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ABSTRACT 

Natalia Petruski-Ivleva: The Association of Habitual Milk Intake with the Rate of Cognitive 
Decline, Mild Cognitive Impairment and Dementia.  
(Under the direction of Anna Kucharska-Newton) 

Greater than average rates of cognitive decline in the elderly are likely to result in earlier 

onset of mild cognitive impairment and dementia. D-galactose, a derivative of lactose, is used in 

animal studies to mimic naturally occurring aging and neurodegeneration through increased 

oxidative stress. Milk is the primary source of lactose in the diet and its effects on oxidative 

stress levels or the rate of cognitive decline have not been fully evaluated. Thus, the objective of 

this work was to study the association of milk intake with cognitive change over a 20-year 

period. We further examined the association of milk intake with oxidative stress, defined as 

levels of mitochondrial DNA copy number.  Analyses accounted for participants’ genetic 

predisposition to lactose intolerance, or lactase non-persistence, which determines the metabolic 

pathways through which lactose is metabolized. We used data from a large biracial cohort of 

men and women, who completed dietary assessment at midlife and had multiple assessments of 

cognitive function in three cognitive domains: processing speed, executive function, and 

language.  

Our results suggest that milk intake at midlife in amounts greater than 1 glass/day may 

result in faster rate of cognitive decline over the subsequent 20-year period than that observed for 

participants reporting “Almost never” consuming milk. In our study population, that difference 

in decline was equivalent to a 10% additional decline. No effect modification of this association 

was observed by race. A significant association with a mitochondrial DNA copy number was 
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observed among Black participants, but not among Whites.  Milk intake was inversely 

proportional to mitochondrial DNA copy number, suggesting higher levels of oxidative stress 

among milk drinkers. Due to the small number of participants classified as lactase non-persistent 

we were not able to capture difference in the effect of milk on cognitive change or oxidative 

stress by lactase persistence genotype. 

Given that billions of people around the world consume milk daily, further studies are 

needed to evaluate the association of milk intake with oxidative stress and health outcomes in 

diverse populations and patterns of milk intake. Genetic variation in lactose metabolism should 

be considered to avoid potential confounding. 
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CHAPTER I: INTRODUCTION 

Cognitive decline has become a major public health concern. The onset of cognitive 

decline begins in the early 30s and the rate of decline varies among individuals. Faster rate of 

cognitive decline can lead to an earlier onset of mild cognitive impairment (MCI) and dementia. 

Early studies on cognitive impairment suggested that socio-economic factors are the main 

contributors to the risk of dementia, however more recent longitudinal studies have shown that 

those factors account for differences in cognitive reserve, but do not explain variability in the 

rate of decline. The focus of research has shifted to modifiable risk factors and younger 

populations in order to identify behaviors that could prevent progression to cognitive 

impairment. Animal studies suggest that oxidative stress plays an important role in 

neurodegeneration. The brain is particularly vulnerable to oxidative damage due to its high 

metabolic activity and low antioxidant defense. D-galactose, a metabolic derivative of lactose, 

has been used for many years to mimic cognitive aging through oxidative stress in animal 

models. D-galactose reacts readily with free amines of amino acids in proteins and peptides to 

form advanced glycation end products that accumulate in the organs by binding with cell surface 

receptors or cross-linking with body proteins, altering their structure and function, resulting in 

generation of reactive oxygen species (ROS), increased oxidative stress and inflammation. Based 

on recent studies 100mg/kg of D-galactose, administered subcutaneously for 7 weeks, is 

sufficient to induce memory deficit, decrease the number of new neurons, and increase oxidative 

stress in mice. This is equivalent to 6-10 g in humans, found in 1-2 glasses of milk, which is less 

that the USDA recommended intake for dairy for the adults. Milk, the main source of lactose in 
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the diet, plays an important role in the growth and development of children, however its health 

effects in adults have not been extensively studies. Studies looking at the association of milk 

intake with cognitive performance are few. Most existing studies explore the association of total 

dairy intake without accounting for lactose content of dairy products, or lactase persistence (LP) 

and non-persistence (LNP) among individuals, who digest lactose through different metabolic 

pathways. The proposed study will measure the association of habitual milk intake with the rate 

of cognitive decline, risk of MCI and dementia accounting for LP/LNP status in the 

Atherosclerosis Risk in Communities (ARIC) cohort. The ARIC cohort is a prospective biracial 

cohort of 15,792 middle-aged adults followed from 1987 to 2013 who underwent multiple 

assessments of cognitive performance and dietary intake. Multiple assessment of cognitive 

performance will allow estimating the association with the rate of cognitive decline in addition to 

the risk of clinical outcomes. In addition, the availability of genetic information will allow 

stratification by LP/LNP genotype. Mitochondrial DNA (mtDNA) copy number (mtDNA-CN) 

will be used to quantify the level of oxidative stress.
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CHAPTER II: SPECIFIC AIMS 

 Rationale 

To enhance our understanding of the effect of lactose in the diet on the rate of cognitive 

decline, and risk of MCI and dementia, two interrelated manuscripts were developed following 

the conceptual framework presented in Figure 1.  Aims 1 and 2 were developed to study the 

association of milk intake and cognitive function, while Aim 3 was developed to assess the 

proposed mechanism through which lactose in milk may affect health and cognitive function.  

An evaluation of the performance of the food frequency questionnaire (FFQ) in assessing 

habitual milk intake of participants was done as part of Aim 1, which informed the classification 

of exposure for all three aims. Aim 1 was also used to describe habitual milk intake in the study 

population, including differences in intake in sub-populations such as by race and by lactase 

persistence genotype. 

Aim 1 analyses also included an evaluation of two methods to address attrition in the 

cohort and compared results before and after such adjustments. Aims 1 and Aim 2 were 

developed to be combined into one manuscript.  

Aim 3 was developed to study whether milk intake contributes to systemic oxidative 

stress, which could have an impact on many health outcomes, including cognitive function. Aim 

3 also evaluated mtDNA-CN as a marker of oxidative stress in the study population.   
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 Aim 1 

To examine the association of habitual milk intake with the rate of cognitive decline 

over a period of 20 years. The association was to be assessed in race-stratified analysis, and 

analysis stratified by lactase persistence.  

Hypothesis 1: Milk intake is associated with faster rate of cognitive decline. A faster rate 

of decline is expected among individuals of LP genotype, who break down lactose though lactase 

in the small intestine – a process that generates D-galactose and leads to additional formation of 

ROS. 

Sub-aims of Aim 1 were to 1.1) describe the distribution of LP/LNP genotype by race 

and to 1.2) describe milk intake by lactase persistence genotype. 

Hypothesis 1.1: A higher proportion of LNP individuals is expected among Blacks.  

Hypothesis 1.2: Lower milk intake is expected for carriers of the LNP genotype.  

 Aim 2 

To examine the association between habitual milk intake assessed at midlife with the 

risk of MCI and dementia, in the overall population and stratified by race and by LP/LNP 

genotype. 

Hypothesis 2: Milk intake is associated with higher risk of MCI and dementia.  

 Aim 3 

To examine the association of milk intake with levels of oxidative stress assessed by 

mitochondrial DNA copy number. 

Hypothesis 3: Greater milk intake is associated with lower count of mtDNA-CN, 

indicating a higher level of systemic oxidative stress. Effect measure modification is expected by 

LP genotype, with a larger effect size observed among those who a LP.  
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 Public health implications 

Milk intake throughout life may impact the rate of cognitive decline via oxidative stress 

and associated cellular damage, but studies so far had been inconclusive and limited by 

inconsistent study designs, lack of high quality longitudinal data on cognitive function, or 

appropriate assessments of dietary intake. Given that a large proportion of adults in the U.S. 

consumes milk daily, understanding of the potential impact of milk intake on the rate of 

cognitive decline may be an important step towards reducing the burden associated with 

impaired cognition. In addition, exploring the association of milk intake with mtDNA-CN would 

help gain a better understanding of ways in which diet can have an impact on health.  

 Conceptual framework 

 

Figure 1: Conceptual framework of the hypothesize association of milk intake with cognitive 
decline (Aim 1 and Aim 2) through the mechanism of oxidative stress (Aim 3), and potential 
effect modification by lactase persistence genotype. 
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CHAPTER III: BACKGROUND AND SIGNIFICANCE 

 Epidemiology of cognitive decline, MCI and dementia 

1. Cognitive decline 

The term cognitive decline refers to decline in mental processes, such as attention, short-

term and long-term memory, reasoning, coordinating of movement and planning of tasks, which 

are crucial for the conduct of daily living activities1. Evidence from the neurobiological and 

cognitive performance studies suggest that age-related cognitive decline begins early in life - in 

the 20s or early 30s2. The rate of cognitive decline varies among individuals3-6.  It has been 

suggested that faster rate of cognitive decline in older adults is associated with lower levels of 

well-being, including self-acceptance, autonomy, purpose in life, personal growth, positive 

relations with others, and environmental mastery7, 8. Furthermore, a faster rate of cognitive 

decline can lead to earlier onset of cognitive impairment and dementia, resulting in significant 

burden for individuals experiencing the decline, as well as their caregivers. In an attempt to delay 

the onset of cognitive impairment and dementia, research efforts have focused on modifiable risk 

factors that could be associated with the rate of cognitive decline. 

Until recently, speculations concerning factors that influence variability in rates of 

cognitive decline were mostly based on cross-sectional studies of dementia risk. It was 

hypothesized that factors that contribute to dementia risk (e.g. socio-demographic or vascular 

risk factors) are the major predictors of the rate of cognitive decline. Recent longitudinal studies 

have suggested that factors associated with the risk of dementia are not always associated with 

the rate of cognitive decline, but are associated with differential baseline cognitive level, or 
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cognitive reserve 9-11 which may then explain the differences in the risk of MCI and dementia. 

Individuals with higher cognitive reserve, compared to those with lower cognitive reserve, take 

longer to decline enough cognitively to meet the threshold at which point dementia would be 

diagnosed, even if decline occurs at the same rate10. Cognitive reserve is a reflection of 

intellectual capacity, as well as education, occupation, and participation in intellectually 

stimulating activities12. Extant studies also suggest that pathological indices of the common 

causes of dementia, such as metabolic impairments and Lewy body disease, don’t explain the 

majority of the variation in cognitive decline. Other important determinants of cognitive decline 

may thus remain to be identified13.   

2. Definition, prevalence, and incidence of MCI 

MCI is a clinical syndrome defined as cognitive decline greater than expected for an 

individual’s age and education level that does not interfere notably with activities of daily life14. 

Criteria for clinical diagnosis of MCI include evidence of concern about a change in cognition 

(in comparison to previous level), impairment in one or more cognitive function domains 

expressed as performance lower than expected for age and educational level, mild problems 

performing functional tasks while preserving the ability to function independently in daily life 

with minimal assistance, or a score 1 to 1.5 standard deviations below the mean for age and 

educational level in one or more domains on cognitive test15, 16. MCI may consist of impairment 

in a single or multiple cognitive domains.  The number of affected domains indicates disease 

severity and likelihood of progression to dementia. Given that cognitive and functional severity 

within the MCI is highly variable and includes different traits and etiologies the diagnosis of 

MCI is heterogeneous, which explains the variability in estimates of prevalence rates, incidence 

rates, and rated of progression to dementia17.  
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The types of MCI are characterized by the presence or absence of memory impairment, 

i.e., amnestic and non-amnestic MCI respectively17. Further classification of MCI is related to the 

underlying etiology, pathology, clinical presentation, and outcomes. The etiology of MCI can 

include neurodegenerative disease, Apolipoprotein E (ApoE) variant, vascular damage, or 

cerebrovascular disease (CVD). The pathology underlying MCI includes neurodegenerative, 

amyloid beta (Ab)plaques, neurofibrillary tangles (NFT), hippocampal atrophy, reduced brain 

volume, cortical and subcortical infarctions, as well as white matter hyperintensities (Table 1) 17.  

Estimates of the prevalence of MCI in population-based studies range from 3% to 29% 

globally, due to different criteria for MCI diagnosis. Although most MCI classification criteria 

included memory impairment and absence of impaired intellectual functioning, differences in 

diagnosis criteria were observed in acceptable levels of impairment in activities of daily living 

and degree of impairment in a domain other than memory18, 19. In population-based studies, 

which have used more recent criteria for diagnosis, the prevalence of MCI has been estimated 

from 16% to 24%17. The few existing studies on incidence of MCI report rates from 5.1 to 168 

cases per 1000 person years17, 20.  

An important feature of MCI outcome is an increased risk of progression to dementia, 

with rates of progression among study populations ranging from 20% to 40% over the follow-up 

period, which translated into 10-15% conversion rate per year17, 21. Risk factors for progression to 

dementia include the degree of functional impairment, severity of neuropsychological test scores, 

and presence of neuropsychiatric behaviors at the time of MCI diagnosis17.  
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3. Definition, prevalence, and incidence of dementia 

Dementia is characterized by deterioration in multiple cognitive domains, which unlike 

MCI, is severe enough to interfere with daily functioning22. Alzheimer’s disease (AD) is the most 

frequent cause of dementia, which progresses from deterioration in episodic memory to other 

domains of cognition. Other less frequent forms of dementia include vascular dementia (VaD), 

mixed dementia, dementia with Lewy bodies (DLB) and Parkinson’s disease with dementia (PD-

D)23, 24. The diagnosis of dementia applies given when there are cognitive and behavioral 

symptoms that interfere with the ability to function at work or at usual activities and there is an 

observed decline from previous levels of functioning that are not explained by delirium or other 

psychiatric disorder25. Dementia is diagnosed through a combination of patient’s history (self-

reported or through an informant) and an objective cognitive assessment through mental status 

examination or neuropsychological testing25. The cognitive or behavioral impairment involves a 

minimum of two of the following domains: impaired ability to acquire and remember new 

information; impaired reasoning and handling of complex tasks; impaired visuospatial abilities; 

impaired language functions (speaking, reading or writing); changes in personality, behavior, or 

comportment25.  

Alzheimer’s disease-related dementia (AD) is a clinical diagnosis based on the presence 

of the cognitive syndrome that is not of abrupt onset and includes memory impairment in the 

absence of other diagnosis sufficient to cause cognitive impairment. The criteria for Alzheimer’s 

disease dementia includes presence of one or more of the flowing disturbances in addition to 

memory impairment: language, learned motor skills, visuospatial/sensory, executive function, 

impairment in social or occupational functioning16, 25.  
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Cardiovascular disease-related dementia, or Vascular dementia (VaD), is defined by an 

algorithm that uses the following information: history of stroke, history of bilateral or multiple 

infarcts, extent of white matter hyperintensities on imaging, physical examination evidence of a 

typical stroke pattern of neurologic signs, onset of dementia 3 months after a recognized stroke 

and abrupt deterioration in cognitive functions26. 

Lewy body disease-related dementia (DLB) diagnosis is based on the published criteria 

when there are at least two of the following: spontaneous features of parkinsonism, history of 

fluctuations in alertness or cognition, dream enactment behavior (REM sleep behavior disorder) 

reported by an informant, or hallucinations27. 

Parkinson disease dementia (PD-D) is diagnosed when dementia occurs in the context of 

well-established Parkinson disease27.  

The prevalence of all dementias in the US in people 60 years of age or older is estimated 

at 6.8%28. The age-specific prevalence of dementia doubles for every five years of age, from 

1.5% in persons aged 60-69 years to 40% in those over 90 years of age29. It is estimated that the 

number of people with dementia will double every 20 years30. Annual incidence of dementia is 

estimated from 1 per 1000 among ages 60-64 years to 86 per 1000 among those 95 years of age 

and older31.  

Due to population aging, dementia has become one of the major challenges to public 

health and to the elderly care system. It is a principal cause of disability, institutionalization and 

shorter survival in older people. In 2015, the number of people living with dementia globally was 

estimated at 47.5 million and is projected to reach 75.6 million in 2030 and 135.5 million in 

205032. Dementia represents a significant public health challenge in the US, the burden of which 

will increase as the population ages. Although the prevalence of dementia and its associated 
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disability increases exponentially with age, recognition of the importance of midlife vascular risk 

factors and midlife cognition for late life cognitive impairment has shifted the focus of research 

towards younger persons and the early stages of cognitive decline and mild cognitive impairment 

with an attempt to delay the progression to full dementia33.   

4. Global burden of dementia and cognitive impairment 

Globally, dementia and cognitive impairment are the leading chronic disease contributors 

to disability and dependence among older people32. The onset of cognitive impairment quickly 

compromises the ability to carry out essential daily life activities and results in loss of 

independence, placing demands on healthcare and social services. The need for support from the 

caregiver starts early in the dementia course, and intensifies as the illness progresses over time. 

Such demand placed on caregivers in its turn results in practical, psychological and economic 

strains leading to anxiety, depression, loss of income from employment32. The total estimated 

worldwide costs of dementia in 2010 were $604 billion, which is equivalent to 1% of the world’s 

gross domestic product. About 70% of the global costs occurred in two regions: Western Europe 

and North America34. Those costs are driven mainly by social care needs, while direct health care 

costs account for a small proportion of the total, given the low diagnosis rate and limited 

therapeutic options. The World Alzheimer Report 2010 estimated an 85% increase in costs to 

2030. 

5. Risk factors for cognitive decline, MCI and dementia 

Risk factors for cognitive decline, MCI and dementia include non-modifiable risk factors 

such as age, sex35, 36, genetic factors (Apolipoprotein e4 allele number)37-48, and modifiable risk 

factors such as low number of years of education1, 10, 49, vascular risk factors (diabetes, 

hypertension, obesity, dyslipidemia, smoking)50-54, cardiovascular outcomes (coronary artery 
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disease, atrial fibrillation, congestive heart failure, cerebrovascular disease)55, 56, neuropsychiatric 

conditions (depression and anxiety)57-61, and biomarkers (inflammation)52, 54, 62-65.  

APOEe4, an allele of the cholesterol transfer Apolipoprotein E, is an extensively studied 

non-modifiable risk factor for dementia.  Carriers of the APOEe4 allele have an increased risk of 

Alzheimer’s disease, as well as an earlier age at onset compared to non-carriers37-39. Longitudinal 

studies show that APOEe4 carriers also exhibit greater cognitive decline with aging40, 41, 66. 

Looking at gene-environment interactions, excess risk has been reported in APOEe4 carriers 

with hypertension, diabetes, and atherosclerosis, as well as an interaction with body mass index 

(BMI) and sex36, 40, 43-47. A gene-behavior interaction was reported between depressive symptoms 

and APOEe448. 

Many modifiable risk factors and protective factors have been studied in relation to 

cognitive decline, MCI and dementia. A recent systematic review and meta-analysis by Beydoun 

et al. summarized evidence from 247 cohort and case-control studies published between January 

1990 and October 20121. The authors concluded that among generally healthy populations, 

individuals’ socio-economic, behavioral characteristics and dietary intake seem to affect 

cognitive performance, cognitive change over time, incidence of cognitive impairment and all-

cause dementia. The authors found that low educational attainment and other markers of low 

SES were associated with poorer cognitive function in adulthood and age-related cognitive 

decline and impairment, as well as greater risk or prevalence of dementia in both longitudinal 

and cross-sectional studies. While smoking was hypothesized to have a deleterious effect on 

cognition by increasing the risk of stroke, influencing neurodegeneration and oxidative stress, the 

findings on the effect of smoking on cognitive outcomes were inconclusive, with only 55% of 

cohort and 29% of cross-sectional studies finding a harmful effect. Findings on the effect of 
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alcohol consumption, which is hypothesized to be beneficial in moderation, were also mixed 

with some cross-sectional and cohort studies finding a linear, J or U shaped association with 

cognitive outcomes, while others finding no association at all. Physical activity was hypothesized 

to have a beneficial effect on cognition by reducing the risk of related comorbidities (coronary 

heart disease, stroke, diabetes), sustaining cerebral blood flow, improving aerobic capacity and 

cerebral nutrient supply, as well as growth factors (e.g. brain-derived neurotrophic factor). After 

reviewing the literature, Beydoun et al. concluded that physical activity could represent an 

important and potent protective factor for cognitive decline and dementia.  Some of the 

nutritional factors that were reviewed included caffeine, antioxidants (vitamin E), homocysteine, 

and n-3 fatty acids, all showing mixed findings. 

From the review of 247 studies it is clear that the mixed findings make it difficult to draw 

firm conclusions on risk and protective factors for cognitive outcomes. Existing studies vary in 

their definition of cognitive function, MCI and dementia, tests and scoring systems to assess 

cognitive performance, and quality of case ascertainment. The studies vary also in sample size, 

and some may be underpowered. Assessment of cognitive function was often done by the Mini-

Mental State Examination (MMSE), which is known to have a “ceiling effect”, failing to capture 

differences in cognitive function among those with higher levels of cognitive performance10. 

Other limitations of cohort studies are short follow-up time and study population that is limited 

to older people (65, and up to 80 years of age at baseline), failing to capture cognitive decline 

earlier in life. The most consistent associations from this review were found for early life 

exposure, such as education, pointing to the need of assessing exposures in the early stages of 

cognitive changes. The few existing large cohort studies on cognitive function were done in 
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European populations (England and Netherlands), making findings not easily generalizable to the 

population of US or other countries with more diverse populations1.  

Randomized controlled trials (RCTs) looking at the association of nutritional factors 

(folic acid, vitamins B6 and B12, fatty acids, antioxidants) and dietary patterns (Mediterranean 

diet, DASH diet, caloric restriction) with cognitive outcomes also show mixed results and fail to 

provide evidence for a beneficial effect of nutrient supplementation67. Although RCTs are better 

able to provide unbiased results than observational studies, some of the limitations, such as short 

duration of the interventions, small sample size, adherence to treatment, and differences in 

cognitive performance assessment could explain mixed findings.  

 Milk intake, milk metabolism, and its effect on health 

1. Milk intake globally and in the US – recommendations and trends 

Dairy foods such as milk, cheese, and yogurt are consumed by billions of people around 

the world. According to the 2013 Food and Agriculture Organization (FAO) of the United 

Nations milk is a major source of dietary energy, protein and fat68. Milk intake varies by 

geographical region, with less milk consumed in Asia and Africa and more in Europe and the 

Americas. According to the USDA data, despite overall high intake of milk, average 

consumption in the US has decreased by 37%, from 1.5 cups per day in 1970 to 0.8 cups per day 

in 2010. The consumption of whole milk decreased by 78% over the last 40 years, partially being 

replaced with the low-fat milks (Figure 2)69. 

Currently 26 out of 42 countries from all regions of the world recommend consumption 

of low-fat and non-fat milk for all, with the exception of children for whom the recommendation 

is at least one serving a day, up to four servings a day68.  In the US, the USDA recommends 2 

daily servings of dairy for children and 3 servings for adults. These recommendations are met in 
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children ages 1-3, but not in adults70. An age-related decline in dairy intake begins in childhood 

and is observed throughout adulthood, partially due to the decrease in lactose tolerance with age. 

In the US, milk accounts for 51% of all dairy intake70.   

2. Milk as part of diet 

Milk intake can serve as a marker of diet quality because of its high nutrient content71. 

Whole milk is high in fat, thus it plays an important role in the diets of infants and young 

children in populations with low fat intake72. Milk lipids are carriers of fat soluble vitamins and 

milk protein contains all the essential amino acids needed by humans. The main carbohydrate in 

milk is lactose, which is involved in the intestinal absorption of calcium, magnesium and 

phosphorus, and the utilization of vitamin D73. Milk contributes to the required intake for 

calcium, magnesium, selenium, riboflavin, vitamin B12 and pantothenic acid 68 and plays an 

important role in child growth and development. Intervention and observational studies around 

the world indicate that preschoolers receiving dairy supplementation or consuming more dairy 

showed improved nutritional status as well as weight –for-height z-scores68. Benefits of milk 

supplementation on growth have also been observed among school-aged children in countries 

with higher prevalence of malnutrition, and less so in countries where malnutrition is less 

common. Ecologic and observational studies have shown that countries and regions with higher 

milk consumption across and within countries correspond to better nutritional status and taller 

adults 74-76. The proposed mechanism through which milk could affect height, in addition to being 

an energy source, is through its high calcium content and presence of the growth stimulating 

insulin-like growth factor-1 (IGF-1).  
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3. The effect of milk intake on health – existing studies 

Beyond the nutritional benefits that milk can provide for the growth and development of 

children, less is known about its effects on health in adults. It has been suggested that dietary 

patterns with higher dairy intake are associated with reduced risk of some components of 

metabolic syndrome and of type 2 diabetes 77-79. Milk and dairy products are often linked to CVD 

risk due to high content of saturated fatty acids, however conflicting results have been found 

about the association of full-fat dairy and CVD risk, with some studies pointing at risk 

reduction80, 81 and others at increase in risk82. Other nutrients found in milk, such as protein82, 

lactose83, 84, and calcium-to magnesium ratio84, have also been implicated in increased CVD risk. 

Previous studies reported inverse association between dairy intake and hypertension85, 86 and 

stroke87, ischemic heart disease81, and total CVD88. A recent review of 18 observational studies 

concluded that full-fat milk, cheese, and yogurt have a protective effect on risk of CVD89. 

Studies of the association of dairy intake with the risk of cancers (colorectal, breast, prostate, 

bladder) have given inconclusive results and several hypotheses exist on how some nutrients in 

milk may increase and others decrease the risk for different cancers. Calcium, found in dairy, is 

hypothesized to have a protective effect with respect to colorectal cancer by inhibiting the 

proliferation of aberrant crypt foci in the colon90, 91. On the other hand, some studies suggest that 

dairy is associated with increased risk of ovarian92, prostate93, 94, and testicular95 cancers. No 

consensus exists on the association of milk intake with the risk of breast cancer96-98. 

4. Milk metabolism 

The main carbohydrate in milk is the disaccharide lactose, which is broken down through 

hydrolysis in the intestinal tract. Once broken down into monosaccharides galactose and glucose 

it can be used as a source of energy99. This process is aided by the activity of the enzyme lactase 
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in the small intestine. Lactase activity is high in infancy, when milk is the main source of 

nutrition, and often declines after weaning. Those individuals who maintain high lactase activity 

throughout adulthood are identified as lactase persistent (LP), while those who experience a 

decline in lactase activity are referred to as lactase non-persistent (LNP) individuals. The 

distribution of lactase phenotype in human populations is highly variable, with proportion of 

LNP individuals ranging from less than 10% to 90% of the population99. 

 Lactase persistence and milk metabolism 

Lactase persistence, or the ability to digest lactose into glucose and galactose in 

adulthood, emerged 7,500-10,000 years ago among populations that domesticated milk animals 

and consumed milk99, 100. Dominant mutations occurred in the lactase promoter region upstream 

form lactase phlorizin hydrolase on chromosome 2q21 retaining intestinal lactase into adulthood. 

Although genetic variation allows the modern populations to be categorized as lactase persistent 

and lactase non-persistent, a further type of adaptation is observed in lactase maldigesters, 

namely lactase non-persistent individuals who continue consuming dairy foods and exhibit 

improved lactose handling through altered microbiome and metabolome (colonic adaptation) 101. 

In turn, carriers of the LP genotype may lose the ability to digest lactose due epithelial damage 

that leads to decreased lactase activity102-104. Secondary loss of lactase is a frequent result of viral 

infections and allergies99. 

 Determining lactase persistence genotype in population studies 

Lactase phenotypes can be determined directly by assaying lactase from a small intestine 

biopsy or indirectly by lactose-tolerance tests105. Lactose tolerance tests consist of measuring 

blood glucose concentrations within 15 to 45 minutes of lactose consumption (50mg), or by 

measuring urinary galactose after inclusion of ethanol with the lactose load106, 107.  In lactase non-
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persistent people, undigested lactose can be determined by measuring breath hydrogen which is 

excreted when undigested lactose reaches the colon and gets fermented108. Direct measures 

through biopsy are more reliable, but not practical in population studies.  

 Population distribution of the lactase persistent genotype 

The frequency of lactase persistence varies dramatically in different populations105. LP is 

most prevalent in Europe (with the highest frequency in Swedes and Danes, declining as one 

moves south and west) and in milk-dependent nomads of the Afro-Arabian desert zone. LP is 

considered low in the rest of the world, including Asiatic populations (Appendix A).109   

The single nucleotide polymorphisms (SNPs) most frequently used to determine LP/LNP status 

are rs4988235 (LCT-13910C>T) in the populations of European descent and rs145946881 (LCT-

14010G>C) in populations of African descent. However studies in African countries suggest that 

there are other SNPs also associated with lactose digestions, such as rs182549 (LCT-

22018G>A),  rs41380347 (LCT-13915T>G), rs41525747 (LCT-13907C>G), LCT-13914G>A, 

LCT-14009T>G may show greater prevalence109 (Appendix B). 

 Different pathways of milk metabolism and their effect on health  

Research studies on the health effects of dairy foods have shown inconclusive results and 

one of the suggested explanations has been that the effect of dairy on health differs among 

LP/LNP individuals, introducing confounding to studies that ignore the phenotype110. The LNP 

individuals who consume dairy products frequently and show no symptoms of lactose 

intolerance may be colonically adapted. In those individuals, lactose can play a role of prebiotic 

in the colon, thus being a beneficial nutrient when consumed in small quantities. Such prebiotic 

contribution of dairy foods among people with LNP genotype may reduce risk for some diseases 
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in which the microbiome plays a role but also may accentuate risk if the mechanism  involves 

other “toxic” effect of the byproducts of dairy digestion by bacteria110, 111.   

This bacterial toxin hypothesis is based on the fact that bacteria release a wide range of 

fermentation products, such as diols. For example, butane 2,3 diol is a fermentation product of 

glucose. The plasma concentration of butane 2,3 diol in healthy humans is 10-100mM. If lactose 

in a glass of milk is converted to butane 2,3 diol, the local concentration of this diol in the 

gastrointestinal tract would be 100-200mM111. Other bacterial toxins include amino acid 

degradation products such as the phenol cresol, indoles and skatoles, or peptide and protein 

toxins99. These bacterial toxins act on regulatory pathways that switch cells on or off in the 

nervous system, heart and muscles, and the immune system99, 112, 113.   

In the LP population, the effect of lactose breakdown by lactase leads to formation of D-

galactose which is processed by liver and leads to elevated levels of oxidative stress, a process 

that is well established in animal models114-118. 

Figure 3 summarizes different pathways of milk metabolism by lactase persistence/non-

persistence phenotype and resulting health effects from lactose consumption.  

 Milk metabolism and oxidative stress 

1. Oxidative stress – overview 

Free radicals are molecules with an unpaired electron in their outer orbit, which makes 

them more reactive than the corresponding non-radicals. Free radicals readily accept electrons 

from other molecules - a process called oxidation119. Humans are continuously exposed to free 

radicals from environmental sources (e.g. smoking, pollution, radiation) and from cellular 

metabolism (e.g. respiration, enzyme reactions)120, 121. Free radicals play an important role in 

origin of life and biological evolution122. As an example, oxygen radicals are involved in many 
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biochemical activities of cells such as signal transduction and gene transcription, and regulate 

important processes, such as relaxation and proliferation of vascular smooth muscle cells, 

leukocytes adhesion, platelets aggregation, angiogenesis, thrombosis, vascular tone and 

hemodynamics123. The most common free radicals are hydroxyl radical (OH.), superoxide radical 

(O2-), and nitric oxide (NO.)124, 125. Other molecules, such as hydrogen peroxide (H2O2) and 

peroxynitrate (ONOO), are not free radicals, but can lead to their generation through various 

chemical reactions. Free radicals and related molecules are often classified together as reactive 

oxygen species (ROS) due to their ability to promote oxidative changes within the cell125. 

Mitochondria are the primary source of ROS in the majority of cells, as they are the cite of 

cellular respiration126. The mitochondria are ancient bacterial symbionts with their own 

mitochondrial DNA, RNA, and protein synthesizing systems. The mitochondria burn calories 

that come from diet, using oxygen that is breathed in to make chemical energy to do work and 

maintain body temperature. As a byproduct of energy production, the mitochondria generate 

ROS (O2
-  and H2O2). ROS can pass freely through cell and nucleus membranes, and oxidize 

biomacromolecules such as lipids and proteins, as well as cause damage to RNA and DNA. As 

an example, ROS are involved in lipid peroxidation, which leads to cell membrane leakage 127. 

The oxidation of amino-acids results in the formation of protein-protein cress-links, leading to 

dysfunction of these proteins. Oxidation of kinase and phosphatase dysregulates the signal 

pathways. ROS-induced DNA peroxidation interrupts gene transcription and causes gene 

mutations128. These processes lead to damage of various cellular components and  may result in 

cell death129. Overproduction of ROS is linked to many chronic diseases, including 

atherosclerosis, cancer, diabetes, rheumatoid arthritis, myocardial infarction, cardiovascular 

disease, chronic inflammation, stroke, aging and degenerative diseases130-134.  
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To counteract the oxidative damage from free radicals, antioxidant defense systems co-

evolved along with the aerobic metabolism. Free radicals and antioxidants exist in a dynamic 

state of equilibrium and disruption of this balance in favor of an increase in reactive oxygen 

species leads to what is labeled oxidative stress135, 136, 137. 

2. Oxidative stress and mitochondrial damage 

Typical aging involves a gradual decline in cognitive function, but the onset and 

progression of decline are variable among individuals. While this variability may be due to many 

biological changes, a large contribution may be attributed to differences in rates of age-related 

cellular deterioration138-140. The brain is particularly susceptible to cellular damage through the 

pathway of oxidative stress due to its high metabolic activity141, 142. The brain has high oxygen 

demands, which constitutes 20% of the body oxygen consumption, as well as high content of 

redox-active metals such as iron or copper in the central nervous system cells, which are actively 

involved in ROS formation143. Brain cell membranes are high in levels of polyunsaturated fatty 

acids, making them susceptible to lipid peroxidation144. ROS and oxidative stress have been 

shown to play a pivotal role in neurodegeneration, which may subsequently lead to cognitive 

impairment and dementia 137, 145-147. Neuronal mitochondria provide energy and modulate calcium 

kinetics and metabolism for the high energy demand synaptic activity. Mitochondria in the 

neurons are at higher risk for damage due to the long lifespan of neurons and thus increased risk 

for toxin accumulation with aging. Increased ROS production/accumulation results in oxidative 

stress, disrupting neuronal homeostasis through lipid oxidation, protein modification, DNA 

mutations, formation of mitochondrial permeability transition pores, thus leading to low energy 

provision, dysregulated mitochondrial dynamics, disrupted mitochondrial calcium handling 

capacity, decreased neuronal plasticity and eventually neuronal death148. MtDNA is at high risk 
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for lesion development through the process of oxidative stress due to the physical proximity to 

ROS generation sites. There are multiple presentations of mtDNA defects in neurodegenerative 

diseases, including point mutation, nucleic acid modification, large-scale deletions, and 

decreased mtDNA copy number149-152. Damaged mtDNA leads to mitochondrial respiration 

defects, excessive ROS generation, increase mitophagy and eventually apoptosis and cell 

death148. The rate of mtDNA damage and decline is modulated by the level of mitochondrial 

oxidative stress. When the mitochondrial ROS production rate increases, the rate of cell loss 

increases, resulting in early tissue failure and age-related disease141. In addition to mitochondrial 

dysfunction, accumulation of ROS results in nuclear DNA lesions, loss of proteostasis (excessive 

protein misfolding), and altered cellular communication, all of which have been described as 

culprits of aging and age-related pathologies 138-141, 153-168.  

3. Oxidative stress and neurodegenerative diseases 

Multiple studies have shown that oxidative stress plays a role in the etiology of a variety 

of neurodegenerative diseases, including MCI, AD, and PD169-179.  

MCI subjects exhibit significant oxidative imbalance179, 180, enhanced protein 

peroxidation181, 182, and decreased levels of antioxidants183, 184. Extensive oxidative stress is also a 

characteristic of AD brains, which exhibit increased markers of protein oxidation and markers of 

oxidative damage to DNA and RNA145, 181, 185-187, increased lipid peroxidation in multiple brain 

regions188-192, and alterations in the activities or expression of antioxidant enzymes192-194. 

Increased oxidative damage to lipids and proteins correlate with the severity of the disease in 

both MCI and AD195.  

Several studies have demonstrated that mitochondrial dysfunction is an important factor 

in the pathogenesis of AD. A number of mitochondrial and metabolic abnormalities have been 
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identified in the hippocampal neurons of AD196-198. Biopsies from AD brains also showed 

significant reduction of mitochondria, suggesting degradation by autophagy196, 197. Apart from 

neuronal death AD is characterized by two pathologic hallmarks: senile plaques formed by 

extracellular deposits of Ab peptides and neurofibrillary tangles (NFTs) composed of 

intracellular aggregations of hyperphosphorylated tau proteins199. Ab deposits and NFTs are 

manifestations of protein misfolding in the brain, a process in which ROS imbalance plays an 

important role200, 201-203. In addition, misfolded proteins are retained in the endoplasmic reticulum 

(ER), leading to ER stress response, which, in the presence of oxidative stress, elicits apoptotsis. 

The role of the ER stress in mediation of neurodegenerative diseases has been well 

documented204, 205. ROS are also actively involved in tau phosphorylation. In an in vitro model of 

chronic mild oxidative stress ROS were found to phosphorylate tau and once phosphorylated, tau 

are vulnerable to modification by carbonyl products of oxidative stress and consequent 

aggregation into fibrils206, 207, which contributes to formation of neurofibrillary tangles208.  

Oxidative stress and mitochondrial dysfunction also play an important role in the 

degeneration of dopaminergic neurons in PD, leading to characteristic motor symptoms209-211. 

Evidence has been developed for oxidative and nitrative damage to key cellular components in 

the PD substantia nigra142, 212-214. PD brains show increase levels of lipid peroxidation215, 216, 

modification of soluble proteins217, and DNA and RNA oxidation218, 219.   

4. Milk and oxidative stress- mechanism 

Aside from its known nutritional benefits, milk intake may result in undesirable effects 

due to a derivative of lactose, D-galactose. D-galactose is a monosaccharide and a reducing 

sugar, which at normal concentrations is metabolized into glucose. At higher levels, D-galactose 

reacts readily with free amines of amino acids in proteins and peptides to form advanced 
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glycation end products (AGEs). AGEs are not metabolized further and accumulate in the organs 

by binding with cell surface receptors or cross-linking with body proteins, altering their structure 

and function. AGEs affect intracellular processes via specific receptors, such as the receptor for 

AGE (RAGE), activating diverse signal transduction cascades and downstream pathways, 

including generation of ROS which results in increased oxidative stress108, 118, 220-223.  

The effect of D-galactose on physiological processes has been extensively studied in 

animal models. It has been shown that injection of D-galactose induces neurological 

impairments, decreases neuromuscular activity, increases production of free radicals, decreases 

antioxidant enzyme activity, diminishes immune responses, and causes impairment of spatial 

learning and memory in rodents, which resembles naturally occurring aging115, 220, 224-229. Even at 

low doses, D-galactose results in a shorter life span caused by oxidative stress damage, chronic 

inflammation, neurodegeneration, decreased immune response, and gene transcriptional 

changes115, 224 . Although the mechanism of D-galactose-induced aging and memory impairments 

has not been defined, existing data suggest that increased levels of ROS and oxidative damage in 

the brain might be the main reason 116, 220, 227.  

Although lactose from milk is not the only dietary source of galactose, its concentration 

is greatest in milk. A serving of milk corresponds to approximately 6,250mg of galactose, while 

peas and beans have 120-740mg per serving, and fruits and vegetables 5-76mg per serving230. It 

has been suggested that the amount of D-galactose generated by 1-2 glasses of milk could be 

sufficient to observe physiological changes in humans similar to those observed in animal 

models, such as signs of accelerated senescence, including cognitive changes 231. 
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5. The role of inflammation in oxidative stress and cognitive decline 

The two most common features of neurodegenerative disease are sustained oxidative 

stress and inflammation232. Excessive generation of ROS in the brain causes neuronal damage 

and thus a release of cytosolic factors that activate microglia and astrocytes. These cells respond 

by releasing proinflammatory cytokines (IL-1, IL-6, TNF-a), which induce further accumulation 

of ROS, leading to potentiation of the inflammatory response and subsequent exacerbation of 

neuronal damage. TNF-a is a key cytokine of the immune system that initiates and promotes 

inflammation. The cyclical promotion of inflammation though ROS and promotion of ROS  

production by TNF-a can, when uncontrolled, result in chronic neurodegeneration232.  

6. The role of antioxidants in oxidative stress 

In healthy state, mediators of oxidative stress/inflammation are in balance with the 

counteracting antioxidants and anti-inflammatory molecules233 (Figure 4 232).  

During mitochondrial activity superoxide is produced in the electron transport chain (ETC). 

Superoxide can inactivate proteins containing iron-sulfur clusters in the mitochondrion, thus it is 

immediately converted to H2O2 by superoxide dismutase 2 (SOD2), located in the mitochondrial 

matrix, or SOD1 located in the cytosol234, 235. H2H2 can act as an oxidant, and, in the presence of 

reduced metal ions such as ferrous iron, can be converted by the Fenton reaction into a highly 

reactive hydroxyl radical, the most harmful species of all ROS143, 209. H2O2 is rapidly converted 

to water by mitochondrial glutathione (GSH) with the participation of GSH reductase and 

peroxiredoxins236. The GSH redox cycle is also important in the reduction of oxidized lipid 

molecules and is considered a critical defense mechanism to protect membranes against 

oxidative stess236 .  Other antioxidants include catalase (CAT), vitamins C and E which are 

effective in preventing lipid peroxidation237. Antioxidant supplementation has been of particular 
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interest as a potential treatment of chronic conditions related to oxidative stress, however reviews 

of recent clinical trials have failed to confirm the efficacy of antioxidant treatment of chronic and 

neurodegenerative conditions in humans237-239.  

 Existing studies of milk intake and cognitive function 

So far, few studies have examined the association of dairy intake with cognitive 

outcomes, and studies on milk as a separate group are even fewer.  

Four cross-sectional studies examined the association of dairy intake with cognitive 

performance and dementia risk. A study from Korea of 449 participants ages 60-83 years, found 

that women with poor cognitive function had significantly lower dairy product intake, but no 

significant association was found in men240. A study from Mexico of 1748 participants with a 

mean age of 64 years, found no association of dairy products consumption with cognitive 

impairment241. A US study of 1056 participants ages 55-94 years, found that greater cheese 

intake was associated with reduced likelihood of cognitive impairment in a dose response 

manner, while no association was found for milk242. Another US study of 972 participants ages 

23-98 years, found that daily dairy food intake was associated with better performance, but no 

association was found for individual dairy products243. Overall, results from cross-sectional 

studies are controversial. The main limitation is assessment of dietary intake at the time of 

cognitive function assessment, which may lead to reverse causality. Most studies focused on 

overall dairy, without differentiating between low- and high-lactose products. The assessment of 

intake also varied (24-hour recall, interview, food questionnaire), which resulted in different 

levels of measurement error in each study. Assessment of cognitive outcomes also varied, but 

even when same test was used, the criteria for cognitive impairment were different (<19 vs <12 

for MMSE score).  
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No prospective studies have examined the association of dairy intake with cognitive 

decline. All identified prospective studies measured cognitive function once, so that the rate of 

cognitive decline could not be assessed. Only one study assessed “recent cognitive change” that 

was reported by caregivers of study participants244. A study from Australia of 601 males ages 75 

years and older with a mean follow up of 4.8 years reported an association of full-fat milk with 

impaired cognitive function171.  Two studies from Finland of more than 1000 participants over 50 

years of age followed for 21 years reported that fat intake from milk products was not 

significantly associated with dementia risk245, but that high saturated fat intake from milk 

products was associated with poor global cognitive function and increased risk of MCI246. A 

study from Japan of 1774 participants ages 35-60 years at baseline followed for 27 years found 

that daily milk intake was associated with significantly lower risk for vascular dementia, but not 

for Alzheimer’s dementia247. And finally, two studies from France of 4,809 and 3,076 

participants over age 60 years at baseline followed for 13 years found that consumption of dairy 

desserts and ice-cream was associated with cognitive decline (reported by caregivers)244, and 

milk consumption was associated negatively with verbal memory248.  Overall, most prospective 

studies focused on fat from dairy products and overall dairy intake, and association with milk 

intake as a separate group were not reported. Half of the studies included older population at 

baseline, who may have already suffered cognitive decline prior to initial screening. Assessment 

of dairy intake varied across studies and dairy products included in “total dairy” also varied by 

study (e.g milk+sour milk+spreads vs milk+yogurt+cheese+desserts).  

Overall, few studies have examined the association of milk intake with cognitive 

outcomes separately from other dairy products, a considerable limitation since fermented dairy 

products such as yogurt, cheese, and soured milk, have low lactose content and do not have the 
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same oxidative properties. As a result, individual in a high total dairy intake group who consume 

more fermented products ingest less lactose compared to someone in the same intake group but 

consuming primarily milk. The few prospective studies that have examined milk intake 

separately from other dairy products reported contradictory results, but were heterogeneous in 

their methodological approaches. Such studies had small sample sizes, some were restricted to 

one gender group, were conducted in predominantly in White or Asian populations, or included 

older populations at baseline. Other limitations included a single assessment of cognitive status, 

or a study outcome limited to clinical diagnoses of dementia, precluding the study of potential 

effects of milk intake on milder forms of cognitive impairment such as MCI. Further, most 

studies did not have information on APOEe4 status, a strong risk factor for cognitive 

impairment, failed to account for overall diet quality and physical activity levels which could 

also result in effect measure modification, and were unable to account for differences in 

cognitive reserve because of the advanced age of their examinees. 
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 Supporting figures 

Table 1: MCI subtypes by etiology, pathology, presentation, and outcomes17. 

Variable Amnestic Nonamnestic 

Etiology Neurodegenerative disease Vascular damage 

APOEe4 Cerebrovascular disease 

Pathology Neurodegenerative Cerebrovascular 

Amyloid beta plaques Cortical infarctions 

Neurofibrillary tangles Subcortical infarctions 

Reduced brain volume White matter hyperintensities 

Presentation  Memory impairment present Impairment in non-memory 

domains 

Long-term outcomes Alzheimer dementia Non-Alzheimer dementias: 

Vascular dementia 

Lewy body 

Frontotemporal 
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Figure 2: Trends in milk intake from 1970 through 2010 in the US69. 

 

  



31 

 

Figure 3: Effects of milk on health by lactase persistence genotype. 
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.  

Figure 4: Balance between mediators of oxidative stress/inflammation and antioxidants/anti-
inflammatory mediators232 
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CHAPTER IV: METHODS 

 Overview 

This study benefited from the long follow-up of the ARIC cohort from mid-life to older 

adulthood to examine the association of milk intake in mid-life with cognitive change and 

measures of cognitive performance through older adulthood.  The availability of repeated 

measures of cognitive performance allowed for the assessment of change in cognitive function 

over a 20+ year period and quantification of the risk of MCI and dementia. Analyses also used 

the in-depth genotyping of the cohort to stratify analyses by LP/LNP status in order to identify 

potential differences in the effect of lactose on health that may arise from differences in lactose 

metabolism.  Limitations arising from the use of a food frequency questionnaire (FFQ) to capture 

milk intake were addressed by repeat assessment of dietary patterns at two separate visits. 

MtDNA-CN was used to assess the state of oxidative stress levels in the cohort participants, thus 

allowing an exploration of the proposed mechanism for the association between milk intake and 

cognitive decline. Imputation techniques were used – multiple imputations by chained equations 

(MICE) for continuous outcomes (cognitive decline) and Heckman model for categorical 

outcome (MCI and dementia incidence) - to account for attrition of the cohort during the years of 

follow-up. 
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 Study population 

1. Description of the ARIC cohort 

The prospective ARIC cohort includes 15,792 adults who were selected through 

probability sampling from four US communities: Washington County, Maryland; Forsyth 

County, North Carolina; suburbs of Minneapolis, Minnesota; and Jackson, Mississippi. 

Participants were examined at five visits, with the first four visits approximately 3 years apart, 

and a fifth visit conducted 15 years following visit 4 (Figure 5). At baseline (1987-1989), 

participants were 45-64 years of age, 56% were female and 24% were Black. At the time of the 

study visits, participants received extensive examinations, including assessment of their medical 

conditions, physical function, and social position. Annual (semi-annual since 2011) follow-up of 

ARIC cohort participants via telephone is also conducted to maintain contact and assess health 

status of participants249. The FFQ was administered at Visits 1 (1987-1989) and 3 (1993-1995) to 

the entire cohort, and to a subset of participants at Visit 2 (1990-1992). Assessment of 

participants’ cognitive function was performed at Visits 2 (1990-1992), 4 (1996-1998), and 5 

(2011-2013).  

2. Inclusion criteria 

For the analyses in Aims 1 and 2 we included participants who completed FFQ at least on 

one occasion (Visit 1) and those who completed cognitive assessments at Visit 2, 4 and 5. For 

Aim 3 analysis we included those with completed FFQ at least on one occasion (Visit 1) and 

those with data on mtDNA-CN. 

3. Exclusion criteria 

Excluded from the proposed analyses were participants of race other than Black or White 

(due to small sample size), Blacks from Washington County or Minneapolis, participants missing 
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one or more cognitive function test at baseline, and those who did not complete the FFQ or had 

missing data on milk intake on the FFQ. Participants at the extremes of caloric intake (<600 kcal 

or >4200 kcal per day for men, <500 kcal or >3600 kcal per day for women) were also be 

excluded.  

 Exposure assessment 

1. Assessment of milk intake 

Self-reported milk intake in the past year was assessed at visits 1, 2 and 3 by an 

interviewer-administered, 66-item FFQ 250  developed by Willet et al. The usual frequency of 

milk consumption was reported in 9 categories, from “never” or “less than once a month” to “>6 

times per day”. The amount of milk intake was assessed as skim/low-fat and whole milk in 8oz 

glasses per week. For the analyses in which we hypothesized the effect of milk on cognitive 

decline through lactose, milk intake was operationalized as a combined intake of skim/low-fat 

and whole milk.  Habitual milk intake at midlife was assessed as the average milk intake 

reported at Visit 1 and Visit 3. Most common sources of measurement error associated with FFQ 

arise from the fixed list of foods, memory, perception of portion sizes, and interpretation of 

questions. However, reliability and validity of the FFQ have been tested and determined to be a 

sufficient to quantify relationship between estimated nutrient intake and disease in population 

studies 250. 

Response rate on the FFQ in ARIC was high, at 15,766 study participants at Visit 1 

(99.8% of the Visit 1 sample) and 12,885 participants at Visit 3 (90% of the Visit 3 sample). At 

Visit 2 the FFQ was administered only to a subsample of the participants (n=1071). Visit 2 data 

on milk intake were used in the evaluation of performance of the FFQ over time.  
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2. Preliminary data 

In preliminary analysis we assessed the distribution of milk intake among the study 

participants at Visit 1 (Figure 6). Among 13,741 participants who completed the FFQ, a 

significant proportion (73.7%, n=10,127) reported consuming some milk throughout the week at 

the time of the assessment. Approximately 45% of the FFQ respondents reported consuming a 

glass of milk or more daily. About 19% of participants reported “almost never” consuming milk. 

This preliminary assessment suggested that there is enough variability in milk intake to study the 

association of milk intake with cognitive decline and with biomarkers of oxidative stress.  

3. Selection of categories of milk intake for the analysis 

Descriptive analyses suggested a non-normal distribution (Figure 6). Therefore, 

responses to the FFQ question concerning the amount of milk consumed were re-grouped into 

four categories: almost never (19%), <1 glass per day (36%), 1 glass per day (27%), >1 glass per 

day (18%). 

4. Performance of the FFQ in ARIC 

The FFQ was administered to 15,791 participants at Visit 1 and 12,885 participants at 

Visit 3. Visit 2 FFQ was administered as part of the ARIC Dietary Assessment Repeatability 

Study to randomly selected 1,071 participants with equal number of participants from each study 

site. Agreement was calculated in the classification of participants into 4 categories of milk 

intake from milk intake reported at Visit 1 and that reported at Visit 2 (3 years apart), milk intake 

reported at Visit 2 and that reported at Visit 3 (3 years apart), as well as milk intake reported at 

Visit 1 and that reported at Visit 3 (6 years apart). This informed the study about the potential 

degree of misclassification bias and change in intake over time.  
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 Outcome assessment  

1. Assessment of cognitive status in ARIC 

 Cognitive function tests 

Participants’ cognitive status was assessed on three occasions: at visits 2, 4, and 5, using 

tests that assessed cognitive function in three domains: verbal and short term memory, executive 

function and processing speed, and executive function and expressive language. Verbal learning 

and short-term memory were evaluated by the Delayed Word Recall Test (DWRT), during which 

participants were asked to learn 10 nouns, use them in sentences, and were then asked to recall 

those nouns after a period of 5 minutes. The score on the test is the number of words recalled (0-

10)251. Executive function and processing speed was assessed by the Digit Symbol Substitution 

test (DSST) during which participants used a key to write symbols corresponding to numbers in 

90 seconds. The score on the test is the number of correctly written symbols and it  ranges from 0 

to 93252 . Executive function and expressive language was assessed by the Word Fluency Test 

(WFT) during which participants generate as many words starting with the letters F, A, and S as 

possible within 60 seconds, with one trial per letter. The score on this test is the sum of all the 

correct words generated253. All three tests had high test-retest reliability, with intra-class 

correlation coefficients of r=0.75 for DWRT, r=0.82 for DSST, and r=0.82 for WFT251, 254, 255. The 

tests were standardized and tests were administered by trained examiners in a fixed order during 

one session in a quiet room. 

For the analysis, all scores were converted to z-scores standardized to Visit 2 mean and 

standard deviation. This was calculated for each test by subtracting each participant’s test score 

at each visit from the Visit 2 mean and dividing by the Visit 2 standard deviation. Global 

cognition z-scores, standardized to Visit 2 global z mean and standard deviation, were generated 
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for each Visit by averaging the z-scores of the 3 tests and then subtracting the global mean and 

dividing by standard deviation from the Visit 2 global Z score256-259.  

 MCI and dementia classification 

Presence of MCI and dementia among ARIC cohort participants was identified at the 

time of the Visit 5 examination.  MCI and dementia ascertainment was based on diagnostic 

review of the following data: 1.Neuropsychiatric information (e.g. change in DSST, DWRT, 

WFT scores from previous visits); 2. Medical/family history (e.g. self-reported transient 

ischemic attack (TIA) or stroke, neurologic history, family history); 3. Subjective memory (e.g. 

informant, clinical dementia rating score (CDR), functional assessment questionnaire (FAQ)); 4. 

Neurologic/physical examination/labs; 5. Imaging (e.g. infarct rating, white matter rating, prior 

imaging report from ARIC Brain MRI study); 6. Medications (e.g. medications known to impact 

cognition/alertness). Based on these criteria, records for participants with suspected dementia or 

MCI were reviewed by the Dementia/MCI Classification Committee for syndromic and etiologic 

diagnoses. A classification was confirmed by two diagnostic reviewers (one physician and one 

neuropsychologist) and adjudicated by a third independent reviewer in case of disagreement. 

 Covariate ascertainment  

1. Assessment of levels of oxidative stress among study participants  

 Mitochondrial DNA copy number (mtDNA-CN) 

Measures of mtDNA-CN were used as an indicator of the level of oxidative stress. 

MtDNA is a circulating, multicopy cytoplasmic DNA, semiautonomously maintained in 

mitochondria. It is known to be more sensitive to oxidative damage than nuclear DNA and has 

been increasingly used for the assessment of systemic oxidative stress135 . 
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It has been shown that ROS can cause damage to mitochondrial enzymes, resulting in 

mtDNA mutations, alterations in mitochondrial membrane permeability, and cell death208 . These 

mitochondrial defects have been attributed to reduced mtDNA content, expressed by a lower 

mtDNA-CN260.  The mtDNA-CN has been used in relation to many conditions associated with 

oxidative damage, such as frailty and all-cause mortality261, general health among elderly262, 

diabetes263,  several types of cancer264-267, and neurodegenerative diseases268-270.  

 Assessment of mtDNA-CN in ARIC 

MtDNA-CN was determined as part of an ARIC ancillary study among 11,509 

participants, with the majority of the samples coming from Visit 2. Analyses were performed 

using the Genvisis software package. First, a list of high-quality mitochondrial SNPs was hand-

curated by employing the Basic Local Alignment Search Tool (BLAST) to remove SNPs which 

may cross-hybridize to the nuclear genome. The probe intensity of the remaining 25 SNPs was 

determined using quantile sketch normalization (apt-probeset-summarize) as implemented in the 

Affymetrix Power Tools software. The median of the normalized intensity, log R ratio (LRR) 

(PennCNV-Affy Pipeline) for all homozygous calls was GC corrected (GC correction refers to 

GC content bias, that is between the proportion of G and C bases in a region and the count of 

fragments mapped to it)271 and used as an initial estimate of mtDNA-CN for each sample.  

To correct for DNA quality, DNA quantity, and other technical artifacts, principal 

components (PCs) were generated using the BLAST filtered, GC corrected LRR of 43,316 

autosomal SNPs. The following qc filters were used: call rate > 98%, HWE p-value > 0.00001, 

PLINK mishap p-value > 0.0001, association with sex p-value > 0.00001, linkage disequilibrium 

purning (r2 < 30), maximal autosomal spacing of 41.7 kb. Samples with a standard deviation of 

all LRR values > 0.5 or sample call rate < 95% were excluded from the PC analysis. From an 
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initial pool of 1000 PCs generated, a stepwise linear regression was performed to select the top 

152 PCs order in such a way that they explain the variance of the initial estimates of mtDNA-

CN. The final measure of mtDNA-CN used in these analyses were the standardized residuals 

from a race-stratified linear regression adjusting for the PCs, age, sex, sample collection site, and 

white blood cell count. PCs were included until no longer significant in the model272. 

2. Assessment of genetic variant for lactase persistence in ARIC 

Genotype data were obtained for consenting ARIC participants using the Affymetrix 

Genome-Wide Human SNP Array 6.0 and the IBC chip array (Affymetrix, Santa Clara, CA, 

USA). Genotypes were excluded for call rates <90%, MAF (minor allele frequency) <1%, 

Hardy–Weinberg equilibrium deviation <10-6, and genotype frequency that was different at 

P<10-6 from prior genotyped samples. Principal components were generated using the Eigensoft 

package (http://genepath.med.harvard.edu/~reich/Software.htm) and ancestry outliers were 

removed. SNPs imputation was performed in two steps: (1) Pre-phasing with ShapeIt (v1.r532 ) 

(2) Imputation with IMPUTE2. After frequency and genotyping pruning, there were 695,783 

SNPs in the final set used for the imputation (669,450 autosomal SNPs). Final imputations were 

performed using IMPUTE2 based on the 1,000 Genomes Phase I integrated variant set release 

(v3) in NCBI build 37 (hg19) reference panel haplotypes. All 1092 individuals were used for the 

imputation from the reference panel. The final sample with genetic data used for imputation was 

9713 Whites and 2871 Blacks249. In this analysis we used the imputed genotype LCT-13910 C/T 

(polymorphism (rs4988235) upstream from the lactase (LCT) gene) in Whites99 and LCT-

14010G/C (polymorphism (rs145946881)) in Blacks109.  
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3. Assessment of other covariates 

Covariates included in the analyses were factors deemed to be potential confounders or 

effect measure modifiers, based on published literature. 

 Selection of covariates 

Demographic covariates included in the analysis were age, sex, race, educational 

attainment, and BMI. Age is the strongest risk factor for MCI and dementia. Milk intake also 

declines with age. Age at Visit 2 was included as a potential cofounder in modeling the 

association between milk intake and cognitive decline. Although sex differences in the risk for 

dementia have been attributed to longer life expectancy in women compared to men, and to 

selective survival to older age of men with better cardiovascular risk profile35, sex was an 

important variable to be included in the analysis as a potential confounder or modifier since 

women may consume more milk than men due to higher risk of osteoporosis. Racial disparities 

in dementia risk have been documented in the US and partially attributed to differences in 

vascular risk factors and socioeconomic opportunities49, 55, 273. Analyses of the ARIC data 

suggested racial differences in milk consumption by race (Table 2) and distribution of LP/LNP 

genotype is known to differ by race. Thus, race was included in the analyses as a potential 

confounder or effect modifier. Socioeconomic status, measured by educational attainment, is a 

known predictor of the risk for dementia1, 10, but may also influence diet quality and the ability to 

adhere to dietary guidelines.  High, as compared to normal BMI, is known to be associated with 

increased risk of dementia52-54 . High BMI is also associated with increased oxidative stress52, 274 

and inflammation52, 64, 65, and may be associated with higher dairy intake275, 276.  

Behavioral factors included in the analysis were smoking status, alcohol consumption, 

physical activity, and diet quality. Smoking and excessive alcohol consumption are risk factors 
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for many chronic conditions, and some studies suggested that smoking may lead to 

neurodegeneration by increasing levels of oxidative stress and inflammation, two factors which 

may play a role in the decline in cognitive function and development of dementia1. Smoking and 

high alcohol consumption may also be associated with poor diet quality and may influence milk 

intake. Physical activity and diet quality have been well studied in relation to cognitive function 

and dementia risk, and strong association have been found in observational and randomized 

control trials1, 64. Physical activity and diet quality may influence the amount of milk people 

consume, as well as modify the potential association between milk intake and cognitive function 

through oxidative stress. Another factor included in the analyses is APOEe4 status. Carriers of 

the APOEe4 allele have an increased risk of Alzheimer’s disease, as well as an earlier age at 

onset compared to non-carriers37-39. Longitudinal studies show that APOEe4 carriers also exhibit 

greater cognitive decline with aging40, 41, 66. Based on gene-environment interactions, excess risk 

has been reported in APOEe4 carriers with, hypertension, diabetes, and atherosclerosis, as well 

as an interaction with BMI and sex36, 40, 43-47.  

 Methods used for the assessment of covariates among ARIC participants  

Demographic covariates age, race, sex, educational attainment (<high school; high 

school; >high school) were assessed at Visit 1 and were self-reported. Race was included in the 

analysis as a combination of race and study center variable due to large differences of race 

distribution by study center. BMI at visit 2 was measured and calculated as kilograms divided by 

height in meters squared, and was categorized into 3 categories (<25kg/m2, 25 to <30 kg/m2, 

>=30 kg/m2). Smoking status at Visit 2 was included as current/former/never smoker. Self-

reported alcohol consumption at Visit 2 was included as never/former/current drinker. Physical 

activity measures at Visit 2 were not available, thus physical activity at Visit 1 was included. 
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Physical activity in ARIC participants was measured using the modified Baecke questionnaire277, 

which asks about three levels of physical activity (low, medium, and high intensity) in sports, 

during leisure time, and at work. The answers then are converted to minutes per week of 

moderate or vigorous activity based on Metabolic Equivalent of Task (MET) value277. Milk 

intake was adjusted by total energy intake, estimated from the FFQ278. The Healthy Food Score, 

adapted from Steffen et al.278, 279 was created by summing the scores of food groups. Food groups 

included: dairy (cheese, yogurt, ice cream), vegetables, fruit (without juice), fruit juice, legumes, 

refined grain, whole grain, nuts, fish, meat (combined poultry, processed meat, beef, pork, and 

lamb), diet beverages, sugar-sweetened beverages, and coffee and tea. Daily intake of food 

groups will be categorized into quintiles, except alcohol intake, legume, and beverages. Each 

quintile of food group intake was assigned a score: 0–4. For dairy, vegetables, fruit (without 

juice), fruit juice, refined grain, whole grain, nuts, and fish, scores were assigned in order 

(Quintile 1 = 0, Quintile 2 = 1, Quintile 3 = 2, Quintile 4 = 3, Quintile 5 = 4); for meat, the score 

was the reverse. Due to the limited range of intake, scoring for intake of legumes was 0, 1, and 2, 

if daily intake was 0, <1, and ≥1 serving, respectively. The score was reversed for diet beverages 

and sugar-sweetened beverages: 2, 1, and 0 for 0, >0 to <1, and one or more servings usually 

consumed per day, respectively. Daily coffee and tea intake was scored in five categories from 0 

to 4, for 0, >0 to ≤2, >2 to ≤4, >4 to ≤6, and >6 cups per day, respectively. For alcohol intake, a 

score of 4 was assigned to the men who consumed between 10 and 50 g per day and to women 

who consumed between 5 and 30 g per day; otherwise a score of 0 was assigned279. APOEe4 

allele number was included as the presence of 0,1 or 2 alleles. Diabetes status in ARIC was 

defined as self-reported history of a physicians’ diagnosis, use of diabetes medication, fasting 

blood glucose level of at least 126mg/dL, or nonfasting glucose level of at least 200mg/dl. 
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Hypertension was defined as diastolic blood pressure of ³90mm/Hg or systolic blood pressure of 

³140 measure at visit 2, or use of hypertension medication in the past 2 weeks. Prevalent CHD 

was defined as self-reported history of CHD at the baseline visit 1 or adjudicated CHD event 

between baseline and visit 2. CHD events included fatal myocardial infarction, coronary artery 

bypass surgery, or angioplasty. Prevalent cancer cases were defined as self-reported history of 

any cancer. 

 Statistical approach 

1. Specific Aim 1 

Specific Aim 1: Examine the association between habitual milk intake assessed at 

midlife with cognitive decline over the 20-year period. 

Due to repeated measures of cognitive function, a mixed effects model was used to 

evaluate the association of milk intake categories with the rate of change in cognitive status from 

Visit 2 to Visit 5. Mixed effects models allow for the estimation of marginal effects as well as 

individual level predictions, and are more sensitive to the long-time gap between Visit 4 and 

Visit 5 (14 years) compared to the generalized estimating equations (GEE). In addition, mixed 

effects models are mode compatible with the imputation approach used to account for attrition. 

Linear spline terms were included to account for the intervals of time between the cognitive 

assessments (knot at 6 years, corresponding to the time interval between Visit 2 and Visit 4). A 

random intercept and random slope were used for spline 1 and random slope was used for spline 

2. Independence covariance matrix was specified. Models were adjusted for a priori identified 

potential confounders and effect measure modifiers. Covariates were kept in the model if 

determined to be statistically significant at p-value <=0.05. Analysis was repeated by race and by 

LP/LNP genotype to examine potential effect measure modification. 
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Figure 7 presents the results of an assessment of potential confounding which may be 

present in the examination of the association of milk intake with change in cognitive function.  

The figure was created using the online software “DAGgity” (daggity.com), which allows 

examining relationships between the exposure and outcome of interest, while accounting for all 

known associated factors and determining the minimal adjustment set needed to minimize 

confounding. 

Covariates in Figure 7 represented by pink circles were determined to be potential 

confounders, due to their direct or indirect association with the exposure and the outcome. 

Covariates represented by blue circles are those covariates that are associated with the outcome, 

but are not on an “open path” (not causally associated) with the exposure. For the association of 

milk intake and cognitive decline, the minimal sufficient adjustment set included the following 

confounders: age, sex, diet quality score, and LP/LNP status.  

 The use of MICE models to account for attrition 

The long follow-up of the study resulted in substantial loss to follow-up due to refusal to 

participate and death. At Visit 2 13,351 participants underwent cognitive assessment, while at 

Visit 4 the number of participants dropped to 10,720 (80.3% of baseline number of participants) 

and to 5,987 (45.8% of baseline number of participants) at Visit 5. The number of participants 

who died was 1,350 (10.1% of baseline number of participants) between Visit 2 and Visit 4 and 

2,037 (15.3% of baseline number of participants) between Visit 4 and Visit 5. The number of 

those who refused to participate was 1,281 (9.5% of baseline number of participants) at Visit 4 

and 2,696 (20.2% of baseline number of participants) at Visit 5. To account for attrition in the 

proposed longitudinal assessment of cognitive function, multiple imputation by chained 

equations (MICE)280 were used, to impute cognitive function measures among study participants 
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alive at the time of Visit 4 and Visit 5, but not participating in those visits. Multiple imputations, 

as opposed to a single imputation, is thought to account for the uncertainty in the imputations.  

When using MICE, the missing values are imputed based on the observed values for a given 

individual, as well as the relations observed in the data for other participants. The values are 

imputed multiple times, thus creating a more accurate estimation of a standard error. The MICE 

approach can handle continuous, as well as binary variables. It operates under the assumption 

that data is missing at random (MAR). The chained equation process begins with a simple 

imputation for every missing value (e.g. mean imputation) in the dataset. Then, the initial 

imputed value is set back to missing for one variable at a time and the observed values are 

regressed on the other variables in the imputation model. The missing value for each variable is 

then replaced with the predicted value. This is done for multiple cycles (usually set to 10, but 

determined by the researcher), until the desired number of “complete” datasets are generated. In 

the analysis stage, the regression model was applied to each dataset separately, and then the 

estimates from each combined into a final result. The variance estimates for the final result were 

obtained using the “within” and “between” dataset variance.  

Variables that were used to impute global z scores for those participants who did not 

attend visit 5, but were alive at the time include retrospective ascertainment of hospitalization 

with dementia codes, Telephone Interview for Cognitive Status (TICS-m) questionnaire, clinical 

dementia rating (CDR) scale conducted with proxies, suspect dementia status, global z scores 

from visit 2 and 4, as well as APOE4, demographic and socioeconomic (age, gender, race-center, 

BMI, education, income), behavioral (smoking and alcohol consumption) and cardiovascular risk 

factors (CHD, diabetes, hypertension, stroke, self-reported poor health). Interaction terms were 

derived empirically. A validation of the MICE approach for cognitive data in ARIC has been 
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previously reported and it has been determined that MICE produced unbiased imputed values (A. 

Rawlings et al., unpublished work). 

 Statistical power  

In Specific Aim 1 we examined the association of milk intake with change in cognitive 

function over a 20-year period from Visit 2 to Visit 5. The R package “longpower” program was 

used to estimate the power to detect the mean difference in the 20-year rate of change in the 

global z-score between the group in the highest quartile of milk intake compared to that observed 

among those with the lowest quartile of milk intake. We used the following assumptions from 

preliminary data analysis in estimating the power of the proposed analyses: residual variance 

s2=0.22 for Blacks and 0.16 for Whites, the working correlation matrix R=0.65 for Blacks and 

0.63 for Whites, significance level 0.05 and a two-sided test. Results presented in the Table 4 

suggest we had 97% power to detect a 0.05 or greater difference in rate of change in z-scores in 

the overall sample, 90% power to detect the same difference among Whites, and 50% power to 

detect that difference among Blacks. This is equivalent to one year or more of additional 

cognitive decline. Among Blacks, the study may be underpowered to detect a difference of less 

than 0.10 global z-scores due to the smaller sample size (Table 4). 

2. Specific Aim 2 

Specific Aim 2: Examine the association between habitual milk intake assessed at 

midlife with the risk of MCI and dementia. 

For this cross-temporal analysis, logistic regression was used to evaluate the association 

of categories of milk intake with the odds of MCI and dementia at Visit 5.  Models were adjusted 

for a priori identified potential confounders identified using direct acyclic graphs (DAGs) 

(Figure 7) and effect measure modifiers. Covariates were kept in the final model if determined to 
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be statistically significant at p-value <=0.05. The analysis was repeated by race and by LP/LNP 

genotype to estimate potential effect measure modification. 

 The use of Heckman model to account for attrition 

In this cross-temporal assessment of the association of milk intake, measured at the ARIC  

baseline visit, with the risk of MCI and dementia at ARIC visit 5, we used Heckman selection 

models to account for potentially informative missingness 281, 282 .  We used the Heckman two-

step approach to initially model the likelihood of nonparticipation at Visit 5 due to death prior to 

Visit 5 or to lack of attendance at the visit (Step 1).  Subsequently we included the probability of 

non-participation as a covariate in the logistic models estimating the association of milk intake 

with the risk of MCI or dementia, respectively (Step 2).  Demographic, health status, and 

functional status characteristics of study participants at baseline were considered in the selection 

of covariates for inclusion in the Step 1 component of the Heckman regression modeling. The 

Chi-square goodness of fit test was used to assess the fit of the model in the selection of 

covariates.  

 Statistical power 

In Specific Aim 2 we examined the association of milk intake at baseline with the risk of 

MCI and dementia. Minimal detectable odds ratio given a specified power was calculated 

(StataCorp). The two comparison groups used for power calculations were those who reported 

almost never drinking milk and those who reported having more than 1 glass of milk per day. 

The proportion of those with dementia in the ARIC cohort was recently estimated at 9% and 

those with MCI at 24%15. A two-sided test at 0.05 significance level was used for the power 

calculations. Given a sample size of 5,000, a prevalence of exposure of 0.5 and assuming a 

prevalence of dementia in the unexposed of 0.07 we had 90% power to detect ORs of 1.40 or 
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greater and 80% power to detect ORs of 1.34 or greater. Assuming a prevalence of dementia in 

the unexposed of 0.09 there will be 90% power to detect ORs of 1.35 or greater and 80% power 

to detect ORs of 1.30 or greater (Table 5).  

Assuming the prevalence of MCI in the unexposed of 0.20 we had 90% power to detect 

an OR of 1.25 or greater and 80% power to detect an OR of 1.20 or greater. Assuming the 

prevalence of MCI in the unexposed to be 0.25 the study had 90% power to detect an OR of 1.23 

or greater and 80% power to detect an OR of 1.20 or greater (Table 5). 

3. Specific Aim 3 

Specific Aim 3: Examine the association of milk intake with levels of oxidative stress 

assessed by mitochondrial DNA copy number. 

For this cross-temporal analysis of habitual milk intake and mtDNA-CN at Visit 2, 

multinomial logistic regression was used to evaluate the association of milk intake categories 

with quintiles of mtDNA-CN. Those who reported almost never drinking milk were the referent 

group. Analysis was repeated by race and by LP/LNP genotype to determine whether there is an 

effect measure modification. Models were adjusted for covariates that were identified as 

potential confounders in the DAG (Figure 8). Figure 8 presents the results of an assessment of 

potential effect confounding which may be present in the examination of the association of milk 

intake with oxidative stress, as measured by mtDNA-CN.  The figure was created using the 

online software “DAGgity” (daggity.com). Covariates in Figure 8 represented by pink circles 

were determined to be potential confounders, due to their direct or indirect association with the 

exposure and the outcome. Covariates represented by blue circles are those covariates that are 

associated with the outcome but are not on an “open path” (not causally associated) with the 
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exposure. For the association between milk intake and oxidative stress/mtDNA-CN the minimal 

sufficient adjustment set includes age, diet quality score, and LP/LNP genotype.  

 Statistical power 

For the power calculations two exposure groups of milk intake were compared, those 

who reported almost never drinking milk and those who reported drinking more than 1 glass a 

day. The OR of being in the lowest quintile of mtDNA-CN versus highest quintile was 

estimated. Given a sample size of 5,000 with the prevalence of exposure of 0.5 and the 

probability of being in the lowest quintile of mtDNA-CN among those who reported almost 

never drinking milk of 19.4% (from preliminary data analysis), we had 90% power to detect an 

OR of 1.25 or greater and 80% power to detect an OR of 1.22 or greater.  

4. Sensitivity analyses  

In order to account for reporting error as well as for the assumption that average milk 

intake from Visit 1 and Visit 3 is a representative estimate of habitual milk intake in adulthood, 

we estimated the association of milk intake with change in cognitive function from Visit 2 to 

Visit 5, including only those participants whose reported milk intake remained unchanged 

between Visit 1 and Visit 3, i.e., 50% of the observations.  
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 Supporting tables and figures 

Table 2: Visit 1 milk consumption by race in the ARIC cohort (preliminary analysis). 

Milk intake category Whites  
(n=10,531) 

Black  
(n=3,209) 

Almost never 16.9% 24.9% 

<1 glass/day 33.6% 43.8% 

1 glass/day 29.5% 20.7% 

>1 glass/day 20.0% 10.5% 
Milk intake includes a combination of skim/low-fat and whole milk. 
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Table 3: Summary of the covariates used in the analysis.   

Demographic covariates Age, sex, race, educational attainment, and 

body mass index (BMI). 

Behavioral factors Smoking status, alcohol consumption, 

physical activity, and diet quality. 

Genetic factors APOEe4 allele number 

Comorbidities  Diabetes, hypertension, prevalent CHD, 

prevalent cancer 
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Table 4: Power estimates for the study of the association between milk intake and cognitive 
decline.   

Difference in the 20-year rate if change in z-score Overall 

(n=2500) 

Whites 

(n=1780) 

Blacks 

(n=388) 

0.10 (2 years of additional cognitive aging) 0.99 0.99 0.86 

0.05 (1 year of additional cognitive aging) 0.97 0.90 0.50 

0.033 (0.75 years of additional cognitive aging) 0.76 0.64 0 

0.025 (0.5 years of additional cognitive aging) 0.54 0.43 0 
n is the number of participants at Visit 2 in each comparison group.  
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Table 5: Estimates of the minimum detectable odds ratio for the association of milk intake and 
the risk of MCI and dementia.  

Assumed prevalence of dementia among the unexposed.  90% power 80% power 

0.07 1.40 1.34 

0.09 1.35 1.30 

Assumed prevalence of MCI among the unexposed.   

0.20 1.25 1.20 

0.25 1.23 1.20 
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Figure 5: Timeline of the ARIC study. 
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Total milk intake includes a combination of skim/low-fat and whole milk. 

Figure 6: Visit 1 distribution of milk intake across 9 FFQ cateregories. ARIC study participants.  
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Figure 7: DAG for the association of milk intake and cognitive function. 
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Figure 8: DAG for the association of milk intake with oxidative stress levels assessed by mtDNA 
copy number. 
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CHAPTER V: RESULTS 

 Manuscript 1: Milk intake at midlife and cognitive decline over 20 years. The 
Atherosclerosis Risk in Communities (ARIC) study. 

1. Overview 

Background Greater than average rates of cognitive decline in the elderly are likely to 

result in earlier onset of mild cognitive impairment and dementia. It has been suggested that 

oxidative stress contributes to cognitive decline. D-galactose, a derivative of lactose, is used in 

animal studies to mimic naturally occurring aging and induce oxidative stress and 

neurodegeneration. While humans are exposed to D-galactose by consuming lactose from dairy 

products, milk is the primary source of lactose in the diet and its effects on the rate of cognitive 

decline have not been fully evaluated in a large cohort study with repeated measures of cognitive 

function.  

Objective Assess the association of milk intake at midlife with change in cognitive 

function over a period of 20-years. 

Methods Analyses included 13,751 participants of the Atherosclerosis Risk in 

Communities (ARIC) cohort who completed a food frequency questionnaire at least on one 

occasion at baseline (1987-1989) and three neurocognitive evaluations from 1990 through 2013. 

Delayed Word Recall, Digit Symbol Substitution, and Word Fluency tests were used to assess 

cognitive performance and were summarized by a global z-score. Two SNPs were used to 

determine lactase persistence (LCT-13910 C/T for Whites and LCT-14010 G/C for Blacks). 

Mixed effects models were used to study the multivariable-adjusted association of milk intake 
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with cognitive change. Association of total dairy and skim/low-fat milk with cognitive change 

was also assessed. Multiple imputations by chained equations were used to account for attrition.  

Results Milk intake greater than 1 glass/day was associated with greater decline in the 

global z-score over a 20-year period. The difference in decline was 0.10 (95%CI: 0.16, 0.03) z-

scores, or an additional 10% decline, relative to the group reporting “almost never” consuming 

milk. Similar results were observed for consumption of skim/low-fat milk and all dairy. No 

effect modification was observed by race or lactase persistence genotype.  

Conclusions Replication of these results is warranted in diverse populations with greater 

milk intake and higher variability of lactase persistence genotype.   

2. Background 

Cognitive decline refers to diminution in mental processes such as attention, short-term 

and long-term memory, reasoning, coordinating of movement and planning of tasks, which are 

crucial for the conduct of daily living activities1. While the rate of decline in cognition varies 

among individuals3-6 the factors affecting it are poorly understood, mainly due to limited long-

term data on cognitive performance. Faster rates of decline may lead to earlier onset of cognitive 

impairment and dementia, resulting in significant burden to those affected and their caregivers7, 8. 

Since evidence from neurobiological and cognitive performance studies suggest that age-related 

cognitive decline begins at midlife the focus of research has shifted to modifiable risk factors and 

younger populations, to identify behaviors that can prevent or delay the progression to cognitive 

impairment2.  

Animal studies indicate that oxidative stress plays an important role in 

neurodegeneration137, 145-147. The brain is particularly vulnerable to oxidative damage due to its 

high metabolic activity and low antioxidant defense169-179. Administration of D-galactose, a 
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metabolic derivative of lactose, has been used extensively to mimic cognitive aging through 

oxidative stress in animal models224-229. D-galactose reacts readily with free amines of amino 

acids in proteins and peptides to form advanced glycation end products that accumulate in the 

organs by binding with cell surface receptors or cross-linking with proteins, altering their 

structure and function, resulting in generation of reactive oxygen species (ROS), increased 

oxidative stress and inflammation118, 220-223. Milk, the main source of lactose in the diet, plays 

important roles in the growth and development of children due to its high fat and protein content, 

although its health effects in adults have not been studied as extensively72,73,68. In particular, few 

studies have explored the influence of milk on health outcomes by lactase persistent (LP) and 

non-persistent (LNP) genotype, which determines the pathways through which lactose in milk is 

metabolized110, 111. In lactase persistence, lactose is broken down by the enzyme lactase in the 

small intestine resulting in formation D-galactose - a contributor to ROS formation. Among 

those who are LNP, lactose is broken down in the colon by bacteria, resulting in excessive 

formation of byproducts of bacterial fermentation, but no D-galactose. Since the two metabolic 

pathways differ significantly, the effect of lactose on health could differ by genotype.  

Studies looking at the association of milk intake with cognitive performance are few. 

Most are of cross-sectional in design, have a small number of participants, or involve only older 

adults who had already experienced significant decline at the time of exposure assessment240-248. 

Thus, the aim of this study was to assess the association of milk intake in midlife with cognitive 

change over a 20-year period in a large biracial cohort, and to explore potential differences in the 

association by LP/LNP genotype.  
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3. Methods 

 Study population 

The ARIC cohort is a prospective study of 15,792 adults who were selected through 

probability sampling from four US communities: Washington County, Maryland; Forsyth 

County, North Carolina; suburbs of Minneapolis, Minnesota; and Jackson, Mississippi. 

Participants were examined at five visits, with the first four visits approximately 3 years apart, 

and a fifth visit conducted 15 years following visit 4 (Figure 9). At baseline (1987-1989), 

participants were 45-64 years of age, 56% were female and 24% were Black. At the time of the 

study visits participants received extensive examinations, including assessment of their medical 

conditions and physical function. Annual (semi-annual since 2011) telephone follow-up 

interviews of ARIC cohort participants is also conducted249. A food frequency questionnaire 

(FFQ) was administered at visits 1 (1987-1989) and visit 3 (1993-1995). Cognitive function was 

assessed at visits 2 (1990-1992), 4 (1996-1998), and 5 (2011-2013). Analysis included 

participants who completed the FFQ at least on one occasion (visit 1) and those who completed 

cognitive assessments at visit 2, 4 and 5. Excluded were participants of race other than White or 

Black (n=48) and Blacks from Washington County and Minneapolis (n=55) due to small sample 

size. Excluded were also participants missing milk intake data (n=27), those missing one or more 

cognitive function tests at baseline (n=1649), and those with extreme reported caloric intake 

(<600 kcal or >4200 kcal per day for men, <500 kcal or >3600 kcal per day for women) (n=261).  

 Assessment of cognitive function 

Verbal learning and short-term memory were assessed by the Delayed Word Recall Test 

(DWRT) in which participants were asked to learn 10 nouns, use them in sentences, and then 

recall those nouns after 5 minutes. The score on the test is the number of words recalled (0-
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10)251. Executive function was assessed by Digit Symbol Substitution test (DSST) during which 

participants use a key to write symbols corresponding to numbers in 90 seconds. The score on 

the test is the number of correctly written symbols from 0 to 93252 . Executive function and 

expressive language were assessed by the Word Fluency Test (WFT) during which participants 

generate as many words starting with the letters F, A, and S as possible within 60 seconds, with 

one trial per letter. The score on the test is the sum of all the correct words generated253.  

All test scores were converted to z-scores standardized to the visit 2 mean and standard 

deviation, calculated for each test by subtracting each participant’s test score at each visit from 

the visit 2 mean and dividing by the visit 2 standard deviation. Global cognition z-scores 

standardized to visit 2 global z mean and standard deviation were generated for each visit by 

averaging the z-scores of the 3 tests and then subtracting the global mean and dividing by 

standard deviation from the visit 2 global Z score256-259.  

 Assessment of milk intake  

An interviewer-administered food frequency questionnaire (FFQ) was used to assess 

dietary intake250. Total milk intake was estimated as combined intake of skim/low-fat and whole 

milk, reported in 8oz-glasses with frequency of intake ranging from “Almost never” to “>6 times 

per day” in 9 categories. A number was assigned at mid-category of reported frequency (e.g. “3-

5 times per day” = 4 times per day) for each type of milk to obtain the average daily intake in 

glasses/day, then added together across each milk type to obtain total milk intake, which was 

then reclassified into 4 categories: “Almost never”, “<1glass/day”, “1 glass/day”, and “>1 

glass/day”. Intake of all dairy included skim/low-fat and whole milk, yogurt, ice-cream, cottage 

cheese, other cheese and butter in servings per day. One serving of dairy was equal to an 8-oz 

cup of milk, 1 cup of yogurt, ½ cup of ice-cream, ½ cup cottage cheese, 1 slice of hard cheese, or 
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1 pat of butter. For participants with two FFQ assessments, an average was taken across visits for 

all dietary intake variables. For those with an FFQ at baseline only, the baseline reported amount 

was used. 

 Diet quality score 

The Healthy Food Score, adapted from Steffen et al.278, 279 was created by summing the 

scores of food groups. Food groups included: dairy other than milk (cottage cheese, other cheese, 

yogurt, ice cream, butter), vegetables, fruit (without juice), fruit juice, legumes, refined grain, 

whole grain, nuts, fish, meat (combined poultry, processed meat, beef, pork, and lamb), diet 

beverages, sugar-sweetened beverages, and coffee and tea. Daily intake of food groups was 

categorized into quintiles, except alcohol intake, legume, and beverages. Each quintile of food 

group intake was assigned a score: 0–4. For dairy, vegetables, fruit (without juice), fruit juice, 

refined grain, whole grain, nuts, and fish, scores were assigned in the following order: Quintile 1 

= 0, Quintile 2 = 1, Quintile 3 = 2, Quintile 4 = 3, Quintile 5 = 4; for meat, the score was the 

reverse. Due to the limited range of intake, scoring for intake of legumes was 0, 1, and 2, if daily 

intake was 0, <1, and ≥1 serving, respectively. The score was reversed for diet beverages and 

sugar-sweetened beverages: 2, 1, and 0 for 0, >0 to <1, and one or more servings usually 

consumed per day, respectively. Daily coffee and tea intake was scored in five categories from 0 

to 4, for 0, >0 to ≤2, >2 to ≤4, >4 to ≤6, and >6 cups per day, respectively. For alcohol intake, a 

score of 4 was assigned to the men who consumed between 10 and 50 g per day and to women 

who consumed between 5 and 30 g per day; otherwise a score of 0 was assigned279. 
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 Covariates 

Analyses included the following covariates: visit 1 reported sex, race, study center, 

educational attainment (<high school, high school, >high school) time spent in moderate to 

vigorous physical activity in met-minutes/week; visit 2 age, body mass index (BMI) in kg/m2, 

smoking status (ever smoker vs never smoker), alcohol consumption (ever drinker vs never 

drinker); diet quality score derived from the average of reported dietary intake278, 279; visit 2 

prevalent health condition such as diabetes, hypertension, coronary heart disease (CHD) and 

cancer. Diabetes was defined as fasting blood glucose level of ³126mg/dL, or non-fasting blood 

glucose level of ³200mg/dL, history of past diagnosis of diabetes by a physician, or diabetes 

medication use in the past 2 weeks. Hypertension was defined as diastolic blood pressure of 

³90mm/Hg or systolic blood pressure of ³140 measure at visit 2, or use of hypertension 

medication in the past 2 weeks. Prevalent CHD was defined as self-reported history of CHD at 

the baseline visit 1 or adjudicated CHD event between baseline and visit 2. CHD events included 

fatal myocardial infarction, coronary artery bypass surgery, or angioplasty. Prevalent cancer 

cases were defined as self-reported history of any cancer.  Apolipoprotein E e4 allele number 

(APOEe4) was included in analyses as it is a strong predictor of cognitive decline and risk for 

cognitive impairment. 

 Lactase persistence genotype 

Lactase persistence, or the ability to digest lactose into glucose and galactose in 

adulthood, emerged 7,500-10,000 years ago among populations that domesticated animals and 

consumed milk99, 100. Dominant mutations in the lactase promoter region upstream from the 

lactase phlorizin hydrolase locus on chromosome 2q21, retained intestinal lactase into adulthood. 

The single nucleotide polymorphisms (SNPs) most frequently used to determine LP/LNP status 
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are rs4988235 (LCT-13910C>T) in the populations of European descent and rs145946881 (LCT-

14010G>C) in populations of African descent, although studies in African countries suggest that 

other SNPs are also associated with lactose digestion in these populations. The imputed 

genotypes LCT-13910 C/T in Whites99 and LCT-14010G/C in Blacks109 were used to denote 

LP/LNP in this cohort. Individuals with two minor alleles were classified as LNP. 

Data on LP/LNP genotype were obtained for consenting ARIC participants using the 

Affymetrix Genome-Wide Human SNP Array 6.0 and the IBC chip array (Affymetrix, Santa 

Clara, CA, USA). Genotypes were excluded for call rates <90%, MAF (minor allele frequency) 

<1%, Hardy–Weinberg equilibrium deviation <10-06, and genotype frequency that was different 

at P<10-6 from prior genotyped samples. Imputation was performed in two steps: (1) Pre-

phasing with ShapeIt (2) Imputation with IMPUTE2. After frequency and genotyping pruning, 

there were 695,783 SNPs in the final set used for the imputation (669,450 autosomal SNPs). 

Final imputations were performed using IMPUTE2 based on the 1,000 Genomes Phase I 

integrated variant set release (v3) in NCBI build 37 (hg19) reference panel haplotypes. All 1092 

individuals were used for the imputation from the reference panel. The final sample with genetic 

data used for imputation included 9713 Whites and 2871 Blacks. Principal components were 

generated using the Eigensoft package (http://genepath.med.harvard.edu/~reich/Software.htm) 

and ancestry outliers were removed.  

 Statistical analysis 

Baseline (ARIC visit 2) characteristics of the study population were reported by milk-

intake category. To study the association between the four levels of milk intake and cognitive 

change from visit 2 to visit 5, we used mixed effect models to account for repeated measures 

across study visits. A linear spline term was applied with a knot at six years, equal to the mean 
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duration between visits 2 and 4256. We performed the analyses using 3 models: 1) demographic 

model, adjusted for age, gender, and race-center; 2) full model, adjusted for age, gender, race-

center, education level, APOEe4, BMI (kg/m2), smoking, drinking, diabetes, hypertension, 

physical activity (met-min/week), total energy intake (kcal) and diet quality score; and 3) full 

model with food group replacing diet quality score (food groups that were significant in the 

model: protein (g/day), fat (g/day), servings of fruit, servings of vegetable, servings of sugar-

sweetened beverages, and servings of non-milk dairy products for the association with total milk 

and skim/low-fat milk). 

Analyses were stratified by race and by LP/LNP genotype. We used interaction terms 

with smoking, diabetes, diet quality score, fruit and vegetable intake, total fat intake and physical 

activity to test for effect modification. Those variables were selected because of the previously 

reported association with cognitive performance or oxidative stress, the proposed mechanism 

through which milk intake could affect cognition.  

Cohort attrition was addressed with multiple imputations by the chained equations 

(MICE)280 method. Validation of the MICE approach for cognitive data in ARIC has been 

previously reported and it has been determined that MICE produced unbiased imputed values283. 

The missing values for global z-score were imputed based on the observed values for a given 

individual, as well as the relations observed in the data for other participants. The values were 

imputed multiple times, creating a more accurate estimation of a standard error. Variables used 

to impute global z-scores and individual test scores for participants who did not attend visit 5, 

but were alive at the time, included retrospective ascertainment of hospitalization with dementia 

codes, Telephone Interview for Cognitive Status (TICS-m) questionnaire, clinical dementia 

rating (CDR) scale conducted with proxies, suspect dementia status, global z scores from visit 2 
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and 4, as well as APOE4, demographic and socioeconomic (age, gender, race-center, BMI, 

education, income), behavioral (smoking and alcohol consumption) and cardiovascular risk 

factors (CHD, diabetes, hypertension, stroke, self-reported poor health). Interaction terms were 

derived empirically.  

All statistical analyses were performed using Stata14.2 [StataCorp, College Station, 

Texas].  

4. Results 

 Total milk intake 

The final analytic set included 13,752 participants who had data on milk intake data and 

cognitive performance at baseline. Most participants (88%) reported milk intake on at least two 

cohort examination visits. The Pearson correlation coefficient for milk intake reported on two 

occasions was 0.44, which is consistent with previously reported estimates284.  Average milk 

intake in this population was 0.87 glasses/day. Skim milk accounted for 75% of total milk intake. 

Overall, 11% of participants reported almost never drinking milk, 50% reported consuming <1 

glass per day, 15% reported consuming 1 glass/day and 24% reported consuming >1 glass per 

day. A greater proportion of Black participants reported almost never drinking milk (16.2%, 

compared to 9.8% among Whites). Participant characteristics by milk intake category are 

presented in Table 6. Participants who reported drinking more milk were more likely to be male, 

White, have more years of education, have better diet quality score with greater intake of fruits 

and vegetables, have lower intake of meat and sugar-sweetened beverages (Appendix C), and 

more time spent in moderate to vigorous physical activity.  Baseline scores for the three 

cognitive tests did not differ by milk intake group (Table 6).  



69 

Results of mixed model analyses suggest the presence of an association of milk intake 

with cognitive decline over a 20-year period (Table 7, Figure 10). The response was graded 

across milk intake categories. The difference in the 20-year change in global z-score between 

those who reported almost never drinking milk and those who reported drinking >1 glass/day 

was -0.10 (95% CI: -0.16, -0.03) z-scores, equivalent to a 10% additional decline. Decline in the 

DSST z-score (a test of executive function anf processing speed) and DWRT z-score (a test of 

short-term memory) contributed the most to the difference in decline. We observed no effect 

modification of this association by race (Figure 11), or by other covariates hypothesized a priori 

(smoking, diabetes, diet quality score, fruit and vegetable intake, total fat intake and physical 

activity).  

Availability of three psychometric assessments allowed us to compare change in 

cognitive function during two time periods: from visit 2 to visit 4 (6 years) and from visit 4 to 

visit 5 (14 years).  Decline in cognitive function occurred at a faster rate during the later time 

period, although the difference in decline by milk intake group was observed during both times 

(Appendix D). Estimates did not change when replacing diet quality score with individual food 

groups in the model (Model 2 vs Model 3).  

 Lactase persistence 

Among Whites, 9% of participants were classified as being lactase non-persistent, 

whereas all participants were classified as lactase persistent among Blacks. Thus, stratified 

analysis by LP/LNP genotype was restricted to Whites. Those who were classified as LP 

consumed on average more milk than those who were classified as LNP. Stratified analysis 

suggested that milk consumption may have a greater effect among those classified as LNP, but 

results were not statistically significant (Figure 3).  
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 Skim/low-fat milk and total dairy 

The majority of participants reported drinking skim/low-fat milk, which accounted for 

75% of total milk intake. Those who reported drinking more milk also reported greater 

consumption of other dairy products, and thus had greater all-dairy consumption overall 

(Appendix E). Only 39 participants reported never consuming any dairy products, thus the 

exposure to all dairy products was classified into quartiles (Appendix F).  

The association of skim/low-fat milk and all dairy with change in cognitive function was 

similar to the association observed with total milk. Those consuming more than 1 glass/day of 

skim/low-fat milk and those in the 4th quartile of all dairy intake experienced a faster rate of 

cognitive decline over the 20-year period. This was the casefor the overall population and in 

race-stratified analyses (Appendix E).  

5. Discussion 

This is one of the few prospective studies to examine the association of milk intake with 

cognitive performance. It is the only study of this association with multiple measures of 

cognitive function, allowing the assessment of change in cognition over time.  

Our results suggest that milk intake at midlife in amounts greater than 1 glass/day may be 

associated with faster rate of cognitive decline over a 20-year period. These results are consistent 

with results from a recent study of 3,076 participants 65.5 years of age at the time of 

neurocognitive evaluation, in which milk consumption was associated inversely with verbal and 

working memory performance248. Three other prospective studies reported that full-fat milk 

intake was associated with poor cognitive function, and that high saturated fat intake from milk 

products was associated with poor cognitive function and increased risk of mild cognitive 
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impairment245, 246, 285, emphasizing the effect of fat from milk was emphasized as opposed to 

lactose.  

Based on reports of animal models we hypothesized that habitual milk intake influences 

cognitive function is through the effect of lactose metabolites on oxidative stress. We therefore 

chose total milk intake as the main exposure, since milk contains several times more lactose than 

any other dairy products, although associations of skim/low-fat milk and all dairy with cognitive 

decline were considered as part of our sensitivity analyses, which showed similar associations. 

After accounting for total fat intake in our model the association of total milk, skim/low 

fat and total dairy with cognitive change remained unchanged. Further, there was no effect 

modification of the associations by tertiles of total fat intake, suggesting that the dairy fat content 

may not account for the observed faster rate of cognitive decline.  

The distribution of LP/LNP genotype in our population differed from that previously 

reported for the US286. Only 9% of Whites where classified as LNP (as compared to previously 

reported 20%) and the SNP for LP/LNP among Blacks available in our study showed almost no 

variation. Considering that the estimated prevalence of LNP among Blacks in the US has been 

estimated at 80% we concluded that the imputed SNP available in ARIC most likely did not 

characterize lactase persistence among Blacks286, 287.  Due to the small number of White 

participants characterized as LNP we lacked power to capture significant difference in effect of 

milk intake on cognitive decline by LNP genotype.  

Our study had several limitations, including cohort attrition, which is a concern for most 

longitudinal studies with long follow-up. Although attrition was addressed through MICE, taking 

into account a wide range of attributes influencing attrition, it is possible that we were not able to 

fully account for the effect of selective drop-out. Another limitation is the assumption that 
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assessment of average milk intake at Visit 1 and Visit 3 reflected long-term habitual intake 

throughout adulthood over the time course of cognitive decline. Since diets change over the life 

course, exposure may have been misclassified for some individuals. Despite such limitations, the 

FFQ has been determined as a reliable method of assessing long-term intake and it is likely that 

the ranking of individuals with respect to milk intake was accurate288. In addition, we had two 

assessments of milk intake for most participants, thus we were able to reduce reporting error by 

taking the average across visits.  

Strengths of our study include a population-based biracial cohort of large size and with 

extensive follow-up, repeat assessments the exposure and outcome, and data on three cognitive 

tests that permit a study of the association of milk intake with three cognitive domains. 

Assessment of exposure prior to the assessment of outcome reduced the likelihood for reverse 

causation, as poor cognitive health may affect dietary choices, ability to follow dietary 

recommendations, and accurately report diet. Multiple assessments of cognitive function allowed 

capturing change in cognitive performance over time, which reduced confounding that is 

common to studies using one point in time assessment of cognitive performance257. 

6. Conclusions  

Our results suggest that milk intake greater than 1 glass/day in adulthood is associated 

with greater decline in the global z-score over a 20-year period. The difference in decline was 

0.10 (95%CI: 0.16, 0.03) z-scores, or an additional 10% decline, relative to the group reporting 

“almost never” consuming milk. Similar results were observed for consumption of skim/low-fat 

milk and all dairy. No effect modification was observed by race or lactase persistence genotype. 

Their potential public health impact recommend replication of these results. 
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7. Main tables and figures 

Table 6: Baseline (Visit 2) characteristics of study participants by milk intake group. ARIC 
Study, 1990-1992. 

 Milk intake group 
 Almost Never <1glass/day 1glass/day >1 glass/day 
 n=1554 n=6872 n=2036 n=3290 
Age, mean (SD) 56.7 (5.6) 57.2 (5.6) 58.5 (5.7) 57.9 (5.8) 
Black, % 530 (34.1%) 1833 (26.7%) 360 (17.7%) 542 (16.5%) 
Female, % 1023 (65.8%) 3879 (56.4%) 1096 (53.8%) 1664 (50.6%) 
Study site, %  
      Forsyth County, NC 328 (21.1%) 1894 (27.6%) 584 (28.7%) 760 (23.1%) 
      Jackson, MS 484 (31.1%) 1641 (23.9%) 320 (15.7%) 469 (14.3%) 
      Minneapolis, MN 335 (21.6%) 1499 (21.8%) 601 (29.5%) 1293 (39.3%) 
      Washington County, MD 407 (26.2%) 1838 (26.7%) 531 (26.1%) 768 (23.3%) 
Education, % <High School 415 (26.8%) 1474 (21.5%) 390 (19.2%) 627 (19.1%) 
Smoking, % Never 564 (36.3%) 2771 (40.3%) 839 (41.2%) 1301 (39.6%) 
Drinking, % Never 366 (23.6%) 1582 (23.0%) 476 (23.4%) 654 (19.9%) 
BMI (kg/m2), mean (SD) 27.9 (5.7) 28.1 (5.5) 27.7 (5.1) 27.9 (5.1) 
Diabetes, % 220 (14.3%) 945 (13.8%) 311 (15.3%) 555 (16.9%) 
Hypertension, % 622 (40.2%) 2451 (35.7%) 721 (35.6%) 1076 (32.8%) 
Diet score, mean (SD) 19.3 (4.9) 20.7 (4.7) 22.0 (4.7) 22.1(4.8) 
Lactose intake (g), mean (SD) 2.3 (3.0) 7.7 (5.5) 14.9 (3.5) 27.8 (15.4) 
Physical activity (met-min/week) 500 (647) 674 (825) 822 (907) 728 (782) 
APOEe4 allele, % present 565 (33.8%) 2218 (30.2%) 669 (30.7%) 1071 (30.3%) 
Lactase persistence (Whites) 
       CC (Lactase non-persistent) 149 (17.0%) 444 (10.1%) 96 (6.5%) 139 (5.8%) 
       CT (Lactase persistent) 326 (37.1%) 1,722 (39.2%) 589 (39.5%) 922 (38.2%) 
       TT (Lactase persistent) 403 (45.9%) 2,224 (50.7%) 803 (54.0%) 1,355 (56.1%) 
Cognitive test scores     
       DWRT, mean (SD) 6.6 (1.5) 6.6 (1.5) 6.5 (1.5) 6.6 (1.5) 
       DSST, mean (SD) 42.6 (15.2) 44.6 (14.4) 45.2 (13.7) 45.6 (13.6) 
       WFT, mean (SD) 31.2 (12.9) 33.4 (12.4) 33.5 (12.6) 33.8 (12.3) 

Abbreviations: BMI, body mass index; APOEe4, apolipoprotein epsilon 4 alleles; DWRT, delayed word recall test; 
DSST, digit symbol substitution test; WFT, word fluency test.  
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Table 7: Estimated, adjusted* race-specific difference in the 20-year change in cognitive 
performance by milk intake category. ARIC Study. 

Test 
 20-year decline Difference Percent 
Global z    
Almost never -0.94 (-1.00, -0.88) ref ref 
<1 glass/d -0.99 (-1.01, -0.96) -0.05 (-0.11, 0.02) 5% 
1 glass/d -1.00 (-1.05, -0.95) -0.06 (-0.13, 0.02) 6% 
>1 glass/d -1.04 (-1.08, -1.01) -0.10 (-0.16, -0.03) 11% 
DWRT z    
Almost never -1.15 (-1.23, -1.06) ref ref 
<1 glass/d -1.19 (-1.23, -1.15) -0.04 (-0.13, 0.06) 3% 
1 glass/d -1.18 (-1.26, -1.11) -0.03 (-0.14, 0.08) 3% 
>1 glass/d -1.25 (-1.31, -1.19) -0.10 (-0.20, 0.00) 9% 
DSST z    
Almost never -0.78 (-0.82, -0.74) ref ref 
<1 glass/d -0.82 (-0.84, -0.80) -0.04 (-0.09, 0.00) 5% 
1 glass/d -0.85 (-0.89, -0.81) -0.07 (-0.12, -0.01) 9% 
>1 glass/d -0.87 (-0.89, -0.84) -0.09 (-0.14, -0.03) 12% 
WFT z    
Almost never -0.24 (-0.29, -0.19) ref ref 
<1 glass/d -0.28 (-0.30, -0.26) -0.04 (-0.09, 0.02) 16% 
1 glass/d -0.26 (-0.30, -0.22) -0.02 (-0.08, 0.05) 8% 
>1 glass/d -0.29 (-0.33, -0.26) -0.05 (-0.11, 0.01) 21% 

Abbreviations: DWRT, delayed word recall test; DSST, digit symbol substitution test; WFT, word fluency test. 
Global z is a summary score, equal to the average of the three domain-specific z-scores. 
* Models adjusted for age, gender, race-center, education level, APOE4, BMI, smoking, alcohol intake, diabetes, 
physical activity, total energy intake and diet quality. In column “Percent” positive values represent % additional 
decline relative to the referent group.  
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Figure 9: Timeline of the ARIC study. 

  



76 

 
Abbreviations: DWRT, delayed word recall test; DSST, digit symbol substitution test; WFT, word fluency test. 
Global z is a summary score, equal to the average of the three domain-specific z-scores. 
* Estimates from models adjusted for age, gender, race-center, education level, APOE4, BMI, smoking, alcohol 
intake, diabetes, physical activity, total energy intake and diet quality score.  

Figure 10: Estimated, adjusted* difference in the 20-year change in cognitive performance by 
milk intake group relative to those who reported “almost never” consuming milk. ARIC Study. 
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Abbreviations: LNP, lactase non-persistence; LP, lactase persistence. 
* Models adjusted for age, gender, race-center, education level, APOE4, BMI, smoking, alcohol intake, diabetes, 
physical activity, total energy intake and diet quality. “Almost never” used as a referent category.  

Figure 11: Estimated, adjusted* difference in the 20-year change in global-z score stratified by 
race and by LP/LNP genotype among Whites. ARIC Study. 
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 Manuscript 2: Association of milk intake at midlife with mitochondrial DNA copy 
number. The Atherosclerosis Risk on Communities (ARIC) study. 

1. Overview 

Background Oxidative stress is implicated in the development of pathological conditions 

such as type 2 diabetes, neurodegenerative diseases, and cancers. Animal studies indicate that D-

galactose, a metabolic derivative of lactose, contributes to reactive oxygen species production, 

resulting in increased oxidative stress. Milk is the main source of lactose in the human diet but 

the association of milk intake with biomarkers of oxidative stress has not been evaluated.  

Objective Examine whether habitual milk intake is associated with mitochondrial DNA copy 

number (mtDNA-CN), used as a marker of oxidative stress, in peripheral blood of middle-aged 

adults. 

Methods Cross-temporal analyses of 11,245 participants of the Atherosclerosis Risk in 

Communities (ARIC) cohort who completed a food frequency questionnaire at baseline visit 

(1987-1989) and a follow-up visit (1993-1995) and had information on mtDNA-CN. MtDNA-

CN was estimated using 25 high-quality mitochondrial single nucleotide polymorphisms from 

the Affymetrix 6.0 array.  

Results In models adjusted for demographic characteristics, behavioral factors, and 

comorbidities milk intake was not associated with mtDNA-CN. Race-stratified analysis indicated 

effect modification by race (p=0.008). Among Blacks, the difference in the mean mtDNA-CN 

was -0.23 (-0.40, -0.07) SDs for those in the 4th quartile of milk intake compared to those in the 

1st quartile of milk intake in a fully adjusted model. 
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Conclusions Milk intake is associated with mtDNA-CN in a population sample of 

Blacks, but not Whites. Further studies are needed to evaluate the association of milk intake with 

biomarkers of oxidative stress in diverse populations. Additional biomarkers of oxidative stress 

should be considered.  

2. Introduction 

Despite the nutritional benefits that milk can provide for the growth and development of 

children, its effect on health of adults is less well established. It has been shown in animal studies 

that D-galactose, a metabolic derivative of lactose, can contribute to increased reactive oxygen 

species (ROS) production resulting in increased oxidative stress224-229. D-galactose reacts readily 

with free amines of amino acids in proteins and peptides to form advanced glycation end 

products (AGEs). AGEs accumulate in the organs by binding with cell surface receptors or 

cross-linking with proteins, altering their structure and function, generating ROS, increased 

inflammation and oxidative stress118, 220-223. Oxidative stress is implicated in the development of 

many pathological conditions such as asthma289-291, chronic kidney disease292, 293, arthritis294, 295, 

type 2 diabetes complications296-299, neurodegenerative diseases172, 173, 176, 178, and cancer initiation 

and progression131-133. The association of milk intake with biomarkers of oxidative stress in 

humans has not been evaluated. Of a particular interest is the difference in the effect of milk on 

oxidative stress by lactase persistent (LP) and non-persistent (LNP) genotype, which determines 

the pathways through which lactose in milk is metabolized110, 111. In lactase persistence, lactose is 

broken down by the enzyme lactase in the small intestine resulting in the formation D-galactose 

– a contributor to ROS formation. Among those who are LNP, lactose is broken down in the 

colon by bacteria, resulting in excessive formation of byproducts of bacterial fermentation, but 
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no D-galactose. Since the two metabolic pathways differ significantly, the effect of lactose on 

oxidative stress could differ by genotype. 

Mitochondrial DNA (mt-DNA) copy number (mtDNA-CN) has been increasingly used 

for the assessment of systemic oxidative stress135, 208, 260. MtDNA, a circulating multicopy 

cytoplasmic DNA semiautonomously maintained in mitochondria, is known to be sensitive to 

oxidative damage. Compared to nuclear DNA, mtDNA lacks both introns and protective histones 

and has diminished DNA repair capacity300. These characteristics make it susceptible to ROS 

resulting in damage that can lead to sequence mutations or copy number alterations. Recent 

studies suggest that lower mtDNA–CN is associated with all-cause mortality and frailty261, 

kidney disease268, 272, diabetes and metabolic syndrome263, 301, as well as some cancers302. MtDNA-

CN has also been used in some studies to evaluate the effect of diet and other health behaviors on 

mitochondrial function and systemic oxidative stress303-307.  The goal of this study was to evaluate 

the association between habitual milk intake and mtDNA-CN in a large biracial cohort under the 

hypothesis that greater milk intake results in increased production of ROS, contributing to 

increased oxidative stress and decreased mtDNA-CN.  

3. Methods 

 Study population 

The ARIC cohort is a prospective study of 15,792 adults who were selected through 

probability sampling from four US communities: Washington County, Maryland; Forsyth 

County, North Carolina; suburbs of Minneapolis, Minnesota; and Jackson, Mississippi. 

Participants were examined at five visits over a period of 25 years (Figure 12). At baseline 

(1987-1989) participants were 45-64 years of age, 56% were female and 24% were Black. At the 

time of the study visits participants received extensive examinations, including assessment of 
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their medical conditions, physical function, and social position. A food frequency questionnaire 

(FFQ) was administered at baseline visit 1 (1987-1989) and visit 3 (1993-1995). Blood 

specimens used to asses mtDNA-CN were collected at visit 2 (1990-1992) for the majority of 

participants, with a small number of samples collected at visits 3 and 4. Analysis included 

participants who completed the FFQ at least on one occasion at baseline and those with data 

available on mtDNA-CN. Excluded were participants of race other than White or Black (n=48), 

and Blacks from Washington County and Minneapolis (n=55) due to small sample size, as well 

as those with extreme caloric intake (<600 kcal or >4200 kcal per day for men, <500 kcal or 

>3600 kcal per day for women) (n=355). The final analytic sample included 11,245 participants.  

 Assessment of mtDNA-CN 

MtDNA-CN was determined utilizing the Genvisis software package. First, a list of high-

quality mitochondrial single nucleotide polymorphisms (SNPs) were hand-curated by employing 

BLAST to remove SNPs that may cross-hybridize to the nuclear genome. The probe intensity of 

the remaining 25 SNPs was determined using quantile sketch normalization (apt-probeset-

summarize) as implemented in the Affymetrix Power Tools software. The median of the 

normalized intensity, log R ratio (LRR) (PennCNV-Affy Pipeline) for all homozygous calls was 

GC corrected and used as an initial estimate of mtDNA-CN for each sample. To correct for DNA 

quality, DNA quantity, and other technical artifacts, principal components (PCs) were generated 

using the BLAST filtered, GC corrected LRR of 43,316 autosomal SNPs. The following qc 

filters were used: call rate > 98%, HWE p-value > 0.00001, PLINK mishap p-value > 0.0001, 

association with sex p-value > 0.00001, linkage disequilibrium pruning (r2 < 30), maximal 

autosomal spacing of 41.7 kb. Samples with a standard deviation of all LRR values > 0.5 or 

sample call rate < 95% were excluded from the PC analysis. From an initial pool of 1000 PCs 
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generated, a stepwise linear regression was performed to select the top 152 PCs order in such a 

way that they explain the variance of the initial estimates of mtDNA-CN. The final measure of 

mtDNA-CN are the standardized residuals from a race-stratified linear regression adjusting for 

the PCs, age, sex, sample collection site and white blood cell count. PCs were added in a natural 

order until they no longer modified the model.  

 Assessment of milk intake 

An FFQ was used to assess dietary intake of participants at baseline (1987-1989) and 

visit 3 (1993-1995)250. Total milk intake was estimated as combined intake of skim/low fat and 

whole milk, reported in 8oz-glasses with frequency of intake ranging from “Almost never” to 

“>6 times per day” in 9 categories. For participants with two FFQ assessments an average of the 

two was taken. For those with milk intake reported at baseline only, one measurement was used. 

A number was assigned at mid-category of reported frequency (e.g. “3-5 times per day” = 4 

times per day), after which total milk intake was reclassified into race-specific quartiles.  

 Covariates 

Analysis included the following covariates: age, sex, race, study center, educational 

attainment (<high school, high school, >high school) assessed at baseline visit 1; visit 2 

covariates including body mass index (BMI) in kg/m2, total cholesterol in mg/dL, high-density 

lipoprotein (HDL) in mg/dL, smoking status (current smoker vs never/former smoker), alcohol 

consumption (current drinker vs never drinker), time spent in moderate to vigorous physical 

activity in met-minutes/week, and diet quality score (see supplemental materials for diet score 

calculation)278, 279.  Information on visit 2 prevalent health condition such as diabetes, 

hypertension, coronary heart disease (CHD) and cancer was also included in the analyses. 

Diabetes was defined as fasting blood glucose level of ³126mg/dL, or non-fasting blood glucose 
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level of ³200mg/dL, history of past diagnosis of diabetes by a physician, or diabetes medication 

use in the past 2 weeks. Hypertension was defined as diastolic blood pressure of ³90mm/Hg or 

systolic blood pressure of ³140 measure at visit 2, or use of hypertension medication in the past 

2 weeks. Prevalent CHD was defined as self-reported history of CHD at the baseline visit 1 or 

adjudicated CHD event between baseline and visit 2. CHD events included fatal myocardial 

infarction, coronary artery bypass surgery, or angioplasty. Prevalent cancer cases were defined as 

self-reported history of any cancer.  

We used data on lactase persistence/lactase non-persistence (LP/LNP) genotype to 

account for differences in lactose metabolism. LP individuals are able to break down lactose 

through the enzyme lactase in the small intestine, which results in generation of D-galactose. 

Those who are LNP break down lactose in the colon through bacterial fermentation in the 

process through which D-galactose is not produced. Thus, the effect of milk intake on oxidative 

stress may differ by LP/LNP genotype and stratified analysiswas  conducted. Data on LP/LNP 

genotype were obtained for consenting ARIC participants using the Affymetrix Genome-Wide 

Human SNP Array 6.0 and the IBC chip array (Affymetrix, Santa Clara, CA, USA). The imputed 

genotype LCT-13910 C/T [polymorphism (rs4988235) upstream from the lactase (LCT) gene] in 

Whites99 and LCT-14010G/C [polymorphism (rs145946881)] in Blacks109 were used to denote 

LP/LNP in the analysis. 

 Statistical analysis 

Baseline characteristics of the study population were reported according to quartile of 

milk intake. The final measure of mtDNA-CN was presented as standardized residuals from a 

race-stratified linear regression adjusted for PCs, age, sex, sample collection site, and while 
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blood cell count. In the analysis, mtDNA-CN was used as a continuous variable in standard 

deviation (SD) units and as a categorical variable defined as quintiles of mtDNA-CN. 

Linear regression was used to estimate the mean difference in mtDNA-CN by milk intake 

quartile, using the first quartile of milk intake as the referent group.  Multinomial logistic 

regression was used to estimate the relative risk (RR) of being in the 1st quintile of mtDNA-CN 

(low count) vs higher quintiles of mtDNA-CN.  Results were reported for the comparison the 5th 

quintile of mtDNA-CN by milk intake quartile. Three models were used to study the association: 

Model1, a minimally adjusted model including age, sex, race and study center; Model 2, 

included covariates in Model 1 as well as BMI, smoking, alcohol intake, physical activity, diet 

quality score, and total energy intake; and Model 3, additionally included cholesterol levels, 

HDL-C, and prevalent hypertension, diabetes, CHD and cancer. Effect measure modification 

was assessed by race, education level, weight category (normal weight, overweight, obese), 

smoking (current vs former/never), physical activity level (quartiles of met-min/week), LP/LNP 

genotype, and prevalent disease (diabetes, hypertension, CHD and cancer). Statistical analyses 

were performed using Stata 14.2 [StataCorp, College Station, Texas]. 

4. Results 

The final analytic set included 11,245 participants who reported milk intake on at least 

one occasion and had data on mtDNA-CN. Median and mean milk intake in the population were 

0.72 [IQR: 0.79] and 0.88 (SD=0.88) glasses/day respectively [IQR: 0.79], ranging from the 

average 0.08 (SD=0.10) glasses/day in the first quartile to 2.17 (SD=0.91) glasses/day in the 

fourth quartile (Table 9). Participants with greater milk intake were more likely to be White, 

male, have more years of education, carry the lactase persistent genotype and be more physically 

active. The prevalence of diabetes was greater in the group with greater average milk intake 



85 

while there was no difference in the prevalence of CHD or cancer. The diet quality score was 

higher for those with greater milk intake due to slightly greater intake of fruits and vegetables 

and lower intake of meat and sugar sweetened beverages (Table 8 and Appendix G). Those who 

consumed more milk consumed more calories overall, and more protein and fat from animal 

sources. Diet macronutrient composition did not differ by race (Appendix H). 

Table 10 and Figure 13 show race-specific distributions of mtDNA-CN by milk intake 

quartile. We observed no difference in the mean mtDNA-CN by milk intake quartile in the 

overall sample and among Whites. Among Blacks the mean mtDNA-CN was slightly lower in 

the group with greatest milk intake (Table 10). The mean difference in mtDNA-CN between 4th 

and 1st quartiles of milk intake was -0.19 SDs (95% CI: -0.33, -0.05). 

Results of the linear regression analysis are presented in Table 11, and show that there 

was no significant difference in mtDNA-CN across milk intake quartiles in the overall sample in 

the minimally adjusted model and after adjusting for lifestyle covariates and comorbidities. The 

p for trend across milk intake quartiles was also not statistically significant. In race-stratified 

analysis we observed no association between milk intake and mtDNA-CN among Whites, 

whereas among Blacks we observed a statistically significant difference in mtDNA-CN by 

quartile of milk and a significant p for trend (p=0.002). Among Blacks, the difference in the 

mean mtDNA-CN was -0.23 (-0.40, -0.07) SDs for those in the 4th quartile of milk intake 

compared to those in the 1st quartile of milk intake in a fully adjusted model (Table 11, Figure 

14).  

The prevalence of LNP genotype among Whites was 9% (Table 8), and <1% among 

Blacks, thus stratified analysis by LP genotype was conducted for Whites only. We observed no 

significant difference in mtDNA-CN by LP/LNP genotype (Table 11, Figure 14).  
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Results from the multinomial logistic regression presented in Table 12 show risk ratios 

for being in the 1st quintile of mtDNA-CN (low count) vs being in the 5th quintile of mtDNA-CN 

(high count). We did not observe a significant increase in risk of being in the quintile with low 

mtDNA-CN among those with greater milk intake in the overall sample, or among Whites. 

Among Blacks, greater milk intake significantly increased the risk of being in the lowest 

mtDNA-CN quintile, with the relative risk of 1.61 (95%CI: 1.15, 2.27) and 1.86 (95%CI: 1.20, 

2.88) for the 3rd and 4th quartile of milk compared to the 1st quartile of milk intake. 

Statistically significant predictors of mtDNA-CN in this cohort were smoking status, 

education level, diabetes, hypertension, and prevalent CHD (Appendix I). No effect modification 

of the association of milk intake and mtDNA-CN by other covariates was observed. 

5. Discussion 

Several reports have suggested that diet and its components can influence of oxidative 

stress in humans. A recent review of studies on the association of diet and dietary components 

with biomarkers of oxidative stress concluded that greater intake of monounsaturated fatty acids 

(olive oil and nuts), fruits and vegetables may improve oxidative state, and greater intake of 

saturated fatty acids (fat from meat and dairy) and alcoholic beverages may worsen oxidative 

stress308.  There are few studies on the effect of dairy products on oxidative stress. Existing 

clinical studies concluded that, despite mixed evidence, 2-3 servings/day of dairy products within 

a healthy diet exert beneficial effects on oxidative markers309, and attenuation of oxidative and 

inflammatory stress by dairy intake among individuals with the metabolic syndrome has been 

reported310. No studies reported the effect of milk on biomarkers of oxidative stress, separately 

from other dairy products. 
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We report on a large biracial cohort with information on dietary intake and mtDNA-CN, 

which has been increasingly used as a marker of systemic oxidative stress. We found no 

association between milk intake and mtDNA-CN in the overall study population and among 

Whites. However, we found statistically significantly lower mtDNA-CN among Blacks in the 3rd 

and 4th quartile relative to the 1st quartile of milk intake. Similarly, the risk of being in the 1st 

quintile of mtDNA-CN was significantly greater in the groups with greater milk intake among 

Blacks, but not among Whites.  

Possible explanations of the observed effect modification by race include population 

differences in the effect of milk as an oxidative stressor influenced by the prevalence of lactase 

persistence genotype, which determines the pathways through which milk is metabolized.  

Because of the incomplete genotypic characterization of lactase persistence among Blacks in the 

ARIC study were able to conduct analyses stratified by lactase persistence genotype only among 

Whites. We observed estimates by genotype that were in the opposite direction across lactase 

persistence strata: among those with LNP, mtDNA-CN was lower in the group with higher milk 

intake and no difference was observed among those with LP. Availability of other SNPs that 

could better characterize LNP among Blacks (which is estimated at 80% in the US286, 287) would 

allow for a better understanding of the proposed effect modification.  Another possible 

explanation of the effect measure modification by race is unobserved/unmeasured confounders 

that were not accounted for in the analysis.  

Although we hypothesized that the association of milk intake with oxidative stress would 

be greater among those who are lactase persistent due to breakdown of lactose by lactase into D-

galactose, our results suggest the opposite. To date, the effect of lactose on health among those 

who are LNP has not been well studied and the effect of byproducts of lactose metabolism in the 
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colon have not been well described. Further studies are needed to understand the implications of 

lactose consumption among those who are classified as LNP, or those who lose the ability to 

digest lactose through lactase due to other reasons, such as viral infections and allergies99, 102, 103. 

 Strengths and limitations 

Strengths of our study include a large biracial study population with detailed assessment 

of covariates and multiple assessments of dietary intake, which allowed reducing measurement 

error by using the average of reported intake. The estimate of mtDNA-CN was validated using 

quantitative polymerase chain reaction, considered the gold standard.  

Our study had several limitations that are worth mentioning. MtDNA-CN has not been 

extensively used as marker of oxidative stress, although we found it to be associated in our study 

population with covariates that are known to increase oxidative stress: we found that mtDNA-

CN to be significantly lower among smokers compared to non-smokers, those with less than high 

school education compared to those with high school education or greater, and those with 

prevalent diabetes, hypertension and CHD compared to those without these health conditions. 

None of these associations was modified by race (Table 10S). A further limitation of this study is 

the use of an FFQ to estimate habitual milk intake. To minimize misclassification we used milk 

intake quartiles as exposure groups since FFQ has been determined to be a good tool to rank 

individuals288. To account for potential confounding by other dietary components we included a 

diet quality score in addition to total energy intake in our models. Those who consumed more 

milk had a higher total energy intake, however, after adjusting for total energy, diet composition 

did not differ by milk intake quartile. Intake of total protein, total fat, servings of fruit and 

vegetables, meat and other dairy (excluding milk) was similar across all 4 milk intake groups 
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(Appendix I). Finally, the cross-temporal design of our study did not capture the changes in 

mtDNA-CN over time. 

6. Conclusion 

Dietary intake may influence levels of oxidative stress. Studies are needed to evaluate the 

association of milk intake with biomarkers of oxidative stress in diverse populations that 

consume milk, with consideration of LP/LNP genotypes, the heterogeneity in their prevalence, 

and potential role as effect modifier of associations between milk intake and oxidative stress 

levels. Additional biomarkers of oxidative stress should be investigated and longitudinal 

assessments of oxidative stress is recommended to capture changes over time.  
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7. Main tables and figures 

Table 8: Baseline (visit 2) characteristics of the ARIC study participants by milk intake quartile. 

 Milk intake quartile  
Characteristics 1 

n=2,974 
2 

n=2,720 
3 

n=2,976 
4 

n=2,575 
p-

value* 
Age, mean (SD) 53.4 (5.6) 54.1 (5.7) 54.4 (5.7) 54.6 (5.8) 0.18 
Race, % Black 651 (21.9%) 555 (20.4%) 813 (27.3%) 593 (23.0%) <0.001 
Sex, % Female 1,813 (61.0%) 1,492 (54.9%) 1,619 (54.4%) 1,289 (50.1%) <0.001 

Smoking, n (%) never 1,041 (36.9%) 976 (37.1%) 1,171(41.4%) 963 (38.9%) <0.001 
Drinking, n (%) never 558 (19.8%) 535 (20.3%) 667 (23.6%) 471 (19.0%) 0.001 
BMI (kg/m2), mean (SD) 27.6 (5.4) 27.9 (5.4) 28.1 (5.5) 27.9 (5.0) 0.004 

Diet quality score, mean 
(SD) 

19.7 (4.8) 21.0 (4.6) 21.6 (4.8) 22.1 (4.9) <0.001 

Lactose intake from all 
sources (g), mean (SD) 

3.3 (3.3) 8.5 (5.2) 13.8 (4.7) 28.9 (15.4) <0.001 

Physical activity (met-
min/week), median 
(IQR) 

273 (0; 912) 410 (0; 1044) 432 (0; 1059) 466 (0; 1067) <0.001 

Total energy intake 
(kcal), mean (SD) 

1479 (572) 1544 (568) 1630 (578) 1890 (645) <0.001 

Total cholesterol 
(mmol/L), mean (SD) 

5.4 (1.0) 5.5 (1.0) 5.4 (1.0) 5.4 (1.0) 0.068 

HDL (mg/dL), mean 
(SD) 

14.3 (9.1) 14.2 (9.2) 14.1 (8.6) 13.8 (8.6) 0.13 

Diabetesa, n (%) 351 (19.8%) 363 (13.8%) 443 (15.7%) 400 (16.2%) <0.001 
Hypertensionb, n (%) 1007 (35.7%) 934 (35.5%) 1042 (37.0%) 822 (33.4%) 0.054 
Prevalent CHDc, % 138 (5.0%) 13 (6.3%) 166 (6.0%) 153 (6.3%) 0.13 
Cancerd, % 174 (5.9%) 174 (6.4%) 206 (6.9%) 171 (6.6%) 0.39 
LNP, % (Whites only) 312 (13.4%) 200 (9.2%) 157 (7.3%) 121 (5.5%) <0.001 

Abbreviations: BMI=body mass index; CHD=coronary heart disease; LNP=lactase non-perstistence. 
*p-value for the significance test between groups of milk intake, using ANOVA for continuous variables and 
Pearson’s chi-squared for categorical variables. 
aDiabetes defined as fasting blood glucose level of ³126mg/dL, or non-fasting blood glucose level of ³200mg/dL at 
the time of visit 2 examination, history of past diagnosis of diabetes by a physician, or diabetes medication use. 
bHypertension defined as diastolic blood pressure of ³90mm/Hg or systolic blood pressure of ³140 measure at visit 
2, or use of hypertension medication.  
cPrevalent CHD defined as self-reported history of CHD at the baseline visit 1 or adjudicated CHD event between 
baseline and visit 2. CHD events included fatal myocardial infarction, coronary artery bypass surgery, or 
angioplasty.  
dPrevalent cancer cases were defined as self-reported history of any cancer.  
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Table 9: Average milk intake (glasses/day) by race-specific quartile of milk intake. 

 Overall Whites Blacks 
Quartile n Mean (SD) n Mean (SD) n Mean (SD) 

1 2,974 0.08 (0.10) 2,323 0.10 (0.10) 651 0.02 (0.03) 
2 2,720 0.50 (0.16) 2,165 0.56 (0.11) 555 0.27 (0.12) 
3 2,976 0.91 (0.15) 2,163 0.97 (0.07) 813 0.75 (0.20) 
4 2,575 2.17 (0.91) 2,198 2.21 (0.90) 377 1.90 (0.94) 

Total 11,245 0.88 (0.89) 8,849 0.95 (0.91) 2,396 0.62 (0.74) 
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Table 10: Mean mtDNA-CN* (95%CI) by race-specific quartiles of milk intake.   

Quartile  Overall 
(n=11,245) 

Whites 
(n=8,849) 

Blacks 
(n=2,396) 

1 -0.01 (-5.64, 4.49) -0.02 (-5.64, 4.49) 0.06 (-4.93, 3.83) 
2 0.03 (-7.66, 3.42) 0.02 (-7.65, 3.34) 0.06 (-6.68, 3.45) 
3 0.02 (-6.27, 4.06) 0.03 (-5.84, 4.06) -0.02 (-6.27, 2.75) 
4 -0.03 (-6.16, 3.62) -0.01 (-4.76, 3.62) -0.12 (-6.16, 2.60) 

*mtDNA-CN, mitochondrial DNA copy number expressed as standardized residuals from a race-stratified linear 
regression adjusting for the PCs, age, sex, sample collection site and white blood cell count 
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Table 11: Difference in mean mtDNA-CN by stratum-specific milk intake quartile. 

 Overall (n=11,245) 
Quartile of milk Model 1 Model 2 Model 3 

1 ref ref ref 
2 0.031 (-0.021, 0.083) 0.012 (-0.041, 0.065) 0.013 (-0.040, 0.066) 
3 0.023 (-0.028, 0.074) 0.005 (-0.048, 0.057) 0.008 (-0.046, 0.061) 
4 -0.024 (-0.077, 0.029) -0.038 (-0.095, 0.018) -0.026 (-0.083, 0.031) 

P for trend 0.416 0.213 0.549 
 Whites (n=8,849) 

Quartile of milk Model 1 Model 2 Model 3 
1 ref ref ref 
2 0.041 (-0.015, 0.097) 0.022 (-0.034, 0.078) 0.025 (-0.032, 0.081) 
3 0.054 (-0.002, 0.109) 0.040 (-0.018, 0.097) 0.051 (-0.007, 0.109) 
4 0.010 (-0.046, 0.066) 0.001 (-0.058, 0.060) 0.016 (-0.043, 0.076) 

P for trend 0.609 0.788 0.414 
 Blacks (n=2,396) 

Quartile of milk Model 1 Model 2 Model 3 
1 ref ref ref 
2 0.000 (-0.132, 0.133) -0.098 (-0.158, 0.118) -0.028 (-0.168, 0.112) 
3 -0.077 (-0.197, 0.044) -0.125 (-0.254, 0.003) -0.145 (-0.276, -0.013) 
4 -0.181 (-0.329, 0.033) -0.240 (-0.400, -0.080) -0.233 (-0.398, -0.068) 

P for trend 0.013 0.002 0.002 
 Whites LP (n=8,057) 
Quartile of milk Model 1 Model 2 Model 3 

1 ref ref ref 
2 0.048 (-0.011, 0.106) 0.034 (-0.025, 0.094) 0.038 (-0.022, 0.098) 
3 0.051 (-0.008, 0.109) 0.048 (-0.013, 0.108) 0.059 (-0.007, 0.121) 
4 0.020 (-0.040, 0.080) 0.015 (-0.048, 0.078) 0.032 (-0.029, 0.095) 

P for trend 0.496 0.544 0.237 
 Whites LNP (n=790) 
Quartile of milk Model 1 Model 2 Model 3 

1 ref ref ref 
2 -0.014 (-0.194, 0.165) 0.007 (-0.171, 0.183) 0.014 (-0.164, 0.191) 
3 -0.014 (-0.183, 0.155) -0.072 (-0.242, 0.096) -0.044 (-0.215, 0.126) 
4 -0.085 (-0.288, 0.119) -0.124 (-0.332, 0.085) -0.136 (-0.328, 0.075) 

P for trend 0.491 0.176 0.202 
*mtDNA-CN, mitochondrial DNA copy number expressed as standardized residuals from a race-stratified linear 
regression adjusting for the PCs, age, sex, sample collection site and white blood cell count. 
Model 1: adjusted for age, sex, race-center; 
Model 2: adjusted for age, sex, race-center, education, BMI, smoking, alcohol intake, physical activity, diet quality 
score, total energy intake; 
Model 3: model 2 + total cholesterol, prevalent hypertension, prevalent diabetes, prevalent cancer, prevalent CHD;   
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Table 12: Relative risk ratio for being in the 1st quintile of mtDNA-CN* vs 5th quintile of 
mtDNA-CN, overall and stratified by race.  

  Overall  
Quartile of milk intake Model 1 Model 2 Model 3 

1 ref ref ref 
2 0.93 (0.79, 1.10) 0.98 (0.83, 1.17) 1.00 (0.84, 1.19) 
3 0.98 (0.84, 1.15) 1.04 (0.87, 1.22) 1.05 (0.88, 1.24) 
4 1.05 (0.89, 1.24) 1.14 (0.95, 1.37) 1.10 (0.91, 1.33) 
  Whites  

Quartile of milk intake Model 1 Model 2 Model 3 
1 ref Ref Ref 
2 0.90 (0.74, 1.08) 0.95 (0.78, 1.15) 0.94 (0.77, 1.15) 
3 0.90 (0.74, 1.08) 0.94 (0.77, 1.14) 0.91 (0.74, 1.11) 
4 0.98 (0.81, 1.18) 1.03 (0.84, 1.26) 0.98 (0.79, 1.20) 
  Blacks  

Quartile of milk intake Model 1 Model 2 Model 3 
1 ref ref Ref 
2 1.05 (0.74, 1.47) 1.11 (0.78, 1.60) 1.21 (0.84, 1.74) 
3 1.27 (0.94, 1.72) 1.46 (1.04, 2.03) 1.61 (1.15, 2.27) 
4 1.38 (0.94, 2.03) 1.77 (1.16, 2.70) 1.86 (1.20, 2.88) 

*mtDNA-CN, mitochondrial DNA copy number expressed as standardized residuals from a race-stratified linear 
regression adjusting for the PCs, age, sex, sample collection site and white blood cell count. 
Model 1: adjusted for age, sex, race-center; 
Model 2: adjusted for age, sex, race-center, education, BMI, smoking, alcohol intake, physical activity, diet quality 
score, total energy intake; 
Model 3: model 2 + total cholesterol, prevalent hypertension, prevalent diabetes, prevalent cancer, prevalent CHD.   
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Figure 12: Timeline of the ARIC study. 
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*mtDNA-CN, mitochondrial DNA copy number expressed as standardized residuals from a race-stratified linear 
regression adjusting for the PCs, age, sex, sample collection site and white blood cell count 

Figure 13: Distribution of mtDNA-CN*(SD) by race-specific quartiles of milk intake.  



97 

 

 
Abreviations: LP, lactase persistent; LNP, lactase non-persistnce; mtDNA-CN, mitochondrial DNA copy number. 
Estimates from linear regression adjusted for age, sex, race-center, education, BMI, smoking, alcohol intake, 
physical activity, diet quality score, total energy intake, total cholesterol, prevalent hypertension, prevalent diabetes, 
prevalent cancer, prevalent CHD.   
*mtDNA-CN, mitochondrial DNA copy number expressed as standardized residuals from a race-stratified linear 
regression adjusting for the PCs, age, sex, sample collection site and white blood cell count. 

Figure 14: Difference in mtDNA-CN* by milk intake quartile (1st quartile as reference).
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CHAPTER VI: CONCLUSIONS 

 Recapitulation of Aims 

Milk is consumed by billions of people around the world, and while the benefits of milk 

on growth and development of children is well documented, its effects on the health of adults is 

not well understood72,73,68. D-galactose, a metabolic derivative of lactose, is widely used in animal 

studies to induce oxidative stress and mimic naturally occurring aging and neurodegeneration. It 

has been suggested that the amount of D-galactose sufficient to observe similar effects in humans 

can result from consumption of 1-2 glasses of milk per day224-229. However, metabolic pathways 

through which lactose is broken down need to be considered by taking into account lactase 

persistence genotype110, 111. The brain is particularly susceptible to oxidative stress due to its high 

metabolic activity and low antioxidant defense169-179. Thus, the goal of this dissertation was to 

study the association of habitual milk intake with cognitive function through the proposed 

mechanism of increased oxidative stress induced by the derivative of lactose D-galactose. To 

achieve this goal, three aims were proposed:  

Specific Aim 1, to study the association of habitual milk intake at midlife with the 20-

year change in cognitive function in analysis stratified by race and lactase persistence genotype; 

Specific Aim 2, to study the association of habitual milk intake at midlife with the risk of 

MCI and dementia in analysis stratified by race and lactase persistence genotype; 

Specific Aim 3, to study the association of habitual milk intake at midlife with levels of 

oxidative stress, assessed by mitochondrial DNA copy number in analysis stratified by race and 

lactase persistence genotype.  
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Analyses were conducted using data from the ARIC study, a large prospective cohort of 

White and Black adults recruited through probability sampling from four US communities in 

1987-1989 and followed through 2011. Participants had repeated assessments of dietary intake 

through an FFQ, and 3 cognitive tests (DSST, DWRT, WFT) on three occasions. Detailed 

characterization of demographic and behavioral covariates, medical history and comorbidities. 

Genetic data and estimation of mtDNA-CN also was available for the majority of participants.  

Performance of the FFQ to assess habitual milk intake was evaluated as part of Aim 1. 

Analysis conducted under Aim 1 also estimated the prevalence of lactase non-persistence among 

ARIC participants, as well as assessed milk intake overall and stratified by race and lactase 

persistence genotype. Participants’ characteristics, including diet composition by milk intake 

group were evaluated to identify potential confounders of the main association. A diet quality 

score was derived for all participants.  

As part of Aim 3 the association of mtDNA-CN with factors and conditions related to 

oxidative stress was evaluated, to assess the performance of mtDNA-CN as a marker of systemic 

oxidative stress in the ARIC cohort.  

 Main Findings 

The final analytic sample for Aim 1 included 13,752 participants who had dietary data 

and assessment of cognitive performance. Approximately 88%of participants had dietary data 

reported on 2 occasions, which allowed evaluation of FFQ repeatability and change in milk 

intake over a 6-year period. Pearson correlation coefficient for milk intake reported on two 

occasions was 0.44, which is consistent with previously reported estimates. Average milk intake 

was 0.87 glasses/day, with 75% of total milk intake reported to come from skim/low-fat milk. 

Participants who reported drinking more milk were more likely to be male, White, have more 
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years of education, have better diet quality score with greater intake of fruits and vegetables, 

have lower intake of meat and sugar-sweetened beverages, and have more time spent in 

moderate to vigorous physical activity. Results of mixed model analyses suggest an association 

of milk intake with faster rate of cognitive decline over a 20-year period. The response was 

graded across milk intake categories. The difference in the 20-year change in global z-score 

between those who reported almost never drinking milk and those who reported drinking >1 

glass/day was -0.10 (95% CI: -0.16, -0.03) z-scores, equivalent to a 10% additional decline. 

Decline in the DSST z-score (a test of processing speed) and DWRT z-score (a test of short-term 

memory) contributed the most to the difference in decline. We observed no effect modification 

of this association by race or lactase persistence genotype. 

The final analytic sample for Aim 3 included 11,245 participants. In this cross-temporal 

analysis lower mtDNA-CN was observed among smokers, those with fewer years of education, 

and those with prevalent health conditions such as hypertension, diabetes, and CHD, which are 

considered conditions associated with increased oxidative stress. There was no association 

between milk intake and mtDNA-CN among Whites, whereas among Blacks the difference in 

mtDNA-CN by quartile of milk was significant with a significant p for trend (p=0.002). Among 

Blacks, the difference in the mean mtDNA-CN was -0.23 (-0.40, -0.07) SDs for those in the 4th 

quartile of milk intake compared to those in the 1st quartile of milk intake.  Also among Blacks, 

greater milk intake significantly increased the risk of being in the lowest mtDNA-CN quintile, 

with the relative risk of 1.61 (95%CI: 1.15, 2.27) and 1.86 (95%CI: 1.20, 2.88) for the 3rd and 4th 

quartile of milk compared to the 1st quartile of milk intake.  

Relevant to both Aim 1 and Aim 3 is the distribution of LP/LNP genotype in the study 

population. Among Whites, approximately 9% of participants were classified as LNP, which is 
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lower than previously reported estimates in the US (~20%)286. Among Blacks we were not able 

to characterize LNP with the SNPs available  stratified analysis by LP/LNP were conducted in 

Whites only. However, due to small numbers, stratified analyses by genotype in both Aims were 

underpowered to detect significant effect modification. 

Analysis for Aim 2, evaluating the association between milk intake and risk of MCI and 

dementia, was not performed due to small effect size of milk intake on change in cognitive 

function observed in Aim 1 and the small number of cases of MCI and dementia in the study 

population. Since analyses for Aim 2 would have been underpowered they were not performed. 

Overall, milk intake greater than 1 glass/day, as compared to almost no milk, was 

associated with a faster rate of cognitive decline among Blacks and Whites. The hypothesized 

association of milk intake with mtDNA-CN as a biomarker of oxidative stress was observed 

among Black participants only. Thus, the hypothesis that milk intake affects the rate of cognitive 

decline through increased levels of oxidative stress was supported by results observed among 

Blacks, but not among Whites.  

1. Strengths 

The study conducted to address Aim 1 is one of the few prospective studies to examine 

the association of milk intake with cognitive performance. It is the only study of this association 

with repeated measures of cognitive function, allowing the assessment of change in cognition 

over time. Strengths of this study include a population-based biracial cohort of large size and 

with extensive follow-up, repeat assessments the exposure and outcome, and data on three 

cognitive tests that permit a study of the association of milk intake with three cognitive domains. 

Assessment of exposure prior to the assessment of outcome reduced the likelihood for reverse 

causation, as poor cognitive health may affect dietary choices, ability to follow dietary 
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recommendations, and accurately report diet. The repeat assessments of cognitive function 

enabled measuring change in cognitive performance over time, which reduced confounding that 

is common to studies using one point in time assessment of cognitive performance. 

The study conducted under Aim 3 is one of the few studies examining the association of 

dairy intake with biomarkers of oxidative stress in general population and the only study 

reporting the association of milk intake separately from other dairy products. The strengths of 

this study include a large biracial study population with detailed assessment of covariates and 

multiple assessments of dietary intake, which allowed reducing measurement error by using the 

average of reported intake. The estimate of mtDNA-CN was validated using quantitative 

polymerase chain reaction, considered the gold standard. Additionally, the association of 

mtDNA-CN with outcomes linked to oxidative stress has been previously reported in the ARIC 

cohort and in this analytic sample lower mtDNA-CN was observed among smokers and those 

with prevalent diabetes, hypertension and CHD.  A further strength of this work is the 

availability of data on mtDNA-CN, which allowed testing not only the main exposure-outcome 

association, but the proposed mechanism as well. 

2. Limitations 

The work conducted under Aim 1 had several limitations, including the attrition 

associated with extended follow-up. Although attrition was addressed through MICE, it is 

possible that the effect of selective drop-out was not fully accounted for. Another limitation is 

the assumption that assessment of habitual milk intake reported at Visit 1 and Visit 3 reflect 

long-term habitual intake throughout adulthood, thus preceding the cognitive decline. Since diets 

change over the life course exposure may have been misclassified for some individuals. 

Although the brevity of the FFQ used in ARIC is a limitation, the FFQ has been shown to be a 
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reliable method of assessing long-term intake and to rank individuals’ dietary intake.  As a result, 

the ranking of the study participants with respect to milk intake was likely accurate288.  

 The study conducted for Aim 3 also had several limitations. mtDNA-CN has not been 

extensively used as marker of oxidative stress, although as already mentioned, mtDNA-CN was 

previously reported to be associated with conditions linked to oxidative stress in the ARIC cohort 

and other cohorts as well. A significant limitation is the cross-temporal design of our study, 

which did not capture the changes in mtDNA-CN over time. 

 Although analyses conducted for aims 1 and 3 were complementary, the differences in 

study designs somewhat limited the interpretation of findings. The influence of 

unobserved/unknown confounders on the observed associations cannot be ruled out.  

 Overall Conclusions 

Results of our study suggest that milk intake at midlife may be associated with a greater 

rate of cognitive decline from mid-life to late-life. The proposed oxidative stress mechanism 

through which milk intake is hypothesized to influence cognitive function was supported by 

findings in Black participants, but not among Whites. Such effect modification may reflect the 

higher prevalence of lactase non-persistence among Blacks, suggesting that lactase persistence 

phenotype is an important factor to consider in considering an association of milk intake with 

health outcomes.  

Further longitudinal studies in multiethnic groups, characterized by lactase non-

persistence, are needed to better understand the link between milk intake, oxidative stress and 

change in cognitive performance. Additional biomarkers of oxidative stress should be 

investigated and longitudinal assessments of oxidative stress is recommended.  
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APPENDIX A: FREQUENCIES OF THE EUROPEAN VARIANT LCT -13910 C>T IN 
DIFFERENT COUNTRIES. 

Appendix Table 1: Frequencies of the European variant LCT-13910 C>T in different countries. 

Country of 
population 

Allele frequency (%) Country of 
population 

Allele frequency (%) 

US (Utah) 74.5 US (African origin) 9 
Sweden 73.7 Cameroon 4.3-13.9 

New Zealand 72 Somalia 3.2 
The Netherlands 69 Senegal 2.6 

Finland 58.1 Ethiopia 1.9 
Russia 38.9 China 0 
Mali 37 Nigeria 0 
India 19.5 Malawi 0 

Morocco 17.3 Sudan 0 
Brazil 18.3 Ethiopia 0 

Cameroon 11.2-39 Uganda 0 
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APPENDIX B: FREQUENCIES OF OTHER LACTASE PERSISTENCE ALLELES IN 
THE MCM6 GENE. 

Appendix Table 2: Frequencies of other lactase persistence alleles in the MCM6 gene 

Country Gene variant Frequency (%) 
Saudi Arabia LCT-13915T>G 48.9-59.4 
Jordan  39.1 
Sudan (Beni Amir)  24.4 
Ethiopia (Afar)  15 
Sudan (Jaalo)  14.2 
Ethiopia (Amharic)  13.2 
Ethiopia (Somali)  5.1 
Tanzania LCT-14010G>C 31.9 
Kenya  27.6 
Xhosa (South Africa)  12.8 
Xhosa (Mixed ancestry)  8.1 
Angola  <7 
Ethiopia  0.5 
Sudan LCT-13907C>G 20.6 
Ethiopia (Afar)  20 
Ethiopia (Somali camel 
herders) 

 5.6 

Northern Russia LCT-13914G>A Rare variant 
Austria  2 individuals 
China (Kazak) LCT-22018G>A 18 
China (northern) LCT-13910CC 6.8 
Sudan (Jaali) LCT-14009T>G 6.6 
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APPENDIX C: ENERGY ADJUSTED DIET COMPOSITION OF STUDY 
PARTICIPANTS BY MILK INTAKE GROUP, MEAN(SD). ARIC STUDY. 

Appendix Table 3: Energy adjusted diet composition of study participants by milk intake group, 
mean(SD). ARIC study. 

 Milk intake category  
 Almost never <1 glass/day 1 glass/day >1 glass/day  
Protein (g) 67.0 (0.4) 71.0 (0.2) 73.1 (0.3) 78.1 (0.3) 
Animal Protein (g) 49.3 (0.4) 53.0 (0.2) 54.8 (0.3) 61.0 (0.3) 
Total Fat (g) 59.1 (0.3) 59.3 (0.1) 57.3 (0.2) 57.5 (0.2) 
Animal Fat (g) 35.3 (0.3) 36.1 (0.1) 35.0 (0.2) 37.1 (0.2) 
Carbs (g) 199 (0.9) 197 (0.4) 203 (0.8) 198 (0.6) 
Fiber (g) 16.6 (0.1) 17.4 (0.1) 18.5 (0.1) 17.1 (0.1) 
Omega3s (g) 0.25 (0.01) 0.27 (0.00) 0.26 (0.00) 0.24 (0.00) 
Fruits (serv) 1.41 (0.03)  1.54 (0.01) 1.78 (0.03) 1.75 (0.02) 
Vegetables (serv) 1.71 (0.03) 1.77 (0.01) 1.77 (0.02) 1.72 (0.02) 
Whole grain (serv) 0.68 (0.02) 0.73 (0.01) 0.88 (0.02) 0.89 (0.01) 
Fish (serv) 0.32 (0.01) 0.32 (0.00) 0.31(0.01) 0.29 (0.01) 
Meat (serv) 1.59 (0.02) 1.51 (0.01) 1.36 (0.01) 1.28 (0.01) 
Diet soda (8oz serv) 0.53 (0.02) 0.54 (0.01) 0.54 (0.02) 0.51 (0.02) 
SSB (8oz serv) 0.82 (0.02) 0.58 (0.01) 0.45 (0.02) 0.35 (0.01) 
Coffee and tea (8oz serv) 2.49 (0.06) 2.42 (0.03) 2.33 (0.05) 2.30 (0.04) 
Total energy (kcal) 1459 (13) 1529 (6) 1625 (11) 1866 (10) 

Abbreviations: SSB, sugar sweetened beverages. 
Meat includes combined poultry, processed meat, beef, pork, and lamb. 
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APPENDIX D: CHANGE IN GLOBAL Z SCORE BY FOLLOW-UP TIME PERIOD. 
ARIC STUDY. 

Appendix Table 4: Change in global Z score by follow-up time period. ARIC study. 

Milk intake 
group 

 (Visit 2 – Visit 4) 

 Decline Difference 
Almost never -0.12 (-0.15, -0.09) Ref 
<1glass/day -0.12 (-0.14, -0.11) -0.00 (-0.04, 0.03) 
1 glass/day -0.11 (-0.14, -0.08) 0.01(-0.03, 0.05) 
>1glass/day -0.16 (-0.18, -0.14) -0.04 (-0.08, -0.01) 

 (Visit 4 – Visit 5) 
Almost never -0.80 (-0.85, -0.76) Ref 
<1glass/day -0.85 (-0.87, -0.83) -0.05 (-0.10, -0.00) 
1 glass/day -0.89 (-0.93, -0.85) -0.09 (-0.15, -0.03) 
>1glass/day -0.86 (-0.89, -0.83) -0.06 (-0.11, -0.01) 

 (Visit 2 – Visit5)  
Almost never -0.92 (-0.98, -0.87) Ref 
<1glass/day -0.97 (-1.00, -0.87) -0.05 (-0.11, 0.01) 
1 glass/day -1.00 (-1.04, -0.95) -0.08 (-0.15, -0.01) 
>1glass/day -1.02 (-1.05, -0.99) -0.10 (-0.16, -0.01) 

Global z is a summary score, equal to the average of the three domain-specific z-scores. 
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APPENDIX E: MEAN INTAKE OF MILK AND OTHER DAIRY PRODUCTS BY MILK 
INTAKE GROUP. ARIC STUDY. 

Appendix Table 5: Mean intake of milk and other dairy products by milk intake group. ARIC 
study. 

Milk intake 
group 

Total milk 
(glasses/day) 

Skim milk 
(glasses/day) 

Whole milk 
(glasses/day) 

All dairy* 
(servings/day) 

Dairy other 
than milk ** 

(servings/day) 
Almost never 0 0 0 0.61 (0.59) 0.61 
<1 glass/day 0.44 (0.26) 0.33 (0.28) 0.11 (0.19) 1.15 (0.67) 0.71 
1 glass/day 1.00 (0) 0.82 (0.35) 0.18 (0.35) 1.80 (0.65) 0.80 
>1 glass/day 2.08 (0.9) 1.68 (1.04) 0.41 (0.78) 3.00 (1.23) 0.92 

*All dairy=skim/low fat milk + whole milk +yogurt + ice-cream + cottage cheese + other cheese + butter 
**Dairy other than milk= yogurt + ice-cream + cottage cheese + other cheese + butter 
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APPENDIX F: DISTRIBUTION OF MILK INTAKE GROUPS AND OTHER DAIRY 
INTAKE BY TOTAL DAIRY INTAKE QUARTILES. ARIC STUDY. 

Appendix Table 6: Distribution of milk intake groups and other dairy intake by total dairy intake 
quartiles. ARIC study. 

 Total dairy intake quartile 
 1 2 3 4 
Milk group     

Almost never 32.8% 7.9% 2.7% 1.1% 
<1 glass/day 67.2% 73.7% 45.3% 13.5% 
1 glass/day 0 16.3% 30.8% 12.4% 

>1 glass/day 0 2.0% 21.1% 73.0% 
Total milk intake (glass/day), mean (SD) 0.17 (0.19) 0.55 (0.33) 0.88 (0.41) 1.89 (1.06) 
All-dairy intake (serving/day), mean (SD) 0.48 (0.23) 1.11 (0.15) 1.72 (0.22) 3.23 (1.11) 



110 

APPENDIX G: ESTIMATED, ADJUSTED DIFFERENCE IN THE 20-YEAR 
COGNITIVE CHANGE BY TYPE OF DAIRY INTAKE. ARIC STUDY. 

Appendix Table 7: Estimated, adjusted differences in the 20-year cognitive change by type of 
dairy intake. ARIC study. 

 Whites 
 Global z score DWRT z score DSST z score WFT z score 

Total milk      
Almost never ref ref ref ref 
<1 glass/day -0.01 (-0.09, 0.06) -0.02 (-0.13, 0.09) -0.00 (-0.05, 0.05) -0.02 (-0.08, 0.05) 
1 glass/day -0.03 (-0.11, 0.06) -0.04 (-0.17, 0.09) -0.02 (-0.08, 0.04) -0.01 (-0.09, 0.06) 

>1 glass/day -0.06 (-0.13, 0.02) -0.08 (-0.20, 0.04) 0.00 (-0.05, 0.06) -0.04 (-0.11, 0.03) 
Skim milk     

Almost never ref ref ref ref 
<1 glass/day -0.02 (-0.07, 0.04) -0.01 (-0.10, 0.08) -0.03 (-0.07, 0.01) -0.00 (-0.05, 0.05) 
1 glass/day -0.06 (-0.13, 0.01) -0.08 (-0.18, 0.03) -0.04 (-0.09, 0.11) -0.01 (-0.08, 0.05) 

>1 glass/day -0.08 (-0.15, -
0.01) 

-0.10 (-0.10, 0.01) -0.05 (-0.10, 0.00) -0.04 (-0.10, 0.03) 

Total dairy     
1st quartile ref ref ref ref 
2nd quartile 0.01 (-0.05, 0.07) -0.02 (-0.11, 0.08) 0.00 (-0.04, 0.05) 0.03 (-0.02, 0.09) 
3rd quartile 0.00 (-0.06, 0.06) 0.01 (-0.08, 0.10) 0.00 (-0.04, 0.04) -0.00 (-0.06, 0.05) 
4th quartile -0.06 (-0.12, 0.00) -0.09 (-0.18, -0.00) -0.01 (-0.05, 0.03) -0.02 (-0.07, 0.03) 

 
 Blacks 
 Global z score DWRT z score DSST z score WFT z score 

Total milk      
Almost never ref ref ref ref 
<1 glass/day -0.08 (-0.20, -0.04) -0.07 (-0.25, 0.12) -0.06 (-0.15, 0.03) -0.09 (-0.19, 0.00) 
1 glass/day -0.05 (-0.21, 0.12) 0.06 (-0.20, 0.32) -0.02 (-0.15, 0.10) -0.06 (-0.20, 0.07) 

>1 glass/day -0.15 (-0.30, 0.01) -0.11 (-0.34, 0.12) -0.10 (-0.21, 0.01) -0.11 (-0.23, 0.01) 
Skim milk     

Almost never ref ref ref ref 
<1 glass/day -0.04 (-0.13, 0.05) -0.05 (-0.19, 0.09) -0.03 (-0.10, 0.04) -0.04 (-0.12, 0.03) 
1 glass/day -0.04 (-0.22, 0.13) -0.10 (-0.17, 0.37) -0.06 (-0.19, 0.08) -0.06 (-0.21, 0.08) 

>1 glass/day -0.27 (-0.46, 0.10) -0.25 (-0.53, 0.03) -0.21 (-0.35, -0.07) -0.10 (-0.25, 0.04) 
Total dairy     
1st quartile ref ref ref ref 
2nd quartile 0.06 (-0.04, 0.17) 0.11 (-0.06, 0.27) 0.03 (-0.06,0.11) 0.01 (-0.08, 0.09) 
3rd quartile 0.00 (-0.11, 0.11) 0.05 (-0.13, 0.23) -0.03 (-0.12, 0.06) -0.00 (-0.10, 0.09) 
4th quartile -0.07 (-0.20, 0.06) 0.03 (-0.18, 0.24) -0.12 (-0.22, -0.02) -0.06 (-0.17, 0.05) 

Abbreviations: DWRT, delayed word recall test; DSST, digit symbol substitution test; WFT, word fluency test. 
Global z is a summary score, equal to the average of the three domain-specific z-scores. 
*  Model adjusted for age, gender, race-center, education level, APOE4, BMI, smoking, alcohol intake, diabetes, 
physical activity, total energy intake and diet quality. 
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APPENDIX H: ENERGY ADJUSTED DIETARY INTAKE OF STUDY PARTICIPANTS BY MILK INTAKE QUARTILE, 
MEAN (SE). 

Appendix Table 8: Energy adjusted dietary intake of study participants by milk intake quartile, mean (SE). 

 Whites Blacks 

 Milk intake quartile Milk intake quartile 
Food group 1st 2nd  3rd  4th  1st  2nd  3rd  4th  
Protein (g) 66.2 (0.5) 70.8 (0.2) 73.0 (0.4) 78.5 (0.3) 67.5 (0.8) 71.9 (0.4) 73.4 (0.9) 78.9 (0.8) 
Animal Protein (g) 47.9 (0.5) 52.4 (0.2) 54.3 (0.4) 61.1 (0.3) 51.2 (0.8) 55.1 (0.4) 56.5 (0.9) 63.0 (0.8) 
Total Fat (g) 60.6 (0.4) 60.4 (0.2) 58.2 (0.3) 58.1 (0.2) 55.5 (0.5) 56.9 (0.3) 55.3 (0.6) 57.2 (0.6) 
Animal Fat (g) 35.4 (0.4) 36.2 (0.2) 35.0 (0.3) 37.0 (0.2) 34.8 (0.5) 36.6 (0.3) 36.5 (0.6) 39.8 (0.5) 
Carbohydrates  (g) 199 (1.2) 198 (0.6) 204 (0.9) 199 (0.8) 198 (1.7) 197 (1.0) 206 (2.1) 198 (1.9) 
Total energy (kcal) 1476 (19) 1525 (8) 1620 (13) 1879 (12) 1430 (26) 1551 (14) 1642 (31) 1881 (30) 
Fiber (g) 17.1 (0.2) 17.6 (0.1) 18.5 (0.2) 17.1 (0.1) 15.0 (0.3) 16.5 (0.2) 17.8 (0.3) 17.3 (0.3) 
Omega3s (g) 0.2 (0.0) 0.2 (0.0) 0.2 (0.0) 0.2 (0.0) 0.3 (0.0) 0.4 (0.0) 0.3 (0.0) 0.3 (0.0) 
Fruits (serv) 1.5 (0.0) 1.6 (0.0) 1.7 (0.0) 1.7 (0.0) 1.2 (0.1) 1.5 (0.0) 1.9 (0.1) 2.1 (0.1) 
Vegetables (serv) 1.7 (0.0) 1.7 (0.0) 1.7 (0.0) 1.6 (0.0) 1.8 (0.1) 2.0 (0.0) 2.0 (0.1) 2.2 (0.1) 
Whole grain (serv) 0.8 (0.0) 0.8 (0.0) 0.9 (0.0) 1.0 (0.0) 0.5 (0.0) 0.5 (0.0) 0.6 (0.0) 0.6 (0.0) 
Fish (serv) 0.3 (0.0) 0.3 (0.0) 0.3 (0.0) 0.3 (0.0) 0.4 (0.0) 0.4 (0.0) 0.4 (0.0) 0.4 (0.0) 
Meat (serv) 1.5 (0.0) 1.4 ( 0.0) 1.3 (0.0) 1.2 (0.0) 1.7 (0.0) 1.7 (0.0) 1.6 (0.0) 1.6 (0.0) 
Other dairy (serv) 0.6 (0.0) 0.6 (0.0) 0.6 (0.0) 0.6 (0.0) 0.3 (0.0) 0.3 (0.0) 0.4 (0.0) 0.5 (0.0) 
Diet soda (8oz serv) 0.7 (0.0) 0.6 (0.0) 0.6 (0.0) 0.5 (0.0) 0.3 (0.0) 0.3 (0.0) 0.4 (0.0) 0.4 (0.0) 
Sugar-sweetened 
beverages (8oz serv) 

0.7 (0.0) 0.5 (0.0) 0.4 (0.0) 0.3 (0.0) 1.1 (0.0) 0.8 (0.0) 0.7 (0.0) 0.5 (0.0) 

CoffeeTea (8oz serv) 3.0 (0.1) 2.8 (0.0) 2.6 (0.1) 2.5 (0.1) 1.5 (0.1) 1.4 (0.0) 1.3 (0.1) 1.3 (0.1) 
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APPENDIX I: DIFFERENCE IN MTDNA-CN BY COVARIATES INCLUDED IN THE 
MODEL. 

Appendix Table 9: Difference in mtNDA-CN by covariates included in the model 

Variable Overall Whites Blacks 
Smokers vs non-
smokers 

-0.076 (-0.121, -0.031) -0.064 (-0.112, -0.016) -0.117 (-0.228, -0.006) 

Education    
 (HS vs <HS) 0.069 (0.016, 0.121) 0.058 (-0.002, 0.118) 0.092 (-0.024, 0.209) 

 (College vs <HS) 0.081 (0.027, 0.135) 0.070 (0.008, 0.133) 0.098 (-0.016, 0.212) 
Diabetes vs no-
diabetes 

-0.165 (-0.219, -0.111) -0.192 (-0.255, -0.130) -0.111 (-0.221, -0.001) 

Hypertension -0.055 (-0.096, -0.014) -0.060 (-0.003, 0.004) -0.039 (-0.138, 0.060) 
Prevalent CHD -0.166 (-0.248, -0.085) -0.186 (-0.273, -0.100) -0.090 (-0.30, 0.124) 

*mtDNA-CN, mitochondrial DNA copy number expressed as standardized residuals from a race-stratified linear 
regression adjusting for the PCs, age, sex, sample collection site and white blood cell count. 
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