
concentrations. (B) Representative chromatogram of separation of PIP2-
C9, PIP2-C15, PIP3-C9 and PIP3-C15 by CE. The CE analysis was 
carried out by Dr. Angela Proctor in Dr. Nancy Allbritton’s lab	
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2.2.3 In vitro Membrane Association of Fluorescent PIP2 Reporters 
The acyl side chain in a fluorescent PIP2 probe is vital to cellular localization. 

However, the non-invasive method of using histone as a carrier protein to deliver 

fluorescent PIP2 derivatives into cells resulted in very low efficiency in our hands [87]. 

Consequently, we utilized a membrane association assay that was developed for 

protein-lipid interactions to investigate likely membrane localization of fluorescent PIP2 

probes [88]. In this assay, liposomes and the associated cargo are recovered by 

centrifugation atop a dense sucrose gradient. Liposomes were formulated to mimic 

mammalian membranes with a final composition of phosphatidylcholine (PC; 45%), 

phosphatidylethanolamine (PE; 25%), phosphatidylserine (PS; 5%), phosphatidylinositol 

(PtdIns; 10%), and cholesterol (Chol; 15%). Figure 2.3 shows representative images of 

the assay mixtures after centrifugation. The top lipid layer and bottom sucrose layers 

were then collected and each layer quantified by CE for the presence of fluorescent 

PIP2. Approximately 91% of the PIP2-C15 probe was incorporated into the liposome 

layer (Fig. 2A). The percentage of incorporation decreased dramatically to 35% for 

PIP2-C12. Only 12% and 9% of the probe was incorporated into liposome for PIP2-C9 

and PIP2-C6, respectively. These results demonstrated that only the PIP2-C15 probe 

with a long acyl side chain could be efficiently incorporated into membrane like 

structures, which is important for localization if these reporters are to be used in future 

cellular experiments.  
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2.2.4 Vesicle Based PI3K Analysis 
To further assess whether PIP2-C15 functions as an effective reporter in the 

presence of endogenous substrate, the PI3K-catalyzed reaction was run on lipid 

vesicles, an environment that closely mimic cellular presentation of lipid substrates, in 

the presence or absence of endogenous PIP2. Liposomes composed of a carrier lipid, 

phosphatidylserine (PS) which is the most commone anionic lipid in the plasma 

membrane, PIP2-C15 and endogenous PIP2 at different ratios, were formulated for 

enzymatic reactions [39, 89]. The total concentration of PIP2-C15 and endogenous PIP2 

was 10 µM, which is close to that of the cellular environment and the conversion of 

PIP2-C15 to its corresponding PIP3 product was then measured and shown in Figure 

2.4. The rate of conversion decreased by approximately 27% when the ratio of PIP2-

C15 to endogenous PIP2 was 1:1, and approximately 50% when the ratio was 1:9, 

	
Figure 2.3: In-vitro Membrane Association of Fluorescent PIP2 
Reporters: Probes were incubated with liposomes and under a 
gradient of sucrose. Following centrifugation the samples were 
visualized using a UV light source. The top liposome containing layer 
and bottom layer weas isolated and total PIP2 content was 
determined using CE separation.  
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compared to 100% PIP2-C15. These results suggested that PIP2-C15 was a similar to 

endogenous substrate and can function as a reporter of PI3K activity.  

 

2.2.5 Required Hydrophobicity for PI4K Substrate PtdIns 
Like PI3K, PI4K catalyzes reactions at the lipid/water interface. Consequently, 

what was observed for PI3K likely applies to PI4K as well as other enzymes in the 

pathway. There is only one commercial fluorescent PI derivative, BODIPY-PtdIns-C7 

(Fig. 2.5A) with a short acyl side chain. We thus designed BODIPY-PtdIns-C15 with a 

longer acyl side chain to assess its capacity as PI4K substrate. Next, both BODIPY-

PtdIns-C15 were BODIPY-PtdIns-C7 tested as substrates of PI4KIIα under soluble 

assay conditions. Consistent with what we observed with fluorescent PIP2 derivatives, 

the PI(4)P product of the fluorescent PI with a longer acyl side chain BODIPY-PtdIns-

C15 was efficiently generated shown in . In contrast, no detectable amount of product 

was formed for BODIPY-PtdIns-C7 containing a shorter acyl side chain shown in 

	
Figure 2.4: Competition with Endogenous PI(4,5)P2 in Liposome Based 
Assay: Liposomes were formulated to contain 10 µM total PI (4,5)P2 using 
fluorescent C15 PI(4,5)P2 derivative or endogenous PI(4,5,)P2 and 10 µM of 
PS as a carrier lipid. Production of Pi(3,4,5)P3 was monitored to analyze the 
ability of the reporter to be metabolized in the presence of endogenous 
substrate. 
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Figure 2.5B. Likewise, over 99% of BODIPY-PtdIns-C15 (not detectable in the 

aqueous layer) but only approximately 15% of BODIPY-PtdIns-C7 participated into the 

lipid layer in the in vitro membrane association assay as seen in Figure 2.5C.  

 

 

2.2.6 Synthesis of BODIPY-DAG-C15 and BODIPY-PA-C15 

With the goal of using these reporters for future cellular studies, multiple lipid 

metabolites of the PIP pathway for were also synthesized as standards for metabolite 

identification.  BODIPY-DAG-C15 and BODIPY-PA-C15 were synthesized to contain 

the C15 acyl chain to be used as standards for CE and TLC analysis of cellular 

experiments as well as chemical reporters.  In addition to the C15 alkyl chain, the 

	
Figure 2.5: Biophysical and Kinetic Analysis of Fluorescent 
PtdIns Analogs: A. Chemical structures of fluorescent PtdIns 
derivatives. B. Mixed micelle PI4K assay with fluorescent PtdIns 
derivatives monitoring production of PtdIns(4)P. C. Representative 
images of fluorescent PtdIns derivatives interacting with liposome 
with fluorescent PtdIns quantified by CE separation. 
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metabolites were synthesized also contain the same N-caproic acid tagged with a 

BODIPY fluorophore was kept constant to ensure the standards will chemically match 

the metabolites produced from our reporter in cellular experiments. When synthesizing 

fluorescent DAG, great care must be taken to avoid acyl migration from the secondary 

sn-2 position to the primary sn-3 position of DAG. If the primary hyrdroxyl is free under 

hydrogenolysis and basic conditions the side chain will migrate. To alleviate this, the 

hydroxyl was left protected with a PMB group until the final deprotection with DDQ. 

Under these conditions acyl migration does not occur as judged by NMR analysis of 

products from each synthetic step. Briefly, the Cbz group is selectively deprotected via 

hydrogenolysis in the presence of pyridine leaving the PMB group intact [90, 91]. 

Addition of BODIPY via the corresponding NHS ester followed by DDQ oxidation of the 

PMB protecting group resulted in final fluorescent DAG (Scheme 2.3A). Fluorescent PA 

was synthesized in a scheme similar to PIP2 and PtdIns synthesis because the hydroxyl 

is phosphorylated in acidic conditions there is much less concern for acyl migrations. 

Briefly, compound 3d was phosphorylated using commercial phospohramidite as 

previously described. Hydrogenolysis of the Cbz and Bn protecting groups and 

subsequent addition of NHS-BODIPY resulted in pure fluorescent PA (Scheme 2.3B).  
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2.3 Conclusions and Future Directions 

In summary, we have synthesized a series of fluorescent PIP2 derivatives with 

varied levels of hydrophobicity and investigated their capacity as PI3K substrates. The 

probe with a longer acyl side chain functions as a better substrate for PI3K and has a 

higher affinity with liposome compared to that with a shorter acyl side chain. Strikingly, 

when the side chain is sufficiently short and thereby has low hydrophobicity, the 

fluorescent PIP2 is no longer an effective PI3K substrate to generate detectable amount 

A.	

	
B.	

	
Scheme 2.3: Synthesis of PIP Metabolites. A. Synthetic scheme for the 
synthesis of fluorescent diacylglycerol (DAG). B. Synthetic scheme for the 
synthesis of fluorescent phosphatidic acid (PA) 
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of enzymatic product, highlighting the required hydrophobicity of fluorescent PIP2 

derivatives. Likewise, the fluorescent PtdIns derivative with a long acyl side chain 

functions as an effective PI4K substrate, while that with a short acyl side chain does not 

generate detectable amount of enzymatic product. These results suggest that the 

required hydrophobicity of a fluorescent probe, which can be assessed through its 

interaction with liposomes, is likely essential for phosphatidylinositide metabolic 

enzymes.  

PIP2-C15 has shown similar properties as the endogenous PIP2 in regard to 

CMC, kinetic parameters and tendency for membrane association. Unlike the 

endogenous PIP2, PIP2-C15 is easy to handle both in chemical synthesis and CE 

separation. Similarly, BODIPY-PtdIns-C15 has also been efficiently synthesized and 

separated from its enzymatic products. These results demonstrate that fluorescent 

PIP2-C15 and PtdIns-C15 may strike the right balance between required hydrophobicity 

and practical handling during chemical synthesis and separation. Consequently, they 

are likely effective fluorescent probes that can be used to profile metabolism of PIPs 

when coupled with CE separation. Likewise, fluorescent PI, DAG and PA will serve as 

valuable standards for analyzing PI metabolism as well as serve as functional tools for 

dissecting distinct nodes of the PI metabolic pathway.  When coupled with an effective 

cellular delivery method, and CE separation, we predict these reporters will be capable 

of monitoring changes in dynamic PI metabolism. 

With the ultimate goal of the work being cellular analysis of PIs, the cellular 

efficacy of the lipid reporters must be confirmed using an effective delivery method and 

analysis for metabolic distribution of metabolites. Ideally, our system will mimic closely 
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what has been previously described using radiolabeled substrates, though with 

increased sensitivity for minor metabolites.  Despite our best efforts at analyzing 

membrane association via a liposomal flotation experiment, it is still possible we will see 

non-specific and cytosolic localization of our lipid reporters. Therefore, it may be 

beneficial to further increase the hydrophobicity at the sn-2 position of the PI reporters. 

One such modification would be the addition of stearic, nonadecyclic, or arachidic acids 

at this position to further increase hydrophobicity and better mimic the endogenous 

substrate. Likewise, removal of the fluorophore for an alkyne tag on all substrates would 

make the reporters more suitable for cellular delivery and could lend well to future 

analytical platforms of single cell analysis. Further, the fluorophores of various PI 

metabolites could be altered to allow multiple pools of metabolites to be tracked 

distinctly by using dual fluorophores with unique and non-overlapping excitation 

wavelengths. 

2.4 Experimental 
PIP2-C12 and related intermediates were synthesized and characterized by Dr. 

Weigang Huang. Purified PI3KIα enzyme was purchased from Invitrogen-Life 

Technologies. Purified PI4KIIα was purchased from Creative Biomart. Dynamic light 

scattering data were recorded on a Wyatt DynaPro dynamic light scattering plate 

reader. Endogenous PI(4,5)P2 (brain, porcine) was purchased from Avanti Polar Lipids. 

PtdIns-C7 was purchased from Echelon Biosciences and confirmed via ES-HRMS 

(Appendix). ATP and TLC plates with silica gel 60 were purchased from Sigma. All 

solvents were purchased from Fischer Scientific. NMR analysis was done on an Inova 

400 MHz spectrometer in the indicated solvent- spectra are available in the Appendix. 

All compounds were further confirmed by ESI mass spectrometry. 
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2.4.1 Soluble PI3K Assay Conditions  
Fluorescent PIP2 derivatives were added to assay buffer composed of MOPS (50 mM, 

pH 6.7), NaCl (100 mM), MgCl2 (10 mM), sodium cholate (0.5 mM), DTT (1 mM), 

followed by the addition of ATP (2 mM). The reaction was initiated by the addition of 

purified PI3Kiα enzyme to a final concentration of 1.2 ng/µL or 2.4 ng/µL and incubated 

at 37 °C. At the indicated time point, an aliquot of the reaction was removed and diluted 

to 0.2 µM in CHCl3/MeOH (1:1) for analysis. All assays were performed in duplicate 3 

times. 

2.4.2 Soluble PI4K Assay Conditions  
Fluorescent PtdIns derivatives were added to assay buffer composed of MOPS (50 mM, 

pH 6.7), NaCl (100 mM), MgCl2 (10 mM), sodium cholate (0.5 mM), DTT (1 mM), 

followed by the addition of ATP (2 mM). The reaction was initiated by the addition of 

purified PI4KIIa enzyme to a final concentration of 1.0 ng/µL and incubated at 37 °C. At 

the indicated time point, an aliquot of the reaction was removed and diluted to 0.2 µM in 

CHCl3/MeOH (1:1) for analysis. All assays were performed in duplicate for 3 times. 

2.4.3 Vesicle Based PI3K Assay Conditions  
Liposomes were prepared to contain 10 µM total PIP2 composed of PIP2-C15 and 

endogenous substrate with 10 µM phosphatidylserine (PS) as a carrier lipid in final 

assay conditions. Lipid stocks in CHCl3 or water were added to a 1:1 MeOH/H2O 

mixture followed by solvent removal by speed-vac and drying under vacuum for at least 

1 h. The lipids were then re-suspended in 5X MOPS (250 mM, pH 6.7) and 5X NaCl 

(500 mM) followed by sonication in a bath for 5 min to form lipid vesicles. The vesicles 

were then used to prepare a mixture containing a final PtdIns(4,5)P2 concentration of 10 

µM in MOPS (50 mM, pH 6.7), NaCl (100 mM), DTT (1 mM), MgCl2 (10 mM) and ATP 
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(2 mM). The reaction was initiated by adding purified PI3K enzyme (0.6 ng/µL) and then 

incubated at 37 °C. At the indicated time point, an aliquot of the reaction mixture was 

removed and diluted to 0.2 µM in 1:1 CHCl3/MeOH for TLC analysis. In the case of the 

10% PIP2-C15 liposome, the reaction was first stopped by the addition to methanol, 

followed by concentration and addition of CHCl3/MeOH to achieve the desired 

concentration of 0.2 µM FL-PtdIns(4,5)P2 substrate as direct dilution results in phase 

separation. All experiments were performed using a single batch of liposome in 

duplicate for three times. 

2.4.4 TLC Analysis of Fluorescent Lipid Metabolites  
TLC plates (Merck, Silica Gel-60) were pre-treated with a solution of 1.2% potassium 

oxalate and 1.2 mM EGTA in MeOH/water (v:v = 2:3) and heated at 110 °C for 20 min 

before use. Reaction mixture was diluted in CHCl3/ MeOH (v:v = 1:1) and spotted on a 

TLC plate directly. The TLC plate was then developed in 

CHCl3:Acetone:MeOH:AcOH:water (v:v:v:v:v = 80:30:26:24:14) and scanned on a 

Typhoon 9400 Variable Mode Imager (lex/lem = 488 nm/520 nm). The fluorescence 

intensity of various spots on the TLC plate was quantified with ImageQuant software 

(V.5.0). 

2.4.5 CE Analysis of Fluorescent Lipid Metabolites  
Capillary electrophoresis coupled with laser induced fluorescence detection (CE-LIF, 

488 nm excitation) was performed on a custom-built system mounted to the stage of an 

inverted microscope, described previously in detail[75]. Fused silica capillaries were 38 

cm long with a 20.5 cm effective length [30 µm inner diameter and 360 µm outer 

diameter (Polymicro Technologies; Phoenix, AZ)] and were conditioned prior to use by 

rinsing for 1 h in DI H2O, 12 h in 0.1 M NaOH, 1 h in DI H2O, 6 h in 0.1 M HCl, and 12 h 
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in DI H2O. Prior to each run, capillaries were rinsed with 1 M NaOH and DI H2O for 5 

min each and with electrophoretic buffer for 10 min by application of pressure to the 

capillary outlet. Buffer at the capillary inlet and outlet was completely refreshed prior to 

each electrophoretic run. The composition of the electrophoretic buffer was 80 mM 

NaH2PO4, pH 6.8 containing 15% 2-propanol and a field strength of 210 V cm-1 was 

used for all separations. Internal standards and samples were hydrodynamically loaded 

by raising the inlet 3 cm relative to the outlet and holding the capillary inlet in the sample 

for 10 sec. The inlet was then lowered to the height of the outlet and electrophoresis 

was initiated by application of a negative voltage to the outlet while grounding the inlet. 

Electropherograms were plotted and analyzed utilizing OriginLab 9.0 (OriginLab 

Corporation; Northampton, MA). 

2.4.6 Fluorescent lipids/liposome interaction 
The liposome mixture was prepared from stock solutions of lipids in CHCl3 for a final 

composition of 45% PC, 25% PE, 15% cholesterol, 10% PI, and 5% PS. The solvent 

was blown off under a stream of N2 followed by drying under vacuum for at least 1 h. 

The lipid film was then suspended in buffer composed of MOPS (50 mM, pH 6.7), NaCl 

(100 mM), DTT (1 mM), and MgCl2 (10 mM) to a concentration of 2 mM. Liposomes 

were extruded through a 0.03 µM pore size polycarbonate filter membrane for at least 

11 times back and forth. Fluorescent PIP2 or PI (10 µM) and liposomes (1 mM) were 

incubated in buffer at room temperature for 5 min in a total volume of 150 µL. The 

suspension was adjusted to 30% sucrose by the addition of 100 µL of 75% w/v sucrose 

in buffer followed by mixing. Buffer (200 µL) containing 25% w/v sucrose was then 

overlaid on the high-sucrose suspension followed by 50 µL of buffer containing no 

sucrose. The sample was centrifuged at 55,000 r.p.m in a Beckman swing rotor (TLS 
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55) for 1 h at 4 °C. The bottom 350 µL and top 150 µL were manually collected using a 

syringe and analyzed for fluorescent PI or PIP2 content by both TLC and CE. A 

fluorescence image of the tubes was also taken prior and following centrifugation using 

a UV light source below the samples and a CCD camera. 

2.4.7 Chemical Synthesis  
Synthesis of (S)-1-((6-(((benzyloxy)carbonyl)amino)hexanoyl)oxy)-3-

hydroxypropan-2-yl palmitate 3d) A mixture of compound 2  (350 mg, 0.76 mmol), 1d 

(234.5 mg ,0.91 mmol), DCC (189 mg, 0.91 mmol), and DMAP (51 mg, 0.42 mmol) in 

anhydrous CH2Cl2 (6 mL) was stirred at room temperature overnight. The reaction 

mixture was concentrated and purified by flash chromatography (hexane-ethyl acetate = 

2:1) over silica (407 mg, 89%). The so-formed intermediate (407 mg, 0.58 mmol) was 

dissolved in wet CH2Cl2 (20 mL) followed by addition of DDQ (278 mg, 1.2 mmol) and 

the mixture was stirred at room temperature for 4 h. The reaction mixture was then by 

washed with 10% NaHCO3 and saturated NaCl, dried over MgSO4, and concentrated 

under vacuum. The residue was then purified by flash chromatography (hexane-ethyl 

acetate =2:1) over silica to generate 3d (281 mg, 83%) as a colorless oil. 1H NMR (400 

MHz, CDCL3) δ 7.26-7.38 (m, 5H), 5.06-5.11 (m, 3H), 4.83 (brs, 1H), 4.33 (dd, J = 11.9, 

4.5 Hz, 1H), 4.21 (dd, J = 11.9, 5.7 Hz, 1H), 3.72 (d, J = 4.9 Hz, 1H), 3.19 (q, J = 13.1, 

6.7 Hz, 1H), 2.24-2.30 (m, 4H), 1.58-1.68 (m, 4H), 1.48-1.55(m, 2H), 1.25-1.38 (m, 

26H), 0.88 (t, J = 6.9 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ173.55, 156.58, 136.71, 

128.63, 128.21, 72.20, 72.12, 66.75, 62.30, 61.55, 40.94, 34.40, 33.99, 32.04, 29.82, 

29.78, 29.74, 29.60, 29.48, 29.39, 29.21. 26.23, 25.05, 24.55, 22.81, 14.24. ESMS 

577.8 [M]+ 



	36	

Synthesis of (S)-1-((6-(((benzyloxy)carbonyl)amino)hexanoyl)oxy)-3-

hydroxypropan-2-yl tridecanoate (3c) Compound 3c (80 mg, 75%).  was prepared in 

a similar manner to compound 3d. 1H NMR (CDCl3, 400 MHz) δ 7.26-7.36 (m, 5H), 

5.02-5.15 (m, 3H), 4.96 (brs, 1H), 4.32 (dd, J = 11.9, 4.3 Hz, 1H), 4.18 (dd, J = 11.9, 5.9 

Hz, 1H), 3.69 (d, J = 5.2 Hz, 2H), 3.16 (q, J = 6.5 Hz, 2H), 2.26-2.36 (m, 4H), 1.43-1.66 

(m, 6H), 1.18-1.40 (m, 20H), 0.86 (t, J = 7.1 Hz, 3H); 13C NMR (CDCl3, 101 MHz) δ 

173.41, 173.37, 156.47, 136.57, 128.45, 128.03, 72.00, 66.56, 62.25, 61.27, 40.77, 

34.24, 33.82, 31.87, 29.61, 29.59, 29.57, 29.54, 29.30, 29.23, 29.05, 26.07, 24.89, 

24.39, 22.64, 14.08. ESMS 535.7 [M]+ 

 

Synthesis of (S)-1-((6-(((benzyloxy)carbonyl)amino)hexanoyl)oxy)-3-

hydroxypropan-2-yl decanoate (3b) Compound 3b (170 mg, 89%)  was prepared in a 

similar manner to compound 3d as a colorless oil.  1H NMR (400 MHz, CDCl3) δ 7.26-

7.38 (m, 5H), 5.05-5.12 (m, 3H), 4.99 (brs, 1H) 4.33 (dd, J = 11.9, 4.2 Hz, 1H), 4.19 (dd, 

J = 11.9, 5.9 Hz, 1H), 3.70 (d, J = 5.1 Hz, 1H), 3.18 (q, J = 13.0, 6.5 Hz, 1H), 2.25-2.30 

(m, 4H), 1.46-1.56 (m, 6H), 1.20-1.39 (m, 14H), 0.88 (t, J = 6.8 Hz, 3H). 13C NMR (101 

MHz, cdcl3) δ 173.11, 173.06, 159.29, 156.39, 136.65, 129.73, 129.28, 128.46, 128.04, 

128.02, 114.50, 113.79, 77.40, 77.08, 76.77, 72.92, 70.00, 67.86, 66.52, 62.81, 62.58, 

55.22, 55.11, 49.02, 40.81, 34.30, 34.08, 33.90, 33.84, 31.84, 29.67, 29.57, 29.41, 

29.25, 29.05, 26.13, 25.62, 24.93, 24.39, 22.64, 14.09. ESMS 493.2 [M]+ 

 

Synthesis of (S)-1-((6-(((benzyloxy)carbonyl)amino)hexanoyl)oxy)-3-

hydroxypropan-2-yl heptanoate (3a). Compound 3a was prepared in a similar manner 
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to compound 3d (336 mg, 0.73 mmol,  96%) as a colorless oil. 1H NMR (400 MHz, 

CDCl3) δ 7.26-7.38 (m, 5H), 5.02-5.20 (m, 3H), 4.95 (brs, 1H), δ 4.33 (dd, J = 11.9, 4.3 

Hz, 1H), 4.20 (dd, J = 11.9, 5.8 Hz, 1H), 3.71 (d, J = 5.1 Hz, 2H), 3.18 (q, J = 6.5 Hz, 

2H), 2.25-2.38 (m, 4H), 1.40-1.75 (m, 6H), 1.19-1.40 (m, 8H), 0.88 (t, J = 6.8 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 173.12, 173.06, 159.29, 156.38, 154.12, 136.62, 129.73, 

129.28, 128.47, 128.06, 128.04, 113.80, 77.35, 77.03, 76.72, 72.93, 70.14, 69.99, 

67.86, 66.55, 62.82, 62.59, 55.24, 49.65, 49.18, 40.81, 35.93, 34.30, 33.84, 32.74, 

31.57, 31.42, 30.90, 29.67, 29.58, 28.93, 28.77, 28.70, 26.38, 26.13, 25.58, 25.50, 

25.42, 25.32, 24.88, 24.80, 24.70, 24.39, 22.47, 22.45, 14.01. ESMS 451.3 [M]+ 

Synthesis of tetrabenzyl ((1R,2R,3S,4R,5S,6S)-4-hydroxy-3,5,6-

tris(methoxymethoxy)cyclohexane-1,2-diyl) bis(phosphate) (4). 4 was synthesized 

as previously described from myo-inositol [81]. 1H NMR (400 MHz, CDCl3) δ 7.40 – 7.19 

(m, 19H), 5.15 – 4.87 (m, 11H), 4.84 (dd, J = 6.7, 0.9 Hz, 1H), 4.74 (dd, J = 6.6, 0.9 Hz, 

1H), 4.57 (dd, J = 7.1, 0.9 Hz, 1H), 4.53 – 4.34 (m, 4H), 4.16 – 4.12 (m, 1H), 3.74 (t, J = 

9.3 Hz, 1H), 3.64 – 3.54 (m, 1H), 3.50 – 3.44 (m, 1H), 3.42 – 3.39 (m, 3H), 3.30 – 3.28 

(m, 3H), 3.28 – 3.26 (m, 3H). 13C NMR (101 MHz, CDCl3) δ 136.07, 136.04, 136.00, 

135.96, 135.93, 135.86, 128.51, 128.51, 128.49, 128.45, 128.41, 128.38, 128.32, 

128.27, 128.23, 128.15, 128.05, 128.00, 127.97, 127.89, 127.85, 127.77, 127.72, 99.00, 

97.65, 96.82, 83.27, 79.37, 79.32, 79.30, 79.26, 77.99, 77.94, 77.88, 77.48, 77.36, 

77.16, 76.84, 75.60, 75.09, 75.07, 75.05, 70.41, 69.58, 69.52, 69.49, 69.43, 69.24, 

69.19, 69.10, 69.01, 55.98, 55.78, 55.65, 55.55, 29.88, 29.85, 29.83, 29.81, 29.79. 31P 

NMR (162 MHz, CDCl3δ -1.37 (1P), -1.69 (1P). ESMS 832.3 [M]+ 
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Synthesis of (2R)-1-(((benzyloxy)(((1R,2S,3R,4R,5S,6R)-3,4-

bis((bis(benzyloxy)phosphoryl)oxy)-2,5,6-

tris(methoxymethoxy)cyclohexyl)oxy)phosphoryl)oxy)-3-((6-

(((benzyloxy)carbonyl)amino)hexanoyl)oxy)propan-2-yl palmitate (5d). 

A solution of 3d (100 mg, 0.17 mmol) in anhydrous CH2Cl2 (1 mL) was added drop-wise 

under argon to a flask that contained 1-(benzyloxy)-N,N,N’,N’- 

tetraisopropylphosphodiamine (360 mg, 0.43 mmol) and 1H-tetrazole (170 mg, 0.19 

mmol) in anhydrous CH2Cl2 (2 mL).  The mixture was stirred at room temperature for 2 

h and concentrated under vacuum. The resulting residue was purified by column 

chromatography (hexane:ethyl acetate:triethylamine = 100:20:3) to give a 

phosphoramidite intermediate as a colorless oil. The so-formed phosphoramidite (125 

mg, 0.15 mmol) in anhydrous CH2Cl2 (1.5 mL) was added to a solution of 4 (102mg, 

0.12 mmol) and 1H-tetrazole (82 mg, 0.30 mmol) in anhydrous CH2Cl2 (1.5 mL) under 

argon. The reaction mixture was stirred at room temperature overnight, followed by the 

addition of t-BuOOH  (5.5 M, 138 µL) at -40°C. The reaction was allowed to come to 

room temperature and stirred for 1 h followed by removal of solvents under vacuum and 

purified by flash chromatography (2:1 Hex:Acetone) to yield 85 mg of pure product and 

impure fractions. The impure fractions were then purified by HPLC (BETASIL C18 150 

X 21.2 mm water-acetonitrile 30 to 100% over 20 minutes 10 mL/min) to yield pure 

compound 5d (150 mg total, 70% combined from compound 3d) as a clear viscous oil.  

1H NMR (400 MHz, CDCl3) δ 7.38-7.26 (m, 30H), 4.80-5.21 (m, 14H), 4.80-4.60 (m, 

4H), 4.55 (d, J = 6.1 Hz, 1H), 4.05-4.49 (m, 9H), 3.53 (dd, J = 9.9, 10.1 Hz, 1H), 3.39 

(conformation 1) and 3.36 (conformation 2) (s, 3H), 3.32 (conformation 1) and 3.28 
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(conformation 2) (s, 3H), 3.24 (conformation 1) and 3.23 (conformation 2) (s, 3H), 3.17 

(q, J =6.4 Hz, 2H), 2.24-2.30 (m, 4H), 1.48-1.68 (m, 6H), 1.25-1.38 (m, 26H), 0.88 (t, J = 

6.7 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 173, 172.94, and 172.89 (1C), 156.55, 

136.80, 136.22, 136.17, 136.16, 136.09, 136.04, 135.64, 135.57, 128.83, 128.58, 

128.53, 128.15, 128.03, 98.96, 98.90, 97.66, 97.04, 78.91, 76.52, 75.90, 74.69, 69.68, 

69.62, 69.57, 69.52, 69.37, 69.32, 66.65, 66.55, 65.72, 65.54, 61.67, 56.80 and 56.74 

and 56.68 (1C), 56.02 and 55.93 (1C), 40.94, 34.18 and 33.84 (1C), 32.04, 29.81, 

29.61, 29.47, 29.41, 29.21, 26.27, 24.91, 24.49, 22.80, 14.24. 31P NMR (CDCl3, 162 

MHz) δ -1.31 (2P), -1.65 and -1.70 (1P) ESMS 1561.7 [M]+ 

Synthesis of (2R)-1-(((benzyloxy)(((1R,2S,3R,4R,5S,6R)-3,4-

bis((bis(benzyloxy)phosphoryl)oxy)-2,5,6-

tris(methoxymethoxy)cyclohexyl)oxy)phosphoryl)oxy)-3-((6-

(((benzyloxy)carbonyl)amino)hexanoyl)oxy)propan-2-yl tridecanoate (5c) 

Compound 5c (138 mg, 61%)  was prepared in a similar manner to compound 5d from 

3c (80 mg, 0.15 mmol) as a colorless oil. 1H NMR (CDCl3, 400 MHz) δ 7.18-7.40 (m, 30 

H), 4.80-5.22 (m, 14 H), 4.56-4.80 (m, 4H), 4.53 (d, J = 7.0 Hz, 1H), 4.02-4.46 (m, 9H), 

3.53 (dd, J = 10.0, 10.2 Hz, 1H), 3.37 (conformation 1) and 3.34 (conformation 2) (s, 

3H), 3.31 (conformation 1) and 3.27 (conformation 2) (s, 3H), 3.22 (s, 3H), 3.15 (q, J = 

6.3 Hz, 2H), 2.20-2.32 (m, 4H), 1.10-1.66 (m, 26H), 0.86 (t, J = 7.0 Hz, 3H); 13C NMR 

(CDCl3, 101 MHz) δ 172.83, 172.77 and 172.72 (1C), 156.41, 136.66, 136.07, 135.95, 

135.82, 135.57, 135.50, 135.43, 128.67, 128.43, 128.37, 128.28, 128.24, 128.18, 

128.00, 127.88, 98.81, 98.74, 97.61, 97.51, 97.42, 96.88, 78.76, 77.37, 77.24, 77.06, 

76.74, 76.35, 75.78, 74.53, 69.86, 69.81, 69.71, 69.64, 69.59, 69.53, 69.47, 69.42, 



	40	

69.36, 69.26, 69.21, 69.16, 66.48, 65.43, 61.52, 56.65 and 56 59 and 56.53 (1C), 55.85 

and 55.80 (1C), 55.76 and 55.69 (1C), 40.79, 34.03 and 33.69 (1C), 33.42, 31.89, 

29.66, 29.61, 29.60, 29.56, 29.45, 29.36, 29.32, 29.25, 29.05, 26.12, 24.76, 24.34, 

23.16, 22.65, 14.09; 31P NMR (CDCl3, 162 MHz) δ -1.37 (2P), -1.73 (1P). ESMS 1519.6 

[M]+ 

Synthesis of (2R)-1-(((benzyloxy)(((1R,2S,3R,4R,5S,6R)-3,4-

bis((bis(benzyloxy)phosphoryl)oxy)-2,5,6-

tris(methoxymethoxy)cyclohexyl)oxy)phosphoryl)oxy)-3-((6-

(((benzyloxy)carbonyl)amino)hexanoyl)oxy)propan-2-yl decanoate (5b) Compound 

5b (55 mg, 30% combined from 3b) was prepared in a similar manner to compound 5d 

from 3b (77 mg, 0.16 mmol) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.38-7.26 

(m, 30H), 4.81-5.21 (m, 14H), 4.60-4.79 (m, 4H), 4.55 (d, J = 6.1 Hz, 1H), 4.00-4.50 (m, 

9H), 3.50-3.58 (m 1H), 3.39 (conformation 1) and 3.36 (conformation 2) (s, 3H), 3.32 

(conformation 1) and 3.28 (conformation 2) (s, 3H), 3.24 (conformation 1) and 3.23 

(conformation 2) (s, 3H), 3.18 (q, J = 6.5 Hz, 2H), 2.18-2.34 (m, 4H), 1.40-1.70 (m, 6H), 

1.17-1.39 (m, 14H), 0.87 (t, J = 6.8 Hz, 3H). 31P NMR (CDCl3, 162 MHz) δ -1.31 (2P), -

1.66 and -1.71 (1P). 13C NMR (101 MHz, CDCl3) δ 172.82, 172.77, 172.72, 156.39, 

136.67, 136.13, 136.09, 136.05, 136.03, 136.01, 135.96, 135.91, 135.83, 135.58, 

135.51, 128.70, 128.67, 128.45, 128.43, 128.38, 128.35, 128.29, 128.24, 128.19, 

128.04, 128.00, 127.98, 127.93, 127.88, 98.81, 98.75, 97.52, 96.87, 77.34, 77.23, 

77.02, 76.71, 74.53, 69.85, 69.80, 69.71, 69.64, 69.58, 69.53, 69.47, 69.41, 69.36, 

69.28, 69.25, 69.21, 69.16, 66.49, 65.62, 65.38, 61.53, 56.62, 56.57, 55.85, 55.83, 
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55.74, 40.80, 34.04, 34.02, 33.70, 31.82, 29.66, 29.57, 29.39, 29.23, 29.04, 26.13, 

24.75, 24.35, 22.63, 14.08. ESMS 1477.5 [M]+ 

 

Synthesis of (2R)-1-(((benzyloxy)(((1R,2S,3R,4R,5S,6R)-3,4-

bis((bis(benzyloxy)phosphoryl)oxy)-2,5,6-

tris(methoxymethoxy)cyclohexyl)oxy)phosphoryl)oxy)-3-((6-

(((benzyloxy)carbonyl)amino)hexanoyl)oxy)propan-2-yl heptanoate (5a) Compound 

5a (20 mg, 20% combined from 3b) was prepared in a similar manner to compound 5d 

from 3a (80 mg, 0.18 mmol) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.38-7.20 

(m, 30H), 4.80-5.20 (m, 14H), 4.60-4.79 (m, 4H), 4.54 (d, J = 7.0 Hz, 1H), 3.99-4.50 (m, 

9H), 3.55 (t, J = 9.9, 10.0 Hz, 1H), 3.39 (conformation 1) and 3.36 (conformation 2) (s, 

3H), 3.32 (conformation 1) and 3.28 (conformation 2) (s, 3H), 3.24 (conformation 1) and 

3.23 (conformation 2) (s, 3H), 3.18 (q, J = 6.5 Hz, 2H), 2.20-2.35 (m, 4H), 1.37-1.81 (m, 

6H), 1.21-1.36 (m, 8H), 0.87 (t, J = 6.8 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 172.83, 

172.77, 172.72, 156.39, 136.12, 136.02, 135.95, 135.82, 128.71, 128.68, 128.66, 

128.45, 128.43, 128.38, 128.34, 128.29, 128.24, 128.19, 128.04, 128.00, 127.98, 

127.93, 127.88, 98.81, 98.75, 97.51, 96.87, 77.32, 77.00, 76.68, 74.53, 69.86, 69.80, 

69.71, 69.64, 69.52, 69.47, 69.41, 69.36, 69.21, 69.16, 66.51, 61.54, 56.62, 56.56, 

55.85, 55.83, 55.74, 40.80, 34.03, 34.01, 33.69, 31.89, 31.38, 30.89, 29.66, 29.57, 

28.67, 26.13, 24.70, 24.34, 22.42, 13.99. 31P NMR (CDCl3, 162 MHz) δ -1.32 (2P), -1.67 

and -1.72 (1P) ESMS 1435.5 [M]+ 
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Synthesis of (2R)-1-((6-aminohexanoyl)oxy)-3-((hydroxy(((1R,2R,3S,4R,5R,6S)-

2,3,6-trihydroxy-4,5-bis(phosphonooxy)cyclohexyl)oxy)phosphoryl)oxy)propan-2-

yl palmitate (6d) To a solution of compound 5d (6 mg, 4 µmol) in MeOH (3 mL) was 

added 10% Pd/C (10 mg). The mixture was stirred overnight under a balloon of H2 at 

room temperature. The reaction mixture was filtered and concentrated under vacuum. 

The residue was dried under vacuum for 1 h upon which the residue was dissolved in 

anhydrous CH2Cl2 (0.5 mL) and freshly distilled TMSBr (0.5 mL) was added at 0 °C 

under argon. The mixture was stirred at room temperature for 1 h followed by removal 

of solvents under vacuum. The resulting residue was then dissolved in MeOH (3 mL) 

and stirred for 1 h followed by removal of solvent to yield 6d (3.3 mg, 100%) as a clear 

oil. 1H NMR (400 MHz, CD3OD) δ 5.24-5.27 (m, 1H), 4.50 (dd, J = 18.4, 6.3 Hz, 1H), 

4.42 (dd, J = 11.9, 4.2 Hz, 1H), 3.95-4.30 (m, 7H), 3.63-3.70 (m, 1H), 2.90-2.97 (m, 2H), 

2.23-2.43 (m, 4H), 1.6-1.74 (m, 6H), 1.30-1.37 (m, 26H), 0.90 (t, J = 6.8 Hz, 3H). 31P 

NMR (CD3OD, 162 MHz) 0.60 (1P), 0.28 (1P), -1.45 (1P). ESMS 846.4 [M+H]+ 

Synthesis of (2R)-1-((6-aminohexanoyl)oxy)-3-((hydroxy(((1R,2R,3S,4R,5R,6S)-

2,3,6-trihydroxy-4,5-bis(phosphonooxy)cyclohexyl)oxy)phosphoryl)oxy)propan-2-

yl tridecanoate (6c) Compound 6c was prepared in a similar manner to compound 6d 

(10 mg, 80%) as a colorless oil from 5c (25 mg, 0.16 mmol). 1H NMR (CD3OD, 400 

MHz) δ 5.23 (m, 1H), 4.48 (dd, J = 18.5, 6.3 Hz, 1H), 4.40 (dd, J = 11.9, 4.2 Hz, 1H), 

4.04-4.28 (m, 6H), 3.97 (dd, J = 9.4, 9.3 Hz, 1H), 3.64 (m, 1H), 2.92 (t, J = 7.3 Hz, 2H), 

2.3-2.42 (m, 4H), 1.54-1.74 (m, 4H), 1.20-1.50 (m, 22H), 0.88 (t, J = 7.1 Hz, 1H); 13C 

NMR (CD3OD, 101 MHz) δ 173.14 (2C), 79.67, 78.49, 77.48, 70.93, 70.03, 69.84 and 

69.76 (1C), 64.68, 61.62, 39.16, 33.56, 32.97, 31.63, 29.34, 29.31, 29.30, 29.18, 29.03, 
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28.99, 28.72, 26.77, 25.39, 24.52, 23.85, 22.28, 12.99; 31P NMR (CD3OD, 162 MHz) δ 

0.64 (1P), 0.32 (1P), -1.33 (1P). ESMS 804.3 [M+H]+ 

Synthesis of (2R)-1-((6-aminohexanoyl)oxy)-3-((hydroxy(((1R,2R,3S,4R,5R,6S)-

2,3,6-trihydroxy-4,5-bis(phosphonooxy)cyclohexyl)oxy)phosphoryl)oxy)propan-2-

yl decanoate (6b) Compound 6b (6.2 mg, 100%) was prepared in a similar manner to 

compound 6d from compound 5b (11 mg, 7 µmol) as a colorless oil. 1H NMR (400 MHz, 

CD3OD) δ 5.20-5.31 (m, 1H), 4.51 (dd, J = 18.5, 6.3 Hz, 1H), 4.43 (dd, J = 11.9, 4.3 Hz, 

1H), 3.90-4.23 (m, 7H), 3.65-3.68 (m, 1H), 2.90-3.00 (m, 2H), 2.28-2.50 (m, 4H), 1.42-

1.74 (m, 6H), 1.25-1.39 (m, 14H), 0.91 (t, J = 6.7 Hz, 3H). 31P NMR (CD3OD, 162 MHz) 

δ 0.75 (1P), 0.40 (1P), -1.16 (1P). ESMS 761.3 [M+H]+ 

Synthesis of (2R)-1-((6-aminohexanoyl)oxy)-3-((hydroxy(((1R,2R,3S,4R,5R,6S)-

2,3,6-trihydroxy-4,5-bis(phosphonooxy)cyclohexyl)oxy)phosphoryl)oxy)propan-2-

yl heptanoate (6a) Compound 6a (1.9 mg, 100%) was prepared in a similar manner to 

compound 6d from compound 5a (3.9 mg, 3 µmol) as a colorless oil. 1H NMR (400 

MHz, CD3OD) δ 5.22-5.31 (m, 1H), 4.47-4.57 (m, 1H), 4.42 (dd, J =18.4, 6.3 1H), 3.8-

4.24 (m, 7H), 2.91-2.96 (m, 1H), 2.35-2.42 (m, 2H), 1.30-1.64 (m, 6H), 1.20-1.29 (m, 

8H), 0.81 (t, J = 6.8 HZ, 3H). 31P NMR (CD3OD, 162 MHz) δ 0.59 (1P), 0.26 (1P), -1.48 

(1P). ESMS 720.2 [M + H]+ 

Synthesis of 4-((6-((2R)-3-((hydroxy(((1R,2R,3S,4R,5R,6S)-2,3,6-trihydroxy-4,5-

bis(phosphonooxy)cyclohexyl)oxy)phosphoryl)oxy)-2-(palmitoyloxy)propoxy)-6-

oxohexyl)carbamoyl)-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)benzoic acid (Fl-PIP2-

C15) To a solution of compound 6d (3.3 mg, 4 µmol) in TEAB buffer (0.5 M, 1.8 mL) 

was added a solution of NHS ester 7 (3.7 mg, 8 µmol) in DMF (1.85 mL). The reaction 
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was stirred in the dark at room temperature overnight before the solvents were removed 

under vacuum. Purification via HPLC (BETASIL C18 150 x 10 mm, a gradient starting 

with water and ending with 100% MeOH over 30 min with the flow rate at 5 mL/min) 

yielded PIP2-C15 as a red-orange solid (2.5 mg, 53% from compound 5a). 1H NMR (400 

MHz, CD3OD) δ 6.50-8.56 (m, 9H), 5.14-5.29 (m, 1H), 4.34-4.49 (m, 1H), 4.26-4.29 (m, 

1H), 3.96- 4.26 (m, 6H), 3.62-3.67 (m, 1H), 3.48-3.51 (m, 2H), 2.24-2.41 (m, 4H), 1.49-

1.70 (m, 6H), 1.21-1.34 (m, 26H), 0.90 (t, J = 6.3 Hz, 3H). 31P NMR (CD3OD), 162 MHz) 

δ 2.45 (1P), 1.71 (1P), -0.55 (1P). ESI-HRMS for [M + H]+ calcd 1204.36, found 

1204.3636 

Synthesis of 4-((6-((2R)-3-((hydroxy(((1R,2R,3S,4R,5R,6S)-2,3,6-trihydroxy-4,5-

bis(phosphonooxy)cyclohexyl)oxy)phosphoryl)oxy)-2-(tridecanoyloxy)propoxy)-

6-oxohexyl)carbamoyl)-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)benzoic acid (Fl-PIP2-

C12). Fl-PIP2-C12 was synthesized in a similar manner to PIP2-C15 as a red-orange 

solid (55%). 1H NMR (CD3OD, 400 MHz) δ 6.50-8.20 (m, 9H), 5.18-5.24 (m, 1H), 4.30-

4.44 (m, 1H), 4.24 (m, 1H), 3.92-4.18 (m, 6H),  3.61 (m, 1H), 3.34 (m, 2H), 2.22-2.36 

(m, 4H), 1.45-1.65 (m, 6H), 1.14-1.40 (m, 20H), 0.85 (t, J = 7.1 Hz, 3H); 31P NMR 

(CD3OD, 162 MHz) δ 2.43 (1P), 1.70 (1P), -0.54 (1P); ESI-HRMS for [M + H]+ : calcd 

1162.3215, found 1162.3195. 

Synthesis of 4-((6-((2R)-2-(decanoyloxy)-3-((hydroxy(((1R,2R,3S,4R,5R,6S)-2,3,6-

trihydroxy-4,5-bis(phosphonooxy)cyclohexyl)oxy)phosphoryl)oxy)propoxy)-6-

oxohexyl)carbamoyl)-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)benzoic acid (Fl-PIP2-

C9) Fl-PIP2-C9 (2.1 mg, 64%) was prepared from compound 6b (2.6 mg, 3 µmol) in a 

similar manner to PIP2-C15 as a red-orange solid. 1H NMR (400 MHz, CD3OD) δ 6.50-
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8.56 (m, 9H), 5.20-5.28 (m, 1H), 4.43-4.49 (m, 1H), 4.20-4.27 (m, 1H), 3.90-4.20 (m, 

6H) 3.58-3.65 (m 1H), 3.30-3.40 (m, 2H), 2.25-2.36 (m, 4H), 1.30-1.70 (m, 6H), 1.20-

1.30 (m, 14H), 0.84 (t, J = 6.8 Hz, 3H). 31P NMR (CD3OD, 162 MHz) δ 2.79 (1P), 1.92 

(1P), -0.62 (1P). ESI-HRMS for [M + H]+: calcd 1120.27, found 1120.2727 

Synthesis of 4-((6-((2R)-2-(heptanoyloxy)-3-((hydroxy(((1R,2R,3S,4R,5R,6S)-2,3,6-

trihydroxy-4,5-bis(phosphonooxy)cyclohexyl)oxy)phosphoryl)oxy)propoxy)-6-

oxohexyl)carbamoyl)-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)benzoic acid (Fl-PIP2-

C6). Fl-PIP2-C6 (2.0 mg, 67%) was prepared from compound 6a (1.9 mg, 3 µmol) in a 

similar manner to PIP2-C15 as a red-orange solid. 1H NMR (400 MHz, CD3OD) δ 6.40-

8.20 (m, 9H), 5.20-5.24 (m, 1H), 4.31-4.45 (m, 1H), 4.21-4.24 (m, 1H), 3.90-4.27 (m, 

6H), 3.60-3.67 (m, 1H), 3.34-3.40(m, 2H), 2.30-2.40 (m, 4H), 1.35-1.70 (m, 6H), 1.20-

1.36 (m, 8H), 0.89 (t, J = 6.9 Hz, 3H). 31P NMR (CD3OD, 162 MHz) δ 2.72 (1P), 1.83 

(1P), -0.64 (1P). ESI-HRMS for [M + H]+: calcd 1078.22 found 1078.2262 

Synthesis of (2R)-1-((6-(3-(5,5-difluoro-7,9-dimethyl-5H-4ë4,5ë4-dipyrrolo[1,2-

c:2',1'-f][1,3,2]diazaborinin-3-yl)propanamido)hexanoyl)oxy)-3-

((hydroxy(((1R,2R,3S,4R,5R,6S)-2,3,6-trihydroxy-4,5-

bis(phosphonooxy)cyclohexyl)oxy)phosphoryl)oxy)propan-2-yl palmitate 

(BODIPY-PIP2-C15; 10) Boodipy-PIP2-C15 (5.4 mg, 65%)Was prepared from 

compound 6d (7.2 mg, .007 mmol) in similar conditions to Fl-PIP2-C15 1H NMR (400 

MHz, CD3OD) δ 7.43 (s, 1H), 7.01 (d, J = 4.1 Hz, 1H), 6.32 (d, J = 4.0 Hz, 1H), 6.21 (s, 

1H), 5.22-5.27 (m, 1H), 4.50 (q, J = 9.2 Hz, 1H), 4.41 (dd, J = 12.0, 3.6 Hz, 1H), 4.25 – 

3.94 (m, 6H), 3.63 (dd, J = 9.8, 2.7 Hz, 1H), 3.24 – 3.07 (m, 4H), 2.60 (t, J = 7.6 Hz, 

2H), 2.51 (s, 3H), 2.45 – 2.22 (m, 7H), 1.58-1.62 (m, 4H), 1.53 – 1.45 (m, 2H), 1.30-1.25 
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(m 26H), 0.89 (t, J=7.0 Hz, 3H).  31P NMR (162 MHz, CD3OD) δ 0.99, 0.50, -0.87. 

ESMS: 1111.8 [M]+ 

Synthesis of (1S,2S,3R,4S,5S,6S)-2,3,4,5,6-pentakis(methoxymethoxy)cyclohexan-

1-ol (11).  

Compound 11 was synthesized as previously described from myo-inositol [81]. 1H NMR 

(400 MHz, CDCl3) δ 4.92 – 4.76 (m, 6H), 4.76 – 4.70 (m, 4H), 4.08 (t, J = 2.6 Hz, 1H), 

4.00 (d, J = 4.6 Hz, 1H), 3.93 (t, J = 9.7 Hz, 1H), 3.67 (t, J = 9.4 Hz, 1H), 3.50 (dd, J = 

10.1, 2.5 Hz, 1H), 3.47 – 3.39 (m, 15H); 13C NMR (101 MHz, CDCl3) δ 98.67, 98.43, 

97.94, 96.16, 83.07, 79.61, 77.80, 77.31, 77.19, 76.99, 76.67, 76.38, 70.95, 56.35, 

56.28, 56.07, 55.69, 55.66, 28.57. ESMS: 400.2 [M]+ 

Synthesis of (2R)-1-(((benzyloxy)(diisopropylamino)phosphaneyl)oxy)-3-((3-

(((benzyloxy)carbonyl)amino)propanoyl)oxy)propan-2-yl palmitate (12). 

Phosphoramidite 12 (75 mg, 85%) was synthesized from 3d (64 mg, 0.11 mmol) as 

previously described [81]. 1H NMR (400 MHz, CDCl3) δ 7.37 – 7.28 (m, 10H), 5.23-5.16 

(m, 1H), 5.09 (s, 2H), 4.81 – 3.34 (m, 15H), 3.18 (q, J = 6.7 Hz, 2H), 2.29 (t, J = 7.6 Hz, 

4H), 1.61 (d, J = 5.1 Hz, 4H), 1.49 (q, J = 7.5 Hz, 2H), 1.37 – 1.22 (m, 26H), 1.19 – 1.12 

(m, 12H), 0.94 – 0.80 (t, J=6.9 hz, 3H). 13C NMR (101 MHz, CDCl3) δ 173.01, 156.34, 

136.61, 128.46, 128.22, 128.04, 127.26, 126.90, 77.31, 76.99, 76.67, 66.55, 65.44, 

65.41, 65.23, 62.61, 61.82, 43.17, 43.06, 42.94, 40.81, 34.30, 33.84, 31.89, 29.67, 

29.63, 29.60, 29.46, 29.33, 29.26, 29.08, 26.15, 24.89, 24.40, 22.66, 14.10. 31P NMR 

(162 MHz, CDCl3) δ 148.79 (0.5 P), 148.64 (0.5P). 

Synthesis of (2R)-1-(((benzyloxy)(((1S,2R,3R,4S,5S,6R)-2,3,4,5,6-

pentakis(methoxymethoxy)cyclohexyl)oxy)phosphoryl)oxy)-3-((3-
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(((benzyloxy)carbonyl)amino)propanoyl)oxy)propan-2-yl palmitate (13)  Compound 

13 (48mg, 70%) was prepared in a similar manner to compound 5d from compound 11 

(30 mg, 0.078 mmol) and phosphoramidite 12 (70 mg, .085 mmol)  as a colorless oil. 1H 

NMR (400 MHz, CDCl3), δ 7.28-7.39 (m, 10H), 5.16-5.22 (m, 1H), 5.07-5.15 (m, 4H), 

4.65-4.88 (M, 10H), 4.26-4.33 (m, 1H), 4.24 (t, J = 2.2 Hz, 1H) 4.06-4.20 (m, 4H), 3.86-

4.00 (m, 2H), 3.32-3.50 (m, 17H), 3.17 (q, J = 6.4 Hz, 2H), 2.24-2.30 (m, 4H), 1.48-1.68 

(m, 8H), 1.25-1.38 (m, 25H), 0.88 (t, J = 6.7 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 

172.85, 172.80, 172.76, 136.62, 128.72, 128.68, 128.66, 128.48, 128.05, 127.90, 

127.88, 98.80, 98.52, 98.49, 97.48, 96.02, 79.44, 77.32, 77.01, 76.69, 75.68, 74.62, 

69.55, 66.56, 61.59, 56.68, 56.58, 56.53, 56.46, 55.78, 55.63, 40.81, 34.04, 33.70, 

31.90, 29.68, 29.65, 29.63, 29.62, 29.47, 29.34, 29.27, 29.07, 26.13, 24.78, 24.34, 

22.67, 14.10. 31P NMR (162 MHz, CDCl3) δ -1.52 (0.5P), -1.59(0.5P). ESMS: 1087.55 

[M]+ 

Synthesis of (2R)-1-((3-aminopropanoyl)oxy)-3-((hydroxy(((1S,2R,3R,4S,5S,6R)-

2,3,4,5,6-pentahydroxycyclohexyl)oxy)phosphoryl)oxy)propan-2-yl palmitate (14) 

Protected PI intermediate 13 (11 mg, .010 mmol) was de-protected using the same 

conditions previously described for compound 6d yielding compound 11 (6.7 mg, 

quantitative) as a colorless oil. 1H NMR (400 MHz, CD3OD) δ 4.41 (dd, J = 12.0, 4.0 Hz, 

1H), 4.02 (t, J = 9.0 Hz, 1H), 3.78 (t, J = 9.5 Hz, 1H), 3.62 (t, J = 9.5 Hz, 1H), 3.37 (dd, J 

= 12.0, 4 Hz, 1H), 3.18 (t, J=8.0,  1H), 2.93 (t, J = 8.0 Hz, 1H), 2.30-2.40 (m, 4H), 1.39-

1.72 (m, 6H), 1.25-1.36 (m, 26H), 0.89 (t, J = 6.9 Hz, 3H). 31P NMR (162 MHz, CD3OD) 

δ -1.46 (1P). ESMS:644.3 [M+H]+ 
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Synthesis of (2R)-1-((3-(3-(5,5-difluoro-7,9-dimethyl-5H-4ë4,5ë4-dipyrrolo[1,2-

c:2',1'-f][1,3,2]diazaborinin-3-yl)propanamido)propanoyl)oxy)-3-

((hydroxy(((1S,2R,3R,4S,5S,6R)-2,3,4,5,6-

pentahydroxycyclohexyl)oxy)phosphoryl)oxy)propan-2-yl palmitate (BODIPY-PI-

C15; 15) To a solution of compound 11 (6.7 mg, 9 µmol) in TEAB buffer (0.5 M 160 µL) 

was added a solution of NHS-BODIPY (30 mg/mL 160 µL) in DMF. The reaction was 

stirred in the dark at room temperature before removal of solvents by vacuum. 

Purification by HPLC ( BETASIL C18 150 x 10 mm water-methanol 0-100% over 30 

minutes 5  mL/min)  yielded fluorescent PI-C15 (5.3 mg, 60%) as a deep red solid. 1H 

NMR (400 MHz, CD3OD) δ 7.43 (s, 1H), 7.01 (d, J = 4.0 Hz, 1H), 6.32 (d, J = 4.1 Hz, 

1H), 6.21 (s, 1H), 5.20-5.30 (m, 1H), 4.05-4.25 (m, 5H), 4.44 (dd, J = 12.0, 4 Hz, 1H), 

3.93 (t, J = 8.1 Hz, 1H), 3.77 (t, J = 8.1Hz, 1H), 3.62 (t, J = 8.1 Hz, 1H), 3.37 (dd, J = 

9.7, 2.6 Hz, 1H), 3.10-3.25 (m, 5H),  2.60 (t, J = 8.0 Hz, 1H), 2.51 (s, 3H), 2.29-2.40 (m, 

4H), 2.28 (s, 3H), 1.37-1.65 (m, 6H), 1.29-1.40 (m, 26H),  0.88 (t, J = 7.1 Hz, 3H). 31P 

NMR (CD3OD, 162 MHz) δ 0.17 (1P). ESI-HRMS for [M]+: calcd 847.36, found 847.3586 

Synthesis of 2,5-dioxopyrrolidin-1-yl hept-6-ynoate (16). N-hydroxysuccinimide (100 

mg, .87 mmol) and EDAC-HCl (125 mg, .87mmol) were addeded to a solution of 6-

heptynoic acid (100 mg, 0.79 mmol) in DCM (5 mL) containing 0.5 mL of DMF and 

stirred overnight. To this mixture was added ethyl acetate and the organic layer was 

washed with water and brine. The organic layer was dried over sodium sulfate and then 

concentrated under vacuum. The crude residue was purified by flash chromatography 

(2:1 Hex:EtOAc) to yield pure NHS-ESTer 16 as a waxy solid (140 mg, 80%).1H NMR 

(400 MHz, CDCl3) δ 2.89 – 2.77 (m, 4H), 2.64 (t, J = 7.4 Hz, 2H), 2.24 (td, J = 6.9, 2.7 
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Hz, 2H), 1.96 (t, J = 2.7 Hz, 1H), 1.88 (dt, J = 15.3, 7.4 Hz, 2H), 1.72 – 1.54 (m, 2H). 13C 

NMR (101 MHz, CDCl3) δ 169.10, 168.31, 83.46, 68.94, 30.40, 27.30, 25.57, 23.51, 

17.95. ESMS: 223.1 [M]+ 

Synthesis of (2R)-1-((6-(hept-6-ynamido)hexanoyl)oxy)-3-

((hydroxy(((1S,2R,3R,4S,5S,6R)-2,3,4,5,6-

pentahydroxycyclohexyl)oxy)phosphoryl)oxy)propan-2-yl palmitate (Alkyne-PI; 

17) 17 (4.5 mg, 78%) was synthesized in a similar manner to PI-C15 from 14 (5 mg, 

.007 mmol) and NHS ester 16 (1.8 mg, 0.008 mmol). 1H NMR (400 MHz, CD3OD) δ 

5.26-5.18 (sm, 1H), 4.45 (dd, J = 11.9, 3.5 Hz, 1H), 4.22 – 4.15 (m, 1H), 4.07 (q, J = 5.1 

Hz, 1H), 3.88 (td, J = 9.0, 8.1, 2.7 Hz, 1H), 3.76 (t, J = 9.5 Hz, 1H), 3.72 – 3.56 (m, 1H), 

2.34 (td, J = 7.4, 1.7 Hz, 4H), 2.24 – 2.14 (m, 6H), 1.74 – 1.68 (m, 2H), 1.66 – 1.55 (m, 

4H), 1.56 – 1.45 (m, 4H), 1.38 – 1.27 (m, 26H), 0.89 (t, J = 6.5 Hz, 4H). 31P NMR (162 

MHz, CD3OD) δ 0.15 (1P). ESMS: 794.4 [M+H]+ 

Synthesis of (S)-16-(4-methoxyphenyl)-3,10-dioxo-1-phenyl-2,11,15-trioxa-4-

azahexadecan-13-yl palmitate (18). A mixture of 2  (350 mg, 0.76 mmol), 1d (234.5 

mg, 0.91 mmol), DCC (189 mg, 0.91 mmol), and DMAP (51 mg, 0.42 mmol) in 

anhydrous CH2Cl2 (6 mL) was stirred at room temperature overnight. The reaction 

mixture was concentrated and purified by flash chromatography (hexane-ethyl acetate = 

2:1) over silica (407 mg, 89%). 1H NMR (400 MHz, CDCl3) δ 7.37 – 7.25 (m, 5H), 7.22 

(d, J = 8.5 Hz, 2H), 6.86 (d, J = 8.6 Hz, 2H), 5.27 – 5.17 (m, 1H), 5.08 (s, 2H), 4.94 – 

4.82 (m, 1H), 4.52 – 4.39 (m, 2H), 4.33 (dd, J = 11.9, 3.8 Hz, 1H), 4.15 (dd, J = 11.9, 

6.5 Hz, 1H), 3.78 (s, 3H), 3.54 (dd, J = 5.1, 1.4 Hz, 2H), 3.17 (q, J = 6.7 Hz, 2H), 2.35 – 

2.22 (m, 4H) 1.66 – 1.55 (m, 4H), 1.55 – 1.43 (m, 2H), 1.38 – 1.22 (m, 26H), 0.87 (t, J= 



	50	

6.9 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 173.11, 173.05, 159.29, 156.38, 136.64, 

129.73, 129.28, 128.47, 128.05, 128.03, 113.80, 77.38, 77.06, 76.74, 72.92, 70.00, 

67.87, 66.54, 62.81, 55.33, 55.23, 55.11, 40.81, 34.30, 33.84, 31.91, 29.68, 29.64, 

29.61, 29.58, 29.47, 29.34, 29.27, 29.07, 26.13, 24.94, 24.86, 24.39, 22.67, 14.11. 

ESMS: 720.5 [M+Na]+ 

Synthesis of (S)-1-((6-aminohexanoyl)oxy)-3-((4-methoxybenzyl)oxy)propan-2-yl 

palmitate (19). Protected precursor 18 (7 mg, 0.01 mmol) was dissolved in methanol (7 

mL). Pyridine (1 uL) and Pd/C (10 mol %) were added to the mixture. The mixture was 

stirred under a balloon of hydrogen gas for 30 minutes followed by filtration of the metal 

catalyst through celite. The filtrate was collected and concentrated under vacuum to 

yield free amine. The free amine was used directly in the next reaction with no further 

purification (5. 4 mg, 96%). 1H NMR (400 MHz, CDCl3) δ 7.23 (d, J = 8.6 Hz, 2H), 6.87 

(d, J = 8.6 Hz, 2H), 5.21 (ddd, J = 5.3, 3.4, 1.4 Hz, 1H), 4.46 (d, J = 6.6 Hz, 2H), 4.32 

(dd, J = 11.8, 3.9 Hz, 1H), 4.15 (dd, J = 11.8, 6.4 Hz, 1H), 3.80 (s, 3H), 3.55 (dd, J = 

5.0, 1.1 Hz, 2H), 3.06 – 2.86 (m, 2H), 2.37 – 2.20 (m, 4H), 1.69 – 1.51 (m, 4H), 1.50 – 

1.36 (m, 2H), 1.34 – 1.16 (m, 26H), 0.87 (t, J=6.9 Hz, 3H). 13C NMR (101 MHz, CDCl3) 

δ 173.16, 172.90, 159.28, 129.75, 129.29, 113.80, 77.32, 77.00, 76.68, 72.94, 69.99, 

67.92, 62.91, 55.26, 39.67, 34.31, 33.53, 31.91, 29.69, 29.66, 29.64, 29.63, 29.49, 

29.35, 29.28, 29.09, 27.27, 25.84, 24.94, 24.00, 22.68, 14.11. ESMS: 564.4 [M+H]+ 

Synthesis of (S)-1-((6-(3-(5,5-difluoro-7,9-dimethyl-5H-4ë4,5ë4-dipyrrolo[1,2-c:2',1'-

f][1,3,2]diazaborinin-3-yl)propanamido)hexanoyl)oxy)-3-((4-

methoxybenzyl)oxy)propan-2-yl palmitate (20). Free amine 19 (5 mg, 0.009 mmol) 

was dissolved in anhydrous DMF (150 µL) followed by the addition of 5 µL TEA. After 
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spinning for 10 minutes under argon, BODIPY-NHS (5.2 mg, 0.013 mmoL) in 200 µL of 

DMF was added slowly. The reaction proceeded overnight in the dark followed by 

concentration under a stream of nitrogen. The crude mixture was then purified on silica 

gel (2:1 EtOAc:Hex, Rf ~0.45) to yield protected fluorescent intermediate (5.6 mg, 76%) 

1H NMR (400 MHz, CDCl3) δ 7.24 – 7.18 (m, 2H), 7.09 (s, 1H), 6.91 – 6.81 (m, 3H), 

6.29 (d, J = 4.0 Hz, 1H), 6.12 (s, 1H), 5.70-5.75 (m, 1H), 5.30–5.16 (m, 1H), 4.45 (d, J = 

6.8 Hz, 2H), 4.32 (dd, J = 11.9, 3.8 Hz, 1H), 4.15 (dd, J = 11.9, 6.5 Hz, 1H), 3.80 (s, 

3H), 3.54 (d, J = 5.1, 1.2 Hz, 2H), 3.26 (t, J = 7.5 Hz, 2H), 3.23 – 3.11 (m, 2H), 2.62 (t, J 

= 7.4 Hz, 2H), 2.56 (s, 3H), 2.35 – 2.18 (m, 7H), 1.67 – 1.56 (m, 4H), 1.46 – 1.35 (m, 

2H), 1.34-1.22 (m, 26H), 0.87 (t, J = 6.9 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 173.14, 

173.10, 171.57, 168.98, 167.79, 159.28, 129.73, 129.28, 128.28, 127.85, 124.01, 

123.78, 120.72, 120.39, 117.56, 116.75, 113.79, 72.93, 70.00, 67.89, 62.80, 55.25, 

39.19, 36.00, 34.31, 33.84, 31.91, 30.32, 29.68, 29.65, 29.62, 29.48, 29.34, 29.28, 

29.11, 29.08, 26.21, 25.57, 24.94, 24.43, 23.35, 22.67, 14.91, 14.18, 14.11, 11.31, 

11.29. ESMS: 838.8 [M+H]+ 

Synthesis of (S)-1-((6-(3-(5,5-difluoro-7,9-dimethyl-5H-4ë4,5ë4-dipyrrolo[1,2-c:2',1'-

f][1,3,2]diazaborinin-3-yl)propanamido)hexanoyl)oxy)-3-hydroxypropan-2-yl 

palmitate (Boidpy-DAG; 21) Protected intermediate 20 (6 mg, 0.007 mmol) was 

dissolved in DCM (10 mL) containing 5% water followed by the addition of DDQ (3.5 

mg, 0.015 mmol). The reaction proceeded for 4 hours and was monitored by TLC (2:1 

EtOAc:Hex, Rf ~0.25) for completion.  DCM (25 mL) were then added and the reaction 

mixture was washed with 10% NaHCO3 and brine. The mixture was then purified by 

column chromatography(10% Methanol in Chloroform) to yield pure fluorescent DAG 
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(3.3 mg, 65%).1H NMR (400 MHz, CDCl3) δ 7.10 (s, 1H), 6.89 (d, J = 4.1 Hz, 1H), 6.30 

(d, J = 4.1 Hz, 1H), 6.12 (s, 1H), 5.85-5.79 (m, 1H), 5.05–5.05 (m, 1H), 4.30 (dd, J = 

11.8, 4.6 Hz, 1H), 4.20 (dt, J = 11.7, 5.8 Hz, 1H), 3.75 – 3.63 (m, 2H), 3.29 – 3.14 (m, 

4H), 2.62 (t, J = 7.4 Hz, 2H), 2.56 (s, 3H), 2.39 – 2.24 (m, 7H), 1.67 – 1.56 (m, 4H), 1.46 

– 1.35 (m, 2H), 1.34-1.22 (m, 26H), 0.87 (t, J = 6.9Hz, 3H). 13C NMR (101 MHz, CDCl3) 

δ 173.40, 173.38, 171.71, 128.34, 123.81, 120.40, 117.60, 77.31, 76.99, 76.67, 71.95, 

61.95, 61.32, 39.14, 39.05, 36.06, 34.26, 33.89, 31.91, 29.68, 29.67, 29.64, 29.60, 

29.46, 29.35, 29.25, 29.09, 29.08, 29.01, 26.14, 26.11, 24.91, 24.50, 22.68, 14.92, 

14.11, 11.30. ESMS: 717.4 [M+H]+ 

Synthesis of (R)-1-((6-(((benzyloxy)carbonyl)amino)hexanoyl)oxy)-3-

((bis(benzyloxy)phosphoryl)oxy)propan-2-yl palmitate (22). To a solution of 

tetrazole (12 mg, 0.045 mmol) in anhydrous DCM (2 mL) was added dibenzyl N,N-

diisoproyl phosphoramidite (25 µL, 0.045 mmol) under argon followed by the addition of 

free hydroxyl C15 lipid 3d (24 mg, 0.041 mmol) in 0.5 mL of anhydrous DCM. The 

reaction stirred overnight and was then cooled to -40*C followed by the addition of 

ditertbuyyl peroxide (15 µL of 5.5 M solution) and the mixture was allowed to slowly 

warm to room temperature. The crude mixture was then purified via flash 

chromatography (1:1 Hex:EtOAc, Rf ~0.35) to yield pure protected intermediate (13 mg, 

75%).  

1H NMR (400 MHz, CDCl3) δ 7.41 – 7.27 (m, 15H), 5.22 – 5.13 (m, 1H), 5.09 (s, 2H), 

5.05 – 5.00 (m, 4H), 4.97 – 4.91 (m, 1H), 4.25 (dd, J = 11.9, 4.4 Hz, 1H), 4.12 – 4.03 

(m, 3H), 3.22 – 3.12 (m, 2H), 2.34 – 2.17 (m, 4H), 1.67 – 1.44 (m, 6H), 1.38 – 1.20 (m, 

26H), 0.87 (t, J = 6.9 Hz 3H).13C NMR (101 MHz, CDCl3) δ 172.84, 172.78, 156.38, 
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136.63, 135.59, 135.57, 135.52, 128.61, 128.58, 128.46, 128.06, 128.02, 127.93, 

127.91, 127.84, 127.81, 77.32, 77.20, 77.00, 76.68, 69.50, 69.45, 69.26, 69.18, 66.53, 

65.34, 65.28, 61.62, 40.80, 34.07, 33.90, 33.72, 31.89, 29.67, 29.66, 29.63, 29.60, 

29.57, 29.45, 29.33, 29.24, 29.07, 29.04, 26.11, 24.77, 24.72, 24.35, 24.28, 22.66, 

14.10. 31P NMR (162 MHz, CDCl3) δ -1.04 (1P). ESMS: 839.0 [M+H]+ 

Synthesis of (R)-1-((6-aminohexanoyl)oxy)-3-(phosphonooxy)propan-2-yl 

palmitate (23). Protected intermediate 22 (18 mg, 0.021 mmol) was dissolved in ethyl 

acetate (8 mL) and Pd/C (10 mol %, 5 mg) was added. The mixture was stirred 

overnight under a balloon of hydrogen gas and the catalyst was filtered via celite and 

washed with 1:1 chloroform:methanol. The fully deprotected intermediate was used 

directly in the next reaction without further purification (10 mg, 96%). 

1H NMR (400 MHz, CDCl3) δ 5.23 – 5.12 (m, 1H), 4.34 – 4.17 (m, 2H), 4.05 – 3.93 (m, 

2H), 2.95 (s, 2H), 2.45 – 2.35 (m, 3H), 2.35 – 2.27 (m, 2H), 1.74 – 1.55 (m, 4H), 1.51 – 

1.40 (m, 2H), 1.34-1.18 (m, 26H), 0.87 (t, J = 6.9 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 

206.95, 173.12, 172.88, 77.31, 76.99, 76.67, 69.69, 62.66, 61.46, 39.70, 34.12, 33.59, 

31.91, 30.91, 29.71, 29.68, 29.66, 29.64, 29.60, 29.54, 29.46, 29.36, 29.27, 29.17, 

29.11, 26.84, 25.46, 24.83, 24.78, 24.26, 22.68, 21.03, 14.10. 31P NMR (162 MHz, 

CDCl3) δ 0.37 (1P). ESMS: 524.7 [M+H]+ 

Synthesis of (R)-1-((6-(3-(5,5-difluoro-7,9-dimethyl-5H-4ë4,5ë4-dipyrrolo[1,2-c:2',1'-

f][1,3,2]diazaborinin-3-yl)propanamido)hexanoyl)oxy)-3-(phosphonooxy)propan-2-

yl palmitate (BODIPY-PA; 24) Free amine 23 (10 mg, .019 mmol) was dissolved in 

DMF (150 µL) and 100 µL of TEAB buffer (0.5 M) were added followed by an addition 

10 µL of chloroform to fully solubilize the compound. After spinning for 10 min, BODIPY-
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NHS was added in 150 µL of DMF. The reaction was stirred for 1 hour and checked for 

completion by TLC (0.1% AcOH in 65:35:4 CHCl3:MeOH:H2O) followed by 

concentration under vacuum. The crude mixture was purified on silica gel (65:35:4 

CHCl3:MeOH:H2O Rf- 0.5) to yield pure fluorescent PA (7.5 mg, 50%). 1H NMR (400 

MHz, CDCl3 δ 7.09 (s, 1H), 6.87 (d, J = 4.0 Hz, 1H), 6.27 (d, J = 4.0 Hz, 1H), 6.10 (s, 

1H), 5.25 – 5.12 (m, 1H), 4.33 (dd, J = 11.9, 3.8 Hz, 1H), 4.14 (dd, J = 11.9, 6.0 Hz, 

1H), 3.99 (t, J = 6.0 Hz, 2H) 3.24 (t, J = 7.4 Hz, 2H), 3.16 (d, J = 6.2 Hz, 2H), 2.61 (t, J = 

7.4 Hz, 2H), 2.54 (s, 3H), 2.38-2.18 (m, 7H), 1.59 – 1.50 (m, 6H), 1.47 – 1.34 (m, 2H), 

1.31 – 1.15 (m, 26H), 0.87 (t, J = 6.9 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 207.05, 

177.24, 143.83, 128.31, 123.78, 84.62, 77.31, 76.99, 76.67, 39.24, 35.73, 34.23, 33.82, 

31.91, 30.91, 29.72, 29.68, 29.66, 29.35, 29.19, 29.09, 24.85, 24.33, 22.67, 21.45, 

14.87, 14.10, 11.27. 31P NMR (162 MHz, CDCl3) δ 2.12 (1P). ESMS: 798.7 [M+H]+ 
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CHAPTER 3. CELLULAR DELIVERY OF SYNTHETIC PIP REPORTERS	
	

3.1	Introduction	
 
 With fluorescent reporters BODIPY-DAG-C15, BODIPY-PIP2-C15, BODIPY-

PtdIns-C15 in hand we sought to investigate various methods of cellular delivery of 

these reporters. Because of the negative resting potential of the plasma membrane it is 

difficult to achieve the delivery of a negatively charged substrate [39]. Further 

complicating delivery is the presence of a solvation shell of water molecules around the 

hydroxyl groups in the head group of PIP reporters, which makes delivery through the 

hydrophobic core of the membrane also a challenge [92, 93]. A large problem in 

achieving systematic analysis of PIPs is the difficulty and unreliability of current delivery 

methods of synthetic PIP reporters [20, 93]. A carrier:cargo method utilizing charge-

charge interaction with histones is the most frequently cited for PIP delivery. Pipette 

perfusion and microinjection are other methods that have been used though we sought 

only to explore passive methods of delivery [62, 87, 94]. Unfortunately, these methods 

have a number of drawbacks that may not make them effective for a systematic 

approach to studying PIP metabolism. The concentration of synthetic PIP2 used in this 

method are 4-10 times the concentration of endogenous substrate at 40 and 100 µM, 

which can greatly alter the pool of PIPs [87, 94]. Because the concentration and ratio of 

PIPs drive biological processes, such a perturbation of the pathway can result in 

unwanted pathway activation. Indeed, a large calcium flux is seen in this method as well 

as reporters exclusively metabolized to DAG due to the activation of intrinsic signaling 
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pathways making this method highly unsuitable when attempting to discern the roles of 

multiple metabolites within the pathway [87, 94] To effectively measure PIP metabolism 

using fluorescent reporter technology, a simple and non-intrusive cellular delivery 

method is required [87, 95]. Such a delivery method must definitively show the delivery 

of a reporter that is therein capable of metabolism via multiple enzymes.  Photocaging 

methods have also been described for synthetic lipid reporters, including PIPs, and are 

an excellent method for analysis as it gives temporal control over release of the 

substrate[92, 93, 96-99]. Various caged, 

non fluorescent, PIPs have been 

synthesized and delivered to cells including 

PIP3 and PI(3)P as wells IP3 and have 

indeed been useful tools in dissecting 

specific locations of PIP biology[92, 93, 96, 

99]. In the method, the phosphate esters 

are ‘caged’ with a photocleavable group, 

often coumarin or nitrobenzyl, which allows 

for passive diffusion into the cell (Figure 

3.1 A). The caging groups can then be released by rapid exposure to UV light releasing 

the active metabolite [92, 93, 96-99]. These tools often contain a bioactivatable 

protecting group used for masking of hydrophilic groups on lipid reporters, such as the 

hydroxyls of PIPs to reduce the energy penalty of entering the hydrophobic region of the 

lipid bilayer [92, 93, 99] (Figure 3.1B).  These groups are cleaved over time via 

nonspecific esterases within the cell leaving only the photo cleavable group to be 

A.	

	
B.	

	
Figure 3.1 Common Chemical 
Moieties in Photocaging of 
Phospholipids: A. Structures of 
common photocaging moieties B. 
Structures of bioactivateable 
protecting groups. 
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removed. Various caged, non-fluorescent, PIPs have been synthesized and delivered to 

cells including and have indeed been useful tools in dissecting PIP biology [92, 93, 96, 

99]. For instance, caged PI(3)P was successful in inducing endosomal fusion following 

uncaging [92]. Likewise, various caged tri-functional lipid probes of DAG and 

sphingosine have been developed and has proven to be a powerful technology for the 

temporal release of active metabolite [98]. A major drawback of this approach the 

synthesis of such lipids is a long and arduous process. Further utility of this system to 

systematically analyze PIP metabolism has yet to be examined as previous studies 

focused on biological outcomes or proteomics and not metabolite identification [92, 93, 

98, 99].  

 Another system that has proven effective99 at the delivery of a variety of cargo is 

the use of cationic lipids, seen in Figure 3.2, to formulate various liposomes capable of 

cellular entry [100, 101]. When mixed with negatively charged cargo, such as DNA or 

other cargo, lipid complexes have shown significant efficacy in cellular transfection and 

subsequent protein expression[100, 102-105].  Cationic liposomes have also proven 

effective at delivery of cytotoxic agents such as chemotherapy drugs in clinical 

applications [100, 101, 106]. Because of the effectiveness of cationic liposomes for 

cellular delivery of various charged substrates, and their composition made up of 

amphiphilic lipids similar to our reporters, it is plausible that a cationic liposome could be 

formulated to include a fluorescent PIP reporter for use in delivery and cellular analysis.  

 Another class of liposomes with fusogenic properties composed of 1,2-

dioleoylphosphatidylethanolamine (DOPE) and 1,2-dioleoyl-3-trimethylammonium-

propane (DOTAP), shown in Figure 3.2B, have also been shown to be effective at 
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delivery of charged substrates including mRNA and intracellular proteins. In this 

method, the liposome fuses with the plasma membrane instead of entering the cell via 

endocytosis, which can lead to lysosomal degradation of the cargo [107]. Further, this 

method has been previously reported to be capable of delivering phospholipids tagged 

with fluorophores for membrane visualization via fluorescence microscopy [84, 108]. 

Interestingly, the addition of the delocalized π electron system of the fluorophores 

appeared to have a beneficial effect to the efficacy of membrane fusion of the liposome, 

with BODIPY being on of the most effective [84, 107, 108]. While fusogenic liposomes 

have been reported to contain fluorescent lipids for visualization the utility of such a 

system to systematically analyze PIP metabolism has yet to be determined.   

 

A.	
	

	
B.	

	
Figure 3.2 Common lipids used in Liposome Formulation for 
Cellular Transfection: A. Cationic lipids commons found in 
combination with neutral ‘helper lipids’ to achieve a cationic liposome 
for cellular transfection. B. Common lipids in fusogenic liposome 
formulations  
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 In this chapter, we describe our attempts at cellular delivery of fluorescent 

BODIPY-DAG-C15, BODIPY-PtdIns-C15 and BODIPY-PIP2-C15 reporters, as well as 

a model phospholipid to explore a variety of delivery options. We detail our attempts at 

previously described delivery methods, liposome delivery, intra-molecular charge 

masking, photocaging, and unique carrier-cargo complexes for use in cellular PIP 

analysis.  

3.2 Results and Discussion 

3.2.1 Delivery of BODIPY-DAG-C15, BODIPY-PIP2-C15, and model phospholipid 36 

to Cells 

 To investigate the effects of charge on the delivery of fluorescent PIP 

metabolites, we first compared the effectiveness of delivering the neutral BODIPY-

DAG-C15 and BODIPY-PIP2-C15 without the use of a carrier system. HEK293AD cells 

were incubated with 1 µM BODIPY-DAG-C15 or BODIPY-C15-PIP2 and cells were then 

analyzed via fluorescence microscopy after 15 min of incubation with the probe. As 

expected, and consistent with literature precedent, fluorescent DAG is efficiently taken 

up by the cells as indicated by the increase in fluorescent signal whereas no fluorescent 

PIP2 is present in the cell [21, 61, 109]. This confirmed that indeed charge was a factor 

for the delivery of PIP reporters, though the difference in structures with PIP2 containing 

multiple phosphates on the inositol head group could also have played a part in the 

delivery efficiency. 

 To further confirm that charge was a major factor in delivery, a model 

phospholipid 36 was synthesized that more closely resembles DAG and PA to further 

test this theory and for comparison to other delivery techniques. The development of the 
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model phospholipid allows for the exploration and comparison of multiple novel delivery 

methods due to easier synthesis compared to inositol containing PIP derivatives. The 

compound contains a phosphate group to examine the effect of charge and a 

fluorophore for detection. The synthetic route is shown in Scheme 3.1. Compound 32 

was synthesized via reduction over Ra-Ni/ H2 of azide intermediate synthesized as 

previously reported [110].  Next, the amine was coupled N-Boc caproic acid with 

coupling reagent DCC and DMAP followed by Cbz deprotection via hydrogenolysis over 

Pd/C to yield compound 33. Heptanoic acid was coupled to the free amine again using 

DCC and DMAP to give compound 34. The silyl ether was removed via hydrogen 

fluoride in pyridine to yield a free alcohol, which was subsequently phosphorylated via 

phosphoramidite coupling resulting in fully protected intermediate 35. Deprotection of 

the amino-Boc group was achieved via HCl in dioxane followed by final deprotection of 

the Benzyl protecting groups again via hydrogenolysis over Pd/C. Finally, the free 

amine was tagged with BODIPY fluorophore using 9 in basic conditions as previously 
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described to yield fluorescent model compound 36.

 

When 1 µM of compound 36 was incubated with HEK293-AD cells no increase in 

cellular fluorescence after 15 min was observed as seen in Figure 3.3, again indicating 

the presence of a negative charge is the largest obstacle to overcome in cellular 

delivery and neutralization of the charge may deem our reporters suitable for cellular 

delivery. 

	
Scheme 3.1 Synthesis of Fluorescent Model Phospholipid 36. 
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3.2.2 Photocaging for the Delivery of Model Phospholipid 36 

 In our lab, we have developed a general, one-step method to enable 

phospholipids cell permeable and photoactivatable, MKS-1, shown in Figure 3.4A, 

which reduces the need for complex synthesis to achieve a caged phospholipid and 

instead could be applied directly to our suite of PIP reporters [111]. 

Trimethylsilyldiazomethane (TMS) has been shown to selectively alkylate phosphoric 

acid under mild conditions. By replacing the methyl group with photocleavable 

nitrobenzyl yields a useful tool for the general caging of free phosphates using 

compound MKS-1. Compound 36 was easily caged using MKS-1 in MeOH yielding 

	

	
Figure 3.3 Carrier Free Delivery of Fluorescent Lipid Reporters HEK293AD 
cells (0.5 million) in growth medium (DMEM with 10% FBS, 2 mL) were plated into 
a 35 mm dish and were grown in an incubator at 37 C with 5% CO2. After 24 h, 
the cells were treated with 1 µM of the indicated fluorescent compound. Cells 
were visualized with a confocal microscope 15 minutes after incubation. 
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compound 54 and could be effectively uncaged back to compound 36 following 

treatment with light between 300-400 nm in wavelength as shown in Figure 3.4B [111].  

 

 

 

With the caged 54 in hand, we tested whether caging the phosphoric acid 36 was 

sufficient to make it cell-permeable in HEK293-AD cells. Cells were treated with either 1 

µM of uncaged 36 or caged 54 and the cellular fluorescence was examined 15 min after 

A.	

	
B.	

	

	
Figure 3.4 Generation and Uncaging of Compound 54 
with MKS-1: A. Structure of photocaging reagent MKS-1. 
B. Caging of phospholipid 36 with MKS-1 generated 54 
which could be uncaged following treatment with UV light.  
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compound treatment. As shown in figure 3.5, strong fluorescence that was primarily in 

cytosol was detected for caged 54-treated cells. In contrast, no fluorescence signals 

were detected in cells treated with uncaged 36. These results clearly demonstrated that 

caging the phosphate group in 54 was sufficient to make it cell-permeable and thereby 

validated our approach of neutralizing charge for the delivery of phospholipids [111]. 

 

3.2.3 Histone Delivery of PIPs 

 Despite the previously described drawbacks of using histones as a delivery 

method, we used this carrier-cargo method as a starting point to analyze the 

effectiveness of cellular delivery of fluorescent PIPs with this carrier system in our 

hands with a lower concentration of fluorescent reporter to avoid activation if intrinsic 

	
Figure 3.5 Delivery of Uncaged 36 and Caged 54 to Cells: HEK293AD 
cells (0.5 million) in growth medium (DMEM with 10% FBS, 2 mL) were 
plated into a 35 mm dish and were grown in an incubator at 37 C with 5% 
CO2. After 24 h, the cells were treated with 1 µM of 36 or 54. Cells were 
visualized with a confocal microscope 15 minutes after incubation. 
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signaling pathways. BODIPY-PtdIns-C15 1 µM were mixed with histones and incubated 

with 293AD cells. Cells were then washed with PBS and analyzed for increase in 

fluorescence via fluorescence microscopy after 30 minutes of incubation. A BODIPY-

tagged QS-11, which is known to be cell permeable, was used as a control [112, 113]. 

Despite literature reports, we were unable to achieve efficient delivery of fluorescent 

PIPs as seen in Figure 3.6, leading our efforts to focus on new and alternative delivery 

methods of fluorescent PIPs  

 

 

3.2.4 Cationic Liposomes for the Delivery of PIPs 

 Because of the effectiveness of cationic liposomes for cellular delivery of various 

charged substrates, we sought to examine the capability of applying this technology to 

PIP delivery.  Cationic liposomes were formulated using 1,2-dimyristoyl-sn-glycero-3-

phosphocholine (EDMPC), 1,2-dipalmitoyl-sn-glycero-3-ethylphosphocholine (EDPPC), 

1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (EDOPC), N,N-Dimethyltetradecylamine 

(di-C14 DAB), and 1,2-dimyristoyl-3-trimethylammonium-propane (DMTAP) according 

	
Figure 3.6: Histone Delivery of BODIPY-PtdIns-C15 to Cells 
HEK293AD cells (0.5 million) in growth medium (DMEM with 10% FBS, 2 
mL) were plated into a 35 mm dish and were grown in an incubator at 37 
C with 5% CO2. After 24 h, the cells were treated with 1 µM of 
histone:BODIPY-PtdIns-C15 or BODIPY-QS11. Cells were visualized 
with a confocal microscope 15 minutes after incubation. 
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to previous formulations proven effective at delivery of GFP plasmids were formulated 

include BODIPY-PtdIns-C15 according to Table 3.1 [105]. HEK293AD cells were 

incubated with liposomes to contain a final BODIPY-PtdIns-C15 of 1 µM. Cellular 

fluorescence was examined 15 minutes after incubation. While 2 of the 3 formulations 

showed an increase in cellular fluorescence as seen in Figure 3.7 cell morphology 

indicated that the method was toxic to cells. Due to the toxicity of cationic liposomes 

with BODIPY-PtdIns-C15, new mechanisms of liposomal delivery were explored.  
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3.2.5 Fusogenic Liposomes for the Delivery of PIPs 

 Because of the broad range of applications of fusogenic liposomes and effective 

labeling of the plasma membrane in various cell lines with the addition of fluorescently 

tagged lipids, we sought to apply this method for the delivery of fluorescent BODIPY-

PtdIns-C15. Effective labeling of the plasma membrane would present the lipid in the 

correct cellular location to be metabolized as well as avoid potentially detrimental 

endosome uptake and lysosome degradation [102]. Liposomes with known fusogenic 

Table	3.1	Cationic	Liposome	Formulations	for	BODIPY-
PIP2-C15	Cellular	Delivery	 	

	
Formulation	(molar	ratio)18	

1	
EDMPC:EDPPC:BODIPY-PtdIns-C15	

(25:75:10)	

2	
EDOPC:diC14DAB:	BODIPY-PtdIns-C15	

(30:70:10)	

3	
EDOPC:DMTAP:	BODIPY-PtdIns-C15	

(60:40:10)	
	

	
Figure 3.7 Cationic Liposome Delivery of BODIPY-PtdIns-C15 to 
Cells: HEK293AD cells (0.5 million) in growth medium (DMEM with 10% 
FBS, 2 mL) were plated into a 35 mm dish and were grown in an incubator 
at 37 C with 5% CO2. After 24 h, the cells were treated with a cationic 
liposomes according to Table 3.1 for a final BODIPY-PtdIns-C15 
concentration of 1 µM. Cells were viewed with a confocal microscope 
following 15 minutes of incubation. 
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properties were formulated according to Table 3.2 to include DOPE, DOTAP, and 

BODIPY-PtdIns-C15 [84, 107, 108]. 

 Liposomes were prepared by the lipid film method; briefly the lipids dissolved in 

chloroform were mixed in the desired ratios following by removal of solvent under a 

stream of N2 and then dried under vacuum for 1 hour. Lipids were then resuspended in 

25 mM HEPES (pH 7.4) for a lipid concentration of 2 mg/mL. HEK293-AD cells were 

treated with liposomes for a final concentration of BODIPY-PtdIns-C15 of 1 µM and the 

cellular fluorescence was examined following 15 minutes of incubation. As seen in 

Figure 3.8, an increase in cellular fluorescence was observed for the liposomes and 

moreover the liposomes did not result in cellular toxicity as was the case previously 

using cationic liposome formulations. 
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 Next, we sought to do a preliminary evaluation of reporter stability/lipid 

metabolites to see if the method would be amenable to systematic metabolic analysis. 

We would expect to see a large concentration of BODIPY-PtdIns-C15 with possible 

metabolites that could be compared with previously synthesized standards. Cell pellets 

were harvested and lipid contents were extracted via Folch extraction with acidic 

chloroform:methanol mixture and analyzed for the fluorescent lipid contents by TLC and 

Table	3.2	Fusogenic	Liposome	Formulations	for	BODIPY-PIP2-C15	
Cellular	Delivery	 	 	 	 	 	 	 	

	
Formulation	(Mass	Ratio)[20-22]	

4	 DOPE:DOTAP:BODIPY-PtdIns-C15		(1:1:0.2)	
5	 DOPE:DOTAP:BODIPY-PtdIns-C15		(1:1:0.1)	
6	 DOPE:DOTAP:DIR:BODIPY-PtdIns-C15I		(1:1:0.1:0.2)	

	

	
Figure 3.8 Fusogenic Liposome Delivery of BODIPY-PtdIns-C15 to 
Cells. Fig Figure 3.7 Cationic Liposome Delivery of BODIPY-
PtdIns-C15 to Cells.  HEK293AD cells (0.5 million) in growth medium 
(DMEM with 10% FBS, 2 mL) were plated into a 35 mm dish and were 
grown in an incubator at 37 C with 5% CO2. After 24 h, the cells were 
treated with fusogenic liposomes formulated according to Table 3.2 
(2mg/mL final concentration) with a final BODIPY-PtdIns-C15 
concentration of 1 µM. Cells were viewed with a confocal microscope 
following 15 minutes of incubation. 
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CE [62, 65, 71, 76]. The CE analysis was carried out by Dr. Angela Proctor in Dr. Nancy 

Allbritton’s lab.  Unfortunately, very little intact BODIPY-PtdIns-C15 was observed, with 

~70% of the reporter converted to fluorescent DAG for each sample as seen in a 

representative CE trace and quantification in Figure 3.9. An unknown metabolite was 

also generated that was unable to be identified with available standards. It is unknown 

whether this was through PIP family of enzymes or non-specific cleavage occurring in 

the endosome/lysosome as the punctate structure of the fluorescence indicates this as 

the most likely mode of entry.  

 

The breakdown of the reporter lead to this method to be abandoned for a non-liposomal 

based mode as delivery. Overall, it does not appear liposomes are an effective method 

to use for the quantification of cellular PIP metabolites, most likely due to endosomal 

uptake of the liposome [100, 103, 105]. 

	
Figure 3.9 CE Analysis of Metabolites Generated using Fusogenic 
Liposome Delivery of BODIPY-PtdIns-C15. HEK293AD Cells were treated 
with fusogenic liposomes as described in Figure 3.8 followed by lipid 
extraction after 15 minutes of incubation. Lipids were resuspended in 
propanol and analyzed by CE-LIF using synthesized fluorescent for peak 
identification. 
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3.2.6 Intramolecular Charge Masking Strategy with Guanidine for the Delivery of 

Phospholipids 

 A unique and recently widely used cellular transfection is the use of guanidine 

rich molecular transporters on a variety of scaffolds[114]. Since the discovery that the 

HIV Tat protein was capable of crossing the cell membrane which is facilitated by the 9-

mer Tat49-57 (RKKRRQRRR) there has been increased interest in the mechanism of cell 

penetration by this peptide [115, 116]. When the 9-mer was modified to contain lysines 

instead of arginines, the efficacy of the cell penetrating peptide (CPP) dropped 

remarkably indicating that it was not simply the cationic charge carried by either of the 

residues[114, 117, 118]. This can be attributed to the ability of forming a bidentite 

hydrogen bond assisted ion pair with phosphate groups shown in Figure 3.10. When 

the hydrogen bond assisted interaction is removed by replacing the hydrogen atoms on 

the terminal guanidine amino groups with methyl groups, the cell penetrating properties 

of the peptide are lost further indicating the interaction is a vital part of cell penetration 

versus that of just charge [119].  

 

 

	
Fig. 3.10 Bidentite Interaction 
Between Guanidine and 
Phosphates. Hydrogen bond assisted 
ion pair between guanidine and 
phosphate groups resulting in a net 
neutral charge. 
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 Since this discovery of guanidine promoting cell-penetration, guanidinium rich 

CPPs have been used for cellular transfection of various cargoes including small 

molecules, peptides, proteins, and oligonucleotides both non-cavalently and covalently 

attached to the cargoes[114, 120, 121]. Various non-peptidic scaffolds such as 

glycosides, dendrmers, and carbohydrates have also been modified to contain 

guanidine moieties and have retained cell-penetrating functions again showing the 

power of guanidine to induce cellular uptake [95, 114, 117, 120, 122, 123].  Various 

modes of cellular uptake have been proposed including adaptive translocation where 

charge-neutralization moves the cargo through the membrane as well as induction of 

endocytosis because blocking of endocytosis does not fully negate cell-penetrating 

capability [114, 120].  

 Based on the success of an intermolecular carrier-cargo system with guanidine 

scaffolds, and the variety of modes of cellular uptake, we examined if inclusion of a 

guandine moiety could allow for the cellular delivery of phospholipids. We explored an 

intramolecular phosphate masking strategy via a derivative of compound 36 by the 

addition of a guanidne group at the terminal end of the alkyl chain to generate 

compound 53 with the hopes of neutralizing the negative charge. We hypothesized that 

an intramolecular interaction would induce charge neutralization via proximity while also 

allowing for the guanidine to interact with the cell membrane and allow for cell-

penetration. When applied to a fluorescent PIP reporter, such a technology would 

provide a simple and effective strategy for reporter delivery that does not require the 

use of multiple reagents and/or chemical manipulation of the reporters.  
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 Guanidine containing model phospholipid compound 53 was synthesized 

according to Scheme 3.2. Azide 31 was synthesized according to literature protocol 

followed by reduction via H2/Rainey Ni to yield primary amine 32 [110].  Fmoc-caproic 

acid was then coupled via DCC and catalytic DMAP coupling to yield compound 46. To 

generate compound 48, the Cbz group was cleaved via hydrogenolysis in methanol 

followed by DCC/DMAP coupling of guanidine caproic acid 47, which was synthesized 

according to literature protocol [124]. The silyl ether was removed via hydrogen fluoride 

in pyridine to yield a free alcohol 49, which was subsequently phosphorylated via 

phosphoramidite coupling as previously described resulting in intermediate 50. 

Cleavage of the Cbz as well as Bn deprotection of the phosphate group via 

hydrogenolyisis yielded intermediate 51 which was then tagged with the flourophore 

BODIPY using reagent 9 as described previously to yield fluorescent intermediate 52. 

Finally, Boc deprotection of the guanidine was achieved with HCl in dioxane to yield 

final guanidine containing phospholipid compound 53. 
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 With guanidine containing compound 53 in hand, we tested whether 

intramolecular masking of the phosphonic acid would render the compound cell 

permeable when compared to the cell uptake of compound 36. HEK-293AD cells were 

incubated with 1 µM of compound 36 or compound 53 and cellular fluorescence was 

examined following 15 min of incubation. Unfortunately, the presence of a guanidine 

group did not increase cellular uptake of the model phospholipid as there was no 

discernable fluorescence increase for compound 36, as previously described, and no 

fluorescence increase seen following treatment with compound 53. Because of these 

	

	
Scheme 3.2: Synthesis of Intramolecular Charge Masking Model 
Compound 53 
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findings, this guanidine approach was not applied to PIP reporters and lead us to 

explore a novel carrier:cargo system that utilized polyamines and guanidine moieties. 

3.2.7 Charge Altering Releasable Transporters (CARTs) for the Delivery of PIPs 

 A recent development in cellular delivery is the synthesized charge altering 

releasable transporters (CARTs) shown in Figure 3.11 [96, 114, 125-127]. These 

transporters have been synthesized to contain both lipid units that contribute to required 

hydrophobicity for membrane interaction, which we have seen in the case of 

photocaging equally as important as neutralizing charge, as well as various cationic 

moieties to interact with polyanionic cargo and the negatively charged membrane. 

Interestingly, guanidine is a popular cationic moiety included in CARTs, again verifying 

our attempt at using guanidines previously in delivery [117, 125-127].  

  This technology is attractive because the oligomers can be ‘tuned’ using 

different monomers and degrees of polymerization for increased interaction with a 

specific cargo. In this method, polyanionic cargo is mixed in a 1:1 molar ration with a 

CART to form a protective and CART-cargo complex that neutralizes the negatively 

charged cargo. This complex is then delivered to the cell via hydrophobic interaction 

and charg-charge interaction with the membrane where the cargo is released via 

hydrolysis of the CART releasing a neutral non-toxic small molecule and the polyanionic 

cargo to the cytosol[117, 125-127].   
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Because of the stability of the cargo in complex with CARTs, they have been effective at 

the delivery of a wide range of cargos including small molecules, metals, imaging 

agents, siRNA and even proteins to both a variety of cell lines and animal models. 

D13:A11 (A11) was effective at EGFP mRNA delivery across a panel of cell lines with 

greater than 90% transfection efficiency in all cell lines, whereas lipofectamine achieved 

only 20-60% efficiency and results varied greatly amongst cell lines [125]. Likewise, A11 

was effective at delivery of EGFP mRNA in mice making this a viable delivery vector for 

both c experiments in both cell culture and animal models,, and could potentially be 

used in therapeutic applications [125].  Guanidinium rich transporter D7:G7 (G7) was 

effective at the delivery of polyanionic myo-inositol derivative 5-diphospho-myo-inositol 

pentakisphosphate (InsP7) [96]. Further, this structure contains guanidine groups that 

have been previously described as promising for delivery.  Because of the similarity in 

the core structure to IP3, it is probable, that this technology could be utilized to deliver 

other polyanionic inositol containing molecules. Therefore, we examined the ability of 

CARTs to deliver BODIPY-PIP2-C15 because of the polyanionic state of the inositol 

head group. HeLa cells were incubated with CART:PIP2 complex with a final BODIPY-

PIP2-C15 concentration of 500 nM and cellular fluorescence was examined 2 hours 

	
Figure 3.11 CARTs for the Delivery of BODIPY-PIP2-C15: Structure of 
CARTs previously shown efficacious for the delivery of plasmids and inositol 
phosphates examined for their transfection capability of fluorescent PIP2 
reporters [108, 116-118]. 
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after incubation. As shown in Fig 3.12, CART:PIP2 complexes resulted in a strong 

increase in cellular fluorescence compared to cells treated only with BODIPY-PIP2-C15 

indicating delivery is indeed a result of the addition of the CART and charge 

neutralization. 

 

We next examined the basal metabolic profile produced from the CART delivery. Again 

HEK293-AD cells were incubated with CART:BODIPY-PIP2-C15 (500 nM PIP2) and cell 

pellets were collected following 30 minutes and 2 hours incubation. A Folch lipid 

extraction was performed to obtain all lipid metabolites followed by concentration of the 

bottom lipid layer under a stream of N2. Lipid films were then resuspended in 1:1 

chloroform:methanol for TLC analysis.  As seen in Figure 3.13, both CARTs were 

successful in achieving cellular delivery, with the G7 CART delivering a larger amount of 

PIP2 over 30 minutes than that of A7, with time dependent increase in cellular 

	
Figure 3.12 Delivery of BODIPY-PIP2-C15 to Cells via CART systems 
A11 and G7. HeLa cells were incubated with PIP2:CART complexes for 2 
hours in serum free media. Cells were washed 2X with media and 
analyzed via confocal microscopy. Both G7 and A11 showed significant 
fluorescence increase with no fluorescence increase without the use of a 
transporter. Experiment performed by Dr. Collin McKinlay. 
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fluorescence. Synthesized standards BODIPY-DAG-15, BODIPY-PtdIns-C15, and 

BODIPY-PIP2-C15 were used to identify new metabolic products produced in the 

experiment as well as confirm the presence of delivered PIP2 reporter. A large amount 

of intact BODIPY-C15-PIP2 was still present in the sample after 2 hours, a result that 

had yet to be achieved in the lab previously or with any other delivery method. Likewise, 

only small amounts of DAG were produced compared liposomal delivery. Following 2-

hours of incubation, a strong BODIPY-PtdIns-C15 signal begins to appear as well as a 

small amount of BODIPY-PIP2-C15 though the regioisomer of PIP cannot be 

distinguished by TLC.  

 

	

	
Figure 3.13 TLC analysis of Fluorescent Metabolites Generated from 
BODIPY-PIP2-C15 in Cells using the CART System. HEK293-AD cells 
were treated with 500 nM of BODIPY-PIP2-C15:CART complexes for the 
indicated time points followed by lipid extraction. Lipids were suspended 
in 1:1 chloroform:methanol and analyzed by TLC  and fluorescent 
scanning. 
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3.3 Conclusions and Future Directions 

 We have examined a plethora of delivery techniques for the cellular delivery of 

fluorescent PIP reporters. Consistent with literature protocol, fluorescent DAG freely 

enters the cells. In contrast negatively charged PIP2 and compound 36 are not cell 

permeable. In our attempts at histone delivery, we were unable to achieve cellular 

delivery with this method in multiple experiments. Likewise, literature reports of this 

method and analysis of metabolite generation look similar to our studies with fusogenic 

liposomes with DAG being the most abundant metabolite. Because of the inability to 

easily reproduce this method, as well as a metabolic profile that does not match the 

cellular distribution of lipids, this method is not effective for the systematic analysis of 

PIPs. 

 Direct neutralization of the negative charge, via covalent photocaging methods 

using MKS-1 greatly increased the delivery of caged 54 compared to 36. However, 

preliminary examinations of caging BODIPY-PtdIns-C15 or BODIPY-PIP2-C15, not 

described in this thesis, was not effective in delivering reporters to cells. Due to the 

presence of bioactivatebale hydrophobic moieties, such as butonyl, used in previous 

reports of photocaged PIPs it is likely we must increase the hydrophobic properties of 

MKS-1. Another potential problem for the photocaging of PIP2 with MKS-1 is the 

creation of a dipohosphate ester, which is chemically unstable and can induce 

phosphate migration to neighboring hydroxyls. A possible change to the structure would 

be the introduction of a guanidine moiety or other cationic amine. This would create full 

charge neutralization with only the addition of a single photocaging group to each 

phosphate thus eliminating problems of stability. This could also increase delivery by 
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interacting directly with the membrane and result in a higher release efficiency because 

of the presence of fewer photo-cleavable groups. 

 Both cationic liposomes and fusogenic liposomes are not applicable to 

systematic analysis of PIPs. Cationic liposomes caused a high level of cell toxicity with 

suboptimal delivery as seen by fluorescence microscopy. This is more likely due to the 

entry mechanism or cellular perturbation by the liposome more so than BODIPY-PtdIns-

C15 because of the low level of cellular delivery. Similarly, fusogenic liposomes showed 

low level of cellular delivery in punctate structures most likely to be endosomes. While 

the cells remained healthy, analysis of the metabolites revealed that in a short amount 

of time the reporter had been metabolized to DAG and an unknown metabolite. It is 

unknown if this is a result of nonspecific cleavage in the endosome or enzymatic 

turnover, however this profile does not represent the endogenous distribution of 

metabolites and is not applicable for use in biological studies. 

 Despite the widespread use of scaffolds containing guanidine for cellular 

delivery, our intramolcular charge masking strategy was ineffective at achieving cellular 

delivery of compound 53. This, however, does not rule out future application of this 

design. It is possible that the alkyl chain containing the guanidine is not long enough to 

interact directly. Therefore future compounds should be synthesized altering the chain 

length and examining any changes in cellular delivery potential. This could also 

underscore the importance of the ratio between charge masking and hydrophobicity. It 

is possible that without intramolecular interaction, the reporter could enter via adaptive 

translocation through interaction with the guanidine and the membrane phospholipids 

and an increase in hydrophobicity may stimulate these effects.  
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 . The most successful and promising delivery method was the use of CARTs in 

a carrier-cargo complex with BODIPY-PIP2-C15. Both A11 and G7 were able to achieve 

significant delivery the fluorescent PIP2, though the time dependent increase between 

the 2 carts was different suggesting a more efficient escape for the reporter using CART 

G7. G7 also contains a guanidine moiety consistent with the hypothesis of guanidine 

containing compounds being effective at PIP delivery. Incubation with only 500 nM final 

concentration of fluorescent PIP2 is far less than used in previous reporters of PIP2 

delivery while still providing enough reporter to visualize via fluorescence microscopy 

and for extraction to use for TLC and CE analysis [87, 94]. Further, extractions and 

analysis of lipid metabolites showed a distribution of metabolites consistent with 

endogenous substrates [39, 128]. Because of the consistency with previously reported 

distribution, we will begin to use this method for examining cellular distribution of 

metabolites in cancer cell lines in response to various stimuli and pharmacological 

agents. Further optimization of experimental parameters such as incubation time will 

need to be explored in a variety of cell lines as HEK293AD cells yielded different 

transfection efficiencies between A11 and G7. This will ensure that loading and cellular 

concentration of reporter will be a factor in the experimental results. Overall this method 

is the most promising one in hand for use in systematic PIP cellular analysis, which will 

be detailed in chapter 4 of this dissertation. 

3.4 Experimental 

All reagents were obtained from commercial sources and were used without further 

purification. Thin layer chromatography was per- formed on 250 µm silica plates and 

column chromatographic purifica- tions were performed on 200–300 mesh silica gel. 1H 
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NMR and 13C NMR spectra were recorded at 400 MHz and 100 MHz, respectively. 

Chemical shifts (δ) are reported in parts per million (ppm) with residual solvent 

resonances as references.  

MKS-1 and caged compound 54 were synthesized by Dr. Manish K. Singh 

Dr. Colin McKinlay and Dr. Paul Wender from Stanford University generously provided 

all CARTs (A11 anf G7). 
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3.4.1 Confocal Microscopy HEK293AD cells (0.5 million) in growth medium (DMEM 

with 10% FBS, 2 mL) were plated into a 35 mm dish and were grown in an incubator at 

37 °C with 5% CO2. After 24 h, the cells were treated with fluorescent reporter (1 µM). 

Cells were washed 2X with DMEM and visualized with a confocal microscope. 

3.4.2 Preparation of Cationic Liposomes Cationic lipids and BODIPY-PtdIns-C15 in 

chloroform (10 mg/mL) were mixed to their desired molar ratios (Table 3.1) followed by 

removal of solvent under a stream of N2 and drying for 1 hour. The lipid film was 

resuspended in 25 mM HEPES buffer to give a final lipid concentration of 2 mM with 

200 µM BODIPY-PtdIns-C15 followed by sonication for 10 minutes. Liposome mixtures 

were then incubated with cells for  a final BODIPY-PtdIns-C15 concentration of 1 µM 

3.4.3 Preparation of Fusogenic Liposomes Lipids and BODIPY-PtdIns-C15 in 

chloroform (10 mg/mL) were mixed according to Table 3.2 for a final lipid concentration 

of 2 mg/mL with 200 µM BODIPY-PtdIns-C15 followed by removal of solvent under a 

stream of N2 and drying for 1 hour. The lipid film was resuspended in 25 mM HEPES 

buffer followed by sonication for 10 minutes. Liposome mixtures were then incubated 

with cells for a final BODIPY-PtdIns-C15 concentration of 1 µM. 

3.4.4 Extraction of Lipid Metabolites 

150 uL of 40:20:1 (v:v:v) CHCl3:Methanol:HCl was added to the cell pellet and left at 

room temperature for 10 minutes. 50 uL of CHCl3 and 50 uL of water were added and 

the mixture vortexed heavily for 3 minutes. The mixture was then centrifuged at 4*C at 

3200 RPM for 8 minutes resulting in phase separation. The bottom layer was collected, 

dried under a stream of N2 and resuspended in 30 uL of 1:1 CHCl3:MeOH (v:v) for TLC 

analysis.  
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3.4.5 TLC analysis of Lipid Metabolites 

TLC plates (Merck, Silica Gel-60) were pre-treated with a solution of 1.2% potassium 

oxalate and 1.2 mM EGTA in MeOH/water (v:v = 2:3) and heated at 110 °C for 20 min 

before use. Lipid films were diluted in CHCl3/ MeOH (v:v = 1:1) and spotted on a TLC 

plate directly. The TLC plate was then developed in CHCl3:Acetone:MeOH:AcOH:water 

(v:v:v:v:v = 80:30:26:24:14) and scanned on a Typhoon 9400 Variable Mode Imager 

(lex/lem = 488 nm/520 nm). The fluorescence intensity of various spots on the TLC 

plate was quantified with ImageQuant software (V.5.0). 

3.4.6 CE Analysis of Lipid Analytes 

Capillary electrophoresis coupled with laser induced fluorescence detection (CE-LIF, 

488 nm excitation) was performed on a custom-built system mounted to the stage of an 

inverted microscope, described previously in detail[75]. Fused silica capillaries were 38 

cm long with a 20.5 cm effective length [30 µm inner diameter and 360 µm outer 

diameter (Polymicro Technologies; Phoenix, AZ)] and were conditioned prior to use by 

rinsing for 1 h in DI H2O, 12 h in 0.1 M NaOH, 1 h in DI H2O, 6 h in 0.1 M HCl, and 12 h 

in DI H2O. Prior to each run, capillaries were rinsed with 1 M NaOH and DI H2O for 5 

min each and with electrophoretic buffer for 10 min by application of pressure to the 

capillary outlet. Buffer at the capillary inlet and outlet was completely refreshed prior to 

each electrophoretic run. The composition of the electrophoretic buffer was 80 mM 

NaH2PO4, pH 6.8 containing 15% 2-propanol and a field strength of 210 V cm-1 was 

used for all separations. Internal standards and samples were hydrodynamically loaded 

by raising the inlet 3 cm relative to the outlet and holding the capillary inlet in the sample 

for 10 sec. The inlet was then lowered to the height of the outlet and electrophoresis 
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was initiated by application of a negative voltage to the outlet while grounding the inlet. 

Electropherograms were plotted and analyzed utilizing OriginLab 9.0 (OriginLab 

Corporation; Northampton, MA). 

3.4.7 Chemical Synthesis 

Synthesis of Benzyl (R)-(1-amino-3-((tert-butyldimethylsilyl)oxy)propan-2-

yl)carbamate (32): To a solution of azide 31 (synthesized as previously described 

[110]) (620 mg, 1.7 mmol) in ethyl acetate (25 mL) was added a slurry of Rainey Ni. The 

reaction proceeded under a balloon of H2 at room temperature for 3 h and was then 

filtered through celite. The filtrate was concentrated to afford amine 7 that was used 

directly without further purification (540 mg, 94%). 1H NMR (400 MHz, CDCl3) δ 7.24-

7.33 (m, 5H), 5.33 (br. s, 1H), 5.08 (s, 2H), 3.60-3.70 (m, 3H), 2.82 (br. s, 2H), 1.95 (br. 

s, 2H), 0.80 (s, 9H), 0.02 (s, 6H). 13C NMR (CDCl3, 100.5 MHz) δ 156.44, 136.62, 

128.58, 128.42, 128.16, 128.02, 77.36, 66.76, 63.12, 54.19, 42.81, 25.92, 25.82, 18.29, 

18.11 -3.42, -5.44. LC-MS Calcd [M+H] 339.20; found 339.2 

 

Synthesis of Tert-butyl (R)-(6-((2-amino-3-((tert-

butyldimethylsilyl)oxy)propyl)amino)-6-oxohexyl)carbamate (33): To a solution of 

32 (250 mg, 0.74 mmol) in CH2Cl2 (15 mL) was added N-Boc caproic acid (205 mg, 

0.87 mmol) followed by the addition of DCC (182 mg, 0.87 mmol) and DMAP (18 mg, 

0.15 mmol). The reaction proceeded at room temperature for 4 h followed by removal of 

solvent and subsequent addition of EtOAc.  The mixture was filtered and the filtrate 

concentrated under vacuum. The resulting residue was purified by column 

chromatography (67% EtOAc in hexane) to yield protected intermediate (345 mg, 85%). 
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The fully protected intermediate (150 mg, 0.27 mmol) was dissolved in methanol 

followed by the addition of 10 mol% Pd/C and the reaction proceeded overnight at room 

temperature under a balloon of hydrogen. The catalyst was filtered over celite, the 

filtrate was concentrated and and the resulting residue was purified by flash 

chromatography (10% MeOH in CH2Cl2) over silica gel to yield pure free amine 8 (105 

mg, 93%). 1H NMR (400 MHz, CD3OD) δ 3.64 (dd, J = 10.1, 4.8 Hz, 1H), 3.54 (dd, J = 

10.1, 5.9 Hz, 1H), 3.34 – 3.26 (m, 2H), 3.14 (dd, J = 13.5, 7.0 Hz, 1H), 3.04 (t, J = 7.0 

Hz, 2H), 2.99 – 2.89 (m, 1H), 2.22 (t, J = 7.5 Hz, 2H), 1.71 – 1.58 (m, 2H), 1.45-140 (m, 

12H), 1.41 – 1.29 (m, 3H), 0.94 (s, 9H), 0.11 (s, 6H). 13C NMR (CD3OD, 100.52 MHz) δ 

176.50, 158.51,79.76, 66.32, 65.85, 61.99, 57.65, 53.69, 49.85, 43.28, 41.17, 37.01, 

34.76, 30.66, 28.81, 27.48, 26.65, 26.39,19.15, -5.32. LC-MS Calcd [M+H] 418.30; 

found 418.3 

 

Synthesis of tert-butyl (R)-(6-((3-((tert-butyldimethylsilyl)oxy)-2-

heptanamidopropyl)amino)-6-oxohexyl)carbamate (34):To a solution of free amine 

33 (120 mg, 0.29 mmol) and heptanoic acid (41 mg, 0.32 mmol) in CH2Cl2 (10 mL) was 

added DCC (65 mg, 0.32 mmol) and DMAP (7 mg, 0.06 mmol). The reaction proceeded 

at room temperature for 4 h followed by removal of solvent and subsequent addition of 

EtOAc.  The mixture was filtered and the filtrate concentrated under vacuum. The 

residue was then purified by flash chromatography (67% EtOAc in hexane) over silica 

gel to yield  compound 9 (122 mg, 89%). 1H NMR (400 MHz, CD3OD) δ 4.02 – 3.90 (m, 

1H), 3.73 – 3.54 (m, 2H), 3.36 – 3.25 (m, 4H), 3.00 (t, J = 7.0 Hz, 2H), 2.26 – 2.11 (m, 

3H), 1.57 (dt, J = 12.2, 7.4 Hz, 3H), 1.68 – 1.25 (m, 19H), 1.47 – 1.39 (m, 13H), 1.31 (q, 
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J = 7.0, 5.1 Hz, 6H), 0.99 – 0.88 (m, 12H), 0.06 (s, 6H).13C NMR (CD3OD, 100.5 MHz) δ 

176.62, 176.34, 64.18, 52.79, 49.85, 41.24, 41.18, 37.35, 37.04, 32.74, 30.68, 30.02, 

28.80, 27.47, 27.03, 26.71, 26.38, 26.20, 23.59, 19.16, 14.41, -5.29, -5.33 . LC-MS 

Calcd [M+H] 530.39; found 530.4 

Synthesis of Tert-butyl (R)-(6-((3-((bis(benzyloxy)phosphoryl)oxy)-2-

heptanamidopropyl)amino)-6-oxohexyl)carbamate (35): Silated intermediate 34 (67 

mg, .13 mmol) in THF (3.0 mL) was added commercial 30% HF in pyridine (250 uL). 

The reaction proceeded for 2.5 hours at room temperature followed by the addition of 

saturated sodium bicarbonate and extracted into EtOac. The organic layer was 

collected, dried under Na2SO4 and concentrated under vacuum. The crude residue was 

purified by flash chromatography (5% MeOH in CH2Cl2) over silica gel to afford a free 

hydroxyl intermediate (48 mg, 89%). The free hydroxyl (48 mg, .12 mmol) was added to 

a solution of tetrazole (64 mg, .24 mmol) and commercial dibenzyl N,N-

Diisopropylphosphoramidite (83 mg, .24 mmol) in anhydrous CH2Cl2 (4 mL) under 

Argon gas. The mixture stirred for 18 hours and was then cooled to -40° C followed by 

the addition of 5.5 M TBUOOH (85 uL). The mixture was allowed to warm to room 

temperature slowly followed by removal of solvents and the residue purified by flash 

chromotagraphy (5% MeOH in CH2Cl2) over silica to afford pure phosphorylated 

compound 10 (60 mg, 75%) 1H NMR (400 MHz, CD3OD) 7.31-7.36 (m, 10H), 5.06 (s, 2 

H), 5.04 (s, 2H) 4.15-4.21 (m, 1H), 3.96-4.06 (m, 2H), 3.80-3.89 (m, 1H), 3.22-3.44 (m, 

4H), 2.98-3.5 (m, 2H), 2.09-2.20 (m, 4H), 1.44-1.68 (m, 6H), 1.40-1.43 (m, 9H), 1.20-

1.39 (m, 6H), 0.88 (t, J = 8 Hz, 3H). 13C NMR (CD3OD, 100.5 MHz) δ176.60, 176.35, 

129.78, 129.70, 129.25, 128.18, 128.55, 128.43, 105.62, 105.27, 70.96, 70.91, 68.32, 
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68.27,68.21, 68.14, 68.00, 62.76, 50.78, 50.75, 50.70, 50.47, 41.17, 40.47, 37.20, 

37.02, 36.94, 36.71, 33.18, 32.72, 32.69, 30.65, 30.00, 29.95, 28.80, 27.46, 27.00, 

26.88, 26.66, 26.60, 23.58, 23.56, 14.42. 31P NMR (CD3OD, 162 MHz) δ -1.38 (1P). LC-

MS Calcd [M+H] 676.36; found 676.3 

 

Synthesis of (R)-3-(6-(3-(5,5-difluoro-7,9-dimethyl-5H-4ë4,5ë4-dipyrrolo[1,2-c:2',1'-

f][1,3,2]diazaborinin-3-yl)propanamido)hexanamido)-2-heptanamidopropyl 

dihydrogen phosphate (36): Fully protected intermediate 34 (20 mg, 0.03 mmol) was 

dissolved in dioxane (2 mL) and added 4M HCl (500 uL). The reaction was monitored 

for completion by TLC (10% MeOH in CH2Cl2) for 3 h followed by removal of solvent 

under vacuum. The so-formed HCl salt (18 mg, 0.03 mmol) was dissolved in methanol 

(10 mL) followed by the addition of 10 mol% Pd/C and stirred overnight under a balloon 

of hydrogen at room temperature. The mixture was filtered through celite and filtrate 

concentrated under vacuum to yield fully deprotected free amine intermediate which 

was used directly in the next reaction. To the free amine (3.6 mg, 0.008 mmol) in 0.5 M 

TEAB buffer (150 uL) was added NHS-BODIPY (4.7 mg, 0.016 mmol) in DMF (150 uL). 

The mixture stirred overnight in the dark followed by removal of solvent under a stream 

of nitrogen gas. The crude reaction mixture was purified via HPLC  (30-80% 0.1% TFA 

in MeOH over 60 min) to yield pure fluorescent compound 11 (3.6 mg, 46% combined 

from compound 10). 1H NMR (400 MHz, CD3OD) δ 7.44 (s, 1H), 7.02 (d, J = 4.0 Hz, 

1H), 6.33 (d, J = 4.1 Hz, 1H), 6.22 (s, 1H), 4.18 (s, 1H), 4.03 – 3.91 (m, 2H), 3.44 – 3.35 

(m, 2H), 3.25 – 3.12 (m, 4H), 2.60 (t, J = 7.6 Hz, 2H), 2.52 (s, 3H), 2.29 (s, 3H), 2.23 – 

2.15 (m, 4H), 1.55 – 1.40 (m, 6H), 1.38-1.25 (m, 6H), 0.90 (t, J=7.9 Hz, 3H).13C NMR 
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(CD3OD, 100.5 MHz) δ176.49, 176.18, 174.53, 129.66, 125.78, 121.30, 117.74, 111.44, 

50.75, 50.66, 49.85, 49.50, 49.28, 49.07, 47.82, 40.98, 40.29, 37.27, 37.05, 36.02, 

32.75, 30.09, 30.06, 27.60, 26.96, 26.64, 25.67, 23.60, 14.41, 11.19, 9.31; 31P NMR 

(CD3OD, 162 MHz) δ 0.02 (1P) ESMS 670.30 [M+H]+ 

Synthesis of (9H-fluoren-9-yl)methyl (R)-(6-((2-(((benzyloxy)carbonyl)amino)-3-

((tert-butyldimethylsilyl)oxy)propyl)amino)-6-oxohexyl)carbamate (46): To Fmoc-

Caproic Acid (350 mg, 0.99 mmol) was added DCC (205 mg, 0.99 mmol), catalytic 

DMAP (23 mg, 0.19 mmol), and anhydrous DCM. The mixture was spun for 30 min 

followed by the addition of free amine (320 mg, 0.94 mmol) in DCM. The reaction 

proceeded for 4 hours followed by removal of solvent under vacuum. The mixture was 

then suspended in ethyl acetate and filtered followed by column chromatography (2:1 

EtOac:Hex) to afford pure product (541 mg, 85%). 1H NMR (400 MHz, CDCl3) 1H NMR 

(400 MHz, CDCl3) δ 7.74 (d, J = 7.6, 2H), 7.58 (d, J = 7.6 2H), 7.47 – 7.30 (m, 6H), 6.18 

– 5.97 (m, 1H), 5.44 – 5.27 (m, 1H), 5.07 (s, 2H), 4.88 (s, 1H), 4.37 (d, J = 7.0 Hz, 2H), 

4.22 – 4.16 (m, 1H), 3.84 – 3.73 (m, 1H), 3.71 – 3.54 (m, 2H), 3.48 – 3.37 (m, 1H), 3.21 

– 3.09 (m, 2H), 1.63 – 1.23 (m, 6H), 0.87 (s, 9H) ,0.04 (s, 6H).13C NMR (CDCl3, 100.52 

MHz)  δ 173.74,156.92, 156.58, 144.14, 141.34, 136.49, 128.65, 128.29, 128.17, 

127.76 127.14, 125.18, 120.07, 77.36, 66.95, 66.62, 63.80, 52.66, 49.94, 49.24, 47.43, 

42.23, 41.70, 40.91, 36.49, 34.09, 29.83, 29.73, 26.36, 25.98, 25.81, 25.75, 25.22, 

25.08,18.35, 0.13 -5.38, -5.41 ESMS: 674.74[M+H]+ 

Synthesis of (Z)-6-(2,3-bis(tert-butoxycarbonyl)guanidino)hexanoic acid (47): To a 

solution of N-Caproic acid in MeOH at 0*C was added TEA slowly followed by addition 

of commercial diboc-trifyl-guanidine. The reaction proceeded overnight and was 
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monitored for disappearance of starting material (2:1 Hex: EtOAc). EtOAc was added 

and the mixture was then washed with 2M Sodium Bisphosphate. The organic layer was 

dried over Sat. sodium sulfate followed by column chromatography to afford pure N-

guanidinyl caproic acid (95%). 1H NMR (400 MHz, CD3OD) δ 3.34 (t, J = 7.1 Hz, 2H), 

2.29 (t, J = 7.4 Hz, 2H), 1.72 – 1.54 (m, 4H), 1.50 (s, 9H), 1.45 (s, 9H), 1.40 – 1.35 (m, 

2H). 13C NMR (101 MHz, CD3OD) δ 177.50, 164.55, 157.58, 154.23, 84.45, 80.36, 

49.85, 49.64, 49.50, 49.43, 49.28, 49.21, 49.07, 49.00, 48.79, 48.57, 48.36, 41.64, 

34.84, 29.86, 28.57, 28.22, 27.39, 25.72.ESMS: 174.3 [M+H-Boc]+ 

Synthesis of 48: To a solution of CBz amine (200 mg, 0.130mmol) in methanol was 

added Pd/C (5 mol %). The reaction proceeded under a balloon of hydrogen for and 

monitored ever 30 minutes by TLC (10% MeOH in DCM) until completion to avoid the 

slower Fmoc deprotection. Following filtration and vacuum concentration, flash 

chromatography (10% MeOH in DCM) yielded pure amine as a colorless oil (135 mg, 

85%). The free amine (80 mg, 0.15 mmol) was added immediately following addition of 

anhydrous DCM at 0*C to a solution of N-Guanidine Caproic Acid (85 mg, 0.22 mmol), 

DCC (45 mg, 0.22 mmol), and DMAP (3.8 mg, 0.03 mmol) The reaction proceeded for 

4hr until the starting material was consumed. The reaction proceeded at RT for 2hr until 

starting material was consumed whereas solvent was evaporated EtOAc was added 

and solid filtered followed by column chromatography (5% MeOH in DCM) to afford pure 

material as a colorless oil (110mg, 84%).1H NMR (400 MHz, CDCl3) 1H NMR (400 

MHz, CDCl3) δ 11.77 – 11.18 (m, 1H), 8.31 (d, J = 6.8 Hz, 1H), 7.76 (d, J = 6.8 Hz, 2H), 

7.68 – 7.55 (m, 2H), 7.47 – 7.30 (m, 4H), 6.38 – 6.15 (m, 2H), 4.47 – 4.33 (m, 2H), 4.05 

– 3.93 (m, 1H), 3.80 – 3.67 (m, 1H), 3.50 – 3.33 (m, 5H), 3.24 – 3.13 (m, 2H), 2.28 – 
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2.12 (m, 4H), 1.45-1.52 (m, 24H), 1.49 (s, 7H), 1.36 (s, 6H), 0.90 (s, 9H), 0.07 (s, 

6H).13C NMR (CDCl3, 100.52 MHz)  δ 174.17, 173.82, 156.63, 156.26,153.47, 144.17, 

141.45,127.79, 127.16, 125.21, 120.09, 110.17, 83.24, 79.42, 77.36, 68.13, 66.65, 

63.35, 51.51, 47.47, 40.90, 36.66, 36.58, 29.80, 28.95, 28.47, 28.23, 28.18, 26.63, 

26.44, 26.02, 25.41, 25.34, 18.38, 0.15, -5.26, -5.36. ESMS: 894.5 [M]+ 

Synthesis of 49: A solution of protected hydroxyl (100 mg, 0.11 mmol) in THF (3.4 mL) 

was added commercial 30% HF in pyridine (300 uL). The reaction was monitored to 

completion by TLC (10% MeOH in DCM) and after 2.5 hrs  saturated sodium 

bicarbonate was added followed by extraction into EtoAc. The organic layer was dried 

over saturated NaSO4 followed by column purification (10% MeOH in DCM) to afford 

pure hydroxyl as a colorless oil (74 mg, 85%). 1H NMR (400 MHz, CDCl3) δ 11.54-11.45 

(m, 1H), 8.34 – 8.29 (m, 1H), 7.76 (d,  J=7.5 Hz, 2H), 7.59 (d, J = 7.5 Hz, 2H), 7.44-7.29 

(m, 4H), 6.37 (d, J = 7.6 Hz, 1H), 6.25 (s, 1H), 5.08 – 4.84 (m, 1H), 4.40 (d, J = 6.9 Hz, 

2H), 4.21 (t, J = 6.7 Hz, 1H), 3.86 (s, 1H), 3.74 – 3.57 (m, 1H), 3.50 (d, J = 10.6 Hz, 2H), 

3.38 (q, J = 6.3 Hz, 2H), 3.32 – 3.14 (m, 3H), 2.25 – 2.17 (m, 4H), 1.52-1.55 (m, 4H) 

1.32-1.59 (M, 30H).13C NMR (CDCl3, 100.52 MHz) δ 173.48, 169.65, 169.08, 

163.70,156.28, 153.47, 144.11, 127.83, 127.18, 125.15, 120.13, 83.27, 79.46, 77.36, 

66.70, 61.82, 51.58 47.44, 40.88, 39.71, 36.50, 36.32, 31.09, 29.76, 28.85, 28.85, 

28.23, 26.48, 26.26, 25.40, 25.17, 0.15 ESMS: 781.4 [M+H]+ 

Synthesis of 50: To a solution of tetrazole (44 mg, .167 mmol) and hydroxyl (65 mg, 

.08 mmol) in anhydrous DCM was added drop-wise commercial Dibenzyl N,N-

Diisopropylphosphoramidite (56 uL, .166 mmol). Reaction was monitored by TLC (5% 

MeOH in DCM) and after 24 hr. the mixture was cooled to -40*C followed by the 
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addition of 5.5M TBUOOH (60 uL) . The reaction mixture was warmed slowly, 

concentrated, and purified via column chromatography (5% MeOH in DCM) to afford 

pure product (65 mg, 75%)1H NMR (400 MHz, CD3OD) δ 7.76 (d, J = 7.5 Hz, 2H), 7.61 

(d, J = 7.5 Hz, 2H), 7.40 – 7.21 (m, 14H), 5.03 (dd, J = 8.4, 1.7 Hz, 4H), 4.30 (d, J = 6.9 

Hz, 2H), 4.26 – 4.11 (m, 2H), 4.11 – 3.91 (m, 2H), 3.39 – 3.21 (m, 4H), 3.08 (t, J = 6.9 

Hz, 2H), 2.29 – 2.01 (m, 4H), 1.71 – 1.53 (m, 4H), 1.45-1.48 (m, 24H) 1.35 – 1.23 (m, 

6H).13C NMR (CD3OD, 100.52 MHz) δ 176.52, 176.02, 164.14, 158.78, 157.29, 

154.12, 145.31, 144.38, 142.54, 137.06, 137.04, 136.99, 136.98, 129.76, 129.69, 

129.22, 129.16, 129.15, 128.74, 128.51, 128.40, 128.11, 126.15, 120.91, 111.37 84.50, 

80.54, 70.93, 70.88, 68.28, 68.23, 67.53, 50.76, 50.68, 48.46, 41.70, 41.54,  40.48, 

36.92, 30.54, 29.74, 28.58, 28.22, 27.34, 26.53, 26.47. 31P NMR (CD3OD, 162 MHz) δ 

0.15 (1P) 

Synthesis of 52: To a solution of benzyl and Fmoc protected intermediate 50 (12 mg, 

0.011 mmol) in methanol was added 5 mol% Pd/C. The reaction was stirred overnight 

under a balloon of hydrogen gas. Following filtration of catalyst free phosphate ester 

and free amine was achieved in quantitative yield 7.35 mg, 0.011 mmol) as a colorless 

oil 51. To 51 (5 mg, .008 mmol) in 0.5M TEAB buffer was added NHS-Fluorophore in 

DMF in a total reaction volume of 300 uL. The mixture stirred overnight in the dark 

followed by removal of solvent under a stream of nitrogen gas. The crude mixture was 

purified by HPLC (30-80% 0.1% TFA in Methanol over 30 minutes product elutes at 43 

minutes) to yield Boc-protected fluorogenic compound (55% 3.8 mg). 1H NMR (400 

MHz, CD3OD) δ 7.44 (s, 1H), 7.02 (d, J= 4.0 Hz, 1H), 6.32 (d, J= 4.0Hz, 1H), 6.22 (s 

1H), 4.15-4.22 (m, 1H), 3.81-4.02 (m, 2H), 3.45-3.55 (m, 2H), 3.35-3.40 (m, 2 H), 3.14-
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3.22 (m, 4H), 2.61 (t, J= 7.6 Hz, 2H), 2.52 (s, 3H), 2.29 (s, 3H), 2.18-2.27 (m, 4H),1.30-

1.72 (m, 30H). 31P NMR (CD3OD, 162 MHz δ -.06 (1P). ESMS: 913.5 [M+H]+ ; 713.5 [M-

BOC+H]+ 

Synthesis of guanindine containing model system 53: Intermediate 52 (0.8 mg, 0.9 

µmol) was dissolved in dioxane and treated with 0.5 M HCl. The reaction proceeded 4 

hours followed by removal of solvent yielding a fully deprotected HCl Salt (0.5 mg, 84%) 

1H NMR (400 MHz, CD3OD) 1H NMR (400 MHz, CD3OD) δ 7.44 (s, 1H), 7.02 (d, J = 4.0 

Hz, 1H), 6.33 (d, J = 4.0 Hz, 1H), 6.22 (s, 1H), 4.23 – 4.12 (m, 1H), 3.81-4.02 (m, 2H), 

3.49 (s, 1H), 3.40 – 3.34 (m, 2H), 3.25 – 3.12 (m, 4H), 2.61 (t, J = 7.7 Hz, 2H), 2.52 (s, 

2H), 2.29 (s, 2H), 2.26 – 2.15 (m, 3H), 1.72-1.30 (m, 30H). NMR (CD3OD, 162 MHz δ -

.20 (1P). ESMS: 713.3 [M+H]+ 

Synthesis of (R)-(6-((3-((bis(benzyloxy)phosphoryl)oxy)-2-

heptanamidopropyl)amino)-6b-iosx(4o,h5e-xdyiml)ceathrobxaym-2a-

tenitrobenzyl) phosphate (54) : To an eppendorf tube charged with a stir bar and the 

bis(triethy- lammonium) salt of uncaged model compound 10 (0.7mg, 0.0008 mmol) was 

added MeOH (200 µL) followed by aq. HCl (1 M, 2.4 µL). To the stirring solution was 

added diazonium compound 2 (1.4 mg, 0.0064 mmol). The reaction mixture was stirred 

at room tem- perature for 10 min and evaporated to dryness. 31P NMR of the crude 

material showed incomplete reaction. To the same crude material was added MeOH 

(200 µL) followed by HCl (1 M, 3.0 µL). To the stirring solution was added diazonium 

compound 1 (1.4 mg, 0.0064 mmol). The reaction mixture was stirred for 10 minand the 

solvent was re- moved. 31P NMR of crude mixture showed complete consumption of 

the starting material. The reside was purified by column chromatog- raphy over silica gel 
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(4% MeOH in CH2Cl2) to provide 11 (0.5 mg, 59%) as red solid. 1H NMR (400 MHz, 

CD3OD): δ 7.63 (s, 2H), 7.34 (s, 1H), 7.04 (s, 2H), 6.94 (d, J = 3.9 Hz, 1H), 6.27 (d, J = 

4.1 Hz, 1H), 6.16 (s, 1H), 5.41 (d, J = 8.1 Hz, 4H), 4.16 (m, 3H), 3.87 (s, 12H), 3.38 (m, 

2H), 3.15 (m, 4H), 2.57 (t, J = 8.1 Hz, 2H), 2.46 (s, 3H), 2.24 (s, 3H), 2.16 (q, J = 7.0, 

14.0 Hz, 4H), 1.55 (m, 6H, 3 CH2), 1.28 (br. s, 8H), 0.86 (td, J = 6.5, 13.5 Hz, 3H). 

31PNMR (161.5 MHz, CD3OD): δ–1.88 (1P). ESMS: m/z 572.5 (M − 

C18H20N2O12P)+. 
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CHAPTER 4. INVESTIGATION OF CELLULAR PHOSPHOLIPID METABOLISM 
WITH FLUOURESCENT REPORTERS 

	
4.1	Introduction	
 

With a suite of fluorescent reporters in hand, shown in Figure 4.1 and described 

in Chapter 2 of this dissertation, as well as a successful delivery method for charged 

PIPs described in Chapter 3, we sought to confirm the capability of these reporters to 

undergo cellular metabolism to a variety of PIP metabolites. We chose to analyze 

cellular activity of DAGK using our BODIPY-DAG-C15 reporter as well as cellular 

activity of PI3K using BODIPY-PIP2-C15 in a variety of breast cancer cell lines due to 

the prevalence of mutations in multiple PIP modifying enzymes including PI3K and 

PTEN [5, 17, 37, 44, 129]. In previous studies using classical methods of detection 

including radiolabeled substrate, PI3K was stimulated under variety of conditions 

including insulin growth factor (IFG), EGF and N-formyl-met-leu-phe (fMLP). In these 

studies, a distinct difference in metabolic profiles, specifically PIP3 prodiction is 

observed with PIP3 capable of being resolved by TLC following short (<10 minutes) 

stimulation whereas limited to no detectable PIP3 is observed in nonstimulated samples 

[130]. Likewise, other lipid modifying enzymes including diacylglycerol kinase (DAGK) 

have also been shown to be important in anchorage independent growth of breast 

cancer cells [22, 61, 109, 131]. Hepatocyte growth factor (HGF) stimulation lead to an 

increase in production of PA via activation of DAGK in MDA-MB-231 cells as well as 

dose dependent DAGK stimulation by synthetic DAG and other lipid metabolites via 
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radiolabeled TLC analysis[109]. We chose to examine the metabolite distribution in 

multiple breast cancer cell lines seen in Figure 4.2A and posses mutations within the 

PI3K pathway highlighted in Figure 4.2B. MDA-MB-436 cells do not express tumor 

suppressor enzyme PTEN, which catalyzes the dephosphorylation of the 5-phosphate 

in PIP3. Alternatively, MDA-MB-453 cells possess the PI3K mutation H1047R, which 

leads to increased basal and stimulated activity of the enzyme through increased affinity 

for lipid binding [46]. These genetic changes should result in higher levels of PIP3 in 

MDA-MB-436 and MDA-MB-453 cells. We also chose to compare these 2 cell lines for 

their overall distribution of metabolites to better understand how the collective of 

metabolites is controlled in the various disease models and the effects of the pathway 

mutations on metabolite distribution. 

 

 

 

	
Figure 4.1 Suite of Fluorescent Reporters to Probe Various PIP 
Metabolic Pathways: A suite of fluorescent reporters with the sn-2 
and sn-3 chains held constant for separation by CE. The synthesis 
for these compounds is described in Chapter 2. 
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In this chapter, we describe the application of our suite of fluorescent-tagged 

PIPs and lipid metabolites for monitoring of cellular PIP metabolism first utilizing 

BODIPY-DAG-C15 to demonstrate the proof of principle. We then used BODIPY-PIP2-

C15 in complex with the CART systems for delivery, described in chapter 3, to monitor 

metabolite distribution following a variety of incubation times. We believe this method 

when coupled with TLC and fluorescent scanning and/or CE-LIF will be capable of 

providing a detailed profile of multiple PIPs simultaneously with the capability of 

monitoring changes due to pathway mutations, stimulation, or inhibition.  

 

4.2 Results and Discussion 
4.2.1 Concentration Dependent Production of PA using BODIPY-DAG-C15 

As a proof of concept, we first examined the conversion of BODIPY-DAG-C15 to 

its corresponding phosphorylated metabolite by DAGK, BODIPY-PA-C15. It has been 

A.	
Cell	Line	 PI3K	Pathway	Mutation	 Phenotypic	Result	

MDA-MB-436	 PTEN	(-/-)	 No	PTEN	Expression	

MDA-MB-453	 PI3K	(H1047R)	 Increased	Basal	and	
Stimulated	Activity	

	
B.	

	
Figure 4.2: Breast Cancer Cell Lines for PI3K Pathway Metabolic 
Analysis: A. Table of selected breast cancer cell lines, associated 
PI3K pathway mutation, and phenotype of the cells. B. Schematic 
showing locations and result of mutations within the PI3K Pathway.  
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demonstrated on various occasions that cellular PA production increases when 

incubated with increasing concentrations of DAG using radiolabeled substrate and TLC 

analysis [11, 21]. We sought to duplicate this result using our fluorescent BODIPY-

DAG-C15 reporter. Previously, we have demonstrated that BODIPY-DAG-C15 is cell 

permeable. HEK293-AD cells were thus incubated with 2, 10, 50, or 100 µM of 

BODIPY-DAG-C15 for 5 minutes which lead to optimal PA production as PA is quickly 

degraded with little remaining radiolabeled PA present after 15 minutes of incubation 

[11, 21]. Folch lipid extraction of slightly acidic chloroform:methanol was performed to 

isolate the fluorescent metabolites and subsequently analyzed by TLC [21, 59]. A 

stronger fluorescent signal consistent with the same Rf of synthesized BODIPY-PA-C15 

standard is observed when incubated with increasing concentrations of DAG as seen in 

Figure 4.3, consistent with previous reports using a di-C8 DAG substrate [11, 21]. 

 

	
Figure 4.3 Concentration Dependent Increase of PA Production 
with BODIPY-DAG-C15: HEK293AD cells were treated with 
increasing concentrations (2-100 µM) of BODIPY-DAG-C15 for 5 
minutes followed by lipid extraction and TLC analysis. A spot 
consistent with PA is produced in increasing intensity in a dose 
dependent manner. 
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This experiment highlighted the utility in using our fluorescent suite of molecules as both 

a reporter, in the case of DAG-C15, and a metabolic product in the form of PA. 

Likewise, it demonstrates that it is feasible to use our technology to monitor 

environmental changes within the cell. 

4.2.2 Delivery of BODIPY-PIP2-C15:CART Complex to Breast Cancer Cells 		

With the ultimate goal of monitoring PIP3 generation in breast cancer cells, we 

wanted to ensure that our previously explored method of delivery utilizing a CART: 

BODIPY-PIP2-C15 complex was also effective for delivery to breast cancer cell lines.  

MDA-MB-436 and 453 cells were incubated with CART:PIP2 complex with a final 

BODIPY-PIP2-C15 concentration of 500 nM. Cellular fluorescence was examined after 

of incubation for 1 and 18 hours, respectively. As seen in Figure 4.4 the CART system 

was capable at efficient and robust delivery of fluorescent reporter, with only 453 cells 

pictured.  
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4.2.3 Cellular Analysis of BODIPY-PIP2 Metabolites in MDA-MBA-436 Cells  

Following confirmation of cellular delivery into breast cancer cell lines, we sought 

to analyze the basal metabolic activity in MDA-MB-436 using both CARTs G7 and A11 

with BODIPY-PIP2-C15. Ideally we would be able to monitor basal metabolism with a 

distribution pattern of fluorescent metabolites that reflects endogenous metabolite 

distribution.  Because these cells lack PTEN expression, we would expect to see a 

buildup of PIP3 over time with the inability to metabolize the product back to PIP2.  Cells 

were treated with CART:PIP2 complex with a final BODIPY-PIP2-C15 concentration of 

500 nM. Following incubation for 3 and 12 hours cell pellets were collected and lipids 

were extracted for analysis. As shown in Figure 4.5, multiple metabolites were 

Figure 4.4. Delivery of BODIPY-PIP2-C15 into MDA-MB-453 cells 
with CARTs: MDA-MB-453 cells (200,000 cells) were plated into a 35 
mm dish and incubated at 37 oC with 5% CO2 for 24 h. The growth 
medium was replaced with serum free DMEM before the cells were 
treated with a 1:1 complex of BODIPY-PIP2-C15 and A11 or G7, or 
BODIPY-PIP2-C15 alone.  The final concentration of BODIPY-PIP2-
C15 was 500 nM. The cells were washed with DMEM twice before 
images were recorded with a confocal microscope. 



	101	

generated using both A11 and G7, with slightly different metabolite profiles. Fluorescent 

standards of BODIPY-DAG-C15, BODIPY-PA-C15 and BODIPY-PtdIns-C15, and 

enzymatically generated BODIPY-PI(4)P-C15 were used to identify metabolites present 

in the samples. Both samples lead to the generation of a high level of PtdIns with 

increasing concentration of PIP over time. TLC analysis cannot assign the identity of the 

PIP as two possible isomers, PI4P and PI5P, should have similar Rf values. We thought 

it is likely to be PI4P, because previous studies analyzing the effect of Wnt stimulation 

on PIP metabolism showed an increase in PIP2 production that was subsequently 

blocked by treating cells with siRNA targeting PI4K, indicating PI(4)P is a key 

intermediate in PIP2  production [9, 10]. These results closely represent endogenous 

PIP distribution with PtdIns being the most abundant fluorescent metabolite followed by 

PIP2 and the intermediate PIP suggesting our system was successful in monitoring 

multiple metabolite generation simultaneously while being distributed throughout the 

PIP metabolic pathway similarly to endogenous metabolites. Interestingly, the 2 CARTs 

also yielded different profiles of metabolites with the cells treated with A11 showing a 

large abundance of fluorescent PA whereas little was generated with the G7 delivery 

system. This could be related to the difference in uptake of the systems that was 

observed in fluorescence microscopy. This distribution of metabolites is remarkably 

similar to distribution of metabolites seen when doing long-term (>24 h) incubation with 

radiolabeled substrate [39, 66, 128]. 
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Despite this positive result, no quantifiable PIP3 was generated in this 

experiment. While we would expect to see increased accumulation of PIP3 due to the 

lack of PTEN, it is possible PIP3 could be terminated through SHIP metabolism 

generating PI(3,4)P2, which would comigrate with PI(4,5)P2 on TLC. Future experiments 

using a SHIP inhibitor should be performed to attempt to ‘trap’ any PIP3 produced over 

time as illustrated in Figure 4.6. 

	
Figure 4.5 Analysis of Fluorescent Metabolite 
Distribution in MDA-MB-436 Cells: Cells (6 million) were 
treated with 500 nM of BODIPY-PIP2-C15:CART as 
complexes as previously described for the indicated time 
points followed by lipid extraction of cell pellets. 
Metabolites were assigned using synthesized standards 
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4.2.4 Cellular Analysis of BODIPY-PIP2-C15 Metabolites in MDA-MB-453 Cells 
With the goal of monitoring PIP metabolism in patient samples that will have 

unique genetic profiles, we wanted to examine and compare the metabolism of our 

reporter in another breast cancer cell line MDA-MB-453. These cells posses a mutation 

in the P110a subunit of PI3K that renders the enzyme constitutively active and should 

result in an increase in PIP3 generation over time. Cells were treated with G7-

CART:PIP2 complex with a final BODIPY-PIP2-C15 concentration of 500 nM. Following 

incubation for 1 and 3 hours cell pellets were collected and lipids were extracted for 

analysis. We chose to do a shorter time course to achieve a higher concentration of 

cellular BODIPY-PIP2-C15 before it undergoes cellular distribution with the goal of 

monitoring production of PIP3. As with the 436 cells, no cellular PIP3 was observed with 

a similar distribution of PtdIns and PIP as seen in Figure 4.7. However, unlike the 436 

cells the most abundant fluorescent signal comes from PIP2 and not PtdIns suggesting 

differential metabolism of the reporter despite using the same delivery vehicle.  The high 

concentration of PIP2 could also be a result of the presence of active PTEN in MDA-MB-

	
Figure 4.6 Method to ‘Capture’ Fluorescent PIP3 Produced 
in MDA-MB-436 Cells: Treating PTEN deficient cells with a 
SHIP inhibitor over a long-time course incubation may allow for 
trapping of any PIP3 produced that is below the detectable limit 
in previous experiments. 
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453 cells that could diminish PIP3 back to PI(4,5)P2 despite the overactive PI3K.  This 

presence of PTEN could explain the difference in metabolite profiles between MDA-MB-

436 and 453 cells suggesting differential mechanisms to diminish total PIP3 produced.  

 

4.3 Conclusions and Future Directions 

 We have successfully demonstrated the capability of using a fluorescent reporter 

for analysis of various lipid metabolites. BODIPY-DAG-C15, which freely enters cells, 

was converted to the corresponding PA in a dose dependent fashion showing that 

indeed a fluorescent reporter is capable of monitoring changes in lipid metabolism. 

Further experiments need to be performed using a single low concentration of BODIPY-

DAG-C15 and various stimulation events. One such experiment that could verify the 

system against literate precedent would be the analysis of PA production using 

BODIPY-DAG-C15 and stimulating with the non-fluorescent di-C8-DAG, as this 

	
Figure 4.7 Analysis of Fluorescent Metabolite Distribution in 
MDA-MB-453 Cells: Cells (6 million) were treated with 500 nM 
of BODIPY-PIP2-C15:CART complexes as previously described 
for the indicated time points followed by lipid extraction. 
Metabolites were assigned using synthesized standards. 
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substrate has been used to stimulate DAGK activity as previously described in this 

chapter.  This will be more representative of a biological application where a small 

amount of fluorescent reporter would be used to monitor intracellular metabolism.  

DAGK has been widely studied in Jurkat cell lines, therefore we plan to apply this 

technology to analysis of PA production and metabolite distribution in a leukemia model 

system[6, 11, 21, 22, 59, 132].   

 We have also demonstrated the strategy for PIPs generating multiple metabolites 

using BODIPY-PIP2-C15. In combination with CARTs A11 and G7, we were successful 

in delivering BODIPY-PIP2-C15 to multiple breast cancer cell lines harboring separate 

and distinct PI3K pathway mutations.  Upon delivery, BODIPY-PIP2-C15 underwent 

cellular metabolism to generate a variety of PIP metabolites that were confirmed using 

synthesized standards. An incubation time of 3 and 12 hours with BODIPY-PIP2-C15 in 

MDA-MB-436 cells revealed a distribution of metabolites consistent with the 

endogenous ratios of PIPs [20, 39, 65, 66, 68]. Further, this profile was consistent with 

previously reported basal PIP analysis using radiolabeled inositol and ATP over a 

similar time course[66, 133]. Unfortunately we were unable to obtain measurable 

generation of PIP3 by TLC. Because PIP3 is a potent secondary activator, it is quickly 

generated and degraded by multiple mechanisms; therefore it is likely any PIP3 is below 

our measurable range[16, 17, 25]. Comparison of PIP3 production  using mass 

spectrometry following fMLP stimulation in MCF10A cells showed that in many cases 

less than 1% of a total PIP2 population is converted to PIP3[64, 67] . Likewise, there has 

been more success in measuring PIP3 production using radiolabeled substrates under 

stimulatory conditions such as EGF with maximal PIP3 production at 5 minutes following 



	106	

stimulation in HL60 cells. Therefore it is probable that any PIP3 produced in 

unstimulated cells is below the level of detection. Future experiments will be performed 

using cell lines such as MCF10A or HL60 under a variety of stimulatory conditions, 

including fMLP and EGF, which have previously been demonstrated to produce 

detectable levels of PIP3 in bulk cell analysis by TLC and mass spectrometry as well as 

single-cell analysis by flow cytometry [7, 67, 133]. Such an experiment is important to 

verify we are capable of measuring changes to cellular metabolism following stimulation 

events using BODIPY-PIP2-C15. Likewise, treatment of MDA-MB-436 cells with a SHIP 

inhibitor to ‘trap’ any PIP3 produced would also be a useful experiment in examining the 

utility of our system following cellular perturbation using pharmacological agents.  

 In a shorter incubation of BODIPY-PIP2-C15 using carrier G7 in MDA-MB-453 

cells harboring the activating H1047R PI3K mutation we saw the major metabolite 

present to be the delivered reporter with fluorescent PtdIns present as well. As before 

we were unable to detect fluorescent PIP3 in the mixture, which could be a result of 

numerous previously described mechanisms. However, because the system in this time 

shows a less complex metabolic profile these conditions can be utilized to monitor 

future studies performed following receptor stimulation. This will give the greatest 

opportunity to both analyze production of PIP3 while also allowing comparison of the 

distribution of various metabolites following receptor stimulation. Because of the shorter 

incubation time required with CART G7 it will be used exclusively in future experiments. 

Studies in previously mentioned cell lines will be performed following a variety of 

incubation times prior to stimulation to better understand the optimal range for 
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monitoring PIP3 production. It is also possible various metabolic pathways will require 

unique incubation times and metabolite distribution for effective study.  

 Another future direction for this work is the modification of the reporter to serve 

as a more efficient substrate toward PIP modifying enzymes. While we have 

demonstrated here and in chapter 2 that a PIP2 reporter with a C15 alkyl chain is 

efficiently metabolized to a variety of metabolites it still posses less hydrophobicity than 

endogenous PIP2 which contains stearic and arachidonic acid on the DAG moiety. This 

could explain the lack of PIP3 production as BODIPY-PIP2-C15 is competing against 

endogenous substrate to be metabolized. One such modification would be the addition 

of more hydrophobic side chain at the sn-2 position and comparing the efficacy of the 

reporters in a cellular based assay. This could also be beneficial in achieving PM 

localization as a majority of the delivered BODIPY-PIP2-C15 appears in the cytosol.  

 Another structural change to the reporter would be the removal of the fluorophore 

for the addition of a terminal alkyne that could be tagged with a fluorophore using ‘click-

chemistry.’ Such an approach has been shown effective on tri-functional DAG and PA 

reporters for visualization[98, 134]. We have synthesized an alkyne containing PtdIns 

(AK-PtdIns-C15; Figure 4.9A) by replacing the fluorophore with a terminal alkyne at 

the sn-1 position using an NHS ester as previously described. We have confirmed 

generation of fluorescent product via ‘click chemistry’ as shown in Figure 4.9B. Getting 

rid of the bulky and exogenous fluorophore will further allow for reporters to better mimic 

endogenous substrate. Likewise, modifications can be made to both alkyl chains on 

DAG to contain a terminal alkyne at either position. Such a method could increase the 

ability of our reporters to be metabolized in the cell. Future experiments comparing 
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alkyne containing reporters and fluorescent reporters may give further valuable insight 

into the structural requirement for effective metabolic measurement.  

 

Another potential direction for this platform is the use of dual fluorophores with unique 

excitation and emission wavelengths that could be used to tag multiple substrates. For 

instance PIP2 tagged with BODIPY which is excited and detected using a 488 nm blue 

A.	

	
B.	

	
Figure 4.8 Structure of AK-PtdIns-C15 and Fluorophore 
Addition via ‘Click-Chemistry’: A. Structure of AK-PtdIns-C15 
which when reacted with Fl-Azide under ‘click’ chemistry 
conditions generates a fluorescent product. B.  TLC analysis of 
‘click-chemistry’ reaction, a new fluorescent spot was generated 
only in the sample containing both AK-PtdIns-C15 and catalytic 
CuSO4 indicating successful generation of the fluorescent 
metabolite.  Reaction was performed in water with 2 mM CuSO4, 2 
mM sodium ascorbate, and 2 mM THPTA for 30 minutes. 
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laser line and PtdIns tagged with TAMRA which is excited using a 523 nm green laser 

line,  could be delivered to cells and then the specific pools of metabolites could be 

monitored using CE-LIF and analyzing separately for BODIPY and TAMRA metabolites 

through excitation with their unique laser lines [62, 76, 77] .  

 Overall, this work has demonstrated the feasibility of using PIP reporters for 

analysis of cellular metabolic activity. Numerous chemical biology approaches can 

further be applied to this technique to increase the scope of biological processes that 

can be examined, with long-term aspirations of diagnostic application. 

4.4 Experimental  
All reagents were obtained from commercial sources and were used without further 

purification. 

4.4.1 Cell Culture 
HEK293AD and MDA-MB-453 cells were cultured in DMEM with 10% FBS and 1% 

antibiotic-antimycotic. MDA-MB-436 cells were cultured in DMEM with 10% FBS, 10 

mg/mL insulin, 16 mg/mL glutathione, and 1% antibiotic-antimycotic. All cells were 

grown at 37 oC with 5% CO2, and split when the confluency reached approximately 

90%. 

4.4.2 Delivery of BODIPY-PIP2-C15 to Breast Cancer Cells 
Cells as indicated (200,000 cells) were plated into a 35 mm dish in growth medium and 

cultured at 37 oC with 5% CO2 for 24 h. The medium was replaced with serum free 

DMEM before the BODIPY-PIP2-C15/CART complex was added. To form the complex, 

BODIPY-PIP2-C15 (1.6 mL, 1.0 mM stock in H2O) was added to acidified PBS (pH 5.5, 

47.5 mL). The CART (A11 or G7, 0.6 mL) was subsequently added and the components 
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were gently mixed through pipetting. After 1 min, the complex was added to the medium 

and incubated with the cells for indicated time before analysis was carried out. 

4.4.3 Extraction of Lipids from Cell Pellet 
150 µL of 40:20:1 (v:v:v) Chloroform:Methanol:HCl was added to the cell pellet and left 

at room temperature for 10 minutes. 50 µL of CHCl3 and 50 µL of water were added and 

the mixture vortexed heavily for 3 minutes. The mixture was then centrifuged at 4 oC at 

3200 RPM for 8 minutes resulting in phase separation. The bottom layer was collected, 

dried under a stream of N2 and resuspended in 30 µL of 1:1 CHCl3:MeOH (v:v) for TLC 

analysis.  

4.4.4 TLC Analysis of Lipid Metabolites 
TLC plates (Merck, Silica Gel-60) were pre-treated with a solution of 1.2% potassium 

oxalate and 1.2 mM EGTA in MeOH/water (v:v = 2:3) and heated at 110 °C for 20 

minutes before use. Reaction mixture was diluted in CHCl3/ MeOH (v:v = 1:1) and 

spotted on a TLC plate directly. The TLC plate was then developed in 

CHCl3:Acetone:MeOH:AcOH:water (v:v:v:v:v = 80:30:26:24:14) or 

CHCl3:Hexane:Metahnol:Acetic Acid (v:v:v:v= 50:30:10:5) and scanned on a Typhoon 

9400 Variable Mode Imager (lex/lem = 488 nm/520 nm). The fluorescence intensity of 

various spots on the TLC plate was quantified with ImageQuant software (V.5.0) 
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 Appendix 

Appendix A CMC Determination of Fluorescent PIP2 Analogs 
 
 

 
Appendix B Kinetic Analysis of Fluorescent PIP2 Analogs 
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Appendix C 1H NMR Spectra (CDCl3)  of compound 5D is an example of fully 
protected intermediate in PIP2 synthesis 
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Appendix D 13C NMR Spectra (CDCl3) of compound 5D is an example of fully 
protected intermediate in PIP2 synthesis 
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Appendix E 31P NMR Spectra (CDCl3) of compound 5D is an example of fully 
protected intermediate in PIP2 synthesis 
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Appendix F  1H NMR (CD3OD) of PIP2-C15 is an example of a final fluorescent PIP2 
Analog 
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Appendix G 31P NMR (CD3OD) of PIP2-C15 is an example of a final fluorescent PIP2 
Analog 
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Appendix H HRMS analysis of PIP2-C15 is an example of a final PIP2 analog 
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Appendix I 1H NMR (CD3OD) of BODIPY-PtdIns-C15  

 
Appendix J 31P NMR  Spectra (CD3OD) of BODIPY-PtdIns-C15  
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Chemical Formula: C45H73BF2N3O14P 
Exact Mass: 959.49 
[M+H] Predicted: 960.49 
M+H Calculated: 960. 96 
 

Appendix K HRMS of BODIPY-PtdIns-C15 
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Appendix J 1H NMR Spectra (CDCl3) of BODIPY-DAG-C15 

 
Appendix J 13C NMR spectra of BODIPY-DAG-C15 
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Appendix K 1H NMR Spectra (CD3OD) of Compound 36 
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Appendix L 31P NMR Spectra (CD3OD) of compound 36 

 
Appendix M 13C NMR spectra (CD3OD) of Compound 36 
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Appendix N 1H NMR Spectra (CD3OD) of compound 53 

 
Appendix O 31P NMR spectra (CD3OD) of compound 53 

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0
f1	(ppm)

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500005_083_long_PROTON_001

A	(t)
2.66

B	(t)
2.18

C	(t)
2.24

E	(dd)
4.18

F	(m)
3.98

G	(m)
3.15

D	(m)
6.62

H	(m)
7.61

I	(m)
1.60

J	(m)
1.40

K	(s)
2.40

L	(s)
2.56

M	(m)
3.65

N	(m)
3.51

O	(m)
3.40

3.
87

5.
76

2.
01

2.
07

2.
82

2.
95

2.
00

5.
63

1.
07

1.
60

1.
02

1.
78

1.
21

0.
99

0.
94

1.
32

1.
33

1.
37

1.
39

1.
41

1.
43

1.
45

1.
55

1.
56

1.
57

1.
57

1.
59

1.
61

1.
62

1.
63

1.
64

1.
65

2.
16

2.
18

2.
20

2.
22

2.
24

2.
24

2.
26

2.
40

2.
56

2.
64

2.
66

2.
68

3.
12

3.
13

3.
13

3.
14

3.
15

3.
15

3.
17

3.
19

3.
38

3.
39

3.
41

3.
48

3.
49

3.
50

3.
51

3.
52

3.
52

3.
54

3.
58

3.
64

3.
65

3.
65

3.
66

3.
66

3.
97

3.
98

3.
99

3.
99

4.
00

6.
46

7.
61

-35-30-25-20-15-10-5051015202530354045505560
f1	(ppm)

-40

-20

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

360

380

400005_083_long_PHOSPHORUS_001

-0
.2
0



	124	

 
Appendix P 1H NMR spectra (CDCl3) of BODIPY-PA-C15 

 
Appendix Q 31P NMR Spectra (CDCl3) of BODIPY-PA-C15 
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Appendix R 1H NMR spectra (CD3OD) of BODIPY-PIP2-C15 
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Appendix S 31P NMR spectra (CD3OD) of BODIPY-PIP2-C15 
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