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Abstract

SUPRATEEK KUNDU: BAYESIAN NONPARAMETRIC METHODS
FOR CONDITIONAL DISTRIBUTIONS

(Under the direction of Dr. David B. Dunson and Dr. Pranab K. Sen)

In the first paper, we propose a flexible class of priors for density estimation

avoiding discrete mixtures, based on random nonlinear functions of a uniform latent

variable with an additive residual. Although discrete mixture modeling has formed

the backbone of the literature on Bayesian density estimation incorporating covariates,

the use of discrete mixtures leads to some well known disadvantages. We propose an

alternative class of priors based on random nonlinear functions of a uniform latent

variable with an additive residual. The induced prior for the density is shown to

have desirable properties including ease of centering on an initial guess for the density,

posterior consistency and straightforward computation via Gibbs sampling.

In the second paper, we propose a Bayesian variable selection method involving

non-parametric residuals, noting that the majority of literature has focused on the

parametric counterpart. We generalize methods and asymptotic theory established for

mixtures of g-priors to linear regression models with unknown residuals characterized

by DP location mixture. We propose a mixture of semiparametric g-priors allowing

for straightforward posterior computation via a stochastic search variable selection

algorithm. In addition, Bayes factor and variable selection consistency is shown to

result under a class of proper priors on g allowing the number of candidate predictors

p to increase much faster than sample size n while making sparsity assumption on the

true model size.
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Our third paper is motivated by the fact that although there are standard al-

gorithms for estimating minimum length credible intervals for scalars, there are no

such methods for estimating minimum volume credible sets for vectors and functions.

We propose a minimum volume covering ellipsoids (MVCE) approach for vector val-

ued parameters, guaranteed to construct credible regions with probability ≥ 1 − α,

while yielding highest posterior density regions under asymptotic normality. For one-

dimensional random curves, our proposed approach starts with a MVCE region evalu-

ated at finitely many knots, and then interpolates between the knots linearly or relying

on Lipschitz continuity. For multivariate random surfaces, our approach uses Delaunay

triangulations to approximate the credible region. Frequentist coverage properties and

computational efficiency compared with frequentist alternatives are assessed through

simulation studies.
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Preface

Bayesian nonparametrics is a rapidly expanding area in terms of methodological

and theoretical developments, and is being successfully used in an increasing number

of applications including, but not limited to, density estimation, density regression,

survival analysis, hierarchical models and model validation, and more recently model

selection techniques. These models are used to avoid critical dependence on parametric

assumptions and to robustify parametric models.

The contribution of my dissertation is to develop very general nonparametric

Bayes methods which can be used in a wide range of applications incorporating covari-

ates, and which are shown to have appealing theoretical justifications. I have worked

on three fundamental problems in statistical methodology and have proposed solutions

based on a Bayesian nonparametrics paradigm. These problems include probability

density estimation and density regression, variable selection in linear models with non-

parametric residuals and constructing simultaneous credible regions for vectors and

infinite dimensional functions, guaranteed to contain posterior probability of at least

1− α.
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Chapter 1

Introduction

1.1 Literature Review and Motivation

1.1.1 Latent Factor Models for Density Estimation

In the first paper of my dissertation, we propose a flexible class of priors for

density estimation based on random nonlinear functions of a uniform latent variable

with an additive residual. It is well known that nonparametric kernel mixture models

are increasingly popular in density estimation, density regression and high dimensional

data modeling. Kernel mixture models for density estimation have the form

f(y;G) =

∫
K(y; θ)G(dθ), (1.1)

where G(·) is a mixing distribution and K(·) is a probability kernel. The majority

of the nonparametric Bayesian development in this area relies on Dirichlet process

(DP) priors (Ferguson, 1973; 1974) for G. A DP on (χ,A) with parameter α is es-

sentially a stochastic process where, for any measurable paritition (A1, . . . , Ak) of χ,

the random vector (P (A1), . . . , P (Ak)) follows a Dirichlet distribution with parameters

(α(A1), . . . , α(Ak)). The seminal paper by Ferguson (1973) shows that if P is a DP

on (χ,A) with parameter α, and X1, . . . , Xn are a sample from P, then the posterior



distribution of P given X1, . . . , Xn is also a DP on (χ,A) with parameter (α+
∑n

1 δx).

Ghosal, Ghosh and Ramamoorthi (1999) provided general conditions in terms of L1

metric entropy to ensure strong posterior consistency and verified those conditions for

Dirichlet process location mixtures of normal kernels under certain regularity condi-

tions. Tokdar (2006) extended their result to the location-scale mixture case while

encompassing a significantly larger class of ‘true’ densities. Sethuraman (1994), gave a

constructive definition of DP of the form

P =
∞∑
j=1

wjαj, αj ∼ N(0, τ−1), wj = νj
∏
l<j

(1− νl), νl ∼ Beta(1,m),

which enabled posterior computation involving DP kernel mixtures to become much

more manageable. The weights wj are called stick-breaking weights as they can be

obtained by repeatedly breaking a stick of initial length 1 into proportions νh and

1 − νh, and continuing the proces with the fraction 1 − νh. Pati, Dunson and Tokdar

(2011) has also shown large support and weak/strong posterior consistency for a broad

class of generalized stick-breaking priors, which includes the Chung and Dunson (2009)

probit stick-breaking prior as a special case. Walker (2007) proposed the slice sampler

which greatly improved computational speed. His method relies on augmentation with

uniform latent variables as follows

fw,α(y) =
∑

j∈Bw(u)

N(y|αj), Bw(u) = {j : wj > u} .

Thus the development of DP kernel mixture approaches have addressed the primary two

requirements for any prior distribution for nonparametric problems - (i) large support

on the set of densities, and (ii) analytical tractability facilitating posterior computation.

However, the current approaches have largely avoided addressing one other critical issue

central to prior specification - interpretability. For example, we would like to center

2



our prior on a prior guess for the density.

These models have been generalized to density regression by defining dependence

on the covariates x in various ways. If the covariates have a finite number of levels

the Product of Dirichlet processes model introduced by Cifarelli and Regazzini (1978)

allows the modelling of dependent distributions. Dependence is introduced through

the use of a parametric regression model as the centering distribution of independent

Dirichlet processes at each level of the covariates. Müller, Elkanli and West (1996)

used a DP mixture of multivariate normals to jointly model the density of the response

and predictors to induce a prior on f(y|x). Their development boils down to a local

linear regression of the form E(y|x, θ)=
∑k

j=0 sj(x)mj(x), where mj(x) is the mean of

the jth component distribution of y given x, which is linear due to the normality of the

kernels. The regression weights sj(x) determine that components mj(x) will be more

highly weighted in predicting y when the value of the density fj(x|θ) is relatively large.

In order to let the parameters of the DP vary over the predictor space X , MacEachern

(1999) defined dependent Dirichlet processes (DDP) by assigning stochastic processes

on the components in Sethuraman’s (1994) DP representation: Gx =
∑∞

i=1 pi(x)δθi(x).

This ensures that the parameters of the non-parametric prior are able to adapt across

the parameter space, thus giving it more flexibility. De Iorio et al. (2004) proposed a

fixed-p DDP in ANOVA models, while Griffin and Steel (2006) introduce dependence

in nonparametric distributions by making the weights in the Sethuraman (1994) repre-

sentation dependent on the covariates. They modeled each weight as a transformation

of i.i.d. random variables and implemented the dependence by inducing an ordering

of these random variables at each covariate value such that distributions for similar

covariates values will be associated with similar orderings and, thus, be close. At any

covariate value, the random distribution would be a so-called stick-breaking prior, and

they focused on the special case where they assigned DP for the stick breaking prior.

3



Dunson, Pillai and Park (2007) instead used predictor-dependent convex combinations

of DP components. More specifically, they introduced kernel stick breaking processes

of the form

Gx =
∞∑
h=1

U(x;Vh,Γh)
∏
l<h

(
1− U(x;Vl,Γl)

)
G∗h

U(x;Vh,Γh) = VhK(x,Γh)for all x ∈ X .

Here Vh ∼ Be(ah, bh), Kh : <p×<p → [0, 1] is a bounded kernel function and G∗h is the

base measure located at Γh. Thus Gx is a predictor-dependent mixture over an infinite

sequence of basis probability measures. Such a construction can encourage sparsity

and borrowing of information across X through careful choice of hyper-parameters and

kernels Kh.

There is also a rich literature on using mixture priors including the class of DP

priors in hierarchical latent variable models to effectively characterize high dimensional

multivariate distributions, with a focus on sparse covariance structure modelling. Bush

and MacEachern (1996) proposed a Bayesian semiparametric model for randomised

block experiments. Their model is a hierarchical model in which a Dirichlet process is

inserted at the middle stage for the distribution of the block effects, thus allowing for an

arbitrary distribution of block effects, and resulting in effective estimates of treatment

contrasts, block effects and the distribution of block effects. Kleinman and Ibrahim

(1998) put a DP on the random effects in a longitudinal random effects model. Brown

and Ibrahim (2003) proposed a semiparametric model for joint modeling of longitudinal

and survival data. Fokoue and Titterington (2003) and Fokoue (2005) incorporated a

finite mixture of normal factor model in a mixture of factor analyzers (MFA), allowing

for unknown number of mixture components and common factors. To elaborate, Factor

Analysis (FA) is a well established probabilistic approach to unsupervised learning for

4



complex systems involving correlated variables in high-dimensional spaces. FA aims

principally to reduce the dimensionality of the data by projecting high-dimensional

vectors on to lower-dimensional spaces. However, because of its inherent linearity,

the generic FA model is essentially unable to capture data complexity when the input

space is nonhomogeneous. A finite Mixture of Factor Analysers (MFA) is a more flexible

extension of the basic FA model that overcomes the above limitation by assigning a

mixture distribution to the latent factors. The structure of the MFA model offers the

potential to model the density of high-dimensional observations adequately while also

allowing both clustering and local dimensionality reduction. Chen et al. (2009) and

Carvalho et al. (2008) proposed nonparametric Bayes MFA where they allowed an

uncertain number of factors by placing DP and Beta process priors respectively on the

the number of factors. On the other hand, Dunson (2006) used dynamic mixtures of DPs

to allow a latent variable distribution to change nonparametrically across groups. Lee,

Lu, and Song (2008) placed a truncated DP on the distribution of the exogenous latent

variables within a structural equation model (SEM). In order to ensure identifiability

and interpretability in SEM, Yang and Dunson (2010) modelled the exogenous variable

using centered Dirichlet processes (CDP) (Yang et al., 2010) in a latent class model

and CDP mixtures in a latent trait model. To review, the SEM is specified using

two components, (1) the measurement model, which relates the measurement variables

to latent variables; and (2) the latent variable or structural model, which describes

relationships among the latent variables, typically through a linear structural relations

or LISREL model.

The above approaches relying on discrete mixture models, have a number of well

known complications motivating alternative methods for modeling unknown densities,

such as Polya trees (Mauldin et al, 1992; Lavine, 1992, 1994) and logistic Gaussian

processes (LGP) (Lenk 1988, 1991; Tokdar 2007). The Polya tree generates random

5



probabilities G, such that for any partitioning subset Bε (ε = (ε1, . . . , εm)), G(Bε) =∏m
j=1,εj=0 Yε1,...,εj−10

∏m
j=1,εj=1(1−Yε1,...,εj−10), where Yε0 ∼ Be(αε0, αε1). Polya trees have

appealing properties in terms of denseness, conjugacy and posterior consistency but

have disadvantages in terms of favoring overly spiky densities. On the other hand LGP’s

are defined as fw(t) = ew(t)∫
ew(s)ds

, where w(·) is assigned a GP prior. The smoothness

properties of the GP transfers on to the LGP, thus rendering it sound theoretical

properties and control over the smoothness of the densities through the covariance

kernel in the GP. However, posterior computation is a major hurdle. Recently, Jara

and Hanson (2010) proposed dependent tail-free processes where they modeled the

tail-free probabilities with LGP dependent on covariates. Their approach is shown to

approximate the Polya tree marginally at each predictor value. An alternative was

suggested by Tokdar, Zhu and Ghosh (2010) relying on LGP for density regression

with dimensionality reduction. More specifically, they modeled the conditional density

by equivalently modelling quantities such as p(G0(y)|F(z)) using LGP, where G0 is any

cumulative distribution function, F is a d-dimensional function having monotonically

increasing components from < to (-1,1) and z belongs to the d-dimensional central

subspace of the predictor space X .

In our first paper, we focus on a new approach for nonparametric density esti-

mation and regression that induces a prior on the unknown density through placing a

flexible prior on a nonlinear regression function θ in a latent factor model. The pro-

posed class of models is related to Gaussian process latent variable models (GP-LVM)

proposed in the machine learning literature (Lawrence, 2005; Silva and Gramacy, 2010),

but our modeling details are different and the focus of this literature has been on nonlin-

ear dimensionality reduction with no consideration of density estimation or associated

properties. By using GP priors for θ, we obtain substantial control over the smoothness

of the induced densities in a very different manner than that achieved by LGP-based

6



models. Unlike LGP-based models, the proposed model has conjugacy properties fa-

cilitating posterior computation. In addition, the method has appealing theoretical

properties in terms of large support and posterior consistency.

Relative to some density estimation priors, the proposed latent factor approach

is quite easy to generalize to more challenging settings involving multivariate densities,

conditional density estimation, hierarchical modeling and other complexities. Although

our primary focus in this article is to introduce the formulation, providing a basic intu-

ition for how the model works, basic properties and computation, we also give a flavor of

generalizations through a simple conditional density estimation example. In particular,

we consider a model that induces a prior on the conditional density f(y|x) through joint

modeling of the response and predictors through separate nonparametric latent factor

models containing the same latent variables. This formulation is completely flexible in

the marginal densities, while making strong restrictions on the dependence to address

the curse of dimensionality in a related manner to a copula model. An attractive fea-

ture of our model is that it naturally allows for incorporation of prior information on

the marginal densities of response and predictors through the mean function of the GP.

1.1.2 BVS in Semiparametric Linear Models

BVS or Bayesian variable selection is very widely applied, with a rich literature

on alternative priors and computational methods. For a recent review of Bayesian

variable selection methods, refer to O’Hara and Sillanpää (2009). Most of the liter-

ature has focused on Gaussian linear regression models, with common methods in-

cluding stochastic search variable selection (SSVS) (George and McCulloch, 1993;

1997), reversible jump MCMC (Green, 1995) and adaptive shrinkage (Tibshirani, 1996;

Park and Casella, 2008; Yi and Xu, 2008). SSVS puts the prior on effect sizes as

7



P (βj|Ij) = (1 − Ij)N(0, τ 2) + IjN(0, gτ 2), where Ij is the variable inclusion indicator

and the first density is centered around 0 and has a small variance. The specification

of parameters τ, g are data-dependent. Alternatively, SSVS could involve a point mass

at 0 instead of N(0, τ 2) in the above formulation. Reversible jump MCMC is a flexible

technique for model selection, which lets the Markov chain explore spaces of different

dimensions. For variable selection, the positions (indices) of the selected variables are

defined as l1, . . . , lNv , and the model is updated by randomly selecting variable j and

then proposing either addition to (Nv := Nv + 1) or deletion from (Nv := Nv − 1)

the model of the corresponding effect. The length of the parameter vector is therefore

not fixed but varies during the estimation. The updating is done using a Metropolis-

Hastings algorithm, but with the acceptance ratio adjusted for the change in dimension.

The degree of sparseness can be controlled by setting the prior for Nv. On the other

hand, shrinkage methods work by shrinking values of the effect sizes towards zero (or

equivalently, concentrating the likelihood towards 0) if there is no evidence in the data

for significant effects. Conversely, there should be practically no shrinkage for data-

supported values of covariates that are non-zero. In practice, it is often the case that

these adaptive shrinkage methods select a super set of the important set of predic-

tors. The method is adaptive in the sense that the degree of sparseness is data driven,

through the way it shrinks the covariates effects towards zero. The degree of sparse-

ness of the model can be adjusted by changing the prior distribution of the precision

of the effect sizes, with an exponential distribution amounting to Laplacian shrinkage.

The degree of sparseness in Laplacian shrinkage is controlled by the scale parameter

of the exponential prior, which when assigned a hyperprior renders the Bayesian Lasso

(Park and Casella, 2008). Such methods can be applied directly for kernel or basis

function selection in nonlinear regression with Gaussian residuals (Smith and Kohn,

1996) and can be adapted to accommodate generalized linear models with outcomes in

8



the exponential family (Raftery and Richardson 1993; Meyer and Laud 2002).

It is well known that Bayesian variable selection can be sensitive to the prior,

and there is an increasingly rich literature showing asymptotic properties providing

support for carefully-chosen priors, such as mixtures of g-priors (Zellner and Siow, 1980;

Liang et. al., 2008), with such priors also having appealing computational properties.

This literature is essentially entirely focused on Gaussian linear regression models, and

the emphasis of this article is on developing methods that generalize this work to

semiparametric regression models having unknown residual distributions.

To set the stage, first consider the well-studied problem of comparison of linear

models of the following type:

M1 : Y n = α1n +Xγ1βγ1 + ε1, ε1 ∼ N(0, τ−1In),

M2 : Y n = α1n +Xγ2βγ2 + ε2, ε2 ∼ N(0, τ−1In), (1.2)

where Yn is n×1 vector of responses, α is the common intercept, Xγj is a n×pj design

matrix (j=1,2) excluding the column of intercepts, and εj’s are Gaussian residuals,

j=1,2. The models may or may not be nested, and the number of candidate predictors

is p. Among numerous model selection criteria available for such comparisons, the

Bayes factor (Kass and Raftery, 1995) has received substantial attention as the most

widely accepted Bayesian measure of the weight of evidence in the data in favor of one

model over another. The Bayes factor for comparing M1 versus M2 based on a sample

Yn is defined as BFn12 = L(Y n|M1)
L(Y n|M2)

, the ratio of marginal likelihoods under M1 and M2.

Assuming one of the models under comparison is true, Bayes factor consistency refers

to the phenomenon where BFn12
P→ ∞ as n → ∞ under M1 and BFn12

P→ 0 as n → ∞

under M2. A stronger form of consistency is also possible when the convergence happens

almost surely. When comparing the true model pairwise to each model in a list, Bayes

9



factor consistency typically implies that the posterior probability on the true model

goes to one.

Although priors most commonly used in practice assume a priori independence

in the elements of the coefficient vectors (β1 and β2), priors that have been shown to

result in Bayes factor consistency typically incorporate dependence. Examples include

the intrinsic prior (Berger and Pericchi, 1996; Moreno, 1997; Moreno, Bertolino and

Racugno, 1998) which builds a prior for the alternative model with varying degrees

of concentration around the null, and Zellner’s g-prior (Zellner, 1986) specified by

βj ∼ N(0, gτ−1(X ′jXj)
−1), j=1,2. The intrinsic priors have proven to behave very well

for multiple testing problems (Casella and Moreno, 2006). Moreno and Girón (2005)

showed consistency for the intrinsic Bayes procedure for nested linear models, while

Casella (2009) extended consistency for the intrinsic Bayes procedure to non-nested

linear models. Zellner’s g-prior allows for a convenient correlation structure and can

control for the amount of prior information relative to the sample through only one

hyperparameter g. Among others, Fernández et al. (2001) investigated Bayes factor

consistency under various choices of fixed g, which was allowed to depend on the sample

size and/or the number of candidate predictors. In order to resolve difficulties associated

with a fixed choice of g, such as Bartlett’s paradox (Bartlett, 1957; Jeffreys 1961) and

information paradox (Zellner 1986; Berger and Pericchi 2001), Zellner and Siow (1980)

placed an inverse-gamma prior on g, while Liang et. al. (2008) extended the idea

of Strawderman (1971) to the regression context by proposing hyper-g and hyper-g/n

priors on g, under which they established Bayes factor consistency. To review, Bartlett’s

paradox refers to the fact that in the limiting case when g →∞ while (n, pγ) are fixed,

the Bayes factor for comparing Mγ to the null model will go to 0. That is, large spread

of the prior induced by the non-informative choice of g has the unintended consequence

of forcing the Bayes factor to favor the null model, the smallest model, regardless of
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the information in the data. On the other hand, the information paradox refers to the

fact that the Bayes factor in favor of Mγ goes to a constant for a fixed choice of g as the

coefficient of determination of Mγ goes to 1 (i.e. when there is overwhelming evidence

in favor of Mγ,), keeping (n, pγ) fixed. This is against conventional wisdom, as one

expects the Bayes factor in favor of Mγ to go to ∞ as evidence against the null model

accumulates. Coming back to the afore-mentioned approaches, they entail specifying

improper priors on common model parameters and proper priors on model parameters

unique to any one model, which results in a prior specification for the more complex

model depending upon the simpler model. To avoid such pitfalls, Guo and Speckman

(2009) adopted the idea of Marin and Robert (2007) and placed mixtures of g−priors

on all the elements of both β1 and β2, which leads to tractable Bayes factors as well as

Bayes factor consistency.

There has also been a growing interest in model selection procedures for normal

linear models when the number of candidate predictors (p) increase with sample size

(n). Such increases occur in a wide variety of applications, such as in nonparamet-

ric regression when the number of candidate kernels or basis functions depends on n.

Shao (1997) analyzed the consistency of several frequentist and Bayesian approximation

criteria for model selection in normal linear models with increasing model dimensions,

assuming the true model to be the submodel minimizing the average squared prediction

error. Moreno et. al. (2010) examined consistency of Bayes factors and the BIC under

intrinsic priors for nested normal linear models, when the dimension of the parameter

space increases with the sample size. Jiang (2007) considered Bayesian variable selec-

tion in generalized linear models in p > n settings and provided conditions to obtain

near optimal rates of convergence in estimating the conditional predictive distribution,

but did not consider asymptotic properties in selecting the important predictors.

To our knowledge, this area has entirely focused on parametric models with a
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particular focus on normal linear regression. Such a parametric assumption on the

residual error is rather stringent and may not hold in practice, thus invalidating the

earlier assumption of the true model belonging to the class of models under comparison

and potentially leading to inconsistent Bayes factors. Simulations illustrate that when

residuals are generated from a bimodal distribution, Bayesian variable selection under a

Gaussian linear regression model tends to have poor performance. With this motivation,

our focus is on developing Bayes variable selection methods that do not require Gaussian

residuals and that can be shown to be consistent.

There is a limited literature on variable selection in Bayesian regression models

having unknown residual distributions. Kuo and Mallick (1997) consider an accelerated

failure time model for time-to-event data containing a linear regression component

and a mixture of Dirichlet processes for the residual density. To perform variable

selection, they add indicator variables to the regression function and implement an

MCMC algorithm. Also, in the survival analysis setting, Dunson and Herring (2005)

proposed a Bayesian approach for selecting predictors in a semiparametric hazards

model that allows uncertainty in whether predictors enter in a multiplicative or additive

manner. More specifically, to accommodate this uncertainty, they placed a model

selection prior on the coefficients in an additive-multiplicative hazards model. This

prior assigned positive probability, not only to the model that has both additive and

multiplicative effects for each predictor, but also to sub-models corresponding to no

association, to only additive effects, and to only proportional effects, and further, they

constrained the additive component of the model to ensure non-negative hazards. Kim,

Tadesse and Vannucci (2006) instead define a Bayesian variable selection approach,

which uses a Dirichlet process to define clusters in the data, while updating the variable

inclusion indicators using a Metropolis scheme. They introduced a latent binary vector

to identify discriminating variables and used Dirichlet process mixture models to define
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the cluster structure. They updated the variable selection index using a Metropolis

algorithm and obtained inference on the cluster structure via a split-merge Markov

chain Monte Carlo technique. Mostofi and Behboodian (2007) model a symmetric and

unimodal residual density using a Dirichlet process scale mixtures of uniforms, while

conducting Bayesian variable selection by selecting the highest posterior probability

model. Chung and Dunson (2009) modeled the conditional response density given

predictors using a flexible probit stick-breaking mixture of Gaussian linear models,

allowing variable selection via a Bayesian stochastic search method. More specifically,

they introduced the probit stick-breaking process (PSBP) as a prior for an uncountable

collection of predictor-dependent random probability measures and proposed a PSBP

mixture (PSBPM) of normal regressions for modeling the conditional distributions.

They incorporated a global variable selection structure so as to discard unimportant

predictors, while allowing estimation of posterior inclusion probabilities. Further, they

did local variable selection while relying on the conditional distribution estimates at

different predictor points.

These articles focused on defining methodology and computational algorithms,

but without study of theoretical properties, such as consistency. In fact, to our knowl-

edge, there has been no previous work on consistent Bayesian variable selection in semi-

parametric models, though there is recent work on consistent non-parametric Bayesian

model selection (Ghosal, Lember and van der Vaart, 2008 among others). Ghosal,

Lember and van der Vaart (2008) considered nonparametric Bayesian estimation of

a probability density based on a random sample of size n from this density using a

hierarchical prior. They presented a general theorem on the rate of contraction of the

resulting posterior distribution as n→∞ which gives conditions under which the rate

of contraction is the one attached to the model that best approximates the true density

of the observations. This shows that, for instance, the posterior distribution can adapt
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to the smoothness of the underlying density. They also studied the posterior distri-

bution of the model index, and found that under the same conditions the posterior

distribution gives negligible weight to models that are bigger than the optimal one,

and thus selects the optimal model or smaller models that also approximate the true

density well. However, it is not straightforward to apply such theory directly to the

problem of variable selection in semiparametric linear models.

With this motivation, we define a practical, useful and general methodology for

Bayesian variable selection in semiparametric linear models, while providing basic the-

oretical support by showing Bayes factor and variable selection consistency. We accom-

plish this by generalizing the methods and asymptotic theory for mixtures of g-priors

to linear regression models with unknown residuals characterized via Dirichlet process

(DP) location mixture of Gaussians. We propose a new class of mixtures of semi-

parametric g-priors under a family of proper priors for g, which results in consistent

Bayesian variable selection even when there are many more candidate predictors (p)

than samples (n) as long as the prior assigns probability zero to models having greater

than or equal to n predictors. Additionally, posterior computation for the proposed

method is straightforward via a SSVS algorithm.

1.1.3 Bayesian credible regions for vectors and functions

In the Bayesian paradigm, posterior uncertainty is commonly summarized using

credible regions containing 1 − α posterior probability, and it is appealing to obtain

the minimum volume region. When the posterior density is unimodal, the minimum

volume credible set corresponds to a highest posterior density (HPD) region. For scalar

parameters, HPD intervals can be estimated easily based on draws from the posterior

obtained using Markov chain Monte Carlo (MCMC) (Chen and Shao, 1999). However,

such methods are only appropriate for scalars and there are no general use methods
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for estimating HPD regions for vectors or functions. Current state-of-the-art methods

for Bayesian estimation of credible regions focus on using either large sample elliptical

regions that can be justified by asymptotic normality of the posterior or rectangular

regions that inflate the size of scalar regions for each parameter using multiplicity

adjustments. Given the routine use of credible sets in practice, there is a clear need for

improved methods for efficiently estimating minimum volume credible sets for vectors

and functions based on MCMC output.

To adjust for conservatism while maintaining a rectangular region, Crainiceanu

et al. (2007) assumed approximate posterior normality and proposed inflated hyper-

rectangular regions as

[
θ̂j − c1−α

√
v̂ar(θj), θ̂j + c1−α

√
v̂ar(θj); j = 1, . . . , p

]
,

where θ̂ = (θ̂1, . . . , θ̂p)
′ is the posterior mean of the parameter of interest θ = (θ1, . . . , θp)

′,

and c1−α is the 1 − α percentile of maxj=1,...,p

∣∣∣ θsj−θ̂j√
v̂ar(θj)

∣∣∣ with θs corresponding to the

sth MCMC draw from the posterior.

Unfortunately, restricting consideration to rectangular regions ignores the true

topology of the joint posterior and can lead to 100(1 − α)% credible regions that can

have dramatically larger volume than necessary. As an alternative for estimating convex

credible regions based on MCMC samples, we initially considered convex hull peeling

in which one starts with the convex hull of the MCMC samples and peels off outer

layers by discarding outer points until obtaining a region containing 100(1−α)% of the

samples. Although such an approach is promising, even fast algorithms for calculating

the convex hull of a set of points have substantial computational burden. For example,

the worst case complexity of the quick-hull algorithm (Barber et. al, 1996) is O(nfr/r)

for p > 3, where r is the number of processed points and fr is the maximum number of

faces for r vertices. The number of processed points is much larger than p, implying that

15



fr = O(rbp/2c/ bp/2c) (Klee, 1966) increases rapidly as p increases, so that computation

becomes unmanageable quickly. Hence, we do not consider such an approach further.

In developing an alternative, we use the equivalence between HPD regions, mini-

mum volume (MV) sets and density level sets of the posterior to ascertain the subset

of MCMC samples falling within the HPD region. MV sets (Polonik, 1995, 1997)

summarize regions with a pre-assigned probability content where the mass is most con-

centrated, and are closely related to density level sets (Tsybakov, 1997; Ben-David and

Lindenbaum, 1997; Cuevas and Rodriguez-Casal, 2003; Steinwart et al., 2005). The

main difference is that the latter requires the specification of a density level of interest

instead of the probability mass to be enclosed. The equivalence between MV sets and

density level sets was established by Nunez-Garcia et al. (2003) under some reasonable

conditions.

Assuming that the posterior g(θ|Y n) ∝ h(θ, Y n) = π(θ)L(Y n|θ) (L(·) being the

likelihood) is known up to a normalizing constant, we can exploit the aforementioned

equivalence to assert that any posterior MCMC sample θj, j=1,. . . ,J, satisfying

h(θj, Y n) > λ, P{θ : h(θ, Y n) > λ|Y n} = 1− α, (1.3)

will belong to the 100(1 − α)% HPD credible region. An estimate for λ can be ob-

tained from the MCMC samples as λ̂ such that
#{θj :h(θj ,Y n)≥λ̂}

J
≥ 1 − α. To al-

low for additional parameters ψ in the model without requiring a known analytic

form for the marginal h(θ, Y n) =
∫
L(Y n|θ, ψ)π(θ|ψ)π(ψ)dψ, we can rely on an ap-

proximation, with a simple choice corresponding to the Monte Carlo approximation

ĥ(θ, Y n) = 1/H
∑H

h=1 L(Y n|θ, ψh)π(θ|ψh), where ψhs (h = 1, . . . , H) are realizations

from the prior π(ψ). Such an approximation is not possible under improper priors for

ψ, and may be inefficient when the prior is very diffuse relative to the likelihood, but

there is a rich literature proposing alternatives.
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We propose a method for constructing elliptical credible regions which enclose

the 100(1− α)% HPD set defined as the collection of posterior MCMC samples satis-

fying (1.3), with the estimated density level λ̂. In the presence of nuisance parameters,

we replace h(θ, Y n) with ĥ(θ, Y n). In cases when such an approximation is poor, the

HPD set may contain samples outside of the 100(1 − α)% HPD region, thereby po-

tentially yielding slightly inflated finite dimensional credible regions. Elliptical regions

provide a convenient approximation, with the exact credible region having an ellipti-

cal form under multivariate normality of the posterior. Bernstein von Mises theorems

guarantee asymptotic normality for sufficiently regular parametric models, with similar

results arising in certain semi- or nonparametric models (Castillo, 2012; Rivoirard and

Rousseau, 2009). Our approach utilizes minimum volume covering ellipsoids (MVCE)

(Rousseeuw 1985), which have been implemented in a variety of application areas

(Knorr et al., 2001; Kumar and Orlin, 2008). Typically approximate algorithms are

used (Khachiyan, 1996; Kumar and Yildirim, 2005; Sun and Freund, 2004), as exact

computation is often not feasible.

Another major focus of our paper is constructing credible regions for functions.

Although there is a rich literature on Bayesian semi- and nonparametric methods, with

recent theoretical results on properties of credible regions for functions (Knapik, van der

Vaart and van Zanten, 2011), there is a surprising lack of methods for calculating such

regions in practice. Most commonly one reports pointwise intervals for the function

at different locations or for functionals of interest. However, this clearly provides an

inadequate characterization of uncertainty in the function as a whole. Simultaneous

credible regions have useful applications in hypothesis testing for random functions.

For example, we might conclude that a curve is well approximated by a parametric

function if the parametric curve falls entirely within the estimated credible region. In

addition, there is often interest in assessing whether the region includes a flat line
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or surface corresponding to a null hypothesis under consideration. In nonparametric

regression, such a null hypothesis may correspond to there being no effect of a predictor

or predictors of interest. In other settings, the null corresponds to there being no

difference in group-specific surfaces.

For one-dimensional curves, we propose two distinct approaches for computing

credible bands by computing credible limits at a grid of points or knots and subse-

quently interpolating between these limits using linear interpolation and a method

based on Lipschitz continuity. The proposed methods are a simple add on to exist-

ing MCMC algorithms and are not computationally expensive for moderate number of

knots. In interpolating, the hope is that the posterior will assign small probability to

the set of aberrant curves, which are contained within the credible bands at the knots

but fall outside the bands somewhere between the knots. If this is not the case, the pos-

terior probability contained in the estimated credible set may be less than 1−α. When

the support of the posterior corresponds to Lipschitz continuous functions, we show

that one can use a modified type of linear interpolation that appropriately inflates the

width of the intervals between knots to ensure that the posterior places probability zero

on the set of aberrant curves. For functions over higher dimensional surfaces, we con-

struct piecewise hyperplanar credible surfaces by generalizing the linear interpolation

approach through Delaunay triangulations.
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Chapter 2

Latent Factor Models for Density
Estimation

2.1 Model Specification

Initially suppose yi ∈ < are iid draws from an unknown density f ∈ F , where F

is the set of densities on < with respect to Lesbesgue measure. We propose to induce

a prior f ∼ Π through

yi = µ(xi) + εi, εi ∼ Γσ,

µ ∼ Π∗, σ ∼ ν, xi ∼ Uniform(0, 1), (2.1)

where µ ∈ Θ is an unknown [0, 1] → < function, xi is a uniformly distributed latent

variable, and the error distribution Γσ is centered at 0 and has scale parameter σ.

Hence, in the special case in which µ(x) = µ, so that the regression function is a

constant, and Γσ is normal, we have f(y;µ, σ2) = N(y;µ, σ2) so we obtain a normal

density. The density of y conditionally on the unknown regression function µ and σ is

obtained on marginalizing out the latent variable as

f(y;µ, σ) = fµ,σ(y) =

∫ 1

0

Γσ(y − µ(x))dx. (2.2)



To complete the specification, we let µ ∼ Π∗, σ ∼ ν and obtain the marginal density

f(y) =

∫ ∞
0

∫
Θ

∫ 1

0

Γσ(y − µ(x))dxΠ∗(dµ)ν(dσ). (2.3)

Hence, a prior f ∼ Π is induced through assigning independent priors to µ and σ in

expression (2.2). When the prior on µ is a Gaussian process and the error distribution

is N(0, σ2) (denoted as Γσ = φσ), we refer to fµ,σ as a Gaussian process transfer (GPT)

model and the induced prior f ∼ Π as a GPT prior.

The GPT prior does not have the kernel mixture form (1.1). There will be no

clustering of subjects or label switching issues. Instead, the prior f ∼ Π is induced

through adding a Gaussian residual to a Gaussian process regression model in a uniform

latent variable. This is a simple structure aiding computation and interpretability. One

can control the smoothness of the density through the covariance in the GP prior for the

regression function µ and the size of the scale parameter σ. In limiting cases, one can

obtain realizations of µ concentrated close to a flat line, leading to a normal density as a

special case. In addition, by making σ small and choosing the GP covariance to generate

a very bumpy µ, one can obtain arbitrarily bumpy densities. In practice, by choosing

hyperpriors for key covariance parameters, we obtain a data adaptive approach that

often outperforms discrete kernel mixtures. The performance of discrete kernel mixtures

relies on the ability to accurately approximate the density with few components, and

DP mixtures tend to heavily favor a small number of dominate kernels. This tendency

can sometimes lead to relatively poor estimation, as illustrated in section 2.7.

2.2 Prior Specification

Prior elicitation is an important aspect of Bayesian modeling, with the prior play-

ing a particularly important role in Bayesian nonparametric models involving infinitely

20



many parameters. Most of the Bayesian nonparametrics literature relies on default pri-

ors, which do not reflect available prior knowledge in a particular application area, but

are chosen to lead to good performance in terms of posterior behavior in a wide variety

of applications. However, as in parametric models, well chosen informative priors that

utilize information, such as historical data on the variables under study, can substan-

tially improve the performance in small to moderate samples. In DP mixtures, such

prior information is typically incorporated through choice of hyperparameters in the

base measure, while maintaining conjugacy for ease in computation. For example, in

Gaussian kernel mixtures, a normal-inverse gamma base measure would be chosen hav-

ing parameters representing prior knowledge. This is appropriate when prior knowledge

implies that the density follows a t distribution, but when one has prior information

that the density follows a more complex form (as in our premature delivery application)

then elicitation is substantially more difficult. Obtaining a base measure that leads to

a particular elicited density is a deconvolution problem, which can be difficult to solve

for non-atomic base measures. In addition, posterior computation under the resulting

complex and non-conjugate base measure may be challenging. An advantage of the

GPT is that the prior for the density can be centered on an arbitrary choice easily

through the prior mean in the GP prior for µ.

To elaborate, Theorem 3 (section 2.3) ensures that µ ≈ µ̃ = F̃−1 implies that

fµ,σ ≈ fµ̃,σ = f̃ , with f̃ = d
dy
F̃ and σ ≈ 0. In terms of application, this translates to

incorporating a prior guess f̃ for the density through the corresponding mean function

µ̃ = F̃−1 of the GP, and letting the prior for σ to have mode near 0. Such a mean

function can be constructed by obtaining frequentist kernel estimates of the concerned

density using some external data, and then converting it into an inverse cdf on a grid

of points in [0,1] (using a linear approximation). Thus, the characteristics of the entire

density is captured through F̃−1 as the mean function of the GP, and we let the data
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influence the deviation of the posterior from the prior guess.

These ideas are demonstrated in Figure A.1, where we use some earlier data on

gestational age at delivery to construct prior densities. We choose a Ga(25,1) prior for

the residual precision, and different sets of hyper-parameters for the covariance kernel

of the GP. The frequentist kernel estimates were obtained by the bandwidth selection

method of Sheather and Jones (1991), using a Gaussian kernel (‘kernel’ function in R).

It is evident that the smoothness as well as the degree of deviation of the prior from the

frequentist estimate can be controlled through the hyper-parameters in the covariance

kernel of the GP.

2.3 Theoretical Properties

To further justify the proposed prior, we show large support and posterior con-

sistency properties. Large support is an important property in that it ensures that our

prior can generate densities that are arbitrarily close to any true density f0 in a large

class, a defining property for a nonparametric Bayesian procedure and a necessary con-

dition to allow the posterior to concentrate in small neighborhoods of the truth. Instead

of focusing narrowly on GPT priors, we provide broad theoretical results for priors in

the general class of expression (3.1).

Before proceeding, it is necessary to define some notation and concepts. We

denote the Kullback-Leibler (KL) divergence of fµ,σ from f0 as KL(fµ,σ, f0) and an

ε−sized KL neighborhood around f0 as KLε(f0) = {fµ,σ : KL(fµ,σ, f0) < ε}. The sup-

norm distance is denoted by ||.||∞. We note that, to generate yi ∼ f0, one can draw

xi ∼ Uniform(0, 1) and let yi = F−1
0 (xi), F

−1
0 being the inverse cdf on < (assuming F−1

0

exists). This is equivalent to drawing samples from the limiting distribution in model

(3.1) as σ → 0 with µ0 = F−1
0 . For our development, we will assume that the true

(data generating) density can be expressed as f0 = d
dy
F0 = limσ→0

d
dy
F0,σ, where F0,σ is
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the cdf of fµ0,σ. More precisely,

(A1): The true (data generating) density can be represented as the limiting case

f0 (y) = lim
σ→0

∫ 1

0

Γσ(y − µ0(x))dx ∈ (0,∞), (2.4)

where µ0 = F−1
0 , for all y ∈ < and assuming Γσ is chosen so that such the limit exists.

Since the limiting distribution of model (3.1) can be used to generate samples from any

arbitrary distribution, (A1) includes the class of all strictly positive and finite densities

for which convergence in distribution implies convergence of the corresponding density

functions. Further in the proofs, we will also repeatedly use the fact that for µ close

to µ0 and σ ∈ <+, log f0
fµ,σ

<∞ for f0 defined in (A1 ) and Γσ = Gaussian or Laplace.

For notational convenience, we will often use µ and µ(x) interchangeably in the sequel.

Theorem 1 Let Γσ be normal or Laplace having scale parameter σ with f0 being the

corresponding density in F defined as in (A1). If Π∗⊗ ν
(

(µ, σ) : ||µ− µ0||∞ < η1, σ ∈

(0, η2)

)
> 0 for arbitrarily small (η1, η2) > 0, then Π(KLε(f0)) > 0 for all ε(η1, η2) > 0.

Theorem 1 allows us to verify that the induced prior on the density f assigns

positive probability to KL neighborhoods of any strictly positive and finite true density

f0. From Schwartz (1965), if the true density f0 is in the KL support of the prior for

f , the posterior distribution for f will concentrate asymptotically in arbitrarily small

weak neighborhoods of f0. Theorem 1 requires the prior µ ∼ Π∗ to place positive

probability in sup-norm neighborhoods of the inverse cdf F−1
0 . Although one can verify

this condition for certain choices of Π∗, such as appropriately chosen Gaussian process

priors, it is nonetheless somewhat stringent. We show in Theorem 2 that this condition

can be relaxed to only require that the prior µ ∼ Π∗ assigns positive probability to L-1

neighborhoods of any element µ0 of Θ. It is well known that positive sup-norm support

automatically guarantees positive L-1 support but the converse is not true. Let us
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denote an ε1-sized L-1 neighborhood around µ0 as Nε1(µ0) =
{
fµ,σ :

∫
|fµ,σ − f0| < ε1

}
.

Theorem 2 Let Γσ = φσ and f0 be the corresponding density in F defined in ( A1).

If Π∗ ⊗ ν {(µ, σ) : µ ∈ Nη1(µ0), σ ∈ (0, η2)} > 0 for arbitrarily small η1, η2 > 0, then

Π(KLε(f0)) > 0 for all ε(η1, η2) > 0.

As the prior f ∼ Π is specified indirectly through priors µ ∼ Π∗ and σ ∼ ν, it is

desirable for elicitation purposes to verify that, for sufficiently small σ, µ ≈ µ̃ = F̃−1

implies that fµ,σ ≈ fµ̃,σ = f̃ , where f̃ = d
dy
F̃ . Theorem 3 provides such a verification

assuming Gaussian errors. This implies one can potentially center the prior for the

density f on an initial parametric guess f̃ by centering µ ∼ Π∗ on the inverse cdf F̃−1

while choosing the prior for σ to have mode near zero. The data will then inform about

the degree to which µ deviates from F̃−1 and σ deviates from 0.

Theorem 3 Suppose f̃ = limσ→0

∫ 1

0
φσ(y − µ̃(x))dx, where µ̃ = F̃−1, the inverse cdf

corresponding to f̃ . Then for µ ∈ Nε1 (µ̃) and σ ∈ (ε2, ε
∗
2), we have fµ,σ ∈ N ε1

ε2

(
f̃
)

for

arbitrarily small ε1, ε2, ε
∗
2 such that 0 < ε1 < ε2 < ε∗2.

Although Theorems 1-2 lead to weak posterior consistency, small weak neighbor-

hoods around f0 are topologically too large and may include densities that are quite

different from f0 in shape and other characteristics. Hence, it is appealing to estab-

lish a strong posterior consistency result in which the posterior probability allocated

to arbitrarily small L-1 neighborhoods of f0 increases towards one exponentially fast

with increasing sample size. Focusing on the GPT prior described above, we show in

Theorem 4 that strong posterior consistency holds under some conditions on the prior.

Notably, for a GPT prior satisfying (A2 ) and a tail condition on prior ν, we obtain L-1

posterior consistency for all strictly positive and finite true densities f0 ∈ F with the

weak regularity condition (A1 ).
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(A2 ): Suppose µ ∼ GP (m, c) such that the mean function m(·) is continuously differ-

entiable with supxm(x) <∞, and the covariance function c(·, ·) has continuous fourth

derivatives.

Theorem 4 Suppose ( A2) holds and define f0 as in ( A1) where Γσ = φσ. Further

let ν(σ ∈ (0, Ln)) < d1 exp(−d2n) with d1, d2 > 0 for large n and limn→∞ Ln = 0. Then,

f0 is in the KL support of Π implies that the posterior is strongly consistent at f0.

The above assumptions can be verified for many popular GP covariance functions,

both stationary and nonstationary. Some such examples can be found in Choi et. al.

(2004). The proof of the above Theorem relies on Theorem 2 of Ghosal, Ghosh and

Ramamoorthi (1999), which is listed as Theorem 5 in Appendix A.

2.4 Single Factor Density Regression

As a simple and parsimonious single factor model that generalizes the model of

Section 2.1 to include predictors zi = (zi1, . . . , zip)
′ of a response yi, we let

yi = µY (xi) + εi, εi ∼ N(0, σ2
Y ),

zik = µZk(xi) + ε∗ik, ε∗ik ∼ N(0, σ2
Zk

), k = 1, 2, . . . , p,

xi ∼ Uniform(0, 1),

µY ∼ ΠY , µZk ∼ ΠZk , k = 1, 2, . . . , p,

σY ∼ ν, σZk ∼ ν, (2.5)

where µY , µZk ∈ Θ are unknown [0, 1] → < functions, ε’s are independent errors and

xi is the latent variable. For simplicity, we assume the same prior ν on the precision

of the measurement errors in each component model, though this assumption is trivial

to relax. Expression (2.5) is a multivariate generalization of the univariate density
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estimation model (3.1). Marginally each of the variables is assigned exactly the prior

in (3.1) and to allow dependence we incorporate the same latent factor xi in each of

the models.

Our goal in defining a joint model is to induce a flexible but parsimonious model

for the conditional density of yi given the predictors zi. In estimating conditional

densities for multiple predictors, one encounters a daunting dimensionality problem in

that one is attempting to estimate a density nonparametrically while allowing arbitrary

changes in this density across a multivariate predictor space. Clearly, as p increases even

for large samples there will be many regions of the predictor space that have sparse

observations. As a compromise between flexibility and parsimony in addressing the

curse of dimensionality, we propose to use a single factor model in which the marginals

for each variable are fully flexible but restrictions come in through assuming dependence

on a single xi. Extensions to the multiple factor case are straightforward.

2.5 Posterior Computation

For simplicity, we focus on the single predictor density regression case when out-

lining an MCMC algorithm for posterior computation. Let Yn×1 and ZN×1 denote

the vector of observations and covariates, respectively. We are interested in pre-

diction of yn+1, . . . , yN based on zn+1, . . . , zN . Let µnY (n × 1) and µNZ (N × 1) de-

note the (unobserved) realizations of the GP µY and µZ at the latent variable values

x = (x1, . . . , xn, xn+1, . . . , xN)′. From the GP prior, we have µnY ∼ Nn(mn
Y ,K

n
Y ) and

µNZ ∼ NN(mN
Z ,K

N
Z ). Let N(A|B) denote the conditional normal distribution. The

covariance kernels are squared exponential with KY (x, x′) = 1
φY

exp

{
− CY (x− x′)2

}
and KZ(x, x′) = 1

φZ
exp

{
− CZ(x − x′)2

}
. We specify conjugate gamma priors:

σ−2
Y ∼ Ga(aσ, bσ), σ−2

Z ∼ Ga(aaσ, bbσ), φY ∼ Ga(aφ, bφ) and φZ ∼ Ga(aaφ, bbφ). For

updating the latent variables x, we adopt the griddy Gibbs approach using a set of
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evenly distributed grid points g∗1, g
∗
2, . . . , g

∗
G ∈ (0, 1). Let µnY (−i) include all elements of

µnY except µY (xi), and similarly for µNZ (−i). The Gibbs sampling algorithm alternates

between the following steps.

Step1 : Update σ2
Y and σ2

Z using π(σ−2
Y |−) ∼Ga(aσ+n/2, bσ + 1

2

∑n
i=1(yi − µY (xi))

2) and

π(σ−2
Z |−) ∼Ga(aaσ+N/2, bbσ + 1

2

∑N
i=1(zi − µZ(xi))

2) respectively.

Step2 : To sample the latent variables, choose xi = g∗k with probability pik, where

pik = P [xi = g∗k|−] =
pYikp

Z
ikN(µY (xi = g∗k)|µnY (−i))N(µZ(xi = g∗k)|µNZ (−i))∑G

l=1 p
Y
il p

Z
ilN(µY (xi = g∗l )|µnY (−i))N(µZ(xi = g∗l )|µNZ (−i))

, if i ≤ n

=
pZikN(µZ(xi = g∗k)|µNZ (−i))∑G
l=1 p

Z
ilN(µZ(xi = g∗l )|µNZ (−i))

, if n < i ≤ N,

where pYik = N(yi;µ
Y (xi = g∗k), σ

2
Y ), pZik = N(zi;µ

Z(xi = g∗k), σ
2
Z) and k=1, 2, . . . , G.

Step3 : Update µnY and µNZ using π(µnY |−) = Nn

(
(D−1

Y +(Kn
Y )−1)−1(D−1

Y Y+(Kn
Y )−1mn

Y ), (D−1
Y +

(Kn
Y )−1)−1

)
and π(µNZ |−) = NN

(
(D−1

Z +(KN
Z )−1)−1(D−1

Z Z+(KN
Z )−1mN

Z ), (D−1
Z +(KN

Z )−1)−1
)

,

where DY =σ2
Y In and DZ=σ2

ZIN .

Step4 : Update µ∗GY =
{
µY (g∗1), . . . , µY (g∗G)

}
and µ∗GZ =

{
µZ(g∗1), . . . , µZ(g∗G)

}
using the

conditional normal distributions N(µ∗GY |µnY ) and N(µ∗GZ |µNZ ).

Step5 : Update φY and φZ using π(φY |−) ∼Ga(aφ+n
2
, bφ+ 1

2
(µnY−mn

Y )′(Kn
Y )−1(µnY−mn

Y )

) and π(φZ |−) ∼Ga(aaφ + N
2

, bbφ + 1
2
(µNZ −mN

Z )′(KN
Z )−1(µNZ −mN

Z ) ) respectively.

Step6 : Update CY and CZ using Metropolis random walk for log(CY ) and log(CZ).

For prediction of yk based on zk, k = n+1, . . . , N , we use π(yk|−) = N(yk;µ
Y (xk), σ

2
Y ),

while the conditional density estimate is calculated as f̂(y|z) =
1
G

∑G
k=1 φσY (y−µY (g∗k))φσZ (z−µZ(g∗k))

1
G

∑G
k=1 φσZ (z−µZ(g∗k))

.

2.6 Simulation Study

To assess the performance of the GPT approach in density estimation as well

as density regression, we conducted several simulation studies. We chose the mean
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function for the GP as m(x)=2sin(x)+cos(x) and utilized the squared exponential co-

variance kernel. For computational purposes, we worked with the standardized data

and then transformed it back in the final step. The hyperparameters for the gamma

priors were chosen to be one throughout. Although we used 75 grid points for the griddy

Gibbs approach, the number of points could be as low as 60. The number of iterations

used was 10000 with a burn in of 1000. The convergence for the main quantities such

as µ was rapid with good mixing. All results are reported over 5 replicates.

2.6.1 Univariate Density Estimation

To see how well the GPT does in practice for density estimation, we looked at

a variety of scenarios, where the truth was generated from the densities considered in

Marron and Wand (1992), which are essentially finite mixtures of Gaussians. We present

the results from four of those cases which we thought to be interesting deviations from

normality and could be potentially encountered in applications. These are the 2nd, 6th,

8th and 9th Marron-Wand densities. The sample size used was 100. For comparison,

we looked at DP mixture of Gaussians (Escobar and West, 1995), mixtures of Polya

trees (Hanson, 2006) and frequentist kernel estimates using a Gaussian kernel (and

the bandwidth selection method of Sheather and Jones, 1991). More specifically, for

both DP mixtures and mixtures of Polya trees, we used the DP package in R and the

standard hyperparameter values therein. We used algorithm 8 of Neal (2000) with m=1

for DP mixtures of Gaussians. For frequentist kernel, we used the function “density”

in R with Gaussian kernel. Overall, we found that varying the hyperparameter values

within a reasonable range does not significantly alter the density estimation results for

a sample size of 100, for any of the competitors. Table A.1 presents the L-1 distance

between true and estimated densities while Figure A.2 depicts the density plots.

From table A.1, we see that even when the truth is generated from a finite mixture

28



of Gaussians, the GPT tends to do better or at least as well as the DP mixture of

Gaussians. Mixtures of Polya trees have somewhat worse performance and result in

overly spiky looking estimates.

2.6.2 Single Factor Density Regression

For density regression, we generated a univariate response by allowing the condi-

tional mean as well as the residual error distribution to vary with the covariate. We

compared the out of sample predictive performance of GPT with other competitors

such as DP mixture of bivariate normals (Müller, Erkanli and West, 1996), Bayesian

additive regression trees (BART) (Chipman, George and McCulloch, 2010), GP mean

regression (O’Hagan and Kingman, 1978) and treed GP (Gramacy and Lee, 2008),

based on standard packages in R. We used the DP package for DP mixtures of Gaus-

sians and the Bayestree package for the other three methods, and the hyperparameter

values therein. The density regression results did not change significantly on varying

the hyperparameter values within a reasonable range, for all the competitors. We used

the following scheme for simulations:

Z ∼ FZ , yi = λ exp

(
− ezi

1 + ezi

)
+

ezi

1 + ezi
εi, εi ∼ N(0, σ2),

where FZ is the distribution of the predictors which was chosen to be a trimodal density

(9th Marron-Wand curve). We chose λ = 3 and split the total sample size of 100 into

training set of 50 and test set of 50. The above data generating model allows the shape

of the conditional density to change with predictors, hence making prediction non-

trivial. Table A.2 shows the performance of the GPT along with a few competitors.

We computed the mean square error (MSE), 95% coverage for the mean (COV), as

well as the L-1 distance between true and estimated densities at 25th, 50th and 75th
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percentiles of the predictor distribution.

The results in table A.2 are consistent with our experience in simulations- when

the predictor distribution is multimodal and the shape of the conditional density is

allowed to change with predictors, then the GPT tends to do as well or better than

DP mixture of Gaussians. For the above study, the average number of components in

the conditional distribution obtained from DP mixtures was around 15 which is quite

high for a sample size of 50. As illustrated in table 2, BART, treed GP and the GP

mean regression methods are primarily mean regression methods and so cannot possibly

do well in terms of characterizing the entire conditional of response given predictors.

They might perhaps estimate the mean surface reasonably well, but eventually fail in

capturing multimodality or tail behavior, the latter often being an important focus of

inferences.

2.7 Epidemiological Application

2.7.1 Study Background

DDT is a cheap and popular alternative for reducing the transmission of malaria,

but has been shown to have negative effects on public health. In order to study the

association between the DDT metabolite DDE and preterm delivery, Longnecker et al.

(2001) measured DDE in mother’s serum in the third trimester of pregnancy and also

recorded gestational age at delivery (GAD) as well as age. They did logistic regression

with response as dichotomized GAD (preterm or normal depending on a cut-off of 37

weeks of completed gestation) and explanatory variables as categorized DDE based on

empirical quantiles. Their results showed a significant dose-response relationship which

had important public health implications. Dunson et al. (2008) analyzed the data

using kernel stick-breaking processes, and showed an increasing bump in the left tail of
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the GAD density with increasing DDE.

2.7.2 Analysis and Results

We used the GPT to analyze the dose response relationship in a subset of 182

women of advanced maternal age (≥ 35 yrs) in the above dataset. We examined

the conditional distribution of GAD at 10th, 60th, 90th and 99th percentile of DDE.

Further, we looked at the dose response relationship between preterm birth and DDE,

by examining the left tail of GAD over varying doses of DDE. We used normalized

data for analysis and converted it back in the final step. Using the prior specification

approach of section 2.2, we were able to incorporate prior information on the marginal

density of GAD (using an external data) through the mean function of the GP. Note

that prior on σ−2 for GAD was chosen as Ga(25,1). Given the limited sample size and

the complexity of the data we are trying to model, we adjusted other hyperparameter

settings to reflect our prior belief about the data. The starting value for the length-

scale parameter in the covariance kernel in the Metropolis random walk was chosen to

be 25, so as to have smooth Gaussian process prior. Instead of working with DDE, we

used log(DDE) which resembled a Gaussian distribution, with a 0 mean function for

the predictor component and Ga(1,1) prior for the corresponding residual precision.

Figure A.3 shows the conditional distribution curves for GPT along with 90%

credible intervals. Although we focused on a small subsample of 182 women of ad-

vanced maternal age, the GPT results for the conditional density are remarkably sim-

ilar to the ones reported in Dunson et al. (2008), which suggests that there is no

systematic difference for women of advanced maternal age. The conditional densities

show an increasing bump in the left tail with increasing DDE, suggesting increased risk

of preterm birth at higher doses. This is further supported by dose-response curves
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for P(GAD<T) in Figure A.5, with different choices for cut-off T. Although the dose-

response curve is mostly flat for T=33 weeks, the relationship becomes more significant

as cut-off increases, with the dose-response tapering off at T=40 weeks. This suggests

that increased risk of preterm birth at higher DDE dosage is attributable to premature

deliveries between 33 and 37 weeks. Trace plots of f(y|z) for different DDE percentiles

(not shown) exhibit excellent rates of convergence and mixing. For comparison, Figure

A.4 shows the density estimates from the DP mixture of Gaussians which has a ten-

dency to overly favor multimodal densities, which is as expected given our simulation

study results. These results were obtained using DP package in R (and the data driven

hyperparameter values therein), which utilizes algorithm 8 of Neal (2000) with m=1.

2.8 Discussion

In this paper, we propose a latent factor model for density estimation. This

novel method provides us with a flexible non-discrete mixture alternative to be used

in a variety of situations including density estimation, density regression, hierarchical

latent variable models and even mixed models. We provide theoretical theoretical

justifications for GPT and demonstrate it’s usefulness as a building block for more

complex models involving covariates. Building on our work, Pati, Bhattacharya and

Dunson recently showed minimax optimal rates of posterior contraction for Bayesian

density estimation from non-linear latent variable models, also obtaining initial results

on contraction rates in conditional density estimation. The close relationship between

non-linear latent variable models for densities and non-linear mean regression models

facilitates not only posterior computation but also derivations of theoretical properties,

such as contraction rates, which have proven difficult to study for discrete mixtures

beyond simple settings.
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Chapter 3

Bayes Variable Selection in
Semiparametric Linear Models

Having proposed an elegant solution based on non-mixture alternatives to the

important problem of Bayesian density estimation and density regression, we now turn

our attention to another fundamental problem in statistics, namely variable selection.

Variable selection involves selecting an important and potentially parsimonious subset

of predictors which significantly affects the outcome. As stated in the introduction,

majority of the literature has focused on linear regression models involving Gaussian

residuals. Our objective is to propose a consistent Bayes variable selection method in

linear regression models having unknown residuals, which is expected to perform well

in a wide variety of situations due to greater flexibility of the proposed model.

3.1 Model Formulation

In this section, we propose a new class of priors for Bayesian variable selection in

linear regression models with an unknown residual density characterized via a Dirichlet



process (DP) location mixture of Gaussians. In particular, let

yi = x′γ,iβγ + εi, εi ∼ f, i = 1, . . . , n,

f(·) =

∫
N(·;α, τ−1)dP (α), P ∼ DP (mP0), P0 = N(0, τ−1), (3.1)

where xγ,i is the ith row of Xγ and does not include an intercept as we do not restrict

f to have zero mean, and f is a density with respect to Lebesgue measure on <. We

address uncertainty in subset selection by placing a prior on γ, while the prior on βγ

characterizes prior knowledge of the size of the coefficients for the selected predictors.

The DP mixture prior on the density f induces clustering of the n subjects into

k groups/subclusters, where k is random and each group has a distinct intercept in the

linear regression model. Let A denote an n×k allocation matrix, with Aij = 1 if the ith

subject is allocated to the jth cluster and 0 otherwise. The jth column of A then sums

to nj, the number of subjects allocated to subcluster j, with
∑k

j=1 nj = n. Following

Kyung, Gill and Casella (2009), conditionally on the allocation matrix A, (3.1) can be

represented as a linear model with random intercepts

Y n = Aη +Xγβγ + ε, η ∼ N(0, τ−1Ik), ε ∼ N(0, τ−1In), (3.2)

where A is random with a certain prior probability given by the coefficients in the

summation of the likelihood expression (3.7).

In keeping with the mixtures of g-priors literature, we would like the prior on the

regression coefficients to retain the essential elements of Zellner’s g-prior (Zellner, 1986),

but at the same time to be suitably adapted to reflect the semi-parametric nature of the

model - more specifically, the clustering of responses by the DP kernel mixture prior.

To this effect, we propose a mixture of semi-parametric g-priors which is constructed

to scale the covariance matrix in Zellner’s g-prior to reflect the clustering phenomenon
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as follows:

π(βγ) = N(0, gτ−1(X ′γΣ
−1
A Xγ)

−1), ΣA = I + AA′, g ∼ π(g). (3.3)

Prior (3.3) inherits the advantages of the traditional mixtures of g-priors including

computational efficiency in computing marginal likelihoods (conditional on A) and ro-

bustness to mis-specification of g. In addition, the prior can be interpreted as having

arisen from the analysis of a conceptual sample generated using a scaled design matrix

Σ
−1/2
A Xγ, reflecting the clustering phenomenon due to the DP kernel mixture prior.

Moreover, the proposed prior leads to Bayes factor and variable selection consistency

in semi-parametric linear models (3.1), as highlighted in the sequel.

Note that since (X ′γΣ
−1
A Xγ)

−1 ≥ (X ′γXγ)
−1, the prior variance of Y conditional

on (g, τ) is higher for the semi-parametric g−prior as compared to the traditional

g−prior for any allocation matrix A. To assess the influence of A on the prior for

βγ, we did simulations which revealed that for fixed (n, p), var(βγl) increases but the

cov(βγl , βγl′ ) decreases as the number of underlying subclusters in the data increase

(l′, l = 1, . . . , p, l′ 6= l). This suggests that as the number of groups in A increase, the

components of βγ are likely to be more dispersed with decreasing association between

each other.

3.2 Bayes Factor in Semiparametric Linear Models

Throughout the rest of the paper, we will assume that the data Yn=(Y1, . . . , Yn)′

are generated from the true model MT : Y n = Xγ1βγ1 + ε, with εi i.i.d. from the true

residual density f0, which is a density on < with respect to Lesbesgue measure. For

modeling purposes, we put a DP location mixture of Gaussians prior on the unknown

f0. For pairwise comparison, we evaluate the evidence in favor ofM1 compared toM2
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using the Bayes factor, where

M1 : Y n = Xγ1βγ1 + ε1, ε1i ∼ f

M2 : Y n = Xγ2βγ2 + ε2, ε2i ∼ f

f(·) =

∫
N(·;α, τ−1)dP (α), P ∼ DP (mP0), P0 = N(0, τ−1)

βγj ∼ π(βγj), j = 1, 2, π(τ−1) ∝ 1/τ−1, g ∼ π(g), (3.4)

where γj ∈ Γ indexes models of dimension pj and π(βγj) is defined in (3.3), j = 1, 2. Our

prior specification philosophy is similar to the one adopted by Guo and Speckman (2009)

for normal linear models, in that we assign proper priors on all elements of both βγ1 , βγ2

conditional on (g, τ−1), and an improper prior on τ−1 for a more objective assessment.

However unlike Guo and Speckman (2009), our focus is on Bayesian variable selection

in semi-parametric linear models.

Note that the conditional likelihood of the response after marginalizing out η in

(3.2) is L(Y n|A, βγ, τ−1) = N(Xγβγ, τ
−1ΣA) (Kyung et. al., 2009). Thus conditional

on A and under the DPM of Gaussians prior on f , Mj in (3.4) reduces to the normal

linear model:

Σ
−1/2
A Y n = ZA = X̃A,γjβγj + ε, ε ∼ N(0, τ−1In), π(βγj ) = N(0, gτ−1(X̃ ′A,γj X̃A,γj )−1), (3.5)

where X̃A,γj = Σ
−1/2
A Xγj . Under a mixture of semi-parametric g-priors, we can directly

use expression (17) in Guo and Speckman (2009) to obtain (conditional on A) for

j = 1, 2

L(ZA|Mj) ≡ L(Y n|A,Mj) ∝ (Z ′AZA)−n/2
∫ ∞
0

(1 + g)−pj/2

[
1− g

1 + g

Z ′AH̃A,jZA
Z ′AZA

]−n/2
π(dg), (3.6)

where H̃A,j = X̃A,γj(X̃
′
A,γj

X̃A,γj)
−1X̃ ′A,γj is the equivalent of a hat matrix in normal

linear regression.

Also, marginalizing over all possible subcluster allocations for a given sample size
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n, the following marginal likelihood can be obtained under a DP prior on f (Kyung et.

al., 2009):

L(Y n|Mj) =
Γ(m)

Γ(m+ n)

n∑
k=1

mk
∑
A∈Ak

k∏
i=1

Γ(ni)L(Y n|A,Mj) =
∑
Al∈Cn

wlL(Y n|Al,Mj),(3.7)

where Ak is the collection of all possible n × k matrices corresponding to different

allocations of n subjects into k subclusters, Cn is the collection of all possible allocation

matrices for a sample size n with
∑

Al∈Cn wl = 1. In the limiting case as n → ∞, we

have C∞ as the class of limiting allocation matrices. Further using (3.6), the Bayes

factor in favor of M2 conditional on the allocation matrix A is given by

BF n
21,A =

L(ZA|M2)

L(ZA|M1)
=

∫∞
0

(1 + g)−p2/2
[
1− g

1+g
R̃2
A,2

]−n/2
π(dg)∫∞

0
(1 + g)−p1/2

[
1− g

1+g
R̃2
A,1

]−n/2
π(dg)

, (3.8)

where R̃2
A,j = Z ′AH̃A,jZA/Z

′
AZA, (j = 1, 2). Finally using (3.7), the unconditional Bayes

factor in favor of M2 marginalizing out A is

BF n
21 =

L(Y n|M2)

L(Y n|M1)
=

∑
Al∈Cn wlL(ZAl |M2)∑
Al∈Cn wlL(ZAl |M1)

. (3.9)

3.3 Posterior Computation

We propose an MCMC algorithm for posterior computation for (3.1), which com-

bines a stochastic search variable selection algorithm (George and McCulloch, 1997)

for variable selection with recently proposed methods for efficient computation in DP

mixture models. In particular, we utilize the slice sampler of Walker (2007) incorpo-

rating the modification of Yau et al.(2011). Using Sethuraman’s (1994) stick-breaking
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representation, let

P =
∞∑
j=1

πjαj, αj ∼ N(0, τ−1), πj = νj
∏
l<j

(1− νl), νl ∼ Beta(1,m). (3.10)

The slice sampler of Walker (2007) relies on augmentation with uniform latent variables,

which allows us to move from an infinite summation for P in (3.10) to a finite sum given

the uniform latent variable. In particular,

fπ,α(y|u) =
∑

j∈Bπ(u)

N(y|αj), Bπ(u) = {j : πj > u} is a finite set, u ∼ U(0, 1).

For the DP precision parameter, we specify the hyperprior m ∼ Ga(am, bm) for greater

flexibility. We specify a Ga(aτ , bτ ) prior on τ and Be(a1, b1) prior on the marginal

inclusion probabilities Pr(γl = 1), l = 1, . . . , p. We outline the posterior computation

steps in Appendix B.

3.4 Asymptotic Properties

In this section we establish asymptotic properties for the proposed approach using

γ1 to index the true modelM1 and γ2 to index an arbitrary modelM2 being compared

to γ1, withM1 ⊂M2 denoting nesting ofM1 inM2. Before proceeding, we introduce

some regularity conditions essential for the development of asymptotic theory.

(A1′) limn→∞
β′γ1 (X′γ1Xγ1 )βγ1

n
→ b1 > 0.

(A2′) ForM1 6⊆ M2, limn→∞
β′γ1X

′
γ1
H2Xγ1βγ1
n

→ b2 ∈ [0, b1), withH2 = Xγ2(X
′
γ2
Xγ2)

−1X ′γ2 .

(A1) For p1 = O(na1), 0 ≤ a1 < 1, limn→∞
β′γ1 (X′γ1Σ−1

A Xγ1 )βγ1
n

→ bA,1 > 0.

(A2) For M1 6⊆ M2, limn→∞
β′γ1X̃

′
A,γ1

H̃A,2X̃A,γ1βγ1
n

→ bA,2, where bA,2 ∈ [0, bA,1) for fixed

p1, p2, and bA,2 ∈ (0, bA,1) for pj = O(naj) (j = 1, 2, 0 ≤ a1 < a2 < 1).

(A1)− (A2) depend on the allocation matrix A, which is an n× k binary matrix that
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for large n tends to have k << n, and be very sparse containing mostly zeros with

sparsity increasing with column index. We also assume the following for the class of

proper priors π(g) on g:

(A3): There exists a constant k ≥ 0 such that
∫ c0an
an

π(dg) ≈ n−k for any constant

c0 > 1 and any sequence an ≈ n. Here an ≈ bn implies that limn→∞ an/bn > 0.

(A4): There exists a constant ku such that k − (p2 − p1)/2 < ku ≤ k and
∫∞

0
(1 +

g)kuπ(dg) ≈ 1.

We note that (A1′), (A2′) are the standard assumptions for establishing Bayes

factor consistency in normal linear models, on which our assumptions (A1), (A2) are

based. We develop the asymptotic theory for semiparametric linear models (3.4) based

on assumptions (A1)−(A4). We note that (A1) is a stronger assumption compared

to (A1′), since (A1) implies (A1′) as Σ−1
A = In − A(Ik + A′A)−1A′. Further, in the

extreme case when A = In, we have
X′γ1Σ−1

A Xγ1
n

= 1
2

X′γ1Xγ1
n

, so that (A1′) implies (A1).

Again when A = 1n, X ′γ1Σ
−1
A Xγ1 ≈ X ′γ1Xγ1 − nX̄ ′γ1X̄γ1 for large n, for X̄γ1 = 1′nXγ1/n.

Hence
β′γ1 (X′γ1Σ−1

A X′γ1 )βγ1
n

≈ β′γ1 (Xc′
γ1
Xc
γ1

)βγ1
n

, where Xc
γ1

is the centered design matrix. When

limn→∞
β′γ1 (Xc′

γ1
Xc
γ1

)βγ1
n

> 0, (A1′) ⇒ (A1).

Assumption (A2) can be interpreted as a positive ‘limiting distance’ between the

two models corresponding to design matrices Xγ1 and Xγ2 in (3.2) conditional on A,

after marginalizing out η, i.e. ∆21,A = limn→∞
β′γ1X̃

′
A,γ1

(In−H̃A,2)X̃A,γ1βγ1
nτ−1 =

bA,1−bA,2
τ−1 ∈

(0,∞). Such a ‘limiting distance’ (∆21,A) can be considered as a natural extension of

the definition of distance between two normal linear models in Casella et. al. (2009)

and Moreno et. al. (2010) to models with random intercept as in (3.2).

Assumptions (A3), (A4) define a class of proper priors for g described in Guo

and Speckman (2009). This class includes hyper-g (a−2
2

(1 + g)−a/2) and hyper-g/n

(a−2
2n

(1 + g/n)−a/2) priors with 2 < a ≤ 4 (Liang et. al. 2008), Zellner-Siow priors

(Zellner and Siow, 1980) as well as beta-prime priors (Maruyama and George, 2008).
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It is clear that these assumptions on π(g) are satisfied by quite a few standard priors

are hence are quite reasonable.

The following lemma gives the limits of quantities such as R̃2
A,j = Z ′AH̃A,jZA/Z

′
AZA

(j = 1, 2), which would be useful for establishing asymptotic properties. The proof fol-

lows directly using Lemmas 1, 2 of Guo and Speckman (2009) and from (3.5) which

essentially states that under the DP mixture of Gaussians prior on f for Mj in (3.4)

and conditional on allocation matrix A, ZA = Σ
−1/2
A Y n ∼ N(X̃A,γjβγj , τ

−1In), j = 1, 2.

Lemma 1 Let assumptions (A1), (A2) hold.

(i) If M1 ⊂M2, conditional on A, R̃2
A,1

a.s.→ bA,1
τ−1+bA,1

, R̃2
A,2

a.s.→ bA,1
τ−1+bA,1

, under M1.

(ii) If M1 6⊆ M2, conditional on A, R̃2
A,1

a.s.→ bA,1
τ−1+bA,1

, R̃2
A,2

a.s.→ bA,2
τ−1+bA,1

, under M1 .

As shown by the following result, the proposed approach leads to Bayes factor

consistency when comparing fixed dimensional models as well as models growing at the

rate O(nt), 0 < t < 1, when the truth is sparse.

Theorem 6 Let assumptions (A1), (A2) hold .

(I) Suppose p1 and p2 are fixed. If M1 ⊂M2, then under M1 and assumptions (A3),

(A4), BFn21
P→ 0 as n→ ∞ and if p2 − p1 > 2 + 2(k − ku), BFn21

a.s.→ 0 as n → ∞.

Further, if M1 6⊆ M2, then under M1 and assumption (A3), BFn21
a.s.→ 0 as n→∞.

(II) Suppose pj is growing at the rate O(naj), j=1,2, with 0 ≤ a1 < a2 < 1. Then under

M1 and assumption (A3), BFn21
a.s.→ 0 as n→∞.

REMARK 1. Although we do not present the proof here, Theorem 6 can be

modified to accommodate the case of improper priors on g (i.e. π(g) ∝ 1
1+g

). In

such a case, assumptions (A3), (A4) are excluded and we require p2 − p1 ≥ 3 for a.s.

convergence in (I) for M1 ⊂M2.

The next result establishes model selection consistency for the proposed approach,

even in cases when the cardinality of the model space increases with n. In particular,

we consider cases when the number of candidate predictors pn (abusing the notation

40



slightly) is growing at the rate O(na), a > 0, but the prior on the model space assigns

zero probability to models growing at a rate equal to or faster than n. When a ≥ 1,

the prior support consists of models constructed using O(nt) (0 ≤ t < 1) sized subsets

of pn candidate predictors.

To elaborate, let the support of the prior on the model space beM =MF

⋃
MI ,

where MF is the set of all models γ such that there exists a sample size n0 < ∞ for

which γj = 0 for all j > pn0 , and MI is the set of all models with dimensions growing

at a rate strictly less than n, MI = {γ :
∑pn

j=1 γj = O(nt), 0 < t < min(a, 1)}. Letting

p0 = max{j : γ ∈ MF , γj = 1}, we can discard predictors having a higher index

than p0 for all γ ∈ MF and treat MF as finite dimensional having 2p0 − 1 elements

(excluding the null model). Let γjl denote the lth model having dimension pj, with l =

1, . . . ,
(
p0
pj

)
when γjl ∈ MF and l = 1, . . . ,

(
pn
pj

)
when γjl ∈ MI . Consider the following

sequence of priors which assigns greater penalty to models with increasing dimensions,

thus encouraging sparsity:
{
πn(γjl) ∝ 2−pjI[γjl ∈MF ] +

(
pn
pj

)−1
I[γjl ∈MI ]

}
. When

the truth is sparse such that M1 ∈MF , we have the following result.

Theorem 7 Suppose assumptions (A1)-(A4) hold. For fixed p and under M1,

P(M1|Y n)
P→ 1 for {π(Mγ) : π(M1) > 0}. When pn = O(na) (a > 0) and M1 ∈MF ,

P(M1|Y n)
P→ 1 under M1, for πn(γjl) ∝ 2−pjI[γjl ∈ MF ] +

(
pn
pj

)−1
I[γjl ∈ MI ] such

that πn(MF ∪MI) = 1.

3.5 Simulation Study

We present the results of two simulation studies comparing our method (SLM)

with the normal linear model (NLM) having βγ ∼ N(0, gτ−1(X ′γΣ
−1
A=1n

Xγ)
−1) (designed

to assign comparable prior information when the residual is Gaussian), the lasso (Tib-

shirani, 1996) and elastic net (Zou and Hastie, 2005), as well as robust variable selection

methods including an MM-type regression estimator (Yohai, 1987; Koller and Stahel,
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2011), and a median regression model with SSVS for variable selection (technical report

by Reed, Dunson and Yu, 2010). The data is generated as follows:

Case I : yi = xiβT + εi, εi ∼ 0.5N(2.5, 1) + 0.5N(−2.5, 1),

Case II: yi = 1 + xiβT + εi, εi ∼ N(0, 1), i = 1, . . . , n,

where xi is a ten dimensional predictor (p=10), with xij, j = 1, . . . , 10 generated inde-

pendently from U(-1,1), and βT = (3, 2,−1, 0, 1.5, 1, 0,−4,−1.5, 0).

We used Ga(0.1, 1) prior on the DP precision parameter and Be(0.1, 1) prior on

P (γj = 1), j=1,. . . ,p, which corresponds to a weakly informative prior favoring parsi-

mony. For the griddy Gibbs approach, we chose 1,000 equally spaced quantiles from

Be(1, 1) prior for g
1+g

(corresponding to a = 4 in the hyper-g prior). For both SLM

and NLM, we made 50,000 runs with a burn in of 5,000. We implemented the lasso

(L1) and elastic net (EL) using the GLMNET package in R with default settings, while

the MM-type estimator (LMR) was implemented using ‘lmrob’ function in ‘robustbase’

package in R and the median regression with SSVS (QR) was implemented using func-

tion ‘SSVSquantreg’ in ‘MCMCpack’ package in R, with a Be(0.1, 1) prior on the prior

inclusion probability for predictors. All results are summarized across 20 replicates.

The computation time for SLM per iteration was marginally slower than NLM. The

mixing for the fixed effects was good under both the methods. The results for SLM do

not appear to be sensitive to the hyper-parameters in π(m), but are mildly sensitive to

hyper-parameters in π(g) for n = 100.

We study the marginal inclusion probabilities (MIP) under SLM and NLM over

varying sample sizes in Figures B.1 and B.2. These plots suggest a faster rate of

increase of the MIP for the important predictors under SLM as compared to NLM

when the true residuals are non-Gaussian, and a very similar rate of increase under
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both methods when the true residuals are Gaussian (thus justifying the prior choice for

NLM). In contrast, the exclusion probabilities for the unimportant predictors converge

to one slowly under both the methods, reflecting the well known tendency for slower

accumulation of evidence in favor of the true null.

Tables B.1 and B.2 present some summaries for n = 100 for Case I. The MIPs in

Table B.1 suggests correct variable selection decision by SLM, but poor performance by

NLM which fails to exclude any of the unimportant predictors under median probability

model. Further, L1, EL and QR seem to favor an overly complex model by choosing a

superset of important predictors. In terms of estimation of the fixed effects, SLM has

the highest degree of accuracy as reflected by the smallest mean square error ( ||β̂−βT ||2
p

)

in Table B.2. In addition, the replicate average mean square error for out of sample

prediction for a test sample size of 25 (Table B.2) is smallest under the SLM, followed

by lasso and elastic net. NLM is seen to be clearly inadequate for prediction purposes

as indicated by the enormously high out of sample predictive MSE. Thus in conclusion,

when the true residual is non-Gaussian, the SLM has the best performance compared

to competitors, whereas NLM completely fails as an out of sample prediction tool.

3.6 Application to Diabetes Data

The prevalence of diabetes in the United States is expected to more than double

to 48 million people by 2050 (Mokdad et. al., 2001). Previous medical studies have

suggested that Diabetes Mellitus type II (DM II) or adult onset diabetes could be

associated with high levels of total cholesterol (Brunham et. al., 2007) and obesity

(often characterized by BMI and waist to hip ratio) (Schmidt et. al., 1992), as well as

hypertension (indicated by a high systolic or diastolic blood pressure or both) which

is twice as prevalent in diabetics compared to non-diabetic individuals (Epstein and

Sowers, 1992).
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We develop a comprehensive variable selection strategy for indicators of DM II

in African-Americans based on data obtained from Department of Biostatistics, Van-

derbilt University website. Our primary focus is to discover important indicators of

DM II by modeling the continuous outcome glycosylated hemoglobin (> 7mg/dL in-

dicates a positive diagnosis of diabetes) based on predictors such as total cholesterol

(TC), stabilized glucose (SG), high density lipoprotein (HDL), age, gender, body mass

index (BMI) indicator (overweight and obese with normal as baseline), systolic and

diastolic blood pressure (SBP and DBP), waist to hip ratio (WHR) and postprandial

time indicator (PPT) (1/0 depending on whether the blood was drawn within 2 hours

of a meal). In addition to total cholesterol, obesity and hypertension, we note that

lower levels of HDL have been known to be associated with insulin resistance syndrome

(often considered a precursor of DM II with a conversion rate around 30%). We also

expect PPT to be a significant indicator as blood sugar levels are high up to 2 hours

after a meal.

After excluding the records containing missing values, the data consisted of 365

subjects which was split into multiple training and test samples of sizes 330 and 35

respectively. The replicate averaged fixed effects estimates (multiplied by 100) for

the SLM, NLM, L1, EL, LMR and QR are presented in Table B.3, and the marginal

inclusion probabilities (MIP) for the SLM, NLM and QR are summarized in Table B.3.

We also evaluate the out of sample predictive performance for each training-test split

using predictive MSE in Table B.5, and additionally provide the mean coverage (COV)

and width (CIW) of 95% pointwise credible intervals for the predicted responses under

SLM and NLM. The same values of hyper-parameters were used as in previous section.

For each replicate, we randomized the initial starting points and made 100,000 runs for

SLM (burn in = 20,000) and 50,000 runs for NLM (burn in = 5,000).

It is interesting to note from Table B.4 that the variable selection decisions under
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SLM (using median probability model) are quite different compared to the NLM. In

particular, while both the models successfully identify total cholesterol, stabilized glu-

cose and postprandial time as important predictors, it is only the SLM which identifies

systolic hypertension (MIP = 0.72), HDL (MIP = 0.64) and waist to hip ratio (MIP =

0.93) as important indicators, compared to NLM which assigns MIP = 0.14, 0.39 and

0.13 to SBP, HDL and WHR respectively. Age is identified as an important predictor

under NLM (MIP = 0.67), but not under SLM (MIP=0.43). For both the methods, the

MIPs for BMI (overweight and obese) were low, which could potentially be attributed

to adjusting for the other obesity factors such as waist to hip ratio. From Tables B.3

and B.4, we also see that the lasso, elastic net and the MM-type estimator select an

overly complex model by excluding minimal number of predictors, while the quantile

regression with SSVS fails to include several important predictors and selects a highly

parsimonious and inadequate model.

Variable selection in this application is clearly influenced by the assumptions on

the residual density, with the nonparametric residual density providing a more realistic

characterization that should lead to a more accurate selection of the important pre-

dictors. Figure B.3 shows an estimate of the residual density obtained from the SLM

analysis, suggesting a unimodal right skewed density with a heavy right tail. The SLM

results suggest that a mixture of two Gaussians provides an adequate characterization

of this density. The computation time for SLM is only marginally slower than NLM,

and in addition SLM exhibits good mixing for most of the fixed effects (Table B.6).

These results are robust to SSVS starting points, and consistency in the results across

training-test splits also indirectly suggests adequate computational efficiency of SSVS.

In terms of out of sample predictive MSE (Table B.5), the relative performance

between SLM, NLM, L1 and EL vary across training-test splits so that none of the
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models can be said to dominate the others, while LMR and QR produce relatively infe-

rior prediction results. Overall, the NLM has narrower 95% pointwise credible intervals

compared to SLM, often resulting in poorer coverage for out of sample predictions. In

conclusion, SLM succeeds in choosing the most reasonable model for DM II, consistent

with previous medical evidence, and compares favorably with other competitors for

prediction purposes.

3.7 Discussion

We develop mixtures of semi-parametric g-priors for linear models with non-

parametric residuals characterized by DP mixtures of Gaussians. The proposed method

addresses the often encountered issue of non-Gaussianity of residuals in variable se-

lection settings, and has attractive asymptotic justifications such as Bayes factor and

variable selection consistency involving fixed p as well as p > n (under some restrictions

on the model space). Further, the method is essentially no more difficult to implement

than SSVS for normal linear models and can lead to substantially different conclusions,

as illustrated in the diabetes application. The general topic of semi- and nonparamet-

ric Bayesian model selection is understudied and we hope that this work stimulates

additional research of this type in broader model classes, such as for generalized linear

models and nonparametric regression.
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Chapter 4

Bayesian Credible Regions for
Vectors and Functions

The previous chapter addressed an important problem of developing a consistent

variable selection methodology for linear regression models with unknown residuals.

Another fundamental problem in the Bayesian paradigm is constructing simultaneous

credible regions for vectors and functions, guaranteed to have at least a pre-specified

posterior probability content. However, such a problem has received little attention

and most of the existing methods seem to rely on marginal distributions to construct

point-wise credible intervals. We propose a methodology for this important problem

which directly uses joint distributions of parameters to construct credible regions, is

straightforward to implement, and not computationally intensive for small to moderate

number of knots.

4.1 Credible regions for vectors

We first focus on estimating elliptical credible regions for vector-valued param-

eters, θ = (θ1, . . . , θp)
′. We use elliptical regions for tractability in inferences and

computation. When p is not small it is particularly important for the estimated region



to be easy to store and visualize, while also allowing rapid inferences about whether

particular parameter values of interest are contained in the region. One simple way to

estimate an elliptical credible region based on MCMC samples from the posterior of θ

is to rely on asymptotic normality assumptions. However, in practice such asymptotic

approximations can be inaccurate, particularly in smaller sample sizes and when p is

moderate to large. Elliptical regions calculated assuming normality of the posterior

can be badly misaligned with the contours of the exact posterior, and can contain

substantially less than 1 − α posterior probability. Instead our focus is on identifying

a minimum volume ellipsoid that contains at least 1 − α probability, but will only

correspond to the Gaussian elliptical region when the posterior is Gaussian.

An ellipsoid in p dimensions can be formulated as the set of points E satisfying

E = {θ : (θ − θ0)′M(θ − θ0) ≤ 1} , (4.1)

where θ0 is the center and M is the p×p shape matrix. A spectral decomposition yields

M = DΛD′, where D is a matrix having orthonormal eigenvectors as columns, and the

diagonal matrix Λ has its elements as the inverse of the square of the axis lengths.

A minimum volume covering ellipsoid (MVCE) is a special type of ellipsoid designed

to enclose a given set of points in <p (in our case, the HPD set) with an ellipsoid of

minimum volume and can be formulated as

min M,θ0det(M−1), (θ − θ0)′M(θ − θ0) ≤ 1, θ ∈ HPD set,M is positive definite. (4.2)

By definition, the MVCE credible regions for multivariate normal posteriors con-

verge to the exact hyperelliptical 100(1− α)% HPD credible region in the limit as the

number of MCMC samples increase. For posteriors with nearly hyperelliptical HPD

credible regions, the method is expected to yield credible regions with a slightly higher
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posterior probability than the nominal level (1− α), with the difference depending on

the proportion of points included in the tails outside the HPD region. Even when the

true HPD region deviates substantially from a hyperellipse, the MVCE credible region

is expected to preserve the orientation of the HPD credible region (with respect to

the coordinate axes) for a wide variety of cases. The same can not be said of hyper-

rectangular regions. Finally, the proposed approach also meets our objectives in terms

of storing the credible region in a relatively inexpensive manner and being able to

quickly check if particular parameter values of interest are contained inside the credible

region using the parameters of the computed MVCE.

We use the approximate algorithm of Khachinayan (1996) to compute the MVCE.

The algorithm (presented in the appendix) computes the MVCE iteratively, is compu-

tationally fast for moderate number of knots and scales well to higher dimensions.

For n MCMC samples, Khachiyan’s algorithm computes a (1+η)-approximation to the

MVCE in O(np2([(1 +η)2/(p+1)−1]−1 + log(p) + log log(n))) time, η ∈ [0, 1]. Depending

on the specified tolerance limit, the relative ratio n/p, and the shape of the true HPD

region, the algorithm might exclude some points near the boundary of the true HPD

region or might include additional points outside the HPD region. Simulations suggest

that the method has near optimal performance when the HPD credible regions are

elliptical. For non-Gaussian data, the contrast between our MVCE approach, and an

approach based on regions assuming asymptotic normality is illustrated through a two

dimensional example in Figure C.1. It can be clearly seen that the MVCE approach

has probability content greater than the nominal value of 0.95, whereas the approach

based on asymptotic normality has a much lower probability content.
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4.2 Credible regions for one dimensional curves

In this section, we extend our consideration to real-valued functions f : [a, b]→ <.

The methods described in the previous section can be applied directly to obtain a

credible region for the function evaluated at a set of grid points or knots, a = x∗1 < . . . <

x∗k = b. One can use the resulting elliptical region to represent posterior uncertainty in

f . To investigate whether a function of interest, f0, is contained in the credible region,

one can assess whether f0(x∗) is contained in the MVCE credible region for f(x∗). For

a fine enough grid and sufficiently smooth functions, such grid-based inferences may

provide an useful approximation. However, such grid based approaches fail to satisfy

our goal of constructing infinite dimensional credible regions for the entire function

over [a,b] and can be computationally expensive for a dense grid of points. Hence, it

is appealing to obtain credible bands for the entire curve based on small to moderate

number of knots, which provide a simple summary of uncertainty that is easy to plot

and visualize.

Let f ∼ Π, with Π being a prior over the function space F , and let Π(f |Y n)

denote the posterior. Denote MCMC samples from the posterior at x∗ = (x∗1, . . . , x
∗
k)

as {f j(x∗), j = 1, . . . , J}, where f j(x∗)=(f j(x∗1), . . . , f j(x∗k)) is the vector of function

values at the jth iteration. We first apply the method of Section 4.1 to estimate an

elliptical credible region for f(x∗1), . . . , f(x∗k) (denoted as MVCE(x∗)). Subsequently we

estimate the upper and lower credible limits at the mth knot as

{f̃U (x∗m) = max jf
j(x∗m), f̃L(x∗m) = min jf

j(x∗m), f j(x∗) ∈ MVCE(x∗)},m = 1, . . . , k,(4.3)

noting that the posterior probability allocated to the region inside MVCE(x∗) but

outside the hyperectangle specified by the credible limits is vanishingly small for large

J. We now interpolate between these credible limits at the knots to obtain the upper

and lower credible bands, thus obtaining infinite dimensional credible regions. Finally,
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our simultaneous credible region is defined as the set of all functions contained within

MVCE(x∗) at the knots and within the credible bands in between the knots. Thus, we

obtain credible regions of the form

{
f : f(x∗) ∈ MVCE(x∗), f̃L(x) ≤ f(x) ≤ f̃U(x), x /∈ x∗, x ∈ (x∗1, x

∗
k)
}
. (4.4)

We consider linear interpolation and interpolation based on Lipschitz continuous func-

tions, each having their own justifications.

To maintain the posterior probability allocated to MVCE(x∗), it is important to

interpolate between the knots in such a manner that the conditional posterior proba-

bility assigned to aberrant curves that are contained within credible limits at knots but

have at least one violation between the knots is small. If the support of Π is Lipschitz

(denoted as FcL) implying that ||f(x) − f(x′)|| ≤ cL||x − x′|| for all x, x′ ∈ [a, b] and

0 < cL <∞, our interpolation approach based on Lipschitz continuous functions guar-

antees the conditional posterior probability for aberrant curves goes to zero. This is

achieved by inflating the widths of the intervals between the knots so that only curves

having absolute slope greater than cL are ruled out, by constructing credible bands in

the following manner

f̃UcL(z) = f̃U(u) + cL|z − u|, f̃LcL(z) = f̃L(u)− cL|z − u|, z ∈ [x∗1, x
∗
k] (4.5)

where u = arg mint∈x∗|z− t| and {f̃ t(u) : u ∈ x∗, t = U,L} are the credible limits at

the knots x∗. Let us denote the credible region obtained by using f̃ tcL (t=U,L) in (4.4)
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as FCR(x∗) and let Fx∗ = {f : f̃L(x∗m) ≤ f(x∗m) ≤ f̃U(x∗m),m = 1, . . . , k}. Then

Π

(
FCR(x∗)

∣∣∣∣Y n

)
= Π

(
FCR(x∗) ∩ Fx∗

∣∣∣∣Y n

)
+ Π

(
FCR(x∗) ∩ Fcx∗

∣∣∣∣Y n

)
(4.6)

≈ Π

(
MVCE(x∗) ∩ FcL ∩ Fx∗

∣∣∣∣Y n

)
(4.7)

= Π

(
MVCE(x∗) ∩ Fx∗

∣∣∣∣Y n

)
≈ Π

(
MVCE(x∗)

∣∣∣∣Y n

)
, (4.8)

where we use the fact that Π

(
f ∈ MVCE(x∗) ∩ F cx∗

∣∣∣∣Y n

)
≈ 0 for large J.

In practice, it may be too restrictive to assume in advance that F is Lipschitz

with known cL, but it might be reasonable to assume the following:

(A) It is possible to estimate some ĉk,L such that F∩F cĉk,L has vanishingly small posterior

probability for large k, J, with Fĉk,L = set of Lipschitz functions with constant ĉk,L.

We estimate ĉk,L as ĉk,L = maxj∈{1,...,J}s
j(x∗), where sj(x∗) is the maximum absolute

slope evaluated over x∗ for the jth MCMC iteration. We now construct credible bands

f̃ tĉk,L (t=U,L) similarly as in (4.5), but with cL replaced by ĉk,L, and we denote the

corresponding credible region as F̂CR(x∗). Under assumption (A), such simultaneous

credible region is designed to have posterior probability close to MVCE(x∗), as shown

by the following arguments.

Let us express the support of Π as F = Fĉk,L
⋃
F cĉk,L , with the decomposition

varying as k, J change. It is straightforward to see that the set of aberrant curves can

be expressed as Fab = F cĉk,L∩Fx∗ . Since ĉk,L is non-decreasing in k, J, the size of the set

of such aberrant curves is non-increasing in k, J . Under assumption (A), there exists

constants k0, J0, such that Π

(
f ∈ F cĉk,L

∣∣∣∣Y n

)
≤ ε for k > k0, J > J0. We have

Π

(
f ∈ F̂CR(x∗)

∣∣∣∣Y n

)
= Π

(
MVCE(x∗) ∩ Fĉk,L ∩ Fx∗

∣∣∣∣Y n

)
+ Π

(
MVCE(x∗) ∩ Fĉk,L ∩ F

c
x∗

∣∣∣∣Y n

)
= Π

(
MVCE(x∗) ∩ Fx∗

∣∣∣∣Y n

)
−Π

(
MVCE(x∗) ∩ Fab

∣∣∣∣Y n

)
+ ε2

= Π

(
MVCE(x∗)

∣∣∣∣Y n

)
− ε1 + ε2, for k > k0, J > J0, and 0 < ε1 < ε,
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where we use the fact that Π

(
MVCE(x∗) ∩ Fĉk,L ∩ F cx∗

∣∣∣∣Y n

)
≈ 0 for large J. When

ε1 ≈ 0 under (A) and ε2 ≈ 0, we have Π

(
f ∈ F̂CR(x∗)

∣∣∣∣Y n

)
≈ Π

(
MVCE(x∗)

∣∣∣∣Y n

)
.

As an alternative approach which is free from any underlying assumptions on the

support of Π, we propose the linear interpolation approach having asymptotic justifi-

cations in the special case when Π is a Gaussian process (GP). The linear interpolation

approach constructs credible bands as:

f̃ t(z) =
x∗m − z

∆m
f̃ t(x∗m−1) +

z − x∗m−1

∆m
f̃ t(x∗m), z ∈ Dm = [x∗m, x

∗
m+1), ∆m = |x∗m − x∗m−1|,(4.9)

where f̃ t(x∗m) (t=L, U), m=1,. . . ,k, are the credible limits at the knots computed as

in (4.3). First, we state the following prior approximation result which is the basis for

our linear interpolation approach.

Theorem 8 Suppose Π is a zero mean GP with squared exponential covariance kernel

and define wj(z) =
∑k

m=2E[f(z)|f j(x∗m−1), f j(x∗m)]I(z ∈ Dm), j=1,. . . ,J. Then for

z ∈ Dm, wj(z) ≈ x∗m−z
∆m

f j(x∗m−1) +
z−x∗m−1

∆m
f j(x∗m) when (∆m)b ≈ 0, b ≥ 4.

Theorem 8 intuitively suggests that when z ∈ [x∗m−1, x
∗
m) and in the limiting

case when the distance between the knots is small (∆b
m ≈ 0, b ≥ 4), f(z) can be

approximated by a linear combination of f j(x∗m−1), f j(x∗m) (for the jth iteration) under

an appropriate GP prior. Hence given posterior samples in MVCE(x∗), it would be

meaningful to construct credible bands designed to contain pairwise linear combinations

of f j ∈ MVCE(x∗) as:

for z ∈ Dm, f̃
U(z) = max

fj∈MVCE(x∗)

{
x∗m − z

∆m

f j(x∗m−1) +
z − x∗m−1

∆m

f j(x∗m)

}
f̃L(z) = min

fj∈MVCE(x∗)

{
x∗m − z

∆m

f j(x∗m−1) +
z − x∗m−1

∆m

f j(x∗m)

}
. (4.10)

However in practice, the credible region specified by (4.10) might have posterior
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probability content much smaller than 1− α when the knots are not close enough. To

adjust for this, we construct a more conservative credible region by linearly interpolating

between the credible limits at knots, thus obtaining piecewise linear credible bands as

defined in (4.9).

4.3 Functions with vector valued arguments

In the case of functions over the line, there is a natural ordering of knots which

can be used to construct the credible bands. However for functions over a surface

f : S → < (S is a convex hull of the sample design points in <d, d ≥ 2), such a

natural ordering is lost. A meaningful way of connecting the points in a set S ⊂ <d

(d ≥ 2) is through triangulations, which refers to a subdivision of S such that the

bounded faces are d-simplices, and the vertices are points in S. For example when

d = 2, a triangulation would correspond to a planar subdivision whose bounded faces

are triangles having vertices as points in S ⊂ <2.

For a given set of points in S, such triangulations can be achieved in many possible

ways. One optimal method is the Delaunay triangulation (DT), which ensures that the

circumcircle of any triangle in the triangulation does not contain any additional point of

the design set S. DT is optimal in several respects, including maximizing the minimum

angle and minimizing the maximum circumcircle over all possible triangulations of

S (Fortune, 1992). Thus DT has become an important tool for high quality mesh

generation for a finite point set (Bern and Eppstein, 1992).

Based on DT, we construct piece-wise hyperplanar credible surfaces as follows:

for the vth d-simplex having vertices (s0,v, . . . , sd,v) obtained by the DT, we specify

the credible surface using a hyperplane passing through the (d+ 1) dimensional points

(s0,v, f̃
t(s0,v)),. . . ,(sd,v, f̃

t(sd,v)) (t=U, L). For example in the two dimensional case, we

would obtain the upper and lower credible surfaces as piece-wise hyperplanar surfaces
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connected together at the edges of the neighboring triangles obtained from DT. These

piece-wise hyperplanar credible surfaces can be considered as higher dimensional gener-

alization of the piece-wise linear credible bands obtained using the linear interpolation

approach in section 4.2. We can use the equations of the credible hyperplanes to check

if a parametric function defined on the convex hull of S ⊂ <d (d ≥ 2) is contained

within the simultaneous credible region - an useful tool for hypothesis testing involving

higher dimensional curves.

Let S ′ ∈ <d+1 denote the (d+1)-dimensional set constructed by lifting the points

in S to a paraboloid in <d+1. For example in two dimensions, a point (z1, z2) ∈ S

is lifted to (z1, z2, z
2
1 + z2

2) ∈ S ′. Then, DT of S can be computed as the projection

of the downward facing faces of the convex hull of S ′. Thus, most of the algorithms

for Delaunay triangulations are based on computing convex hulls. We shall use the

‘geometry’ package in R to implement DT, which essentially uses the Quickhull algo-

rithm to compute convex hulls. Obviously this would entail additional computation

time compared to the approaches for one dimensional curves.

4.4 Simulation Studies

4.4.1 One Dimensional Functions

To assess how our interpolation methods work in practice, we generate data in-

volving a one-dimensional mean function with an additive residual, using the following

model:

yi =
1

max(x2
i , 0.1)

+ cos

(
π(
xi − 5

10
)

)
+

20∑
k=1

wk exp(−|xi − t∗k|) + εi, εi ∼ N(0, 1),

xi ∼ U(−5, 10), t∗k ∼ U(min(x) + 0.5,max(x)− 0.5), wk ∼ N(0, 10),
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where x=(x1, . . . , xn). We use a sample size of 100 for our simulations. We generate 100

replicates, and for each replicate we fit the data using the following Gaussian process

mean regression model:

yi = f(xi) + εi, εi ∼ N(0, τ−1), τ ∼ Ga(aτ , bτ ),

f(·) ∼ GP (0, K), K(xi, xj) = φ−1
1 exp(−φ2(xi − xj)2), φ1 ∼ Ga(aφ1 , bφ1),(4.11)

and we use a Metropolis random walk to update φ2. The posterior computation pro-

ceeds via straightforward Gaussian process mean regression algorithm.

We assess the performance of our method by computing the frequentist coverage

of the mean function by the credible regions constructed using the method relying on

Lipschitz continuity (Lip) and the linear interpolation method (Lin). The frequentist

coverage by the credible region is computed as the percentage of replicates (out of

a total of 100 replicates) when the credible bands completely contain the true mean

function evaluated at a fine grid of 10000 points lying within [x(1), x(n)], the extreme

values of x. We also compute the frequentist coverage by the finite dimensional credible

region at the knots. As a measure of the size of the infinite dimensional credible region,

we determine the area enclosed inside the credible bands, as well as compute the volume

of the finite dimensional credible region at the knots. We assess the performance over

varying number of knots, and we choose knot locations as equispaced sample quantiles.

When using number of knots greater than sample size, we choose equispaced knots.

As a comparison, we also construct credible bands by computing credible limits at

the knots using Crainiceanu et al. (2007) method (CA) and subsequently interpolating

relying on Lipschitz continuity as well as linearly. In addition, we consider the approach

based on asymptotic normality (Pnorm) which constructs a credible region similar to

the MVCE approach in (4.4), but with parameters θ0 = 1
T−B

∑T
j=B+1 f

j(x∗) (mean of
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posterior samples at knots after burn in) and shape matrixM =

(
1

T−B
∑T

j=B+1(f j(x∗)−

θ0)(f j(x∗) − θ0)′
)−1

. Here T is the total number of MCMC iterations and B is the

burn in.

As an alternative, we also considered applying Crainiceanu et. al. (2007) approach

directly to the fine grid of 10000 points to compute credible limits, and subsequently

checking if the true mean function at those grid points lie within the credible limits.

Although such a sequence of credible limits do not yield a simultaneous credible region

for the true mean function (which is our primary objective), it can be considered as

a finite dimensional approximation. However, the implementation of this approach is

expensive requiring krigging at 10000 points and the computational burden increases

for increasing sample sizes. We found that even for moderate sample sizes, such an

approach is not practically applicable. Hence we do not consider it further.

While computing the density level sets for the MVCE approach, the conjugate

priors specified in (4.11) allow us to marginalize over the nuisance parameter τ and

obtain the likelihood approximation at the knots x∗ ⊆ x as L̂(Y ∗, f(x∗))

∝
(
bτ +

(Y ∗ − f(x∗)′(Y ∗ − f(x∗)

2

)−(aτ+n/2)

exp(−1

2
f(x∗)′K̂−1f(x∗)), (4.12)

where Y ∗ = {yi : xi ∈ x∗}, and K̂(x∗) is the covariance kernel of the Gaussian process

evaluated at x∗ with elements K̂(x∗i , x
∗
j) = φ̂−1

1 exp(−φ̂2(x∗i − x∗j)2) and φ̂1, φ̂2 are the

posterior means of the hyperparameters φ1, φ2. As an alternative, we considered com-

puting the above likelihood using a Monte Carlo approximation involving realizations

of φ1, φ2, from their respective priors. However such an approach is computationally

expensive, and moreover, we obtain desirable frequentist coverage using the likelihood

approximation (4.12).

Table C.1 summarizes the results from our simulation study. We see that for small
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to moderate number of knots and under the interpolation approach based on Lipschitz

continuity, the frequentist coverage at the knots as well as for the simultaneous credible

region under the MVCE is greater than the nominal value. On the other hand, the

corresponding frequentist coverage under the competing approaches are far lower than

the desired nominal value. However, the performance of the competitors improve for

high number of knots, yielding frequentist coverage close to the nominal value, as

evident from Table C.1.

For linear interpolation, the frequentist coverage is poor for all the approaches

when the number of knots is small or moderate, and seems to be sensitive to the location

of the knots. From Table C.1 we note that for small to moderate number of knots,

the frequentist coverage by the MVCE approach is far higher than the competitors.

However, the frequentist coverage increases considerably for high number of knots,

as reported in Table C.1. In general, it is our experience in simulations, that for

high number of knots and a true mean function which is not terribly bumpy, the

Lipschitz continuity approach and the linear interpolation approach seem to perform

well, achieving a frequentist coverage close to the nominal value. On the other hand, for

smooth true mean function, a frequentist coverage greater than or equal to the nominal

value is attained for smaller number of knots.

As is obvious, we see from Table C.1 that the area under the credible bands for

Lip decreases with the number of knots. We also see that the credible bands for the

MVCE approach is wider than the competitors, across varying number of knots. This

is probably one of reasons for the greater frequentist coverage for the MVCE approach.

However, we note that the difference in area under the credible bands between the

MVCE and competitors decreases as the number of knots increase.
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4.5 Discussion and Future Directions

In this chapter, we attempt to address an important but understudied problem of

constructing simultaneous credible regions for vectors and functions, guaranteed to have

a prespecified posterior probability content. The proposed methodology is based on the

joint posterior distributions of vector valued parameters and functions evaluated at a

finite number of knots, and hence bypasses the approach of computing simultaneous

credible regions based on marginal distributions, which is clearly inadequate from a

philosophical as well as practical perspective. Among other uses, our methodology can

be applied in hypothesis testing examples where we can use the simultaneous credible

region to test a point null for the vector case, and test if two functions are significantly

different for the function case. The proposed methodology is easy to implement and is

not computationally expensive for small to moderate number of knots.

Currently we are working on applying our approach to the premature delivery

application discussed in Chapter 2. Our analysis in this chapter is different from Chap-

ter 2, in that we now model the probability of preterm birth with DDE as a covariate,

using logistic regression involving a unknown log odds function modeled using a Gaus-

sian process. Our aim is to construct simultaneous credible region for this unknown

log odds function and to obtain an estimate of the DDE dose where the lower credible

band crosses zero. This will provide us with an estimate of the lowest dose at which

DDE significantly impacts preterm delivery.
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Chapter 5

Future Directions

My future research seeks to extend the Gaussian process latent variable

model proposed in Chapter 2 to include predictors in a manner which will allow vari-

able selection. Variable selection using Gaussian process mean regression has been

proposed in the literature (Linkletter et al., 2006; Zou et al., 2010; Stavitsky et al.,

2011) and usually proceeds by examining the posterior summaries of the length scale

parameter of the covariance kernel. Such models have important applications includ-

ing detecting significant genes in multiple quantitative loci mapping with epistasis and

gene-environment interactions. However, the drawback of such approaches using Gaus-

sian process mean regression is that the residual density after adjusting for the unknown

mean function is assigned a Gaussian distribution, which is restrictive. Such a restric-

tive structure does not allow the shape of the distribution to change with predictors

and hence might impact variable selection adversely.

We propose the following model which combines the flexibility of the proposed

Gaussian process latent variable model in Chapter 2 with variable selection approaches

involving the standard Gaussian process mean regression model:

yi = η(ui,xi) + εi, ui ∼ U(0, 1), xi ∼ <d, d ≥ 1, (5.1)



where η ∼ GP (0, K) and K is the covariance kernel of the Gaussian process. By

choosing a suitable covariance kernel and assigning mixture priors to suitable hyperpa-

rameters as in Savitsky et. al. (2011), we can proceed with variable selection. Further,

the resulting conditional distribution allows the shape of the density to change with

predictors, thus yielding greater flexibility.

While model (5.1) is expected to be flexible in detecting important predictors,

it has the disadvantage of not being able to point out important interactions between

covariates. For example in multiple quantitative loci studies, besides being able to study

any potential main effects, it is often times of interest to study interactions (of arbitrary

order) between markers and gene-environment interactions. Such interactions provide

investigators greater understanding of the more complex underlying genetic pathways

and gene-environment interactions. Hence, we are currently working on extending the

above model to develop an approach which can select predictors having significant main

effects, as well as detect significant interactions between predictors.
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Appendix A

Chapter 2

Proof of Theorem 1:

We have KL(fµ,σ(y), f0(y)) =
∫
f0 log f0

fµ,σ
=
∫
f0(y)

[
limσ→0

∫ 1
0 Γσ(y−µ0(x))dx∫ 1

0 Γσ(y−µ(x))dx

]
dy.

Now for all y ∈ < and fixed σ ∈ <+,

fµ0,σ
fµ,σ

=

∫ 1

0
Γσ(y − µ0(x))dx∫ 1

0
Γσ(y − µ(x))dx

≤ supx∈(0,1)hσ (y, µ (x)− µ0 (x))→ 1, as
||µ− µ0||∞

σ2
→ 0,

where hσ(y, µ−µ0) = e
1

2σ2
(µ−µ0)2− 1

σ2
(y−µ0)(µ−µ0) for Γσ = Gaussian, while hσ(y, µ−µ0) =

e
1
σ

(|µ0−µ|) for Γσ = Laplace. Hence limσ→0 log f0(y)
fµ,σ(y)

→ 0, as ||µ−µ0||∞
σ2 → 0. Under (A1)

and Gaussian or Laplace residuals, log f0
fµ,σ

is bounded for all σ ∈ <+ and µ close to µ0.

Hence we can use dominated convergence theorem to obtain,

lim
σ→0,

||µ−µ0||∞
σ2

→0

∫
< f0(y) log f0(y)

fµ,σ(y)
dy → 0. Hence we can choose a suitably small

η1, η2, η
∗
2 with 0 < η1 < η2 < η∗2 such that

{
||µ − µ0||∞ ≤ η1, η

∗
2 < σ ≤ η2

}
⇒

KL(fµ,σ, f0) ≤ ε. Given positive support of priors Π∗ and ν, we have Π(KLε(f0)) > 0.

Proof of Theorem 2:

We can use Taylor’s series expansion to obtain,

log
f0(y)

fµ,σ(y)

=

n0∑
k=1

(−1)k
(f0(y)− 1)k − (fµ,σ(y)− 1)k

k
+ δy1 (n0)− δy2 (n0) ,

where δy1 (n0) − δy2 (n0) is bounded and decreases with n0 under (A1 ), for µ close to

µ0 and Γσ = Gaussian. Using the identity an-bn=(a-b)(
∑n

k=1 a
n−kbk−1), and denoting
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g0 = f0 − 1 and gµ,σ = fµ,σ − 1, we have,

∫
|
n0∑
k=1

(−1)k
(f0 − 1)k − (fµ,σ − 1)k

k
|dy ≤

n0∑
k=1

∫
|(−1)k

k
(f0 − fµ,σ)(

k∑
l=1

gk−lµ,σ g
l−1
0 )|dy

≤
n0∑
k=1

sup
y
|(−1)k

k
(
k∑
l=1

gk−lµ,σ g
l−1
0 )|

∫
|f0(y)− fµ,σ(y)|dy = K(n0)

∫
|f0(y)− fµ,σ(y)|dy,

where K(n0)=
∑n0

k=1 supy |
(−1)k

k
(
∑k

l=1 g
k−l
µ,σ g

l−1
0 )| is a finite constant depending on n0 un-

der (A1 ), for µ close to µ0 and Γσ = Gaussian. Further, using similar methods as in

the proof of theorem 3, we can show that for 0 < ε1 < ε2 < ε∗2,

{µ ∈ Nε1(µ0), σ ∈ (ε2, ε
∗
2)} ⇒

∫
|f0(y)− fµ,σ(y)|dy < ε1

ε2
. (A.1)

Using inequality (A.1), we have for µ ∈ Nε1(µ0) and σ ∈ (ε2, ε
∗
2),

∫
|
n0∑
k=1

(−1)k
{

(f0 − 1)k − (fµ,σ − 1)k
}

k
|dy ≤ K(n0)

ε1
ε2

⇒ KL(f0, fµ,σ) =

∫
f0 log

f0

fµ,σ
≤ (supyf0(y))K(n0)

ε1
ε2

+ ∆(n0) = ε,

for suitably small ∆(n0) =
∫
f0(y)|δy1(n0)− δy2(n0)|dy. The rest follows since

Π∗ ⊗ ν {µ ∈ Nε1(µ0), σ ∈ (ε2, ε
∗
2)} > 0

Proof of Theorem 3: For a fixed σ ∈ <+, we have

∫
|fµ,σ − fµ̃,σ|dy ≤

∫ ∫ 1

0

|φσ(y − µ(x))− φσ(y − µ̃(x))|dx dy

=

∫ 1

0

∫
|φσ(y − µ(x))− φσ(y − µ̃(x))|dy dx (Fubini’s Theorem)

=

∫
x|µ0>µ

∫
|φσ(y − µ(x))− φσ(y − µ̃(x))|dy dx

+

∫
x|µ0<µ

∫
|φσ(y − µ(x))− φσ(y − µ̃(x))|dy dx.
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In the proof of lemma 1 of Ghosal, Ghosh and Ramamoorthy (1999), it was shown that

for fixed θ1 < θ2, ||φσ(y − θ1) − φσ(y − θ2)|| < θ2−θ1
σ

(where ||.|| = L1 norm), which

would imply

∫
|fµ,σ − fµ̃,σ|dy ≤

∫
x|µ̃>µ

µ̃(x)− µ(x)

σ
dx+

∫
x|µ̃<µ

µ(x)− µ̃(x)

σ
dx =

∫ 1

0

|µ− µ̃|
σ

dx.(A.2)

Under (A1 ) and Γσ=Gaussian, |fµ,σ(y) − fµ̃,σ(y)| is bounded for µ close to µ̃ and for

all σ ∈ <+. Thus, using dominated convergence theorem and (A.2), we have

∫
lim
σ→0
|fµ,σ − f̃ | = lim

σ→0

∫
|fµ,σ − fµ̃,σ| ≤ lim

σ→0

∫ 1

0

|µ(x)− µ̃(x)|
σ

dx.

Hence, we can choose sufficiently small ε1, ε2, ε
∗
2 with 0 < ε1 < ε2 < ε∗2 such that for

µ ∈ Nε1(µ̃) and σ ∈ (ε2, ε
∗
2), we would have

∫
|fµ,σ − f̃ |dy < ε1

ε2
.

Proof of Theorem 4:

Our proof uses theorem 2 of Ghosal, Ghosh and Ramamoorthi (1999) who

gave a set of alternate sufficient conditions for almost sure convergence of the posterior

of strong neighborhoods. Their result involves conditions on the size of the parameter

space in terms of L-1 metric entropy. Before proceeding, let us review L-1 metric

entropy and theorem 2 of Ghosal, Ghosh and Ramamoorthi (1999).

DEFINITION 1. For G ⊂ F and δ > 0, L-1 metric entropy J(δ,G) is defined as

the minimum of log(k : G ⊂ ∪ki=1

{
f :
∫
|f − fi|dy < δ, f1, f2, . . . , fk ∈ F

}
).

Theorem 5(Ghosal, Ghosh and Ramamoorthi) Let Π be a prior on F . Suppose

f0 ∈ F is in the Kullback-Leibler support of Π and let U=
{
f :
∫
|f − f0|dy < ε

}
. If

there is a δ < ε/4, c1, c2 > 0, β < ε2/8 and Fn ⊂ F such that for all large n:

(1) Π(F cn) < c1 exp(−nc2), and,

(2) The L-1 metric entropy, J(δ,Fn) < nβ,
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then Π(U |Y1, Y2, . . . , Yn)→ 1 a.s. Pf0.

The constants δ, c1, c2, β and Fn are allowed to depend on ε.

Let U=
{
fµ,σ :

∫
|fµ,σ − f0|dy < ε, µ ∈ Θ, σ ∈ (0,∞)

}
. Let the parameter space

for (µ, σ) be denoted as H. Consider the subsets of the parameter space Hn = H1n ⊗

H2n, where H1n = {µ : ||µ||∞ < Mn, ||µ′||∞ < Mn} and H2n = [Ln,∞), with Ln → 0

such that ν(σ ∈ (0, Ln)) < d1 exp(−d2n), d1, d2 > 0 and Mn = O(n1/2). Using lemma

5 of Choi and Schervish (2004), the first derivative η′(·) exists and is also a Gaussian

process under (A2 ). Using lemma 4 of Choi and Schervish (2004) who showed an

upper bound on sup-norm metric entropy of H1n, we have the upper bound on L1

metric entropy as

J(δ,H1n) < K1Mn/δ. (A.3)

This implies there are K∗ = exp(K1Mn/δ) elements µ1, µ2, . . . , µK∗ such that

H1n ⊂ ∪K
∗

j=1

{
µ :

∫ 1

0

|µ− µj|dx < δ

}
. (A.4)

Let us consider the sieve Fn = {fµ,σ ∈ F : (µ, σ) ∈ Hn}. Clearly Fn ⊆ U and Fn ↑ U .

Further, let us consider densities fi,n = fµi,Ln ∈ Fn defined as in section 2.1, where

the µi, i = 1, . . . , K∗ correspond to the ones just defined to cover H1n. Using similar

techniques as in lemma 1 of Ghosal, Ghosh and Ramamoorthi (1999), it can be shown

that for fixed x and µ > µi,
∫
|φσ(y − µ)− φLn(y − µi)|dy

=
1√
2πσ

∫
y>

µi+µ

2

exp(− 1

2σ
(y − µ)2)− 1√

2πLn

∫
y>

µi+µ

2

exp(− 1

2Ln
(y − µi)2)

+
1√

2πLn

∫
y<

µi+µ

2

exp(− 1

2Ln
(y − µi)2)− 1√

2πσ

∫
y<

µi+µ

2

exp(− 1

2σ
(y − µ)2)

≤ 2

(
µ− µi√

2πσ

)
+ 2

(
µ− µi√

2πLn

)
≤ 4

(
µ− µi√

2πLn

)
, for small enough Ln.
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Similarly, for fixed x and µ < µi,
∫
|φσ(y − µ) − φLn(y − µi)|dy ≤ 4

(
µi−µ√
2πLn

)
. This

implies,

∫
|fµ,σ − fi,n|dy ≤ 4

1√
2πLn

∫ 1

0

|µ− µi|dx ≤ 4
δ√

2πLn
, (A.5)

when
∫ 1

0
|µ− µi|dx ≤ δ. This clearly implies that (upto a constant)

J(δ/Ln,Fn) = J(δ,H1n) < K1Mn/δ ⇒ J(δ,Fn) ≤ K1MnLn/δ < nβ, (A.6)

where we can choose δ < ε/4 such that β < ε2/8. Thus the second condition in theorem

5 is satisfied. Also note that the prior probability of Fn can be calculated in terms of

Π∗ and ν. Under (A2 ), we can use lemma 5 of Choi and Schervish (2004) to obtain

Π∗(Hc
1n) ≤ A exp(−dM2

n), where A, d> 0. This implies

Π(F cn) = (Π∗ ⊗ ν)(Hc
n) = (Π∗ ⊗ ν)((Hc

1n ⊗H2n) ∪ (H1n ⊗Hc
2n)) ≤ c1 exp(−c2n), c1, c2 > 0.

Thus the first condition in theorem 5 is satisfied. Hence Π(U |Y1, Y2, . . . , Yn) → 1 a.s.

Pf0 .
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A.1 Tables

Table A.1: Marron-Wand Curves: L-1 error

Method L-1 Distance
MW 2 MW 6 MW 8 MW 9

GPT 0.031 0.035 0.031 0.028
DPM 0.035 0.036 0.03 0.038

Polya tree mixture 0.065 0.036 0.045 0.042
Frequentist Kernel 0.145 0.031 0.033 0.028

Table A.2: Predictive MSE & L-1 error

Method MSE COV(%) L-1 Distance
25th 50th 75th

GPT 1.26 94 0.08 0.04 0.06
DPM 1.53 42 0.03 0.04 0.06
BART 1.59 46 0.13 0.026 0.10
GP reg 1.52 76 0.14 0.03 0.10

treed GP 1.6 72 0.07 0.09 0.04
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A.2 Figures

Figure A.1: Prior realizations from the GPT for gestational
age at delivery (solid lines) along with frequentist kernel density estimate (dotted lines).
The rows correspond to φ1=(0.01, 0.1); the columns correspond to φ2=(0.1,1,25,100)
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Figure A.2: Marron-Wand curves - density estimates for GPT, DPM and Polya tree
mixtures
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Figure A.3: GPT conditional density estimates and 90% credible intervals for 10th,
60th, 90th, 99th DDE quantiles. Vertical dashed line for cut-off at 37 weeks
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Figure A.4: DPM conditional density estimates and 90% credible intervals for 10th,
60th, 90th, 99th DDE quantiles. Vertical dashed line for cut-off at 37 weeks
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Figure A.5: Estimated probability that gestational age at delivery is less than T weeks
versus DDE dose, for (a) T = 33, (b) T = 35, (c) T = 37, (d) T = 40. Solid lines are
posterior means and dashed lines are pointwise 90% credible intervals
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Appendix B

Chapter 3

Proof of Theorem 6: Using similar methods as in the proof of Theorem 2 in Guo

and Speckman (2009), it can be shown that conditional on A and assumptions (A3) and

(A4), the upper and lower bounds of L(Y n|A,M1) =
∫∞

0
(1+g)−p1/2

[
1− g

1+g
R̃2
A,1

]−n/2
π(dg)

are

L(Y n|A,M1) ≤
(

p1 + 2ku
n− p1 − 2ku

)p1/2+ku(1− R̃2
A,1

R̃2
A,1

)p1/2+ku( n

n− p1 − 2ku

)−n/2(
1− R̃2

A,1

)−n/2
≈

(
p1 + 2ku

n− p1 − 2ku

)p1/2+ku(1− R̃2
A,1

R̃2
A,1

)p1/2+ku(
1− R̃2

A,1

)−n/2
= UA,1(n),

and L(Y n|A,M1) ≥ n−p1/2−k
(

1− R̃2
A,1

)−n/2
= LA,1(n). Similarly,

LA,2(n) ≤ L(Y n|A,M2) =

∫ ∞
0

(1 + g)−p2/2
[
1− g

1 + g
R̃2
A,2

]−n/2
π(dg) ≤ UA,2(n).

Therefore, BFn21,A ≤
UA,2(n)

LA,1(n)

=

(
p2 + 2ku

n− p2 − 2ku

)p2/2+ku(1− R̃2
A,2

R̃2
A,2

)p2/2+ku(
1− R̃2

A,2

)−n/2
/

(
n−p1/2−k(1− R̃2

A,1)−n/2
)
.(B.1)

Case (I): For fixed pj (j = 1, 2), BFn21,A ≤ ζ(A, n) = n
p1−p2

2
+k−ku

(
1−R̃2

A,2

1−R̃2
A,1

)−n/2
, ignoring

terms independent of n. Then conditional on A, we have directly from our Lemma 1

and the proof of Theorem 3 in Guo and Speckman (2009): for M1 ⊂ M2, and under

M1 and assumptions (A3), (A4), ζ(A, n)
P→ 0 as n→∞, and if p2− p1 > 2 + 2(k−ku),
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ζ(A, n)
a.s.→ 0 as n→∞. Further, if M1 6⊆ M2, then under M1 and assumption (A3),

ζ(A, n)
a.s.→ 0 as n→∞.

Further, BFn21,A ≤ ζ(A, n)⇔ L(Y n|A,M2) ≤ ζ(A, n)L(Y n|A,M1)

⇒ L(Y n|M2) ≤
∑
Al∈Cn

wlζ(Al, n)L(Y n|Al,M1) ≤ maxA∈Cnζ(A, n)L(Y n|M1).(B.2)

In the limiting sense as n→∞, the maximum in the upper bound in (B.2) is computed

over A ∈ C∞. From the preceding discussion, ζ(A, n)→ 0 underM1 for all A as n→∞

implies limn→∞maxA∈Cn ζ(A, n)→ 0. Dividing both sides of (B.2) by L(Y n|M1), this

implies BFn21 →0 under M1. Further, the mode of convergence of BFn21 is the same as

BFn21,A, and the rest follows accordingly.

Case (II): For increasing model dimensions p1 = O(na1) and p2 = O(na2) with

0 ≤ a1 < a2 < 1, for g ∼ π(g) we will only assume (A3) so that ku = 0. We have using

(B.1)

BF n
21,A ≤ np1/2−(1−a2)p2/2+k

(
1− R̃2

A,2

R̃2
A,2

)p2/2(1− R̃2
A,2

1− R̃2
A,1

)−n/2
. (B.3)

Let us consider the following cases under 0 ≤ a1 < a2 < 1.

Case C1: M1 ⊂ M2. We have Qj = τ(Z ′AZA − Z ′AH̃A,jZA) ∼ χ2
n−pj(0), j=1,2, and

Q1−Q2 = τ

(
Z ′A(H̃A,2− H̃A,1)ZA

)
∼ χ2

p2−p1(0). Using Lemma 1 of Guo et. al. (2009),

1− R̃2
A,1

1− R̃2
A,2

=
Z ′AZA − Z ′AH̃A,1ZA

Z ′AZA − Z ′AH̃A,2ZA
=
Q1

Q2

= 1 +
(Q1 −Q2)/(p2 − p1)

Q2/(n− p2)

p2 − p1

n− p2

a.s.→ 1.

Moreover

(
1−R̃2

A,2

R̃2
A,2

)
a.s.→
(
τ−1

bA,1

)
under M1, which implies that

(
1−R̃2

A,2

R̃2
A,2

)p2/2
blows up

at a rate strictly slower than the rate at which np1/2−(1−a2)p2/2+k → 0. This implies that

BFn21,A
a.s.→ 0 under M1.
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Case C2: M1 6⊆ M2. Using Lemma 1,

1− R̃2
A,2

R̃2
A,2

a.s.→ τ−1 + bA,1 − bA,2
bA,2

> 1,
1− R̃2

A,1

1− R̃2
A,2

a.s.→ τ−1

τ−1 + bA,1 − bA,2
< 1, under M1.

For fixed τ−1 and bA,2 > 0 (under (A2 )),

(
1−R̃2

A,2

R̃2
A,2

)p2/2(
1−R̃2

A,2

1−R̃2
A,1

)−n/2
a.s.→ 0. In addition,

we have p1 − (1− a2)p2 + k < 0 for 0 ≤ a1 < a2 < 1, which implies BFn21,A
a.s.→ 0 under

M1.

Subsequently using similar arguments as in Case (I), BFn21
a.s.→ 0 underM1 for both C1,

C2.

Proof of Theorem 7: Given the assumptions (A1)- (A4), Bayes factor con-

sistency holds under the different cases elaborated in Theorem 6. For fixed p, the

proof follows trivially using Bayes factor consistency. For increasing pn = O(na)

(a > 0), our prior is
{
πn(γjl) ∝ 2−pjI[γjl ∈MF ] +N−1

j I[γjl ∈MI ]
}

, Nj =
(
pn
pj

)
. Let

BFnγ1= Bayes factor between models γ and M1, let D = {pj : γ ∈ MI} and de-

note Hj = {γ ∈ MI : dim(γ) = pj}. Note that under (A1)-(A4), BFnγ1
P→ 0 for all

γ ∈MF

⋃
MI , using Theorem 6. Also,

P (M1|Y n) = [1 +
∑

γ∈MF∩Mc
1

2(p1−pj)/2BF n
γ1 + 2p1/2

∑
γ∈MI

N−1
j BF n

γ1]−1

= [1 +
∑

γ∈MF∩Mc
1

2(p1−pj)/2BF n
γ1 + 2p1/2

∑
pj∈D

∑
γjl∈Hj

N−1
j BF n

γjl1
]−1.

We note that
∑

γ∈MF∩Mc
1

2(p1−pj)/2BF n
γ1 → 0 as n → ∞ since all the individual terms

in the finite summation → 0 using Theorem 6. Further, the upper bound of BF n
γjl1

for

any γjl ∈ Hj is given by (using the preceding proof of Theorem 6), (a) for nested case,

Ūn
j1 ≈ κpj/2n−(1−aj)pj/2+p1/2+k for some 0 < κ <∞ and large n, (b) for non-nested case,

Ūn
j2 ≤ n−(1−aj)pj/2+p1/2+k, for large n. Noting that the cardinality of Hj ≤ Nj =

(
pn
pj

)
,
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and denoting Ūn
j = max(Ūn

j1, Ū
n
j2), we have for large n,

∑
γjl∈Hj

N−1
j BF n

γjl1
≤ Ūn

j ⇒ P (M1|Y n) ≥ [1 + 2p1/2
∑
pj∈D

Ūn
j ]−1, under M1.

Noting that p1 is fixed and the cardinality of D < κ0n for some constant κ0 > 0, it is

clear that 2p1/2
∑

pj∈Dn Ū
n
j → 0 as n→∞, using (a), (b). Hence the result is proved.

Computational steps for MCMC

The posterior computation steps are:

Step 1.1: Update the ν ′s after marginalizing out the augmented uniform variable using

π(νh|−) = Be(1 + nh,
∑

j>h nj +m).

Step 1.2: Update the augmented uniform variables from its full conditional as described

in Walker (2007).

Step 2: Update the allocation of atoms to different subjects using f(yi|ui, Si = h) ∝

N(yi|αh, xγ,i, βγ, τ−1)I(h ∈ Bw(ui)), h=1,. . . ,M

Step 3: Update the precision parameter of the DP using π(m|−) = Ga(am + M, bm −∑M
l=1 log(1− νl)), where M is the number of clusters in the particular iteration.

Step 4: Letting pγ =
∑p

j=1 γj, update precision τ using

π(τ |−) = Ga

(
aτ+n+pγ

2
, bτ+ 1

2

{
(Y n −Xγβγ)

′Σ−1
A (Y n −Xγβγ) + 1

g
β′γ(X

′
γΣ
−1
A Xγ)βγ

})
.

Step 5: Using the hyper-g prior and the fact that g
1+g
∼ Be(1, 1) for a = 4, we can

subsequently adopt the griddy Gibbs approach (Ritter and Tanner, 1992) to update g.

Step 6: Update the prior inclusion probability π = Pr(γj = 1) using

f(π|−) = Be(a1 + pγ, b1 + p− pγ), j=1,. . . ,p.

Step 7: Update γj’s one at a time by computing their posterior inclusion probabilities

after marginalizing out βγ and conditional on inclusion indicators for the remaining

predictors as well as g, τ and A. Denoting γ(j) as the vector of variable inclusion
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indicators with γj = 1, and pγ(j) as the vector sum of γ(j), we can sample γj from the

Bernoulli conditional posterior distribution with probabilities Pr(γj = 1|−) ∝

π(1 + g)−pγ(j)/2 exp

{
τ

2

g

1 + g

(
Y n′Σ−1

A Xγ(j)(X
′
γ(j)Σ

−1
A Xγ(j))

−1X ′γ(j)Σ
−1
A Y n

)}
.

Step 8: Set {βj : γj = 0} = 0 and update βγ = {βj : γj = 1} using π(βγ|−) = N(βγ;E, V ),

where V =

(
τ
g
(X ′γΣ

−1
A Xγ) + τ(X ′γXγ)

)−1

and E = V

(
τX ′γ(Y

n − α)

)
.
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B.1 Tables

Table B.1: Estimates and MIPs for fixed effects for Case I when n=100

MIPSLM βSLM MIPNLM βSLM βL1 βEL βLMR βQR
3 1.00 2.88 1.00 2.83 3.08 3.08 3.15 2.92
2 0.99 1.89 0.98 1.95 2.06 2.06 2.11 1.84
-1 0.93 -0.91 0.75 -0.78 -0.98 -0.98 -0.87 -0.78
0 0.45 -0.01 0.53 0.006 0.01 0.009 -0.003 -0.02

1.5 0.98 1.43 0.90 1.35 1.54 1.54 1.57 1.29
1 0.90 0.79 0.68 0.54 0.74 0.74 0.66 0.42
0 0.43 -0.005 0.53 -0.05 -0.04 -0.04 -0.09 -0.06
-4 1.00 -3.89 1.00 -3.75 -4.05 -4.04 -4.14 -3.95

-1.5 0.99 -1.54 0.92 -1.43 -1.57 -1.57 -1.54 -1.30
0 0.42 0.008 0.54 -0.12 -0.12 -0.12 -0.06 -0.14
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Table B.2: Summaries for Case I when n=100

Measure SLM NLM L1 EL LMR QR

MSE around βT 0.07 0.21 0.24 0.24 0.40 0.50
MSE for out of sample prediction 7.70 16.44 8.33 8.32 8.83 9.11
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Table B.3: Fixed effects (times 100) for type-II diabetes example

Predictor β̂SLM β̂NLM β̂L1 β̂EL β̂LMR β̂QR
TC 0.55(0.11,0.73) 0.74(0.25,1.20) 0.75 0.75 0.29 0.01
SG 2.11(1.75,2.48) 2.82(2.5,3.15) 2.83 2.82 2.99 3.23
HDL -0.50(-1.4,0.015) -0.36(-1.61,0) -1.02 -1.02 -0.42 0
Age 0.34(-0.06,1.3) 0.98(0,2.35) 1.19 1.19 0.57 0.04
Gender -3.72(-30.12,4.39) -1.53(-25.46,3.22) -19.66 -19.81 -7.87 -0.86
BMI(overwt) 1.55(-9.43,24.03) 2.04(-3.33,29.53) 4.33 4.27 15.12 1.84
BMI(obese) -0.74(-20.33,13.44) -0.91(-21.93,6.14) -14.88 -15.03 8.16 0.62
SBP 0.53(0,1.35) 0.03(-0.13,0.65) 0.25 0.25 0.56 0.009
DBP -0.03(-0.99,0.69) 0(-0.45,0.45) 0.018 0.017 -0.55 0.002
WHR 224.27(67.72,381.88) 3.16(-44.74,91.4) 90.47 91.53 90.79 129.23
PPT 21.42(1.89,57.49) 33.04(0,80.39) 47.31 47.32 37.55 18.99
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Table B.4: Marginal Inclusion Probabilities for SLM, NLM and QR

MIP TC SG HDL Age Sex BMI1 BMI2 SBP DBP WHR PPT

SLM 0.97 1 0.64 0.43 0.17 0.15 0.22 0.72 0.23 0.93 0.64
NLM 0.98 1 0.39 0.67 0.12 0.13 0.11 0.14 0.10 0.13 0.68
QR 0.02 1 0.002 0.03 0.08 0.10 0.08 0.01 0.004 0.71 0.42
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Table B.5: Prediction (Cov: 95% coverage, CIW: 95% C.I. width)

Replicate S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8

MSESLM 1.25 1.24 1.55 1.21 1.45 1.47 3.44 1.23
MSENLM 1.23 1.33 1.74 1.29 1.14 1.46 3.43 1.52
MSEL1 1.28 1.45 2.49 2.34 1.13 1.45 3.47 1.75
MSEEL 1.29 1.47 2.51 2.36 1.14 1.45 3.48 1.75
MSELMR 2.23 1.21 2.15 1.02 1.09 1.36 4.06 1.69
MSEQR 1.82 1.91 2.64 1.15 1.64 2.68 3.98 2.44
CovSLM 100.00 97.14 100.00 97.14 100.00 100.00 91.42 100.00
CovNLM 97.12 97.14 94.28 97.14 100.00 97.14 91.42 100.00
CIWNLM 5.92 5.41 5.84 5.94 5.93 5.91 5.59 5.90
CIWSLM 6.93 6.16 6.80 6.81 6.84 6.86 6.13 6.77
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Table B.6: Auto-correlations across lags for fixed effects

Predictor Lag 1 Lag 5 Lag 10 Lag 25 Lag 50

SLM NLM SLM NLM SLM NLM SLM NLM SLM NLM
TC 0.22 0.18 0.113 0.194 0.073 0.159 0.032 0.111 0.013 0.059
SG 0.59 0.06 0.386 0.038 0.285 0.022 0.14 0.009 0.06 0.016
HDL 0.19 0.02 0.081 0.012 0.041 0.013 0.01 0.021 0.0005 -0.006
Age 0.21 0.04 0.072 0.009 0.053 -0.0001 0.025 0.006 0.007 -0.014
Gender 0.06 -0.007 0.030 0.0003 0.013 -0.006 0.009 -0.014 0.005 0.019
BMI(overwt) 0.02 -0.002 0.01 -0.006 0.006 0.013 -0.006 0.009 0.0014 0.018
BMI(obese) 0.02 0.002 0.017 0.004 0.004 0.018 0.007 -0.003 0.000 0.000
SBP 0.29 0.0711 0.137 0.019 0.096 0.007 0.047 0.03 0.014 0.022
DBP 0.07 0.0239 0.021 0.019 0.019 0.031 0.009 -0.003 0.004 -0.012
WHR 0.44 0.0642 0.353 0.043 0.321 0.061 0.251 0.06 0.186 -0.003
PPT 0.22 0.0600 0.118 0.047 0.068 0.045 0.015 0.004 -0.002 0.019
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B.2 Figures

Figure B.1: MIP for Case I: Solid lines - SLM, dashed lines - NLM
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Figure B.2: MIP for Case II: Solid lines - SLM, dashed lines - NLM
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Figure B.3: Residual plots for Diabetes study for Semi-parametric Linear Model

−5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

Residual of Glycosolated hemoglobin

N
on

−p
ar

am
et

ric
 D

en
si

ty

86



Appendix C

Chapter 4

Proof of Theorem 8: Suppose Π ∼ GP (0, K), where K(·, ·) is the covariance kernel

with parameters φ1, φ2. Then using the standard result for a multivariate normal dis-

tribution, we have E[f(z)|f j(x∗m−1), f j(x∗m)] = Σ̄m,m+1

(
f j(x∗m), f j(x∗m+1)

)′
, where

Σ̄m,m+1 =
[
φ1e

−φ2(z−xm)2 , φ1e
−φ2(z−xm+1)2

] φ1 φ1e
−φ2∆2

m

φ1e
−φ2∆2

m φ1


−1

=
1

1− e−2φ2∆2
m

[
e−φ2(z−xm)2 , e−φ2(z−xm+1)2

] 1 −e−φ2∆2
m

−e−φ2∆2
m 1


=

1

1− e−2φ2∆2
m

(
e−φ2(z−xm)2 − e−φ2(z−xm+1)2−φ2∆2

m , e−φ2(z−xm+1)2 − e−φ2(z−x2m)−φ2∆2
m

)
.

We can use Taylor’s series expansion and the assumption ∆b
m ≈ 0, b ≥ 4 to obtain

Σ̄m,m+1

≈ 1

2φ2∆2
m

(
φ2(z − xm+1)2 + φ2∆2

m − φ2(z − xm)2, φ2(z − xm)2 + φ2∆2
m − φ2(z − xm+1)2

)
=

1

2φ2∆2
m

(
2φ2∆m(xm+1 − z), −2φ2∆m(xm − z)

)
.

Then for z ∈ [x∗m, x
∗
m+1),

wj(z) ≈ 1

∆2
m

(
∆m(xm+1 − z), −∆m(xm − z)

)(
f j(x∗m), f j(x∗m+1)

)′
=

x∗m − z
∆m

f j(x∗m−1) +
z − x∗m−1

∆m

f j(x∗m).
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Khachiyan’s algorithm for computing minimum volume covering ellipsoids

1. Input: A set of points P = {a1, . . . , an} ⊂ <p, and ε > 0.

Further let qi ← ((ai)
T , 1)T , i=1,. . . ,n, and Λ(u) =

∑n
h=1 ahqh(qh)T .

2. Initialization: k ← 0, N ← p+ 1, u0 ← (1/n)1n.

Begin loop:

3. j ← arg maxi=1,...,n(qi)
TΛ(uk)−1(qi), κ← (qj)

TΛ(uk)−1(qj).

4. β ← κ−p−1
(p+1)(κ−1) .

5. uk+1 ← (1− β)uk + βej , k ← k + 1, where ej is a vector of zeros with jth element =1.

6. If norm(uk+1 − uk) > ε, go to step 2.

7. u∗ = uk+1.

End loop

8. Output: Let U = diag(u∗). Then c = Pu∗ and A = (1/p)(PUP T − ccT )−1.
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C.1 Tables

Table C.1: Frequentist Coverage (Fcov) of Credible Regions

Method Fcov at knots Fcov under Lip Fcov under Lin

MVCE (knots = 30) 97 97 34
CA (knots = 30) 87 87 12
Pnorm(knots = 30) 84 83 24

MVCE (knots = 50) 97 96 74
CA (knots = 50) 84 84 41
Pnorm(knots = 50) 83 82 52

MVCE (knots = 70) 98 98 69
CA (knots = 70) 87 87 44
Pnorm(knots = 70) 82 82 47

MVCE (knots = 200) 97 97 97
CA (knots = 200) 94 94 94
Pnorm(knots = 200) 93 93 93

Method Area (Lip) Area (Lin) Log(vol) at knots

MVCE (knots = 30) 3302.4 169.3 59.87
CA (knots=30) 3262.5 129.6 62.92
Pnorm(knots=30) 3281.5 148.5 51.76

MVCE (knots = 50) 1131.8 170.5 96.50
CA (knots=50) 1097.8 136.7 107.97
Pnorm(knots=50) 1112.5 151.3 83.45

MVCE (knots = 70) 1121.1 171.7 123.81
CA (knots=70) 1092.4 143.1 153.04
Pnorm(knots=70) 1104.8 155.4 105.20
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C.2 Figures

Figure C.1: Comparison of two dimensional credible regions. Blue Dots: 95% HPD set
generated from mixture of bivariate Gaussian and t distribution; Blue line: MVCE credible
region (posterior prob = 0.9507); Red Line: Credible region using asymptotic normality
(posterior prob = 0.895)
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