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ABSTRACT 
RANDAL T. COLE: Design and Implementation of a Fluid-Mechanical Dynamic Afterload 

for Use in an Isolated Heart Apparatus 
(Under the direction of Carol L. Lucas and Timothy A. Johnson) 

 
    An isolated heart attached to a fluid-mechanical impedance (afterload) provides a method 

for study of myocardial processes and pressure and flow mechanics within the heart.  

Afterloads currently available allow various impedance parameter settings, but they are not 

automatically or dynamically controlled.  A dynamically controlled afterload was constructed 

and its suitability tested for implementation with an isolated heart apparatus. 

    Initial work was in development of a cardiovascular model to reveal trends for aortic 

pressure changes with afterload parameter adjustments.  The LabVIEWTM model enables 

simulations with open-loop windkessel-type impedances and simulations with a closed-loop 

circulatory model.  Cataloged trends were used to guide the dynamic afterload controls, and 

the open-loop impedances provided methods for modeling the fluid-mechanical system. 

    Following this work, a systems analysis tool was developed in LabVIEWTM and Matlab® 

to enable characterization of the fluid-mechanical afterload.  The program contains time-

domain and spectral analyses that incorporate equal variance algorithms for the correlation 

analyses and averaging methods for noise reduction in the spectral analyses for stationary 

signals.  Auto- and cross-spectral analyses were used to generate system impedance spectra 

from dynamic afterload simulations. 

    The culmination of this project was construction of a fluid-mechanical dynamic afterload.  

The dynamic nature of the afterload involves controlled, automatic adjustment of mechanical 
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resistance, compliance and volume elements.  These adjustments in afterload cause input 

pulsatile pressure to match the mean and range of a reference pressure.  Simulations were 

performed with a pulsatile pressure pump for ten reference pressures with physiologically 

realistic mean and range values.  The dynamic afterload constrained input pressures to within 

± 5% of the reference values and typically settled to the targeted values in 45 – 50 cycles.  

Impedance spectra from the simulations provided consistent and physiologically realistic 

estimates of afterload parameters fitted to a four-element windkessel-type impedance.  

Effects of changing impedance on the mean, range and stroke volume followed anticipated 

trends.  These tests demonstrate that the dynamic afterload exhibits the qualities necessary 

for implementation with an isolated heart apparatus.  Furthermore, this system will enable 

studies both of transient behavior in the isolated heart with changing afterload and of 

controlled pressure characteristics from a changing input pressure source. 
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CHAPTER I 

INTRODUCTION 

 

Brief History of Cardiovascular Modeling and the Isolated Working Heart Model 

    In the second century AD, Galenos of Pergamon, being influenced by Erasistratos, 

proposed a blood transporting system in which the heart received at least part of the 

circulating blood.  However, it was not until 1628 that William Harvey put forth the heart as 

the central pump of a closed circulatory system.1, 2  Nearly one hundred years later, Stephen 

Hales observed the fire engines of his day, which employed a chamber of air to cushion the 

bolus input of water and produce a steady outflow.2  Hales likened this air cushion to the 

effect of the arterial system in producing steady flow at the tissue level from the pulsating 

heart pump.  In addition, Hales pioneered the concept of peripheral resistance in tiny blood 

vessels.3  Many years passed with Hales work going largely untapped; nevertheless, the 

middle to latter part of the nineteenth century saw an emergence of education for the middle 

class in Germany and other parts of Europe.  An emphasis on research, teaching and patient 

care was prominent in Germany and many medical universities in the United States and 

Canada were later transformed according to this model.4 

    Groups of young and energetic scientists in Europe and America were working in 

numerous areas, including physiology, and a partial list of contemporaries provides insight 

into the significance of the advances that were soon to come.  Among the scientists of that 

era were Adolf Fick, Otto Frank, Ernest Starling, Willem Einthoven, W. Conrad Röntgen, 



and Louis Pasteur.4  Cardiovascular research was a major area of interest, as the heart’s 

function was still poorly understood.  The ability to isolate and maintain a beating heart 

outside the body was an important first step to better understanding the heart’s function.  

While working in Carl Ludwig’s Leipzig Physiological Institute, Elias Cyon developed a 

method for isolating the frog heart.  Future modifications of this model, made by Ludwig, 

enabled studies that showed such important phenomena as the absolute refractory period, the 

all-or-none-law and the atrial origin of cardiac automaticity.5  The frog’s heart was an ideal 

candidate for isolation due to its simple physiology (lack of coronary circulation and only a 

single ventricle) and its exchange of gases by diffusion.  Additional steps would be needed to 

isolate a mammalian heart.  Henry Newell Martin, who worked at Johns Hopkins, initiated 

this process in the 1880’s with his heart-lung preparation of feline and canine hearts.  This 

preparation maintained only the coronary circulation as the systemic load, but allowed 

independent alteration of preload and afterload for the left ventricle.5  Oscar Langendorff, in 

1895, introduced a version of this isolated heart setup by which he could perfuse the heart 

and keep it alive for several hours.  Langendorff’s system enabled more precise control over 

retrograde perfusion pressure and an enhanced kymograph for improved recording of 

ventricular shortening during contraction.  Langendorff’s ability to arrest and restart the heart 

gave him opportunity to elucidate the roles of vagus stimulation, temperature, electrical 

stimulation and the coronary circulation in regulating heart rate and viability.5  His method 

for maintaining the isolated heart was to perfuse, in retrograde fashion, the coronary 

circulation that feeds the myocardium.  This was accomplished by tying the aorta to a 

pressured tube containing the nutrient media.  When the media is injected, the aortic valve 

closes, and the media has nowhere to go except through the coronary circulation. 
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Figure 1.1  Langendorff’s 1895 Isolated Heart Setup.  From Langendorff. 6   With kind 
 permission of Springer Science and Business Media. 
 
    Several of Langendorff’s original observations are as follows: blood leaving the heart is 

deoxygenated and dark, coronary perfusion enables stable cyclic contractile functioning of 

the heart, vagus stimulation slows the heart, a decrease in temperature slows the heart, 

fibrillation can be caused by electrical stimulation, lack of coronary blood flow results in loss 

of myocardial contraction, subsequent restoration of coronary blood flow results in a return 

of cardiac contraction.4  The isolated heart setup has numerous experimental advantages; 

however, it excludes several important factors, such as the effects of preload and afterload on 

the ability of the ventricle to contract (contractility), and a measure of the heart’s ability to 

perform work.  Other scientists would soon recognize the importance of these factors in 

cardiac function. 
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    In the late nineteenth and early twentieth century, German physiologist Otto Frank 

expanded the neglected work of Stephen Hale.  When Hale’s writings were translated from 

English to German, the air cushion Hale used to describe the buffering within the fire engines 

became an air kettle or windkessel.  Frank developed this buffering effect into the 

Windkessel theory.2  In its simplest form, the Windkessel theory considers the impedance of 

the systemic circulation (afterload) against which the heart pumps to be comprised of a 

lumped compliance element (cushion of air) and a lumped resistance.3  Frank’s research with 

the isolated frog heart enabled him to recognize that the amount of ventricular filling and the 

downstream load against which the ventricle pumps both affect the contractility of the 

ventricle.  Ernest Starling later expanded this view in a statement of the Frank-Starling law of 

the heart, which says, “within physiological limits, the larger the volume of the heart, the 

greater are the energy of its contraction and the amount of chemical change at each 

contraction.” 1  The energy expended by the heart during each contraction is the work 

performed by the heart, and this heart work was further characterized in terms of stroke 

volume and cardiac output by Guyton and others in the mid twentieth century.1 

    Both the cardiovascular model based on the Windkessel theory and the isolated 

mammalian heart system were employed by scientists in the early and mid 1900’s to greatly 

enhance the understanding of cardiovascular phenomena.  During this time, Frank realized 

what later became a major criticism of the Windkessel theory of cardiac afterload, namely, its 

inability to rationally account for wave propagation and reflection.2  In the 1950’s and 60’s, 

Taylor and McDonald modified the arterial model according to transmission line theory and 

demonstrated the ability to analyze the impedance of the afterload in the frequency domain.  

These models began to account for such phenomena as input frequency, fluid inertance, 
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variable viscosity, wave attenuation and reflection sites.3  In a similar manner, researchers 

also recognized the shortcomings of the isolated heart system.  The understanding of 

chemical and physiological influences on ventricular work elucidated the need for a working 

heart model to perform certain types of studies.  In a working heart setup, the blood, or 

nutrient media is actually cycled through the atrium and ventricle, as opposed to the empty 

ventricle of the Langendorff method.  The heart performs work by ejecting the blood volume 

against the afterload (opposing pressure) presented at the aortic valve.  One of the earliest 

references of a working heart model is from Schreiber et al.7 as they studied the potassium 

exchange mechanism in the heart.  Schreiber understood that the ventricular load affected 

this exchange mechanism; thus, a working version of the isolated heart was developed for 

their study.  Neely and Morgan et al.8 were also constructing their own version of an isolated 

working heart to study oxygen consumption. Their apparatus was simple but elegant (see 

Figure 1.2), and modifications of this device are still employed today. 
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Figure 1.2  Isolated Working Heart Setup.  From Neely and Morgan et al. 8  Used with 
permission from The American Physiological Society. 
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Several groups were making improvements on both the isolated heart system and the in vitro 

vascular models, and these advancements would continue at a faster pace over the next 

several decades. 

    With the advent of the analog computer in the 1960’s, repetitive solutions to large sets of 

differential equations became feasible.  This allowed scientists such as Noordergraaf and 

Rideout 9, 10 to model cardiovascular dynamics more completely.  Frequency analysis of 

vascular impedance provided a method for testing additional afterload components in 

electrical and hydrodynamic models.  Soon, these analog computer models led to mechanical 

afterloads (Westerhof et al.11) that enabled control of the main resistance and compliance 

elements.  These mechanical loads, when coupled with a working heart, permitted 

manipulation of afterload in such a manner that realistic aortic pressure (AOP) and aortic 

flow (AOF) were produced.  With continuing advancement in computer technology 

(integrated circuits and the digital computer) research groups such as Suga and Sagawa et al. 

12-15 and Westerhof et al.16 were able to expand control of the working heart and mechanical 

afterload system.  The effects of afterload manipulations on the end-systolic pressure-volume 

relationship (ESPVR) of the ventricle and AOP/AOF were interrogated.  Furthermore, digital 

computer models were increasing in complexity, and these models allowed rapid simulations 

with a wide variety of heart and systemic and pulmonary vascular parameters.17, 18 

 

Current Computer and Working Heart Models 

    From the early 1990’s to present, computing power and control systems using 

microcontrollers and virtual control circuits have greatly advanced.  Products of these 

innovations were computer models incorporating neural feedback, mechanical flow 
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simulators, mechanical ventricles, more sophisticated afterloads, enhanced data collection 

and control methods, and combinations of the above.  Computer modelers, such as Ursino,19, 

20 Olansen,21 Chung,22 and Davis and Gore,23 developed models that allow manipulation of 

extensive parameters related to ventricular function, coronary circulation, systemic load and 

neural feedback.  In 1991, Holdsworth et al.24 published an article describing their positive 

displacement pump for simulation of physiological flow.  A need for controlled pumps to 

simulate physiologic input led to the development of mechanical ventricles. 25-28  Coupling 

these substitute ventricles with mechanized afterloads provided more extensive experimental 

platforms for valve testing and flow description.29-32  One such model is shown in Figure 1.3 

from Gao et al. 

 

Figure 1.3  Mechanical Afterload with Mechanical Ventricle.  From Gao et al. 32  With 
kind permission of Springer Science and Business Media. 
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    Working heart models are available commercially from ADInstruments and Radnoti Glass 

Technology Inc., http://www.adinstruments.com/applications/ and QuantaMetrics 

http://quantametrics.com/ and Harvard Apparatus http://www.harvardapparatus.com/.  In 

addition, a porcine adaptation of the working heart setup was developed by Chinchoy et al.33 

http://www.visibleheart.com/background.html.  Each of these experimental systems enables 

researchers to have a real-time view of ventricular behavior under a variety of afterload 

conditions. 

 

Inspiration for My Current Work 

    Mechanical afterloads constructed by researchers such as Neely and Westerhof 8, 11 can be 

readily constructed but have few if any dynamic qualities for automatic adjustment of 

afterload parameters.  Fisher et al. 34 demonstrated dynamic resistance control using a three-

element windkessel-type afterload based on the work of Westerhof et al. 11  Though this 

control was used to maintain a desired mean pressure, the control did not extend to the 

compliance element.  Current, commercially available working heart laboratory models also 

have their advantages and disadvantages.  The working swine heart model introduced by 

Chinchoy et al.33 is applicable for a working heart setup with both ventricles active, but this 

apparatus does not enable rapid, computer-controlled adjustment of afterload parameters.  

The working heart apparatus from ADInstruments and Radnoti Glass Technology Inc. 

provides methods for measurement of numerous parameters, such as AOP, AOF, resistance, 

compliance, and ECG.  However, this device does not allow computer controlled afterload 

adjustments.  QuantaMetrics’ version of the working heart, which draws on a previous 

version by Neely et al.8, allows afterload adjustments; however, their manipulations are not 
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computer controlled or dynamic.  The working heart setup by Harvard Apparatus provides 

more individual control of afterload parameters, but this control is not implemented in a 

dynamic fashion.  For researchers with a Langendorff apparatus already in place, a simple, 

attachable automatically adjustable afterload is desirable to transform the Langendorff non-

working heart into a working heart mode.  This afterload would ideally be controlled by 

widely available hardware and software, providing means for data collection and offline 

analysis. 

    Other considerations for a computer controlled afterload stem from numerous studies 

showing that arterial impedance changes alter the AOP and AOF waveforms, and these 

alterations are characteristic of certain physiological and pathophysiological conditions.  

Elzinga and Westerhof 35 demonstrated that isolated changes in resistance and compliance 

elements have a direct affect on the shape of the AOP and AOF waveforms.  Milnor 36 noted 

that, not only is the arterial impedance spectrum altered by changes in afterload, but the 

characteristics of the coupled left ventricle also affect the final AOP and AOF waveforms.  

Modifications in ESPVR with afterload, heart rate and contractility changes have been 

published in a number of articles by Suga, Sagawa et al.14, 37-39  Afterload parameter values 

and trends are available for several physiological conditions, including normal state, 40, 41 

heart failure, 42, 43 exercise, 44 hypertension, 43 and many others.  These studies suggest that a 

given physical state can typically be characterized by directional arterial impedance changes.  

Such changes will alter the AOP and AOF waveforms in a manner that is dependent on the 

properties of the coupled ventricle, including heart rate and contractility.  A computer-

controlled afterload must be able to adjust impedance values to match at least the major 

characteristics of various physiological and pathophysiological states.  In most published 
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studies where physiological changes with afterload are investigated, impedance values are 

typically applied in fractional steps of some standard resistance or compliance value, for 

example ¼, ½, or 1 ½  times the standard.  These adjustments reveal AOP, AOF and 

ventricular behavioral trends with varying afterload; however, the manipulations are crude 

and not representative of the continuous changes going on within the body.  An afterload, 

designed to adjust dynamically (beat-to-beat), would provide a way to investigate transients 

of physiological behavior during afterload adjustments.  Guidance for the dynamic 

adjustments could be derived from a control system that minimizes the error between a 

reference pressure (e.g. an AOP waveform indicative of some physiological condition) and 

the measured pulsatile input pressure.  Afterload manipulations provide the ability to alter at 

least the major characteristics of an input pressure waveform, and certain of these waveform 

characteristics can be indicative of normo- or pathophysiological states.  This suggests that 

the ability to match the characteristics of a reference pressure waveform using dynamically 

guided afterload adjustments might provide a method for imposing these normal or altered 

physiological states on the working heart. 

 

Hypothesis 

    A dynamically adjustable afterload provides a physical setup in which afterload 

parameters can be automatically adjusted to cause a pulsatile pressure input to match 

reference pressure characteristics.  Furthermore, a dynamic afterload constructed to provide 

impedance values and pulsatile pressure in a physiologic range is suitable for implementation 

with an isolated heart apparatus. 
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Specific Aims 

    The overall goal of my research was to construct a computer controlled, dynamically 

adjustable afterload that was suitable for implementation with an isolated heart apparatus.  

Certain steps were necessary before the construction of the afterload.  The initial preliminary 

step was the development of a model of the left heart and systemic afterload to demonstrate 

relevant pressures and flows within the main circulatory path as influenced by impedance 

changes.  This model would enable intelligent changes in afterload parameters and 

manipulation of AOP and AOF waveform shapes within the model to imitate normal or 

diseased states.  Such a model was programmed in LabVIEWTM and was published in the 

November 2005 issue of Annals of Biomedical Engineering. 45  This paper comprises Chapter 

2.  The final preliminary step was to provide a method for data collection and analysis for 

afterload testing.  A LabVIEWTM data collection and analysis station was programmed for 

this requirement.  This program permits collection and analysis of simulation data generated 

from the dynamic afterload setup, providing a method for testing the impedance of the 

designed afterload.  Chapter 3 discusses this data collection and analysis station. 

    Once the preliminary steps were completed, a dynamic afterload was constructed and 

tested.  This device has computer-controlled afterload parameters for resistance, compliance 

and volume.  A LabVIEWTM control program drives impedance changes (based on previous 

model guidelines) to reduce the error between a reference pressure and measured pressure.  

The data collection and analysis station enabled testing of the physical system’s functionality 

based on its pressure/flow outputs with a sinusoidal pump input.  The dynamic afterload was 

modeled using an electrical analog windkessel-type model from our cardiovascular computer 

model (Chapter 2).  Design and testing of the afterload is detailed in Chapter 4. 
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CHAPTER II 
 

A LABVIEWTM MODEL INCORPORATING AN OPEN-LOOP ARTERIAL 
IMPEDANCE AND A CLOSED-LOOP CIRCULATORY SYSTEM*

 
 

    While numerous computer models exist for the circulatory system, many are limited in 

scope, contain unwanted features or incorporate complex components specific to unique 

experimental situations.  Our purpose was to develop a basic, yet multifaceted, computer 

model of the left heart and systemic circulation in LabVIEW™ having universal appeal 

without sacrificing crucial physiologic features.  This computer model would be used to 

guide impedance parameter adjustments in the dynamic afterload we planned to construct.  

The program we developed employs windkessel-type impedance models in several open-loop 

configurations and a closed-loop model coupling a lumped impedance and ventricular 

pressure source.  The open-loop impedance models demonstrate afterload effects on arbitrary 

aortic pressure/flow inputs.  The closed-loop model catalogs the major circulatory waveforms 

with changes in afterload, preload, and left heart properties.  Our model provides an avenue 

for expanding the use of the ventricular equations through closed-loop coupling that includes 

a basic coronary circuit.  Tested values used for the afterload components and the effects of 

afterload parameter changes on various waveforms are consistent with published data.  We 

conclude that this model offers the ability to alter several circulatory factors and digitally 

                                                 
* Original article published in Annals of Biomedical Engineering.  
45. Cole, R. T., C. L. Lucas, W. E. Cascio and T. A. Johnson. A LabVIEW(TM) model incorporating an 
open-loop arterial impedance and a closed-loop circulatory system. Ann. Biomed. Eng. 33(11):1555-1573, 2005.  
Reprinted with permission of the authors, and with kind permission of Springer Science and Business Media. 



catalog the most salient features of the pressure/flow waveforms employing a user-friendly 

platform.  This establishes the model as a method whereby we can test the pressure and flow 

waveforms generated by our dynamic afterload and model the physical system’s overall 

characteristics. 

 

Introduction 

    A complex model is required to adequately convey many of the detailed hemodynamics 

inherent in the systemic circulation.  Several experienced modelers have assembled multipart 

branching structures, such as tapered tube models and transmission line models, to capture 

many of the circulatory system’s intricacies.17, 46, 47  The consequences of an increasingly 

complex model are amplified computation time and a large number of adjustable parameters, 

both of which can be discouraging to novices in the field of cardiovascular modeling or those 

who have a more generalized need to investigate cardiovascular system dynamics.  In 

contrast, the Windkessel model, developed by Otto Frank, has inspired numerous 

representations of the systemic circulation that condense the impedance characteristics of 

many circulatory elements into a much simpler configuration.2, 48  These circulatory models 

were mainly in the form of hydrodynamic systems and electrical analogs that can now be 

numerically simulated using computers. 

    While lumped-parameter models of the circulatory system do not sufficiently portray more 

complex features of the circulatory impedance (e.g., wave propagation and reflection), open-

loop versions of these simplified models do provide a way to observe the major aortic 

waveform characteristics in response to afterload changes.3, 17, 49-51  With open-loop models, 

an isolated impedance representing the arterial system acts on a given input of either pressure 
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or flow.  The input is unaffected by the load placed on it, and both source and sink are 

infinite. Therefore, the open-loop arrangement ignores such physiological phenomena as 

conservation of volume within the circulatory system.  If a known aortic pressure or flow is 

used as the input to the system, changes in the respective flow or pressure output can be 

observed with alterations in afterload parameters.  For example, the amplitude of the aortic 

pressure wave is markedly altered by peripheral resistance changes and the phase difference 

between aortic pressure and flow is modified as systemic compliance varies.  Thus, open-

loop models contain a relatively small number of parameters that effect predictable changes 

in circulatory dynamics.  These models, in turn, reveal basic trends in aortic pressure and 

flow under the influence of systemic impedance changes. 

    While the behaviors observed in an open-loop model provide important insights into the 

effects of afterload variations, the circulatory system is closed-loop, conserving blood 

volume throughout the circulatory path, and input from the heart is affected by preload as 

well as afterload.52-54  Coupling a left heart pressure source to the systemic afterload reveals 

important information on how changes in specific afterload components affect ventricular 

waveforms.  For instance, ventricular pressure and elastance are altered during ventricular 

ejection by changes in input impedance.52  Therefore, in addition to the systemic afterload, 

some modelers have closed the circulatory loop by including the left heart or a complete 

heart and pulmonary circuit.17, 18, 55, 56  When the pulmonary circuit is not of vital interest, the 

right heart and pulmonary circuit may be lumped with the venous portion using a low-pass 

impedance in the circulatory path that permits the venous pressure to vary slowly over each 

cycle.18, 57  In many closed-loop models, the heart is typically viewed as a chamber where 

elastance varies through the phases of systole and diastole.13, 17  This chamber may be filled 
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from a constant pressure source representing the atrium,53, 58 but a more realistic model 

permits the atrium to be refilled from a central venous reservoir.17, 57  More recently, models 

of the left heart have been developed that describe the ventricle as a pressure source that is a 

function of ventricular volume, outflow, heart rate, and time.1, 53, 58, 59  These models require 

the user to change only a few additional parameters for typical simulations. 

    Closed-loop models are more effective than open-loop models in accurately portraying 

general circulatory system behaviors.  Caution must be exercised, however, when comparing 

open-loop and closed-loop performance.  Open-loop and closed-loop systems are inherently 

different in behavior; therefore, strict application of open-loop performance to closed-loop 

performance is not a reasonable expectation.  When the afterload is inserted into a closed-

loop, the afterload performance is modulated by the preload and ventricular source, among 

other factors.  This makes it impossible to draw direct comparisons of performance between 

open-loop and closed-loop circulatory models. 

    To improve the accuracy of information from a circulatory model, increasing degrees of 

complexity are required.  For example, additional factors that are known to influence the 

heart and circulatory behavior include neural reflexes (such as the carotid baroreflex), the 

amount of coronary flow during diastole, and wave propagation and reflection in the 

arteries.15, 17, 20, 50  A model expanded to include these features may provide numerous 

avenues for variability in circulatory system behavior and accurate response characteristics to 

parameter changes, but at the cost of computation time and model complexity.  An ideal 

solution would be to identify a model with a minimal number of circulatory parameters that 

captures the main features of the system’s response without undue complexity. 
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    Our objective was to develop a cardiovascular model that enables students of cardiology 

and hemodynamics as well as novice modelers to become familiar with the behavior of the 

circulatory system under the influence of varying afterload and left heart parameters in both 

the closed- and open-loop configurations.  Several computer models are available in the 

literature; however, many of these models are proprietary, excessively complex or have been 

developed using computer languages that are antiquated, difficult to interface with existing 

laboratory equipment, or costly.  These concerns can be avoided by utilizing a modern, user-

friendly computer interface with a simplified circulatory analog.  We sought to produce a 

model that incorporated a left heart input source with a lumped-parameter afterload using 

widely available multiplatform software.  This model could serve as an effective tool to 

illustrate the overall hemodynamics of the circulatory system.  Moreover, the model provides 

a convenient method for initial experimentation with various combinations of circulatory 

parameters in both clinical and laboratory settings. 

 
Methods 
 
Overview of the Model 

Open-loop Configuration 

    The model employs an electrical analog for the fluid-based cardiovascular system.  The 

two basic components of the model are an open-loop afterload for input of aortic 

pressure/flow and a closed circuit arrangement with the left heart providing the pressure 

source.  Several types of lumped-parameter afterloads with varying degrees of complexity 

are employed for the open-loop portion (Figure 2.1).  These include a two-element (2-E) 

Windkessel afterload, a three-element (3-E) Westkessel afterload, and two different four-

element afterloads (termed 4-E and 4-E Alt. afterload).  In the literature, no consistent way of 
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defining the role of each afterload component exists.  Therefore, components of the 

afterloads and the associated pressures and flows are defined in a manner that essentially 

agrees with several investigators 3, 11, 17, 60 as shown in Table 2.1.  Since our model employs 

two different 4-E impedances, a brief explanation of each element follows. 

    In both models, the parallel Rs and Cs represent the resistance and compliance of the 

arteries, arterioles and capillaries.  The Zo element is termed the characteristic impedance of 

the aorta and is defined as the impedance the aorta would exhibit in the absence of wave 

reflections.3  Stergiopulos, Rideout and others use the inductor (Is) to embody the inertance 

of the mass of blood moving through the arteries.17, 60  It is common for modelers to place the 

inertial term in series with Zo 17, 18, 46, 52 per transmission line theory on which the additional 

impedance elements are based.  The 4-E Alt. model from Stergiopulos, however, uses a 

parallel arrangement of Zo and Is.  The inertial term is then defined as “the summation of all 

local inertances of the arterial system”.60  The effect this has on impedance at various 

frequencies is covered subsequently in the discussion. 

    Each afterload model is described by a differential equation relating aortic pressure (Pa) 

and aortic flow (Qv).  We opted to generate waveforms using differential equations in the 

time domain, as opposed to impedance methods, for the following reasons: time domain 

methods have a broader base of familiarity among students of cardiology at all levels of 

understanding, the precision afforded by the time domain methods is sufficient for the 

purposes of our model, and the ventricular model (discussed below) adapted from literature 

was developed in the time domain, thereby giving consistency to both parts of the model.  

Equations for both 4-E models are given below [equations 1 and 2].  By setting Is to zero, the 

4-E model equation is reduced to the 3-E afterload equation, and, by setting both Is and Zo to 
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zero, the 2-E afterload equation is obtained.  The 4-E Alt. afterload equation cannot be 

reduced to a 3-E state by setting Is to zero.  Instead, this equation reduces directly to a 2-E 

model. 

4-E model: 
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A time expression for Pa or Qv is generated in LabVIEWTM by first taking the Fast Fourier 

Transform (FFT) of data points describing one period of an aortic pressure or aortic flow 

waveform.  This transform is then converted into a time domain expression using as many as 

25 harmonics.  With either the Pa or Qv time expression as input, the differential equation is 

solved using a fourth order Runge-Kutta routine (step size 0.005) in LabVIEWTM for the 

respective output. 

Table 2.1  Summary of Open-loop Model Parameters 
Pressure and Flow Designations 

Symbol Description   Initial Value Units † 
Pa Aortic Pressure   80.0 mmHg 

Qv Ventr. outflow (aortic flow)   0.0 ml s-1 

Impedance Parameters* 
Symbol Description 2-E 3-E 4-E 4-EAlt Units † 

Rs Systemic resistance post-aorta 0.7 0.7 0.65 0.63 mmHg s ml-1 

Cs Systemic compliance (arteries) 3.1 3.1 2.8 2.53 ml mmHg-1 

Zo Characteristic impedance of aorta  0.03 0.028 0.045 mmHg s ml-1 

Is Inertance of arterial system   0.0018 0.0054 mmHg s2 ml-1 
* Typical values used for each lumped impedance configuration 
† Unit conversions (dyne cm-2) = (7.5025e-4 mmHg) and (cm3) = (ml) 
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Closed-loop Configuration 

    The closed-loop portion of the model that employs the left-ventricular pressure source is 

shown in Figure 2.1.  This model had its origin in the closed-loop models of Palladino et al., 

56, 57 but with notable additions.  A coronary feedback portion is inserted in our model and 

inertance terms are included in the forward path of ventricular outflow.  Additionally, the 

mathematical description of the left ventricle that we employ is based on later models by 

Ottesen et al.52, 53, 58  Certain portions of the model, especially the coronary circulation and 

the right heart and pulmonary circulation, are overly simplified by using minimal resistance 

and compliance circuits.  Our current use of the model renders the pulmonary portion of the 

circuit unnecessary, thus we have bypassed this region in the present version of the model 

(similar to Palladino et al 57 and a simplified lumping of the left heart cited by Lucas 18).  The 

coronary circulation has been modeled by several investigators 61-65 and can involve 

somewhat complicated circuits with varying impedances for different portions of the 

coronary circulation and myocardium.  Our present use of the ventricular pressure source 

precludes a knowledgeable coupling of this circulation to the contractility and other 

functional parameters of the ventricle.  Therefore, with known limitations, we used a simple 

RC arrangement to conserve blood volume within the model.  This approach is covered later 

in the discussion.  Equations that describe the behavior of the left ventricle are provided in 

the literature 52, 53, 58, 59 and are presented with a brief description in equations 3-9.  Parameter 

definitions and typical values for the model are provided in the literature 56, 58 and 

summarized in Table 2.2.  While based on experimental data, some of the parameters have 

not been quantified specifically for changes in afterload (personal communication with J.T. 

Ottesen, May 2003).  Therefore, certain parameter values were altered slightly from the 
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literature values to provide more regular waveform outputs and accommodate a greater range 

of heart rate changes.  Modified values are indicated in Table 2.2. 
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Table 2.2 Summary of Ventricular Model Parameters† 
Symbol Description Value Units†† 

a Ventricular elastance (relaxation phase) 0.0007 mmHg ml-2 

b Ventricular volume (at 0 diastolic pressure) 5 ml 

c Relates to volume-dependent developed pressure 1.92 mmHg ml-1 

d Relates to volume-independent developed pressure 1 mmHg 
*k1 Corrects for calculated pressure differences (early systole) 5e-4 s ml-1 

*k2 Corrects for calculated pressure differences (late systole) 1e-6 s ml-2 

*κ Denotes change in rate of crossbridge cycling with time 0.52  

α Denotes time for onset of contraction 0 s 

m Constant that alters speed of relaxation phase 2.2  

n Constant that alters speed of contraction phase 2  

θ Median of Hill function relation tp(H) (Equation 10) 1 Hz 

υ Steepness of tp(H) 9.9
*tp min Minimum time to peak pressure for tp(H) 0.17 s

tp max Maximum time to peak pressure for tp(H) 0.2799 s

φ Median of Hill function relation Pp(H) (Equation 8) 1  

η Steepness of Pp(H) 17.

Pp min Minimum value of peak pressure relation Pp(H) 0.842 

Pp max Maximum value of peak pressure relation Pp(H) 1.158 

  

 

 

5  

 

 

  
* Parameters altered from literature values to allow increased heart rate range and afterload changes 
† Parameters obtained from Ottesen, Danielsen, et. al.52, 53,58,57

†† Unit conversions (dyne cm-2) = (7.5025e-4 mmHg) and (cm3) = (ml) 
 

Equations 3-9 have been published previously.52, 53, 58, 59  See Table 2.2 for abbreviations and 

definitions. 

Pv as a function of t (time in sec), Vv, Qv, H (heart-rate frequency in Hz): 

( ) ( ) ),,(),,,( 2 HQtFdcVbVaHQVtP vvvvvv −+−=      3 

where  is the unitless ventricular activation function [equation 5]. ( HQtF v ,, )

Left-ventricular elastance (Ev (mmHg ml-1)): 
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Left-ventricular activation function: 
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( ) ( ) ( )τ−+−= tQkQkHtfHQtF vvv
2

21,,,       5 

where  is a normalized activation function [equation 6] and ( Htf , ) tκτ =  (time variable time 

delay (sec)). 
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Peak ventricular pressure as a function of heart rate frequency (Pp(H)): 
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Time for onset of ventricular relaxation as a function of heart rate frequency (β(H)): 
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Time for peak ventricular pressure as a function of heart rate frequency (tp(H)): 
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    Equations that describe the cycle and couple the left-ventricular pressure source with the 

circulatory analog are given below.  A description of the system behavior was generated by 

nodal analysis employing conservation of volume.  For succinctness, the equations are 

presented as a single expression [equation 10] in state space form followed by a brief 

description of the boundary conditions employed.  Table 2.3 provides definitions and initial 

values for the various elements of the closed-loop model. 
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Table 2.3  Summary of Closed-loop Model Parameters 

Pressure , Volume, Flow Designations 
Symbol Description Initial Value Units † 

Pv Ventricular Pressure 10 mmHg 

Pa Aortic Pressure 85 mmHg 

Patr Atrial pressure 8 mmHg 

Pcor Coronary Pressure 85 mmHg 

Ps Pressure in the main arteries post-aorta 85 mmHg 

Pvn Pressure in the venous system 10 mmHg 

Vt Total system volume 4972 ml 

Vsa Volume in systemic arteries (total) 787 ml 

Vsau Unstressed volume in systemic arteries 600 ml 

Vvn Volume in venous system (total) 4000 ml 

Vvnu Unstressed volume in venous system 3000 ml 

Vcor Volume in coronaries (total) 15 ml 

Vcoru Unstressed volume in coronaries 15 ml 

Va Volume in atrium 50 ml 

Vv Ventricular volume 120 ml 

Qv Ventricular outflow (aortic flow) 0 ml s-1 

Impedance and System Parameters 
Symbol Description Value* Units † 

Ra Resistance from left atrium to left ventricle 1e-3 mmHg s ml-1 

Iv Inertance of blood ejecting from left ventricle 4.16e-4 mmHg s2 ml-1 

Rcor Initial resistance of coronary arteries 0.12 mmHg s ml-1 

Ccor Compliance of coronary circulation 0.15 ml mmHg-1 

Rcorva Resistance of venous side of coronary circulation 0.15 mmHg s ml-1 

Ca Compliance of left atrium 5 ml mmHg-1 

Rs Systemic resistance post-aorta 0.85 mmHg s ml-1 

Zo Characteristic impedance of aorta 0.075 mmHg s ml-1 

Cs Systemic compliance of arteries 2.20 ml mmHg-1 

Is Inertance of arterial system 0.001 mmHg s2 ml-1 

Cvn Compliance of venous system 100 ml mmHg-1 

Rvn Resistance of venous system 0.011 mmHg s ml-1 

Cardiac Cycle Values (after 4 cycles) 

S.V. Stroke volume 71.70 ml 

E.F. Ejection Fraction 0.58  

MAOP Mean aortic pressure 94.02 mmHg 

H.R. Typical initial heart rate 75 b.p.m. 

* Typical values used for the impedance parameters 
† Unit conversions (dyne cm-2) = (7.5025e-4 mmHg) and (cm3) = (ml) 
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Equation 10: State Space Representation of the Closed-loop Model 
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    The state space equation describes the behavior of the cardiovascular model throughout the 

cardiac cycle.  In order to account for the nonlinear elements in the circuit model, one period 

of the cycle is divided into five basic parts, in effect providing piecewise linearization of the 

circuit during these segments.  The constants χ, ϕ, γ, δ, ε are used to modify the state space 

equation as necessary by being set to zero during a specific portion of the cycle and 1 at all 

other times.  This division of the cycle is shown more fully in Figure 2.2. 
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Figure 2.2  Phases of the Cardiac Cycle in the Closed-loop Model.  One steady-state cardiac 
cycle generated by the closed-loop model to demonstrate the different phases assigned during 
the cardiac cycle to produce piecewise linearization.  Each phase has an associated set of 
differential equations determined by the values of χ,ϕ,γ,δ,ε (see Equation 10). 
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    The first part of the cycle (χ=0) is pre-ejection and partial refilling of the ventricle.  

Subsequently the ventricle ejects and ϕ=0.  As the ventricle ejects, Pcor is allowed to follow 

Pa and the differential equation for Pcor is calculated iteratively as the time rate of change of 

Pa.  When negative flow occurs, γ=0, and the sign of the Zo term in the Qv differential 

equation is changed.  While the flow settles to zero, δ=0, and the flow contribution to 

systemic volume is eliminated by subtracting the unsettled flow term from the Ps equation.   

In the final portion of the cycle, ε=0 as refilling occurs.  The constant Vcin (occurring in the 

Patr and Vcor differential equations) represents the initial unstressed volume of the coronary 

circulation.  Certain conditions must also apply to the equations above in order to accurately 

represent the physiology involved.  When the atrial pressure increases above the venous 

pressure, no backflow occurs from the atrium to the venous side, and this portion of the 

differential equation is set to zero.  Similarly, while the ventricular pressure is greater than 

the atrial pressure no flow occurs from ventricle to atrium.  Therefore, this portion of the Patr 

differential equation is set to zero.  These sets of differential equations were solved using a 

fourth-order Runge-Kutta routine (step size 0.001) in LabVIEWTM. 

 

Verification of Model Results 

Open-loop Configuration 

    To validate the isolated afterload portion of the model, aortic pressure/flow tracings 

available in the literature with associated afterload values 11, 40, 41, 60 were scanned and 

digitized using UnGraph from Biosoft®.  Since these digitized waveforms were not exact 

reproductions, they were used only to verify that the different afterloads would generate 

corresponding waveforms with realistic timing and magnitude.  This process involved using 
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either the aortic pressure or flow as input and comparing the magnitude, timing and basic 

characteristics of the resulting output waveform.  The outputs are dependent on afterload 

parameters, and very few literature waveforms have associated impedance values.  One set of 

waveforms with associated afterload parameters was published by Stergiopulos and 

Westerhof,60 and a match of the input/output for these waveforms is provided in the results 

(Figure 2.3).  Using the scanned aortic pressure (AOP) waveform as input to the 4-E Alt. 

model, with the afterload parameters given by Stergiopulos, the aortic flow (AOF) output 

was obtained.  Then, using the same afterload parameters, the scanned AOF waveform was 

employed as input, and the AOP output was produced. 

    For most all other cases, in order to generate outputs from the digital tracings, estimates 

were made for the afterload parameters.  This was done by approximating values from the 

literature.11, 40, 41, 60  The values for Rs, Cs, Zo, and Is were then adjusted to provide a 

waveform similar in scale and timing to the expected output.  For these reasons, no specific 

criteria were developed for testing these outputs.  The outputs were considered acceptable if 

they were within 20% of the magnitude and timing provided in the literature and the 

afterload values were in the typical range of those found in previous studies. 

    An interesting advantage of the open-loop model is its ability to compare outputs from the 

same input using different afterload configurations.  This permits a comparison of impedance 

parameter values to distinguish which arrangement of the afterload might provide the best 

output for a given input waveform.  Also, the user can determine which configurations are 

more responsive to changes in a particular afterload element.  An example of this type of 

comparison is provided in Figure 2.4.  Note that the typical impedance values provided in 

Table 2.1 are not meant to correspond to the simulations in Figure 2.4.  The values in Table 
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2.1 were employed with the previously published waveforms from Stergiopulos and 

Westerhof (illustrated in Figure 2.3 and used within the model as a typical AOP and AOF). 

 

Closed-loop Configuration 

    With the closed-loop model, no arbitrary waveform inputs were possible, because the 

equations for ventricular pressure drive the system and cannot be modified to allow arbitrary 

inputs.  Unfortunately, this prevented a direct comparison of how our closed-loop model 

would act on the same input waveform with similar impedance parameters used in the open-

loop simulations.  Therefore, the closed-loop model’s outputs were cataloged and used as a 

method of validation by comparing model results to waveform trends found in the 

literature.13, 38, 56, 66, 67  The effects were cataloged for single parameter changes and for 

combinations of changes.  Single parameter effects were analyzed by choosing three different 

values for an afterload element (e.g. Rs = 0.5, 0.85, and 1.2).  Several cycles of a given output 

were cataloged.  A steady-state cycle (typically the 4th or higher to allow settling of transient 

effects) was then chosen and graphed for these three values.  The typical values chosen for 

the afterload parameters were well within the range of values found in the literature, and the 

range of values chosen to test the model’s sensitivity and demonstrate output trends was 

based on the inherent variability in afterload impedance values.  The values of Rs, Cs, and Zo 

can all vary markedly within the normal population of the same species (e.g. the systemic 

resistance for one subject might be ½ the value of the next subject).40, 41, 60, 68  In addition, Rs 

can vary under conditions such as exercise and heart failure.42, 44, 69, 70  Characteristic 

impedance can also increase substantially with heart failure,42, 43, 70 and significant changes in 

systemic compliance can occur with conditions such as atherosclerosis, hypertension and 
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heart failure.43, 69, 71, 72  In order to maintain afterload parameter values in the physiologic 

ranges reported in literature and to achieve reasonable volumes in the various cardiovascular 

spaces, unstressed volumes were added to certain portions of the model (systemic venous, 

systemic arterial, and coronary).  All volumes for the model are reported for a standard 

waveform in Table 2.3. 

    The categories of waveforms used as an illustration of output trends were P-V loops and 

aortic pressure/flow.  Two types of P-V loop plots were created.  The first type was the 

pressure-volume relation using a constant preload and allowing the chosen afterload 

parameter to vary over its three values.  The second type was the pressure-volume 

relationship using a constant value for the afterload parameter and adjusting the central 

venous pressure which allowed the preload to vary over a number of starting volumes.  An 

End-Systolic Pressure-Volume Relationship (ESPVR) was generated for each of the two 

types of P-V loop plots in order to demonstrate overall tendencies.  The ESPVR was 

generated (using a method similar to Maughan et al. 38) by determining the point in the P-V 

loop where the pressure to volume ratio was the largest.  This provided an estimate of the 

points at end systole on the various pressure-volume curves.  These points were then plotted 

and a linear best-fit line (ESPVR line) was generated.  The standard ESPVR line (ESPVR1) 

was determined by using the P-V loops generated using a constant afterload with typical 

afterload values and a varying preload.  ESPVR lines under the influence of changing 

afterload (ESPVR2, ESPVR3) were determined from P-V loops with a constant preload and 

varying afterload parameter values.  Additional ESPVR lines were generated for constant 

afterload and varying preload using incremental values of Rs and Cs.  Trends for all 

waveforms and ESPVR characteristics were compared to the literature data when available.  
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With multiple parameter changes, a similar protocol was employed as for the single 

parameter changes, the only difference was in allowing the additional combinations (e.g. Rs = 

0.5 and Cs = 1.0, Rs = 0.85 and Cs = 2.0, Rs = 1.2 and Cs = 1.0,…).  For multiple parameter 

changes, few if any literature comparisons were available; therefore, only trends for single 

parameter changes are presented in the results.  Aortic pressure/flow waveforms were 

produced with the same range of single-parameter afterload changes.  These pressures and 

flows append the information already present in the P-V loops, and they demonstrate the 

level of detail generated by the model. 

    The focus of our model is on the waveforms of the ventricle and aorta in response to 

afterload changes, thus, these waveforms are presented as results.  Additional outputs, such 

as the cardiac cycle in Figure 2.2, venous pressure, total volume, mean aortic pressure 

(MAOP), stroke volume (SV), ejection fraction (EF) and coronary volume/flow are also 

commented on in the results to provide a rounded view of the model’s behavior. 

 

Statistical Analysis 

    In order to assess the agreement of P-V loops generated by the model with previous 

physiologic experiments, statistical analysis was performed on the data for the ESPVR slope 

(Eves) and intercept (Vo).  The slope and intercept of the linear best-fit lines generated under 

each set of afterload conditions were compared to the standard ESPVR1 line using a small-

sample two-tailed t-test for parallelism and common intercept.73  A percent difference 

between the standard slope and the slope of the lines under varying afterloads was generated 

for further assessment.  The magnitude of the change in Vo between the ESPVR1 line and the 

lines generated with different impedance parameters is also provided for comparison. 
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Results 

Open-loop Configuration (Figures 2.3 & 2.4) 

    As an illustrative simulation from the open-loop portion of the model, aortic pressure/flow 

waveform pairs are shown in Figure 2.3. 
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Figure 2.3  Open-loop Aortic Pressure and Flow Waveform Comparisons.  Scanned and 
digitized aortic flow (AOF) and aortic pressure (AOP) input waveforms from Stergiopulos 
and Westerhof 60 (pg. H85 fig. 4 panels A and B of type C) are compared to steady-state 
aortic flow and aortic pressure generated using the 4-E Alt. afterload model.  Using the 
measured AOP from Stergiopulos as input (top left gray), AOF was generated (top right 
black) and compared to the measured AOF from Stergiopulos (top right gray).  Likewise, 
using the measured AOF from Stergiopulos as input (bottom left gray), AOP was generated 
(bottom right black) and compared to the measured AOP from Stergiopulos (bottom right 
gray).  Simulation parameters were Rs = 0.63 mmHg s ml-1, Cs = 2.53 ml mmHg-1, Zo = 0.045 
mmHg s ml-1, Is = 0.0054 mmHg s2 ml-1, heart rate 80 b.p.m. 
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This figure demonstrates open-loop outputs that are in good agreement with the matching 

AOP and AOF inputs published by Stergiopulos and Westerhof.60  These waveforms were 

scanned and digitized, as described in Methods.  Note that Stergiopulos does not provide an 

output AOF waveform using an AOP input.  This simulation was added to provide a more 

complete validation of our 4-E Alt. implementation. 

    An additional illustration of the open-loop afterload is given in Figure 2.4.  An aortic 

pressure was the input to each afterload, and the parameters used for the simulation are 

noted.  No impedance values or matching aortic flow waveform was available, so impedance 

values were estimated as described in Methods.  The inability of the 2-E model to reduce the 

high frequency waveform components is illustrated in part B of Figure 2.4.  For the 3-E and 

two 4-E models, AOF waveform outputs are slightly different, but of acceptable form with 

regard to magnitude, negative flow and noise.  Though the two 4-E models did not have 

parameters fit by waveform matching, impedance moduli or other methods, it is notable that  

the 4-E model with Zo and Is in series appears to require higher values of Rs and Cs but lower 

values of Zo and Is when compared to the 4-E Alt. model.  This is true for both the 

simulations in Figure 2.4 and those carried out with the typical AOP and AOF (Table 2.1).  A 

brief explanation of the frequency characteristics of each afterload is provided in the 

Discussion.  
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Aortic Pressure/Flow with 
Various Open-Loop Impedances 
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Figure 2.4  AOP/AOF for Various Open-Loop Impedances.  Identical AOP input (
the four types of open-loop impedances with resultant AOF.  Impedance parameter
estimated with a heart rate of 75 b.p.m.  The AOP waveform was from a 10-20 kg l
(undergoing a mid-sternal thoracotomy) (courtesy of M. Ketner and C.L. Lucas, De
of Biomedical Engineering, University of North Carolina at Chapel Hill). 
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Closed-loop Configuration (Figures 2.5 – 2.8) 

    Figure 2.5 shows three sets of P-V loops.  Each set was generated with a constant Rs value 

while varying preload over a range of initial volumes.  Panel B of the figure illustrates the P-

V loops with typical afterload values (i.e. those values used in the model for a standard 

waveform as given in Table 2.3).  The end-systolic pressure-volume relationship for these 

typical values (ESPVR1) is indicated in all panels.  The trends for afterload changes are 

recorded in Table 2.4.  As Rs increases, the slope of the ESPVR line (corresponding to 

ventricular elastance at end-systole, Eves) increases only slightly.  A directional difference is 

also seen in the volume axis intercept, with increasing Rs giving a decreasing intercept.  The 

changes in Eves seen in Figure 2.5 were not significant, and the actual percent change for all 

panels was 2% or less.  In the case of Vo, changes in intercept were significant, but were still 

small in magnitude (< 2.0 ml for both cases).  If the preload remains constant with changing 

Rs, as in Figure 2.6C, much larger differences occur in the slope of the ESPVR lines.  Table 

2.4 reveals that, as Rs is elevated, Eves shows an increase of over 23%.  Furthermore, Vo is 

shifted well to the right.  The P-V loops themselves indicate less volume flow and higher 

pressures with increased Rs.  The AOP and AOF plots in Figure 2.6 (A and B) illustrate this 

fact by showing higher AOP and lower AOF with increased Rs. 
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Figure 2.5  P-V Loops with Constant Rs and Varying Preload.  P-V loops were generated as 
Rs was held constant at one of three values (0.5, 0.85 or 1.2 mmHg s ml-1), and preload was 
varied over the range 8-12 mmHg.  The average cycle values with standard error for mean 
AOP (mmHg), SV (ml) and EF, respectively, are: for part A (72.64 ± 4.58, 84.39 ± 4.96, 
0.668 ± 0.004), for part B (93.90 ± 5.35, 71.57 ± 4.68, 0.58 ± 0), for part C (108.01 ± 5.81, 
63.36 ± 4.55, 0.52 ± 0).  The standard ESPVR1 line (solid) is shown in all three panels as a 
reference for the ESPVR line (dashed) calculated using each set of simulation data. 
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Figure 2.6  Waveforms with Varying Rs.  Steady-state cardiac cycle waveforms were 
generated at three different values of Rs (0.5, 0.85, and 1.2 mmHg s ml-1).  The cycle values 
for AOP (mmHg), SV (ml) and EF, respectively, are: for Rs = 0.5 (72.73, 84.53, 0.67), for Rs 
= 0.85 (94.02, 71.70, 0.58), for Rs = 1.2 (108.22, 63.50, 0.52).  The standard ESPVR1 line 
(solid) is shown panel C as reference for the ESPVR2 line (dashed) calculated using each set 
of simulation data. 
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      Table 2.4 ESPVR Slope and Intercept Comparisons

  Eves % change †     Vo |∆Vo| † 
ESPVR1 †† 1.652 0 -8.998 0 
ESPVR (Rs = 0.5) 1.634** -1.09 -7.413* 1.585 
ESPVR (Rs = 1.2) 1.664** 0.74 -10.063* 1.065 
ESPVR (Cs = 1.0) 1.782* 7.87 -6.515* 2.483 
ESPVR (Cs = 3.4) 1.573* -4.79 -11.466* 2.468 
    
ESPVR2 2.032* 23.02   3.217* 12.215 
ESPVR3 4.123* 149.61   30.48* 39.474 

 

† Relative to values for ESPVR1 
†† ESPVR1 generated using Rs = 0.85 and Cs = 2.2 
* Significantly different from ESPVR1 (p<0.01). 
** No significant difference from ESPVR1.  

    Each set of P-V loops in Figure 2.7 was generated with a constant Cs value while preload 

varied over a range of initial volumes.  ESPVR1 (from panel B) is overlaid in all panels to 

demonstrate trends with changing Cs.  Unlike the alterations in Rs, the changes in Cs created 

more noticeable differences in slope for the ESPVR line.  In addition, the volume intercept 

was altered more markedly (Table 2.4).  The changes in Eves were significant; however, the 

actual percent change for all panels was approximately 8% or less.  With Vo, the differences 

were approximately 2.5 ml or less for both cases.  Even with the significant changes in Eves 

and differences in Vo under the influence of varying Cs, Figure 2.7 reveals that the PV loops 

for all values of Cs have an end-systolic pressure point (the approximate upper left corner of 

the loop) that lies close to the  ESPVR1 line in the normal physiologic range (50-80 ml end-

systolic volume).  Larger deviations from the standard ESPVR occur at lower Cs values.  As 

Cs changes with preload held constant (Figure 2.8C), increases in Eves are larger (> 145%), 

and the intercept shifts to the right by ≈ 40 ml (Table 2.4).  Another evident phenomenon 

isthe skewing of the P-V loops up and to the left with lower Cs.  This would indicate that a 

system with lower Cs (a stiffer system) would have higher pressure in late systole with a 

more rapid decay of the pressure during diastole.  The AOP plot in Figure 2.8 confirms both 
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of these characteristics.  Differences in overall volume flow are apparent (though not as 

pronounced as with Rs increases) in both the AOF plot and the P-V loops of Figure 2.8. 
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Figure 2.7  P-V Loops with Constant Cs and Varying Preload.  P-V loops were generated as 
Cs was held constant at one of three values (1.0, 2.2 or 3.4 ml mmHg-1), and preload was 
varied over the range 8-12 mmHg.  The average cycle values with standard error for mean 
AOP (mmHg), SV (ml) and EF, respectively, are: for part A (89.30 ± 6.04, 68.53 ± 4.23, 
0.55 ± 0.004), for part B (93.90 ± 5.35, 71.57 ± 4.68, 0.58 ± 0), for part C (95.07 ± 4.60, 
72.26 ± 5.06, 0.59 ± 0.005).  The standard ESPVR1 line (solid) is shown in all three panels as 
reference for the ESPVR line (dashed) calculated using each set of simulation data. 
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Figure 2.8  Waveforms with Varying Cs.  Steady-state cardiac cycle waveforms were 
generated at three different values of Cs (1.0, 2.2, and 3.4 ml mmHg-1).  The cycle values for 
AOP (mmHg), SV (ml) and EF, respectively, are: for Cs = 1.0 (89.44, 68.66, 0.55), for Cs = 
2.2 (94.02, 71.70, 0.58), for Cs = 3.4 (95.16, 72.40, 0.59).  The standard ESPVR1 line (solid) 
is shown panel C as reference for the ESPVR3 line (dashed) calculated using each set of 
simulation data. 
 
    In addition to the trends seen in the P-V loops, our model captures other features of the 

cardiovascular waveforms.  For example, the AOP and AOF plots in Figures 2.6 and 2.8 

illustrate the model’s ability to portray several of the main waveform features (e.g. the 
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dicrotic notch and negative flow).  Figure 2.2 reveals that the timing and cyclical nature of 

ventricular ejection and refilling is appropriate.  The MAOP, SV and EF values provided in 

the figure captions demonstrate that changes in afterload parameters alter the ventricular 

output in predictable ways.  For example, higher Rs results in an elevated MAOP, and lower 

SV and EF.  In the venous portion of the circuit, the pressure waveforms vary slowly (1-2 

mmHg per cycle) and the venous volume acts as a reservoir for refilling the atrium.  Total 

volume is conserved within the circuit to within less than 0.1 ml. difference per ten cycles 

(i.e. a 0.002% volume change over ten cycles).  The coronary flow waveform has a rapid 

increase as inflow occurs and a rapid decline as the coronary flow contributes to the atrial 

volume.  This aspect of the flow is not indicative of a typical coronary flow pattern, and is 

due to the simple RC configuration.  Nevertheless, the overall volume transfer per cycle was 

approximately 2-3 ml., which lies in a physiologic range when scaled for larger hearts.74 

 

Discussion 

Demonstration of Model Concurrence 

Open-loop Configuration (Figures 2.3 & 2.4) 

    The simulations generated with the open-loop impedances (Figures 2.3 & 2.4), 

demonstrate the model’s ability to derive realistic aortic pressure/flow outputs from 

corresponding inputs with any of the four afterload arrangements.  For the simulation in 

Figure 2.3, we did not have the exact data points or initial conditions from the published 

waveforms.  Nevertheless, the model’s output using the 4-E Alt. afterload arrangement 

actually matches well with the waveforms published by Stergiopulos.  The AOP input with 

AOF output was added in our simulation to illustrate both input/output scenarios and to 
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further validate the proper functioning of the model.  In Figure 2.4, the 2-E model has a large 

amount of noise associated with its output.  This is due to the crude nature of the arterial 

representation that imparts difficulties when trying to represent the medium and high 

frequency ranges.  Even though the input pressure signal contains some noise artifact, the 3-E 

and two 4-E portions of the model are still capable of producing an AOF with reasonable 

magnitude, shape and timing.  The aspect of negative flow is also produced in response to the 

pressure downswing and dicrotic notch. 

    A comparison of the results, given in Table 2.1, from each 4-E model illustrates that 

systemic compliance was higher and Zo and Is lower for the 4-E model with the series 

arrangement of Zo and Is.  Similarly, to achieve a realistic aortic waveform output in Figure 

2.4, our 3-E and 4-E models required a higher value of Cs and an equal or lower value of Zo 

in relation to the 4-E Alt. model.  The trend for 3-E models to overestimate compliance and 

underestimate Zo was noted by Stergiopulos et al.60  At lower input frequencies, the 

characteristic impedance adds to the overall impedance and plays a smaller role, but at higher 

frequencies Zo plays the prevailing role because the systemic compliance dominates the 

parallel Rs and Cs combination and drives its contribution to zero.  Stergiopulos contends 

that, at lower frequencies when the blood mass is “accelerated simultaneously”, the 

contribution of inertance is much greater than at higher frequencies.  In addition, it is noted 

that the series arrangement allows the Is term to raise the impedance moduli at all frequencies 

(except 0 Hz).  This addition of impedance at all frequencies (as in the series arrangement) 

would likely not tend to alleviate the problem of Cs overestimation and Zo underestimation as 

seen with the 3-E model.  Alternatively, the parallel arrangement of Zo and Is allows both 

elements to make their largest contributions in the appropriate frequency ranges.  As 
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demonstrated by numerous modelers, both types of four-element models can effectively 

portray arterial impedance characteristics.  Nevertheless, when waveforms with significant 

higher frequency contributions are used, the 4-E Alt. model may follow a more realistic 

impedance and phase spectrum at these higher frequencies (leveling off at Zo) instead of 

tending to high values of impedance as in the 4-E model.  Though the parallel arrangement 

does provide advantages in producing impedance and phase moduli that more closely match 

physiological data, it does not have the ability of being directly reduced to a 3-E afterload 

configuration (setting Is to 0 effectively eliminates both Is and Zo).  Furthermore, nodal 

analysis of the 4-E Alt. model produced equations that were much less stable.  For these 

reasons, we chose not to implement this configuration in the closed-loop arterial impedance 

model. 

 

Closed-loop Configuration (Figures 2.5 – 2.8) 

    P-V loops and aortic waveforms generated by the left heart portion of the model mirror 

several trends seen in physiological data.  Figures 2.5 and 2.7 along with Table 2.4 indicate 

that only minor changes occur in the ESPVR slope when preload is incrementally increased 

at different values of Rs and Cs.  However, the divergence in Eves was statistically significant 

for changes in Cs.  Variations in Vo were observed for all afterload changes, showing a trend 

of decreasing Vo with increasing Rs and with increasing Cs.  Experiments employing excised 

canine hearts have demonstrated no significant changes in Eves with regard to changes in 

resistance and compliance of the systemic circulation.38, 75  The same studies showed that Vo 

did shift to the left with increasing Rs, but there was no significant change in Vo with 

alterations in compliance.  Other researchers have compared P-V loops generated with a 
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constant preload and varying Rs or Cs.  Their findings indicated a significantly increased 

ESPVR slope when either peripheral resistance or compliance was increased,66, 67 and the 

increase in slope was higher for rises in compliance than for elevation of peripheral 

resistance.67  An illustration of model results (Figures 2.6C, 2.8C and the values reported in 

Table 2.4) confirms a significant increase in slope with constant preload and alterations in Rs 

and Cs.  In addition, the rise in slope is greater for changes in compliance than for variations 

in peripheral resistance.  Thus, our model confirms the reported physiological response to 

these changes. 

    Our model differs somewhat from the physiological data presented in such studies as 

Maughan et al. 38 by showing a significant change in Eves and Vo with changing afterload 

(Figures 2.5, 2.7 and Table 2.4).  Though significant, the percent changes for Eves and 

magnitude changes for Vo are relatively small when compared to changes for constant 

preload and varying afterload (Figures 2.6C, 2.8C and Table 2.4).  Several factors likely 

contribute to this behavior of the model.  One factor is the type of statistical test used in 

analyzing our model’s results.  In the aforementioned physiological studies, there was the 

possibility of variation among the canine hearts themselves, even with identical preload and 

afterload conditions.  Therefore, the investigators used a two-way analysis of variance and 

showed no significant changes in Eves, even though the actual change in slope they obtained 

was greater in magnitude than what our model produced.  With the mathematical model, 

there is no variation in the heart source, thus, the small-sample t-test was employed to test the 

slopes and intercepts.  This test allows a narrower range of variation, and thus, it indicated 

significant changes in Eves.  The Vo changes in our model may be due, in part, to the lower 

values of slope produced by the model as compared to those seen in previous studies with 
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animals and humans.  A lower slope would cause any difference in the slope to be distributed 

over a larger range of intercepts.  This, along with the added sensitivity of our statistical test, 

would tend to produce significantly different results for Vo.  Another aspect that might alter 

the trends of Eves and Vo is the use of mixed parameter values in the ventricular and afterload 

portion of the model.  For example, several of the ventricular parameters are based on canine 

studies; however, the typical afterload values used are more closely associated with humans.  

This perspective is discussed in detail in Model Deficiencies. 

    The aortic waveforms generated by the model show definite changes as Rs is increased.  

Figure 2.6A reveals a trend of elevation in MAOP with a rise in Rs.  Since resistance is 

proportional to aortic pressure, it follows that systemic resistance is inversely proportional to 

aortic flow.  Such an inverse proportionality implies that as Rs is elevated, aortic flow should 

fall, and this is indeed the result shown in the SV and EF numbers for Figure 2.6B.  When 

compliance is decreased during simulation, MAOP magnitude decreases while the range of 

aortic pressure actually increases (Figure 2.8A).  This response is again related to the 

proportionality of AOP and the systemic impedance.  The impedance of a compliance 

element is expressed as –jω-1C-1; therefore, a lower compliance will result in higher 

impedance and a higher peak pressure.  Since this impedance is frequency dependent, a lower 

compliance value would also allow more rapid filling and decay with pressure increases 

(maintaining a higher value during systole).  Thus, the higher values of compliance result in 

an aortic pressure that changes less rapidly and maintains a higher mean value.  Following 

similar arguments as with systemic resistance, the SV and EF would be reduced with a lower 

Cs, and Figure 2.8B agrees with this expectation.  Very few direct comparisons of AOP 

waveforms under the influence of isolated changes in afterload parameters can be found in 
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the literature.  Nevertheless, Elzinga and Westerhof were able to construct a mechanical 

afterload whereby they imposed changes on the individual components of the afterload with 

an isolated feline heart.35  As Rs increased, they reported a higher systolic and diastolic aortic 

pressure and a corresponding lower peak aortic flow and stroke volume.  With a reduction in 

Cs they observed a higher peak AOP during systole and a lower diastolic AOP with a slightly 

lower peak AOF and SV.  Their results agree remarkably well with the output of our model 

(Figure 2.6 (A and B) clearly illustrate that AOP is elevated and AOF reduced with 

increasing Rs).  Furthermore, Figure 2.8 (A and B) reveal a higher systolic and lower 

diastolic AOP with a reduction in AOF as Cs is reduced.  It is also possible to verify the 

aortic waveform output of the model from another perspective.  Since AOP closely follows 

ventricular pressure during systole and AOF is simply the ventricular volume change during 

systole, the P-V loops generated under isolated changes in afterload parameters provide an 

indication of alterations in AOP and AOF with changes in Rs and Cs.  Previous studies show 

that elevations in Rs produce higher ventricular pressure and less SV.13, 37, 38, 66, 67  These 

changes imply a higher AOP and lower AOF as the model demonstrates in Figure 2.6 (A and 

B).  The same studies illustrate that reductions in systemic compliance result in a higher peak 

AOP later in systole with slight reductions in SV,13, 37, 38, 67 and Figure 2.8 (A and B) 

demonstrate a similar outcome from the model. 

    The model incorporates afterload and volume values that are similar to those reported in 

the literature.19, 54  Values for MAOP, SV and EF generated by the model also fall well 

within the physiologic range (Figures 2.5-2.8).54    The afterload parameter values used for 

Rvn and Cvn are somewhat elevated in relation to systemic arterial resistance and compliance.  

Nevertheless, the ratios of Cs to Cvn and Rs to Rvn are not unreasonable when compared to 
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similar models.19, 21, 56, 57, 76-78  The lumping of numerous circulatory elements on the venous 

and pulmonary side of the circulatory path is certainly a contributing factor to the higher 

values of Rvn and Cvn.   

 

Model Deficiencies 

Open-loop Configuration 

    Though there are a number of ways in which the model accurately portrays physiological 

trends, as with most models of a complex system, the model’s output differs from data 

produced in animal studies in several areas.  The open-loop portion is certainly unrealistic in 

its depiction of the arterial system as an isolated impedance that has no volume conservation 

and no mechanism for feedback to its input source.  In the open-loop configuration, the 

model receives an actual aortic pressure or aortic flow waveform as input.  However, the 

model is, at most, second order, and does not account for such phenomena as wave 

propagation/reflection.  Thus, the model fails to capture some of the details in its output 

waveforms.  Most of the waveforms also have few if any associated afterload parameters, 

which adds to the divergence of the model output from the true waveform.  Employing a 

higher order model and accounting for afterload and wave reflection parameters would 

greatly improve the accuracy of the model; however, the accuracy would only be improved 

for a single waveform from a single animal.  As was previously discussed, the variation in 

afterload parameters, even within species, can be quite large, and adding these levels of 

complexity would be cumbersome in the generation and operation of the model.  In addition, 

increased complexity would add little to the understanding of the overall trends for changes 

in the major afterload parameters. 
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Closed-loop Configuration 

Waveform Characteristics and ESPVR Trends 

    In the closed-loop left heart configuration of the model, the basic features of the 

waveforms are preserved; however, certain details of the waveforms and characteristics of 

the P-V loops are lacking.  Without having actual aortic pressure/flow waveforms as inputs, 

the particular characteristics of a ventricle and afterload combination must be generalized.  

Adding complexity to the ventricular model would serve to capture many details that are 

missing, but again this addition would compromise the model’s ability to instruct on a more 

fundamental level. 

    The model has demonstrated the ability to capture several typical behaviors seen in P-V 

loops generated in animal studies 38, 66, 67, 79 such as predictable changes in ESPVR slope with 

variations in preload and afterload parameters.  Nevertheless, in these same studies, certain 

trends were not reproduced by the model.  For example, in experiments, the slope of the 

ESPVR lines was typically in a range from 2 to 7 mmHg ml-1 with a Vo from 0 to 20 ml.  In 

our simulations, the model generated slopes from 1.55 to 1.75 mmHg ml-1 with typical Vo 

less than 0 ml.  Investigators have noted that variations in P-V loops and associated ESPVR 

lines could occur due to variations in the species under investigation and the method of 

preparation of the heart (excised or closed-chest).12  Other investigators have actually 

reported such outcomes as negative values for Vo. 79, 80  Though variations in P-V diagram 

characteristics can and will occur across species and with different preparations, these factors 

likely do not account for all the variation seen by our model.  One potential factor 

contributing to divergence in the model’s results is that many of the ventricular model 

parameters were obtained from experiments on canines;58, 59 however, the ventricle described 
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by these parameters is then coupled to an afterload with  parameter values more closely 

related to man.11, 60  Though the overall trends should be preserved by this approach, the 

exact range of values may be somewhat different.  Another major issue that is not addressed 

in the simulation results is the isolated nature of the afterload changes and the lack of change 

in contractility during simulations.  Isolating changes in specific afterload parameters using a 

computer controlled artificial afterload may be possible, but in reality changes would never 

occur in isolation within the circulatory system.  This fact makes it difficult to state that a 

particular change in an afterload parameter will create a given change in output waveform 

within the circulatory system itself.  A more accurate statement is that a given condition 

(state) of the circulatory system is typically characterized by a directional change in value for 

a specific component of the afterload.  This is illustrated by studies that show a higher value 

for Rs in subjects with heart failure,42 whereby the system attempts to elevate aortic/arterial 

pressure to compensate for the lessened strength of the heart.54  Other studies on Rs during 

exercise reveal that peripheral resistance drops during exercise;44 however, the aortic 

pressure actually increases due to compensatory mechanisms such as increases in heart rate 

and contractility. 

 

Simplified Coronary Circulation 

    Another factor affecting contractility and ESPVR changes is the simple RC analog used 

for the venous/pulmonary path and the coronary circulation.  As discussed previously, the 

highly simplified RC arrangement for the venous and pulmonary paths lends a higher ratio of 

venous to systemic resistance and compliance.  The alteration in venous resistance and 

compliance influences the filling of the atrium and ventricle which would affect preload and 
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contractility.  Though this was not apparent in our simulations over the heart rate range of 

50-120 b.p.m, the refilling of the ventricle could be compromised at higher heart rates.  

Regarding the coronary RC analog, our simulator was not an attempt to model the coronary 

pressure and flow, and the single-branch RC model simply acts as a placeholder for a more 

rigorous analog of the coronary impedance.  Nevertheless, the antiphasic nature between the 

left ventricular pressure and the left heart coronary flow is preserved, and the volume 

entering and exiting the coronary circulation per cycle is in a physiologic range.  In order for 

the coronary adjunct of the model to be more effective, it must be coupled properly to the 

ventricular pressure source.  This would involve not only relating the coronary pressure/flow 

to the aortic pressure as a function of arterial bed alterations, but also altering the coronary 

contribution based on left ventricular loading.15, 81  The coronary flow per cycle must then act 

as a partial determinant of ventricular contractility.  To our knowledge, the relationships 

necessary to carry out this coronary/ventricular coupling have not been determined for this 

ventricular model.58, 82  This is an area that must be addressed for a more complete 

description of the ventricular/afterload interactions, but it was not our purpose to make 

modifications on the basic equations describing the ventricular source.  Though in its present 

form the ventricular description does not couple contractility with coronary flow, it does 

allow for some alterations in contractility (through the parameter “c” in Table 2.2).  Future 

work may involve a relation of this parameter to the blood supply from the coronary 

circulation. 
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Additional Considerations 

    Changes in the model could be undertaken in the areas of baroreflex-feedback control 

mechanisms and wave reflections in the major arteries.  Ursino et al. developed a pulsating 

heart model of the carotid baroreflex that attempts to integrate numerous responses initiated 

by this feedback mechanism.  The gain of the baroreflex response is altered based on the 

frequency of the change in carotid pressure.19, 20  The nonlinear elements of feedback 

response have been modeled by others.83-87  Each of these models employs a variable 

elastance model of the ventricle.    One drawback to our use of the mathematical description 

of the ventricle given by Ottesen et al. is that, in its current state, the parameters of the model 

do not provide an avenue for baroreflex-feedback control.82, 84  The time domain description 

of the ventricular pressure and the simplistic lumped impedance also render it difficult to 

account for wave propagation/reflection.50  Both of these aspects must be accounted for if the 

model is to serve as a more comprehensive illustrator of circulatory behavior. 

    In light of the complex adjustments that go on in the circulatory system and the lack of 

compensatory mechanisms employed in our model with isolated changes, some differences 

between our model results and physiological data are not surprising.  For example, in 

generating P-V loops with constant afterload and varying preload, canine hearts used in 

experiments would have experienced changes in contractility according to the Frank-Starling 

law of the heart and the coupling of ventricular contractility with preload.  These changes in 

contractility were not accounted for in our simulations.  Studies by Grossman et al., Suga and 

Sagawa, demonstrate the increase in slope and Vo that occurs with an increase in 

contractility.14, 79  Inclusion of such relevant factors would help realign the numbers for 

ESPVR slope and intercept, having a more reasonable range. 
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    Despite the fact that the model lacks certain intricacies present in physiological systems 

the basic waveform features generated and the overall tendencies elucidated for afterload 

changes are within an acceptable range for simple modeling of the left heart and systemic 

circulation.  The model is not overly sensitive to isolated afterload changes within the range 

of typical physiologic systems (Figures 2.5-2.8), and a number of parameters can be adjusted 

to alter the pressure/flow dynamics.  Therefore, assembling combinations of afterload and 

ventricular parameter changes to mimic some altered state of the physiological system and 

observe accurate trends in all output waveforms is possible. 

 

Model Comparisons and Contributions 

    In the ever-expanding area of computer modeling, it seems necessary to make a brief 

comparison between the model we propose and the models of others currently available.  

Olansen et al. 21 developed a model (based on their previous work with Chung et al. 22) that 

includes a heart model based on time-varying ventricular elastance incorporating ventricular 

interaction through the septum and a time-varying elastance description of the atria.  In 

addition, the model includes pericardial pressure relationships, a closed-loop circulatory path 

that includes systemic and pulmonary circulation, and a parameter estimation routine for 

optimizing afterload parameters based on input data.  The model we developed differs from 

that of Olansen in several ways.  Their model allows users to enter known data and then 

performs parameter optimization according to that dataset.  The user can then modify 

parameter values to mimic some typical or altered circulatory state.  Our model allows 

arbitrary waveform inputs to the open-loop portion, in which the user can vary impedance 

values.  The closed-loop portion of our model does not allow arbitrary waveform inputs due 
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to the ventricular source properties.  In our model we do not, at present, offer a parameter 

optimization routine.  The mathematical description of the ventricle in our model is more 

rigid in that it does not permit large alterations in parameter values for achieving reasonably 

shaped waveforms and the model does not support right/left ventricular interactions.  

Therefore, our model offers starting impedance values that the user can adjust within 

practical limits.  Though more rigid, the ventricular model we use does have some 

advantages in providing a volume-dependent time-varying description of ventricular pressure 

that takes into account changes in ventricular elastance during ejection, isovolumic pressure 

changes and heart rate changes (for a more complete description of the ventricular model 

properties see 53, 58, 82).  Neither our model nor Olansen’s adequately accounts for coronary 

circulation or wave reflections.  Nevertheless, the model by Olansen et al. has been further 

expanded by Lu et al. to include cardiopulmonary interactions and cerebral flow.88  This type 

of expansion with the ventricular source we employ has yet to be done, but we do provide a 

placeholder within our circuit for a satisfactory coronary addition.  Furthermore, the 

LabVIEWTM software we used in development enables extension of our model in areas such 

as parameter fitting, spectral analysis and additional circulatory pathways by inclusion of the 

appropriate functions (subVIs). 

    Another model that is similar to ours is the instructional model published by Davis and 

Gore.23  This model is effective as a basic teaching tool.  The layout is simple to use and an 

executable version is available as a web link.  Davis and Gore’s model enables the user to 

alter a lumped afterload, heart rate, contractility, preload and other main determinants of 

ventricular function, while viewing aortic and ventricular pressure along with P-V loops.  

The Davis/Gore model lacks more detailed waveforms for ventricular pressure, volume, and 
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elastance, as well as aortic pressure and flow.  Our model produces these waveforms from a 

ventricular input in a closed-loop manner.  We have included a coronary and venous portion 

to the feedback along with an afterload of up to 8 lumped parameters (including venous and 

coronary impedance values).  All the afterload elements are individually adjustable (as 

opposed to adjustment of one lumped value in the Davis/Gore model).  A unique description 

of the ventricular source is employed in our model that accounts for the ejection effect 

(described by Danielsen and Ottesen 52, 58) and accommodates changes in contractility and 

heart rate.  In addition, adjustments in preload and venous pressure are available in our 

model, and several important waveforms can be captured and cataloged to data files.  The 

dicrotic notch from the aortic reverse flow does not appear in the waveforms published by 

Davis and Gore.  In our model, this is actually determined by interactions between the 

various parts of our closed-loop (a balance between ventricular pressure, aortic pressure, and 

coronary pressure).  In the open-loop portion, we provide realistic aortic waveforms and 

frequency plots of magnitude and phase for the different afterloads.   We have also provided 

the equations for both open- and closed-loop models along with the electrical analogs on 

which these equations are based.  Our model currently lacks a classroom or laboratory 

teaching module, but an executable version and a full code version are available online at 

http://www.unc.edu/~rcole/SAVIAv1/SAVIAv1_O_A_Form.htm through a no-cost end-user 

license agreement drafted by the University of North Carolina at Chapel Hill. 

    Other models are available with varying degrees of detail, ease of use, and accessibility.89, 

90  While our model is not all-encompassing in its inclusion of circulatory parameters, it does 

contain many basic constituents of the cardiovascular system that are necessary in modeling 

overall circulatory performance.  Also, by the addition of the closed-loop coronary portions, 
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the model is a step forward in expanding the use of the mathematical description of the 

ventricle promoted by Ottesen et al.58, 82  Our specific use for the model did not necessitate 

parameter fitting, neural feedback or certain other factors; therefore, the model was not 

developed with these dynamics.  There are educational uses in introductory studies of 

hemodynamics.  Moreover, there are uses for our model in such areas as estimation and 

cataloging of limitations and trends with changing impedance parameters.  This would be 

useful in guiding future studies with a live heart setup (e.g. Langendorff) or other 

experiments that benefit from an open-loop approach.  Making the aforementioned additions 

of a more realistic coronary circuit and an acceptable neural feedback, along with a feature 

for parameter estimation, would greatly enhance the model’s capabilities and render this 

particular representation of the ventricular source a widely applicable tool for modeling. 

 

Conclusion 

    While it is certainly true that the intricate nature of the systemic circulation belies the 

thoughts of a simplistic model, that such an approach is sufficient on a more basic level has 

been demonstrated repeatedly.  We believe that our lumped-parameter model, fashioned on 

the groundwork of Frank’s windkessel-type systemic afterload and the ventricular pressure 

source (adapted from Ottesen and Danielsen et al.), has demonstrated the ability to capture 

the salient features of the cardiovascular waveforms and follow physiologic trends in these 

waveforms under the influence of changing afterload.  Therefore, the model possesses the 

properties of simplicity and sufficient accuracy in portraying the cardiovascular 

hemodynamics.  These assets establish the model as an instructive tool for students of the 

heart and circulatory system as well as an aid in experimental research.  For purposes of 
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testing the proposed fluid-mechanical dynamic afterload, this model is more than sufficient 

to reveal trends in AOP with impedance changes and to provide a method for testing possible 

open-loop models of the dynamic afterload system. 

 

Acknowledgements 

    The authors would like to gratefully acknowledge the help of Dr. Johnny T. Ottesen from 

the Department of Mathematics and Physics, Roskilde University, Denmark in the 

understanding and implementation of the ventricular model.  T.A. Johnson was supported by 

NHLBI Program Project Grant HL27430 ‘Mechanisms in Sudden Cardiac Death’.  Support 

for R.T. Cole was provided by the William R. Kenan Jr. Fellowship and the Department of 

Biomedical Engineering of the University of North Carolina at Chapel Hill.  Currently, both 

receive support from the Department of Internal Medicine in the Brody School of Medicine 

at East Carolina University. 

 

 

 

 56



 

 
 
 

CHAPTER III 
 

A GENERAL SOFTWARE PROGRAM FOR ACQUISITION AND ANALYSIS OF 
SIGNALS (PAAS)2

 
 

Background 
 
    A clinical research faculty member had previously identified a need for a comprehensive 

analog signal acquisition and power spectral processing program, and our need was to 

develop a software system for data collection and cross-channel investigation to be used in 

system analysis.  Preliminary work 91 demonstrated the scientific value of the spectral 

information from the electrocardiogram collected during ventricular fibrillation (VF) in the 

heart.  Collectively, the team suggested several innovative ways to analyze this spectral data, 

but the original data processing and display system lacked the required features and 

capabilities necessary to interrogate the data with those objectives in mind.  Thus, the basic 

research and engineering faculty joined with the clinician and defined the scope of the project 

which included a comprehensive and flexible state-of-the-art data acquisition platform, a 

multifunctional data selection and analysis capability, data display features that included the 

most common power spectral analysis tools and, finally, simple software tools to permit 

verification of system performance and accuracy while allowing users to generate simple test 

signal constructs and explore processing outcomes using those known inputs.  For our 

purposes, this software program would serve as a tool for system analysis of the dynamic 

                                                 
2 This chapter is a combination of two original articles submitted for publication in the International Journal of 
Engineering Education and Computer Methods and Programs in Biomedicine.  Reprinted with permission of 
the authors. 



afterload we would construct.  The program employs cross-channel frequency analyses using 

averaging methods to achieve noise reduction (discussed subsequently).  These methods 

make the program an ideal platform on which to test the behavior of the dynamic afterload. 

    The program we developed (PAASv1, Program for Acquisition and Analysis of Signals 

Version 1) features real-time signal acquisition, along with analysis and test signal generation 

written in LabVIEWTM (LV) for use with National InstrumentsTM (NI) hardware.  Our intent 

was to duplicate and upgrade the capabilities of our existing collection and analysis software 

while generalizing the routines and expanding its capabilities to include additional time- and 

frequency-domain analyses.  Separate panels for each feature of the new program allow the 

different aspects of the program to be operated independently.  In its final form, the program 

has four panels: a data acquisition panel, two signal selection and analysis panels and a signal 

generation and data conversion panel.  A description of the program follows, and an 

executable version of this program, along with a simple User Manual, is available from the 

authors using the electronic contact information provided through a no-cost end-user license 

agreement drafted by The University of North Carolina at Chapel Hill. 

 

Introduction 

    Correlation and spectral analysis methods are powerful tools for investigation of linear 

systems, as well as signals used to characterize their behavior.  Averaging segmented records 

of stationary waveforms is effective for reducing noise in both the time and frequency 

domains and providing indices of relationships (e.g. correlation and coherence functions) 

between signals.  While many of these procedures have their theoretical origin in the 

continuous domain, contemporary signal processing is applied in the digital realm. 
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We present general algorithms for correlation and spectral analysis and derive discrete 

applications which we test in MATLAB® (ML) and implement in LV, using the 

programming language G.  ML provides a way to rapidly prototype the algorithms and test 

their effectiveness.  LV was chosen as a fast, widely available, and versatile tool for both 

interfacing digital-to-analog conversion hardware (DAC) and expressing discrete algorithms 

for real-time or off-line processing.  The application which we present is an off-line 

processing tool to evaluate interactions between signals before committing the effort of real-

time software development for a specific application. 

    Our description of PAASv1 relates mainly to the presentation and development of the 

discrete algorithm expressions, and verification of their correct software implementation 

through the application of appropriate test signals with known results.  PAASv1 has two 

fundamental modes of use.  The first mode is for collection of signals and analysis of the 

correlation or spectral properties of one or more signals sampled from the analog world.  Of 

particular interest is the interaction between signal pairs, especially when these represent the 

input and output of a system.  The second mode is devoted to generation of test signals, both 

sinusoidal and random, to verify the integrity of the software implementation of the 

algorithms.  We have additionally found that this mode is useful to test the performance of 

various random signals. 

    The equal variance (EV) algorithms we present are practical for analysis of stationary 

signals and noise sources in both time and frequency domains.  This software system is a 

convenient and versatile tool for: (a) estimating the correlation or spectral content of signals, 

(b) investigating the interaction between signals, such as in system identification and, (c) as a 

teaching and learning tool for the student of signal processing. The pragmatic discrete 
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expression of general continuous-time equations for correlation and spectral analysis are 

fully presented. 

 

System and Program Description 

    PAASv1 runs on a Windows PC environment.  We employ data acquisition (DAQ) 

hardware from National InstrumentsTM (NI) integrated with the NI software LV.  The 

instruments and software are used for data sampling, processing and archiving. 

 

Data Collection 

    A diagram depicting the setup for data collection and data file storage is shown in Figure 

3.1 (Panel A), and an illustration of the data collection front panel is shown in Figure 3.2.  

Electrical data is collected via NI DAQ hardware.  LV software is used to sample the signal 

and write out the data to a file in 16-bit binary format.  A time stamp and event markers, 

generated within the collection loop, are written out as separate files.  Within the LV 

collection routine, the user can choose the number of channels, voltage range and A/D 

conversion bits for resolution depending on the NI compatible hardware selected.  Collection 

files for data, time stamp and event markers are named according to the date and time of 

collection.  A window on the collection panel informs the user about initial volume space and 

the size of the data file currently being written.  When collection occurs on multiple 

channels, the user can choose to view up to three of these channels simultaneously on the 

front panel in a strip chart format.  Data collection can be paused and resumed without 

generating any new collection files. 
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C.
Data Generator

B.
Data Analysis

A.
Data Collection

C.
Data Generator

B.
Data Analysis

A.
Data Collection

Electrical Signal

NI DAQ Hardware

Sample signal(s)
Generate time stamp

Set event markers

LV Collection Panel

Data file
16-bit
binary

Time file
32-bit
single

Events file
32-bit
single

Select sample rate

Select signal ampl.

Select signal phases

LV Test Data Panel

Generate test data
and write to file

Select time segment

Retrieve data portion

Plot 1-min. segment

Cursor-select data
region

Select analyses types

LV Analysis Panel 1

Write out analyses

LV Analysis Panel 2

View analyses graphs

Flow Chart for Operation of the Program

 

Figure 3.1  Flow Chart for Operation of the Program.  PAAS has three main features that 
operate independently: data collection (Panel A), data analysis (Panel B), and test data 
generation (Panel C).  These features operate from separate panel displays within the same 
program.  NI data acquisition hardware (NI DAQ Hardware) is required for data collection.  
Due to the number of graphical analyses available, users must toggle between two LV 
analyses panels to see the full results (Panel B). 
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LV Data Collection Panel

 

Figure 3.2  LV Data Collection Panel.  Up to three waveform charts are employed for 
display of the data collected using NI DAQ hardware.  User selectable signal acquisition 
parameters are shown on the left along with event markers. 
 
 

Data Analysis 

    The data analysis portion of the program is diagrammatically represented in Figure 3.1 

(Panel B).  There are two main panels for data analysis (Figures 3.3 and 3.4).  In analysis 

Panel 1, the user selects a certain portion of the data to read in.  A limit is placed on the 

amount of data that can be brought in at any one time (this is necessary to avoid overtaxing 

the system RAM for large data files).  The incoming data is graphed in one-minute segments, 

and a chosen (possibly smaller) segment of this data is graphed on a separate plot for 

selection of an analysis region.  Moveable cursors are employed to define the data to be 
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analyzed, and the user can choose different analysis types and various cross-channel 

comparisons.  Graphical and tabular results from these analyses can be written out to a 

spreadsheet file.  The user can toggle between analysis Panel 1 and analysis Panel 2 in order 

to view correlation, spectral and coherence analyses results.  In analysis Panel 2, auto- and 

cross-correlation, auto- and cross-spectra and coherence analyses are presented in separate 

plots.  The user may choose to view any or all of the single-channel or cross-analyses pairs 

on the graphs simultaneously. 

LV Data Analysis Panel 1LV Data Analysis Panel 1

 

Figure 3.3  LV Data Analysis Panel 1.  All channels of the data file are read in on this panel 
and can be displayed, one channel at a time, in the upper graph.  Data in the upper graph is 
decimated (every other point in the display only) to reduce memory requirements.  The 
middle graph displays a portion of the full, undecimated data and allows cursor selection of 
an analysis region.  Controls for customizing analysis display, for cross-analysis choices, and 
for time epoch selections appear on the left. 
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LV Data Analysis Panel 2LV Data Analysis Panel 2

 

Figure 3.4  LV Data Analysis Panel 2.  Additional analysis graphs are presented on the 
second analysis panel.  These include auto- and cross-correlation (upper and middle plots on 
left), auto- and cross-spectra (plots on right), and coherence (lower plot on left).  Controls 
and information regarding channel views, cross-analysis pairs and time epoch selections are 
displayed on the left. 
 
 

Test Data Generation 

    A fourth panel in the program was designed for the generation of user-defined test data 

(diagrammatically presented in Figure 3.1 Panel C and Figure 3.5).  A one minute segment 

for two signals may be generated and placed in an external data file.  Each signal is formed 

by the summation of as many as four sinusoids having known amplitudes, frequencies, 

phases and sample rates.  Once generated, the signals are written to a data file.  That file, in 
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turn, can be reloaded using the signal analysis panels and processed as though it were source 

data collected from the NI DAQ hardware.  The data generator panel also enables conversion 

of text-formatted data files into a suitable binary format for import into the data analysis 

panels, thereby allowing a wider range of signal sources to be analyzed. 

LV Data Generation Panel

 

Figure 3.5  LV Data Generation Panel.  In this panel, two alternate forms of data entry into 
the main analysis panels are provided.  In one pathway, two separate data signals can be 
generated using a summation of known sine wave components that are subsequently sampled 
and saved for retrieval by the analysis panels.  In the second pathway, ASCII formatted data 
collected from other sources can be imported for analysis. 
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Computational Methods and Theory 

Overview 

    Standard correlation, spectral and coherence formulas that are based on continuous signals 

are excellent for theoretical development.  However, these formulas are not practical for 

discrete computations using biological signals which must be digitally sampled. 92, 93  For 

many types of biomedical signal analyses, it is also important to partition the data into 

smaller time epochs.  This allows progression of time-dependent phenomena to be more 

readily observed and formats the data for statistical weighting.  We have programmed 

discrete implementations of these algorithms accordingly, to be suitable for sampled signal 

analysis.  Our algorithmic implementation of these correlation and spectral formulas enable 

operation on partitioned data, provide unbiased estimates and give equal statistical weight to 

each data point. 

 

Implementation of Digital Algorithms for Correlation, Spectra and Coherence 

    Continuous time formulas for unbiased auto- and cross-correlation (Rxx, Rxy) , one-sided 

auto- and cross-spectra (Gxx, Gxy) and coherence (γxy) estimates (^) are given by Bendat and 

Piersol. 93  These are shown in equations 1-5: 
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 Xk and Yk denote the continuous time Fourier transform of x and y. 
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Correlation Algorithm Implementation 

    When converted to algorithms for discrete time, an unbiased version of the auto- and 

cross-correlation functions may be derived from Bendat and Piersol 92 as shown in equations 

6 and 7.  The inclusion of only positive lag numbers (positive values for m) results in a 

correlation which contains only M points from 0 to M-1.  We hereafter refer to this as a one-

sided correlation.  For a full correlation with both positive and negative lag values, the limits 

on m would run from – (M-1) to +(M-1), providing 2M-1 points in the full correlation.  This 

full correlation we have termed two-sided. 
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 where M is the total number of points in the data record. 

It is readily observed from equations 6 and 7 that the variance (statistical weight) is not equal 

for each point of the correlation.  For example, the m = 0th value of the correlation is formed 

from the sum of M multiplications, while the m = (M-1)th value of the correlation is formed 
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from the sum of only one product term.  To achieve an unbiased discrete time correlation 

function with equal statistical weight (equal variance) for each correlation point, we chose to 

divide the M data points into 2λ segments of length N (refer to Figure 3.6).  Thus, 2λN = M, 

and λ is the number of 2N segments of M.  We then defined a p segment where p includes 

2N points (i.e. one of the λ segments).  For M equal to some 2x number of data points, we 

can set the limits on each variable in our EV correlation formula: N = 1,2,3,…2x/2λ;  n = 

1,2,3,…N;  m = 0,1,2,…N-1;  p = 0,1,2,… 2λ-1.  The one-sided discrete time EV correlation 

formulas are given in equations 8 and 9: 
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    In effect, these formulas provide an expected value for the correlation by averaging the 

correlation from 2λ-1 of the p segments, each of length 2N.  From Bendat and Piersol, the 

autocorrelation function is by definition an even function, 93 and a one-sided version, where 

the shift occurs only toward positive m, is sufficient for this process.  However, for the cross-

correlation, the relationship between a positive shift in m (Rxy(+m)) and a negative shift in m 

(Rxy(-m)) is not as straightforward. 94  To achieve a two-sided cross-correlation with equal 

variance, we shifted the signals in both the positive and negative direction and linked these 

two results at the m = 0 point. 

    For a practical understanding of how the formula operates on the data, consider taking the 

first 2N points (sections A and B in Figure 3.6) as the first 2N segment (where p = 0 = p0).  

The correlation of the first N points (section A) can be calculated using these first 2N points.  
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By shifting the p segment down N points (to section B) and repeating the correlation process, 

we will obtain the correlation for the points in section B using the points from sections B and 

C.  This process is repeated until the final 2N points are employed as the last p segment.  In 

the calculation of each segment’s correlation, we use only N points at any one time for the 

multiplication and summation.  We accomplish this by setting the last N points in the shifting 

p segment to zero.  These zeros are shifted through the p segment as the p segment is shifted 

down each data point (e.g. the last value of the p segment used to calculate the m = 0th 

correlation point will become the first value of the p segment used to calculate the m = 1th 

correlation point).  Thus, at any one time, N of the multiplication and summation values are 

zero.  The factor in the summation is 2λ-1, rather than 2λ, because the first and last segments 

are not included in the correlation.  A two-sided process for cross-correlation is illustrated in 

Figure 3.6.  The process is the same for both a positive shift in m to calculate (Rxy(+m)) (top 

portion of the figure) and a negative shift in m to calculate (Rxy(-m)) (bottom portion of the 

figure).  For this correlation implementation, each correlation point has equal variance. 
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Figure 3.6  Illustration of the Data Partitioning Method.  A total of M points are segmented 
into 2λ divisions of N-points each.  Any two consecutive N-point divisions constitute a 2N 
point partition (p).  The points within a p segment are employed to generate the correlation 
for the first N points in the segment.  The cross-correlation is obtained by averaging the 
correlation over 2p segments.  Twice the number of segments (4λ) occurs in the cross-
correlation due to the positive shift in time (Positive m) and the negative shift in time 
(Negative m). 
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Spectral Algorithm Implementation 

    The discrete time version of the one-sided autospectrum is related to the continuous 

Fourier transform in equations 10 and 11. 92 

 1( ) ( )X k X
h

= f  h = sample period = 1/(fs) = 1/(sampling freq.) 10 

 22 2( ) ( ) ( )xx xxG f h G k E X k
T
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Combining these formulas and equation 3, with T = Nh (where T is the sampling period and 

N is the number of data points in T), we obtain the following formula for the estimate of the 

one-sided auto-spectra. 
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This formula includes an averaging over all 2λ segments of the data record where r 

increments through the N-point segments (e.g. r = 1 is segment A in Figure 3.6). Each one-

sided spectrum is calculated for N points, and this process is repeated until a spectrum has 

been calculated for all 2λ segments.  The spectra for all 2λ segments are then averaged to 

provide an estimate of the autospectrum over all M points. 

    Following the development of the auto-spectrum estimate above for 2λ sequential 

segments of the M-point data, the cross-spectrum estimate is obtained (equation 13).  
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Note that the cross-spectrum estimate contains both magnitude and phase information.  This 

differs from the autospectrum estimate which contains only a magnitude.  To actually 

implement this formula, we expand the Fourier transforms into their real and imaginary parts 

as given below: 
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 ( ) ( ) ( )R IX k X k jX k∗ = −        14 

        15 ( ) ( ) ( )R IY k Y k jY k∗ = −

Here the subscripts R and I denote the real and imaginary parts of the DFT respectively.  

When the product of X*(k)r and Y(k)r (r is the index of the 2λ segments) is formed within the 

summation of the cross-spectrum estimate, four product terms are generated (two real and 

two imaginary) summed over the 2λ partitions.  Writing out these terms under the summation 

and collecting real and imaginary parts produces the following:
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Simplifying the notation (below), this equation can be written as equation 16. 
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where the summation symbol and the removal of the subscript from the DFT terms 

indicates a summation over the 2λ segments. 

In this implementation, each spectral point has equal variance.  The magnitude of the cross-

spectrum estimate is given by equation 17. 
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    The determination of an estimate for phase is slightly more involved, as the arctangent 

function will only place the complex vector in the first or fourth quadrant.  Therefore, we 

determined the quadrant separately, and placed the angle in the proper quadrant. 
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i. First quadrant: ( )RXY k∑  and ( )IXY k∑  both positive 
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ii. Second quadrant: ( )RXY k∑  negative, ( )IXY k∑  positive 
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iii. Third quadrant: ( )RXY k∑ and ( )IXY k∑  both negative 
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iv. Fourth quadrant: ( )RXY k∑ positive, ( )IXY k∑  negative 
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    The phase spectrum estimate has valid values between ± π, irrespective of the magnitude 

of the data. Therefore, erratic swings in phase will occur at frequencies where noise 
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dominates the signal.  Displaying these erratic swings in the phase plot was avoided by 

comparing the kth point in the magnitude plot to the maximum value of the cross-spectrum 

magnitude estimate.   If the value of the magnitude plot at this kth point was less than 5% of 

the maximum, then we assigned the corresponding point in the phase plot a value of zero (i.e. 

of no interest).  This percent value for the zero threshold is adjustable within the code to 

allow accommodation of various noise levels. 

 

Coherence Algorithm Implementation 

    The coherence estimate in equation 22 follows directly from the determination of the auto- 

and cross-spectral estimates. 92, 93   
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For the sake of brevity, we hereafter drop the phrase “estimate” when referring to the auto- 

and cross-spectrum and coherence.  Furthermore, the notation for the auto- and cross-

correlation, auto- and cross-spectra, and coherence will be shortened by dropping the discrete 

time function notation.  In equation 22, the auto- and cross-spectra are calculated with 

discrete time algorithms as opposed to the assumption of continuous time in equation 5.  

Since the auto- and cross-spectra are averaged from the 2λ partitions of N points, the 

coherence is also estimated over the 2λ partitions.  When calculating the coherence, the noise 

threshold (5% threshold mentioned previously in the phase calculation description) was again 

employed. 
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Verification of the Implemented Algorithms 

    The EV algorithms were initially programmed and tested in ML.  After testing, the 

algorithms were implemented in LV as virtual instruments (VIs).  Test signals are used, first 

to validate the implementation of the algorithms, and second to illustrate the detection of an 

input signal with noise present.  In both the EV correlation and spectral analyses, we provide 

unaveraged versions of these calculations obtained using the non-segmented signal.  This is 

included to illustrate the noise reduction obtained using the EV algorithm.  The cross-

correlation function in ML is used to generate the standard unbiased cross-correlation.  The 

ML algorithm creates a correlation with 2M-1 points, where M is the total number of data 

points in y(n) while the EV algorithm generates 2N-1 points.  For the unaveraged spectra, the 

calculation will produce M points, whereas the averaged spectra will be N points in length. 

It is important to note that we employed pseudorandom noise non-integer multiple (PRN-

NIM) as demonstrated by Maki. 95  This type of noise was used to minimize bias error due to 

correlated effects of pseudo-random noise (PRN) 95 and to illustrate the effectiveness of the 

averaging techniques.  The PRN-NIM was generated as a sum of sinusoids where the 

sinusoids had frequencies that were non-integer multiples of each other.  The phases for each 

sinusoid were assigned by a pseudorandom process over each N-point period using the ML 

pseudorandom number generator in the range from 0 to 2π.  An illustration of a known input 

signal with PRN added is provided in the results for a comparison between the two types of 

noise for both correlation and spectral methods.  A brief comparison of the two types of PRN 

is given in the Discussion. 

    The types of signals we employed in our tests were as follows: elementary sinusoids 

without noise for which the correlation, spectra and coherence was known; elementary 
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sinusoids plus high PRN-NIM; elementary sinusoids plus high PRN.  The first, noise-free 

signal assures validity of the implemented correlation and spectral algorithms.  The PRN-

NIM and PRN test signals illustrate the performance of our implementation of the spectral 

and correlation methods. 

 

Samples of Typical Program Runs 

Verification of the Implemented Algorithms 

Elementary Sinusoidal Signals with Known Correlation, Spectra and Coherence 

    Figures 3.7 and 3.8 illustrate the results for a pair of basic sinusoidal signals.  The two 

signals used, x(n) and y(n), are given by: 

 

1 1 1( ) 2 sin( ) sin(2 ) sin(4 ) sin(8 )
1.33 1.5 2

x n nf nf nf nf random noise⎡ ⎤
= + + + +⎢ ⎥

⎣ ⎦
  23 

1 1( ) 2 sin( ) 0 sin(4 ) sin(8 )
2 3 41.5 2

y n nf nf nf random noiseπ π π⎡ ⎤
= + + + + + − +⎢ ⎥

⎣ ⎦
    24 

 

 where f is the fundamental frequency and random noise is PRN-NIM. 

    The parameters for the simulation (refer to Figure 3.6) were: M = 20480, λ = 10, N = 

1024, f = 8 Hz.  Random noise was equal to zero for this test, and the sine wave amplitudes 

were limited to a range of ± 21/2.  The threshold for the phase and coherence plots was set to 

5% of the maximum value of the cross-spectrum magnitude.  Values of Gxy magnitude that 

were less than this 5% value were set to zero before they were used to calculate the phase and 

coherence.  However, all values of the Gxy magnitude were preserved for the cross-spectral 

magnitude plot in Panel C of Figure 3.8. 
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    The sinusoidal signals are shown in Panels A and B of Figure 3.7.  These signals were 

cross-correlated using two methods.  The first method was the EV algorithm (Panel E) and 

the second method (Panel F) was the ML algorithm (standard method).  Because we partition 

the data into smaller segments, the number of points in the EV correlation is limited to 2N-1 

(2047) as opposed to the 2M-1 points generated in the ML algorithm.  Panel C illustrates the 

2N-1 point Rxy (EV algorithm without averaging).  The ML cross-correlation of 2N-1 points 

is illustrated in Panel D, while the entire ML cross-correlation (2M-1 points) is presented in 

Panel F.  Panels C, D and E are very similar in appearance, as we are using a deterministic 

signal without noise, and are presented to verify the methods.  Note the divergence at the end 

points of Panel D. 

    In Figure 3.8 (no random noise) the autospectra from the signals of equations 23 and 24 

are shown in Panels A and B.  Panels C and E illustrate the cross-spectral plots for magnitude 

and phase respectively.  The coherence of the two input signals is provided in Panel D, and 

the unaveraged cross-spectrum is given in Panel F (inconsistent estimate). 93  As expected 

when using deterministic signals with no noise, Panels C and F are identical. 
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Figure 3.7  Signals and Correlation (No Noise).  Panels A and B contain 2048 points of the 
sinusoidal signals with no random noise.  Rxy using the EV algorithm is given in Panel E.  In 
Panel C, the unaveraged Rxy for a single N-point segment of the data partition is shown (ie. 
this is one of the Rxy segments included in the averaged result in Panel E).  Panel F shows the 
ML Rxy using the complete x(n) and y(n) signals.  Panel D contains the ML Rxy for only the 
initial 1024 points of x(n) and y(n).  Note the divergence at the end points of Panel D. 
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Figure 3.8  Spectra (No Noise).  Panels A and B illustrate the autospectra of the sinusoidal 
signals without random noise using the averaging algorithm.  In Panels C and E, the EV 
algorithm was used to obtain the magnitude and phase of Gxy.  Panel D shows the coherence 
of the cross-spectrum obtained using the averaged Gxy.  In Panel F, the magnitude of the 
unaveraged Gxy is given, where the cross-spectrum was obtained without partitioning the 
signals. 
 

Elementary Sinusoidal Signals with High PRN-NIM Added 

    Figures 3.9 and 3.10 illustrate the results for the sinusoidal signals of equations 23 and 24 

where a large amplitude of PRN-NIM was added (random noise had a range of 
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approximately ± 50*21/2 and the sine wave amplitudes were limited to the ± 21/2 range, for a 

50/1 noise to signal ratio).  The parameters for this simulation (refer to Figure 3.6) were: M = 

20480, λ = 10, N = 1024, f = 8 Hz.  The zero threshold for the phase and coherence plots was 

set to 5% of the maximum value of the cross-spectrum magnitude. 

    Panels A and B of Figure 3.9 show sinusoidal signals with high PRN-NIM added.  The 

signals were cross-correlated using the EV method (Panel E) and the ML algorithm (Panel 

F).  Panel C illustrates the 2N-1 point Rxy (EV algorithm without averaging), and Panel D 

shows a 2N-1 point cross-correlation obtained using the ML algorithm. 

    In Figure 3.10, the averaged autospectra from the signals with high PRN-NIM contain 

noise peaks at the appropriate frequencies (Panels A and B).  The peaks from the sinusoidal 

signals of known frequency appear just above the baseline, being vastly overshadowed by the 

noise peaks.  Panels C and E illustrate the cross-spectral plots for magnitude and phase 

respectively.  The coherence estimate for the input signals is provided in Panel D.  Panel F 

shows the cross-spectral results obtained using the algorithm without averaging. 
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Figure 3.9  Signals and Correlation (PRN-NIM).  Panels A and B contain 2048 points of the 
sinusoidal signals plus PRN-NIM of amplitude ± 50*21/2.  These are the same signals as in 
Figure 3.7, with a noise to signal ratio of 50/1.  Rxy using the EV algorithm is given in Panel 
E.  In Panel C, the unaveraged Rxy for a single N-point segment of the data partition is shown 
(i.e. this is one of the Rxy segments included in the averaged result in Panel E).  Panel F 
shows the ML Rxy using the complete x(n) and y(n) signals.  Panel D contains the ML Rxy for 
only the initial 1024 points of x(n) and y(n).  Note the large divergence at the endpoints in 
Panels D and F. 
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Figure 3.10  Spectra (PRN-NIM).  Panels A and B illustrate the autospectrum of the 
sinusoidal signals plus PRN-NIM (amplitude ± 50*21/2) using the EV algorithm.  These are 
the same signals as in Figure 3.7, with a noise to signal ratio of 50:1.  In Panels C and E, the 
EV algorithm was used to obtain the magnitude and phase of Gxy for the two signals.  Panel 
D shows the coherence of the cross-spectrum obtained using the averaged Gxy.  In Panel F, 
the magnitude of the unaveraged Gxy is given, where the cross-spectrum was obtained 
without partitioning the signals.  Note the difference in noise levels between Panels C and F. 
 
 
Elementary Sinusoidal Signals with High PRN Added 

    Figures 3.11 and 3.12 illustrate the results for the sinusoidal signals of equations 23 and 24 

where a high amount of PRN was added (PRN had a range of ± 10*21/2 and the sine waves 
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were limited to the ± 21/2 range, for a 10/1 noise to signal ratio).  The parameters for this 

simulation (refer to Figure 3.6) were: M = 20480, λ = 10, N = 1024, f = 8 Hz.  The zero 

threshold for the phase and coherence plots was set to 5% of the maximum value of the 

cross-spectrum magnitude. 

    Panels A and B of Figure 3.11 show sinusoidal signals with PRN added at approximately 

10 times the amplitude of the largest sinusoid. These two signals were cross-correlated using 

the EV method (Panel E) and the ML algorithm (Panel F).  Panel C illustrates the 2N-1 point 

Rxy (EV algorithm without averaging), and Panel D shows a 2N-1 point cross-correlation 

obtained using the ML algorithm. 

    Panels A and B of Figure 3.12 show the autospectra from the signals with the added PRN.  

The cross-spectra, revealing the common frequencies between the input signals, are shown in 

Panels C and E (magnitude and phase), and the coherence estimate is provided in Panel D.  

An unaveraged (inconsistent estimate) of the cross-spectral magnitude is given in Panel F.  

Note the similarity between Panels C and F. 
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Figure 3.11  Signals and Correlation (PRN).  Panels A and B contain 2048 points of the 
sinusoidal signals plus PRN of amplitude ± 10*21/2.  These are the same signals as in Figure 
3.7, with a noise to signal ratio of 10:1.  Rxy using the EV algorithm is given in Panel E.  In 
Panel C, the unaveraged Rxy for a single N-point segment of the data partition is shown (i.e. 
this is one of the Rxy segments included in the averaged result in Panel E).  Panel F shows the 
ML Rxy using the complete x(n) and y(n) signals.  Panel D contains the ML Rxy for only the 
initial 1024 points of x(n) and y(n).  Note the large divergence at the endpoints of Panels D 
and F. 
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Figure 3.12  Spectra (PRN).  Panels A and B illustrate the autospectrum of the sinusoidal 
signals plus PRN (amplitude ± 10*21/2) using the EV algorithm.  These are the same signals 
as in Figure 3.7, with a noise to signal ratio of 10:1.  In Panels C and E, the EV algorithm 
was used to obtain the magnitude and phase of Gxy for the two signals.  Panel D shows the 
coherence of the cross-spectrum obtained using the averaged Gxy.  In Panel F, the magnitude 
of the unaveraged Gxy is given, where the cross-spectrum was obtained without partitioning 
the signals.  Note the similarity between Panels C and F. 
 
 
Characteristic Effects of PRN vs. PRN-NIM 

    Apparent in Figure 3.12 (Panels C and F) is the lack of noise reduction in the segmented 

cross-spectrum of the signal with PRN as compared to the unsegmented cross-spectrum.  
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Furthermore, there is little or no reduction in noise level between auto- and cross-spectral 

analyses (Panels A, B and C).  These plots seem to indicate that there is no advantage to the 

segmented cross-spectrum for noise reduction when PRN is used, especially when compared 

to the substantial noise reduction seen in Figure 3.10 (where PRN-NIM is used).  To explain 

this outcome, a correlation test was performed for both the ML PRN and the PRN-NIM 

(Figure 3.13), to reveal the degree to which the noise is correlated with itself. 96  Correlated 

noise would affect the ability of any algorithm to reduce noise levels using averaging 

techniques.  It should be noted that we tested PRN from several sources including LV, 

Mathematica®, PCQNGTM, 97 and random.org (True Random Number Service). 98  The ML 

PRN algorithm performed at least as well as any of these other sources, so only the ML PRN 

is included in Figure 3.13.  In Panel A of Figure 3.13, the initial 64 points (from a record of 

20480 points) are shown for two records of ML PRN.  Panel B of Figure 3.13, illustrates the 

same for PRN-NIM.  These plots illustrate that the noise from each source was of 

approximately the same amplitude.  The autocorrelation for one of the ML PRN signals from 

Panel A is shown in Panel C, and the cross-correlation for the pair of ML PRN signals from 

Panel A is shown in Panel E.  The corresponding records for the PRN-NIM are shown in 

Panels D and F.  The cross-correlation of the PRN-NIM demonstrates a large reduction in 

noise level, as seen in Panel F (uncorrelated noise), while the cross-correlation of PRN, as 

illustrated in Panel E, shows no reduction (correlated noise). 
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Figure 3.13  Signals and Correlation (MATLAB PRN and PRN-NIM).  Panels A and B 
illustrate two types of noise: ML PRN (Panel A), PRN-NIM (Panel B).  In both panels, the 
dotted line and solid line represent two different noise signals.  In Panel C the Rxx is shown 
for one of the noise signals in Panel A (zero lag point removed), and Panel D shows the Rxx 
for one of the noise signals in Panel B (zero lag point removed).  Panel E gives the Rxy of 
both noise signals in Panel A, and Panel F shows the Rxy for both noise signals in Panel B.  
This is the center portion (with the minimum variance) of the 40959 points in the Rxy. 
 
 
Biomedical Applications Example 

    Coincident HRV and respiratory signals from a pediatric subject are shown in Panels A 

and B of Figure 3.14 (a representative number of data points from the total number data 
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points).  For this subject, the heart rate was approximately 180 b.p.m., and the respiratory 

rate was in the range of 0.6 to 1.0 Hz.  The data was provided at 224 Samples/sec from the 

SpaceLabs Ultraview 1700 Monitoring system (Spacelabs Medical, Redmond, WA, USA) 

SQL database.  The parameters for this application (refer to Figure 3.6) were: 7 segments 

with 128 points per segment.  The respiratory signal (arbitrary units) was re-sampled at the 

same points in time as the HRV signal.  The zero threshold for the phase and coherence plots 

was set to 30% of the maximum value of the cross-spectrum magnitude. 

    Panels C and E of Figure 3.14 show the cross-spectrum (magnitude and phase) from the 

HRV and respiratory signals.  The coherence estimate for the HRV and respiratory signals is 

shown in Panel D, and the unaveraged estimate of the cross-spectral magnitude is provided in 

Panel F. 
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Figure 3.14  Spectra (HRV and Respiration).  Panel A illustrates a portion of the HRV signal 
from a pediatric subject.  Panel B shows a portion of the coincident respiratory signal from 
the same subject (solid line) with the re-sampled respiratory signal overlaid (circles).  In 
Panels C and E, the magnitude and phase of Gxy are shown.  Panel D provides the coherence 
of the cross-spectrum.  In Panel F, the magnitude of the unaveraged Gxy is given, where the 
cross-spectrum was obtained without partitioning the signals. 
 
 
Discussion 

    There is considerable interdependence in the many processes in biological systems, from 

the whole organ systems to the level of chemical reactions.  Discovery and quantification of 

 89



these interactions is valuable in the understanding of normal physiology and in the pathology 

of disease processes.  While most biological processes are both nonlinear and nonstationary, 

methods of nonlinear and nonstationary analysis are not consistent with the powerful 

methods of linear analysis, nor do they conform well to the conceptual generalizations of our 

reasoning.  Thus nonlinear processes are sometimes described as counter-intuitive.  However, 

many of these processes may be linearized, and analyzed under carefully controlled 

circumstances where stationarity may be approximated.  Under these conditions we may use 

correlation and spectral methods to study both the characteristics of individual biological 

signals as well as the interaction between them.  To this purpose, we have developed a very 

fast and powerful software package to apply the tools of linear signal processing to biological 

systems.  

    We have previously reported software packages, specialized to investigate the behavior of 

very specific biological systems, including thalomo-cortical evoked potentials (LINK 

computer), 99 neuromuscular bioelectric potentials (PDP-11), 100 neurally evoked potentials 

(PDP-11), 101 and spectral analysis of the EEG (IBM-AT). 102 Our interests in this application 

are very general. 

    Our immediate interests in developing this software are to investigate linear interactions 

between various biological signals, in health and disease, to provide a tool for behavioral 

analysis of physical systems, as well as to have a convenient tool to compose and validate an 

optimal white noise signal for system identification. 103 We define this optimum white noise 

signal to have broad spectral range and to be independent with itself (uncorrelated with itself, 

either in time offset or in independent parallel generation). That is, ensemble and segmented 

independence. 
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System and Program Description 

    The flow chart in Figure 3.1 and Figures 3.2 – 3.5 illustrate a number of options that are 

available within the LV collection and analysis system.  With only basic inputs required, the 

data collection portion is straightforward.  Collection files for the data are stored in an 

efficient 16-bit binary format, and the user can view several channels and track file size 

information during collection.  In the data analysis section the choice of analyses and 

partitioning of the data is uncomplicated assuming some basic understanding of the data 

partitioning method and analysis types (see Computational Methods and Theory section).  A 

variety of methods are available for auto- and cross-analysis of numerous channels, and the 

results can be saved for future processing. 

 

Implementation of Digital Algorithms for Correlation, Spectra and Coherence 

Correlation Algorithm Implementation 

    Typical digital correlation algorithms produce marked inconsistencies in their output due 

to the changing variance (statistical weight) through the record (see discussion of equations 6 

and 7 in Computational Methods and Theory section). 93  This is illustrated by the results 

from the ML algorithm in Panels D and F of Figures 3.7, 3.9, and 3.11.  In Figure 3.9 Panel 

F, a value of the correlation exceeding 50 occurs near the endpoints of the ML results; 

however, in the central portion of the ML results, the cross-correlation is very similar in 

magnitude to the results we achieved (Panel E).  Panel E of Figures 3.7, 3.9, and 3.11, 

illustrate the effect of equal variance at each data point from the EV algorithm, which 

produces an output that does not diverge at the endpoints.  The implementation of an 

averaging process to achieve unbiased results and equal statistical weight required 
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partitioning of each data set, and the resultant correlation contains fewer data points than the 

standard correlation algorithm.  With our implementation of the algorithm, we are showing 

the local correlation over an extended period of time, and the correlation maintains the same 

variance at both ends.  The standard cross-correlation method shows the global correlation 

over the same extended period, but it loses resolution at the end points due to monotonically 

increasing variance.  The final step in our implementation averages the correlations for each 

local area to reveal the average local correlation for the extended period. 

 

Spectral Algorithm Implementation 

    Dramatic noise reduction is achieved by averaging multiple records from an ensemble of 

records or from segments of a single record. 92, 93, 95   This effect can be observed when the 

cross-spectrum from the EV averaging algorithm is compared to the cross-spectrum where 

averaging is not employed (note Panels C and F of Figure 3.10).  In Panel F, the level of the 

noise overtakes the underlying signal at certain frequencies, whereas the underlying signal is 

clear from Panel C.  The phase plot is restricted to only show phase at frequencies where 

significant cross-spectral magnitude occurs (e.g. > 5% of maximum). 

 

Coherence Algorithm Implementation 

    The coherence function is derived from information shared between multiple records of 

the auto- and cross-spectra.  Noise is diminished by elimination of variations which are not 

common to the two data records: to generate a coherence function which has pragmatic value 

when displaying only those results where the data exceeds a minimum threshold in the cross-

spectral plot (i.e. where the amplitude of the cross spectrum is significant).  For our 
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implementation, the coherence plot reveals peaks of magnitude 1 only at the common 

frequencies of the test signals and zero at all other frequencies.  This interaction between 

signals is as expected in the absence of noise (Panel D of Figure 3.8) as well as in the 

presence of very high amplitude (50/1 noise to signal ratio) PRN-NIM noise (Panel D of 

Figure 3.10). 

 

Verification of the Implemented Algorithms 

Elementary Sinusoidal Signals with Known Correlation, Spectra and Coherence 

    Figures 3.7 and 3.8 illustrate the results for a simple sum of sinusoids with known 

amplitudes and phase shifts.  The auto- and cross-correlations of the elementary sinusoids, 

shown in Panels C, D and E of Figure 3.7, are periodic as would be expected for periodic 

input signals. 94  In Panel F, the 2M-1 point ML cross-correlation results are shown for the 

full data set, and the amplitude is approximately the same as with the EV algorithm results 

shown in Panel E.  In the absence of noise, the EV algorithm generates identical results to the 

averaged (Panel E) and unaveraged (Panel C) cross-correlation.  However this differs from 

the result of the ML algorithm, where the cross-correlation diverges at the end points in Panel 

F.  This divergence is illustrated in Panel D, where the data set is reduced to N = 1024 points 

for each signal.  This occurs because the variance of the data increases from the variance of 

2048 points in the middle (where the signals are completely overlapped) to the variance of 2 

data points at the ends (where only a single point of each data set overlaps).  While this effect 

is not dramatic in the absence of noise (Figure 3.7), it is clearly evident when noise is present 

(Figures 3.9 and 3.11). 
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    Panels A and B of Figure 3.8 illustrate the autospectra of two test signals composed of 4 

sinusoids: three sinusoids at frequencies common to both, but differing in phase, and the 

fourth sinusoid at a frequency present in only one of the signals.  The cross-spectral plots 

demonstrate peaks at the common frequencies (Panel C), with phase shifts of +π/2, +π/3, and 

-π/4 as seen in Panel E.  In Panel D, the coherence is 1 at the frequencies common to the 

signals and zero elsewhere.  The single record cross-spectrum of Panel F is identical to the 

multiple record cross-spectrum in Panel C.  This validates our implementation of the spectral 

algorithms for the condition of multiple deterministic signals in the absence of noise. 

 

Elementary Sinusoidal Signals with High PRN-NIM Added 

    Figures 3.9 and 3.10 illustrate the results for elementary sinusoids with known amplitudes 

and phase shifts with high PRN-NIM added (N/S = 50/1).  This high level of PRN-NIM 

renders signals that show no signs of the underlying sinusoids (Panels A and B of Figure 

3.9).  Both the auto-correlations (not shown) and cross-correlation (Panels C, D, and F) are 

noisy, as would be expected in the presence overriding noise.  Note that the correlation at the 

end points in the unaveraged EV algorithm is consistent with the correlation in the central 

portion (Panel C).  However, the ML (standard) algorithm diverges dramatically at the end 

points (Panel D).  For the correlation in Panel C, the variance is constant throughout the 

record, while the variance in Panel D increases from the center to the endpoints.  

Additionally, for the EV algorithm, averaging over the segments (2N-1 point correlation for 

each segment) may be applied to greatly diminish the noise in the correlation record (Panel 

E), while the ML correlation (2M-1 points) illustrates less noise reduction at the central 

points and the dramatic divergence at the end points (Panel F). 
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    The autospectra of the sinusoids plus high PRN-NIM tests signals are presented in Panels 

A and B of Figure 3.10.  They illustrate the 50 fold N/S ratio of the PRN-NIM noise over the 

sinusoidal test signals, with the test signals barely above the baseline.  The non-overlapping 

frequencies, which characterize PRN-NIM noise, is also evident in these panels.  However, 

the multiple record cross-spectrum eliminates the PRN-NIM noise, revealing the underlying 

signal, as evident in the magnitude (Panel C) and phase (Panel E) spectra.  These are 

comparable to the cross-spectral case with no noise present, as seen in Panels C and E of 

Figure 3.8, with non-zero coherence of 1 only at the common frequency tests signals (Panels 

D of Figures 3.8 and 3.10).  In Panel F, however, the single record cross-spectrum indicates 

the presence of the PRN-NIM noise in the data, as expected.  This validates the 

implementation of the spectral algorithms in the presence of uncorrelated noise. 93 

 

Elementary Sinusoidal Signals with High PRN Added 

    Figures 3.11 and 3.12 illustrate the results for elementary sinusoids with known amplitudes 

and phase shifts with high PRN added.  While the PRN is at a much lower level in Panels A 

and B of Figure 7 (N/S = 10/1) than for the PRN-NIM shown in Panels A and B of Figure 3.9 

(S/N = 50/1), the signals still do not reveal the underlying sinusoids.  Both the auto-

correlations (not shown) and cross-correlation (Figure 3.11; Panels C, D, and F) are noisy, as 

would be expected in the presence of overriding noise.  However, the correlation at the end 

points in the unaveraged EV algorithm is consistent with the correlation in the central portion 

(Panel C), while the ML (standard) algorithm diverges dramatically, with the variance, at the 

end points (Panel D).  Additionally, for the EV algorithm, averaging over the segments (2N-1 

points per correlation per segment) may be applied to greatly diminish the noise in the 
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correlation record (Panel E), while the ML correlation (2M-1 points) illustrates less noise 

reduction at the central points and divergence at the end points (Panel F). 

    Panels A and B of Figure 3.12 illustrate the autospectra of the two input signals (with 

PRN).  The baseline noise is lower than with the PRN-NIM case due to the lower N/S ratio, 

and because the power of the PRN is uniformly spread throughout the spectrum.  The highly 

correlated nature of the PRN is evident in that the N/S ratio is minimally diminished in the 

cross spectrum, with high coherence throughout the spectrum.  Of particular interest is that 

the magnitude of the cross spectrum, at the frequencies of the common test signals, are 

actually increased and the phases shifted, indicating interaction between the test signals and 

the PRN.  These results, for both the PRN and the PRN-NIM cases, are consistent with the 

findings reported by Maki, 95 and validate the implemented spectral algorithms. 

 

Characteristic Effects of PRN vs. PRN-NIM 

    PRN is commonly added to signals in order to achieve increased frequency resolution in 

determination of system transfer functions.  This is mainly due to its easy availability in 

software such as ML.  A major problem with this approach is that significant energy in PRN 

can oftentimes be associated with frequencies that are integer multiples of frequencies 

contained in the signal.  This would tend to bias the transfer function and skew results when 

using the coherence estimate to determine the linearity of a system. 95, 104  Though Suki and 

Lutchen 104 and Victor and Shapley 105 suggest optimized frequencies for non-integer 

multiple PRN, the use of PRN-NIM as given by Maki 95 was sufficient for illustrative 

purposes.  This is because the test signal we selected had known frequencies that were not 

multiples, sums or differences of the frequencies employed in the input PRN-NIM.  When 
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PRN is used in signal processing applications, Figure 3.12 clearly illustrates the negative 

effects of this type of noise.  Even with the benefits of averaging the spectra across twenty 

segments, the noise level remains at around 10-15% of the maximum spectral peaks in both 

the auto- and cross-spectra.  The phase plot reveals obvious problems, with noise phase 

cluttering the peaks of the underlying signals.  This makes it difficult for the phase plot to 

provide any meaningful information.  The coherence estimate is generally in the range of 0.3 

to 0.8 at frequencies where only PRN is present, while the coherence of the underlying 

signals is reduced from the expected value of unity.   

    Correlation tests 96 were performed on the two noise sources that were used (PRN and 

PRN-NIM) to reveal the degree to which each noise source was correlated with itself (i.e. 

one run is highly correlated with an independent run using the same algorithm).  Apparent 

from Figure 3.13 is the fact that the PRN noise source is highly correlated with itself, in 

contrast to the PRN-NIM.  The correlation test for both types of noise (Figure 3.13) provides 

a clear illustration of why the segmented cross-spectral algorithm in Figure 3.12 fails to 

eliminate the high PRN noise.  As seen in Figure 3.13 (Panels C and E), there is no reduction 

in correlation between the autocorrelation and the cross-correlation, indicating the PRN is 

highly correlated with itself.  With PRN-NIM (Panels D and F), there is a substantial 

reduction in correlation between the Rxx and the Rxy, which demonstrates that the PRN-NIM 

is uncorrelated with itself.  This correlation between PRN signals explains the lack of noise 

reduction between the Gxx and Gxy in Figure 3.12.  Since the signals contain noise which is 

correlated with itself at these frequencies, no amount of averaging will be able to remove this 

noise component. 
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    The negative effects of commonly used PRN make it unreliable for use in system analyses 

where the transfer function is unknown.  However, it is useful to illustrate the ability of our 

LV software implementation to assess the value of different types of test signals used for 

system analysis. 

 

Biomedical Applications Example 

    Figure 3.14 illustrates the interaction between HRV and respiration.  The cross-spectral 

magnitude plot (Panel C) illustrates the interaction of respiration with heart-rate resulting in 

sino-atrial arrhythmia occurring from 0.3 to 0.35 Hz.  In Panel D the coherence is seen to 

peak at 0.9 in this frequency range, indicating a strong linear relationship.  From the phase 

plot (Panel E), respiration is seen to lead heart-rate by about 2.2 radians at the 0.32 Hz 

(approximately 1.05 seconds).  This relationship has been demonstrated previously by many 

authors, 106 and is illustrated here to demonstrate the utility of the software. 

 

Advantages of this Software 

    The first advantage that the PAASv1 software has is its use of the modified algorithms for 

correlation and spectral analysis.  The maintenance of an even statistical weight for each 

point produces correlations that are uniform (equal variance) from beginning to end.  This is 

in contrast to the typical correlation algorithm, such as that used by ML, where the beginning 

and ending points reveal large inconsistencies, especially with higher noise levels.  The 

averaging process, employed in EV spectral analysis, has the advantage of greatly reducing 

the noise level.  With cross-spectral analysis and coherence estimates, this noise reduction 

helps clarify the true underlying signals when heavy noise is present. 
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    A primary feature of our software is the implementation and packaging of data collection 

and data analysis routines.  These routines are optimized for unbiased estimation of 

correlation and spectral analysis of signals and systems.  This combination of features allows 

researchers to readily collect, analyze and store the analysis for many types of electrical 

signals, from biological or other sources.  Additionally, we have developed and included an 

algorithm to generate correlation estimates with equally weighted variance through the 

correlation record.  While this approach is not applicable to follow the interactions of 

transients (or non-stationarities) in two data sets, it is useful in revealing the presence of 

periodicities. 

    We have found this software to be useful in investigating the properties of various 

expressions of random noise.  In addition, the numerous analyses available and ease of use 

make this software an excellent instructional tool in both laboratory and classroom settings.   

    Finally, our software is coded in a widely available software package (LabVIEWTM from 

National InstrumentsTM).  Hardware interfaces for this software are also available from NI, 

with both this hardware and LV software commonly used in laboratories throughout 

academia and industry. 

 

Improvements for Our Software Package 

    Some aspects of our software could be improved to increase usability.  Currently, the data 

analysis is restricted to the importation of binary files formatted for our LV routine.  The data 

collection side automatically formats these files, but many users may have their own 

previously collected files they would prefer to analyze.  An increase in the types of analyses 

available would also be beneficial. 
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Current Uses for PAASv1 

    At the present time, PAASv1 is being evaluated for use in various experimental and 

clinical settings.  At the University of California - San Francisco, Dr. Chris Barton is 

evaluating PAASv1 in order to assess its utility as a replacement for the original program he 

developed.  At East Carolina University, PAASv1 is being used for the experimental 

interrogation of calcium transients traveling from cell-to-cell in cultured stem cells.  The goal 

is to verify and quantify the development of cell communication via gap junctions at the cells 

mature into myocytes.  Finally, also at ECU, PAASv1 is being used to collect high-fidelity 

proximal and distal coronary artery pressure recordings across vessel lesions in the clinical 

cardiac catheterization laboratories at the time of stenting.  The goal is to establish a more 

rigorous quantification of lesion hemodynamics in order to better define therapeutic 

strategies. 

    PAASv1 was also used to provide a system analysis of the dynamic afterload as presented 

in Chapter 4.  The averaging methods employed in the software enabled an average 

impedance spectrum from multiple waveforms to be determined in an efficient manner.  

Along with the impedance spectra, coherence plots were generated by PAASv1 and 

presented as part of the dynamic afterload analysis. 

 

Conclusion 

    In this software, we have combined data collection and data analysis in a single package.  

The EV implementation of the discrete correlation and spectral algorithms provides 

advantages in noise reduction for stationary signals which contain uncorrelated noise.  Our 

program is currently being used for signal acquisition and analysis in laboratory settings; 
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however, the easy-to-use LV interface and the ability to retrieve and test numerous types of 

signals also make the system an excellent instructional tool.  This software has broad 

research applicability as a tool for collection of electrical signals, data analysis and 

evaluation of the characteristics of random inputs for system description. 
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CHAPTER IV 
 

DESIGN AND IMPLEMENTATION OF A FLUID-MECHANICAL DYNAMIC 
AFTERLOAD FOR USE IN AN ISOLATED HEART APPARATUS 

 
 

    A fluid-mechanical afterload system was developed that incorporates dynamic control of 

resistance, compliance and volume adjustments.  Design of the mechanical portion of the 

afterload is acceptable for attachment to an existing Langendorff heart apparatus.  Digital 

controls for the afterload are enacted to reduce the difference between the mean and range 

values of a reference pressure and the measured pressure input.  The system is able to match 

these mean and range characteristics within ± 5% for ten reference pressures within a 

realizable physiologic range.  System settling time is less than 60 cycles (typically 45 – 50 

cycles).  The mechanical afterload is modeled by a four-element windkessel-type impedance, 

and estimated afterload parameter values fall within a physiological range.  Effects of 

changing impedance on the mean, range and stroke volume follows anticipated trends.  The 

dynamic afterload we developed exhibits the qualities necessary for implementation with an 

isolated heart apparatus. 

 

Introduction 

    More than a century ago, Oscar Langendorff introduced his Untersuchungen am 

uberlebenden Saugethierherzen ("Investigations on the surviving mammalian heart").6, 107  

The ability to maintain a living mammalian heart (ex vivo) produced a major milestone in 



cardiovascular research, enabling extensive studies of the contractile and electrochemical 

properties of the myocardium.  For several decades, researchers attempted to improve upon 

Langendorff’s system by developing a working heart model.  Such a model would add to the 

Langendorff apparatus by introducing a fluid backpressure (afterload) to a preloaded left 

ventricle at the aortic output.  The afterload would force the ventricle to work by requiring it 

to eject its volume of blood against a mechanical impedance.  A working, isolated heart 

model would provide a mechanism by which to study not only contractile and 

electrochemical properties of the myocardium, but also pressure and flow within the heart 

chambers and myocardial properties that were dependent on ventricular load.  In the 1960’s, 

Schreiber, Neely and Morgan et al. 7, 8 published their findings on heart function using a 

working model of the isolated heart.  Neely’s model was a simple backpressure without any 

attempt to isolate the components of the ventricular afterload.  In the late 60’s and early 70’s, 

Westerhof et al. 11 furthered the working heart model by constructing a mechanical afterload 

with adjustable in-line resistance and an air-pressure compliance chamber.  This afterload 

enabled studies of myocardial energy expenditure, aortic pressure (AOP) and aortic flow 

(AOF) changes under various loading conditions. 35  Ever-increasing computational power 

soon allowed researchers, such as Westerhof et al. 16 and Suga and Sagawa et al., 12-14 to 

control more precisely the isolated afterload components and the ventricular preload. 

    In the last decade of the 20th century, several components of modern artificial circulatory 

apparatus were developed.  Controlled displacement pumps for simulation of physiologic 

flow24, 27, 28 and mechanical ventricles 25, 27, 28 were engineered.  Increasingly accurate 

pressure and flow sensors, combined with improving computer, video and data acquisition 

capabilities, enabled researchers to construct more sophisticated versions of the working 
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heart.  Such a system, employing an artificial ventricular sac, is described by Gao et al. 31 32  

A hybrid, electro-hydraulic heart and circulatory impedance simulator has also been 

proposed by Kozarski et al. 108, 109  Additionally, an isolated four-chamber working swine 

heart preparation with video capabilities was developed by Chinchoy et al. 33 

(http://www.visibleheart.com/background.html). 

    Currently, working heart apparatus are available commercially from companies such as 

ADInstruments and Radnoti Glass Technology Inc., (http://www.adinstruments.com/), 

QuantaMetrics (http://quantametrics.com/exp-prod05b.htm), and Harvard Apparatus 

(http://www.harvardapparatus.com/).  With these systems, researchers can study numerous 

indicators of cardiac function under a variety of afterload conditions. 

    Past working heart apparatus have their advantage in straightforward construction and 

hands-on manipulation of afterload parameters.  Modern working heart devices have the 

benefit of turn-key applications with numerous input and output permutations and extensive 

data collection capabilities.  At least one aspect of the working heart system, however, has 

not been insufficiently addressed by past and current models, the dynamic nature of the 

afterload manipulation.  Most models provide static components for control of individual 

afterload parameters (resistance and compliance).  Other devices (e.g. ADInstruments 

working heart setup), provide little control over the individual components of the afterload.  

Dynamic afterload resistance control was demonstrated by Fisher et al. 34 while attempting to 

maintain a physiologic pressure using a three-element afterload similar to that proposed by 

Westerhof. 11  Fisher’s system employed calculations for the desired resistance based on the 

measured pressure and calculated flow.  This control did not extend to the compliant element 
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of the afterload, and dynamic control of neither resistance nor compliance has not been 

developed for any of the other aforementioned devices. 

    A dynamic afterload provides an automatic method to direct pressure and flow waveform 

outputs.  The pressure and flow outputs from the heart (as with any fluid system) reveal what 

conditions the ventricle is experiencing upstream (preload) and downstream (afterload).  

Elzinga and Westerhof and others have demonstrated that arterial impedance changes alter 

AOP and AOF waveforms in predictable ways. 14, 35, 36, 38  Researchers have shown that a 

number of pathophysiological states are characterized by directional afterload changes;3, 40, 43 

furthermore, impedance values are provided for several of these conditions. 11, 44, 70, 77, 110  In 

most of the reported studies, afterload changes were carried out in larger fractional steps.  For 

instance, for the first trial of an experiment, the working heart system is set against a constant 

resistance value.  Then, for subsequent trials, the value of systemic resistance is increased 

and held constant at two or three times the initial value.  As a consequence of this protocol, a 

settling time is required for the heart to adjust to the new afterload and intermediate values 

are not considered.  While this approach is suitable for understanding overall trends of AOP 

and AOF changes with arterial impedance adjustments, afterload changes within the body 

occur over a longer period and in a more continual fashion.  In addition, changes in 

compliance occur within each beat during expansion and subsequent recoil of the larger 

arteries. 111-115 

    Our goal for the dynamic afterload is to provide a continuously adjusting load for a 

pulsatile fluid input whereby a given mean and range of pulsatile pressure can be achieved.  

This afterload will eventually be employed with an isolated porcine working heart previously 

used in our laboratory to study the electrophysiology of cardiac arrest, 91 thus we must 
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provide physiologically appropriate loading conditions.  We demonstrate that the afterload 

we designed provides dynamic impedance adjustments to meet the mean and range 

requirements for a given set of pulsatile flow inputs.  Furthermore, this afterload provides 

impedance values in a physiologic range and can be modeled with a four-element 

windkessel. 

 

Methods 

Overview of Design Plan 

    We have developed and have previously published a computer model of AOP and AOF 

waveform changes with impedance parameter adjustments (SAVIAv1). 45  This model was 

used to guide the decision-making steps for impedance adjustments in the final afterload 

control program.  Simulations from the model were also used to verify that the behavior of 

our physical afterload was similar to that of a four-element windkessel. 

    Impedance spectra from pressure and flow outputs were used to demonstrate the range of 

the afterload parameters for our system and to verify that our system can be modeled by a 

four-element windkessel.  From Bendat and Piersol 93 we assume that, for a stationary 

system, an unbiased estimate of the impedance spectrum with reduced noise can be generated 

using auto- and cross-spectral estimates of the two signals, averaged over several segments. 

  xy
xy

xx

GZ
G

∧
∧

∧=         1 

 where x represents flow, y represents pressure, (^) represents an estimate, |Zxy| is  the 

magnitude of the impedance estimate, |Gxx| and |Gxy| are the magnitudes of the  auto- and 

cross-spectral estimates respectively. 
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We have developed and have previously published a program that can generate the 

impedance spectrum from auto- and cross-spectra obtained using averaging methods (see 

Chapter 3 manuscripts submitted for publication). 

    Our system is designed to receive fluid input (from a heart or other pump source) into an 

afterload with resistance, compliance and volume control elements.  Pressure and flow data 

are obtained and the pressure is compared to a reference pressure.  Adjustments are then 

made in the afterload elements in order to reduce the error between the reference pressure 

values and the measured pressure values.  The dynamic nature of the adjustments for the 

fluid afterload requires controlling hardware and software within a feedback loop.  In 

addition, if the fluid afterload model is to be widely employed, efficiency and cost-

effectiveness are a must.  Figure 4.1 provides an overview of the system layout. 

 

TFT500

NI DAQ Control Board

Afterload

Pressure

Flow

∆V

∆C

∆R

LabVIEWTM

Pump

Fluid Reservoir
 

Figure 4.1  Afterload Control System Diagram.  The control system (programmed in 
LabVIEWTM) drives changes in the afterload R (resistance), C (compliance) and V (volume) 
to reduce error between the measured pressure and the reference pressure. 
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    The NI DAQ hardware consisted of a terminal block connected to the computer through a 

DAQCard 6062E PCMCIA card.  The pump in Figure 4.1 is a Respiration Pump (Model no. 

607, Harvard Apparatus Co. Inc., Holliston, Mass.).  This pump provides a very basic plug 

flow that is modified with the afterload parameter changes. 

 

Afterload Design 

    The physical components of the afterload consist of a fluid inlet, a chamber to receive fluid 

input, a fluid outflow path to a proportional valve, a compliant end cap, and a volume 

adjustment balloon connected to air inflow.  All components in contact with the fluid are 

constructed of clear acrylic (main chambers), latex (end cap and balloon) or biocompatible 

plastic (inlet and outlet tubes).  The afterload rests on top of the Langendorff case, and fluid 

enters from the bottom.  Figure 4.2 illustrates the components of the afterload [Note that this 

is a conceptual layout where components are placed to allow optimal viewing]. 
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Figure 4.2  Afterload Design.  Three views of the conceptual afterload layout are provided.  
Definitions for each component are provided in the figure legend (bottom right). 
 

    The following description of the afterload refers to Figure 4.2.  The main chamber was 

designed as a two-part cylinder, threaded to allow coarse volume adjustment.  The lower 

chamber (part N) was tapered to reduce wave reflections and turbulence that could occur 

from a large step increase in diameter.  This lower chamber receives the fluid input through 

the pump inflow attachment (part I) that is threaded through the top of the Langendorff case 

(part G).  A portion of the pump inflow attachment is flexible tubing.  A fixed constrictor 
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was placed on this portion to provide an increase in characteristic impedance.  Before the 

pump inflow attachment, a one-way fluid valve was inserted to reduce ringing from pressure 

wave reflections (addressed subsequently in Discussion).  The fluid exits the main chamber 

through an outflow attachment (part D) connected to a proportional valve (part E, 12V 

standard proportional control valve, hard anodized aluminum Teknocraft Inc. Melbourne, 

Florida).  The proportional valve is used to adjust resistance, and fluid exits from the 

proportional valve through an outflow port (part F) to a fluid reservoir.  A latex balloon (part 

O, size 16 (3ml)), present within the lower chamber, is connected to an air inflow/outflow 

attachment (part K).  The upper chamber (part M) has a compliant latex end cap (part L) of 

0.010 – 0.025 inch thickness.  This end cap is adjustable through contact with a lab jack 

platform (part C) that is raised and lowered by a stepper motor (Size 28, 5V, 3.6Ω, 7.5° per 

step, Hansen Corp., Princeton, IN. part A).  The lab jack and stepper motor are mounted (part 

B) to the top of the Langendorff case.  A Transonic Systems ME13PXN inline flow sensor 

(Part H) coupled with a TS410 flow meter (Transonic Systems Inc., Ithaca, NY) records the 

flow at the pump inflow attachment.  The pressure is measured just above the flow sensor 

using a 5 French MPC-500 Mikro-Tip® pressure transducer (Millar, Houston, TX).  The 

airflow in and out of the balloon is regulated by a 3-way on/off valve (part J, Teknocraft Inc. 

Melbourne, Florida). 

 

Design Specifications and Calibrations 

    Details of the afterload component dimensions and calibrations can be found in the 

Appendix.  The main chamber was constructed to provide a volume range of approximately 

135 – 250 ml.  Coarse volume adjustments are enacted by raising or lowering the threaded 
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upper chamber.  Volume adjustments during an input cycle are facilitated by coupling a 

compliant end cap with a latex balloon that is pressurized briefly to 4-5 psi.  The small 

volume adjustment of the balloon was implemented as an optional aid for producing 

sufficient backflow, which is usually provided by the expansion and recoil of the proximal 

aorta.  The volume adjustment balloon is triggered to inflate through the on/off valve. 

    Resistance within the afterload system is mainly generated by the proportional control 

valve and a parallel tube line to the reservoir from the fluid outflow attachment.  Calibrations 

performed with the proportional valve (see Appendix) demonstrated a range of approximately 

0.5 – 4 mmHg s ml-1, which is in agreement with published physiologic values. 11, 35 43 116 60  

The resistance of the proportional valve was dependent on both the voltage applied and the 

pressure at the input.  Calculation of the resistance estimates that are provided in the results 

(Figures. 4.6 and 4.7) was based on these calibrations for the resistance values over a 

physiologic range of pressures.  Resistance for pressures that fell between or beyond these 

values was determined by a weighted average of the resistance values at the adjacent 

pressures. 

    Compliance for the afterload system is provided in large part by the compliant end cap on 

the upper chamber and to a lesser degree by the volume adjustment balloon within the main 

chamber.  A range of compliance from 0.5 – 4.0 ml mmHg-1 was desired to remain within the 

range of published physiologic values. 11, 60, 67, 111, 116  Several factors affect the compliance of 

the end cap in our system, including the thickness of the latex sheet (typically 0.025 inch 

thick), the degree to which the latex is stretched over the end of the upper chamber, the 

position of the lab jack platform, the compression level of the springs in the lab jack, and the 

inflation level of the small balloon.  Reliably calibrating for each of these variables would be 
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extremely difficult.  Therefore, our calibrations consisted of determining that we could 

achieve a physiologic range for various positions of the lab jack platform based on changing 

pressure and volume within the chamber (detailed in the Appendix).  Using a 0.025 inch thick 

latex sheet, the range of compliance was approximately 1.75 – 2.25 ml mmHg-1, well within 

the physiologic range.  Varying other parameters (e.g. latex thickness, amount of stretching) 

can expand the range to meet other physiologic values.  Compression of the end cap by the 

lab jack platform enables adjustment of the compliance both between and within cycles.  

Adjustment of the lab jack platform is made in a sinusoidal manner within each cycle – first 

to a higher position and then returning to the lower position.  With a compliant system 

receiving pulsatile pressure input (e.g. the aorta), the compliance will drop as the pressure 

spikes. 113  An adjustment in the position of the lab jack platform is necessary to reduce the 

stiffness of the system as the pressure spikes.  The lab jack platform is raised or lowered by a 

threaded rod turned by a stepper motor.  At least a quarter turn of the threaded rod is required 

to provide significant movement of the jack platform, and this quarter turn must be made in a 

rapid manner within each cycle.  Therefore a stepper motor with a larger degree per step was 

used (48 steps per revolution).  Compliance estimates for the sample cycles shown in Figures 

4.6 and 4.7 were made by using a variation of the pulse pressure method (PPM).  Instead of 

calculating the differential equation for each step over the pressure waveform, the differential 

equation is solved for compliance (equation 2) and the mean value of pressure is substituted 

for the value of pressure. 

 SV dt PC
PP PP R

∧
= −         2 

The ratio of stroke volume to pulse pressure tends to overestimate the compliance, 117 and our 

method subtracts the term based on the mean pressure to offset this overestimation.  The 
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values for compliance calculated in this manner are only used as a rough estimate of 

compliance for each cycle. 

 

Afterload Adjustments Within Each Cycle and Between Cycles 

    An example of a single cycle is illustrated and labeled in Figure 4.3 to demonstrate the 

timing of the afterload adjustments within each cycle and between cycles. 
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Figure 4.3  Timing of Events During a Single Cycle.  Subscripts (R and M) represent 
reference and measured values respectively.  The trigger for the cycle and the balloon is 
abbreviated (Tr.), and compliance adjustments are termed (C Adjust).  Positions within the 
cycle are denoted by the letters A - E along the horizontal axis. 
 

    At the start of the flow input from the pump (position A in Figure 4.3), the cycle is 

triggered. Triggering of each cycle is currently based on a roller switch mounted on the 

respiratory pump.  The adjustment period for the lab jack platform (compliance adjustment 

within the cycle) begins shortly after the trigger (position B to position D in Figure 4.3).  

Inflation of the balloon is enacted by briefly connecting to the pressurized air through the 

on/off valve.  This inflation occurs once per cycle, at a point near the dicrotic notch location 

of the template waveform (position C in Figure 4.3).  During the cycle, resistance voltage is 

 113



not varied and resistance changes slightly based on pressure.  Resistance values are adjusted 

after each cycle (after position E) by varying the voltage applied to the proportional valve.  

At the end of each compliance adjustment period (position D in Figure 4.3), the level of the 

jack platform can be raised or lowered to a different home position.  This allows compliance 

to be increased (when the jack platform is raised) or decreased (when the jack platform is 

lowered). 

 

Control System Design 

    The digital control system for the afterload was programmed in LabVIEWTM 7.1.  

Guidance for directional afterload changes to produce optimal impact on pulsatile pressure 

characteristics was determined from simulations with SAVIAv1.  The main characteristics of 

pulsatile pressure are the mean and range, and, for an isolated working heart, the timing of 

the dicrotic notch associated with reverse flow is also an important consideration.  A control 

system was implemented where resistance changes control the mean and compliance changes 

control the range of the pulsatile pressure.  The timing of the reverse flow is aided by balloon 

volume changes within each cycle.  Measured pressure (PM) is compared with a reference 

pressure (PR) near the end of each cycle, and adjustments are made in the afterload elements 

based on how well the mean and range of the two waveforms match.  A flow chart is 

provided in Figure 4.4 to illustrate the logic of the digital controller. 
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Figure 4.4  Flow Chart Describing the Digital Control Logic.  Subscripts denote reference 
(R) and measured (M) values.  R and C represent resistance and compliance respectively. 
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    A ± 5% error from the reference pressure in mean and range values is allowed.  The level 

of adjustment for resistance and compliance after each cycle is set to provide a smooth 

approach to the reference values.  Some overshoot is allowed to avoid lengthy settling times.  

Changes in the voltage to the proportional valve (providing changes in resistance) are 

implemented in the following manner.  For the first 15 – 20 cycles, adjustments are made at 

the 0.25 V level.  At this point, the system is approaching the desired mean, and the 

adjustment level is dropped to 0.025 V.  The number of initial cycles included at the 0.25 V 

adjustment range can be adjusted depending on the step increase in mean pressure applied by 

the reference pressure.  An interaction occurs between adjustments in resistance and 

adjustments in compliance as the system approaches the mean.  As the mean pressure 

increases toward the goal, the range, and subsequently the compliance adjustments are 

continuously changing.  If the system approaches the mean too rapidly, the compliance 

adjustments to ease the pressure on the latex end cap may not occur rapidly enough and the 

system could rupture.  For this reason, the adjustments in resistance are made at a somewhat 

slower pace, and the settling time for the range values always lags behind the settling time 

for the mean.  A four-step adjustment can be made after each cycle to raise or lower the lab 

jack platform as necessary.  The level of compliance adjustment is affected by several 

factors: the resolution of the stepper motor, the thread pitch on the lab jack platform arm, the 

pacing of the pulsatile pressure input.  For this reason, adjustments of compliance within 

each cycle are limited to a sinusoidal stepping of 16 or 24 steps.  These values provide 

optimal changes for most of the pacing values used.  Timing of the dicrotic notch is adjusted 

(within an allowable range) by using a slide adjustor within the controller code.  An 
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emergency stop button was implemented to raise the lab jack platform and minimize 

resistance in case of a system malfunction. 

 

Data Analysis and Modeling of the System 

    Simulations were performed with ten different types of AOP waveforms used as the 

reference pressure.  These pressures were of a variety of mean and range values that were 

relevant physiologically.  Included in the different reference pressure types were AOP 

waveforms representative of certain normal and pathophysiological conditions (e.g. aging, 

heart failure, ventricular septal defect).  The simulation data were collected at 256 

samples/sec and analyzed using Matlab®.  Each simulation consisted of 100 cycles and was 

repeated five times under similar conditions.  The data were filtered by convolution in the 

time-domain with an ideal low-pass filter 118 centered at zero with a cutoff frequency of 20 

Hz.  The bandwidth (BW) was used to approximate the number of points (M) in the filter as 

BW = 4/M.  From each simulation, a coincident and consistent segment of measured pressure 

and flow (FM) was chosen after the mean and range had settled.  This data segment was 

typically 3-5 cycles in length.  The measurement of pressure was approximately 5cm from 

the measurement of flow; therefore, assuming a rigid tube, the pulse wave velocity is fast 

enough to eliminate the need for a time delay correction between pressure and flow 

measurement. 119  The 3-5 cycle segment was resampled using a Matlab® FIR resampling 

algorithm to provide 256 samples per waveform.  The mean, range and stroke volume (SV) 

were determined for PM within this segment.  Values for the mean and range were averaged 

from the five simulations and compared with the mean and range of PR.  For each data 

segment, an impedance spectrum was generated from PM and FM data using a Matlab® 
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version of PAASv1 (see Chapter 3).  This method uses an average of the cross-spectrum over 

the number of cycles.  Values of the cross-spectrum with a low coherence (typically 0.4 or 

less) were eliminated.  The remaining values were fit to the impedance modulus for a four-

element windkessel model using a Levenberg-Marquardt algorithm with a tolerance of 1E-6.  

Values for the impedance parameters were averaged from the five simulations.  An 

illustration of the four-element model is shown in Figure 4.5, and the equation for the 

impedance modulus (|Z4E|) for this model is given in equation 3.  This electrical analog 

model corresponds well with the physical layout of our fluid-mechanical system.  The Zo 

resistor represents the characteristic impedance of the afterload, which is mainly governed by 

the pump inflow attachment leading to the main chamber.  The ZI inductor represents the 

inertance of the fluid, which is provided by the column of fluid to be accelerated through the 

pump inflow attachment during each cycle.  The capacitor (C) represents the compliance of 

the system, provided by the latex balloon and end cap.  The resistor (R) represents the 

resistance generated by the proportional valve.  To illustrate the suitability of the four-

element model for this system, flow and pressure pairs were generated using the four-element 

model in SAVIAv1.  The FM from a data segment from one simulation was used as input and 

the impedance parameters were estimated for that same simulation segment as the model 

impedance parameters.  The model’s output pressure (PMOD) was then compared with PM.  

Two examples of the data analysis, including an illustration of mean and range settling time, 

are shown in Figures. 4.6 – 4.8. 
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Figure 4.5  Four-element Impedance Model.  Zo is the characteristic impedance.  ZI is the 
inductance (inertance).  C is the capacitance (compliance), and R is the resistance. 
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    Averaged values from the PM waveforms and reference values from five selected AOP 

(PR) inputs are provided in Table 4.1.  When considering settling time, the step input of mean 

pressure (∆ Mean) was the only meaningful value.  The change in the mean of the measured 

waveform was always unidirectional and the range is affected by the increase in proportional 

valve resistance until the system is close to settling around the mean.  For example, the 

starting range difference between PM and PR could be relatively small (10 mmHg or less), but 

by the time the mean is increased to an appropriate level, the difference in range may have 

increased.  This means that the settling time for the range denotes the system settling time, as 

the mean settles more quickly. 

    Plots of mean, range and SV with changes in resistance and compliance were generated 

using data from all ten types of AOP (PR) waveforms.  The mean value of PM is a dc value, 

thus resistance is the main factor affecting the mean.  However, both resistance and 

compliance have some affect on the range and SV.  To demonstrate the changes in range and 

SV with increasing system impedance, we employed a two-element windkessel impedance 
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(resistance and compliance in parallel) using the impedance values for resistance and 

compliance estimated from the four-element model.  Values of range and SV were plotted 

against this impedance at 1, 2, and 4 Hz. 

 

Results 

    An example of the simulation results and data processing from the Type 1 PR (Table 4.1) is 

given in Figure 4.6.  The analysis was carried out for the four cycles shown in Panel A.  

Adjustments in resistance that drove the PM mean to settle at the mean of PR are illustrated in 

Panel B.  Settling time for the mean was slightly less than 40 cycles.  The necessary increase 

in range was enacted by decreasing compliance (Panel C).  Since the range is a difference 

signal and our system was not free from noise, the signal representing the range was low-pass 

filtered at 1 Hz cutoff to enable a reasonable observation of the range settling time 

(approximately 40 cycles).  Note that increases in resistance produce increases in the mean 

and decreases in compliance produce increases in the range as predicted.  Panels B, D, and F 

provide the spectral analysis of the data segment.  In Panel B, the impedance spectrum is 

generally well-matched by the estimate from the four-element impedance model.  Parameter 

values for the impedance are all within the range of physiologic values.  In the phase plot 

(Panel D), the phase difference is underestimated for most of the plot.  At lower frequencies 

(< 5Hz), the shape of the phase estimate conforms well to the measured phase, and at high 

frequencies (> 10Hz) the phase approaches a π/2 phase difference.  Difficulty in estimation is 

more apparent in the 6-9 Hz frequency range.  From the coherence plot (Panel F), the 

simulation has a noise source affecting the signal from 7-9 Hz.  This unwanted noise 

produces inconsistencies in the signal that make it difficult to estimate the values of 
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impedance at these frequencies (addressed subsequently in the Discussion).  Above 18 Hz, 

the coherence drops to negligible values, and these points are not included in the impedance 

estimation. 
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Figure 4.6  Sample Data Analysis for Type 1 PR.  Panel A shows the three cycles of PM 
(blue) and FM (red) that were analyzed.  The PR  mean and range (+/- 5% blue) and the mean 
and range for PM (green) are illustrated in Panels C and E respectively along with settling 
time (Ts) approximations.  An estimate for R over the course of the simulation is provided in 
Panel C (black), and a similar estimate for C is provided in Panel E (black).  In Panel B, the 
impedance modulus (|Z|) for FM and PM is shown (blue) with the estimated impedance 
generated for the four-element model (black dashed).  Units for the parameters are R and Zo 
(mmHg s ml-1), C (ml mmHg-1), ZI (mmHg s2 ml-1).  In Panel D, the phase for FM and PM 
(blue) is presented with the estimated phase for the four-element model (black dashed).  
Panel F shows the coherence for FM and PM. 
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    Figure 4.7 shows a simulation example and the data processing results from the Type 3 PR 

(Table 4.1).  For this example, the analysis was carried out for three cycles (Panel A).  

Adjustments in resistance that drive the PM mean to settle at the mean of PR are illustrated in 

Panel B.  Settling time for the mean was approximately 35 cycles.  A decrease in compliance 

caused an increase in the PM range (Panel C), where the range signal was low-pass filtered at 

1 Hz cutoff.  Settling time for the range was slightly less than 40 cycles.  The four-element 

estimate of impedance matches well with the calculated impedance (Panel B), and the 

parameter values are within the physiologic range.  For this simulation, the phase plot (Panel 

D) is estimated more accurately than the phase estimate shown in Figure 4.6.  At lower 

frequencies (< 5Hz), the shape of the phase estimate is reasonably conformed to the 

measured phase, and at high frequencies (> 10Hz) the phase approaches a π/2 phase 

difference.  The estimate for phase still maintains problems in the 6-9 Hz frequency range 

where the coherence falls (Panel F).  However, the coherence drop is not as sharp as that seen 

in Figure 4.6 Panel F, and the model estimated phase is not as far from the true phase.  Above 

18 Hz, the coherence drops to negligible values, and these points are not included in the 

impedance estimation. 
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Figure 4.7  Sample Data Analysis for Type 3 PR.  Panel A shows the three cycles of PM 
(blue) and FM (red) that were analyzed.  The PR  mean and range (+/- 5% blue) and the mean 
and range for PM (green) are illustrated in Panels C and E respectively along with settling 
time (Ts) approximations.  An estimate for R over the course of the simulation is provided in 
Panel C (black), and a similar estimate for C is provided in Panel E (black).  In Panel B, the 
impedance modulus (|Z|) for FM and PM is shown (blue) with the estimated impedance 
generated for the four-element model (black dashed).  Units for the parameters are R and Zo 
(mmHg s ml-1), C (ml mmHg-1), ZI (mmHg s2 ml-1).  In Panel D, the phase for FM and PM 
(blue) is presented with the estimated phase for the four-element model (black dashed).  
Panel F shows the coherence for FM and PM. 
 
    Figure 4.8 is provided as an adjunct to the data analyses shown in Figures 4.6 and 4.7.  In 

this figure, the PM from the Type 1 and Type 3 PR simulations is plotted with PR and the 

pressure generated from the SAVIAv1 model (PMOD) using the estimated impedance 
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parameters.  Panels A and C correspond to the Type 1 PR simulation, and Panels B and D 

correspond to the Type 3 PR simulation.  The signals shown in Panels A and B are low-pass 

filtered with a cutoff of 6 Hz to demonstrate the low frequency characteristics of the 

waveforms.  Though the timing is slightly delayed for measured pressure, the mean and the 

range shown in Panel A are very similar for PM and PR.  Panel C illustrates that the main 

characteristics of PMOD overlay properly with PM, though some of the higher frequency 

components are lacking in the model waveform.  In Panel B, PM demonstrates a similar range 

to PR, but the mean is elevated.  As seen in Table 1, the mean was overestimated for this 

portion of the data, but it remained within the 5 % error tolerance.  The model pressure 

waveform in Panel D demonstrates a reasonable match to PM, with a slight underestimation 

of the mean and a lack of some of the higher frequency waveform components. 
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Figure 4.8  Simulation Pressure Overlaid with Reference and Model Pressures.  Panel A 
shows low-pass filtered PM (green) and PR (blue) from the Type 1 PR simulation provided in 
Figure 4.6.  Model simulated pressure (PMOD blue dashed) using the estimated impedance 
parameters for Type 1 PR is shown in Panel C with PM (green).  Panel B shows low-pass 
filtered PM (green) and PR (blue) from the Type 3 PR simulation provided in Figure 4.7.  
PMOD (blue dashed) using the estimated impedance parameters for Type 3 PR is shown in 
Panel D with PM (green). 
 
    Table 4.1 provides simulation results from five selected types of AOP (PR) waveforms.  

These simulations were performed with the following conditions: chamber volume (220 ml), 

latex tension (medium), pump rate (57 – 58 bpm), pump stroke volume (50 ml), air pressure 

(4 – 5 psi).  Selection of the results was made based on waveforms with a variety of mean 

and range values to demonstrate our system capabilities.  Reference values for the mean and 
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range were derived from the reference AOP waveforms.  Averaged values for the measured 

mean, range, SV and impedance parameters were obtained as described in Methods. 

Type 1 AOP Type 2 AOP Type 3 AOP Type 4 AOP Type 5 AOP

AOPR  Mean 85.25 88.57 107.37 97.13 82.84
AOPM  Mean 85.20 ± 0.45 90.47 ± 0.29 110.88 ± 0.32 96.27 ± 0.58 84.27 ± 0.70

% Error Mean - 0.05 ± 0.53 2.15 ± 0.33 3.27 ± 0.30 - 0.89 ± 0.59 1.72 ± 0.84
∆ Mean 34.09 ± 0.31 38.22 ± 0.16 56.70 ± 0.18 43.76 ± 0.26 32.28 ± 0.25

Ts Mean (cycles) 37.20 ± 0.49 34.00 ± 1.00 33.00 ± 1.30 28.60 ± 0.24 45.20 ± 0.20

AOPR  Range 35.66 44.70 37.38 63.87 19.94
AOPM  Range 34.85 ± 0.68 44.27 ± 1.32 37.62 ± 0.54 63.04 ± 0.56 20.61 ± 0.52

% Error Range - 2.27 ± 1.92 - 0.95 ± 2.95 0.64 ± 1.46 - 1.29 ± 0.88 3.37 ± 2.58
Ts Range (cycles) 49.20 ± 2.96 45.60 ± 1.12 44.80 ± 1.98 39.40 ± 3.37 60.40 ± 1.75

SVM 51.99 ± 0.12 51.10 ± 0.14 47.67 ± 0.15 46.28 ± 0.10 53.90 ± 0.13

R ± SE 1.5725 ± 0.012 1.6795 ± 0.008 2.2525 ± 0.015 1.8800 ± 0.018 1.5360 ± 0.015
Zo ± SE 0.0298 ± 0.005 0.0401 ± 0.004 0.0068 ± 0.002 0.1154 ± 0.006 0.0059 ± 0.001
C ± SE 0.9004 ± 0.023 0.7770 ± 0.019 0.7784 ± 0.014 0.5632 ± 0.013 1.6971 ± 0.090
ZI ± SE 0.0026 ± 6E-5 0.0024 ± 1E-4 0.0026 ± 1E-4 0.0024 ± 3E-4 0.0025 ± 5E-5

Table 4.1: Simulation Results from Selected Reference AOP Waveforms

 
Subscripts (R and M) denote reference and measured values respectively. 
Averaged values are provided with their standard error calculated for five simulations. 
Units for pressure and range are (mmHg), and units for stroke volume are (ml). 
Units for impedance parameters are R and Zo (mmHg s ml-1), C (ml mmHg-1), ZI (mmHg s2 ml-1). 
 
    The mean values for the measured waveforms given in Table 4.1 range from 

approximately 84 - 111 mmHg, and the collection of range values is from approximately 20 – 

63 mmHg.  Accounting for all means and ranges shown, this equates to a total pressure range 

of 65 – 130 mmHg (covering much of the physiologic range of pressure).  Calculated percent 

error is less than 5% in all cases shown, and the error for the other five reference AOP 

simulations (not shown) was approximately 5% or less.  PM settled to the PR mean value 

within a range of approximately 28 – 45 cycles.  The range of PM required approximately 40 

– 60 cycles to settle at the PR range. 

    Trends for the measured mean, range and SV for all ten PR types are shown in Figure 4.9.  

Panel A illustrates that increasing resistance results in an increase in the mean of PM, with an 

R2 value approaching unity.  In Panel B, a trend of increasing range for PM with increasing 
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impedance is evident.  As the frequency increases from 1 to 4 Hz, the slope of the range data 

increases.  The trend displayed for SV in Panel C is that increased impedance results in 

decreased SV.  Calculated SV shows an increasingly negative slope as the frequency 

increases from 1 – 4 Hz. 
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Figure 4.9  Changes in Mean Range and SV with Changes in Impedance.  Panel A illustrates 
changes in the mean of PM with changes in resistance.  Panel B shows trends for the range of 
PM with changes in the two-element impedance (|Z2E|) at different frequencies.  In Panel C, 
changes in SV (calculated from FM) are shown with changes in |Z2E|.  For Panels B and C, the 
frequencies are f = 1 Hz (circles), f = 2 Hz (solid squares) and f = 4 Hz (solid triangles). 
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Discussion 

Afterload Design 

    The design of the fluid-mechanical afterload is properly suited for ease of implementation 

and cost efficiency.  The entire portion of the afterload pictured in Figure 4.2 can be placed 

on top of the Langendorff case (less than 1 ft2), and none of the components represent an 

exorbitant cost. 

 

Design Specifications and Calibrations 

    The volume of the chamber and the volume adjustment within each cycle are based on the 

rough approximation of a tapered aorta with an inner diameter of 1 – 3 cm 120 114 and a length 

of 25 – 30 cm.  The volume adjustment from the balloon is small, because there is typically 

only a small difference in diameter from diastole to systole during the cardiac cycle. 114 

    Resistance and compliance values produced by the system were within a physiologic range 

(see Appendix and Figures 4.6 and 4.7).  Estimates of resistance throughout the simulations 

demonstrated appropriate adjustments to compensate for the error in the mean pressure.  The 

difference in range between PM and PR was compensated for by adjustments in the compliant 

end cap. 

 

Afterload Adjustments Within Each Cycle and Between Cycles 

    The roller switch mounted on the respiratory pump (see Methods) provides a consistent 

starting point for each cycle.  The timing and extent of the balloon inflation varies depending 

on the following: the location of the dicrotic notch within the PR waveform, the number of 

steps within the cycle that the stepper motor undergoes, and the pressure within the chamber.  
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These issues are discussed further in Limitations of the Proposed System.  Though the timing 

can be different over several cycles, the variation is only slight. 

    Changes in resistance within each cycle are apparent from the simulation results given in 

Figures 4.6 and 4.7.  Most models hold resistance constant during the cardiac cycle as its 

main contributor (the peripheral vasculature) 60 is unlikely to undergo significant changes 

during such a brief period.  However, in a fluid system where the main source of resistance is 

a single outlet in close proximity to the pulsatile pressure, the resistance will change slightly 

over the course of the cycle. 

    The timing of the increase in compliance during the peak pressure of each cycle was 

regular for all simulations.  The nonlinearities associated with the compliance hardware had 

an effect on the stationarity of the data and the subsequent ability of our model to predict the 

impedance parameters.  Consequences of the resistance change and compliance 

nonlinearities are discussed further in Limitations of the Proposed System. 

 

Control System Design 

    Our control system was based on reducing the error in mean and range values between PM 

and PR (see Figure 4.4).  Though some compliance adjustments occurred during each cycle, 

the data necessary for mean and range calculations could only be properly analyzed near the 

end of each cycle.  This necessitated that major adjustments in resistance and compliance be 

made at the end of each cycle.  Volume adjustments from the balloon were not made 

automatically by the code.  Timing of the adjustments is based on the location of the dicrotic 

notch within the PR waveform.  This location does not change after the simulations start, and 

the timing can readily be adjusted by the user as the system settles. 
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    From the sample simulations given in Figures 4.6 and 4.7 and Table 4.1, the afterload 

adjustments enacted by the control system maintained the mean and range within the ± 5% 

error limits.  The settling time for each simulation varies, depending on the difference in 

mean and range for which compensation must be made.  As explained in Methods, this 

settling time accounts for changes in resistance that affect changes in compliance.  Thus, 

some variation is to be expected with a wide variation in mean and range step values.  

Overshoot for the mean and range values from the initial compensation stage was reasonable 

for all simulations, and many simulations had minimal or no overshoot. 

    The control system, programmed in LabVIEWTM, is not a real-time software application.  

This imposed several restrictions on the speed and timing of adjustments in the afterload.  

These restrictions are noted in Limitations of the Proposed System. 

 

Data Analysis and Modeling of the System 

    The results shown in Figures 4.6 and 4.7 illustrate the ability of the dynamic afterload 

system to drive a pulsatile pressure input generated by a basic plug-type flow to match the 

mean and range of a reference pressure.  Estimated values for the afterload parameters 

necessary to accomplish these compensations are within the expected physiologic range.  

Furthermore, the system can generally be characterized by the four-element impedance 

model of Figure 4.5. 

    The impedance plots generated from FM and PM data segments are characteristic of the 

impedance of a four-element electrical analog model with a series inductor.  At higher 

frequencies, the impedance of the parallel RC portion of the circuit will go to zero, because 

the impedance of the capacitor is given by (jωC)-1.  The impedance of the inductor is given 
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by jωL, which means that the impedance of this portion of the circuit will increase with 

increasing frequency.  Consequently, the inductor (inertance) will dominate the impedance as 

the frequency rises.  As frequency values increase, the series inductor will also dominate the 

phase plot, driving the phase difference to + π/2.  The impedance of our fluid-mechanical 

system is dominated at higher frequencies by the inertance of the pump inflow attachment.  

This phenomena was discussed by Westerhof et al. in regard to the flow measurement 

attachment in their three-element mechanical afterload. 11  Unfortunately, for a fluid-

mechanical system adapted for flow measurement and pulsatile pump input, this initial 

attachment and its resultant dominant inertance cannot be avoided.  Our main concern in this 

system is to match the mean and range of the reference pressure, and these lower frequency 

waveform characteristics (as illustrated in Figure 4.8 Panels A and B) are less affected by the 

inertance. 

    For the Type 1 PR of Figure 4.6, the step increase in mean pressure was approximately 34 

mmHg (Table 4.1), and the system settled to ± 5% of both mean and range reference values 

within 40 cycles (Panels C and E).  A larger variation of the range value around the target 

range is apparent, due to the fact that the difference value representing range is greatly 

affected by noise present within the system.  In spite of the noise, the general settling trend of 

the range value is evident.  The impedance plots in Panels B and D of Figure 4.6 demonstrate 

that the four-element model of Figure 4.5 provides a reasonable estimate of the system, 

producing estimated parameters within the physiologic range.  This estimate is reasonably 

accurate for frequencies < 4 Hz; however, for the middle frequencies (especially 6-9 Hz), the 

model underestimates the phase difference.  As the frequency increases beyond 10 Hz, the 

measured phase tends to settle toward the model value of π/2.  Noise and non-stationarities 
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within the measured signals (discussed subsequently) contribute to a lower coherence in 

these middle frequency ranges and create a reduction in the number of stationary waveforms 

over which the impedance spectrum can be averaged to reduce the noise.  Therefore, the 

noise contribution to the phase is apparent in this middle frequency range and the estimate 

from the model is less accurate. 

    In Figure 4.7, the Type 3 PR simulation reveals that the dynamic afterload system was able 

to settle within 40 cycles for a mean pressure step increase of approximately 57 mmHg 

(Table 4.1).  The noisy range signal is again present (as in Figure 4.6), but the overall settling 

trend is apparent within the desired ± 5% range.  The impedance plot of Panel B shows a 

close fit of the four-element model to the actual measured impedance.  All estimated 

parameters are within the physiologic range.  A more accurate estimate of phase is achieved 

for this simulation (Panel D), especially at the middle frequencies, likely due to the higher 

coherence (Panel F) at these frequencies when compared to the same frequency range in 

Figure 4.6.  A higher coherence would indicate that this simulation had less noise and non-

stationary contributors in this frequency range than the simulation shown for the Type 1 PR.  

In general, the phase is reasonably estimated at frequencies less than 4 Hz, and the phase 

settles to π/2 at higher frequencies. 

    An illustration of the actual waveforms generated from the simulations for Type 1 and 

Type 3 PR is given in Figure 4.8.  Low-pass filtering of PM and PR in Panels A and B was 

necessary to enable a clear view of the signals without noise.  Also, removal of the higher 

frequency components focuses attention on the waveform characteristics that we were 

attempting to control (mean and range).  The Type 1 simulation in Panel A shows a PM that is 

well-matched in mean and range with PR.  A slightly delayed peak pressure and decay are 
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apparent in PM.  This timing issue is affected by the cycle timing from the respiratory pump, 

the output timing of the reference signal from within the LabVIEWTM control code, and the 

characteristics of the pump itself.  Since we do not have the actual heart (pump) that 

produced this reference waveform, and considering the fact that the other timing issues exist, 

the slight delay is not unexpected.  Our SAVIAv1 model output (PMOD in Panel C) uses the 

input FM waveform from the Type 1 simulation and the four-element model estimated 

parameters from the same simulation.  PMOD in general overlays well with PM, even 

predicting a good portion of the pressure spike located at peak pressure.  The fact that PMOD 

matches with the main characteristics of PM reveals the suitability of the four-element 

afterload to describe our system.  Though middle and higher frequency components may be 

lacking, the low frequency components of interest are properly captured by this model.  The 

Type 3 simulation in Panel B shows a PM that is well-matched in range with PR but that has 

an elevated mean.  Table 4.1 shows that the mean for this portion of the simulation was 

overestimated by about 3%; however, this is within the tolerated 5% error limits set in the 

control code.  Output from the SAVIAv1 model (Panel D) almost completely compensates 

for this difference in mean, due to the higher estimated resistance value.  Though the 

parameter estimate is not quite high enough to completely account for the necessary increase 

in mean pressure, the similarity of PMOD mean and range does demonstrate that the model is 

satisfactorily describing the main characteristics of PM mean and range. 

    Selected simulation results from five of the ten types of AOP (PR) reference waveforms 

demonstrate the dynamic afterload’s ability to drive a pressure match within physiologic 

limits.  All mean and range values settled to well within the ± 5% error limits.  That settling 

times varied significantly is not surprising considering the variety of mean pressure step 
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changes and reference range goals.  In addition, the settling times were not unreasonable for 

any simulation set.  The impedance parameters estimated for each simulation are within a 

physiologic range; however, the characteristic impedance proved to be a difficult estimate for 

the model, especially for signals with lower coherence.  Our physical setup has only a fixed 

constrictor on the flexible tubing to regulate this impedance.  This fact, when coupled with 

the non-stationary pressure spikes present in the current setup (discussed subsequently) 

contributes to the model’s inability to consistently estimate this parameter.  Other than the 

characteristic impedance, the model estimates of impedance parameters were highly 

consistent with trends that match with expected physical behavior (Figure 4.9). 

    Trends for estimated impedance parameters with changes in mean, range and SV are 

illustrated in Figure 4.9.  Panel A demonstrates that, as expected, the trend for increasing 

resistance is an increasing mean PM.  In Panels B and C, the two-element impedance (|Z2E|) 

trends are shown.  As explained in Methods, |Z2E| was used rather than simply resistance or 

compliance because of the interaction of each in affecting range and SV.  With higher 

impedance, the range shows marked increases, and these increases have a larger slope at 

higher frequencies.  As the system’s impedance increases, especially in terms of compliance, 

the system will become stiffer and pressure will tend to rise and decay faster (higher range).  

Panel C shows that, with increasing impedance, SV decreases.  With higher impedance and 

the same mean pressure, the pulsatile pressure input would be expected to generate less flow.  

The decrease in SV is more marked as frequency values rise.  For higher frequency values in 

the two-element impedance model, the changes in resistance and compliance will have less 

effect on the actual value of impedance because the increase in frequency is beginning to 

dominate the denominator (equation 3).  However, within the physical system these changes 
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still produce a similar increase in range or decrease in SV.  Thus, the changes (slopes) 

increase at higher frequencies, because the same changes in range and SV occur over a 

narrower range of impedance values. 

    Results from the data analysis and selected simulations reveal that our dynamic afterload 

performs as anticipated, producing mean, range and estimated impedance values within 

physiologic limits.  Considering the fact that we are attempting to shape a pressure waveform 

generated from a basic plug-type flow created by a crude pump, the behavior of our dynamic 

afterload system is certainly acceptable.  When implemented with a compliant heart pump 

that will generate more reasonable AOP waveform characteristics, the results from our 

system should improve significantly. 

 

Limitations of the Proposed System 

    Even though our dynamic afterload system generally performs as expected, there are 

several aspects of its behavior that provide limitations and leave room for improvement. 

    The resistance within the system is mainly provided by a single proportional valve with a 

larger inner diameter.  As Westerhof et al. 11 discuss, this is not the ideal type of resistor for 

optimizing resistance and inertance in a fluid system.  In addition, the behavior of the valve 

itself allows resistance to change slightly as a function of inlet and outlet pressures.  Though 

the inertance of the main resistor may be higher than we would like, the inertance of the 

pump inflow attachment segment is much higher, and the inertance of this inflow segment 

dominates the impedance at higher frequencies.  The behavior of the valve resistance with 

inlet and outlet pressures produces relatively minor fluctuations in resistance over a single 

cycle.  Considering that our goal is not to match resistance, but rather to achieve a mean 
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pressure with adjustments in afterload, the changes within a cycle for resistance will have 

minimal effect on the overall system performance. 

    Compliance for the system is controlled by movement of the lab jack platform.  The 

platform is of a standard makeup with some compressibility and oscillation likely at higher 

pressures due to the scissor arms and springs that extend the platform.  With different 

extension levels for different compliance values, the compression and oscillatory effects of 

the jack platform differ for each simulation, and even within a simulation.  The changing 

compressibility and oscillation of the lab jack platform are the main source of non-stationary 

and nonlinear effects within our system.  This was evident for simulations where the lab jack 

platform had minimal contact with the end cap.  For these simulations the coherence of the 

FM and PM waveforms was much higher in the middle frequency range.  In addition to noise 

contributions from the lab jack platform, noise sources in our data collection system 

produced fluctuations in the pressure waveforms.  This noise directly affects the estimation 

of the pressure range on which the controls are based.  Thus, pressure spikes and noise spikes 

drive the fluctuations in the range signals seen in Figures 4.6 and 4.7 (Panel E). 

    Though the lab jack platform provides a level of nonlinearity and non-stationarity within 

our system, the compressibility of the platform arms does tend to reduce pressure wave 

reflections within the system.  These reflections are evident as pressure spikes in the PM 

waveforms shown in Figure 4.8.  For those simulations where the lab jack platform had 

minimal contact with the end cap, the pressure wave reflections were higher.  The 

compression of the lab jack arms and springs likely alters the timing of these reflections for 

simulations with lower compliance.  An additional factor contributing to the pressure spikes 

within the system is the non-compliant pump used as input.  This pump, as opposed to a heart 
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pump, has no give and tends to produce significant ringing of the underdamped pressure 

wave.  In order to reduce the underdamped pressure reflections, a one-way fluid valve was 

inserted between the pump and the pump inflow attachment.  This valve eliminated much of 

the ringing of the pressure wave.  We anticipate that a compliant heart sack with a one-way 

valve will reduce these pressure wave reflections to acceptable levels. 

    The respiratory pump input also plays a role in the resistance and compliance values that 

must be realized by the system in order to produce a PM that matches PR.  The characteristics 

of this pump are certainly not the same as those of a typical heart, where myocardial 

compliance and contractility will have a direct effect on pressure output.  These factors play a 

role in what range of resistance and compliance are necessary within a physical system, and a 

lack of these factors affects the range of afterload parameter values realizable by our system.  

Nevertheless, even with the current pump setup, our system was able to operate acceptably at 

the upper end of a typical range of resistance values, while covering a somewhat wider range 

of compliance values.  Bringing a live heart pump online with our dynamic afterload should 

only serve to improve the workability of the setup. 

    A major limitation on our system’s performance is the lack of a real-time controller.  

Improved control over timing of the lab jack platform and the balloon inflation would reduce 

nonlinearities and non-stationarities for PM.  The current LabVIEWTM code provides an 

acceptable level of control; however, there are issues with the timing of events.  For example, 

the timing of the balloon inflation must be tied to the timing of other events in order to 

reduce overhead for the operation of the code and preserve the ability to reliably capture the 

necessary triggers.  This restricts the level of accuracy in timing, and, though the timing 
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alterations may be only slight, they contribute to the lack of coherence seen at medium and 

high frequencies for our results. 

    It should be noted that, in using reference waveforms indicative or normal or 

pathophysiological states we are not attempting to model these states.  There would be major 

and untested assumptions in asserting that we are creating a certain normal or 

pathophysiological condition for the heart by forcing a match in waveform parameters.  In 

short, our goal is to match hemodynamic characteristics of reference pressure waveforms 

from a variety of physiological states. 

 

Contributions of the Dynamic Afterload System 

    Our approach involving a fluid-mechanical dynamic afterload in order to drive a measured 

waveform to match reference waveform characteristics may appear unorthodox.  However, 

there are several advantages to this system design.  First, the system is loosely designed to 

enable afterload parameters to fluctuate as necessary in order to achieve the reference mean 

and range values.  Thus, instead of trying to adjust to provide an impedance match for a 

particular PR, our system automatically adapts the afterload as PR changes.  This approach 

would not be of use in studies where precise values of impedance parameters and details of 

the pressure waveforms are of interest, but this approach would be of use in studies where the 

mean and range of PM and/or a mean flow must be maintained.  For example, over time the 

isolated heart will weaken and reduce its output against a constant load.  Our system could 

automatically adjust the impedance parameters to maintain a steady PM generated from a 

changing source. 
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    Another advantage of a dynamic afterload is the ability to study transients of source 

behavior as the afterload changes.  As mentioned previously, many published studies have 

considered working heart behavior with a steady-state afterload.  Our system would provide a 

convenient way to correlate changes in myocardial function with afterload changes. 

    One final advantage of our dynamic system is the fact that compliance is adjusted 

automatically to compensate for pressure range differences.  To our knowledge, no one has 

attempted to automatically adjust compliance and resistance in a feedback loop for a working 

heart afterload.  We believe that this option enables additional and more convenient studies 

in areas mentioned previously.  The ability of our system to adjust compliance is limited at 

present, but with future iterations of the device, a more precise control would be maintained. 

 

Considerations for Use with an Isolated Heart Apparatus 

    As stated in the Introduction, our goal is to incorporate this system with an isolated heart 

apparatus.  With an isolated heart in place, we believe that many of the limitations of our 

system will be reduced or eliminated.  A number of modifications must be made; however, 

before our dynamic afterload system is ready for implementation with an isolated heart.  In 

an isolated working heart system, direct feedback from the afterload flow measurements to 

the pump supplying preload to the left atrium will be necessary.  The ability to maintain the 

proper flow will be vital to prevent rupturing the system or creating a pressure vacuum 

within the system.  Currently, the control code provides a measure of mean flow that is 

converted to a scaled voltage for driving a pulsatile preload pump.  With a live heart in the 

fluid path, the system will need to be as free as possible from air bubbles that might affect 

circulation or alter compliance values.  We have implemented a suction device to remove 
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trapped air from the top of the compliant end cap.  The device is manually operated at 

present, but alterations could be made to provide a constant removal of trapped air. 

    Within the control code, the pacing trigger that begins each cycle will need to be modified 

to allow for a delay between electrical pacing of the atrium and the actual contraction of the 

ventricle.  In addition, a real-time control system would be vital in order to ensure that a 

system crash would not produce an unstable environment during a study.  Currently, our 

system is adaptable to a range of heart rates.  However, the upper end of the pacing range (> 

100 bpm) would likely provide some difficulties for certain adjustments.  Again, a real-time 

control system would alleviate much of this concern. 

    In our discussion thus far, we have given little consideration to the right side of the heart.  

For an isolated working heart, installing a compliant balloon or other similar object into the 

right ventricle to account for right heart effects on left ventricular contraction may be 

necessary.  Another possibility is to expand the system and maintain two dynamic afterloads, 

one for the left side of the heart and one for the right side.  Each system could be maintained 

and controlled separately to provide a match for pulmonary and systemic PR waveforms. 

 

Conclusion 

    The dynamically adjustable afterload that we have designed performs acceptably in 

matching the reference waveform characteristics of mean and range for a pulsatile pressure 

input.  This is true even for the basic non-compliant pump setup under which it was tested.  

The system response time for a step increase in mean pressure is also reasonable.  While the 

four-element windkessel is not a perfect model to describe our afterload, this model captures 

the major traits of the system’s behavior.  Our dynamic afterload is suitable for future 
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implementation with an isolated heart apparatus and will provide the ability to expand the 

convenience and scope of studies involving the isolated porcine heart. 
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CHAPTER V 
 

CONCLUSION 
 
 

Summary of Important Findings 
 
    This work shows that the fluid-mechanical dynamically adjustable afterload provides an 

automatic method for controlling the mean and range of pulsatile pressure input waves within 

a reasonable physiologic range.  The controls of the afterload were based on aortic pressure 

(AOP) impedance interactions as revealed in the published model (SAVIAv1). 45  

Simulations with SAVIAv1 and analysis with PAASv1 (see Chapter 3) verify that the 

impedance for the afterload is suitably modeled by a standard 4-Element windkessel-type 

afterload.  These results demonstrate that the dynamic afterload, with necessary 

modifications, is appropriate for implementation with an isolated heart apparatus. 

    Controlled adjustments of the dynamic afterload (based on SAVIAv1) enact changes in the 

pulsatile pressure input, driving this input to match reference pressure characteristics.  For 

reference pressures within a realizable physiological range, the system settled to ± 5% of the 

desired values for mean and range within at most 60 cycles (typical settling times were 45 – 

50 cycles or less).  Estimates of the system impedance (using PAASv1) and subsequent 

simulations with SAVIAv1 demonstrate afterload parameters that fall into a physiological 

range of values.  These estimates have little variation for most simulations and the main 

features of the system’s impedance plots conform to the 4-Element windkessel-type afterload 

model.  Modeled AOP waveforms from SAVIAv1, based on measured flow and impedance 



estimates, overlay well with measured pressures.  In addition, trends for the measured 

pressure and flow exhibit expected behaviors with changes in impedance parameters.  These 

results and the physical dimensions and adaptations that enable the dynamic afterload to 

interface with the Langendorff setup, ensure that the system is suitable for implementation 

with an isolated heart apparatus.  Such an isolated, working heart with a dynamic afterload, 

would provide a method for studies requiring specific AOP characteristics and a method for 

studies where myocardial transients with afterload adjustment are of interest. 

 

Future Improvements to the Work 

    The dynamic afterload possesses the desired functionality with regard to manipulation of 

the mean and range of the pulsatile input pressure.  There are, however, several aspects of the 

mechanical load and the control system that warrant further work. 

    Improvement of the characteristic impedance of the system could be accomplished by 

placing a variable resistance element inline with the pump inflow attachment.  A proportional 

valve would likely not be the best candidate, due to the change of path that the fluid would 

encounter and the effects this would have on wave reflection timing.  A design with 

numerous parallel tubes and a sliding restrictor, as demonstrated by Westerfof et al. 11, 51 is a 

possible solution.  Additionally, the sliding restrictor could be reformed as a constricting 

aperture (similar to apertures within cameras).  A flexible pump inflow attachment would 

also contribute to more acceptable characteristic impedance.  Flexible tubing would provide a 

much closer approximation to the aorta than the current setup, and would reduce the 

unwanted higher inertance that is currently present. 
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    The system’s stiffness, resulting in underdamped reflected pressure waves, is an issue that 

must be addressed.  When a compliant heart sac is in place (see Chapter 4 Discussion), this 

should reduce the unwanted reflected pressure spikes; however, this may not totally eliminate 

the problem.  It may be necessary to maintain the volume of the balloon at a level that would 

provide increased cushion for the pressure waves.  The balloon could be adjusted in a slightly 

different manner than the on/off method currently used by inflation and holding of the 

volume with only slight air input or extraction within each cycle. 

    The main improvement necessary in the control code is to implement the controls in a real 

time system.  The increased time resolution would enable advantages in adjustments of the 

afterload components and enhanced decision-making capabilities.  Furthermore, the real time 

system would eliminate many of the timing issues (see Chapter 4 Discussion) currently 

present that produce non-stationarity of the system. 

    With these improvements and the necessary modifications for an isolated heart apparatus 

(see Chapter 4 Discussion) the fluid-mechanical dynamic afterload would be well-suited to 

act as a variable impedance control for AOP within an isolated working heart apparatus. 
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APPENDIX 

Afterload Dimensions 

    Table A provides afterload dimensions for the upper and lower chambers and attachments. 

Main Chamber     UC = Upper Chamber     LC = Lower Chamber

UC length 6.05 cm
UC length unthreaded 1.30 cm
UC length threaded 4.75 cm
UC ID unthreaded 5.38 cm
LC length 9.70 cm
LC length untapered 2.90 cm
LC length tapered 6.80 cm
LC ID untapered 2.52 cm
LC ID tapered 4.30 cm
LC OD unthreaded 5.71 cm
LC angle of taper 7.5°

Pump Inflow Attachment (PIA)
Inline Flow Sensor (IFS)
Characteristic Impedance (Zo segment)

PIA length (without inline flow sensor) 3.81 cm
PIA ID 1.25 cm
IFS length 3.40 cm
IFS ID 1.27 cm
Zo segment length 1.00 cm
Zo segment ID 0.43 cm

Fluid Outflow Attachment (FOA) and Proportional Valve (PV)
Parallel Line from FOA to Reservoir  (PL)

FOA length 14.00 cm
FOA ID 1.10 cm
PV input 3/8" NPT
PV output 1/2" NPT
PL connector length 2.80 cm
PL connector ID 0.21 cm
PL tube length 50.00 cm
PL tube ID 0.51 cm

Air Inflow/Outflow Attachment (AA) and Balloon

AA ID 0.33 cm
Balloon volume (unstretched) 3.00  ml

Table A: Afterload Dimensions

 
ID = Inner Diameter OD = Outer Diameter 
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Calibration of Proportional Valve Resistance and End Cap Compliance 

    An inline proportional valve (dimensions and valve details provided in Methods and 

previously in the Appendix) is the main source of resistance within the system.  This valve is 

controlled by a dc voltage input in the 2.5 – 9.5 V range, where < 2.5 V is closed and 9.5 V is 

completely open.  A Millar pressure transducer (see Methods) was inserted near the inflow of 

the proportional valve.  A parallel, constant flow line between the fluid outflow attachment 

and the reservoir was necessary in order to achieve the desired range of resistance values.  A 

pressure head was produced by elevating a water reservoir.  As the water flowed through the 

valve, the water level (and subsequently the pressure) was maintained by constant refilling of 

the reservoir.  A volume flow was measured by collecting the valve outflow for a certain 

period of time.  The ratio of this pressure to flow provided the resistance in units of mmHg s 

ml-1.  The goal was to relate resistance to the pressure and the voltage input of the 

proportional valve.  Thus, several measurements were taken at varying pressures for each 

voltage level.  Our results are shown in Figure A (left).  These resistance values were 

obtained for a parallel flow tube of approximately 0.5 m length.  Major adjustments in the 

resistance range can be made by altering the length of the parallel flow tube to the reservoir.  

A polynomial fit was made to the data for these pressures, and these formulas were used to 

calculate a weighted average of resistance as described in Methods. 

    The calibration of the latex end cap compliance was carried out as follows.  A 0.025 inch 

thick latex sheet was draped over the end of the main chamber and secured with o-rings and 

an adjustable tie.  The air inflow/outflow attachment was sealed, and the fluid outflow 

attachment was connected to a closed proportional valve.  A Millar pressure transducer (see 

Methods) was inserted into the fluid outflow attachment, and the pump inflow attachment 
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was inserted into the lower chamber.  A rubber stopper with tube insert was used to seal the 

pump inflow attachment, and this tube was used to introduce water to the chamber.  The 

chamber was inverted to enable measurement of the fluid level in the inserted tube.  As fluid 

was introduced to the chamber, the latex sheet bulged out, and the fluid level in the tube rose 

from its starting level.  When the desired pressure was reached, the addition of water to the 

system was stopped.  The added fluid was then drained to the starting level by opening the 

proportional valve and collecting the outflow.  A measure of the initial and final pressures 

and the volume added provided the compliance of the latex sheet by use of equation A. 

 ( ) ( )
( )

1 added

final init

V ml
C ml mmHg

P P mmHg
− =

−
     A 

    The end cap was placed directly over the lab jack platform.  The measurement of 

compliance was performed for a minimum of three different pressures for each height of the 

lab jack platform.  The height of the lab jack platform was set at varying distances from the 

top of the chamber, and this enabled the sheet to extend only a certain amount (the closer the 

platform, the less extension).  Distances of 3, 6, 10 and > 20mm from the top of the chamber 

were used to determine how the latex sheet’s compliance would vary with platform height.  

Results from the calibrations are shown in Figure A (right). 
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Figure A  Resistance and Compliance Calibration Plots.  Resistance as a function of voltage 
applied to the proportional valve (left) is plotted for different pressures.  R2 values are 
supplied for the third order polynomial fit.  Change in volume vs. the change in pressure is 
plotted for different heights of the lab jack (right), and the slope of the best-fit line is the 
compliance value. 
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