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ABSTRACT 
 

Tiffany A. Wills: Effects of Repeated Ethanol Withdrawals and Stress/Withdrawal 
Paradigms in Adolescent Rats 

(Under the Direction of Dr. George R. Breese) 
 
Adolescence is a period of development that is marked with increased vulnerability to the 

use and abuse of alcohol. Many studies have illustrated that adolescents respond to 

ethanol in ways that are distinct from adults.  The adult literature has established the 

importance of understating the negative affect (i.e anxiety) produced from alcohol 

withdrawal and how the cyclic nature of ethanol exposure can modulate its development. 

Initial studies showed that adolescent and adult rats seem to display similar withdrawal-

related behaviors (anxiety and seizure thresholds) following repeated withdrawals once 

corrections were made for differences in ethanol intake.  This anxiety-like behavior was 

shown to be sensitized by repeated ethanol withdrawals in adolescent rats, as was 

previously demonstrated in adult rats.  However, this anxiety-like behavior in adolescent 

rats was much longer lasting than in adult rats.  Additional work was conducted to 

determine the role of stress in the development of this anxiety-like behavior.  Stress was 

shown to substitute for these early withdrawals and sensitize anxiety-like behavior in 

adolescent rats.  In contrast to the effects of repeated withdrawals, the anxiety-like 

behavior of this stress/withdrawal paradigm was not long lasting. The reduced effect of 

stress in adolescents was also produced when assessing acute stress. A common 

mechanism between for both stress and ethanol actions may be related to corticotrophin 

releasing factor (CRF).  Dose-response studies illustrated that CRF could substitute for 
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early stress/withdrawal episodes and produce anxiety-like behavior. The dose required to 

produce this effect was higher in adolescents than adults, which suggested a reduced 

sensitivity to CRF. The reduced sensitivity to stress and CRF in adolescents may be due 

to higher basal CRF levels found in adolescent rats. Finally, it was illustrated that 

repeated withdrawals decreased CRF immunoreactivity within the central nucleus of the 

amygdala only in adolescent rats. This work illustrates that adolescents are equally and 

sometimes more vulnerable to effects of repeated ethanol withdrawal.  Further, there is a 

clear interaction of stress and CRF in this process. Therefore, this work would encourage 

the development and use of treatments that focus on the modulation of this system in 

adolescents. 
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CHAPTER I: GENERAL INTRODUCTION 

Alcoholism is defined as a maladaptive pattern of alcohol consumption that 

results in impairment or distress in the user.  Patients are diagnosed with alcohol 

dependence based on the presentation of 3 or more of the following criteria outlined by 

the DSM-IV (1994): tolerance, withdrawal, drinking longer than intended, inability to cut 

down/stop drinking, large amount of time spent to acquire alcohol, stopping or reducing 

important activities, and continued use in spite of physical or psychological problems 

caused by alcohol.  Alcohol dependence and/or abuse have 7-8% prevalence in the 

population within a 12 month period and 18% prevalence throughout the lifetime (Grant 

& Harford, 1995).  The annual economic cost associated with alcohol use disorders is 

estimated at about 184.6 billion (Harwood, 1998).  It is also the second most common 

psychiatric disorder in the United States (Kessler et al., 1994). Therefore, understanding 

the mechanisms that underlie alcoholism is of critical importance.    

Much of the research on this disease has focused on understanding the 

mechanisms of alcohol use in adults, a time when alcoholism is commonly diagnosed. 

However, it is known that problematic patterns of alcohol use are apparent long before a 

clinical diagnosis.  The information presented here will demonstrate that most use of 

alcohol is initiated during adolescence and use during this time can have different 

consequences than alcohol use in adults.  Further, alcohol use during this early period has 

effects that persist into adulthood.  However, there are still gaps in our understanding of 

the effects of alcohol in adolescents. The adult literature has identified some fundamental 



issues in alcoholism that will be identified herein and these issues will provide the 

framework for the work that remains in adolescents.  This summary emphasizes the 

importance of understanding the effects of alcohol use during adolescence for future 

treatment and prevention of alcoholism.  

Adolescence 

 Adolescence is a time of transition between childhood and adulthood and is, 

therefore, not confined to strict age limits. Instead, adolescence is characterized by 

hormonal, behavioral, and neurological changes which seem to be common in a number 

of species. This time frame includes but is not restricted to the onset of puberty and 

development of sexual maturity. In humans, the age range for adolescence has typically 

been defined as 9 to 18 years old (Buchanan et al., 1992) but others feel that people in 

their early 20s could also be included in this group (Baumrind, 1987).  Similar age ranges 

have also been established in rodents from P28-42 (Spear, 2000) although again this 

range can vary. 

 One of the factors included in this period is puberty. In rodents, mature diurnal 

gonadotropin cycling can be seen at P28 while sexual maturity is typically not complete 

until P60 in males and P38 in females (Ojeda & Urbanski, 1994). These data illustrate 

that gender is an additional source of variability with males generally maturing more 

slowly than females. Another factor also frequently associated with adolescence is a rapid 

increase in growth (growth spurt), which can be seen in both humans and rodents (Frisch, 

1984; Kennedy & Mirta, 1963).  

Various other changes are also taking place in the brain during adolescence.  

There is an overall peak in grey matter volume during adolescence that declines into 
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adulthood (Giedd et al., 1999; Giedd, 2004). This effect is caused, in part, by the 

overproduction of neuronal axons and dendrites in early adolescence followed by the 

pruning of synapses later in adolescence (Andersen et al., 2000; Andersen & Teicher, 

2004; Giedd et al., 1999).  Some regions that undergo the most reorganization are the 

prefrontal cortex (PFC; Sowell et al., 1999, 2001; Van Eden et al., 1990), hippocampus, 

amygdala (Zehr et al., 2006), nucleus accumbens (NAc; Tarazi et al., 1998; Teicher et al., 

1995), and hypothalamus (Choi & Kellogg, 1992; Choi et al., 1997).  In the PFC, there 

are large decreases in glutamatergic synapses (Huttenlocher, 1984; Zecevic et al., 1989), 

which likely contribute to the decline in grey matter. More specifically, there is a loss of 

up to 1/3 of NMDA receptor binding from P28-60 (Insel et al., 1990). While glutamate 

synapses are being reduced, dopamine innervations to the PFC are increased in both 

nonhuman primates (Rosenberg & Lewis, 1994; 1995) and rats (Kalsbeek et al., 1988; 

Leslie et al., 1991).   Additionally, cholinergic inputs into the PFC also increase during 

adolescence (Gould et al., 1991).  The hippocampus also undergoes significant pruning of 

glutamatergic synapses, which is illustrated by a decrease of 1/4 of the NMDA receptors 

within the hippocampal pyramidal region between P28-60 (Insel et al., 1990).  These data 

illustrate that there are large degrees of regional specific reorganization that occur during 

adolescence. 

 In addition to the regional changes in glutamate described above, there are also 

more global changes in this neurotransmitter system.  Glutamatergic function throughout 

the brain declines during adolescence and results in a general loss of excitatory tone. This 

effect was described above in the PFC and hippocampus but can also be found in the 

NAc (Frantz & Van Hartesveldt, 1999). This decrease in excitatory tone (especially loss 
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of NMDA receptors) is most likely responsible for changes in long term potentiation 

(LTP) induction found during this period.  Schramm et al. (2002) illustrated that LTP was 

more frequently induced in the NAc of adolescent mice compared to their adult 

counterparts.  These differences in synaptic plasticity (through induction of LTP) could 

lead to enhanced learning and memory processes during this period. While this 

enhancement of learning and memory are beneficial in most instances, this enhancement 

could also potentially effect negative/pathological learning processes (like addiction).  

GABA function is also modulated during adolescence, mainly through activation 

of GABAA receptors. It has been shown that there is a steady increase in GABAA 

expression into adulthood (P60; Behringer et al., 1996; Xia & Haddad, 1992). However, 

in certain brain regions it was illustrated that during early adolescence (P20-28) there is a 

plateau in the rate of GABAA receptor expression (measured by zolpidem binding) 

followed by a rapid increase during later adolescence (P36-60; Moy et al., 1998).  These 

data suggest that expression of GABAA receptors may be distinct during different stages 

of adolescence.  

GABAA receptors can be composed of a wide-range of subunit combinations, 

which can change their pharmacological and electrophysiological properties.  During 

adolescence, these subunit combinations can vary with age and affect the functional 

response of the GABAA receptor.  The synaptic GABAA receptor is composed of two α, 

two β, and one γ subunits, while the extrasynaptic GABAA receptor contains a δ subunit 

instead of γ.  Both synaptic and extrasynaptic receptors modulate GABA transmission in 

different ways and would lead to different behavioral phenotypes.  Electrophysiological 

studies in hippocampal slices showed that tonic current mediated through extrasynaptic 
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GABAA receptors was larger in the dentate gyrus of the hippocampus from adult rats 

compared to their adolescent counterparts (Fleming et al., 2007).  This effect is most 

likely due to the developmental increase in expression of the δ subunit within this region 

(Laurie et al., 1992).  Further, various splice variants of the α subunit are also known to 

change in expression throughout development.  Alpha 1 subunits peak during 

adolescence and then slowly decline into adulthood (P90), while α3 subunits decline later 

(9 months) and the α2 subunit remains stable within the frontal cortex (Yu et al., 2006). 

Alpha 5 subunits are high postnatally but then decline through adolescence into 

adulthood in the frontal cortex (Yu et al., 2006).   

Further alterations can also be found in the transition from adolescence to 

adulthood when dopamine is considered. In the frontal cortex, hippocampus, and 

entorhinal cortex, there is an increase in D1, D2, and D4 receptors that peaks in mid-

adolescence and then remains stable throughout adulthood (Tarazi & Baldessaeini, 2000). 

In the straitum and NAc, however, there is a reduction in 1/3 of dopamine receptors 

during adolescence (Tarazi & Baldessaeini, 2000; Teicher el al., 1995).  Dopamine 

transporters in striatum, on the other hand, steadily increase into adulthood (Tarazi et al., 

1998). These neurological changes, along with many others not discussed here, are 

responsible for the behavioral phenotypes that differ between adolescents and adults. 

A number of these behavioral phenotypes have been evaluated during adolescence 

and adulthood. One of the behaviors increased during adolescence is peer related 

interactions. In fact in humans, adolescents spend about 33% of their waking time 

communicating with peers (only 8% talking to adults) in a given week during the school 

year (Csikszentmihalyi et al., 1977). While it is well known that human adolescents 
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display this increase in peer-related interaction, the same is also true in rodents.  

Adolescent rats have increased social interaction (Primus & Kellogg, 1989) and play 

behavior (Spear, 2000) compared to their adult counterparts. This transition from family 

focused interactions to peer focused interactions is likely a way for adolescents to 

develop the independence that they will need in adulthood (Spear, 2000). 

Another behavior that is increased during this period is risk taking.  Data 

illustrated that 80% of adolescents had one or more of the following problems in the last 

month: disobeying parents, school misconduct, drug use, or antisocial behavior (theft or 

fighting; Maggs et al., 1995). Additionally, a review on antisocial behavior determined 

that increases in these behaviors during adolescence are so common that they seem to be 

the norm (Moffitt, 1993).  Clinical data also showed that a moderate amount of drug 

taking (a type of risk taking behavior) is not necessarily associated with negative 

outcomes. In fact, these moderate drug users were found to be more socially competent, 

than abstainers or frequent drug users (Shedler & Block, 1990).  However, increases in 

risk taking behaviors also do have detrimental consequences.  For example, 85% of 

deaths during adolescence can be attributed to homicides, suicides, or accidents (Irwin, 

1989).  The following sections will evaluate both the short term and long term 

consequences of one of these risky behaviors (alcohol use) during adolescence.  

Adolescence and Alcohol   

Adolescence is known to be a time of increased risk taking behaviors, which 

includes increased use of alcohol. Recent statistics showed that 73% of high school 

students had used alcohol by the time they graduated (Johnston et al., 2007). Of 

considerable concern is the fact that the strongest predictor of alcohol dependence in 
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adulthood is the use of alcohol before the age of 14 (Grant, 1998).  Not only is 

experimentation prevalent but 30% of 12th graders admitted to have engaged in heavy 

drinking (5+ drinks in one occasion) in the last month.  It is estimated that 6% of 

adolescents drink in patterns that qualify for alcohol abuse or dependence (Rohde et al., 

1996). Furthermore, the dependency course (time between initial use and dependence) is 

more rapid in adolescents than adults (Clark et al., 1998). These and other clinical data 

make it evident that understanding the effects of alcohol use and abuse during this period 

is critical.   

Acute Effects of Alcohol during Adolescence 

Basic research in rats has demonstrated clear differences between adolescent and 

adult rats in their responses to acute ethanol administration. For example, adolescents 

have lower sensitivity to the sedative (Little et al., 1996; Silveri & Spear, 1998), 

hypothermic (Silveri & Spear, 2000), and motor impairing (White et al., 2002) effects of 

acute ethanol injections compared to adults. These differences do not seem to be due to 

differences in ethanol metabolism between adolescent and adult rats. Little et al. (1996) 

illustrated that a more rapid recovery of the righting reflex (an index of sedation) was 

also accompanied by a higher blood ethanol concentration at the time of recovery in 

adolescents compared to adult rats. Additionally, Silveri and Spear (2000) found that rats 

at P16 had slower metabolism but that by P26 (within the adolescent age range) ethanol 

metabolism was not different from adults.    

A mechanism that might account for this general insensitivity to ethanol’s 

sedative properties during adolescence is a change in the transmission of GABA during 

development. Activation of the GABAA receptor is a main contributor to the sedative 
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properties of ethanol.  Previously, it was illustrated that changes in expression and 

subunit composition of this receptor change during this period of development.  Silveri & 

Spear (2002) conducted experiments to determine whether pretreatment with muscimol 

(GABAA receptor agonist) or (+) MK-801 (NMDA antagonist) could increase the 

sedative properties of ethanol in adolescent and adult rats. They found that (+)MK-801 

increased the sedative properties of ethanol but there was no age-related difference. 

However, treatment with muscimol enhanced the sedative effects of ethanol in adolescent 

but not adult rats (Silveri & Spear, 2002). Therefore, the data indicated that ethanol had a 

reduced ability to enhance GABAA function in adolescent rats compared to adults and 

that this effect is most likely responsible for the difference in sedative properties of 

ethanol between ages.  Additional support was provided with studies of GABAA-

mediated inhibitory post-synaptic currents (IPSCs) from hippocampal whole cell 

recordings in juvenile (2 wks), adolescent (4wks), and adult (16wks) rats.  In these 

recordings, greater ethanol-induced enhancement of IPSCs was demonstrated in adults 

compared to both juvenile and adolescent rats (Li et al., 2003). Later work from this 

group went on to show that this developmental effect of ethanol was specific to 

spontaneous IPSCs (sIPSCs) frequency but did not effect miniature IPSCs (mIPSCs; Li et 

al.,2006).  The authors conclude that this result indicates a presynaptic mechanism 

mediated either through interneurons or changes in subunit composition. Regardless of 

the specific mechanism, these data illustrate that the reduced sedative effects of ethanol in 

adolescents is most likely a result from a developmentally regulated increase in ethanol-

induced GABAA function. 
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The previous work described a reduced sensitivity to some of the effects of 

ethanol in adolescents; however, there are also effects where adolescents are more 

sensitive. These behaviors include both ethanol induced memory impairment and social 

facilitation (Markwiese et al., 1998; Varlinskaya & Spear 2002; 2006).  Further, the 

effects of ethanol-induced memory impairment were not due to differences in learning, 

which were the same in the absence of ethanol administration (White & Swartzwelder, 

2004).  The mechanisms underling this response are most likely related to the effect of 

ethanol on the NMDA receptor. It is generally accepted that the processes of learning and 

memory involve LTP in the hippocampus, which is mediated through activation of the 

NMDA receptors.  Ethanol is known to more potently inhibit NMDA receptors in the 

hippocampus of adolescents compared to adults (Swartzwelder et al., 1995b). This 

increased inhibition in adolescent rats would thereby decrease NMDA’s ability to induce 

LTP.  NMDA-mediated LTP disruption by ethanol in hippocampal slices was more 

inducible in adolescents than adults (Pyapali et al. 1999; Swartzwelder et al., 1995a).  

These data indicated that the increased ability of ethanol to induce memory impairment in 

adolescents is most likely due to the increased effect of ethanol on NMDA receptors at 

this age.  Similar to the work with the developmental regulation of the GABAA receptor, 

these differences in the effect of ethanol could be caused by differences in subunit 

composition or expression. 

 These studies of the acute effects of ethanol during adolescence have illustrated 

that adolescent rats do not respond to ethanol in the same way as adult rats on many 

indices.  Additionally, this work showed that adolescents may be uniquely vulnerable to 

alcohol dependence.   It was illustrated that adolescents are less sensitive to the sedative 
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and motor impairing effects of ethanol. With these reduced sensitivities, adolescents 

would be able to consume much larger quantities of alcohol before feeling the adverse 

effects of alcohol. Furthermore, adolescents would be able to drink more alcohol before 

they “pass out”, which increases the risk for alcohol poisoning and alcohol-related 

fatalities.  The above studies also illustrated that adolescents are more sensitive to the 

memory impairing effect of ethanol.  Therefore, less alcohol is required to impair 

memory in adolescents.  This observation coupled with the fact that adolescents are most 

likely consuming more alcohol produces a very dangerous situation. 

Chronic Effects of Alcohol during Adolescence 

In addition to the work on the acute effects of ethanol, research has also been 

conducted on the effects of more chronic ethanol use during adolescence.  A number of 

studies have been performed where adolescent or adult rats are given chronic ethanol 

treatments and then tested when all rats are adults.  They then looked at the effects of this 

ethanol history on future ethanol responses.  These studies found that the differences in 

sensitivity to acute ethanol displayed by adolescents (described under acute effects) can 

also be maintained into adulthood (Slawecki, 2002; White et al., 2000; 2002).  For 

example, White et al. (2000) found that adult rats treated chronically as adolescents 

showed greater ethanol-induced working memory impairments relative to adults 

chronically treated as adults. Similar ethanol treatments during adolescence resulted in 

reduced sensitivity to motor impairments that persisted into adulthood (White el al., 

2002).  Further, alcohol preferring (P) rats exposed to ethanol during adolescence but not 

in adulthood affected later ethanol operant responding.  That is, adolescent exposure in P 

rats tested as adults led to more rapid acquisition of ethanol responding, greater resistance 
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to extinction, and increased responding to ethanol upon re-exposure (Rodd-Henricks et 

al., 2002a/b).  Finally, Crews et al. (2000) showed that a 4-day binge ethanol exposure 

caused brain damage in select regions that does not appear in adults. This evidence 

indicated that ethanol treatment during the adolescent period can affect future responses 

to ethanol as adults.   

Clinical studies also investigated the effects of chronic adolescent alcohol use on 

brain damage and learning/memory deficits.  In these experiments, patients were either 

adolescents or young adults with history of alcohol use disorder (AUD) or those without.  

De Bellis and colleagues (2000) illustrated with MRI that subjects with a history of AUD 

had decreased hippocampal volume, which was also correlated with the onset and 

duration of alcohol use.  Later work also showed that white matter was decreased in the 

corpus collosum of adolescents with AUD (Tapert et al., 2003).  Further, subjects with 

AUD as adolescents showed a decrease in delayed memory function by 10% three weeks 

into abstinence (Brown et al., 2000).   

These studies have illustrated two key points. One point is that chronic ethanol 

use during adolescence can effect the way that adults respond to ethanol.  Importantly, 

this exposure causes adults to display sensitivities to ethanol like those seen in 

adolescents.  The section above (acute effects of ethanol) describes why these changes in 

the sensitivity to ethanol can have negative consequences.  These data reveal that 

adolescent alcohol use can cause adult rats to be more vulnerable to ethanol dependence.  

The second point illustrated by these data is that alcohol use during adolescence can 

cause damage to the brain and lead to cognitive deficits.  While this damage may impact 

adult vulnerability to alcohol dependence, it could also lead to problems in many other 
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aspects of life.  Overall these studies have shown that ethanol use during adolescence can 

produce long-lasting changes in the brain that affect adult behavior. 

Stress-Induced Effects during Adolescence 

In addition to the differential response to ethanol seen in adolescents, their 

responses to stress are also different from adults.  Given the long standing appreciation 

for the importance of stress in alcoholism (Sinha, 2001), consideration of this issue in 

adolescents is key.  It was demonstrated that adolescents are more vulnerable to acute 

stress (greater immobility in forced swim and intermittent foot shock tests; Spear, 2000; 

Walker et al., 1995).  Also, administration of chronic stress during this time can produce 

a blunted ACTH response to future stress (Goliszek et al., 1996).  Furthermore, in mice it 

has been illustrated that responses to stress (decreased weight gain and increased anxiety) 

were more enduring when stress was experienced during adolescence (Stone et al., 1997). 

Stress may also have complex interactions with alcohol consumption, for example, it was 

demonstrated that adolescents had significantly increased ethanol consumption compared 

to adults in response to foot shock stress (Siegmund et al., 2005). Clinical data also 

illustrated that the second largest predictor for ethanol consumption during adolescence is 

perceived stress (Wagner, 1993). These observations indicate that adolescents have 

increased vulnerability to stress, which may affect their responses to ethanol.  

Alcoholism in Adults 

 The previous section characterized the differences between adolescents and adults 

in their response to ethanol and illustrated the increased vulnerability to the effects of 

ethanol during adolescence.  However, many gaps still remain in our understanding of 

how alcohol use during this period can affect the progression of alcoholism.  The 
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following discussion will introduce some key hypotheses and mechanisms of relevance.  

These data focus on research conducted in adults and will provide a framework for work 

that remains to be conducted in adolescent populations. 

Tension Reduction Hypothesis 

Alcoholism is known to be a chronic relapsing disorder. The progress from 

alcohol use to dependence can be modulated by systems which regulate the positive 

reinforcing effects of ethanol and those controlling the negative reinforcing effects.  The 

reliance on these different types of reinforcement is thought to change throughout the 

process of ethanol dependence. Koob and Le Moal (1997) presented a model to explain 

these changes, as a process of hedonic homeostatic dysregulation.  They outlined three 

stages of the addiction process: preoccupation/anticipation, binge/intoxication, and 

withdrawal/negative affect.  During transition to ethanol dependence, there is a shift in 

the motivational drive for ethanol use. The beginning stages of ethanol use are driven 

primarily by the positive reinforcing effects of ethanol (pleasurable effects from ethanol). 

However, as addiction progresses, it is thought that the negative reinforcing properties of 

the ethanol (withdrawal/negative affect) are the motivational force behind the compulsive 

ethanol intake.  

One of the early hypotheses on alcohol addiction was the tension reduction 

hypothesis (Cappell & Herman, 1972). This hypothesis stated that alcoholics were 

motivated to drink in order to reduce the negative symptoms associated with ethanol 

withdrawal. Early work focused on the outwardly negative physical symptoms of 

withdrawal (tremors, seizure, nausea, and delirium) and proposed that alcoholics 

maintained drinking to prevent these symptoms (Cappell & Herman, 1972).  However, 
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later research indicated that this was not always the case. It was shown that less than 25% 

of patients continued to drink in order to alleviate physical symptoms of withdrawal 

(Hershon, 1977).  Additionally, the physical symptoms of withdrawal typically last for 

only 12-72 hrs (Mello and Mendelson, 1972) but craving is reported in alcoholics for 

months (Roelofs, 1985). These data seemed to discount the original tenet of this 

hypothesis, which stated that alcoholics drank to alleviate the symptoms of withdrawal.   

Later work, however, illustrated that other symptoms were more persistent, such 

as increased negative affect (depression and anxiety) that also accompanies ethanol 

withdrawal (De Solo et al., 1985; Roelofs, 1985). It was illustrated that 80% of alcoholics 

cite that relapse in drinking was due to depressed mood or anxiety (Hershon, 1977). 

Therefore, a modified version of the tension reduction hypothesis is that alcoholics 

maintain drinking or relapse to alleviate the negative affect associated with ethanol 

withdrawal. This hypothesis also incorporates the influence of stress (tension), which can 

promote these negative mood states or be a source of ethanol intake on its own.  Early 

studies illustrated that acute stress increased alcohol consumption in social drinkers 

(Higgins and Marlatt, 1975).  Furthermore, stress is known to induce alcohol craving and 

promote relapse (Sinha, 2001).  Later sections will also illustrate the interactions between 

stress and ethanol withdrawal and suggest possible mechanisms. 

Kindling Hypothesis 

Another hypothesis has been put forth to emphasize the importance of ethanol 

intake patterns, specifically cyclic ethanol intake and subsequent withdrawal.  The 

kindling hypothesis helps to explain a progressive worsening that occurs with chronic 

ethanol use. Kindling has been defined as the process in which the threshold to induce a 
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seizure is decreased following repeated stimulations (Goddard, 1967; Goddard et al., 

1969). Ballinger and Post (1978) observed a positive association between the number of 

previous detoxifications from ethanol and the severity of seizures during withdrawal in 

the clinical population. They proposed that this enhancement of seizure susceptibility 

from repeated ethanol withdrawal could be caused by a “kindling”-like process.  Later 

work (Brown et al., 1988) provided clinical support for this kindling hypothesis of 

ethanol withdrawal seizures.  Rodent models also illustrated that increased seizure 

susceptibility could be produced from repeated ethanol withdrawals (Becker & Hale, 

1993; Kokka et al., 1993; McCown & Breese, 1990).   

Later work in animals examined whether repeated ethanol withdrawals could also 

sensitize (“kindle”) anxiety-like behavior, a form of negative affect discussed above. 

These studies showed that if rats were given repeated ethanol withdrawals, then they 

exhibited a decrease in social interaction (a validated index of increased anxiety-like 

behavior).  In contrast, rats that received no ethanol or ethanol in a continuous fashion 

(only a single withdrawal episode) did not display this anxiety-like behavior (Overstreet 

et al., 2002). These data indicate that the kindling process identified in humans could also 

be modeled in rats with symptoms other than seizures.  

Later experiments illustrated that this anxiety-like behavior does not have a long 

duration. Duration is defined as the amount of time that anxiety-like behavior can be 

detected following the final withdrawal.  In adults, anxiety-like behavior following the 

final withdrawal in the repeated withdrawal paradigm was detected at 24 but not 48 hours 

(Overstreet et al., 2002).  However, this paradigm did produce underlying changes in the 

brain that could be re-elicited with future challenges. In these studies, rats were given 
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repeated ethanol withdrawals and then allowed to recovery for a period of time. During 

this recovery, rats were exposed to a non-anxiogenic regimen of chronic ethanol exposure 

(which normally causes no effect).  In rats that had a history of repeated ethanol 

withdrawals, this future ethanol exposure re-elicited their previous anxiety-like behavior 

(Overstreet et al., 2002). These data illustrated that adaptation caused by repeated 

withdrawals can effect future responses to ethanol. 

Further work also illustrated the importance of stress in this kindling hypothesis.  

In these experiments, rats were exposed to two episodes of stress in place of the first two 

ethanol/withdrawal cycles, followed by one ethanol cycle (referred to as the 

stress/withdrawal paradigm). One ethanol cycle alone has no effect on social interaction 

normally but when rats are also exposed to stress the reduction in social interaction was 

elicited. Further, it was illustrated that three exposures to stress alone had no effect on 

social interaction (Breese et al., 2004).  The adaptations produced from this paradigm 

were also shown to have long-term consequences in that future ethanol exposure 16 days 

following the stress/withdrawal paradigm could re-elicit anxiety (Breese et al., 2004). 

  This work illustrated that repeated ethanol withdrawals or stress could sensitize an 

emotional phenotype in rodents (i.e. anxiety) during withdrawal. Stress interactions with 

this kindling-like process have been incorporated into an expanded version of the above 

hypothesis referred to as the “The Kindling/Stress Hypothesis” (Breese et al., 2005a).  

The work referenced here documents the importance of understanding the cyclic nature 

of ethanol intake, ethanol withdrawal, and stress.  This hypothesis illustrates that with 

increasing intake/withdrawal cycles, there is a progressive worsening of negative affect 

(anxiety) that can interact with stress. The tension reduction hypothesis would predict 
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that this increase in negative affect would lead to increased relapse. Therefore, the 

combination of these two hypotheses provided definable features that work to explain the 

progression of ethanol dependence.  A large proportion of current research has been 

focused on identifying those systems responsible for this dependence, especially those 

contributing to ethanol withdrawal, stress, and negative affect.  One of the systems that 

play an integral part in this process is the corticotrophin releasing factor (CRF) system. 

Adaptations through CRF  

 CRF is a 41-residue polypeptide that can be found in the paraventricular nucleus 

(PVN) as well as in many extrahypothalamic sites (Sarnyai et al., 2001). These 

extahypothalamic sites include the limbic regions (e.g. amygdala and bed nucleus of the 

stria terminalis, BNST) and brainstem (e.g. locus coeruleus and nucleus of solitary tract).  

CRF has binding affinity for CRF binding protein (CRF-BP), CRF type 1 receptors 

(CRF1R), and CRF type 2 receptors (CRF2R).  The CRF1R and CRF2R are G-coupled 

receptors which are positively coupled to adenylate cyclase (primarily through Gαs).  

CRF1R are found primarily in the amygdala, pituitary, hippocampus, cortex, and 

cerebellum.  CRF2R, on the other hand, are located mainly in lateral septum, 

hypothalamus, and amygdala (Sarnyai et al., 2001).  

The behavioral effects of CRF at these extrahypothalamic sites are contingent on 

the environment situation (stressful or non-stressful). When CRF is given in a familiar 

environment (non-stressful), it resulted in behavioral activation including increased 

locomotor activity, rearing, and grooming (Jones et al., 1998). In contrast, CRF given in a 

novel environment (stressful) produced behavioral suppression including decreased 

activity in open field and elevated plus maze, food intake, and sexual behavior (Dunn & 
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Berridge, 1990).  Reductions in explorations in open field and elevated plus maze are an 

index of increased anxiety-like behavior. Antagonist studies have also highlighted the 

behavioral effects of CRF. Administration of a non-specific CRF antagonist reversed 

stress-induced feeding (Krahn et al., 1998) and fighting (Tazi et al., 1987a), increased 

exploration in novel environments (Takahashi et al., 1989), blocked enhancement of 

acoustic startle (Swerdlow et al., 1989), and blocked anxiety-like responding in elevated 

plus maze (Heinrichs et al., 1994).  Later work with receptor specific agonists, 

antagonists, and genetic knockouts (KO) showed behavioral effects of CRF through these 

different receptor subtypes were not the same.   These studies illustrated that CRF1R 

activation seems to be more involved in stress or CRF-induced anxiety and activity 

suppression (Contarino et al., 1999; 2000; Liebsch et al., 1999; Skutella et al., 1998; Tazi 

et al., 1987b). Alternatively, CRF2R activation was shown to reduce food intake and had 

anti-anxiety effects, although data on these anti-anxiety effects are mixed (Bale et al., 

2000; Reyes et al., 2001).  

In addition to the well known effects of ethanol on the HPA axis, there are also 

many effects of ethanol that can be attributed to the modulation of CRF at 

extrahypothalamic sites.  Low doses of ethanol are known to be anxiolytic and this effect 

may be regulated at least in part through suppression of CRF (Valdez & Koob, 2004).  

Chronic exposure to ethanol leads to a doubling in the amount of CRF-immunoreactivity 

(IR) in the amygdala, as found in microdialysis samples (Merlo Pich et al., 1995).  

Additionally, patients with alcohol dependence also show an increase in CRF in their 

cerebral spinal fluid (Bruijnzeel & Gold, 2005).   
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During ethanol withdrawal, CRF levels in the amygdala were shown with 

microdialysis to peak 11-12 hours after chronic ethanol exposure (Merlo-Pich et al., 

1995). In immunohistochemical studies, it was shown that there was a decrease in CRF 

immunoreactivity in the amygdala, hippocampus, and frontal cortex 5-6 into withdrawal 

(Zorrilla et al., 2001). This decrease in CRF immunoreactivity was thought to be caused 

by increased CRF release in these regions which resulted in CRF depletion in the cell 

bodies.  Additionally, it was determined that CRF1R is particularly involved in the 

regulation of ethanol withdrawal-induced anxiety (Baldwin et al., 1991; Overstreet et al., 

2004a; Timpl et al., 1998).  Other work illustrated that microinjection of a CRF 

antagonist into the CeA, but not the nucleus accumbens shell or lateral BNST, blocked 

withdrawal-induced increases in self-administration in dependent rats (Funk et al., 2006).  

Therefore, these experiments define the contribution of CRF in the amygdala (CeA) in 

ethanol withdrawal-induced increases in self-administration and anxiety most likely 

through the CRF1R. 

One of the main features of ethanol dependence is that it is a chronically relapsing 

condition.  It was described earlier that some of the factors that contribute to relapse are 

negative affect (anxiety-like behavior) and interaction of stress with these mood states.  

Therefore, studies were also performed to determine the role of adaptations in CRF in 

protracted ethanol withdrawal that relate to relapse.  Administration of a CRF antagonist 

blocked the stress-induced anxiety in protracted withdrawal (6wks) from chronic ethanol 

(Valdez et al., 2003).  Additionally, other work showed that a CRF1R antagonist blocked 

foot-shock stress mediated reinstatement of ethanol self-administration (Lê et al., 2000). 

Experiments showed that 6 weeks into protracted withdrawal there was a recovery of 
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CRF levels except in the amygdala were levels of CRF were still increased (Zorrilla et 

al., 2001).  Further work using EEG recordings illustrated that responsiveness to CRF 

was increased in the cortex and the amygdala during protracted withdrawal from ethanol 

(Slawecki et al., 1999).   

Experiments have also been preformed to evaluate the role of CRF in the 

sensitization process from repeated ethanol withdrawals described above (under Kindling 

Hypothesis). These studies showed that CRF (icv) substituted for early stress/withdrawal 

cycles and produced anxiety-like behavior after a final withdrawal (Overstreet et al., 

2004a).  Additionally, a CRF1 receptor antagonist (CP-154,526) given systemically prior 

to the first two withdrawals or prior to stress blocked this anxiety-like behavior (Breese et 

al., 2004; 2005b). In contrast, CRF2R antagonist did not have this effect (Overstreet et al., 

2004a).   

Collectively this work demonstrates a clear role for CRF in the processes inherent 

in ethanol dependence.  Chronic ethanol use was shown to produce changes in the CRF 

system which are responsible for the production of anxiety-like behavior during 

withdrawal.  The hypotheses mentioned above (Tension Reduction and Kindling) 

illustrated that negative affect (including anxiety) was responsible for relapse and craving 

for ethanol during abstinence. Data presented in this section showed that modulation of 

CRF could prevent stress-induced reinstatement and the sensitization of anxiety behavior. 

Therefore, understanding the development of changes in CRF from ethanol will be 

critical for treating and possibly preventing the development of this disease. 

Dissertation 
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The focus of this dissertation will be to evaluate cyclic ethanol exposure, 

interactions of stress, and adaptations through CRF that lead to the development of 

alcohol dependence in a vulnerable population, adolescents. In adults, related work has 

established the importance of understating the negative affect (i.e anxiety) produced from 

alcohol withdrawal and how the cyclic nature of ethanol exposure can modulate its 

development. Further, it has been identified that the duration of these anxiety-like 

responses and the interactions with stress are vital. Finally, it was illustrated that 

adaptations in the CRF system are critical for the development of these behaviors and are 

likely targets for treatment.   

The following work will investigate these key concepts in adolescents. The 

clinical data presented at the beginning of this section would indicate that alcohol use 

during adolescence is a large predictor for future alcoholism.  These data would predict 

that adolescent rats should be able to undergo the adaptations thought to be important to 

the development of addiction. In the current work, it would be expected that adolescent 

rats are either more or equally sensitive to the production of withdrawal related behaviors 

(especially anxiety) from repeated ethanol withdrawal. Furthermore, stress should also be 

able to interact with these ethanol withdrawals to produce anxiety-like behavior and it is 

likely that this response may be more robust in adolescents. Furthermore, it is likely that 

these adaptations from repeated withdrawals and stress that produce this increased 

anxiety are mediated through the modulation of the CRF system. If adolescents undergo 

these adaptations that lead to the production of negative affect (i.e. anxiety), then it is 

likely that these behaviors will promote continued ethanol use in adulthood.   Thus, the 

overall hypothesis tested is that adolescents will be vulnerable to the negative affect 
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inducing effects of stress and cycled chronic ethanol and this vulnerability will depend on 

CRF systems. 

 



CHAPTER II:  GENERAL METHODS 

Animals 

Male Sprague Dawley rats (Charles-River, Raleigh, NC) were obtained at 7 

weeks of age (P49) for the adult groups and 3 weeks of age (P21) for the adolescent 

groups. Animals were group housed for 1 day to adapt to the local conditions (light ⁄dark 

cycle of 12:12, with lights on between 07:00 and 19:00 hour). Rats were then individually 

housed (unless noted otherwise) for the remainder of the experiments with food and 

fluids monitored as described below. The experiments described here were approved by 

the University of North Carolina Institutional Animal Care and Use Committee.  

Liquid Diets 

 Following a day of adaptation, standard food chow was removed from the cages 

and all rats were placed on nutritionally complete liquid diets that has been used 

previously in this laboratory (e.g., Frye et al., 1983; Knapp et al., 1998; Moy et al., 1997). 

During this time, all rats had constant access to water.  The diet used was 

lactalbumin⁄dextrose-based with vitamins, minerals, and other nutrients from Dyets 

(Bethlehem, PA). The number of calories from dextrose was equated with calories from 

the ethanol so that both control diet (CD) and ethanol diet (ED) were calorically 

balanced. Rats were given CD in a volume equivalent to that consumed by the ED group 

on the previous day to minimize differences in weight gain. Additionally, rats were 

weighed weekly to monitor weight gain throughout the experiment. ED and CD volumes 

were measured daily at the end of the dark cycle (08:00 hour) to determine g ⁄kg intake 



⁄day. Most behavioral measures were performed on the 20th day of diet administration 

during which time all rats maintained on ED were placed on CD. Most behavioral tests 

were then performed 5 hours into withdrawal when blood ethanol levels have fallen to 0 

(Breese et al., 2004; Overstreet et al., 2002).  

Social Interaction 

The social interaction (SI) test was first described by File and Hyde (1978) and 

has been used regularly in our laboratory to assess anxiety-like behavior.  In this test, a 

pair of rats are placed into an arena and the amount of time they are engaged in social 

behaviors is recorded.  Studies have shown that anxiogenic stimuli (noisy environment 

and cat odor; File, 1994; Zangrossi and File, 1992), anxiogenic drugs (yohimbine, 

amphetamine, and PCP; Bhattacharya et al., 1997; File and Hyde, 1979; Sams-Dodd, 

1995), and drug withdrawal (alcohol and nicotine; File et al., 1989; Irvine et al. 2001; 

Kampov-Polevoy et al., 2000) all produced a reduction in SI.  Alternatively, a number of 

anxiolytic agents (summarized in File & Seth, 2003) have been shown to increase SI.  

In the classic administration of the test, the pairs of rats were matched by both 

treatment and body weight. Additionally, SI scores of the pair were treated as a single 

unit.  Several modifications have been made in our laboratory to this original SI test.  Our 

studies showed that the social behavior of one member of a testing pair is independent of 

the other rat’s behavior (Breese et al., 2004; Overstreet et al., 2002, 2003, 2004b).  This 

allowed for the individual data collection of each animal of the pair rather than the 

average performance of the pair (Overstreet et al., 2003). Additionally, it was possible to 

test rodent pairs that did not receive the same treatment. Therefore, the sole criterion for 

pair selection in our studies was body weight. 
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In this modified version of the SI test, rats were placed into an unfamiliar 60 X 60 

cm square open field with a 15 X 15 cm square grid floor under low lighting conditions 

(30 lx). Two rats, naive to the testing environment were monitored for 5 minutes. During 

this period, an observer blind to the treatment condition measured the time (in seconds) 

that each rat was engaged in social behavior (conspecific grooming, sniffing, following, 

crawling over⁄under) with its partner. Locomotor activity was also simultaneously 

measured during the test by the number of times a rat crossed the lines of the grid floor. 

Ethanol withdrawal in this modified test has been repeatedly shown to reduce SI and 

sometimes locomotor activity (Breese et al., 2004; Overstreet et al., 2002; 2003; 

2004a,b). However, it is important to note that reductions in SI and locomotor activity 

seemed to be independent of each other, as they can be independently manipulated with 

changes in ethanol treatment conditions or drug treatments (Breese et al., 2004; 2005b; 

Knapp et al., 2005; Overstreet et al., 2002). Further, the validity of these results was also 

confirmed with another test used to evaluate anxiety-like behavior, the elevated plus 

maze (Overstreet et al., 2002; 2004b).  

Blood Ethanol Concentrations 

 A separate group of rats were used for blood ethanol concentration (BEC) 

analysis and were not included in the behavioral tests. This step was taken to prevent any 

potential effects that multiple blood sampling might have on behavioral measures. For 

BEC analysis, blood was removed from the tip of the tail during the last hour of the dark 

cycle (06:00) on the days indicated in the following chapters.  

Blood samples were then analyzed with gas chromatographic methods. Tail blood 

(6 μl) or standards (6 μl; 0 to 200 mg%) were combined with 375 μl of distilled water and 
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0.5 g NaCl in 12 X 75mm borosilicate glass culture tubes. These tubes were capped and 

then heated to 55°C for 10 minutes. After this time 1.5 ml of head-space gas was 

removed from the tube and injected directly into an SRI 8610C gas chromatograph (SRI 

Instruments, Inc., Torrance, CA), as previously described (Breese et al., 2004; Navarro et 

al., 2003; Overstreet et al., 2002).  



CHAPTER III:  EFFECTS OF REPEATED ETHANOL WITHDRAWALS 

Introduction 

Adolescence is a period of development that is marked with increased 

vulnerability to the use and abuse of alcohol. Many studies, presented in earlier sections, 

have illustrated that adolescents respond to ethanol in ways that are distinct from adults.  

Further, the work in adult rats highlighted the importance of understanding the behavioral 

consequences of alcohol withdrawal.  This work showed that these behaviors can be 

critical in the maintenance of alcohol intake and relapse. Therefore, in evaluating the 

differential responses of adults versus adolescents on alcohol-related measures, it is also 

important to assess the effects of alcohol withdrawal (a measure of physical dependence). 

There are a number of symptoms that are associated with ethanol withdrawal 

including seizures, anxiety, and activity suppression among others that have been 

evaluated in adolescent rodents. With regard to alcohol withdrawal seizures, Acheson et 

al. (1999) demonstrated that seizure induction following 5-days of intragastric ethanol 

infusions was more pronounced in adult mice than adolescents.  In more recent studies, 2-

weeks of exposure to ethanol vapor chamber produced no change in anxiety (light/dark 

box), a decrease in acoustic startle response (ASR), and an increase in pre-pulse 

inhibition (PPI) during withdrawal. There were no differences in these responses between 

adolescent and adult rats (Slawecki et al., 2006).  Further evaluation of withdrawal from 

this ethanol treatment showed that high frequency power in a parietal cortical EEG was



selectively increased in adolescents, while hypoactivity in the light/dark box was 

produced only in adults (Slawecki et al., 2006). Other investigators (Doremus et al., 

2003) assessed anxiety-like behavior during acute withdrawal from an intraperitoneal 

injection of ethanol.  Using the elevated plus maze, they showed that adolescent rats were 

unable to display an anxiety-like behavior that is reliably produced in adult rats.  Finally, 

Varlinskaya and Spear (2004) also found that adult rats, but not adolescents, exhibited 

increased anxiety-like behavior 18 hours following acute intraperitoneal (ip) ethanol 

administration in the social interaction test.  Collectively, these studies suggest that 

adolescents may be less sensitive than adults to some of the behavioral consequences of 

ethanol withdrawal. However, they also indicate that differences in these behavioral 

responses can be dependent on the behavioral test used and type of ethanol exposure.    

While these previous studies have provided important information about the age-

related differences during ethanol withdrawal, more work is still needed on more chronic 

ethanol exposures.  Further, adult data suggest that the pattern of ethanol intake can have 

significant effects of withdrawal-related behaviors.  In adult humans and rodents, it has 

been demonstrated that repeated ethanol withdrawals (cycles of ethanol intake and 

withdrawal) increased the susceptibility for seizures (Ballenger & Post, 1978; Becker & 

Hale, 1993; Kokka et al., 1993; McCown & Breese, 1990). Further investigations in adult 

rodents demonstrated that other symptoms of withdrawal (i.e., anxiety) could also 

undergo this kindling-like process identified with seizures (Breese et al., 2004; Overstreet 

et al., 2002).  It has been well characterized that teenagers typically consume alcohol in a 

‘‘binge manner’’, where high levels of intake are followed by periods of abstinence 

(Hiller-Strurmhofel & Swartzwelder, 2004 ⁄2005). This pattern suggests that they likely 
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experience repeated withdrawals. Therefore, the repeated withdrawal model provided a 

novel way to address the effects of ethanol withdrawal in adolescent rats and offered a 

potentially valuable comparison with previous studies that showed little indication of 

acute withdrawal anxiety during this developmental period.  

Therefore, the current studies were designed to evaluate whether repeated 

withdrawals from ethanol would produce withdrawal symptoms (anxiety-like behavior 

and seizure susceptibility) in adolescent rats. Additionally, it was investigated whether 

relative ethanol intake or blood ethanol concentrations (BEC) across ages might affect 

differences in susceptibility between adolescent and adult rats. These investigations were 

carried out by testing both ages in social interaction, audiogenic seizure induction, and 

bicuculline seizure induction following repeated withdrawals from ethanol diets (ED) 

known to be effective in adult rats.  
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Materials & Methods 

Animals  

For standard animal information and housing conditions, refer to General 

Methods (Chapter II). 

Ethanol & Control Diets  

For standard liquid diet administration procedures, refer to General Methods 

(Chapter II).  Adult rats were then habituated for 3 days on control diet (CD) and then 

placed into 1 of 3 treatment groups. Generally, one-third of the rats received 19 days of 

CD and the other two-thirds received cycled administration (three 5-day cycles of ED 

separated by two 2-day CD exposures) of either 4.5% or 7% (w⁄v) ED. Adolescent CD 

and 4.5%ED groups were treated the same as adult rats, however, a slight modification 

was made for adolescent 7%ED group. This group was given 4.5%ED for the first cycle 

of treatment and then exposed to 7%ED for the remaining cycles. This modification was 

used because of reduced weight gain that occurred when adolescent rats received 7%ED 

during the first cycle (T.A. Wills, D.J. Knapp, D.H. Overstreet, and G.R. Breese, 

unpublished observation). Further, since adolescence is known to be period of rapid 

growth and liquid diets can modestly retard weight gain (Mason et al., 1992; Sampson et 

al.,1996), it was important to make sure liquid diet did not adversely effect adolescent 

rats. Therefore, a subgroup of adolescent rats were given standard chow food and 

compared to adolescent rats that received CD for the duration of the experiment in social 

interaction test. All behavioral measures were performed on the 20th day of diet 

administration during which time all rats maintained on ED were placed on CD. 

Behavioral tests were then performed 5 hours into withdrawal when blood ethanol levels 
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had fallen to 0 (Breese et al., 2004; Overstreet et al., 2002).  

Social Interaction  

For standard social interaction (SI) test procedures, refer to General Methods 

(Chapter II). 

Audiogenic Seizure Test  

Rats were tested for induction of audiogenic seizures 6 hours into withdrawal 

(following SI test). Rats were placed individually into a plastic container (30 gallon: 19.5 

X 21.75 X 27.5 in), which contained an electric bell (100 db) and view window. Once the 

rat was placed into the container, the electric bell was turned on for 2 minutes. While the 

bell was tuned on, an observer blind to the experimental treatment condition scored the 

degree of seizure (seizure score 1 to 5) and latency to induce seizure. The seizure score 

was given based on the following criteria: 1 = no change in behavior, 2 = running with no 

convulsive movement, 3 = running ⁄jumping and masticatory movements with mild facial 

clonus, 4 = running ⁄jumping with startle followed by complete clonus of the forelimbs, 

and 5 = running ⁄jumping followed by complete tonic extension of the hindlimbs and then 

generalized clonus to all limbs. The latency to induce a seizure was measured as the 

seconds between start of the bell and full seizure episode. Rats that experienced seizures 

were immediately injected with a lethal dose of pentobarbital. Rats that did not display 

audiogenic seizures were then tested in response to bicuculline. The results below will 

illustrate that only adolescent rats given 7%ED demonstrated an induction of audiogenic 

seizures. As these animals were therefore selected out of the bicuculline test, the n size 

was reduced from 10 to 4. This lowered sample size limited appropriate statistical 
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comparisons involving this group; thus, we tested an additional group of 7%ED treated 

adolescent rats that received the bicuculline test alone.  

Bicuculline Threshold  

Immediately following the audiogenic test, rats were infused with 0.05 mg ⁄ml of 

bicuculline (GABAA antagonist; MP Biomedicals, Solon, OH) into the lateral tail vein. 

The drug was injected with a syringe pump at a rate of 1.6 ml ⁄min. The time required for 

the rat to exhibit a twitch of the head ⁄neck was recorded. From this time, the minimum 

amount of drug required to produce the first evidence of seizure activity can be 

calculated.  

Blood Ethanol Concentrations (BECs)  

 BECs were taken from groups of adolescent and adult rats that were cycled on 

either 4.5%ED or 7%ED in the manner described above. Blood was removed from the tip 

of the tail during the last hour of the dark cycle (06:00) on the first, fifth, sixth, tenth, and 

11th day of ED. Additionally, on the last day of ED (15th day) blood was collected at the 

time of ethanol removal (hour 0) and then 2, 4, and 6 hours later. Other details on BEC 

analysis are described in General Methods (Chapter II). 

Statistics  

Analyses of SI and locomotor activity were conducted with one-way ANOVAs 

for each age group because of large differences in baseline SI (seen in CD groups). These 

baseline differences prevented comparison of data in a two-way ANOVA for these 

behavioral tests. Therefore, decrease from baseline scores were used to make 

comparisons between adolescent and adult rats. When two group comparisons were 

made, t-tests were utilized. Two-way ANOVAs were possible for audiogenic and 
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bicuculline tests. Daily ethanol intakes and BECs were analyzed with repeated measures 

ANOVAs for adolescent and adult rats while ethanol intakes averaged over cycles were 

analyzed with one-way ANOVAs. Differences between groups were determined with 

Fisher’s post hoc tests.  
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Results 

Social Interaction in Adolescent and Adult Rats 

 In adult rats, there was a significant difference in SI among groups [F(2,41) = 

4.69, p <0.05; Figure 3.1A]. Rats which experienced repeated withdrawals from ED 

(4.5%ED or 7%ED) spent less time engaged in SI compared to rats that received CD. 

There were no significant differences in SI between ED groups (4.5%ED and 7%ED). In 

adolescent rats, there was a significant difference in SI between groups where rats in both 

the 4.5%ED and 7%ED groups had reduced SI compared to rats in the CD group [F(2,50) 

= 45.28, p < 0.0001; Figure 3.1B]. There was also a significant difference between the 

ED treated groups, where rats that received 7%ED had significantly reduced SI compared 

to those receiving 4.5%ED. Regarding adolescent rats that received chow or CD, there 

was a significant difference between groups [t(17) = 5.81, p < 0.0001; data not shown] in 

SI where CD rats had higher SI scores than chow fed rats.  

In CD groups, SI in adolescent rats was double that seen in adult rats. Therefore, 

reductions in SI from ethanol-treated animals were converted to decreases from baseline 

so the differences between age groups could be better determined. The decreases from 

baseline were calculated as a percent decrease in SI in the ethanol treatment groups 

compared to their age-matched controls (CD groups). Overall, there was a significant 

difference among the ethanol treatment groups and ages [F(3,62) = 3.52, p < 0.05; Figure 

3.1C] in the decrease of SI from baseline. Adolescent rats treated with 7%ED showed a 

greater decrease from baseline compared to all other groups (4.5%ED adolescent, 4.5% 

and 7%ED adult). Additionally, no differences were found between adolescent rats given 

4.5% ED and adult rats given either 4.5%ED or 7%ED.  
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Locomotor Activity in Adolescent and Adult Rats 

 There was a significant difference in locomotor activity in adult groups [F(2,41) = 

10.75, p < 0.0005; Figure 3.2A), where adult rats treated with 7%ED had reduced line 

crosses compared to 4.5%ED and CD-treated rats. There was no significant difference in 

line crosses among the 4.5% ED and CD groups. In adolescent rats, there was a 

significant difference in line crosses among groups [F(2,50) = 114.36, p < 0.0001; Figure 

3.2B] where the ED groups (4.5%ED and 7%ED) had decreased line crosses compared to 

the CD group and the 7%ED group had reduced line crosses compared to the 4.5%ED 

group. Regarding adolescent rats that received chow or CD, there was no significant 

difference between groups [t(17) = 1.44, NS; data not shown] in locomotor activity.  

 In CD groups, adolescent rats were found to have higher baseline activity than 

adult rats. Therefore, decreases in line crosses from ethanol-treated animals were 

converted to decreases from baseline, so that the differences between age groups could be 

better determined. There was a significant difference among ethanol treatment groups and 

ages [F(3,62) = 22.41, p < 0.0001; Figure 3.2C] in the decrease of line crosses from 

baseline. 7%ED-treated adolescent rats showed the largest decrease of line crosses 

compared to all other groups. Additionally, adult rats receiving 7%ED had a larger 

decrease from baseline than adolescent rats given 4.5%ED. No differences were found 

between adult and adolescent rats given 4.5% ED.  

Audiogenic Seizures in Adolescent and Adult Rats 

Audiogenic seizures were measured by the amount of time to induce a seizure 

(latency) and degree of seizure (seizure score). There was a main effect of both diet 

treatment [F(2,75) = 17.38, p < 0.0001] and age [F(1,75) = 5.32, p < 0.05], as well as an 
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interaction between diet treatment and age for latency [F(2,75) = 8.63, p < 0.0005; data 

not shown]. Additionally, seizure scores (Figure 3.3) also showed a main effect of diet 

treatment [F(2,75) = 20.16, p < 0.0001] and age [F(1,75) = 5.84, p < 0.05] along with an 

interaction between the two [F(2,75) = 7.48, p <0.005]. For both latency and seizure 

scores, only 7%ED-treated adolescent rats were significantly different from all other 

groups. This group showed significantly reduced latency to induce audiogenic seizure 

and higher seizure scores. There were no differences between any other ethanol-treated 

group and their respective control groups.  

Bicuculline Thresholds in Adolescent and Adult Rats 

Bicuculline thresholds were determined in both ages by calculating the amount of 

bicuculline (mg/kg) required during an infusion to initiate a seizure.  As 7%ED-treated 

adolescent rats exhibited audiogenic seizures, these animals were excluded from the 

subsequent bicuculline test. Thus, there was an additional group of 7%ED-treated 

adolescent rats that received the bicuculline test alone. There were no differences in the 

amount of bicuculline required for infusion between these groups, so all animals were 

collapsed into the 7%ED-treated adolescent group for further analysis. For bicuculline 

thresholds, there was a main effect of diet treatment [F(2,76) = 7.66, p < 0.001] but no 

main effect of age [F(1,76) = 3.18, NS] or an interaction between the two [F(2,76) = 1.1, 

NS, Figure 3.4]. Both 4.5%ED-and 7%ED-treated adolescent rats showed reduced 

bicuculline thresholds compared to rats given CD. However, only adult rats treated with 

7%ED showed this reduction compared to their age- matched controls. There were no 

differences between ethanol-treated groups at either age. Additionally, there were no dif-

ferences in ethanol-treated groups between adolescent and adults rats.  
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Daily Ethanol Intake 

To determine how ethanol treatment could have influenced behavioral responses 

in withdrawal, the pattern of daily ethanol intake was assessed. In adult rats, daily ethanol 

intake was significantly different between 4.5%ED and 7%ED groups with a repeated 

measures ANOVA [F(1,420) = 205.53, p < 0.0001; Figure 3.5A]. Rats treated with 

7%ED had higher g⁄kg ethanol consumption on these days compared to the 4.5%ED-

treated rats.  

In adolescent rats, both 4.5%ED and 7%ED groups received 4.5%ED for the first 

5 days of ethanol treatment and there were no differences in ethanol intake between 

groups during these days. There were significant differences in ethanol intake between 

groups in the second and third cycles (days 6 to 15) [F(1,378) = 26.08, p < 0.0001; Figure 

3.5B] measured with a repeated measures ANOVA.  

Additionally, to determine differences between adolescent and adult rats ethanol 

intake was evaluated by cycles (average of daily intake for days 1 to 5 = cycle 1, days 6 

to 10 = cycle 2, and days 11 to 15 = cycle 3). During cycle 1, there were significant 

differences among 4.5%ED-and 7%ED-treated adult and adolescent rats [F(3,57) = 

16.27, p < 0.0001; Figure 3.6]. Adolescent rats treated with 4.5%ED and 7%ED drank 

more than adult rats which received the same ethanol treatments. There were no 

differences between 4.5%- and 7%ED-treated adolescent rats as all animals received 

4.5%ED during this first cycle. However, both these adolescent groups consumed more 

ethanol than 7%ED-treated adults.  

Averages of ethanol intake during the second cycle also illustrated significant 

differences among 4.5%ED- and 7%ED-treated adult and adolescent rats [F(3,57) = 
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30.49, p < 0.0001; Figure 3.6]. Again, adolescent rats treated with 4.5%ED and 7%ED 

drank more than adult rats which received the same ethanol treatments. Additionally, rats 

of both ages treated with 7%ED showed higher consumption than rats of the same age 

that were given 4.5%ED. Interestingly, when 4.5%ED-treated adolescent rats were 

compared to 7%ED-treated adult rats, they did not differ in their amount of consumption.  

In the third cycle, group differences were also demonstrated among 4.5%ED-and 

7%ED-treated adult and adolescent rats [F(3,57) = 61.79, p < 0.0001; Figure 3.6]. 

Adolescent rats treated with 4.5%ED and 7%ED drank more than adult rats which 

received the same ethanol treatments. Rats of both ages treated with 7%ED showed 

higher consumption than rats of the same age that were given 4.5%ED. However, during 

this last cycle, 7%ED adult rats and 4.5%ED adolescent rats were shown to be different 

with adult 7%ED-treated rats consuming more ethanol than 4.5%ED adolescent rats. This 

difference was caused by a slight increase in intake between cycle 2 and 3 for 7%ED 

adult rats and a corresponding decrease in ethanol intake for 4.5%ED adolescent rats.  

Blood Ethanol Concentrations 

In adolescent rats, there were significant differences between ED groups (4.5% 

and 7%ED) in BEC across the days examined [F(1,352) = 9.36, p < 0.005; Table 1]. 

BECs in adult rats were also significantly different between ED groups (4.5% and 

7%ED) [F(1,126) = 15.75, p <0.001; Table 1]. In both adolescent and adult rats, it was 

determined that BECs had returned to 0 by 6 hours into withdrawal on the final test day 

(day 15, Table 1). As illustrated in Table 1, 7%ED-treated adult and adolescent rats had 

higher BECs than their age-matched counterparts receiving 4.5% ED. Additionally, 

BECs in adolescent rats treated with 4.5%ED were similar to adult rats treated with 
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7%ED. These data, therefore, compliment ethanol intake data displaying comparable 

ethanol intakes between these 2 groups.  

Body Weights 

In adult rats, there was a significant difference between groups in body weight 

[F(2,41) = 9.33, p < 0.001, Table 2] where the 7%ED group have reduced body weight 

compared to CD and 4.5%ED groups. There was no difference between body weights of 

4.5%ED and CD groups.  

In adolescent rats, there was a significant difference between groups in body 

weight [F(2,50) = 24.81, p < 0.0001; Table 2] where the 7%ED group had reduced body 

weight compared to CD and 4.5%ED groups. There was no difference between body 

weights of 4.5%ED and CD groups. In a separate study, chow-fed adolescent rats had 

higher body weights (194 ± 3 g) than CD-exposed rats [t(17) = 18.0, p < 0.0001; data not 

shown].  
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Discussion 

Adolescent rats demonstrated reduced SI following repeated withdrawals from 

both 4.5% and 7% ED. Adult rats also demonstrated this behavioral phenotype which is 

consistent with previous studies (Overstreet et al., 2002). As prior research showed that 

the SI test is a validated means to measure anxiety-like behavior (File & Seth, 2003), it 

would appear that repeated withdrawals from these EDs produced an anxiety-like 

phenotype in adolescent rats, as it is known to do in adult rats. Although the retardation 

of weight gain sometimes seen with liquid diets could arguably be stressful and impact 

negatively on SI, the fact that the CD-treated adolescent rat’s SI scores were not lower 

than those of the chow-fed adolescent rats provides evidence against this hypothesis. 

Furthermore, the fact that the chow-fed rats and the CD-treated rats had no difference in 

locomotor activity suggests that neither group was unduly stressed. The presence of this 

anxiety-like phenotype after repeated ethanol withdrawals in adolescent rats was a novel 

finding, particularly in light of evidence from acute withdrawal tests that showed anxiety-

like behavior in adult but not in adolescent rats (Doremus et al., 2003; Varlinskaya & 

Spear, 2004). Differences between these studies and the current investigation could be 

due to the duration and cycling of ethanol exposure. In adult animals, it has been shown 

that repeated withdrawals from 4.5%ED is critical to the expression of anxiety-like 

behavior (Breese et al., 2004; Overstreet et al., 2002). One 5-day cycle or continuous 15 

days of 4.5%ED did not elicit an anxiety-like phenotype in these adult rats. Therefore, the 

difference between expression of anxiety in this study compared to acute administrations 

(Doremus et al., 2003) could have been due to the cyclical nature of the ethanol 

administration. Another potentially relevant difference between these studies was the age 
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of behavioral assessment for anxiety following ethanol withdrawal and the test used. The 

chronic ethanol administration that was used in the present procedure delays 

measurement of SI related anxiety until around P44, whereas in the study by Doremus et 

al. (2003), adolescent rats were tested at P33–35 in the elevated plus maze. Therefore, it 

might be the case that younger adolescent rats are able to undergo adaptations in the brain 

that contribute to anxiety but may not be able to express this phenotype until later stages 

of adolescence.  

Adolescent rats were also shown to display higher baseline levels of activity and 

SI than adult rats. This result was consistent with previous reports of elevated exploration 

and social behavior in adolescent rats (Adriani et al., 1998; Primus & Kellogg, 1989; 

Vanderschuren et al., 1997). Comparisons between adolescent and adult rats in SI (after 

correction for baseline differences) demonstrated that adolescent rats treated with the 

higher concentration of ethanol (7%ED) exhibited a greater reduction in SI than in adult 

rats. One interpretation of these data is that adolescent rats may have greater sensitivity to 

the effects of this ethanol administration than adult rats.  

The greater sensitivity of adolescent rats is also indicated in the other behavioral 

measurements (activity, audiogenic seizures, and bicuculline threshold). These data 

showed that lower doses of ED (4.5%) decreased activity in adolescent but not in adult 

rats. When corrections for baseline differences were made, it was found that adolescent 

rats treated with the higher concentration of ethanol (7%ED) exhibited a greater reduction 

in locomotor activity than adults receiving the same treatment. Further analysis of 

audiogenic seizures illustrated that the adolescent 7%ED group was the only group in 

which seizures were induced. For bicuculline thresholds, both ED concentrations were 
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able to decrease thresholds in adolescent rats where only the high concentration was able 

to do so in adult rats.  These data were in contrast with results found by Acheson et al. 

(1999), who demonstrated that seizure induction following 5-days of intragastric ethanol 

infusions in mice was more pronounced in adults than adolescents. However, this study 

differed in a number of ways to those presented here: mice versus rats, single cycle 

versus repeated cycles, high ethanol doses versus moderate ethanol dose, 

pentylenetetrazol-induced seizures versus bicuculline and audiogenic induced seizures, 

and testing 15 versus 5 hours into withdrawal. Therefore, different results in these studies 

could have been caused by any one or more of these variables. Together, these data 

presented here suggested an overall greater sensitivity in adolescent rats compared to 

adult rats following repeated withdrawals in the behavioral measures that were tested.  

Although the SI, locomotor, and seizure data appear to support the hypothesis that 

adolescent rats were more sensitive to the repeated ethanol withdrawal experiences, 

alternative interpretations should be considered based on other data collected from these 

animals. These behavioral differences could also be explained by differences in BEC and 

intake between ages. Analysis of ethanol intake between ages consistently showed that 

adolescent rats consumed higher g ⁄kg of ethanol than their respective ED groups in adult 

rats. Other investigators have reported greater ethanol intake in adolescent rats compared 

to adult rats using ethanol administration paradigms (Bell et al., 2006; Doremus et al., 

2005; Rodd-Henricks et al., 2002a,b; Vetter et al., 2007).  

The results presented here emphasize the importance of monitoring ethanol intake 

between adolescent and adult rats to fully address potential age differences in behavioral 

responding to chronic ethanol exposure and withdrawal. While significant efforts were 
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made in the current study to control blood ethanol levels and intake across age, the multi-

ple variables involved (differential intake, blood levels, physiological⁄metabolic 

differences) make this task formidable. When comparing the behavioral effects of 

treatments herein across 4.5%ED-treated adolescent rats and 7%ED-treated adult rats, it 

could be argued that relatively comparable behavioral effects were present. There were 

no differences between these groups in SI (after corrections were made for differences in 

baseline), audiogenic seizure measures (latency and seizure score), or bicuculline 

threshold. Furthermore, these groups were the two most closely matched in ethanol intake 

and BECs. Therefore, it could be concluded that when corrections were made for 

differences in ethanol intake and BECs between adolescent and adult rats, behavioral 

responses following repeated withdrawals from ethanol were similar. Additionally, it 

should be noted that high BECs obtained in adolescent rats given 7%ED, which appear to 

peak near hour 0 on day 15, might function as an acute stress. This additional stress 

exposure in the adolescent group should also be considered when evaluating the present 

results. Interpretations of behavioral differences between adolescent and adult rats with 

the use of liquid diet might be bolstered by further reducing dietary ethanol concentration 

in adolescent rats so that intakes and ⁄or BECs are more tightly comparable across age. 

Regardless of the outcomes of such studies, one interpretation that seemed less 

challenging was that, like adult rats, adolescent rats showed relevant withdrawal 

responses on all of these measures in our model, and that these responses deserve further 

study.  

With additional refinement of the liquid diet regimen, further study of other 

relevant variables known to impact this anxiety-like behavior in adult rats could be 
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examined. For example, anxiety-like behavior from repeated withdrawal is known to be 

sensitized in adult rats in that only repeated cycles of ethanol, but not a single or 

continuous exposure, produced anxiety-like behavior. This behavioral ⁄physiological 

process, however, has not been evaluated in adolescent rats. Additionally, a corticotropin-

releasing factor (CRF) type 1 receptor antagonist, benzodiazepine receptor antagonist, or 

a 5-HT1A receptor agonist given during the early withdrawals blocked the induction of 

anxiety-like behavior (Knapp et al., 2004; Overstreet et al., 2003) in adult rats. Findings 

from these latter studies indicated the importance of GABA, 5-HT, and CRF in the 

adaptations that occur. It has also been illustrated that stress substitutes for early 

withdrawals in the production of anxiety-like behavior (Breese et al., 2004) in adult rats. 

This knowledge on the effects of repeated withdrawals in adult rats will be used in 

appropriately refined models to guide future research analyzing the effects of repeated 

withdrawals in adolescent rats.  

In summary, the results of these experiments suggested initially that adolescents 

might be more sensitive to the consequences of repeated withdrawal from chronic ethanol 

exposure. This impression was based on greater decreases in SI behavior, locomotor 

deficits, and increased seizure sensitivity. However, further examination of the different 

blood ethanol levels and ethanol intake across age suggest that caution should be 

employed in interpreting such age-dependent effects. Adolescent rats, like adult rats, 

showed relevant withdrawal responses on all of these measures in our model. Given the 

relatively limited data of this type available for this age group, these responses should be 

further explored and studies should be expanded to assess additional relevant variables 

such as persistence, drug effects, and interactions with stress. 
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Figures & Tables 
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Figure 3.1  Effects of repeated ethanol exposure on social interaction in adult and 
adolescent rats (Panel A & B). Male adult and adolescent rats were given CD, 4.5%ED, 
or 7%ED. ED groups were exposed to three 5-day cycles of ED interspersed with two 2-
day withdrawal periods, during which rats receive CD. Rats were tested 5 hours after 
removal of ethanol during the final withdrawal. Data represent mean ± SEM for 8-10 
rats/group. Panel C represents these data as a decrease from baseline to correct for 
differences in baseline (CD group) social interaction between ages. Groups with different 
letters are significantly different from each other (p<0.05). 
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Figure 3.2  Effects of repeated ethanol exposure on locomotor activity in adult and 
adolescent rats (Panel A & B). Male adult and adolescent rats were given CD, 4.5%ED, 
or 7%ED. ED groups were exposed to three 5-day cycles of ED interspersed with two 2-
day withdrawal periods, during which rats receive CD. Rats were tested 5 hours after 
removal of ethanol during the final withdrawal. Locomotor activity was measured 
concurrently with social interaction.  Data represent mean ± SEM for 8-10 rats/group. 
Panel C represents these data as a decrease from baseline to correct for differences in 
baseline (CD group) activity between ages. Groups with different letters are significantly 
different from each other (p<0.05). 
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Figure 3.3  Effects of repeated ethanol exposure on audiogenic-induced seizures in adult 
and adolescent rats. Male adult and adolescent rats were given CD, 4.5%ED, or 7%ED. 
ED groups were exposed to three 5-day cycles of ED interspersed with two 2-day 
withdrawal periods, during which rats receive CD. Rats were tested 6 hours into final 
withdrawal following social interaction. See Materials and Methods for seizure scoring. 
Data represent mean ± SEM for 8-10 rats/group. Groups with different letters are 
significantly different from each other (p<0.05). 
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Figure 3.4  Effects of repeated ethanol exposure on bicuculline-induced seizures in adult 
and adolescent rats. Male adult and adolescent rats were given CD, 4.5%ED, or 7%ED. 
ED groups were exposed to three 5-day cycles of ED interspersed with two 2-day 
withdrawal periods, during which rats receive CD. Rats were tested 6 hours into final 
withdrawal in those rats in which audiogenic seizures were not detected. The amount of 
bicuculline infused until the first sign of head/neck twitch was recorded. Data represent 
mean ± SEM for 8-10 rats/group. Groups with different letters are significantly different 
from each other (p<0.05). 
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Figure 3.5 Daily ethanol intake in adult (Panel A) and adolescent rats (Panel B) exposed 
to 4.5%ED and 7%ED. ED groups were exposed to three 5-day cycles of ED interspersed 
with two 2-day withdrawal periods, during which rats received CD. Data represent mean 
± SEM for 8-10 rats/group.  
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Figure 3.6  Ethanol intake averaged by cycles for adult and adolescent male rats. ED 
groups were exposed to three 5-day cycles of ED interspersed with two 2-day withdrawal 
periods, during which rats received CD. These data are an average of daily intake for 
each 5-day cycle. Data represent mean ± SEM for 8-10 rats/group. 
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Table 3.1  Blood Ethanol Concentrations in Adult and Adolescent Rats. Adolescent and 
adult rats given 4.5%ED and 7%ED, which were exposed to three 5-day cycles of ethanol 
diet interspersed with two 2-day withdrawals. Blood was collected from the tip of the tail 
during the last hour of darkness on day 1, 5, 6, 10, and 11 of ethanol diet.  In addition, 
blood was collected when ethanol was removed on Day 15 (H0) and during withdrawal 
(2, 4, & 6 hours). Data represents mean mg% ± SEM for 23-25 rats/group.  
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116 ± 6a165 ± 6153 ± 4Adolescent

283 ± 5a310 ± 7311 ± 5Adult

7%ED4.5%EDCD

116 ± 6a165 ± 6153 ± 4Adolescent

283 ± 5a310 ± 7311 ± 5Adult

7%ED4.5%EDCD

 

Table 3.2  Body Weights in Adult and Adolescent Rats. Body weights for the three 
treatment groups (CD, 4.5%ED, and 7%ED) were collected the day before behavioral 
tests. Data represent mean in grams ± SEM for 8-10 rats/group. a Significantly different 
from CD and 4.5% groups for both adolescents and adults (p<0.05).

52 



CHAPTER IV:  SENSITIZATION OF ANXIETY-LIKE BEHAVIOR 

FOLLOWING REPEATED ETHANOL WITHDRAWALS 

Introduction 

Previous work (Chapter III) illustrated that adolescent rats have increased anxiety-

like behavior and reduced seizure thresholds following exposure to repeated ethanol 

withdrawals (Wills et al., 2008). While behavioral comparisons indicated an increased 

vulnerability to these effects in adolescents, increased ethanol intake and differential 

blood ethanol concentrations (BECs) could also have accounted for age related 

differences.  Nonetheless, these experiments showed that adolescent rats displayed at 

least as much withdrawal related behaviors as adult rats. This effect was distinct from 

previous investigations where adolescent rats had either reduced or absent withdrawal-

related behaviors compared to adults (Acheson et al., 1999; Doremus et al., 2003; 

Varlinskaya & Spear, 2004).  A number of experimental variables could have accounted 

for these differences, including route of ethanol administration, species used, age of 

behavioral testing, and test used to measure anxiety.  One potentially critical factor is the 

use of cycled chronic ethanol exposure (Wills et al., 2008); a variable not employed in 

these other investigations. While it has been illustrated that adolescent rats can exhibit 

anxiety-like behavior following repeated withdrawals, it was not established whether 

repeated ethanol withdrawals actually sensitized anxiety-like behaviors, as has been 

shown in adult rats (Overstreet et al., 2002; Wills et al., 2008). In order to illustrate 

sensitization of anxiety-like behavior in adolescent rats it would need to be shown that 



neither continuous nor a single cycle of ethanol produced anxiety, which was not 

demonstrated in previous work (Wills et al., 2008).  Furthermore, adult studies have 

illustrated that pretreatment during early withdrawals with a benzodiazepine receptor 

antagonist, CRF1 receptor antagonist, or 5-HT1A receptor agonist was able to block the 

sensitization of anxiety-like behavior from repeated ethanol withdrawals (Breese et al., 

2005b; Overstreet et al., 2003; 2004a).  

 The current studies were performed to evaluate whether repeated withdrawals 

sensitize anxiety-like behavior in adolescent rats. Additionally, it was evaluated whether 

there were age-related differences in the sensitivity to the effects of repeated withdrawals 

between adolescent and adult rats. Further experiments determined the duration (amount 

of time following the final withdrawal) of anxiety-like behavior in both adolescent and 

adult rats.  In all of these studies, ethanol intake and blood ethanol concentrations were 

measured to make sure behavioral effects were not dependent on differences in BECs. 

Finally, it was also determined whether certain drug pretreatments (benzodiazepine 

receptor antagonist, CRF1 receptor antagonist, or 5-HT1A receptor agonist) would prevent 

the development of sensitized anxiety-like behavior in adolescents. 
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Materials & Methods 

Animals  

For standard animal information and housing conditions, refer to General 

Methods (Chapter II). 

Ethanol and Control Diets  

 General information regarding administration of liquid diet can be found in the 

General Methods (Chapter II).  Rats were then habituated for 3 days on control diet (CD) 

and then placed into one of three treatment groups.  Generally, one-third of the rats 

received 19 days of CD and the other two-thirds received ethanol diet (3.5% or 2.5%ED). 

Ethanol diet was administered in a continuous (CON; 15 days of continuous ED; see 

Figure 4.1A), single cycle (CY1; 14 days of CD followed by one 5-day cycle of ED; see 

Figure 4.1B), or repeated cycles (CY3; three 5-day cycles of ED separated by two 2-day 

CD exposures; see Figure 4.1C).   Behavioral measures were obtained at various times 

into the final withdrawal and will be discussed in the following sections.  

Social Interaction Test  

For standard social interaction (SI) test procedures, refer to General Methods 

(Chapter II). 

Repeated Versus a Single Withdrawal 

These experiments determined whether anxiety-like behavior was sensitized in 

adolescent rats. Adult rats previously showed reduced seconds of social interaction 

following repeated withdrawals but not after a single 5-day cycle or continuous exposure 

of 4.5%ED (Breese et al., 2004; Overstreet et al., 2002). In an initial experiment, it was 

illustrated that a single 5-day cycle of 4.5%ED reduced social interaction compared to 
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rats that received CD. This effect of anxiety-like behavior following a single cycle of 

4.5%ED is most likely due to the increased ethanol intake demonstrated by adolescent 

rats. Therefore, additional experiments were needed with adolescent and adult rats 

consuming lower ethanol diet concentrations. These rats were placed into one of five 

groups: CD throughout the study (CD), 2.5% or 3.5%ED for three 5-day cycles 

interspersed with two 2-day withdrawal periods (rats received CD; 2.5%CY3 or 

3.5%CY3), 4 days of CD followed by 15 continuous days of 2.5%ED (2.5%CON), or 14 

days of CD followed by a single 5-day cycle of 2.5%ED (2.5%CY1). All behavioral 

measures were performed on the 20th day of diet administration when rats maintained on 

ED were placed on CD followed by behavioral testing starting 5 hours into withdrawal 

when blood ethanol levels have fallen to zero (Breese et al., 2004; Overstreet et al., 2002; 

Wills et al., 2008). On the test day, all adolescent rats were the same age. 

Duration of Reduced Social Interaction Following Repeated Withdrawals 

 These experiments were conducted to determine the duration of anxiety-like 

behavior (measured by reduction in social interaction) following repeated withdrawal in 

both adolescent and adult rats. Previous work in adult rats illustrated that anxiety-like 

behavior returns to baseline (CD values) by 48 hours following the final withdrawal in 

rats exposed to repeated withdrawals from 7%ED (Overstreet et al., 2002). In these 

experiments adolescent rats were exposed to either repeated withdrawals from 2.5%ED 

(as described above) or CD. Following these treatments, separate groups of rats were 

given social interaction tests at either 5 hours, 1, 2, 3, 7, 14, or 18 days following the final 

withdrawal. At each time point a separate control group was tested to correct for any 

decreases in social interaction scores that might occur with age.  Duration of anxiety-like 
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behavior was also evaluated in adult rats. Adults were exposed to either repeated 

withdrawals from 3.5%ED (this concentration provides equivalent g/kg intake and BEC 

compared to 2.5%ED treatment in adolescents) or CD. Separate groups of adult rats were 

given social interaction tests at either 5 hours, 1, or 2 days following the final withdrawal. 

All rats are maintained on CD from the final withdrawal until the time of testing. 

Blood Ethanol Concentration 

BECs were taken from groups of adolescent rats that received either continuous 

2.5%ED, a single cycle of 2.5%ED, or repeated cycles of 2.5% or 3.5%ED, in the manner 

described above. BECs were also collected from adult rats that received repeated cycles 

of 2.5%ED or 3.5%ED. Blood was removed from the tip of the tail during the last hour of 

the dark cycle (0600) on days 1st, 5th, 6th, 10th and 11th days of ED. Additionally, on the 

last day of ethanol diet (15th day) blood was collected at the time of ethanol removal 

(hour 0) and then 2, and 4 hrs later. Additional information on BEC analysis can be found 

in the General Methods (Chapter II). 

Drug Testing 

 The following experiments were conducted to determine the effects of specific 

neural systems in the sensitization that occurs in adolescent rats during repeated ethanol 

withdrawals.  A CRF1-receptor antagonist (CP-154,525; 10 mg/kg; Pfizer Inc., Groton, 

CT), a benzodiazepine receptor antagonist (flumazenil; 5 mg/kg; Roche, Basel, 

Switzerland), or a 5-HT1A-receptor agonist (buspirone; 0.6 mg/kg; RBI-Sigma, St. Louis, 

MO) was administered 4 hours following the removal of ethanol diet during each of the 

initial two cycles (see Figure 4.1C). CP-154,526 and flumazenil were prepared as 

microfine suspensions in 0.5% carboxy-methylcellulose, while buspirone was dissolved 

57 



in 0.9% saline.  All drugs were injected at a volume of 2 mls/kg.  These drug doses were 

chosen based on previous studies in adults that illustrated the effectiveness of these drugs 

to block the sensitization of anxiety-like behavior following repeated withdrawals 

(Breese et al., 2005b; Overstreet et al, 2003; 2004a). Importantly, the drugs were not 

administered during the final (3rd) withdrawal, thus animals were tested for anxiety in a 

drug free state.   This important feature of the design permits assessments of drug effects 

on the sensitization or maladaptation that develops over repeated withdrawals, rather than 

on the acute behavioral manifestation of withdrawal.   Animals that were not injected 

with drugs (CD-Veh and ED-Veh) were injected with 0.5% carboxy-methylcellulose to 

control for effects of vehicle.   

Statistics 

 Analyses of social interaction, locomotor activity, ethanol intake, and BECs were 

conducted with one-way ANOVAs. Comparisons of BECs between adolescent and adult 

rats were analyzed with repeated measures ANOVA. Differences between individual 

groups were determined with Fisher’s post-hoc tests. 
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Results 

Sensitization of Anxiety-like Behavior from Repeated Withdrawals in Adolescent Rats 

 Previous work demonstrated that repeated withdrawals from 4.5%ED reduced 

social interaction in adolescents (Wills et al., 2008). However, it was unclear whether a 

sensitization of anxiety-like behavior from repeated withdrawals occurred in adolescent 

rats as it was shown to do in adults. Analysis of social interaction in adolescent rats given 

lower ethanol concentrations revealed a main effect of diet treatment [F(3,28) = 6.57, p < 

.005; Figure 4.2A]. It was demonstrated that adolescent rats given repeated withdrawals 

from 2.5%ED (CY3) had lower social interaction compared to rats given CD, continuous 

2.5%ED (CON), or a single cycle of 2.5%ED (CY1).  There was no significant difference 

among groups in locomotor activity [F(3,28) = 0.32, N.S.; Figure 4.2B].  

Ethanol Intake in Adolescents Rats 

Ethanol intake was compared among adolescent rats that received either 

continuous ethanol (Con), repeated withdrawals (CY3), or a single cycle (CY1) of 

2.5%ED. Ethanol intake was averaged across cycles (average of daily intake for days 1-5 

= cycle 1, days 6-10 = cycle 2, and days 11-15 = cycle 3) for each group. During cycle 1, 

there was a significant effect of group on ethanol intake [F(1,14) = 25.38, p < .0005; 

Table 1]. Adolescents that received continuous ethanol diet displayed higher ethanol 

intake compared to those in the repeated withdrawal group. The single cycle group was 

left out of the comparisons between cycle 1 and 2 because these rats were receiving CD 

during this period.  Additionally, during the second cycle there was a significant 

difference between ethanol treatment groups [F(1,14) = 12.68, p < .005], with 

continuously exposed rats still having higher ethanol intake than rats given repeated 
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withdrawals.  During the third cycle, there was also a significant effect of ethanol 

treatment [F(2,21) = 4.27, p < .05]. During this cycle, the single ethanol cycle group had 

the highest intake and was significantly higher than the repeated withdrawal rats but not 

the continuously exposed rats. Continuously exposed rats and those given repeated 

withdrawals were not different during this cycle.  

Blood Ethanol Concentrations in Adolescent Rats 

BECs were analyzed among groups of adolescent rats given three cycles of 

2.5%ED (CY3; repeated withdrawal paradigm), 15 days of continuous 2.5%ED (Con), or 

a single 5-day cycle of 2.5%ED (CY1).  Repeated measures ANOVA revealed no 

significant effect of group (diet treatment) either during the first two weeks of treatment 

[F(1,42) = 2.26, NS; Table 2] or during the final week [F(2,63) = .49, NS; Table 2]. 

Anxiety-like Behavior from Lower Ethanol Diet Concentrations in Adult Rats 

The next set of experiments determined whether adult rats given these lower 

ethanol concentrations also demonstrated anxiety-like behavior. In these studies, there 

was a main effect of ethanol treatment [F(2,23) = 6.87, p < .005; Figure 4.3A].  Adult rats 

given repeated withdrawals from either 2.5% or 3.5%ED showed a reduction in social 

interaction compared to rats given CD. Additionally, a main effect of treatment was 

found for locomotor activity [F(2,23) = 4.08, p < .05; Figure 4.3B] in these adult rats. 

Rats given repeated withdrawals from 3.5%ED had lower activity than rats given CD. 

There were no differences in locomotor activity between CD and 2.5%ED or 2.5%ED 

and 3.5%ED rats. 

Comparison of Ethanol Intake between Adolescent and Adult Rats  
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Further experiments were aimed at directly comparing behavioral differences 

between adolescent and adult rats. It was therefore necessary to determine what ethanol 

concentration would be able to produce comparable ethanol intake between adolescent 

and adult rats. Previous work with ethanol diets illustrated that adolescent rats given the 

same ethanol diet concentration as adults will have higher g/kg intake (Wills et al., 2008). 

A simplistic way to compare adolescents and adults is to evaluate ethanol intake by 

cycles.  During cycle 1 there were significant differences among 2.5% and 3.5%ED 

treated adults and adolescents [F(2,25) = 76.10, p < .0001; Table 3]. Adolescents treated 

with 2.5%ED drank more than adults who received the same ethanol treatment. 

Additionally, adults treated with 3.5%ED drank more than adults given 2.5%ED. Finally, 

adolescents treated with 2.5%ED consumed more ethanol than adults who received 

3.5%ED. 

Averages of ethanol intake during cycle 2 were also different among groups of 

2.5% and 3.5% ED-treated adults and adolescents [F(2,25) = 80.46, p < .0001; Table 3]. 

Again, adolescents treated with 2.5%ED drank more than adults who received the same 

ethanol treatment. Additionally, adult rats treated with 3.5%ED showed higher 

consumption than those given 2.5%ED. Similar to cycle 1, adolescents treated with 

2.5%ED consumed more ethanol than adults who received 3.5%ED. 

 In the third cycle, group differences were also demonstrated among 2.5% and 

3.5% treated adults and adolescents [F(2,25) = 68.41, p < .0001; Table 3].  Adolescents 

treated with 2.5%ED drank more than adults who received the same ethanol treatment. 

Adult rats treated with 3.5%ED showed higher consumption than rats given 2.5%ED.  
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Importantly, during this last cycle adolescents given 2.5%ED and adults given 3.5%ED 

were not different in their ethanol intake.  

Comparison of Blood Ethanol Concentrations between Adolescent and Adult Rats 

 BECs were analyzed between adolescent rats treated with 2.5%ED and adults 

given either 2.5% or 3.5%ED. Repeated measures ANOVA revealed a significant effect 

of group (Adolescent 2.5%ED, Adult 2.5%ED & 3.5%ED) across the days examined 

[F(2,147) = 14.64, p < .0001; Table 4]. Additionally, a separate repeated measures 

ANOVA between 2.5%ED treated adolescent and adult rats showed there was no 

significant effect of group [F (1,98) = .63, NS; Table 4]. However, a repeated measures 

ANOVA between 2.5%ED treated adolescent and 3.5%ED treated adult rats exposed a 

significant difference between these groups [F (1,98) = 14.34, p < .005; Table 4] with 

adult rats receiving 3.5%ED having slightly higher BECs.  Blood ethanol concentrations 

(BECs) in both adolescents and adults returned to 0 mg% six hours into withdrawal on 

the final test day (day 15, data not shown).   

Duration of Anxiety-like Behavior from Repeated Withdrawals 

  Further experiments determined the duration of anxiety-like behavior (measured 

at various times after the final withdrawal) in adolescent and adult rats following repeated 

withdrawals. In adult rats exposed to repeated withdrawals from 3.5%ED, there was a 

significant difference in social interaction between groups tested at different durations 

[F(3,36) = 6.60, p < .005; Figure 4.4].  Adults rats tested 5 hours into the final withdrawal 

showed reduced social interaction compared to CD-treated rats (as shown previously 

above). However, adult rats tested 24 hours and 48 hours into the final withdrawal were 

different from rats tested at 5 hours but not from CD-treated rats. These same 
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experiments were performed in adolescent rats exposed to repeated withdrawals from 

2.5%ED.  These data are presented as a percent of control to account for the decrease in 

social interaction that occurs with age.  In adolescent rats, there was a significant 

difference in social interaction between groups tested at different durations [F (7,80) = 

9.02, p < .0001; Figure 4.5].  Groups tested 5 hours, 1, 2, 3, and 7 days into the final 

withdrawal showed significantly reduced social interaction (% of control values) 

compared to control groups. However, groups tested 14 and 18 days into the final 

withdrawal were not different from controls.  

Effects of Selective Drugs on the Sensitization of Anxiety-like Behavior Following 

Repeated Withdrawals in Adolescent Rats 

A final set of experiments were performed to determine whether a CRF1 

antagonist (CP-154,526), a benzodiazepine receptor antagonist (flumazenil), or a 5-HT1A-

receptor agonist (buspirone) would block the sensitization of anxiety-like behavior 

following repeated withdrawal in adolescent rats, as they have been shown to do in adult 

rats (Knapp et al., 2004; Overstreet et al., 2003).  In adolescent rats, there was a 

significant difference between drug treatments in social interaction [F (4,97) = 2.58, p < 

.05; Figure 4.6A]. Adolescent rats given buspirone, flumazenil, or CP-154,526 had social 

interaction scores not different from those of CD-treated rats.  Additionally, adolescent 

rats injected with vehicle showed reduced social interaction compared to all drug treated 

groups. Locomotor activity was also evaluated in the social interaction test following 

these drug treatments and no significant differences among treatment groups were found 

[F (4,97) = .828, NS; Figure 4.6B]. 
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Discussion 

 Adolescent rats exhibited sensitized anxiety-like behavior following repeated 

withdrawals, which has been previously demonstrated with 4.5% ethanol diet (ED) in 

adults (Overstreet et al., 2002). This effect was illustrated by a reduction in social 

interaction (a validated measure of anxiety-like behavior; File & Seth, 2003) in 

adolescent rats that experienced repeated withdrawals from 2.5%ED. Importantly, 

adolescents given either a single 5-day cycle or continuous 15 days of 2.5%ED (same 

ethanol exposure as repeated withdrawal groups) did not exhibit this reduction in social 

interaction. These data, therefore, indicate that the production of anxiety-like behavior 

(with this ED concentration) was dependent on the cycled nature of the ethanol exposure.  

Additionally, these studies illustrated that locomotor activity was not reduced by any of 

these ethanol treatments in adolescent rats. Previous research from our laboratory 

demonstrated that adolescent rats given repeated withdrawals from higher ED 

concentrations can exhibit anxiety-like behavior following repeated withdrawals (Wills et 

al., 2008). These experiments, however, are the first to demonstrate that a sensitization of 

this anxiety-like behavior can occur in adolescent rats. Previous acute ethanol withdrawal 

tests in adolescent rats showed reduced or no anxiety-like response at this age compared 

to adult rats (Doremus et al., 2003; Varlinskaya & Spear, 2004). Therefore, the presence 

of this anxiety-like phenotype after repeated ethanol withdrawals in adolescent rats 

establishes that the cycled nature of ethanol exposure and age of testing are critical to 

producing anxiety-like behavior during ethanol withdrawal. 
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 Earlier work in adult rats illustrated that they too can undergo sensitization of 

anxiety-like behavior (e.g., Overstreet et al., 2002). These studies used somewhat higher 

ED concentration (4.5%ED), so it was unknown whether these lower ED concentrations 

(2.5% & 3.5%ED) would also produce anxiety-like behavior in adult rats.  The results 

established that indeed repeated withdrawals from these lower ED concentrations 

produced anxiety-like behavior in adult rats.  These data indicated that although 

adolescent rats demonstrate sensitized anxiety-like behavior, that this response was not 

unique from the behavioral response of adult rats at these lower ethanol diet 

concentrations.  It is notable that although we report here that rats receive two formal 

extended withdrawals periods of 48 hours, it is reasonable to assume that the rats may 

also occasionally experience a type of brief withdrawal between meals across the 

circadian cycle (e.g., during sleep bouts).  Despite the possibility of these mini-

withdrawals, previous research shows that the formal withdrawals capture the essence of 

the sensitization process as continuous ethanol exposure or a single 5-day cycle (with 

both types of groups conceivably experiencing occasional mini-withdrawals) do not lead 

to substantial anxiety relative to non-ethanol exposed rats  (e.g. Overstreet et al., 2002). 

Analysis of ethanol intakes and blood ethanol concentrations (BECs) illustrated 

that differences in behavior among adolescent groups (CY1, Con, & CY3) were not 

related to differences in ethanol intake and BECs. Additionally, a comparison between 

the ethanol intake of adolescent and adult rats revealed adolescents consumed more g/kg 

of ethanol than adults given the same treatment. This increased ethanol intake in 

adolescent rats has been previously demonstrated in our laboratory with liquid diet (Wills 

et al., 2008), as well as in other laboratories with other ethanol administration paradigms 
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(Bell et al., 2006; Doremus et al., 2005; Rodd-Henricks et al., 2002a/b; Vetter et al., 

2007; Walker et al., 2008).  Furthermore, these data illustrated that adolescent rats given 

2.5%ED had comparable ethanol intake to adults given 3.5%ED. BEC comparisons 

between these two groups show that even with comparable ethanol intake, adult rats 

treated with 3.5%ED had a slightly higher BEC than 2.5%ED treated adolescent rats.  

Since both of these groups showed the most comparable ethanol intake and BEC, they 

were used for comparisons in duration experiments. It is worth noting also that BECs in 

both adolescent and adult rats may represent the BEC on the falling end of the curve and 

therefore may be slightly lower than peak BEC on a given day. 

In adolescent rats, it was demonstrated that anxiety-like behavior was present up 

to one week following repeated ethanol withdrawals. This effect is in stark contrast to the 

effect in adult rats where anxiety-like behavior returns to baseline after only 24 hours.  

These data illustrate that the anxiety-like behavior produced from repeated withdrawals is 

much longer lasting in adolescent versus adult rats.  Therefore, it appears that adolescent 

rats may be more vulnerable to the effects of repeated withdrawals on this measure.  The 

relative importance of this finding to adolescent versus adult risk for further alcohol 

abuse/relapse is unknown.   However, previous research supports the idea that adolescent 

ethanol exposure can affect future responses to ethanol in adulthood. A body of evidence 

shows that the differential sensitivities to ethanol displayed by adolescents can also be 

maintained into adulthood (Slawecki, 2002; White et al., 2000; 2002).  Additionally, 

Crews et al. (2000) showed that a 4-day binge ethanol exposure in adolescents caused 

brain damage in select regions that does not appear in adults. Further, in P rats it was 

illustrated that prior ethanol exposure during adolescence, but not in adulthood, affects 
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later ethanol responding.  That is, adolescent exposure in P rats led to faster responses to 

ethanol, more resistance to extinction, and increased responding to ethanol upon re-

exposure (Rodd-Henricks et al., 2002a/b). This evidence indicates ethanol treatment 

during the adolescent period can affect future responses to ethanol.  These observations 

of long lasting effects in rodents may relate to clinical evidence demonstrating that 

alcohol use during adolescence is the largest predictor for future alcoholism (Grant, 

1998). 

Finally, it was illustrated that this increased anxiety-like behavior produced from 

repeated withdrawals could be blocked by pretreatment with buspirone, flumazenil, or 

CP-154,526.  Notably, these drugs blocked the induction of sensitized anxiety-like 

behavior since no drugs were administered during the final withdrawal when rats were 

tested for anxiety-like behavior. Previous work in adults has also shown that pretreatment 

with these drugs also blocked anxiety-like behavior (Breese et al., 2005b; Overstreet et al, 

2003; 2004a). The effectiveness of these drugs in both age groups indicates that 

mechanisms that are responsible for this anxiety-like behavior are likely similar between 

adolescent and adult rats.  These findings suggest that at least some future 

pharmacological treatment strategies in alcoholism might apply broadly across age.  

 In summary, these experiments illustrated that adolescent rats exhibit sensitized 

anxiety-like behavior that had been previously demonstrated in adult rats (Overstreet et 

al., 2002).  Comparisons of adolescent and adult rats at these lower ethanol diet 

concentrations revealed that the sensitivity of this response seemed to be similar for both 

ages.  However, the duration of this anxiety-like response was found to be much longer in 

adolescent rats that experienced repeated withdrawals compared to their adult 
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counterparts. On the other hand, it was illustrated that drugs known to be effective in 

preventing the sensitization of anxiety-like behavior in adult rats are also effective in 

adolescents.  Future work will further explore the mechanisms that might be responsible 

for the extended duration of anxiety-like behavior in adolescent rats. 

68 



Figures & Tables 

(C)   Repeated Withdrawal (CY3) & Drug Pretreatment Paradigm:

5-day EtOH Diet 5-day EtOH Diet2-day CD 5-day EtOH Diet2-day CD

Withdrawal Withdrawal

Drug Injection Drug InjectionDrug Injection

(A)   Continuous Ethanol (CON) Paradigm:

4-day CD 15-day EtOH Diet4-day CD 15-day EtOH Diet

(B)   Single Cycle Ethanol (CY1) Paradigm:

14-day CD 5-day EtOH Diet

 

Figure 4.1  Procedure for diet administrations. (Panel A) Continuous ethanol paradigm 
(Con): rats were given 4 days of control diet (CD) followed by 15 days of ethanol diet 
(ED). (Panel B) Single cycle ethanol paradigm (CY1): rats were given 14 days of CD 
followed by one 5-day cycle of ED. (Panel C) Repeated withdrawal (CY3) and drug 
pretreatment paradigm: rats were given three 5-day cycles of ED interspersed with two 2-
day withdrawal periods, during which time rats receive CD. Some rats were injected with 
CP-154,516, flumazenil, or buspirone four hours into the first two withdrawal periods. 
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Figure 4.2  Social interaction and locomotor activity in adolescent rats (Panel A & B). 
Male adolescent rats were given either control diet (CD), continuous 15 days of 2.5% 
ethanol diet (ED) continuously (2.5%Con), one 5-day cycle of 2.5% ED (2.5%CY1), or 
repeated ethanol withdrawals from 2.5%ED (CY3). Repeated withdrawal groups were 
exposed to three 5-day cycles of ED interspersed with two 2-day withdrawal periods, 
during which rats receive CD. All adolescent rats were tested 5 hours after removal of 
ethanol during the final withdrawal. Data represent means ± SEM for 8 rats/group. 
Groups with different letters are significantly different from each other (p<0.05). 
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Figure 4.3  Social interaction and locomotor activity in adult rats given repeated ethanol 
withdrawals from lower ethanol diet concentrations (Panel A & B).  Male adult rats were 
given control diet (CD), 2.5% ethanol diet (ED), or 3.5%ED. ED groups were exposed to 
three 5-day cycles of ED interspersed with two 2-day withdrawal periods (CY3), during 
which rats receive CD. Rats were tested 5 hours after removal of ethanol during the final 
withdrawal. Data represent means ± SEM for 8 rats/group. Groups with different letters 
are significantly different from each other (p<0.05). 
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Figure 4.4  Duration of anxiety-like behavior in adult rats exposed to repeated ethanol 
withdrawals. Male adult rats were given either control diet (CD) or 3.5% ethanol diet 
(ED) for three 5-day cycles interspersed with two 2-day withdrawals (CY3). Rats were 
tested 5 hours, 1 day, or 2 days after the removal of ethanol during the final withdrawal. 
Data represent means ± SEM for 8 rats/group. Groups with different letters are 
significantly different from each other (p<0.05). 
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Figure 4.5  Duration of anxiety-like behavior in adolescent rats exposed to repeated 
ethanol withdrawals. Male adolescent rats were given either control diet (CD) or 2.5% 
ethanol diet (ED) for three 5-day cycles interspersed with two 2-day withdrawals (CY3). 
Rats were tested 5 hours, 1, 2, 7, 14, or 18 days after the removal of ethanol during the 
final withdrawal. Data represent mean ± SEM for 7-10 rats/group. Groups with different 
letters are significantly different from each other (p<0.05). 
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Figure 4.6  Effect of drug pretreatments during repeated withdrawals on social 
interaction and locomotor activity in adolescent rats (Panel A & B).  The 5-HT1A receptor 
agonist, buspirone, (Bus; 0.6 mg/kg), benzodiazepine antagonist, flumazenil, (Flum; 5 
mg/kg), CRF1 receptor antagonist, CP-154,526 (CP; 10 mg/kg), or vehicle was given 
during the first two early withdrawals of adolescent rats given repeated ethanol 
withdrawals from 2.5% ethanol diet (ED; CY3). Rats were tested 5 hours after the 
removal of ethanol during the final withdrawal. Data represent means ± SEM for 16-25 
rats/group. Groups with different letters are significantly different from each other 
(p<0.05). 
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Cycle 3Cycle 2Cycle 1

b6.66 ± 0.1b7.70 ± 0.2b8.49 ± 0.32.5% CY3

b6.83 ± 0.1a8.62 ± 0.2a11.34 ± 0.52.5% Con

a7.16 ± 0.1--2.5% CY1

Cycle 3Cycle 2Cycle 1

b6.66 ± 0.1b7.70 ± 0.2b8.49 ± 0.32.5% CY3

b6.83 ± 0.1a8.62 ± 0.2a11.34 ± 0.52.5% Con

a7.16 ± 0.1--2.5% CY1

 
Table 4.1  Ethanol Intake (Averaged by Cycles) in Adolescent Rats. Adolescent rats 
were exposed to 2.5% ethanol diet for either:  one 5-day cycle of ethanol diet (CY1), 15 
continuous days of ethanol diet (Con), or three 5-day cycles of ethanol diet interspersed 
with two 2-day withdrawals (CY3). Data are an averaged daily intake for each 5-day 
cycle and represent mean g/kg ± SEM for 8 rats/group. Groups with different letters are 
significantly different from other groups within each cycle (p<0.05). 
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52 ± 9

30 ± 8

Day6

01 ± 115 ± 4 37 ± 536 ± 940 ± 1149 ± 112.5% CY3

0013 ± 4 30 ± 412 ± 422 ± 951 ± 122.5% Con

0 1 ± 122 ± 636 ± 52.5% CY1

Day15H4Day15H2Day15H0Day11Day10Day5Day1

52 ± 9

30 ± 8

Day6

01 ± 115 ± 4 37 ± 536 ± 940 ± 1149 ± 112.5% CY3

0013 ± 4 30 ± 412 ± 422 ± 951 ± 122.5% Con

0 1 ± 122 ± 636 ± 52.5% CY1

Day15H4Day15H2Day15H0Day11Day10Day5Day1

 
Table 4.2  Blood Ethanol Concentrations in Adolescent Rats. Adolescent rats were 
exposed to 2.5% ethanol diet for either one 5-day cycle of ethanol diet (CY1), 15 
continuous days of ethanol diet (Con), or three 5-day cycles of ethanol diet interspersed 
with two 2-day withdrawals (CY3). Blood was collected from the tip of the tail during the 
last hour of darkness on day 1, 5, 6, 10, and 11 of ethanol diet.  In addition, blood was 
collected when ethanol was removed on Day 15 (H0) and during withdrawal (2 & 4 
hours; H2 & H4 respectively). Data represent mean mg% ± SEM for 8 rats/group.  
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Cycle 3Cycle 2Cycle 1

a6.88 ± 0.2c7.0 ± 0.2c7.21 ± 0.2Adult 3.5% CY3

b4.8 ± .01b5.13 ± 0.1b5.26 ± 0.1Adult 2.5% CY3

a6.66 ± 0.1a7.70 ± 0.2a8.49 ± 0.3Adolescent 2.5% CY3

Cycle 3Cycle 2Cycle 1

a6.88 ± 0.2c7.0 ± 0.2c7.21 ± 0.2Adult 3.5% CY3

b4.8 ± .01b5.13 ± 0.1b5.26 ± 0.1Adult 2.5% CY3

a6.66 ± 0.1a7.70 ± 0.2a8.49 ± 0.3Adolescent 2.5% CY3

 
Table 4.3  Comparison of Ethanol Intake (Averaged by Cycles) between Adolescent and 
Adult Rats. Ethanol intake averaged by cycles for male adult and adolescent rats. 2.5% 
and 3.5% ethanol diet (ED) groups were exposed to three 5-day cycles of ED interspersed 
with two 2-day withdrawal periods, during which rats received control diet (CD). These 
data are an average of daily intake for each 5-day cycle. Data represent means ± SEM for 
8 rats/group.  Groups with different letters are significantly different from other groups 
within each cycle (p<0.05). 
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b65 ± 5

a35 ± 3

a/b52 ± 9

Day6

1 ± 0b21 ± 6c58 ± 6b71 ± 9b64 ± 5b77 ± 12a47 ± 6Adult
3.5% CY3

1 ± 1a9 ± 3b35 ± 4a42 ± 6a33 ± 10a19 ± 3b21 ± 4Adult 
2.5% CY3

0a1 ± 1a15 ± 4 a37 ± 5a36 ± 9a40 ± 11a49 ± 11Adolescent 
2.5% CY3

Day15H4Day15H2Day15H0Day11Day10Day5Day1

b65 ± 5

a35 ± 3

a/b52 ± 9

Day6

1 ± 0b21 ± 6c58 ± 6b71 ± 9b64 ± 5b77 ± 12a47 ± 6Adult
3.5% CY3

1 ± 1a9 ± 3b35 ± 4a42 ± 6a33 ± 10a19 ± 3b21 ± 4Adult 
2.5% CY3

0a1 ± 1a15 ± 4 a37 ± 5a36 ± 9a40 ± 11a49 ± 11Adolescent 
2.5% CY3

Day15H4Day15H2Day15H0Day11Day10Day5Day1

 
Table 4.4  Comparison of Blood Ethanol Concentrations between Adolescent and Adult 
Rats.  Blood ethanol levels (BECs) in adult and adolescent rats were exposed to either 
2.5% or 3.5% ethanol diet (ED) for three 5-day cycles interspersed with two 2-day 
withdrawals. Blood was collected from the tip of the tail during the last hour of darkness 
on day 1, 5, 6, 10, and 11 of ethanol diet.  In addition, blood was collected when ethanol 
was removed on Day 15 (H0) and during withdrawal (2 & 4 hours; H2 & H4 
respectively). Data represent means mg% ± SEM for 8 rats/group. Groups with different 
letters are significantly different from other groups within each day (p<0.05). 
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CHAPTER V:  SUBSTITUTION OF STRESS AND CRF IN ADOLESCENT RATS 

Introduction 

There is a growing body of evidence from both basic and clinical research 

illustrating that stress can increase the risk of relapse in alcoholism (Lê et al., 2000; 

Sinha, 2001). Furthermore, it has been suggested that stress during adolescence is a risk 

factor for the development of future psychiatric disorders, including alcohol dependence 

(Arnsten & Shansky, 2004; Enoch, 2006).  Clinical data also illustrated that the second 

largest predictor for ethanol consumption during adolescence is perceived stress 

(Wagner, 1993). Studies in adolescent rodents have generated mixed findings regarding 

the consequences of stress on ethanol consumption. Doremus et al. (2005) showed that 

isolate housing (a stress to adolescents) did not effect ethanol consumption more in 

adolescent rats than adults. In another experiment, daily footschock stress reduced 

concurrent ethanol consumption in a homecage setting in adolescent rats compared to 

adults (Brunell & Spear, 2005).  Further, in a genetically alcohol preferring mouse strain 

(HAD1 mice) footstock stress during adolescence increased ethanol intake in adulthood 

more than if stress was given during adulthood (Chester et al., 2008).  These data indicate 

that the interactions between stress, adolescence, and ethanol are likely complex and 

require additional investigation.  Additionally, it is known that adaptations in stress-

responsive corticotrophin releasing factor (CRF) system are associated with anxiety, 

ethanol use, withdrawal, and relapse (discussed in previous sections).  It is therefore, 

necessary to evaluate the interactions of stress and CRF during adolescence. 



Previous work in our laboratory with adult and adolescent rats illustrated that 

repeated withdrawals from ethanol can sensitize anxiety-like behavior which is not 

demonstrated after continuous ethanol exposure (Overstreet et al., 2002; Wills et al., 

2009). Furthermore, in adult rats it has been shown that two weekly one hour restraint 

stress sessions substitute for early withdrawals (stress/withdrawal paradigm) to sensitize 

anxiety-like behavior (Breese et al., 2004). One hour of restraint stress was used because 

this amount of stress acutely produced anxiety-like behavior 30 minutes following the 

termination of stress (Breese et al., 2005b).  This anxiety-like behavior produced by the 

stress/withdrawal paradigm seems to arise from extra-hypothalamic sites since two 

weekly injections of corticosterone were unable to mimic the anxiety-like behavior 

caused by repeated restraint stress (Breese et al., 2004).  Other work in adult rats 

indicates that CRF acting through these extra-hypothalamic targets is at least partially 

responsible for the production of anxiety-like behavior from these paradigms. In adult 

rats, the development of anxiety-like behavior can be prevented in these paradigms by 

giving a CRF type 1 antagonist during early withdrawals or stress (Breese et al., 2004; 

Knapp et al., 2004).  Additionally it was later illustrated that CRF administered 

intraventricularly could also substitute for either early withdrawals or stress to produce 

anxiety-like behavior (Overstreet et al., 2004a).  

In addition to these effects on CRF there are also intracellular signaling cascades, 

like the Erk1/2/MAPK pathway, that are though to be important in the processes that 

underlie addiction (Russo et al., 2008; Zhai et al., 2008).  This Erk1/2/MAPK pathway has 

been shown to be modulated by acute ethanol, while the direction of this modulation is 

mixed. Several studies have indicated increases in the phosphorylation in Erk1/2 (pErk) 
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following acute ethanol (Sharko & Hodge, 2007), while others find a decrease in pErk 

(Chandler & Sutton, 2005; Hendrickson et al., 1998; Kalluri & Ticku, 2002; Tsuji et al., 

2003). Sanna et al. (2002) also illustrated a reduction in pErk during ethanol exposure but 

found that pErk during ethanol withdrawal was increased in most brain areas. 

Furthermore, in this study it was illustrated that this increase in pErk was further 

enhanced in the amygdala during withdrawal from chronic intermittent ethanol exposure 

(similar to repeated ethanol withdrawals) versus continuous ethanol exposure (Sanna et 

al., 2002).   

The present work set out to determine the role of stress and CRF in the production 

of anxiety-like behavior from ethanol withdrawal in adolescent rats. First, it was 

evaluated whether the stress/withdrawal paradigm produced anxiety-like behavior in 

adolescent rats, as it has been shown to do in adult rats. Further, it was evaluated how 

long this anxiety-like behavior following stress/withdrawal is present. Next, studies in 

adolescents were conducted to determine the acute effects of stress on anxiety-like 

behavior. Further, it was evaluated if housing condition affected this response, since there 

is some evidence that isolate housing (used in our experiments) during adolescence could 

function as a chronic stressor (Hall, 1998).  Additional studies were performed to 

determine if CRF substituted for early withdrawals or stress to produce anxiety-like 

behavior in adolescent rats and if the effective doses were similar to those used in adult 

rats.  Finally, experiments were performed to assess the levels of CRF and 

phosphorylated extracellular signal-regulated kinase 1/2 (pErk) in the central nucleus of 

the amygdala (CeA), paraventricular nucleus of the hypothalamus (PVN), and dorsal 
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lateral bed nucleus of the stria terminalis (dlBNST) following stress/withdrawal and 

repeated withdrawal paradigms in adolescent and adult rats. 
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Materials & Methods 

Animals 

For standard animal information and housing conditions, refer to General 

Methods (Chapter II).  One group of adolescent rats were group housed 3/cage for the 

length of the experiment.  

Ethanol and Control Diets 

General information regarding administration of liquid diet can be found in the 

General Methods (Chapter II).  

Social Interaction Test  

For standard social interaction (SI) test procedures, refer to General Methods 

(Chapter II). 

Stress/Withdrawal Paradigm 

 The Stress/Withdrawal Paradigm involves the substitution of stress for the first 

two early withdrawals. The stress used in these experiments is one hour of restraint stress 

in a plastic cone. Adolescents were placed in one of the following groups: 19 days of  

control diet (CD) (no stress; CD), 4 days of CD followed by 15 days of continuous 

2.5%ethanol diet (ED) with stress (given on Day 6 and 11 of ED; 2.5%CON-Str; Figure 

5.1A), 14 days of CD with stress (given on Day 6 & 13) followed by one 5-day cycle of 

2.5%ED (2.5%CY1-Str; Figure 5.1B), or 19 days of CD with stress (given on Day 6, 13, 

19; CD-Str; Figure 5.1C). Social interaction was performed five hours after the final 

withdrawal or stress.   

Duration of Reduced Social Interaction Following Stress/Withdrawal Paradigm 
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 These experiments were conducted to determine the duration of anxiety-like 

behavior (measured by reduction in social interaction) following the stress/withdrawal 

paradigm in adolescent rats. The stress/withdrawal paradigm used in these experiments 

involved giving a group two stress sessions (on Day 6 and 13) followed by 5 days of 

2.5%ED. For comparison, one group of rats were maintained on CD through out the 

experiment. Following these treatments, separate groups of rats were given social 

interaction tests at either 5, 24, or 48 hours following the final withdrawal. All rats are 

maintained on CD from the final withdrawal until the time of testing.  
Acute Stress Protocol 

Adolescent rats were maintained on CD in either isolate or group housing 

conditions until P29. Rats were then placed in plastic cones and stressed using for 45, 90, 

or 120 minutes (isolate housed rats) and 60 or 90 minutes (group housed rats). Thirty 

minutes following the termination of stress, rats were tested in the social interaction test. 

Surgery 

Surgery was performed under 2.5% isoflurane anesthesia and then placed in a 

stereotaxic instrument (Kopf Instruments, Tujunga, CA). After exposing the dorsal 

surface of the skull, holes were drilled in the skull at the appropriate locations, and 

cannulae were inserted at the appropriate depth. Jeweler’s screws were implanted into the 

skull, and dental acrylic was applied to secure the cannulae to the skull. All cannulae 

were made from 26-gauge stainless steel tubing. Once recovered from anesthesia, the rats 

were given acetaminophen (children’s Q-Pap, cherry flavor, 6 mg/ml) in the drinking 

water for 48 hours.  

CRF Administration  
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 Adolescent rats were microinjected with 5.0, 7.5, or 10.0 μg/5μl of CRF into the 

lateral ventricle (AP = -0.6, ML = -1.2, DV = -1.5). Two injections of CRF or Veh 

(artificial cerebral spinal fluid) were administered one week apart starting one week after 

recovery from surgery. Rats in these experiments were given one of the following diet 

conditions in combination with CRF or Veh administration. Rats combined into the 

control group received either 19 days of CD or 14 days of CD followed by a single 5-day 

cycle of 2.5%ED and all rats received Veh microinjections. For each dose of CRF, rats 

were given either 19 days of CD or 14 days of CD followed by a single 5-day cycle of 

2.5%ED. 

Immunohistochemistry 

 For analysis of immunohistochemistry for CRF and pErk, adolescent and adult 

rats were divided into three treatment groups: repeated ethanol withdrawal groups which 

received three 5-day cycles of either 2.5%ED (adolescents; 2.5%CY3) or 3.5%ED 

(adults; 3.5%CY3) interspersed with two 2-day withdrawal periods (given CD); 

stress/withdrawal groups which received 14 days of CD with stress (given on Day 6 & 

13) followed by one 5-day cycle of 2.5%ED (adolescents; 2.5%CY1-Str) or 3.5%ED 

(adults; 3.5%CY1-Str), or control groups which received 19 day of ethanol diet (CD).  

Different ethanol diet concentrations where used in adolescent and adult rats because of 

previous data showing that adolescent rats have higher g/kg ethanol intake than their 

adult counterparts (Wills et al., 2008; 2009).  In previous experiments, it was shown that 

treating adolescent rats with 2.5%ED and adult rats with 3.5%ED produces similar 

ethanol intakes (Wills et al., 2009). All of these rats were tested in social interaction 5 

hours into the final ethanol withdrawal or 20th day of CD. 
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Immediately following the social interaction test, rats were perfused with PBS and 

then 4% paraformaldehyde.  After postfixing brains for at least 24 hours, free floating 40 

micron coronal sections throughout the brain were collected with a vibrating microtome 

at 4°C. Immunohistochemical assays of CRF (rabbit anti-CRF human, rat; Peninsula 

laboratories; 1:5000) and pErk [Phospho-p44/42 MAP kinase (Thr202/Try204) Antibody; 

Cell Signaling; 1:500] were conducted by using a modification of a standard avidin-

biotin/horseradish peroxidase method described previously (Knapp et al., 1998; 2001).  

Four representative sections of the central nucleus of amygdala (CeA), two representative 

sections of the paraventricular nucleus of the hypothalamus (PVN), and two 

representative sections of the dorsal lateral bed nucleus of the stria terminalis (dlBNST) 

for each rat were photographed digitally at 10X, captured with Bioquant Life Sciences 

(Ver. 8.0), and then analyzed using the Image J program. Cell counts were also 

performed at 20X magnification on the same four representative sections of the CeA and 

two representative sections of the PVN in adolescent and adult rats that received control 

diet. 

Statistics 

Analyses of social interaction, locomotor activity, and immunohistochemistry 

were conducted with one-way ANOVAs. Comparisons between two groups in 

immunohistochemical studies used t-tests. Differences between groups were determined 

with Fisher’s post hoc tests.  
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Results 

Stress/Withdrawal Paradigm in Adolescent Rats (Social Interaction & Locomotor 

Activity) 

Previous work demonstrated that stress substituted for early withdrawals to 

produce anxiety-like behavior in adult rats; however, this same process had not been 

assessed in adolescent rats (Breese et al., 2004).  Analysis of social interaction in 

adolescent rats given the stress/withdrawal paradigm (2.5%Con-Str & 2.5%CY1-Str; 

Figure 5.1A & B) revealed a main effect of stress/diet treatment [F(3,27) = 8.26, p < 

.0005; Figure 5.2A]. Adolescent rats given stress/withdrawal paradigm (2.5%Con-Str & 

2.5%CY1-Str) had lower social interaction compared to rats given CD.  Additionally, 

there was no significant difference between CD-Str and CD rats. 

During the social interaction test, locomotor activity was also simultaneously 

measured.  Analysis of locomotor activity in these groups also showed a significant main 

effect of stress/diet treatment [F(3,27) = 3.11, p < .05; Figure 5.2B]. Rats given stress 

with a single ethanol cycle (2.5%CY1-Str) showed significantly lower locomotor activity 

compared to CD and 2.5%Con-Str treated rats.  There were no significant differences 

among other treatment groups. 

Duration of Anxiety-like Behavior Following Stress/Withdrawal Paradigm 

Further experiments determined the duration of anxiety-like behavior (measured 

at various times after the final withdrawal) in adolescent rats following stress/withdrawal 

paradigm (2.5%CY1-Str). Evaluation of social interaction showed a significant difference 

between groups tested at different durations [F(3,36) = 3.96, p < .05; Figure 5.3A].  

Adolescent rats tested 5 hours into the withdrawal showed reduced social interaction 
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compared to CD-treated rats (as shown previously above). However, adolescent rats 

tested 24 hours and 48 hours into the final withdrawal were different from rats tested at 5 

hours but not from CD-treated rats. Additionally, there were no significant differences in 

locomotor activity [F(3,36) = .25, NS; Figure 5.3B]. 

Social Interaction Following Acute Restraint Stress in Isolate and Group-Housed 

Adolescent Rats 

Experiments in adult rats demonstrated that 60 minutes of restraint stress induces 

anxiety-like behavior (reduction in social interaction; Breese et al., 2005b); however, it is 

unknown how adolescents might respond to similar stress periods.  Individually housed 

adolescent rats showed no significant differences in social interaction after various 

periods of stress [F(3,28) = .81, NS; Figure 5.4A]. There were also no significant 

differences in locomotor activity [F(3,28) = 2.55, NS; data not shown].   

Since there is some evidence (Hall, 1998) that isolate housing may alter 

adolescent rats response to stress, social interaction was also performed in group housed 

adolescents following acute restraint stress.  In these rats, there were also no significant 

differences in social interaction following stress [F(2,21) = 1.00, NS; Figure 5.4B]. 

Additionally, no significant differences were found in locomotor activity [F(2,21) = 1.91, 

NS; data not shown]. 

CRF/Withdrawal Paradigm in Adolescent Rats (Social Interaction & Locomotor Activity) 

Previous work demonstrated that intraventricular CRF at 5μg substituted for early 

withdrawals to produce anxiety-like behavior in adult rats (Overstreet et al., 2004a). 

Additionally, we previously demonstrated that a CRF type 1 antagonist prevented the 

adaptations caused by repeated withdrawals in adolescent rats (Wills et al., 2009).  These 
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data are presented as a percent of control because multiple studies needed to be combined 

to fully illustrate the effects of the various doses of CRF administered.  Additionally, 

controls represent rats treated with CD and those given a single cycle of 2.5%ED.  

Analysis of social interaction in adolescent rats given the CRF/withdrawal paradigm 

revealed a main effect of CRF/diet treatment [F(6,103) = 4.33, p < .001; Figure 5.5A]. 

Adolescent rats given 7.5μg of CRF and ethanol diet (7.5CRF-ED) had lower social 

interaction compared to controls, 5μg dose with ED or CD, or 7.5μg dose with CD.  

Neither the 5μg or 10μg dose of CRF combined with ED was significantly different from 

controls. In rats that received CRF with CD, social interaction compared to controls was 

increased with 7.5μg, decreased with 10μg, and unchanged with 5μg of CRF.  

There was also a main effect of CRF/diet treatment on locomotor activity 

[F(6,103) = 2.30, p < .05; Figure 5.5B]. There was an increase in locomotor activity in 

rats treated with 10μg of CRF-ED compared to all groups except 7.5μg-CD. 

CRF Immunohistochemistry:  Baseline Differences between Adolescent & Adult Rats  

Experiments were conducted to evaluate differences in baseline levels (rats 

receiving CD) of CRF between adolescents and adults.  In the central nucleus of the 

amygdala (CeA) there was a significant difference in CRF levels between adolescents 

and adults [t(16) = 2.90, p < .05; Figure 5.6A]. In this region, there was a greater total 

density of CRF-immunoreactivity in adolescent compared to adult rats. There were also 

differences in total density of CRF between age groups in the paraventricular nucleus of 

hypothalamus [PVN; t(15) = 2.54, p < .05; Figure 5.6B]. In the dorsal lateral portion of 

the bed nucleus of the stria terminalis (dlBNST), there were no significant differences 

between ages [t(16) = .87, NS; Figure 5.6C]. 

89 



Cell counts were also conducted in adolescent and adult rats that received CD.  In 

the CeA, there was a significant difference in the number of cell bodies with CRF-

immunoreactivity between ages [t(16) = 3.16, p < .01; data not shown].  This was a result 

of more CRF-immunoreactive cells in the CeA of adolescent rats compared to adults. In 

the PVN, there was also a significant difference in the number of cell bodies with CRF-

immunoreactivity between ages [t(15) = 3.05, p < .01; data not shown].  There were more 

CRF-immunoreactive cells in the PVN of adolescent rats compared to adults. 

CRF Immunohistochemistry:  Repeated Ethanol Withdrawal, Stress/Withdrawal, or CD 

in Adult Rats 

Further experiments were performed to assess whether there were changes in CRF 

levels in the CeA, PVN, or dlBNST during withdrawal from repeated withdrawals and 

stress/withdrawal paradigms in adult rats. There were no significant differences between 

treatment groups in the CeA [F(2,21) = .44, NS; Figure 5.7A], PVN [F(2,20) = .05, NS; 

Figure 5.7B], or dlBNST [F(2,21) = 2.78, NS; Figure 5.7C]. 

CRF Immunohistochemistry:  Repeated Ethanol Withdrawal, Stress/Withdrawal, or CD 

in Adolescent Rats 

 These same treatments were also evaluated in adolescent rats. There were 

significant differences between treatment groups in the CeA in adolescent rats [F(2,27) = 

7.82, p <  .005, Figure 5.8A].  Adolescent rats that experienced repeated ethanol 

withdrawals showed decreased total density of CRF-immunoreactivity in the CeA 

compared to stress/withdrawal and control rats.  However, there were no differences 

between treatment groups in total density of CRF-immunoreactivity in the PVN [F(2,26) 

= .34, NS; Figure 5.8B] or DLBNST [F(2,27) = .09, NS; Figure 5.8C]. 
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pErk Immunohistochemistry:  Repeated Ethanol Withdrawal, Stress/Withdrawal, or CD 

in Adolescent Rats 

 Finally, experiments were performed to determine whether proteins downstream 

of CRF receptors (pErk) were changed as a consequence of repeated ethanol withdrawals 

in adolescent rats.  Quantifications of pErk were performed within the CeA and in 

regions were CRF neurons in the CeA project (dlBNST and PVN).  In the CeA, there was 

a significant difference between treatments groups in total density area of pErk [F(2,25) = 

4.25, p < .05; Figure 5.9A].  This difference was caused by an increase in pErk 

immunoreactivity in stress/withdrawal treated adolescent rats compared to controls. 

There were no significant differences between repeated withdrawal treated rats and either 

stress/withdrawal or controls.  There were no significant differences between treatment 

groups in the dlBNST [F(2,25) = .31, NS; Figure 5.9B] or PVN [F(2,27) = .55, NS; 

Figure 5.9C]. 
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Discussion 

 This work has illustrated that in adolescent rats stress coupled with a single 

ethanol withdrawal can reduce social interaction. This reduction in social interaction is a 

validated measure of increased anxiety-like behavior (File & Seth, 2003). Importantly, it 

was demonstrated that the combination of both stress and ethanol withdrawal are critical, 

since neither stress nor a single ethanol withdrawal alone produced this anxiety-like 

behavior (Wills et al., 2009). Similar findings were previously found in adult rats, where 

stress substituted for early withdrawals to produce anxiety-like behavior (Breese et al., 

2004).   The changes in locomotor activity following the stress/withdrawal paradigm in 

adolescent rats were also similar to data in adults. In both age groups, a reduction was 

found in locomotor activity for rats given two stress episodes followed by a single 5-day 

cycle of ethanol diet (Breese et al., 2004). It is unlikely that this reduction in activity 

effected the social interaction of this group.  In the duration experiment, this same 

stress/withdrawal treatment (2.5%CY1-Str at 5hrs) elicited a similar reduction in social 

interaction without a reduction in activity. These results reconfirm the idea that social 

interaction and locomotor activity are independently manipulatable and not necessarily 

contingent on one another (Overstreet et al., 2002). 

 Further, the anxiety-like behavior produced from the stress/withdrawal paradigm 

was present at 5 hours but had returned to baseline by 24 hours into withdrawal. This 

profile of recovery is similar to that seen with repeated ethanol withdrawals and stress/ 

withdrawal paradigms in adult rats (Wills et al., 2009; unpublished data).  However, this 

duration is very different from that found with repeated ethanol withdrawals in adolescent 

rats (Wills et al., 2009). In these rats, it was illustrated that anxiety-like behavior could be 
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detected up to one week following the final withdrawal.  These experiments, therefore, 

determined that anxiety-like behavior from the stress/withdrawal paradigm has a similar 

duration to adult rats but was not as long lasting as anxiety-like behavior from repeated 

ethanol withdrawals in adolescent rats.  The reason for differences in duration between 

these paradigms may be due to adolescent rat’s resistance to the anxiogenic effects of 

acute restraint stress. In adult rats, it was previously shown that 60 minutes of restraint 

stress was sufficient to produce anxiety-like behavior (Breese et al., 2005b). However, 

the current experiments determined that up to 120 minutes of restraint stress was unable 

to reduce social interaction in adolescent rats.   

There is some evidence that isolate housing during adolescence could function as 

a chronic stressor (Hall, 1998).  It is possible that isolate housing, in these experiments 

might lead to an inability of rats to provide normal responses to stress   Therefore, to 

evaluate weather housing condition was responsible for this effect, we also tested 

adolescent rats that were group housed. These experiments showed no reduction in social 

interaction even after 90 minutes of restraint stress in group housed adolescent rats.  

These results illustrated that adolescent rats seemed to have a reduced sensitivity to 

stress. However, it is important to note that stress is not without effect since the 

stress/withdrawal paradigm did produce anxiety.   

 The next set of experiments established a role of CRF in the sensitization of 

anxiety-like behavior.  Adolescent rats given 7.5μg of CRF in combination with ethanol 

withdrawal exhibited anxiety-like behavior (reduction in social interaction), which was 

not found with either of these treatments alone (CRF or ED).  This dose of CRF (7.5μg) 

in adolescents was higher than doses that have previously been shown to be effective in 
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producing anxiety-like behavior in adult studies (5μg; Overstreet et al., 2004a).  

Therefore, it seems that not only are adolescent rats less sensitive to the acute effects of 

stress but also to the effects of CRF.   

 Additionally, immunohistochemical experiments indicated that adolescent rats 

seem to have higher basal immunoreactivity of CRF (increased density and cell bodies) 

in the CeA and the PVN compared to adult rats. Interestingly, this increase in CRF 

immunoreactivity in adolescent rats was region specific since CRF immunoreactivity 

were comparable between ages in the dlBNST. Therefore, it does not appear that there is 

a mere global increase in CRF in adolescent rats.  These increased basal levels of CRF 

between adolescent and adults may be responsible the differences in sensitivity between 

these ages in the stress and CRF substitution experiments.  

 Analyses were also made of CRF levels in adolescent and adult rats that received 

repeated withdrawals, stress/withdrawals, or control diet.  Results illustrated that CRF 

immunoreactivity was not significantly changed by any of the adult treatments in any of 

the regions that were evaluated (CeA, PVN, dlBNST). However, in adolescent rats there 

was a difference in CRF immunoreactivity in the CeA but not dlBNST or PVN.  This 

difference was caused by a decrease in density of CRF in the CeA in adolescent rats that 

experienced repeated ethanol withdrawal.  We hypothesize that this decrease in CRF 

levels in this treatment group relates to an increase in CRF release during withdrawal.  

An increase in CRF release in this group would presumably deplete the supply of CRF 

contained within the cell body and would lead to the decreased immuno-density that was 

found.  Similar results have been found under more chronic ethanol conditions. Zorrilla et 

al. (2001) illustrated that during the first day of withdrawal there was a decrease in CRF 
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immunoreactivity in the amygdala.  They also speculate that this reduction in 

immunoreactivity was an indication of increased CRF release during this period. This 

idea can be further supported by microdialysis studies which showed that CRF levels 

increased and peaked 11-12 hours into withdrawal from chronic ethanol exposure (Merlo 

Pich et al., 1995).   This reduction in CRF levels in the CeA was also only found in 

adolescent rats that experienced repeated ethanol withdrawals, not following 

stress/withdrawal procedure, and not following either treatment in adult rats.  Both of 

these treatments in adolescent and adults were shown to produce anxiety-like behavior, 

therefore, this change in CRF is most likely unrelated to this acute (5 hours into 

withdrawal) anxiety-like behavior. This change is most likely related to the extended 

anxiety-like response (up to 1 week into withdrawal) which is present only in adolescent 

rats given repeated ethanol withdrawals.   

 Finally, it was investigated if these adolescent treatments resulted in changes in 

levels of phosphorylated extracellular signal-regulated kinase 1/2 (pErk).  Erk is 

downstream of CRF receptors and has been found to be phosphorylated by their 

activation (Arzt & Holsboer, 2006).  Additionally, there is evidence of increased pErk 

during withdrawal from chronic intermittent ethanol in the amygdala of adult rats (Sanna 

et al. 2002). In our evaluation of pErk it was illustrated that the stress/withdrawal but not 

the repeated ethanol withdrawal paradigm increased pErk in the CeA.  There was a trend 

for increased pErk in repeated ethanol withdrawal rats but it was not significant because 

of high variability. This variability was a function of rats either displaying moderate 

levels of pErk immunoreactivity or no pErk. The lack of a graded response indicates a 

possible threshold effect, were by sufficient activation needed to be met before pErk 
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expression was increased. It is unclear; however, what these changes might indicate since 

repeated ethanol withdrawals did not significantly increase this expression. Experiments 

were also preformed to evaluate pErk in regions were CRF neurons in the CeA project 

(PVN and dlBNST).  These regions showed no difference in pErk immunoreactivity from 

any of the adolescent treatments.  Further investigations are needed to fully understand 

how these changes in pErk related to ethanol withdrawal related behaviors. 

 These experiments have illustrated that both stress and CRF substitute for early 

withdrawals and sensitize anxiety-like behavior. Further, it was shown adolescent rats 

have reduced sensitivity to the effects of acute stress and CRF. This reduced sensitivity in 

adolescent rats might be tied to the increased basal CRF found at this age.  Finally, it was 

demonstrated that repeated ethanol withdrawals in adolescent rats caused a change in 

CRF with the CeA.  Future studies will extend this work to evaluate the role of increased 

basal CRF in adolescents and how changes in CRF following repeated withdrawals might 

be tied to the extended anxiety-like behavior found in this group. 
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Figures & Tables 

(C)   Control Stress (CD-Str):

(A)   Continuous Ethanol Stress (CON-Str):

4-days CD 15-days EtOH Diet

(B)   Single Cycle Ethanol Stress (CY1-Str):

14-days CD 5-days EtOH Diet

StressStress StressStress

StressStress StressStress

19-days CD

StressStress StressStressStressStress

 

Figure 5.1  Procedure for diet and stress administrations. (Panel A) Continuous ethanol 
stress paradigm (Con-Str): rats were given 4 days of control diet (CD) followed by 15 
days of ethanol diet (ED). (Panel B) Single cycle ethanol stress paradigm (CY1-Str): rats 
were given 14 days of CD followed by one 5-day cycle of ED. (Panel C) Control stress 
paradigm (CD-Str): rats were given 19 days of CD.  The stress used was one hour of 
restraint stress, which was administered at weekly intervals in the periods indicated by 
the diagrams above.  
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Figure 5.2  Social interaction and locomotor activity in adolescent rats (Panel A & B). 
Male adolescent rats were given either control diet (CD), CD with stress (CD-Str), 15 
days of continuous 2.5% ethanol diet (ED) with stress (2.5%Con-Str), or one 5-day cycle 
of  2.5%ED with stress (2.5%CY1-Str). Stress was one hour of restraint stress given in 
weekly intervals. CD-Str received three stress episodes, while ED-Str groups received 
two. All adolescent rats were tested 5 hours into the final ethanol withdrawal or final 
stress (for CD-Str group) during the final withdrawal. Data represent means ± SEM for 8 
rats/group.  Groups with different letters are significantly different from each other 
(p<0.05).
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Figure 5.3  Duration of anxiety-like behavior in adolescent rats exposed to 
stress/withdrawal paradigm (Panel A & B). Male adolescent rats were given either 
control diet (CD) or 14-days of CD, in which two stress episodes were given one week 
apart, followed by a single 5-day cycle of 2.5% ethanol diet (ED; 2.5%Str).  Stress was 
one hour of restraint stress.  Rats were tested 5 hours, 1 day, or 2 days after the removal 
of ethanol during the final withdrawal. Data represent means ± SEM for 8 rats/group. 
Groups with different letters are significantly different from each other (p<0.05). 
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Figure 5.4  Acute effects of restraint stress on isolate and group housed adolescent rats 
(Panel A & B). Rats were placed on control diet (CD) until P29 in either isolate or group 
(3 rats/cage) housing.  On P29, rats were given either 45, 60, 90, or 120 minutes of 
restraint stress and tested in social interaction 30 minutes following the termination of 
stress.  Data represent means ± SEM for 8 rats/group. Groups with different letters are 
significantly different from each other (p<0.05). 
 

100 



0
20
40
60
80

100
120
140
160
180

Controls 5.0CRF
ED

7.5CRF
ED

10.0CRF
ED

5.0CRF
CD

7.5CRF
CD

10.0CRF
CD

So
ci

al
 In

te
ra

ct
io

n 
(%

 C
on

tr
ol

)

Dose of CRF (µg) / Diet Treatment

c,d c,e

b b,d

d,e

b,c

a

A

0

20

40

60

80

100

120

140

160

Controls 5.0CRF
ED

7.5CRF
ED

10.0CRF
ED

5.0CRF
CD

7.5CRF
CD

10.0CRF
CD

Li
ne

 C
ro

ss
ed

 (%
 C

on
tr

ol
)

Dose of CRF (µg) / Diet Treatment

B

b

a

a/bbbb b

 
Figure 5.5  Dose-response of intracerebroventricular (icv) corticotrophin releasing factor 
(CRF) in adolescent rats (Panel A & B).  Rats were given 14 days of control diet (CD) 
and two weekly microinjections of various doses of CRF icv (5.0μg, 7.5μg, or 
10.0μg/5μl) or artificial cerebral spinal fluid (ACSF; given to controls).  Rats were then 
given either 5-days of CD (CRF-CD) or 2.5% ethanol diet (CRF-ED).  Controls represent 
rats that received either CD-ACSF or ED-ACSF.  Social interaction and locomotor 
activity were assessed 5 hours into the ethanol withdrawal.  Data represent means ± SEM 
for 8 rats/group. Groups with different letters are significantly different from each other 
(p<0.05). 
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Figure 5.6  Baseline differences in corticotrophin releasing factor (CRF)-
immunoreactivity within the central nucleus of the amygdala (CeA), paraventricular 
nucleus of the hypothalamus (PVN), and dorsal lateral bed nucleus of the stria terminalis 
(dlBNST) of adolescent and adult rats (Panel A, B, & C).  Rats were given 19 days of 
control diet (CD) and brain tissue was collected immediately following social interaction.  
Total density measurements were made using ImageJ program for CeA, PVN, and 
dlBNST.  Data represent means ± SEM for 8 rats/group. Groups with different letters are 
significantly different from each other (p<0.05). 
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Figure 5.7  Adult corticotrophin releasing factor (CRF)-immunoreactivity within the 
central nucleus of the amygdala (CeA), paraventricular nucleus of the hypothalamus 
(PVN), and dorsal lateral bed nucleus of the stria terminalis (dlBNST) following repeated 
ethanol withdrawal and stress/withdrawal paradigms (Panel A, B, & C).  Adult rats were 
given either 19 days of control diet (CD), three 5-day cycles of 3.5% ethanol diet (ED) 
interspersed with two 2-day withdrawal period (3.5%CY3), or 14 days of CD followed 
by 5 days of 3.5%ED with stress (3.5%CY1-Str).  Stress is one hour of restraint stress 
given at weekly intervals. Brain tissue was collected immediately following social 
interaction five hours into ethanol withdrawal.  Total density measurements were made 
using ImageJ program for CeA, PVN, and dlBNST.  Data represent means ± SEM for 8 
rats/group. Groups with different letters are significantly different from each other 
(p<0.05). 
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Figure 5.8 Adolescent corticotrophin releasing factor (CRF)-immunoreactivity within the 
central nucleus of the amygdala (CeA), paraventricular nucleus of the hypothalamus 
(PVN), and dorsal lateral bed nucleus of the stria terminalis (dlBNST) following repeated 
ethanol withdrawal and stress/withdrawal paradigms (Panel A, B, & C).  Adolescent rats 
were given either 19 days of control diet (CD), three 5-day cycles of 2.5% ethanol diet 
(ED) interspersed with two 2-day withdrawal period (2.5%CY3), or 14 days of CD 
followed by 5 days of 2.5%ED with stress (2.5%CY1-Str).  Stress is one hour of restraint 
stress given at weekly intervals. Brain tissue was collected immediately following social 
interaction five hours into ethanol withdrawal.  Total density measurements were made 
using ImageJ program for CeA, PVN, and dlBNST.  Data represent means ± SEM for 8 
rats/group. Groups with different letters are significantly different from each other 
(p<0.05). 
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Figure 5.9  Adolescent phosphorylated extracellular signal-regulated kinase 1/2 (pErk)-
immunoreactivity within the central nucleus of the amygdala (CeA), paraventricular 
nucleus of the hypothalamus (PVN), and dorsal lateral bed nucleus of the stria terminalis 
(dlBNST) following repeated ethanol withdrawal and stress/withdrawal paradigms (Panel 
A, B, & C).  Adolescent rats were given either 19 days of control diet (CD), three 5-day 
cycles of 2.5% ethanol diet (ED) interspersed with two 2-day withdrawal period 
(2.5%CY3), or 14 days of CD followed by 5 days of 2.5%ED with stress (2.5%CY1-Str).  
Stress is one hour of restraint stress given at weekly intervals. Brain tissue was collected 
immediately following social interaction five hours into ethanol withdrawal.  Total 
density measurements were made using ImageJ program for CeA, PVN, and dlBNST.  
Data represent means ± SEM for 8 rats/group. Groups with different letters are 
significantly different from each other (p<0.05). 

105 



CHAPTER VI:  GENERAL DISCUSSION 

 The purpose of these studies was to evaluate several key factors that are thought 

to be important in the progression of ethanol dependence in a vulnerable population, 

adolescence.  These studies have focused on determining the effects of cyclic ethanol 

exposure on withdrawal related behaviors, especially anxiety. In addition, the interactions 

between stress and ethanol were also investigated in relation to these anxiety-like 

behaviors.  Finally, this work explored the role of CRF in the adaptations that occur from 

repeated withdrawals, which lead to this anxiety-like behavior.  Throughout this work, 

there are a number of conclusions and observations that can be made about ethanol 

withdrawal in adolescents.   

Methodological Considerations for Adolescent Experiments 

 A great deal of the work accomplished in this dissertation relied heavily on 

addressing the numerous methodological confounds that arise when evaluating 

differences between adolescent and adult rats.  The first efforts focused on the time 

frames of ethanol exposures and behavioral assessment.  In many chronic ethanol 

treatments (like ours) in rodents, ethanol is generally administered throughout the 

adolescent period (P28-42). This limited widow of opportunity makes it nearly 

impossible to establish the effects of chronic ethanol on adolescent behavior because by 

the time chronic ethanol paradigms are complete the rats are no longer adolescents.  

Therefore, in our experiments behavioral assessment does not occur until around P45 

when adolescent rats are considered young adults. The results from these experiments can 



only illustrate the effects of ethanol treatment during adolescence on ethanol withdrawal 

in young adulthood.  They are not able to provide information about the effects of these 

procedures on ethanol withdrawal while rats are still adolescents.  Another aspect that 

requires thought is the proper adult comparison group. In these studies, we gave identical 

treatments to rats who were already adults, so all ethanol treatments and behavioral tests 

were completed during adulthood.  This comparison has the advantage of identical 

ethanol exposures and withdrawal periods; however, a disadvantage is that rats were of 

different ages at the time of test.  Optimizing the advantages to disadvantages is the key 

in finding the appropriate adult controls.  The take home message from these 

considerations is that one needs to be aware of the time frame limitations of adolescent 

rodents and make appropriate conclusions about these results.  

Another factor that can complicate the interpretations of results is differences in 

normal (baseline) behaviors between adolescent and adult rats.  Hopefully, it has been 

made clear that adolescents are not merely little adults. Adolescents have been shown to 

display a whole host of unique behavioral responses under baseline conditions and 

following ethanol exposure.  These baseline differences were found for social interaction 

and locomotor activity. These differences lead to additional steps (corrections for 

baseline) in comparing the ethanol related effects between adolescent and adult rats.  If 

these corrections are not made, then conclusions regarding the effects of ethanol between 

these age groups can be misinterpreted.   

 Further, the most formidable methodological factor in these studies was the use of 

liquid diet as a route of ethanol administration.  There are a number of reasons why this 

route of administrations was challenging in adolescent rats. Most of challenges stem from 
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the fact that given a certain concentration of ethanol diet, adolescent rats had increased 

consumption (ethanol intake). This increased consumption was likely caused by the rapid 

growth rate that occurs during adolescence.  In these liquid diet procedures, calories are 

solely derived from diet. During times of rapid growth, more calories are needed than 

normal and, therefore more diet will be consumed. Since ethanol is administered within 

this diet, ethanol intake is also rapidly increased in adolescent rats.  The data on ethanol 

intake in Chapter III and IV illustrated that if adolescent and adult rats are given the same 

ethanol diet concentrations then adolescents consistently had higher g/kg ethanol intake 

compared to adults.  This factor complicates the interpretations of behavioral results since 

it is unclear whether differences arise because of age or merely ethanol intake.  In these 

studies, considerable effort was made to equalize ethanol intake. Another factor that 

affects ethanol intake in these chronic ethanol diet administrations is the decline in 

ethanol intake that occurs with age. As the adolescent rats age into adults, there is a 

decline in ethanol intake. This is most likely do again to a decrease in growth rate that 

occurs as adolescents become adults.  This feature makes it more difficult to maintain 

consistent ethanol intake throughout chronic treatments in adolescent rats. 

It was also necessary to make sure that BECs were comparable between ages. 

Again the results from Chapter III and IV illustrate that even when ethanol intake is 

equalized (4.5% adolescent and 7% adult or 2.5% adolescent and 3.5% adult) BECs were 

not always the same. Other researchers have evaluated differences in ethanol metabolism 

and found similar metabolism at both ages (Silveri & Spear, 2000).  Therefore, the most 

likely explanation for these differences in BECs is that the drinking patterns between 

adolescent and adult rodents are not the same.  For example, studies have shown that 
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adolescent rats are less entrained to the light/dark cycle (Brunell & Spear, 2005).  Adult 

rodents are known to be nocturnal and, therefore, have higher levels of eating, drinking, 

and activity during the dark cycle. However, adolescent rats seem to drink throughout 

both the light and dark cycle (Brunell & Spear, 2005). In our studies, BECs were 

measured at the end of the dark cycle, which most likely captures the peak BEC in adult 

rats but might not represent the peak BEC in adolescent rats. The studies presented here 

used adolescent and adult diet concentrations with the most closely matched ethanol 

intake and BEC but the comparisons were not perfect. Future work is needed to 

investigate ethanol intake and BECs throughout a 24-hour period to fully understand 

these differences between adult and adolescent rats.  These methodological issues 

illustrate that careful considerations and adjustments are needed when conducting ethanol 

studies in adolescent rats and in interpreting their results. 

Similar Responses between Adolescent and Adult Rats 

 Previous work in adolescents illustrated that they can have very different 

responses to ethanol than adults. However, many of experiments presented here showed 

that, after corrections for ethanol intake were made, many of the withdrawal related 

behaviors from repeated ethanol withdrawals were similar between ages.  Adolescent rats 

were shown to have similar reductions in social interactions and seizure thresholds. 

Additionally, it was determined that sensitization of anxiety-like behavior from repeated 

ethanol withdrawal and stress/withdrawal paradigms were similar between adolescent 

and adults.  Even though many of these responses were similar, they still provide 

valuable information about the use of chronic ethanol during adolescence.  Research from 

other labs showed that withdrawal from acute ethanol is reduced in adolescents, 
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specifically seizure thresholds and anxiety-like behavior (Acheson et al., 1999; Doremus 

et al., 2003; Varlinskaya & Spear, 2004).  Therefore, this work might suggest that since 

these withdrawal-related behaviors are reduced then adolescents may be susceptible to 

processes that underlie addiction. The work provided here demonstrates that this is not 

the case. Our work shows that, even though adolescents may have reduced withdrawal 

related behaviors to acute ethanol, they still show equal sensitization of anxiety-like 

behavior from repeated withdrawal paradigms. This outcome indicates that the 

adaptations producing this sensitized behavioral response can occur across different age 

groups.  More importantly, this outcome shows that adolescents are at least equally 

susceptible for the development of ethanol addiction as adults.   

Extended Duration in Adolescent Rats 

 Despite the many similarities in withdrawal-related behaviors, there were also 

aspects of this sensitized anxiety-like behavior that are different between ages. 

Specifically, this research showed anxiety-like behavior following repeated ethanol 

withdrawals in adolescent rats had an extended duration compared to adult rats. Duration 

was defined as the ability to measure anxiety-like behavior (by reduction in SI) at 

different time points into the final withdrawal. In adolescents, this behavior could be 

detected up to a week after the final withdrawal, whereas in adults it is recovered with 24 

hours (Figure 4.4 and 4.5).  This extended duration of anxiety in adolescent rats would 

suggest that this population may be more vulnerable to adaptations involved in addiction. 

It was illustrated previously that negative affect (anxiety) during withdrawal is likely 

responsible for continued drinking behavior and relapse (Annis et al., 1998; Roberts et 

al., 2000; Valdez et al., 2002).   
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 In addition to differences in the duration of anxiety-like behavior post-

withdrawal, studies in adult rats have also shown that re-exposure to normally non-

anxiogenic (“subthreshold”) amounts of chronic ethanol can re-elicit the anxiety-like 

response caused by repeated withdrawals (Overstreet et al., 2002). These experiments 

attempt to model persistent changes in the responsiveness to future ethanol after baseline 

anxiety from acute withdrawal has returned to normal.  Similar studies were attempted in 

adolescent rats but were fraught with methodological issues that prevented clear 

interpretations of results.  In these studies, adolescents were exposed to repeated ethanol 

withdrawals (as described in previous chapters) and then were re-exposed to 5 days of 

ethanol diet (a non-anxiogenic regiment; see Figure 4.2) 16, 21, or 32 days later (data not 

shown). In the experiment using a 16-day re-exposure, it was shown that anxiety-like 

behavior was still present in rats that received only control diet (CD). These data 

illustrated that the “duration” of anxiety-like behavior described in the previous 

paragraph could reappear with even a minor disruption (simply the re-introduction to 

CD). Therefore even though behavior in adolescents seems to have returned to baseline 

by 14-days (Figure 4.5), these data suggest that small changes in the environment can re-

elicit this anxiety response.   

 Further studies used extended time points (21 and 32 days) and encountered 

additional methodological issues.  These studies demonstrated that re-exposure to 5 days 

of ethanol diet (ED) did not produce anxiety-like behaviors. One of the reasons these 

studies might have failed to produce anxiety-like behavior was that ethanol intake during 

this cycle was low. This low ethanol intake was caused by the decrease in ethanol diet 

consumption that occurs as the rats age. To overcome this problem, higher (4.5%ED) 
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concentrations of ED were used during re-exposure and also showed no anxiety-like 

behavior.  Studies previously performed in adults used 4.5%ED and 7%ED in the 

repeated withdrawal paradigm (Overstreet et al., 2002; unpublished data) so the negative 

results in these adolescent tests are most likely a result of insufficient ethanol intake. 

Studies discussed here used 2.5%ED during the adolescent repeated withdrawal 

procedure. This diet concentration produces ethanol intake much lower than that which 

would be produced from either 4.5%ED or 7%ED in adult rats (compare g/kg intake in 

Figure 3.5/3.6 and Table 4.3).  Therefore, these methodological issues compromise our 

ability to interpret results from these studies in adolescent rats and to determine whether 

this model of withdrawal provides comparable results across age. 

 Overall these experiments with repeated ethanol withdrawals in rats indicate that 

binge drinking episodes, which are known to occur in human adolescent populations, 

produce anxiety-like behavior. Further, this behavior seems to be much longer lasting in 

adolescents compared to adults.  These results suggest that teenage drinking patterns very 

likely set the stage for future ethanol dependence. 

Reduced Sensitivity to Stress in Adolescent Rats 

 The stress/withdrawal paradigm in adolescent rats illustrated that stress in 

combination with ethanol withdrawal sensitized anxiety-like behavior. These data 

indicate that both stress and ethanol withdrawal have common mechanisms (possibly 

release of CRF), which interact to produce this sensitized anxiety. Therefore, these data 

indicated that not only are binge drinking episodes (that produce repeated withdrawals) 

able to set the stage for later addiction but that episodes of stress can also contribute.  

While these data illustrated a clear interaction of stress and ethanol withdrawal in 
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adolescent rats, it was also evident that these effects were less robust than those of 

repeated ethanol withdrawal. Specifically, it was shown that the duration of anxiety-like 

behavior recovered with 24hrs with stress/withdrawal paradigm (Figure 5.3) while this 

behavior was present up to a week following repeated ethanol withdrawals (Figure 4.5).   

 An explanation for this reduced response following the stress/withdrawal 

paradigm is that the acute effects of stress are lower in adolescent rats.  Our data showed 

that this was in fact the case with various periods of restraint stress unable to produce an 

acute anxiety-like phenotype (Figure 5.4A).  There are a number of variables that might 

have played a role in this reduced anxiety-like behavior from restraint stress. One of the 

variables that was evaluated in these experiments was housing conditions.  Isolate 

housing in adolescent rats, which is used in our experiments, has been used as a social 

isolation stress specifically in adolescent rats (Hall, 1998).  For this reason, we also 

evaluated the acute effects of stress in group housed adolescents (Figure 5.4B).  These 

rats still demonstrated an anxiety-like response. It is, therefore, unlikely that this variable 

was the source of reduced sensitivity to stress in adolescents.   

 Another variable that could have contributed to this result was the type of stress 

used. It has been shown that restraint stress (60 minutes) produces acute increases in 

anxiety-like behavior in adult rats (Breese et al., 2005b). It is possible that confinement is 

not perceived as a stressor in adolescent rats and, therefore, less effective at producing 

anxiety.  This explanation is unlikely since multiple studies have shown that restraint 

stress produced increases in ACTH and corticosterone  (Romeo et al., 2006; Schramm-

Sapyta et al., 2008), which demonstrate HPA activation and the effectiveness of restraint 

as a stressor.   
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 Another possible explanation for these results is the time frames that were 

measured.  Romeo et al. (2006) used a 30 minute restraint stress in both adolescent and 

adult rats and showed that corticosterone levels peaked at the termination of stress. These 

levels declined from this peak and were back to basal levels in adult rats but still slightly 

elevated in adolescents after 45 minutes. These data indicated that 30 minutes of restraint 

stress produces peak corticosterone response which is significantly reduced by 45 

minutes.  It is, therefore, likely in our studies with longer lengths of stress that 

corticosterone response and anxiety may have returned to baseline by the time of test. 

Additionally, Romeo et al. (2006) also illustrated that when stress was given chronically 

(30 minutes/day for 1 week) corticosterone levels still peaked at stress termination but 45 

minutes following stress adolescent’s corticosterone returned to basal levels and adult 

levels were still elevated.  These data illustrate that corticosterone response is longer in 

duration in adolescents following acute stress but shorter following chronic stress.  These 

data also suggest that corticosterone levels peak 30 minutes into stress.  In our work, it 

has been shown that adult rats have elevated corticosterone response 1 hour following the 

termination of 1 hour restraint stress. However, preliminary work in adolescent rats has 

shown no elevation of corticosterone response at this time point (data not shown).  Since 

the corticosterone response in adolescent rats seems to have a shorter duration than in 

adult rats, this would suggest that our conditions have induced chronic stress. This 

chronic stress condition could be caused by a combination of isolate housing and liquid 

diet, which are both thought to be moderately stressful. Future work needs to evaluate 

earlier time points in order to determine which of these factors is at work. 
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 Overall this evidence indicates a number of reasons why acute stress was unable 

to produce anxiety. Any one of these factors might have lead to the somewhat less robust 

effects of the stress/withdrawal paradigm compared to repeated ethanol withdrawals.  

However, it is important to emphasize that stress in adolescents did substitute for early 

withdrawals to sensitize anxiety-like behavior and is therefore critical to the 

understanding of the development of ethanol addiction in adolescents. 

Reduced Sensitivity to CRF Substitution in Adolescent Rats 

In these experiments, it was shown that intracerebroventricular (icv) 

administration of CRF substituted for early ethanol withdrawals to sensitize anxiety-like 

behavior (Figure 5.5). As described above, a common mechanism responsible for the 

sensitized anxiety-like behavior between stress and ethanol could be CRF and these 

studies lend support to that claim.  Further, drug pretreatment experiments specifically 

determined that blocking CRF type 1 receptors (CRF1R) during early withdrawals 

prevented development of anxiety-like behavior (Figure 4.6).  Taken together, these data 

suggest that ethanol withdrawal and stress act through CRF at CRF1R to produce this 

withdrawal induced anxiety.  These data agree with previous work conducted in adult 

rats, which also showed these same adaptations (Breese et al., 2004; 2005a/b; Overstreet 

et al., 2004a). 

One aspect of these studies that was unique to adolescents was a reduced 

sensitivity to CRF (higher dose required) to produce anxiety. In these experiments with 

adolescent rats, a dose of 7.5µg was needed to substitute for early ethanol withdrawals or 

stress compared to the 5µg dose that is effective in adult rats.  There are a number of 

possible explanations for this insensitivity of adolescent rats found in these experiments.  

115 



One possibility is that CRF receptors in adolescents are less sensitive to CRF than the 

same receptors in adults. This effect could be caused by desensitization of these receptors 

or decreased receptor expression in adolescent verses adult rats.  A second possibility is a 

difference in the distribution of CRF1R and CRF type 2 receptors (CRF2R). There is 

evidence in the literature showing that these receptors may have opposing actions in the 

production of anxiety-like behaviors, where activation of CRF1R seem to have 

anxiogenic actions and CRF2R seem to have anxiolytic actions (Bale et al., 2000; Timpl 

et al., 1998).  The dichotomy between these two receptors was also illustrated in our 

model, where it was discovered that CRF1R antagonist can block the development of 

anxiety-like behavior but CRF2R antagonist was ineffective (Overstreet et al., 2004a).  

Since these receptors have opposite functions, it is possible that adolescents may have a 

higher CRF2R verses CRF1R distribution than adult rats.  Therefore, it would require 

higher doses of CRF to produce anxiety through CRF1R. A third possibility is that 

adolescents have higher basal CRF levels than adult rats. If this is the case then it might 

take higher doses of CRF to disrupt the basal tone of CRF in these adolescent rats. A 

higher basal CRF could also desensitize receptors and make them less sensitive to later 

CRF administrations (as discussed above). 

Basal Differences in CRF between Adolescent and Adult Rats 

The current work evaluated one of these possibilities, differences in basal levels 

of CRF between adolescent and adult rats.  These studies illustrated that there was a 

higher density of CRF immunoreactivity within the PVN and CeA of adolescent rats 

compared to adults (Figure 5.6).  Cell counts of these areas also illustrated a higher 

number of cells with CRF immunoreactivity in adolescents compared to adults.  These 
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data indicate that under control conditions (isolate housed rats maintained on control diet 

for entire experimental period) adolescent rats seem to have a larger population of cells in 

the PVN and CeA containing CRF than adults do.  It is also possible that the density of 

CRF within a given cell is higher in adolescents than adults.  Regardless, these data show 

that the basal amount of CRF in these regions is increased in adolescent rats.  

Furthermore, this increase was region specific with no changes in CRF 

immunoreactivity found in dlBNST.  These changes in CRF are either due specifically to 

age or a combination of age and treatment. Viau et al. (2005) found that basal levels of 

CRF mRNA within the PVN were not different between 30-day old and 60-day old male 

rats. Additionally, they showed that basal levels of CRF mRNA actually increased in 60-

day old rats compared to 30-day old rats in the CeA.  These studies quantified only 

changes in CRF mRNA and not protein levels. Additionally, the ages examined in those 

studies (P30 & P60) were somewhat distinct from our work (P45 & 73). The differences 

between these studies make it unclear how to interpret these distinct results. Furthermore, 

no other studies could be found to either confirm or deny the results found in these 

studies, increased basal CRF immunoreactivity in adolescents.  

An alternative explanation for this basal increase of CRF in adolescents may be a 

consequence of control conditions as well as age. It was discussed above that there is 

evidence that certain housing conditions can be particularly disruptive during adolescence 

as may be the case with social isolation stress.  In one version of this social isolation 

stress, 1 hour of isolation stress was administered daily followed by return to group 

housing from P30-45. This isolation stress produced increases in basal CRF mRNA with 

the PVN but not the CeA in P45 rats (McCormick et al., 2006). In a different version of 
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social isolation stress, male rats were isolate housed from P16-76. These studies showed 

no change in CRF-immunoreactivity under basal or stressed conditions (Sanchez et al., 

1998). Therefore, it is unclear whether the basal changes detected in our experiments 

were the result of isolate housing conditions.  Future studies in more naturalistic controls 

(chow fed and group housed) are needed to determine the source of these age related 

differences in CRF.  

Despite the undetermined source of these age related changes in CRF, the 

elevated CRF levels in adolescents might help to explain the reduced behavioral 

sensitivity to stress and CRF that were found in adolescent rats. The increased levels of 

CRF within the CeA could be responsible for the reduced sensitivity of CRF to produce 

anxiety.  CRF within the CeA is known to be critical in the production of anxiety and, as 

described above, higher basal levels of CRF might account for reduced sensitivity of 

microinjected CRF.  This effect might be a result of either an inability to overcome basal 

tone or desensitization of CRF1R.  In addition, the changes in basal levels of CRF within 

the PVN could be responsible differences in the effects of stress between ages. CRF 

neurons within the PVN are a critical part of the physiological response to stress.  CRF is 

released from this region and triggers the release of ACTH and corticosterone.  

Therefore, these changes in CRF within the PVN may be a cause of the reduced acute 

effects of stress on anxiety.   

Changes in CRF following Repeated Withdrawals in Adolescent Rats 

 In addition to these basal changes in CRF between adolescent and adult rats, it 

was also shown that there were age-dependent changes in CRF from ethanol treatments. 

Specifically, these studies found a significant chronic ethanol-dependent decrease of CRF 
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immunoreactivity in the CeA of adolescent rats (Figure 5.7). This result was interesting 

because these rats were the only group to display an extended anxiety response 

(described above).  We hypothesize that this decrease in immunoreactivity of CRF is a 

result of increased CRF release from cell bodies during withdrawals.   

In the adult literature, there has been an enormous amount of work to determine 

the role of CRF in ethanol dependence. During protracted withdrawals, dependent rats 

have increased stress-induced anxiety (Valdez et al., 2003), ethanol self-administration 

(Funk et al., 2006), and voluntary ethanol consumption (Valdez et al., 2002).  All of these 

behaviors can be prevented or blocked by CRF receptor antagonists (either non-specific 

or CRF1R).  Furthermore, microinjections of a CRF receptor antagonist within the CeA 

blocked increased self-administration in withdrawal (Funk et al., 2006).  These data 

illustrate that the actions of CRF in adults may be responsible for many behaviors in 

extended withdrawal that contribute to enhanced ethanol intake and relapse.  These data 

suggest that the changes in CRF within the CeA found in our adolescent rats might also 

be related to this increased risk for future ethanol dependence. 

Future Work  

 Many potential directions of future work have already been presented throughout 

this dissertation; however, some additional areas still need to be addressed. More work 

clearly is needed to understand some of the sensitivity differences between ages in 

response to CRF and stress. Immunochemistry experiments illustrated the need to 

determine the source of decreased CRF in the CeA of adolescent rats following repeated 

withdrawals. While it can be suggested that this change represents an increase in release, 

additional experiments will be needed to validate this hypothesis.  Further, it is still 
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unknown if this change in CRF with the CeA is actually responsible for the extended 

behavioral response found in adolescents. 

There are likely many mechanisms which are involved in the sensitization of this 

anxiety-like behavior from repeated ethanol withdrawals in adolescent rats.  In this 

dissertation, a number of experiments focused on understanding how CRF systems might 

modulate this behavior but it is clear that other systems also play a role.  In drug 

pretreatment studies with adolescent rats (Figure 4.6), it was shown that administration of 

either a benzodiazepine antagonist or a 5-HT1A receptor agonist also prevent sensitization 

of anxiety-like behavior.  Therefore, understanding these adaptations and how all of these 

pathways work together will lead to greater understanding of this disease and more 

effective treatments.   

In addition to these mechanistic questions, the data herein showed that 

adolescents had extended anxiety-like behavior from repeated ethanol withdrawals.  It 

would be interesting to evaluate other behaviors during this extended withdrawal in these 

adolescents.  Some of most relevant behaviors to measure first are ethanol self-

administration, voluntary ethanol consumption, and stress-induced anxiety. The list of 

additional experiments could be extensive given the lack of understanding that still 

remains surrounding the effects of adolescent alcohol use and future alcoholism. 

Conclusion 

This work illustrated the importance of characterizing the adaptations that 

underlie key facets of addiction during adolescence.  In support of the original 

hypothesis, evidence showed that binge ethanol exposure, which produces repeated 

withdrawals, sensitized anxiety-like behavior in both adult and adolescent rats. Further 
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support arose from work showing that stress can interact with ethanol withdrawal to 

produce this anxiety-like phenotype in both ages, and that this effect seems to be 

produced through modulation of the CRF system.  Throughout this dissertation, it has 

been emphasized that this anxiety behavior from ethanol withdrawal (also referred to as 

negative affect) is a large contributor to continued ethanol use and relapse during 

addiction.  Therefore, the extended duration of this anxiety-like response in adolescents 

would indicate an increased potential for the development of future addiction.  This work 

would also strongly encourage the development and use of treatments during 

adolescence, specifically those that modulate CRF. It is likely that the key step in 

preventing the progression to alcoholism would be to start early treatments in those 

adolescents that experience high levels of problematic drinking.    
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Figure 6.1 Summary of Dissertation Findings 
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